Science.gov

Sample records for adapter protein involved

  1. TMTC1 and TMTC2 Are Novel Endoplasmic Reticulum Tetratricopeptide Repeat-containing Adapter Proteins Involved in Calcium Homeostasis*

    PubMed Central

    Sunryd, Johan C.; Cheon, Banyoon; Graham, Jill B.; Giorda, Kristina M.; Fissore, Rafael A.; Hebert, Daniel N.

    2014-01-01

    The endoplasmic reticulum (ER) is organized in part by adapter proteins that nucleate the formation of large protein complexes. Tetratricopeptide repeats (TPR) are well studied protein structural motifs that support intermolecular protein-protein interactions. TMTC1 and TMTC2 were identified by an in silico search as TPR-containing proteins possessing N-terminal ER targeting signal sequences and multiple hydrophobic segments, suggestive of polytopic membrane proteins that are targeted to the secretory pathway. A variety of cell biological and biochemical assays was employed to demonstrate that TMTC1 and TMTC2 are both ER resident integral membrane proteins with multiple clusters of TPR domains oriented within the ER lumen. Proteomic analysis followed by co-immunoprecipitation verification found that both proteins associated with the ER calcium uptake pump SERCA2B, and TMTC2 also bound to the carbohydrate-binding chaperone calnexin. Live cell calcium measurements revealed that overexpression of either TMTC1 or TMTC2 caused a reduction of calcium released from the ER following stimulation, whereas the knockdown of TMTC1 or TMTC2 increased the stimulated calcium released. Together, these results implicate TMTC1 and TMTC2 as ER proteins involved in ER calcium homeostasis. PMID:24764305

  2. Redox stress proteins are involved in adaptation response of the hyperthermoacidophilic archaeon Sulfolobus solfataricus to nickel challenge

    PubMed Central

    Salzano, Anna M; Febbraio, Ferdinando; Farias, Tiziana; Cetrangolo, Giovanni P; Nucci, Roberto; Scaloni, Andrea; Manco, Giuseppe

    2007-01-01

    Background Exposure to nickel (Ni) and its chemical derivatives has been associated with severe health effects in human. On the contrary, poor knowledge has been acquired on target physiological processes or molecular mechanisms of this metal in model organisms, including Bacteria and Archaea. In this study, we describe an analysis focused at identifying proteins involved in the recovery of the archaeon Sulfolobus solfataricus strain MT4 from Ni-induced stress. Results To this purpose, Sulfolobus solfataricus was grown in the presence of the highest nickel sulphate concentration still allowing cells to survive; crude extracts from treated and untreated cells were compared at the proteome level by using a bi-dimensional chromatography approach. We identified several proteins specifically repressed or induced as result of Ni treatment. Observed up-regulated proteins were largely endowed with the ability to trigger recovery from oxidative and osmotic stress in other biological systems. It is noteworthy that most of the proteins induced following Ni treatment perform similar functions and a few have eukaryal homologue counterparts. Conclusion These findings suggest a series of preferential gene expression pathways activated in adaptation response to metal challenge. PMID:17692131

  3. The adaptive metabolic response involves specific protein glutathionylation during the filamentation process in the pathogen Candida albicans.

    PubMed

    Gergondey, R; Garcia, C; Serre, V; Camadro, J M; Auchère, F

    2016-07-01

    Candida albicans is an opportunist pathogen responsible for a large spectrum of infections, from superficial mycosis to the systemic disease candidiasis. Its ability to adopt various morphological forms, such as unicellular yeasts, filamentous pseudohyphae and hyphae, contributes to its ability to survive within the host. It has been suggested that the antioxidant glutathione is involved in the filamentation process. We investigated S-glutathionylation, the reversible binding of glutathione to proteins, and the functional consequences on C. albicans metabolic remodeling during the yeast-to-hyphae transition. Our work provided evidence for the specific glutathionylation of mitochondrial proteins involved in bioenergetics pathways in filamentous forms and a regulation of the main enzyme of the glyoxylate cycle, isocitrate lyase, by glutathionylation. Isocitrate lyase inactivation in the hyphal forms was reversed by glutaredoxin treatment, in agreement with a glutathionylation process, which was confirmed by proteomic data showing the binding of one glutathione molecule to the enzyme (data are available via ProteomeXchange with identifier PXD003685). We also assessed the effect of alternative carbon sources on glutathione levels and isocitrate lyase activity. Changes in nutrient availability led to morphological flexibility and were related to perturbations in glutathione levels and isocitrate lyase activity, confirming the key role of the maintenance of intracellular redox status in the adaptive metabolic strategy of the pathogen. PMID:27083931

  4. Secretome profile analysis of hypervirulent Mycobacterium tuberculosis CPT31 reveals increased production of EsxB and proteins involved in adaptation to intracellular lifestyle.

    PubMed

    Vargas-Romero, Fernado; Guitierrez-Najera, Nora; Mendoza-Hernández, Guillermo; Ortega-Bernal, Daniel; Hernández-Pando, Rogelio; Castañón-Arreola, Mauricio

    2016-03-01

    Epidemiological information and animal models have shown various Mycobacterium tuberculosis phenotypes ranging from hyper- to hypovirulent forms. Recent genomic and proteomic studies suggest that the outcome of infection depends on the M. tuberculosis fitness, which is a direct consequence of its phenotype. However, little is known about the molecular and cellular mechanisms used by mycobacteria to survive, replicate and persist during infection. The aim of this study was to perform a comprehensive proteomic analysis of culture filtrate from hypo- (CPT23) and hypervirulent (CPT31) M. tuberculosis isolates. Using two-dimensional electrophoresis we observed that 70 proteins were unique, or more abundant in culture filtrate of CPT31, and 15 of these were identified by mass spectrometry. Our analysis of protein expression showed that most of the proteins identified are involved in lipid metabolism (FadA3, FbpB and EchA3), detoxification and adaptation (GroEL2, SodB and HspX) and cell wall processes (LprA, Tig and EsxB). These results suggest that overrepresented proteins in M. tuberculosis CPT31 secretome could facilitate mycobacterial infection and persistence. PMID:26733498

  5. Metabolic Adaptation and Protein Complexes in Prokaryotes

    PubMed Central

    Krüger, Beate; Liang, Chunguang; Prell, Florian; Fieselmann, Astrid; Moya, Andres; Schuster, Stefan; Völker, Uwe; Dandekar, Thomas

    2012-01-01

    Protein complexes are classified and have been charted in several large-scale screening studies in prokaryotes. These complexes are organized in a factory-like fashion to optimize protein production and metabolism. Central components are conserved between different prokaryotes; major complexes involve carbohydrate, amino acid, fatty acid and nucleotide metabolism. Metabolic adaptation changes protein complexes according to environmental conditions. Protein modification depends on specific modifying enzymes. Proteins such as trigger enzymes display condition-dependent adaptation to different functions by participating in several complexes. Several bacterial pathogens adapt rapidly to intracellular survival with concomitant changes in protein complexes in central metabolism and optimize utilization of their favorite available nutrient source. Regulation optimizes protein costs. Master regulators lead to up- and downregulation in specific subnetworks and all involved complexes. Long protein half-life and low level expression detaches protein levels from gene expression levels. However, under optimal growth conditions, metabolite fluxes through central carbohydrate pathways correlate well with gene expression. In a system-wide view, major metabolic changes lead to rapid adaptation of complexes and feedback or feedforward regulation. Finally, prokaryotic enzyme complexes are involved in crowding and substrate channeling. This depends on detailed structural interactions and is verified for specific effects by experiments and simulations. PMID:24957769

  6. Protein Adaptations in Archaeal Extremophiles

    PubMed Central

    Reed, Christopher J.; Lewis, Hunter; Trejo, Eric; Winston, Vern; Evilia, Caryn

    2013-01-01

    Extremophiles, especially those in Archaea, have a myriad of adaptations that keep their cellular proteins stable and active under the extreme conditions in which they live. Rather than having one basic set of adaptations that works for all environments, Archaea have evolved separate protein features that are customized for each environment. We categorized the Archaea into three general groups to describe what is known about their protein adaptations: thermophilic, psychrophilic, and halophilic. Thermophilic proteins tend to have a prominent hydrophobic core and increased electrostatic interactions to maintain activity at high temperatures. Psychrophilic proteins have a reduced hydrophobic core and a less charged protein surface to maintain flexibility and activity under cold temperatures. Halophilic proteins are characterized by increased negative surface charge due to increased acidic amino acid content and peptide insertions, which compensates for the extreme ionic conditions. While acidophiles, alkaliphiles, and piezophiles are their own class of Archaea, their protein adaptations toward pH and pressure are less discernible. By understanding the protein adaptations used by archaeal extremophiles, we hope to be able to engineer and utilize proteins for industrial, environmental, and biotechnological applications where function in extreme conditions is required for activity. PMID:24151449

  7. Inhibition of Phospho-S6 Kinase, a Protein Involved in the Compensatory Adaptive Response, Increases the Efficacy of Paclitaxel in Reducing the Viability of Matrix-Attached Ovarian Cancer Cells

    PubMed Central

    Choi, Jeong In; Park, Sang Hi; Lee, Hee-Jin; Lee, Dae Woo; Lee, Hae Nam

    2016-01-01

    Objective To identify the proteins involved the compensatory adaptive response to paclitaxel in ovarian cancer cells and to determine whether inhibition of the compensatory adaptive response increases the efficacy of paclitaxel in decreasing the viability of cancer cells. Methods We used a reverse-phase protein array and western blot analysis to identify the proteins involved in the compensatory mechanism induced by paclitaxel in HeyA8 and SKOV3 ovarian cancer cells. We used a cell viability assay to examine whether inhibition of the proteins involved in the compensatory adaptive response influenced the effects of paclitaxel on cancer cell viability. All experiments were performed in three-dimensional cell cultures. Results Paclitaxel induced the upregulation of pS6 (S240/S244) and pS6 (S235/S236) in HeyA8 and SKOV3 cells, and pPRAS40 (T246) in HeyA8 cells. BX795 and CCT128930 were chosen as inhibitors of pS6 (S240/S244), pS6 (S235/S236), and pPRAS40 (T246). BX795 and CCT128930 decreased pS6 (S240/S244) and pS6 (S235/S236) expression in HeyA8 and SKOV3 cells. However, pPRAS40 (T246) expression was inhibited only by BX795 and not by CCT128930 in HeyA8 cells. Compared with paclitaxel alone, addition of BX795 or CCT128930 to paclitaxel was more effective in decreasing the viability of HeyA8 and SKOV3 cells. Conclusion Addition of BX795 or CCT128930 to inhibit pS6 (S240/S244) or pS6 (S235/S236) restricted the compensatory adaptive response to paclitaxel in HeyA8 and SKOV3 cells. These inhibitors increased the efficacy of paclitaxel in reducing cancer cell viability. PMID:27148873

  8. Mitogen-activated protein kinase signal transduction and DNA repair network are involved in aluminum-induced DNA damage and adaptive response in root cells of Allium cepa L.

    PubMed Central

    Panda, Brahma B.; Achary, V. Mohan M.

    2014-01-01

    In the current study, we studied the role of signal transduction in aluminum (Al3+)-induced DNA damage and adaptive response in root cells of Allium cepa L. The root cells in planta were treated with Al3+ (800 μM) for 3 h without or with 2 h pre-treatment of inhibitors of mitogen-activated protein kinase (MAPK), and protein phosphatase. Also, root cells in planta were conditioned with Al3+ (10 μM) for 2 h and then subjected to genotoxic challenge of ethyl methane sulfonate (EMS; 5 mM) for 3 h without or with the pre-treatment of the aforementioned inhibitors as well as the inhibitors of translation, transcription, DNA replication and repair. At the end of treatments, roots cells were assayed for cell death and/or DNA damage. The results revealed that Al3+ (800 μM)-induced significant DNA damage and cell death. On the other hand, conditioning with low dose of Al3+ induced adaptive response conferring protection of root cells from genotoxic stress caused by EMS-challenge. Pre-treatment of roots cells with the chosen inhibitors prior to Al3+-conditioning prevented or reduced the adaptive response to EMS genotoxicity. The results of this study suggested the involvement of MAPK and DNA repair network underlying Al-induced DNA damage and adaptive response to genotoxic stress in root cells of A. cepa. PMID:24926302

  9. Matricellular Proteins in Cardiac Adaptation and Disease

    PubMed Central

    Frangogiannis, Nikolaos G.

    2015-01-01

    The term “matricellular proteins” describes a family of structurally unrelated extracellular macromolecules that, unlike structural matrix proteins, do not play a primary role in tissue architecture, but are induced following injury and modulate cell:cell and cell:matrix interactions. When released to the matrix, matricellular proteins associate with growth factors, cytokines and other bioactive effectors and bind to cell surface receptors transducing signaling cascades. Matricellular proteins are upregulated in the injured and remodeling heart and play an important role in regulation of inflammatory, reparative, fibrotic and angiogenic pathways. Thrombospondins (TSP)-1, -2 and -4, tenascin-C and –X, secreted protein acidic and rich in cysteine (SPARC), osteopontin, periostin and members of the CCN family (including CCN1 and CCN2/Connective Tissue Growth Factor) are involved in a variety of cardiac pathophysiologic conditions, including myocardial infarction, cardiac hypertrophy and fibrosis, aging-associated myocardial remodeling, myocarditis, diabetic cardiomyopathy and valvular disease. This review manuscript discusses the properties and characteristics of the matricellular proteins and presents our current knowledge on their role in cardiac adaptation and disease. Understanding the role of matricellular proteins in myocardial pathophysiology and identification of the functional domains responsible for their actions may lead to design of peptides with therapeutic potential for patients with heart disease. PMID:22535894

  10. Viruses are a dominant driver of protein adaptation in mammals

    PubMed Central

    Enard, David; Cai, Le; Gwennap, Carina; Petrov, Dmitri A

    2016-01-01

    Viruses interact with hundreds to thousands of proteins in mammals, yet adaptation against viruses has only been studied in a few proteins specialized in antiviral defense. Whether adaptation to viruses typically involves only specialized antiviral proteins or affects a broad array of virus-interacting proteins is unknown. Here, we analyze adaptation in ~1300 virus-interacting proteins manually curated from a set of 9900 proteins conserved in all sequenced mammalian genomes. We show that viruses (i) use the more evolutionarily constrained proteins within the cellular functions they interact with and that (ii) despite this high constraint, virus-interacting proteins account for a high proportion of all protein adaptation in humans and other mammals. Adaptation is elevated in virus-interacting proteins across all functional categories, including both immune and non-immune functions. We conservatively estimate that viruses have driven close to 30% of all adaptive amino acid changes in the part of the human proteome conserved within mammals. Our results suggest that viruses are one of the most dominant drivers of evolutionary change across mammalian and human proteomes. DOI: http://dx.doi.org/10.7554/eLife.12469.001 PMID:27187613

  11. Viruses are a dominant driver of protein adaptation in mammals.

    PubMed

    Enard, David; Cai, Le; Gwennap, Carina; Petrov, Dmitri A

    2016-01-01

    Viruses interact with hundreds to thousands of proteins in mammals, yet adaptation against viruses has only been studied in a few proteins specialized in antiviral defense. Whether adaptation to viruses typically involves only specialized antiviral proteins or affects a broad array of virus-interacting proteins is unknown. Here, we analyze adaptation in ~1300 virus-interacting proteins manually curated from a set of 9900 proteins conserved in all sequenced mammalian genomes. We show that viruses (i) use the more evolutionarily constrained proteins within the cellular functions they interact with and that (ii) despite this high constraint, virus-interacting proteins account for a high proportion of all protein adaptation in humans and other mammals. Adaptation is elevated in virus-interacting proteins across all functional categories, including both immune and non-immune functions. We conservatively estimate that viruses have driven close to 30% of all adaptive amino acid changes in the part of the human proteome conserved within mammals. Our results suggest that viruses are one of the most dominant drivers of evolutionary change across mammalian and human proteomes. PMID:27187613

  12. Molecular mechanisms involved in plant adaptation to low K(+) availability.

    PubMed

    Chérel, Isabelle; Lefoulon, Cécile; Boeglin, Martin; Sentenac, Hervé

    2014-03-01

    Potassium is a major inorganic constituent of the living cell and the most abundant cation in the cytosol. It plays a role in various functions at the cell level, such as electrical neutralization of anionic charges, protein synthesis, long- and short-term control of membrane polarization, and regulation of the osmotic potential. Through the latter function, K(+) is involved at the whole-plant level in osmotically driven functions such as cell movements, regulation of stomatal aperture, or phloem transport. Thus, plant growth and development require that large amounts of K(+) are taken up from the soil and translocated to the various organs. In most ecosystems, however, soil K(+) availability is low and fluctuating, so plants have developed strategies to take up K(+) more efficiently and preserve vital functions and growth when K(+) availability is becoming limited. These strategies include increased capacity for high-affinity K(+) uptake from the soil, K(+) redistribution between the cytosolic and vacuolar pools, ensuring cytosolic homeostasis, and modification of root system development and architecture. Our knowledge about the mechanisms and signalling cascades involved in these different adaptive responses has been rapidly growing during the last decade, revealing a highly complex network of interacting processes. This review is focused on the different physiological responses induced by K(+) deprivation, their underlying molecular events, and the present knowledge and hypotheses regarding the mechanisms responsible for K(+) sensing and signalling. PMID:24293613

  13. Protein phosphorylation is involved in bacterial chemotaxis.

    PubMed Central

    Hess, J F; Oosawa, K; Matsumura, P; Simon, M I

    1987-01-01

    The nature of the biochemical signal that is involved in the excitation response in bacterial chemotaxis is not known. However, ATP is required for chemotaxis. We have purified all of the proteins involved in signal transduction and show that the product of the cheA gene is rapidly autophosphorylated, while some mutant CheA proteins cannot be phosphorylated. The presence of stoichiometric levels of two other purified components in the chemotaxis system, the CheY and CheZ proteins, induces dephosphorylation. We suggest that the phosphorylation of CheA by ATP plays a central role in signal transduction in chemotaxis. Images PMID:3313398

  14. An Adaptable Investigative Graduate Laboratory Course for Teaching Protein Purification

    ERIC Educational Resources Information Center

    Carroll, Christopher W.; Keller, Lani C.

    2014-01-01

    This adaptable graduate laboratory course on protein purification offers students the opportunity to explore a wide range of techniques while allowing the instructor the freedom to incorporate their own personal research interests. The course design involves two sequential purification schemes performed in a single semester. The first part…

  15. Adaptation in protein fitness landscapes is facilitated by indirect paths

    PubMed Central

    Wu, Nicholas C; Dai, Lei; Olson, C Anders; Lloyd-Smith, James O; Sun, Ren

    2016-01-01

    The structure of fitness landscapes is critical for understanding adaptive protein evolution. Previous empirical studies on fitness landscapes were confined to either the neighborhood around the wild type sequence, involving mostly single and double mutants, or a combinatorially complete subgraph involving only two amino acids at each site. In reality, the dimensionality of protein sequence space is higher (20L) and there may be higher-order interactions among more than two sites. Here we experimentally characterized the fitness landscape of four sites in protein GB1, containing 204 = 160,000 variants. We found that while reciprocal sign epistasis blocked many direct paths of adaptation, such evolutionary traps could be circumvented by indirect paths through genotype space involving gain and subsequent loss of mutations. These indirect paths alleviate the constraint on adaptive protein evolution, suggesting that the heretofore neglected dimensions of sequence space may change our views on how proteins evolve. DOI: http://dx.doi.org/10.7554/eLife.16965.001 PMID:27391790

  16. Autophagy and proteins involved in vesicular trafficking.

    PubMed

    Amaya, Celina; Fader, Claudio Marcelo; Colombo, María Isabel

    2015-11-14

    Autophagy is an intracellular degradation system that, as a basic mechanism it delivers cytoplasmic components to the lysosomes in order to maintain adequate energy levels and cellular homeostasis. This complex cellular process is activated by low cellular nutrient levels and other stress situations such as low ATP levels, the accumulation of damaged proteins or organelles, or pathogen invasion. Autophagy as a multistep process involves vesicular transport events leading to tethering and fusion of autophagic vesicles with several intracellular compartments. This review summarizes our current understanding of the autophagic pathway with emphasis in the trafficking machinery (i.e. Rabs GTPases and SNAP receptors (SNAREs)) involved in specific steps of the pathway. PMID:26450776

  17. Involvement of the eye in protein malnutrition*

    PubMed Central

    McLaren, D. S.

