Science.gov

Sample records for adapted visual functions

  1. Adaptive tuning functions arise from visual observation of past movement

    PubMed Central

    Howard, Ian S.; Franklin, David W.

    2016-01-01

    Visual observation of movement plays a key role in action. For example, tennis players have little time to react to the ball, but still need to prepare the appropriate stroke. Therefore, it might be useful to use visual information about the ball trajectory to recall a specific motor memory. Past visual observation of movement (as well as passive and active arm movement) affects the learning and recall of motor memories. Moreover, when passive or active, these past contextual movements exhibit generalization (or tuning) across movement directions. Here we extend this work, examining whether visual motion also exhibits similar generalization across movement directions and whether such generalization functions can explain patterns of interference. Both the adaptation movement and contextual movement exhibited generalization beyond the training direction, with the visual contextual motion exhibiting much broader tuning. A second experiment demonstrated that this pattern was consistent with the results of an interference experiment where opposing force fields were associated with two separate visual movements. Overall, our study shows that visual contextual motion exhibits much broader (and shallower) tuning functions than previously seen for either passive or active movements, demonstrating that the tuning characteristics of past motion are highly dependent on their sensory modality. PMID:27341163

  2. Adaptive tuning functions arise from visual observation of past movement.

    PubMed

    Howard, Ian S; Franklin, David W

    2016-01-01

    Visual observation of movement plays a key role in action. For example, tennis players have little time to react to the ball, but still need to prepare the appropriate stroke. Therefore, it might be useful to use visual information about the ball trajectory to recall a specific motor memory. Past visual observation of movement (as well as passive and active arm movement) affects the learning and recall of motor memories. Moreover, when passive or active, these past contextual movements exhibit generalization (or tuning) across movement directions. Here we extend this work, examining whether visual motion also exhibits similar generalization across movement directions and whether such generalization functions can explain patterns of interference. Both the adaptation movement and contextual movement exhibited generalization beyond the training direction, with the visual contextual motion exhibiting much broader tuning. A second experiment demonstrated that this pattern was consistent with the results of an interference experiment where opposing force fields were associated with two separate visual movements. Overall, our study shows that visual contextual motion exhibits much broader (and shallower) tuning functions than previously seen for either passive or active movements, demonstrating that the tuning characteristics of past motion are highly dependent on their sensory modality. PMID:27341163

  3. A fully functional rod visual pigment in a blind mammal. A case for adaptive functional reorganization?

    PubMed

    Janssen, J W; Bovee-Geurts, P H; Peeters, Z P; Bowmaker, J K; Cooper, H M; David-Gray, Z K; Nevo, E; DeGrip, W J

    2000-12-01

    In the blind subterranean mole rat Spalax ehrenbergi superspecies complete ablation of the visual image-forming capability has been accompanied by an expansion of the bilateral projection from the retina to the suprachiasmatic nucleus. We have cloned the open reading frame of a visual pigment from Spalax that shows >90% homology with mammalian rod pigments. Baculovirus expression yields a membrane protein with all functional characteristics of a rod visual pigment (lambda(max) = 497 +/- 2 nm; pK(a) of meta I/meta II equilibrium = 6.5; rapid activation of transducin in the light). We not only provide evidence that this Spalax rod pigment is fully functional in vitro but also show that all requirements for a functional pigment are present in vivo. The physiological consequences of this unexpected finding are discussed. One attractive option is that during adaptation to a subterranean lifestyle, the visual system of this mammal has undergone mosaic reorganization, and the visual pigments have adapted to a function in circadian photoreception.

  4. Adaptation and visual coding

    PubMed Central

    Webster, Michael A.

    2011-01-01

    Visual coding is a highly dynamic process and continuously adapting to the current viewing context. The perceptual changes that result from adaptation to recently viewed stimuli remain a powerful and popular tool for analyzing sensory mechanisms and plasticity. Over the last decade, the footprints of this adaptation have been tracked to both higher and lower levels of the visual pathway and over a wider range of timescales, revealing that visual processing is much more adaptable than previously thought. This work has also revealed that the pattern of aftereffects is similar across many stimulus dimensions, pointing to common coding principles in which adaptation plays a central role. However, why visual coding adapts has yet to be fully answered. PMID:21602298

  5. Functional magnetic resonance imaging adaptation reveals a noncategorical representation of hue in early visual cortex.

    PubMed

    Persichetti, Andrew S; Thompson-Schill, Sharon L; Butt, Omar H; Brainard, David H; Aguirre, Geoffrey K

    2015-01-01

    Color names divide the fine-grained gamut of color percepts into discrete categories. A categorical transition must occur somewhere between the initial encoding of the continuous spectrum of light by the cones and the verbal report of the name of a color stimulus. Here, we used a functional magnetic resonance imaging (fMRI) adaptation experiment to examine the representation of hue in the early visual cortex. Our stimuli varied in hue between blue and green. We found in the early visual areas (V1, V2/3, and hV4) a smoothly increasing recovery from adaptation with increasing hue distance between adjacent stimuli during both passive viewing (Experiment 1) and active categorization (Experiment 2). We examined the form of the adaptation effect and found no evidence that a categorical representation mediates the release from adaptation for stimuli that cross the blue-green color boundary. Examination of the direct effect of stimulus hue on the fMRI response did, however, reveal an enhanced response to stimuli near the blue-green category border. This was largest in hV4 and when subjects were engaged in active categorization of the stimulus hue. In contrast with a recent report from another laboratory (Bird, Berens, Horner, & Franklin, 2014), we found no evidence for a categorical representation of color in the middle frontal gyrus. A post hoc whole-brain analysis, however, revealed several regions in the frontal cortex with a categorical effect in the adaptation response. Overall, our results support the idea that the representation of color in the early visual cortex is primarily fine grained and does not reflect color categories. PMID:26024465

  6. Visual adaptation and face perception

    PubMed Central

    Webster, Michael A.; MacLeod, Donald I. A.

    2011-01-01

    The appearance of faces can be strongly affected by the characteristics of faces viewed previously. These perceptual after-effects reflect processes of sensory adaptation that are found throughout the visual system, but which have been considered only relatively recently in the context of higher level perceptual judgements. In this review, we explore the consequences of adaptation for human face perception, and the implications of adaptation for understanding the neural-coding schemes underlying the visual representation of faces. The properties of face after-effects suggest that they, in part, reflect response changes at high and possibly face-specific levels of visual processing. Yet, the form of the after-effects and the norm-based codes that they point to show many parallels with the adaptations and functional organization that are thought to underlie the encoding of perceptual attributes like colour. The nature and basis for human colour vision have been studied extensively, and we draw on ideas and principles that have been developed to account for norms and normalization in colour vision to consider potential similarities and differences in the representation and adaptation of faces. PMID:21536555

  7. Visual adaptation dominates bimodal visual-motor action adaptation

    PubMed Central

    de la Rosa, Stephan; Ferstl, Ylva; Bülthoff, Heinrich H.

    2016-01-01

    A long standing debate revolves around the question whether visual action recognition primarily relies on visual or motor action information. Previous studies mainly examined the contribution of either visual or motor information to action recognition. Yet, the interaction of visual and motor action information is particularly important for understanding action recognition in social interactions, where humans often observe and execute actions at the same time. Here, we behaviourally examined the interaction of visual and motor action recognition processes when participants simultaneously observe and execute actions. We took advantage of behavioural action adaptation effects to investigate behavioural correlates of neural action recognition mechanisms. In line with previous results, we find that prolonged visual exposure (visual adaptation) and prolonged execution of the same action with closed eyes (non-visual motor adaptation) influence action recognition. However, when participants simultaneously adapted visually and motorically – akin to simultaneous execution and observation of actions in social interactions - adaptation effects were only modulated by visual but not motor adaptation. Action recognition, therefore, relies primarily on vision-based action recognition mechanisms in situations that require simultaneous action observation and execution, such as social interactions. The results suggest caution when associating social behaviour in social interactions with motor based information. PMID:27029781

  8. Saccade Adaptation and Visual Uncertainty

    PubMed Central

    Souto, David; Gegenfurtner, Karl R.; Schütz, Alexander C.

    2016-01-01

    Visual uncertainty may affect saccade adaptation in two complementary ways. First, an ideal adaptor should take into account the reliability of visual information for determining the amount of correction, predicting that increasing visual uncertainty should decrease adaptation rates. We tested this by comparing observers' direction discrimination and adaptation rates in an intra-saccadic-step paradigm. Second, clearly visible target steps may generate a slower adaptation rate since the error can be attributed to an external cause, instead of an internal change in the visuo-motor mapping that needs to be compensated. We tested this prediction by measuring saccade adaptation to different step sizes. Most remarkably, we found little correlation between estimates of visual uncertainty and adaptation rates and no slower adaptation rates with more visible step sizes. Additionally, we show that for low contrast targets backward steps are perceived as stationary after the saccade, but that adaptation rates are independent of contrast. We suggest that the saccadic system uses different position signals for adapting dysmetric saccades and for generating a trans-saccadic stable visual percept, explaining that saccade adaptation is found to be independent of visual uncertainty. PMID:27252635

  9. Saccade Adaptation and Visual Uncertainty.

    PubMed

    Souto, David; Gegenfurtner, Karl R; Schütz, Alexander C

    2016-01-01

    Visual uncertainty may affect saccade adaptation in two complementary ways. First, an ideal adaptor should take into account the reliability of visual information for determining the amount of correction, predicting that increasing visual uncertainty should decrease adaptation rates. We tested this by comparing observers' direction discrimination and adaptation rates in an intra-saccadic-step paradigm. Second, clearly visible target steps may generate a slower adaptation rate since the error can be attributed to an external cause, instead of an internal change in the visuo-motor mapping that needs to be compensated. We tested this prediction by measuring saccade adaptation to different step sizes. Most remarkably, we found little correlation between estimates of visual uncertainty and adaptation rates and no slower adaptation rates with more visible step sizes. Additionally, we show that for low contrast targets backward steps are perceived as stationary after the saccade, but that adaptation rates are independent of contrast. We suggest that the saccadic system uses different position signals for adapting dysmetric saccades and for generating a trans-saccadic stable visual percept, explaining that saccade adaptation is found to be independent of visual uncertainty.

  10. Cross-adaptation combined with TMS reveals a functional overlap between vision and imagery in the early visual cortex.

    PubMed

    Cattaneo, Zaira; Bona, Silvia; Silvanto, Juha

    2012-02-01

    The extent to which the generation of mental images draws on the neuronal representations involved in visual perception has been the subject of much debate. To investigate this overlap, we assessed whether adaptation to visual stimuli affects the ability to generate visual mental images; such cross-adaptation would indicate shared neural representations between visual perception and imagery. Mental imagery was tested using a modified version of the clock task, in which subjects are presented with a digital time (e.g. "2.15") and are asked to generate a mental image of the clock hands displaying this time on an empty clock face. Participants were adapted to oriented lines either on the upper or lower side of the clock face prior to the mental image generation. The results showed that mental imagery was impaired when the mental image had to be generated in the adapted region of visual space (Experiment 1). In Experiment 2, we used TMS to determine whether this adaptation effect occurs in the early visual cortex (EVC; V1/V2). Relative to control conditions (No TMS and Vertex TMS), EVC TMS facilitated mental imagery generation when the mental image spatially overlapped with the adapter. Our results thus show that neuronal representations in the EVC which encode (and are suppressed by) visual input play a causal role in visual mental imagery.

  11. Spectral Tuning of Killer Whale (Orcinus orca) Rhodopsin: Evidence for Positive Selection and Functional Adaptation in a Cetacean Visual Pigment.

    PubMed

    Dungan, Sarah Z; Kosyakov, Alexander; Chang, Belinda S W

    2016-02-01

    Cetaceans have undergone a remarkable evolutionary transition that was accompanied by many sensory adaptations, including modification of the visual system for underwater environments. Recent sequencing of cetacean genomes has made it possible to begin exploring the molecular basis of these adaptations. In this study we use in vitro expression methods to experimentally characterize the first step of the visual transduction cascade, the light activation of rhodopsin, for the killer whale. To investigate the spectral effects of amino acid substitutions thought to correspond with absorbance shifts relative to terrestrial mammals, we used the orca gene as a background for the first site-directed mutagenesis experiments in a cetacean rhodopsin. The S292A mutation had the largest effect, and was responsible for the majority of the spectral difference between killer whale and bovine (terrestrial) rhodopsin. Using codon-based likelihood models, we also found significant evidence for positive selection in cetacean rhodopsin sequences, including on spectral tuning sites we experimentally mutated. We then investigated patterns of ecological divergence that may be correlated with rhodopsin functional variation by using a series of clade models that partitioned the data set according to phylogeny, habitat, and foraging depth zone. Only the model partitioning according to depth was significant. This suggests that foraging dives might be a selective regime influencing cetacean rhodopsin divergence, and our experimental results indicate that spectral tuning may be playing an adaptive role in this process. Our study demonstrates that combining computational and experimental methods is crucial for gaining insight into the selection pressures underlying molecular evolution. PMID:26486871

  12. Spectral Tuning of Killer Whale (Orcinus orca) Rhodopsin: Evidence for Positive Selection and Functional Adaptation in a Cetacean Visual Pigment.

    PubMed

    Dungan, Sarah Z; Kosyakov, Alexander; Chang, Belinda S W

    2016-02-01

    Cetaceans have undergone a remarkable evolutionary transition that was accompanied by many sensory adaptations, including modification of the visual system for underwater environments. Recent sequencing of cetacean genomes has made it possible to begin exploring the molecular basis of these adaptations. In this study we use in vitro expression methods to experimentally characterize the first step of the visual transduction cascade, the light activation of rhodopsin, for the killer whale. To investigate the spectral effects of amino acid substitutions thought to correspond with absorbance shifts relative to terrestrial mammals, we used the orca gene as a background for the first site-directed mutagenesis experiments in a cetacean rhodopsin. The S292A mutation had the largest effect, and was responsible for the majority of the spectral difference between killer whale and bovine (terrestrial) rhodopsin. Using codon-based likelihood models, we also found significant evidence for positive selection in cetacean rhodopsin sequences, including on spectral tuning sites we experimentally mutated. We then investigated patterns of ecological divergence that may be correlated with rhodopsin functional variation by using a series of clade models that partitioned the data set according to phylogeny, habitat, and foraging depth zone. Only the model partitioning according to depth was significant. This suggests that foraging dives might be a selective regime influencing cetacean rhodopsin divergence, and our experimental results indicate that spectral tuning may be playing an adaptive role in this process. Our study demonstrates that combining computational and experimental methods is crucial for gaining insight into the selection pressures underlying molecular evolution.

  13. Attention modulates visual size adaptation.

    PubMed

    Kreutzer, Sylvia; Fink, Gereon R; Weidner, Ralph

    2015-01-01

    The current study determined in healthy subjects (n = 16) whether size adaptation occurs at early, i.e., preattentive, levels of processing or whether higher cognitive processes such as attention can modulate the illusion. To investigate this issue, bottom-up stimulation was kept constant across conditions by using a single adaptation display containing both small and large adapter stimuli. Subjects' attention was directed to either the large or small adapter stimulus by means of a luminance detection task. When attention was directed toward the small as compared to the large adapter, the perceived size of the subsequent target was significantly increased. Data suggest that different size adaptation effects can be induced by one and the same stimulus depending on the current allocation of attention. This indicates that size adaptation is subject to attentional modulation. These findings are in line with previous research showing that transient as well as sustained attention modulates visual features, such as contrast sensitivity and spatial frequency, and influences adaptation in other contexts, such as motion adaptation (Alais & Blake, 1999; Lankheet & Verstraten, 1995). Based on a recently suggested model (Pooresmaeili, Arrighi, Biagi, & Morrone, 2013), according to which perceptual adaptation is based on local excitation and inhibition in V1, we conclude that guiding attention can boost these local processes in one or the other direction by increasing the weight of the attended adapter. In sum, perceptual adaptation, although reflected in changes of neural activity at early levels (as shown in the aforementioned study), is nevertheless subject to higher-order modulation.

  14. Functional Visual Loss

    PubMed Central

    Bruce, Beau B; Newman, Nancy J

    2010-01-01

    Synopsis Neurologists frequently evaluate patients complaining of vision loss, especially when the patient has been examined by an ophthalmologist who has found no ocular disease. A significant proportion of patients presenting to the neurologist with visual complaints will have non-organic or functional visual loss. While there are examination techniques which can aid in the detection and diagnosis of functional visual loss, the frequency with which functional visual loss occurs concomitantly with organic disease warrants substantial caution on the part of the clinician. Furthermore, purely functional visual loss is never a diagnosis of exclusion, and must be supported by positive findings on examination that demonstrate normal visual function. The relationship of true psychological disease and functional visual loss is unclear and most patients respond well to simple reassurance. PMID:20638000

  15. Predictive properties of visual adaptation.

    PubMed

    Chopin, Adrien; Mamassian, Pascal

    2012-04-10

    What humans perceive depends in part on what they have previously experienced. After repeated exposure to one stimulus, adaptation takes place in the form of a negative correlation between the current percept and the last displayed stimuli. Previous work has shown that this negative dependence can extend to a few minutes in the past, but the precise extent and nature of the dependence in vision is still unknown. In two experiments based on orientation judgments, we reveal a positive dependence of a visual percept with stimuli presented remotely in the past, unexpectedly and in contrast to what is known for the recent past. Previous theories of adaptation have postulated that the visual system attempts to calibrate itself relative to an ideal norm or to the recent past. We propose instead that the remote past is used to estimate the world's statistics and that this estimate becomes the reference. According to this new framework, adaptation is predictive: the most likely forthcoming percept is the one that helps the statistics of the most recent percepts match that of the remote past.

  16. Adaptive optics without altering visual perception.

    PubMed

    Koenig, D E; Hart, N W; Hofer, H J

    2014-04-01

    Adaptive optics combined with visual psychophysics creates the potential to study the relationship between visual function and the retina at the cellular scale. This potential is hampered, however, by visual interference from the wavefront-sensing beacon used during correction. For example, we have previously shown that even a dim, visible beacon can alter stimulus perception (Hofer et al., 2012). Here we describe a simple strategy employing a longer wavelength (980nm) beacon that, in conjunction with appropriate restriction on timing and placement, allowed us to perform psychophysics when dark adapted without altering visual perception. The method was verified by comparing detection and color appearance of foveally presented small spot stimuli with and without the wavefront beacon present in 5 subjects. As an important caution, we found that significant perceptual interference can occur even with a subliminal beacon when additional measures are not taken to limit exposure. Consequently, the lack of perceptual interference should be verified for a given system, and not assumed based on invisibility of the beacon.

  17. Photoreceptor processes in visual adaptation.

    PubMed

    Ripps, H; Pepperberg, D R

    1987-01-01

    In this paper we have stressed two experimental results in need of explanation: (i) the reduced efficacy with which (remaining, abundant) rhodopsin in the light-adapted receptor mediates the flash response; and (ii) the disparity in conditions of irradiation (weak background vs. extensive bleaching) leading to equivalent conditions of threshold. The model discussed above suggests, in molecular terms, a possible basis for both properties of receptor adaptation. On the view developed here, property (i) derives from the ability of photoactivated or bleached pigment (R or B) to restrict dramatically the availability of a substance required for phototransduction. Property (ii) derives in large part from the pronounced disparity in the effectiveness of R (during illumination) and B (remaining after illumination) in reducing the availability of this substance. On this view, the "equivalence" of threshold elevation in states of light- vs. dark-adaptation derives from an overall equality of a product of factors (Q, Etot/Es, and J of equation 2). Under all but extreme conditions, this aggregate of factors is dominated by the term Etot/Es, reflecting the functional state of E. PMID:3317149

  18. Visual adaptation--a reinterpretation: discussion.

    PubMed

    Laming, Donald

    2013-10-01

    This discussion paper seeks to reshape the contemporary understanding of visual adaptation. Received wisdom says that input luminance is scaled down in the retina. There is, first, a near-logarithmic compression described by the Naka-Rushton equation and, second, a control of gain (better attenuation) by feedback from the output of each ganglion cell that is equivalent to modifying the half-saturation constant in the Naka-Rushton equation. The reinterpretation proposed here asserts the following instead: (a) the scaling down in the retina is accomplished by receptive fields of different areas, which function over different ranges of luminance, ranges inversely proportional to the area of the receptive field. (b) The visual pathway is differentially coupled to the physical stimulus, so that the maintained discharge increases only as the square root of the luminance. (c) The Naka-Rushton equation describes merely the saturation of neural response as input increases; when a neuron is overloaded, output tends to regularity and onward transmission is blocked by a subsequent stage of differential coupling. Three existing studies of the relation between input to and output from retinal ganglion cells are reinterpreted in the light of this alternative view of visual adaptation.

  19. Visualization of adaptive mesh refinement data

    NASA Astrophysics Data System (ADS)

    Weber, Gunther H.; Hagen, Hans; Hamann, Bernd; Joy, Kenneth I.; Ligocki, Terry J.; Ma, Kwan-Liu; Shalf, John M.

    2001-05-01

    The complexity of physical phenomena often varies substantially over space and time. There can be regions where a physical phenomenon/quantity varies very little over a large extent. At the same time, there can be small regions where the same quantity exhibits highly complex variations. Adaptive mesh refinement (AMR) is a technique used in computational fluid dynamics to simulate phenomena with drastically varying scales concerning the complexity of the simulated variables. Using multiple nested grids of different resolutions, AMR combines the topological simplicity of structured-rectilinear grids, permitting efficient computational and storage, with the possibility to adapt grid resolutions in regions of complex behavior. We present methods for direct volume rendering of AMR data. Our methods utilize AMR grids directly for efficiency of the visualization process. We apply a hardware-accelerated rendering method to AMR data supporting interactive manipulation of color-transfer functions and viewing parameters. We also present a cell-projection-based rendering technique for AMR data.

  20. Adaptive encoding in the visual pathway.

    PubMed

    Lesica, Nicholas A; Boloori, Alireza S; Stanley, Garrett B

    2003-02-01

    In a natural setting, the mean luminance and contrast of the light within a visual neuron's receptive field are constantly changing as the eyes saccade across complex scenes. Adaptive mechanisms modulate filtering properties of the early visual pathway in response to these variations, allowing the system to maintain differential sensitivity to nonstationary stimuli. An adaptive variant of the reverse correlation technique is used to characterize these changes during single trials. Properties of the adaptive reverse correlation algorithm were investigated via simulation. Analysis of data collected from the mammalian visual system demonstrates the ability to continuously track adaptive changes in the encoding scheme. The adaptive estimation approach provides a framework for characterizing the role of adaptation in natural scene viewing. PMID:12613554

  1. Image Watermarking Based on Adaptive Models of Human Visual Perception

    NASA Astrophysics Data System (ADS)

    Khawne, Amnach; Hamamoto, Kazuhiko; Chitsobhuk, Orachat

    This paper proposes a digital image watermarking based on adaptive models of human visual perception. The algorithm exploits the local activities estimated from wavelet coefficients of each subband to adaptively control the luminance masking. The adaptive luminance is thus delicately combined with the contrast masking and edge detection and adopted as a visibility threshold. With the proposed combination of adaptive visual sensitivity parameters, the proposed perceptual model can be more appropriate to the different characteristics of various images. The weighting function is chosen such that the fidelity, imperceptibility and robustness could be preserved without making any perceptual difference to the image quality.

  2. Visualization of Scalar Adaptive Mesh Refinement Data

    SciTech Connect

    VACET; Weber, Gunther; Weber, Gunther H.; Beckner, Vince E.; Childs, Hank; Ligocki, Terry J.; Miller, Mark C.; Van Straalen, Brian; Bethel, E. Wes

    2007-12-06

    Adaptive Mesh Refinement (AMR) is a highly effective computation method for simulations that span a large range of spatiotemporal scales, such as astrophysical simulations, which must accommodate ranges from interstellar to sub-planetary. Most mainstream visualization tools still lack support for AMR grids as a first class data type and AMR code teams use custom built applications for AMR visualization. The Department of Energy's (DOE's) Science Discovery through Advanced Computing (SciDAC) Visualization and Analytics Center for Enabling Technologies (VACET) is currently working on extending VisIt, which is an open source visualization tool that accommodates AMR as a first-class data type. These efforts will bridge the gap between general-purpose visualization applications and highly specialized AMR visual analysis applications. Here, we give an overview of the state of the art in AMR scalar data visualization research.

  3. Visualization Tools for Adaptive Mesh Refinement Data

    SciTech Connect

    Weber, Gunther H.; Beckner, Vincent E.; Childs, Hank; Ligocki,Terry J.; Miller, Mark C.; Van Straalen, Brian; Bethel, E. Wes

    2007-05-09

    Adaptive Mesh Refinement (AMR) is a highly effective method for simulations that span a large range of spatiotemporal scales, such as astrophysical simulations that must accommodate ranges from interstellar to sub-planetary. Most mainstream visualization tools still lack support for AMR as a first class data type and AMR code teams use custom built applications for AMR visualization. The Department of Energy's (DOE's) Science Discovery through Advanced Computing (SciDAC) Visualization and Analytics Center for Enabling Technologies (VACET) is currently working on extending VisIt, which is an open source visualization tool that accommodates AMR as a first-class data type. These efforts will bridge the gap between general-purpose visualization applications and highly specialized AMR visual analysis applications. Here, we give an overview of the state of the art in AMR visualization research and tools and describe how VisIt currently handles AMR data.

  4. Visual adaptation provides objective electrophysiological evidence of facial identity discrimination.

    PubMed

    Retter, Talia L; Rossion, Bruno

    2016-07-01

    Discrimination of facial identities is a fundamental function of the human brain that is challenging to examine with macroscopic measurements of neural activity, such as those obtained with functional magnetic resonance imaging (fMRI) and electroencephalography (EEG). Although visual adaptation or repetition suppression (RS) stimulation paradigms have been successfully implemented to this end with such recording techniques, objective evidence of an identity-specific discrimination response due to adaptation at the level of the visual representation is lacking. Here, we addressed this issue with fast periodic visual stimulation (FPVS) and EEG recording combined with a symmetry/asymmetry adaptation paradigm. Adaptation to one facial identity is induced through repeated presentation of that identity at a rate of 6 images per second (6 Hz) over 10 sec. Subsequently, this identity is presented in alternation with another facial identity (i.e., its anti-face, both faces being equidistant from an average face), producing an identity repetition rate of 3 Hz over a 20 sec testing sequence. A clear EEG response at 3 Hz is observed over the right occipito-temporal (ROT) cortex, indexing discrimination between the two facial identities in the absence of an explicit behavioral discrimination measure. This face identity discrimination occurs immediately after adaptation and disappears rapidly within 20 sec. Importantly, this 3 Hz response is not observed in a control condition without the single-identity 10 sec adaptation period. These results indicate that visual adaptation to a given facial identity produces an objective (i.e., at a pre-defined stimulation frequency) electrophysiological index of visual discrimination between that identity and another, and provides a unique behavior-free quantification of the effect of visual adaptation.

  5. Adaptive Transfer Function Networks

    SciTech Connect

    Goulding, J.R. |

    1993-06-01

    Real-time pattern classification and time-series forecasting applications continue to drive artificial neural network (ANN) technology. As ANNs increase in complexity, the throughput of digital computer simulations decreases. A novel ANN, the Adaptive Transfer Function Network (ATF-Net), directly addresses the issue of throughput. ATF-Nets are global mapping equations generated by the superposition of ensembles of neurodes having arbitrary continuous functions receiving encoded input data. ATF-Nets may be implemented on parallel digital computers. An example is presented which illustrates a four-fold increase in computational throughput.

  6. Adaptive Transfer Function Networks

    SciTech Connect

    Goulding, J.R. Portland State Univ., OR . Dept. of Electrical Engineering)

    1993-01-01

    Real-time pattern classification and time-series forecasting applications continue to drive artificial neural network (ANN) technology. As ANNs increase in complexity, the throughput of digital computer simulations decreases. A novel ANN, the Adaptive Transfer Function Network (ATF-Net), directly addresses the issue of throughput. ATF-Nets are global mapping equations generated by the superposition of ensembles of neurodes having arbitrary continuous functions receiving encoded input data. ATF-Nets may be implemented on parallel digital computers. An example is presented which illustrates a four-fold increase in computational throughput.

  7. Visual Function in Dyslexia.

    ERIC Educational Resources Information Center

    Flax, Nathan

    1968-01-01

    Using published research data, the problem of the seriously retarded reader was examined to determine the role of vision. The most obvious visual factors such as acuity and refractive error did not seem related to the problem. Impairment of visual skills such as fusion and accommodation did seem to contribute to reading difficulty, but such…

  8. Adaptation and visual search in mammographic images.

    PubMed

    Kompaniez-Dunigan, Elysse; Abbey, Craig K; Boone, John M; Webster, Michael A

    2015-05-01

    Radiologists face the visually challenging task of detecting suspicious features within the complex and noisy backgrounds characteristic of medical images. We used a search task to examine whether the salience of target features in x-ray mammograms could be enhanced by prior adaptation to the spatial structure of the images. The observers were not radiologists, and thus had no diagnostic training with the images. The stimuli were randomly selected sections from normal mammograms previously classified with BIRADS Density scores of "fatty" versus "dense," corresponding to differences in the relative quantities of fat versus fibroglandular tissue. These categories reflect conspicuous differences in visual texture, with dense tissue being more likely to obscure lesion detection. The targets were simulated masses corresponding to bright Gaussian spots, superimposed by adding the luminance to the background. A single target was randomly added to each image, with contrast varied over five levels so that they varied from difficult to easy to detect. Reaction times were measured for detecting the target location, before or after adapting to a gray field or to random sequences of a different set of dense or fatty images. Observers were faster at detecting the targets in either dense or fatty images after adapting to the specific background type (dense or fatty) that they were searching within. Thus, the adaptation led to a facilitation of search performance that was selective for the background texture. Our results are consistent with the hypothesis that adaptation allows observers to more effectively suppress the specific structure of the background, thereby heightening visual salience and search efficiency.

  9. Adaptive multiconfigurational wave functions

    SciTech Connect

    Evangelista, Francesco A.

    2014-03-28

    A method is suggested to build simple multiconfigurational wave functions specified uniquely by an energy cutoff Λ. These are constructed from a model space containing determinants with energy relative to that of the most stable determinant no greater than Λ. The resulting Λ-CI wave function is adaptive, being able to represent both single-reference and multireference electronic states. We also consider a more compact wave function parameterization (Λ+SD-CI), which is based on a small Λ-CI reference and adds a selection of all the singly and doubly excited determinants generated from it. We report two heuristic algorithms to build Λ-CI wave functions. The first is based on an approximate prescreening of the full configuration interaction space, while the second performs a breadth-first search coupled with pruning. The Λ-CI and Λ+SD-CI approaches are used to compute the dissociation curve of N{sub 2} and the potential energy curves for the first three singlet states of C{sub 2}. Special attention is paid to the issue of energy discontinuities caused by changes in the size of the Λ-CI wave function along the potential energy curve. This problem is shown to be solvable by smoothing the matrix elements of the Hamiltonian. Our last example, involving the Cu{sub 2}O{sub 2}{sup 2+} core, illustrates an alternative use of the Λ-CI method: as a tool to both estimate the multireference character of a wave function and to create a compact model space to be used in subsequent high-level multireference coupled cluster computations.

  10. UAV visual signature suppression via adaptive materials

    NASA Astrophysics Data System (ADS)

    Barrett, Ron; Melkert, Joris

    2005-05-01

    Visual signature suppression (VSS) methods for several classes of aircraft from WWII on are examined and historically summarized. This study shows that for some classes of uninhabited aerial vehicles (UAVs), primary mission threats do not stem from infrared or radar signatures, but from the amount that an aircraft visually stands out against the sky. The paper shows that such visual mismatch can often jeopardize mission success and/or induce the destruction of the entire aircraft. A psycho-physioptical study was conducted to establish the definition and benchmarks of a Visual Cross Section (VCS) for airborne objects. This study was centered on combining the effects of size, shape, color and luminosity or effective illumance (EI) of a given aircraft to arrive at a VCS. A series of tests were conducted with a 6.6ft (2m) UAV which was fitted with optically adaptive electroluminescent sheets at altitudes of up to 1000 ft (300m). It was shown that with proper tailoring of the color and luminosity, the VCS of the aircraft dropped from more than 4,200cm2 to less than 1.8cm2 at 100m (the observed lower limit of the 20-20 human eye in this study). In laypersons terms this indicated that the UAV essentially "disappeared". This study concludes with an assessment of the weight and volume impact of such a Visual Suppression System (VSS) on the UAV, showing that VCS levels on this class UAV can be suppressed to below 1.8cm2 for aircraft gross weight penalties of only 9.8%.

  11. Adaptive design of visual perception experiments

    NASA Astrophysics Data System (ADS)

    O'Connor, John D.; Hixson, Jonathan; Thomas, James M., Jr.; Peterson, Matthew S.; Parasuraman, Raja

    2010-04-01

    Meticulous experimental design may not always prevent confounds from affecting experimental data acquired during visual perception experiments. Although experimental controls reduce the potential effects of foreseen sources of interference, interaction, or noise, they are not always adequate for preventing the confounding effects of unforeseen forces. Visual perception experimentation is vulnerable to unforeseen confounds because of the nature of the associated cognitive processes involved in the decision task. Some confounds are beyond the control of experimentation, such as what a participant does immediately prior to experimental participation, or the participant's attitude or emotional state. Other confounds may occur through ignorance of practical control methods on the part of the experiment's designer. The authors conducted experiments related to experimental fatigue and initially achieved significant results that were, upon re-examination, attributable to a lack of adequate controls. Re-examination of the original results and the processes and events that led to them yielded a second experimental design with more experimental controls and significantly different results. The authors propose that designers of visual perception experiments can benefit from planning to use a test-fix-test or adaptive experimental design cycle, so that unforeseen confounds in the initial design can be remedied.

  12. The visual functions of the complete colorblind.

    PubMed

    HECHT, S; SHLAER, S

    1948-07-20

    1. The visual functions of a completely colorblind individual are compared with those of the normal. The sensibility distribution in the spectrum has a maximum at 520 mmicro at all brightnesses and thus corresponds to rod vision alone. This is confirmed by studies of dark adaptation which show final thresholds like those usually found for rod vision. Dark adaptation, measured both centrally and peripherally in the retina, is a single continuous function, and regardless of the brightness of the preceding light adaptation, is of the rapid type only, such as that found for the normal following low light adaptation. Visual acuity also shows a single continuous function like that for rod vision. 2. Both critical fusion frequency and intensity discrimination show two sections, one at low and the other at high intensities with a sharp transition from one to the other. Intensity discrimination is as good as for the normal eye, and covers much the same range. The maximal critical fusion frequency is only about 20 cycles per second as compared to 55 cycles for the normal. 3. The two sections shown by the colorblind eye for intensity discrimination and fusion frequency possess the spectral sensitivity of rod vision since the relative positions on the intensity scale are not influenced by using different parts of the spectrum. PMID:18870866

  13. Adaptation to stimulus contrast and correlations during natural visual stimulation

    PubMed Central

    Lesica, Nicholas A.; Jin, Jianzhong; Weng, Chong; Yeh, Chun-I; Butts, Daniel A.; Stanley, Garrett B.; Alonso, Jose-Manuel

    2008-01-01

    Summary In this study, we characterize the adaptation of neurons in the cat lateral geniculate nucleus to changes in stimulus contrast and correlations. By comparing responses to high and low contrast natural scene movie and white noise stimuli, we show that an increase in contrast or correlations results in receptive fields with faster temporal dynamics and stronger antagonistic surrounds, as well as decreases in gain and selectivity. We also observe contrast- and correlation-induced changes in the reliability and sparseness of neural responses. We find that reliability is determined primarily by processing in the receptive field (the effective contrast of the stimulus), while sparseness is determined by the interactions between several functional properties. These results reveal a number of novel adaptive phenomena and suggest that adaptation to stimulus contrast and correlations may play an important role in visual coding in a dynamic natural environment. PMID:17678859

  14. Adaptive information interactive mechanism for multi-UAV visual navigation

    NASA Astrophysics Data System (ADS)

    Liu, Hui; Dai, Qionghai

    2012-06-01

    Multi-unmanned aerial vehicle (UAV) cooperative communication for visual navigation has recently generated significant concern. It has large amounts of visual information to be transmitted and processed among UAVs with realtime requirements. And the UAV clusters have self-organized, time-varying and high dynamic characteristics. Considering the above conditions, we propose an adaptive information interactive mechanism (AIIM) for multi-UAV visual navigation. In the mechanism, the function modules for UAV inter-communication interface are designed, the mobility-based link lifetime is established and the information interactive protocol is presented. Thus we combine the mobility of UAVs with the corresponding communication requirements to make effective information interaction for UAVs. Task-oriented distributed control is adopted to improve the collaboration flexibility in the multi-UAV visual navigation system. In order to timely obtain the necessary visual information, each UAV can cooperate with other relevant UAVs which meet some certain terms such as situation, task or environmental conditions. Simulation results are presented to show the validity of the proposed mechanism in terms of end-to-end delay and links stability.

  15. A saliency based motion detection model of visual system considering visual adaptation properties.

    PubMed

    Kodama, Mitsuhiro; Kohama, Takeshi; Yoshida, Hisashi

    2015-01-01

    The purpose of this study is to construct a mathematical model which predicts saliency regions in high-speed egocentric-motion movies, filmed by an embedded camera in a driving vehicle, by reproducing the characteristics of the area MT and MST neurons' receptive fields with consideration of visual adaptation properties. The area MT neurons integrate from the area V1 activation and respond well to regions where higher motion contrasts exist. While the area MST neurons detect global motions such as expansion, contraction, rotation, and so on. We modeled the area MT neurons' receptive fields as a center-surround spatial summation of counter sided motion vectors of visual scenery. The area MST neurons in our model integrate the responses of the MT neurons by convolving with spacial weight functions of which central portions are biased to preferred direction. Visual adaptations were taken as the primary delay filters for each visual feature channel to deplete the saliency of stationary objects and regions during particular frames. The simulation results for the movies which were taken in a running vehicle indicate that the proposed model detects more salient objects around the vanishing point than the conventional saliency based model. To evaluate the performance of proposed model, we defined the moving-NSS (normalized scan-path salience) scores as the averaged NSS scores in each moving time window. The moving-NSS scores for motion images of our model were higher than those of the conventional model. PMID:26737820

  16. Visualizing 3D Turbulence On Temporally Adaptive Wavelet Collocation Grids

    NASA Astrophysics Data System (ADS)

    Goldstein, D. E.; Kadlec, B. J.; Yuen, D. A.; Erlebacher, G.

    2005-12-01

    Today there is an explosion in data from high-resolution computations of nonlinear phenomena in many fields, including the geo- and environmental sciences. The efficient storage and subsequent visualization of these large data sets is a trade off in storage costs versus data quality. New dynamically adaptive simulation methodologies promise significant computational cost savings and have the added benefit of producing results on adapted grids that significantly reduce storage and data manipulation costs. Yet, with these adaptive simulation methodologies come new challenges in the visualization of temporally adaptive data sets. In this work turbulence data sets from Stochastic Coherent Adaptive Large Eddy Simulations (SCALES) are visualized with the open source tool ParaView, as a challenging case study. SCALES simulations use a temporally adaptive collocation grid defined by wavelet threshold filtering to resolve the most energetic coherent structures in a turbulence field. A subgrid scale model is used to account for the effect of unresolved subgrid scale modes. The results from the SCALES simulations are saved on a thresholded dyadic wavelet collocation grid, which by its nature does not include cell information. Paraview is an open source visualization package developed by KitWare(tm) that is based on the widely used VTK graphics toolkit. The efficient generation of cell information, required with current ParaView data formats, is explored using custom algorithms and VTK toolkit routines. Adaptive 3d visualizations using isosurfaces and volume visualizations are compared with non-adaptive visualizations. To explore the localized multiscale structures in the turbulent data sets the wavelet coefficients are also visualized allowing visualization of energy contained in local physical regions as well as in local wave number space.

  17. Adaptive changes in visual cortex following prolonged contrast reduction

    PubMed Central

    Kwon, MiYoung; Legge, Gordon E.; Fang, Fang; Cheong, Allen M. Y.; He, Sheng

    2009-01-01

    How does prolonged reduction in retinal-image contrast affect visual-contrast coding? Recent evidence indicates that some forms of long-term visual deprivation result in compensatory perceptual and neural changes in the adult visual pathway. It has not been established whether changes due to contrast adaptation are best characterized as “contrast gain” or “response gain.” We present a theoretical rationale for predicting that adaptation to long-term contrast reduction should result in response gain. To test this hypothesis, normally sighted subjects adapted for four hours by viewing their environment through contrast-reducing goggles. During the adaptation period, the subjects went about their usual daily activities. Subjects' contrast-discrimination thresholds and fMRI BOLD responses in cortical areas V1 and V2 were obtained before and after adaptation. Following adaptation, we observed a significant decrease in contrast-discrimination thresholds, and significant increase in BOLD responses in V1 and V2. The observed interocular transfer of the adaptation effect suggests that the adaptation has a cortical origin. These results reveal a new kind of adaptability of the adult visual cortex, an adjustment in the gain of the contrast-response in the presence of a reduced range of stimulus contrasts, which is consistent with a response-gain mechanism. The adaptation appears to be compensatory, such that the precision of contrast coding is improved for low retinal-image contrasts. PMID:19271930

  18. The Adaptive Analysis of Visual Cognition using Genetic Algorithms

    PubMed Central

    Cook, Robert G.; Qadri, Muhammad A. J.

    2014-01-01

    Two experiments used a novel, open-ended, and adaptive test procedure to examine visual cognition in animals. Using a genetic algorithm, a pigeon was tested repeatedly from a variety of different initial conditions for its solution to an intermediate brightness search task. On each trial, the animal had to accurately locate and peck a target element of intermediate brightness from among a variable number of surrounding darker and lighter distractor elements. Displays were generated from six parametric variables, or genes (distractor number, element size, shape, spacing, target brightness, distractor brightness). Display composition changed over time, or evolved, as a function of the bird’s differential accuracy within the population of values for each gene. Testing three randomized initial conditions and one set of controlled initial conditions, element size and number of distractors were identified as the most important factors controlling search accuracy, with distractor brightness, element shape, and spacing making secondary contributions. The resulting changes in this multidimensional stimulus space suggested the existence of a set of conditions that the bird repeatedly converged upon regardless of initial conditions. This psychological “attractor” represents the cumulative action of the cognitive operations used by the pigeon in solving and performing this search task. The results are discussed regarding their implications for visual cognition in pigeons and the usefulness of adaptive, subject-driven experimentation for investigating human and animal cognition more generally. PMID:24000905

  19. Visual Cues for an Adaptive Expert System.

    ERIC Educational Resources Information Center

    Miller, Helen B.

    NCR (National Cash Register) Corporation is pursuing opportunities to make their point of sale (POS) terminals easy to use and easy to learn. To approach the goal of making the technology invisible to the user, NCR has developed an adaptive expert prototype system for a department store POS operation. The structure for the adaptive system, the…

  20. Visual Bias Predicts Gait Adaptability in Novel Sensory Discordant Conditions

    NASA Technical Reports Server (NTRS)

    Brady, Rachel A.; Batson, Crystal D.; Peters, Brian T.; Mulavara, Ajitkumar P.; Bloomberg, Jacob J.

    2010-01-01

    We designed a gait training study that presented combinations of visual flow and support-surface manipulations to investigate the response of healthy adults to novel discordant sensorimotor conditions. We aimed to determine whether a relationship existed between subjects visual dependence and their postural stability and cognitive performance in a new discordant environment presented at the conclusion of training (Transfer Test). Our training system comprised a treadmill placed on a motion base facing a virtual visual scene that provided a variety of sensory challenges. Ten healthy adults completed 3 training sessions during which they walked on a treadmill at 1.1 m/s while receiving discordant support-surface and visual manipulations. At the first visit, in an analysis of normalized torso translation measured in a scene-movement-only condition, 3 of 10 subjects were classified as visually dependent. During the Transfer Test, all participants received a 2-minute novel exposure. In a combined measure of stride frequency and reaction time, the non-visually dependent subjects showed improved adaptation on the Transfer Test compared to their visually dependent counterparts. This finding suggests that individual differences in the ability to adapt to new sensorimotor conditions may be explained by individuals innate sensory biases. An accurate preflight assessment of crewmembers biases for visual dependence could be used to predict their propensities to adapt to novel sensory conditions. It may also facilitate the development of customized training regimens that could expedite adaptation to alternate gravitational environments.

  1. Reliance on visual attention during visuomotor adaptation: an SSVEP study.

    PubMed

    Reuter, Eva-Maria; Bednark, Jeffery; Cunnington, Ross

    2015-07-01

    Visuomotor adaptation involves the learning of a new mapping between a spatial goal and well-learned movements. In order to learn a new visuomotor transformation, visual attention is needed to monitor movements and their visual consequences. Once a transformation is learnt, it can be executed automatically without attentional control. Using steady-state visual evoked potentials (SSVEPs) measured from EEG activity, we examined how visual attention changes during the early phase of visuomotor adaptation. SSVEPs were elicited by a green disc flickering at 15 Hz which was either the movement target or the cursor that participants controlled. Participants performed an adapted continuous visuomotor adaptation task with either 60° or 120° screen cursor rotation, and changes in 15-Hz SSVEP power were examined. Participants' performance improved over time in all conditions, with the rate of learning significantly influenced by the degree of rotation. SSVEPs at 15 Hz showed a significant change over time with adaptation for 60° rotations, but not for 120° rotations, such that SSVEPs elicited by the stimuli were significantly lower for 60° compared with 120° rotation conditions over the last adaptation blocks. This suggests that visual attention to the movement target and feedback reduces over time as performance improves during visuomotor adaptation for easier rotations, but must be maintained throughout the task for more difficult 120° rotations that might require more strategic control.

  2. Visual model of human blur perception for scene adaptive capturing

    NASA Astrophysics Data System (ADS)

    Kim, Sung-Su; Chung, DaeSu; Park, Byung-Kwan; Kim, Jung-Bae; Lee, Seong-Deok

    2009-01-01

    Despite fast spreading of digital cameras, many people cannot take pictures of high quality, they want, due to lack of photography. To help users under the unfavorable capturing environments, e.g. 'Night', 'Backlighting', 'Indoor', or 'Portrait', the automatic mode of cameras provides parameter sets by manufactures. Unfortunately, this automatic functionality does not give pleasing image quality in general. Especially, length of exposure (shutter speed) is critical factor in taking high quality pictures in the night. One of key factors causing this bad quality in the night is the image blur, which mainly comes from hand-shaking in long capturing. In this study, to circumvent this problem and to enhance image quality of automatic cameras, we propose an intelligent camera processing core having BASE (Scene Adaptive Blur Estimation) and VisBLE (Visual Blur Limitation Estimation). SABE analyzes the high frequency component in the DCT (Discrete Cosine Transform) domain. VisBLE determines acceptable blur level on the basis of human visual tolerance and Gaussian model. This visual tolerance model is developed on the basis of human perception physiological mechanism. In the experiments proposed method outperforms existing imaging systems by general users and photographers, as well.

  3. Hour-long adaptation in the awake early visual system

    PubMed Central

    Stoelzel, Carl R.; Huff, Joseph M.; Bereshpolova, Yulia; Zhuang (庄骏), Jun; Hei (黑晓娟), Xiaojuan; Alonso, Jose-Manuel

    2015-01-01

    Sensory adaptation serves to adjust awake brains to changing environments on different time scales. However, adaptation has been studied traditionally under anesthesia and for short time periods. Here, we demonstrate in awake rabbits a novel type of sensory adaptation that persists for >1 h and acts on visual thalamocortical neurons and their synapses in the input layers of the visual cortex. Following prolonged visual stimulation (10–30 min), cells in the dorsal lateral geniculate nucleus (LGN) show a severe and prolonged reduction in spontaneous firing rate. This effect is bidirectional, and prolonged visually induced response suppression is followed by a prolonged increase in spontaneous activity. The reduction in thalamic spontaneous activity following prolonged visual activation is accompanied by increases in 1) response reliability, 2) signal detectability, and 3) the ratio of visual signal/spontaneous activity. In addition, following such prolonged activation of an LGN neuron, the monosynaptic currents generated by thalamic impulses in layer 4 of the primary visual cortex are enhanced. These results demonstrate that in awake brains, prolonged sensory stimulation can have a profound, long-lasting effect on the information conveyed by thalamocortical inputs to the visual cortex. PMID:26108950

  4. Adaptive, multiresolution visualization of large data sets using parallel octrees.

    SciTech Connect

    Freitag, L. A.; Loy, R. M.

    1999-06-10

    The interactive visualization and exploration of large scientific data sets is a challenging and difficult task; their size often far exceeds the performance and memory capacity of even the most powerful graphics work-stations. To address this problem, we have created a technique that combines hierarchical data reduction methods with parallel computing to allow interactive exploration of large data sets while retaining full-resolution capability. The hierarchical representation is built in parallel by strategically inserting field data into an octree data structure. We provide functionality that allows the user to interactively adapt the resolution of the reduced data sets so that resolution is increased in regions of interest without sacrificing local graphics performance. We describe the creation of the reduced data sets using a parallel octree, the software architecture of the system, and the performance of this system on the data from a Rayleigh-Taylor instability simulation.

  5. Visual Function in Geriatric Eye Disease

    ERIC Educational Resources Information Center

    Faye, Eleanor E.

    1971-01-01

    Visual functioning, treatment, and helpful low vision aids are discussed in relation to four major eye diseases of the elderly: cataract, macular degeneration, glaucoma, and diabetic retinopathy. (KW)

  6. Production-quality Tools for Adaptive Mesh RefinementVisualization

    SciTech Connect

    Weber, Gunther H.; Childs, Hank; Bonnell, Kathleen; Meredith,Jeremy; Miller, Mark; Whitlock, Brad; Bethel, E. Wes

    2007-10-25

    Adaptive Mesh Refinement (AMR) is a highly effectivesimulation method for spanning a large range of spatiotemporal scales,such as astrophysical simulations that must accommodate ranges frominterstellar to sub-planetary. Most mainstream visualization tools stilllack support for AMR as a first class data type and AMR code teams usecustom built applications for AMR visualization. The Department ofEnergy's (DOE's) Science Discovery through Advanced Computing (SciDAC)Visualization and Analytics Center for Enabling Technologies (VACET) isextending and deploying VisIt, an open source visualization tool thataccommodates AMR as a first-class data type, for use asproduction-quality, parallel-capable AMR visual data analysisinfrastructure. This effort will help science teams that use AMR-basedsimulations and who develop their own AMR visual data analysis softwareto realize cost and labor savings.

  7. Adaptive memory: thinking about function.

    PubMed

    Bell, Raoul; Röer, Jan P; Buchner, Axel

    2015-07-01

    Rating the relevance of words for the imagined situation of being stranded in the grasslands without survival material leads to exceptionally good memory for these words. This survival processing effect has received much attention because it promises to elucidate the evolutionary foundations of memory. However, the proximate mechanisms of the survival processing effect have to be identified before informed speculations about its adaptive function are possible. Here, we test and contrast 2 promising accounts of the survival processing effect. According to the 1st account, the effect is the consequence of the prioritized processing of threat-related information. According to the 2nd account, thinking about the relevance of items for survival stimulates thinking about object function, which is a particularly elaborate form of encoding. Experiment 1 showed that the emotional properties of the survival scenario, as manipulated by the negative or positive framing of the scenario, did not influence recall. A focus on threat at encoding led to worse recall than a focus on function. The latter finding was replicated in Experiment 2, which further showed that focusing on threat did not lead to a memory advantage over a pleasantness control condition. The beneficial effect of inducing a functional focus at encoding even surpasses that of the standard survival processing instruction. Together, the results support the theory that thinking about function is an important component of the survival processing effect. PMID:25419817

  8. Tracking nonstationary visual appearances by data-driven adaptation.

    PubMed

    Yang, Ming; Fan, Zhimin; Fan, Jialue; Wu, Ying

    2009-07-01

    Without any prior about the target, the appearance is usually the only cue available in visual tracking. However, in general, the appearances are often nonstationary which may ruin the predefined visual measurements and often lead to tracking failure in practice. Thus, a natural solution is to adapt the observation model to the nonstationary appearances. However, this idea is threatened by the risk of adaptation drift that originates in its ill-posed nature, unless good data-driven constraints are imposed. Different from most existing adaptation schemes, we enforce three novel constraints for the optimal adaptation: 1) negative data, 2) bottom-up pair-wise data constraints, and 3) adaptation dynamics. Substantializing the general adaptation problem as a subspace adaptation problem, this paper presents a closed-form solution as well as a practical iterative algorithm for subspace tracking. Extensive experiments have demonstrated that the proposed approach can largely alleviate adaptation drift and achieve better tracking results for a large variety of nonstationary scenes. PMID:19473941

  9. Adaptation to visual stimulation modifies the burst firing property of V1 neurons.

    PubMed

    Liu, Rui-Long; Wang, Ke; Meng, Jian-Jun; Hua, Tian-Miao; Liang, Zhen; Xi, Min-Min

    2013-06-01

    The mean firing rate of visual cortical neurons is reduced after prolonged visual stimulation, but the underlying process by which this occurs as well as the biological significance of this phenomenon remains unknown. Computational neuroscience studies indicate that high-frequency bursts in stimulus-driven responses can be transmitted across synapses more reliably than isolated spikes, and thus may carry accurate stimulus-related information. Our research examined whether or not adaptation affects the burst firing property of visual cortical neurons by examining changes in the burst firing changes of V1 neurons during adaptation to the preferred visual stimulus. The results show that adaptation to prolonged visual stimulation significantly decreased burst frequency (bursts/s) and burst length (spikes/burst), but increased burst duration and the interspike interval within bursts. These results suggest that the adaptation of V1 neurons to visual stimulation may result in a decrease of feedforward response gain but an increase of functional activities from lateral and/or feedback connections, which could lead to a reduction in the effectiveness of adapted neurons in transmitting information to its driven neurons.

  10. AVATAR -- Adaptive Visualization Aid for Touring And Recovery

    SciTech Connect

    L. O. Hall; K. W. Bowyer; N. Chawla; T. Moore, Jr.; W. P. Kegelmeyer

    2000-01-01

    This document provides a report on the initial development of software which uses a standard visualization tool to determine, label and display salient regions in large 3D physics simulation datasets. This software uses parallel pattern recognition behind the scenes to handle the huge volume of data. This software is called AVATAR (Adaptive Visualization Aid for Touring and Recovery). It integrates approaches to gathering labeled training data, learning from large training sets utilizing parallelism and the final display of salient data in unseen visualization data sets. The paper uses vorticity fields for a large-eddy simulation to illustrate the method.

  11. Inferential functioning in visually impaired children.

    PubMed

    Puche-Navarro, Rebeca; Millán, Rafael

    2007-01-01

    The current study explores the inferential abilities of visually impaired children in a task presented in two formats, manipulative and verbal. The results showed that in the group of visually impaired children, just as with children with normal sight, there was a wide range of inference types. It was found that the visually impaired children perform slightly better in the use of inductive and relational inferences in the verbal format, while in the manipulative format children with normal sight perform better. These results suggest that in inferential functioning of young children, and especially visually impaired children, the format of the task influences performance more than the child's visual ability.

  12. Inferential functioning in visually impaired children.

    PubMed

    Puche-Navarro, Rebeca; Millán, Rafael

    2007-01-01

    The current study explores the inferential abilities of visually impaired children in a task presented in two formats, manipulative and verbal. The results showed that in the group of visually impaired children, just as with children with normal sight, there was a wide range of inference types. It was found that the visually impaired children perform slightly better in the use of inductive and relational inferences in the verbal format, while in the manipulative format children with normal sight perform better. These results suggest that in inferential functioning of young children, and especially visually impaired children, the format of the task influences performance more than the child's visual ability. PMID:16647837

  13. Guided Text Analysis Using Adaptive Visual Analytics

    SciTech Connect

    Steed, Chad A; Symons, Christopher T; DeNap, Frank A; Potok, Thomas E; Potok, Thomas E

    2012-01-01

    This paper demonstrates the promise of augmenting interactive visualizations with semi-supervised machine learning techniques to improve the discovery of significant associations and insight in the search and analysis of textual information. More specifically, we have developed a system called Gryffin that hosts a unique collection of techniques that facilitate individualized investigative search pertaining to an ever-changing set of analytical questions over an indexed collection of open-source publications related to national infrastructure. The Gryffin client hosts dynamic displays of the search results via focus+context record listings, temporal timelines, term- frequency views, and multiple coordinated views. Furthermore, as the analyst interacts with the display, the interactions are recorded and used to label the search records. These labeled records are then used to drive semi-supervised machine learning algorithms that re-rank the unlabeled search records such that potentially relevant records are moved to the top of the record listing. Gryffin is described in the context of the daily tasks encountered at the Department of Homeland Securitys Fusion Centers, with whom we are collaborating in its development. The resulting system is capable of addressing the analysts information overload that can be directly attributed to the deluge of information that must be addressed in search and investigative analysis of textual information.

  14. Guided text analysis using adaptive visual analytics

    NASA Astrophysics Data System (ADS)

    Steed, Chad A.; Symons, Christopher T.; DeNap, Frank A.; Potok, Thomas E.

    2012-01-01

    This paper demonstrates the promise of augmenting interactive visualizations with semi-supervised machine learning techniques to improve the discovery of significant associations and insight in the search and analysis of textual information. More specifically, we have developed a system-called Gryffin-that hosts a unique collection of techniques that facilitate individualized investigative search pertaining to an ever-changing set of analytical questions over an indexed collection of open-source publications related to national infrastructure. The Gryffin client hosts dynamic displays of the search results via focus+context record listings, temporal timelines, term-frequency views, and multiple coordinated views. Furthermore, as the analyst interacts with the display, the interactions are recorded and used to label the search records. These labeled records are then used to drive semi-supervised machine learning algorithms that re-rank the unlabeled search records such that potentially relevant records are moved to the top of the record listing. Gryffin is described in the context of the daily tasks encountered at the Department of Homeland Security's Fusion Centers, with whom we are collaborating in its development. The resulting system is capable of addressing the analysts information overload that can be directly attributed to the deluge of information that must be addressed in search and investigative analysis of textual information.

  15. Guided Text Search Using Adaptive Visual Analytics

    SciTech Connect

    Steed, Chad A; Symons, Christopher T; Senter, James K; DeNap, Frank A

    2012-10-01

    This research demonstrates the promise of augmenting interactive visualizations with semi- supervised machine learning techniques to improve the discovery of significant associations and insights in the search and analysis of textual information. More specifically, we have developed a system called Gryffin that hosts a unique collection of techniques that facilitate individualized investigative search pertaining to an ever-changing set of analytical questions over an indexed collection of open-source documents related to critical national infrastructure. The Gryffin client hosts dynamic displays of the search results via focus+context record listings, temporal timelines, term-frequency views, and multiple coordinate views. Furthermore, as the analyst interacts with the display, the interactions are recorded and used to label the search records. These labeled records are then used to drive semi-supervised machine learning algorithms that re-rank the unlabeled search records such that potentially relevant records are moved to the top of the record listing. Gryffin is described in the context of the daily tasks encountered at the US Department of Homeland Security s Fusion Center, with whom we are collaborating in its development. The resulting system is capable of addressing the analysts information overload that can be directly attributed to the deluge of information that must be addressed in the search and investigative analysis of textual information.

  16. Visual Adaptation to Convexity in Macaque Area V4

    PubMed Central

    Müller, Kai-Markus; Wilke, Melanie; Leopold, David A.

    2009-01-01

    After-effects are perceptual illusions caused by visual adaptation to one or more stimulus attribute, such as orientation, motion, or shape, and are generally characterized by a repulsive shift in the perception of the adapted features in a corresponding test stimulus. Neurophysiological studies seeking to understand the basis of adaptation have observed firing rate reduction and changes in tuning of sensory neurons during periods of prolonged stimulation. In the domain of shape, recent psychophysical work has shown that adaptation to a convex pattern induces a subsequently seen rectangle to appear slightly concave. In the present study, we investigate the possible contribution of V4 neurons, which are thought to be involved in the coding of convexity, to such shape-specific adaptation. Visually responsive neurons were monitored during the brief presentation of simple shapes varying in their convexity level. Each test presentation was preceded by either a blank period or several seconds of adaptation to a convex or concave stimulus, presented in two different sizes. Adaptation consistently changed the tuning of neurons away from the convex or concave adaptor, shifting the response to the neutral rectangle in the direction of the opposite convexity. This repulsive shift was consistent with the known perceptual distortion associated with adaptation to such stimuli. Adaptation also caused a nonspecific decrease in firing, as well as the shape-selective suppression for the repeated presentation of the adaptor stimulus. The latter effects were observed whether or not the adapting and test stimuli matched closely in their size. Taken together, these results provide evidence for shape-specific adaptation of neurons in area V4, which may contribute to the perception of the convexity aftereffect. PMID:19345725

  17. Enhancing Functional Performance using Sensorimotor Adaptability Training Programs

    NASA Technical Reports Server (NTRS)

    Bloomberg, J. J.; Mulavara, A. P.; Peters, B. T.; Brady, R.; Audas, C.; Ruttley, T. M.; Cohen, H. S.

    2009-01-01

    During the acute phase of adaptation to novel gravitational environments, sensorimotor disturbances have the potential to disrupt the ability of astronauts to perform functional tasks. The goal of this project is to develop a sensorimotor adaptability (SA) training program designed to facilitate recovery of functional capabilities when astronauts transition to different gravitational environments. The project conducted a series of studies that investigated the efficacy of treadmill training combined with a variety of sensory challenges designed to increase adaptability including alterations in visual flow, body loading, and support surface stability.

  18. Visual Space: Adaptation to Texture Density Reduces Perceived Object Size.

    PubMed

    Kingdom, Frederick A A

    2016-07-25

    A recent study shows that visual adaptation to dense textures, while causing an increase in the perceived sparseness of a subsequently viewed less-dense texture, paradoxically reduces the perceived size of an object, revealing a dissociation between the internal spatial representations of textures and objects.

  19. Visuomotor adaptation to a visual rotation is gravity dependent.

    PubMed

    Toma, Simone; Sciutti, Alessandra; Papaxanthis, Charalambos; Pozzo, Thierry

    2015-03-15

    Humans perform vertical and horizontal arm motions with different temporal patterns. The specific velocity profiles are chosen by the central nervous system by integrating the gravitational force field to minimize energy expenditure. However, what happens when a visuomotor rotation is applied, so that a motion performed in the horizontal plane is perceived as vertical? We investigated the dynamic of the adaptation of the spatial and temporal properties of a pointing motion during prolonged exposure to a 90° visuomotor rotation, where a horizontal movement was associated with a vertical visual feedback. We found that participants immediately adapted the spatial parameters of motion to the conflicting visual scene in order to keep their arm trajectory straight. In contrast, the initial symmetric velocity profiles specific for a horizontal motion were progressively modified during the conflict exposure, becoming more asymmetric and similar to those appropriate for a vertical motion. Importantly, this visual effect that increased with repetitions was not followed by a consistent aftereffect when the conflicting visual feedback was absent (catch and washout trials). In a control experiment we demonstrated that an intrinsic representation of the temporal structure of perceived vertical motions could provide the error signal allowing for this progressive adaptation of motion timing. These findings suggest that gravity strongly constrains motor learning and the reweighting process between visual and proprioceptive sensory inputs, leading to the selection of a motor plan that is suboptimal in terms of energy expenditure.

  20. Interocular transfer of adaptation in the primary visual cortex.

    PubMed

    Howarth, Christopher M; Vorobyov, Vasily; Sengpiel, Frank

    2009-08-01

    Prolonged viewing of an unchanging pattern causes adaptation, which can be demonstrated by visual aftereffects such as the tilt and waterfall illusions. In normal observers, these typically exhibit interocular transfer (IOT), being observed when the adapting and test stimuli are shown to different eyes. Convergence of inputs from both eyes upon binocular neurons only occurs in the primary visual cortex (V1), and adaptation is substantially a cortical phenomenon. However, little is known about a physiological substrate of IOT in V1 and how it relates to the binocularity of neurons and local ocular dominance (OD) column architecture. We employed optical imaging to obtain OD maps in cat V1 and recorded from single neurons at targeted penetration sites to quantify their adaptation by drifting gratings when adapter and test stimulus were presented either to the same or to the opposite eyes. In contrast to earlier reports, clear IOT of adaptation was observed for binocular as well as monocular neurons; at population level, its strength amounted to 55%. Moreover, the position of the cells with respect to OD column borders had no significant effect on the strength of IOT. IOT does not appear to strongly depend on conventional binocularity of neurons.

  1. Adaptive Processes in Thalamus and Cortex Revealed by Silencing of Primary Visual Cortex during Contrast Adaptation.

    PubMed

    King, Jillian L; Lowe, Matthew P; Stover, Kurt R; Wong, Aimee A; Crowder, Nathan A

    2016-05-23

    Visual adaptation illusions indicate that our perception is influenced not only by the current stimulus but also by what we have seen in the recent past. Adaptation to stimulus contrast (the relative luminance created by edges or contours in a scene) induces the perception of the stimulus fading away and increases the contrast detection threshold in psychophysical tests [1, 2]. Neural correlates of contrast adaptation have been described throughout the visual system including the retina [3], dorsal lateral geniculate nucleus (dLGN) [4, 5], primary visual cortex (V1) [6], and parietal cortex [7]. The apparent ubiquity of adaptation at all stages raises the question of how this process cascades across brain regions [8]. Focusing on V1, adaptation could be inherited from pre-cortical stages, arise from synaptic depression at the thalamo-cortical synapse [9], or develop locally, but what is the weighting of these contributions? Because contrast adaptation in mouse V1 is similar to classical animal models [10, 11], we took advantage of the optogenetic tools available in mice to disentangle the processes contributing to adaptation in V1. We disrupted cortical adaptation by optogenetically silencing V1 and found that adaptation measured in V1 now resembled that observed in dLGN. Thus, the majority of adaptation seen in V1 neurons arises through local activity-dependent processes, with smaller contributions from dLGN inheritance and synaptic depression at the thalamo-cortical synapse. Furthermore, modeling indicates that divisive scaling of the weakly adapted dLGN input can predict some of the emerging features of V1 adaptation.

  2. Visualizing Geophysical Flow Problems with Adaptive Mesh Refinement

    NASA Astrophysics Data System (ADS)

    Sevre, E. O.; Yuen, D. A.; George, D. L.; Lee, S.

    2011-12-01

    Adaptive Mesh Refinement (AMR) is a technique used in software to decompose a computational domain based on the level of refinement necessary for spatial and temporal calculations. Comparing AMR runs to uniform grids allows for an unbounded gain in computational time. In this paper we will look at techniques for visualizing tsunami simulations that were run with AMR using the GeoClaw [Berger2011-1, Berger2011-2] software. Due to the computational efficiency of AMR we have decided to look into techniques for visualization of AMR data. By having good visualization tools for geoscientists more time can be spent interpreting results and analyzing data. Good visualization tools can be adapted easily to work with a variety of output formats, and the goal of this work is to provide a foundation for geoscientists to work with. In the past year GeoClaw has been used to model the 2011 Tohoku tsunami originating off the coast of Sendai Japan and delivering catastrophic damage to the Fukushima power plant. The aftermath of this single geologic event is still making headlines 4 months after the fact [Fackler2011]. GeoClaw utilizes the shallow water equations to model a variety of flows that range from tsunami to floods to landslides and debris flows [George2011]. With the advanced computations provided by AMR it is important for researchers to visualize and understand ways that are meaningful to both scientists and civilians affected by the potential outcomes of the computation. Special visualization techniques can be used to visualize and look at data generated with AMR. By incorporating these techniques into their software geoscientists will be able to harness powerful computational tools, such as GeoClaw, while also maintaining an informative view of their data.

  3. Atypical visual and somatosensory adaptation in schizophrenia-spectrum disorders

    PubMed Central

    Andrade, G N; Butler, J S; Peters, G A; Molholm, S; Foxe, J J

    2016-01-01

    Neurophysiological investigations in patients with schizophrenia consistently show early sensory processing deficits in the visual system. Importantly, comparable sensory deficits have also been established in healthy first-degree biological relatives of patients with schizophrenia and in first-episode drug-naive patients. The clear implication is that these measures are endophenotypic, related to the underlying genetic liability for schizophrenia. However, there is significant overlap between patient response distributions and those of healthy individuals without affected first-degree relatives. Here we sought to develop more sensitive measures of sensory dysfunction in this population, with an eye to establishing endophenotypic markers with better predictive capabilities. We used a sensory adaptation paradigm in which electrophysiological responses to basic visual and somatosensory stimuli presented at different rates (ranging from 250 to 2550 ms interstimulus intervals, in blocked presentations) were compared. Our main hypothesis was that adaptation would be substantially diminished in schizophrenia, and that this would be especially prevalent in the visual system. High-density event-related potential recordings showed amplitude reductions in sensory adaptation in patients with schizophrenia (N=15 Experiment 1, N=12 Experiment 2) compared with age-matched healthy controls (N=15 Experiment 1, N=12 Experiment 2), and this was seen for both sensory modalities. At the individual participant level, reduced adaptation was more robust for visual compared with somatosensory stimulation. These results point to significant impairments in short-term sensory plasticity across sensory modalities in schizophrenia. These simple-to-execute measures may prove valuable as candidate endophenotypes and will bear follow-up in future work. PMID:27163205

  4. Optic Flow Dominates Visual Scene Polarity in Causing Adaptive Modification of Locomotor Trajectory

    NASA Technical Reports Server (NTRS)

    Nomura, Y.; Mulavara, A. P.; Richards, J. T.; Brady, R.; Bloomberg, Jacob J.

    2005-01-01

    Locomotion and posture are influenced and controlled by vestibular, visual and somatosensory information. Optic flow and scene polarity are two characteristics of a visual scene that have been identified as being critical in how they affect perceived body orientation and self-motion. The goal of this study was to determine the role of optic flow and visual scene polarity on adaptive modification in locomotor trajectory. Two computer-generated virtual reality scenes were shown to subjects during 20 minutes of treadmill walking. One scene was a highly polarized scene while the other was composed of objects displayed in a non-polarized fashion. Both virtual scenes depicted constant rate self-motion equivalent to walking counterclockwise around the perimeter of a room. Subjects performed Stepping Tests blindfolded before and after scene exposure to assess adaptive changes in locomotor trajectory. Subjects showed a significant difference in heading direction, between pre and post adaptation stepping tests, when exposed to either scene during treadmill walking. However, there was no significant difference in the subjects heading direction between the two visual scene polarity conditions. Therefore, it was inferred from these data that optic flow has a greater role than visual polarity in influencing adaptive locomotor function.