    1958-01-01

    An extensive review of the literature on protein malnutrition, with special reference to the frequency of involvement of the eyes, has been made by the author. Consideration of accounts from all parts of the world and in many different languages, including early as well as more recent descriptions of the syndrome, indicates that this important complication has not received sufficient attention hitherto. The evidence available suggests that it is nearly always an accompanying deficiency of vitamin A that is responsible. Less commonly reported—and producing less severe effects—is deficiency of the B-complex vitamins, and there is no clear evidence to date that protein deficiency itself damages the eyes in these cases. The ways in which protein lack might interfere with various aspects of vitamin-A metabolism are discussed, but it is pointed out that their actual significance in human disease is not yet known. A low dietary intake of vitamin A is regarded by the author as being the prime factor in the causation of eye complications, and attention is drawn to the necessity to correct this as part of any prophylactic or therapeutic programme aimed primarily at combating protein malnutrition. PMID:13585077

  18. Yeast ABC proteins involved in multidrug resistance.

    PubMed

    Piecuch, Agata; Obłąk, Ewa

    2014-03-01

    Pleiotropic drug resistance is a complex phenomenon that involves many proteins that together create a network. One of the common mechanisms of multidrug resistance in eukaryotic cells is the active efflux of a broad range of xenobiotics through ATP-binding cassette (ABC) transporters. Saccharomyces cerevisiae is often used as a model to study such activity because of the functional and structural similarities of its ABC transporters to mammalian ones. Numerous ABC transporters are found in humans and some are associated with the resistance of tumors to chemotherapeutics. Efflux pump modulators that change the activity of ABC proteins are the most promising candidate drugs to overcome such resistance. These modulators can be chemically synthesized or isolated from natural sources (e.g., plant alkaloids) and might also be used in the treatment of fungal infections. There are several generations of synthetic modulators that differ in specificity, toxicity and effectiveness, and are often used for other clinical effects. PMID:24297686

  19. Defective Expression of the Mitochondrial-tRNA Modifying Enzyme GTPBP3 Triggers AMPK-Mediated Adaptive Responses Involving Complex I Assembly Factors, Uncoupling Protein 2, and the Mitochondrial Pyruvate Carrier

    PubMed Central

    Esteve, Juan M.; Villarroya, Magda; Aguado, Carmen; Enríquez, J. Antonio; Knecht, Erwin; Armengod, M.-Eugenia

    2015-01-01

    GTPBP3 is an evolutionary conserved protein presumably involved in mitochondrial tRNA (mt-tRNA) modification. In humans, GTPBP3 mutations cause hypertrophic cardiomyopathy with lactic acidosis, and have been associated with a defect in mitochondrial translation, yet the pathomechanism remains unclear. Here we use a GTPBP3 stable-silencing model (shGTPBP3 cells) for a further characterization of the phenotype conferred by the GTPBP3 defect. We experimentally show for the first time that GTPBP3 depletion is associated with an mt-tRNA hypomodification status, as mt-tRNAs from shGTPBP3 cells were more sensitive to digestion by angiogenin than tRNAs from control cells. Despite the effect of stable silencing of GTPBP3 on global mitochondrial translation being rather mild, the steady-state levels and activity of Complex I, and cellular ATP levels were 50% of those found in the controls. Notably, the ATPase activity of Complex V increased by about 40% in GTPBP3 depleted cells suggesting that mitochondria consume ATP to maintain the membrane potential. Moreover, shGTPBP3 cells exhibited enhanced antioxidant capacity and a nearly 2-fold increase in the uncoupling protein UCP2 levels. Our data indicate that stable silencing of GTPBP3 triggers an AMPK-dependent retrograde signaling pathway that down-regulates the expression of the NDUFAF3 and NDUFAF4 Complex I assembly factors and the mitochondrial pyruvate carrier (MPC), while up-regulating the expression of UCP2. We also found that genes involved in glycolysis and oxidation of fatty acids are up-regulated. These data are compatible with a model in which high UCP2 levels, together with a reduction in pyruvate transport due to the down-regulation of MPC, promote a shift from pyruvate to fatty acid oxidation, and to an uncoupling of glycolysis and oxidative phosphorylation. These metabolic alterations, and the low ATP levels, may negatively affect heart function. PMID:26642043

  20. Van der Waals Interactions Involving Proteins

    NASA Technical Reports Server (NTRS)

    Roth, Charles M.; Neal, Brian L.; Lenhoff, Abraham M.

    1996-01-01

    Van der Waals (dispersion) forces contribute to interactions of proteins with other molecules or with surfaces, but because of the structural complexity of protein molecules, the magnitude of these effects is usually estimated based on idealized models of the molecular geometry, e.g., spheres or spheroids. The calculations reported here seek to account for both the geometric irregularity of protein molecules and the material properties of the interacting media. Whereas the latter are found to fall in the generally accepted range, the molecular shape is shown to cause the magnitudes of the interactions to differ significantly from those calculated using idealized models. with important consequences. First, the roughness of the molecular surface leads to much lower average interaction energies for both protein-protein and protein-surface cases relative to calculations in which the protein molecule is approximated as a sphere. These results indicate that a form of steric stabilization may be an important effect in protein solutions. Underlying this behavior is appreciable orientational dependence, one reflection of which is that molecules of complementary shape are found to exhibit very strong attractive dispersion interactions. Although this has been widely discussed previously in the context of molecular recognition processes, the broader implications of these phenomena may also be important at larger molecular separations, e.g., in the dynamics of aggregation, precipitation, and crystal growth.

  1. Van der Waals interactions involving proteins.

    PubMed Central

    Roth, C M; Neal, B L; Lenhoff, A M

    1996-01-01

    Van der Waals (dispersion) forces contribute to interactions of proteins with other molecules or with surfaces, but because of the structural complexity of protein molecules, the magnitude of these effects is usually estimated based on idealized models of the molecular geometry, e.g., spheres or spheroids. The calculations reported here seek to account for both the geometric irregularity of protein molecules and the material properties of the interacting media. Whereas the latter are found to fall in the generally accepted range, the molecular shape is shown to cause the magnitudes of the interactions to differ significantly from those calculated using idealized models, with important consequences. First, the roughness of the molecular surface leads to much lower average interaction energies for both protein-protein and protein-surface cases relative to calculations in which the protein molecule is approximated as a sphere. These results indicate that a form of steric stabilization may be an important effect in protein solutions. Underlying this behavior is appreciable orientational dependence, one reflection of which is that molecules of complementary shape are found to exhibit very strong attractive dispersion interactions. Although this has been widely discussed previously in the context of molecular recognition processes, the broader implications of these phenomena may also be important at larger molecular separations, e.g., in the dynamics of aggregation, precipitation, and crystal growth. Images FIGURE 3 PMID:8789115

  2. Effect of Adaptation to Ethanol on Cytoplasmic and Membrane Protein Profiles of Oenococcus oeni

    PubMed Central

    Silveira, M. Graça; Baumgärtner, Maja; Rombouts, Frank M.; Abee, Tjakko

    2004-01-01

    The practical application of commercial malolactic starter cultures of Oenococcus oeni surviving direct inoculation in wine requires insight into mechanisms of ethanol toxicity and of acquired ethanol tolerance in this organism. Therefore, the site-specific location of proteins involved in ethanol adaptation, including cytoplasmic, membrane-associated, and integral membrane proteins, was investigated. Ethanol triggers alterations in protein patterns of O. oeni cells stressed with 12% ethanol for 1 h and those of cells grown in the presence of 8% ethanol. Levels of inosine-5′-monophosphate dehydrogenase and phosphogluconate dehydrogenase, which generate reduced nicotinamide nucleotides, were decreased during growth in the presence of ethanol, while glutathione reductase, which consumes NADPH, was induced, suggesting that maintenance of the redox balance plays an important role in ethanol adaptation. Phosphoenolpyruvate:mannose phosphotransferase system (PTS) components of mannose PTS, including the phosphocarrier protein HPr and EIIMan, were lacking in ethanol-adapted cells, providing strong evidence that mannose PTS is absent in ethanol-adapted cells, and this represents a metabolic advantage to O. oeni cells during malolactic fermentation. In cells grown in the presence of ethanol, a large increase in the number of membrane-associated proteins was observed. Interestingly, two of these proteins, dTDT-glucose-4,6-dehydratase and d-alanine:d-alanine ligase, are known to be involved in cell wall biosynthesis. Using a proteomic approach, we provide evidence for an active ethanol adaptation response of O. oeni at the cytoplasmic and membrane protein levels. PMID:15128528

  3. Adaptive responses of mitochondria to mild copper deprivation involve changes in morphology, OXPHOS remodeling and bioenergetics.

    PubMed

    Ruiz, Lina María; Jensen, Erik L; Bustos, Rodrigo I; Argüelloa, Graciela; Gutierrez-Garcia, Ricardo; González, Mauricio; Hernández, Claudia; Paredes, Rodolfo; Simon, Felipe; Riedel, Claudia; Ferrick, David; Elorza, Alvaro A

    2014-05-01

    Copper is an essential cofactor of complex IV of the electron transfer chain, and it is directly involved in the generation of mitochondrial membrane potential. Its deficiency induces the formation of ROS, large mitochondria and anemia. Thus, there is a connection between copper metabolism and bioenergetics, mitochondrial dynamics and erythropoiesis. Copper depletion might end in cellular apoptosis or necrosis. However, before entering into those irreversible processes, mitochondria may execute a series of adaptive responses. Mitochondrial adaptive responses (MAR) may involve multiple and diverse mechanisms for preserving cell life, such as mitochondrial dynamics, OXPHOS remodeling and bioenergetics output. In this study, a mild copper deficiency was produced in an animal model through intraperitoneal injections of bathocuproine disulfonate in order to study the MAR. Under these conditions, a new type of mitochondrial morphology was discovered in the liver. Termed the "butternut squash" mitochondria, it coexisted with normal and swollen mitochondria. Western blot analyses of mitochondrial dynamics proteins showed an up-regulation of MFN-2 and OPA1 fusion proteins. Furthermore, isolated liver mitochondria displayed OXPHOS remodeling through a decrease in supercomplex activity with a concomitant increase at an individual level of complexes I and IV, higher respiratory rates at complex I and II levels, higher oligomycin-insensitive respiration, and lower respiratory control ratio values when compared to the control group. As expected, total ATP and ATP/ADP values were not significantly different, since animal's health was not compromised. As a whole, these results describe a compensatory and adaptive response of metabolism and bioenergetics under copper deprivation. PMID:24446197

  4. Communication Adaptability and Interaction Involvement as Predictors of Cross-Cultural Adjustment.

    ERIC Educational Resources Information Center

    Chen, Guo-Ming

    A study of 142 foreign college students staying in the United States examined the effects of communication adaptability and interaction involvement on cross-cultural adjustment. Further testing was conducted to investigate which of the components of communication adaptability and interaction involvement best predicted the dimensions of…

  5. Adapter Reagents for Protein Site Specific Dye Labeling

    PubMed Central

    Thompson, Darren A.; Evans, Eric G. B.; Kasza, Tomas; Millhauser, Glenn L.; Dawson, Philip E.

    2016-01-01

    Chemoselective protein labeling remains a significant challenge in chemical biology. Although many selective labeling chemistries have been reported, the practicalities of matching the reaction with appropriately functionalized proteins and labeling reagents is often a challenge. For example, we encountered the challenge of site specifically labeling the cellular form of the murine Prion protein with a fluorescent dye. To facilitate this labeling, a protein was expressed with site specific p-acetylphenylalanine. However, the utility of this aceto-phenone reactive group is hampered by the severe lack of commercially available aminooxy fluorophores. Here we outline a general strategy for the efficient solid phase synthesis of adapter reagents capable of converting maleimido-labels into aminooxy or azide functional groups that can be further tuned for desired length or solubility properties. The utility of the adapter strategy is demonstrated in the context of fluorescent labeling of the murine Prion protein through an adapted aminooxy-Alexa dye. PMID:24599728

  6. Methods for Mapping of Interaction Networks Involving Membrane Proteins

    SciTech Connect

    Hooker, Brian S.; Bigelow, Diana J.; Lin, Chiann Tso

    2007-11-23

    Numerous approaches have been taken to study protein interactions, such as tagged protein complex isolation followed by mass spectrometry, yeast two-hybrid methods, fluorescence resonance energy transfer, surface plasmon resonance, site-directed mutagenesis, and crystallography. Membrane protein interactions pose significant challenges due to the need to solubilize membranes without disrupting protein-protein interactions. Traditionally, analysis of isolated protein complexes by high-resolution 2D gel electrophoresis has been the main method used to obtain an overall picture of proteome constituents and interactions. However, this method is time consuming, labor intensive, detects only abundant proteins and is not suitable for the coverage required to elucidate large interaction networks. In this review, we discuss the application of various methods to elucidate interactions involving membrane proteins. These techniques include methods for the direct isolation of single complexes or interactors as well as methods for characterization of entire subcellular and cellular interactomes.

  7. The trypanocidal benznidazole promotes adaptive response to oxidative injury: Involvement of the nuclear factor-erythroid 2-related factor-2 (Nrf2) and multidrug resistance associated protein 2 (MRP2).

    PubMed

    Rigalli, Juan Pablo; Perdomo, Virginia Gabriela; Ciriaci, Nadia; Francés, Daniel Eleazar Antonio; Ronco, María Teresa; Bataille, Amy Michele; Ghanem, Carolina Inés; Ruiz, María Laura; Manautou, José Enrique; Catania, Viviana Alicia

    2016-08-01

    Oxidative stress is a frequent cause underlying drug-induced hepatotoxicity. Benznidazole (BZL) is the only trypanocidal agent available for treatment of Chagas disease in endemic areas. Its use is associated with side effects, including increases in biomarkers of hepatotoxicity. However, BZL potential to cause oxidative stress has been poorly investigated. Here, we evaluated the effect of a pharmacologically relevant BZL concentration (200μM) at different time points on redox status and the counteracting mechanisms in the human hepatic cell line HepG2. BZL increased reactive oxygen species (ROS) after 1 and 3h of exposure, returning to normality at 24h. Additionally, BZL increased glutathione peroxidase activity at 12h and the oxidized glutathione/total glutathione (GSSG/GSSG+GSH) ratio that reached a peak at 24h. Thus, an enhanced detoxification of peroxide and GSSG formation could account for ROS normalization. GSSG/GSSG+GSH returned to control values at 48h. Expression of the multidrug resistance-associated protein 2 (MRP2) and GSSG efflux via MRP2 were induced by BZL at 24 and 48h, explaining normalization of GSSG/GSSG+GSH. BZL activated the nuclear erythroid 2-related factor 2 (Nrf2), already shown to modulate MRP2 expression in response to oxidative stress. Nrf2 participation was confirmed using Nrf2-knockout mice in which MRP2 mRNA expression was not affected by BZL. In summary, we demonstrated a ROS increase by BZL in HepG2 cells and a glutathione peroxidase- and MRP2 driven counteracting mechanism, being Nrf2 a key modulator of this response. Our results could explain hepatic alterations associated with BZL therapy. PMID:27180241

  8. Species adaptation in a protein molecule.

    PubMed

    Perutz, M F

    1983-12-01

    The allosteric properties of hemoglobins, especially their responses to ligands other than oxygen, vary widely in different classes of vertebrates. Knowing the stereochemistry of the cooperative effects in human hemoglobin, one can infer the stereochemical basis of these variations from the changes in amino acid sequence. The results indicate that the tertiary and quaternary structures of deoxy- and oxyhemoglobin have remained almost invariant during vertebrate evolution and that most of the amino acid replacements between species are functionally neutral. Adaptations leading to responses to new chemical stimuli have evolved by only a few (one to five) amino acid substitutions in key positions. Once such a response has become superfluous, it may be inactivated, not necessarily by a reversal of one of the original substitutions but by any other that happens to inhibit it. PMID:6400645

  9. Identification of Inhibitors of Biological Interactions Involving Intrinsically Disordered Proteins

    PubMed Central

    Marasco, Daniela; Scognamiglio, Pasqualina Liana

    2015-01-01

    Protein–protein interactions involving disordered partners have unique features and represent prominent targets in drug discovery processes. Intrinsically Disordered Proteins (IDPs) are involved in cellular regulation, signaling and control: they bind to multiple partners and these high-specificity/low-affinity interactions play crucial roles in many human diseases. Disordered regions, terminal tails and flexible linkers are particularly abundant in DNA-binding proteins and play crucial roles in the affinity and specificity of DNA recognizing processes. Protein complexes involving IDPs are short-lived and typically involve short amino acid stretches bearing few “hot spots”, thus the identification of molecules able to modulate them can produce important lead compounds: in this scenario peptides and/or peptidomimetics, deriving from structure-based, combinatorial or protein dissection approaches, can play a key role as hit compounds. Here, we propose a panoramic review of the structural features of IDPs and how they regulate molecular recognition mechanisms focusing attention on recently reported drug-design strategies in the field of IDPs. PMID:25849651

  10. Adaptive Evolution and Functional Redesign of Core Metabolic Proteins in Snakes

    PubMed Central

    Gu, Wanjun; Wang, Zhengyuan O.; Pollock, David D.

    2008-01-01

    Background Adaptive evolutionary episodes in core metabolic proteins are uncommon, and are even more rarely linked to major macroevolutionary shifts. Methodology/Principal Findings We conducted extensive molecular evolutionary analyses on snake mitochondrial proteins and discovered multiple lines of evidence suggesting that the proteins at the core of aerobic metabolism in snakes have undergone remarkably large episodic bursts of adaptive change. We show that snake mitochondrial proteins experienced unprecedented levels of positive selection, coevolution, convergence, and reversion at functionally critical residues. We examined Cytochrome C oxidase subunit I (COI) in detail, and show that it experienced extensive modification of normally conserved residues involved in proton transport and delivery of electrons and oxygen. Thus, adaptive changes likely altered the flow of protons and other aspects of function in CO, thereby influencing fundamental characteristics of aerobic metabolism. We refer to these processes as “evolutionary redesign” because of the magnitude of the episodic bursts and the degree to which they affected core functional residues. Conclusions/Significance The evolutionary redesign of snake COI coincided with adaptive bursts in other mitochondrial proteins and substantial changes in mitochondrial genome structure. It also generally coincided with or preceded major shifts in ecological niche and the evolution of extensive physiological adaptations related to lung reduction, large prey consumption, and venom evolution. The parallel timing of these major evolutionary events suggests that evolutionary redesign of metabolic and mitochondrial function may be related to, or underlie, the extreme changes in physiological and metabolic efficiency, flexibility, and innovation observed in snake evolution. PMID:18493604

  11. Viral and host proteins involved in picornavirus life cycle.

    PubMed

    Lin, Jing-Yi; Chen, Tzu-Chun; Weng, Kuo-Feng; Chang, Shih-Cheng; Chen, Li-Lien; Shih, Shin-Ru

    2009-01-01

    Picornaviruses cause several diseases, not only in humans but also in various animal hosts. For instance, human enteroviruses can cause hand-foot-and-mouth disease, herpangina, myocarditis, acute flaccid paralysis, acute hemorrhagic conjunctivitis, severe neurological complications, including brainstem encephalitis, meningitis and poliomyelitis, and even death. The interaction between the virus and the host is important for viral replication, virulence and pathogenicity. This article reviews studies of the functions of viral and host factors that are involved in the life cycle of picornavirus. The interactions of viral capsid proteins with host cell receptors is discussed first, and the mechanisms by which the viral and host cell factors are involved in viral replication, viral translation and the switch from translation to RNA replication are then addressed. Understanding how cellular proteins interact with viral RNA or viral proteins, as well as the roles of each in viral infection, will provide insights for the design of novel antiviral agents based on these interactions. PMID:19925687

  12. Dialysis-related amyloidosis: visceral involvement and protein constituents.

    PubMed

    Campistol, J M; Argilés, A

    1996-01-01

    beta 2-M amyloidosis mainly concerns dialysis patients and typically presents with osteoarticular symptoms. In order to precise the incidence and gravity of visceral involvement, subcutaneous abdominal fat aspirates, skin and rectal biopsies, as well as echocardiograms were performed in 26 patients with severe beta 2-M amyloidosis. Visceral amyloidosis was confirmed in 58% and the numbers were even higher when including heart abnormalities suggestive of amyloidosis (81%). Clinical manifestations of visceral involvement were usually not severe and include odynophagia, gastrointestinal haemorrhage, intestinal obstruction, kidney stones, myocardial dysfunction and subcutaneous tumours. The removal and synthesis rates of beta 2-M were assessed during dialysis. Serum 131I-beta 2-M levels decreased by 5-10% with cuprophane and by 40-45% with polysulfone and polyacrylonitrile membranes. These reduction rates were higher than those found with unlabelled beta 2-M suggesting an increased synthesis or release during dialysis. The protein constituents of amyloid deposits were studied. Two different preparative methods to extract the proteins from amyloid deposits were used. TCA precipitation showed the presence of several proteins which were not observed with PBS homogenizing and resuspending in guanidine. The protein constituents of amyloid fibrils were studied by both, two dimensional gel electrophoresis (2D-gel) as well as protein sequencing after gel filtration. Similarly, the technical approach used for protein analysis greatly influenced the results. It was observed that 2D-gel displayed the presence of proteins which were missed by the gel filtration technique. Some of the proteins contained in amyloid deposits in addition to beta 2-M, were identified as globin chains, kappa and lambda light chains of immunoglobulins, and alpha 2 macroglobulin. A putative participation of these other protein constituents on the pathogenesis of beta 2-microglobulin amyloidosis is

  13. Protein cold adaptation strategy via a unique seven-amino acid domain in the icefish (Chionodraco hamatus) PEPT1 transporter

    PubMed Central

    Rizzello, Antonia; Romano, Alessandro; Kottra, Gabor; Acierno, Raffaele; Storelli, Carlo; Verri, Tiziano; Daniel, Hannelore; Maffia, Michele

    2013-01-01

    Adaptation of organisms to extreme environments requires proteins to work at thermodynamically unfavorable conditions. To adapt to subzero temperatures, proteins increase the flexibility of parts of, or even the whole, 3D structure to compensate for the lower thermal kinetic energy available at low temperatures. This may be achieved through single-site amino acid substitutions in regions of the protein that undergo large movements during the catalytic cycle, such as in enzymes or transporter proteins. Other strategies of cold adaptation involving changes in the primary amino acid sequence have not been documented yet. In Antarctic icefish (Chionodraco hamatus) peptide transporter 1 (PEPT1), the first transporter cloned from a vertebrate living at subzero temperatures, we came upon a unique principle of cold adaptation. A de novo domain composed of one to six repeats of seven amino acids (VDMSRKS), placed as an extra stretch in the cytosolic COOH-terminal region, contributed per se to cold adaptation. VDMSRKS was in a protein region uninvolved in transport activity and, notably, when transferred to the COOH terminus of a warm-adapted (rabbit) PEPT1, it conferred cold adaptation to the receiving protein. Overall, we provide a paradigm for protein cold adaptation that relies on insertion of a unique domain that confers greater affinity and maximal transport rates at low temperatures. Due to its ability to transfer a thermal trait, the VDMSRKS domain represents a useful tool for future cell biology or biotechnological applications. PMID:23569229

  14. Protein cold adaptation strategy via a unique seven-amino acid domain in the icefish (Chionodraco hamatus) PEPT1 transporter.

    PubMed

    Rizzello, Antonia; Romano, Alessandro; Kottra, Gabor; Acierno, Raffaele; Storelli, Carlo; Verri, Tiziano; Daniel, Hannelore; Maffia, Michele

    2013-04-23

    Adaptation of organisms to extreme environments requires proteins to work at thermodynamically unfavorable conditions. To adapt to subzero temperatures, proteins increase the flexibility of parts of, or even the whole, 3D structure to compensate for the lower thermal kinetic energy available at low temperatures. This may be achieved through single-site amino acid substitutions in regions of the protein that undergo large movements during the catalytic cycle, such as in enzymes or transporter proteins. Other strategies of cold adaptation involving changes in the primary amino acid sequence have not been documented yet. In Antarctic icefish (Chionodraco hamatus) peptide transporter 1 (PEPT1), the first transporter cloned from a vertebrate living at subzero temperatures, we came upon a unique principle of cold adaptation. A de novo domain composed of one to six repeats of seven amino acids (VDMSRKS), placed as an extra stretch in the cytosolic COOH-terminal region, contributed per se to cold adaptation. VDMSRKS was in a protein region uninvolved in transport activity and, notably, when transferred to the COOH terminus of a warm-adapted (rabbit) PEPT1, it conferred cold adaptation to the receiving protein. Overall, we provide a paradigm for protein cold adaptation that relies on insertion of a unique domain that confers greater affinity and maximal transport rates at low temperatures. Due to its ability to transfer a thermal trait, the VDMSRKS domain represents a useful tool for future cell biology or biotechnological applications. PMID:23569229

  15. Structure of the GAT domain of the endosomal adapter protein Tom1

    PubMed Central

    Xiao, Shuyan; Ellena, Jeffrey F.; Armstrong, Geoffrey S.; Capelluto, Daniel G.S.

    2016-01-01

    Cellular homeostasis requires correct delivery of cell-surface receptor proteins (cargo) to their target subcellular compartments. The adapter proteins Tom1 and Tollip are involved in sorting of ubiquitinated cargo in endosomal compartments. Recruitment of Tom1 to the endosomal compartments is mediated by its GAT domain’s association to Tollip’s Tom1-binding domain (TBD). In this data article, we report the solution NMR-derived structure of the Tom1 GAT domain. The estimated protein structure exhibits a bundle of three helical elements. We compare the Tom1 GAT structure with those structures corresponding to the Tollip TBD- and ubiquitin-bound states. PMID:26977434

  16. Structure of the GAT domain of the endosomal adapter protein Tom1.

    PubMed

    Xiao, Shuyan; Ellena, Jeffrey F; Armstrong, Geoffrey S; Capelluto, Daniel G S

    2016-06-01

    Cellular homeostasis requires correct delivery of cell-surface receptor proteins (cargo) to their target subcellular compartments. The adapter proteins Tom1 and Tollip are involved in sorting of ubiquitinated cargo in endosomal compartments. Recruitment of Tom1 to the endosomal compartments is mediated by its GAT domain's association to Tollip's Tom1-binding domain (TBD). In this data article, we report the solution NMR-derived structure of the Tom1 GAT domain. The estimated protein structure exhibits a bundle of three helical elements. We compare the Tom1 GAT structure with those structures corresponding to the Tollip TBD- and ubiquitin-bound states. PMID:26977434

  17. Survival Response to Increased Ceramide Involves Metabolic Adaptation through Novel Regulators of Glycolysis and Lipolysis

    PubMed Central

    Walls, Stanley M.; Singh, Alka; Zhu, Lihua Julie; Bamba, Takeshi; Fukusaki, Eiichiro; Srideshikan, Sargur M.; Harris, Greg L.; Ip, Y. Tony; Bodmer, Rolf; Acharya, Usha R.

    2013-01-01

    The sphingolipid ceramide elicits several stress responses, however, organisms survive despite increased ceramide but how they do so is poorly understood. We demonstrate here that the AKT/FOXO pathway regulates survival in increased ceramide environment by metabolic adaptation involving changes in glycolysis and lipolysis through novel downstream targets. We show that ceramide kinase mutants accumulate ceramide and this leads to reduction in energy levels due to compromised oxidative phosphorylation. Mutants show increased activation of Akt and a consequent decrease in FOXO levels. These changes lead to enhanced glycolysis by upregulating the activity of phosphoglyceromutase, enolase, pyruvate kinase, and lactate dehydrogenase to provide energy. A second major consequence of AKT/FOXO reprogramming in the mutants is the increased mobilization of lipid from the gut through novel lipase targets, CG8093 and CG6277 for energy contribution. Ubiquitous reduction of these targets by knockdown experiments results in semi or total lethality of the mutants, demonstrating the importance of activating them. The efficiency of these adaptive mechanisms decreases with age and leads to reduction in adult life span of the mutants. In particular, mutants develop cardiac dysfunction with age, likely reflecting the high energy requirement of a well-functioning heart. The lipases also regulate physiological triacylglycerol homeostasis and are important for energy metabolism since midgut specific reduction of them in wild type flies results in increased sensitivity to starvation and accumulation of triglycerides leading to cardiac defects. The central findings of increased AKT activation, decreased FOXO level and activation of phosphoglyceromutase and pyruvate kinase are also observed in mice heterozygous for ceramide transfer protein suggesting a conserved role of this pathway in mammals. These data reveal novel glycolytic and non-autonomous lipolytic pathways in response to increased

  18. RNA-binding proteins involved in post-transcriptional regulation in bacteria

    PubMed Central

    Van Assche, Elke; Van Puyvelde, Sandra; Vanderleyden, Jos; Steenackers, Hans P.

    2015-01-01

    Post-transcriptional regulation is a very important mechanism to control gene expression in changing environments. In the past decade, a lot of interest has been directed toward the role of small RNAs (sRNAs) in bacterial post-transcriptional regulation. However, sRNAs are not the only molecules controlling gene expression at this level, RNA-binding proteins (RBPs) play an important role as well. CsrA and Hfq are the two best studied bacterial proteins of this type, but recently, additional proteins involved in post-transcriptional control have been identified. This review focuses on the general working mechanisms of post-transcriptionally active RBPs, which include (i) adaptation of the susceptibility of mRNAs and sRNAs to RNases, (ii) modulating the accessibility of the ribosome binding site of mRNAs, (iii) recruiting and assisting in the interaction of mRNAs with other molecules and (iv) regulating transcription terminator/antiterminator formation, and gives an overview of both the well-studied and the newly identified proteins that are involved in post-transcriptional regulatory processes. Additionally, the post-transcriptional mechanisms by which the expression or the activity of these proteins is regulated, are described. For many of the newly identified proteins, however, mechanistic questions remain. Most likely, more post-transcriptionally active proteins will be identified in the future. PMID:25784899

  19. Identifying Unstable Regions of Proteins Involved in Misfolding Diseases

    NASA Astrophysics Data System (ADS)

    Guest, Will; Cashman, Neil; Plotkin, Steven

    2009-05-01

    Protein misfolding is a necessary step in the pathogenesis of many diseases, including Creutzfeldt-Jakob disease (CJD) and familial amyotrophic lateral sclerosis (fALS). Identifying unstable structural elements in their causative proteins elucidates the early events of misfolding and presents targets for inhibition of the disease process. An algorithm was developed to calculate the Gibbs free energy of unfolding for all sequence-contiguous regions of a protein using three methods to parameterize energy changes: a modified G=o model, changes in solvent-accessible surface area, and all-atoms molecular dynamics. The entropic effects of disulfide bonds and post-translational modifications are treated analytically. It incorporates a novel method for finding local dielectric constants inside a protein to accurately handle charge effects. We have predicted the unstable parts of prion protein and superoxide dismutase 1, the proteins involved in CJD and fALS respectively, and have used these regions as epitopes to prepare antibodies that are specific to the misfolded conformation and show promise as therapeutic agents.

  20. First identification of proteins involved in motility of Mycoplasma gallisepticum.

    PubMed

    Indikova, Ivana; Vronka, Martin; Szostak, Michael P

    2014-01-01

    Mycoplasma gallisepticum, the most pathogenic mycoplasma in poultry, is able to glide over solid surfaces. Although this gliding motility was first observed in 1968, no specific protein has yet been shown to be involved in gliding. We examined M. gallisepticum strains and clonal variants for motility and found that the cytadherence proteins GapA and CrmA were required for gliding. Loss of GapA or CrmA resulted in the loss of motility and hemadsorption and led to drastic changes in the characteristic flask-shape of the cells. To identify further genes involved in motility, a transposon mutant library of M. gallisepticum was generated and screened for motility-deficient mutants, using a screening assay based on colony morphology. Motility-deficient mutants had transposon insertions in gapA and the neighbouring downstream gene crmA. In addition, insertions were seen in gene mgc2, immediately upstream of gapA, in two motility-deficient mutants. In contrast to the GapA/CrmA mutants, the mgc2 motility mutants still possessed the ability to hemadsorb. Complementation of these mutants with a mgc2-hexahistidine fusion gene restored the motile phenotype. This is the first report assigning specific M. gallisepticum proteins to involvement in gliding motility. PMID:25323771

  1. Proteomic detection of proteins involved in perchlorate and chlorate metabolism.

    PubMed

    Bansal, Reema; Deobald, Lee A; Crawford, Ronald L; Paszczynski, Andrzej J

    2009-09-01

    Mass spectrometry and a time-course cell lysis method were used to study proteins involved in perchlorate and chlorate metabolism in pure bacterial cultures and environmental samples. The bacterial cultures used included Dechlorosoma sp. KJ, Dechloromonas hortensis, Pseudomonas chloritidismutans ASK-1, and Pseudomonas stutzeri. The environmental samples included an anaerobic sludge enrichment culture from a sewage treatment plant, a sample of a biomass-covered activated carbon matrix from a bioreactor used for treating perchlorate-contaminated drinking water, and a waste water effluent sample from a paper mill. The approach focused on detection of perchlorate (and chlorate) reductase and chlorite dismutase proteins, which are the two central enzymes in the perchlorate (or chlorate) reduction pathways. In addition, acetate-metabolizing enzymes in pure bacterial samples and housekeeping proteins from perchlorate (or chlorate)-reducing microorganisms in environmental samples were also identified. PMID:19199051

  2. Molecular signaling involving intrinsically disordered proteins in prostate cancer.

    PubMed

    Russo, Anna; Manna, Sara La; Novellino, Ettore; Malfitano, Anna Maria; Marasco, Daniela

    2016-01-01

    Investigations on cellular protein interaction networks (PINs) reveal that proteins that constitute hubs in a PIN are notably enriched in Intrinsically Disordered Proteins (IDPs) compared to proteins that constitute edges, highlighting the role of IDPs in signaling pathways. Most IDPs rapidly undergo disorder-to-order transitions upon binding to their biological targets to perform their function. Conformational dynamics enables IDPs to be versatile and to interact with a broad range of interactors under normal physiological conditions where their expression is tightly modulated. IDPs are involved in many cellular processes such as cellular signaling, transcriptional regulation, and splicing; thus, their high-specificity/low-affinity interactions play crucial roles in many human diseases including cancer. Prostate cancer (PCa) is one of the leading causes of cancer-related mortality in men worldwide. Therefore, identifying molecular mechanisms of the oncogenic signaling pathways that are involved in prostate carcinogenesis is crucial. In this review, we focus on the aspects of cellular pathways leading to PCa in which IDPs exert a primary role. PMID:27212129

  3. Molecular signaling involving intrinsically disordered proteins in prostate cancer

    PubMed Central

    Russo, Anna; Manna, Sara La; Novellino, Ettore; Malfitano, Anna Maria; Marasco, Daniela

    2016-01-01

    Investigations on cellular protein interaction networks (PINs) reveal that proteins that constitute hubs in a PIN are notably enriched in Intrinsically Disordered Proteins (IDPs) compared to proteins that constitute edges, highlighting the role of IDPs in signaling pathways. Most IDPs rapidly undergo disorder-to-order transitions upon binding to their biological targets to perform their function. Conformational dynamics enables IDPs to be versatile and to interact with a broad range of interactors under normal physiological conditions where their expression is tightly modulated. IDPs are involved in many cellular processes such as cellular signaling, transcriptional regulation, and splicing; thus, their high-specificity/low-affinity interactions play crucial roles in many human diseases including cancer. Prostate cancer (PCa) is one of the leading causes of cancer-related mortality in men worldwide. Therefore, identifying molecular mechanisms of the oncogenic signaling pathways that are involved in prostate carcinogenesis is crucial. In this review, we focus on the aspects of cellular pathways leading to PCa in which IDPs exert a primary role. PMID:27212129

  4. Dynamics and Adaptive Benefits of Protein Domain Emergence and Arrangements during Plant Genome Evolution

    PubMed Central

    Kersting, Anna R.; Bornberg-Bauer, Erich; Moore, Andrew D.; Grath, Sonja

    2012-01-01

    Plant genomes are generally very large, mostly paleopolyploid, and have numerous gene duplicates and complex genomic features such as repeats and transposable elements. Many of these features have been hypothesized to enable plants, which cannot easily escape environmental challenges, to rapidly adapt. Another mechanism, which has recently been well described as a major facilitator of rapid adaptation in bacteria, animals, and fungi but not yet for plants, is modular rearrangement of protein-coding genes. Due to the high precision of profile-based methods, rearrangements can be well captured at the protein level by characterizing the emergence, loss, and rearrangements of protein domains, their structural, functional, and evolutionary building blocks. Here, we study the dynamics of domain rearrangements and explore their adaptive benefit in 27 plant and 3 algal genomes. We use a phylogenomic approach by which we can explain the formation of 88% of all arrangements by single-step events, such as fusion, fission, and terminal loss of domains. We find many domains are lost along every lineage, but at least 500 domains are novel, that is, they are unique to green plants and emerged more or less recently. These novel domains duplicate and rearrange more readily within their genomes than ancient domains and are overproportionally involved in stress response and developmental innovations. Novel domains more often affect regulatory proteins and show a higher degree of structural disorder than ancient domains. Whereas a relatively large and well-conserved core set of single-domain proteins exists, long multi-domain arrangements tend to be species-specific. We find that duplicated genes are more often involved in rearrangements. Although fission events typically impact metabolic proteins, fusion events often create new signaling proteins essential for environmental sensing. Taken together, the high volatility of single domains and complex arrangements in plant genomes

  5. Dynamics and adaptive benefits of protein domain emergence and arrangements during plant genome evolution.

    PubMed

    Kersting, Anna R; Bornberg-Bauer, Erich; Moore, Andrew D; Grath, Sonja

    2012-01-01

    Plant genomes are generally very large, mostly paleopolyploid, and have numerous gene duplicates and complex genomic features such as repeats and transposable elements. Many of these features have been hypothesized to enable plants, which cannot easily escape environmental challenges, to rapidly adapt. Another mechanism, which has recently been well described as a major facilitator of rapid adaptation in bacteria, animals, and fungi but not yet for plants, is modular rearrangement of protein-coding genes. Due to the high precision of profile-based methods, rearrangements can be well captured at the protein level by characterizing the emergence, loss, and rearrangements of protein domains, their structural, functional, and evolutionary building blocks. Here, we study the dynamics of domain rearrangements and explore their adaptive benefit in 27 plant and 3 algal genomes. We use a phylogenomic approach by which we can explain the formation of 88% of all arrangements by single-step events, such as fusion, fission, and terminal loss of domains. We find many domains are lost along every lineage, but at least 500 domains are novel, that is, they are unique to green plants and emerged more or less recently. These novel domains duplicate and rearrange more readily within their genomes than ancient domains and are overproportionally involved in stress response and developmental innovations. Novel domains more often affect regulatory proteins and show a higher degree of structural disorder than ancient domains. Whereas a relatively large and well-conserved core set of single-domain proteins exists, long multi-domain arrangements tend to be species-specific. We find that duplicated genes are more often involved in rearrangements. Although fission events typically impact metabolic proteins, fusion events often create new signaling proteins essential for environmental sensing. Taken together, the high volatility of single domains and complex arrangements in plant genomes

  6. Role of conservative mutations in protein multi-property adaptation.

    PubMed

    Rodriguez-Larrea, David; Perez-Jimenez, Raul; Sanchez-Romero, Inmaculada; Delgado-Delgado, Asuncion; Fernandez, Julio M; Sanchez-Ruiz, Jose M

    2010-07-15

    Protein physicochemical properties must undergo complex changes during evolution, as a response to modifications in the organism environment, the result of the proteins taking up new roles or because of the need to cope with the evolution of molecular interacting partners. Recent work has emphasized the role of stability and stability-function trade-offs in these protein adaptation processes. In the present study, on the other hand, we report that combinations of a few conservative, high-frequency-of-fixation mutations in the thioredoxin molecule lead to largely independent changes in both stability and the diversity of catalytic mechanisms, as revealed by single-molecule atomic force spectroscopy. Furthermore, the changes found are evolutionarily significant, as they combine typically hyperthermophilic stability enhancements with modulations in function that span the ranges defined by the quite different catalytic patterns of thioredoxins from bacterial and eukaryotic origin. These results suggest that evolutionary protein adaptation may use, in some cases at least, the potential of conservative mutations to originate a multiplicity of evolutionarily allowed mutational paths leading to a variety of protein modulation patterns. In addition the results support the feasibility of using evolutionary information to achieve protein multi-feature optimization, an important biotechnological goal. PMID:20446918