  5. Visual-adaptation-mechanism based underwater object extraction

    NASA Astrophysics Data System (ADS)

    Chen, Zhe; Wang, Huibin; Xu, Lizhong; Shen, Jie

    2014-03-01

    Due to the major obstacles originating from the strong light absorption and scattering in a dynamic underwater environment, underwater optical information acquisition and processing suffer from effects such as limited range, non-uniform lighting, low contrast, and diminished colors, causing it to become the bottleneck for marine scientific research and projects. After studying and generalizing the underwater biological visual mechanism, we explore its advantages in light adaption which helps animals to precisely sense the underwater scene and recognize their prey or enemies. Then, aiming to transform the significant advantage of the visual adaptation mechanism into underwater computer vision tasks, a novel knowledge-based information weighting fusion model is established for underwater object extraction. With this bionic model, the dynamical adaptability is given to the underwater object extraction task, making them more robust to the variability of the optical properties in different environments. The capability of the proposed method to adapt to the underwater optical environments is shown, and its outperformance for the object extraction is demonstrated by comparison experiments.

  6. Imaging visual function of the human brain

    SciTech Connect

    Marg, E.

    1988-10-01

    Imaging of human brain structure and activity with particular reference to visual function is reviewed along with methods of obtaining the data including computed tomographic (CT) scan, magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), and positron emission tomography (PET). The literature is reviewed and the potential for a new understanding of brain visual function is discussed. PET is reviewed from basic physical principles to the most recent visual brain findings with oxygen-15. It is shown that there is a potential for submillimeter localization of visual functions with sequentially different visual stimuli designed for the temporal separation of the responses. Single photon emission computed tomography (SPECT), a less expensive substitute for PET, is also discussed. MRS is covered from basic physical principles to the current state of the art of in vivo biochemical analysis. Future possible clinical applications are discussed. Improved understanding of the functional neural organization of vision and brain will open a window to maps and circuits of human brain function.119 references.

  7. Adaptation to visual or auditory time intervals modulates the perception of visual apparent motion

    PubMed Central

    Zhang, Huihui; Chen, Lihan; Zhou, Xiaolin

    2012-01-01

    It is debated whether sub-second timing is subserved by a centralized mechanism or by the intrinsic properties of task-related neural activity in specific modalities (Ivry and Schlerf, 2008). By using a temporal adaptation task, we investigated whether adapting to different time intervals conveyed through stimuli in different modalities (i.e., frames of a visual Ternus display, visual blinking discs, or auditory beeps) would affect the subsequent implicit perception of visual timing, i.e., inter-stimulus interval (ISI) between two frames in a Ternus display. The Ternus display can induce two percepts of apparent motion (AM), depending on the ISI between the two frames: “element motion” for short ISIs, in which the endmost disc is seen as moving back and forth while the middle disc at the overlapping or central position remains stationary; “group motion” for longer ISIs, in which both discs appear to move in a manner of lateral displacement as a whole. In Experiment 1, participants adapted to either the typical “element motion” (ISI = 50 ms) or the typical “group motion” (ISI = 200 ms). In Experiments 2 and 3, participants adapted to a time interval of 50 or 200 ms through observing a series of two paired blinking discs at the center of the screen (Experiment 2) or hearing a sequence of two paired beeps (with pitch 1000 Hz). In Experiment 4, participants adapted to sequences of paired beeps with either low pitches (500 Hz) or high pitches (5000 Hz). After adaptation in each trial, participants were presented with a Ternus probe in which the ISI between the two frames was equal to the transitional threshold of the two types of motions, as determined by a pretest. Results showed that adapting to the short time interval in all the situations led to more reports of “group motion” in the subsequent Ternus probes; adapting to the long time interval, however, caused no aftereffect for visual adaptation but significantly more reports of group motion for

  8. Properties of the visual channels that underlie adaptation to gradual change of luminance.

    PubMed

    Arnold, K; Anstis, S

    1993-01-01

    Following adaptation to a spatially uniform patch of light that is gradually brightening (or dimming), a steady test patch appears to be gradually dimming (or brightening). We measured this ramp aftereffect with a nulling method, as a function of the amplitude and temporal repetition rate of the adapting sawtooth waveform and at various retinal eccentricities and levels of dark adaptation. We conclude that the underlying visual channels respond best to large-amplitude sweeps in luminance of at least 20 dB (1 log unit); but they are fairly insensitive to the temporal rate of this sweep. The channels are present out to an eccentricity of at least 40 degrees but they almost disappear during dark adaptation. The ramp aftereffects were asymmetrical: the subjectively darkening aftereffect produced by a brightening adapting ramp was slightly stronger than vice versa.

  9. Preserved implicit form perception and orientation adaptation in visual form agnosia.

    PubMed

    Yang, Jiongjiong; Wu, Ming; Shen, Zheng

    2006-01-01

    Visual form agnosia is mainly characterized by profound deficits in visual form and shape discrimination. Previous studies have shown that patients retain the capacity for coordinated motor behaviors, color naming and implicit letter perception. However, it is unknown to what extent other visual functions, such as implicit form and orientation perception, are preserved. To address these questions, we investigated a single visual form agnosic patient, X.F., in two distinct experiments. X.F.'s visual lesions were mainly localized in the bilateral occipitotemporal cortex, with the dorsal visual stream and early visual cortex largely spared. In Experiment 1, X.F. named the color of different forms across 12 blocks of trials. After the first six blocks, the combinations of a form with its color were changed and the new combination was presented for the remaining six blocks. X.F.'s reaction time increased during the switch block and was significantly greater than the overall RT changes between adjacent, non-switch blocks. This indicates that X.F. retained the ability to perceive changes in form despite her inability to discriminate the forms. In Experiment 2, X.F. showed selective orientation adaptation effects to different spatial frequencies; that is, her contrast threshold was significantly higher when the adapting and test orientations were the same than when they were orthogonal, although her orientation discrimination performance was severely impaired. These data provide evidence of a functional dissociation between explicit and implicit visual abilities, and suggest that the residual early visual cortex mediates form and orientation processing in the absence of awareness.

  10. Coherent Image Layout using an Adaptive Visual Vocabulary

    SciTech Connect

    Dillard, Scott E.; Henry, Michael J.; Bohn, Shawn J.; Gosink, Luke J.

    2013-03-06

    When querying a huge image database containing millions of images, the result of the query may still contain many thousands of images that need to be presented to the user. We consider the problem of arranging such a large set of images into a visually coherent layout, one that places similar images next to each other. Image similarity is determined using a bag-of-features model, and the layout is constructed from a hierarchical clustering of the image set by mapping an in-order traversal of the hierarchy tree into a space-filling curve. This layout method provides strong locality guarantees so we are able to quantitatively evaluate performance using standard image retrieval benchmarks. Performance of the bag-of-features method is best when the vocabulary is learned on the image set being clustered. Because learning a large, discriminative vocabulary is a computationally demanding task, we present a novel method for efficiently adapting a generic visual vocabulary to a particular dataset. We evaluate our clustering and vocabulary adaptation methods on a variety of image datasets and show that adapting a generic vocabulary to a particular set of images improves performance on both hierarchical clustering and image retrieval tasks.

  11. Improved visual background extractor using an adaptive distance threshold

    NASA Astrophysics Data System (ADS)

    Han, Guang; Wang, Jinkuan; Cai, Xi

    2014-11-01

    Camouflage is a challenging issue in moving object detection. Even the recent and advanced background subtraction technique, visual background extractor (ViBe), cannot effectively deal with it. To better handle camouflage according to the perception characteristics of the human visual system (HVS) in terms of minimum change of intensity under a certain background illumination, we propose an improved ViBe method using an adaptive distance threshold, named IViBe for short. Different from the original ViBe using a fixed distance threshold for background matching, our approach adaptively sets a distance threshold for each background sample based on its intensity. Through analyzing the performance of the HVS in discriminating intensity changes, we determine a reasonable ratio between the intensity of a background sample and its corresponding distance threshold. We also analyze the impacts of our adaptive threshold together with an update mechanism on detection results. Experimental results demonstrate that our method outperforms ViBe even when the foreground and background share similar intensities. Furthermore, in a scenario where foreground objects are motionless for several frames, our IViBe not only reduces the initial false negatives, but also suppresses the diffusion of misclassification caused by those false negatives serving as erroneous background seeds, and hence shows an improved performance compared to ViBe.

  12. How does the extent of central visual field loss affect adaptive gait?

    PubMed

    Timmis, Matthew A; Scarfe, Amy C; Pardhan, Shahina

    2016-02-01

    Visual impairment is one of the most important clinical risk factors associated with falls. Currently it remains unclear whether adaptive gait is progressively affected as the extent of central visual field loss (CFL) increases, or when CFL exceeds a certain size. 10 participants (aged 22 ± 3 years) negotiated a floor based obstacle in full vision (no occlusion) and wearing custom made contact lenses which simulated 10° CFL and 20° CFL. Movement kinematics assessed the period immediately prior to and during obstacle crossing. In the 20° CFL condition, participants exhibited adaptations in gait which were consistent with being more cautious and more variable during the approach to and crossing of the obstacle, when compared to both 10° CFL and full vision conditions. Specifically, in the 20° CFL condition participants placed their lead foot further from the obstacle, lifted both their lead and trail feet higher and slower over the obstacle, and took longer to negotiate the obstacle when compared to the 10° CFL and full vision conditions. Data highlights differences in adaptive gait as a function of the extent of CFL when compared to full vision. More importantly, these adaptations were only associated with loss of the central 20° of the visual field, suggesting that gait is compromised only after central visual field loss exceeds a certain level. PMID:27004633

  13. Alertness function of thalamus in conflict adaptation.

    PubMed

    Wang, Xiangpeng; Zhao, Xiaoyue; Xue, Gui; Chen, Antao

    2016-05-15

    Conflict adaptation reflects the ability to improve current conflict resolution based on previously experienced conflict, which is crucial for our goal-directed behaviors. In recent years, the roles of alertness are attracting increasing attention when discussing the generation of conflict adaptation. However, due to the difficulty of manipulating alertness, very limited progress has been made in this line. Inspired by that color may affect alertness, we manipulated background color of experimental task and found that conflict adaptation significantly presented in gray and red backgrounds but did not in blue background. Furthermore, behavioral and functional magnetic resonance imaging results revealed that the modulation of color on conflict adaptation was implemented through changing alertness level. In particular, blue background eliminated conflict adaptation by damping the alertness regulating function of thalamus and the functional connectivity between thalamus and inferior frontal gyrus (IFG). In contrast, in gray and red backgrounds where alertness levels are typically high, the thalamus and the right IFG functioned normally and conflict adaptations were significant. Therefore, the alertness function of thalamus is determinant to conflict adaptation, and thalamus and right IFG are crucial nodes of the neural circuit subserving this ability. Present findings provide new insights into the neural mechanisms of conflict adaptation. PMID:26908318

  14. Measurements of contrast sensitivity by an adaptive optics visual simulator

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Tatsuo; Ucikawa, Keiji

    2015-08-01

    We developed an adaptive optics visual simulator (AOVS) to study the relationship between the contrast sensitivity and higher-order wavefront aberrations of human eyes. A desired synthetic aberration was virtually generated on a subject eye by the AOVS, and red laser light was used to measure the aberrations. The contrast sensitivity was measured in a psychophysical experiment using visual stimulus patterns provided by a large-contrast-range imaging system, which included two liquid crystal displays illuminated by red light emitting diodes from the backside. The diameter of the pupil was set to 4 mm by an artificial aperture, and the retinal illuminance of the stimulus image was controlled to 10 Td. Experiments conducted with four normal subjects revealed that their contrast sensitivity to a high-spatial-frequency vertical sinusoidal grating pattern was lower in the presence of a horizontal coma aberration than in the presence of a vertical coma or no aberrations ( p < 0.02, Nagai method).

  15. Adaptive Confidence Bands for Nonparametric Regression Functions

    PubMed Central

    Cai, T. Tony; Low, Mark; Ma, Zongming

    2014-01-01

    A new formulation for the construction of adaptive confidence bands in non-parametric function estimation problems is proposed. Confidence bands are constructed which have size that adapts to the smoothness of the function while guaranteeing that both the relative excess mass of the function lying outside the band and the measure of the set of points where the function lies outside the band are small. It is shown that the bands adapt over a maximum range of Lipschitz classes. The adaptive confidence band can be easily implemented in standard statistical software with wavelet support. Numerical performance of the procedure is investigated using both simulated and real datasets. The numerical results agree well with the theoretical analysis. The procedure can be easily modified and used for other nonparametric function estimation models. PMID:26269661

  16. Selective visual attention based clutter metric with human visual system adaptability.

    PubMed

    Zheng, Bo; Wang, Xiao-Dong; Huang, Jing-Tao; Wang, Jian; Jiang, Yang

    2016-09-20

    Most existing clutter metrics are proposed based on fixed structural features and experienced weight measures. In this paper, we identify the clutter as selective visual attention effects and propose a type of clutter metric. First, adaptive structural features are extracted from the blocks with an edge-structure similarity to the target. Next, the confusing blocks are selected by the similarity threshold based on the attention guidance map. The clutter is estimated by quantifying the effects of confusing blocks on target acquisition performance. The comparative field experiments, with a Search_2 dataset, show that the proposed metric is consistent with the adaptability of the human visual system (HVS) and outperforms other metrics. PMID:27661600

  17. Visual scenes are categorized by function.

    PubMed

    Greene, Michelle R; Baldassano, Christopher; Esteva, Andre; Beck, Diane M; Fei-Fei, Li

    2016-01-01

    How do we know that a kitchen is a kitchen by looking? Traditional models posit that scene categorization is achieved through recognizing necessary and sufficient features and objects, yet there is little consensus about what these may be. However, scene categories should reflect how we use visual information. Therefore, we test the hypothesis that scene categories reflect functions, or the possibilities for actions within a scene. Our approach is to compare human categorization patterns with predictions made by both functions and alternative models. We collected a large-scale scene category distance matrix (5 million trials) by asking observers to simply decide whether 2 images were from the same or different categories. Using the actions from the American Time Use Survey, we mapped actions onto each scene (1.4 million trials). We found a strong relationship between ranked category distance and functional distance (r = .50, or 66% of the maximum possible correlation). The function model outperformed alternative models of object-based distance (r = .33), visual features from a convolutional neural network (r = .39), lexical distance (r = .27), and models of visual features. Using hierarchical linear regression, we found that functions captured 85.5% of overall explained variance, with nearly half of the explained variance captured only by functions, implying that the predictive power of alternative models was because of their shared variance with the function-based model. These results challenge the dominant school of thought that visual features and objects are sufficient for scene categorization, suggesting instead that a scene's category may be determined by the scene's function. PMID:26709590

  18. Visual Scenes are Categorized by Function

    PubMed Central

    Greene, Michelle R.; Baldassano, Christopher; Esteva, Andre; Beck, Diane M.; Fei-Fei, Li

    2015-01-01

    How do we know that a kitchen is a kitchen by looking? Traditional models posit that scene categorization is achieved through recognizing necessary and sufficient features and objects, yet there is little consensus about what these may be. However, scene categories should reflect how we use visual information. We therefore test the hypothesis that scene categories reflect functions, or the possibilities for actions within a scene. Our approach is to compare human categorization patterns with predictions made by both functions and alternative models. We collected a large-scale scene category distance matrix (5 million trials) by asking observers to simply decide whether two images were from the same or different categories. Using the actions from the American Time Use Survey, we mapped actions onto each scene (1.4 million trials). We found a strong relationship between ranked category distance and functional distance (r=0.50, or 66% of the maximum possible correlation). The function model outperformed alternative models of object-based distance (r=0.33), visual features from a convolutional neural network (r=0.39), lexical distance (r=0.27), and models of visual features. Using hierarchical linear regression, we found that functions captured 85.5% of overall explained variance, with nearly half of the explained variance captured only by functions, implying that the predictive power of alternative models was due to their shared variance with the function-based model. These results challenge the dominant school of thought that visual features and objects are sufficient for scene categorization, suggesting instead that a scene’s category may be determined by the scene’s function. PMID:26709590

  19. Visual determination of differential renal function

    SciTech Connect

    Kipper, M.S.; Witztum, K.F.; Taylor, A. Jr.

    1986-05-01

    Forty patients (43 studies) referred for determination of differential renal function were imaged 24 hours after intravenous administration of Tc-99m-2, 3 DMSA. Visual assessment of relative renal uptake was estimated independently by three observers at three different hospitals from analog images on standard x-ray film. The results were compared with the relative DMSA uptake obtained by summing counts in computer-assisted regions of interest placed over each kidney. There was excellent correlation between the visual estimates of each observer and the computer-generated values (r = 0.98, 0.96, and 0.98, respectively). If a computer is not available, good visual estimates of differential uptake still may be obtained when static imaging agents such as DMSA are administered.

  20. Universal and adapted vocabularies for generic visual categorization.

    PubMed

    Perronnin, Florent

    2008-07-01

    Generic Visual Categorization (GVC) is the pattern classification problem which consists in assigning labels to an image based on its semantic content. This is a challenging task as one has to deal with inherent object/scene variations as well as changes in viewpoint, lighting and occlusion. Several state-of-the-art GVC systems use a vocabulary of visual terms to characterize images with a histogram of visual word counts. We propose a novel practical approach to GVC based on a universal vocabulary, which describes the content of all the considered classes of images, and class vocabularies obtained through the adaptation of the universal vocabulary using class-specific data. The main novelty is that an image is characterized by a set of histograms - one per class - where each histogram describes whether the image content is best modeled by the universal vocabulary or the corresponding class vocabulary. This framework is applied to two types of local image features: low-level descriptors such as the popular SIFT and high-level histograms of word co-occurrences in a spatial neighborhood. It is shown experimentally on two challenging datasets (an in-house database of 19 categories and the PASCAL VOC 2006 dataset) that the proposed approach exhibits state-of-the-art performance at a modest computational cost.

  1. Pain's Impact on Adaptive Functioning

    ERIC Educational Resources Information Center

    Breau, L. M.; Camfield, C. S.; McGrath, P. J.; Finley, G. A.

    2007-01-01

    Background: Pain interferes with the functioning of typical children, but no study has examined its effect on children with pre-existing intellectual disabilities (ID). Methods: Caregivers of 63 children observed their children for 2-h periods and recorded in 1-week diaries: pain presence, cause, intensity and duration. Caregivers also recorded…

  2. Adaptive Behavior of Primary School Students with Visual Impairments: The Impact of Educational Settings

    ERIC Educational Resources Information Center

    Metsiou, Katerina; Papadopoulos, Konstantinos; Agaliotis, Ioannis

    2011-01-01

    This study explored the adaptive behavior of primary school students with visual impairments, as well as the impact of educational setting on their adaptive behavior. Instrumentation included an informal questionnaire and the Vineland Adaptive Behavior Scales. Participants were 36 primary school students with visual impairments. The educational…

  3. Calibration and adaptation of ISO visual noise for I3A's Camera Phone Image Quality initiative

    NASA Astrophysics Data System (ADS)

    Baxter, Donald J.; Murray, Andrew

    2012-01-01

    The I3A Camera Phone Image Quality (CPIQ) visual noise metric described is a core image quality attribute of the wider I3A CPIQ consumer orientated, camera image quality score. This paper describes the selection of a suitable noise metric, the adaptation of the chosen ISO 15739 visual noise protocol for the challenges posed by cell phone cameras and the mapping of the adapted protocol to subjective image quality loss using a published noise study. Via a simple study, visual noise metrics are shown to discriminate between different noise frequency shapes. The optical non-uniformities prevalent in cell phone cameras and higher noise levels pose significant challenges to the ISO 15739 visual noise protocol. The non-uniformities are addressed using a frequency based high pass filter. Secondly, the data clipping at high noise levels is avoided using a Johnson and Fairchild frequency based Luminance contrast sensitivity function (CSF). The final result is a visually based noise metric calibrated in Quality Loss Just Noticeable Differences (JND) using Aptina Imaging's subjectively calibrated image set.

  4. Which visual functions depend on intermediate visual regions? Insights from a case of developmental visual form agnosia.

    PubMed

    Gilaie-Dotan, Sharon

    2016-03-01

    A key question in visual neuroscience is the causal link between specific brain areas and perceptual functions; which regions are necessary for which visual functions? While the contribution of primary visual cortex and high-level visual regions to visual perception has been extensively investigated, the contribution of intermediate visual areas (e.g. V2/V3) to visual processes remains unclear. Here I review more than 20 visual functions (early, mid, and high-level) of LG, a developmental visual agnosic and prosopagnosic young adult, whose intermediate visual regions function in a significantly abnormal fashion as revealed through extensive fMRI and ERP investigations. While expectedly, some of LG's visual functions are significantly impaired, some of his visual functions are surprisingly normal (e.g. stereopsis, color, reading, biological motion). During the period of eight-year testing described here, LG trained on a perceptual learning paradigm that was successful in improving some but not all of his visual functions. Following LG's visual performance and taking into account additional findings in the field, I propose a framework for how different visual areas contribute to different visual functions, with an emphasis on intermediate visual regions. Thus, although rewiring and plasticity in the brain can occur during development to overcome and compensate for hindering developmental factors, LG's case seems to indicate that some visual functions are much less dependent on strict hierarchical flow than others, and can develop normally in spite of abnormal mid-level visual areas, thereby probably less dependent on intermediate visual regions.

  5. Bacterial Adaptation through Loss of Function

    PubMed Central

    Donnell, Zachary N.; Liu, Julia C.; Tavazoie, Saeed

    2013-01-01

    The metabolic capabilities and regulatory networks of bacteria have been optimized by evolution in response to selective pressures present in each species' native ecological niche. In a new environment, however, the same bacteria may grow poorly due to regulatory constraints or biochemical deficiencies. Adaptation to such conditions can proceed through the acquisition of new cellular functionality due to gain of function mutations or via modulation of cellular networks. Using selection experiments on transposon-mutagenized libraries of bacteria, we illustrate that even under conditions of extreme nutrient limitation, substantial adaptation can be achieved solely through loss of function mutations, which rewire the metabolism of the cell without gain of enzymatic or sensory function. A systematic analysis of similar experiments under more than 100 conditions reveals that adaptive loss of function mutations exist for many environmental challenges. Drawing on a wealth of examples from published articles, we detail the range of mechanisms through which loss-of-function mutations can generate such beneficial regulatory changes, without the need for rare, specific mutations to fine-tune enzymatic activities or network connections. The high rate at which loss-of-function mutations occur suggests that null mutations play an underappreciated role in the early stages of adaption of bacterial populations to new environments. PMID:23874220

  6. Visual enhancement of unmixed multispectral imagery using adaptive smoothing

    USGS Publications Warehouse

    Lemeshewsky, G.P.; Rahman, Z.-U.; Schowengerdt, R.A.; Reichenbach, S.E.

    2004-01-01

    Adaptive smoothing (AS) has been previously proposed as a method to smooth uniform regions of an image, retain contrast edges, and enhance edge boundaries. The method is an implementation of the anisotropic diffusion process which results in a gray scale image. This paper discusses modifications to the AS method for application to multi-band data which results in a color segmented image. The process was used to visually enhance the three most distinct abundance fraction images produced by the Lagrange constraint neural network learning-based unmixing of Landsat 7 Enhanced Thematic Mapper Plus multispectral sensor data. A mutual information-based method was applied to select the three most distinct fraction images for subsequent visualization as a red, green, and blue composite. A reported image restoration technique (partial restoration) was applied to the multispectral data to reduce unmixing error, although evaluation of the performance of this technique was beyond the scope of this paper. The modified smoothing process resulted in a color segmented image with homogeneous regions separated by sharpened, coregistered multiband edges. There was improved class separation with the segmented image, which has importance to subsequent operations involving data classification.

  7. Oculomotor Adaptation Elicited By Intra-Saccadic Visual Stimulation: Time-Course of Efficient Visual Target Perturbation

    PubMed Central

    Panouillères, Muriel T. N.; Gaveau, Valerie; Debatisse, Jeremy; Jacquin, Patricia; LeBlond, Marie; Pélisson, Denis

    2016-01-01

    Perception of our visual environment strongly depends on saccadic eye movements, which in turn are calibrated by saccadic adaptation mechanisms elicited by systematic movement errors. Current models of saccadic adaptation assume that visual error signals are acquired only after saccade completion, because the high speed of saccade execution disturbs visual processing (saccadic “suppression” and “mislocalization”). Complementing a previous study from our group, here we report that visual information presented during saccades can drive adaptation mechanisms and we further determine the critical time window of such error processing. In 15 healthy volunteers, shortening adaptation of reactive saccades toward a ±8° visual target was induced by flashing the target for 2 ms less eccentrically than its initial location either near saccade peak velocity (“PV” condition) or peak deceleration (“PD”) or saccade termination (“END”). Results showed that, as compared to the “CONTROL” condition (target flashed at its initial location upon saccade termination), saccade amplitude decreased all throughout the “PD” and “END” conditions, reaching significant levels in the second adaptation and post-adaptation blocks. The results of nine other subjects tested in a saccade lengthening adaptation paradigm with the target flashing near peak deceleration (“PD” and “CONTROL” conditions) revealed no significant change of gain, confirming that saccade shortening adaptation is easier to elicit. Also, together with this last result, the stable gain observed in the “CONTROL” conditions of both experiments suggests that mislocalization of the target flash is not responsible for the saccade shortening adaptation demonstrated in the first group. Altogether, these findings reveal that the visual “suppression” and “mislocalization” phenomena related to saccade execution do not prevent brief visual information delivered “in-flight” from being

  8. Night Myopia Studied with an Adaptive Optics Visual Analyzer

    PubMed Central

    Artal, Pablo; Schwarz, Christina; Cánovas, Carmen; Mira-Agudelo, Alejandro

    2012-01-01

    Purpose Eyes with distant objects in focus in daylight are thought to become myopic in dim light. This phenomenon, often called “night myopia” has been studied extensively for several decades. However, despite its general acceptance, its magnitude and causes are still controversial. A series of experiments were performed to understand night myopia in greater detail. Methods We used an adaptive optics instrument operating in invisible infrared light to elucidate the actual magnitude of night myopia and its main causes. The experimental setup allowed the manipulation of the eye's aberrations (and particularly spherical aberration) as well as the use of monochromatic and polychromatic stimuli. Eight subjects with normal vision monocularly determined their best focus position subjectively for a Maltese cross stimulus at different levels of luminance, from the baseline condition of 20 cd/m2 to the lowest luminance of 22×10−6 cd/m2. While subjects performed the focusing tasks, their eye's defocus and aberrations were continuously measured with the 1050-nm Hartmann-Shack sensor incorporated in the adaptive optics instrument. The experiment was repeated for a variety of controlled conditions incorporating specific aberrations of the eye and chromatic content of the stimuli. Results We found large inter-subject variability and an average of −0.8 D myopic shift for low light conditions. The main cause responsible for night myopia was the accommodation shift occurring at low light levels. Other factors, traditionally suggested to explain night myopia, such as chromatic and spherical aberrations, have a much smaller effect in this mechanism. Conclusions An adaptive optics visual analyzer was applied to study the phenomenon of night myopia. We found that the defocus shift occurring in dim light is mainly due to accommodation errors. PMID:22768343

  9. Functional Visual Acuity of Early Presbyopia

    PubMed Central

    Watanabe, Kazuhiro; Shigeno, Yuta; Saiki, Megumi; Torii, Hidemasa; Kaido, Minako; Tsubota, Kazuo

    2016-01-01

    Purpose To evaluate visual function in patients with early presbyopia using the functional visual acuity (FVA) test. Methods This study included 27 eyes of 27 healthy older volunteers (mean age, 44.1 ± 2.6 years) and 14 eyes of 14 healthy young volunteers (mean age, 28.4±4.8 years). The distance-corrected visual acuity (DCVA), distance-corrected near VA (DCNVA), subjective amplitude of accommodation (AA), and distance and near pupillary diameters were measured. The distance FVA and distance-corrected near FVA (DCNFVA) were measured using the FVA Measurement System. The standard Schirmer test and standard tear break-up time measurement also were performed. Results The logarithm of the minimum angle of resolution (logMAR) DCVA was better than 0 in all subjects. The percentages of subjects with logMAR DCNVA below 0 was significantly lower in the presbyopia group than in the young group. The DCNFVA in the presbyopia group was significantly (P < 0.001) poorer than the DCNVA in that group. Significant linear negative correlations were seen between the DCNVA and AA (r = -0.507, P < 0.001) and the DCNFVA and AA (r = -0.681, P < 0.001) in the older subjects. Stepwise regression analysis showed that only the AA was a significant factor predictive of the DCNFVA in the presbyopia group. Tear function parameters were not adopted in the regression model. Conclusions Measurement of the DCNFVA can detect decreased AA in early presbyopia better than measurement of the conventional near VA. The DCNFVA is a good index for early presbyopia. PMID:26959362

  10. Immature visual neural system in children reflected by contrast sensitivity with adaptive optics correction

    PubMed Central

    Liu, Rong; Zhou, Jiawei; Zhao, Haoxin; Dai, Yun; Zhang, Yudong; Tang, Yong; Zhou, Yifeng

    2014-01-01

    This study aimed to explore the neural development status of the visual system of children (around 8 years old) using contrast sensitivity. We achieved this by eliminating the influence of higher order aberrations (HOAs) with adaptive optics correction. We measured HOAs, modulation transfer functions (MTFs) and contrast sensitivity functions (CSFs) of six children and five adults with both corrected and uncorrected HOAs. We found that when HOAs were corrected, children and adults both showed improvements in MTF and CSF. However, the CSF of children was still lower than the adult level, indicating the difference in contrast sensitivity between groups cannot be explained by differences in optical factors. Further study showed that the difference between the groups also could not be explained by differences in non-visual factors. With these results we concluded that the neural systems underlying vision in children of around 8 years old are still immature in contrast sensitivity. PMID:24732728

  11. Developmental functional adaptation to high altitude: review.

    PubMed

    Frisancho, A Roberto

    2013-01-01

    Various approaches have been used to understand the origins of the functional traits that characterize the Andean high-altitude native. Based on the conceptual framework of developmental functional adaptation which postulates that environmental influences during the period of growth and development have long lasting effects that may be expressed during adulthood, we initiated a series of studies addressed at determining the pattern of physical growth and the contribution of growth and development to the attainment of full functional adaptation to high-altitude of low and high altitude natives living under rural and urban conditions. Current research indicate that: (a) the pattern of growth at high altitude due to limited nutritional resources, physical growth in body size is delayed but growth in lung volumes is accelerated because of hypoxic stress); (b) low-altitude male and female urban natives can attain a full functional adaptation to high altitude by exposure to high-altitude hypoxia during the period of growth and development; (c) both experimental studies on animals and comparative human studies indicate that exposure to high altitude during the period of growth and development results in the attainment of a large residual lung volume; (d) this developmentally acquired enlarged residual lung volume and its associated increase in alveolar area when combined with the increased tissue capillarization and moderate increase in red blood cells and hemoglobin concentration contributes to the successful functional adaptation of the Andean high-altitude native to hypoxia; and (e) any specific genetic traits that are related to the successful functional adaptation of Andean high-altitude natives have yet to be identified.

  12. Functional and cortical adaptations to central vision loss

    PubMed Central

    CHEUNG, SING-HANG; LEGGE, GORDON E.

    2005-01-01

    Age-related macular degeneration (AMD), affecting the retina, afflicts one out of ten people aged 80 years or older in the United States. AMD often results in vision loss to the central 15–20 deg of the visual field (i.e. central scotoma), and frequently afflicts both eyes. In most cases, when the central scotoma includes the fovea, patients will adopt an eccentric preferred retinal locus (PRL) for fixation. The onset of a central scotoma results in the absence of retinal inputs to corresponding regions of retinotopically mapped visual cortex. Animal studies have shown evidence for reorganization in adult mammals for such cortical areas following experimentally induced central scotomata. However, it is still unknown whether reorganization occurs in primary visual cortex (V1) of AMD patients. Nor is it known whether the adoption of a PRL corresponds to changes to the retinotopic mapping of V1. Two recent advances hold out the promise for addressing these issues and for contributing to the rehabilitation of AMD patients: improved methods for assessing visual function across the fields of AMD patients using the scanning laser ophthalmoscope, and the advent of brain-imaging methods for studying retinotopic mapping in humans. For the most part, specialists in these two areas come from different disciplines and communities, with few opportunities to interact. The purpose of this review is to summarize key findings on both the clinical and neuroscience issues related to questions about visual adaptation in AMD patients. PMID:15935111

  13. Adaptive Neurotechnology for Making Neural Circuits Functional .

    NASA Astrophysics Data System (ADS)

    Jung, Ranu

    2008-03-01

    Two of the most important trends in recent technological developments are that technology is increasingly integrated with biological systems and that it is increasingly adaptive in its capabilities. Neuroprosthetic systems that provide lost sensorimotor function after a neural disability offer a platform to investigate this interplay between biological and engineered systems. Adaptive neurotechnology (hardware and software) could be designed to be biomimetic, guided by the physical and programmatic constraints observed in biological systems, and allow for real-time learning, stability, and error correction. An example will present biomimetic neural-network hardware that can be interfaced with the isolated spinal cord of a lower vertebrate to allow phase-locked real-time neural control. Another will present adaptive neural network control algorithms for functional electrical stimulation of the peripheral nervous system to provide desired movements of paralyzed limbs in rodents or people. Ultimately, the frontier lies in being able to utilize the adaptive neurotechnology to promote neuroplasticity in the living system on a long-time scale under co-adaptive conditions.

  14. Adaptation of the human visual system to the statistics of letters and line configurations.

    PubMed

    Chang, Claire H C; Pallier, Christophe; Wu, Denise H; Nakamura, Kimihiro; Jobert, Antoinette; Kuo, W-J; Dehaene, Stanislas

    2015-10-15

    By adulthood, literate humans have been exposed to millions of visual scenes and pages of text. Does the human visual system become attuned to the statistics of its inputs? Using functional magnetic resonance imaging, we examined whether the brain responses to line configurations are proportional to their natural-scene frequency. To further distinguish prior cortical competence from adaptation induced by learning to read, we manipulated whether the selected configurations formed letters and whether they were presented on the horizontal meridian, the familiar location where words usually appear, or on the vertical meridian. While no natural-scene frequency effect was observed, we observed letter-status and letter frequency effects on bilateral occipital activation, mainly for horizontal stimuli. The findings suggest a reorganization of the visual pathway resulting from reading acquisition under genetic and connectional constraints. Even early retinotopic areas showed a stronger response to letters than to rotated versions of the same shapes, suggesting an early visual tuning to large visual features such as letters. PMID:26190404

  15. Psychophysical experiments on visual performance with an ocular adaptive optics system - Oral Paper

    NASA Astrophysics Data System (ADS)

    Dalimier, E.; Dainty, J. C.; Barbur, J. L.

    2008-01-01

    An ocular adaptive optics system was used to investigate the effects of higher-order ocular aberrations on everyday functional vision. The system comprised a Shack-Hartmann wavefront sensor, a Badal optometer and cylindrical lenses to statically pre-correct refractive errors, and a 35 element bimorph mirror from AOptix to dynamically compensate for higher-order aberrations. Measurements of contrast acuity with and without correction of higher-order aberrations were performed in a large range of light levels and pupil sizes. The results showed that the visual benefit is limited at all light levels due to the combined effects of light level on pupil size and neural sensitivity.

  16. Adaptive functional systems: Learning with chaos

    NASA Astrophysics Data System (ADS)

    Komarov, M. A.; Osipov, G. V.; Burtsev, M. S.

    2010-12-01

    We propose a new model of adaptive behavior that combines a winnerless competition principle and chaos to learn new functional systems. The model consists of a complex network of nonlinear dynamical elements producing sequences of goal-directed actions. Each element describes dynamics and activity of the functional system which is supposed to be a distributed set of interacting physiological elements such as nerve or muscle that cooperates to obtain certain goal at the level of the whole organism. During "normal" behavior, the dynamics of the system follows heteroclinic channels, but in the novel situation chaotic search is activated and a new channel leading to the target state is gradually created simulating the process of learning. The model was tested in single and multigoal environments and had demonstrated a good potential for generation of new adaptations.

  17. About turn: the visual representation of human body orientation revealed by adaptation.

    PubMed

    Lawson, Rebecca P; Clifford, Colin W G; Calder, Andrew J

    2009-03-01

    Body orientation provides an important cue to other individuals' focus of attention, particularly when one is viewing them at a distance. Single-cell recording in macaques has identified cells in the superior temporal sulcus that show a view-selective response to particular body orientations. Whether similar separable coding is found in humans is not known, and there is currently no functional account of the visual representation of seen body orientation. This study addressed this issue using visual adaptation. Experiment 1 demonstrated distinct channels that code left- and right-oriented bodies. Experiment 2 investigated whether the visual representation of body orientation is best accounted for by an opponent-coding system, which has been shown to account for the visual representation of facial identity, or by a multichannel system, which provides the optimal account of coding line orientation and direction of motion. Our results provide evidence for multichannel coding of seen body orientation, with separate channels (or neuronal populations) selectively tuned to different body directions.

  18. Probing the functions of contextual modulation by adapting images rather than observers

    PubMed Central

    Webster, Michael A.

    2014-01-01

    Countless visual aftereffects have illustrated how visual sensitivity and perception can be biased by adaptation to the recent temporal context. This contextual modulation has been proposed to serve a variety of functions, but the actual benefits of adaptation remain uncertain. We describe an approach we have recently developed for exploring these benefits by adapting images instead of observers, to simulate how images should appear under theoretically optimal states of adaptation. This allows the long-term consequences of adaptation to be evaluated in ways that are difficult to probe by adapting observers, and provides a common framework for understanding how visual coding changes when the environment or the observer changes, or for evaluating how the effects of temporal context depend on different models of visual coding or the adaptation processes. The approach is illustrated for the specific case of adaptation to color, for which the initial neural coding and adaptation processes are relatively well understood, but can in principle be applied to examine the consequences of adaptation for any stimulus dimension. A simple calibration that adjusts each neuron’s sensitivity according to the stimulus level it is exposed to is sufficient to normalize visual coding and generate a host of benefits, from increased efficiency to perceptual constancy to enhanced discrimination. This temporal normalization may also provide an important precursor for the effective operation of contextual mechanisms operating across space or feature dimensions. To the extent that the effects of adaptation can be predicted, images from new environments could be “pre-adapted” to match them to the observer, eliminating the need for observers to adapt. PMID:25281412

  19. Recreating a functional ancestral archosaur visual pigment.

    PubMed

    Chang, Belinda S W; Jönsson, Karolina; Kazmi, Manija A; Donoghue, Michael J; Sakmar, Thomas P

    2002-09-01

    The ancestors of the archosaurs, a major branch of the diapsid reptiles, originated more than 240 MYA near the dawn of the Triassic Period. We used maximum likelihood phylogenetic ancestral reconstruction methods and explored different models of evolution for inferring the amino acid sequence of a putative ancestral archosaur visual pigment. Three different types of maximum likelihood models were used: nucleotide-based, amino acid-based, and codon-based models. Where possible, within each type of model, likelihood ratio tests were used to determine which model best fit the data. Ancestral reconstructions of the ancestral archosaur node using the best-fitting models of each type were found to be in agreement, except for three amino acid residues at which one reconstruction differed from the other two. To determine if these ancestral pigments would be functionally active, the corresponding genes were chemically synthesized and then expressed in a mammalian cell line in tissue culture. The expressed artificial genes were all found to bind to 11-cis-retinal to yield stable photoactive pigments with lambda(max) values of about 508 nm, which is slightly redshifted relative to that of extant vertebrate pigments. The ancestral archosaur pigments also activated the retinal G protein transducin, as measured in a fluorescence assay. Our results show that ancestral genes from ancient organisms can be reconstructed de novo and tested for function using a combination of phylogenetic and biochemical methods. PMID:12200476

  20. Recreating a functional ancestral archosaur visual pigment.

    PubMed

    Chang, Belinda S W; Jönsson, Karolina; Kazmi, Manija A; Donoghue, Michael J; Sakmar, Thomas P

    2002-09-01

    The ancestors of the archosaurs, a major branch of the diapsid reptiles, originated more than 240 MYA near the dawn of the Triassic Period. We used maximum likelihood phylogenetic ancestral reconstruction methods and explored different models of evolution for inferring the amino acid sequence of a putative ancestral archosaur visual pigment. Three different types of maximum likelihood models were used: nucleotide-based, amino acid-based, and codon-based models. Where possible, within each type of model, likelihood ratio tests were used to determine which model best fit the data. Ancestral reconstructions of the ancestral archosaur node using the best-fitting models of each type were found to be in agreement, except for three amino acid residues at which one reconstruction differed from the other two. To determine if these ancestral pigments would be functionally active, the corresponding genes were chemically synthesized and then expressed in a mammalian cell line in tissue culture. The expressed artificial genes were all found to bind to 11-cis-retinal to yield stable photoactive pigments with lambda(max) values of about 508 nm, which is slightly redshifted relative to that of extant vertebrate pigments. The ancestral archosaur pigments also activated the retinal G protein transducin, as measured in a fluorescence assay. Our results show that ancestral genes from ancient organisms can be reconstructed de novo and tested for function using a combination of phylogenetic and biochemical methods.

  1. Cerebral Visual Impairment in Children: A Longitudinal Case Study of Functional Outcomes beyond the Visual Acuities

    ERIC Educational Resources Information Center

    Lam, Fook Chang; Lovett, Fiona; Dutton, Gordon N.

    2010-01-01

    Damage to the areas of the brain that are responsible for higher visual processing can lead to severe cerebral visual impairment (CVI). The prognosis for higher cognitive visual functions in children with CVI is not well described. We therefore present our six-year follow-up of a boy with CVI and highlight intervention approaches that have proved…

  2. [Visual and motor functions in schizophrenic patients].

    PubMed

    Del Vecchio, S; Gargiulo, P A

    1992-12-01

    In the present work, visual and motor functions have been explored in 26 chronic schizophrenic patients, and 7 acute schizophrenic patients, compared with 26 normal controls, by means of the Bender-Gestalt Test. Parameters under consideration were: Form distortion, rotation, integration, perseveration, use of space, subtle motricity, score (global parameter), and time employed. As regards distortion and rotation there have been highly significant differences between chronic patients and control group. Among acute patients, it was observed that perseveration was also highly significant. Conversely, integration and use of space did not differ significantly among the three groups involved. The global score, resulting from all the above mentioned parameters showed important differences between both patient groups on the one hand, and control group on the other hand. Taking into account that patients were being administered neuroleptic drugs, it can safely be said, however, that the Bender-Gestalt Test allows to recognize alteration in perceptual closure consistent with a loss of the objective structure of perceived phenomena, in both chronic and acute patients.

  3. Visual Contrast Sensitivity Functions Obtained from Untrained Observers Using Tracking and Staircase Procedures. Final Report.

    ERIC Educational Resources Information Center

    Geri, George A.; Hubbard, David C.

    Two adaptive psychophysical procedures (tracking and "yes-no" staircase) for obtaining human visual contrast sensitivity functions (CSF) were evaluated. The procedures were chosen based on their proven validity and the desire to evaluate the practical effects of stimulus transients, since tracking procedures traditionally employ gradual stimulus…

  4. Adaptive Assessment of Young Children with Visual Impairment

    ERIC Educational Resources Information Center

    Ruiter, Selma; Nakken, Han; Janssen, Marleen; Van Der Meulen, Bieuwe; Looijestijn, Paul

    2011-01-01

    The aim of this study was to assess the effect of adaptations for children with low vision of the Bayley Scales, a standardized developmental instrument widely used to assess development in young children. Low vision adaptations were made to the procedures, item instructions and play material of the Dutch version of the Bayley Scales of Infant…

  5. Visual Behaviors and Adaptations Associated with Cortical and Ocular Impairment in Children.

    ERIC Educational Resources Information Center

    Jan, J. E.; Groenveld, M.

    1993-01-01

    This article shows the usefulness of understanding visual behaviors in the diagnosis of various types of visual impairments that are due to ocular and cortical disorders. Behaviors discussed include nystagmus, ocular motor dyspraxia, head position, close viewing, field loss adaptations, mannerisms, photophobia, and abnormal color perception. (JDD)

  6. Visual impairment, visual functioning, and quality of life assessments in patients with glaucoma.

    PubMed Central

    Parrish, R K

    1996-01-01

    BACKGROUND/PURPOSE: To determine the relation between visual impairment, visual functioning, and the global quality of life in patients with glaucoma. METHODS: Visual impairment, defined with the American Medical Association Guides to the Evaluation of Permanent Impairment; visual functioning, measured with the VF-14 and the Field Test Version of the National Eye Institute-Visual Functioning Questionnaire (NEI-VFQ); and the global quality of life, assessed with the Medical Outcomes Study 36-Item Short Form Health Survey (SF-36), were determined in 147 consecutive patients with glaucoma. RESULTS: None of the SF-36 domains demonstrated more than a weak correlation with visual impairment. The VF-14 scores were moderately correlated with visual impairment. Of the twelve NEI-VFQ scales, distance activities and vision specific dependency were moderately correlated with visual impairment. Of the twelve NEI-VFQ scales, distance activities and vision specific dependency were moderately correlated with visual field impairment; vision specific social functioning, near activities, vision specific role difficulties, general vision, vision specific mental health, color vision, and driving were modestly correlated; visual pain was weakly correlated; and two were not significantly correlated. Correcting for visual actuity weakened the strength of the correlation coefficients. CONCLUSIONS: The SF-36 is unlikely to be useful in determining visual impairment in patients with glaucoma. Based on the moderate correlation between visual field impairment and the VF-14 score, this questionnaire may be generalizable to patients with glaucoma. Several of the NEI-VFQ scales correlate with visual field impairment scores in patients with a wide range of glaucomatous damage. PMID:8981717

  7. In vivo cellular visualization of the human retina using optical coherence tomography and adaptive optics

    SciTech Connect

    Olivier, S S; Jones, S M; Chen, D C; Zawadzki, R J; Choi, S S; Laut, S P; Werner, J S

    2006-01-05

    Optical coherence tomography (OCT) sees the human retina sharply with adaptive optics. In vivo cellular visualization of the human retina at micrometer-scale resolution is possible by enhancing Fourier-domain optical-coherence tomography with adaptive optics, which compensate for the eye's optical aberrations.

  8. Dementia alters standing postural adaptation during a visual search task in older adult men.

    PubMed

    Jor'dan, Azizah J; McCarten, J Riley; Rottunda, Susan; Stoffregen, Thomas A; Manor, Brad; Wade, Michael G

    2015-04-23

    This study investigated the effects of dementia on standing postural adaptation during performance of a visual search task. We recruited 16 older adults with dementia and 15 without dementia. Postural sway was assessed by recording medial-lateral (ML) and anterior-posterior (AP) center-of-pressure when standing with and without a visual search task; i.e., counting target letter frequency within a block of displayed randomized letters. ML sway variability was significantly higher in those with dementia during visual search as compared to those without dementia and compared to both groups during the control condition. AP sway variability was significantly greater in those with dementia as compared to those without dementia, irrespective of task condition. In the ML direction, the absolute and percent change in sway variability between the control condition and visual search (i.e., postural adaptation) was greater in those with dementia as compared to those without. In contrast, postural adaptation to visual search was similar between groups in the AP direction. As compared to those without dementia, those with dementia identified fewer letters on the visual task. In the non-dementia group only, greater increases in postural adaptation in both the ML and AP direction, correlated with lower performance on the visual task. The observed relationship between postural adaptation during the visual search task and visual search task performance--in the non-dementia group only--suggests a critical link between perception and action. Dementia reduces the capacity to perform a visual-based task while standing and thus, appears to disrupt this perception-action synergy.

  9. Adaptation to visual and proprioceptive rearrangement - Origin of the differential effectiveness of active and passive movements

    NASA Technical Reports Server (NTRS)

    Lackner, J. R.

    1977-01-01

    Experiments were conducted to measure and compare the accuracy with which subjects pointed to visual targets before and after an exposure period in which they received systematic proprioceptive misinformation about the locations of visual targets. The crucial factor determining whether adaptation will be elicited is shown to be the presence of a discordance in the positional information being conveyed over two different sensory modalities. Another experiment was carried out to study the effectiveness of active and passive movements in eliciting adaptation when the subjects were exposed to a systematic discordance between the visual and proprioceptive locations of external targets without being permitted sight of their hands. Superiority of active over passive movements in producing adaptation to visual rearrangement is due to the greater accuracy of position sense information about voluntarily moved limbs, partly derived from the contribution of muscle afferent signals.

  10. Adaptation of a Visual Readability Instrument to Multimedia Format.

    ERIC Educational Resources Information Center

    Vrasidas, Charalambos; Lantz, Chris

    This paper describes a study in which a Picture Readability Index (PRI) was used to investigate initial and extended perceptions of photographs. Readability criteria for evaluating instructional text seems to have been in place for a long time, yet instructional visuals like photographs and illustrations have typically been subject to no such…

  11. Visualizing myocardial function using HARP MRI

    NASA Astrophysics Data System (ADS)

    Osman, Nael F.; Prince, Jerry L.

    2000-06-01

    Harmonic phase magnetic resonance imaging (HARP) is a new technique for measuring the motion of the left ventricle of the heart. HARP uses magnetic resonance tagging, Fourier filtering and special processing algorithms to calculate key indices of myocardial motion including Eulerian and Lagrangian strain. This paper presents several new methods for visualizing myocardial motion based on HARP. Quantities that are computed and visualized include motion grids, velocity fields, strain rates, pathlines, tracked Eulerian strain, and contraction angle. The computations are fast and fully automated and have the potential for clinical application.

  12. Visual Impairments in People with Severe and Profound Multiple Disabilities: An Inventory of Visual Functioning

    ERIC Educational Resources Information Center

    van den Broek, Ellen G. C.; Janssen, C. G. C.; van Ramshorst, T.; Deen, L.

    2006-01-01

    Background: The prevalence of visual impairments in people with severe and profound multiple disabilities (SPMD) is the subject of considerable debate and is difficult to assess. Methods: In a typical Dutch care organization, all clients with SPMD (n = 76) participated in the study and specific instruments adapted to these clients (requiring a…

  13. Longitudinal Trajectories of Intellectual and Adaptive Functioning in Adolescents and Adults with Williams Syndrome

    ERIC Educational Resources Information Center

    Fisher, M. H.; Lense, M. D.; Dykens, E. M.

    2016-01-01

    Background: Williams syndrome (WS) is associated with a distinct cognitive-behavioural phenotype including mild to moderate intellectual disability, visual-spatial deficits, hypersociability, inattention and anxiety. Researchers typically characterise samples of individuals with WS by their intellectual functioning and adaptive behaviour. Because…

  14. Visual Afterimages of Emotional Faces in High Functioning Autism

    ERIC Educational Resources Information Center

    Rutherford, M. D.; Troubridge, Erin K.; Walsh, Jennifer

    2012-01-01

    Fixating an emotional facial expression can create afterimages, such that subsequent faces are seen as having the opposite expression of that fixated. Visual afterimages have been used to map the relationships among emotion categories, and this method was used here to compare ASD and matched control participants. Participants adapted to a facial…

  15. Evaluation of stereoscopic display with visual function and interview

    NASA Astrophysics Data System (ADS)

    Okuyama, Fumio

    1999-05-01

    The influence of binocular stereoscopic (3D) television display on the human eye were compared with one of a 2D display, using human visual function testing and interviews. A 40- inch double lenticular display was used for 2D/3D comparison experiments. Subjects observed the display for 30 minutes at a distance 1.0 m, with a combination of 2D material and one of 3D material. The participants were twelve young adults. Main optometric test with visual function measured were visual acuity, refraction, phoria, near vision point, accommodation etc. The interview consisted of 17 questions. Testing procedures were performed just before watching, just after watching, and forty-five minutes after watching. Changes in visual function are characterized as prolongation of near vision point, decrease of accommodation and increase in phoria. 3D viewing interview results show much more visual fatigue in comparison with 2D results. The conclusions are: 1) change in visual function is larger and visual fatigue is more intense when viewing 3D images. 2) The evaluation method with visual function and interview proved to be very satisfactory for analyzing the influence of stereoscopic display on human eye.

  16. Adaptation of visual spectra and opsin genes in seabreams.

    PubMed

    Wang, Feng Yu; Yan, Hong Young; Chen, Johnny Shou-Chung; Wang, Tzi Yuan; Wang, Daryi

    2009-07-01

    Three species of seabreams, Acanthopagrus berda, Acanthopagrus schlegelii and Pagrus major, living at different depths, were chosen to investigate how visual spectra and opsin genes evolve in response to various photic environments. The lambda max of photoreceptors and opsin genes were measured and cloned from these species. Eight to twelve nm spectral shifts in the rod and blue cone cells were observed between the deep-sea, P. major, and shallow-sea species, A. berda and A. schlegelii. Furthermore, the deep-sea P. major has lost its red light vision. Six opsin genes, Rh1, Rh2A, Rh2B, SWS1, SWS2 and LWS, were identified from all three seabream species, with the LWS genes of P. major having undergone pseudogenization. These data indicate that the photic environment of habitats select for the physiology of visual spectra and coding of opsin genes.

  17. Visual function of children with visual and other disabilities in Oman: A case series

    PubMed Central

    Gogri, Urmi; Al Harby, Salah; Khandekar, Rajiv

    2015-01-01

    Background: We assessed visual functioning of the children with special needs in Oman between 2009 and 2012. We present the methods of assessing different visual functions, outcomes and interventions carried out to improve their functioning. Materials and Methods: In this case series type of study, optometrists assessed visual functions of children of “day care centers” in Oman. Experts further assessed them and provided low vision care. Ocular movements, refractive corrections, near, distance, contrast color, motion, field of vision and cognitive, visual function test results were noted. Feedback to caregivers was given to improving visual functioning of these children. Results: We grouped 321 participants, (196 (61.1%) boys, age range of 3-18 years) into 61; Down syndrome (DS), 72 with intellectual disabilities, 67; hearing impaired and 121 with other conditions. Refractive error and lag of accommodation was 26 (42.6%) and 14 (22.6%) among children with DS. Contrast sensitivity was impaired in 8 (12.7%) among hearing impaired children. Defective distant and near vision was in 162 (70%) and 104 (42%) of our cohort. Children with intellectual disability were most difficult to assess. Children in group of other disabilities” had a higher proportion of impaired visual functioning. They were given low vision aids (telescopes (22), filters (7) and magnifiers (3)) in large numbers compared to those in other groups. Conclusions: The outcomes of assessment of visual functioning of children with other disabilities show great variation and difficult to group. The care therefore should be individual. All visual functions cannot be assessed at one time. PMID:26622136

  18. Structural and functional changes across the visual cortex of a patient with visual form agnosia.

    PubMed

    Bridge, Holly; Thomas, Owen M; Minini, Loredana; Cavina-Pratesi, Cristiana; Milner, A David; Parker, Andrew J

    2013-07-31

    Loss of shape recognition in visual-form agnosia occurs without equivalent losses in the use of vision to guide actions, providing support for the hypothesis of two visual systems (for "perception" and "action"). The human individual DF received a toxic exposure to carbon monoxide some years ago, which resulted in a persisting visual-form agnosia that has been extensively characterized at the behavioral level. We conducted a detailed high-resolution MRI study of DF's cortex, combining structural and functional measurements. We present the first accurate quantification of the changes in thickness across DF's occipital cortex, finding the most substantial loss in the lateral occipital cortex (LOC). There are reduced white matter connections between LOC and other areas. Functional measures show pockets of activity that survive within structurally damaged areas. The topographic mapping of visual areas showed that ordered retinotopic maps were evident for DF in the ventral portions of visual cortical areas V1, V2, V3, and hV4. Although V1 shows evidence of topographic order in its dorsal portion, such maps could not be found in the dorsal parts of V2 and V3. We conclude that it is not possible to understand fully the deficits in object perception in visual-form agnosia without the exploitation of both structural and functional measurements. Our results also highlight for DF the cortical routes through which visual information is able to pass to support her well-documented abilities to use visual information to guide actions.

  19. A Time-Critical Adaptive Approach for Visualizing Natural Scenes on Different Devices

    PubMed Central

    Dong, Tianyang; Liu, Siyuan; Xia, Jiajia; Fan, Jing; Zhang, Ling

    2015-01-01

    To automatically adapt to various hardware and software environments on different devices, this paper presents a time-critical adaptive approach for visualizing natural scenes. In this method, a simplified expression of a tree model is used for different devices. The best rendering scheme is intelligently selected to generate a particular scene by estimating the rendering time of trees based on their visual importance. Therefore, this approach can ensure the reality of natural scenes while maintaining a constant frame rate for their interactive display. To verify its effectiveness and flexibility, this method is applied in different devices, such as a desktop computer, laptop, iPad and smart phone. Applications show that the method proposed in this paper can not only adapt to devices with different computing abilities and system resources very well but can also achieve rather good visual realism and a constant frame rate for natural scenes. PMID:25723177

  20. Visually induced adaptation in three-dimensional organization of primate vestibuloocular reflex

    NASA Technical Reports Server (NTRS)

    Angelaki, D. E.; Hess, B. J.

    1998-01-01

    The adaptive plasticity of the spatial organization of the vestibuloocular reflex (VOR) has been investigated in intact and canal-plugged primates using 2-h exposure to conflicting visual (optokinetic, OKN) and vestibular rotational stimuli about mutually orthogonal axes (generating torsional VOR + vertical OKN, torsional VOR + horizontal OKN, vertical VOR + horizontal OKN, and horizontal VOR + vertical OKN). Adaptation protocols with 0.5-Hz (+/-18 degrees ) head movements about either an earth-vertical or an earth-horizontal axis induced orthogonal response components as high as 40-70% of those required for ideal adaptation. Orthogonal response gains were highest at the adapting frequency with phase leads present at lower and phase lags present at higher frequencies. Furthermore, the time course of adaptation, as well as orthogonal response dynamics were similar and relatively independent of the particular visual/vestibular stimulus combination. Low-frequency (0. 05 Hz, vestibular stimulus: +/-60 degrees ; optokinetic stimulus: +/-180 degrees ) adaptation protocols with head movements about an earth-vertical axis induced smaller orthogonal response components that did not exceed 20-40% of the head velocity stimulus (i.e., approximately 10% of that required for ideal adaptation). At the same frequency, adaptation with head movements about an earth-horizontal axis generated large orthogonal responses that reached values as high as 100-120% of head velocity after 2 h of adaptation (i.e., approximately 40% of ideal adaptation gains). The particular spatial and temporal response characteristics after low-frequency, earth-horizontal axis adaptation in both intact and canal-plugged animals strongly suggests that the orienting (and perhaps translational) but not inertial (velocity storage) components of the primate otolith-ocular system exhibit spatial adaptability. Due to the particular nested arrangement of the visual and vestibular stimuli, the optic flow pattern

  1. Adaptation to a simulated central scotoma during visual search training.

    PubMed

    Walsh, David V; Liu, Lei

    2014-03-01

    Patients with a central scotoma usually use a preferred retinal locus (PRL) consistently in daily activities. The selection process and time course of the PRL development are not well understood. We used a gaze-contingent display to simulate an isotropic central scotoma in normal subjects while they were practicing a difficult visual search task. As compared to foveal search, initial exposure to the simulated scotoma resulted in prolonged search reaction time, many more fixations and unorganized eye movements during search. By the end of a 1782-trial training with the simulated scotoma, the search performance improved to within 25% of normal foveal search. Accompanying the performance improvement, there were also fewer fixations, fewer repeated fixations in the same area of the search stimulus and a clear tendency of using one area near the border of the scotoma to identify the search target. The results were discussed in relation to natural development of PRL in central scotoma patients and potential visual training protocols to facilitate PRL development. PMID:24456805

  2. Yoga-teaching protocol adapted for children with visual impairment

    PubMed Central

    Mohanty, Soubhagyalaxmi; Hankey, Alex; Pradhan, Balaram; Ranjita, Rajashree

    2016-01-01

    Context: Childhood visual deficiency impairs children's neuro-psychomotor development, considerably affecting physical, mental, social, and emotional health. Yoga's multifaceted approach may help children with visual impairment (VI) to cope with their challenges. Aim: This study aimed to develop a special protocol for teaching yoga to children with VI, and to evaluate their preferred method of learning. Methods: The study was carried out at Ramana Maharishi Academy for the Blind, Bengaluru, South India. Forty-one students volunteered to learn yoga practices, and classes were held weekly 5 days, 1 hr per session for 16 weeks. The study introduced a new method using a sequence of five teaching steps: verbal instructions, tactile modeling, step-by-step teaching, learning in a group, and physical guidance. A questionnaire concerning the preferred steps of learning was then given to each student, and verbal answers were obtained. Results: A total of 33 (out of 41), aged 11.97 ± 1.94, 15 girls and 18 boys responded. Twenty-six (78.79%) chose physical guidance as their most favored learning mode. Conclusions: Specially designed protocol may pave the way to impart yoga in an exciting and comfortable way to children with VI. More studies are needed to further investigate the effectiveness of this new yoga protocol in similar settings. PMID:27512318

  3. An Efficient Adaptive Window Size Selection Method for Improving Spectrogram Visualization

    PubMed Central

    Khan, Omar Usman

    2016-01-01

    Short Time Fourier Transform (STFT) is an important technique for the time-frequency analysis of a time varying signal. The basic approach behind it involves the application of a Fast Fourier Transform (FFT) to a signal multiplied with an appropriate window function with fixed resolution. The selection of an appropriate window size is difficult when no background information about the input signal is known. In this paper, a novel empirical model is proposed that adaptively adjusts the window size for a narrow band-signal using spectrum sensing technique. For wide-band signals, where a fixed time-frequency resolution is undesirable, the approach adapts the constant Q transform (CQT). Unlike the STFT, the CQT provides a varying time-frequency resolution. This results in a high spectral resolution at low frequencies and high temporal resolution at high frequencies. In this paper, a simple but effective switching framework is provided between both STFT and CQT. The proposed method also allows for the dynamic construction of a filter bank according to user-defined parameters. This helps in reducing redundant entries in the filter bank. Results obtained from the proposed method not only improve the spectrogram visualization but also reduce the computation cost and achieves 87.71% of the appropriate window length selection.

  4. Query-Adaptive Hash Code Ranking for Large-Scale Multi-View Visual Search.

    PubMed

    Liu, Xianglong; Huang, Lei; Deng, Cheng; Lang, Bo; Tao, Dacheng

    2016-10-01

    Hash-based nearest neighbor search has become attractive in many applications. However, the quantization in hashing usually degenerates the discriminative power when using Hamming distance ranking. Besides, for large-scale visual search, existing hashing methods cannot directly support the efficient search over the data with multiple sources, and while the literature has shown that adaptively incorporating complementary information from diverse sources or views can significantly boost the search performance. To address the problems, this paper proposes a novel and generic approach to building multiple hash tables with multiple views and generating fine-grained ranking results at bitwise and tablewise levels. For each hash table, a query-adaptive bitwise weighting is introduced to alleviate the quantization loss by simultaneously exploiting the quality of hash functions and their complement for nearest neighbor search. From the tablewise aspect, multiple hash tables are built for different data views as a joint index, over which a query-specific rank fusion is proposed to rerank all results from the bitwise ranking by diffusing in a graph. Comprehensive experiments on image search over three well-known benchmarks show that the proposed method achieves up to 17.11% and 20.28% performance gains on single and multiple table search over the state-of-the-art methods. PMID:27448359

  5. Query-Adaptive Hash Code Ranking for Large-Scale Multi-View Visual Search.

    PubMed

    Liu, Xianglong; Huang, Lei; Deng, Cheng; Lang, Bo; Tao, Dacheng

    2016-10-01

    Hash-based nearest neighbor search has become attractive in many applications. However, the quantization in hashing usually degenerates the discriminative power when using Hamming distance ranking. Besides, for large-scale visual search, existing hashing methods cannot directly support the efficient search over the data with multiple sources, and while the literature has shown that adaptively incorporating complementary information from diverse sources or views can significantly boost the search performance. To address the problems, this paper proposes a novel and generic approach to building multiple hash tables with multiple views and generating fine-grained ranking results at bitwise and tablewise levels. For each hash table, a query-adaptive bitwise weighting is introduced to alleviate the quantization loss by simultaneously exploiting the quality of hash functions and their complement for nearest neighbor search. From the tablewise aspect, multiple hash tables are built for different data views as a joint index, over which a query-specific rank fusion is proposed to rerank all results from the bitwise ranking by diffusing in a graph. Comprehensive experiments on image search over three well-known benchmarks show that the proposed method achieves up to 17.11% and 20.28% performance gains on single and multiple table search over the state-of-the-art methods.

  6. An Efficient Adaptive Window Size Selection Method for Improving Spectrogram Visualization.

    PubMed

    Nisar, Shibli; Khan, Omar Usman; Tariq, Muhammad

    2016-01-01

    Short Time Fourier Transform (STFT) is an important technique for the time-frequency analysis of a time varying signal. The basic approach behind it involves the application of a Fast Fourier Transform (FFT) to a signal multiplied with an appropriate window function with fixed resolution. The selection of an appropriate window size is difficult when no background information about the input signal is known. In this paper, a novel empirical model is proposed that adaptively adjusts the window size for a narrow band-signal using spectrum sensing technique. For wide-band signals, where a fixed time-frequency resolution is undesirable, the approach adapts the constant Q transform (CQT). Unlike the STFT, the CQT provides a varying time-frequency resolution. This results in a high spectral resolution at low frequencies and high temporal resolution at high frequencies. In this paper, a simple but effective switching framework is provided between both STFT and CQT. The proposed method also allows for the dynamic construction of a filter bank according to user-defined parameters. This helps in reducing redundant entries in the filter bank. Results obtained from the proposed method not only improve the spectrogram visualization but also reduce the computation cost and achieves 87.71% of the appropriate window length selection. PMID:27642291

  7. An Efficient Adaptive Window Size Selection Method for Improving Spectrogram Visualization

    PubMed Central

    Khan, Omar Usman

    2016-01-01

    Short Time Fourier Transform (STFT) is an important technique for the time-frequency analysis of a time varying signal. The basic approach behind it involves the application of a Fast Fourier Transform (FFT) to a signal multiplied with an appropriate window function with fixed resolution. The selection of an appropriate window size is difficult when no background information about the input signal is known. In this paper, a novel empirical model is proposed that adaptively adjusts the window size for a narrow band-signal using spectrum sensing technique. For wide-band signals, where a fixed time-frequency resolution is undesirable, the approach adapts the constant Q transform (CQT). Unlike the STFT, the CQT provides a varying time-frequency resolution. This results in a high spectral resolution at low frequencies and high temporal resolution at high frequencies. In this paper, a simple but effective switching framework is provided between both STFT and CQT. The proposed method also allows for the dynamic construction of a filter bank according to user-defined parameters. This helps in reducing redundant entries in the filter bank. Results obtained from the proposed method not only improve the spectrogram visualization but also reduce the computation cost and achieves 87.71% of the appropriate window length selection. PMID:27642291

  8. Melanopsin-Derived Visual Responses under Light Adapted Conditions in the Mouse dLGN

    PubMed Central

    Davis, Katherine E.; Eleftheriou, Cyril G.; Allen, Annette E.; Procyk, Christopher A.; Lucas, Robert J.

    2015-01-01

    A direct projection from melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs) reaches the primary visual thalamus (dorsal lateral geniculate nucleus; dLGN). The significance of this melanopsin input to the visual system is only recently being investigated. One unresolved question is the degree to which neurons in the dLGN could use melanopsin to track dynamic changes in light intensity under light adapted conditions. Here we set out to address this question. We were able to present full field steps visible only to melanopsin by switching between rod-isoluminant ‘yellow’ and ‘blue’ lights in a mouse lacking cone function (Cnga3-/-). In the retina these stimuli elicited melanopsin-like responses from a subset of ganglion cells. When presented to anaesthetised mice, we found that ~25-30% of visually responsive neurones in the contralateral dLGN responded to these melanopsin-isolating steps with small increases in firing rate. Such responses could be elicited even with fairly modest increases in effective irradiance (32% Michelson contrast for melanopsin). These melanopsin-driven responses were apparent at bright backgrounds (corresponding to twilight-daylight conditions), but their threshold irradiance was strongly dependent upon prior light exposure when stimuli were superimposed on a spectrally neutral ramping background light. While both onset and offset latencies were long for melanopsin-derived responses compared to those evoked by rods, there was great variability in these parameters with some cells responding to melanopsin steps in <1 s. These data indicate that a subset of dLGN units can employ melanopsin signals to detect modest changes in irradiance under photopic conditions. PMID:25822371

  9. AVES: an adaptive optics visual echelle spectrograph for the VLT

    NASA Astrophysics Data System (ADS)

    Pasquini, Luca; Delabre, Bernard; Avila, Gerardo; Bonaccini, Domenico

    1998-07-01

    We present the preliminary study of a low cost, high performance spectrograph for the VLT, for observations in the V, R and I bands. This spectrograph is meant for intermediate (R equals 16,000) resolution spectroscopy of faint (sky and/or detector limited) sources, with particular emphasis on the study of solar-type (F-G) stars belonging to the nearest galaxies and to distant (or highly reddened) galactic clusters. The spectrograph is designed to use the adaptive optics (AO) systems at the VLT Telescope. Even if these AO systems will not provide diffraction limited images in the V, R and I bands, the photon concentration will still be above approximately 60% of the flux in an 0.3 arcsecond aperture for typical Paranal conditions. This makes the construction of a compact, cheap and efficient echelle spectrograph possible. AVES will outperform comparable non adaptive optic instruments by more than one magnitude for sky- and/or detector-limited observations, and it will be very suitable for observations in crowded fields.