  7. Adaptable Lipid Matrix Promotes Protein-Protein Association in Membranes.

    PubMed

    Kuznetsov, Andrey S; Polyansky, Anton A; Fleck, Markus; Volynsky, Pavel E; Efremov, Roman G

    2015-09-01

    The cell membrane is "stuffed" with proteins, whose transmembrane (TM) helical domains spontaneously associate to form functionally active complexes. For a number of membrane receptors, a modulation of TM domains' oligomerization has been shown to contribute to the development of severe pathological states, thus calling for detailed studies of the atomistic aspects of the process. Despite considerable progress achieved so far, several crucial questions still remain: How do the helices recognize each other in the membrane? What is the driving force of their association? Here, we assess the dimerization free energy of TM helices along with a careful consideration of the interplay between the structure and dynamics of protein and lipids using atomistic molecular dynamics simulations in the hydrated lipid bilayer for three different model systems - TM fragments of glycophorin A, polyalanine and polyleucine peptides. We observe that the membrane driven association of TM helices exhibits a prominent entropic character, which depends on the peptide sequence. Thus, a single TM peptide of a given composition induces strong and characteristic perturbations in the hydrophobic core of the bilayer, which may facilitate the initial "communication" between TM helices even at the distances of 20-30 Å. Upon tight helix-helix association, the immobilized lipids accommodate near the peripheral surfaces of the dimer, thus disturbing the packing of the surrounding. The dimerization free energy of the modeled peptides corresponds to the strength of their interactions with lipids inside the membrane being the lowest for glycophorin A and similarly higher for both homopolymers. We propose that the ability to accommodate lipid tails determines the dimerization strength of TM peptides and that the lipid matrix directly governs their association. PMID:26575933

  8. Analysis of proteins involved in biodegradation of crop biomass

    NASA Technical Reports Server (NTRS)

    Crawford, Kamau; Trotman, Audrey

    1998-01-01

    The biodegradation of crop biomass for re-use in crop production is part of the bioregenerative life support concept proposed by the National Aeronautics and Space Administration (NASA) for long duration, manned space exploration. The current research was conducted in the laboratory to evaluate the use of electrophoretic analysis as a means of rapidly assaying for constitutive and induced proteins associated with the bacterial degradation of crop residue. The proteins involved in crop biomass biodegradation are either constitutive or induced. As a result, effluent and cultures were examined to investigate the potential of using electrophoretic techniques as a means of monitoring the biodegradation process. Protein concentration for optimum banding patterns was determined using the Bio-Rad Protein Assay kit. Four bacterial soil isolates were obtained from the G.W. Carver research Farm at Tuskegee University and used in the decomposition of components of plant biomass. The culture, WDSt3A was inoculated into 500 mL of either Tryptic Soy Broth or Nutrient Broth. Incubation, with shaking of each flask was for 96 hours at 30 C. The cultures consistently gave unique banding patterns under denaturing protein electrophoresis conditions, The associated extracellular enzymes also yielded characteristic banding patterns over a 14-day period, when native electrophoresis techniques were used to examine effluent from batch culture bioreactors. The current study evaluated sample preparation and staining protocols to determine the ease of use, reproducibility and reliability, as well as the potential for automation.

  9. Caenorhabditus elegans arrestin regulates neural G protein signaling and olfactory adaptation and recovery.

    PubMed

    Palmitessa, Aimee; Hess, Heather A; Bany, I Amy; Kim, You-Me; Koelle, Michael R; Benovic, Jeffrey L

    2005-07-01

    Although regulation of G protein-coupled receptor signaling by receptor kinases and arrestins is a well established biochemical process, the physiological significance of such regulation remains poorly understood. To better understand the in vivo consequences of arrestin function, we have examined the function of the sole arrestin in Caenorhabditis elegans (ARR-1). ARR-1 is primarily expressed in the nervous system, including the HSN neuron and various chemosensory neurons involved in detecting soluble and volatile odorants. arr-1 null mutants exhibit normal chemotaxis but have significant defects in olfactory adaptation and recovery to volatile odorants. In contrast, adaptation is enhanced in animals overexpressing ARR-1. Both the adaptation and recovery defects of arr-1 mutants are rescued by transgenic expression of wild-type ARR-1, whereas expression of a C-terminally truncated ARR-1 effectively rescues only the adaptation defect. A potential mechanistic basis for these findings is revealed by in vitro studies demonstrating that wild-type ARR-1 binds proteins of the endocytic machinery and promotes receptor endocytosis, whereas C-terminally truncated ARR-1 does not. These results demonstrate that ARR-1 functions to regulate chemosensory signaling, enabling organisms to adapt to a variety of environmental cues, and provide an in vivo link between arrestin, receptor endocytosis, and temporal recovery from adaptation. PMID:15878875

  10. Involvement of heat shock proteins in gluten-sensitive enteropathy

    PubMed Central

    Sziksz, Erna; Pap, Domonkos; Veres, Gábor; Fekete, Andrea; Tulassay, Tivadar; Vannay, Ádám

    2014-01-01

    Gluten-sensitive enteropathy, also known as coeliac disease (CD), is an autoimmune disorder occurring in genetically susceptible individuals that damages the small intestine and interferes with the absorption of other nutrients. As it is triggered by dietary gluten and related prolamins present in wheat, rye and barley, the accepted treatment for CD is a strict gluten-free diet. However, a complete exclusion of gluten-containing cereals from the diet is often difficult, and new therapeutic strategies are urgently needed. A class of proteins that have already emerged as drug targets for other autoimmune diseases are the heat shock proteins (HSPs), which are highly conserved stress-induced chaperones that protect cells against harmful extracellular factors. HSPs are expressed in several tissues, including the gastrointestinal tract, and their levels are significantly increased under stress circumstances. HSPs exert immunomodulatory effects, and also play a crucial role in the maintenance of epithelial cell structure and function, as they are responsible for adequate protein folding, influence the degradation of proteins and cell repair processes after damage, and modulate cell signalling, cell proliferation and apoptosis. The present review discusses the involvement of HSPs in the pathophysiology of CD. Furthermore, HSPs may represent a useful therapeutic target for the treatment of CD due to the cytoprotective, immunomodulatory, and anti-apoptotic effects in the intestinal mucosal barrier. PMID:24914370

  11. Metabolic Adaptation in Transplastomic Plants Massively Accumulating Recombinant Proteins

    PubMed Central

    Bally, Julia; Job, Claudette; Belghazi, Maya; Job, Dominique

    2011-01-01

    Background Recombinant chloroplasts are endowed with an astonishing capacity to accumulate foreign proteins. However, knowledge about the impact on resident proteins of such high levels of recombinant protein accumulation is lacking. Methodology/Principal Findings Here we used proteomics to characterize tobacco (Nicotiana tabacum) plastid transformants massively accumulating a p-hydroxyphenyl pyruvate dioxygenase (HPPD) or a green fluorescent protein (GFP). While under the conditions used no obvious modifications in plant phenotype could be observed, these proteins accumulated to even higher levels than ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco), the most abundant protein on the planet. This accumulation occurred at the expense of a limited number of leaf proteins including Rubisco. In particular, enzymes involved in CO2 metabolism such as nuclear-encoded plastidial Calvin cycle enzymes and mitochondrial glycine decarboxylase were found to adjust their accumulation level to these novel physiological conditions. Conclusions/Significance The results document how protein synthetic capacity is limited in plant cells. They may provide new avenues to evaluate possible bottlenecks in recombinant protein technology and to maintain plant fitness in future studies aiming at producing recombinant proteins of interest through chloroplast transformation. PMID:21966485

  12. Gill (Na+ +K+)-ATPase involvement and regulation during salmonid adaptation to salt water.

    PubMed

    Borgatti, A R; Pagliarani, A; Ventrella, V

    1992-08-01

    1. The involvement of gill (Na+ +K+)-ATPase in salmonid adaptation to salt water (SW) is discussed. 2. Gill (Na+ +K+)-ATPase increase during SW adaptation is mainly related to the increased number and complexity of chloride cells deputed to salt extrusion. 3. The temporal relationships between serum peaks of thyroid hormones, cortisol, growth hormone, prolactin and gill (Na+ +K+)-ATPase rise during salmonid smoltification, suggest a hormonal involvement in the enzyme stimulation and thus in the acquirement of SW tolerance. 4. Literature on gill (Na+ +K+)-ATPase response to hormonal treatment is reviewed. The effects produced on gill (Na+ +K+)-ATPase and chloride cells by exogenous hormones point out a complex inter-relationship between the hormones considered. The mechanisms involved in hormonal regulation of the enzyme remain a matter of debate. PMID:1355028

  13. Interleukin 2 signaling involves the phosphorylation of Stat proteins.

    PubMed

    Frank, D A; Robertson, M J; Bonni, A; Ritz, J; Greenberg, M E

    1995-08-15

    One of the most important cytokines involved in immune response regulation is interleukin 2 (IL-2), a potent activator of the proliferation and function of T lymphocytes and natural killer cells. The mechanisms by which the effects of IL-2 are propagated within cells are not understood. While the binding of IL-2 to its receptor was recently shown to lead to the activation of two kinases, Jak-1 and Jak-3, subsequent steps in the signaling pathway to the nucleus that lead to the activation of specific genes had not been characterized. Since many cytokines that activate Jak kinases also lead to the tyrosine phosphorylation and activation of members of the Stat family of transcription factors, the ability of IL-2 to trigger Stat phosphorylation was examined. Exposure of activated human T lymphocytes or of a natural killer cell line (NKL) to IL-2 leads to the phosphorylation of Stat1 alpha, Stat1 beta, and Stat3, as well as of two Stat-related proteins, p94 and p95. p94 and p95 share homology with Stat1 at the phosphorylation site and in the Src homology 2 (SH2) domain, but otherwise are immunologically distinct from Stat1. These Stat proteins were found to translocate to the nucleus and to bind to a specific DNA sequence. These findings suggest a mechanism by which IL-2 binding to its receptor may activate specific genes involved in immune cell function. PMID:7544001

  14. Adaptive interferometry of protein on a BioCD

    NASA Astrophysics Data System (ADS)

    Peng, Leilei; Varma, Manoj M.; Cho, Wonryeon; Regnier, Fred E.; Nolte, David D.

    2007-08-01

    Adaptive spinning-disk interferometry is capable of measuring surface profiles of a thin biolayer with subnanometer longitudinal resolution. High-speed phase modulation in the signal beam arises from the moving surface height profile on the spinning disk and is detected as a homodyne signal via dynamic two-wave mixing. A photorefractive quantum-well device performs as an adaptive mixer that compensates disk wobble and vibration while it phase-locks the signal and reference waves in the phase quadrature condition (π/2 relative phase between the signal and local oscillator). We performed biosensing of immobilized monolayers of antibodies on the disk in both transmission and reflection detection modes. Single- and dual-analyte adaptive spinning-disk immunoassays were demonstrated with good specificity and without observable cross-reactivity. Reflection-mode detection enhances the biosensing sensitivity to one-twentieth of a protein monolayer, creates a topographic map of the protein layer, and can differentiate monolayers of different species by their effective optical thicknesses.

  15. Structural Insights into Protein-Protein Interactions Involved in Bacterial Cell Wall Biogenesis

    PubMed Central

    Laddomada, Federica; Miyachiro, Mayara M.; Dessen, Andréa

    2016-01-01

    The bacterial cell wall is essential for survival, and proteins that participate in its biosynthesis have been the targets of antibiotic development efforts for decades. The biosynthesis of its main component, the peptidoglycan, involves the coordinated action of proteins that are involved in multi-member complexes which are essential for cell division (the “divisome”) and/or cell wall elongation (the “elongasome”), in the case of rod-shaped cells. Our knowledge regarding these interactions has greatly benefitted from the visualization of different aspects of the bacterial cell wall and its cytoskeleton by cryoelectron microscopy and tomography, as well as genetic and biochemical screens that have complemented information from high resolution crystal structures of protein complexes involved in divisome or elongasome formation. This review summarizes structural and functional aspects of protein complexes involved in the cytoplasmic and membrane-related steps of peptidoglycan biosynthesis, with a particular focus on protein-protein interactions whereby disruption could lead to the development of novel antibacterial strategies. PMID:27136593

  16. Adenanthin targets proteins involved in the regulation of disulphide bonds.

    PubMed

    Muchowicz, Angelika; Firczuk, Małgorzata; Chlebowska, Justyna; Nowis, Dominika; Stachura, Joanna; Barankiewicz, Joanna; Trzeciecka, Anna; Kłossowski, Szymon; Ostaszewski, Ryszard; Zagożdżon, Radosław; Pu, Jian-Xin; Sun, Han-Dong; Golab, Jakub

    2014-05-15

    Adenanthin has been recently shown to inhibit the enzymatic activities of peroxiredoxins (Prdx) I and II through its functional α,β-unsaturated ketone group serving as a Michael acceptor. A similar group is found in SK053, a compound recently developed by our group to target the thioredoxin-thioredoxin reductase (Trx-TrxR) system. This work provides evidence that next to Prdx I and II adenanthin targets additional proteins including thioredoxin-thioredoxin reductase system as well as protein disulfide isomerase (PDI) that contain a characteristic structural motif, referred to as a thioredoxin fold. Adenanthin inhibits the activity of Trx-TR system and PDI in vitro in the insulin reduction assay and decreases the activity of Trx in cultured cells. Moreover, we identified Trx-1 as an adenanthin binding protein in cells incubated with biotinylated adenanthin as an affinity probe. The results of our studies indicate that adenanthin is a mechanism-selective, rather than an enzyme-specific inhibitor of enzymes containing readily accessible, nucleophilic cysteines. This observation might be of importance in considering potential therapeutic applications of adenanthin to include a range of diseases, where aberrant activity of Prdx, Trx-TrxR and PDI is involved in their pathogenesis. PMID:24630929

  17. Life under tension: Computational studies of proteins involved in mechanotransduction

    NASA Astrophysics Data System (ADS)

    Sotomayor, Marcos Manuel

    cadherins. Simulations also revealed how calcium ions control cadherin's shape and the availability of key residues involved in cell-cell adhesion, suggesting a conceptual framework for interpreting mutations in cadherin calcium binding motifs causing hereditary deafness. Overall, simulations provided a unique nanoscopic view of the dynamics and function of some of the proteins involved in mechanotransduction.

  18. A microsomal ATP-binding protein involved in efficient protein transport into the mammalian endoplasmic reticulum.

    PubMed Central

    Dierks, T; Volkmer, J; Schlenstedt, G; Jung, C; Sandholzer, U; Zachmann, K; Schlotterhose, P; Neifer, K; Schmidt, B; Zimmermann, R

    1996-01-01

    Protein transport into the mammalian endoplasmic reticulum depends on nucleoside triphosphates. Photoaffinity labelling of microsomes with azido-ATP prevents protein transport at the level of association of precursor proteins with the components of the transport machinery, Sec61alpha and TRAM proteins. The same phenotype of inactivation was observed after depleting a microsomal detergent extract of ATP-binding proteins by passage through ATP-agarose and subsequent reconstitution of the pass-through into proteoliposomes. Transport was restored by co-reconstitution of the ATP eluate. This eluate showed eight distinct bands in SDS gels. We identified five lumenal proteins (Grp170, Grp94, BiP/Grp78, calreticulin and protein disulfide isomerase), one membrane protein (ribophorin I) and two ribosomal proteins (L4 and L5). In addition to BiP (Grp78), Grp170 was most efficiently retained on ATP-agarose. Purified BiP did not stimulate transport activity. Sequence analysis revealed a striking similarity of Grp170 and the yeast microsomal protein Lhs1p which was recently shown to be involved in protein transport into yeast microsomes. We suggest that Grp170 mediates efficient insertion of polypeptides into the microsomal membrane at the expense of nucleoside triphosphates. Images PMID:9003769

  19. Protein kinase C in pain: Involvement of multiple isoforms

    PubMed Central

    Velázquez, Kandy T.; Mohammad, Husam; Sweitzer, Sarah M.

    2007-01-01

    Pain is the primary reason that people seek medical care. At present chronic unremitting pain is the third greatest health problem after heart disease and cancer. Chronic pain is an economic burden in lost wages, lost productivity, medical expenses, legal fees and compensation. Chronic pain is defined as a pain of greater than two months duration and can be of an inflammatory or neuropathic origin that can arise following nerve injury or in the absence of any apparent injury. Chronic pain is characterized by an altered pain perception that includes allodynia (a response to a normally non-noxious stimuli), and hyperalgesia (an exaggerated response to a normally noxious stimuli). This type of pain is often insensitive to the traditional pain drugs or surgical intervention and thus the study of the cellular and molecular mechanisms that contribute to chronic pain are of the up-most importance for the development of a new generation of analgesic agents. Protein kinase C isozymes are under investigation as potential therapeutics for the treatment of chronic pain conditions. The anatomical localization of protein kinase C isozymes in both peripheral and central nervous system sites that process pain have made them the topic of basic science research for close to two decades. This review will outline the research to date on protein kinase C involvement in pain and analgesia. In addition, this review will try to synthesize these works to begin to develop a comprehensive mechanistic understanding of how protein kinase C may function as the master regulator of peripheral and central sensitization that underlies many chronic pain conditions. PMID:17548207

  20. Adaptation.

    PubMed

    Broom, Donald M

    2006-01-01

    The term adaptation is used in biology in three different ways. It may refer to changes which occur at the cell and organ level, or at the individual level, or at the level of gene action and evolutionary processes. Adaptation by cells, especially nerve cells helps in: communication within the body, the distinguishing of stimuli, the avoidance of overload and the conservation of energy. The time course and complexity of these mechanisms varies. Adaptive characters of organisms, including adaptive behaviours, increase fitness so this adaptation is evolutionary. The major part of this paper concerns adaptation by individuals and its relationships to welfare. In complex animals, feed forward control is widely used. Individuals predict problems and adapt by acting before the environmental effect is substantial. Much of adaptation involves brain control and animals have a set of needs, located in the brain and acting largely via motivational mechanisms, to regulate life. Needs may be for resources but are also for actions and stimuli which are part of the mechanism which has evolved to obtain the resources. Hence pigs do not just need food but need to be able to carry out actions like rooting in earth or manipulating materials which are part of foraging behaviour. The welfare of an individual is its state as regards its attempts to cope with its environment. This state includes various adaptive mechanisms including feelings and those which cope with disease. The part of welfare which is concerned with coping with pathology is health. Disease, which implies some significant effect of pathology, always results in poor welfare. Welfare varies over a range from very good, when adaptation is effective and there are feelings of pleasure or contentment, to very poor. A key point concerning the concept of individual adaptation in relation to welfare is that welfare may be good or poor while adaptation is occurring. Some adaptation is very easy and energetically cheap and

  1. Ex vivo identification of protein-protein interactions involving the dopamine transporter.

    PubMed

    Hadlock, Gregory C; Nelson, Chad C; Baucum, Anthony J; Hanson, Glen R; Fleckenstein, Annette E

    2011-03-30

    The dopamine (DA) transporter (DAT) is a key regulator of dopaminergic signaling as it mediates the reuptake of extrasynaptic DA and thereby terminates dopaminergic signaling. Emerging evidence indicates that DAT function is influenced through interactions with other proteins. The current report describes a method to identify such interactions following DAT immunoprecipitation from a rat striatal synaptosomal preparation. This subcellular fraction was selected since DAT function is often determined ex vivo by measuring DA uptake in this preparation and few reports investigating DAT-protein interactions have utilized this preparation. Following SDS-PAGE and colloidal Coomassie staining, selected protein bands from a DAT-immunoprecipitate were excised, digested with trypsin, extracted, and analyzed by liquid chromatography tandem mass spectrometry (LC/MS/MS). From the analysis of the tryptic peptides, several proteins were identified including DAT, Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) β, CaMKII δ, protein kinase C (PKC) β, and PKC γ. Co-immunoprecipitation of PKC, CaMKII, and protein interacting with C kinase-1 with DAT was confirmed by Western blotting. Thus, the present study highlights a method to immunoprecipitate DAT and to identify co-immunoprecipitating proteins using LC/MS/MS and Western blotting. This method can be utilized to evaluate DAT protein-protein interactions but also to assess interactions involving other synaptic proteins. Ex vivo identification of protein-protein interactions will provide new insight into the function and regulation of a variety of synaptic, membrane-associated proteins, including DAT. PMID:21291912

  2. Structural Reconstruction of Protein-Protein Complexes Involved in Intracellular Signaling.

    PubMed

    Kirsch, Klára; Sok, Péter; Reményi, Attila

    2016-01-01

    Signaling complexes within the cell convert extracellular cues into physiological outcomes. Their assembly involves signaling enzymes, allosteric regulators and scaffold proteins that often contain long stretches of disordered protein regions, display multi-domain architectures, and binding affinity between individual components is low. These features are indispensable for their central roles as dynamic information processing hubs, on the other hand they also make reconstruction of structurally homogeneous complex samples highly challenging. In this present chapter we discuss protein machinery which influences extracellular signal reception, intracellular pathway activity, and cytoskeletal or transcriptional activity. PMID:27165334

  3. Protein Acetylation Is Involved in Salmonella enterica Serovar Typhimurium Virulence.

    PubMed

    Sang, Yu; Ren, Jie; Ni, Jinjing; Tao, Jing; Lu, Jie; Yao, Yu-Feng

    2016-06-01

    Salmonella causes a range of diseases in different hosts, including enterocolitis and systemic infection. Lysine acetylation regulates many eukaryotic cellular processes, but its function in bacteria is largely unexplored. The acetyltransferase Pat and NAD(+)-dependent deacetylase CobB are involved in the reversible protein acetylation in Salmonella Typhimurium. Here, we used cell and animal models to evaluate the virulence of pat and cobB deletion mutants in S. Typhimurium and found that pat is critical for bacterial intestinal colonization and systemic infection. Next, to understand the underlying mechanism, genome-wide transcriptome was analyzed. RNA sequencing data showed that the expression of Salmonella pathogenicity island 1 (SPI-1) is partially dependent on pat In addition, we found that HilD, a key transcriptional regulator of SPI-1, is a substrate of Pat. The acetylation of HilD by Pat maintained HilD stability and was essential for the transcriptional activation of HilA. Taken together, these results suggest that a protein acetylation system regulates SPI-1 expression by controlling HilD in a posttranslational manner to mediate S. Typhimurium virulence. PMID:26810370

  4. Arabinogalactan proteins are involved in root hair development in barley.

    PubMed

    Marzec, Marek; Szarejko, Iwona; Melzer, Michael

    2015-03-01

    The arabinogalactan proteins (AGPs) are involved in a range of plant processes, including cell differentiation and expansion. Here, barley root hair mutants and their wild-type parent cultivars were used, as a model system, to reveal the role of AGPs in root hair development. The treatment of roots with different concentrations of βGlcY (a reagent which binds to all classes of AGPs) inhibited or totally suppressed the development of root hairs in all of the cultivars. Three groups of AGP (recognized by the monoclonal antibodies LM2, LM14, and MAC207) were diversely localized in trichoblasts and atrichoblasts of root hair-producing plants. The relevant epitopes were present in wild-type trichoblast cell walls and cytoplasm, whereas in wild-type atrichoblasts and in all epidermal cells of a root hairless mutant, they were only present in the cytoplasm. In all of cultivars the higher expression of LM2, LM14, and MAC207 was observed in trichoblasts at an early stage of development. Additionally, the LM2 epitope was detected on the surface of primordia and root hair tubes in plants able to generate root hairs. The major conclusion was that the AGPs recognized by LM2, LM14, and MAC207 are involved in the differentiation of barley root epidermal cells, thereby implying a requirement for these AGPs for root hair development in barley. PMID:25465033

  5. Arabinogalactan proteins are involved in root hair development in barley

    PubMed Central

    Marzec, Marek; Szarejko, Iwona; Melzer, Michael

    2015-01-01

    The arabinogalactan proteins (AGPs) are involved in a range of plant processes, including cell differentiation and expansion. Here, barley root hair mutants and their wild-type parent cultivars were used, as a model system, to reveal the role of AGPs in root hair development. The treatment of roots with different concentrations of βGlcY (a reagent which binds to all classes of AGPs) inhibited or totally suppressed the development of root hairs in all of the cultivars. Three groups of AGP (recognized by the monoclonal antibodies LM2, LM14, and MAC207) were diversely localized in trichoblasts and atrichoblasts of root hair-producing plants. The relevant epitopes were present in wild-type trichoblast cell walls and cytoplasm, whereas in wild-type atrichoblasts and in all epidermal cells of a root hairless mutant, they were only present in the cytoplasm. In all of cultivars the higher expression of LM2, LM14, and MAC207 was observed in trichoblasts at an early stage of development. Additionally, the LM2 epitope was detected on the surface of primordia and root hair tubes in plants able to generate root hairs. The major conclusion was that the AGPs recognized by LM2, LM14, and MAC207 are involved in the differentiation of barley root epidermal cells, thereby implying a requirement for these AGPs for root hair development in barley. PMID:25465033

  6. FK506 binding protein 51 integrates pathways of adaptation: FKBP51 shapes the reactivity to environmental change.

    PubMed

    Rein, Theo

    2016-09-01

    This review portraits FK506 binding protein (FKBP) 51 as "reactivity protein" and collates recent publications to develop the concept of FKBP51 as contributor to different levels of adaptation. Adaptation is a fundamental process that enables unicellular and multicellular organisms to adjust their molecular circuits and structural conditions in reaction to environmental changes threatening their homeostasis. FKBP51 is known as chaperone and co-chaperone of heat shock protein (HSP) 90, thus involved in processes ensuring correct protein folding in response to proteotoxic stress. In mammals, FKBP51 both shapes the stress response and is calibrated by the stress levels through an ultrashort molecular feedback loop. More recently, it has been linked to several intracellular pathways related to the reactivity to drug exposure and stress. Through its role in autophagy and DNA methylation in particular it influences adaptive pathways, possibly also in a transgenerational fashion. Also see the video abstract here. PMID:27374865

  7. Structural adaptations of proteins to different biological membranes

    PubMed Central

    Pogozheva, Irina D.; Tristram-Nagle, Stephanie; Mosberg, Henry I.; Lomize, Andrei L.

    2013-01-01

    To gain insight into adaptations of proteins to their membranes, intrinsic hydrophobic thicknesses, distributions of different chemical groups and profiles of hydrogen-bonding capacities (α and β) and the dipolarity/polarizability parameter (π*) were calculated for lipid-facing surfaces of 460 integral α-helical, β-barrel and peripheral proteins from eight types of biomembranes. For comparison, polarity profiles were also calculated for ten artificial lipid bilayers that have been previously studied by neutron and X-ray scattering. Estimated hydrophobic thicknesses are 30-31 Å for proteins from endoplasmic reticulum, thylakoid, and various bacterial plasma membranes, but differ for proteins from outer bacterial, inner mitochondrial and eukaryotic plasma membranes (23.9, 28.6 and 33.5 Å, respectively). Protein and lipid polarity parameters abruptly change in the lipid carbonyl zone that matches the calculated hydrophobic boundaries. Maxima of positively charged protein groups correspond to the location of lipid phosphates at 20-22 Å distances from the membrane center. Locations of Tyr atoms coincide with hydrophobic boundaries, while distributions maxima of Trp rings are shifted by 3-4 Å toward the membrane center. Distributions of Trp atoms indicate the presence of two 5-8 Å-wide midpolar regions with intermediate π* values within the hydrocarbon core, whose size and symmetry depend on the lipid composition of membrane leaflets. Midpolar regions are especially asymmetric in outer bacterial membranes and cell membranes of mesophilic but not hyperthermophilic archaebacteria, indicating the larger width of the central nonpolar region in the later case. In artificial lipid bilayers, midpolar regions are observed up to the level of acyl chain double bonds. PMID:23811361

  8. Intra-plastid protein trafficking; how plant cells adapted prokaryotic mechanisms to the eukaryotic condition

    PubMed Central

    Celedon, Jose M.; Cline, Kenneth

    2012-01-01

    Protein trafficking and localization in plastids involves a complex interplay between ancient (prokaryotic) and novel (eukaryotic) translocases and targeting machineries. During evolution, ancient systems acquired new functions and novel translocation machineries were developed to facilitate the correct localization of nuclear encoded proteins targeted to the chloroplast. Because of its post-translational nature, targeting and integration of membrane proteins posed the biggest challenge to the organelle to avoid aggregation in the aqueous compartments. Soluble proteins faced a different kind of problem since some had to be transported across three membranes to reach their destination. Early studies suggested that chloroplasts addressed these issues by adapting ancient-prokaryotic machineries and integrating them with novel-eukaryotic systems, a process called ‘conservative sorting’. In the last decade, detailed biochemical, genetic, and structural studies have unraveled the mechanisms of protein targeting and localization in chloroplasts, suggesting a highly integrated scheme where ancient and novel systems collaborate at different stages of the process. In this review we focus on the differences and similarities between chloroplast ancestral translocases and their prokaryotic relatives to highlight known modifications that adapted them to the eukaryotic situation. PMID:22750312

  9. Adaptive response to chronic mild ethanol stress involves ROS, sirtuins and changes in chromosome dosage in wine yeasts.

    PubMed

    Adamczyk, Jagoda; Deregowska, Anna; Skoneczny, Marek; Skoneczna, Adrianna; Kwiatkowska, Aleksandra; Potocki, Leszek; Rawska, Ewa; Pabian, Sylwia; Kaplan, Jakub; Lewinska, Anna; Wnuk, Maciej

    2016-05-24

    Industrial yeast strains of economic importance used in winemaking and beer production are genomically diverse and subjected to harsh environmental conditions during fermentation. In the present study, we investigated wine yeast adaptation to chronic mild alcohol stress when cells were cultured for 100 generations in the presence of non-cytotoxic ethanol concentration. Ethanol-induced reactive oxygen species (ROS) and superoxide signals promoted growth rate during passages that was accompanied by increased expression of sirtuin proteins, Sir1, Sir2 and Sir3, and DNA-binding transcription regulator Rap1. Genome-wide array-CGH analysis revealed that yeast genome was shaped during passages. The gains of chromosomes I, III and VI and significant changes in the gene copy number in nine functional gene categories involved in metabolic processes and stress responses were observed. Ethanol-mediated gains of YRF1 and CUP1 genes were the most accented. Ethanol also induced nucleolus fragmentation that confirms that nucleolus is a stress sensor in yeasts. Taken together, we postulate that wine yeasts of different origin may adapt to mild alcohol stress by shifts in intracellular redox state promoting growth capacity, upregulation of key regulators of longevity, namely sirtuins and changes in the dosage of genes involved in the telomere maintenance and ion detoxification. PMID:27074556

  10. Involvement of the V2 Vasopressin Receptor in Adaptation to Limited Water Supply

    PubMed Central

    Böselt, Iris; Römpler, Holger; Hermsdorf, Thomas; Thor, Doreen; Busch, Wibke; Schulz, Angela; Schöneberg, Torsten

    2009-01-01

    Mammals adapted to a great variety of habitats with different accessibility to water. In addition to changes in kidney morphology, e.g. the length of the loops of Henle, several hormone systems are involved in adaptation to limited water supply, among them the renal-neurohypophysial vasopressin/vasopressin receptor system. Comparison of over 80 mammalian V2 vasopressin receptor (V2R) orthologs revealed high structural and functional conservation of this key component involved in renal water reabsorption. Although many mammalian species have unlimited access to water there is no evidence for complete loss of V2R function indicating an essential role of V2R activity for survival even of those species. In contrast, several marsupial V2R orthologs show a significant increase in basal receptor activity. An increased vasopressin-independent V2R activity can be interpreted as a shift in the set point of the renal-neurohypophysial hormone circuit to realize sufficient water reabsorption already at low hormone levels. As found in other desert mammals arid-adapted marsupials show high urine osmolalities. The gain of basal V2R function in several marsupials may contribute to the increased urine concentration abilities and, therefore, provide an advantage to maintain water and electrolyte homeostasis under limited water supply conditions. PMID:19440390

  11. Neuronal adaptation involves rapid expansion of the action potential initiation site.

    PubMed

    Scott, Ricardo S; Henneberger, Christian; Padmashri, Ragunathan; Anders, Stefanie; Jensen, Thomas P; Rusakov, Dmitri A

    2014-01-01

    Action potential (AP) generation is the key to information-processing in the brain. Although APs are normally initiated in the axonal initial segment, developmental adaptation or prolonged network activity may alter the initiation site geometry thus affecting cell excitability. Here we find that hippocampal dentate granule cells adapt their spiking threshold to the kinetics of the ongoing dendrosomatic excitatory input by expanding the AP-initiation area away from the soma while also decelerating local axonal spikes. Dual-patch soma-axon recordings combined with axonal Na(+) and Ca(2+) imaging and biophysical modelling show that the underlying mechanism involves distance-dependent inactivation of axonal Na(+) channels due to somatic depolarization propagating into the axon. Thus, the ensuing changes in the AP-initiation zone and local AP propagation could provide activity-dependent control of cell excitability and spiking on a relatively rapid timescale. PMID:24851940

  12. Adapting the Helpful Responses Questionnaire to assess communication skills involved in delivering contingency management: Preliminary psychometrics

    PubMed Central

    Hartzler, Bryan

    2015-01-01

    A paper/pencil instrument, adapted from Miller and colleagues’ (1991) Helpful Responses Questionnaire (HRQ), was developed to assess clinician skill with core communicative aspects involved in delivering contingency management (CM). The instrument presents a single vignette consisting of six points of client dialogue to which respondents write ‘what they would say next.’ In the context of an implementation/effectiveness hybrid trial, 19 staff clinicians at an opiate treatment program completed serial training outcome assessments before, following, and three months after CM training. Assessments included this adaptation of the HRQ, a multiple-choice CM knowledge test, and a recorded standardized patient encounter scored for CM skillfulness. Study results reveal promising psychometric properties for the instrument, including strong scoring reliability, internal consistency, concurrent and predictive validity, test-retest reliability and sensitivity to training effects. These preliminary findings suggest the instrument is a viable, practical method to assess clinician skill in communicative aspects of CM delivery. PMID:25770870

  13. Neuronal adaptation involves rapid expansion of the action potential initiation site

    PubMed Central

    Scott, Ricardo S.; Henneberger, Christian; Padmashri, Ragunathan; Anders, Stefanie; Jensen, Thomas P.; Rusakov, Dmitri A.

    2014-01-01

    Action potential (AP) generation is the key to information-processing in the brain. Although APs are normally initiated in the axonal initial segment, developmental adaptation or prolonged network activity may alter the initiation site geometry thus affecting cell excitability. Here we find that hippocampal dentate granule cells adapt their spiking threshold to the kinetics of the ongoing dendrosomatic excitatory input by expanding the AP-initiation area away from the soma while also decelerating local axonal spikes. Dual-patch soma–axon recordings combined with axonal Na+ and Ca2+ imaging and biophysical modelling show that the underlying mechanism involves distance-dependent inactivation of axonal Na+ channels due to somatic depolarization propagating into the axon. Thus, the ensuing changes in the AP-initiation zone and local AP propagation could provide activity-dependent control of cell excitability and spiking on a relatively rapid timescale. PMID:24851940

  14. Interacting Protein Kinases Involved in the Regulation of Flagellar Length

    PubMed Central

    Erdmann, Maja; Scholz, Anne; Melzer, Inga M.; Schmetz, Christel; Wiese, Martin

    2006-01-01

    A striking difference of the life stages of the protozoan parasite Leishmania is a long flagellum in the insect stage promastigotes and a rudimentary organelle in the mammalian amastigotes. LmxMKK, a mitogen-activated protein (MAP) kinase kinase from Leishmania mexicana, is required for growth of a full-length flagellum. We identified LmxMPK3, a MAP kinase homologue, with a similar expression pattern as LmxMKK being not detectable in amastigotes, up-regulated during the differentiation to promastigotes, constantly expressed in promastigotes, and shut down during the differentiation to amastigotes. LmxMPK3 null mutants resemble the LmxMKK knockouts with flagella reduced to one-fifth of the wild-type length, stumpy cell bodies, and vesicles and membrane fragments in the flagellar pocket. A constitutively activated recombinant LmxMKK activates LmxMPK3 in vitro. Moreover, LmxMKK is likely to be directly involved in the phosphorylation of LmxMPK3 in vivo. Finally, LmxMPK3 is able to phosphorylate LmxMKK, indicating a possible feedback regulation. This is the first time that two interacting components of a signaling cascade have been described in the genus Leishmania. Moreover, we set the stage for the analysis of reversible phosphorylation in flagellar morphogenesis. PMID:16467378

  15. A Serine/threonine kinase PknL, is involved in the adaptive response of Mycobacterium tuberculosis.

    PubMed

    Refaya, Ahmed Kabir; Sharma, Divakar; Kumar, Virendra; Bisht, Deepa; Narayanan, Sujatha

    2016-09-01

    Mycobacterium tuberculosis adapts itself to various environmental stress conditions to thrive inside the phagosome for establishing a chronic infection. Serine/threonine protein kinases (STPKs) play a major role in the physiology and pathogenesis of Mycobacterium tuberculosis. Some of these STPKs are involved in regulating the growth of the mycobacterium under nutrient stress and starvation conditions. In this study, we have investigated the role of PknL, a STPK in the adaptive responses of M. tuberculosis by conditional inactivation of the gene using antisense technology. The inhibition of PknL in the knockdown strain was validated by RT-PCR. The in vitro growth kinetics of M. tuberculosis strain following inhibition of PknL was found to be bacteriostatic. The knock down strain of PknL exhibited a better survival in pH 5.5 when compared to its growth in pH 7.0. Similarly, it also exhibited more resistance to both SDS(0.01%) and Lysozyme stress (2.5mg/ml), indicating that loss of PknL enhances the growth of mycobacterium under stress conditions. SEM pictographs also represent an increase in the cell length of the knock down strain compared to Wild type stressing its role in cellular integrity. Lastly, the proteome analysis of differentially expressing PknL strains by 2D gel electrophoresis and mass spectrometry identified 19 differentially expressed proteins. Our findings have shown that PknL plays an important role in sensing the host environment and adapting itself in slowing down the growth of the pathogen and persisting within the host. PMID:27393993

  16. Identification of a plastid protein involved in vesicle fusion and/or membrane protein translocation.

    PubMed Central

    Hugueney, P; Bouvier, F; Badillo, A; d'Harlingue, A; Kuntz, M; Camara, B

    1995-01-01

    Structural evidence has accumulated suggesting that fusion and/or translocation factors are involved in plastid membrane biogenesis. To test this hypothesis, we have developed an in vitro system in which the extent of fusion and/or translocation is monitored by the conversion of the xanthophyll epoxide (antheraxanthin) into the red ketocarotenoid (capsanthin). Only chromoplast membrane vesicles from red pepper fruits (Capsicum annuum) contain the required enzyme. Vesicles prepared from the mutant yellow cultivar are devoid of this enzyme and accumulate antheraxanthin. The fusion and/or translocation activity is characterized by complementation due to the synthesis of capsanthin and the parallel decrease of antheraxanthin when the two types of vesicles are incubated together in the presence of plastid stroma. We show that the extent of conversion is dependent upon an ATP-requiring protein that is sensitive to N-ethylmaleimide. Further purification and immunological analysis have revealed that the active factor, designated plastid fusion and/or translocation factor (Pftf), resides in a protein of 72 kDa. cDNA cloning revealed that mature Pftf has significant homology to yeast and animal (NSF) or bacterial (Ftsh) proteins involved in vesicle fusion or membrane protein translocation. Images Fig. 1 Fig. 3 Fig. 4 PMID:7777561

  17. Protein phosphorylation and regulation of adaptive responses in bacteria.

    PubMed Central

    Stock, J B; Ninfa, A J; Stock, A M

    1989-01-01

    Bacteria continuously adapt to changes in their environment. Responses are largely controlled by signal transduction systems that contain two central enzymatic components, a protein kinase that uses adenosine triphosphate to phosphorylate itself at a histidine residue and a response regulator that accepts phosphoryl groups from the kinase. This conserved phosphotransfer chemistry is found in a wide range of bacterial species and operates in diverse systems to provide different regulatory outputs. The histidine kinases are frequently membrane receptor proteins that respond to environmental signals and phosphorylate response regulators that control transcription. Four specific regulatory systems are discussed in detail: chemotaxis in response to attractant and repellent stimuli (Che), regulation of gene expression in response to nitrogen deprivation (Ntr), control of the expression of enzymes and transport systems that assimilate phosphorus (Pho), and regulation of outer membrane porin expression in response to osmolarity and other culture conditions (Omp). Several additional systems are also examined, including systems that control complex developmental processes such as sporulation and fruiting-body formation, systems required for virulent infections of plant or animal host tissues, and systems that regulate transport and metabolism. Finally, an attempt is made to understand how cross-talk between parallel phosphotransfer pathways can provide a global regulatory curcuitry. PMID:2556636