  10. Tensor dissimilarity based adaptive seeding algorithm for DT-MRI visualization with streamtubes

    NASA Astrophysics Data System (ADS)

    Weldeselassie, Yonas T.; Hamarneh, Ghassan; Weiskopf, Daniel

    2007-03-01

    In this paper, we propose an adaptive seeding strategy for visualization of diffusion tensor magnetic resonance imaging (DT-MRI) data using streamtubes. DT-MRI is a medical imaging modality that captures unique water diffusion properties and fiber orientation information of the imaged tissues. Visualizing DT-MRI data using streamtubes has the advantage that not only the anisotropic nature of the diffusion is visualized but also the underlying anatomy of biological structures is revealed. This makes streamtubes significant for the analysis of fibrous tissues in medical images. In order to avoid rendering multiple similar streamtubes, an adaptive seeding strategy is employed which takes into account similarity of tensors in a given region. The goal is to automate the process of generating seed points such that regions with dissimilar tensors are assigned more seed points compared to regions with similar tensors. The algorithm is based on tensor dissimilarity metrics that take into account both diffusion magnitudes and directions to optimize the seeding positions and density of streamtubes in order to reduce the visual clutter. Two recent advances in tensor calculus and tensor dissimilarity metrics are utilized: the Log-Euclidean and the J-divergence. Results show that adaptive seeding not only helps to cull unnecessary streamtubes that would obscure visualization but also do so without having to compute the culled streamtubes, which makes the visualization process faster.

  11. Acute Zonal Occult Outer Retinopathy in Japanese Patients: Clinical Features, Visual Function, and Factors Affecting Visual Function

    PubMed Central

    Saito, Saho; Saito, Wataru; Saito, Michiyuki; Hashimoto, Yuki; Mori, Shohei; Noda, Kousuke; Namba, Kenichi; Ishida, Susumu

    2015-01-01

    Purpose To evaluate the clinical features and investigate their relationship with visual function in Japanese patients with acute zonal occult outer retinopathy (AZOOR). Methods Fifty-two eyes of 38 Japanese AZOOR patients (31 female and 7 male patients; mean age at first visit, 35.0 years; median follow-up duration, 31 months) were retrospectively collected: 31 untreated eyes with good visual acuity and 21 systemic corticosteroid-treated eyes with progressive visual acuity loss. Variables affecting the logMAR values of best-corrected visual acuity (BCVA) and the mean deviation (MD) on Humphrey perimetry at initial and final visits were examined using multiple stepwise linear regression analysis. Results In untreated eyes, the mean MD at the final visit was significantly higher than that at the initial visit (P = 0.00002). In corticosteroid-treated eyes, the logMAR BCVA and MD at the final visit were significantly better than the initial values (P = 0.007 and P = 0.02, respectively). The final logMAR BCVA was 0.0 or less in 85% of patients. Variables affecting initial visual function were moderate anterior vitreous cells, myopia severity, and a-wave amplitudes on electroretinography; factors affecting final visual function were the initial MD values, female sex, moderate anterior vitreous cells, and retinal atrophy. Conclusions Our data indicated that visual functions in enrolled patients significantly improved spontaneously or after systemic corticosteroids therapy, suggesting that Japanese patients with AZOOR have good visual outcomes during the follow-up period of this study. Furthermore, initial visual field defects, gender, anterior vitreous cells, and retinal atrophy affected final visual functions in these patients. PMID:25919689

  12. Tailoring the visual communication of climate projections for local adaptation practitioners in Germany and the UK.

    PubMed

    Lorenz, Susanne; Dessai, Suraje; Forster, Piers M; Paavola, Jouni

    2015-11-28

    Visualizations are widely used in the communication of climate projections. However, their effectiveness has rarely been assessed among their target audience. Given recent calls to increase the usability of climate information through the tailoring of climate projections, it is imperative to assess the effectiveness of different visualizations. This paper explores the complexities of tailoring through an online survey conducted with 162 local adaptation practitioners in Germany and the UK. The survey examined respondents' assessed and perceived comprehension (PC) of visual representations of climate projections as well as preferences for using different visualizations in communicating and planning for a changing climate. Comprehension and use are tested using four different graph formats, which are split into two pairs. Within each pair the information content is the same but is visualized differently. We show that even within a fairly homogeneous user group, such as local adaptation practitioners, there are clear differences in respondents' comprehension of and preference for visualizations. We do not find a consistent association between assessed comprehension and PC or use within the two pairs of visualizations that we analysed. There is, however, a clear link between PC and use of graph format. This suggests that respondents use what they think they understand the best, rather than what they actually understand the best. These findings highlight that audience-specific targeted communication may be more complex and challenging than previously recognized. PMID:26460109

  13. Tailoring the visual communication of climate projections for local adaptation practitioners in Germany and the UK

    PubMed Central

    Lorenz, Susanne; Dessai, Suraje; Forster, Piers M.; Paavola, Jouni

    2015-01-01

    Visualizations are widely used in the communication of climate projections. However, their effectiveness has rarely been assessed among their target audience. Given recent calls to increase the usability of climate information through the tailoring of climate projections, it is imperative to assess the effectiveness of different visualizations. This paper explores the complexities of tailoring through an online survey conducted with 162 local adaptation practitioners in Germany and the UK. The survey examined respondents’ assessed and perceived comprehension (PC) of visual representations of climate projections as well as preferences for using different visualizations in communicating and planning for a changing climate. Comprehension and use are tested using four different graph formats, which are split into two pairs. Within each pair the information content is the same but is visualized differently. We show that even within a fairly homogeneous user group, such as local adaptation practitioners, there are clear differences in respondents’ comprehension of and preference for visualizations. We do not find a consistent association between assessed comprehension and PC or use within the two pairs of visualizations that we analysed. There is, however, a clear link between PC and use of graph format. This suggests that respondents use what they think they understand the best, rather than what they actually understand the best. These findings highlight that audience-specific targeted communication may be more complex and challenging than previously recognized. PMID:26460109

  14. Visual search disorders in acute and chronic homonymous hemianopia: lesion effects and adaptive strategies.

    PubMed

    Machner, Björn; Sprenger, Andreas; Sander, Thurid; Heide, Wolfgang; Kimmig, Hubert; Helmchen, Christoph; Kömpf, Detlef

    2009-05-01

    Patients with homonymous hemianopia due to occipital brain lesions show disorders of visual search. In everyday life this leads to difficulties in reading and spatial orientation. It is a matter of debate whether these disorders are due to the brain lesion or rather reflect compensatory eye movement strategies developing over time. For the first time, eye movements of acute hemianopic patients (n= 9) were recorded during the first days following stroke while they performed an exploratory visual-search task. Compared to age-matched control subjects their search duration was prolonged due to increased fixations and refixations, that is, repeated scanning of previously searched locations. Saccadic amplitudes were smaller in patients. Right hemianopic patients were more impaired than left hemianopic patients. The number of fixations and refixations did not differ significantly between both hemifields in the patients. Follow-up of one patient revealed changes of visual search over 18 months. By using more structured scanpaths with fewer saccades his search duration decreased. Furthermore, he developed a more efficient eye-movement strategy by making larger but less frequent saccades toward his blind side. In summary, visual-search behavior of acute hemianopic patients differs from healthy control subjects and from chronic hemianopic patients. We conclude that abnormal visual search in acute hemianopic patients is related to the brain lesion. We provide some evidence for adaptive eye-movement strategies developed over time. These adaptive strategies make the visual search more efficient and may help to compensate for the persisting visual-field loss.

  15. Tailoring the visual communication of climate projections for local adaptation practitioners in Germany and the UK.

    PubMed

    Lorenz, Susanne; Dessai, Suraje; Forster, Piers M; Paavola, Jouni

    2015-11-28

    Visualizations are widely used in the communication of climate projections. However, their effectiveness has rarely been assessed among their target audience. Given recent calls to increase the usability of climate information through the tailoring of climate projections, it is imperative to assess the effectiveness of different visualizations. This paper explores the complexities of tailoring through an online survey conducted with 162 local adaptation practitioners in Germany and the UK. The survey examined respondents' assessed and perceived comprehension (PC) of visual representations of climate projections as well as preferences for using different visualizations in communicating and planning for a changing climate. Comprehension and use are tested using four different graph formats, which are split into two pairs. Within each pair the information content is the same but is visualized differently. We show that even within a fairly homogeneous user group, such as local adaptation practitioners, there are clear differences in respondents' comprehension of and preference for visualizations. We do not find a consistent association between assessed comprehension and PC or use within the two pairs of visualizations that we analysed. There is, however, a clear link between PC and use of graph format. This suggests that respondents use what they think they understand the best, rather than what they actually understand the best. These findings highlight that audience-specific targeted communication may be more complex and challenging than previously recognized.

  16. Adapting relative phase of bimanual isometric force coordination through scaling visual information intermittency.

    PubMed

    Lafe, Charley W; Pacheco, Matheus M; Newell, Karl M

    2016-06-01

    Visual information plays an adaptive role in the relation between bimanual force coupling and error corrective processes of isometric force control. In the present study, the evolving distribution of the relative phase properties of bimanual isometric force coupling was examined by scaling within a trial the temporal feedback rate of visual intermittency (short to long presentation intervals and vice versa). The force error (RMSE) was reduced, and time-dependent irregularity (SampEn) of the force output was increased with greater amounts of visual information (shorter intermittency). Multi-stable coordination patterns of bimanual isometric force control were differentially shifted toward and away from the intrinsic dynamics by the changing the intermittency of visual information. The distribution of Hilbert transformed relative phase values showed progressively a predominantly anti-phase mode under less intermittent visual information to predominantly an in-phase mode with limited (almost no) visual information. Correlation between the hands showed a continuous reduction, rather than abrupt "transition," with increase in visual information, although no mean negative correlation was realized, despite the tendency towards an anti-phase distribution. Lastly, changes in both the performance outcome and bimanual isometric force coordination occurred at visual feedback rates faster than the minimal visual processing times established from single limb movement and isometric force protocols.

  17. Aging, visual information, and adaptation to task asymmetry in bimanual force coordination.

    PubMed

    Hu, Xiaogang; Newell, Karl M

    2011-12-01

    This study investigated the coordination and control strategies that the elderly adopt during a redundant finger force coordination task and how the amount of visual information regulates the coordination patterns. Three age groups (20-24, 65-69, and 75-79 yr) performed a bimanual asymmetric force task. Task asymmetry was manipulated via imposing different coefficients on the finger forces such that the weighted sum of the two index finger forces equaled the total force. The amount of visual information was manipulated by changing the visual information gain of the total force output. Two hypotheses were tested: the reduced adaptability hypothesis predicts that the elderly show less degree of force asymmetry between hands compared with young adults in the asymmetric coefficient conditions, whereas the compensatory hypothesis predicts that the elderly exhibit more asymmetric force coordination patterns with asymmetric coefficients. Under the compensatory hypothesis, two contrasting directions of force sharing strategies (i.e., more efficient coordination strategy and minimum variance strategy) are expected. A deteriorated task performance (high performance error and force variability) was found in the two elderly groups, but enhanced visual information improved the task performance in all age groups. With low visual information gain, the elderly showed reduced adaptability (i.e., less asymmetric forces between hands) to the unequal weighting coefficients, which supported the reduced adaptability hypothesis; however, the elderly revealed the same degree of adaptation as the young group under high visual gain. The findings are consistent with the notion that the age-related reorganization of force coordination and control patterns is mediated by visual information and, more generally, the interactive influence of multiple categories of constraints.

  18. DVE: ground and airborne visualization functionalities

    NASA Astrophysics Data System (ADS)

    Barratt, Nick; Mise, Olegs; Franklin, Dustin; Preece, Andy; Schaffer, Larry

    2014-06-01

    This paper describes functional blocks (hardware and software functionalities) applicable to several forms of indirect vision enhancement in DVE (Degraded Vision Environment for pilotage, Driver's Vision Enhancement for ground vehicle Situational Awareness). These functionalities are the result of the increased processing power of General Purpose Graphics Processing Units (GPGPUs) and improvements in mosaic stitch processing, image fusion and analytics of both live and synthetic imagery. We deploy GPUs into low-latency embedded systems with decreased SWaP (Size, Weight and Power) and high-bandwidth interconnectivity via RDMA (Remote Direct Memory Access).

  19. [Flexibility in the adaptation of the vestibulo-ocular reflex to modified visual inputs in humans].

    PubMed

    Hattori, K; Watanabe, S; Nakamura, T; Kato, I

    2000-10-01

    The vestibulo-ocular reflex (VOR) serves to stabilize images on the retina. To maintain appropriate performance and minimize image slippage throughout life, the VOR is subject to long-term adaptive regulation in response to visual input. Adaptive changes in VOR gain (eye velocity/head velocity) can be evoked either by fitting subjects with magnifying, miniaturizing, or reversing spectacles during normal behavior or by moving a large visual field in or out of phase relative to the subject's head movement. These changes exhibit frequency-selectivity. Here, we examine the flexibility of VOR gains by causing VOR in similar directions to undergo different behavioral gain changes. Nine healthy adults, ranging in age from 24 to 38 (mean 28.5) with no history of neurotological symptoms participated in the study. All subjects demonstrated clinically normal functioning on a screening battery of tests that included combined neurologic and otologic physical examinations. Horizontal and vertical eye positions were recorded by bitemporal DC coupled electrooculography (EOG). The subject sat in a rotating chair. The axis of rotation of the body was always earth-vertical, the interaural axis crossing the axis of rotation of the chair. The head was positioned at 20 degrees down in all experiments and was stabilized in this position using a chin rest. The chair was 78 cm in diameter and was shielded by a half-cylindrical optokinetic screen positioned in front of the subjects. Random dot patterns were projected onto this screen. During per- and post-adaptation periods, goggles were fitted to ensure that the subject was in complete darkness and the chair was rotated sinusoidally. The amplitude of the rotating chair was 30 degrees and 60 degrees. Frequencies of rotation were 0.1 Hz, 0.2 Hz, 0.3 Hz and 0.4 Hz for amplitudes of 30 degrees and 0.1 Hz, 0.2 Hz, and 0.3 Hz for amplitudes of 60 degrees. To induce VOR adaptation, the retinal slippage velocity caused by the visual input of a

  20. Klinefelter syndrome has increased brain responses to auditory stimuli and motor output, but not to visual stimuli or Stroop adaptation

    PubMed Central

    Wallentin, Mikkel; Skakkebæk, Anne; Bojesen, Anders; Fedder, Jens; Laurberg, Peter; Østergaard, John R.; Hertz, Jens Michael; Pedersen, Anders Degn; Gravholt, Claus Højbjerg

    2016-01-01

    Klinefelter syndrome (47, XXY) (KS) is a genetic syndrome characterized by the presence of an extra X chromosome and low level of testosterone, resulting in a number of neurocognitive abnormalities, yet little is known about brain function. This study investigated the fMRI-BOLD response from KS relative to a group of Controls to basic motor, perceptual, executive and adaptation tasks. Participants (N: KS = 49; Controls = 49) responded to whether the words “GREEN” or “RED” were displayed in green or red (incongruent versus congruent colors). One of the colors was presented three times as often as the other, making it possible to study both congruency and adaptation effects independently. Auditory stimuli saying “GREEN” or “RED” had the same distribution, making it possible to study effects of perceptual modality as well as Frequency effects across modalities. We found that KS had an increased response to motor output in primary motor cortex and an increased response to auditory stimuli in auditory cortices, but no difference in primary visual cortices. KS displayed a diminished response to written visual stimuli in secondary visual regions near the Visual Word Form Area, consistent with the widespread dyslexia in the group. No neural differences were found in inhibitory control (Stroop) or in adaptation to differences in stimulus frequencies. Across groups we found a strong positive correlation between age and BOLD response in the brain's motor network with no difference between groups. No effects of testosterone level or brain volume were found. In sum, the present findings suggest that auditory and motor systems in KS are selectively affected, perhaps as a compensatory strategy, and that this is not a systemic effect as it is not seen in the visual system. PMID:26958463

  1. Klinefelter syndrome has increased brain responses to auditory stimuli and motor output, but not to visual stimuli or Stroop adaptation.

    PubMed

    Wallentin, Mikkel; Skakkebæk, Anne; Bojesen, Anders; Fedder, Jens; Laurberg, Peter; Østergaard, John R; Hertz, Jens Michael; Pedersen, Anders Degn; Gravholt, Claus Højbjerg

    2016-01-01

    Klinefelter syndrome (47, XXY) (KS) is a genetic syndrome characterized by the presence of an extra X chromosome and low level of testosterone, resulting in a number of neurocognitive abnormalities, yet little is known about brain function. This study investigated the fMRI-BOLD response from KS relative to a group of Controls to basic motor, perceptual, executive and adaptation tasks. Participants (N: KS = 49; Controls = 49) responded to whether the words "GREEN" or "RED" were displayed in green or red (incongruent versus congruent colors). One of the colors was presented three times as often as the other, making it possible to study both congruency and adaptation effects independently. Auditory stimuli saying "GREEN" or "RED" had the same distribution, making it possible to study effects of perceptual modality as well as Frequency effects across modalities. We found that KS had an increased response to motor output in primary motor cortex and an increased response to auditory stimuli in auditory cortices, but no difference in primary visual cortices. KS displayed a diminished response to written visual stimuli in secondary visual regions near the Visual Word Form Area, consistent with the widespread dyslexia in the group. No neural differences were found in inhibitory control (Stroop) or in adaptation to differences in stimulus frequencies. Across groups we found a strong positive correlation between age and BOLD response in the brain's motor network with no difference between groups. No effects of testosterone level or brain volume were found. In sum, the present findings suggest that auditory and motor systems in KS are selectively affected, perhaps as a compensatory strategy, and that this is not a systemic effect as it is not seen in the visual system. PMID:26958463

  2. Klinefelter syndrome has increased brain responses to auditory stimuli and motor output, but not to visual stimuli or Stroop adaptation.

    PubMed

    Wallentin, Mikkel; Skakkebæk, Anne; Bojesen, Anders; Fedder, Jens; Laurberg, Peter; Østergaard, John R; Hertz, Jens Michael; Pedersen, Anders Degn; Gravholt, Claus Højbjerg

    2016-01-01

    Klinefelter syndrome (47, XXY) (KS) is a genetic syndrome characterized by the presence of an extra X chromosome and low level of testosterone, resulting in a number of neurocognitive abnormalities, yet little is known about brain function. This study investigated the fMRI-BOLD response from KS relative to a group of Controls to basic motor, perceptual, executive and adaptation tasks. Participants (N: KS = 49; Controls = 49) responded to whether the words "GREEN" or "RED" were displayed in green or red (incongruent versus congruent colors). One of the colors was presented three times as often as the other, making it possible to study both congruency and adaptation effects independently. Auditory stimuli saying "GREEN" or "RED" had the same distribution, making it possible to study effects of perceptual modality as well as Frequency effects across modalities. We found that KS had an increased response to motor output in primary motor cortex and an increased response to auditory stimuli in auditory cortices, but no difference in primary visual cortices. KS displayed a diminished response to written visual stimuli in secondary visual regions near the Visual Word Form Area, consistent with the widespread dyslexia in the group. No neural differences were found in inhibitory control (Stroop) or in adaptation to differences in stimulus frequencies. Across groups we found a strong positive correlation between age and BOLD response in the brain's motor network with no difference between groups. No effects of testosterone level or brain volume were found. In sum, the present findings suggest that auditory and motor systems in KS are selectively affected, perhaps as a compensatory strategy, and that this is not a systemic effect as it is not seen in the visual system.

  3. A functional microcircuit for cat visual cortex.

    PubMed Central

    Douglas, R J; Martin, K A

    1991-01-01

    1. We have studied in vivo the intracellular responses of neurones in cat visual cortex to electrical pulse stimulation of the cortical afferents and have developed a microcircuit that simulates much of the experimental data. 2. Inhibition and excitation are not separable events, because individual neurones are embedded in microcircuits that contribute strong population effects. Synchronous electrical activation of the cortex inevitably set in motion a sequence of excitation and inhibition in every neurone we recorded. The temporal form of this response depends on the cortical layer in which the neurone is located. Superficial layer (layers 2+3) pyramidal neurones show a more marked polysynaptic excitatory phase than the pyramids of the deep layers (layers 5+6). 3. Excitatory effects on pyramidal neurones, particularly the superficial layer pyramids, are in general not due to monosynaptic input from thalamus, but polysynaptic input from cortical pyramids. Since the thalamic input is transient it does not provide the major, sustained excitation arriving at any cortical neurone. Instead the intracortical excitatory connections provide the major component of the excitation. 4. The polysynaptic excitatory response would be sustained well after the stimulus, were it not for the suppressive effect of intracortical inhibition induced by the pulse stimulation. 5. Intracellular recording combined with ionophoresis of gamma-aminobutyric acid (GABA) agonists and antagonists showed that intracortical inhibition is mediated by GABAA and GABAB receptors. The GABAA component occurs in the early phase of the impulse response. It is reflected in the strong hyperpolarization that follows the excitatory response and lasts about 50 ms. The GABAB component occurs in the late phase of the response, and is reflected in a sustained hyperpolarization that lasts some 200-300 ms. Both components are seen in all cortical pyramidal neurones. However, the GABAA component appears more powerful

  4. In-vivo imaging of the photoreceptor mosaic in retinal dystrophies and correlations with visual function

    SciTech Connect

    Choi, S; Doble, N; Hardy, J; Jones, S; Keltner, J; Olivier, S; Werner, J S

    2005-10-26

    To relate in-vivo microscopic retinal changes to visual function assessed with clinical tests in patients with various forms of retinal dystrophies. The UC Davis Adaptive Optics (AO) Fundus Camera was used to acquire in-vivo retinal images at the cellular level. Visual function tests, consisting of visual field analysis, multifocal electroretinography (mfERG), contrast sensitivity and color vision measures, were performed on all subjects. Five patients with different forms of retinal dystrophies and three control subjects were recruited. Cone densities were quantified for all retinal images. In all images of diseased retinas, there were extensive areas of dark space between groups of photoreceptors, where no cone photoreceptors were evident. These irregular features were not seen in healthy retinas, but were characteristic features in fundi with retinal dystrophies. There was a correlation between functional vision loss and the extent to which the irregularities occurred in retinal images. Cone densities were found to decrease with an associated decrease in retinal function. AO fundus photography is a reliable technique for assessing and quantifying the changes in the photoreceptor layer as disease progresses. Furthermore, this technique can be useful in cases where visual function tests give borderline or ambiguous results, as it allows visualization of individual photoreceptors.

  5. Nonlinear functional approximation with networks using adaptive neurons

    NASA Technical Reports Server (NTRS)

    Tawel, Raoul

    1992-01-01

    A novel mathematical framework for the rapid learning of nonlinear mappings and topological transformations is presented. It is based on allowing the neuron's parameters to adapt as a function of learning. This fully recurrent adaptive neuron model (ANM) has been successfully applied to complex nonlinear function approximation problems such as the highly degenerate inverse kinematics problem in robotics.

  6. Cross-Cultural Adaptation of a Developmental Assessment for Arabic-Speaking Children with Visual Impairment

    ERIC Educational Resources Information Center

    Macrine, Sheila L.; Heji, Hayat; Sabri, Amel; Dalton, Sara

    2015-01-01

    Developmental screening has become an established component of child health programs in many developed countries. The research objective of this project was to translate and adapt a developmental assessment (Oregon Project Skills Inventory) for use with young children with visual impairments who speak Arabic. The study was prompted by the lack of…

  7. Guidelines for Assessing the Need for Adaptive Devices for Visually Impaired Pedestrians at Signalized Intersections.

    ERIC Educational Resources Information Center

    Gallagher, Brian R.; de Oca, Patricia Montes

    1998-01-01

    Presents guidelines for orientation and mobility instructors and traffic engineers to assess the need for adaptive devices to make crosswalks at signalized intersections accessible to pedestrians with visual impairments. The discussions of audible and tactile pedestrian devices, along with case examples, distinguish when each device should be…

  8. Guidelines for the Practice of Adaptive Diabetes Education for Visually Impaired Persons.

    ERIC Educational Resources Information Center

    Berkowitz, Kathy

    1993-01-01

    This article presents guidelines developed by the American Association of Diabetes Educators concerning adaptive diabetes education for visually impaired persons (ADEVIP). The article discusses definitions, values, and assumptions; recommended professional educational background; role delineation; and process and content of ADEVIP. (DB)

  9. Adaptive luminance contrast for enhancing reading performance and visual comfort on smartphone displays

    NASA Astrophysics Data System (ADS)

    Na, Nooree; Suk, Hyeon-Jeong

    2014-11-01

    This study developed a model for setting the adaptive luminance contrast between text and background for enhancing reading performance and visual comfort on smartphone displays. The study was carried out in two experiments. In Experiment I, a user test was conducted to identify the optimal luminance contrast with regard to subjects' reading performance, measured by lines of text reading and visual comfort, assessed by self-report after the reading. Based on the empirical results of the test, an ideal adaptive model which decreases the luminance contrast gradually with passage of time was developed. In Experiment II, a validation test involving reading performance, visual comfort, and physiological stress measured by a brainwave analysis using an electroencephalogram confirmed that the proposed adaptive luminance contrast is adequate for prolonged text reading on smartphone displays. The developed model enhances both reading performance and visual comfort as well as reduces the energy consumption of a smartphone; hence, it is expected that this study will be applied to diverse kinds of visual display terminals.

  10. The Anatomical and Functional Organization of the Human Visual Pulvinar

    PubMed Central

    Pinsk, Mark A.; Kastner, Sabine

    2015-01-01

    The pulvinar is the largest nucleus in the primate thalamus and contains extensive, reciprocal connections with visual cortex. Although the anatomical and functional organization of the pulvinar has been extensively studied in old and new world monkeys, little is known about the organization of the human pulvinar. Using high-resolution functional magnetic resonance imaging at 3 T, we identified two visual field maps within the ventral pulvinar, referred to as vPul1 and vPul2. Both maps contain an inversion of contralateral visual space with the upper visual field represented ventrally and the lower visual field represented dorsally. vPul1 and vPul2 border each other at the vertical meridian and share a representation of foveal space with iso-eccentricity lines extending across areal borders. Additional, coarse representations of contralateral visual space were identified within ventral medial and dorsal lateral portions of the pulvinar. Connectivity analyses on functional and diffusion imaging data revealed a strong distinction in thalamocortical connectivity between the dorsal and ventral pulvinar. The two maps in the ventral pulvinar were most strongly connected with early and extrastriate visual areas. Given the shared eccentricity representation and similarity in cortical connectivity, we propose that these two maps form a distinct visual field map cluster and perform related functions. The dorsal pulvinar was most strongly connected with parietal and frontal areas. The functional and anatomical organization observed within the human pulvinar was similar to the organization of the pulvinar in other primate species. SIGNIFICANCE STATEMENT The anatomical organization and basic response properties of the visual pulvinar have been extensively studied in nonhuman primates. Yet, relatively little is known about the functional and anatomical organization of the human pulvinar. Using neuroimaging, we found multiple representations of visual space within the ventral

  11. The selectivity of responses to red-green colour and achromatic contrast in the human visual cortex: an fMRI adaptation study.

    PubMed

    Mullen, Kathy T; Chang, Dorita H F; Hess, Robert F

    2015-12-01

    There is controversy as to how responses to colour in the human brain are organized within the visual pathways. A key issue is whether there are modular pathways that respond selectively to colour or whether there are common neural substrates for both colour and achromatic (Ach) contrast. We used functional magnetic resonance imaging (fMRI) adaptation to investigate the responses of early and extrastriate visual areas to colour and Ach contrast. High-contrast red-green (RG) and Ach sinewave rings (0.5 cycles/degree, 2 Hz) were used as both adapting stimuli and test stimuli in a block design. We found robust adaptation to RG or Ach contrast in all visual areas. Cross-adaptation between RG and Ach contrast occurred in all areas indicating the presence of integrated, colour and Ach responses. Notably, we revealed contrasting trends for the two test stimuli. For the RG test, unselective processing (robust adaptation to both RG and Ach contrast) was most evident in the early visual areas (V1 and V2), but selective responses, revealed as greater adaptation between the same stimuli than cross-adaptation between different stimuli, emerged in the ventral cortex, in V4 and VO in particular. For the Ach test, unselective responses were again most evident in early visual areas but Ach selectivity emerged in the dorsal cortex (V3a and hMT+). Our findings support a strong presence of integrated mechanisms for colour and Ach contrast across the visual hierarchy, with a progression towards selective processing in extrastriate visual areas.

  12. Interactive visual analysis of families of function graphs.

    PubMed

    Konyha, Zoltán; Matković, Kresimir; Gracanin, Denis; Jelović, Mario; Hauser, Helwig

    2006-01-01

    The analysis and exploration of multidimensional and multivariate data is still one of the most challenging areas in the field of visualization. In this paper, we describe an approach to visual analysis of an especially challenging set of problems that exhibit a complex internal data structure. We describe the interactive visual exploration and analysis of data that includes several (usually large) families of function graphs fi (x, t). We describe analysis procedures and practical aspects of the interactive visual analysis specific to this type of data (with emphasis on the function graph characteristic of the data). We adopted the well-proven approach of multiple, linked views with advanced interactive brushing to assess the data. Standard views such as histograms, scatterplots, and parallel coordinates are used to jointly visualize data. We support iterative visual analysis by providing means to create complex, composite brushes that span multiple views and that are constructed using different combination schemes. We demonstrate that engineering applications represent a challenging but very applicable area for visual analytics. As a case study, we describe the optimization of a fuel injection system in diesel engines of passenger cars.

  13. Diurnal and nocturnal visual capabilities in shorebirds as a function of their feeding strategies.

    PubMed

    Rojas, L M; McNeil, R; Cabana, T; Lachapelle, P

    1999-01-01

    Some shorebird species forage with the same feeding strategy at night and during daytime, e.g. visual pecking in the Wilson's Plover (Charadrius wilsonia) or tactile probing in the Short-billed Dowitcher (Limnodromus griseus). The American Woodcock (Scolopax minor) uses tactile probing, by day and by night, but sometimes pecks for insects during daytime. The Black-winged Stilt (Himantopus himantopus) is a visual pecker, both by day and by night, and sometimes forages tactilely on windy (agitated water surface) moonless nights. Territorial Willets (Catoptrophorus semipalmatus) are visual peckers during daylight and on moonlight conditions but switch to tactile feeding under lower light conditions. It could be postulated that some shorebird species would switch from visual feeding during daytime to tactile foraging at night because they have poor night vision compared to species that are always sight foragers irrespective of the time of the day. This issue was examined by comparing retinal structure and function in the above species. Electroretinograms (ERGs) were obtained at different light intensities from anesthetized birds, and the retinae were processed for histological observations. Based on ERGs, retinal sensitivity, and rod:cone ratios, both plovers and stilts are well adapted for nocturnal vision. Although they have low rod density compared to that of stilts and plovers, Willets and woodcocks have a scotopic retinal sensitivity similar to that of stilts and plovers but rank midway between plovers and dowitchers for the b-wave amplitude. Dowitchers have the lowest scotopic b-wave amplitude and retinal sensitivity and appear the least well adapted for night vision. Based on photopic ERGs and cone densities, although stilts, Willets and dowitchers appear as well adapted for daytime vision, plovers occupy the last rank of all species examined. Compared to the nighttime tactile feeders and those that switch from daytime visual pecking to tactile feeding at night

  14. Visualization and analysis of functional cardiac MRI data

    NASA Astrophysics Data System (ADS)

    McVeigh, Elliot R.; Guttman, Michael A.; Poon, Eric; Pisupati, Chandrasekhar; Moore, Christopher C.; Zerhouni, Elias A.; Solaiyappan, Meiyappan; Heng, PhengAnn

    1994-05-01

    Rapid analysis of large multi-dimensional data sets is critical for the successful implementation of a comprehensive MR cardiac exam. We have developed a software package for the analysis and visualization of cardiac MR data. The program allows interactive visualization of time and space stacks of MRI data, automatic segmentation of myocardial borders and myocardial tagging patterns, and visualization of functional parameters such a motion, strain, and blood flow, mapped as colors in an interactive dynamic 3D volume rendering of the beating heart.

  15. Are flash-evoked visual potentials useful for intraoperative monitoring of visual pathway function?

    PubMed

    Cedzich, C; Schramm, J; Fahlbusch, R

    1987-11-01

    Flash-evoked visual potentials (VEPs) recorded from the scalp were used in a series of 35 patients with tumors along the visual pathway: 3 orbital tumors, 25 perisellar tumors, 4 intraventricular tumors, and 3 occipital lesions. Preoperatively, various combinations of impaired visual fields and visual acuity were observed in over 90% of the patients. A postoperative decrease in visual function was observed in 3 cases. Of the 25 perisellar lesions, 13 were operated through a standard frontotemporal craniotomy and 12 were operated through a transnasal-transsphenoidal approach. VEPs were highly susceptible to volatile anesthetics, and there was a significant incidence of spontaneous latency increases and amplitude decreases in a large number of patients. There was an unacceptably high number of cases with significant VEP alteration occurring without concomitant visual function change. During trepanation or the transnasal approach, a reversible potential loss was observed in 11 patients, a profoundly altered wave form was seen in 8 cases, and a loss of single peaks was observed in 15 patients. During dissection of the tumor, a reversible potential loss or a potential with unidentifiable peaks was found in 25 cases; however, the VEPs recovered during closure or in the recovery room. There was no correlation between intraoperative VEP changes and the postoperative changes in visual function. In only 1 patient with an insignificant postoperative decrease in visual acuity from 0.4 to 0.3 was there a concomitant intraoperative potential loss. The major conclusion of our findings is that light-emitting diode flash-evoked VEPs demonstrate intraoperative changes that appear too early and too prominently to be caused solely by manipulation of the optic pathways.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Improving Sensorimotor Function and Adaptation using Stochastic Vestibular Stimulation

    NASA Technical Reports Server (NTRS)

    Galvan, R. C.; Bloomberg, J. J.; Mulavara, A. P.; Clark, T. K.; Merfeld, D. M.; Oman, C. M.

    2014-01-01

    Astronauts experience sensorimotor changes during adaption to G-transitions that occur when entering and exiting microgravity. Post space flight, these sensorimotor disturbances can include postural and gait instability, visual performance changes, manual control disruptions, spatial disorientation, and motion sickness, all of which can hinder the operational capabilities of the astronauts. Crewmember safety would be significantly increased if sensorimotor changes brought on by gravitational changes could be mitigated and adaptation could be facilitated. The goal of this research is to investigate and develop the use of electrical stochastic vestibular stimulation (SVS) as a countermeasure to augment sensorimotor function and facilitate adaptation. For this project, SVS will be applied via electrodes on the mastoid processes at imperceptible amplitude levels. We hypothesize that SVS will improve sensorimotor performance through the phenomena of stochastic resonance, which occurs when the response of a nonlinear system to a weak input signal is optimized by the application of a particular nonzero level of noise. In line with the theory of stochastic resonance, a specific optimal level of SVS will be found and tested for each subject [1]. Three experiments are planned to investigate the use of SVS in sensory-dependent tasks and performance. The first experiment will aim to demonstrate stochastic resonance in the vestibular system through perception based motion recognition thresholds obtained using a 6-degree of freedom Stewart platform in the Jenks Vestibular Laboratory at Massachusetts Eye and Ear Infirmary. A range of SVS amplitudes will be applied to each subject and the subjectspecific optimal SVS level will be identified as that which results in the lowest motion recognition threshold, through previously established, well developed methods [2,3,4]. The second experiment will investigate the use of optimal SVS in facilitating sensorimotor adaptation to system

  17. InfoStar : an adaptive visual analytics platform for mobile devices.

    SciTech Connect

    Gatchell, Doug; Borchers, Bob; Schrager, Matthew A.; Thornton, Susan; Collins, Sharon; Van Randwyk, Jamie A.; Danielson, Gary; Riensche, Rick; May, Richard; Baddeley, Bob; Sanfilippo, Antonio; Washington, Kenneth Edward

    2005-03-01

    We present the design and implementation of InfoStar, an adaptive Visual Analytics platform for mobile devices such a PDAs, laptops, Tablet PCs and mobile phones. InfoStar extends the reach of visual analytics technology beyond the traditional desktop paradigm to provide ubiquitous access to inter-active visualizations of information spaces. These visualizations are critical in addressing the knowledge needs of human agents operating in the field, in areas as diverse as business, homeland security, law enforcement, protective services, emergency medical services and scientific discovery. We describe an initial real world deployment of this technology, in which the InfoStar platform has been used to offer mobile access to scheduling and venue information to conference attendees at Supercomputing 2004.

  18. InfoStar: An Adaptive Visual Analytics Platform for Mobile Devices

    SciTech Connect

    Sanfilippo, Antonio P.; May, Richard A.; Danielson, Gary R.; Baddeley, Bob L.; Riensche, Roderick M.; Collins, Sharon; Thornton, Susan E.; Washington, Kenneth; Schrager, Matt; Van Randwyk, Jamie; Borchers, Bob; Gatchell, Doug

    2005-05-09

    We present the design and implementation of InfoStar, an adaptive Visual Analytics platform for mobile devices such a PDAs, laptops, Tablet PCs and mobile phones. InfoStar extends the reach of visual analytics technology beyond the traditional desktop paradigm to provide ubiquitous access to inter-active visualizations of information spaces. These visualizations are critical in addressing the knowledge needs of human agents operating in the field, in areas as diverse as business, homeland security, law enforcement, protective services, emergency medical services and scientific discovery. We describe an initial real world deployment of this technology, in which the InfoStar platform has been used to offer mobile access to scheduling and venue information to conference attendees at Supercomputing 2004.

  19. Implementation of optical coherence tomography (OCT) in visualization of functional structures of cat visual cortex

    NASA Astrophysics Data System (ADS)

    Uma Maheswari, R.; Takaoka, H.; Homma, R.; Kadono, H.; Tanifuji, M.

    2002-02-01

    We report the application of optical coherence tomography (OCT) for visualizing a 1D depth resolved functional structure of cat brain in vivo. The OCT system is based on the known fact that neural activation induces structural changes such as capillary dilation and cellular swelling. Detecting these changes as an amplitude change of the scattered light, an OCT signal reflecting neural activity, i.e., functional OCT (fOCT) could be obtained. Experiments have been done to obtain a depth resolved stimulus-specific profile of activation in cat visual cortex.

  20. Imaging of the Functional and Dysfunctional Visual System

    PubMed Central

    DeYoe, Edgar A.; Ulmer, John L.; Mueller, Wade M.; Sabsevitz, David S.; Reitsma, Danielle C.; Pillai, Jay J.

    2015-01-01

    Functional magnetic resonance imaging (fMRI) is used clinically to map the visual cortex before brain surgery or other invasive treatments to achieve an optimal balance between therapeutic effect and the avoidance of postoperative vision deficits. Clinically optimized stimuli, analyses, and displays permit identification of cortical subregions supporting high-acuity central vision that are critical for reading and other essential visual functions. A novel data display permits instant appreciation of the functional relationship between the pattern of fMRI brain activation and the pattern of vision loss and preservation within the patient's field of view. Neurovascular uncoupling and its detection in the visual cortex are key issues for the interpretation of fMRI results in patients with existing brain pathology. PMID:26233858

  1. Seeing is believing: effects of visual contextual cues on learning and transfer of locomotor adaptation.

    PubMed

    Torres-Oviedo, Gelsy; Bastian, Amy J

    2010-12-15

    Devices such as robots or treadmills are often used to drive motor learning because they can create novel physical environments. However, the learning (i.e., adaptation) acquired on these devices only partially generalizes to natural movements. What determines the specificity of motor learning, and can this be reliably made more general? Here we investigated the effect of visual cues on the specificity of split-belt walking adaptation. We systematically removed vision to eliminate the visual-proprioceptive mismatch that is a salient cue specific to treadmills: vision indicates that we are not moving while leg proprioception indicates that we are. We evaluated the adaptation of temporal and spatial features of gait (i.e., timing and location of foot landing), their transfer to walking over ground, and washout of adaptation when subjects returned to the treadmill. Removing vision during both training (i.e., on the treadmill) and testing (i.e., over ground) strongly improved the transfer of treadmill adaptation to natural walking. Removing vision only during training increased transfer of temporal adaptation, whereas removing vision only during testing increased the transfer of spatial adaptation. This dissociation reveals differences in adaptive mechanisms for temporal and spatial features of walking. Finally training without vision increased the amount that was learned and was linked to the variability in the behavior during adaptation. In conclusion, contextual cues can be manipulated to modulate the magnitude, transfer, and washout of device-induced learning in humans. These results bring us closer to our ultimate goal of developing rehabilitation strategies that improve movements beyond the clinical setting.

  2. A new method to measure higher visual functions in an immersive environment

    PubMed Central

    2014-01-01

    Background Higher visual functions can be defined as cognitive processes responsible for object recognition, color and shape perception, and motion detection. People with impaired higher visual functions after unilateral brain lesion are often tested with paper pencil tests, but such tests do not assess the degree of interaction between the healthy brain hemisphere and the impaired one. Hence, visual functions are not tested separately in the contralesional and ipsilesional visual hemifields. Methods A new measurement setup, that involves real-time comparisons of shape and size of objects, orientation of lines, speed and direction of moving patterns, in the right or left visual hemifield, has been developed. The setup was implemented in an immersive environment like a hemisphere to take into account the effects of peripheral and central vision, and eventual visual field losses. Due to the non-flat screen of the hemisphere, a distortion algorithm was needed to adapt the projected images to the surface. Several approaches were studied and, based on a comparison between projected images and original ones, the best one was used for the implementation of the test. Fifty-seven healthy volunteers were then tested in a pilot study. A Satisfaction Questionnaire was used to assess the usability of the new measurement setup. Results The results of the distortion algorithm showed a structural similarity between the warped images and the original ones higher than 97%. The results of the pilot study showed an accuracy in comparing images in the two visual hemifields of 0.18 visual degrees and 0.19 visual degrees for size and shape discrimination, respectively, 2.56° for line orientation, 0.33 visual degrees/s for speed perception and 7.41° for recognition of motion direction. The outcome of the Satisfaction Questionnaire showed a high acceptance of the battery by the participants. Conclusions A new method to measure higher visual functions in an immersive environment was

  3. Perceptual suppression revealed by adaptive multi-scale entropy analysis of local field potential in monkey visual cortex.

    PubMed

    Hu, Meng; Liang, Hualou

    2013-04-01

    Generalized flash suppression (GFS), in which a salient visual stimulus can be rendered invisible despite continuous retinal input, provides a rare opportunity to directly study the neural mechanism of visual perception. Previous work based on linear methods, such as spectral analysis, on local field potential (LFP) during GFS has shown that the LFP power at distinctive frequency bands are differentially modulated by perceptual suppression. Yet, the linear method alone may be insufficient for the full assessment of neural dynamic due to the fundamentally nonlinear nature of neural signals. In this study, we set forth to analyze the LFP data collected from multiple visual areas in V1, V2 and V4 of macaque monkeys while performing the GFS task using a nonlinear method - adaptive multi-scale entropy (AME) - to reveal the neural dynamic of perceptual suppression. In addition, we propose a new cross-entropy measure at multiple scales, namely adaptive multi-scale cross-entropy (AMCE), to assess the nonlinear functional connectivity between two cortical areas. We show that: (1) multi-scale entropy exhibits percept-related changes in all three areas, with higher entropy observed during perceptual suppression; (2) the magnitude of the perception-related entropy changes increases systematically over successive hierarchical stages (i.e. from lower areas V1 to V2, up to higher area V4); and (3) cross-entropy between any two cortical areas reveals higher degree of asynchrony or dissimilarity during perceptual suppression, indicating a decreased functional connectivity between cortical areas. These results, taken together, suggest that perceptual suppression is related to a reduced functional connectivity and increased uncertainty of neural responses, and the modulation of perceptual suppression is more effective at higher visual cortical areas. AME is demonstrated to be a useful technique in revealing the underlying dynamic of nonlinear/nonstationary neural signal.

  4. The emergence of functional microcircuits in visual cortex

    PubMed Central

    Ko, Ho; Cossell, Lee; Baragli, Chiara; Antolik, Jan; Clopath, Claudia; Hofer, Sonja B.; Mrsic-Flogel, Thomas D.

    2013-01-01

    Sensory processing occurs in neocortical microcircuits in which synaptic connectivity is highly structured1–4 and excitatory neurons form subnetworks that process related sensory information5,6. However, the developmental mechanisms underlying the formation of functionally organized connectivity in cortical microcircuits remain unknown. Here we directly related patterns of excitatory synaptic connectivity to visual response properties of neighbouring layer 2/3 pyramidal neurons in mouse visual cortex at different postnatal ages, using two-photon calcium imaging in vivo and multiple whole-cell recordings in vitro. Although neural responses were highly selective for visual stimuli already at eye opening, neurons responding to similar visual features were not yet preferentially connected, indicating that the emergence of feature selectivity does not depend on the precise arrangement of local synaptic connections. After eye opening, local connectivity reorganised extensively, as more connections formed selectively between neurons with similar visual responses, and connections were eliminated between visually unresponsive neurons, while the overall connectivity rate did not change. We propose a unified model of cortical microcircuit development based on activity-dependent mechanisms of plasticity: neurons first acquire feature preference by selecting feedforward inputs before the onset of sensory experience – a process that may be facilitated by early electrical coupling between neuronal subsets7–9 – after which patterned input drives the formation of functional subnetworks through a redistribution of recurrent synaptic connections. PMID:23552948

  5. Hierarchical organization of brain functional networks during visual tasks

    NASA Astrophysics Data System (ADS)

    Zhuo, Zhao; Cai, Shi-Min; Fu, Zhong-Qian; Zhang, Jie

    2011-09-01

    The functional network of the brain is known to demonstrate modular structure over different hierarchical scales. In this paper, we systematically investigated the hierarchical modular organizations of the brain functional networks that are derived from the extent of phase synchronization among high-resolution EEG time series during a visual task. In particular, we compare the modular structure of the functional network from EEG channels with that of the anatomical parcellation of the brain cortex. Our results show that the modular architectures of brain functional networks correspond well to those from the anatomical structures over different levels of hierarchy. Most importantly, we find that the consistency between the modular structures of the functional network and the anatomical network becomes more pronounced in terms of vision, sensory, vision-temporal, motor cortices during the visual task, which implies that the strong modularity in these areas forms the functional basis for the visual task. The structure-function relationship further reveals that the phase synchronization of EEG time series in the same anatomical group is much stronger than that of EEG time series from different anatomical groups during the task and that the hierarchical organization of functional brain network may be a consequence of functional segmentation of the brain cortex.

  6. Adaptive function allocation reduces performance costs of static automation

    NASA Technical Reports Server (NTRS)

    Parasuraman, Raja; Mouloua, Mustapha; Molloy, Robert; Hilburn, Brian

    1993-01-01

    Adaptive automation offers the option of flexible function allocation between the pilot and on-board computer systems. One of the important claims for the superiority of adaptive over static automation is that such systems do not suffer from some of the drawbacks associated with conventional function allocation. Several experiments designed to test this claim are reported in this article. The efficacy of adaptive function allocation was examined using a laboratory flight-simulation task involving multiple functions of tracking, fuel-management, and systems monitoring. The results show that monitoring inefficiency represents one of the performance costs of static automation. Adaptive function allocation can reduce the performance cost associated with long-term static automation.

  7. Visual adaptation of the perception of "life": animacy is a basic perceptual dimension of faces.

    PubMed

    Koldewyn, Kami; Hanus, Patricia; Balas, Benjamin

    2014-08-01

    One critical component of understanding another's mind is the perception of "life" in a face. However, little is known about the cognitive and neural mechanisms underlying this perception of animacy. Here, using a visual adaptation paradigm, we ask whether face animacy is (1) a basic dimension of face perception and (2) supported by a common neural mechanism across distinct face categories defined by age and species. Observers rated the perceived animacy of adult human faces before and after adaptation to (1) adult faces, (2) child faces, and (3) dog faces. When testing the perception of animacy in human faces, we found significant adaptation to both adult and child faces, but not dog faces. We did, however, find significant adaptation when morphed dog images and dog adaptors were used. Thus, animacy perception in faces appears to be a basic dimension of face perception that is species specific but not constrained by age categories.

  8. Multilevel adaptive solution procedure for material nonlinear problems in visual programming environment

    SciTech Connect

    Kim, D.; Ghanem, R.

    1994-12-31

    Multigrid solution technique to solve a material nonlinear problem in a visual programming environment using the finite element method is discussed. The nonlinear equation of equilibrium is linearized to incremental form using Newton-Rapson technique, then multigrid solution technique is used to solve linear equations at each Newton-Rapson step. In the process, adaptive mesh refinement, which is based on the bisection of a pair of triangles, is used to form grid hierarchy for multigrid iteration. The solution process is implemented in a visual programming environment with distributed computing capability, which enables more intuitive understanding of solution process, and more effective use of resources.

  9. Visual search disorders in acute and chronic homonymous hemianopia: lesion effects and adaptive strategies.

    PubMed

    Machner, Björn; Sprenger, Andreas; Sander, Thurid; Heide, Wolfgang; Kimmig, Hubert; Helmchen, Christoph; Kömpf, Detlef

    2009-05-01

    Patients with homonymous hemianopia due to occipital brain lesions show disorders of visual search. In everyday life this leads to difficulties in reading and spatial orientation. It is a matter of debate whether these disorders are due to the brain lesion or rather reflect compensatory eye movement strategies developing over time. For the first time, eye movements of acute hemianopic patients (n= 9) were recorded during the first days following stroke while they performed an exploratory visual-search task. Compared to age-matched control subjects their search duration was prolonged due to increased fixations and refixations, that is, repeated scanning of previously searched locations. Saccadic amplitudes were smaller in patients. Right hemianopic patients were more impaired than left hemianopic patients. The number of fixations and refixations did not differ significantly between both hemifields in the patients. Follow-up of one patient revealed changes of visual search over 18 months. By using more structured scanpaths with fewer saccades his search duration decreased. Furthermore, he developed a more efficient eye-movement strategy by making larger but less frequent saccades toward his blind side. In summary, visual-search behavior of acute hemianopic patients differs from healthy control subjects and from chronic hemianopic patients. We conclude that abnormal visual search in acute hemianopic patients is related to the brain lesion. We provide some evidence for adaptive eye-movement strategies developed over time. These adaptive strategies make the visual search more efficient and may help to compensate for the persisting visual-field loss. PMID:19645941

  10. A candidate multimodal functional genetic network for thermal adaptation

    PubMed Central

    Pathak, Rachana; Prajapati, Indira; Bankston, Shannon; Thompson, Aprylle; Usher, Jaytriece; Isokpehi, Raphael D.

    2014-01-01

    Vertebrate ectotherms such as reptiles provide ideal organisms for the study of adaptation to environmental thermal change. Comparative genomic and exomic studies can recover markers that diverge between warm and cold adapted lineages, but the genes that are functionally related to thermal adaptation may be difficult to identify. We here used a bioinformatics genome-mining approach to predict and identify functions for suitable candidate markers for thermal adaptation in the chicken. We first established a framework of candidate functions for such markers, and then compiled the literature on genes known to adapt to the thermal environment in different lineages of vertebrates. We then identified them in the genomes of human, chicken, and the lizard Anolis carolinensis, and established a functional genetic interaction network in the chicken. Surprisingly, markers initially identified from diverse lineages of vertebrates such as human and fish were all in close functional relationship with each other and more associated than expected by chance. This indicates that the general genetic functional network for thermoregulation and/or thermal adaptation to the environment might be regulated via similar evolutionarily conserved pathways in different vertebrate lineages. We were able to identify seven functions that were statistically overrepresented in this network, corresponding to four of our originally predicted functions plus three unpredicted functions. We describe this network as multimodal: central regulator genes with the function of relaying thermal signal (1), affect genes with different cellular functions, namely (2) lipoprotein metabolism, (3) membrane channels, (4) stress response, (5) response to oxidative stress, (6) muscle contraction and relaxation, and (7) vasodilation, vasoconstriction and regulation of blood pressure. This network constitutes a novel resource for the study of thermal adaptation in the closely related nonavian reptiles and other

  11. A candidate multimodal functional genetic network for thermal adaptation.

    PubMed

    Wollenberg Valero, Katharina C; Pathak, Rachana; Prajapati, Indira; Bankston, Shannon; Thompson, Aprylle; Usher, Jaytriece; Isokpehi, Raphael D

    2014-01-01

    Vertebrate ectotherms such as reptiles provide ideal organisms for the study of adaptation to environmental thermal change. Comparative genomic and exomic studies can recover markers that diverge between warm and cold adapted lineages, but the genes that are functionally related to thermal adaptation may be difficult to identify. We here used a bioinformatics genome-mining approach to predict and identify functions for suitable candidate markers for thermal adaptation in the chicken. We first established a framework of candidate functions for such markers, and then compiled the literature on genes known to adapt to the thermal environment in different lineages of vertebrates. We then identified them in the genomes of human, chicken, and the lizard Anolis carolinensis, and established a functional genetic interaction network in the chicken. Surprisingly, markers initially identified from diverse lineages of vertebrates such as human and fish were all in close functional relationship with each other and more associated than expected by chance. This indicates that the general genetic functional network for thermoregulation and/or thermal adaptation to the environment might be regulated via similar evolutionarily conserved pathways in different vertebrate lineages. We were able to identify seven functions that were statistically overrepresented in this network, corresponding to four of our originally predicted functions plus three unpredicted functions. We describe this network as multimodal: central regulator genes with the function of relaying thermal signal (1), affect genes with different cellular functions, namely (2) lipoprotein metabolism, (3) membrane channels, (4) stress response, (5) response to oxidative stress, (6) muscle contraction and relaxation, and (7) vasodilation, vasoconstriction and regulation of blood pressure. This network constitutes a novel resource for the study of thermal adaptation in the closely related nonavian reptiles and other

  12. The multisensory function of the human primary visual cortex.

    PubMed

    Murray, Micah M; Thelen, Antonia; Thut, Gregor; Romei, Vincenzo; Martuzzi, Roberto; Matusz, Pawel J

    2016-03-01

    It has been nearly 10 years since Ghazanfar and Schroeder (2006) proposed that the neocortex is essentially multisensory in nature. However, it is only recently that sufficient and hard evidence that supports this proposal has accrued. We review evidence that activity within the human primary visual cortex plays an active role in multisensory processes and directly impacts behavioural outcome. This evidence emerges from a full pallet of human brain imaging and brain mapping methods with which multisensory processes are quantitatively assessed by taking advantage of particular strengths of each technique as well as advances in signal analyses. Several general conclusions about multisensory processes in primary visual cortex of humans are supported relatively solidly. First, haemodynamic methods (fMRI/PET) show that there is both convergence and integration occurring within primary visual cortex. Second, primary visual cortex is involved in multisensory processes during early post-stimulus stages (as revealed by EEG/ERP/ERFs as well as TMS). Third, multisensory effects in primary visual cortex directly impact behaviour and perception, as revealed by correlational (EEG/ERPs/ERFs) as well as more causal measures (TMS/tACS). While the provocative claim of Ghazanfar and Schroeder (2006) that the whole of neocortex is multisensory in function has yet to be demonstrated, this can now be considered established in the case of the human primary visual cortex. PMID:26275965

  13. Using a Function Generator to Produce Auditory and Visual Demonstrations.

    ERIC Educational Resources Information Center

    Woods, Charles B.

    1998-01-01

    Identifies a function generator as an instrument that produces time-varying electrical signals of frequency, wavelength, and amplitude. Sending these signals to a speaker or a light-emitting diode can demonstrate how specific characteristics of auditory or visual stimuli relate to perceptual experiences. Provides specific instructions for using…

  14. Fast adaptive estimation of multidimensional psychometric functions.

    PubMed

    DiMattina, Christopher

    2015-01-01

    Recently in vision science there has been great interest in understanding the perceptual representations of complex multidimensional stimuli. Therefore, it is becoming very important to develop methods for performing psychophysical experiments with multidimensional stimuli and efficiently estimating psychometric models that have multiple free parameters. In this methodological study, I analyze three efficient implementations of the popular Ψ method for adaptive data collection, two of which are novel approaches to psychophysical experiments. Although the standard implementation of the Ψ procedure is intractable in higher dimensions, I demonstrate that my implementations generalize well to complex psychometric models defined in multidimensional stimulus spaces and can be implemented very efficiently on standard laboratory computers. I show that my implementations may be of particular use for experiments studying how subjects combine multiple cues to estimate sensory quantities. I discuss strategies for speeding up experiments and suggest directions for future research in this rapidly growing area at the intersection of cognitive science, neuroscience, and machine learning.

  15. Fast adaptive estimation of multidimensional psychometric functions.

    PubMed

    DiMattina, Christopher

    2015-01-01

    Recently in vision science there has been great interest in understanding the perceptual representations of complex multidimensional stimuli. Therefore, it is becoming very important to develop methods for performing psychophysical experiments with multidimensional stimuli and efficiently estimating psychometric models that have multiple free parameters. In this methodological study, I analyze three efficient implementations of the popular Ψ method for adaptive data collection, two of which are novel approaches to psychophysical experiments. Although the standard implementation of the Ψ procedure is intractable in higher dimensions, I demonstrate that my implementations generalize well to complex psychometric models defined in multidimensional stimulus spaces and can be implemented very efficiently on standard laboratory computers. I show that my implementations may be of particular use for experiments studying how subjects combine multiple cues to estimate sensory quantities. I discuss strategies for speeding up experiments and suggest directions for future research in this rapidly growing area at the intersection of cognitive science, neuroscience, and machine learning. PMID:26200886

  16. Longitudinal Investigation of Adaptive Functioning Following Conformal Irradiation for Pediatric Craniopharyngioma and Low-Grade Glioma

    SciTech Connect

    Netson, Kelli L.; Conklin, Heather M.; Wu, Shengjie; Xiong, Xiaoping; Merchant, Thomas E.

    2013-04-01

    Purpose: Children treated for brain tumors with conformal radiation therapy experience preserved cognitive outcomes. Early evidence suggests that adaptive functions or independent-living skills may be spared. This longitudinal investigation prospectively examined intellectual and adaptive functioning during the first 5 years following irradiation for childhood craniopharyngioma and low-grade glioma (LGG). The effect of visual impairment on adaptive outcomes was investigated. Methods and Materials: Children with craniopharyngioma (n=62) and LGG (n=77) were treated using conformal or intensity modulated radiation therapy. The median age was 8.05 years (3.21-17.64 years) and 8.09 years (2.20-19.27 years), respectively. Serial cognitive evaluations including measures of intelligence quotient (IQ) and the Vineland Adaptive Behavior Scales (VABS) were conducted at preirradiation baseline, 6 months after treatment, and annually through 5 years. Five hundred eighty-eight evaluations were completed during the follow-up period. Results: Baseline assessment revealed no deficits in IQ and VABS indices for children with craniopharyngioma, with significant (P<.05) longitudinal decline in VABS Communication and Socialization indices. Clinical factors associated with more rapid decline included females and preirradiation chemotherapy (interferon). The only change in VABS Daily Living Skills correlated with IQ change (r=0.34; P=.01) in children with craniopharyngioma. Children with LGG performed below population norms (P<.05) at baseline on VABS Communication, Daily Living Indices, and the Adaptive Behavior Composite, with significant (P<.05) longitudinal decline limited to VABS Communication. Older age at irradiation was a protective factor against longitudinal decline. Severe visual impairment did not independently correlate with poorer adaptive outcomes for either tumor group. Conclusions: There was relative sparing of postirradiation functional outcomes over time in this sample

  17. Retinol dehydrogenases: membrane-bound enzymes for the visual function.

    PubMed

    Lhor, Mustapha; Salesse, Christian

    2014-12-01

    Retinoid metabolism is important for many physiological functions, such as differenciation, growth, and vision. In the visual context, after the absorption of light in rod photoreceptors by the visual pigment rhodopsin, 11-cis retinal is isomerized to all-trans retinal. This retinoid subsequently undergoes a series of modifications during the visual cycle through a cascade of reactions occurring in photoreceptors and in the retinal pigment epithelium. Retinol dehydrogenases (RDHs) are enzymes responsible for crucial steps of this visual cycle. They belong to a large family of proteins designated as short-chain dehydrogenases/reductases. The structure of these RDHs has been predicted using modern bioinformatics tools, which allowed to propose models with similar structures including a common Rossman fold. These enzymes undergo oxidoreduction reactions, whose direction is dictated by the preference and concentration of their individual cofactor (NAD(H)/NADP(H)). This review presents the current state of knowledge on functional and structural features of RDHs involved in the visual cycle as well as knockout models. RDHs are described as integral or peripheral enzymes. A topology model of the membrane binding of these RDHs via their N- and (or) C-terminal domain has been proposed on the basis of their individual properties. Membrane binding is a crucial issue for these enzymes because of the high hydrophobicity of their retinoid substrates.

  18. Function approximation using adaptive and overlapping intervals

    SciTech Connect

    Patil, R.B.

    1995-05-01

    A problem common to many disciplines is to approximate a function given only the values of the function at various points in input variable space. A method is proposed for approximating a function of several to one variable. The model takes the form of weighted averaging of overlapping basis functions defined over intervals. The number of such basis functions and their parameters (widths and centers) are automatically determined using given training data and a learning algorithm. The proposed algorithm can be seen as placing a nonuniform multidimensional grid in the input domain with overlapping cells. The non-uniformity and overlap of the cells is achieved by a learning algorithm to optimize a given objective function. This approach is motivated by the fuzzy modeling approach and a learning algorithms used for clustering and classification in pattern recognition. The basics of why and how the approach works are given. Few examples of nonlinear regression and classification are modeled. The relationship between the proposed technique, radial basis neural networks, kernel regression, probabilistic neural networks, and fuzzy modeling is explained. Finally advantages and disadvantages are discussed.

  19. Adaptive methods of two-scale edge detection in post-enhancement visual pattern processing

    NASA Astrophysics Data System (ADS)

    Rahman, Zia-ur; Jobson, Daniel J.; Woodell, Glenn A.

    2008-04-01

    Adaptive methods are defined and experimentally studied for a two-scale edge detection process that mimics human visual perception of edges and is inspired by the parvo-cellular (P) and magno-cellular (M) physiological subsystems of natural vision. This two-channel processing consists of a high spatial acuity/coarse contrast channel (P) and a coarse acuity/fine contrast (M) channel. We perform edge detection after a very strong non-linear image enhancement that uses smart Retinex image processing. Two conditions that arise from this enhancement demand adaptiveness in edge detection. These conditions are the presence of random noise further exacerbated by the enhancement process, and the equally random occurrence of dense textural visual information. We examine how to best deal with both phenomena with an automatic adaptive computation that treats both high noise and dense textures as too much information, and gracefully shifts from a smallscale to medium-scale edge pattern priorities. This shift is accomplished by using different edge-enhancement schemes that correspond with the (P) and (M) channels of the human visual system. We also examine the case of adapting to a third image condition, namely too little visual information, and automatically adjust edge detection sensitivities when sparse feature information is encountered. When this methodology is applied to a sequence of images of the same scene but with varying exposures and lighting conditions, this edge-detection process produces pattern constancy that is very useful for several imaging applications that rely on image classification in variable imaging conditions.

  20. An automated miniaturized Haploscope for testing binocular visual function

    NASA Technical Reports Server (NTRS)

    Decker, T. A.; Williams, R. E.; Kuether, C. L.; Wyman-Cornsweet, D.

    1976-01-01

    A computer-controlled binocular vision testing device has been developed as one part of a system designed for NASA to test the vision of astronauts during spaceflight. The device, called the Mark III Haploscope, utilizes semi-automated psychophysical test procedures to measure visual acuity, stereopsis, phorias, fixation disparity and accommodation/convergence relationships. All tests are self-administered, yield quantitative data and may be used repeatedly without subject memorization. Future applications of this programmable, compact device include its use as a clinical instrument to perform routine eye examinations or vision screening, and as a research tool to examine the effects of environment or work-cycle upon visual function.

  1. Functional Connectivity Between Superior Parietal Lobule and Primary Visual Cortex "at Rest" Predicts Visual Search Efficiency.

    PubMed

    Bueichekú, Elisenda; Ventura-Campos, Noelia; Palomar-García, María-Ángeles; Miró-Padilla, Anna; Parcet, María-Antonia; Ávila, César

    2015-10-01

    Spatiotemporal activity that emerges spontaneously "at rest" has been proposed to reflect individual a priori biases in cognitive processing. This research focused on testing neurocognitive models of visual attention by studying the functional connectivity (FC) of the superior parietal lobule (SPL), given its central role in establishing priority maps during visual search tasks. Twenty-three human participants completed a functional magnetic resonance imaging session that featured a resting-state scan, followed by a visual search task based on the alphanumeric category effect. As expected, the behavioral results showed longer reaction times and more errors for the within-category (i.e., searching a target letter among letters) than the between-category search (i.e., searching a target letter among numbers). The within-category condition was related to greater activation of the superior and inferior parietal lobules, occipital cortex, inferior frontal cortex, dorsal anterior cingulate cortex, and the superior colliculus than the between-category search. The resting-state FC analysis of the SPL revealed a broad network that included connections with the inferotemporal cortex, dorsolateral prefrontal cortex, and dorsal frontal areas like the supplementary motor area and frontal eye field. Noteworthy, the regression analysis revealed that the more efficient participants in the visual search showed stronger FC between the SPL and areas of primary visual cortex (V1) related to the search task. We shed some light on how the SPL establishes a priority map of the environment during visual attention tasks and how FC is a valuable tool for assessing individual differences while performing cognitive tasks. PMID:26230367

  2. Functional Connectivity Between Superior Parietal Lobule and Primary Visual Cortex "at Rest" Predicts Visual Search Efficiency.

    PubMed

    Bueichekú, Elisenda; Ventura-Campos, Noelia; Palomar-García, María-Ángeles; Miró-Padilla, Anna; Parcet, María-Antonia; Ávila, César

    2015-10-01

    Spatiotemporal activity that emerges spontaneously "at rest" has been proposed to reflect individual a priori biases in cognitive processing. This research focused on testing neurocognitive models of visual attention by studying the functional connectivity (FC) of the superior parietal lobule (SPL), given its central role in establishing priority maps during visual search tasks. Twenty-three human participants completed a functional magnetic resonance imaging session that featured a resting-state scan, followed by a visual search task based on the alphanumeric category effect. As expected, the behavioral results showed longer reaction times and more errors for the within-category (i.e., searching a target letter among letters) than the between-category search (i.e., searching a target letter among numbers). The within-category condition was related to greater activation of the superior and inferior parietal lobules, occipital cortex, inferior frontal cortex, dorsal anterior cingulate cortex, and the superior colliculus than the between-category search. The resting-state FC analysis of the SPL revealed a broad network that included connections with the inferotemporal cortex, dorsolateral prefrontal cortex, and dorsal frontal areas like the supplementary motor area and frontal eye field. Noteworthy, the regression analysis revealed that the more efficient participants in the visual search showed stronger FC between the SPL and areas of primary visual cortex (V1) related to the search task. We shed some light on how the SPL establishes a priority map of the environment during visual attention tasks and how FC is a valuable tool for assessing individual differences while performing cognitive tasks.

  3. The personal genome browser: visualizing functions of genetic variants.

    PubMed

    Juan, Liran; Teng, Mingxiang; Zang, Tianyi; Hao, Yafeng; Wang, Zhenxing; Yan, Chengwu; Liu, Yongzhuang; Li, Jie; Zhang, Tianjiao; Wang, Yadong

    2014-07-01

    Advances in high-throughput sequencing technologies have brought us into the individual genome era. Projects such as the 1000 Genomes Project have led the individual genome sequencing to become more and more popular. How to visualize, analyse and annotate individual genomes with knowledge bases to support genome studies and personalized healthcare is still a big challenge. The Personal Genome Browser (PGB) is developed to provide comprehensive functional annotation and visualization for individual genomes based on the genetic-molecular-phenotypic model. Investigators can easily view individual genetic variants, such as single nucleotide variants (SNVs), INDELs and structural variations (SVs), as well as genomic features and phenotypes associated to the individual genetic variants. The PGB especially highlights potential functional variants using the PGB built-in method or SIFT/PolyPhen2 scores. Moreover, the functional risks of genes could be evaluated by scanning individual genetic variants on the whole genome, a chromosome, or a cytoband based on functional implications of the variants. Investigators can then navigate to high risk genes on the scanned individual genome. The PGB accepts Variant Call Format (VCF) and Genetic Variation Format (GVF) files as the input. The functional annotation of input individual genome variants can be visualized in real time by well-defined symbols and shapes. The PGB is available at http://www.pgbrowser.org/. PMID:24799434

  4. How Visual Is the Visual Cortex? Comparing Connectional and Functional Fingerprints between Congenitally Blind and Sighted Individuals.

    PubMed

    Wang, Xiaoying; Peelen, Marius V; Han, Zaizhu; He, Chenxi; Caramazza, Alfonso; Bi, Yanchao

    2015-09-01

    Classical animal visual deprivation studies and human neuroimaging studies have shown that visual experience plays a critical role in shaping the functionality and connectivity of the visual cortex. Interestingly, recent studies have additionally reported circumscribed regions in the visual cortex in which functional selectivity was remarkably similar in individuals with and without visual experience. Here, by directly comparing resting-state and task-based fMRI data in congenitally blind and sighted human subjects, we obtained large-scale continuous maps of the degree to which connectional and functional "fingerprints" of ventral visual cortex depend on visual experience. We found a close agreement between connectional and functional maps, pointing to a strong interdependence of connectivity and function. Visual experience (or the absence thereof) had a pronounced effect on the resting-state connectivity and functional response profile of occipital cortex and the posterior lateral fusiform gyrus. By contrast, connectional and functional fingerprints in the anterior medial and posterior lateral parts of the ventral visual cortex were statistically indistinguishable between blind and sighted individuals. These results provide a large-scale mapping of the influence of visual experience on the development of both functional and connectivity properties of visual cortex, which serves as a basis for the formulation of new hypotheses regarding the functionality and plasticity of specific subregions. Significance statement: How is the functionality and connectivity of the visual cortex shaped by visual experience? By directly comparing resting-state and task-based fMRI data in congenitally blind and sighted subjects, we obtained large-scale continuous maps of the degree to which connectional and functional "fingerprints" of ventral visual cortex depend on visual experience. In addition to revealing regions that are strongly dependent on visual experience (early visual

  5. Effects of retinal position on the visuo-motor adaptation of visual stability in a virtual environment

    PubMed Central

    Kitazaki, Michiteru

    2013-01-01

    Although the retinal image changes a great deal with the movement of our head or eyes, we perceive a stable world (a phenomenon known as visual stability or position constancy). Visual stability adaptively changes for each new combination of vision and head motion, or to compensate for manipulated visuo-motor gain. This study aims to investigate the effects of retinal positions on visuo-motor adaptation and to discuss the neural mechanisms involved. I found that visuo-motor adaptation occurred, and was transferable from right to left visual fields (Experiment 1), between the upper and lower visual fields (Experiment 2), and between the central and peripheral visual fields (Experiment 4), and that for the left visual field (Experiment 1) and the large visual field (Experiment 3) visuo-motor adaptations were effective. The dominance of the central vision was found in Experiment 3 but not found in Experiment 4. These results suggest that the visuo-motor adaptation of visual stability was not specific to the retinal location, but is processed by a relatively high level of the perceptual system. PMID:24349685

  6. Adaptation of visual tracking synchronization after one night of sleep deprivation.

    PubMed

    Tong, Jianliang; Maruta, Jun; Heaton, Kristin J; Maule, Alexis L; Ghajar, Jamshid

    2014-01-01

    The temporal delay between sensory input and motor execution is a fundamental constraint in interactions with the environment. Predicting the temporal course of a stimulus and dynamically synchronizing the required action with the stimulus are critical for offsetting this constraint, and this prediction-synchronization capacity can be tested using visual tracking of a target with predictable motion. Although the role of temporal prediction in visual tracking is assumed, little is known of how internal predictions interact with the behavioral outcome or how changes in the cognitive state influence such interaction. We quantified and compared the predictive visual tracking performance of military volunteers before and after one night of sleep deprivation. The moment-to-moment synchronization of visual tracking during sleep deprivation deteriorated with sensitivity changes greater than 40 %. However, increased anticipatory saccades maintained the overall temporal accuracy with near zero phase error. Results suggest that acute sleep deprivation induces instability in visuomotor prediction, but there is compensatory visuomotor adaptation. Detection of these visual tracking features may aid in the identification of insufficient sleep.