  18. Differential Involvement of the Dentate Gyrus in Adaptive Forgetting in the Rat

    PubMed Central

    Joseph, Mickaël Antoine; Fraize, Nicolas; Ansoud-Lerouge, Jennifer; Sapin, Emilie; Peyron, Christelle; Arthaud, Sébastien; Libourel, Paul-Antoine; Parmentier, Régis; Salin, Paul Antoine; Malleret, Gaël

    2015-01-01

    How does the brain discriminate essential information aimed to be stored permanently from information required only temporarily, and that needs to be cleared away for not saturating our precious memory space? Reference Memory (RM) refers to the long-term storage of invariable information whereas Working Memory (WM) depends on the short-term storage of trial-unique information. Previous work has revealed that WM tasks are very sensitive to proactive interference. In order to prevent such interference, irrelevant old memories must be forgotten to give new ones the opportunity to be stabilized. However, unlike memory, physiological processes underlying this adaptive form of forgetting are still poorly understood. Here, we precisely ask what specific brain structure(s) could be responsible for such process to occur. To answer this question, we trained rats in a radial maze using three paradigms, a RM task and two WM tasks involving or not the processing of interference but strictly identical in terms of locomotion or motivation. We showed that an inhibition of the expression of Zif268 and c-Fos, two indirect markers of neuronal activity and synaptic plasticity, was observed in the dentate gyrus of the dorsal hippocampus when processing such interfering previously stored information. Conversely, we showed that inactivating the dentate gyrus impairs both RM and WM, but improves the processing of interference. Altogether, these results strongly suggest for the first time that the dentate gyrus could be a key structure involved in adaptive forgetting. PMID:26528714

  19. DUF581 Is Plant Specific FCS-Like Zinc Finger Involved in Protein-Protein Interaction

    PubMed Central

    K, Muhammed Jamsheer; Laxmi, Ashverya

    2014-01-01

    Zinc fingers are a ubiquitous class of protein domain with considerable variation in structure and function. Zf-FCS is a highly diverged group of C2-C2 zinc finger which is present in animals, prokaryotes and viruses, but not in plants. In this study we identified that a plant specific domain of unknown function, DUF581 is a zf-FCS type zinc finger. Based on HMM-HMM comparison and signature motif similarity we named this domain as FCS-Like Zinc finger (FLZ) domain. A genome wide survey identified that FLZ domain containing genes are bryophytic in origin and this gene family is expanded in spermatophytes. Expression analysis of selected FLZ gene family members of A. thaliana identified an overlapping expression pattern suggesting a possible redundancy in their function. Unlike the zf-FCS domain, the FLZ domain found to be highly conserved in sequence and structure. Using a combination of bioinformatic and protein-protein interaction tools, we identified that FLZ domain is involved in protein-protein interaction. PMID:24901469

  20. Adaptive Evolution of Eel Fluorescent Proteins from Fatty Acid Binding Proteins Produces Bright Fluorescence in the Marine Environment

    PubMed Central

    Gruber, David F.; Gaffney, Jean P.; Mehr, Shaadi; DeSalle, Rob; Sparks, John S.; Platisa, Jelena; Pieribone, Vincent A.

    2015-01-01

    We report the identification and characterization of two new members of a family of bilirubin-inducible fluorescent proteins (FPs) from marine chlopsid eels and demonstrate a key region of the sequence that serves as an evolutionary switch from non-fluorescent to fluorescent fatty acid-binding proteins (FABPs). Using transcriptomic analysis of two species of brightly fluorescent Kaupichthys eels (Kaupichthys hyoproroides and Kaupichthys n. sp.), two new FPs were identified, cloned and characterized (Chlopsid FP I and Chlopsid FP II). We then performed phylogenetic analysis on 210 FABPs, spanning 16 vertebrate orders, and including 163 vertebrate taxa. We show that the fluorescent FPs diverged as a protein family and are the sister group to brain FABPs. Our results indicate that the evolution of this family involved at least three gene duplication events. We show that fluorescent FABPs possess a unique, conserved tripeptide Gly-Pro-Pro sequence motif, which is not found in non-fluorescent fatty acid binding proteins. This motif arose from a duplication event of the FABP brain isoforms and was under strong purifying selection, leading to the classification of this new FP family. Residues adjacent to the motif are under strong positive selection, suggesting a further refinement of the eel protein’s fluorescent properties. We present a phylogenetic reconstruction of this emerging FP family and describe additional fluorescent FABP members from groups of distantly related eels. The elucidation of this class of fish FPs with diverse properties provides new templates for the development of protein-based fluorescent tools. The evolutionary adaptation from fatty acid-binding proteins to fluorescent fatty acid-binding proteins raises intrigue as to the functional role of bright green fluorescence in this cryptic genus of reclusive eels that inhabit a blue, nearly monochromatic, marine environment. PMID:26561348

  1. Identification of Protein Interactions Involved in Cellular Signaling

    PubMed Central

    Westermarck, Jukka; Ivaska, Johanna; Corthals, Garry L.

    2013-01-01

    Protein-protein interactions drive biological processes. They are critical for all intra- and extracellular functions, and the technologies to analyze them are widely applied throughout the various fields of biological sciences. This study takes an in-depth view of some common principles of cellular regulation and provides a detailed account of approaches required to comprehensively map signaling protein-protein interactions in any particular cellular system or condition. We provide a critical review of the benefits and disadvantages of the yeast two-hybrid method and affinity purification coupled with mass spectrometric procedures for identification of signaling protein-protein interactions. In particular, we emphasize the quantitative and qualitative differences between tandem affinity and one-step purification (such as FLAG and Strep tag) methods. Although applicable to all types of interaction studies, a special section is devoted in this review to aspects that should be considered when attempting to identify signaling protein interactions that often are transient and weak by nature. Finally, we discuss shotgun and quantitative information that can be gleaned by MS-coupled methods for analysis of multiprotein complexes. PMID:23481661

  2. Effects of Protein Conformation in Docking: Improved Pose Prediction through Protein Pocket Adaptation

    PubMed Central

    Jain, Ajay N.

    2009-01-01

    Computational methods for docking ligands have been shown to be remarkably dependent on precise protein conformation, where acceptable results in pose prediction have been generally possible only in the artificial case of re-docking a ligand into a protein binding site whose conformation was determined in the presence of the same ligand (the “cognate” docking problem). In such cases, on well curated protein/ligand complexes, accurate dockings can be returned as top-scoring over 75% of the time using tools such as Surflex-Dock. A critical application of docking in modeling for lead optimization requires accurate pose prediction for novel ligands, ranging from simple synthetic analogs to very different molecular scaffolds. Typical results for widely used programs in the “cross-docking case” (making use of a single fixed protein conformation) have rates closer to 20% success. By making use of protein conformations from multiple complexes, Surflex-Dock yields an average success rate of 61% across eight pharmaceutically relevant targets. Following docking, protein pocket adaptation and rescoring identifies single pose families that are correct an average of 67% of the time. Consideration of the best of two pose families (from alternate scoring regimes) yields a 75% mean success rate. PMID:19340588

  3. The VHL short variant involves in protein quality control.

    PubMed

    Liu, Yanbin; Yang, Haixia; Zuo, Feifei; Chen, Liang

    2016-09-01

    The von Hippel-Lindau (VHL) is the most important and frequently mutated gene in human clear cell renal cell carcinoma (ccRCC). In contrast to its long counterpart, the internal translational variant of VHL protein (VHLs) is evolutionarily conserved. Herein we present evidence that VHLs associates with ribosome complex via interaction with the large subunit 6 (RPL6). Manipulation of VHLs expression significantly alters protein synthesis, cell size and mitochondrial mass. VHLs deficiency leads to remarkable sensitivity to drug treatments eliciting nascent protein mis-folding and translational errors. The ubiquitination of nascent peptides are dramatically increased upon the ectopic over-expression of VHLs, which simultaneously co-localizes with proteasome and thus may facilitate the ubiquitin-proteasome mediated degradation. In summary, VHLs contributes to protein quality control in addition to its canonical function in maintaining homeostasis of hypoxia-induced factors alpha subunit (HIFα) in response to environmental oxygen supply. PMID:27196060

  4. Sex Hormones Regulate Cytoskeletal Proteins Involved in Brain Plasticity

    PubMed Central

    Hansberg-Pastor, Valeria; González-Arenas, Aliesha; Piña-Medina, Ana Gabriela; Camacho-Arroyo, Ignacio

    2015-01-01

    In the brain of female mammals, including humans, a number of physiological and behavioral changes occur as a result of sex hormone exposure. Estradiol and progesterone regulate several brain functions, including learning and memory. Sex hormones contribute to shape the central nervous system by modulating the formation and turnover of the interconnections between neurons as well as controlling the function of glial cells. The dynamics of neuron and glial cells morphology depends on the cytoskeleton and its associated proteins. Cytoskeletal proteins are necessary to form neuronal dendrites and dendritic spines, as well as to regulate the diverse functions in astrocytes. The expression pattern of proteins, such as actin, microtubule-associated protein 2, Tau, and glial fibrillary acidic protein, changes in a tissue-specific manner in the brain, particularly when variations in sex hormone levels occur during the estrous or menstrual cycles or pregnancy. Here, we review the changes in structure and organization of neurons and glial cells that require the participation of cytoskeletal proteins whose expression and activity are regulated by estradiol and progesterone. PMID:26635640

  5. Sex Hormones Regulate Cytoskeletal Proteins Involved in Brain Plasticity.

    PubMed

    Hansberg-Pastor, Valeria; González-Arenas, Aliesha; Piña-Medina, Ana Gabriela; Camacho-Arroyo, Ignacio

    2015-01-01

    In the brain of female mammals, including humans, a number of physiological and behavioral changes occur as a result of sex hormone exposure. Estradiol and progesterone regulate several brain functions, including learning and memory. Sex hormones contribute to shape the central nervous system by modulating the formation and turnover of the interconnections between neurons as well as controlling the function of glial cells. The dynamics of neuron and glial cells morphology depends on the cytoskeleton and its associated proteins. Cytoskeletal proteins are necessary to form neuronal dendrites and dendritic spines, as well as to regulate the diverse functions in astrocytes. The expression pattern of proteins, such as actin, microtubule-associated protein 2, Tau, and glial fibrillary acidic protein, changes in a tissue-specific manner in the brain, particularly when variations in sex hormone levels occur during the estrous or menstrual cycles or pregnancy. Here, we review the changes in structure and organization of neurons and glial cells that require the participation of cytoskeletal proteins whose expression and activity are regulated by estradiol and progesterone. PMID:26635640

  6. Differentiation of HL60 cells: involvement of protein phosphorylation

    SciTech Connect

    Spearman, T.N.; Fontana, J.A.; Butcher, F.R.; Durham, J.P.

    1986-05-01

    The addition of retinoic acid (RA) to the human promyelocytic leukemic cell line HL60 in culture results in the cessation of growth and the acquisition of a more mature phenotype. Previous work in these laboratories has demonstrated a concomitant increase in the activity of calcium-dependent, phospholipid-sensitive protein kinase (PK-C). HL60 cells were incubated with /sup 32/P-P/sub i/ in the absence and presence of RA, homogenized, and aliquots subjected to two-dimensional electrophoresis. A comparison of autoradiograms made from these gels revealed several phosphoproteins whose radiolabeling was affected by RA. The radiolabeling of one particular phosphoprotein (49kd, pI 4.8) was found to be increased prior to phenotypic evidence of differentiation. It was demonstrated via incubating HL60 cytosol with /sup 32/P -ATP and Ca/sup 2 +/ in the absence and presence of phosphatidylserine and resolving the labeled proteins as above that this protein is phosphorylated by PK-C. The labeling of this protein was also increased by RA in other leukemic cell lines which showed phenotypic evidence of differentiation while no effect was seen in HL60 sublines resistant to RA or in mature neutrophils (the end product of myeloid differentiation). These results suggest that this protein may be an important intermediate in myeloid differentiation.

  7. Role of protein kinase C in light adaptation of molluscan microvillar photoreceptors

    PubMed Central

    Piccoli, Giuseppe; del Pilar Gomez, Maria; Nasi, Enrico

    2002-01-01

    The mechanisms by which Ca2+ regulates light adaptation in microvillar photoreceptors remain poorly understood. Protein kinase C (PKC) is a likely candidate, both because some sub-types are activated by Ca2+ and because of its association with the macromolecular ‘light-transduction complex’ in Drosophila. We investigated the possible role of PKC in the modulation of the light response in molluscan photoreceptors. Western blot analysis with isoform-specific antibodies revealed the presence of PKCα in retinal homogenates. Immunocytochemistry in isolated cell preparations confirmed PKCα localization in microvillar photoreceptors, preferentially confined to the light-sensing lobe. Light stimulation induced translocation of PKCα immunofluorescence to the photosensitive membrane, an effect that provides independent evidence for PKC activation by illumination; a similar outcome was observed after incubation with the phorbol ester PMA. Several chemically distinct activators of PKC, such as phorbol-12-myristate-13-acetate (PMA), (-)indolactam V and 1,2,-dioctanoyl-sn-glycerol (DOG) inhibited the light response of voltage-clamped microvillar photoreceptors, but were ineffective in ciliary photoreceptors, in which light does not activate the Gq/PLC cascade, nor elevates intracellular Ca2+. Pharmacological inhibition of PKC antagonized the desensitization produced by adapting lights and also caused a small, but consistent enhancement of basal sensitivity. These results strongly support the involvement of PKC activation in the light-dependent regulation of response sensitivity. However, unlike adapting background light or elevation of [Ca2+]i, PKC activators did not speed up the photoresponse, nor did PKC inhibitors antagonize the accelerating effects of background adaptation, suggesting that modulation of photoresponse time course may involve a separate Ca2+-dependent signal. PMID:12205183

  8. Multiple amino acid substitutions involved in the adaptation of avian-origin influenza A (H10N7) virus in mice.

    PubMed

    Wu, Haibo; Peng, Xiuming; Peng, Xiaorong; Cheng, Linfang; Jin, Changzhong; Lu, Xiangyun; Xie, Tiansheng; Yao, Hangping; Wu, Nanping

    2016-04-01

    To identify substitutions that are possibly associated with the adaptation of avian-origin H10N7 virus to mammals, adaptation of the H10N7 virus in mouse lung was carried out by serial lung-to-lung passage. Genomic analysis of the mouse-adapted virus revealed amino acid changes in the PB2 (E627K), PA (T97I), and HA (G409E) proteins, and this virus was more virulent in mice than the wild-type virus. Our results suggest that these substitutions are involved in the enhancement of the replication efficiency of avian-origin H10N7 virus, resulting in severe disease in mice. Continued poultry surveillance of these substitutions in H10N7 viruses is required. PMID:26699787

  9. Protein Machineries Involved in the Attachment of Heme to Cytochrome c: Protein Structures and Molecular Mechanisms

    PubMed Central

    Travaglini-Allocatelli, Carlo

    2013-01-01

    Cytochromes c (Cyt c) are ubiquitous heme-containing proteins, mainly involved in electron transfer processes, whose structure and functions have been and still are intensely studied. Surprisingly, our understanding of the molecular mechanism whereby the heme group is covalently attached to the apoprotein (apoCyt) in the cell is still largely unknown. This posttranslational process, known as Cyt c biogenesis or Cyt c maturation, ensures the stereospecific formation of the thioether bonds between the heme vinyl groups and the cysteine thiols of the apoCyt heme binding motif. To accomplish this task, prokaryotic and eukaryotic cells have evolved distinctive protein machineries composed of different proteins. In this review, the structural and functional properties of the main maturation apparatuses found in gram-negative and gram-positive bacteria and in the mitochondria of eukaryotic cells will be presented, dissecting the Cyt c maturation process into three functional steps: (i) heme translocation and delivery, (ii) apoCyt thioreductive pathway, and (iii) apoCyt chaperoning and heme ligation. Moreover, current hypotheses and open questions about the molecular mechanisms of each of the three steps will be discussed, with special attention to System I, the maturation apparatus found in gram-negative bacteria. PMID:24455431

  10. Interactions of Dnd proteins involved in bacterial DNA phosphorothioate modification

    PubMed Central

    Xiong, Wei; Zhao, Gong; Yu, Hao; He, Xinyi

    2015-01-01

    DNA phosphorothioation (PT) is the first discovered physiological DNA backbone modification, in which a non-bridging oxygen atom of the phosphodiester bond is replaced with a sulfur atom in Rp (rectus for plane) configuration. PT modification is governed by a highly conserved gene cluster dndA/iscS-dndBCDE that is widespread across bacterial and archaeal species. However, little is known about how these proteins coordinately react with each other to perform oxygen–sulfur swap. We here demonstrated that IscS, DndC, DndD and DndE form a protein complex of which the molecular ratio for four proteins in the complex is approximate 1:1:1:1. DndB here displayed little or weak affinity to the complex and the constructs harboring dndACDE can confer the host in vivo PT modification. Using co-purification and pull down strategy, we demonstrated that the four proteins assemble into a pipeline in collinear to its gene organization, namely, IscS binding to DndC, DndC binding to DndD, and DndD binding to DndE. Moreover, weak interactions between DndE and IscS, DndE and DndC were also identified. PMID:26539172

  11. The Dca gene involved in cold adaptation in Drosophila melanogaster arose by duplication of the ancestral regucalcin gene.

    PubMed

    Arboleda-Bustos, Carlos E; Segarra, Carmen

    2011-08-01

    The Drosophila cold acclimation gene (Dca) is involved in the adaptive response to low temperatures. This gene is upregulated at the transcriptional level when D. melanogaster flies are exposed 1 day to 15 °C. Dca (or smp-30) is a member of the SMP-30/Gluconolactonase/LRE-like family. In the current study, we characterized the members of this gene family in the 12 Drosophila species with available complete genomes sequences. Two paralogous genes, Dca and regucalcin, were identified in all the Sophophora subgenus species (9 of the 12 species), and their presence was further confirmed in three other species of the subgenus (D. subobscura, D. madeirensis, and D. guanche). However, only regucalcin was present in the species of the Drosophila subgenus (D. grimshawi, D. virilis, and D. mojavensis). The phylogenetic analysis and the molecular organization of Dca that is a nested intronic gene support that Dca arose by a duplication event from the ancestral regucalcin gene after the split of the Sophophora and Drosophila subgenera but before the Sophophora radiation. After the duplication event, the nonsynonymous fixation rate increased in the branch leading to Dca (but not to regucalcin), suggesting the neofunctionalization of the former duplicate. Thus, regucalcin would have maintained the ancestral gene function, and Dca would have acquired a new function likely related to Ca²⁺ homeostasis and cold acclimation. Molecular evolution of Dca has been affected by its implication in the adaptive response to cold temperatures. Indeed, the gene has evolved under stronger purifying selection in the temperate than in the tropical Sophophora species, as reflected by the ratio of nonsynonymous to synonymous substitutions. This result is consistent with functional constraints acting on the DCA protein to keep species adaptation to temperate climates. Dca and regucalcin also differ in their expression patterns. The expression profile of regucalcin is similar to that of the

  12. Gene expression in primary cultured astrocytes affected by aluminum: alteration of chaperons involved in protein folding

    PubMed Central

    Aremu, David A.; Ezomo, Ojeiru F.