  7. Stochastic choice of basis functions in adaptive function approximation and the functional-link net.

    PubMed

    Igelnik, B; Pao, Y H

    1995-01-01

    A theoretical justification for the random vector version of the functional-link (RVFL) net is presented in this paper, based on a general approach to adaptive function approximation. The approach consists of formulating a limit-integral representation of the function to be approximated and subsequently evaluating that integral with the Monte-Carlo method. Two main results are: (1) the RVFL is a universal approximator for continuous functions on bounded finite dimensional sets, and (2) the RVFL is an efficient universal approximator with the rate of approximation error convergence to zero of order O(C/ radicaln), where n is number of basis functions and with C independent of n. Similar results are also obtained for neural nets with hidden nodes implemented as products of univariate functions or radial basis functions. Some possible ways of enhancing the accuracy of multivariate function approximations are discussed.

  8. Real-time functional architecture of visual word recognition.

    PubMed

    Whiting, Caroline; Shtyrov, Yury; Marslen-Wilson, William

    2015-02-01

    Despite a century of research into visual word recognition, basic questions remain unresolved about the functional architecture of the process that maps visual inputs from orthographic analysis onto lexical form and meaning and about the units of analysis in terms of which these processes are conducted. Here we use magnetoencephalography, supported by a masked priming behavioral study, to address these questions using contrasting sets of simple (walk), complex (swimmer), and pseudo-complex (corner) forms. Early analyses of orthographic structure, detectable in bilateral posterior temporal regions within a 150-230 msec time frame, are shown to segment the visual input into linguistic substrings (words and morphemes) that trigger lexical access in left middle temporal locations from 300 msec. These are primarily feedforward processes and are not initially constrained by lexical-level variables. Lexical constraints become significant from 390 msec, in both simple and complex words, with increased processing of pseudowords and pseudo-complex forms. These results, consistent with morpho-orthographic models based on masked priming data, map out the real-time functional architecture of visual word recognition, establishing basic feedforward processing relationships between orthographic form, morphological structure, and lexical meaning.

  9. Dynamic functional brain networks involved in simple visual discrimination learning.

    PubMed

    Fidalgo, Camino; Conejo, Nélida María; González-Pardo, Héctor; Arias, Jorge Luis

    2014-10-01

    Visual discrimination tasks have been widely used to evaluate many types of learning and memory processes. However, little is known about the brain regions involved at different stages of visual discrimination learning. We used cytochrome c oxidase histochemistry to evaluate changes in regional brain oxidative metabolism during visual discrimination learning in a water-T maze at different time points during training. As compared with control groups, the results of the present study reveal the gradual activation of cortical (prefrontal and temporal cortices) and subcortical brain regions (including the striatum and the hippocampus) associated to the mastery of a simple visual discrimination task. On the other hand, the brain regions involved and their functional interactions changed progressively over days of training. Regions associated with novelty, emotion, visuo-spatial orientation and motor aspects of the behavioral task seem to be relevant during the earlier phase of training, whereas a brain network comprising the prefrontal cortex was found along the whole learning process. This study highlights the relevance of functional interactions among brain regions to investigate learning and memory processes. PMID:24937013

  10. Dyspraxia, Motor Function and Visual-Motor Integration in Autism

    PubMed Central

    Miller, M.; Chukoskie, L.; Zinni, M.; Townsend, J.; Trauner, D.

    2014-01-01

    This project assessed dyspraxia in high-functioning school aged children with autism with a focus on Ideational Praxis. We examined the association of specific underlying motor function including eye movement with ideational dyspraxia (sequences of skilled movements) as well as the possible role of visual-motor integration in dyspraxia. We found that compared to IQ-, sex- and age-matched typically developing children, the children with autism performed significantly worse on: Ideational and Buccofacial praxis; a broad range of motor tests, including measures of simple motor skill, timing and accuracy of saccadic eye movements and motor coordination; and tests of visual-motor integration. Impairments in individual children with autism were heterogeneous in nature, although when we examined the praxis data as a function of a qualitative measure representing motor timing, we found that children with poor motor timing performed worse on all praxis categories and had slower and less accurate eye movements while those with regular timing performed as well as typical children on those same tasks. Our data provide evidence that both motor function and visual-motor integration contribute to dyspraxia. We suggest that dyspraxia in autism involves cerebellar mechanisms of movement control and the integration of these mechanisms with cortical networks implicated in praxis. PMID:24742861

  11. Adapting the iSNOBAL model for improved visualization in a GIS environment

    NASA Astrophysics Data System (ADS)

    Johansen, W. J.; Delparte, D.

    2014-12-01

    Snowmelt is a primary means of crucial water resources in much of the western United States. Researchers are developing models that estimate snowmelt to aid in water resource management. One such model is the image snowcover energy and mass balance (iSNOBAL) model. It uses input climate grids to simulate the development and melting of snowpack in mountainous regions. This study looks at applying this model to the Reynolds Creek Experimental Watershed in southwestern Idaho, utilizing novel approaches incorporating geographic information systems (GIS). To improve visualization of the iSNOBAL model, we have adapted it to run in a GIS environment. This type of environment is suited to both the input grid creation and the visualization of results. The data used for input grid creation can be stored locally or on a web-server. Kriging interpolation embedded within Python scripts are used to create air temperature, soil temperature, humidity, and precipitation grids, while built-in GIS and existing tools are used to create solar radiation and wind grids. Additional Python scripting is then used to perform model calculations. The final product is a user-friendly and accessible version of the iSNOBAL model, including the ability to easily visualize and interact with model results, all within a web- or desktop-based GIS environment. This environment allows for interactive manipulation of model parameters and visualization of the resulting input grids for the model calculations. Future work is moving towards adapting the model further for use in a 3D gaming engine for improved visualization and interaction.

  12. Functional changes of the visual system of the damselfish Dascyllus marginatus along its bathymetric range.

    PubMed

    Brokovich, Eran; Ben-Ari, Tomer; Kark, Salit; Kiflawi, Moshe; Dishon, Gal; Iluz, David; Shashar, Nadav

    2010-11-01

    Shallow-water zooplanktivorous fish rely on their vision for foraging. In shallow water, feeding efficiency decreases in dim light and thus the fish cease foraging at crepuscular hours. Creatures living in the lower parts of their depth ranges are expected to be exposed to limited light levels for longer hours. However, observations of the zooplanktivore Dascyllus marginatus showed little change in foraging duration down to 40m deep. We asked whether the visual system's functionality changes with depth along the depth range of this damselfish; we examined eye and retina anatomy for changes in visual acuity and light sensitivity and used the optomotor response to test for spatial and temporal light summation. We found only minor changes in the anatomy of the eye that are not expected to affect visual sensitivity or acuity. However, behavioural experiments showed that the deeper water fish's test performance exceeded those of fish in shallow water under lower light levels. We found that deeper water fish responded to the optomotor test at lower light levels and also had more discriminating visual acuity in low light, which can increase their potential reactive distance. The plastic adaptive ability of the visual system to low light levels may explain the fish's ability to inhabit deeper reef habitats and thus expand their depth range limits.

  13. The Diabetes Visual Function Supplement Study (DiVFuSS)

    PubMed Central

    Chous, A Paul; Richer, Stuart P; Gerson, Jeffry D; Kowluru, Renu A

    2016-01-01

    Background Diabetes is known to affect visual function before onset of retinopathy (diabetic retinopathy (DR)). Protection of visual function may signal disruption of mechanisms underlying DR. Methods This was a 6-month randomised, controlled clinical trial of patients with type 1 and type 2 diabetes with no retinopathy or mild to moderate non-proliferative retinopathy assigned to twice daily consumption of placebo or a novel, multi-component formula containing xanthophyll pigments, antioxidants and selected botanical extracts. Measurement of contrast sensitivity, macular pigment optical density, colour discrimination, 5-2 macular threshold perimetry, Diabetic Peripheral Neuropathy Symptoms, foveal and retinal nerve fibre layer thickness, glycohaemoglobin (HbA1c), serum lipids, 25-OH-vitamin D, tumour necrosis factor α (TNF-a) and high-sensitivity C reactive protein (hsCRP) were taken at baseline and 6 months. Outcomes were assessed by differences between and within groups at baseline and at study conclusion using meand ± SDs and t tests (p<0.05) for continuous variables. Results There were no significant intergroup differences at baseline. At 6 months, subjects on active supplement compared with placebo had significantly better visual function on all measures (p values ranging from 0.008 to <0.0001), significant improvements in most serum lipids (p values ranging from 0.01 to 0.0004), hsCRP (p=0.01) and diabetic peripheral neuropathy (Fisher's exact test, p=0.0024) No significant changes in retinal thickness, HbA1c, total cholesterol or TNF-α were found between the groups. Conclusions This study provides strong evidence of clinically meaningful improvements in visual function, hsCRP and peripheral neuropathy in patients with diabetes, both with and without retinopathy, and without affecting glycaemic control. Trial registration number www.ClinicalTrials.gov Identifier: NCT01646047 PMID:26089210

  14. Adaptive visual and auditory map alignment in barn owl superior colliculus and its neuromorphic implementation.

    PubMed

    Huo, Juan; Murray, Alan; Wei, Dongqing

    2012-09-01

    Adaptation is one of the most important phenomena in biology. A young barn owl can adapt to imposed environmental changes, such as artificial visual distortion caused by wearing a prism. This adjustment process has been modeled mathematically and the model replicates the sensory map realignment of barn owl superior colliculus (SC) through axonogenesis and synaptogenesis. This allows the biological mechanism to be transferred to an artificial computing system and thereby imbue it with a new form of adaptability to the environment. The model is demonstrated in a real-time robot environment. Results of the experiments are compared with and without prism distortion of vision, and show improved adaptability for the robot. However, the computation speed of the embedded system in the robot is slow. A digital and analog mixed signal very-large-scale integration (VLSI) circuit has been fabricated to implement adaptive sensory pathway changes derived from the SC model at higher speed. VLSI experimental results are consistent with simulation results. PMID:24807931

  15. Autonomous robotic capture of non-cooperative target by adaptive extended Kalman filter based visual servo

    NASA Astrophysics Data System (ADS)

    Dong, Gangqi; Zhu, Zheng H.

    2016-05-01

    This paper presents a real-time, vision-based algorithm for the pose and motion estimation of non-cooperative targets and its application in visual servo robotic manipulator to perform autonomous capture. A hybrid approach of adaptive extended Kalman filter and photogrammetry is developed for the real-time pose and motion estimation of non-cooperative targets. Based on the pose and motion estimates, the desired pose and trajectory of end-effector is defined and the corresponding desired joint angles of the robotic manipulator are derived by inverse kinematics. A close-loop visual servo control scheme is then developed for the robotic manipulator to track, approach and capture the target. Validating experiments are designed and performed on a custom-built six degrees of freedom robotic manipulator with an eye-in-hand configuration. The experimental results demonstrate the feasibility, effectiveness and robustness of the proposed adaptive extended Kalman filter enabled pose and motion estimation and visual servo strategy.

  16. Training improves the capacity of visual working memory when it is adaptive, individualized, and targeted.

    PubMed

    Shin, Eunsam; Lee, Hunjae; Yoo, Sang-Ah; Chong, Sang Chul

    2015-01-01

    The current study investigated whether training improves the capacity of visual working memory using individualized adaptive training methods. Two groups of participants were trained for two targeted processes, filtering and consolidation. Before and after the training, the participants, including those with no training, performed a lateralized change detection task in which one side of the visual display had to be selected and the other side ignored. Across ten-day training sessions, the participants performed two modified versions of the lateralized change detection task. The number of distractors and duration of the consolidation period were adjusted individually to increase the task difficulty of the filtering and consolidation training, respectively. Results showed that the degree of improvement shown during the training was positively correlated with the increase in memory capacity, and training-induced benefits were most evident for larger set sizes in the filtering training group. These results suggest that visual working memory training is effective, especially when it is adaptive, individualized, and targeted.

  17. Filtering Based Adaptive Visual Odometry Sensor Framework Robust to Blurred Images

    PubMed Central

    Zhao, Haiying; Liu, Yong; Xie, Xiaojia; Liao, Yiyi; Liu, Xixi

    2016-01-01

    Visual odometry (VO) estimation from blurred image is a challenging problem in practical robot applications, and the blurred images will severely reduce the estimation accuracy of the VO. In this paper, we address the problem of visual odometry estimation from blurred images, and present an adaptive visual odometry estimation framework robust to blurred images. Our approach employs an objective measure of images, named small image gradient distribution (SIGD), to evaluate the blurring degree of the image, then an adaptive blurred image classification algorithm is proposed to recognize the blurred images, finally we propose an anti-blurred key-frame selection algorithm to enable the VO robust to blurred images. We also carried out varied comparable experiments to evaluate the performance of the VO algorithms with our anti-blur framework under varied blurred images, and the experimental results show that our approach can achieve superior performance comparing to the state-of-the-art methods under the condition with blurred images while not increasing too much computation cost to the original VO algorithms. PMID:27399704

  18. Filtering Based Adaptive Visual Odometry Sensor Framework Robust to Blurred Images.

    PubMed

    Zhao, Haiying; Liu, Yong; Xie, Xiaojia; Liao, Yiyi; Liu, Xixi

    2016-01-01

    Visual odometry (VO) estimation from blurred image is a challenging problem in practical robot applications, and the blurred images will severely reduce the estimation accuracy of the VO. In this paper, we address the problem of visual odometry estimation from blurred images, and present an adaptive visual odometry estimation framework robust to blurred images. Our approach employs an objective measure of images, named small image gradient distribution (SIGD), to evaluate the blurring degree of the image, then an adaptive blurred image classification algorithm is proposed to recognize the blurred images, finally we propose an anti-blurred key-frame selection algorithm to enable the VO robust to blurred images. We also carried out varied comparable experiments to evaluate the performance of the VO algorithms with our anti-blur framework under varied blurred images, and the experimental results show that our approach can achieve superior performance comparing to the state-of-the-art methods under the condition with blurred images while not increasing too much computation cost to the original VO algorithms. PMID:27399704

  19. Filtering Based Adaptive Visual Odometry Sensor Framework Robust to Blurred Images.

    PubMed

    Zhao, Haiying; Liu, Yong; Xie, Xiaojia; Liao, Yiyi; Liu, Xixi

    2016-01-01

    Visual odometry (VO) estimation from blurred image is a challenging problem in practical robot applications, and the blurred images will severely reduce the estimation accuracy of the VO. In this paper, we address the problem of visual odometry estimation from blurred images, and present an adaptive visual odometry estimation framework robust to blurred images. Our approach employs an objective measure of images, named small image gradient distribution (SIGD), to evaluate the blurring degree of the image, then an adaptive blurred image classification algorithm is proposed to recognize the blurred images, finally we propose an anti-blurred key-frame selection algorithm to enable the VO robust to blurred images. We also carried out varied comparable experiments to evaluate the performance of the VO algorithms with our anti-blur framework under varied blurred images, and the experimental results show that our approach can achieve superior performance comparing to the state-of-the-art methods under the condition with blurred images while not increasing too much computation cost to the original VO algorithms.

  20. Multi-source adaptation joint kernel sparse representation for visual classification.

    PubMed

    Tao, JianWen; Hu, Wenjun; Wen, Shiting

    2016-04-01

    Most of the existing domain adaptation learning (DAL) methods relies on a single source domain to learn a classifier with well-generalized performance for the target domain of interest, which may lead to the so-called negative transfer problem. To this end, many multi-source adaptation methods have been proposed. While the advantages of using multi-source domains of information for establishing an adaptation model have been widely recognized, how to boost the robustness of the computational model for multi-source adaptation learning has only recently received attention. To address this issue for achieving enhanced performance, we propose in this paper a novel algorithm called multi-source Adaptation Regularization Joint Kernel Sparse Representation (ARJKSR) for robust visual classification problems. Specifically, ARJKSR jointly represents target dataset by a sparse linear combination of training data of each source domain in some optimal Reproduced Kernel Hilbert Space (RKHS), recovered by simultaneously minimizing the inter-domain distribution discrepancy and maximizing the local consistency, whilst constraining the observations from both target and source domains to share their sparse representations. The optimization problem of ARJKSR can be solved using an efficient alternative direction method. Under the framework ARJKSR, we further learn a robust label prediction matrix for the unlabeled instances of target domain based on the classical graph-based semi-supervised learning (GSSL) diagram, into which multiple Laplacian graphs constructed with the ARJKSR are incorporated. The validity of our method is examined by several visual classification problems. Results demonstrate the superiority of our method in comparison to several state-of-the-arts. PMID:26894961

  1. Visual feedback of the moving arm allows complete adaptation of pointing movements to centrifugal and Coriolis forces in human subjects.

    PubMed

    Bourdin, C; Gauthier, G; Blouin, J; Vercher, J L

    2001-03-23

    A classical visuo-manual adaptation protocol carried out on a rotating platform was used to test the ability of subjects to adapt to centrifugal and Coriolis forces when visual feedback of the arm is manipulated. Three main results emerge: (a) an early modification of the initial trajectory of the movements takes place even without visual feedback of the arm; (b) despite the change in the initial trajectory, the new external force decreases the accuracy of the pointing movements when vision is precluded; (c) a visual adaptive phase allows complete adaptation of the pointing movements performed in a modified gravitoinertial field. Therefore vision would be essential for subjects to completely adapt to centrifugal and Coriolis forces. However, other sensory signals (i.e. vestibular and proprioceptive) may constitute the basis for early but partial correction of the pointing movements.

  2. Improving pattern discovery and visualization of SAGE data through poisson-based self-adaptive neural networks.

    PubMed

    Zheng, Huiru; Wang, Haiying; Azuaje, Francisco

    2008-07-01

    Serial analysis of gene expression (SAGE) allows a detailed, simultaneous analysis of thousands of genes without the need for prior, complete gene sequence information. However, due to its inherent complexity and the lack of complete structural and function knowledge, mining vast collections of SAGE data to extract useful knowledge poses great challenges to traditional analytical techniques. Moreover, SAGE data are characterized by a specific statistical model that has not been incorporated into traditional data analysis techniques. The analysis of SAGE data requires advanced, intelligent computational techniques, which consider the underlying biology and the statistical nature of SAGE data. By addressing the statistical properties demonstrated by SAGE data, this paper presents a new self-adaptive neural network, Poisson-based growing self-organizing map (PGSOM), which implements novel weight adaptation and neuron growing strategies. An empirical study of key dynamic mechanisms of PGSOM is presented. It was tested on three datasets, including synthetic and experimental SAGE data. The results indicate that, in comparison to traditional techniques, the PGSOM offers significant advantages in the context of pattern discovery and visualization in SAGE data. The pattern discovery and visualization platform discussed in this paper can be applied to other problem domains where the data are better approximated by a Poisson distribution.

  3. Internal model of gravity for hand interception: parametric adaptation to zero-gravity visual targets on Earth.

    PubMed

    Zago, Myrka; Lacquaniti, Francesco

    2005-08-01

    Internal model is a neural mechanism that mimics the dynamics of an object for sensory motor or cognitive functions. Recent research focuses on the issue of whether multiple internal models are learned and switched to cope with a variety of conditions, or single general models are adapted by tuning the parameters. Here we addressed this issue by investigating how the manual interception of a moving target changes with changes of the visual environment. In our paradigm, a virtual target moves vertically downward on a screen with different laws of motion. Subjects are asked to punch a hidden ball that arrives in synchrony with the visual target. By using several different protocols, we systematically found that subjects do not develop a new internal model appropriate for constant speed targets, but they use the default gravity model and reduce the central processing time. The results imply that adaptation to zero-gravity targets involves a compression of temporal processing through the cortical and subcortical regions interconnected with the vestibular cortex, which has previously been shown to be the site of storage of the internal model of gravity. PMID:15817649

  4. A pilot study of an acupuncture protocol to improve visual function in retinitis pigmentosa patients

    PubMed Central

    Bittner, Ava K; Gould, Jeffrey M; Rosenfarb, Andy; Rozanski, Collin; Dagnelie, Gislin

    2014-01-01

    Background Patients with retinitis pigmentosa are motivated to try complementary or integrative therapies to slow disease progression. Basic science, clinical research and retinitis pigmentosa patients' self-reports support the hypothesis that acupuncture may improve visual function. Methods A prospective, case series, pilot study enrolled 12 adult patients with RP treated at an academic medical centre with a standardised protocol that combined electroacupuncture to the forehead and below the eyes and acupuncture to the body, at 10 half-hour sessions over two weeks. Pre- and post-treatment tests included Early Treatment Diabetic Retinopathy Study visual acuity (VA), Pelli-Robson contrast sensitivity (CS), Goldmann visual fields, and dark-adapted full-field stimulus threshold (FST)(n = 9). Scotopic Sensitivity Tester-1 (SST-1) dark-adaptometry was performed on the last two subjects. Results Six of 12 subjects had measurable, significant visual function improvements after treatment. Three of nine subjects tested with the FST had a significant 10.3 to 17.5 dB (that is, 13- to 53-fold) improvement in both eyes at one week after acupuncture, maintained for at least 10 to 12 months, which was well outside typical test-retest variability (95% CI: 3–3.5 dB) previously found in retinitis pigmentosa. SST-1 dark-adaptation was shortened in both subjects tested on average by 48.5 per cent at one week (range 36 to 62 per cent across 10 to 30 dB), which was outside typical coefficients of variation of less than 30 per cent previously determined in patients with retinitis pigmentosa and normals. Four of the five subjects with psychophysically measured scotopic sensitivity improvements reported subjective improvements in vision at night or in dark environments. One subject had 0.2 logMAR improvement in VA; another had 0.55 logCS improvement. Another subject developed more than 20 per cent improvement in the area of the Goldmann visual fields. The acupuncture protocol was

  5. The Use of Dynamic Visual Acuity as a Functional Test of Gaze Stabilization Following Space Flight

    NASA Technical Reports Server (NTRS)

    Peters, B. T.; Mulavara, A. P.; Brady, R.; Miller, C. A.; Richards, J. T.; Warren, L. E.; Cohen, H. S.; Bloomberg, J. J.

    2006-01-01

    After prolonged exposure to a given gravitational environment the transition to another is accompanied by adaptations in the sensorimotor subsystems, including the vestibular system. Variation in the adaptation time course of these subsystems, and the functional redundancies that exist between them make it difficult to accurately assess the functional capacity and physical limitations of astro/cosmonauts using tests on individual subsystems. While isolated tests of subsystem performance may be the only means to address where interventions are required, direct measures of performance may be more suitable for assessing the operational consequences of incomplete adaptation to changes in the gravitational environment. A test of dynamic visual acuity (DVA) is currently being used in the JSC Neurosciences Laboratory as part of a series of measures to assess the efficacy of a countermeasure to mitigate postflight locomotor dysfunction. In the current protocol, subjects visual acuity is determined using Landolt ring optotypes presented sequentially on a computer display. Visual acuity assessments are made both while standing and while walking at 1.8 m/s on a motorized treadmill. The use of a psychophysical threshold detection algorithm reduces the required number of optotype presentations and the results can be presented immediately after the test. The difference between the walking and standing acuity measures provides a metric of the change in the subject s ability to maintain gaze fixation on the visual target while walking. This functional consequence is observable regardless of the underlying subsystem most responsible for the change. Data from 15 cosmo/astronauts have been collected following long-duration (approx. 6 months) stays in space using a visual target viewing distance of 4.0 meters. An investigation of the group mean shows a change in DVA soon after the flight that asymptotes back to baseline approximately one week following their return to earth. The

  6. Adaptive bandwidth measurements of importance functions for speech intelligibility prediction

    PubMed Central

    Whitmal, Nathaniel A.; DeRoy, Kristina

    2011-01-01

    The Articulation Index (AI) and Speech Intelligibility Index (SII) predict intelligibility scores from measurements of speech and hearing parameters. One component in the prediction is the “importance function,” a weighting function that characterizes contributions of particular spectral regions of speech to speech intelligibility. Previous work with SII predictions for hearing-impaired subjects suggests that prediction accuracy might improve if importance functions for individual subjects were available. Unfortunately, previous importance function measurements have required extensive intelligibility testing with groups of subjects, using speech processed by various fixed-bandwidth low-pass and high-pass filters. A more efficient approach appropriate to individual subjects is desired. The purpose of this study was to evaluate the feasibility of measuring importance functions for individual subjects with adaptive-bandwidth filters. In two experiments, ten subjects with normal-hearing listened to vowel-consonant-vowel (VCV) nonsense words processed by low-pass and high-pass filters whose bandwidths were varied adaptively to produce specified performance levels in accordance with the transformed up-down rules of Levitt [(1971). J. Acoust. Soc. Am. 49, 467–477]. Local linear psychometric functions were fit to resulting data and used to generate an importance function for VCV words. Results indicate that the adaptive method is reliable and efficient, and produces importance function data consistent with that of the corresponding AI/SII importance function. PMID:22225057

  7. The research and application of visual saliency and adaptive support vector machine in target tracking field.

    PubMed

    Chen, Yuantao; Xu, Weihong; Kuang, Fangjun; Gao, Shangbing

    2013-01-01

    The efficient target tracking algorithm researches have become current research focus of intelligent robots. The main problems of target tracking process in mobile robot face environmental uncertainty. They are very difficult to estimate the target states, illumination change, target shape changes, complex backgrounds, and other factors and all affect the occlusion in tracking robustness. To further improve the target tracking's accuracy and reliability, we present a novel target tracking algorithm to use visual saliency and adaptive support vector machine (ASVM). Furthermore, the paper's algorithm has been based on the mixture saliency of image features. These features include color, brightness, and sport feature. The execution process used visual saliency features and those common characteristics have been expressed as the target's saliency. Numerous experiments demonstrate the effectiveness and timeliness of the proposed target tracking algorithm in video sequences where the target objects undergo large changes in pose, scale, and illumination. PMID:24363779

  8. Darwin's beautiful contrivances: evolutionary and functional evidence for floral adaptation.

    PubMed

    Harder, Lawrence D; Johnson, Steven D

    2009-08-01

    Although not 'a professed botanist', Charles Darwin made seminal contributions to understanding of floral and inflorescence function while seeking evidence of adaptation by natural selection. This review considers the legacy of Darwin's ideas from three perspectives. First, we examine the process of floral and inflorescence adaptation by surveying studies of phenotypic selection, heritability and selection responses. Despite widespread phenotypic and genetic capacity for natural selection, only one-third of estimates indicate phenotypic selection. Second, we evaluate experimental studies of floral and inflorescence function and find that they usually demonstrate that reproductive traits represent adaptations. Finally, we consider the role of adaptation in floral diversification. Despite different diversification modes (coevolution, divergent use of the same pollen vector, pollinator shifts), evidence of pollination ecotypes and phylogenetic patterns suggests that adaptation commonly contributes to floral diversity. Thus, this review reveals a contrast between the inconsistent occurrence of phenotypic selection and convincing experimental and comparative evidence that floral traits are adaptations. Rather than rejecting Darwin's hypotheses about floral evolution, this contrast suggests that the tempo of creative selection varies, with strong, consistent selection during episodes of diversification, but relatively weak and inconsistent selection during longer, 'normal' periods of relative phenotypic stasis.

  9. Functional Literacy for Students with Visual Impairments and Significant Cognitive Disabilities: The Perspective of Teachers of Students with Visual Impairments

    ERIC Educational Resources Information Center

    Zebehazy, Kim T.

    2014-01-01

    This study reports opinions and practices of teachers of students with visual impairments (TSVIs) in 34 states regarding functional literacy for students with visual impairments (VIs) and significant cognitive disabilities (SCDs). The survey asked TSVIs to select a definition of functional literacy, indicate agreement with a series of literacy…

  10. Comparative visual function in predatory fishes from the Indian River Lagoon.

    PubMed

    McComb, D Michelle; Kajiura, Stephen M; Horodysky, Andrij Z; Frank, Tamara M

    2013-01-01

    Visual temporal resolution and spectral sensitivity of three coastal teleost species (common snook [Centropomus undecimalis], gray snapper [Lutjanus griseus], and pinfish [Lagodon rhomboides]) were investigated by electroretinogram. Temporal resolution was quantified under photopic and scotopic conditions using response waveform dynamics and maximum critical flicker fusion frequency (CFFmax). Photopic CFFmax was significantly higher than scotopic CFFmax in all species. The snapper had the shortest photoreceptor response latency time (26.7 ms) and the highest CFFmax (47 Hz), suggesting that its eyes are adapted for a brighter photic environment. In contrast, the snook had the longest response latency time (36.8 ms) and lowest CFFmax (40 Hz), indicating that its eyes are adapted for a dimmer environment or nocturnal lifestyle. Species spectral responses ranged from 360 to 620 nm and revealed the presence of rods sensitive to dim and twilight conditions, as well as multiple cone visual pigments providing the basis for color and contrast discrimination. Collectively, our results demonstrate differences in visual function among species inhabiting the Indian River Lagoon system, representative of their unique ecology and life histories.

  11. Image-adapted visually weighted quantization matrices for digital image compression

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B. (Inventor)

    1994-01-01

    A method for performing image compression that eliminates redundant and invisible image components is presented. The image compression uses a Discrete Cosine Transform (DCT) and each DCT coefficient yielded by the transform is quantized by an entry in a quantization matrix which determines the perceived image quality and the bit rate of the image being compressed. The present invention adapts or customizes the quantization matrix to the image being compressed. The quantization matrix comprises visual masking by luminance and contrast techniques and by an error pooling technique all resulting in a minimum perceptual error for any given bit rate, or minimum bit rate for a given perceptual error.

  12. Glial cell development and function in the Drosophila visual system

    PubMed Central

    CHOTARD, CAROLE; SALECKER, IRIS

    2008-01-01

    In the developing nervous system, building a functional neuronal network relies on coordinating the formation, specification and survival to diverse neuronal and glial cell subtypes. The establishment of neuronal connections further depends on sequential neuron–neuron and neuron–glia interactions that regulate cell-migration patterns and axon guidance. The visual system of Drosophila has a highly regular, retinotopic organization into reiterated interconnected synaptic circuits. It is therefore an excellent invertebrate model to investigate basic cellular strategies and molecular determinants regulating the different developmental processes that lead to network formation. Studies in the visual system have provided important insights into the mechanisms by which photoreceptor axons connect with their synaptic partners within the optic lobe. In this review, we highlight that this system is also well suited for uncovering general principles that underlie glial cell biology. We describe the glial cell subtypes in the visual system and discuss recent findings about their development and migration. Finally, we outline the pivotal roles of glial cells in mediating neural circuit assembly, boundary formation, neural proliferation and survival, as well as synaptic function. PMID:18333286

  13. Shape outlier detection and visualization for functional data: the outliergram.

    PubMed

    Arribas-Gil, Ana; Romo, Juan

    2014-10-01

    We propose a new method to visualize and detect shape outliers in samples of curves. In functional data analysis, we observe curves defined over a given real interval and shape outliers may be defined as those curves that exhibit a different shape from the rest of the sample. Whereas magnitude outliers, that is, curves that lie outside the range of the majority of the data, are in general easy to identify, shape outliers are often masked among the rest of the curves and thus difficult to detect. In this article, we exploit the relationship between two measures of depth for functional data to help to visualize curves in terms of shape and to develop an algorithm for shape outlier detection. We illustrate the use of the visualization tool, the outliergram, through several examples and analyze the performance of the algorithm on a simulation study. Finally, we apply our method to assess cluster quality in a real set of time course microarray data. PMID:24622037

  14. Balance Functional Assessment in People with Visual Impairment.

    PubMed

    Rutkowska, Izabela; Bednarczuk, Grzegorz; Molik, Bartosz; Morgulec-Adamowicz, Natalia; Marszałek, Jolanta; Kaźmierska-Kowalewska, Kalina; Koc, Krzysztof

    2015-11-22

    The aims of this study were twofold: to assess the level of balance of people with visual impairment against the BOT-2 standard scores for the able-bodied, and to identify in which trials subjects had the greatest difficulties in maintaining balance with respect to the degree of vision loss and age categories. One hundred twenty-seven subjects with visual impairment aged 6-16 years, participated in the study (68 girls and 59 boys). The division for partially sighted people (61) and the blind (66) was made according to the WHO classification. Functional balance assessment was made using a balance subtest from the Bruininks-Oseretsky test. Significant relationships were noticed between age and the level of balance (χ2 = 8.35 p <0,05), as well as between the degree of vision loss and the level of balance (χ2 = 24.53 p <0,001). The level of balance of almost all blind subjects was below (20%) or well-below (60%) the average for the able-bodied. The subjects' ability to maintain balance was not dependent on gender and was associated primarily with the degree of visual impairment and age. Partially sighted people had better balance than the blind and the decrease in visual acuity resulted in reduction of balance skills. The lowest level of balance was observed in blind students aged 7-11 years. Elaborating physical fitness improvement programs for children and adolescents with visual impairment, diversity of age, the degree of vision loss and limitations of ablility to maintain balance should be taken into account. PMID:26834878

  15. Binocular adaptive optics vision analyzer with full control over the complex pupil functions.

    PubMed

    Schwarz, Christina; Prieto, Pedro M; Fernández, Enrique J; Artal, Pablo

    2011-12-15

    We present a binocular adaptive optics vision analyzer fully capable of controlling both amplitude and phase of the two complex pupil functions in each eye of the subject. A special feature of the instrument is its comparatively simple setup. A single reflective liquid crystal on silicon spatial light modulator working in pure phase modulation generates the phase profiles for both pupils simultaneously. In addition, another liquid crystal spatial light modulator working in transmission operates in pure intensity modulation to produce a large variety of pupil masks for each eye. Subjects perform visual tasks through any predefined variations of the complex pupil function for both eyes. As an example of the system efficiency, we recorded images of the stimuli through the system as they were projected at the subject's retina. This instrument proves to be extremely versatile for designing and testing novel ophthalmic elements and simulating visual outcomes, as well as for further research of binocular vision.

  16. The functional basis of adaptive evolution in chemostats

    PubMed Central

    Gresham, David; Hong, Jungeui

    2014-01-01

    Two of the central problems in biology are determining the molecular basis of adaptive evolution and understanding how cells regulate their growth. The chemostat is a device for culturing cells that provides great utility in tackling both of these problems: it enables precise control of the selective pressure under which organisms evolve and it facilitates experimental control of cell growth rate. The aim of this review is to synthesize results from studies of the functional basis of adaptive evolution in long-term chemostat selections using Escherichia coli and Saccharomyces cerevisiae. We describe the principle of the chemostat, provide a summary of studies of experimental evolution in chemostats, and use these studies to assess our current understanding of selection in the chemostat. Functional studies of adaptive evolution in chemostats provide a unique means of interrogating the genetic networks that control cell growth, which complements functional genomic approaches and quantitative trait loci (QTL) mapping in natural populations. An integrated approach to the study of adaptive evolution that accounts for both molecular function and evolutionary processes is critical to advancing our understanding of evolution. By renewing efforts to integrate these two research programs, experimental evolution in chemostats is ideally suited to extending the functional synthesis to the study of genetic networks. PMID:25098268

  17. VAP-CAP: A Procedure to Assess the Visual Functioning of Young Visually Impaired Children.

    ERIC Educational Resources Information Center

    Blanksby, D. C.; Langford, P. E.

    1993-01-01

    This article describes a visual assessment procedure (VAP) which evaluates capacity, attention, and processing (CAP) of infants and preschool children with visual impairments. The two-level battery considers, first, visual capacity and basic visual attention and, second, visual perceptual and cognitive abilities. A theoretical analysis of the…

  18. The functional cycle of visual arrestins in photoreceptor cells

    PubMed Central

    Gurevich, Vsevolod V.; Hanson, Susan M.; Song, Xiufeng; Vishnivetskiy, Sergey A.; Gurevich, Eugenia V.

    2011-01-01

    Visual arrestin-1 plays a key role in the rapid and reproducible shutoff of rhodopsin signaling. Its highly selective binding to light-activated phosphorylated rhodopsin is an integral part of the functional perfection of rod photoreceptors. Structure-function studies revealed key elements of the sophisticated molecular mechanism ensuring arrestin-1 selectivity and paved the way to the targeted manipulation of the arrestin-1 molecule to design mutants that can compensate for congenital defects in rhodopsin phosphorylation. Arrestin-1 self-association and light-dependent translocation in photoreceptor cells work together to keep a constant supply of active rhodopsin-binding arrestin-1 monomer in the outer segment. Recent discoveries of arrestin-1 interaction with other signaling proteins suggest that it is a much more versatile signaling regulator than previously thought, affecting the function of the synaptic terminals and rod survival. Elucidation of the fine molecular mechanisms of arrestin-1 interactions with rhodopsin and other binding partners is necessary for the comprehensive understanding of rod function and for devising novel molecular tools and therapeutic approaches to the treatment of visual disorders. PMID:21824527

  19. Human brain functional MRI and DTI visualization with virtual reality.

    PubMed

    Chen, Bin; Moreland, John; Zhang, Jingyu

    2011-12-01

    Magnetic resonance diffusion tensor imaging (DTI) and functional MRI (fMRI) are two active research areas in neuroimaging. DTI is sensitive to the anisotropic diffusion of water exerted by its macromolecular environment and has been shown useful in characterizing structures of ordered tissues such as the brain white matter, myocardium, and cartilage. The diffusion tensor provides two new types of information of water diffusion: the magnitude and the spatial orientation of water diffusivity inside the tissue. This information has been used for white matter fiber tracking to review physical neuronal pathways inside the brain. Functional MRI measures brain activations using the hemodynamic response. The statistically derived activation map corresponds to human brain functional activities caused by neuronal activities. The combination of these two methods provides a new way to understand human brain from the anatomical neuronal fiber connectivity to functional activities between different brain regions. In this study, virtual reality (VR) based MR DTI and fMRI visualization with high resolution anatomical image segmentation and registration, ROI definition and neuronal white matter fiber tractography visualization and fMRI activation map integration is proposed. Rationale and methods for producing and distributing stereoscopic videos are also discussed. PMID:23256049

  20. Dynamic Visual Acuity: a Functionally Relevant Research Tool

    NASA Technical Reports Server (NTRS)

    Peters, Brian T.; Brady, Rachel A.; Miller, Chris A.; Mulavara, Ajitkumar P.; Wood, Scott J.; Cohen, Helen S.; Bloomberg, Jacob J.

    2010-01-01

    Coordinated movements between the eyes and head are required to maintain a stable retinal image during head and body motion. The vestibulo-ocular reflex (VOR) plays a significant role in this gaze control system that functions well for most daily activities. However, certain environmental conditions or interruptions in normal VOR function can lead to inadequate ocular compensation, resulting in oscillopsia, or blurred vision. It is therefore possible to use acuity to determine when the environmental conditions, VOR function, or the combination of the two is not conductive for maintaining clear vision. Over several years we have designed and tested several tests of dynamic visual acuity (DVA). Early tests used the difference between standing and walking acuity to assess decrements in the gaze stabilization system after spaceflight. Supporting ground-based studies measured the responses from patients with bilateral vestibular dysfunction and explored the effects of visual target viewing distance and gait cycle events on walking acuity. Results from these studies show that DVA is affected by spaceflight, is degraded in patients with vestibular dysfunction, changes with target distance, and is not consistent across the gait cycle. We have recently expanded our research to include studies in which seated subjects are translated or rotated passively. Preliminary results from this work indicate that gaze stabilization ability may differ between similar active and passive conditions, may change with age, and can be affected by the location of the visual target with respect to the axis of motion. Use of DVA as a diagnostic tool is becoming more popular but the functional nature of the acuity outcome measure also makes it ideal for identifying conditions that could lead to degraded vision. By doing so, steps can be taken to alter the problematic environments to improve the man-machine interface and optimize performance.

  1. Executive Function and Adaptive Behavior in Muenke Syndrome

    PubMed Central

    Yarnell, Colin M.P.; Addissie, Yonit A.; Hadley, Donald W.; Sacoto, Maria J. Guillen; Agochukwu, Nneamaka B.; Hart, Rachel A.; Wiggs, Edythe A.; Platte, Petra; Paelecke, Yvonne; Collmann, Hartmut; Schweitzer, Tilmann; Kruszka, Paul; Muenke, Maximilian

    2015-01-01

    Objectives To investigate executive function and adaptive behavior in persons with Muenke syndrome using validated instruments with a normative population and unaffected siblings as controls. Study design Participants in a cross sectional study included individuals with Muenke syndrome (P250R mutation in FGFR3) and their mutation negative siblings. Participants completed validated assessments of executive functioning (Behavior Rating Inventory of Executive Function; BRIEF) and adaptive behavior skills (Adaptive Behavior Assessment System; ABAS-II). Results Forty-four FGFR3 mutation positive individuals, median age 9 years, range 7 months to 52 years were enrolled. Additionally, 10 unaffected siblings were used as controls (5 males, 5 females, median age of 13 years, range 3 to 18 years). For the General Executive Composite scale of the BRIEF, 32.1% of the cohort had scores greater than +1.5 SD, signifying ―Potential Clinical Significance. For the General Adaptive Composite of the ABAS-II, 28.2% of affected individuals scored in the 3rd – 8th percentile of the normative population and 56.4% were below the ―Average category (less than the 25th percentile). Multiple regression analysis did not show that craniosynostosis was a predictor of BRIEF (P = 0.7) and ABAS-II scores (P = 0.7). In the sibling pair analysis, affected siblings performed significantly poorer in the BRIEF General Executive Composite and the ABAS-II General Adaptive Composite. Conclusion Individuals with Muenke syndrome are at an increased risk for developing adaptive and executive function behavioral changes when compared with a normative population and unaffected siblings. PMID:26028288

  2. Successful tactile based visual sensory substitution use functions independently of visual pathway integrity

    PubMed Central

    Lee, Vincent K.; Nau, Amy C.; Laymon, Charles; Chan, Kevin C.; Rosario, Bedda L.; Fisher, Chris

    2014-01-01

    Purpose: Neuronal reorganization after blindness is of critical interest because it has implications for the rational prescription of artificial vision devices. The purpose of this study was to distinguish the microstructural differences between perinatally blind (PB), acquired blind (AB), and normally sighted controls (SCs) and relate these differences to performance on functional tasks using a sensory substitution device (BrainPort). Methods: We enrolled 52 subjects (PB n = 11; AB n = 35; SC n = 6). All subjects spent 15 h undergoing BrainPort device training. Outcomes of light perception, motion, direction, temporal resolution, grating, and acuity were tested at baseline and after training. Twenty-six of the subjects were scanned with a three Tesla MRI scanner for diffusion tensor imaging (DTI), and with a positron emission tomography (PET) scanner for mapping regional brain glucose consumption during sensory substitution function. Non-parametric models were used to analyze fractional anisotropy (FA; a DTI measure of microstructural integrity) of the brain via region-of-interest (ROI) analysis and tract-based spatial statistics (TBSS). Results: At baseline, all subjects performed all tasks at chance level. After training, light perception, time resolution, location and grating acuity tasks improved significantly for all subject groups. ROI and TBSS analyses of FA maps show areas of statistically significant differences (p ≤ 0.025) in the bilateral optic radiations and some visual association connections between all three groups. No relationship was found between FA and functional performance with the BrainPort. Discussion: All subjects showed performance improvements using the BrainPort irrespective of nature and duration of blindness. Definite brain areas with significant microstructural integrity changes exist among PB, AB, and NC, and these variations are most pronounced in the visual pathways. However, the use of sensory substitution devices is feasible

  3. Hypnotizability as a Function of Repression, Adaptive Regression, and Mood

    ERIC Educational Resources Information Center

    Silver, Maurice Joseph

    1974-01-01

    Forty male undergraduates were assessed in a personality assessment session and a hypnosis session. The personality traits studied were repressive style and adaptive regression, while the transitory variable was mood prior to hypnosis. Hypnotizability was a significant interactive function of repressive style and mood, but not of adaptive…

  4. Preschooler Sleep Patterns Related to Cognitive and Adaptive Functioning

    ERIC Educational Resources Information Center

    Keefe-Cooperman, Kathleen; Brady-Amoon, Peggy

    2014-01-01

    Research Findings: Preschoolers' sleep patterns were examined related to cognitive and adaptive functioning. The sample consisted of 874 typically developing preschool children with a mean age of 40.01 months. Parent/caregiver reports of children's sleep pattern factors, Stanford-Binet 5 intelligence scale scores, and Behavior Assessment…

  5. Symmetry-adapted Wannier functions in the maximal localization procedure

    NASA Astrophysics Data System (ADS)

    Sakuma, R.

    2013-06-01

    A procedure to construct symmetry-adapted Wannier functions in the framework of the maximally localized Wannier function approach [Marzari and Vanderbilt, Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.56.12847 56, 12847 (1997); Souza, Marzari, and Vanderbilt, Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.65.035109 65, 035109 (2001)] is presented. In this scheme, the minimization of the spread functional of the Wannier functions is performed with constraints that are derived from symmetry properties of the specified set of the Wannier functions and the Bloch functions used to construct them, therefore one can obtain a solution that does not necessarily yield the global minimum of the spread functional. As a test of this approach, results of atom-centered Wannier functions for GaAs and Cu are presented.

  6. Report on Adaptive Force, A Specific Neuromuscular Function.

    PubMed

    Hoff, Marko; Schaefer, Laura; Heinke, Nancy; Bittmann, Frank

    2015-09-11

    In real life motions, as well as in sports, the adaptation of the neuromuscular systems to externally applied forces plays an important role. The term Adaptive Force (AF) shall characterize the ability of the nerve-muscle-system to adapt to impacting external forces during isometric and eccentric muscle action. The focus in this paper is on the concept of this neuromuscular action, which is not yet described in this way. A measuring system was constructed and evaluated for this specific neuromuscular function, but only the main information of the evaluation of the measuring system and the preliminary reference values are mentioned here, while an article with detailed description will be published separately. This paper concentrates on the three following points: 1) What is the peculiarity of this neuromuscular function, introduced as AF? 2) Is the measuring system able to capture its specific characteristics and which phases of measurement occur? 3) It seems reasonable to discuss if AF can be distinguished and classified among the known force concepts. The article describes the measuring system and how it is able to capture special features of real life motions like submaximal intensities and the subjects' option to react adequately on external varying forces. Furthermore, within one measurement the system records three different force qualities: the isometric submaximal Adaptive Force (AFiso), the maximal isometric Adaptive Force (AFisomax) and the maximal eccentric Adaptive Force (AFeccmax). Each of these phases provide different and unique information on the nerve-muscle-system that are discussed in detail. Important, in terms of the Adaptive Force, seems to be the combination of conditional and coordinative abilities. This project was funded by the Federal Ministry of Economy and Technology (Project ZIM KF2262301FO9). PMID:26913155

  7. An indirect adaptive neural control of a visual-based quadrotor robot for pursuing a moving target.

    PubMed

    Shirzadeh, Masoud; Amirkhani, Abdollah; Jalali, Aliakbar; Mosavi, Mohammad R

    2015-11-01

    This paper aims to use a visual-based control mechanism to control a quadrotor type aerial robot which is in pursuit of a moving target. The nonlinear nature of a quadrotor, on the one hand, and the difficulty of obtaining an exact model for it, on the other hand, constitute two serious challenges in designing a controller for this UAV. A potential solution for such problems is the use of intelligent control methods such as those that rely on artificial neural networks and other similar approaches. In addition to the two mentioned problems, another problem that emerges due to the moving nature of a target is the uncertainty that exists in the target image. By employing an artificial neural network with a Radial Basis Function (RBF) an indirect adaptive neural controller has been designed for a quadrotor robot in search of a moving target. The results of the simulation for different paths show that the quadrotor has efficiently tracked the moving target.

  8. Novel in vivo techniques to visualize kidney anatomy and function.

    PubMed

    Peti-Peterdi, János; Kidokoro, Kengo; Riquier-Brison, Anne

    2015-07-01

    Intravital imaging using multiphoton microscopy (MPM) has become an increasingly popular and widely used experimental technique in kidney research over the past few years. MPM allows deep optical sectioning of the intact, living kidney tissue with submicron resolution, which is unparalleled among intravital imaging approaches. MPM has solved a long-standing critical technical barrier in renal research to study several complex and inaccessible cell types and anatomical structures in vivo in their native environment. Comprehensive and quantitative kidney structure and function MPM studies helped our better understanding of the cellular and molecular mechanisms of the healthy and diseased kidney. This review summarizes recent in vivo MPM studies with a focus on the glomerulus and the filtration barrier, although select, glomerulus-related renal vascular and tubular functions are also mentioned. The latest applications of serial MPM of the same glomerulus in vivo, in the intact kidney over several days, during the progression of glomerular disease are discussed. This visual approach, in combination with genetically encoded fluorescent markers of cell lineage, has helped track the fate and function (e.g., cell calcium changes) of single podocytes during the development of glomerular pathologies, and provided visual proof for the highly dynamic, rather than static, nature of the glomerular environment. Future intravital imaging applications have the promise to further push the limits of optical microscopy, and to advance our understanding of the mechanisms of kidney injury. Also, MPM will help to study new mechanisms of tissue repair and regeneration, a cutting-edge area of kidney research.

  9. The functional anatomy of sleep-dependent visual skill learning.

    PubMed

    Walker, Matthew P; Stickgold, Robert; Jolesz, Ferenc A; Yoo, Seung-Schik

    2005-11-01

    Learning of procedural skills develops gradually, with performance improving significantly with practice. But improvement on some tasks, including a visual texture discrimination task, continues in the absence of further practice, expressly during periods of sleep and not across equivalent waking episodes. Here we report that the brain activation revealed significantly different patterns of performance-related functional activity following a night of sleep relative to 1 h post-training without intervening sleep. When task activation patterns after a night of sleep were compared with activation patterns without intervening sleep (1 h post-training), significant regions of increased signal intensity were observed in the primary visual cortex, the occipital temporal junction, the medial temporal lobe and the inferior parietal lobe. In contrast, a region of decreased signal intensity was found in the right temporal pole. Corroborating these condition differences, correlations between behavioural performance and brain activation revealed significantly different patterns of performance-related functional activity following a night of sleep relative to those without intervening sleep. Together, these data provide evidence of overnight bi-directional changes in functional anatomy, differences that may form the neural basis of sleep-dependent learning expressed on this task.

  10. Visual acuity-adaptive detail enhancement and shadow noise reduction for iCAM06-based HDR imaging

    NASA Astrophysics Data System (ADS)

    Lee, Geun-Young; Lee, Sung-Hak; Kwon, Hyuk-Ju; Sohng, Kyu-Ik

    2015-04-01

    An image appearance model is extremely useful for high-dynamic-range image (HDRI) rendering. However, the base-detail separation and the tone compression process for tonal control cause degradations in image quality. This study focuses on the de-saturation, reduced contrast, and noise problems in dark regions that occur through HDRI-rendering. First, we discuss de-saturation compensation using a bilateral filter that is based on the visual acuity characteristics of various illuminant levels. The edge stop function of the bilateral filter in iCAM06 is adaptively modified according to the illuminant information. Second, to reduce the magnified noise in the dark regions caused by tone mapping, the shadow regions are detected by an object's intensity and illuminant level, and then the noise of the detected regions is reduced using a luminance-adaptive coring function. Finally, we confirmed the enhanced color saturation, image contrast, and reduced noise in shadow regions through the application of the proposed methods.

  11. Motor adaptation in complex sports - the influence of visual context information on the adaptation of the three-point shot to altered task demands in expert basketball players.

    PubMed

    Stöckel, Tino; Fries, Udo

    2013-01-01

    We examined the influence of visual context information on skilled motor behaviour and motor adaptation in basketball. The rules of basketball in Europe have recently changed, such that that the distance for three-point shots increased from 6.25 m to 6.75 m. As such, we tested the extent to which basketball experts can adapt to the longer distance when a) only the unfamiliar, new three-point line was provided as floor markings (NL group), or b) the familiar, old three-point line was provided in addition to the new floor markings (OL group). In the present study 20 expert basketball players performed 40 three-point shots from 6.25 m and 40 shots from 6.75 m. We assessed the percentage of hits and analysed the landing position of the ball. Results showed better adaptation of throwing performance to the longer distance when the old three-point line was provided as a visual landmark, compared to when only the new three-point line was provided. We hypothesise that the three-point line delivered relevant information needed to successfully adapt to the greater distance in the OL group, whereas it disturbed performance and ability to adapt in the NL group. The importance of visual landmarks on motor adaptation in basketball throwing is discussed relative to the influence of other information sources (i.e. angle of elevation relative to the basket) and sport practice.

  12. Genomic islands predict functional adaptation in marine actinobacteria

    SciTech Connect

    Penn, Kevin; Jenkins, Caroline; Nett, Markus; Udwary, Daniel; Gontang, Erin; McGlinchey, Ryan; Foster, Brian; Lapidus, Alla; Podell, Sheila; Allen, Eric; Moore, Bradley; Jensen, Paul

    2009-04-01

    Linking functional traits to bacterial phylogeny remains a fundamental but elusive goal of microbial ecology 1. Without this information, it becomes impossible to resolve meaningful units of diversity and the mechanisms by which bacteria interact with each other and adapt to environmental change. Ecological adaptations among bacterial populations have been linked to genomic islands, strain-specific regions of DNA that house functionally adaptive traits 2. In the case of environmental bacteria, these traits are largely inferred from bioinformatic or gene expression analyses 2, thus leaving few examples in which the functions of island genes have been experimentally characterized. Here we report the complete genome sequences of Salinispora tropica and S. arenicola, the first cultured, obligate marine Actinobacteria 3. These two species inhabit benthic marine environments and dedicate 8-10percent of their genomes to the biosynthesis of secondary metabolites. Despite a close phylogenetic relationship, 25 of 37 secondary metabolic pathways are species-specific and located within 21 genomic islands, thus providing new evidence linking secondary metabolism to ecological adaptation. Species-specific differences are also observed in CRISPR sequences, suggesting that variations in phage immunity provide fitness advantages that contribute to the cosmopolitan distribution of S. arenicola 4. The two Salinispora genomes have evolved by complex processes that include the duplication and acquisition of secondary metabolite genes, the products of which provide immediate opportunities for molecular diversification and ecological adaptation. Evidence that secondary metabolic pathways are exchanged by Horizontal Gene Transfer (HGT) yet are fixed among globally distributed populations 5 supports a functional role for their products and suggests that pathway acquisition represents a previously unrecognized force driving bacterial diversification

  13. Adapting an existing visualization application for browser-based deployment: A case study from the Tropical Rainfall Measuring Mission

    NASA Astrophysics Data System (ADS)

    Kelley, Owen A.

    2013-02-01

    THOR, the Tool for High-resolution Observation Review, is a data viewer for the Tropical Rainfall Measuring Mission (TRMM) and the upcoming Global Precipitation Measurement (GPM) mission. THOR began as a desktop application, but now it can be accessed with a web browser, making THOR one of the first online tools for visualizing TRMM satellite data (http://pps.gsfc.nasa.gov/thor). In this effort, the reuse of the existing visualization code was maximized and the complexity of new code was minimized by avoiding unnecessary functionality, frameworks, or libraries. The simplicity of this approach makes it potentially attractive to researchers wishing to adapt their visualization applications for online deployment. To enable THOR to run within a web browser, three new pieces of code are written. First, the graphical user interface (GUI) of the desktop application is translated into HTML, JavaScript, and CSS. Second, a simple communication mechanism is developed over HTTP. Third, a virtual GUI is created on the server that interfaces with the image-generating routines of the existing desktop application so that these routines do not need to be modified for online use. While the basic functionality of THOR is now available online, prototyping is ongoing for enhanced 3D imaging and other aspects of both THOR Desktop and THOR Online. Because TRMM data products are complex and periodically reprocessed with improved algorithms, having a tool such as THOR is important to analysts at the Precipitation Processing System where the algorithms are tested and the products generated, stored, and distributed. Researchers also have found THOR useful for taking a first look at individual files before writing their own software to perform specialized calculations and analyses.

  14. A MATLAB function for 3-D and 4-D topographical visualization in geosciences

    NASA Astrophysics Data System (ADS)

    Zekollari, Harry

    2016-04-01

    Combining topographical information and spatially varying variables in visualizations is often crucial and inherent to geoscientific problems. Despite this, it is often an impossible or a very time-consuming and difficult task to create such figures by using classic software packages. This is also the case in the widely used numerical computing environment MATLAB. Here a MATLAB function is introduced for plotting a variety of natural environments with a pronounced topography, such as for instance glaciers, volcanoes and lakes in mountainous regions. Landscapes can be visualized in 3-D, with a single colour defining a featured surface type (e.g. ice, snow, water, lava), or with a colour scale defining the magnitude of a variable (e.g. ice thickness, snow depth, water depth, surface velocity, gradient, elevation). As an input only the elevation of the subsurface (typically the bedrock) and the surface are needed, which can be complemented by various input parameters in order to adapt the figure to specific needs. The figures are particularly suited to make time-evolving animations of natural processes, such as for instance a glacier retreat or a lake drainage event. Several visualization examples will be provided alongside with animations. The function, which is freely available for download, only requires the basic package of MATLAB and can be run on any standard stationary or portable personal computer.

  15. Impact of Adaptive Materials on Teachers and their Students with Visual Impairments in Secondary Science and Mathematics Classes

    NASA Astrophysics Data System (ADS)

    Rule, Audrey C.; Stefanich, Greg P.; Boody, Robert M.; Peiffer, Belinda

    2011-04-01

    Science, technology, engineering, and mathematics (STEM) fields, important in today's world, are underrepresented by students with disabilities. Students with visual impairments, although cognitively similar to sighted peers, face challenges as STEM subjects are often taught using visuals. They need alternative forms of access such as enlarged or audio-converted text, tactile graphics, and involvement in hands-on science. This project focused on increasing teacher awareness of and providing funds for the purchase of supplemental adaptive resources, supplies, and equipment. We examined attitude and instructional changes across the year of the programme in 15 science and mathematics teachers educating students with visual impairments. Positive changes were noted from pretest to posttest in student and teacher perspectives, and in teacher attitudes towards students with disabilities in STEM classes. Teachers also provided insights into their challenges and successes through a reflective narrative. Several adolescent students resisted accommodations to avoid appearing conspicuous to peers. Teachers implemented three strategies to address this: providing the adaptations to all students in the class; convincing the student of the need for adaptation; and involving the class in understanding and accepting the student's impairment. A variety of teacher-created adaptations for various science and mathematics labs are reported. Another finding was many adaptations provided for the student with visual impairment benefitted the entire class. This study supports the claim that given knowledgeable, supportive teachers, and with appropriate accommodations such as tactile or auditory materials, students with visual impairments can be as successful and engaged as other students in science and mathematics.

  16. Object tracking using adaptive covariance descriptor and clustering-based model updating for visual surveillance.

    PubMed

    Qin, Lei; Snoussi, Hichem; Abdallah, Fahed

    2014-05-26

    We propose a novel approach for tracking an arbitrary object in video sequences for visual surveillance. The first contribution of this work is an automatic feature extraction method that is able to extract compact discriminative features from a feature pool before computing the region covariance descriptor. As the feature extraction method is adaptive to a specific object of interest, we refer to the region covariance descriptor computed using the extracted features as the adaptive covariance descriptor. The second contribution is to propose a weakly supervised method for updating the object appearance model during tracking. The method performs a mean-shift clustering procedure among the tracking result samples accumulated during a period of time and selects a group of reliable samples for updating the object appearance model. As such, the object appearance model is kept up-to-date and is prevented from contamination even in case of tracking mistakes. We conducted comparing experiments on real-world video sequences, which confirmed the effectiveness of the proposed approaches. The tracking system that integrates the adaptive covariance descriptor and the clustering-based model updating method accomplished stable object tracking on challenging video sequences.

  17. Object Tracking Using Adaptive Covariance Descriptor and Clustering-Based Model Updating for Visual Surveillance

    PubMed Central

    Qin, Lei; Snoussi, Hichem; Abdallah, Fahed

    2014-01-01

    We propose a novel approach for tracking an arbitrary object in video sequences for visual surveillance. The first contribution of this work is an automatic feature extraction method that is able to extract compact discriminative features from a feature pool before computing the region covariance descriptor. As the feature extraction method is adaptive to a specific object of interest, we refer to the region covariance descriptor computed using the extracted features as the adaptive covariance descriptor. The second contribution is to propose a weakly supervised method for updating the object appearance model during tracking. The method performs a mean-shift clustering procedure among the tracking result samples accumulated during a period of time and selects a group of reliable samples for updating the object appearance model. As such, the object appearance model is kept up-to-date and is prevented from contamination even in case of tracking mistakes. We conducted comparing experiments on real-world video sequences, which confirmed the effectiveness of the proposed approaches. The tracking system that integrates the adaptive covariance descriptor and the clustering-based model updating method accomplished stable object tracking on challenging video sequences. PMID:24865883

  18. Bayesian Adaptive Estimation of Psychometric Functions in Noisy Environments

    NASA Astrophysics Data System (ADS)

    Aihara, Takatsugu; Kitajo, Keiichi; Nozaki, Daichi; Yamamoto, Yoshiharu

    2007-07-01

    We propose a new psychometric model incorporating noise as well as stimulus effects, based on recent findings that noise can improve human perception via a mechanism of stochastic resonance (SR). This model assumes that the psychometric function can be regarded as a bivariate function of noise and stimulus intensities. The algorithm of the Ψ Bayesian adaptive estimation method is modified so that it is applicable to our new model. In computer simulations, our new procedure successfully estimates the bivariate psychometric function within a few hundred trials. We also demonstrate several examples in which the procedure is applied to actual psychophysical experiments.

  19. Bilingual brain organization: a functional magnetic resonance adaptation study.

    PubMed

    Klein, Denise; Zatorre, Robert J; Chen, Jen-Kai; Milner, Brenda; Crane, Joelle; Belin, Pascal; Bouffard, Marc

    2006-05-15

    We used functional magnetic resonance adaptation (fMRA) to examine whether intra-voxel functional specificity may be present for first (L1)- and second (L2)-language processing. We examined within- and across-language adaptation for spoken words in English-French bilinguals who had acquired their L2 after the age of 4 years. Subjects listened to words presented binaurally through earphones. In two control conditions (one for each language), six identical words were presented to obtain maximal adaptation. The remaining six conditions each consisted of five words that were identical followed by a sixth word that differed. There were thus a total of eight experimental conditions: no-change (sixth word identical to first five); a change in meaning (different final word in L1); a change in language (final item translated into L2); a change in meaning and language (different final word in L2). The same four conditions were presented in L2. The study also included a silent baseline. At the neural level, within- and across-language word changes resulted in release from adaptation. This was true for separate analyses of L1 and L2. We saw no evidence for greater recovery from adaptation in across-language relative to within-language conditions. While many brain regions were common to L1 and L2, we did observe differences in adaptation for forward translation (L1 to L2) as compared to backward translation (L2 to L1). The results support the idea that, at the lexical level, the neural substrates for L1 and L2 in bilinguals are shared, but with some populations of neurons within these shared regions showing language-specific responses.

  20. The effect of cycloplegia on the visual contrast sensitivity function.

    PubMed

    Bachman, W G; Behar, I

    1987-04-01

    Contrast sensitivity assessment is one of several emergent techniques being considered for inclusion in a visual standards test battery for the Army, particularly for the evaluation of Army aviators. Since a cycloplegic refraction is required for initial selection of candidates for Class I and Class IA flying duty, it is important to determine what effect, if any, cycloplegia has on the contrast sensitivity function. There were 12 subjects tested, all officers in preparation for flight training who had passed a recent Class I flight physical. Contrast sensitivity functions were obtained under normal ambient conditions and in the presence of a glare source both under manifest and cycloplegic conditions. Cycloplegia produced a small reduction in contrast sensitivity under normal ambient conditions, and a greater reduction under glare conditions. For both conditions, the cycloplegia effect was greater for the higher spatial frequency gratings than for the lower.

  1. Visualizing the Functional Heterogeneity of Muscle Stem Cells.

    PubMed

    Kitajima, Yasuo; Ogawa, Shizuka; Ono, Yusuke

    2016-01-01

    Skeletal muscle stem cells are satellite cells that play crucial roles in tissue repair and regeneration after muscle injury. Accumulating evidence indicates that satellite cells are genetically and functionally heterogeneous, even within the same muscle. A small population of satellite cells possesses "stemness" and exhibits the remarkable ability to regenerate through robust self-renewal when transplanted into a regenerating muscle niche. In contrast, not all satellite cells self-renew. For example, some cells are committed myogenic progenitors that immediately undergo myogenic differentiation with minimal cell division after activation. Recent studies illuminate the cellular and molecular characteristics of the functional heterogeneity among satellite cells. To evaluate heterogeneity and stem cell dynamics, here we describe methods to conduct a clonal analysis of satellite cells and to visualize a slowly dividing cell population. PMID:27052612

  2. Windows into the Visual Brain: New Discoveries about the Visual System, Its Functions, and Implications for Practitioners

    ERIC Educational Resources Information Center

    Jan, James E.; Heaven, Roberta K. B.; Matsuba, Carey; Langley, M. Beth; Roman-Lantzy, Christine; Anthony, Tanni L

    2013-01-01

    Introduction: In recent years, major progress has been made in understanding the human visual system because of new investigative techniques. These developments often contradict older concepts about visual function. Methods: A detailed literature search and interprofessional discussions. Results: Recent innovative neurological tests are described…

  3. Neurophysiological assessment of auditory, peripheral nerve, somatosensory, and visual system functions after developmental exposure to ethanol vapors.

    PubMed

    Boyes, William K; Degn, Laura L; Martin, Sheppard A; Lyke, Danielle F; Hamm, Charles W; Herr, David W

    2014-01-01

    Ethanol-blended gasoline entered the market in response to demand for domestic renewable energy sources, and may result in increased inhalation of ethanol vapors in combination with other volatile gasoline constituents. It is important to understand potential risks of inhalation of ethanol vapors by themselves, and also as a baseline for evaluating the risks of ethanol combined with a complex mixture of hydrocarbon vapors. Because sensory dysfunction has been reported after developmental exposure to ethanol, we evaluated the effects of developmental exposure to ethanol vapors on neurophysiological measures of sensory function as a component of a larger project evaluating developmental ethanol toxicity. Pregnant Long-Evans rats were exposed to target concentrations 0, 5000, 10,000, or 21,000 ppm ethanol vapors for 6.5h/day over GD9-GD20. Sensory evaluations of male offspring began between PND106 and PND128. Peripheral nerve function (compound action potentials, nerve conduction velocity (NCV)), somatosensory (cortical and cerebellar evoked potentials), auditory (brainstem auditory evoked responses), and visual evoked responses were assessed. Visual function assessment included pattern elicited visual evoked potentials (VEPs), VEP contrast sensitivity, and electroretinograms recorded from dark-adapted (scotopic), light-adapted (photopic) flashes, and UV flicker and green flicker. No consistent concentration-related changes were observed for any of the physiological measures. The results show that gestational exposure to ethanol vapor did not result in detectable changes in peripheral nerve, somatosensory, auditory, or visual function when the offspring were assessed as adults.

  4. Neurophysiological assessment of auditory, peripheral nerve, somatosensory, and visual system functions after developmental exposure to ethanol vapors.