    2010-01-01

    Objectives Aluminum is notorious as a neurotoxic metal. The aim of our study was to determine whether endoplasmic reticulum (ER) stress is involved in aluminum-induced apoptosis in astrocytes. Methods Mitochondrial RNA (mRNA) was analyzed by reverse transcription (RT)-PCR following pulse exposure of aluminum glycinate to primary cultured astrocytes. Tunicamycin was used as a positive control. Results Gene expression analysis revealed that Ire1β was up-regulated in astrocytes exposed to aluminum while Ire1α was up-regulated by tunicamycin. Exposure to aluminum glycinate, in contrast to tunicamycin, seemed to down-regulate mRNA expression of many genes, including the ER resident molecular chaperone BiP/Grp78 and Ca2+-binding chaperones (calnexin and calreticulin), as well as stanniocalcin 2 and OASIS. The down-regulation or non-activation of the molecular chaperons, whose expressions are known to be protective by increasing protein folding, may spell doom for the adaptive response. Exposure to aluminum did not have any significant effects on the expression of Bax and Bcl2 in astrocytes. Conclusions The results of this study demonstrate that aluminum may induce apoptosis in astrocytes via ER stress by impairing the protein-folding machinery. PMID:21432213

  13. The Involvement of Transport Proteins in Transcriptional and Metabolic Regulation

    PubMed Central

    Västermark, Åke; Saier, Milton H.

    2014-01-01

    Transport proteins have sometimes gained secondary regulatory functions that influence gene expression and metabolism. These functions allow communication with the external world via mechanistically distinctive signal transduction pathways. In this brief review we focus on three transport systems in Escherichia coli that control and coordinate carbon, exogenous hexose-phosphate and phosphorous metabolism. The transport proteins that play central roles in these processes are (1) the phosphoenolpyruvate (PEP)-dependent phosphotransferase system, PTS, (2) the glucose-6-phosphate receptor, UhpC, and (3) the phosphate-specific transporter, PstSABC, respectively. While the PTS participates in multiple complex regulatory processes, three of which are discussed here, UhpC and the Pst transporters exemplify differing strategies. PMID:24513656

  14. Proteins Induced during Adaptation of Acetobacter aceti to High Acetate Concentrations

    PubMed Central

    Steiner, Peter; Sauer, Uwe

    2001-01-01

    As a typical product of microbial metabolism, the weak acid acetate is well known for its cytotoxic effects. In contrast to most other microbes, the so-called acetic acid bacteria can acquire significant resistance to high acetate concentrations when properly adapted to such hostile conditions. To characterize the molecular events that are associated with this adaptation, we analyzed global protein expression levels during adaptation of Acetobacter aceti by two-dimensional gel electrophoresis. Adaptation was achieved by using serial batch and continuous cultivations with increasing acetate supplementation. Computer-aided analysis revealed a complex proteome response with at least 50 proteins that are specifically induced by adaptation to acetate but not by other stress conditions, such as heat or oxidative or osmotic stress. Of these proteins, 19 were significantly induced in serial batch and continuous cultures and were thus noted as acetate adaptation proteins (Aaps). Here we present first microsequence information on such Aaps from A. aceti. Membrane-associated processes appear to be of major importance for adaptation, because some of the Aap bear N-terminal sequence homology to membrane proteins and 11 of about 40 resolved proteins from membrane protein-enriched fractions are significantly induced. PMID:11722895

  15. Acanthamoeba castellanii: proteins involved in actin dynamics, glycolysis, and proteolysis are regulated during encystation.

    PubMed

    Bouyer, Sabrina; Rodier, Marie-Hélène; Guillot, Alain; Héchard, Yann

    2009-09-01

    Acanthamoeba castellanii is a pathogenic free-living amoeba. Cyst forms are particularly important in their pathogenicity, as they are more resistant to treatments and might protect pathogenic intracellular bacteria. However, encystation is poorly understood at the molecular level and global changes at the protein level have not been completely described. In this study, we performed two-dimensional gel electrophoresis to compare protein expression in trophozoite and cyst forms. Four proteins, specifically expressed in trophozoites, and four proteins, specifically expressed in cysts, were identified. Two proteins, enolase and fructose bisphosphate aldolase, are involved in the glycolytic pathway. Three proteins are likely actin-binding proteins, which is consistent with the dramatic morphological modifications of the cells during encystation. One protein belongs to the serine protease family and has been already linked to encystation in A. castellanii. In conclusion, this study found that the proteins whose expression was modified during encystation were likely involved in actin dynamics, glycolysis, and proteolysis. PMID:19523468

  16. G protein beta gamma subunits stimulate phosphorylation of Shc adapter protein.

    PubMed Central

    Touhara, K; Hawes, B E; van Biesen, T; Lefkowitz, R J

    1995-01-01

    The mechanism of mitogen-activated protein (MAP) kinase activation by pertussis toxin-sensitive Gi-coupled receptors is known to involve the beta gamma subunits of heterotrimeric G proteins (G beta gamma), p21ras activation, and an as-yet-unidentified tyrosine kinase. To investigate the mechanism of G beta gamma-stimulated p21ras activation, G beta gamma-mediated tyrosine phosphorylation was examined by overexpressing G beta gamma or alpha 2-C10 adrenergic receptors (ARs) that couple to Gi in COS-7 cells. Immunoprecipitation of phosphotyrosine-containing proteins revealed a 2- to 3-fold increase in the phosphorylation of two proteins of approximately 50 kDa (designated as p52) in G beta gamma-transfected cells or in alpha 2-C10 AR-transfected cells stimulated with the agonist UK-14304. The latter response was pertussis toxin sensitive. These proteins (p52) were also specifically immunoprecipitated with anti-Shc antibodies and comigrated with two Shc proteins, 46 and 52 kDa. The G beta gamma- or alpha 2-C10 AR-stimulated p52 (Shc) phosphorylation was inhibited by coexpression of the carboxyl terminus of beta-adrenergic receptor kinase (a G beta gamma-binding pleckstrin homology domain peptide) or by the tyrosine kinase inhibitors genistein and herbimycin A, but not by a dominant negative mutant of p21ras. Worthmannin, a specific inhibitor of phosphatidylinositol 3-kinase (PI3K) inhibited phosphorylation of p52 (Shc), implying involvement of PI3K. These results suggest that G beta gamma-stimulated Shc phosphorylation represents an early step in the pathway leading to p21ras activation, similar to the mechanism utilized by growth factor tyrosine kinase receptors. Images Fig. 1 Fig. 3 PMID:7568118

  17. Diverse Mechanisms of Sp1-Dependent Transcriptional Regulation Potentially Involved in the Adaptive Response of Cancer Cells to Oxygen-Deficient Conditions

    PubMed Central

    Koizume, Shiro; Miyagi, Yohei

    2015-01-01

    The inside of a tumor often contains a hypoxic area caused by a limited supply of molecular oxygen due to aberrant vasculature. Hypoxia-inducible factors (HIFs) are major transcription factors that are required for cancer cells to adapt to such stress conditions. HIFs, complexed with the aryl hydrocarbon receptor nuclear translocator, bind to and activate target genes as enhancers of transcription. In addition to this common mechanism, the induction of the unfolded protein response and mTOR signaling in response to endoplasmic reticulum stress is also known to be involved in the adaptation to hypoxia conditions. Sp1 is a ubiquitously-expressed transcription factor that plays a vital role in the regulation of numerous genes required for normal cell function. In addition to the well-characterized stress response mechanisms described above, increasing experimental evidence suggests that Sp1 and HIFs collaborate to drive gene expression in cancer cells in response to hypoxia, thereby regulating additional adaptive responses to cellular oxygen deficiency. However, these characteristics of Sp1 and their biological merits have not been summarized. In this review, we will discuss the diverse mechanisms of transcriptional regulation by Sp1 and their potential involvement in the adaptive response of cancer cells to hypoxic tumor microenvironments. PMID:26703734

  18. The adaptive response of Streptococcus mutans towards oral care products: involvement of the ClpP serine protease.

    PubMed

    Deng, Dong Mei; ten Cate, Jacob M; Crielaard, Wim

    2007-10-01

    In the oral cavity a balanced physiological response is essential for Streptococcus mutans to survive various types of external challenges. In this study we examined the role of the ClpP serine protease in the response of S. mutans towards sodium fluoride, sodium chloride, hydrogen peroxide, and chlorhexidine. By constructing a clpP promoter-green fluorescent protein reporter strain, we showed increased fluorescence intensities under all types of stress, indicating a need for ClpP under all these challenges. We constructed a clpP knockout mutant, which proved to be more sensitive to all the challenges than the wild-type strain. This knockout strain also displayed a reduced growth rate, hyperaggregation, and increased biofilm formation. Furthermore, an increased resistance to toxic levels of hydrogen peroxide and chlorhexidine after pre-incubation with sublethal levels of the corresponding compounds was found in the wild-type strain but not in the knockout mutant. In conclusion, ClpP is involved in the general stress response of S. mutans and assists the bacteria to resist killing through adaptation. PMID:17850424

  19. Setting the PAS, the role of circadian PAS domain proteins during environmental adaptation in plants

    PubMed Central

    Vogt, Julia H. M.; Schippers, Jos H. M.

    2015-01-01

    The per-ARNT-sim (PAS) domain represents an ancient protein module that can be found across all kingdoms of life. The domain functions as a sensing unit for a diverse array of signals, including molecular oxygen, small metabolites, and light. In plants, several PAS domain-containing proteins form an integral part of the circadian clock and regulate responses to environmental change. Moreover, these proteins function in pathways that control development and plant stress adaptation responses. Here, we discuss the role of PAS domain-containing proteins in anticipation, and adaptation to environmental changes in plants. PMID:26217364

  20. P-proteins in Arabidopsis are heteromeric structures involved in rapid sieve tube sealing

    PubMed Central

    Jekat, Stephan B.; Ernst, Antonia M.; von Bohl, Andreas; Zielonka, Sascia; Twyman, Richard M.; Noll, Gundula A.; Prüfer, Dirk

    2013-01-01

    Structural phloem proteins (P-proteins) are characteristic components of the sieve elements in all dicotyledonous and many monocotyledonous angiosperms. Tobacco P-proteins were recently confirmed to be encoded by the widespread sieve element occlusion (SEO) gene family, and tobacco SEO proteins were shown to be directly involved in sieve tube sealing thus preventing the loss of photosynthate. Analysis of the two Arabidopsis SEO proteins (AtSEOa and AtSEOb) indicated that the corresponding P-protein subunits do not act in a redundant manner. However, there are still pending questions regarding the interaction properties and specific functions of AtSEOa and AtSEOb as well as the general function of structural P-proteins in Arabidopsis. In this study, we characterized the Arabidopsis P-proteins in more detail. We used in planta bimolecular fluorescence complementation assays to confirm the predicted heteromeric interactions between AtSEOa and AtSEOb. Arabidopsis mutants depleted for one or both AtSEO proteins lacked the typical P-protein structures normally found in sieve elements, underlining the identity of AtSEO proteins as P-proteins and furthermore providing the means to determine the role of Arabidopsis P-proteins in sieve tube sealing. We therefore developed an assay based on phloem exudation. Mutants with reduced AtSEO expression levels lost twice as much photosynthate following injury as comparable wild-type plants, confirming that Arabidopsis P-proteins are indeed involved in sieve tube sealing. PMID:23840197

  1. Laforin, a protein with many faces: glucan phosphatase, adapter protein, et alii.

    PubMed

    Gentry, Matthew S; Romá-Mateo, Carlos; Sanz, Pascual

    2013-01-01

    Lafora disease (LD) is a rare, fatal neurodegenerative disorder characterized by the accumulation of glycogen-like inclusions in the cytoplasm of cells from most tissues of affected patients. One hundred years after the first description of these inclusions, the molecular bases underlying the processes involved in LD physiopathology are finally being elucidated. The main cause of the disease is related to the activity of two proteins, the dual-specificity phosphatase laforin and the E3-ubiquitin ligase malin, which form a functional complex. Laforin is unique in humans, as it is composed of a carbohydrate-binding module attached to a cysteine-based catalytic dual-specificity phosphatase domain. Laforin directly dephosphorylates glycogen, but other proteinaceous substrates, if they exist, have remained elusive. Recently, an emerging set of laforin-binding partners apart from malin have been described, suggestive of laforin roles unrelated to its catalytic activity. Further investigations based on different transgenic mouse models have shown that the laforin-malin complex is also involved in other cellular processes, such as response to endoplasmic reticulum stress and misfolded protein clearance by the lysosomal pathway. However, controversial data and some missing links still make it difficult to assess the concrete relationship between glycogen deregulation and neuronal damage leading to the fatal symptoms observed in LD patients, such as myoclonic seizures and epilepsy. Consequently, clinical treatments are far from being achieved. In the present review, we focus on the knowledge of laforin biology, not only as a glucan phosphatase, but also as an adaptor protein involved in several physiological pathways. PMID:22364389

  2. Co-evolution of proteins and solutions: protein adaptation versus cytoprotective micromolecules and their roles in marine organisms.

    PubMed

    Yancey, Paul H; Siebenaller, Joseph F

    2015-06-01

    Organisms experience a wide range of environmental factors such as temperature, salinity and hydrostatic pressure, which pose challenges to biochemical processes. Studies on adaptations to such factors have largely focused on macromolecules, especially intrinsic adaptations in protein structure and function. However, micromolecular cosolutes can act as cytoprotectants in the cellular milieu to affect biochemical function and they are now recognized as important extrinsic adaptations. These solutes, both inorganic and organic, have been best characterized as osmolytes, which accumulate to reduce osmotic water loss. Singly, and in combination, many cosolutes have properties beyond simple osmotic effects, e.g. altering the stability and function of proteins in the face of numerous stressors. A key example is the marine osmolyte trimethylamine oxide (TMAO), which appears to enhance water structure and is excluded from peptide backbones, favoring protein folding and stability and counteracting destabilizers like urea and temperature. Co-evolution of intrinsic and extrinsic adaptations is illustrated with high hydrostatic pressure in deep-living organisms. Cytosolic and membrane proteins and G-protein-coupled signal transduction in fishes under pressure show inhibited function and stability, while revealing a number of intrinsic adaptations in deep species. Yet, intrinsic adaptations are often incomplete, and those fishes accumulate TMAO linearly with depth, suggesting a role for TMAO as an extrinsic 'piezolyte' or pressure cosolute. Indeed, TMAO is able to counteract the inhibitory effects of pressure on the stability and function of many proteins. Other cosolutes are cytoprotective in other ways, such as via antioxidation. Such observations highlight the importance of considering the cellular milieu in biochemical and cellular adaptation. PMID:26085665

  3. Variation in genes involved in epigenetic processes offers insights into tropically adapted cattle diversity.

    PubMed

    Porto-Neto, Laercio R; Fortes, Marina R S; McWilliam, Sean M; Lehnert, Sigrid A; Reverter, Antonio

    2014-01-01

    We evaluated the relevance of the BovineHD Illumina SNP chip with respect to genes involved in epigenetic processes. Genotypes for 729,068 SNP on two tropical cattle breeds of Australia were used: Brahman (n = 2112) and Tropical Composite (n = 2550). We used data mining approaches to compile a list of bovine protein-coding genes involved in epigenetic processes. These genes represent 9 functional categories that contain between one (histone demethylases) and 99 (chromatin remodeling factors) genes. A total of 3091 SNP mapped to positions within 3000 bp of the 193 coding regions of those genes, including 113 SNP in transcribed regions, 2738 in intronic regions and 240 in up- or down-stream regions. For all these SNP categories, we observed differences in the allelic frequencies between Brahman and Tropical Composite cattle. These differences were larger than those observed for the entire set of 729,068 SNP (P = 1.79 x 10(-5)). A multidimensional scaling analysis using only the 113 SNP in transcribed regions allowed for the separation of the two populations and this separation was comparable to the one obtained with a random set of 113 SNP (Principal Component 1 r (2) > 0.84). To further characterize the differences between the breeds we defined a gene-differentiation metric based on the average genotypic frequencies of SNP connected to each gene and compared both cattle populations. The 10% most differentiated genes were distributed across 10 chromosomes, with significant (P < 0.05) enrichment on BTA 3 and 10. The 10% most conserved genes were located in 12 chromosomes. We conclude that there is variation between cattle populations in genes connected to epigenetic processes, and this variation can be used to differentiate cattle breeds. More research is needed to fully characterize the use of these SNP and its potential as means to further our understanding of biological variation and epigenetic processes. PMID:24795751

  4. Variation in genes involved in epigenetic processes offers insights into tropically adapted cattle diversity

    PubMed Central

    Porto-Neto, Laercio R.; Fortes, Marina R. S.; McWilliam, Sean M.; Lehnert, Sigrid A.; Reverter, Antonio

    2014-01-01

    We evaluated the relevance of the BovineHD Illumina SNP chip with respect to genes involved in epigenetic processes. Genotypes for 729,068 SNP on two tropical cattle breeds of Australia were used: Brahman (n = 2112) and Tropical Composite (n = 2550). We used data mining approaches to compile a list of bovine protein-coding genes involved in epigenetic processes. These genes represent 9 functional categories that contain between one (histone demethylases) and 99 (chromatin remodeling factors) genes. A total of 3091 SNP mapped to positions within 3000 bp of the 193 coding regions of those genes, including 113 SNP in transcribed regions, 2738 in intronic regions and 240 in up- or down-stream regions. For all these SNP categories, we observed differences in the allelic frequencies between Brahman and Tropical Composite cattle. These differences were larger than those observed for the entire set of 729,068 SNP (P = 1.79 x 10−5). A multidimensional scaling analysis using only the 113 SNP in transcribed regions allowed for the separation of the two populations and this separation was comparable to the one obtained with a random set of 113 SNP (Principal Component 1 r2 > 0.84). To further characterize the differences between the breeds we defined a gene-differentiation metric based on the average genotypic frequencies of SNP connected to each gene and compared both cattle populations. The 10% most differentiated genes were distributed across 10 chromosomes, with significant (P < 0.05) enrichment on BTA 3 and 10. The 10% most conserved genes were located in 12 chromosomes. We conclude that there is variation between cattle populations in genes connected to epigenetic processes, and this variation can be used to differentiate cattle breeds. More research is needed to fully characterize the use of these SNP and its potential as means to further our understanding of biological variation and epigenetic processes. PMID:24795751

  5. Involvement of protein kinase C activation in L-leucine-induced stimulation of protein synthesis in l6 myotubes.

    PubMed

    Yagasaki, Kazumi; Morisaki, Naoko; Kitahara, Yoshiro; Miura, Atsuhito; Funabiki, Ryuhei

    2003-11-01

    Effects of leucine and related compounds on protein synthesis were studied in L6 myotubes. The incorporation of [(3)H]tyrosine into cellular protein was measured as an index of protein synthesis. In leucine-depleted L6 myotubes, leucine and its keto acid, alpha-ketoisocaproic acid (KIC), stimulated protein synthesis, while D-leucine did not. Mepacrine, an inhibitor of both phospholipases A(2) and C, canceled stimulatory actions of L-leucine and KIC on protein synthesis. Neither indomethacin, an inhibitor of cyclooxygenase, nor caffeic acid, an inhibitor of lipoxygenase, diminished their stimulatory actions, suggesting no involvement of arachidonic acid metabolism. Conversely, 1-O-hexadecyl-2-O-methylglycerol, an inhibitor of proteinkinase C, significantly canceled the stimulatory actions of L-leucine and KIC on protein synthesis, suggesting an involvement of phosphatidylinositol degradation and activation of protein kinase C. L-Leucine caused a rapid activation of protein kinase C in both cytosol and membrane fractions of the cells. These results strongly suggest that both L-leucine and KIC stimulate protein synthesis in L6 myotubes through activation of phospholipase C and protein kinase C. PMID:19003213

  6. Dissection of the bifunctional ARGRII protein involved in the regulation of arginine anabolic and catabolic pathways.

    PubMed Central

    Qui, H F; Dubois, E; Messenguy, F

    1991-01-01

    ARGRII is a regulatory protein which regulates the arginine anabolic and catabolic pathways in combination with ARGRI and ARGRIII. We have investigated, by deletion analysis and fusion to LexA protein, the different domains of ARGRII protein. In contrast to other yeast regulatory proteins, 92% of ARGRII is necessary for its anabolic repression function and 80% is necessary for its catabolic activator function. We can define three domains in this protein: a putative DNA-binding domain containing a zinc finger motif, a region more involved in the repression activity located around the RNase-like sequence, and a large activation domain. Images PMID:2005903

  7. Identification of the major lipoproteins in crayfish hemolymph as proteins involved in immune recognition and clotting.