    PubMed

    Boyes, William K; Degn, Laura L; Martin, Sheppard A; Lyke, Danielle F; Hamm, Charles W; Herr, David W

    2014-01-01

    Ethanol-blended gasoline entered the market in response to demand for domestic renewable energy sources, and may result in increased inhalation of ethanol vapors in combination with other volatile gasoline constituents. It is important to understand potential risks of inhalation of ethanol vapors by themselves, and also as a baseline for evaluating the risks of ethanol combined with a complex mixture of hydrocarbon vapors. Because sensory dysfunction has been reported after developmental exposure to ethanol, we evaluated the effects of developmental exposure to ethanol vapors on neurophysiological measures of sensory function as a component of a larger project evaluating developmental ethanol toxicity. Pregnant Long-Evans rats were exposed to target concentrations 0, 5000, 10,000, or 21,000 ppm ethanol vapors for 6.5h/day over GD9-GD20. Sensory evaluations of male offspring began between PND106 and PND128. Peripheral nerve function (compound action potentials, nerve conduction velocity (NCV)), somatosensory (cortical and cerebellar evoked potentials), auditory (brainstem auditory evoked responses), and visual evoked responses were assessed. Visual function assessment included pattern elicited visual evoked potentials (VEPs), VEP contrast sensitivity, and electroretinograms recorded from dark-adapted (scotopic), light-adapted (photopic) flashes, and UV flicker and green flicker. No consistent concentration-related changes were observed for any of the physiological measures. The results show that gestational exposure to ethanol vapor did not result in detectable changes in peripheral nerve, somatosensory, auditory, or visual function when the offspring were assessed as adults. PMID:24607749

  5. Effect of Acetazolamide on Visual Function in Patients With Idiopathic Intracranial Hypertension and Mild Visual Loss

    PubMed Central

    2015-01-01

    IMPORTANCE Acetazolamide is commonly used to treat idiopathic intracranial hypertension (IIH), but there is insufficient information to establish an evidence base for its use. OBJECTIVE To determine whether acetazolamide is beneficial in improving vision when added to a low-sodium weight reduction diet in patients with IIH and mild visual loss. DESIGN, SETTING, AND PARTICIPANTS Multicenter, randomized, double-masked, placebo-controlled study of acetazolamide in 165 participants with IIH and mild visual loss who received a low-sodium weight-reduction diet. Participants were enrolled at 38 academic and private practice sites in North America from March 2010 to November 2012 and followed up for 6 months (last visit in June 2013). All participants met the modified Dandy criteria for IIH and had a perimetric mean deviation (PMD) between −2 dB and −7 dB. The mean age was 29 years and all but 4 participants were women. INTERVENTIONS Low-sodium weight-reduction diet plus the maximally tolerated dosage or acetazolamide (up to 4 g/d) or matching placebo for 6 months. MAIN OUTCOMES AND MEASURES The planned primary outcome variable was the change in PMD from baseline to month 6 in the most affected eye, as measured by Humphrey Field Analyzer. Perimetric mean deviation is a measure of global visual field loss (mean deviation from age-corrected normal values), with a range of 2 to −32 dB; larger negative values indicate greater vision loss. Secondary outcome variables included changes in papilledema grade, quality of life (Visual Function Questionnaire 25 [VFQ-25] and 36-Item Short Form Health Survey), headache disability, and weight at month 6. RESULTS The mean improvement in PMD was greater with acetazolamide (1.43 dB, from −3.53 dB at baseline to −2.10 dB at month 6; n = 86) than with placebo (0.71 dB, from −3.53 dB to −2.82 dB;n = 79); the difference was 0.71 dB (95% CI, 0 to 1.43 dB; P= .050). Mean improvements in papilledema grade (acetazolamide: −1

  6. Contribution of a visual pigment absorption spectrum to a visual function: depth perception in a jumping spider.

    PubMed

    Nagata, Takashi; Arikawa, Kentaro; Terakita, Akihisa

    2013-01-01

    Absorption spectra of visual pigments are adaptively tuned to optimize informational capacity in most visual systems. Our recent investigation of the eyes of the jumping spider reveals an apparent exception: the absorption characteristics of a visual pigment cause defocusing of the image, reducing visual acuity generally in a part of the retina. However, the amount of defocus can theoretically provide a quantitative indication of the distance of an object. Therefore, we proposed a novel mechanism for depth perception in jumping spiders based on image defocus. Behavioral experiments revealed that the depth perception of the spider depended on the wavelength of the ambient light, which affects the amount of defocus because of chromatic aberration of the lens. This wavelength effect on depth perception was in close agreement with theoretical predictions based on our hypothesis. These data strongly support the hypothesis that the depth perception mechanism of jumping spiders is based on image defocus.

  7. Contribution of a visual pigment absorption spectrum to a visual function: depth perception in a jumping spider.

    PubMed

    Nagata, Takashi; Arikawa, Kentaro; Terakita, Akihisa

    2013-01-01

    Absorption spectra of visual pigments are adaptively tuned to optimize informational capacity in most visual systems. Our recent investigation of the eyes of the jumping spider reveals an apparent exception: the absorption characteristics of a visual pigment cause defocusing of the image, reducing visual acuity generally in a part of the retina. However, the amount of defocus can theoretically provide a quantitative indication of the distance of an object. Therefore, we proposed a novel mechanism for depth perception in jumping spiders based on image defocus. Behavioral experiments revealed that the depth perception of the spider depended on the wavelength of the ambient light, which affects the amount of defocus because of chromatic aberration of the lens. This wavelength effect on depth perception was in close agreement with theoretical predictions based on our hypothesis. These data strongly support the hypothesis that the depth perception mechanism of jumping spiders is based on image defocus. PMID:27493545

  8. Flexibility of vestibulo-ocular reflex adaptation to modified visual input in human.

    PubMed

    Watanabe, Shoji; Hattori, Kosuke; Koizuka, Izumi

    2003-02-01

    The vestibulo-ocular reflex (VOR) serves to keep images relatively stable on the retina. To maintain appropriate performance and minimize image slip throughout life, VOR is subjected to long-term adaptive regulation by visual input. It has been reported that adaptive changes in VOR gain (eye velocity/head velocity) are evoked either by fitting subjects with magnifying, miniaturizing, or reversing spectacles during normal behavior, or by moving a large visual field in or out of phase relative to the subject's head movement. The changes in VOR gain are frequency selective. Here, we examine the extent of VOR gain flexibility by causing VORs of similar direction to undergo different behavioral gain changes. Nine healthy adults participated in the study, ranging in age from 24 to 38 years (mean: 26 years) and with no history of neurotological symptoms. All subjects were clinically normal according to a screening battery that included combined neurologic and otologic physical examinations. Horizontal and vertical eye positions were recorded by bitemporal DC-coupled electro-oculography (EOG). The subject sat in a rotating chair. The axis of rotation of the body was always earth-vertical, with the interaural axis crossing the axis of rotation of the chair. The head was pointed 20 degrees downwards in all experiments and stabilized in this position using a chin rest. The chair was surrounded by a half-cylindrical optokinetic screen (78 cm in diameter) placed in front of the subject, onto which random dot patterns were projected. Goggles were used to ensure that the subject was in complete darkness during both pre- and postadaptation periods. The chair was rotated sinusoidally at maximum amplitude of 30 degrees or 60 degrees : for 30 degrees the stimulation was at 0.1, 0.2, 0.3, and 0.4 Hz; for 60 degrees it was at 0.1, 0.2, and 0.3 Hz. VOR adaptation was obtained by inducing a retinal slip velocity by short-term alteration of the visual input of the large field; this change

  9. Adaptive Downregulation of Mitochondrial Function in Down Syndrome

    PubMed Central

    Helguera, Pablo; Seiglie, Jaqueline; Rodriguez, Jose; Hanna, Michael; Helguera, Gustavo; Busciglio, Jorge

    2013-01-01

    SUMMARY Mitochondrial dysfunction and oxidative stress are common features of Down syndrome (DS). However, the underlying mechanisms are not known. We investigated the relationship between abnormal energy metabolism and oxidative stress with transcriptional and functional changes in DS cells. Impaired mitochondrial activity correlated with altered mitochondrial morphology. Increasing fusion capacity prevented morphological but not functional alterations in DS mitochondria. Sustained stimulation restored mitochondrial functional parameters but increased ROS production and cell damage, suggesting that reduced DS mitochondrial activity is an adaptive response to avoid injury and preserve basic cellular functions. Network analysis of genes overexpressed in DS cells demonstrated functional integration in pathways involved in energy metabolism and oxidative stress. Thus, while preventing extensive oxidative damage, mitochondrial downregulation may contribute to increased susceptibility of DS individuals to clinical conditions in which altered energy metabolism may play a role such as Alzheimer’s disease, diabetes, and some types of autistic spectrum disorders. PMID:23312288

  10. Adaptive Shape Functions and Internal Mesh Adaptation for Modelling Progressive Failure in Adhesively Bonded Joints

    NASA Technical Reports Server (NTRS)

    Stapleton, Scott; Gries, Thomas; Waas, Anthony M.; Pineda, Evan J.

    2014-01-01

    Enhanced finite elements are elements with an embedded analytical solution that can capture detailed local fields, enabling more efficient, mesh independent finite element analysis. The shape functions are determined based on the analytical model rather than prescribed. This method was applied to adhesively bonded joints to model joint behavior with one element through the thickness. This study demonstrates two methods of maintaining the fidelity of such elements during adhesive non-linearity and cracking without increasing the mesh needed for an accurate solution. The first method uses adaptive shape functions, where the shape functions are recalculated at each load step based on the softening of the adhesive. The second method is internal mesh adaption, where cracking of the adhesive within an element is captured by further discretizing the element internally to represent the partially cracked geometry. By keeping mesh adaptations within an element, a finer mesh can be used during the analysis without affecting the global finite element model mesh. Examples are shown which highlight when each method is most effective in reducing the number of elements needed to capture adhesive nonlinearity and cracking. These methods are validated against analogous finite element models utilizing cohesive zone elements.

  11. The Reliability of the CVI Range: A Functional Vision Assessment for Children with Cortical Visual Impairment

    ERIC Educational Resources Information Center

    Newcomb, Sandra

    2010-01-01

    Children who are identified as visually impaired frequently have a functional vision assessment as one way to determine how their visual impairment affects their educational performance. The CVI Range is a functional vision assessment for children with cortical visual impairment. The purpose of the study presented here was to examine the…

  12. How MAP kinase modules function as robust, yet adaptable, circuits

    PubMed Central

    Tian, Tianhai; Harding, Angus

    2014-01-01

    Genetic and biochemical studies have revealed that the diversity of cell types and developmental patterns evident within the animal kingdom is generated by a handful of conserved, core modules. Core biological modules must be robust, able to maintain functionality despite perturbations, and yet sufficiently adaptable for random mutations to generate phenotypic variation during evolution. Understanding how robust, adaptable modules have influenced the evolution of eukaryotes will inform both evolutionary and synthetic biology. One such system is the MAP kinase module, which consists of a 3-tiered kinase circuit configuration that has been evolutionarily conserved from yeast to man. MAP kinase signal transduction pathways are used across eukaryotic phyla to drive biological functions that are crucial for life. Here we ask the fundamental question, why do MAPK modules follow a conserved 3-tiered topology rather than some other number? Using computational simulations, we identify a fundamental 2-tiered circuit topology that can be readily reconfigured by feedback loops and scaffolds to generate diverse signal outputs. When this 2-kinase circuit is connected to proximal input kinases, a 3-tiered modular configuration is created that is both robust and adaptable, providing a biological circuit that can regulate multiple phenotypes and maintain functionality in an uncertain world. We propose that the 3-tiered signal transduction module has been conserved through positive selection, because it facilitated the generation of phenotypic variation during eukaryotic evolution. PMID:25483189

  13. Adaptive hybrid likelihood model for visual tracking based on Gaussian particle filter

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Tan, Yihua; Tian, Jinwen

    2010-07-01

    We present a new scheme based on multiple-cue integration for visual tracking within a Gaussian particle filter framework. The proposed method integrates the color, shape, and texture cues of an object to construct a hybrid likelihood model. During the measurement step, the likelihood model can be switched adaptively according to environmental changes, which improves the object representation to deal with the complex disturbances, such as appearance changes, partial occlusions, and significant clutter. Moreover, the confidence weights of the cues are adjusted online through the estimation using a particle filter, which ensures the tracking accuracy and reliability. Experiments are conducted on several real video sequences, and the results demonstrate that the proposed method can effectively track objects in complex scenarios. Compared with previous similar approaches through some quantitative and qualitative evaluations, the proposed method performs better in terms of tracking robustness and precision.

  14. Visually induced self-motion sensation adapts rapidly to left-right reversal of vision

    NASA Technical Reports Server (NTRS)

    Oman, C. M.; Bock, O. L.

    1981-01-01

    Three experiments were conducted using 15 adult volunteers with no overt oculomotor or vestibular disorders. In all experiments, left-right vision reversal was achieved using prism goggles, which permitted a binocular field of vision subtending approximately 45 deg horizontally and 28 deg vertically. In all experiments, circularvection (CV) was tested before and immediately after a period of exposure to reversed vision. After one to three hours of active movement while wearing vision-reversing goggles, 10 of 15 (stationary) human subjects viewing a moving stripe display experienced a self-rotation illusion in the same direction as seen stripe motion, rather than in the opposite (normal) direction, demonstrating that the central neural pathways that process visual self-rotation cues can undergo rapid adaptive modification.

  15. Generalized pattern search algorithms with adaptive precision function evaluations

    SciTech Connect

    Polak, Elijah; Wetter, Michael

    2003-05-14

    In the literature on generalized pattern search algorithms, convergence to a stationary point of a once continuously differentiable cost function is established under the assumption that the cost function can be evaluated exactly. However, there is a large class of engineering problems where the numerical evaluation of the cost function involves the solution of systems of differential algebraic equations. Since the termination criteria of the numerical solvers often depend on the design parameters, computer code for solving these systems usually defines a numerical approximation to the cost function that is discontinuous with respect to the design parameters. Standard generalized pattern search algorithms have been applied heuristically to such problems, but no convergence properties have been stated. In this paper we extend a class of generalized pattern search algorithms to a form that uses adaptive precision approximations to the cost function. These numerical approximations need not define a continuous function. Our algorithms can be used for solving linearly constrained problems with cost functions that are at least locally Lipschitz continuous. Assuming that the cost function is smooth, we prove that our algorithms converge to a stationary point. Under the weaker assumption that the cost function is only locally Lipschitz continuous, we show that our algorithms converge to points at which the Clarke generalized directional derivatives are nonnegative in predefined directions. An important feature of our adaptive precision scheme is the use of coarse approximations in the early iterations, with the approximation precision controlled by a test. Such an approach leads to substantial time savings in minimizing computationally expensive functions.

  16. Visual input controls the functional activity of goldfish Mauthner neuron through the reciprocal synaptic mechanism.

    PubMed

    Moshkov, Dmitry A; Shtanchaev, Rashid S; Mikheeva, Irina B; Bezgina, Elena N; Kokanova, Nadezhda A; Mikhailova, Gulnara Z; Tiras, Nadezhda R; Pavlik, Lyubov' L

    2013-03-01

    Goldfish are known to exhibit motor asymmetry due to functional asymmetry of their Mauthner neurons that induce the turns to the right or left during free swimming. It has been previously found that if the less active neuron is subjected to prolonged aimed visual stimulation via its ventral dendrite, the motor asymmetry of goldfish is inverted, testifying that this neuron becomes functionally dominant, while the size of the ventral dendrite under these conditions is reduced 2-3 times compared to its counterpart in mirror neuron. Earlier it has been also revealed that training optokinetic stimulation induces adaptation, a substantial resistance of both fish motor asymmetry and morphofunctional state of Mauthner neurons against prolonged optokinetic stimulation. The aim of this work was to study the cellular mechanisms of the effect of an unusual visual afferent input on goldfish motor asymmetry and Mauthner neuron function in norm and under adaptation. It was shown that serotonin applied onto Mauthner neurons greatly reduces their activity whereas its antagonist ondansetron increases it. Against the background of visual stimulation, serotonin strengthens functional asymmetry between neurons whereas ondansetron smoothes it. Taken together these data suggest the involvement of serotonergic excitatory synaptic transmission in the regulation of Mauthner neurons by vision. Ultrastructural study of the ventral dendrites after prolonged optokinetic stimulation has revealed depletions of numeral axo-axonal synapses with specific morphology, identified by means of immunogold label as serotonergic ones. These latter in turn are situated mainly on shaft boutons, which according to specific ultrastructural features are assigned to axo-dendritic inhibitory synapses. Thus, the excitatory serotonergic synapses seem to affect Mauthner neuron indirectly through inhibitory synapses. Further, it was morphometrically established that adaptation is accompanied by the significant

  17. Functional organization of excitatory synaptic strength in primary visual cortex

    PubMed Central

    Muir, Dylan R.; Houlton, Rachael; Sader, Elie N.; Ko, Ho; Hofer, Sonja B.; Mrsic-Flogel, Thomas D.

    2016-01-01

    The strength of synaptic connections fundamentally determines how neurons influence each other’s firing. Excitatory connection amplitudes between pairs of cortical neurons vary over two orders of magnitude, comprising only very few strong connections among many weaker ones1–9. Although this highly skewed distribution of connection strengths is observed in diverse cortical areas1–9, its functional significance remains unknown: it is not clear how connection strength relates to neuronal response properties, nor how strong and weak inputs contribute to information processing in local microcircuits. Here we reveal that the strength of connections between layer 2/3 (L2/3) pyramidal neurons in mouse primary visual cortex (V1) obeys a simple rule—the few strong connections occur between neurons with most correlated responses, while only weak connections link neurons with uncorrelated responses. Moreover, we show that strong and reciprocal connections occur between cells with similar spatial receptive field structure. Although weak connections far outnumber strong connections, each neuron receives the majority of its local excitation from a small number of strong inputs provided by the few neurons with similar responses to visual features. By dominating recurrent excitation, these infrequent yet powerful inputs disproportionately contribute to feature preference and selectivity. Therefore, our results show that the apparently complex organization of excitatory connection strength reflects the similarity of neuronal responses, and suggest that rare, strong connections mediate stimulus-specific response amplification in cortical microcircuits. PMID:25652823

  18. Paradoxical visuomotor adaptation to reversed visual input is predicted by BDNF Val66Met polymorphism

    PubMed Central

    Barton, Brian; Treister, Andrew; Humphrey, Melanie; Abedi, Garen; Cramer, Steven C.; Brewer, Alyssa A.

    2014-01-01

    Brain-derived neurotrophic factor (BDNF) is the most abundant neurotrophin in the brain, influencing neural development, plasticity, and repair (Chen et al., 2004; Thoenen, 1995). The BDNF gene contains a single-nucleotide polymorphism (SNP) called Val66Met. The Met allele interferes with intracellular BDNF-trafficking, decreases activity-dependent BDNF secretion, and consequently is often associated with a shift from plasticity to stability in neural circuits (Egan et al., 2003). We investigated the behavioral consequences of the presence of the Met allele by comparing how 40 heterozygous subjects with the Val/Met genotype and 35 homozygous subjects with the Val/Val genotype performed on visuomotor tasks (reaching and navigation) under two conditions: normal vision and completely left-right reversed vision. As expected, subjects did not differ in their short-term ability to learn the tasks with normal vision (p = 0.58). Intuitively, it would be expected that homozygous Val/Val subjects with a propensity for greater BDNF-induced activity-dependent plasticity would learn new tasks more quickly than heterozygous Val/Met subjects with decreased BDNF secretion (Gilbert, Li, & Piech, 2009). However, we found the opposite here. When short-term mechanisms of visuomotor adaptation were engaged to compensate for the misalignment of visual and somatomotor information created by the left-right reversal of vision, heterozygous Val/Met subjects learned significantly more quickly than their homozygous Val/Val counterparts (p = 0.027). Our results demonstrate the paradoxical finding that the presence of the Met allele, which is thought to promote cortical stability, here improves immediate visuomotor adaptation to left–right-reversed visual input. PMID:25104829

  19. The visual pathway--functional anatomy and pathology.

    PubMed

    Swienton, David James; Thomas, Adam G

    2014-10-01

    Visual failure of any kind is a common clinical presentation and indication for neuroimaging. Monocular deficits should concentrate the search to the anterior (prechiasmatic) visual pathway. Bitemporal hemianopia suggests a chiasmatic cause, whereas retrochiasmatic lesions characteristically cause homonymous hemianopic defects. Quadrantanopias usually arise from lesions in the optic radiations. Disorders of visual perception can be broadly divided into "where" and "what" problems caused by lesions in the parietal and temporal lobes, respectively, and their associated white matter tracts. Visualization of the retrochiasmatic visual and visual association pathways is aided by diffusion tensor imaging. PMID:25217301

  20. Visual Cone Arrestin 4 Contributes to Visual Function and Cone Health

    PubMed Central

    Deming, Janise D.; Pak, Joseph S.; Brown, Bruce M.; Kim, Moon K.; Aung, Moe H.; Eom, Yun Sung; Shin, Jung-a; Lee, Eun-Jin; Pardue, Machelle T.; Craft, Cheryl Mae

    2015-01-01

    Purpose Visual arrestins (ARR) play a critical role in shutoff of rod and cone phototransduction. When electrophysiological responses are measured for a single mouse cone photoreceptor, ARR1 expression can substitute for ARR4 in cone pigment desensitization; however, each arrestin may also contribute its own, unique role to modulate other cellular functions. Methods A combination of ERG, optokinetic tracking, immunohistochemistry, and immunoblot analysis was used to investigate the retinal phenotypes of Arr4 null mice (Arr4−/−) compared with age-matched control, wild-type mice. Results When 2-month-old Arr4−/− mice were compared with wild-type mice, they had diminished visual acuity and contrast sensitivity, yet enhanced ERG flicker response and higher photopic ERG b-wave amplitudes. In contrast, in older Arr4−/− mice, all ERG amplitudes were significantly reduced in magnitude compared with age-matched controls. Furthermore, in older Arr4−/− mice, the total cone numbers decreased and cone opsin protein immunoreactive expression levels were significantly reduced, while overall photoreceptor outer nuclear layer thickness was unchanged. Conclusions Our study demonstrates that Arr4−/− mice display distinct phenotypic differences when compared to controls, suggesting that ARR4 modulates essential functions in high acuity vision and downstream cellular signaling pathways that are not fulfilled or substituted by the coexpression of ARR1, despite its high expression levels in all mouse cones. Without normal ARR4 expression levels, cones slowly degenerate with increasing age, making this a new model to study age-related cone dystrophy. PMID:26284544

  1. Visual Tracking Based on the Adaptive Color Attention Tuned Sparse Generative Object Model.

    PubMed

    Tian, Chunna; Gao, Xinbo; Wei, Wei; Zheng, Hong

    2015-12-01

    This paper presents a new visual tracking framework based on an adaptive color attention tuned local sparse model. The histograms of sparse coefficients of all patches in an object are pooled together according to their spatial distribution. A particle filter methodology is used as the location model to predict candidates for object verification during tracking. Since color is an important visual clue to distinguish objects from background, we calculate the color similarity between objects in the previous frames and the candidates in current frame, which is adopted as color attention to tune the local sparse representation-based appearance similarity measurement between the object template and candidates. The color similarity can be calculated efficiently with hash coded color names, which helps the tracker find more reliable objects during tracking. We use a flexible local sparse coding of the object to evaluate the degeneration degree of the appearance model, based on which we build a model updating mechanism to alleviate drifting caused by temporal varying multi-factors. Experiments on 76 challenging benchmark color sequences and the evaluation under the object tracking benchmark protocol demonstrate the superiority of the proposed tracker over the state-of-the-art methods in accuracy. PMID:26390460

  2. AdaptiviTree: adaptive tree visualization for tournament-style brackets.

    PubMed

    Tan, Desney; Smith, Greg; Lee, Bongshin; Robertson, George

    2007-01-01

    Online pick'em games, such as the recent NCAA college basketball March Madness tournament, form a large and rapidly growing industry. In these games, players make predictions on a tournament bracket that defines which competitors play each other and how they proceed toward a single champion. Throughout the course of the tournament, players monitor the brackets to track progress and to compare predictions made by multiple players. This is often a complex sensemaking task. The classic bracket visualization was designed for use on paper and utilizes an incrementally additive system in which the winner of each match-up is rewritten in the next round as the tournament progresses. Unfortunately, this representation requires a significant amount of space and makes it relatively difficult to get a quick overview of the tournament state since competitors take arbitrary paths through the static bracket. In this paper, we present AdaptiviTree, a novel visualization that adaptively deforms the representation of the tree and uses its shape to convey outcome information. AdaptiviTree not only provides a more compact and understandable representation, but also allows overlays that display predictions as well as other statistics. We describe results from a lab study we conducted to explore the efficacy of AdaptiviTree, as well as from a deployment of the system in a recent real-world sports tournament.

  3. Adaptive filters and internal models: multilevel description of cerebellar function.

    PubMed

    Porrill, John; Dean, Paul; Anderson, Sean R

    2013-11-01

    Cerebellar function is increasingly discussed in terms of engineering schemes for motor control and signal processing that involve internal models. To address the relation between the cerebellum and internal models, we adopt the chip metaphor that has been used to represent the combination of a homogeneous cerebellar cortical microcircuit with individual microzones having unique external connections. This metaphor indicates that identifying the function of a particular cerebellar chip requires knowledge of both the general microcircuit algorithm and the chip's individual connections. Here we use a popular candidate algorithm as embodied in the adaptive filter, which learns to decorrelate its inputs from a reference ('teaching', 'error') signal. This algorithm is computationally powerful enough to be used in a very wide variety of engineering applications. However, the crucial issue is whether the external connectivity required by such applications can be implemented biologically. We argue that some applications appear to be in principle biologically implausible: these include the Smith predictor and Kalman filter (for state estimation), and the feedback-error-learning scheme for adaptive inverse control. However, even for plausible schemes, such as forward models for noise cancellation and novelty-detection, and the recurrent architecture for adaptive inverse control, there is unlikely to be a simple mapping between microzone function and internal model structure. This initial analysis suggests that cerebellar involvement in particular behaviours is therefore unlikely to have a neat classification into categories such as 'forward model'. It is more likely that cerebellar microzones learn a task-specific adaptive-filter operation which combines a number of signal-processing roles.

  4. Functional modulation of power-law distribution in visual perception

    NASA Astrophysics Data System (ADS)

    Shimono, Masanori; Owaki, Takashi; Amano, Kaoru; Kitajo, Keiichi; Takeda, Tsunehiro

    2007-05-01

    Neuronal activities have recently been reported to exhibit power-law scaling behavior. However, it has not been demonstrated that the power-law component can play an important role in human perceptual functions. Here, we demonstrate that the power spectrum of magnetoencephalograph recordings of brain activity varies in coordination with perception of subthreshold visual stimuli. We observed that perceptual performance could be better explained by modulation of the power-law component than by modulation of the peak power in particular narrow frequency ranges. The results suggest that the brain operates in a state of self-organized criticality, modulating the power spectral exponent of its activity to optimize its internal state for response to external stimuli.

  5. Identifying and Visualizing Functional PAM Diversity across CRISPR-Cas Systems.

    PubMed

    Leenay, Ryan T; Maksimchuk, Kenneth R; Slotkowski, Rebecca A; Agrawal, Roma N; Gomaa, Ahmed A; Briner, Alexandra E; Barrangou, Rodolphe; Beisel, Chase L

    2016-04-01

    CRISPR-Cas adaptive immune systems in prokaryotes boast a diversity of protein families and mechanisms of action, where most systems rely on protospacer-adjacent motifs (PAMs) for DNA target recognition. Here, we developed an in vivo, positive, and tunable screen termed PAM-SCANR (PAM screen achieved by NOT-gate repression) to elucidate functional PAMs as well as an interactive visualization scheme termed the PAM wheel to convey individual PAM sequences and their activities. PAM-SCANR and the PAM wheel identified known functional PAMs while revealing complex sequence-activity landscapes for the Bacillus halodurans I-C (Cascade), Escherichia coli I-E (Cascade), Streptococcus thermophilus II-A CRISPR1 (Cas9), and Francisella novicida V-A (Cpf1) systems. The PAM wheel was also readily applicable to existing high-throughput screens and garnered insights into SpyCas9 and SauCas9 PAM diversity. These tools offer powerful means of elucidating and visualizing functional PAMs toward accelerating our ability to understand and exploit the multitude of CRISPR-Cas systems in nature. PMID:27041224

  6. Level-by-level artificial viscosity and visualization for MHD simulation with adaptive mesh refinement

    NASA Astrophysics Data System (ADS)

    Hatori, Tomoharu; Ito, Atsushi M.; Nunami, Masanori; Usui, Hideyuki; Miura, Hideaki

    2016-08-01

    We propose a numerical method to determine the artificial viscosity in magnetohydrodynamics (MHD) simulations with adaptive mesh refinement (AMR) method, where the artificial viscosity is adaptively changed due to the resolution level of the AMR hierarchy. Although the suitable value of the artificial viscosity depends on the governing equations and the model of target problem, it can be determined by von Neumann stability analysis. By means of the new method, "level-by-level artificial viscosity method," MHD simulations of Rayleigh-Taylor instability (RTI) are carried out with the AMR method. The validity of the level-by-level artificial viscosity method is confirmed by the comparison of the linear growth rates of RTI between the AMR simulations and the simple simulations with uniform grid and uniform artificial viscosity whose resolution is the same as that in the highest level of the AMR simulation. Moreover, in the nonlinear phase of RTI, the secondary instability is clearly observed where the hierarchical data structure of AMR calculation is visualized as high resolution region floats up like terraced fields. In the applications of the method to general fluid simulations, the growth of small structures can be sufficiently reproduced, while the divergence of numerical solutions can be suppressed.

  7. Translation, cultural adaptation and reproducibility of the Cochin Hand Functional Scale questionnaire for Brazil

    PubMed Central

    Chiari, Aline; de Souza Sardim, Carla Caires; Natour, Jamil

    2011-01-01

    OBJECTIVE: To translate, to perform a cultural adaptation of and to test the reproducibility of the Cochin Hand Functional Scale questionnaire for Brazil. METHODS: First, the Cochin Hand Functional Scale questionnaire was translated into Portuguese and was then back-translated into French. These translations were reviewed by a committee to establish a Brazilian version of the questionnaire to be tested. The validity and reproducibility of the Cochin Hand Functional Scale questionnaire was evaluated. Patients of both sexes, who were aged 18 to 60 years and presented with rheumatoid arthritis affecting their hands, were interviewed. The patients were initially interviewed by two observers and were later interviewed by a single rater. First, the Visual Analogue Scale for hand pain, the Arm, Shoulder and Hand Disability questionnaire and the Health Assessment Questionnaire were administered. The third administration of the Cochin Hand Functional Scale was performed fifteen days after the first administration. Ninety patients were assessed in the present study. RESULTS: Two questions were modified as a result of the assessment of cultural equivalence. The Cronbach's alpha value for this assessment was 0.93. The intraclass intraobserver and interobserver correlation coefficients were 0.76 and 0.96, respectively. The Spearman's coefficient indicated that there was a low level of correlation between the Cochin Hand Functional Scale and the Visual Analogue Scale for pain (0.46) and that there was a moderate level of correlation of the Cochin Scale with the Health Assessment Questionnaire (0.66) and with the Disability of the Arm, Shoulder and Hand questionnaire (0.63). The average administration time for the Cochin Scale was three minutes. CONCLUSION: The Brazilian version of the Cochin Hand Functional Scale was successfully translated and adapted, and this version exhibited good internal consistency, reliability and construct validity. PMID:21789372

  8. Epiviz: interactive visual analytics for functional genomics data.

    PubMed

    Chelaru, Florin; Smith, Llewellyn; Goldstein, Naomi; Bravo, Héctor Corrada

    2014-09-01

    Visualization is an integral aspect of genomics data analysis. Algorithmic-statistical analysis and interactive visualization are most effective when used iteratively. Epiviz (http://epiviz.cbcb.umd.edu/), a web-based genome browser, and the Epivizr Bioconductor package allow interactive, extensible and reproducible visualization within a state-of-the-art data-analysis platform.

  9. Perspectives on functional adaptation of the high altitude native.

    PubMed

    Frisancho, A R

    1983-01-01

    The major physiological processes that enable humans to attain a complete acclimatization to high altitude are briefly reviewed. The available data indicate that: (a) complete acclimatization to high altitude is associated with changes of environmentally modifiable functional traits such as lung volume but not associated with the expression of genetically controlled features such as chest size; (b) as judged by measurements of maximal aerobic power, the high altitude native has attained at high altitude an adaptation that is comparable to that attained by the low altitude native at sea level; the available information suggests that such adaptation is acquired through growth and development in an hypoxic environment; at present, however, we do not know the developmental modifications that occur within each component of the oxygen transport system, such as ventilation, pulmonary diffusion, and oxygen transport, that enable a sea level native to attain a complete functional adaptation to high altitude; and (c) at comparable altitudes among high altitude natives, there are some inter-regional differences in hemopoietic response, so that the samples derived from mining regions of the Andes are characterized by higher hemoglobin concentration than those derived from non-mining areas or the Himalayas. The source of these differences remains to be investigated. PMID:6364176

  10. Translation and adaptation of functional auditory performance indicators (FAPI)

    PubMed Central

    FERREIRA, Karina; MORET, Adriane Lima Mortari; BEVILACQUA, Maria Cecilia; JACOB, Regina de Souza Tangerino

    2011-01-01

    Work with deaf children has gained new attention since the expectation and goal of therapy has expanded to language development and subsequent language learning. Many clinical tests were developed for evaluation of speech sound perception in young children in response to the need for accurate assessment of hearing skills that developed from the use of individual hearing aids or cochlear implants. These tests also allow the evaluation of the rehabilitation program. However, few of these tests are available in Portuguese. Evaluation with the Functional Auditory Performance Indicators (FAPI) generates a child's functional auditory skills profile, which lists auditory skills in an integrated and hierarchical order. It has seven hierarchical categories, including sound awareness, meaningful sound, auditory feedback, sound source localizing, auditory discrimination, short-term auditory memory, and linguistic auditory processing. FAPI evaluation allows the therapist to map the child's hearing profile performance, determine the target for increasing the hearing abilities, and develop an effective therapeutic plan. Objective Since the FAPI is an American test, the inventory was adapted for application in the Brazilian population. Material and Methods The translation was done following the steps of translation and back translation, and reproducibility was evaluated. Four translated versions (two originals and two back-translated) were compared, and revisions were done to ensure language adaptation and grammatical and idiomatic equivalence. Results The inventory was duly translated and adapted. Conclusion Further studies about the application of the translated FAPI are necessary to make the test practicable in Brazilian clinical use. PMID:22230992

  11. An Adaptive Complex Network Model for Brain Functional Networks

    PubMed Central

    Gomez Portillo, Ignacio J.; Gleiser, Pablo M.

    2009-01-01

    Brain functional networks are graph representations of activity in the brain, where the vertices represent anatomical regions and the edges their functional connectivity. These networks present a robust small world topological structure, characterized by highly integrated modules connected sparsely by long range links. Recent studies showed that other topological properties such as the degree distribution and the presence (or absence) of a hierarchical structure are not robust, and show different intriguing behaviors. In order to understand the basic ingredients necessary for the emergence of these complex network structures we present an adaptive complex network model for human brain functional networks. The microscopic units of the model are dynamical nodes that represent active regions of the brain, whose interaction gives rise to complex network structures. The links between the nodes are chosen following an adaptive algorithm that establishes connections between dynamical elements with similar internal states. We show that the model is able to describe topological characteristics of human brain networks obtained from functional magnetic resonance imaging studies. In particular, when the dynamical rules of the model allow for integrated processing over the entire network scale-free non-hierarchical networks with well defined communities emerge. On the other hand, when the dynamical rules restrict the information to a local neighborhood, communities cluster together into larger ones, giving rise to a hierarchical structure, with a truncated power law degree distribution. PMID:19738902

  12. An Adaptive Derivative-based Method for Function Approximation

    SciTech Connect

    Tong, C

    2008-10-22

    To alleviate the high computational cost of large-scale multi-physics simulations to study the relationships between the model parameters and the outputs of interest, response surfaces are often used in place of the exact functional relationships. This report explores a method for response surface construction using adaptive sampling guided by derivative information at each selected sample point. This method is especially suitable for applications that can readily provide added information such as gradients and Hessian with respect to the input parameters under study. When higher order terms (third and above) in the Taylor series are negligible, the approximation error for this method can be controlled. We present details of the adaptive algorithm and numerical results on a few test problems.

  13. The evolved basis and adaptive functions of cognitive distortions.

    PubMed

    Gilbert, P

    1998-12-01

    This paper explores common cognitive distortions from the perspective of evolutionary psychology. It is suggested that cognitive distortions are natural consequences of using fast track defensive algorithms that are sensitive to threat. In various contexts, especially those of threat, humans evolved to think adaptively rather than logically. Hence cognitive distortions are not strictly errors in brain functioning and it can be useful to inform patients that 'negative thinking' may be dysfunctional but is a reflection of basic brain design and not personal irrationality. The evolved nature of cognitive distortions has been implicit in cognitive therapy from its early days (Beck, 1963; Ellis, 1962) but has not been fully articulated in what is now known about evolved mental processes. Many forms of cognitive distortion can be seen to use the (previously) adaptive heuristic of better safe than sorry.

  14. Testing Adaptive Hypotheses of Convergence with Functional Landscapes: A Case Study of Bone-Cracking Hypercarnivores

    PubMed Central

    Tseng, Zhijie Jack

    2013-01-01

    Morphological convergence is a well documented phenomenon in mammals, and adaptive explanations are commonly employed to infer similar functions for convergent characteristics. I present a study that adopts aspects of theoretical morphology and engineering optimization to test hypotheses about adaptive convergent evolution. Bone-cracking ecomorphologies in Carnivora were used as a case study. Previous research has shown that skull deepening and widening are major evolutionary patterns in convergent bone-cracking canids and hyaenids. A simple two-dimensional design space, with skull width-to-length and depth-to-length ratios as variables, was used to examine optimized shapes for two functional properties: mechanical advantage (MA) and strain energy (SE). Functionality of theoretical skull shapes was studied using finite element analysis (FEA) and visualized as functional landscapes. The distribution of actual skull shapes in the landscape showed a convergent trend of plesiomorphically low-MA and moderate-SE skulls evolving towards higher-MA and moderate-SE skulls; this is corroborated by FEA of 13 actual specimens. Nevertheless, regions exist in the landscape where high-MA and lower-SE shapes are not represented by existing species; their vacancy is observed even at higher taxonomic levels. Results highlight the interaction of biomechanical and non-biomechanical factors in constraining general skull dimensions to localized functional optima through evolution. PMID:23734244

  15. Kinetic Adaptations of Myosins for Their Diverse Cellular Functions.

    PubMed

    Heissler, Sarah M; Sellers, James R

    2016-08-01

    Members of the myosin superfamily are involved in all aspects of eukaryotic life. Their function ranges from the transport of organelles and cargos to the generation of membrane tension, and the contraction of muscle. The diversity of physiological functions is remarkable, given that all enzymatically active myosins follow a conserved mechanoenzymatic cycle in which the hydrolysis of ATP to ADP and inorganic phosphate is coupled to either actin-based transport or tethering of actin to defined cellular compartments. Kinetic capacities and limitations of a myosin are determined by the extent to which actin can accelerate the hydrolysis of ATP and the release of the hydrolysis products and are indispensably linked to its physiological tasks. This review focuses on kinetic competencies that - together with structural adaptations - result in myosins with unique mechanoenzymatic properties targeted to their diverse cellular functions.

  16. A comparison of visual function tests in eyes with maculopathy.

    PubMed

    Fish, G E; Birch, D G; Fuller, D G; Straach, R

    1986-09-01

    Several recently developed tests of visual function, including the Potential Acuity Meter (PAM), laser interferometer (LI), white-light interferometer (WLI), blue field entoptic phenomenon, and focal electroretinogram (ERG) were compared in 81 eyes with clear media and known macular disease. The results indicate that the PAM, the LI, and the WLI overread relative to Snellen acuity. Laser interferometric acuity values differed from Snellen acuity by at least 1.5 octaves in approximately 40% of all eyes, regardless of stimulus size (2, 5, or 8 degrees). Similar results were obtained with the WLI. Agreement with Snellen acuity was better for the PAM, with 91% of eyes falling within 1.5 octaves of Snellen acuity. Blue field and focal ERG results were categorized as normal or abnormal. While not producing Snellen equivalents, abnormal results from the blue field and focal ERG corresponded with poor Snellen acuity (less than 20/40) in 65% and 91% of eyes, respectively. Assuming that media opacities do not prevent adequate retinal stimulation, the present results suggest that the PAM and focal ERG are the most reliable for evaluating macular function when maculopathy is present.

  17. Development and Adaptation of an Employment-Integration Program for People Who Are Visually Impaired in Quebec, Canada

    ERIC Educational Resources Information Center

    Wittich, Walter; Watanabe, Donald H.; Scully, Lizabeth; Bergevin , Martin

    2013-01-01

    Introduction: In the Province of Quebec, Canada, it is estimated that only about one-third of working-age adults with visual impairments are part of the workforce, despite ongoing efforts of rehabilitation and government agencies to integrate these individuals. The present article describes the development and adaptation of a pre-employment…

  18. Adaptive sigmoid function bihistogram equalization for image contrast enhancement

    NASA Astrophysics Data System (ADS)

    Arriaga-Garcia, Edgar F.; Sanchez-Yanez, Raul E.; Ruiz-Pinales, Jose; Garcia-Hernandez, Ma. de Guadalupe

    2015-09-01

    Contrast enhancement plays a key role in a wide range of applications including consumer electronic applications, such as video surveillance, digital cameras, and televisions. The main goal of contrast enhancement is to increase the quality of images. However, most state-of-the-art methods induce different types of distortion such as intensity shift, wash-out, noise, intensity burn-out, and intensity saturation. In addition, in consumer electronics, simple and fast methods are required in order to be implemented in real time. A bihistogram equalization method based on adaptive sigmoid functions is proposed. It consists of splitting the image histogram into two parts that are equalized independently by using adaptive sigmoid functions. In order to preserve the mean brightness of the input image, the parameter of the sigmoid functions is chosen to minimize the absolute mean brightness metric. Experiments on the Berkeley database have shown that the proposed method improves the quality of images and preserves their mean brightness. An application to improve the colorfulness of images is also presented.

  19. Adaptive radial basis function mesh deformation using data reduction

    NASA Astrophysics Data System (ADS)

    Gillebaart, T.; Blom, D. S.; van Zuijlen, A. H.; Bijl, H.

    2016-09-01

    Radial Basis Function (RBF) mesh deformation is one of the most robust mesh deformation methods available. Using the greedy (data reduction) method in combination with an explicit boundary correction, results in an efficient method as shown in literature. However, to ensure the method remains robust, two issues are addressed: 1) how to ensure that the set of control points remains an accurate representation of the geometry in time and 2) how to use/automate the explicit boundary correction, while ensuring a high mesh quality. In this paper, we propose an adaptive RBF mesh deformation method, which ensures the set of control points always represents the geometry/displacement up to a certain (user-specified) criteria, by keeping track of the boundary error throughout the simulation and re-selecting when needed. Opposed to the unit displacement and prescribed displacement selection methods, the adaptive method is more robust, user-independent and efficient, for the cases considered. Secondly, the analysis of a single high aspect ratio cell is used to formulate an equation for the correction radius needed, depending on the characteristics of the correction function used, maximum aspect ratio, minimum first cell height and boundary error. Based on the analysis two new radial basis correction functions are derived and proposed. This proposed automated procedure is verified while varying the correction function, Reynolds number (and thus first cell height and aspect ratio) and boundary error. Finally, the parallel efficiency is studied for the two adaptive methods, unit displacement and prescribed displacement for both the CPU as well as the memory formulation with a 2D oscillating and translating airfoil with oscillating flap, a 3D flexible locally deforming tube and deforming wind turbine blade. Generally, the memory formulation requires less work (due to the large amount of work required for evaluating RBF's), but the parallel efficiency reduces due to the limited

  20. A Multi-facetted Visual Analytics Tool for Exploratory Analysis of Human Brain and Function Datasets

    PubMed Central

    Angulo, Diego A.; Schneider, Cyril; Oliver, James H.; Charpak, Nathalie; Hernandez, Jose T.

    2016-01-01

    Brain research typically requires large amounts of data from different sources, and often of different nature. The use of different software tools adapted to the nature of each data source can make research work cumbersome and time consuming. It follows that data is not often used to its fullest potential thus limiting exploratory analysis. This paper presents an ancillary software tool called BRAVIZ that integrates interactive visualization with real-time statistical analyses, facilitating access to multi-facetted neuroscience data and automating many cumbersome and error-prone tasks required to explore such data. Rather than relying on abstract numerical indicators, BRAVIZ emphasizes brain images as the main object of the analysis process of individuals or groups. BRAVIZ facilitates exploration of trends or relationships to gain an integrated view of the phenomena studied, thus motivating discovery of new hypotheses. A case study is presented that incorporates brain structure and function outcomes together with different types of clinical data. PMID:27601990

  1. A Multi-facetted Visual Analytics Tool for Exploratory Analysis of Human Brain and Function Datasets.

    PubMed

    Angulo, Diego A; Schneider, Cyril; Oliver, James H; Charpak, Nathalie; Hernandez, Jose T

    2016-01-01

    Brain research typically requires large amounts of data from different sources, and often of different nature. The use of different software tools adapted to the nature of each data source can make research work cumbersome and time consuming. It follows that data is not often used to its fullest potential thus limiting exploratory analysis. This paper presents an ancillary software tool called BRAVIZ that integrates interactive visualization with real-time statistical analyses, facilitating access to multi-facetted neuroscience data and automating many cumbersome and error-prone tasks required to explore such data. Rather than relying on abstract numerical indicators, BRAVIZ emphasizes brain images as the main object of the analysis process of individuals or groups. BRAVIZ facilitates exploration of trends or relationships to gain an integrated view of the phenomena studied, thus motivating discovery of new hypotheses. A case study is presented that incorporates brain structure and function outcomes together with different types of clinical data.

  2. A Multi-facetted Visual Analytics Tool for Exploratory Analysis of Human Brain and Function Datasets

    PubMed Central

    Angulo, Diego A.; Schneider, Cyril; Oliver, James H.; Charpak, Nathalie; Hernandez, Jose T.

    2016-01-01

    Brain research typically requires large amounts of data from different sources, and often of different nature. The use of different software tools adapted to the nature of each data source can make research work cumbersome and time consuming. It follows that data is not often used to its fullest potential thus limiting exploratory analysis. This paper presents an ancillary software tool called BRAVIZ that integrates interactive visualization with real-time statistical analyses, facilitating access to multi-facetted neuroscience data and automating many cumbersome and error-prone tasks required to explore such data. Rather than relying on abstract numerical indicators, BRAVIZ emphasizes brain images as the main object of the analysis process of individuals or groups. BRAVIZ facilitates exploration of trends or relationships to gain an integrated view of the phenomena studied, thus motivating discovery of new hypotheses. A case study is presented that incorporates brain structure and function outcomes together with different types of clinical data.

  3. A Multi-facetted Visual Analytics Tool for Exploratory Analysis of Human Brain and Function Datasets.

    PubMed

    Angulo, Diego A; Schneider, Cyril; Oliver, James H; Charpak, Nathalie; Hernandez, Jose T

    2016-01-01

    Brain research typically requires large amounts of data from different sources, and often of different nature. The use of different software tools adapted to the nature of each data source can make research work cumbersome and time consuming. It follows that data is not often used to its fullest potential thus limiting exploratory analysis. This paper presents an ancillary software tool called BRAVIZ that integrates interactive visualization with real-time statistical analyses, facilitating access to multi-facetted neuroscience data and automating many cumbersome and error-prone tasks required to explore such data. Rather than relying on abstract numerical indicators, BRAVIZ emphasizes brain images as the main object of the analysis process of individuals or groups. BRAVIZ facilitates exploration of trends or relationships to gain an integrated view of the phenomena studied, thus motivating discovery of new hypotheses. A case study is presented that incorporates brain structure and function outcomes together with different types of clinical data. PMID:27601990

  4. Students with Low Vision Describe Their Visual Impairments and Visual Functioning

    ERIC Educational Resources Information Center

    Guerette, Amy R.; Lewis, Sandra; Mattingly, Cameron

    2011-01-01

    In the study reported here, the responses to a survey that was designed to determine the knowledge of their visual impairment of 51 students with low vision were analyzed. Although the students described their visual weaknesses and strengths, they had limited knowledge of, and difficulty communicating about, the medical aspects of their…

  5. Psychophysical measures of visual function and everyday perceptual experience in a case of congenital stationary night blindness

    PubMed Central

    Cammack, Jocelyn; Whight, John; Cross, Vinette; Rider, Andrew T; Webster, Andrew R; Stockman, Andrew

    2016-01-01

    An appreciation of the relation between laboratory measures of visual deficit and everyday perceptual experience is fundamental to understanding the impact of a visual condition on patients and so to a fuller characterization of the disorder. This study aims to understand better the interpretative processes by which modified sensory information is perceived by a patient with congenital stationary night blindness and the adaptive strategies that are devised to deal with their measurable visual loss. Psychophysical measurements of temporal resolution, spectral sensitivity, and color discrimination were conducted on a 78-year-old male patient with the condition, who was also interviewed at length about the ways in which his diagnosis affected his daily life. Narrative analysis was employed to identify the relation between his subjective perceptual experiences and functional deficits in identifiable components of the visual system. Psychophysical measurements indicated a complete lack of rod perception and substantially reduced cone sensitivity. Two particular effects of this visual loss emerged during interviews: 1) the development of navigational techniques that relied on light reflections and point sources of light and 2) a reluctance to disclose the extent of visual loss and resulting lifelong psychosocial consequences. This study demonstrates the valuable complementary role that rich descriptive patient testimony can play, in conjunction with laboratory and clinical measurements, in more fully characterizing a disorder and in reaching a more complete understanding of the experience of vision loss. It also evidences the particular suitability of filmmaking techniques as a means of accessing and communicating subjective patient experience.

  6. Psychophysical measures of visual function and everyday perceptual experience in a case of congenital stationary night blindness.

    PubMed

    Cammack, Jocelyn; Whight, John; Cross, Vinette; Rider, Andrew T; Webster, Andrew R; Stockman, Andrew

    2016-01-01

    An appreciation of the relation between laboratory measures of visual deficit and everyday perceptual experience is fundamental to understanding the impact of a visual condition on patients and so to a fuller characterization of the disorder. This study aims to understand better the interpretative processes by which modified sensory information is perceived by a patient with congenital stationary night blindness and the adaptive strategies that are devised to deal with their measurable visual loss. Psychophysical measurements of temporal resolution, spectral sensitivity, and color discrimination were conducted on a 78-year-old male patient with the condition, who was also interviewed at length about the ways in which his diagnosis affected his daily life. Narrative analysis was employed to identify the relation between his subjective perceptual experiences and functional deficits in identifiable components of the visual system. Psychophysical measurements indicated a complete lack of rod perception and substantially reduced cone sensitivity. Two particular effects of this visual loss emerged during interviews: 1) the development of navigational techniques that relied on light reflections and point sources of light and 2) a reluctance to disclose the extent of visual loss and resulting lifelong psychosocial consequences. This study demonstrates the valuable complementary role that rich descriptive patient testimony can play, in conjunction with laboratory and clinical measurements, in more fully characterizing a disorder and in reaching a more complete understanding of the experience of vision loss. It also evidences the particular suitability of filmmaking techniques as a means of accessing and communicating subjective patient experience. PMID:27601873

  7. Psychophysical measures of visual function and everyday perceptual experience in a case of congenital stationary night blindness.

    PubMed

    Cammack, Jocelyn; Whight, John; Cross, Vinette; Rider, Andrew T; Webster, Andrew R; Stockman, Andrew

    2016-01-01

    An appreciation of the relation between laboratory measures of visual deficit and everyday perceptual experience is fundamental to understanding the impact of a visual condition on patients and so to a fuller characterization of the disorder. This study aims to understand better the interpretative processes by which modified sensory information is perceived by a patient with congenital stationary night blindness and the adaptive strategies that are devised to deal with their measurable visual loss. Psychophysical measurements of temporal resolution, spectral sensitivity, and color discrimination were conducted on a 78-year-old male patient with the condition, who was also interviewed at length about the ways in which his diagnosis affected his daily life. Narrative analysis was employed to identify the relation between his subjective perceptual experiences and functional deficits in identifiable components of the visual system. Psychophysical measurements indicated a complete lack of rod perception and substantially reduced cone sensitivity. Two particular effects of this visual loss emerged during interviews: 1) the development of navigational techniques that relied on light reflections and point sources of light and 2) a reluctance to disclose the extent of visual loss and resulting lifelong psychosocial consequences. This study demonstrates the valuable complementary role that rich descriptive patient testimony can play, in conjunction with laboratory and clinical measurements, in more fully characterizing a disorder and in reaching a more complete understanding of the experience of vision loss. It also evidences the particular suitability of filmmaking techniques as a means of accessing and communicating subjective patient experience.

  8. Psychophysical measures of visual function and everyday perceptual experience in a case of congenital stationary night blindness

    PubMed Central

    Cammack, Jocelyn; Whight, John; Cross, Vinette; Rider, Andrew T; Webster, Andrew R; Stockman, Andrew

    2016-01-01

    An appreciation of the relation between laboratory measures of visual deficit and everyday perceptual experience is fundamental to understanding the impact of a visual condition on patients and so to a fuller characterization of the disorder. This study aims to understand better the interpretative processes by which modified sensory information is perceived by a patient with congenital stationary night blindness and the adaptive strategies that are devised to deal with their measurable visual loss. Psychophysical measurements of temporal resolution, spectral sensitivity, and color discrimination were conducted on a 78-year-old male patient with the condition, who was also interviewed at length about the ways in which his diagnosis affected his daily life. Narrative analysis was employed to identify the relation between his subjective perceptual experiences and functional deficits in identifiable components of the visual system. Psychophysical measurements indicated a complete lack of rod perception and substantially reduced cone sensitivity. Two particular effects of this visual loss emerged during interviews: 1) the development of navigational techniques that relied on light reflections and point sources of light and 2) a reluctance to disclose the extent of visual loss and resulting lifelong psychosocial consequences. This study demonstrates the valuable complementary role that rich descriptive patient testimony can play, in conjunction with laboratory and clinical measurements, in more fully characterizing a disorder and in reaching a more complete understanding of the experience of vision loss. It also evidences the particular suitability of filmmaking techniques as a means of accessing and communicating subjective patient experience. PMID:27601873

  9. Adapting ORAP to wind plants : industry value and functional requirements.

    SciTech Connect

    Not Available

    2010-08-01

    Strategic Power Systems (SPS) was contracted by Sandia National Laboratories to assess the feasibility of adapting their ORAP (Operational Reliability Analysis Program) tool for deployment to the wind industry. ORAP for Wind is proposed for use as the primary data source for the CREW (Continuous Reliability Enhancement for Wind) database which will be maintained by Sandia to enable reliability analysis of US wind fleet operations. The report primarily addresses the functional requirements of the wind-based system. The SPS ORAP reliability monitoring system has been used successfully for over twenty years to collect RAM (Reliability, Availability, Maintainability) and operations data for benchmarking and analysis of gas and steam turbine performance. This report documents the requirements to adapt the ORAP system for the wind industry. It specifies which existing ORAP design features should be retained, as well as key new requirements for wind. The latter includes alignment with existing and emerging wind industry standards (IEEE 762, ISO 3977 and IEC 61400). There is also a comprehensive list of thirty critical-to-quality (CTQ) functional requirements which must be considered and addressed to establish the optimum design for wind.

  10. Sleep and vestibular adaptation: implications for function in microgravity

    NASA Technical Reports Server (NTRS)

    Hobson, J. A.; Stickgold, R.; Pace-Schott, E. F.; Leslie, K. R.

    1998-01-01

    Optimal human performance depends upon integrated sensorimotor and cognitive functions, both of which are known to be exquisitely sensitive to loss of sleep. Under the microgravity conditions of space flight, adaptation of both sensorimotor (especially vestibular) and cognitive functions (especially orientation) must occur quickly--and be maintained--despite any concurrent disruptions of sleep that may be caused by microgravity itself, or by the uncomfortable sleeping conditions of the spacecraft. It is the three-way interaction between sleep quality, general work efficiency, and sensorimotor integration that is the subject of this paper and the focus of new work in our laboratory. To record sleep under field conditions including microgravity, we utilize a novel system called the Nightcap that we have developed and extensively tested on normal and sleep-disordered subjects. To perturb the vestibular system in ground-based studies, we utilize a variety of experimental conditions including optokinetic stimulation and both minifying and reversing goggle paradigms that have been extensively studied in relation to plasticity of the vestibulo-ocular reflex. Using these techniques we will test the hypothesis that vestibular adaptation both provokes and is enhanced by REM sleep under both ground-based and space conditions. In this paper we describe preliminary results of some of our studies.

  11. Temperature dependence of dark-adapted sensitivity and light-adaptation in photoreceptors with A1 visual pigments: a comparison of frog L-cones and rods.

    PubMed

    Heikkinen, H; Nymark, S; Donner, K; Koskelainen, A

    2009-07-01

    Flash responses of L-cones and rods were recorded as ERG mass potentials in the frog retina at different temperatures (2-25 degrees C). The purpose was to elucidate factors that make cones faster and less sensitive than rods, particularly the possible role of thermal activation of L-cone visual pigment in maintaining a "light-adapted" state even in darkness. Up to ca. 15 degrees C, cones and rods were desensitized roughly equally by warming (Q(10) approximately 2.2-2.7), retaining a 5-fold sensitivity difference. In this range, the cone/rod difference must depend on factors other than thermal activation of the visual pigment. Above 15 degrees C, cones showed an additional component of desensitization compared with rods, coupled to accelerated response shut-off. This behavior is consistent with light-adaptation from temperature-dependent intrinsic activity (dark light). The apparent dark light as measured by the minimum background intensities needed to affect sensitivity and/or kinetics increased by ca. 10-fold between 15 and 25 degrees C, whereas reported increases in visual-pigment activation rates over this range are less than 5-fold. We conclude that the dark state of frog L-cones above 15 degrees C may be largely set by thermal activation of the phototransduction machinery, but only part of the experimentally determined dark light can be ascribed to the visual pigment.

  12. Cardiac function adaptations in hibernating grizzly bears (Ursus arctos horribilis).

    PubMed

    Nelson, O Lynne; Robbins, Charles T

    2010-03-01

    Research on the cardiovascular physiology of hibernating mammals may provide insight into evolutionary adaptations; however, anesthesia used to handle wild animals may affect the cardiovascular parameters of interest. To overcome these potential biases, we investigated the functional cardiac phenotype of the hibernating grizzly bear (Ursus arctos horribilis) during the active, transitional and hibernating phases over a 4 year period in conscious rather than anesthetized bears. The bears were captive born and serially studied from the age of 5 months to 4 years. Heart rate was significantly different from active (82.6 +/- 7.7 beats/min) to hibernating states (17.8 +/- 2.8 beats/min). There was no difference from the active to the hibernating state in diastolic and stroke volume parameters or in left atrial area. Left ventricular volume:mass was significantly increased during hibernation indicating decreased ventricular mass. Ejection fraction of the left ventricle was not different between active and hibernating states. In contrast, total left atrial emptying fraction was significantly reduced during hibernation (17.8 +/- 2.8%) as compared to the active state (40.8 +/- 1.9%). Reduced atrial chamber function was also supported by reduced atrial contraction blood flow velocities and atrial contraction ejection fraction during hibernation; 7.1 +/- 2.8% as compared to 20.7 +/- 3% during the active state. Changes in the diastolic cardiac filling cycle, especially atrial chamber contribution to ventricular filling, appear to be the most prominent macroscopic functional change during hibernation. Thus, we propose that these changes in atrial chamber function constitute a major adaptation during hibernation which allows the myocardium to conserve energy, avoid chamber dilation and remain healthy during a period of extremely low heart rates. These findings will aid in rational approaches to identifying underlying molecular mechanisms. PMID:19940994

  13. Cardiac function adaptations in hibernating grizzly bears (Ursus arctos horribilis).

    PubMed

    Nelson, O Lynne; Robbins, Charles T

    2010-03-01

    Research on the cardiovascular physiology of hibernating mammals may provide insight into evolutionary adaptations; however, anesthesia used to handle wild animals may affect the cardiovascular parameters of interest. To overcome these potential biases, we investigated the functional cardiac phenotype of the hibernating grizzly bear (Ursus arctos horribilis) during the active, transitional and hibernating phases over a 4 year period in conscious rather than anesthetized bears. The bears were captive born and serially studied from the age of 5 months to 4 years. Heart rate was significantly different from active (82.6 +/- 7.7 beats/min) to hibernating states (17.8 +/- 2.8 beats/min). There was no difference from the active to the hibernating state in diastolic and stroke volume parameters or in left atrial area. Left ventricular volume:mass was significantly increased during hibernation indicating decreased ventricular mass. Ejection fraction of the left ventricle was not different between active and hibernating states. In contrast, total left atrial emptying fraction was significantly reduced during hibernation (17.8 +/- 2.8%) as compared to the active state (40.8 +/- 1.9%). Reduced atrial chamber function was also supported by reduced atrial contraction blood flow velocities and atrial contraction ejection fraction during hibernation; 7.1 +/- 2.8% as compared to 20.7 +/- 3% during the active state. Changes in the diastolic cardiac filling cycle, especially atrial chamber contribution to ventricular filling, appear to be the most prominent macroscopic functional change during hibernation. Thus, we propose that these changes in atrial chamber function constitute a major adaptation during hibernation which allows the myocardium to conserve energy, avoid chamber dilation and remain healthy during a period of extremely low heart rates. These findings will aid in rational approaches to identifying underlying molecular mechanisms.

  14. Association and dissociation of visual functions in a case of bilateral occipital lobe infarction.

    PubMed

    Pöppel, E; Brinkmann, R; von Cramon, D; Singer, W

    1978-03-01

    A severe restriction of the visual field was observed in a patient suffering a bilateral occipital lobe infarction. Soon after the lesion, the visual field had an angle of approx. 4 degrees. Some recovery was observed within the following months. Within the restricted visual field, several visual functions were tested. Increment threshold, for instance, was found to be one log unit higher than would normally be expected. Color vision was completely lost soon after the lesion, but some recovery was later observed. Although binocular interaction was demonstrated by the interocular transfer of after-effects, the patient never experienced steropsis. He also seemed unable to recognize faces. Dsepite the small visual field, optokinetic nystagmus could be elicited. A notable slowing down of visual analyses was observed in experiments on visual reaction time, on the inversion of the Necker cube, and on binocular rivalry. The complete loss of certain functions like steropsis or face recognition in contrast to a quantitative reduction of other functions like visual acuity or color perception can be discussed in the light of two conceptual models of perceptual processing. One model suggests the representation of different visual functions within one neuronal network, each function represented by a different number of neurons or a different algorithm within the network. The second model suggests a spatial segregation of different visual functions in different cortical areas that receive input from one common structure, presumably the striate cortex.

  15. An improved human visual system based reversible data hiding method using adaptive histogram modification

    NASA Astrophysics Data System (ADS)

    Hong, Wien; Chen, Tung-Shou; Wu, Mei-Chen

    2013-03-01

    Jung et al., IEEE Signal Processing Letters, 18, 2, 95, 2011 proposed a reversible data hiding method considering the human visual system (HVS). They employed the mean of visited neighboring pixels to predict the current pixel value, and estimated the just noticeable difference (JND) of the current pixel. Message bits are then embedded by adjusting the embedding level according to the calculated JND. Jung et al.'s method achieved excellent image quality. However, the embedding algorithm they used may result in over modification of pixel values and a large location map, which may deteriorate the image quality and decrease the pure payload. The proposed method exploits the nearest neighboring pixels to predict the visited pixel value and to estimate the corresponding JND. The cover pixels are preprocessed adaptively to reduce the size of the location map. We also employ an embedding level selection mechanism to prevent near-saturated pixels from being over modified. Experimental results show that the image quality of the proposed method is higher than that of Jung et al.'s method, and the payload can also be increased due to the reduction of the location map.

  16. Efficacy of visual-scanning training and prism adaptation for neglect rehabilitation.

    PubMed

    Spaccavento, Simona; Cellamare, Fara; Cafforio, Elisabetta; Loverre, Anna; Craca, Angela

    2016-01-01

    Unilateral spatial neglect consists of the inability of a patient to respond, orient, and attend to stimuli on the left side of a space following a right-hemisphere lesion. Many rehabilitation approaches have been proposed to reduce neglect. The aim of our study was to compare the effect of visual-scanning training (VST) and prismatic adaptation (PA) on patients with neglect following a right-hemisphere lesion. Twenty patients with left neglect were enrolled in the study. Before and after training, a comprehensive neuropsychological assessment of visuospatial abilities, evaluating personal, peripersonal, and extrapersonal neglect, was performed. After assessment, patients were alternately assigned to 1 of 2 groups, VST or PA. Both trainings consisted of 20 sessions, 1 per day, 5 days a week for 4 weeks. The results showed that both treatments improved patient neglect, especially in personal and peripersonal spaces. No difference between pretreatment and posttreatment was found in extrapersonal subscales. This finding could be due to the fact that there were no exercises requiring the use of objects within reach in either training. In conclusion, no difference between the 2 approaches was found, and both are useful rehabilitation techniques that appear to improve neglect.

  17. Boosting visual cortex function and plasticity with acetylcholine to enhance visual perception

    PubMed Central

    Kang, Jun Il; Huppé-Gourgues, Frédéric; Vaucher, Elvire

    2014-01-01

    The cholinergic system is a potent neuromodulatory system that plays critical roles in cortical plasticity, attention and learning. In this review, we propose that the cellular effects of acetylcholine (ACh) in the primary visual cortex during the processing of visual inputs might induce perceptual learning; i.e., long-term changes in visual perception. Specifically, the pairing of cholinergic activation with visual stimulation increases the signal-to-noise ratio, cue detection ability and long-term facilitation in the primary visual cortex. This cholinergic enhancement would increase the strength of thalamocortical afferents to facilitate the treatment of a novel stimulus while decreasing the cortico-cortical signaling to reduce recurrent or top-down modulation. This balance would be mediated by different cholinergic receptor subtypes that are located on both glutamatergic and GABAergic neurons of the different cortical layers. The mechanisms of cholinergic enhancement are closely linked to attentional processes, long-term potentiation (LTP) and modulation of the excitatory/inhibitory balance. Recently, it was found that boosting the cholinergic system during visual training robustly enhances sensory perception in a long-term manner. Our hypothesis is that repetitive pairing of cholinergic and sensory stimulation over a long period of time induces long-term changes in the processing of trained stimuli that might improve perceptual ability. Various non-invasive approaches to the activation of the cholinergic neurons have strong potential to improve visual perception. PMID:25278848

  18. Detecting Visual Function Abnormality with a Contrast-Dependent Visual Test in Patients with Type 2 Diabetes

    PubMed Central

    Jang, Yuh; Hu, Fu-Chang; Wu, Wei-Chi

    2016-01-01

    In addition to diabetic retinopathy, diabetes also causes early retinal neurodegeneration and other eye problems, which cause various types of visual deficits. This study used a computer-based visual test (Macular Multi-Function Assessment (MMFA)) to assess contrast-dependent macular visual function in patients with type 2 diabetes to collect more visual information than possible with only the visual acuity test. Because the MMFA is a newly developed test, this study first compared the agreement and discriminative ability of the MMFA and the Early Treatment Diabetic Retinopathy Study (ETDRS) contrast acuity charts. Then symbol discrimination performances of diabetic patients and controls were evaluated at 4 contrast levels using the MMFA. Seventy-seven patients and 45 controls participated. The agreement between MMFA and ETDRS scores was examined by fitting three-level linear mixed-effect models to estimate the intraclass correlation coefficients (ICCs). The estimated areas under the receiver operating characteristic (ROC) curve were used to compare the discriminative ability of diseased versus non-diseased participants between the two tests. The MMFA scores of patients and controls were compared with multiple linear regression analysis after adjusting the effects of age, sex, hypertension and cataract. Results showed that the scores of the MMFA and ETDRS tests displayed high levels of agreement and acceptable and similar discriminative ability. The MMFA performance was correlated with the severity of diabetic retinopathy. Most of the MMFA scores differed significantly between the diabetic patients and controls. In the low contrast condition, the MMFA scores were significantly lower for 006Eon-DR patients than for controls. The potential utility of the MMFA as an easy screening tool for contrast-dependent visual function and for detecting early functional visual change in patients with type 2 diabetes is discussed. PMID:27611680

  19. Detecting Visual Function Abnormality with a Contrast-Dependent Visual Test in Patients with Type 2 Diabetes.

    PubMed

    Tsai, Li-Ting; Liao, Kuo-Meng; Jang, Yuh; Hu, Fu-Chang; Wu, Wei-Chi

    2016-01-01

    In addition to diabetic retinopathy, diabetes also causes early retinal neurodegeneration and other eye problems, which cause various types of visual deficits. This study used a computer-based visual test (Macular Multi-Function Assessment (MMFA)) to assess contrast-dependent macular visual function in patients with type 2 diabetes to collect more visual information than possible with only the visual acuity test. Because the MMFA is a newly developed test, this study first compared the agreement and discriminative ability of the MMFA and the Early Treatment Diabetic Retinopathy Study (ETDRS) contrast acuity charts. Then symbol discrimination performances of diabetic patients and controls were evaluated at 4 contrast levels using the MMFA. Seventy-seven patients and 45 controls participated. The agreement between MMFA and ETDRS scores was examined by fitting three-level linear mixed-effect models to estimate the intraclass correlation coefficients (ICCs). The estimated areas under the receiver operating characteristic (ROC) curve were used to compare the discriminative ability of diseased versus non-diseased participants between the two tests. The MMFA scores of patients and controls were compared with multiple linear regression analysis after adjusting the effects of age, sex, hypertension and cataract. Results showed that the scores of the MMFA and ETDRS tests displayed high levels of agreement and acceptable and similar discriminative ability. The MMFA performance was correlated with the severity of diabetic retinopathy. Most of the MMFA scores differed significantly between the diabetic patients and controls. In the low contrast condition, the MMFA scores were significantly lower for 006Eon-DR patients than for controls. The potential utility of the MMFA as an easy screening tool for contrast-dependent visual function and for detecting early functional visual change in patients with type 2 diabetes is discussed. PMID:27611680

  20. The OTOLITH Experiment - Assessment of Otolith Function During Postflight Re-adaption

    NASA Technical Reports Server (NTRS)

    Clarke, A. H.; Wood, S. J.; Schoenfeld, U.

    2010-01-01

    The ongoing "Otolith" experiment is designed to comprehensively assess the otolith function during the re-adaptation phase after spaceflight. The novel protocol includes unilateral testing of each of the two otolith organs the utricle and the saccule. To assess utricle function, the otolith-ocular response (OOR) and the subjective visual vertical (SVV) are measured during unilateral centrifugation, which permits independent stimulation of the right and left ear. Measurement of the unilateral otolith-ocular response (uOOR) yields information on the response behaviour of the right and left peripheral utricles, whereas the SVV reflects the behaviour of the entire pathway from the peripheral otolith receptors to the vestibular cortex. Thus, by comparative evaluation of the results from the two tests, the degree of peripheral versus central adaptation during the post-flight period can be determined. To assess unilateral saccule function, vestibular evoked myogenic potentials (VEMP) are recorded. Since the saccules are predominantly aligned to gravity, and interplay with the antigravity muscles, it is hypothesised that these potentials shall be altered after spaceflight. To date the study has been conducted with 5 of a planned 8 short-flight Shuttle astronauts. Preliminary results will be discussed together with those from clinical studies of dizziness patients, where the same test protocol is employed. ACKNOWLEDGEMENT This work is supported by the German Aerospace Center (Grant DLR W130729) and is conducted under the auspices of ESA, in cooperation with NASA.

  1. Here, there and everywhere: higher visual function and the dorsal visual stream.

    PubMed

    Cooper, Sarah Anne; O'Sullivan, Michael

    2016-06-01

    The dorsal visual stream, often referred to as the 'where' stream, represents the pathway taken by visual information from the primary visual cortex to the posterior parietal lobe and onwards. It partners the ventral or 'what' stream, the subject of a previous review and largely a temporal-based system. Here, we consider the dorsal stream disorders of perception (simultanagnosia, akinetopsia) along with their consequences on action (eg, optic ataxia and oculomotor apraxia, along with Balint's syndrome). The role of the dorsal stream in blindsight and hemispatial neglect is also considered. PMID:26786007

  2. Functional modules of sigma factor regulons guarantee adaptability and evolvability

    NASA Astrophysics Data System (ADS)

    Binder, Sebastian C.; Eckweiler, Denitsa; Schulz, Sebastian; Bielecka, Agata; Nicolai, Tanja; Franke, Raimo; Häussler, Susanne; Meyer-Hermann, Michael

    2016-02-01

    The focus of modern molecular biology turns from assigning functions to individual genes towards understanding the expression and regulation of complex sets of molecules. Here, we provide evidence that alternative sigma factor regulons in the pathogen Pseudomonas aeruginosa largely represent insulated functional modules which provide a critical level of biological organization involved in general adaptation and survival processes. Analysis of the operational state of the sigma factor network revealed that transcription factors functionally couple the sigma factor regulons and significantly modulate the transcription levels in the face of challenging environments. The threshold quality of newly evolved transcription factors was reached faster and more robustly in in silico testing when the structural organization of sigma factor networks was taken into account. These results indicate that the modular structures of alternative sigma factor regulons provide P. aeruginosa with a robust framework to function adequately in its environment and at the same time facilitate evolutionary change. Our data support the view that widespread modularity guarantees robustness of biological networks and is a key driver of evolvability.

  3. Functional modules of sigma factor regulons guarantee adaptability and evolvability.

    PubMed

    Binder, Sebastian C; Eckweiler, Denitsa; Schulz, Sebastian; Bielecka, Agata; Nicolai, Tanja; Franke, Raimo; Häussler, Susanne; Meyer-Hermann, Michael

    2016-01-01

    The focus of modern molecular biology turns from assigning functions to individual genes towards understanding the expression and regulation of complex sets of molecules. Here, we provide evidence that alternative sigma factor regulons in the pathogen Pseudomonas aeruginosa largely represent insulated functional modules which provide a critical level of biological organization involved in general adaptation and survival processes. Analysis of the operational state of the sigma factor network revealed that transcription factors functionally couple the sigma factor regulons and significantly modulate the transcription levels in the face of challenging environments. The threshold quality of newly evolved transcription factors was reached faster and more robustly in in silico testing when the structural organization of sigma factor networks was taken into account. These results indicate that the modular structures of alternative sigma factor regulons provide P. aeruginosa with a robust framework to function adequately in its environment and at the same time facilitate evolutionary change. Our data support the view that widespread modularity guarantees robustness of biological networks and is a key driver of evolvability. PMID:26915971

  4. Functional modules of sigma factor regulons guarantee adaptability and evolvability

    PubMed Central

    Binder, Sebastian C.; Eckweiler, Denitsa; Schulz, Sebastian; Bielecka, Agata; Nicolai, Tanja; Franke, Raimo; Häussler, Susanne; Meyer-Hermann, Michael

    2016-01-01

    The focus of modern molecular biology turns from assigning functions to individual genes towards understanding the expression and regulation of complex sets of molecules. Here, we provide evidence that alternative sigma factor regulons in the pathogen Pseudomonas aeruginosa largely represent insulated functional modules which provide a critical level of biological organization involved in general adaptation and survival processes. Analysis of the operational state of the sigma factor network revealed that transcription factors functionally couple the sigma factor regulons and significantly modulate the transcription levels in the face of challenging environments. The threshold quality of newly evolved transcription factors was reached faster and more robustly in in silico testing when the structural organization of sigma factor networks was taken into account. These results indicate that the modular structures of alternative sigma factor regulons provide P. aeruginosa with a robust framework to function adequately in its environment and at the same time facilitate evolutionary change. Our data support the view that widespread modularity guarantees robustness of biological networks and is a key driver of evolvability. PMID:26915971

  5. The adaptation of visual and auditory integration in the barn owl superior colliculus with Spike Timing Dependent Plasticity.

    PubMed

    Huo, Juan; Murray, Alan

    2009-09-01

    To localize a seen object, the superior colliculus of the barn owl integrates the visual and auditory localization cues which are accessed from the sensory system of the brain. These cues are formed as visual and auditory maps. The alignment between visual and auditory maps is very important for accurate localization in prey behavior. Blindness or prism wearing may interfere this alignment. The juvenile barn owl could adapt its auditory map to this mismatch after several weeks training. Here we investigate this process by building a computational model of auditory and visual integration in deep Superior Colliculus (SC). The adaptation of the map alignment is based on activity dependent axon developing in Inferior Colliculus (IC). This axon growing process is instructed by an inhibitory network in SC while the strength of the inhibition is adjusted by Spike Timing Dependent Plasticity (STDP). The simulation results of this model are in line with the biological experiment and support the idea that STDP is involved in the alignment of sensory maps. This model also provides a new spiking neuron based mechanism capable of eliminating the disparity in visual and auditory map integration. PMID:19084371

  6. Automatic Tuning of Spatially Varying Transfer Functions for Blood Vessel Visualization.

    PubMed

    Lathen, G; Lindholm, S; Lenz, R; Persson, A; Borga, M

    2012-12-01

    Computed Tomography Angiography (CTA) is commonly used in clinical routine for diagnosing vascular diseases. The procedure involves the injection of a contrast agent into the blood stream to increase the contrast between the blood vessels and the surrounding tissue in the image data. CTA is often visualized with Direct Volume Rendering (DVR) where the enhanced image contrast is important for the construction of Transfer Functions (TFs). For increased efficiency, clinical routine heavily relies on preset TFs to simplify the creation of such visualizations for a physician. In practice, however, TF presets often do not yield optimal images due to variations in mixture concentration of contrast agent in the blood stream. In this paper we propose an automatic, optimization-based method that shifts TF presets to account for general deviations and local variations of the intensity of contrast enhanced blood vessels. Some of the advantages of this method are the following. It computationally automates large parts of a process that is currently performed manually. It performs the TF shift locally and can thus optimize larger portions of the image than is possible with manual interaction. The method is based on a well known vesselness descriptor in the definition of the optimization criterion. The performance of the method is illustrated by clinically relevant CT angiography datasets displaying both improved structural overviews of vessel trees and improved adaption to local variations of contrast concentration. PMID:26357142

  7. Resting-state functional connectivity predicts longitudinal change in autistic traits and adaptive functioning in autism.

    PubMed

    Plitt, Mark; Barnes, Kelly Anne; Wallace, Gregory L; Kenworthy, Lauren; Martin, Alex

    2015-12-01

    Although typically identified in early childhood, the social communication symptoms and adaptive behavior deficits that are characteristic of autism spectrum disorder (ASD) persist throughout the lifespan. Despite this persistence, even individuals without cooccurring intellectual disability show substantial heterogeneity in outcomes. Previous studies have found various behavioral assessments [such as intelligence quotient (IQ), early language ability, and baseline autistic traits and adaptive behavior scores] to be predictive of outcome, but most of the variance in functioning remains unexplained by such factors. In this study, we investigated to what extent functional brain connectivity measures obtained from resting-state functional connectivity MRI (rs-fcMRI) could predict the variance left unexplained by age and behavior (follow-up latency and baseline autistic traits and adaptive behavior scores) in two measures of outcome--adaptive behaviors and autistic traits at least 1 y postscan (mean follow-up latency = 2 y, 10 mo). We found that connectivity involving the so-called salience network (SN), default-mode network (DMN), and frontoparietal task control network (FPTCN) was highly predictive of future autistic traits and the change in autistic traits and adaptive behavior over the same time period. Furthermore, functional connectivity involving the SN, which is predominantly composed of the anterior insula and the dorsal anterior cingulate, predicted reliable improvement in adaptive behaviors with 100% sensitivity and 70.59% precision. From rs-fcMRI data, our study successfully predicted heterogeneity in outcomes for individuals with ASD that was unaccounted for by simple behavioral metrics and provides unique evidence for networks underlying long-term symptom abatement.

  8. Developing a functioning visualization and analysis system for performance assessment

    SciTech Connect

    Jones, M.L.

    1992-01-01

    Various commercial software packages and customized programs provide the ability to analyze and visualize the geology of Yucca Mountain. Starting with sparse, irregularly spaced data a series of gridded models has been developed representing the thermal/mechanical units within the mountain. Using computer aided design (CAD) software and scientific visualization software, the units can be manipulated, analyzed, and graphically displayed. The outputs are typically gridded terrain models, along with files of three-dimensional coordinates, distances, and other dimensional values. Contour maps, profiles, and shaded surfaces are the output for visualization.

  9. An indirect adaptive neural control of a visual-based quadrotor robot for pursuing a moving target.

    PubMed

    Shirzadeh, Masoud; Amirkhani, Abdollah; Jalali, Aliakbar; Mosavi, Mohammad R

    2015-11-01

    This paper aims to use a visual-based control mechanism to control a quadrotor type aerial robot which is in pursuit of a moving target. The nonlinear nature of a quadrotor, on the one hand, and the difficulty of obtaining an exact model for it, on the other hand, constitute two serious challenges in designing a controller for this UAV. A potential solution for such problems is the use of intelligent control methods such as those that rely on artificial neural networks and other similar approaches. In addition to the two mentioned problems, another problem that emerges due to the moving nature of a target is the uncertainty that exists in the target image. By employing an artificial neural network with a Radial Basis Function (RBF) an indirect adaptive neural controller has been designed for a quadrotor robot in search of a moving target. The results of the simulation for different paths show that the quadrotor has efficiently tracked the moving target. PMID:26521725

  10. Graphical illustration and functional neuroimaging of visual hallucinations during prolonged blindfolding: a comparison to visual imagery.

    PubMed

    Sireteanu, Ruxandra; Oertel, Viola; Mohr, Harald; Linden, David; Singer, Wolf

    2008-01-01

    Visual hallucinations can occur in healthy subjects during prolonged visual deprivation. We investigated the visual percepts and the associated brain activity in a 37-year-old healthy female subject who developed visual hallucinations during three weeks of blindfolding, and then compared this activity with the cortical activity associated with mental imagery of the same patterns. We acquired fMRI data with a Siemens 3T Magnetom Allegra towards the end of the deprivation period to assess hallucination-related activity, and again after recovery from blindfolding to measure imagery-related activity. Detailed subjective descriptions and graphical illustrations were provided by the subject after blindfolding was completed. The subject reported the occurrence of simple and elementary hallucinations, consisting of flashes and coloured and moving patterns during the period of blindfolding. Neural activity related to hallucinations was found in extrastriate occipital, posterior parietal, and several prefrontal regions. In contrast, mental imagery of the same percepts led to activation in prefrontal, but not in posterior, parietal, and occipital regions. These results suggest that deprivation-induced hallucinations result from increased excitability of extrastriate visual areas, while mentally induced imagery involves active read-out under the volitional control of prefrontal structures. This agrees with the subject's report that visual hallucinations were more vivid than mental imagery.

  11. Multiple sessions of transcranial direct current stimulation to the intact hemisphere improves visual function after unilateral ablation of visual cortex.

    PubMed

    Rushmore, R J; DeSimone, C; Valero-Cabré, A

    2013-12-01

    Damage to cerebral systems is frequently followed by the emergence of compensatory mechanisms, which serve to reduce the effects of brain damage and allow recovery of function. Intrinsic recovery, however, is rarely complete. Non-invasive brain stimulation technologies have the potential to actively shape neural circuits and enhance recovery from brain damage. In this study, a stable deficit for detecting and orienting to visual stimuli presented in the contralesional visual hemifield was generated by producing unilateral brain damage of the right posterior parietal and contiguous visual cortical areas. A long regimen of inhibitory non-invasive transcranial direct-current stimulation (cathodal tDCS, 2 mA, 20 min) was applied to the contralateral (intact) posterior parietal cortex over 14 weeks (total of 70 sessions, one per day, 5 days per week) and behavioral outcomes were periodically assessed. In three out of four stimulated cats, lasting recovery of visuospatial function was observed. Recovery started after 2-3 weeks of stimulation, and recovered targets were located first in the periphery, and moved to more central visual field locations with the accrual of stimulation sessions. Recovery for moving tasks followed a biphasic pattern before reaching plateau levels. Recovery did not occur for more difficult visual tasks. These findings highlight the ability of multiple sessions of transcranial direct-current stimulation to produce recovery of visuospatial function after unilateral brain damage.

  12. Structural and functional correlates of visual field asymmetry in the human brain by diffusion kurtosis MRI and functional MRI.

    PubMed

    O'Connell, Caitlin; Ho, Leon C; Murphy, Matthew C; Conner, Ian P; Wollstein, Gadi; Cham, Rakie; Chan, Kevin C

    2016-11-01

    Human visual performance has been observed to show superiority in localized regions of the visual field across many classes of stimuli. However, the underlying neural mechanisms remain unclear. This study aims to determine whether the visual information processing in the human brain is dependent on the location of stimuli in the visual field and the corresponding neuroarchitecture using blood-oxygenation-level-dependent functional MRI (fMRI) and diffusion kurtosis MRI, respectively, in 15 healthy individuals at 3 T. In fMRI, visual stimulation to the lower hemifield showed stronger brain responses and larger brain activation volumes than the upper hemifield, indicative of the differential sensitivity of the human brain across the visual field. In diffusion kurtosis MRI, the brain regions mapping to the lower visual field showed higher mean kurtosis, but not fractional anisotropy or mean diffusivity compared with the upper visual field. These results suggested the different distributions of microstructural organization across visual field brain representations. There was also a strong positive relationship between diffusion kurtosis and fMRI responses in the lower field brain representations. In summary, this study suggested the structural and functional brain involvements in the asymmetry of visual field responses in humans, and is important to the neurophysiological and psychological understanding of human visual information processing.

  13. Visual-field superiority as a function of stimulus type and content.

    PubMed

    Dutta, Tanusree; Mandal, Manas K

    2002-08-01

    The objective of this study was to examine whether hemispheric superiority is determined more by stimulus type (facial, lexical) or content (neutral, emotional). A split, visual-field experiment was designed using a computer-based program with bilateral presentation (left visual-field, right visual-field) for four sets of stimuli: face (neutral, emotional) x word (neutral, emotional), N = 40. The dependent measures were the frequency of correct response and response latency of correct responses. The visual-field effect was nonsignificant for correct responses; however, the interaction of stimulus type x content was found significant. The interaction of visual-field x stimulus type was significant with response time as the dependent measure. Facial stimuli were processed faster in the left visual-field (a right hemispheric function) and lexical stimuli were processed faster in the right visual-field (a left hemispheric function). No hemispheric effect was observed for stimulus content. PMID:12448834

  14. Executive Function and Behavioral Problems in Students with Visual Impairments at Mainstream and Special Schools

    ERIC Educational Resources Information Center

    Heyl, Vera; Hintermair, Manfred

    2015-01-01

    Introduction: In this study, executive function of school-aged children with visual impairments (that is, those who are blind or have low vision) is examined in the context of behavioral problems and communicative competence. Methods: Teachers assessed the executive function of a sample of 226 visually impaired students from mainstream schools and…

  15. Status of point spread function determination for Keck adaptive optics

    NASA Astrophysics Data System (ADS)

    Ragland, S.; Jolissaint, L.; Wizinowich, P.; Neyman, C.

    2014-07-01

    There is great interest in the adaptive optics (AO) science community to overcome the limitations imposed by incomplete knowledge of the point spread function (PSF). To address this limitation a program has been initiated at the W. M. Keck Observatory (WMKO) to demonstrate PSF determination for observations obtained with Keck AO science instruments. This paper aims to give a broad view of the progress achieved in this area. The concept and the implementation are briefly described. The results from on-sky on-axis NGS AO measurements using the NIRC2 science instrument are presented. On-sky performance of the technique is illustrated by comparing the reconstructed PSFs to NIRC2 PSFs. Accuracy of the reconstructed PSFs in terms of Strehl ratio and FWHM are discussed. Science cases for the first phase of science verification have been identified. More technical details of the program are presented elsewhere in the conference.

  16. Site and Orbit Repeatabilities using Adaptive Mapping Functions

    NASA Astrophysics Data System (ADS)

    Desjardins, Camille; Gegout, Pascal; Soudarin, Laurent; Biancale, Richard; Perosanz, Felix

    2015-04-01

    The electromagnetic signals emitted by the satellite positioning systems travel at the speed of light in a straight line in a vacuum but are modified in their propagation through the neutral atmosphere by temporal and spatial changes of density, and composition and refractivity. These waves are slowed down and their trajectories are bent. This presentation summarizes the performances of the modeling of the tropospheric propagation by the ray tracing technique through the assimilations of the European Meteorological Centre (ECMWF) in the framework of realizing the geodetic reference frame. This goal is achieved by modeling the spatial variability of the propagation using the time variable three-dimensional physical parameters of the atmosphere. The tropospheric delays obtained by ray tracing in all directions throughout the meteorological model surrounding the geodetic site, are fitted by Adaptive Mapping Functions (AMF) parameterized by several tens of coefficients. The delays produced by the Horizon software are then experimented, kept unchanged or adjusted, when recovering a reference frame based on hundred sites using the GINS software. Without any adjustments of the tropospheric modeling, the subcentimetric performances of the AMF are demonstrated by the repeatability of sites positions and GPS satellites orbits. When some AMF coefficients are adjusted, the accuracy of orbits recovery in term of quadratic mean is 7 to 8 millimeters. This limit is imposed by the lack or deficiency of other models, such as non-tidal and tidal loading respectively. Hence the repeatability of the vertical position is not enhanced by changing the propagation model. At the contrary, the repeatability of the horizontal position of geodetic sites is greatly enhanced by accounting for the azimuthal variability provided by the realistic 3D shapes of the Atmosphere and the Earth and the rigorous interpolations of atmospheric parameters included in Adaptive Mapping Functions with respect

  17. Microscale laser surgery reveals adaptive function of male intromittent genitalia.

    PubMed

    Polak, Michal; Rashed, Arash

    2010-05-01

    The leading hypothesis for the evolution of male genital complexity proposes that genital traits evolve in response to post-insemination sexual selection; that is, via cryptic female choice or sperm competition. Here, we describe a laser ablation technique for high-precision manipulation of microscale body parts of insects, and employ it to discern the adaptive function of a rapidly evolving and taxonomically important genital trait: the intromittent claw-like genital spines of male Drosophila bipectinata Duda. We demonstrate experimentally and unambiguously that the genital spines of this species function to mechanically couple the genitalia together. The excision of the spines by laser ablation sharply reduced the ability of males both to copulate and to compete against rival males for mates. When spineless males did succeed to copulate, their insemination success and fertilization rate were not statistically different from controls, at odds with the post-insemination sexual selection hypothesis of genital function and evolution. The results provide direct experimental support for the hypothesis that genital traits evolve in response to sexual selection occurring prior to insemination.

  18. GATA-3 function in innate and adaptive immunity.

    PubMed

    Tindemans, Irma; Serafini, Nicolas; Di Santo, James P; Hendriks, Rudi W

    2014-08-21

    The zinc-finger transcription factor GATA-3 has received much attention as a master regulator of T helper 2 (Th2) cell differentiation, during which it controls interleukin-4 (IL-4), IL-5, and IL-13 expression. More recently, GATA-3 was shown to contribute to type 2 immunity through regulation of group 2 innate lymphoid cell (ILC2) development and function. Furthermore, during thymopoiesis, GATA-3 represses B cell potential in early T cell precursors, activates TCR signaling in pre-T cells, and promotes the CD4(+) T cell lineage after positive selection. GATA-3 also functions outside the thymus in hematopoietic stem cells, regulatory T cells, CD8(+) T cells, thymic natural killer cells, and ILC precursors. Here we discuss the varied functions of GATA-3 in innate and adaptive immune cells, with emphasis on its activity in T cells and ILCs, and examine the mechanistic basis for the dose-dependent, developmental-stage- and cell-lineage-specific activity of this transcription factor.

  19. Post-error adaptation in adults with high functioning autism.

    PubMed

    Bogte, Hans; Flamma, Bert; van der Meere, Jaap; van Engeland, Herman

    2007-04-01

    Deficits in executive function (EF), i.e. function of the prefrontal cortex, may be central in the etiology of autism. One of the various aspects of EF is error detection and adjusting behavior after an error. In cognitive tests, adults normally slow down their responding on the next trial after making an error, a compensatory mechanism geared toward improving performance on subsequent trials, and a faculty critically associated with activity in the anterior cingulate cortex (ACC). The current study evaluated post-error slowing in people with high functioning autism (HFA) (n=36), taking symptom severity into account, compared to the performance of a normal control group (n=32). Symptom severity in the HFA group was defined in terms of level of adaptation: living independently (outpatients; n=12) and living residentially (inpatients; n=24). Half the group of inpatients was on medication; the results of their performance were analyzed separately. A computerized version of a memory search task was used with two response probability conditions. The subjects in the control group adjusted their reaction time (RT) substantially after an error, while the group of participants with HFA appeared to be overall slow, with no significant adjustment of RT after an error. This finding remained significant if the medication factor was taken into account, and was independent of the degree of severity of the autistic disorder, as defined by the dichotomy 'inpatient versus outpatient'. Possible causes and implications of the finding are discussed.

  20. Microscale laser surgery reveals adaptive function of male intromittent genitalia

    PubMed Central

    Polak, Michal; Rashed, Arash

    2010-01-01

    The leading hypothesis for the evolution of male genital complexity proposes that genital traits evolve in response to post-insemination sexual selection; that is, via cryptic female choice or sperm competition. Here, we describe a laser ablation technique for high-precision manipulation of microscale body parts of insects, and employ it to discern the adaptive function of a rapidly evolving and taxonomically important genital trait: the intromittent claw-like genital spines of male Drosophila bipectinata Duda. We demonstrate experimentally and unambiguously that the genital spines of this species function to mechanically couple the genitalia together. The excision of the spines by laser ablation sharply reduced the ability of males both to copulate and to compete against rival males for mates. When spineless males did succeed to copulate, their insemination success and fertilization rate were not statistically different from controls, at odds with the post-insemination sexual selection hypothesis of genital function and evolution. The results provide direct experimental support for the hypothesis that genital traits evolve in response to sexual selection occurring prior to insemination. PMID:20053645

  1. Proteasome function shapes innate and adaptive immune responses.

    PubMed

    Kammerl, Ilona E; Meiners, Silke

    2016-08-01

    The proteasome system degrades more than 80% of intracellular proteins into small peptides. Accordingly, the proteasome is involved in many essential cellular functions, such as protein quality control, transcription, immune responses, cell signaling, and apoptosis. Moreover, degradation products are loaded onto major histocompatibility class I molecules to communicate the intracellular protein composition to the immune system. The standard 20S proteasome core complex contains three distinct catalytic active sites that are exchanged upon stimulation with inflammatory cytokines to form the so-called immunoproteasome. Immunoproteasomes are constitutively expressed in immune cells and have different proteolytic activities compared with standard proteasomes. They are rapidly induced in parenchymal cells upon intracellular pathogen infection and are crucial for priming effective CD8(+) T-cell-mediated immune responses against infected cells. Beyond shaping these adaptive immune reactions, immunoproteasomes also regulate the function of immune cells by degradation of inflammatory and immune mediators. Accordingly, they emerge as novel regulators of innate immune responses. The recently unraveled impairment of immunoproteasome function by environmental challenges and by genetic variations of immunoproteasome genes might represent a currently underestimated risk factor for the development and progression of lung diseases. In particular, immunoproteasome dysfunction will dampen resolution of infections, thereby promoting exacerbations, may foster autoimmunity in chronic lung diseases, and possibly contributes to immune evasion of tumor cells. Novel pharmacological tools, such as site-specific inhibitors of the immunoproteasome, as well as activity-based probes, however, hold promises as innovative therapeutic drugs for respiratory diseases and biomarker profiling, respectively. PMID:27343191

  2. Proteasome function shapes innate and adaptive immune responses.

    PubMed

    Kammerl, Ilona E; Meiners, Silke

    2016-08-01

    The proteasome system degrades more than 80% of intracellular proteins into small peptides. Accordingly, the proteasome is involved in many essential cellular functions, such as protein quality control, transcription, immune responses, cell signaling, and apoptosis. Moreover, degradation products are loaded onto major histocompatibility class I molecules to communicate the intracellular protein composition to the immune system. The standard 20S proteasome core complex contains three distinct catalytic active sites that are exchanged upon stimulation with inflammatory cytokines to form the so-called immunoproteasome. Immunoproteasomes are constitutively expressed in immune cells and have different proteolytic activities compared with standard proteasomes. They are rapidly induced in parenchymal cells upon intracellular pathogen infection and are crucial for priming effective CD8(+) T-cell-mediated immune responses against infected cells. Beyond shaping these adaptive immune reactions, immunoproteasomes also regulate the function of immune cells by degradation of inflammatory and immune mediators. Accordingly, they emerge as novel regulators of innate immune responses. The recently unraveled impairment of immunoproteasome function by environmental challenges and by genetic variations of immunoproteasome genes might represent a currently underestimated risk factor for the development and progression of lung diseases. In particular, immunoproteasome dysfunction will dampen resolution of infections, thereby promoting exacerbations, may foster autoimmunity in chronic lung diseases, and possibly contributes to immune evasion of tumor cells. Novel pharmacological tools, such as site-specific inhibitors of the immunoproteasome, as well as activity-based probes, however, hold promises as innovative therapeutic drugs for respiratory diseases and biomarker profiling, respectively.

  3. Arrestin 1 and Cone Arrestin 4 Have Unique Roles in Visual Function in an All-Cone Mouse Retina

    PubMed Central

    Deming, Janise D.; Pak, Joseph S.; Shin, Jung-a; Brown, Bruce M.; Kim, Moon K.; Aung, Moe H.; Lee, Eun-Jin; Pardue, Machelle T.; Craft, Cheryl Mae

    2015-01-01

    Purpose Previous studies discovered cone phototransduction shutoff occurs normally for Arr1−/− and Arr4−/−; however, it is defective when both visual arrestins are simultaneously not expressed (Arr1−/−Arr4−/−). We investigated the roles of visual arrestins in an all-cone retina (Nrl−/−) since each arrestin has differential effects on visual function, including ARR1 for normal light adaptation, and ARR4 for normal contrast sensitivity and visual acuity. Methods We examined Nrl−/−, Nrl−/−Arr1−/−, Nrl−/−Arr4−/−, and Nrl−/−Arr1−/−Arr4−/− mice with photopic electroretinography (ERG) to assess light adaptation and retinal responses, immunoblot and immunohistochemical localization analysis to measure retinal expression levels of M- and S-opsin, and optokinetic tracking (OKT) to measure the visual acuity and contrast sensitivity. Results Study results indicated that Nrl−/− and Nrl−/−Arr4−/− mice light adapted normally, while Nrl−/−Arr1−/− and Nrl−/−Arr1−/−Arr4−/− mice did not. Photopic ERG a-wave, b-wave, and flicker amplitudes followed a general pattern in which Nrl−/−Arr4−/− amplitudes were higher than the amplitudes of Nrl−/−, while the amplitudes of Nrl−/−Arr1−/− and Nrl−/−Arr1−/−Arr4−/− were lower. All three visual arrestin knockouts had faster implicit times than Nrl−/− mice. M-opsin expression is lower when ARR1 is not expressed, while S-opsin expression is lower when ARR4 is not expressed. Although M-opsin expression is mislocalized throughout the photoreceptor cells, S-opsin is confined to the outer segments in all genotypes. Contrast sensitivity is decreased when ARR4 is not expressed, while visual acuity was normal except in Nrl−/−Arr1−/−Arr4−/−. Conclusions Based on the opposite visual phenotypes in an all-cone retina in the Nrl−/−Arr1−/− and Nrl−/−Arr4−/− mice, we conclude that ARR1 and ARR4 perform unique

  4. Application Of Cathode-Ray Tube Technology To The Clinical Evaluation Of Visual Functions

    NASA Astrophysics Data System (ADS)

    Vernier, Francoise; Charlier, Jacques; Nguyen, Duc D.

    1988-02-01

    Cathode-ray tubes (CRTs) have many applications in the clinical evaluation of visual functions. They have been used to test visual acuity, contrast sensitivity, visual fields, and early development of vision in preverbal children. Because CRTs provide considerable flexibility for the definition of spatial and temporal components of the stimulus, their use provides an attractive solution to many visual stimulation problems. However, there are some limitations due to the scanning of the picture frame by the electron beam and also to the electron-photon conversion process. The spatial, photometric, spectral, and temporal characteristics of a specifically designed monochromatic television system are evaluated with reference to the physiological requirements of visual tests.

  5. Adaptive Optics Analysis of Visual Benefit with Higher-order Aberrations Correction of Human Eye - Poster Paper

    NASA Astrophysics Data System (ADS)

    Xue, Lixia; Dai, Yun; Rao, Xuejun; Wang, Cheng; Hu, Yiyun; Liu, Qian; Jiang, Wenhan

    2008-01-01

    Higher-order aberrations correction can improve visual performance of human eye to some extent. To evaluate how much visual benefit can be obtained with higher-order aberrations correction we developed an adaptive optics vision simulator (AOVS). Dynamic real time optimized modal compensation was used to implement various customized higher-order ocular aberrations correction strategies. The experimental results indicate that higher-order aberrations correction can improve visual performance of human eye comparing with only lower-order aberration correction but the improvement degree and higher-order aberration correction strategy are different from each individual. Some subjects can acquire great visual benefit when higher-order aberrations were corrected but some subjects acquire little visual benefit even though all higher-order aberrations were corrected. Therefore, relative to general lower-order aberrations correction strategy, customized higher-order aberrations correction strategy is needed to obtain optimal visual improvement for each individual. AOVS provides an effective tool for higher-order ocular aberrations optometry for customized ocular aberrations correction.

  6. Visual deprivation leads to gait adaptations that are age- and context-specific: I. Step-time parameters.

    PubMed

    Hallemans, Ann; Beccu, Sofie; Van Loock, Kelly; Ortibus, Els; Truijen, Steven; Aerts, Peter

    2009-07-01

    In children, visual information is crucial for static postural control, although age-related differences exist in the impact of visual perturbation on postural sway. Since static postural control and locomotion are closely related, we expect age-related differences in the impact of visual deprivation on dynamic stability and gait. It is hypothesised that this is related to the important role of vision in postural control. Postural stability and gait was tested in 20 adults and 40 children (3-11 years old) under two different visual conditions: eyes open (EO) and eyes closed (EC). Significant differences were found between EO and EC for postural sway, dimensionless walking speed, dimensionless stride length and duration of double support. Thus, we can state that visual deprivation affects locomotion both in adults and children. Concerning walking speed a significant interaction effect was observed with age. The difference in walking speed between EO and EC is larger in children than in adults. Furthermore, we found significant correlations between postural sway and walking speed, step frequency and stride length. These observations support the hypothesis that gait adaptations in situations of visual deprivation are related to balance problems.

  7. Adaptive temporal integration of motion in direction-selective neurons in macaque visual cortex.

    PubMed

    Bair, Wyeth; Movshon, J Anthony

    2004-08-18

    Direction-selective neurons in the primary visual cortex (V1) and the extrastriate motion area MT/V5 constitute a critical channel that links early cortical mechanisms of spatiotemporal integration to downstream signals that underlie motion perception. We studied how temporal integration in direction-selective cells depends on speed, spatial frequency (SF), and contrast using randomly moving sinusoidal gratings and spike-triggered average (STA) analysis. The window of temporal integration revealed by the STAs varied substantially with stimulus parameters, extending farther back in time for slow motion, high SF, and low contrast. At low speeds and high SF, STA peaks were larger, indicating that a single spike often conveyed more information about the stimulus under conditions in which the mean firing rate was very low. The observed trends were similar in V1 and MT and offer a physiological correlate for a large body of psychophysical data on temporal integration. We applied the same visual stimuli to a model of motion detection based on oriented linear filters (a motion energy model) that incorporated an integrate-and-fire mechanism and found that it did not account for the neuronal data. Our results show that cortical motion processing in V1 and in MT is highly nonlinear and stimulus dependent. They cast considerable doubt on the ability of simple oriented filter models to account for the output of direction-selective neurons in a general manner. Finally, they suggest that spike rate tuning functions may miss important aspects of the neural coding of motion for stimulus conditions that evoke low firing rates. PMID:15317857

  8. Peer Mentoring Intervention Teaching Adaptive Skills to Individuals with High Functioning Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    McCarville, Edel

    2013-01-01

    Individuals with High Functioning ASD's (HFA) often have difficulties with adaptive functioning. Due to these deficits in independent functioning, many individuals with High-Functioning ASD's have limitations in adulthood. This study investigated if individuals with HFA would have a greater likelihood of learning independent adaptive daily living…

  9. On the definition of age-related norms for visual function testing.

    PubMed

    Johnson, M A; Choy, D

    1987-04-15

    Cross-sectional psychophysical and electrophysiologic studies of aging indicate that visual function declines only slightly or not at all until age 50-60, at which time the decline in visual function rapidly accelerates. This accelerated loss of function may reflect an increased rate of natural cellular degradation, or it may reflect an increased proportion of subclinical pathology in the presumed normal older population. This paper provides a critical review of the changes in visual function that occur with age. The results of this review have implications for both the definition of age-matched control groups and for early detection of age-related pathology.

  10. Adaptive functional diversification of lysozyme in insectivorous bats.

    PubMed

    Liu, Yang; He, Guimei; Xu, Huihui; Han, Xiuqun; Jones, Gareth; Rossiter, Stephen J; Zhang, Shuyi

    2014-11-01

    The role of gene duplication in generating new genes and novel functions is well recognized and is exemplified by the digestion-related protein lysozyme. In ruminants, duplicated chicken-type lysozymes facilitate the degradation of symbiotic bacteria in the foregut. Chicken-type lysozyme has also been reported to show chitinase-like activity, yet no study has examined the molecular evolution of lysozymes in species that specialize on eating insects. Insectivorous bats number over 900 species, and lysozyme expression in the mouths of some of these species is associated with the ingestion of insect cuticle, suggesting a chitinase role. Here, we show that chicken-type lysozyme has undergone multiple duplication events in a major family of insect-eating bats (Vespertilionidae) and that new duplicates have undergone molecular adaptation. Examination of duplicates from two insectivorous bats-Pipistrellus abramus and Scotophilus kuhlii-indicated that the new copy was highly expressed in the tongue, whereas the other one was less tissue-specific. Functional assays applied to pipistrelle lysozymes confirmed that, of the two copies, the tongue duplicate was more efficient at breaking down glycol chitin, a chitin derivative. These results suggest that the evolution of lysozymes in vespertilionid bats has likely been driven in part by natural selection for insectivory.

  11. The visual corticostriatal loop through the tail of the caudate: circuitry and function

    PubMed Central

    Seger, Carol A.

    2013-01-01

    Although high level visual cortex projects to a specific region of the striatum, the tail of the caudate, and participates in corticostriatal loops, the function of this visual corticostriatal system is not well understood. This article first reviews what is known about the anatomy of the visual corticostriatal loop across mammals, including rodents, cats, monkeys, and humans. Like other corticostriatal systems, the visual corticostriatal system includes both closed loop components (recurrent projections that return to the originating cortical location) and open loop components (projections that terminate in other neural regions). The article then reviews what previous empirical research has shown about the function of the tail of the caudate. The article finally addresses the possible functions of the closed and open loop connections of the visual loop in the context of theories and computational models of corticostriatal function. PMID:24367300

  12. Executive functions as predictors of visual-motor integration in children with intellectual disability.

    PubMed

    Memisevic, Haris; Sinanovic, Osman

    2013-12-01

    The goal of this study was to assess the relationship between visual-motor integration and executive functions, and in particular, the extent to which executive functions can predict visual-motor integration skills in children with intellectual disability. The sample consisted of 90 children (54 boys, 36 girls; M age = 11.3 yr., SD = 2.7, range 7-15) with intellectual disabilities of various etiologies. The measure of executive functions were 8 subscales of the Behavioral Rating Inventory of Executive Function (BRIEF) consisting of Inhibition, Shifting, Emotional Control, Initiating, Working memory, Planning, Organization of material, and Monitoring. Visual-motor integration was measured with the Acadia test of visual-motor integration (VMI). Regression analysis revealed that BRIEF subscales explained 38% of the variance in VMI scores. Of all the BRIEF subscales, only two were statistically significant predictors of visual-motor integration: Working memory and Monitoring. Possible implications of this finding are further elaborated. PMID:24665807

  13. Visual acuity trade-offs and microhabitat-driven adaptation of searching behaviour in psyllids (Hemiptera: Psylloidea: Aphalaridae).

    PubMed

    Farnier, Kevin; Dyer, Adrian G; Taylor, Gary S; Peters, Richard A; Steinbauer, Martin J

    2015-05-15

    Insects have evolved morphological and physiological adaptations in response to selection pressures inherent to their ecology. Consequently, visual performance and acuity often significantly vary between different insect species. Whilst psychophysics has allowed for the accurate determination of visual acuity for some Lepidoptera and Hymenoptera, very little is known about other insect taxa that cannot be trained to positively respond to a given stimulus. In this study, we demonstrate that prior knowledge of insect colour preferences can be used to facilitate acuity testing. We focused on four psyllid species (Hemiptera: Psylloidea: Aphalaridae), namely Ctenarytaina eucalypti, Ctenarytaina bipartita, Anoeconeossa bundoorensis and Glycaspis brimblecombei, that differ in their colour preferences and utilization of different host-plant modules (e.g. apical buds, stems, leaf lamellae) and tested their visual acuity in a modified Y-maze adapted to suit psyllid searching behaviour. Our study revealed that psyllids have visual acuity ranging from 6.3 to 8.7 deg. Morphological measurements for different species showed a close match between inter-ommatidial angles and behaviourally determined visual angles (between 5.5 and 6.6 deg) suggesting detection of colour stimuli at the single ommatidium level. Whilst our data support isometric scaling of psyllids' eyes for C. eucalypti, C. bipartita and G. brimblecombei, a morphological trade-off between light sensitivity and spatial resolution was found in A. bundoorensis. Overall, species whose microhabitat preferences require more movement between modules appear to possess superior visual acuity. The psyllid searching behaviours that we describe with the help of tracking software depict species-specific strategies that presumably evolved to optimize searching for food and oviposition sites.

  14. Disturbance of visual functions as a result of temporary blinding from low power lasers

    NASA Astrophysics Data System (ADS)

    Reidenbach, Hans-Dieter

    2010-04-01

    Although it is well-known that dazzle, flash-blindness and afterimages may be caused by bright optical radiation, only sparse quantitative data are available with regard to the effects arising from low power laser products. Indirect effects like temporary blinding might result in serious incidents or even accidents due to the alteration of visual functions like visual acuity, contrast sensitivity and color discrimination. In order to determine the degree and duration of impairment resulting from dazzle, flash-blindness and afterimages, caused by a laser beam, an investigation has been performed with the goal to improve the current knowledge as far as especially the visual acuity recovery duration is concerned. Two different test set-ups were designed and applied in order to determine the afterimage duration and the recovery time for visual acuity after temporary blinding from a laser, respectively. In order to get the desired information a helium-neon laser was mounted on a movable assembly where the respective beam position and direction could be set up on a semicircle. In addition the mount could be inclined in a vertical plane in order to increase the variability of feasible settings. The power was adjusted in several steps in order to investigate the respective dependence of the afterimage. The investigations were relatively time consuming, since re-adaptation of about half an hour was necessary after every exposure in order not to falsify the results. The trials have been done with several volunteers in the laboratory. After the experimental mapping of the local afterimage duration for the various sites on the retina the foveal afterimage duration taf,fv produced by a red laser beam was determined. The investigations have shown a strong dependence on the angle between the line of sight and the beam direction. Besides a maximum of 300 s the dose relationship taf,fv/s ~ 50.6•ln[(P•texp)/μJ] - 13.4 for laser output powers P between 10 μW and 30 μW with

  15. Establishing joint visual attention and pointing in autistic children with no functional language.

    PubMed

    Yamamoto, J I; Kakutani, A; Terada, M

    2001-06-01

    Joint visual attention is defined as looking where someone else is looking. The purpose of this study was to examine the conditions for establishing joint visual attention in autistic children who have no functional speech. An experimenter, sitting facing the child, looked at one of six pictures near the child. Analysis showed that joint visual attention to stimuli behind the child and therefore outside of the visual field occurred at a higher rate when the visual angle between the stimuli was about 60 degrees. Spontaneous pointing at the target object increased with training which included feedback and physical guidance. These results are discussed in terms of the effects of environmental variables and perceptual mechanisms on the emergence of joint visual attention in autistic children. The possibility of using an adult's social cues and expanding the child's visual field as a remedial procedure is also addressed. PMID:11453203

  16. Diabetes reduces the cognitive function with the decrease of the visual perception and visual motor integration in male older adults.

    PubMed

    Yun, Hyo-Soon; Kim, Eunhwi; Suh, Soon-Rim; Kim, Mi-Han; Kim, Hong

    2013-01-01

    This study investigated the influence of diabetes on cognitive decline between the diabetes and non- diabetes patients and identified the associations between diabetes and cognitive function, visual perception (VP), and visual motor integration (VMI). Sixty elderly men (67.10± 1.65 yr) with and without diabetes (n= 30 in each group) who were surveyed by interview and questionnaire in South Korea were enrolled in this study. The score of Mini-Mental State Examination of Korean version (MMSE-KC), Motor-free Visual Perception Test-Vertical Format (MVPT-V), and Visual-Motor Integration 3rd Revision (VMI-3R) were assessed in all of the participants to evaluate cognitive function, VP, and VMI in each. The score of MMSE-KC in the diabetic group was significantly lower than that of the non-diabetes group (P< 0.01). Participants in the diabetes group also had lower MVPT-V and VMI-3R scores than those in the non-diabetes group (P< 0.01, respectively). Especially, the scores of figure-ground and visual memory among the subcategories of MVPT-V were significantly lower in the diabetes group than in the non-diabetes group (P< 0.01). These findings indicate that the decline in cognitive function in individuals with diabetes may be greater than that in non-diabetics. In addition, the cognitive decline in older adults with diabetes might be associated with the decrease of VP and VMI. In conclusion, we propose that VP and VMI will be helpful to monitor the change of cognitive function in older adults with diabetes as part of the routine management of diabetes-induced cognitive declines. PMID:24282807

  17. Advancing Creative Visual Thinking with Constructive Function-Based Modelling

    ERIC Educational Resources Information Center

    Pasko, Alexander; Adzhiev, Valery; Malikova, Evgeniya; Pilyugin, Victor

    2013-01-01

    Modern education technologies are destined to reflect the realities of a modern digital age. The juxtaposition of real and synthetic (computer-generated) worlds as well as a greater emphasis on visual dimension are especially important characteristics that have to be taken into account in learning and teaching. We describe the ways in which an…

  18. Perceptual Visual Grouping under Inattention: Electrophysiological Functional Imaging

    ERIC Educational Resources Information Center

    Razpurker-Apfeld, Irene; Pratt, Hillel

    2008-01-01

    Two types of perceptual visual grouping, differing in complexity of shape formation, were examined under inattention. Fourteen participants performed a similarity judgment task concerning two successive briefly presented central targets surrounded by task-irrelevant simple and complex grouping patterns. Event-related potentials (ERPs) were…

  19. Clinical Assessment of Functional Movement in Adults with Visual Impairments

    ERIC Educational Resources Information Center

    Ray, Christopher T.; Horvat, Michael; Williams, Michael; Blasch, Bruce B.

    2007-01-01

    Adults with visual impairments have significantly more health risks than do sighted adults because of a number of factors, including the lower mineral density of their femoral neck bones, which is indicative of reduced weight-bearing exercise; their lesser maximal strength; and their higher rates of stroke, osteoporosis, depression, hypertension,…

  20. Highly adaptive tests for group differences in brain functional connectivity.

    PubMed

    Kim, Junghi; Pan, Wei

    2015-01-01

    Resting-state functional magnetic resonance imaging (rs-fMRI) and other technologies have been offering evidence and insights showing that altered brain functional networks are associated with neurological illnesses such as Alzheimer's disease. Exploring brain networks of clinical populations compared to those of controls would be a key inquiry to reveal underlying neurological processes related to such illnesses. For such a purpose, group-level inference is a necessary first step in order to establish whether there are any genuinely disrupted brain subnetworks. Such an analysis is also challenging due to the high dimensionality of the parameters in a network model and high noise levels in neuroimaging data. We are still in the early stage of method development as highlighted by Varoquaux and Craddock (2013) that "there is currently no unique solution, but a spectrum of related methods and analytical strategies" to learn and compare brain connectivity. In practice the important issue of how to choose several critical parameters in estimating a network, such as what association measure to use and what is the sparsity of the estimated network, has not been carefully addressed, largely because the answers are unknown yet. For example, even though the choice of tuning parameters in model estimation has been extensively discussed in the literature, as to be shown here, an optimal choice of a parameter for network estimation may not be optimal in the current context of hypothesis testing. Arbitrarily choosing or mis-specifying such parameters may lead to extremely low-powered tests. Here we develop highly adaptive tests to detect group differences in brain connectivity while accounting for unknown optimal choices of some tuning parameters. The proposed tests combine statistical evidence against a null hypothesis from multiple sources across a range of plausible tuning parameter values reflecting uncertainty with the unknown truth. These highly adaptive tests are not only

  1. Highly adaptive tests for group differences in brain functional connectivity.

    PubMed

    Kim, Junghi; Pan, Wei

    2015-01-01

    Resting-state functional magnetic resonance imaging (rs-fMRI) and other technologies have been offering evidence and insights showing that altered brain functional networks are associated with neurological illnesses such as Alzheimer's disease. Exploring brain networks of clinical populations compared to those of controls would be a key inquiry to reveal underlying neurological processes related to such illnesses. For such a purpose, group-level inference is a necessary first step in order to establish whether there are any genuinely disrupted brain subnetworks. Such an analysis is also challenging due to the high dimensionality of the parameters in a network model and high noise levels in neuroimaging data. We are still in the early stage of method development as highlighted by Varoquaux and Craddock (2013) that "there is currently no unique solution, but a spectrum of related methods and analytical strategies" to learn and compare brain connectivity. In practice the important issue of how to choose several critical parameters in estimating a network, such as what association measure to use and what is the sparsity of the estimated network, has not been carefully addressed, largely because the answers are unknown yet. For example, even though the choice of tuning parameters in model estimation has been extensively discussed in the literature, as to be shown here, an optimal choice of a parameter for network estimation may not be optimal in the current context of hypothesis testing. Arbitrarily choosing or mis-specifying such parameters may lead to extremely low-powered tests. Here we develop highly adaptive tests to detect group differences in brain connectivity while accounting for unknown optimal choices of some tuning parameters. The proposed tests combine statistical evidence against a null hypothesis from multiple sources across a range of plausible tuning parameter values reflecting uncertainty with the unknown truth. These highly adaptive tests are not only

  2. Impaired functional differentiation for categories of objects in the ventral visual stream: A case of developmental visual impairment.

    PubMed

    Martinaud, Olivier; Pouliquen, Dorothée; Parain, Dominique; Goldenberg, Alice; Gérardin, Emmanuel; Hannequin, Didier; Altarelli, Irène; Ramus, Franck; Hertz-Pannier, Lucie; Dehaene-Lambertz, Ghislaine; Cohen, Laurent

    2015-10-01

    We report the case of a 14-year-old girl suffering from severe developmental visual impairment along with delayed language and cognitive development, and featuring a clear-cut dissociation between spared dorsal and impaired ventral visual pathways. Visual recognition of objects, including faces and printed words, was affected. In contrast, movement perception and visually guided motor control were preserved. Structural MRI was normal on inspection, but Voxel Based Morphometry (VBM) revealed reduced grey matter density in the mesial occipital and ventral occipito-temporal cortex. Functional MRI during the perception of line drawings uncovered impaired differentiation which is normally observed at even younger ages: no local category preferences could be identified within the occipito-temporal cortex for faces, houses, words or tools. In contrast, movement-related activations appeared to be normal. Finally, those abnormalities evolved on the background of chronic bilateral occipital epileptic activity, including continuous spike-wave discharges during sleep, which may be considered as the primary cause of non-specific intellectual disability and visual impairment. PMID:26272240

  3. Visualization of Time-Series Sensor Data to Inform the Design of Just-In-Time Adaptive Stress Interventions

    PubMed Central

    Sharmin, Moushumi; Raij, Andrew; Epstien, David; Nahum-Shani, Inbal; Beck, J. Gayle; Vhaduri, Sudip; Preston, Kenzie; Kumar, Santosh

    2015-01-01

    We investigate needs, challenges, and opportunities in visualizing time-series sensor data on stress to inform the design of just-in-time adaptive interventions (JITAIs). We identify seven key challenges: massive volume and variety of data, complexity in identifying stressors, scalability of space, multifaceted relationship between stress and time, a need for representation at multiple granularities, interperson variability, and limited understanding of JITAI design requirements due to its novelty. We propose four new visualizations based on one million minutes of sensor data (n=70). We evaluate our visualizations with stress researchers (n=6) to gain first insights into its usability and usefulness in JITAI design. Our results indicate that spatio-temporal visualizations help identify and explain between- and within-person variability in stress patterns and contextual visualizations enable decisions regarding the timing, content, and modality of intervention. Interestingly, a granular representation is considered informative but noise-prone; an abstract representation is the preferred starting point for designing JITAIs. PMID:26539566

  4. Functional connectivity patterns reflect individual differences in conflict adaptation.

    PubMed

    Wang, Xiangpeng; Wang, Ting; Chen, Zhencai; Hitchman, Glenn; Liu, Yijun; Chen, Antao

    2015-04-01

    Individuals differ in the ability to utilize previous conflict information to optimize current conflict resolution, which is termed the conflict adaptation effect. Previous studies have linked individual differences in conflict adaptation to distinct brain regions. However, the network-based neural mechanisms subserving the individual differences of the conflict adaptation effect have not been studied. The present study employed a psychophysiological interaction (PPI) analysis with a color-naming Stroop task to examine this issue. The main results were as follows: (1) the anterior cingulate cortex (ACC)-seeded PPI revealed the involvement of the salience network (SN) in conflict adaptation, while the posterior parietal cortex (PPC)-seeded PPI revealed the engagement of the central executive network (CEN). (2) Participants with high conflict adaptation effect showed higher intra-CEN connectivity and lower intra-SN connectivity; while those with low conflict adaptation effect showed higher intra-SN connectivity and lower intra-CEN connectivity. (3) The PPC-centered intra-CEN connectivity positively predicted the conflict adaptation effect; while the ACC-centered intra-SN connectivity had a negative correlation with this effect. In conclusion, our data demonstrated that conflict adaptation is likely supported by the CEN and the SN, providing a new perspective on studying individual differences in conflict adaptation on the basis of large-scale networks. PMID:25721566

  5. Adapting Artworks for People Who Are Blind or Visually Impaired Using Raised Printing

    ERIC Educational Resources Information Center

    Krivec, Tjaša; Muck, Tadeja; Germadnik, Rolanda Fugger; Majnaric, Igor; Golob, Gorazd

    2014-01-01

    Everyone has the right to freely participate in the cultural life of the community (United Nations, 2012). In Europe and around the globe, many efforts have been made in order to include people with visual impairments and blindness into the cultural life. The objects and artifacts exhibited in museums for people with visual impairments are…

  6. The Coevolution of Phycobilisomes: Molecular Structure Adapting to Functional Evolution

    PubMed Central

    Shi, Fei; Qin, Song; Wang, Yin-Chu

    2011-01-01

    Phycobilisome is the major light-harvesting complex in cyanobacteria and red alga. It consists of phycobiliproteins and their associated linker peptides which play key role in absorption and unidirectional transfer of light energy and the stability of the whole complex system, respectively. Former researches on the evolution among PBPs and linker peptides had mainly focused on the phylogenetic analysis and selective evolution. Coevolution is the change that the conformation of one residue is interrupted by mutation and a compensatory change selected for in its interacting partner. Here, coevolutionary analysis of allophycocyanin, phycocyanin, and phycoerythrin and covariation analysis of linker peptides were performed. Coevolution analyses reveal that these sites are significantly correlated, showing strong evidence of the functional and structural importance of interactions among these residues. According to interprotein coevolution analysis, less interaction was found between PBPs and linker peptides. Our results also revealed the correlations between the coevolution and adaptive selection in PBS were not directly related, but probably demonstrated by the sites coupled under physical-chemical interactions. PMID:21904470

  7. Applying Utility Functions to Adaptation Planning for Home Automation Applications

    NASA Astrophysics Data System (ADS)

    Bratskas, Pyrros; Paspallis, Nearchos; Kakousis, Konstantinos; Papadopoulos, George A.

    A pervasive computing environment typically comprises multiple embedded devices that may interact together and with mobile users. These users are part of the environment, and they experience it through a variety of devices embedded in the environment. This perception involves technologies which may be heterogeneous, pervasive, and dynamic. Due to the highly dynamic properties of such environments, the software systems running on them have to face problems such as user mobility, service failures, or resource and goal changes which may happen in an unpredictable manner. To cope with these problems, such systems must be autonomous and self-managed. In this chapter we deal with a special kind of a ubiquitous environment, a smart home environment, and introduce a user-preference-based model for adaptation planning. The model, which dynamically forms a set of configuration plans for resources, reasons automatically and autonomously, based on utility functions, on which plan is likely to best achieve the user's goals with respect to resource availability and user needs.

  8. Augmented mandibular bone structurally adapts to functional loading.

    PubMed

    Verhoeven, J W; Ruijter, J M; Koole, R; de Putter, C; Terlou, M; Cune, M S

    2013-12-01

    Long-term changes in trabecular bone structure during the 10 years following onlay grafting with simultaneous mandibular implant placement were studied. Extraoral radiographs of both mandibular sides in eight patients were taken regularly. Bone structure was analysed using a custom-written image analysis program. Parameters studied were trabecular area and perimeter and marrow cavity area and perimeter. After skeletonisation of the trabecular network, the number of end points and branching points, skeleton length, and branch angle were determined. The observed structural changes agree with the development of a more complex and more delicate or fine osseous structure. The bone shows more trabecular branching. All changes are most pronounced in the graft spongiosa, but are also found in the graft cortex and in the original mandible. The mean trabecular branch angle becomes more horizontal. The applied technique can be used to analyse long-term changes in the architecture of bone grafts. Changes found in the graft architecture correspond to changes expected after functional adaptation to loading. PMID:23791249

  9. Night vision in barn owls: visual acuity and contrast sensitivity under dark adaptation.

    PubMed

    Orlowski, Julius; Harmening, Wolf; Wagner, Hermann

    2012-12-06

    Barn owls are effective nocturnal predators. We tested their visual performance at low light levels and determined visual acuity and contrast sensitivity of three barn owls by their behavior at stimulus luminances ranging from photopic to fully scotopic levels (23.5 to 1.5 × 10⁻⁶). Contrast sensitivity and visual acuity decreased only slightly from photopic to scotopic conditions. Peak grating acuity was at mesopic (4 × 10⁻² cd/m²) conditions. Barn owls retained a quarter of their maximal acuity when luminance decreased by 5.5 log units. We argue that the visual system of barn owls is designed to yield as much visual acuity under low light conditions as possible, thereby sacrificing resolution at photopic conditions.

  10. From Referents to Symbols: Visual Cues and Pointing Effects on Children's Acquisition of Linear Function Rules

    ERIC Educational Resources Information Center

    Lee, Seong-Soo; Dobson, Leona N.

    1977-01-01

    Children learned two linear function rules under varying conditions: presence vs. absence of pointing; visual cues (context vs. weight vs. both pictured); and a verbal-only baseline condition. A complex rule was learned as a transfer task. Visual cues aided both learning and transfer; pointing helped initial learning, but retarded transfer.…

  11. The cost of misremembering: Inferring the loss function in visual working memory.

    PubMed

    Sims, Chris R

    2015-01-01

    Visual working memory (VWM) is a highly limited storage system. A basic consequence of this fact is that visual memories cannot perfectly encode or represent the veridical structure of the world. However, in natural tasks, some memory errors might be more costly than others. This raises the intriguing possibility that the nature of memory error reflects the costs of committing different kinds of errors. Many existing theories assume that visual memories are noise-corrupted versions of afferent perceptual signals. However, this additive noise assumption oversimplifies the problem. Implicit in the behavioral phenomena of visual working memory is the concept of a loss function: a mathematical entity that describes the relative cost to the organism of making different types of memory errors. An optimally efficient memory system is one that minimizes the expected loss according to a particular loss function, while subject to a constraint on memory capacity. This paper describes a novel theoretical framework for characterizing visual working memory in terms of its implicit loss function. Using inverse decision theory, the empirical loss function is estimated from the results of a standard delayed recall visual memory experiment. These results are compared to the predicted behavior of a visual working memory system that is optimally efficient for a previously identified natural task, gaze correction following saccadic error. Finally, the approach is compared to alternative models of visual working memory, and shown to offer a superior account of the empirical data across a range of experimental datasets. PMID:25740875

  12. The cost of misremembering: Inferring the loss function in visual working memory.

    PubMed

    Sims, Chris R

    2015-03-04

    Visual working memory (VWM) is a highly limited storage system. A basic consequence of this fact is that visual memories cannot perfectly encode or represent the veridical structure of the world. However, in natural tasks, some memory errors might be more costly than others. This raises the intriguing possibility that the nature of memory error reflects the costs of committing different kinds of errors. Many existing theories assume that visual memories are noise-corrupted versions of afferent perceptual signals. However, this additive noise assumption oversimplifies the problem. Implicit in the behavioral phenomena of visual working memory is the concept of a loss function: a mathematical entity that describes the relative cost to the organism of making different types of memory errors. An optimally efficient memory system is one that minimizes the expected loss according to a particular loss function, while subject to a constraint on memory capacity. This paper describes a novel theoretical framework for characterizing visual working memory in terms of its implicit loss function. Using inverse decision theory, the empirical loss function is estimated from the results of a standard delayed recall visual memory experiment. These results are compared to the predicted behavior of a visual working memory system that is optimally efficient for a previously identified natural task, gaze correction following saccadic error. Finally, the approach is compared to alternative models of visual working memory, and shown to offer a superior account of the empirical data across a range of experimental datasets.

  13. Assessing Adaptive Functioning in Preschoolers Referred for Diagnosis of Developmental Disabilities

    ERIC Educational Resources Information Center

    Milne, Susan; McDonald, Jenny

    2015-01-01

    Adaptive function is an essential dimension in the diagnosis of neurodevelopmental conditions in young children, assisting in determining the pattern of intellectual function and the amount and type of support required. Yet, little information is available on the accuracy of currently used adaptive function assessments for preschool children. This…

  14. STS-44 Pilot Henricks uses Visual Function Tester (VFT) on OV-104's middeck

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-44 Pilot Terence T. Henricks tests his visual acuity with the Visual Function Tester 1 (VFT-1) on the middeck of Atlantis, Orbiter Vehicle (OV) 104. VFT-1 measures changes in the vision of an astronaut in microgravity. It is a hand-held, battery-powered device with a binocular eyepiece that uses controlled illumination to present a variety of visual targets for testing primarily visual acuity and eye interaction effects, such as stereopsis and eye dominance. This experiment is being conducted in conjunction with the Military Man in Space activities.

  15. Out of the blue: adaptive visual pigment evolution accompanies Amazon invasion.

    PubMed

    Van Nynatten, Alexander; Bloom, Devin; Chang, Belinda S W; Lovejoy, Nathan R

    2015-07-01

    Incursions of marine water into South America during the Miocene prompted colonization of freshwater habitats by ancestrally marine species and present a unique opportunity to study the molecular evolution of adaptations to varying environments. Freshwater and marine environments are distinct in both spectra and average intensities of available light. Here, we investigate the molecular evolution of rhodopsin, the photosensitive pigment in the eye that activates in response to light, in a clade of South American freshwater anchovies derived from a marine ancestral lineage. Using likelihood-based comparative sequence analyses, we found evidence for positive selection in the rhodopsin of freshwater anchovy lineages at sites known to be important for aspects of rhodopsin function such as spectral tuning. No evidence was found for positive selection in marine lineages, nor in three other genes not involved in vision. Our results suggest that an increased rate of rhodopsin evolution was driven by diversification into freshwater habitats, thereby constituting a rare example of molecular evolution mirroring large-scale palaeogeographic events. PMID:26224386

  16. Separate channels for processing form, texture, and color: evidence from FMRI adaptation and visual object agnosia.

    PubMed

    Cavina-Pratesi, C; Kentridge, R W; Heywood, C A; Milner, A D

    2010-10-01

    Previous neuroimaging research suggests that although object shape is analyzed in the lateral occipital cortex, surface properties of objects, such as color and texture, are dealt with in more medial areas, close to the collateral sulcus (CoS). The present study sought to determine whether there is a single medial region concerned with surface properties in general or whether instead there are multiple foci independently extracting different surface properties. We used stimuli varying in their shape, texture, or color, and tested healthy participants and 2 object-agnosic patients, in both a discrimination task and a functional MR adaptation paradigm. We found a double dissociation between medial and lateral occipitotemporal cortices in processing surface (texture or color) versus geometric (shape) properties, respectively. In Experiment 2, we found that the medial occipitotemporal cortex houses separate foci for color (within anterior CoS and lingual gyrus) and texture (caudally within posterior CoS). In addition, we found that areas selective for shape, texture, and color individually were quite distinct from those that respond to all of these features together (shape and texture and color). These latter areas appear to correspond to those associated with the perception of complex stimuli such as faces and places.

  17. Identifying Differential Item Functioning in Multi-Stage Computer Adaptive Testing

    ERIC Educational Resources Information Center

    Gierl, Mark J.; Lai, Hollis; Li, Johnson

    2013-01-01

    The purpose of this study is to evaluate the performance of CATSIB (Computer Adaptive Testing-Simultaneous Item Bias Test) for detecting differential item functioning (DIF) when items in the matching and studied subtest are administered adaptively in the context of a realistic multi-stage adaptive test (MST). MST was simulated using a 4-item…

  18. Comparing Methods of Assessing Differential Item Functioning in a Computerized Adaptive Testing Environment

    ERIC Educational Resources Information Center

    Lei, Pui-Wa; Chen, Shu-Ying; Yu, Lan

    2006-01-01

    Mantel-Haenszel and SIBTEST, which have known difficulty in detecting non-unidirectional differential item functioning (DIF), have been adapted with some success for computerized adaptive testing (CAT). This study adapts logistic regression (LR) and the item-response-theory-likelihood-ratio test (IRT-LRT), capable of detecting both unidirectional…

  19. Second Graders Learn Animal Adaptations through Form and Function Analogy Object Boxes

    ERIC Educational Resources Information Center

    Rule, Audrey C.; Baldwin, Samantha; Schell, Robert

    2008-01-01

    This study examined the use of form and function analogy object boxes to teach second graders (n = 21) animal adaptations. The study used a pretest-posttest design to examine animal adaptation content learned through focused analogy activities as compared with reading and Internet searches for information about adaptations of animals followed by…

  20. Increased functional connectivity between language and visually deprived areas in late and partial blindness.

    PubMed

    Sabbah, Norman; Authié, Colas N; Sanda, Nicolae; Mohand-Saïd, Saddek; Sahel, José-Alain; Safran, Avinoam B; Habas, Christophe; Amedi, Amir

    2016-08-01

    In the congenitally blind, language processing involves visual areas. In the case of normal visual development however, it remains unclear whether later visual loss induces interactions between the language and visual areas. This study compared the resting-state functional connectivity (FC) of retinotopic and language areas in two unique groups of late visually deprived subjects: (1) blind individuals suffering from retinitis pigmentosa (RP), (2) RP subjects without a visual periphery but with preserved central "tunnel vision", both of whom were contrasted with sighted controls. The results showed increased FC between Broca's area and the visually deprived areas in the peripheral V1 for individuals with tunnel vision, and both the peripheral and central V1 for blind individuals. These findings suggest that FC can develop in the adult brain between the visual and language systems in the completely and partially blind. These changes start in the deprived areas and increase in size (involving both foveal and peripheral V1) and strength (from negative to positive FC) as the disease and sensory deprivation progress. These observations support the claim that functional connectivity between remote systems that perform completely different tasks can change in the adult brain in cases of total and even partial visual deprivation. PMID:27143090

  1. Increased functional connectivity between language and visually deprived areas in late and partial blindness.

    PubMed

    Sabbah, Norman; Authié, Colas N; Sanda, Nicolae; Mohand-Saïd, Saddek; Sahel, José-Alain; Safran, Avinoam B; Habas, Christophe; Amedi, Amir

    2016-08-01

    In the congenitally blind, language processing involves visual areas. In the case of normal visual development however, it remains unclear whether later visual loss induces interactions between the language and visual areas. This study compared the resting-state functional connectivity (FC) of retinotopic and language areas in two unique groups of late visually deprived subjects: (1) blind individuals suffering from retinitis pigmentosa (RP), (2) RP subjects without a visual periphery but with preserved central "tunnel vision", both of whom were contrasted with sighted controls. The results showed increased FC between Broca's area and the visually deprived areas in the peripheral V1 for individuals with tunnel vision, and both the peripheral and central V1 for blind individuals. These findings suggest that FC can develop in the adult brain between the visual and language systems in the completely and partially blind. These changes start in the deprived areas and increase in size (involving both foveal and peripheral V1) and strength (from negative to positive FC) as the disease and sensory deprivation progress. These observations support the claim that functional connectivity between remote systems that perform completely different tasks can change in the adult brain in cases of total and even partial visual deprivation.

  2. MindSeer: a portable and extensible tool for visualization of structural and functional neuroimaging data

    PubMed Central

    Moore, Eider B; Poliakov, Andrew V; Lincoln, Peter; Brinkley, James F

    2007-01-01

    Background Three-dimensional (3-D) visualization of multimodality neuroimaging data provides a powerful technique for viewing the relationship between structure and function. A number of applications are available that include some aspect of 3-D visualization, including both free and commercial products. These applications range from highly specific programs for a single modality, to general purpose toolkits that include many image processing functions in addition to visualization. However, few if any of these combine both stand-alone and remote multi-modality visualization in an open source, portable and extensible tool that is easy to install and use, yet can be included as a component of a larger information system. Results We have developed a new open source multimodality 3-D visualization application, called MindSeer, that has these features: integrated and interactive 3-D volume and surface visualization, Java and Java3D for true cross-platform portability, one-click installation and startup, integrated data management to help organize large studies, extensibility through plugins, transparent remote visualization, and the ability to be integrated into larger information management systems. We describe the design and implementation of the system, as well as several case studies that demonstrate its utility. These case studies are available as tutorials or demos on the associated website: . Conclusion MindSeer provides a powerful visualization tool for multimodality neuroimaging data. Its architecture and unique features also allow it to be extended into other visualization domains within biomedicine. PMID:17937818

  3. Age and Adaptive Functioning in Children and Adolescents with ASD: The Effects of Intellectual Functioning and ASD Symptom Severity.

    PubMed

    Hill, Trenesha L; Gray, Sarah A O; Kamps, Jodi L; Enrique Varela, R

    2015-12-01

    The present study examined the moderating effects of intellectual functioning and ASD symptom severity on the relation between age and adaptive functioning in 220 youth with autism spectrum disorder (ASD). Regression analysis indicated that intellectual functioning and ASD symptom severity moderated the relation between age and adaptive functioning. For younger children with lower intellectual functioning, higher ASD symptom severity was associated with better adaptive functioning than that of those with lower ASD symptom severity. Similarly, for older children with higher intellectual functioning, higher ASD symptom severity was associated with better adaptive functioning than that of those with lower ASD symptom severity. Analyses by subscales suggest that this pattern is driven by the Conceptual subscale. Clinical and research implications are discussed.

  4. Age and Adaptive Functioning in Children and Adolescents with ASD: The Effects of Intellectual Functioning and ASD Symptom Severity.

    PubMed

    Hill, Trenesha L; Gray, Sarah A O; Kamps, Jodi L; Enrique Varela, R

    2015-12-01

    The present study examined the moderating effects of intellectual functioning and ASD symptom severity on the relation between age and adaptive functioning in 220 youth with autism spectrum disorder (ASD). Regression analysis indicated that intellectual functioning and ASD symptom severity moderated the relation between age and adaptive functioning. For younger children with lower intellectual functioning, higher ASD symptom severity was associated with better adaptive functioning than that of those with lower ASD symptom severity. Similarly, for older children with higher intellectual functioning, higher ASD symptom severity was associated with better adaptive functioning than that of those with lower ASD symptom severity. Analyses by subscales suggest that this pattern is driven by the Conceptual subscale. Clinical and research implications are discussed. PMID:26174048

  5. Visualizing and Tracking Evolving Features in 3D Unstructured and Adaptive Datasets

    SciTech Connect

    Silver, D.; Zabusky, N.

    2002-08-01

    The massive amounts of time-varying datasets being generated demand new visualization and quantification techniques. Visualization alone is not sufficient. Without proper measurement information/computations real science cannot be done. Our focus is this work was to combine visualization with quantification of the data to allow for advanced querying and searching. As part of this proposal, we have developed a feature extraction adn tracking methodology which allows researcher to identify features of interest and follow their evolution over time. The implementation is distributed and operates over data In-situ: where it is stored and when it was computed.

  6. Assessing Adaptive Functioning in Death Penalty Cases after Hall and DSM-5.

    PubMed

    Hagan, Leigh D; Drogin, Eric Y; Guilmette, Thomas J

    2016-03-01

    DSM-5 and Hall v. Florida (2014) have dramatically refocused attention on the assessment of adaptive functioning in death penalty cases. In this article, we address strategies for assessing the adaptive functioning of defendants who seek exemption from capital punishment pursuant to Atkins v. Virginia (2002). In particular, we assert that evaluations of adaptive functioning should address assets as well as deficits; seek to identify credible and reliable evidence concerning the developmental period and across the lifespan; distinguish incapacity from the mere absence of adaptive behavior; adhere faithfully to test manual instructions for using standardized measures of adaptive functioning; and account for potential bias on the part of informants. We conclude with brief caveats regarding the standard error of measurement (SEM) in light of Hall, with reference to examples of ordinary life activities that directly illuminate adaptive functioning relevant to capital cases.

  7. Assessing Adaptive Functioning in Death Penalty Cases after Hall and DSM-5.

    PubMed

    Hagan, Leigh D; Drogin, Eric Y; Guilmette, Thomas J

    2016-03-01

    DSM-5 and Hall v. Florida (2014) have dramatically refocused attention on the assessment of adaptive functioning in death penalty cases. In this article, we address strategies for assessing the adaptive functioning of defendants who seek exemption from capital punishment pursuant to Atkins v. Virginia (2002). In particular, we assert that evaluations of adaptive functioning should address assets as well as deficits; seek to identify credible and reliable evidence concerning the developmental period and across the lifespan; distinguish incapacity from the mere absence of adaptive behavior; adhere faithfully to test manual instructions for using standardized measures of adaptive functioning; and account for potential bias on the part of informants. We conclude with brief caveats regarding the standard error of measurement (SEM) in light of Hall, with reference to examples of ordinary life activities that directly illuminate adaptive functioning relevant to capital cases. PMID:26944749

  8. Feasibility and Preliminary Efficacy of Visual Cue Training to Improve Adaptability of Walking after Stroke: Multi-Centre, Single-Blind Randomised Control Pilot Trial

    PubMed Central

    Hollands, Kristen L.; Pelton, Trudy A.; Wimperis, Andrew; Whitham, Diane; Tan, Wei; Jowett, Sue; Sackley, Catherine M.; Wing, Alan M.; Tyson, Sarah F.; Mathias, Jonathan; Hensman, Marianne; van Vliet, Paulette M.

    2015-01-01

    Objectives Given the importance of vision in the control of walking and evidence indicating varied practice of walking improves mobility outcomes, this study sought to examine the feasibility and preliminary efficacy of varied walking practice in response to visual cues, for the rehabilitation of walking following stroke. Design This 3 arm parallel, multi-centre, assessor blind, randomised control trial was conducted within outpatient neurorehabilitation services Participants Community dwelling stroke survivors with walking speed <0.8m/s, lower limb paresis and no severe visual impairments Intervention Over-ground visual cue training (O-VCT), Treadmill based visual cue training (T-VCT), and Usual care (UC) delivered by physiotherapists twice weekly for 8 weeks. Main outcome measures: Participants were randomised using computer generated random permutated balanced blocks of randomly varying size. Recruitment, retention, adherence, adverse events and mobility and balance were measured before randomisation, post-intervention and at four weeks follow-up. Results Fifty-six participants participated (18 T-VCT, 19 O-VCT, 19 UC). Thirty-four completed treatment and follow-up assessments. Of the participants that completed, adherence was good with 16 treatments provided over (median of) 8.4, 7.5 and 9 weeks for T-VCT, O-VCT and UC respectively. No adverse events were reported. Post-treatment improvements in walking speed, symmetry, balance and functional mobility were seen in all treatment arms. Conclusions Outpatient based treadmill and over-ground walking adaptability practice using visual cues are feasible and may improve mobility and balance. Future studies should continue a carefully phased approach using identified methods to improve retention. Trial Registration Clinicaltrials.gov NCT01600391 PMID:26445137

  9. Visual search performance among persons with schizophrenia as a function of target eccentricity.

    PubMed

    Elahipanah, Ava; Christensen, Bruce K; Reingold, Eyal M

    2010-03-01

    The current study investigated one possible mechanism of impaired visual attention among patients with schizophrenia: a reduced visual span. Visual span is the region of the visual field from which one can extract information during a single eye fixation. This study hypothesized that schizophrenia-related visual search impairment is mediated, in part, by a smaller visual span. To test this hypothesis, 23 patients with schizophrenia and 22 healthy controls completed a visual search task where the target was pseudorandomly presented at different distances from the center of the display. Response times were analyzed as a function of search condition (feature vs. conjunctive), display size, and target eccentricity. Consistent with previous reports, patient search times were more adversely affected as the number of search items increased in the conjunctive search condition. It was important however, that patients' conjunctive search times were also impacted to a greater degree by target eccentricity. Moreover, a significant impairment in patients' visual search performance was only evident when targets were more eccentric and their performance was more similar to healthy controls when the target was located closer to the center of the search display. These results support the hypothesis that a narrower visual span may underlie impaired visual search performance among patients with schizophrenia.

  10. Normal Visual Acuity and Electrophysiological Contrast Gain in Adults with High-Functioning Autism Spectrum Disorder

    PubMed Central

    Tebartz van Elst, Ludger; Bach, Michael; Blessing, Julia; Riedel, Andreas; Bubl, Emanuel

    2015-01-01

    A common neurodevelopmental disorder, autism spectrum disorder (ASD), is defined by specific patterns in social perception, social competence, communication, highly circumscribed interests, and a strong subjective need for behavioral routines. Furthermore, distinctive features of visual perception, such as markedly reduced eye contact and a tendency to focus more on small, visual items than on holistic perception, have long been recognized as typical ASD characteristics. Recent debate in the scientific community discusses whether the physiology of low-level visual perception might explain such higher visual abnormalities. While reports of this enhanced, “eagle-like” visual acuity contained methodological errors and could not be substantiated, several authors have reported alterations in even earlier stages of visual processing, such as contrast perception and motion perception at the occipital cortex level. Therefore, in this project, we have investigated the electrophysiology of very early visual processing by analyzing the pattern electroretinogram-based contrast gain, the background noise amplitude, and the psychophysical visual acuities of participants with high-functioning ASD and controls with equal education. Based on earlier findings, we hypothesized that alterations in early vision would be present in ASD participants. This study included 33 individuals with ASD (11 female) and 33 control individuals (12 female). The groups were matched in terms of age, gender, and education level. We found no evidence of altered electrophysiological retinal contrast processing or psychophysical measured visual acuities. There appears to be no evidence for abnormalities in retinal visual processing in ASD patients, at least with respect to contrast detection. PMID:26379525

  11. Basic visual function and cortical thickness patterns in posterior cortical atrophy.

    PubMed

    Lehmann, Manja; Barnes, Josephine; Ridgway, Gerard R; Wattam-Bell, John; Warrington, Elizabeth K; Fox, Nick C; Crutch, Sebastian J

    2011-09-01

    Posterior cortical atrophy (PCA) is characterized by a progressive decline in higher-visual object and space processing, but the extent to which these deficits are underpinned by basic visual impairments is unknown. This study aimed to assess basic and higher-order visual deficits in 21 PCA patients. Basic visual skills including form detection and discrimination, color discrimination, motion coherence, and point localization were measured, and associations and dissociations between specific basic visual functions and measures of higher-order object and space perception were identified. All participants showed impairment in at least one aspect of basic visual processing. However, a number of dissociations between basic visual skills indicated a heterogeneous pattern of visual impairment among the PCA patients. Furthermore, basic visual impairments were associated with particular higher-order object and space perception deficits, but not with nonvisual parietal tasks, suggesting the specific involvement of visual networks in PCA. Cortical thickness analysis revealed trends toward lower cortical thickness in occipitotemporal (ventral) and occipitoparietal (dorsal) regions in patients with visuoperceptual and visuospatial deficits, respectively. However, there was also a lot of overlap in their patterns of cortical thinning. These findings suggest that different presentations of PCA represent points in a continuum of phenotypical variation.

  12. A Genetic Model for Understanding Higher Order Visual Processing: Functional Interactions of the Ventral Visual Stream in Williams Syndrome

    PubMed Central

    Sarpal, Deepak; Buchsbaum, Bradley R.; Kohn, Philip D.; Kippenhan, J. Shane; Mervis, Carolyn B.; Morris, Colleen A.; Meyer-Lindenberg, Andreas

    2008-01-01

    Williams syndrome (WS) is a rare neurodevelopmental disorder caused by a 1.6 Mb microdeletion on chromosome 7q11.23 and characterized by hypersocial personality and prominent visuospatial construction impairments. Previous WS studies have identified functional and structural abnormalities in the hippocampal formation, prefrontal regions crucial for amygdala regulation and social cognition, and the dorsal visual stream, notably the intraparietal sulcus (IPS). Although aberrant ventral stream activation has not been found in WS, object-related visual information that is processed in the ventral stream is a critical source of input into these abnormal regions. The present study, therefore, examined neural interactions of ventral stream areas in WS. Using a passive face- and house-viewing paradigm, activation and functional connectivity of stimulus-selective regions in fusiform and parahippocampal gyri, respectively, were investigated. During house viewing, significant activation differences were observed between participants with WS and a matched control group in IPS. Abnormal functional connectivity was found between parahippocampal gyrus and parietal cortex and between fusiform gyrus and a network of brain regions including amygdala and portions of prefrontal cortex. These results indicate that abnormal upstream visual object processing may contribute to the complex cognitive/behavioral phenotype in WS and provide a systems-level characterization of genetically mediated abnormalities of neural interactions. PMID:18308711

  13. Visual function after penetrating keratoplasty for keratoconus: a prospective longitudinal evaluation

    PubMed Central

    Brahma, A.; Ennis, F.; Harper, R.; Ridgway, A.; Tullo, A.

    2000-01-01

    AIMS—To evaluate visual function and vision specific health status in patients undergoing penetrating keratoplasty for keratoconus.
METHODS—A prospective longitudinal study measuring logMAR visual acuity, contrast sensitivity, disability glare, binocular visual field, stereoacuity, and subjective visual function (VF-14) was conducted on 18 patients with keratoconus undergoing penetrating keratoplasty (PK), including six patients who had already had PK in the fellow eye. Data were collected preoperatively and at 3, 9, and 18 months after surgery.
RESULTS—Within 3 months of surgery there was significant improvement in aided visual acuity, contrast sensitivity, and stereoacuity (p<0.05); disability glare (p<0.05) no longer had a significant detrimental effect on these variables. VF-14 score improved significantly throughout the postoperative period (p<0.05). There was significant correlation of the VF-14 score with aided visual acuity, binocular visual field, and stereoacuity. Postoperative astigmatism (<4D v >4D) did not affect the VF-14 score significantly.
CONCLUSIONS—There is substantial and rapid improvement in visual function and vision specific health status in keratoconic patients as a result of uncomplicated penetrating keratoplasty.

 PMID:10611101

  14. Manipulation of visual biofeedback during gait with a time delayed adaptive Virtual Mirror Box

    PubMed Central

    2014-01-01

    Background A mirror placed in the mid-sagittal plane of the body has been used to reduce phantom limb pain and improve movement function in medical conditions characterised by asymmetrical movement control. The mirrored illusion of unimpaired limb movement during gait might enhance the effect, but a physical mirror is only capable of showing parallel movement of limbs in real time typically while sitting. We aimed to overcome the limitations of physical mirrors by developing and evaluating a Virtual Mirror Box which delays the mirrored image of limbs during gait to ensure temporal congruency with the impaired physical limb. Methods An application was developed in the CAREN system’s D-Flow software which mirrors selected limbs recorded by real-time motion capture to the contralateral side. To achieve phase shifted movement of limbs during gait, the mirrored virtual limbs are also delayed by a continuously calculated amount derived from past gait events. In order to accommodate non-normal proportions and offsets of pathological gait, the movements are morphed so that the physical and virtual contact events match on the mirrored side. Our method was tested with a trans-femoral amputee walking on a treadmill using his artificial limb. Joint angles of the elbow and knee were compared between the intact and mirrored side using cross correlation, root mean squared difference and correlation coefficients. Results The time delayed adaptive virtual mirror box produced a symmetrical looking gait of the avatar coupled with a reduction of the difference between the intact and virtual knee and elbow angles (10.86° and 5.34° reduced to 4.99° and 2.54° respectively). Dynamic morphing of the delay caused a non-significant change of toe-off events when compared to delaying by 50% of the previous gait cycle, as opposed to the initial contact events which showed a practically negligible but statistically significant increase (p < 0.05). Conclusions Adding an adaptive time

  15. A social ecological approach to investigating relationships between housing and adaptive functioning for persons with serious mental illness.

    PubMed

    Kloos, Bret; Shah, Seema

    2009-12-01

    This paper seeks to advance mental health-housing research regarding which factors of housing and neighborhood environments are critical for adaptive functioning, health, and recovery for persons with serious mental illness (SMI). Housing and neighborhood environments are particularly important for persons with SMI because of the prevalence of poor housing conditions among this population. Most mental health-housing research has been limited by a focus on problems in environments and functioning. The paper seeks to expand the mental health-housing research agenda to consider protective factors that promote community integration and adaptive functioning. We provide an account of how social ecology theory transformed a research program, from examining individual risk factors to investigating the functioning of persons in the contexts of their housing and neighborhood experiences. The resulting housing environment framework-physical aspects of housing and neighborhoods, social environment of neighborhoods, and interpersonal relationships tied to housing-allows for identification of opportunities for health promotion and facilitation of participation in community-based settings. This program of research draws upon several methods to understand the social experience of persons with SMI living in community settings-survey research, qualitative interviews, Geographic Information Systems, participatory research, and visual ethnography. In this paper, we present how social ecology theory was instrumental in the development of new housing environment measures, the selection of appropriate research methods, and framing research questions that are building a new empirical base of knowledge about promoting adaptive functioning, health, and recovery for persons with SMI living in community settings.

  16. Flicker Adaptation of Low-Level Cortical Visual Neurons Contributes to Temporal Dilation

    ERIC Educational Resources Information Center

    Ortega, Laura; Guzman-Martinez, Emmanuel; Grabowecky, Marcia; Suzuki, Satoru

    2012-01-01

    Several seconds of adaptation to a flickered stimulus causes a subsequent brief static stimulus to appear longer in duration. Nonsensory factors, such as increased arousal and attention, have been thought to mediate this flicker-based temporal-dilation aftereffect. In this study, we provide evidence that adaptation of low-level cortical visual…

  17. VIDET: A Visual Authoring Tool for Adaptive Websites Tailored to Non-Programmer Teachers

    ERIC Educational Resources Information Center

    Armani, Jacopo

    2005-01-01

    So far educational adaptive technologies have proven their effectiveness only in small-scale lab courses, thus they still wait for being released to the large community of educators. Among the reasons, there is the difficult task of designing and authoring an interactive adaptive course, especially for non-technical group of educators. In this…

  18. [Effects of video games on visual function in children].

    PubMed

    Misawa, T; Shigeta, S; Nojima, S

    1991-02-01

    Health effects of video games were examined with a questionnaire survey and an experimental study. In the survey, age, sex, playing time with video games in a day, viewing distance between the eyes and the television screen, subjective symptoms of eye strain, and changes of visual acuity were investigated in 2,034 male and 2,321 female primary school children. In the experimental study, the visual loads of a one-hour word processing task and a video game were compared with various indices, such as critical flicker fusion, near point distance, blinking counts, eyeball movement, pupillary reflex and subjective fatigue symptoms in ten healthy male college students. The results of this study were as follows: 1) The viewing distance between the eyes and the TV screen was shorter for video games than for watching TV programs. 2) The rate of complaints related to eye strain in children who played video games over 120 min per day was significantly higher than that of other children. 3) The eye movements during video games were more rapid and frequent than those during conventional VDT work. 4) A decrease in CFF value and an extension of near point distance and an increase in subjective fatigue symptoms were demonstrated for both the word processing task and the video game. No significant differences were observed between the above two experimental conditions. This suggests that the visual loads for video games are similar to those for VDT work. These findings suggest that regulating the playing times to 60 minutes or less per day is necessary to prevent negative health effects in children.

  19. Infant visual acuity as a function of viewing distance.

    PubMed

    Salapatek, P; Bechtold, A G; Bushnell, E W

    1976-09-01

    Dynamic retinoscopy has suggested that near vision may be more acute than far vision during early infancy. To test this, acuity thresholds were determined by presenting square wave gratings in a preference paradigm to 1- and 2-month-old human infants at 4 viewing distances. Gratings were paired with unpatterned fields; direction of first fixation was the dependent measure. Infants exhibited the same acuity at each of the distances at which gratings were presented. The results were interpreted as compatible with the fact that considerable optical defocusing does not seriously affect a visual system, such as the infant's, that is sensitive only to low spatial frequencies.

  20. Adaptive Blood Glucose Monitoring and Insulin Measurement Devices for Visually Impaired Persons.

    ERIC Educational Resources Information Center

    Petzinger, R. A.

    1993-01-01

    This article describes devices that people with visual impairments and diabetes can use to monitor blood glucose levels and measure insulin. A table lists devices, their manufacturers (including address and telephone number), and comments about the devices. (DB)

  1. Query-driven visualization of time-varying adaptive mesh refinement data.

    PubMed

    Gosink, Luke J; Anderson, John C; Bethel, E Wes; Joy, Kenneth I

    2008-01-01

    The visualization and analysis of AMR-based simulations is integral to the process of obtaining new insight in scientific research. We present a new method for performing query-driven visualization and analysis on AMR data, with specific emphasis on time-varying AMR data. Our work introduces a new method that directly addresses the dynamic spatial and temporal properties of AMR grids that challenge many existing visualization techniques. Further, we present the first implementation of query-driven visualization on the GPU that uses a GPU-based indexing structure to both answer queries and efficiently utilize GPU memory. We apply our method to two different science domains to demonstrate its broad applicability.

  2. Query-Driven Visualization of Time-Varying Adaptive Mesh Refinement Data

    SciTech Connect

    Gosink, Luke J.; Anderson, John C.; Bethel, E. Wes; Joy, Kenneth I.

    2008-08-01

    The visualization and analysis of AMR-based simulations is integral to the process of obtaining new insight in scientific research. We present a new method for performing query-driven visualization and analysis on AMR data, with specific emphasis on time-varying AMR data. Our work introduces a new method that directly addresses the dynamic spatial and temporal properties of AMR grids which challenge many existing visualization techniques. Further, we present the first implementation of query-driven visualization on the GPU that uses a GPU-based indexing structure to both answer queries and efficiently utilize GPU memory. We apply our method to two different science domains to demonstrate its broad applicability.

  3. [Formula: see text]Intellectual and adaptive functioning in Sturge-Weber Syndrome.

    PubMed

    Kavanaugh, Brian; Sreenivasan, Aditya; Bachur, Catherine; Papazoglou, Aimilia; Comi, Anne; Zabel, T Andrew

    2016-01-01

    The present study examined the intellectual and adaptive functioning in a sample of children and young adults with Sturge-Weber Syndrome (SWS). A total of 80 research participants from a SWS study database underwent full neurological evaluation as part of their participation or concurrent medical care. Twenty-nine of the participants received neuropsychological evaluations. Analyses indicated no significant demographic or neurological differences between those who did and did not receive neuropsychological evaluations. Overall, the neuropsychological evaluation sample displayed significantly lower functioning relative to published normative data across domains of intellectual and adaptive functioning. Thirty-two percent of the sample displayed impaired performance (standard score ≤ 75) in intellectual functioning and 58% displayed impaired performance in adaptive functioning. Hemiparesis status independently predicted overall adaptive functioning while seizure frequency independently predicted overall intellectual functioning. Younger participants displayed significantly higher (more intact) ratings in adaptive functioning compared to older participants, specifically in overall adaptive functioning, motor skills, and community living skills. A composite measure of neurological status (SWS-NRS) incorporating seizure and hemiparesis status effectively distinguished between individuals with impaired or nonimpaired adaptive and intellectual functioning and showed promise as a screening method for identifying individuals with more involved intellectual and/or adaptive needs. PMID:25952468

  4. Wearing weighted backpack dilates subjective visual duration: the role of functional linkage between weight experience and visual timing.

    PubMed

    Jia, Lina; Shi, Zhuanghua; Feng, Wenfeng

    2015-01-01

    Bodily state plays a critical role in our perception. In the present study, we asked the question whether and how bodily experience of weights influences time perception. Participants judged durations of a picture (a backpack or a trolley bag) presented on the screen, while wearing different weight backpacks or without backpack. The results showed that the subjective duration of the backpack picture was dilated when participants wore a medium weighted backpack relative to an empty backpack or without backpack, regardless of identity (e.g., color) of the visual backpack. However, the duration dilation was not manifested for the picture of trolley bag. These findings suggest that weight experience modulates visual duration estimation through the linkage between the wore backpack and to-be-estimated visual target. The congruent action affordance between the wore backpack and visual inputs plays a critical role in the functional linkage between inner experience and time perception. We interpreted our findings within the framework of embodied time perception. PMID:26441748

  5. Semiautomatic transfer function initialization for abdominal visualization using self-generating hierarchical radial basis function networks.

    PubMed

    Selver, M Alper; Güzeliş, Cüneyt

    2009-01-01

    As being a tool that assigns optical parameters used in interactive visualization, Transfer Functions (TF) have important effects on the quality of volume rendered medical images. Unfortunately, finding accurate TFs is a tedious and time consuming task because of the trade off between using extensive search spaces and fulfilling the physician's expectations with interactive data exploration tools and interfaces. By addressing this problem, we introduce a semi-automatic method for initial generation of TFs. The proposed method uses a Self Generating Hierarchical Radial Basis Function Network to determine the lobes of a Volume Histogram Stack (VHS) which is introduced as a new domain by aligning the histograms of slices of a image series. The new self generating hierarchical design strategy allows the recognition of suppressed lobes corresponding to suppressed tissues and representation of the overlapping regions which are parts of the lobes but can not be represented by the Gaussian bases in VHS. Moreover, approximation with a minimum set of basis functions provides the possibility of selecting and adjusting suitable units to optimize the TF. Applications on different CT and MR data sets show enhanced rendering quality and reduced optimization time in abdominal studies.

  6. Reducing uncertainty about objective functions in adaptive management

    USGS Publications Warehouse

    Williams, B.K.

    2012-01-01

    This paper extends the uncertainty framework of adaptive management to include uncertainty about the objectives to be used in guiding decisions. Adaptive decision making typically assumes explicit and agreed-upon objectives for management, but allows for uncertainty as to the structure of the decision process that generates change through time. Yet it is not unusual for there to be uncertainty (or disagreement) about objectives, with different stakeholders expressing different views not only about resource responses to management but also about the appropriate management objectives. In this paper I extend the treatment of uncertainty in adaptive management, and describe a stochastic structure for the joint occurrence of uncertainty about objectives as well as models, and show how adaptive decision making and the assessment of post-decision monitoring data can be used to reduce uncertainties of both kinds. Different degrees of association between model and objective uncertainty lead to different patterns of learning about objectives. ?? 2011.

  7. IMAGING WITH MULTIMODAL ADAPTIVE-OPTICS OPTICAL COHERENCE TOMOGRAPHY IN MULTIPLE EVANESCENT WHITE DOT SYNDROME: THE STRUCTURE AND FUNCTIONAL RELATIONSHIP

    PubMed Central

    Legarreta, Andrew D.; Legarreta, John E.; Nadler, Zach; Gallagher, Denise; Hammer, Daniel X.; Ferguson, R. Daniel; Iftimia, Nicusor; Wollstein, Gadi; Schuman, Joel S.

    2016-01-01

    Purpose: To elucidate the location of pathological changes in multiple evanescent white dot syndrome (MEWDS) with the use of multimodal adaptive optics (AO) imaging. Methods: A 5-year observational case study of a 24-year-old female with recurrent MEWDS. Full examination included history, Snellen chart visual acuity, pupil assessment, intraocular pressures, slit lamp evaluation, dilated fundoscopic exam, imaging with Fourier-domain optical coherence tomography (FD-OCT), blue-light fundus autofluorescence (FAF), fundus photography, fluorescein angiography, and adaptive-optics optical coherence tomography. Results: Three distinct acute episodes of MEWDS occurred during the period of follow-up. Fourier-domain optical coherence tomography and adaptive-optics imaging showed disturbance in the photoreceptor outer segments (PR OS) in the posterior pole with each flare. The degree of disturbance at the photoreceptor level corresponded to size and extent of the visual field changes. All findings were transient with delineation of the photoreceptor recovery from the outer edges of the lesion inward. Hyperautofluorescence was seen during acute flares. Increase in choroidal thickness did occur with each active flare but resolved. Conclusion: Although changes in the choroid and RPE can be observed in MEWDS, Fourier-domain optical coherence tomography, and multimodal adaptive optics imaging localized the visually significant changes seen in this disease at the level of the photoreceptors. These transient retinal changes specifically occur at the level of the inner segment ellipsoid and OS/RPE line. En face optical coherence tomography imaging provides a detailed, yet noninvasive method for following the convalescence of MEWDS and provides insight into the structural and functional relationship of this transient inflammatory retinal disease. PMID:26735319

  8. Visualization of Potential Energy Function Using an Isoenergy Approach and 3D Prototyping

    ERIC Educational Resources Information Center

    Teplukhin, Alexander; Babikov, Dmitri

    2015-01-01

    In our three-dimensional world, one can plot, see, and comprehend a function of two variables at most, V(x,y). One cannot plot a function of three or more variables. For this reason, visualization of the potential energy function in its full dimensionality is impossible even for the smallest polyatomic molecules, such as triatomics. This creates…

  9. Tracking the evolution of crossmodal plasticity and visual functions before and after sight restoration.

    PubMed

    Dormal, Giulia; Lepore, Franco; Harissi-Dagher, Mona; Albouy, Geneviève; Bertone, Armando; Rossion, Bruno; Collignon, Olivier

    2015-03-15

    Visual deprivation leads to massive reorganization in both the structure and function of the occipital cortex, raising crucial challenges for sight restoration. We tracked the behavioral, structural, and neurofunctional changes occurring in an early and severely visually impaired patient before and 1.5 and 7 mo after sight restoration with magnetic resonance imaging. Robust presurgical auditory responses were found in occipital cortex despite residual preoperative vision. In primary visual cortex, crossmodal auditory responses overlapped with visual responses and remained elevated even 7 mo after surgery. However, these crossmodal responses decreased in extrastriate occipital regions after surgery, together with improved behavioral vision and with increases in both gray matter density and neural activation in low-level visual regions. Selective responses in high-level visual regions involved in motion and face processing were observable even before surgery and did not evolve after surgery. Taken together, these findings demonstrate that structural and functional reorganization of occipital regions are present in an individual with a long-standing history of severe visual impairment and that such reorganizations can be partially reversed by visual restoration in adulthood.

  10. [An Evaluation of Visual Function in Working Age Patients with Glaucoma].

    PubMed

    Murakami, Miki; Obata, Yasuko; Yamato, Hiroshi; Kondo, Hiroyuki

    2015-09-01

    Visual function affects working ability in occupational health. We investigated the frequencies and grades of low vision in working age people who have glaucoma, and studied patients who were receiving low vision care, for example eye movement training. Among 3,905 patients aged 15 to 64 years old who visited Murakami eye clinic from October 2013 to September 2014, there were 363 patients suspected of having glaucoma and 138 patients diagnosed with glaucoma and receiving treatment. We measured their visual acuity and visual field to calculate their functional vision score (FVS). We studied the amount of reduction in visual ability and the number of patients undergoing low vision care by age groups. The vision test and visual field test showed that 18 patients had reduced visual ability, according to the FVS. Their FVS classification was from class 1 (mild vision loss) to class 3a (severe vision loss). The FVS matches the statistics of the WHO and can predict the reading and walking ability in each class. Reduced visual ability was recognized in about 14% of the glaucoma patients older than 45 years of age. 78% of the patients were classified in class 1. In FVS, class 2 (moderate vision loss) or greater is defined as low vision, and class 1 is a condition with no visual reserve. Although such patients have no problems in daily life and office work, they are challenged by on-site work and the on-site environment, and occupational health staff intervention becomes necessary.

  11. Visual function and color vision in adults with Attention-Deficit/Hyperactivity Disorder

    PubMed Central

    Kim, Soyeon; Chen, Samantha; Tannock, Rosemary

    2013-01-01

    Purpose Color vision and self-reported visual function in everyday life in young adults with Attention-Deficit/Hyperactivity Disorder (ADHD) were investigated. Method Participants were 30 young adults with ADHD and 30 controls matched for age and gender. They were tested individually and completed the Visual Activities Questionnaire (VAQ), Farnsworth-Munsell 100 Hue Test (FMT) and A Quick Test of Cognitive Speed (AQT). Results The ADHD group reported significantly more problems in 4 of 8 areas on the VAQ: depth perception, peripheral vision, visual search and visual processing speed. Further analyses of VAQ items revealed that the ADHD group endorsed more visual problems associated with driving than controls. Color perception difficulties on the FMT were restricted to the blue spectrum in the ADHD group. FMT and AQT results revealed slower processing of visual stimuli in the ADHD group. Conclusion A comprehensive investigation of mechanisms underlying visual function and color vision in adults with ADHD is warranted, along with the potential impact of these visual problems on driving performance. PMID:24646898

  12. Mechanisms of recovery of visual function in adult amblyopia through a tailored action video game

    PubMed Central

    Vedamurthy, Indu; Nahum, Mor; Bavelier, Daphne; Levi, Dennis M.

    2015-01-01

    Amblyopia is a deficit in vision that arises from abnormal visual experience early in life. It was long thought to develop into a permanent deficit, unless properly treated before the end of the sensitive period for visual recovery. However, a number of studies now suggest that adults with long-standing amblyopia may at least partially recover visual acuity and stereopsis following perceptual training. Eliminating or reducing interocular suppression has been hypothesized to be at the root of these changes. Here we show that playing a novel dichoptic video game indeed results in reduced suppression, improved visual acuity and, in some cases, improved stereopsis. Our relatively large cohort of adults with amblyopia, allowed us, for the first time, to assess the link between visual function recovery and reduction in suppression. Surprisingly, no significant correlation was found between decreased suppression and improved visual function. This finding challenges the prevailing view and suggests that while dichoptic training improves visual acuity and stereopsis in adult amblyopia, reduced suppression is unlikely to be at the root of visual recovery. These results are discussed in the context of their implication on recovery of amblyopia in adults. PMID:25719537

  13. Mechanisms of recovery of visual function in adult amblyopia through a tailored action video game.

    PubMed

    Vedamurthy, Indu; Nahum, Mor; Bavelier, Daphne; Levi, Dennis M

    2015-01-01

    Amblyopia is a deficit in vision that arises from abnormal visual experience early in life. It was long thought to develop into a permanent deficit, unless properly treated before the end of the sensitive period for visual recovery. However, a number of studies now suggest that adults with long-standing amblyopia may at least partially recover visual acuity and stereopsis following perceptual training. Eliminating or reducing interocular suppression has been hypothesized to be at the root of these changes. Here we show that playing a novel dichoptic video game indeed results in reduced suppression, improved visual acuity and, in some cases, improved stereopsis. Our relatively large cohort of adults with amblyopia, allowed us, for the first time, to assess the link between visual function recovery and reduction in suppression. Surprisingly, no significant correlation was found between decreased suppression and improved visual function. This finding challenges the prevailing view and suggests that while dichoptic training improves visual acuity and stereopsis in adult amblyopia, reduced suppression is unlikely to be at the root of visual recovery. These results are discussed in the context of their implication on recovery of amblyopia in adults.

  14. [An Evaluation of Visual Function in Working Age Patients with Glaucoma].

    PubMed

    Murakami, Miki; Obata, Yasuko; Yamato, Hiroshi; Kondo, Hiroyuki

    2015-09-01

    Visual function affects working ability in occupational health. We investigated the frequencies and grades of low vision in working age people who have glaucoma, and studied patients who were receiving low vision care, for example eye movement training. Among 3,905 patients aged 15 to 64 years old who visited Murakami eye clinic from October 2013 to September 2014, there were 363 patients suspected of having glaucoma and 138 patients diagnosed with glaucoma and receiving treatment. We measured their visual acuity and visual field to calculate their functional vision score (FVS). We studied the amount of reduction in visual ability and the number of patients undergoing low vision care by age groups. The vision test and visual field test showed that 18 patients had reduced visual ability, according to the FVS. Their FVS classification was from class 1 (mild vision loss) to class 3a (severe vision loss). The FVS matches the statistics of the WHO and can predict the reading and walking ability in each class. Reduced visual ability was recognized in about 14% of the glaucoma patients older than 45 years of age. 78% of the patients were classified in class 1. In FVS, class 2 (moderate vision loss) or greater is defined as low vision, and class 1 is a condition with no visual reserve. Although such patients have no problems in daily life and office work, they are challenged by on-site work and the on-site environment, and occupational health staff intervention becomes necessary. PMID:26370045

  15. Visual evoked potential monitoring of optic nerve function during surgery.

    PubMed

    Harding, G F; Bland, J D; Smith, V H

    1990-10-01

    A study was made with intra-operative flash--visual evoked potentials (VEP) monitored using a fibre-optic/contact lens photo stimulator in 57 patients undergoing intra-orbital surgical procedures with potential risk to the optic nerve. The VEPs recorded under enflurane and nitrous oxide anaesthesia did not differ significantly in latency or amplitude from the pre-operative recordings. Transient abolition of the VEP was seen under many circumstances and did not correlate with the outcome of surgery, but absence of a previously normal VEP for more than four minutes during surgical manipulation within the orbit did show a correlation with post operative impairment of vision. The technique provides early warning to the surgeon of threats to the integrity of the optic nerve.

  16. Visual evoked potential monitoring of optic nerve function during surgery.

    PubMed Central

    Harding, G F; Bland, J D; Smith, V H

    1990-01-01

    A study was made with intra-operative flash--visual evoked potentials (VEP) monitored using a fibre-optic/contact lens photo stimulator in 57 patients undergoing intra-orbital surgical procedures with potential risk to the optic nerve. The VEPs recorded under enflurane and nitrous oxide anaesthesia did not differ significantly in latency or amplitude from the pre-operative recordings. Transient abolition of the VEP was seen under many circumstances and did not correlate with the outcome of surgery, but absence of a previously normal VEP for more than four minutes during surgical manipulation within the orbit did show a correlation with post operative impairment of vision. The technique provides early warning to the surgeon of threats to the integrity of the optic nerve. PMID:2266371

  17. Functional characterization of visual opsin repertoire in Medaka (Oryzias latipes).

    PubMed

    Matsumoto, Yoshifumi; Fukamachi, Shoji; Mitani, Hiroshi; Kawamura, Shoji

    2006-04-26

    A variety of visual pigment repertoires present in fish species is believed due to the great variation under the water of light environment. A complete set of visual opsin genes has been isolated and characterized for absorption spectra and expression in the retina only in zebrafish. Medaka (Oryzias latipes) is a fish species phylogenetically distant from zebrafish and has served as an important vertebrate model system in molecular and developmental genetics. We previously isolated a medaka rod opsin gene (RH1). In the present study we isolated all the cone opsin genes of medaka by genome screening of a lambda-phage and bacterial artificial chromosome (BAC) libraries. The medaka genome contains two red, LWS-A and LWS-B, three green, RH2-A, RH2-B and RH2-C, and two blue, SWS2-A and SWS2-B, subtype opsin genes as well as a single-copy of the ultraviolet, SWS1, opsin gene. Previously only one gene was believed present for each opsin type as reported in a cDNA-based study. These subtype opsin genes are closely linked and must be the products of local gene duplications but not of a genome-wide duplication. Peak absorption spectra (lambda(max)) of the reconstituted photopigments with 11-cis retinal varied greatly among the three green opsins, 452 nm for RH2-A, 516 nm for RH2-B and 492 nm for RH2-C, and between the two blue opsins, 439 nm for SWS2-A and 405 nm for SWS2-B. Zebrafish also has multiple opsin subtypes, but phylogenetic analysis revealed that medaka and zebrafish gained the subtype opsins independently. The lambda and BAC DNA clones isolated in this study could be useful for investigating the regulatory mechanisms and evolutionary diversity of fish opsin genes.

  18. Structural and functional neuroimaging in patients with Parkinson's disease and visual hallucinations: A critical review.

    PubMed

    Lenka, Abhishek; Jhunjhunwala, Ketan Ramakant; Saini, Jitender; Pal, Pramod Kumar

    2015-07-01

    Patients with Parkinson's disease (PD) may develop various non-motor symptoms (NMS) during the course of the illness and psychosis is one of the common NMS of PD. Visual hallucinations (VH) are the most common manifestation of psychosis in PD. The exact pathogenesis of VH in patients with PD is not clearly understood. Presence of VH has been described to be associated with rapid cognitive decline and increased nursing home placements in PD patients. A large number of structural and functional neuroimaging studies have been conducted to understand the cerebral basis of VH in PD. Structural imaging studies (Voxel Based Morphometry) have reported grey matter atrophy in multiple regions of the brain such as primary visual cortex, visual association cortex, limbic regions, cholinergic structures such as pedunculopontine nucleus and substantia innominata, which conclude possible alterations of brain regions associated with functions such as visuospatial-perception, attention control and memory. Most functional neuroimaging studies (functional MRI, positron emission tomography and single photon emission computerized tomography) have reported altered activation, blood flow, or reduced metabolism in both dorsal and ventral visual pathways, which probably indicates an alteration in the normal bottom-top visual processing and the presence of an aberrant top-down visual processing. This review critically analyzes the published studies on the structural and functional neuroimaging in PD patients with VH.

  19. Associations between Conceptual Reasoning, Problem Solving, and Adaptive Ability in High-Functioning Autism

    ERIC Educational Resources Information Center

    Williams, Diane L.; Mazefsky, Carla A.; Walker, Jon D.; Minshew, Nancy J.; Goldstein, Gerald

    2014-01-01

    Abstract thinking is generally highly correlated with problem-solving ability which is predictive of better adaptive functioning. Measures of conceptual reasoning, an ecologically-valid laboratory measure of problem-solving, and a report measure of adaptive functioning in the natural environment, were administered to children and adults with and…

  20. Waking and Dreaming Need Profiles: An Exploratory Study of Adaptive Functioning.

    ERIC Educational Resources Information Center

    Hutchinson, Robert Linton, II

    Research has defined the various adaptive, compensatory and complementary functions of dreams. To investigate the evidence of adaptive functioning in the dream state, 30 medical students (21 males, 9 females) from St. George's University, Grenada, completed personal surveys, a waking psychological profile, and a dreaming psychological profile…

  1. Structure and function of the visual arrestin oligomer

    PubMed Central

    Hanson, Susan M; Van Eps, Ned; Francis, Derek J; Altenbach, Christian; Vishnivetskiy, Sergey A; Arshavsky, Vadim Y; Klug, Candice S; Hubbell, Wayne L; Gurevich, Vsevolod V

    2007-01-01

    A distinguishing feature of rod arrestin is its ability to form oligomers at physiological concentrations. Using visible light scattering, we show that rod arrestin forms tetramers in a cooperative manner in solution. To investigate the structure of the tetramer, a nitroxide side chain (R1) was introduced at 18 different positions. The effects of R1 on oligomer formation, EPR spectra, and inter-spin distance measurements all show that the structures of the solution and crystal tetramers are different. Inter-subunit distance measurements revealed that only arrestin monomer binds to light-activated phosphorhodopsin, whereas both monomer and tetramer bind microtubules, which may serve as a default arrestin partner in dark-adapted photoreceptors. Thus, the tetramer likely serves as a ‘storage' form of arrestin, increasing the arrestin-binding capacity of microtubules while readily dissociating to supply active monomer when it is needed to quench rhodopsin signaling. PMID:17332750

  2. Functional effects of unilateral open-angle glaucoma on the primary and extrastriate visual cortex.

    PubMed

    Borges, Victor M; Danesh-Meyer, Helen V; Black, Joanna M; Thompson, Benjamin

    2015-01-01

    The purpose of this study was to use functional magnetic resonance imaging (fMRI) to investigate the response of the visual cortex to unilateral primary open-angle glaucoma (POAG). Specifically, we assessed whether regions of V1 and V2 with lost input from the glaucomatous eye had a greater response to input from the nonaffected fellow eye. Nine participants with unilateral POAG causing paracentral visual field defects and four controls participated in the study. We found no evidence for an increased response to the fellow eye in glaucoma-affected regions of the visual cortex; however, in agreement with previous studies, there was a pronounced, retinotopically localized reduction of activation in both the primary (V1) and extrastriate visual cortex (V2), when participants viewed through their glaucomatous eye. Our results suggest a remarkable level of stability within the adult primary and extrastriate visual cortex in response to unilateral neurodegeneration of the optic nerve. PMID:26575195

  3. Brief Report: Adaptive Functioning in Children with ASD, ADHD and ASD + ADHD.

    PubMed

    Ashwood, Karen L; Tye, Charlotte; Azadi, Bahare; Cartwright, Sally; Asherson, Philip; Bolton, Patrick

    2015-07-01

    Autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD) often co-occur. Children with ASD and ADHD demonstrate deficits in adaptive functioning, yet pure and comorbid groups have not been directly compared. Vineland Adaptive Behaviour Scales (VABS-II) data were examined in boys with ASD (n = 17), ADHD (n = 31) and ASD + ADHD (n = 38). Results demonstrated lower socialisation and composite scores and greater discrepancy between cognitive and adaptive abilities in the ASD + ADHD group compared to the ADHD-only group. Significant associations were shown between reduced adaptive functioning and autism symptoms, but not ADHD symptoms. Children with ASD + ADHD present with exacerbated impairments in adaptive functioning relative to children with ADHD, associated with ASD symptoms. Disentangling variation in adaptive skills may aid the assessment of complex cases.

  4. Changes in Connectivity after Visual Cortical Brain Damage Underlie Altered Visual Function

    ERIC Educational Resources Information Center

    Bridge, Holly; Thomas, Owen; Jbabdi, Saad; Cowey, Alan

    2008-01-01

    The full extent of the brain's ability to compensate for damage or changed experience is yet to be established. One question particularly important for evaluating and understanding rehabilitation following brain damage is whether recovery involves new and aberrant neural connections or whether any change in function is due to the functional…

  5. How You Use It Matters: Object Function Guides Attention During Visual Search in Scenes.

    PubMed

    Castelhano, Monica S; Witherspoon, Richelle L

    2016-05-01

    How does one know where to look for objects in scenes? Objects are seen in context daily, but also used for specific purposes. Here, we examined whether an object's function can guide attention during visual search in scenes. In Experiment 1, participants studied either the function (function group) or features (feature group) of a set of invented objects. In a subsequent search, the function group located studied objects faster than novel (unstudied) objects, whereas the feature group did not. In Experiment 2, invented objects were positioned in locations that were either congruent or incongruent with the objects' functions. Search for studied objects was faster for function-congruent locations and hampered for function-incongruent locations, relative to search for novel objects. These findings demonstrate that knowledge of object function can guide attention in scenes, and they have important implications for theories of visual cognition, cognitive neuroscience, and developmental and ecological psychology.

  6. Functional Genomics of Physiological Plasticity and Local Adaptation in Killifish

    PubMed Central

    Galvez, Fernando; Zhang, Shujun; Williams, Larissa M.; Oleksiak, Marjorie F.

    2011-01-01

    Evolutionary solutions to the physiological challenges of life in highly variable habitats can span the continuum from evolution of a cosmopolitan plastic phenotype to the evolution of locally adapted phenotypes. Killifish (Fundulus sp.) have evolved both highly plastic and locally adapted phenotypes within different selective contexts, providing a comparative system in which to explore the genomic underpinnings of physiological plasticity and adaptive variation. Importantly, extensive variation exists among populations and species for tolerance to a variety of stressors, and we exploit this variation in comparative studies to yield insights into the genomic basis of evolved phenotypic variation. Notably, species of Fundulus occupy the continuum of osmotic habitats from freshwater to marine and populations within Fundulus heteroclitus span far greater variation in pollution tolerance than across all species of fish. Here, we explore how transcriptome regulation underpins extreme physiological plasticity on osmotic shock and how genomic and transcriptomic variation is associated with locally evolved pollution tolerance. We show that F. heteroclitus quickly acclimate to extreme osmotic shock by mounting a dramatic rapid transcriptomic response including an early crisis control phase followed by a tissue remodeling phase involving many regulatory pathways. We also show that convergent evolution of locally adapted pollution tolerance involves complex patterns of gene expression and genome sequence variation, which is confounded with body-weight dependence for some genes. Similarly, exploiting the natural phenotypic variation associated with other established and emerging model organisms is likely to greatly accelerate the pace of discovery of the genomic basis of phenotypic variation. PMID:20581107

  7. Adaptive pacing of visual stimulation for fMRI studies involving overt speech.

    PubMed

    Grabowski, Thomas J; Bauer, Matthew D; Foreman, Derek; Mehta, Sonya; Eaton, Brent L; Graves, William W; Defoe, Dori L; Bolinger, Lizann

    2006-02-01

    We report the development of an interactive approach to single-word language production studies in fMRI. The approach, adaptive pacing, involves real-time adjustment of stimulus presentation times based on individual subject performance timing and content. At the same time, it maintains a stochastic distribution of interstimulus intervals to avoid confounding task covariates with speech-related signal variance. Adaptive pacing of overt speech production is an example of a new class of paradigms that require an observational approach to data acquisition and benefit from a "time-aware" acquisition and processing environment. The advantages of adaptive pacing in fMRI of impaired subjects are expected to be the acquisition of more informative data per unit time, less contamination of data by correlates of non-language processes such as emotion, and facilitation of experiments that combine normal and impaired subjects. PMID:16303319

  8. The disorganized visual cortex in reelin-deficient mice is functional and allows for enhanced plasticity.

    PubMed

    Pielecka-Fortuna, Justyna; Wagener, Robin Jan; Martens, Ann-Kristin; Goetze, Bianka; Schmidt, Karl-Friedrich; Staiger, Jochen F; Löwel, Siegrid

    2015-11-01

    A hallmark of neocortical circuits is the segregation of processing streams into six distinct layers. The importance of this layered organization for cortical processing and plasticity is little understood. We investigated the structure, function and plasticity of primary visual cortex (V1) of adult mice deficient for the glycoprotein reelin and their wild-type littermates. In V1 of rl-/- mice, cells with different laminar fates are present at all cortical depths. Surprisingly, the (vertically) disorganized cortex maintains a precise retinotopic (horizontal) organization. Rl-/- mice have normal basic visual capabilities, but are compromised in more challenging perceptual tasks, such as orientation discrimination. Additionally, rl-/- animals learn and memorize a visual task as well as their wild-type littermates. Interestingly, reelin deficiency enhances visual cortical plasticity: juvenile-like ocular dominance plasticity is preserved into late adulthood. The present data offer an important insight into the capabilities of a disorganized cortical system to maintain basic functional properties.

  9. The Impact of Visual Guided Order Picking on Ocular Comfort, Ocular Surface and Tear Function

    PubMed Central

    Klein-Theyer, Angelika; Horwath-Winter, Jutta; Rabensteiner, Dieter Franz; Schwantzer, Gerold; Wultsch, Georg; Aminfar, Haleh; Heidinger, Andrea; Boldin, Ingrid

    2016-01-01

    Purpose We investigated the effects of a visual picking system on ocular comfort, the ocular surface and tear function compared to those of a voice guided picking solution. Design Prospective, observational, cohort study. Method Setting: Institutional. Study Population: A total of 25 young asymptomatic volunteers performed commissioning over 10 hours on two consecutive days. Main Outcome Measures: The operators were guided in the picking process by two different picking solutions, either visually or by voice while their subjective symptoms and ocular surface and tear function parameters were recorded. Results The visual analogue scale (VAS) values, according to subjective dry eye symptoms, in the visual condition were significantly higher at the end of the commissioning than the baseline measurements. In the voice condition, the VAS values remained stable during the commissioning. The tear break-up time (BUT) values declined significantly in the visual condition (pre-task: 16.6 sec and post-task: 9.6 sec) in the right eyes, that were exposed to the displays, the left eyes in the visual condition showed only a minor decline, whereas the BUT values in the voice condition remained constant (right eyes) or even increased (left eyes) over the time. No significant differences in the tear meniscus height values before and after the commissioning were observed in either condition. Conclusion In our study, the use of visually guided picking solutions was correlated with post-task subjective symptoms and tear film instability. PMID:27314855

  10. Choosing Your Poison: Optimizing Simulator Visual System Selection as a Function of Operational Tasks

    NASA Technical Reports Server (NTRS)

    Sweet, Barbara T.; Kaiser, Mary K.

    2013-01-01

    Although current technology simulator visual systems can achieve extremely realistic levels they do not completely replicate the experience of a pilot sitting in the cockpit, looking at the outside world. Some differences in experience are due to visual artifacts, or perceptual features that would not be present in a naturally viewed scene. Others are due to features that are missing from the simulated scene. In this paper, these differences will be defined and discussed. The significance of these differences will be examined as a function of several particular operational tasks. A framework to facilitate the choice of visual system characteristics based on operational task requirements will be proposed.

  11. Optical properties of retinal tissue and the potential of adaptive optics to visualize retinal ganglion cells in vivo.

    PubMed

    Prasse, Martina; Rauscher, Franziska Georgia; Wiedemann, Peter; Reichenbach, Andreas; Francke, Mike

    2013-08-01

    Many efforts have been made to improve the diagnostic tools used to identify and to estimate the progress of ganglion cell and nerve fibre degeneration in glaucoma. Imaging by optical coherence tomography and measurements of the dimensions of the optic nerve head and the nerve fibre layer in central retinal areas is currently used to estimate the grade of pathological changes. The visualization and quantification of ganglion cells and nerve fibres directly in patients would dramatically improve glaucoma diagnostics. We have investigated the optical properties of cellular structures of retinal tissue in order to establish a means of visualizing and quantifying ganglion cells in the living retina without staining. We have characterized the optical properties of retinal tissue in several species including humans. Nerve fibres, blood vessels, ganglion cells and their cell processes have been visualized at high image resolution by means of the reflection mode of a confocal laser scanning microscope. The potential of adaptive optics in current imaging systems and the possibilities of imaging single ganglion cells non-invasively in patients are discussed.

  12. Scalable Adaptive Graphics Environment (SAGE) Software for the Visualization of Large Data Sets on a Video Wall

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary; Srikishen, Jayanthi; Edwards, Rita; Cross, David; Welch, Jon; Smith, Matt

    2013-01-01

    The use of collaborative scientific visualization systems for the analysis, visualization, and sharing of "big data" available from new high resolution remote sensing satellite sensors or four-dimensional numerical model simulations is propelling the wider adoption of ultra-resolution tiled display walls interconnected by high speed networks. These systems require a globally connected and well-integrated operating environment that provides persistent visualization and collaboration services. This abstract and subsequent presentation describes a new collaborative visualization system installed for NASA's Shortterm Prediction Research and Transition (SPoRT) program at Marshall Space Flight Center and its use for Earth science applications. The system consists of a 3 x 4 array of 1920 x 1080 pixel thin bezel video monitors mounted on a wall in a scientific collaboration lab. The monitors are physically and virtually integrated into a 14' x 7' for video display. The display of scientific data on the video wall is controlled by a single Alienware Aurora PC with a 2nd Generation Intel Core 4.1 GHz processor, 32 GB memory, and an AMD Fire Pro W600 video card with 6 mini display port connections. Six mini display-to-dual DVI cables are used to connect the 12 individual video monitors. The open source Scalable Adaptive Graphics Environment (SAGE) windowing and media control framework, running on top of the Ubuntu 12 Linux operating system, allows several users to simultaneously control the display and storage of high resolution still and moving graphics in a variety of formats, on tiled display walls of any size. The Ubuntu operating system supports the open source Scalable Adaptive Graphics Environment (SAGE) software which provides a common environment, or framework, enabling its users to access, display and share a variety of data-intensive information. This information can be digital-cinema animations, high-resolution images, high-definition video

  13. Scalable Adaptive Graphics Environment (SAGE) Software for the Visualization of Large Data Sets on a Video Wall

    NASA Astrophysics Data System (ADS)

    Jedlovec, G.; Srikishen, J.; Edwards, R.; Cross, D.; Welch, J. D.; Smith, M. R.

    2013-12-01

    The use of collaborative scientific visualization systems for the analysis, visualization, and sharing of 'big data' available from new high resolution remote sensing satellite sensors or four-dimensional numerical model simulations is propelling the wider adoption of ultra-resolution tiled display walls interconnected by high speed networks. These systems require a globally connected and well-integrated operating environment that provides persistent visualization and collaboration services. This abstract and subsequent presentation describes a new collaborative visualization system installed for NASA's Short-term Prediction Research and Transition (SPoRT) program at Marshall Space Flight Center and its use for Earth science applications. The system consists of a 3 x 4 array of 1920 x 1080 pixel thin bezel video monitors mounted on a wall in a scientific collaboration lab. The monitors are physically and virtually integrated into a 14' x 7' for video display. The display of scientific data on the video wall is controlled by a single Alienware Aurora PC with a 2nd Generation Intel Core 4.1 GHz processor, 32 GB memory, and an AMD Fire Pro W600 video card with 6 mini display port connections. Six mini display-to-dual DVI cables are used to connect the 12 individual video monitors. The open source Scalable Adaptive Graphics Environment (SAGE) windowing and media control framework, running on top of the Ubuntu 12 Linux operating system, allows several users to simultaneously control the display and storage of high resolution still and moving graphics in a variety of formats, on tiled display walls of any size. The Ubuntu operating system supports the open source Scalable Adaptive Graphics Environment (SAGE) software which provides a common environment, or framework, enabling its users to access, display and share a variety of data-intensive information. This information can be digital-cinema animations, high-resolution images, high-definition video

  14. Heart visualization based on hybrid transfer function using size and gradient.

    PubMed

    Xia, Yong; Liu, Yixuan; Wang, Kuanquan

    2014-01-01

    Having the ability to visualize the heart clearly and precisely would be beneficial for pathology research, presurgical planning, and clinical approaches. Multi-dimensional transfer functions were employed to improve the overall performance of images. To provide a satisfactory visualization quality on the shape and boundaries of the heart, a new hybrid transfer function combining structure size with gradient was designed to highlight the area of the heart. Initially, a histogram of gradient and histogram of size was computed and then classification was performed for providing the spatial information. Finally, several hybrid strategies were presented for the design of the transfer function, including opacity and color. By experimental evaluation, the proposed hybrid transfer function visualized the cardiac outline and internal structure more clearly and easily.

  15. Engineering visual arrestin-1 with special functional characteristics.

    PubMed

    Vishnivetskiy, Sergey A; Chen, Qiuyan; Palazzo, Maria C; Brooks, Evan K; Altenbach, Christian; Iverson, Tina M; Hubbell, Wayne L; Gurevich, Vsevolod V

    2013-02-01

    Arrestin-1 preferentially binds active phosphorylated rhodopsin. Previously, a mutant with enhanced binding to unphosphorylated active rhodopsin (Rh*) was shown to partially compensate for lack of rhodopsin phosphorylation in vivo. Here we showed that reengineering of the receptor binding surface of arrestin-1 further improves the binding to Rh* while preserving protein stability. In mammals, arrestin-1 readily self-associates at physiological concentrations. The biological role of this phenomenon can only be elucidated by replacing wild type arrestin-1 in living animals with a non-oligomerizing mutant retaining all other functions. We demonstrate that constitutively monomeric forms of arrestin-1 are sufficiently stable for in vivo expression. We also tested the idea that individual functions of arrestin-1 can be independently manipulated to generate mutants with the desired combinations of functional characteristics. Here we showed that this approach is feasible; stable forms of arrestin-1 with high Rh* binding can be generated with or without the ability to self-associate. These novel molecular tools open the possibility of testing of the biological role of arrestin-1 self-association and pave the way to elucidation of full potential of compensational approach to gene therapy of gain-of-function receptor mutations. PMID:23250748

  16. Visualizing the Chain Rule (for Functions over R and C) and More

    ERIC Educational Resources Information Center

    Kreminski, Rick

    2009-01-01

    A visual approach to understanding the chain rule and related derivative formulae, for functions from R to R and from C to C, is presented. This apparently novel approach has been successfully used with several audiences: students first studying calculus, students with some background in linear algebra, students beginning study of functions of a…

  17. Visualizing Polynomial Functions: New Insights from an Old Method in a New Medium.

    ERIC Educational Resources Information Center

    Dugdale, Sharon; And Others

    1992-01-01

    Describes and illustrates the Monomial Sums Approach, a graphical learning strategy, facilitated by microcomputer capabilities that allow easy manipulation and exploration of graphical representations of polynomial functions. Reduces emphasis on memorized rules in favor of qualitative understanding of functional behavior, visualization of…

  18. The Structure-Function Relationship between Macular Morphology and Visual Function Analyzed by Optical Coherence Tomography in Retinitis Pigmentosa

    PubMed Central

    Yoon, Chang Ki; Yu, Hyeong Gon

    2013-01-01

    Purpose. To evaluate the relationship between macular microstructures and visual function in retinitis pigmentosa (RP). Method. Fourier domain optical coherence tomography (FD-OCT) and Goldmann perimetry were used to examine 100 eyes of 100 RP patients. The preserved photoreceptor outer segment (PROS) length was measured at the horizontal and vertical high definition line scans. The PROS area was calculated from slab image and line scans simultaneously. The visual field area (VFA) was quantified. Each retinal thickness was measured: inner retina (IRT), outer retina (ORT), subfoveal choroidal thickness (SFCT), and central retinal thickness (CRT). Results. The PROS area values acquired differently were consistent. The VFA was related significantly to the CRT, ORT, PROS length (vertical and horizontal), and PROS area (line scan and slab image). Visual acuity was correlated with the CRT, ORT, IRT, PROS length (horizontal and vertical), and PROS area (line scan and slab image) significantly. Multiple linear regression analysis revealed that the PROS horizontal length and ORT were related to the VFA and visual acuity, respectively. Conclusion. Among the macular microstructures, the PROS horizontal length and the ORT were most correlated with VFA and visual acuity, respectively. However, SFCT is not related to visual function. PMID:24368939

  19. FuncTree: Functional Analysis and Visualization for Large-Scale Omics Data.

    PubMed

    Uchiyama, Takeru; Irie, Mitsuru; Mori, Hiroshi; Kurokawa, Ken; Yamada, Takuji

    2015-01-01

    Exponential growth of high-throughput data and the increasing complexity of omics information have been making processing and interpreting biological data an extremely difficult and daunting task. Here we developed FuncTree (http://bioviz.tokyo/functree), a web-based application for analyzing and visualizing large-scale omics data, including but not limited to genomic, metagenomic, and transcriptomic data. FuncTree allows user to map their omics data onto the "Functional Tree map", a predefined circular dendrogram, which represents the hierarchical relationship of all known biological functions defined in the KEGG database. This novel visualization method allows user to overview the broad functionality of their data, thus allowing a more accurate and comprehensive understanding of the omics information. FuncTree provides extensive customization and calculation methods to not only allow user to directly map their omics data to identify the functionality of their data, but also to compute statistically enriched functions by comparing it to other predefined omics data. We have validated FuncTree's analysis and visualization capability by mapping pan-genomic data of three different types of bacterial genera, metagenomic data of the human gut, and transcriptomic data of two different types of human cell expression. All three mapping strongly confirms FuncTree's capability to analyze and visually represent key functional feature of the omics data. We believe that FuncTree's capability to conduct various functional calculations and visualizing the result into a holistic overview of biological function, would make it an integral analysis/visualization tool for extensive omics base research. PMID:25974630

  20. FuncTree: Functional Analysis and Visualization for Large-Scale Omics Data

    PubMed Central

    Uchiyama, Takeru; Irie, Mitsuru; Mori, Hiroshi; Kurokawa, Ken; Yamada, Takuji

    2015-01-01

    Exponential growth of high-throughput data and the increasing complexity of omics information have been making processing and interpreting biological data an extremely difficult and daunting task. Here we developed FuncTree (http://bioviz.tokyo/functree), a web-based application for analyzing and visualizing large-scale omics data, including but not limited to genomic, metagenomic, and transcriptomic data. FuncTree allows user to map their omics data onto the “Functional Tree map”, a predefined circular dendrogram, which represents the hierarchical relationship of all known biological functions defined in the KEGG database. This novel visualization method allows user to overview the broad functionality of their data, thus allowing a more accurate and comprehensive understanding of the omics information. FuncTree provides extensive customization and calculation methods to not only allow user to directly map their omics data to identify the functionality of their data, but also to compute statistically enriched functions by comparing it to other predefined omics data. We have validated FuncTree’s analysis and visualization capability by mapping pan-genomic data of three different types of bacterial genera, metagenomic data of the human gut, and transcriptomic data of two different types of human cell expression. All three mapping strongly confirms FuncTree’s capability to analyze and visually represent key functional feature of the omics data. We believe that FuncTree’s capability to conduct various functional calculations and visualizing the result into a holistic overview of biological function, would make it an integral analysis/visualization tool for extensive omics base research. PMID:25974630

  1. Assessing Dynamic Spectral Causality by Lagged Adaptive Directed Transfer Function and Instantaneous Effect Factor

    PubMed Central

    Xu, Haojie; Lu, Yunfeng; Zhu, Shanan

    2014-01-01

    It is of significance to assess the dynamic spectral causality among physiological signals. Several practical estimators adapted from spectral Granger causality have been exploited to track dynamic causality based on the framework of time-varying multivariate autoregressive (tvMVAR) models. The non-zero covariance of the model’s residuals has been used to describe the instantaneous effect phenomenon in some causality estimators. However, for the situations with Gaussian residuals in some autoregressive models, it is challenging to distinguish the directed instantaneous causality if the sufficient prior information about the “causal ordering” is missing. Here, we propose a new algorithm to assess the time-varying causal ordering of tvMVAR model under the assumption that the signals follow the same acyclic causal ordering for all time lags and to estimate the instantaneous effect factor (IEF) value in order to track the dynamic directed instantaneous connectivity. The time-lagged adaptive directed transfer function (ADTF) is also estimated to assess the lagged causality after removing the instantaneous effect. In the present study, we firstly investigated the performance of the causal-ordering estimation algorithm and the accuracy of IEF value. Then, we presented the results of IEF and time-lagged ADTF method by comparing with the conventional ADTF method through simulations of various propagation models. Statistical analysis results suggest that the new algorithm could accurately estimate the causal ordering and give a good estimation of the IEF values in the Gaussian residual conditions. Meanwhile, the time-lagged ADTF approach is also more accurate in estimating the time-lagged dynamic interactions in a complex nervous system after extracting the instantaneous effect. In addition to the simulation studies, we applied the proposed method to estimate the dynamic spectral causality on real visual evoked potential (VEP) data in a human subject. Its usefulness in

  2. Identification of Zebrafish Insertional Mutants With Defects in Visual System Development and Function

    PubMed Central

    Gross, Jeffrey M.; Perkins, Brian D.; Amsterdam, Adam; Egaña, Ana; Darland, Tristan; Matsui, Jonathan I.; Sciascia, Salvatore; Hopkins, Nancy; Dowling, John E.

    2005-01-01

    Genetic analysis in zebrafish has been instrumental in identifying genes necessary for visual system development and function. Recently, a large-scale retroviral insertional mutagenesis screen, in which 315 different genes were mutated, that resulted in obvious phenotypic defects by 5 days postfertilization was completed. That the disrupted gene has been identified in each of these mutants provides unique resource through which the formation, function, or physiology of individual organ systems can be studied. To that end, a screen for visual system mutants was performed on 250 of the mutants in this collection, examining each of them histologically for morphological defects in the eye and behaviorally for overall visual system function. Forty loci whose disruption resulted in defects in eye development and/or visual function were identified. The mutants have been divided into the following phenotypic classes that show defects in: (1) morphogenesis, (2) growth and central retinal development, (3) the peripheral marginal zone, (4) retinal lamination, (5) the photoreceptor cell layer, (6) the retinal pigment epithelium, (7) the lens, (8) retinal containment, and (9) behavior. The affected genes in these mutants highlight a diverse set of proteins necessary for the development, maintenance, and function of the vertebrate visual system. PMID:15716491

  3. Cerebral basis of visual hallucinations in Parkinson's disease: structural and functional MRI studies.

    PubMed

    Ibarretxe-Bilbao, Naroa; Junque, Carme; Marti, Maria J; Tolosa, Eduardo

    2011-11-15

    The presence of visual hallucinations (VH) is a significant predictor of dementia in Parkinson's disease (PD) and it is associated with a more rapid cognitive decline. Non-demented PD patients with VH present greater neuropsychological impairment than those without VH in domains such as verbal and visual memory, language comprehension, and visuospatial and visuoperceptive functions. Frontal dysfunction has also been described in PD with VH, including deficits in verbal fluency, sustained attention, and inhibition. In PD with VH, structural and functional abnormalities within the primary visual system and visual association areas, including ventral and dorsal pathways, have been reported. Structural MRI studies have shown that non-demented PD patients with VH present grey matter reduction in parieto-occipital areas and the hippocampal head. A follow-up study performed at a mean of 30 months revealed that unlike PD patients without VH, PD patients with VH frequently develop dementia associated with progressive atrophy in limbic, paralimbic and neocortical areas. Functional MRI (fMRI) studies have revealed altered activation in occipito-temporal and frontal areas in response to simple and complex visual stimuli in PD patients with VH, suggesting a marked impairment in bottom-up visual processing, as well as an attentional deficit in the pathophysiology of VH in PD.

  4. Low-Cost Laboratory Adaptations for Precollege Students Who Are Blind or Visually Impaired

    NASA Astrophysics Data System (ADS)

    Supalo, Cary A.; Mallouk, Thomas E.; Rankel, Lillian; Amorosi, Christeallia; Graybill, Cameala M.

    2008-02-01

    The creative application of low-cost, readily available materials and techniques promotes inclusion and provides accessibility in the classroom and laboratory for students who are blind or have low vision. Difficulties encountered by these students include operation of laboratory equipment, execution of ordinary laboratory procedures, and use of molecular structure models, all of which typically involve visual observations. The low-cost tools described in this article can help teachers provide more independent and rewarding laboratory and classroom experiences for these students.

  5. Exploiting the User: Adapting Personas for Use in Security Visualization Design

    SciTech Connect

    Stoll, Jennifer C.; McColgin, David W.; Gregory, Michelle L.; Crow, Vernon L.; Edwards, Keith

    2007-10-29

    It has long been noted that visual representations of complex information can facilitate rapid understanding of data {citation], even with respect to ComSec applications {citation]. Recognizing that visualizations can increase usability in ComSec applications, [Zurko, Sasse] have argued that there is a need to create more usable security visualizations. (VisSec) However, usability of applications generally fall into the domain of Human Computer Interaction (HCI), which generally relies on heavy-weight user-centered design (UCD) processes. For example, the UCD process can involve many prototype iterations, or an ethnographic field study that can take months to complete. The problem is that VisSec projects generally do not have the resources to perform ethnographic field studies, or to employ complex UCD methods. They often are running on tight deadlines and budgets that can not afford standard UCD methods. In order to help resolve the conflict of needing more usable designs in ComSec, but not having the resources to employ complex UCD methods, in this paper we offer a stripped-down lighter weight version of a UCD process which can help with capturing user requirements. The approach we use is personas which a user requirements capturing method arising out of the Participatory Design philosophy [Grudin02].

  6. Adaptive enhancement and visualization techniques for 3D THz images of breast cancer tumors

    NASA Astrophysics Data System (ADS)

    Wu, Yuhao; Bowman, Tyler; Gauch, John; El-Shenawee, Magda

    2016-03-01

    This paper evaluates image enhancement and visualization techniques for pulsed terahertz (THz) images of tissue samples. Specifically, our research objective is to effectively differentiate between heterogeneous regions of breast tissues that contain tumors diagnosed as triple negative infiltrating ductal carcinoma (IDC). Tissue slices and blocks of varying thicknesses were prepared and scanned using our lab's THz pulsed imaging system. One of the challenges we have encountered in visualizing the obtained images and differentiating between healthy and cancerous regions of the tissues is that most THz images have a low level of details and narrow contrast, making it difficult to accurately identify and visualize the margins around the IDC. To overcome this problem, we have applied and evaluated a number of image processing techniques to the scanned 3D THz images. In particular, we employed various spatial filtering and intensity transformation techniques to emphasize the small details in the images and adjust the image contrast. For each of these methods, we investigated how varying filter sizes and parameters affect the amount of enhancement applied to the images. Our experimentation shows that several image processing techniques are effective in producing THz images of breast tissue samples that contain distinguishable details, making further segmentation of the different image regions promising.

  7. Measurements of achromatic and chromatic contrast sensitivity functions for an extended range of adaptation luminance

    NASA Astrophysics Data System (ADS)

    Kim, Kil Joong; Mantiuk, Rafal; Lee, Kyoung Ho

    2013-03-01

    Inspired by the ModelFest and ColorFest data sets, a contrast sensitivity function was measured for a wide range of adapting luminance levels. The measurements were motivated by the need to collect visual performance data for natural viewing of static images at a broad range of luminance levels, such as can be found in the case of high dynamic range displays. The detection of sine-gratings with Gaussian envelope was measured for achromatic color axis (black to white), two chromatic axes (green to red and yellow-green to violet) and two mixed chromatic and achromatic axes (dark-green to light-pink, and dark yellow to light-blue). The background luminance varied from 0.02 to 200 cd/m2. The spatial frequency of the gratings varied from 0.125 to 16 cycles per degree. More than four observers participated in the experiments and they individually determined the detection threshold for each stimulus using at least 20 trials of the QUEST method. As compared to the popular CSF models, we observed higher sensitivity drop for higher frequencies and significant differences in sensitivities in the luminance range between 0.02 and 2 cd/m2. Our measurements for chromatic CSF show a significant drop in sensitivity with luminance, but little change in the shape of the CSF. The drop of sensitivity at high frequencies is significantly weaker than reported in other studies and assumed in most chromatic CSF models.

  8. Mechanisms and evolution of synchronous chorusing: emergent properties and adaptive functions in Neoconocephalus katydids (Orthoptera: Tettigoniidae).

    PubMed

    Greenfield, Michael D; Schul, Johannes

    2008-08-01

    Synchronous interactions arise in various animal species that rhythmically broadcast acoustic, vibratory, and visual signals. These interactions are characterized by a coincidence in both rate and phase of the rhythms of neighboring signalers. Theory predicts several ways in which synchronized rhythms may specifically benefit the interacting signalers. However, synchrony may also arise as an emergent property, a default phenomenon that is neither preferred by conspecific receivers evaluating the signals nor advantageous to the signalers themselves. Here, we examine several well-studied cases of acoustic synchrony in Neoconocephalus katydids (Orthoptera: Tettigoniidae), a New World genus wherein males broadcast loud advertisement songs. We report that call synchrony found in N. spiza and N. nebrascensis results from two rather different mechanisms of rhythm adjustment. Moreover, synchrony in the former species appears to represent an incidental byproduct of signal competition between evenly matched males, whereas in the latter species synchrony functions as a specific adaptation in which cooperating males ensure that critical call features can be perceived by females. We discuss the separate evolutionary trajectories that may have led to similar outcomes, synchronous chorusing by advertising males, in these closely related species. PMID:18729657

  9. Image adaptive point-spread function estimation and deconvolution for in vivo confocal microscopy.

    PubMed

    Von Tiedemann, M; Fridberger, A; Ulfendahl, M; Tomo, I; Boutet de Monvel, J; De Monvel, J Boutet

    2006-01-01

    Visualizing deep inside the tissue of a thick biological sample often poses severe constraints on image conditions. Standard restoration techniques (denoising and deconvolution) can then be very useful, allowing one to increase the signal-to-noise ratio and the resolution of the images. In this paper, we consider the problem of obtaining a good determination of the point-spread function (PSF) of a confocal microscope, a prerequisite for applying deconvolution to three-dimensional image stacks acquired with this system. Because of scattering and optical distortion induced by the sample, the PSF has to be acquired anew for each experiment. To tackle this problem, we used a screening approach to estimate the PSF adaptively and automatically from the images. Small PSF-like structures were detected in the images, and a theoretical PSF model reshaped to match the geometric characteristics of these structures. We used numerical experiments to quantify the sensitivity of our detection method, and we demonstrated its usefulness by deconvolving images of the hearing organ acquired in vitro and in vivo.

  10. Adaptive learning in a compartmental model of visual cortex—how feedback enables stable category learning and refinement

    PubMed Central

    Layher, Georg; Schrodt, Fabian; Butz, Martin V.; Neumann, Heiko

    2014-01-01

    The categorization of real world objects is often reflected in the similarity of their visual appearances. Such categories of objects do not necessarily form disjunct sets of objects, neither semantically nor visually. The relationship between categories can often be described in terms of a hierarchical structure. For instance, tigers and leopards build two separate mammalian categories, both of which are subcategories of the category Felidae. In the last decades, the unsupervised learning of categories of visual input stimuli has been addressed by numerous approaches in machine learning as well as in computational neuroscience. However, the question of what kind of mechanisms might be involved in the process of subcategory learning, or category refinement, remains a topic of active investigation. We propose a recurrent computational network architecture for the unsupervised learning of categorial and subcategorial visual input representations. During learning, the connection strengths of bottom-up weights from input to higher-level category representations are adapted according to the input activity distribution. In a similar manner, top-down weights learn to encode the characteristics of a specific stimulus category. Feedforward and feedback learning in combination realize an associative memory mechanism, enabling the selective top-down propagation of a category's feedback weight distribution. We suggest that the difference between the expected input encoded in the projective field of a category node and the current input pattern controls the amplification of feedforward-driven representations. Large enough differences trigger the recruitment of new representational resources and the establishment of additional (sub-) category representations. We demonstrate the temporal evolution of such learning and show how the proposed combination of an associative memory with a modulatory feedback integration successfully establishes category and subcategory representations

  11. Age and Adaptive Functioning in Children and Adolescents with ASD: The Effects of Intellectual Functioning and ASD Symptom Severity

    ERIC Educational Resources Information Center

    Hill, Trenesha L.; Gray, Sarah A. O.; Kamps, Jodi L.; Enrique Varela, R.

    2015-01-01

    The present study examined the moderating effects of intellectual functioning and ASD symptom severity on the relation between age and adaptive functioning in 220 youth with autism spectrum disorder (ASD). Regression analysis indicated that intellectual functioning and ASD symptom severity moderated the relation between age and adaptive…

  12. Visualizing Functional Motions of Membrane Transporters with Molecular Dynamics Simulations

    PubMed Central

    2013-01-01

    Computational modeling and molecular simulation techniques have become an integral part of modern molecular research. Various areas of molecular sciences continue to benefit from, indeed rely on, the unparalleled spatial and temporal resolutions offered by these technologies, to provide a more complete picture of the molecular problems at hand. Because of the continuous development of more efficient algorithms harvesting ever-expanding computational resources, and the emergence of more advanced and novel theories and methodologies, the scope of computational studies has expanded significantly over the past decade, now including much larger molecular systems and far more complex molecular phenomena. Among the various computer modeling techniques, the application of molecular dynamics (MD) simulation and related techniques has particularly drawn attention in biomolecular research, because of the ability of the method to describe the dynamical nature of the molecular systems and thereby to provide a more realistic representation, which is often needed for understanding fundamental molecular properties. The method has proven to be remarkably successful in capturing molecular events and structural transitions highly relevant to the function and/or physicochemical properties of biomolecular systems. Herein, after a brief introduction to the method of MD, we use a number of membrane transport proteins studied in our laboratory as examples to showcase the scope and applicability of the method and its power in characterizing molecular motions of various magnitudes and time scales that are involved in the function of this important class of membrane proteins. PMID:23298176

  13. Chemical Visualization of Boolean Functions: A Simple Chemical Computer

    NASA Astrophysics Data System (ADS)

    Blittersdorf, R.; Müller, J.; Schneider, F. W.

    1995-08-01

    We present a chemical realization of the Boolean functions AND, OR, NAND, and NOR with a neutralization reaction carried out in three coupled continuous flow stirred tank reactors (CSTR). Two of these CSTR's are used as input reactors, the third reactor marks the output. The chemical reaction is the neutralization of hydrochloric acid (HCl) with sodium hydroxide (NaOH) in the presence of phenolphtalein as an indicator, which is red in alkaline solutions and colorless in acidic solutions representing the two binary states 1 and 0, respectively. The time required for a "chemical computation" is determined by the flow rate of reactant solutions into the reactors since the neutralization reaction itself is very fast. While the acid flow to all reactors is equal and constant, the flow rate of NaOH solution controls the states of the input reactors. The connectivities between the input and output reactors determine the flow rate of NaOH solution into the output reactor, according to the chosen Boolean function. Thus the state of the output reactor depends on the states of the input reactors.

  14. The Association between Resting Functional Connectivity and Visual Creativity.

    PubMed

    Li, Wenfu; Yang, Junyi; Zhang, Qinglin; Li, Gongying; Qiu, Jiang

    2016-01-01

    Resting-state functional connectivity (RSFC), the temporal correlation of intrinsic activation between different brain regions, has become one of the most fascinating field in the functional imaging studies. To better understand the association between RSFC and individual creativity, we used RSFC and the figure Torrance Tests of Creative Thinking (TTCT-F) to investigate the relationship between creativity measured by TTCT and RSFC within two different brain networks, default mode network and the cognitive control network, in a large healthy sample (304). We took the medial prefrontal cortex (MPFC) and the bilateral dorsolateral prefrontal cortices (DLPFC) to be the seed regions and investigated the association across subjects between the score of TTCT-F and the strength of RSFC between these seed regions and other voxels in the whole brain. Results revealed that the strength of RSFC with the MPFC was significantly and negatively correlated with the score of TTCT-F in the precuneus. Meanwhile, we also found that the strength of RSFC with the left DLPFC was significantly and positively correlated with the score of TTCT-F in the right DLPFC. It suggests that the decreased RSFC within DMN and the increased RSFC within CCN presents a potential interaction mechanism between different region for higher creativity. PMID:27138732

  15. The Association between Resting Functional Connectivity and Visual Creativity

    PubMed Central

    Li, Wenfu; Yang, Junyi; Zhang, Qinglin; Li, Gongying; Qiu, Jiang

    2016-01-01

    Resting-state functional connectivity (RSFC), the temporal correlation of intrinsic activation between different brain regions, has become one of the most fascinating field in the functional imaging studies. To better understand the association between RSFC and individual creativity, we used RSFC and the figure Torrance Tests of Creative Thinking (TTCT-F) to investigate the relationship between creativity measured by TTCT and RSFC within two different brain networks, default mode network and the cognitive control network, in a large healthy sample (304). We took the medial prefrontal cortex (MPFC) and the bilateral dorsolateral prefrontal cortices (DLPFC) to be the seed regions and investigated the association across subjects between the score of TTCT-F and the strength of RSFC between these seed regions and other voxels in the whole brain. Results revealed that the strength of RSFC with the MPFC was significantly and negatively correlated with the score of TTCT-F in the precuneus. Meanwhile, we also found that the strength of RSFC with the left DLPFC was significantly and positively correlated with the score of TTCT-F in the right DLPFC. It suggests that the decreased RSFC within DMN and the increased RSFC within CCN presents a potential interaction mechanism between different region for higher creativity. PMID:27138732

  16. Prevalence of increases in functional connectivity in visual, somatosensory and language areas in congenital blindness

    PubMed Central

    Heine, Lizette; Bahri, Mohamed A.; Cavaliere, Carlo; Soddu, Andrea; Laureys, Steven; Ptito, Maurice; Kupers, Ron

    2015-01-01

    There is ample evidence that congenitally blind individuals rely more strongly on non-visual information compared to sighted controls when interacting with the outside world. Although brain imaging studies indicate that congenitally blind individuals recruit occipital areas when performing various non-visual and cognitive tasks, it remains unclear through which pathways this is accomplished. To address this question, we compared resting state functional connectivity in a group of congenital blind and matched sighted control subjects. We used a seed-based analysis with a priori specified regions-of-interest (ROIs) within visual, somato-sensory, auditory and language areas. Between-group comparisons revealed increased functional connectivity within both the ventral and the dorsal visual streams in blind participants, whereas connectivity between the two streams was reduced. In addition, our data revealed stronger functional connectivity in blind participants between the visual ROIs and areas implicated in language and tactile (Braille) processing such as the inferior frontal gyrus (Broca's area), thalamus, supramarginal gyrus and cerebellum. The observed group differences underscore the extent of the cross-modal reorganization in the brain and the supra-modal function of the occipital cortex in congenitally blind individuals. PMID:26190978

  17. Prevalence of increases in functional connectivity in visual, somatosensory and language areas in congenital blindness.

    PubMed

    Heine, Lizette; Bahri, Mohamed A; Cavaliere, Carlo; Soddu, Andrea; Laureys, Steven; Ptito, Maurice; Kupers, Ron

    2015-01-01

    There is ample evidence that congenitally blind individuals rely more strongly on non-visual information compared to sighted controls when interacting with the outside world. Although brain imaging studies indicate that congenitally blind individuals recruit occipital areas when performing various non-visual and cognitive tasks, it remains unclear through which pathways this is accomplished. To address this question, we compared resting state functional connectivity in a group of congenital blind and matched sighted control subjects. We used a seed-based analysis with a priori specified regions-of-interest (ROIs) within visual, somato-sensory, auditory and language areas. Between-group comparisons revealed increased functional connectivity within both the ventral and the dorsal visual streams in blind participants, whereas connectivity between the two streams was reduced. In addition, our data revealed stronger functional connectivity in blind participants between the visual ROIs and areas implicated in language and tactile (Braille) processing such as the inferior frontal gyrus (Broca's area), thalamus, supramarginal gyrus and cerebellum. The observed group differences underscore the extent of the cross-modal reorganization in the brain and the supra-modal function of the occipital cortex in congenitally blind individuals. PMID:26190978

  18. Exploratory Analysis of Biological Networks through Visualization, Clustering, and Functional Annotation in Cytoscape.

    PubMed

    Baryshnikova, Anastasia

    2016-01-01

    Biological networks define how genes, proteins, and other cellular components interact with one another to carry out specific functions, providing a scaffold for understanding cellular organization. Although in-depth network analysis requires advanced mathematical and computational knowledge, a preliminary visual exploration of biological networks is accessible to anyone with basic computer skills. Visualization of biological networks is used primarily to examine network topology, identify functional modules, and predict gene functions based on gene connectivity within the network. Networks are excellent at providing a bird's-eye view of data sets and have the power of illustrating complex ideas in simple and intuitive terms. In addition, they enable exploratory analysis and generation of new hypotheses, which can then be tested using rigorous statistical and experimental tools. This protocol describes a simple procedure for visualizing a biological network using the genetic interaction similarity network for Saccharomyces cerevisiae as an example. The visualization procedure described here relies on the open-source network visualization software Cytoscape and includes detailed instructions on formatting and loading the data, clustering networks, and overlaying functional annotations. PMID:26988373

  19. Visual object agnosia and pure word alexia: correlation of functional magnetic resonance imaging and lesion localization.

    PubMed

    Salvan, Carmen V; Ulmer, John L; DeYoe, Edgar A; Wascher, Thomas; Mathews, Vincent P; Lewis, James W; Prost, Robert W

    2004-01-01

    We present a case of a 64-year-old, right-handed female with a metastatic breast cancer lesion involving the left posterior inferior temporal lobe causing complete loss of the ability to recognize visually common objects and words. After her symptoms resolved on corticosteroid therapy, functional magnetic resonance imaging (fMRI) mapping demonstrated strong left-hemispheric dominance for word recognition and right-hemispheric dominance for object recognition. The case illustrates the relationships among ventral occipito-temporal cortical activation, lesion localization, and lesion-induced deficits of higher visual function. The relationship between hemispheric dominance determined by fMRI and risk of postoperative deficit depends on the specific visual function of interest.

  20. Augmented visual feedback counteracts the effects of surface muscular functional electrical stimulation on physiological tremor

    PubMed Central

    2013-01-01

    Background Recent studies suggest that surface muscular functional electrical stimulation (FES) might suppress neurological upper limb tremor. We assessed its effects on upper limb physiological tremor, which is mainly driven by mechanical-reflex oscillations. We investigated the interaction between FES and augmented visual feedback, since (a) most daily activities are performed using visual cues, and (b) augmented visual feedback exacerbates upper limb tremor. Methods 10 healthy subjects (23.4 ± 7.7 years) performed 2 postural tasks with combinations of FES (4 sites; frequency of stimulation: 30 Hz; pulse width: 300 microsec; range of current delivered 10–34 mAmp) and augmented visual feedback. Results Spectral analysis of tremor showed a decrease of power spectral density to 62.18% (p = 0.01), of the integral in the 8-12 Hz frequency band to 57.67% (p = 0.003), and of tremor root mean square (RMS) to 57.16% (p = 0.002) during FES, without any changes in tremor frequency. Augmented visual feedback blocked the beneficial effect of FES, as confirmed by power spectral analysis (p = 0.01). We found a statistically significant interaction between augmented visual feedback and electrical stimulation (p = 0.039). Conclusions Augmented visual feedback antagonizes the effects of FES on physiological tremor. The absence of changes of peak frequency argues against an effect of FES on mechanical properties of the upper limb. PMID:24063436

  1. Mechanisms of migraine aura revealed by functional MRI in human visual cortex

    PubMed Central

    Hadjikhani, Nouchine; Sanchez del Rio, Margarita; Wu, Ona; Schwartz, Denis; Bakker, Dick; Fischl, Bruce; Kwong, Kenneth K.; Cutrer, F. Michael; Rosen, Bruce R.; Tootell, Roger B. H.; Sorensen, A. Gregory; Moskowitz, Michael A.

    2001-01-01

    Cortical spreading depression (CSD) has been suggested to underlie migraine visual aura. However, it has been challenging to test this hypothesis in human cerebral cortex. Using high-field functional MRI with near-continuous recording during visual aura in three subjects, we observed blood oxygenation level-dependent (BOLD) signal changes that demonstrated at least eight characteristics of CSD, time-locked to percept/onset of the aura. Initially, a focal increase in BOLD signal (possibly reflecting vasodilation), developed within extrastriate cortex (area V3A). This BOLD change progressed contiguously and slowly (3.5 ± 1.1 mm/min) over occipital cortex, congruent with the retinotopy of the visual percept. Following the same retinotopic progression, the BOLD signal then diminished (possibly reflecting vasoconstriction after the initial vasodilation), as did the BOLD response to visual activation. During periods with no visual stimulation, but while the subject was experiencing scintillations, BOLD signal followed the retinotopic progression of the visual percept. These data strongly suggest that an electrophysiological event such as CSD generates the aura in human visual cortex. PMID:11287655

  2. Integrating evolutionary and functional approaches to infer adaptation at specific loci.

    PubMed

    Storz, Jay F; Wheat, Christopher W

    2010-09-01

    Inferences about adaptation at specific loci are often exclusively based on the static analysis of DNA sequence variation. Ideally,population-genetic evidence for positive selection serves as a stepping-off point for experimental studies to elucidate the functional significance of the putatively adaptive variation. We argue that inferences about adaptation at specific loci are best achieved by integrating the indirect, retrospective insights provided by population-genetic analyses with the more direct, mechanistic insights provided by functional experiments. Integrative studies of adaptive genetic variation may sometimes be motivated by experimental insights into molecular function, which then provide the impetus to perform population genetic tests to evaluate whether the functional variation is of adaptive significance. In other cases, studies may be initiated by genome scans of DNA variation to identify candidate loci for recent adaptation. Results of such analyses can then motivate experimental efforts to test whether the identified candidate loci do in fact contribute to functional variation in some fitness-related phenotype. Functional studies can provide corroborative evidence for positive selection at particular loci, and can potentially reveal specific molecular mechanisms of adaptation.

  3. Crossmodal enhancement of visual orientation discrimination by looming sounds requires functional activation of primary visual areas: a case study.

    PubMed

    Cecere, Roberto; Romei, Vincenzo; Bertini, Caterina; Làdavas, Elisabetta

    2014-04-01

    Approaching or looming sounds are salient, potentially threatening stimuli with particular impact on visual processing. The early crossmodal effects by looming sounds (Romei, Murray, Cappe, & Thut, 2009) and their selective impact on visual orientation discrimination (Leo, Romei, Freeman, Ladavas, & Driver, 2011) suggest that these multisensory interactions may take place already within low-level visual cortices. To investigate this hypothesis, we tested a patient (SDV) with bilateral occipital lesion and spared residual portions of V1/V2. Accordingly, SDV׳s visual perimetry revealed blindness of the central visual field with some residual peripheral vision. In two experiments we tested for the influence of looming vs. receding and stationary sounds on SDV׳s line orientation discrimination (orientation discrimination experiment) and visual detection abilities (detection experiment) in the preserved or blind portions of the visual field, corresponding to spared and lesioned areas of V1, respectively. In the visual orientation discrimination experiment we found that SDV visual orientation sensitivity significantly improved for visual targets paired with looming sounds but only for lines presented in the partially preserved visual field. In the visual detection experiment, where SDV was required to simply detect the same stimuli presented in the orientation discrimination experiment, a generalised sound-induced visual improvement both in the intact and in blind portion of the visual field was observed. These results provide direct evidence that early visual areas are critically involved in crossmodal modulation of visual orientation sensitivity by looming sounds. Thus, a lesion in V1 prevents the enhancement of visual orientation sensitivity. In contrast, the same lesion does not prevent the visual detection enhancement by a sound, probably due to alternative visual pathways (e.g. retino-colliculo-extrastriate) which are usually spared in these patients and able to

  4. Stereoscopic three-dimensional visualization applied to multimodal brain images: clinical applications and a functional connectivity atlas

    PubMed Central

    Rojas, Gonzalo M.; Gálvez, Marcelo; Vega Potler, Natan; Craddock, R. Cameron; Margulies, Daniel S.; Castellanos, F. Xavier; Milham, Michael P.

    2014-01-01

    Effective visualization is central to the exploration and comprehension of brain imaging data. While MRI data are acquired in three-dimensional space, the methods for visualizing such data have rarely taken advantage of three-dimensional stereoscopic technologies. We present here results of stereoscopic visualization of clinical data, as well as an atlas of whole-brain functional connectivity. In comparison with traditional 3D rendering techniques, we demonstrate the utility of stereoscopic visualizations to provide an intuitive description of the exact location and the relative sizes of various brain landmarks, structures and lesions. In the case of resting state fMRI, stereoscopic 3D visualization facilitated comprehension of the anatomical position of complex large-scale functional connectivity patterns. Overall, stereoscopic visualization improves the intuitive visual comprehension of image contents, and brings increased dimensionality to visualization of traditional MRI data, as well as patterns of functional connectivity. PMID:25414626

  5. Stereoscopic three-dimensional visualization applied to multimodal brain images: clinical applications and a functional connectivity atlas.

    PubMed

    Rojas, Gonzalo M; Gálvez, Marcelo; Vega Potler, Natan; Craddock, R Cameron; Margulies, Daniel S; Castellanos, F Xavier; Milham, Michael P

    2014-01-01

    Effective visualization is central to the exploration and comprehension of brain imaging data. While MRI data are acquired in three-dimensional space, the methods for visualizing such data have rarely taken advantage of three-dimensional stereoscopic technologies. We present here results of stereoscopic visualization of clinical data, as well as an atlas of whole-brain functional connectivity. In comparison with traditional 3D rendering techniques, we demonstrate the utility of stereoscopic visualizations to provide an intuitive description of the exact location and the relative sizes of various brain landmarks, structures and lesions. In the case of resting state fMRI, stereoscopic 3D visualization facilitated comprehension of the anatomical position of complex large-scale functional connectivity patterns. Overall, stereoscopic visualization improves the intuitive visual comprehension of image contents, and brings increased dimensionality to visualization of traditional MRI data, as well as patterns of functional connectivity.

  6. Cross-Modal Functional Reorganization of Visual and Auditory Cortex in Adult Cochlear Implant Users Identified with fNIRS

    PubMed Central

    Thorne, Jeremy D.; Bleichner, Martin G.; Debener, Stefan

    2016-01-01

    Cochlear implant (CI) users show higher auditory-evoked activations in visual cortex and higher visual-evoked activation in auditory cortex compared to normal hearing (NH) controls, reflecting functional reorganization of both visual and auditory modalities. Visual-evoked activation in auditory cortex is a maladaptive functional reorganization whereas auditory-evoked activation in visual cortex is beneficial for speech recognition in CI users. We investigated their joint influence on CI users' speech recognition, by testing 20 postlingually deafened CI users and 20 NH controls with functional near-infrared spectroscopy (fNIRS). Optodes were placed over occipital and temporal areas to measure visual and auditory responses when presenting visual checkerboard and auditory word stimuli. Higher cross-modal activations were confirmed in both auditory and visual cortex for CI users compared to NH controls, demonstrating that functional reorganization of both auditory and visual cortex can be identified with fNIRS. Additionally, the combined reorganization of auditory and visual cortex was found to be associated with speech recognition performance. Speech performance was good as long as the beneficial auditory-evoked activation in visual cortex was higher than the visual-evoked activation in the auditory cortex. These results indicate the importance of considering cross-modal activations in both visual and auditory cortex for potential clinical outcome estimation. PMID:26819766

  7. Adaptive Functioning in Autism Spectrum Disorder during the Transition to Adulthood

    ERIC Educational Resources Information Center

    Matthews, Nicole L.; Smith, Christopher J.; Pollard, Elena; Ober-Reynolds, Sharman; Kirwan, Janet; Malligo, Amanda

    2015-01-01

    There is a dearth of research regarding adaptive functioning during the transition to adulthood in autism spectrum disorder (ASD). Profiles on the Vineland Adaptive Behavior Scales, Second Edition were examined by age and intellectual ability in 75 participants with ASD (16-58 years). Results extend previous reports of a cognitive advantage over…

  8. Brief Report: Adaptive Functioning in Children with ASD, ADHD and ASD + ADHD

    ERIC Educational Resources Information Center

    Ashwood, Karen L.; Tye, Charlotte; Azadi, Bahare; Cartwright, Sally; Asherson, Philip; Bolton, Patrick

    2015-01-01

    Autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD) often co-occur. Children with ASD and ADHD demonstrate deficits in adaptive functioning, yet pure and comorbid groups have not been directly compared. Vineland Adaptive Behaviour Scales (VABS-II) data were examined in boys with ASD (n = 17), ADHD (n = 31) and…

  9. The Role of Emotion Perception in Adaptive Functioning of People with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Hudepohl, Margaret B.; Robins, Diana L.; King, Tricia Z.; Henrich, Christopher C.

    2015-01-01

    Cognitive functioning has historically been used to predict adaptive outcomes of people with autism spectrum disorders; however, research shows that it is not a complete predictor. The current study explored whether emotion perception was a predictor of adaptive outcomes, and more specifically, hypothesized that emotion perception (Diagnostic…

  10. Adaptive gene loss reflects differences in the visual ecology of basal vertebrates.

    PubMed

    Davies, Wayne L; Collin, Shaun P; Hunt, David M

    2009-08-01

    The agnathans (lampreys and hagfishes) are representatives of the jawless fishes and constitute the first lineage of extant vertebrates to evolve within chordate phylogenetic history. Previously, we showed that the southern hemisphere pouched lamprey Geotria australis has the potential for pentachromacy with the expression of five visual pigment (opsin) genes (LWS, SWS1, SWS2, RhA, and RhB) in five different cone-like photoreceptors for life in a brightly lit environment exposed to a broad spectrum of light. In contrast, the northern hemisphere sea lamprey Petromyzon marinus dwells in a wide range of depths that are relatively deeper than the epipelagic waters inhabited by G. australis. Thus, the light levels of the habitat in which the sea lamprey resides are greatly diminished and different regions of the light spectrum are differentially absorbed. Therefore, the visual systems of these two species of lamprey constitute a natural experiment in which to study the selection pressures underlying opsin gene expression and the evolution of color discrimination. By analyzing the opsin genes of P. marinus, we show the expression of two intact retinal opsins, RhA and LWS, which, when regenerated with 11-cis retinal, give peak spectral sensitivities (lambda(max) values) of 501 and 536 nm, respectively. In contrast to G. australis, the genome of P. marinus possesses remnants of SWS1 and SWS2 pseudogenes, which with the loss of RhB, suggests that P. marinus is a dichromat. Using site-directed mutagenesis, we show that a single amino acid substitution (Ser to Pro) at site 164 is responsible for a blue shift of 19 nm of the LWS visual pigment of P. marinus compared with G. australis, which may reflect habitat differences between the two species. Based on these studies, we propose that gene loss (or duplication) and subsequent mutation plays an important role in the evolution of color vision and that the complement and tuning of these visual pigments reflect the ecology and

  11. Graded changes in balancing behavior as a function of visual acuity.

    PubMed

    Schmid, M; Casabianca, L; Bottaro, A; Schieppati, M

    2008-06-01

    In a dynamic postural task, visual information plays a fundamental role in the selection of the balancing strategy. While standing on a platform oscillating in the antero-posterior direction, subjects almost fix their head in space when vision is allowed and oscillate with the platform with eyes closed. We investigated two competing hypotheses regarding the relationship between visual acuity and balance control strategy. One hypothesis refers to the existence of a threshold value of visual acuity as a turning point between the eyes-open and eyes-closed strategy. The other assumes that the change from eyes-open to eyes-closed behavior is continuous and parallels the progressive worsening of visual acuity. Ten subjects balanced on the mobile platform wearing an examination frame and a facemask occluding peripheral vision. Seven different test lenses were used in different trials to modify visual acuity, from a visus value of 10/10 to severely blurred vision. Head stabilization in space progressively worsened with the decrease in visual acuity and turned toward the eyes-closed behavior when vision was blurred. The increase in head oscillation as a function of visual acuity was best fitted by a logarithmic function. In five of the subjects, additional trials were performed without facemask, to add peripheral vision to each visual acuity level, and with black lenses to allow peripheral vision alone. Addition of peripheral vision gave a significant contribution to head stabilization. With peripheral vision alone, head stabilization was intermediate between the eyes-closed and 10/10 visus value condition. We conclude that, in order to stabilize the head in space, visual information of the environment must be definite and worsening of central vision leads to a graded modification of the 'head fixed in space' behavior. Thus, the more conservative hypothesis of two different fundamental balancing strategies is not supported. Instead, the body exhibits a continuous mode of

  12. Early-stage visual processing abnormalities in high-functioning autism spectrum disorder (ASD).

    PubMed

    Baruth, Joshua M; Casanova, Manuel F; Sears, Lonnie; Sokhadze, Estate

    2010-06-01

    It has been reported that individuals with autism spectrum disorder (ASD) have abnormal responses to the sensory environment. For these individuals sensory overload can impair functioning, raise physiological stress, and adversely affect social interaction. Early-stage (i.e. within 200ms of stimulus onset) auditory processing abnormalities have been widely examined in ASD using event-related potentials (ERP), while ERP studies investigating early-stage visual processing in ASD are less frequent. We wanted to test the hypothesis of early-stage visual processing abnormalities in ASD by investigating ERPs elicited in a visual oddball task using illusory figures. Our results indicate that individuals with ASD have abnormally large cortical responses to task irrelevant stimuli over both parieto-occipital and frontal regions-of-interest (ROI) during early stages of visual processing compared to the control group. Furthermore, ASD patients showed signs of an overall disruption in stimulus discrimination, and had a significantly higher rate of motor response errors.

  13. The Ways of the Hand: A Study of Hand Function among Blind, Visually Impaired and Visually Impaired Multi-Handicapped Children and Adolescents.

    ERIC Educational Resources Information Center

    Rogow, Sally M.

    1987-01-01

    The manual development of 148 blind, visually impaired, and visually impaired multi-handicapped students, aged 3-19, was studied. Results indicated a significant relationship between object manipulation and speech, and an inverse relationship between object manipulation and stereotypic hand mannerisms. Optimal development of manual functions and…

  14. Work function shifts of catalytic metals under hydrogen gas visualized by terahertz chemical microscopy.

    PubMed

    Kiwa, Toshihiko; Hagiwara, Takafumi; Shinomiya, Mitsuhiro; Sakai, Kenji; Tsukada, Keiji

    2012-05-21

    Terahertz chemical microscopy (TCM) was applied to visualize the distribution of the work function shift of catalytic metals under hydrogen gas. TCM measures the chemical potential on the surface of a SiO(2)/Si/sapphire sensing plate without any contact with the plate. By controlling the bias voltage between an electrode on the SiO(2)/ surface and the Si layer, the relationship between the voltage and the THz amplitude from the sensing plate can be obtained. As a demonstration, two types of structures were fabricated on the sensing plate, and the work function shifts due to catalytic reactions were visualized.

  15. Adaptively Learning an Importance Function Using Transport Constrained Monte Carlo

    SciTech Connect

    Booth, T.E.

    1998-06-22

    It is well known that a Monte Carlo estimate can be obtained with zero-variance if an exact importance function for the estimate is known. There are many ways that one might iteratively seek to obtain an ever more exact importance function. This paper describes a method that has obtained ever more exact importance functions that empirically produce an error that is dropping exponentially with computer time. The method described herein constrains the importance function to satisfy the (adjoint) Boltzmann transport equation. This constraint is provided by using the known form of the solution, usually referred to as the Case eigenfunction solution.

  16. Lamination Speeds the Functional Development of Visual Circuits

    PubMed Central

    Nikolaou, Nikolas; Meyer, Martin P.

    2015-01-01

    Summary A common feature of the brain is the arrangement of synapses in layers. To examine the significance of this organizational feature, we studied the functional development of direction-selective (DS) circuits in the tectum of astray mutant zebrafish in which lamination of retinal ganglion cell (RGC) axons is lost. We show that although never laminar, the tuning of DS-RGC axons targeting the mutant tectum is normal. Analysis of mutant tectal neurons at late developmental stages reveals that directional tuning is indistinguishable from wild-type larvae. Furthermore, we show that structural plasticity of tectal dendrites and RGC axons compensates for the loss of lamination, establishing connectivity between DS-RGCs and their normal tectal targets. However, tectal direction selectivity is severely perturbed at earlier developmental stages. Thus, the formation of synaptic laminae is ultimately dispensable for the correct wiring of direction-selective tectal circuits, but it is crucial for the rapid assembly of these networks. Video Abstract PMID:26607001

  17. Visualization of lymphatic vessel development, growth, and function.

    PubMed

    Pollmann, Cathrin; Hägerling, René; Kiefer, Friedemann

    2014-01-01

    Despite their important physiological and pathophysiological functions, lymphatic endothelial cells and lymphatic vessels remain less well studied compared to the blood vascular system. Lymphatic endothelium differentiates from venous blood vascular endothelium after initial arteriovenous differentiation. Only recently by the use of light sheet microscopy, the precise mechanism of separation of the first lymphatic endothelial progenitors from the cardinal vein has been described as delamination followed by mesenchymal cell migration of lymphatic endothelial cells. Dorsolaterally of the embryonic cardinal vein, lymphatic endothelial cells reaggregate to form the first lumenized lymphatic vessels, the dorsal peripheral longitudinal vessel and the more ventrally positioned primordial thoracic duct. Despite this progress in our understanding of the first lymph vessel formation, intravital observation of lymphatic vessel behavior in the intact organism, during development and in the adult, is prerequisite to a precise understanding of this tissue. Transgenic models and two-photon microscopy, in combination with optical windows, have made live intravital imaging possible: however, new imaging modalities and novel approaches promise gentler, more physiological, and longer intravital imaging of lymphatic vessels.

  18. LSD alters eyes-closed functional connectivity within the early visual cortex in a retinotopic fashion.

    PubMed

    Roseman, Leor; Sereno, Martin I; Leech, Robert; Kaelen, Mendel; Orban, Csaba; McGonigle, John; Feilding, Amanda; Nutt, David J; Carhart-Harris, Robin L

    2016-08-01

    The question of how spatially organized activity in the visual cortex behaves during eyes-closed, lysergic acid diethylamide (LSD)-induced "psychedelic imagery" (e.g., visions of geometric patterns and more complex phenomena) has never been empirically addressed, although it has been proposed that under psychedelics, with eyes-closed, the brain may function "as if" there is visual input when there is none. In this work, resting-state functional connectivity (RSFC) data was analyzed from 10 healthy subjects under the influence of LSD and, separately, placebo. It was suspected that eyes-closed psychedelic imagery might involve transient local retinotopic activation, of the sort typically associated with visual stimulation. To test this, it was hypothesized that, under LSD, patches of the visual cortex with congruent retinotopic representations would show greater RSFC than incongruent patches. Using a retinotopic localizer performed during a nondrug baseline condition, nonadjacent patches of V1 and V3 that represent the vertical or the horizontal meridians of the visual field were identified. Subsequently, RSFC between V1 and V3 was measured with respect to these a priori identified patches. Consistent with our prior hypothesis, the difference between RSFC of patches with congruent retinotopic specificity (horizontal-horizontal and vertical-vertical) and those with incongruent specificity (horizontal-vertical and vertical-horizontal) increased significantly under LSD relative to placebo, suggesting that activity within the visual cortex becomes more dependent on its intrinsic retinotopic organization in the drug condition. This result may indicate that under LSD, with eyes-closed, the early visual system behaves as if it were seeing spatially localized visual inputs. Hum Brain Mapp 37:3031-3040, 2016. © 2016 Wiley Periodicals, Inc. PMID:27125770

  19. LSD alters eyes-closed functional connectivity within the early visual cortex in a retinotopic fashion.

    PubMed

    Roseman, Leor; Sereno, Martin I; Leech, Robert; Kaelen, Mendel; Orban, Csaba; McGonigle, John; Feilding, Amanda; Nutt, David J; Carhart-Harris, Robin L

    2016-08-01

    The question of how spatially organized activity in the visual cortex behaves during eyes-closed, lysergic acid diethylamide (LSD)-induced "psychedelic imagery" (e.g., visions of geometric patterns and more complex phenomena) has never been empirically addressed, although it has been proposed that under psychedelics, with eyes-closed, the brain may function "as if" there is visual input when there is none. In this work, resting-state functional connectivity (RSFC) data was analyzed from 10 healthy subjects under the influence of LSD and, separately, placebo. It was suspected that eyes-closed psychedelic imagery might involve transient local retinotopic activation, of the sort typically associated with visual stimulation. To test this, it was hypothesized that, under LSD, patches of the visual cortex with congruent retinotopic representations would show greater RSFC than incongruent patches. Using a retinotopic localizer performed during a nondrug baseline condition, nonadjacent patches of V1 and V3 that represent the vertical or the horizontal meridians of the visual field were identified. Subsequently, RSFC between V1 and V3 was measured with respect to these a priori identified patches. Consistent with our prior hypothesis, the difference between RSFC of patches with congruent retinotopic specificity (horizontal-horizontal and vertical-vertical) and those with incongruent specificity (horizontal-vertical and vertical-horizontal) increased significantly under LSD relative to placebo, suggesting that activity within the visual cortex becomes more dependent on its intrinsic retinotopic organization in the drug condition. This result may indicate that under LSD, with eyes-closed, the early visual system behaves as if it were seeing spatially localized visual inputs. Hum Brain Mapp 37:3031-3040, 2016. © 2016 Wiley Periodicals, Inc.

  20. Visual Network Asymmetry and Default Mode Network Function in ADHD: An fMRI Study

    PubMed Central

    Hale, T. Sigi; Kane, Andrea M.; Kaminsky, Olivia; Tung, Kelly L.; Wiley, Joshua F.; McGough, James J.; Loo, Sandra K.; Kaplan, Jonas T.

    2014-01-01

    Background: A growing body of research has identified abnormal visual information processing in attention-deficit hyperactivity disorder (ADHD). In particular, slow processing speed and increased reliance on visuo-perceptual strategies have become evident. Objective: The current study used recently developed fMRI methods to replicate and further examine abnormal rightward biased visual information processing in ADHD and to further characterize the nature of this effect; we tested its association with several large-scale distributed network systems. Method: We examined fMRI BOLD response during letter and location judgment tasks, and directly assessed visual network asymmetry and its association with large-scale networks using both a voxelwise and an averaged signal approach. Results: Initial within-group analyses revealed a pattern of left-lateralized visual cortical activity in controls but right-lateralized visual cortical activity in ADHD children. Direct analyses of visual network asymmetry confirmed atypical rightward bias in ADHD children compared to controls. This ADHD characteristic was atypically associated with reduced activation across several extra-visual networks, including the default mode network (DMN). We also found atypical associations between DMN activation and ADHD subjects’ inattentive symptoms and task performance. Conclusion: The current study demonstrated rightward VNA in ADHD during a simple letter discrimination task. This result adds an important novel consideration to the growing literature identifying abnormal visual processing in ADHD. We postulate that this characteristic reflects greater perceptual engagement of task-extraneous content, and that it may be a basic feature of less efficient top-down task-directed control over visual processing. We additionally argue that abnormal DMN function may contribute to this characteristic. PMID:25076915

  1. The Putative Visual Word Form Area Is Functionally Connected to the Dorsal Attention Network

    PubMed Central

    Miezin, Fran M.; Petersen, Steven E.; Schlaggar, Bradley L.

    2012-01-01

    The putative visual word form area (pVWFA) is the most consistently activated region in single word reading studies (i.e., Vigneau et al. 2006), yet its function remains a matter of debate. The pVWFA may be predominantly used in reading or it could be a more general visual processor used in reading but also in other visual tasks. Here, resting-state functional connectivity magnetic resonance imaging (rs-fcMRI) is used to characterize the functional relationships of the pVWFA to help adjudicate between these possibilities. rs-fcMRI defines relationships based on correlations in slow fluctuations of blood oxygen level–dependent activity occurring at rest. In this study, rs-fcMRI correlations show little relationship between the pVWFA and reading-related regions but a strong relationship between the pVWFA and dorsal attention regions thought to be related to spatial and feature attention. The rs-fcMRI correlations between the pVWFA and regions of the dorsal attention network increase with age and reading skill, while the correlations between the pVWFA and reading-related regions do not. These results argue the pVWFA is not used predominantly in reading but is a more general visual processor used in other visual tasks, as well as reading. PMID:21690259

  2. Deficits in visual functions and neuropsychological inconsistency in Borderline Personality Disorder.

    PubMed

    Beblo, Thomas; Saavedra, Anamaria Silva; Mensebach, Christoph; Lange, Wolfgang; Markowitsch, Hans-Joachim; Rau, Harald; Woermann, Friedrich G; Driessen, Martin

    2006-12-01

    For Borderline Personality Disorder (BPD) cognitive and perceptual impairments were reported in some but not all studies. The aim of the present study was to analyze the neuropsychological performance of BPD patients in different domains. Predominant impairments of visual functions and an increased intra-individual variation of test performances within neuropsychological domains were expected. We investigated 22 patients with BPD and a matched sample of 22 healthy control subjects. A comprehensive clinical and neuropsychological test battery was administered. Effect sizes indicate primarily deficits of visual functions such as visual memory (Wechsler Memory Scale-Revised, WMS-R: Visual pair associates and visual reproduction, Complex Figure Test: Recall) and visuo-spatial abilities (Leistungspruefsystem, LPS 9 and 10: Spatial imagination and embedded figures), but also of executive functions (Tower of Hanoi, Trail Making Test-B, semantic and figural fluency, LPS 4: Reasoning). In addition, the intra-individual ranges of neuropsychological test results in BPD patients were increased compared to those of healthy subjects. This finding might be due to a high degree of temporary stress that interferes with effective cognitive processing. Further research is needed to confirm the present results and to control for stress during the test procedure. PMID:17070927

  3. Exposure to Organic Solvents Used in Dry Cleaning Reduces Low and High Level Visual Function

    PubMed Central

    Jiménez Barbosa, Ingrid Astrid

    2015-01-01

    Purpose To investigate whether exposure to occupational levels of organic solvents in the dry cleaning industry is associated with neurotoxic symptoms and visual deficits in the perception of basic visual features such as luminance contrast and colour, higher level processing of global motion and form (Experiment 1), and cognitive function as measured in a visual search task (Experiment 2). Methods The Q16 neurotoxic questionnaire, a commonly used measure of neurotoxicity (by the World Health Organization), was administered to assess the neurotoxic status of a group of 33 dry cleaners exposed to occupational levels of organic solvents (OS) and 35 age-matched non dry-cleaners who had never worked in the dry cleaning industry. In Experiment 1, to assess visual function, contrast sensitivity, colour/hue discrimination (Munsell Hue 100 test), global motion and form thresholds were assessed using computerised psychophysical tests. Sensitivity to global motion or form structure was quantified by varying the pattern coherence of global dot motion (GDM) and Glass pattern (oriented dot pairs) respectively (i.e., the percentage of dots/dot pairs that contribute to the perception of global structure). In Experiment 2, a letter visual-search task was used to measure reaction times (as a function of the number of elements: 4, 8, 16, 32, 64 and 100) in both parallel and serial search conditions. Results Dry cleaners exposed to organic solvents had significantly higher scores on the Q16 compared to non dry-cleaners indicating that dry cleaners experienced more neurotoxic symptoms on average. The contrast sensitivity function for dry cleaners was significantly lower at all spatial frequencies relative to non dry-cleaners, which is consistent with previous studies. Poorer colour discrimination performance was also noted in dry cleaners than non dry-cleaners, particularly along the blue/yellow axis. In a new finding, we report that global form and motion thresholds for dry cleaners

  4. Functional connectivity of visual cortex in the blind follows retinotopic organization principles

    PubMed Central

    Ovadia-Caro, Smadar; Caramazza, Alfonso; Margulies, Daniel S.; Villringer, Arno

    2015-01-01

    Is visual input during critical periods of development crucial for the emergence of the fundamental topographical mapping of the visual cortex? And would this structure be retained throughout life-long blindness or would it fade as a result of plastic, use-based reorganization? We used functional connectivity magnetic resonance imaging based on intrinsic blood oxygen level-dependent fluctuations to investigate whether significant traces of topographical mapping of the visual scene in the form of retinotopic organization, could be found in congenitally blind adults. A group of 11 fully and congenitally blind subjects and 18 sighted controls were studied. The blind demonstrated an intact functional connectivity network structural organization of the three main retinotopic mapping axes: eccentricity (centre-periphery), laterality (left-right), and elevation (upper-lower) throughout the retinotopic cortex extending to high-level ventral and dorsal streams, including characteristic eccentricity biases in face- and house-selective areas. Functional connectivity-based topographic organization in the visual cortex was indistinguishable from the normally sighted retinotopic functional connectivity structure as indicated by clustering analysis, and was found even in participants who did not have a typical retinal development in utero (microphthalmics). While the internal structural organization of the visual cortex was strikingly similar, the blind exhibited profound differences in functional connectivity to other (non-visual) brain regions as compared to the sighted, which were specific to portions of V1. Central V1 was more connected to language areas but peripheral V1 to spatial attention and control networks. These findings suggest that current accounts of critical periods and experience-dependent development should be revisited even for primary sensory areas, in that the connectivity basis for visual cortex large-scale topographical organization can develop without any

  5. Development of Maladaptive Coping: A Functional Adaptation to Chronic, Uncontrollable Stress

    PubMed Central

    Wadsworth, Martha E.

    2015-01-01

    Health disparities are rooted in childhood and stem from adverse early environments that damage physiologic stress-response systems. Developmental psychobiological models of the effects of chronic stress account for both the negative effects of a stress-response system calibrated to a dangerous and unpredictable environment from a health perspective, and the positive effects of such an adaptively calibrated stress response from a functional perspective. Our research suggests that contexts that produce functionally adapted physiologic responses to stress also encourage a functionally adapted coping response—coping that can result in maladjustment in physical and mental health, but enables children to grow and develop within those contexts. In this article, I highlight the value of reframing maladaptive coping as functional adaptation to understand more completely the development of children’s coping in different contexts, and the value of such a conceptual shift for coping-based theory, research, and intervention. PMID:26019717

  6. Cognitive and Adaptive Functioning after Liver Transplantation for Maple Syrup Urine Disease: A Case Series

    PubMed Central

    Shellmer, D. A.; Dabbs, A. DeVito; Dew, M. A.; Noll, R. B.; Feldman, H.; Strauss, K.; Morton, D. H.; Vockley, G.; Mazariegos, G. V.

    2011-01-01

    MSUD is a complex metabolic disorder that has been associated with central nervous system damage, developmental delays, and neurocognitive deficits. Although liver transplantation provides a metabolic cure for MSUD, changes in cognitive and adaptive functioning following transplantation have not been investigated. In this report we present data from 14 patients who completed cognitive and adaptive functioning testing pre- and one year and/or three years post-liver transplantation. Findings show either no significant change or improvement in IQ scores pre- to post-liver transplantation. Greater variability was observed in adaptive functioning scores, but the majority of patients evidenced either no significant change or improvement in adaptive scores. In general, findings may indicate that liver transplantation curtails additional central nervous system damage and neurocognitive decline providing an opportunity for stabilization or improvement in functioning. PMID:20946191

  7. Adapt

    NASA Astrophysics Data System (ADS)

    Bargatze, L. F.

    2015-12-01

    Active Data Archive Product Tracking (ADAPT) is a collection of software routines that permits one to generate XML metadata files to describe and register data products in support of the NASA Heliophysics Virtual Observatory VxO effort. ADAPT is also a philosophy. The ADAPT concept is to use any and all available metadata associated with scientific data to produce XML metadata descriptions in a consistent, uniform, and organized fashion to provide blanket access to the full complement of data stored on a targeted data server. In this poster, we present an application of ADAPT to describe all of the data products that are stored by using the Common Data File (CDF) format served out by the CDAWEB and SPDF data servers hosted at the NASA Goddard Space Flight Center. These data servers are the primary repositories for NASA Heliophysics data. For this purpose, the ADAPT routines have been used to generate data resource descriptions by using an XML schema named Space Physics Archive, Search, and Extract (SPASE). SPASE is the designated standard for documenting Heliophysics data products, as adopted by the Heliophysics Data and Model Consortium. The set of SPASE XML resource descriptions produced by ADAPT includes high-level descriptions of numerical data products, display data products, or catalogs and also includes low-level "Granule" descriptions. A SPASE Granule is effectively a universal access metadata resource; a Granule associates an individual data file (e.g. a CDF file) with a "parent" high-level data resource description, assigns a resource identifier to the file, and lists the corresponding assess URL(s). The CDAWEB and SPDF file systems were queried to provide the input required by the ADAPT software to create an initial set of SPASE metadata resource descriptions. Then, the CDAWEB and SPDF data repositories were queried subsequently on a nightly basis and the CDF file lists were checked for any changes such as the occurrence of new, modified, or deleted

  8. Relationship Between Foveal Cone Structure and Clinical Measures of Visual Function in Patients With Inherited Retinal Degenerations

    PubMed Central

    Ratnam, Kavitha; Carroll, Joseph; Porco, Travis C.; Duncan, Jacque L.; Roorda, Austin

    2013-01-01

    Purpose. To study the relationship between cone spacing and density and clinical measures of visual function near the fovea. Methods. High-resolution images of the photoreceptor mosaic were obtained with adaptive optics scanning laser ophthalmoscopy from 26 patients with inherited retinal degenerations. Cone spacing measures were made close to or at the foveal center (mean [SD] eccentricity, 0.02 [0.03] degree; maximum eccentricity, 0.13 degree) and were converted to Z-scores, fraction of cones, and percentage-of-cones-below-average compared with normal values for each location (based on 37 age-similar visually normal eyes). Z-scores and percentage of cones below average were compared with best-corrected visual acuity (VA) and foveal sensitivity. Results. Visual acuity was significantly correlated with cone spacing (Spearman rank correlation ρ = −0.60, P = 0.003) and was preserved (≥80 letters), despite cone density measures that were 52% below normal. Foveal sensitivity showed significant correlation with cone spacing (ρ = −0.47, P = 0.017) and remained normal (≥35 decibels), despite density measures that were approximately 52% to 62% below normal. Conclusions. Cone density was reduced by up to 62% below normal at or near the fovea in eyes with VA and sensitivity that remained within normal limits. Despite a significant correlation with foveal cone spacing, VA and sensitivity are insensitive indicators of the integrity of the foveal cone mosaic. Direct, objective measures of cone structure may be more sensitive indicators of disease severity than VA or foveal sensitivity in eyes with inherited retinal degenerations. (ClinicalTrials.gov number, NCT00254605.) PMID:23908179

  9. Functional imaging of cat primary visual cortex with optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Rajagopalan, Uma M.; Takaoka, Hideyuki; Homma, Ryota; Kadono, Hirofumi; Tanifuji, Manabu

    2002-06-01

    We report the application of Optical coherence tomography (OCT) for visualizing a one dimensional depth resolved functional structure of cat brain in vivo. The OCT system is based on the known fact that neural activation induces structural changes such as capillary dilation and cellular swelling. Detecting these changes as an amplitude change of the scattered light, an OCT signal reflecting neural activity i.e., fOCT (functional OCT) could be obtained. Experiments have been done to obtain a depth resolved stimulus-specific profile of activation in cat visual cortex. Our results in one dimension indicate that indeed an orientation dependent functional signal could be obtained. Further, we show that this depth resolved fOCT signal is well correlated with the stimulus dependent column determined by OISI. Based on the results, the smallest functional unit in depth, resolved by the proposed system is around 40 micrometers . We are extending our system to perform two dimensional functional imaging.

  10. Walking on an Oscillating Treadmill: Two Paths to Functional Adaptation

    NASA Technical Reports Server (NTRS)

    Brady, Rachel A.; Peters, Brian T.; Bloomberg, Jacob J.

    2010-01-01

    We mounted a treadmill on top of a six degree-of-freedom motion base platform to investigate and characterize locomotor responses produced by healthy adults when introduced to a novel walking condition. Subjects were classified into two groups according to how their stride times were affected by the perturbation. Our data suggest that a person's choice of adaptation strategy is influenced by the relationship between his unique, natural stride frequency and the external frequency imposed by the motion base. Our data suggest that a person's stride time response while walking on a laterally oscillating treadmill is influenced by the relationship between his unique, natural stride frequency and the imposed external frequency of the motion base. This relationship may be useful for checking the efficacy of gait training and rehabilitation programs. Preselecting and manipulating a person's EST could be one way to draw him out of his preferred "entrainment well" during therapy or training.

  11. Light adaptation and the luminance-response function of the cone electroretinogram.

    PubMed

    Peachey, N S; Alexander, K R; Derlacki, D J; Fishman, G A

    1992-01-01

    Cone electroretinograms are typically isolated by presenting stimulus flashes against rod-desensitizing adapting fields. To investigate the manner in which adapting-field luminance affects cone electroretinogram response properties, we measured cone electroretinogram luminance-response functions of two normal subjects, with stimuli presented against adapting fields that ranged in luminance from -1.2 to 2.1 log cd/m2. A flicker rate of 31.1 Hz was used to isolate cone electroretinograms under all adaptation conditions. A hyperbolic equation of the form (R/Rmax) = Ln/(Ln + Kn) was fitted to each luminance-response function by a least-squares criterion. As adapting field luminance increased, the best-fit values of the variables K and n increased, which is in general agreement with results of electrophysiologic studies of light adaptation in retinal neurons. However, Rmax values also increased with adapting field luminance. The change in all three of these variables with adapting field luminance must be considered in the interpretation of cone electroretinogram luminance-response functions from patients with retinal disorders.

  12. Visual Field Function in School-Aged Children with Spastic Unilateral Cerebral Palsy Related to Different Patterns of Brain Damage

    ERIC Educational Resources Information Center

    Jacobson, Lena; Rydberg, Agneta; Eliasson, Ann-Christin; Kits, Annika; Flodmark, Olof

    2010-01-01

    Aim: To relate visual field function to brain morphology in children with unilateral cerebral palsy (CP). Method: Visual field function was assessed using the confrontation technique and Goldmann perimetry in 29 children (15 males, 14 females; age range 7-17y, median age 11y) with unilateral CP classified at Gross Motor Function Classification…

  13. Vineland Adaptive Behavior Scales as a summary of functional outcome of extremely low-birthweight children.

    PubMed

    Rosenbaum, P; Saigal, S; Szatmari, P; Hoult, L

    1995-07-01

    This study reports moderate to high Pearson correlations between Vineland Adaptive Behavior Scale (VABS) subscale and total scores and a variety of cognitive, academic and motor performance tests on a population of extremely low-birthweight infants assessed at eight years of age. The subscales describe adaptive behaviour in daily living, communication, motor function and socialization, as well as an adaptive behaviour composite score. Because it can provide a norm-referenced description of functional outcomes and can be used to assess all children regardless of disability, the authors believe that the VABS should be applied uniformly by all groups reporting school-age outcome of neonatal intensive-care populations.

  14. Can common functional gene variants affect visual discrimination in metacontrast masking?

    PubMed

    Maksimov, Margus; Vaht, Mariliis; Harro, Jaanus; Bachmann, Talis

    2013-01-01

    Mechanisms of visual perception should be robustly fast and provide veridical information about environmental objects in order to facilitate survival and successful coping. Because species-specific brain mechanisms for fast vision must have evolved under heavy pressure for efficiency, it has been held that different human individuals see the physical world in the same way and produce psychophysical functions of visual discrimination that are qualitatively the same. For many years, this assumption has been implicitly accepted in vision research studying extremely fast, basic visual processes, including studies of visual masking. However, in recent studies of metacontrast masking surprisingly robust individual differences in the qualitative aspects of subjects' performance have been found. As the basic species-specific visual functions very likely are based on universal brain mechanisms of vision, these differences probably are the outcome of variability in ontogenetic development (i.e., formation of idiosyncrasic skills of perception). Such developmental differences can be brought about by variants of genes that are differentially expressed in the course of CNS development. The objective of this study was to assess whether visual discrimination in metacontrast masking is related to three widely studied genetic polymorphisms implicated in brain function and used here as independent variables. The findings suggest no main effects of BDNF Val66Met, NRG1/rs6994992, or 5-HTTLPR polymorphisms on metacontrast performance, but several notable interactions of genetic variables with gender, stage of the sequence of experimental trials, perceptual strategies, and target/mask shape congruence were found. Thus, basic behavioral functions of fast vision may be influenced by common genetic variability. Also, when left uncontrolled, genetic factors may seriously confound variables in vision research using masking, obscure clear theoretical interpretation, lead to unexplicable inter

  15. fMRI-Adaptation Evidence of Overlapping Neural Representations for Objects Related in Function or Manipulation

    PubMed Central

    Yee, Eiling; Drucker, Daniel M.; Thompson-Schill, Sharon L.

    2010-01-01

    Sensorimotor-based theories of semantic memory contend that semantic information about an object is represented in the neural substrate invoked when we perceive or interact with it. We used fMRI adaptation to test this prediction, measuring brain activation as participants read pairs of words. Pairs shared function (flashlight–lantern), shape (marble–grape), both (pencil–pen), were unrelated (saucer–needle), or were identical (drill–drill). We observed adaptation for pairs with both function and shape similarity in left premotor cortex. Further, degree of function similarity was correlated with adaptation in three regions: two in the left temporal lobe (left medial temporal lobe, left middle temporal gyrus), which has been hypothesized to play a role in mutimodal integration, and one in left superior frontal gyrus. We also found that degree of manipulation (i.e., action) and function similarity were both correlated with adaptation in two regions: left premotor cortex and left intraparietal sulcus (involved in guiding actions). Additional considerations suggest that the adaptation in these two regions was driven by manipulation similarity alone; thus, these results imply that manipulation information about objects is encoded in brain regions involved in performing or guiding actions. Unexpectedly, these same two regions showed increased activation (rather than adaptation) for objects similar in shape. Overall, we found evidence (in the form of adaptation) that objects that share semantic features have overlapping representations. Further, the particular regions of overlap provide support for the existence of both sensorimotor and amodal/multimodal representations. PMID:20034582

  16. Adaptation of visually evoked responses of relay cells in the dorsal lateral geniculate nucleus of the cat following prolonged exposure to drifting gratings.

    PubMed

    Shou, T; Li, X; Zhou, Y; Hu, B

    1996-01-01

    Adaptation of visual cortical cells' responses is observed following repeated presentation of grating stimuli. Grating adaptation is believed to exist only at the cortical level. The purpose of this study was to see if grating adaptation also occurs in the lateral geniculate nucleus. We studied the responses of 164 relay cells in layer A and A1 of the dorsal lateral geniculate nucleus (LGNd) to grating stimuli. Normal cats, as well as cats in which visual cortex was ablated, were studied. Adaptation was investigated using repeated presentation of gratings of different contrasts and orientations. The results showed the following: (1) Grating adaptation reduced the responses of 46% of the LGNd cells recorded. The responses normally decreased within 30 s and then stabilized. However, there was heterogeneity in the effects observed. About 38% of the cells studied were not affected by the adapting gratings. Some cells (16%) showed facilitation rather than habituation of their responses to test stimuli. (2) There was no significant difference between X and Y cells in their susceptibility to adaptation. This suggests that grating adaptation is a general property, independent of cell type. (3) The contrast-response curves of 57% of the LGNd cells studied shifted down after exposure to high-contrast adapting gratings. (4) Adapting gratings of the cells' preferred orientation decreased the orientation sensitivity of 56% of the orientation-sensitive cells. Adapting gratings at the nonpreferred orientation did not affect orientation sensitivity. (5) Prolonged grating adaptation also reduced the responses of 49% of the LGNd cells after inactivation of cortical inputs to the LGNd. PMID:8870219

  17. Global-Local Visual Processing in High Functioning Children with Autism: Structural vs. Implicit Task Biases

    ERIC Educational Resources Information Center

    Iarocci, Grace; Burack, Jacob A.; Shore, David I.; Mottron, Laurent; Enns, James T.

    2006-01-01

    Global-local processing was examined in high-functioning children with autism and in groups of typically developing children. In experiment 1, the effects of structural bias were tested by comparing visual search that favored access to either local or global targets. The children with autism were not unusually sensitive to either level of visual…

  18. On the Functional Neuroanatomy of Visual Word Processing: Effects of Case and Letter Deviance

    ERIC Educational Resources Information Center

    Kronbichler, Martin; Klackl, Johannes; Richlan, Fabio; Schurz, Matthias; Staffen, Wolfgang; Ladurner, Gunther; Wimmer, Heinz

    2009-01-01

    This functional magnetic resonance imaging study contrasted case-deviant and letter-deviant forms with familiar forms of the same phonological words (e.g., "TaXi" and "Taksi" vs. "Taxi") and found that both types of deviance led to increased activation in a left occipito-temporal region, corresponding to the visual word form area (VWFA). The…

  19. Eye Movements and Visual Function in Infancy: The Problem of Interdependence.

    ERIC Educational Resources Information Center

    Mitkin, A.

    Reported are three series of experiments analyzing the development of the visual function of infants. The first experimental series was aimed at the investigation of infants' reaction to moving objects. The second experimental series dealt with the analysis of the development of binocular vision in infants. The goal of the third series was to…

  20. Student Understanding of Function Composition and the Effect of Dynamic Visualization

    ERIC Educational Resources Information Center

    Ratliff, Bobby Kevin

    2009-01-01

    The purpose of this study was to determine (1) strategies students use when solving composition problems and the difficulties they encounter; (2) conceptions and/or misconceptions students have with respect to composition of functions; and (3) the effect of using dynamic visualization during instruction on students' understanding of composition of…

  1. Atypical Visual Orienting to Gaze- and Arrow-Cues in Adults with High Functioning Autism

    ERIC Educational Resources Information Center

    Vlamings, Petra H. J. M.; Stauder, Johannes E. A.; van Son, Ilona A. M.; Mottron, Laurent

    2005-01-01

    The present study investigates visual orienting to directional cues (arrow or eyes) in adults with high functioning autism (n = 19) and age matched controls (n = 19). A choice reaction time paradigm is used in which eye-or arrow direction correctly (congruent) or incorrectly (incongruent) cues target location. In typically developing participants,…

  2. Contingency Mapping: Use of a Novel Visual Support Strategy as an Adjunct to Functional Equivalence Training

    ERIC Educational Resources Information Center

    Brown, Kenneth E.; Mirenda, Pat

    2006-01-01

    This study evaluated the effectiveness of contingency mapping, a new visual support strategy designed to enhance clients' understanding of the contingencies associated with functional equivalence training (FET). The study was conducted in a general education classroom with an adolescent boy with autism who engaged in prompt dependent behavior. A…

  3. Effects of Temporal Integration on the Shape of Visual Backward Masking Functions

    ERIC Educational Resources Information Center

    Francis, Gregory; Cho, Yang Seok

    2008-01-01

    Many studies of cognition and perception use a visual mask to explore the dynamics of information processing of a target. Especially important in these applications is the time between the target and mask stimuli. A plot of some measure of target visibility against stimulus onset asynchrony is called a masking function, which can sometimes be…

  4. Understanding the Function of Visual Short-Term Memory: Transsaccadic Memory, Object Correspondence, and Gaze Correction

    ERIC Educational Resources Information Center

    Hollingworth, Andrew; Richard, Ashleigh M.; Luck, Steven J.

    2008-01-01

    Visual short-term memory (VSTM) has received intensive study over the past decade, with research focused on VSTM capacity and representational format. Yet, the function of VSTM in human cognition is not well understood. Here, the authors demonstrate that VSTM plays an important role in the control of saccadic eye movements. Intelligent human…

  5. Visual motion aftereffects arise from a cascade of two isomorphic adaptation mechanisms

    PubMed Central

    Stocker, Alan A.; Simoncelli, Eero P.

    2013-01-01

    Prolonged exposure to a moving stimulus can substantially alter the perceived velocity (both speed and direction) of subsequently presented stimuli. Here, we show that these changes can be parsimoniously explained with a model that combines the effects of two isomorphic adaptation mechanisms, one nondirectional and one directional. Each produces a pattern of velocity biases that serves as an observable “signature” of the corresponding mechanism. The net effect on perceived velocity is a superposition of these two signatures. By examining human velocity judgments in the context of different adaptor velocities, we are able to separate these two signatures. The model fits the data well, successfully predicts subjects’ behavior in an additional experiment using a nondirectional adaptor, and is in agreement with a variety of previous experimental results. As such, the model provides a unifying explanation for the diversity of motion aftereffects. PMID:19761342

  6. Social-adaptive and psychological functioning of patients affected by Fabry disease.

    PubMed

    Laney, Dawn Alyssia; Gruskin, Daniel J; Fernhoff, Paul M; Cubells, Joseph F; Ousley, Opal Y; Hipp, Heather; Mehta, Ami J

    2010-12-01

    Fabry disease (FD) is an X-linked lysosomal storage disorder caused by the deficiency of alpha-galactosidase A. In addition to the debilitating physical symptoms of FD, there are also under-recognized and poorly characterized psychiatric features. As a first step toward characterizing psychiatric features of FD, we administered the Achenbach adult self report questionnaire to 30 FD patients and the Achenbach adult behavior checklist questionnaire to 28 partners/parents/friends of FD patients. Data from at least one of the questionnaires were available on 33 subjects. Analysis focused on social-adaptive functioning in various aspects of daily life and on criteria related to the Diagnostic and statistical manual of mental disorders IV (DSM-IV). Adaptive functioning scale values, which primarily measure social and relationship functioning and occupational success, showed that eight FD patients (six female and two male) had mean adaptive functioning deficits as compared to population norms. Greater rates of depression (P < 0.01), anxiety (P = 0.05), depression and anxiety (P = 0.03), antisocial personality (P < 0.001), attention-deficit/hyperactivity (AD/H; P < 0.01), hyperactivity-impulsivity (P < 0.01), and aggressive behavior (P = 0.03) were associated with poorer adaptive functioning. Decreased social-adaptive functioning in this study was not statistically significantly associated to disease severity, pain, or level of vitality. This study shows for the first time that FD patients, particularly women, are affected by decreased social-adaptive functioning. Comprehensive treatment plans for FD should consider assessments and interventions to evaluate and improve social, occupational, and psychological functioning. Attention to the behavioral aspects of FD could lead to improved treatment outcome and improved quality of life. Individuals affected by Fabry disease exhibited social-adaptive functioning deficits that were significantly correlated with anxiety

  7. Dual function seal: visualized digital signature for electronic medical record systems.

    PubMed

    Yu, Yao-Chang; Hou, Ting-Wei; Chiang, Tzu-Chiang

    2012-10-01

    Digital signature is an important cryptography technology to be used to provide integrity and non-repudiation in electronic medical record systems (EMRS) and it is required by law. However, digital signatures normally appear in forms unrecognizable to medical staff, this may reduce the trust from medical staff that is used to the handwritten signatures or seals. Therefore, in this paper we propose a dual function seal to extend user trust from a traditional seal to a digital signature. The proposed dual function seal is a prototype that combines the traditional seal and digital seal. With this prototype, medical personnel are not just can put a seal on paper but also generate a visualized digital signature for electronic medical records. Medical Personnel can then look at the visualized digital signature and directly know which medical personnel generated it, just like with a traditional seal. Discrete wavelet transform (DWT) is used as an image processing method to generate a visualized digital signature, and the peak signal to noise ratio (PSNR) is calculated to verify that distortions of all converted images are beyond human recognition, and the results of our converted images are from 70 dB to 80 dB. The signature recoverability is also tested in this proposed paper to ensure that the visualized digital signature is verifiable. A simulated EMRS is implemented to show how the visualized digital signature can be integrity into EMRS.

  8. How spatial abilities and dynamic visualizations interplay when learning functional anatomy with 3D anatomical models.

    PubMed

    Berney, Sandra; Bétrancourt, Mireille; Molinari, Gaëlle; Hoyek, Nady

    2015-01-01

    The emergence of dynamic visualizations of three-dimensional (3D) models in anatomy curricula may be an adequate solution for spatial difficulties encountered with traditional static learning, as they provide direct visualization of change throughout the viewpoints. However, little research has explored the interplay between learning material presentation formats, spatial abilities, and anatomical tasks. First, to understand the cognitive challenges a novice learner would be faced with when first exposed to 3D anatomical content, a six-step cognitive task analysis was developed. Following this, an experimental study was conducted to explore how presentation formats (dynamic vs. static visualizations) support learning of functional anatomy, and affect subsequent anatomical tasks derived from the cognitive task analysis. A second aim was to investigate the interplay between spatial abilities (spatial visualization and spatial relation) and presentation formats when the functional anatomy of a 3D scapula and the associated shoulder flexion movement are learned. Findings showed no main effect of the presentation formats on performances, but revealed the predictive influence of spatial visualization and spatial relation abilities on performance. However, an interesting interaction between presentation formats and spatial relation ability for a specific anatomical task was found. This result highlighted the influence of presentation formats when spatial abilities are involved as well as the differentiated influence of spatial abilities on anatomical tasks.

  9. New portable tool to screen vestibular and visual function--National Institutes of Health Toolbox initiative.

    PubMed

    Rine, Rose Marie; Roberts, Dale; Corbin, Bree A; McKean-Cowdin, Roberta; Varma, Rohit; Beaumont, Jennifer; Slotkin, Jerry; Schubert, Michael C

    2012-01-01

    As part of the National Institutes of Health Toolbox initiative, we developed a low-cost, easy-to-administer, and time-efficient test of vestibular and visual function. A computerized test of dynamic visual acuity (cDVA) was used to measure the difference in visual acuity between head still and moving in yaw. Participants included 318 individuals, aged 3 to 85 years (301 without and 17 with vestibular pathology). Adults used Early Treatment of Diabetic Retinopathy Study (ETDRS) optotypes; children used ETDRS, Lea, and HOTV optotypes. Bithermal calorics, rotational chair, and light box testing were used to validate the cDVA. Analysis revealed that the cDVA test is reliable for static (intraclass correlation coefficient [ICC] >/= 0.64) and dynamic (ICC >/= 0.43-0.75) visual acuity. Children younger than 6 years old were more likely to complete cDVA with Lea optotypes, but reliability and correlation with ETDRS was better using HOTV optotypes. The high correlation between static acuity and light box test scores (r = 0.795), significant difference of cDVA scores between those with and without pathology (p visual acuity when the head is still and moving, as well as a good proxy of vestibular function to yaw rotation.

  10. Chemical Assignment of Symmetry-Adapted Perturbation Theory Interaction Energy Components: The Functional-Group SAPT Partition.

    PubMed

    Parrish, Robert M; Parker, Trent M; Sherrill, C David

    2014-10-14

    Recently, we introduced an effective atom-pairwise partition of the many-body symmetry-adapted perturbation theory (SAPT) interaction energy decomposition, producing a method known as atomic SAPT (A-SAPT) [Parrish, R. M.; Sherrill, C. D. J. Chem. Phys. 2014, 141, 044115]. A-SAPT provides ab initio atom-pair potentials for force field development and also automatic visualizations of the spatial contributions of noncovalent interactions, but often has difficulty producing chemically useful partitions of the electrostatic energy, due to the buildup of oscillating partial charges on adjacent functional group