    PubMed

    Hall, M; van Heusden, M C; Söderhäll, K

    1995-11-22

    Lipid-containing hemolymph proteins from males of the crayfish Pacifastacus leniusculus were isolated by density gradient ultracentrifugation. Two major lipoproteins, one high density lipoprotein (HDL) and one very high density lipoprotein (VHDL), were characterized. The HDL and the VHDL were found to be identical to two proteins previously studied for their roles in immune recognition and hemolymph clotting, namely the beta-1,3-glucan binding protein and the clotting protein. These results imply that crayfish lipoproteins have dual functions, and that they are involved in immunity, hemolymph clotting, and lipid transport in these animals. Also, the oxygen-transporting protein hemocyanin was found to have a small lipid content. PMID:7488215

  8. Involvement of Iron-Containing Proteins in Genome Integrity in Arabidopsis Thaliana

    PubMed Central

    Zhang, Caiguo

    2015-01-01

    The Arabidopsis genome encodes numerous iron-containing proteins such as iron-sulfur (Fe-S) cluster proteins and hemoproteins. These proteins generally utilize iron as a cofactor, and they perform critical roles in photosynthesis, genome stability, electron transfer, and oxidation-reduction reactions. Plants have evolved sophisticated mechanisms to maintain iron homeostasis for the assembly of functional iron-containing proteins, thereby ensuring genome stability, cell development, and plant growth. Over the past few years, our understanding of iron-containing proteins and their functions involved in genome stability has expanded enormously. In this review, I provide the current perspectives on iron homeostasis in Arabidopsis, followed by a summary of iron-containing protein functions involved in genome stability maintenance and a discussion of their possible molecular mechanisms. PMID:27330736

  9. The Src Homology 2 Domain-Containing Adapter Protein B (SHB) Regulates Mouse Oocyte Maturation

    PubMed Central

    Calounova, Gabriela; Livera, Gabriel; Zhang, Xiao-Qun; Liu, Kui; Gosden, Roger G.; Welsh, Michael

    2010-01-01

    SHB (Src homology 2 domain-containing adapter protein B) is involved in receptor tyrosine kinase signaling. Mice deficient in the Shb gene have been found to exhibit a transmission ratio distortion with respect to inheritance of the Shb null allele among offspring and this phenomenon was linked to female gamete production. Consequently, we postulated that Shb plays a role for oocyte biology and thus decided to investigate oocyte formation, meiotic maturation, and early embryo development in relation to absence of the Shb gene. Oogenesis was apparently accelerated judging from the stages of oocyte development on fetal day 18.5 and one week postnatally in Shb −/− mice; but in adulthood ovarian follicle maturation was impaired in these mice. Completion of meiosis I (first polar body extrusion) was less synchronized, with a fraction of oocytes showing premature polar body extrusion in the absence of Shb. In vitro fertilization of mature oocytes isolated from Shb +/+, +/− and −/− mice revealed impaired early embryo development in the −/− embryos. Moreover, the absence of Shb enhanced ERK (extracellular-signal regulated kinase) and RSK (ribosomal S6 kinase) signaling in oocytes and these effects were paralleled by an increased ribosomal protein S6 phosphorylation and activation. It is concluded that SHB regulates normal oocyte and follicle development and that perturbation of SHB signaling causes defective meiosis I and early embryo development. PMID:20585392

  10. A Cotton MYB Transcription Factor, GbMYB5, is Positively Involved in Plant Adaptive Response to Drought Stress.

    PubMed

    Chen, Tianzi; Li, Wenjuan; Hu, Xuehong; Guo, Jiaru; Liu, Aimin; Zhang, Baolong

    2015-05-01

    Drought stress negatively affects plant growth and limits plant productivity. Genes functioning in plant responses to drought stress are essential for the development of drought-tolerant crops. Here, we report that an R2R3-type MYB transcription factor gene in Gossypium barbadense, GbMYB5, confers drought tolerance in cotton and transgenic tobacco. Virus-induced gene silencing of GbMYB5 compromised the tolerance of cotton plantlets to drought stress and reduced the post-rewatering water recovery survival rate to 50% as compared with the 90% survival rate in the wild type (WT). Silencing GbMYB5 decreased proline content and antioxidant enzyme activities and increased malondialdehyde (MDA) content in cotton under drought stress. The expression levels of drought-inducible genes NCED3, RD22 and RD26 were not affected by the silencing of GbMYB5. However, GbMYB5-overexpressing tobacco lines displayed hypersensitivity to ABA and improved survival rates as well as reduced water loss rates under drought stress. Furthermore, stomatal size and the rate of opening of stomata were markedly decreased in transgenic tobacco. The overexpression of GbMYB5 enhanced the accumulation of proline and antioxidant enzymes while it reduced production of MDA in transgenic tobacco as compared with the WT under drought stress. The transcript levels of the antioxidant genes SOD, CAT and GST, polyamine biosynthesis genes ADC1 and SAMDC, the late embryogenesis abundant protein-encoding gene ERD10D and drought-responsive genes NCED3, BG and RD26 were generally higher in GbMYB5-overexpressing tobacco than in the WT under drought stress. Collectively, our data suggested that GbMYB5 was positively involved in the plant adaptive response to drought stress. PMID:25657343

  11. Molecular mechanisms of adaptation emerging from the physics and evolution of nucleic acids and proteins

    PubMed Central

    Goncearenco, Alexander; Ma, Bin-Guang; Berezovsky, Igor N.

    2014-01-01

    DNA, RNA and proteins are major biological macromolecules that coevolve and adapt to environments as components of one highly interconnected system. We explore here sequence/structure determinants of mechanisms of adaptation of these molecules, links between them, and results of their mutual evolution. We complemented statistical analysis of genomic and proteomic sequences with folding simulations of RNA molecules, unraveling causal relations between compositional and sequence biases reflecting molecular adaptation on DNA, RNA and protein levels. We found many compositional peculiarities related to environmental adaptation and the life style. Specifically, thermal adaptation of protein-coding sequences in Archaea is characterized by a stronger codon bias than in Bacteria. Guanine and cytosine load in the third codon position is important for supporting the aerobic life style, and it is highly pronounced in Bacteria. The third codon position also provides a tradeoff between arginine and lysine, which are favorable for thermal adaptation and aerobicity, respectively. Dinucleotide composition provides stability of nucleic acids via strong base-stacking in ApG dinucleotides. In relation to coevolution of nucleic acids and proteins, thermostability-related demands on the amino acid composition affect the nucleotide content in the second codon position in Archaea. PMID:24371267

  12. Genome-wide scans for candidate genes involved in the aquatic adaptation of dolphins.

    PubMed

    Sun, Yan-Bo; Zhou, Wei-Ping; Liu, He-Qun; Irwin, David M; Shen, Yong-Yi; Zhang, Ya-Ping

    2013-01-01

    Since their divergence from the terrestrial artiodactyls, cetaceans have fully adapted to an aquatic lifestyle, which represents one of the most dramatic transformations in mammalian evolutionary history. Numerous morphological and physiological characters of cetaceans have been acquired in response to this drastic habitat transition, such as thickened blubber, echolocation, and ability to hold their breath for a long period of time. However, knowledge about the molecular basis underlying these adaptations is still limited. The sequence of the genome of Tursiops truncates provides an opportunity for a comparative genomic analyses to examine the molecular adaptation of this species. Here, we constructed 11,838 high-quality orthologous gene alignments culled from the dolphin and four other terrestrial mammalian genomes and screened for positive selection occurring in the dolphin lineage. In total, 368 (3.1%) of the genes were identified as having undergone positive selection by the branch-site model. Functional characterization of these genes showed that they are significantly enriched in the categories of lipid transport and localization, ATPase activity, sense perception of sound, and muscle contraction, areas that are potentially related to cetacean adaptations. In contrast, we did not find a similar pattern in the cow, a closely related species. We resequenced some of the positively selected sites (PSSs), within the positively selected genes, and showed that most of our identified PSSs (50/52) could be replicated. The results from this study should have important implications for our understanding of cetacean evolution and their adaptations to the aquatic environment. PMID:23246795

  13. Catalysis of protein folding by chaperones accelerates evolutionary dynamics in adapting cell populations.

    PubMed

    Cetinbaş, Murat; Shakhnovich, Eugene I

    2013-01-01

    Although molecular chaperones are essential components of protein homeostatic machinery, their mechanism of action and impact on adaptation and evolutionary dynamics remain controversial. Here we developed a physics-based ab initio multi-scale model of a living cell for population dynamics simulations to elucidate the effect of chaperones on adaptive evolution. The 6-loci genomes of model cells encode model proteins, whose folding and interactions in cellular milieu can be evaluated exactly from their genome sequences. A genotype-phenotype relationship that is based on a simple yet non-trivially postulated protein-protein interaction (PPI) network determines the cell division rate. Model proteins can exist in native and molten globule states and participate in functional and all possible promiscuous non-functional PPIs. We find that an active chaperone mechanism, whereby chaperones directly catalyze protein folding, has a significant impact on the cellular fitness and the rate of evolutionary dynamics, while passive chaperones, which just maintain misfolded proteins in soluble complexes have a negligible effect on the fitness. We find that by partially releasing the constraint on protein stability, active chaperones promote a deeper exploration of sequence space to strengthen functional PPIs, and diminish the non-functional PPIs. A key experimentally testable prediction emerging from our analysis is that down-regulation of chaperones that catalyze protein folding significantly slows down the adaptation dynamics. PMID:24244114

  14. Prolonged Adaptation to a Low or High Protein Diet Does Not Modulate Basal Muscle Protein Synthesis Rates – A Substudy

    PubMed Central

    Hursel, Rick; Martens, Eveline A. P.; Gonnissen, Hanne K. J.; Hamer, Henrike M.; Senden, Joan M. G.; van Loon, Luc J. C.; Westerterp-Plantenga, Margriet S.

    2015-01-01

    Background Based on controlled 36 h experiments a higher dietary protein intake causes a positive protein balance and a negative fat balance. A positive net protein balance may support fat free mass accrual. However, few data are available on the impact of more prolonged changes in habitual protein intake on whole-body protein metabolism and basal muscle protein synthesis rates. Objective To assess changes in whole-body protein turnover and basal muscle protein synthesis rates following 12 weeks of adaptation to a low versus high dietary protein intake. Methods A randomized parallel study was performed in 40 subjects who followed either a high protein (2.4 g protein/kg/d) or low protein (0.4 g protein/kg/d) energy-balanced diet (30/35/35% or 5/60/35% energy from protein/carbohydrate/fat) for a period of 12 weeks. A subgroup of 7 men and 8 women (body mass index: 22.8±2.3 kg/m2, age: 24.3±4.9 y) were selected to evaluate the impact of prolonged adaptation to either a high or low protein intake on whole body protein metabolism and basal muscle protein synthesis rates. After the diet, subjects received continuous infusions with L-[ring-2H5]phenylalanine and L-[ring-2H2]tyrosine in an overnight fasted state, with blood samples and muscle biopsies being collected to assess post-absorptive whole-body protein turnover and muscle protein synthesis rates in vivo in humans. Results After 12 weeks of intervention, whole-body protein balance in the fasted state was more negative in the high protein treatment when compared with the low protein treatment (-4.1±0.5 vs -2.7±0.6 μmol phenylalanine/kg/h;P<0.001). Whole-body protein breakdown (43.0±4.4 vs 37.8±3.8 μmol phenylalanine/kg/h;P<0.03), synthesis (38.9±4.2 vs 35.1±3.6 μmol phenylalanine/kg/h;P<0.01) and phenylalanine hydroxylation rates (4.1±0.6 vs 2.7±0.6 μmol phenylalanine/kg/h;P<0.001) were significantly higher in the high vs low protein group. Basal muscle protein synthesis rates were maintained on a low

  15. GUN1 Controls Accumulation of the Plastid Ribosomal Protein S1 at the Protein Level and Interacts with Proteins Involved in Plastid Protein Homeostasis.

    PubMed

    Tadini, Luca; Pesaresi, Paolo; Kleine, Tatjana; Rossi, Fabio; Guljamow, Arthur; Sommer, Frederik; Mühlhaus, Timo; Schroda, Michael; Masiero, Simona; Pribil, Mathias; Rothbart, Maxi; Hedtke, Boris; Grimm, Bernhard; Leister, Dario

    2016-03-01

    Developmental or metabolic changes in chloroplasts can have profound effects on the rest of the plant cell. Such intracellular responses are associated with signals that originate in chloroplasts and convey information on their physiological status to the nucleus, which leads to large-scale changes in gene expression (retrograde signaling). A screen designed to identify components of retrograde signaling resulted in the discovery of the so-called genomes uncoupled (gun) mutants. Genetic evidence suggests that the chloroplast protein GUN1 integrates signals derived from perturbations in plastid redox state, plastid gene expression, and tetrapyrrole biosynthesis (TPB) in Arabidopsis (Arabidopsis thaliana) seedlings, exerting biogenic control of chloroplast functions. However, the molecular mechanism by which GUN1 integrates retrograde signaling in the chloroplast is unclear. Here we show that GUN1 also operates in adult plants, contributing to operational control of chloroplasts. The gun1 mutation genetically interacts with mutations of genes for the chloroplast ribosomal proteins S1 (PRPS1) and L11. Analysis of gun1 prps1 lines indicates that GUN1 controls PRPS1 accumulation at the protein level. The GUN1 protein physically interacts with proteins involved in chloroplast protein homeostasis based on coimmunoprecipitation experiments. Furthermore, yeast two-hybrid and bimolecular fluorescence complementation experiments suggest that GUN1 might transiently interact with several TPB enzymes, including Mg-chelatase subunit D (CHLD) and two other TPB enzymes known to activate retrograde signaling. Moreover, the association of PRPS1 and CHLD with protein complexes is modulated by GUN1. These findings allow us to speculate that retrograde signaling might involve GUN1-dependent formation of protein complexes. PMID:26823545

  16. Systematic identification of genes and transduction pathways involved in radio-adaptive response

    SciTech Connect

    Wu, Honglu

    2015-05-22

    Low doses of radiation have been shown to protect against the biological effects of later exposure to toxic levels of radiation. In this study, we propose to identify the molecular mechanisms of this adaptive response by systematically identifying the genes that play a role in radio-protection. In the original proposal, a human cell line that is well-documented to exhibit the radio-adaptive effect was to be used. In this revised study plan, we will use a mouse model, C57BL/6, which has also been well investigated for radio-adaptation. The goal of the proposed study is to enhance our understanding of cellular responses to low doses of radiation exposure at the molecular level.

  17. The crystal structure of the thiocyanate-forming protein from Thlaspi arvense, a kelch protein involved in glucosinolate breakdown.

    PubMed

    Gumz, Frauke; Krausze, Joern; Eisenschmidt, Daniela; Backenköhler, Anita; Barleben, Leif; Brandt, Wolfgang; Wittstock, Ute

    2015-09-01

    Kelch repeat-containing proteins are involved in diverse cellular processes, but only a small subset of plant kelch proteins has been functionally characterized. Thiocyanate-forming protein (TFP) from field-penny cress, Thlaspi arvense (Brassicaceae), is a representative of specifier proteins, a group of kelch proteins involved in plant specialized metabolism. As components of the glucosinolate-myrosinase system of the Brassicaceae, specifier proteins determine the profile of bioactive products formed when plant tissue is disrupted and glucosinolates are hydrolyzed by myrosinases. Here, we describe the crystal structure of TaTFP at a resolution of 1.4 Å. TaTFP crystallized as homodimer. Each monomer forms a six-blade β-propeller with a wide "top" and a narrower "bottom" opening with distinct strand-connecting loops protruding far beyond the lower propeller surface. Molecular modeling and mutational analysis identified residues for glucosinolate aglucone and Fe(2+) cofactor binding within these loops. As the first experimentally determined structure of a plant kelch protein, the crystal structure of TaTFP not only enables more detailed mechanistic studies on glucosinolate breakdown product formation, but also provides a new basis for research on the diverse roles and mechanisms of other kelch proteins in plants. PMID:26260516

  18. Neuron Membrane Trafficking and Protein Kinases Involved in Autism and ADHD

    PubMed Central

    Kitagishi, Yasuko; Minami, Akari; Nakanishi, Atsuko; Ogura, Yasunori; Matsuda, Satoru

    2015-01-01

    A brain-enriched multi-domain scaffolding protein, neurobeachin has been identified as a candidate gene for autism patients. Mutations in the synaptic adhesion protein cell adhesion molecule 1 (CADM1) are also associated with autism spectrum disorder, a neurodevelopmental disorder of uncertain molecular origin. Potential roles of neurobeachin and CADM1 have been suggested to a function of vesicle transport in endosomal trafficking. It seems that protein kinase B (AKT) and cyclic adenosine monophosphate (cAMP)-dependent protein kinase A (PKA) have key roles in the neuron membrane trafficking involved in the pathogenesis of autism. Attention deficit hyperactivity disorder (ADHD) is documented to dopaminergic insufficiencies, which is attributed to synaptic dysfunction of dopamine transporter (DAT). AKT is also essential for the DAT cell-surface redistribution. In the present paper, we summarize and discuss the importance of several protein kinases that regulate the membrane trafficking involved in autism and ADHD, suggesting new targets for therapeutic intervention. PMID:25647412

  19. Adaptive Protein Evolution in Animals and the Effective Population Size Hypothesis

    PubMed Central

    Galtier, Nicolas

    2016-01-01

    The rate at which genomes adapt to environmental changes and the prevalence of adaptive processes in molecular evolution are two controversial issues in current evolutionary genetics. Previous attempts to quantify the genome-wide rate of adaptation through amino-acid substitution have revealed a surprising diversity of patterns, with some species (e.g. Drosophila) experiencing a very high adaptive rate, while other (e.g. humans) are dominated by nearly-neutral processes. It has been suggested that this discrepancy reflects between-species differences in effective population size. Published studies, however, were mainly focused on model organisms, and relied on disparate data sets and methodologies, so that an overview of the prevalence of adaptive protein evolution in nature is currently lacking. Here we extend existing estimators of the amino-acid adaptive rate by explicitly modelling the effect of favourable mutations on non-synonymous polymorphism patterns, and we apply these methods to a newly-built, homogeneous data set of 44 non-model animal species pairs. Data analysis uncovers a major contribution of adaptive evolution to the amino-acid substitution process across all major metazoan phyla—with the notable exception of humans and primates. The proportion of adaptive amino-acid substitution is found to be positively correlated to species effective population size. This relationship, however, appears to be primarily driven by a decreased rate of nearly-neutral amino-acid substitution because of more efficient purifying selection in large populations. Our results reveal that adaptive processes dominate the evolution of proteins in most animal species, but do not corroborate the hypothesis that adaptive substitutions accumulate at a faster rate in large populations. Implications regarding the factors influencing the rate of adaptive evolution and positive selection detection in humans vs. other organisms are discussed. PMID:26752180

  20. Quantitative proteomic analysis of mice corneal tissues reveals angiogenesis-related proteins involved in corneal neovascularization.

    PubMed

    Shen, Minqian; Tao, Yimin; Feng, Yifan; Liu, Xing; Yuan, Fei; Zhou, Hu

    2016-07-01

    Corneal neovascularization (CNV) was induced in Balb/c mice by alkali burns in the central area of the cornea with a diameter of 2.5mm. After fourteen days, the cornea from one eye was collected for histological staining for CNV examination, while the cornea from the other eye of the same mouse was harvested for proteomic analysis. The label-free quantitative proteomic approach was applied to analyze five normal corneal tissues (normal group mice n=5) and five corresponding neovascularized corneal tissues (model group mice n=5). A total of 2124 proteins were identified, and 1682 proteins were quantified from these corneal tissues. Among these quantified proteins, 290 proteins were significantly changed between normal and alkali burned corneal tissues. Of these significantly changed proteins, 35 were reported or predicted as angiogenesis-related proteins. Then, these 35 proteins were analyzed using Ingenuity Pathway Analysis Software, resulting in 26 proteins enriched and connected to each other in the protein-protein interaction network, such as Lcn-2, αB-crystallin and Serpinf1 (PEDF). These three significantly changed proteins were selected for further Western blotting validation. Consistent with the quantitative proteomic results, Western blotting showed that Lcn-2 and αB-crystallin were significantly up-regulated in CNV model, while PEDF was down-regulated. This study provided increased understanding of angiogenesis-related proteins involved in corneal vascular development, which will be useful in the ophthalmic clinic of specifically target angiogenesis. PMID:27049463

  1. Chromosome locations of genes encoding human signal transduction adapter proteins, Nck (NCK), Shc (SHC1), and Grb2 (GRB2)

    SciTech Connect

    Huebner, K.; Kastury, K.; Druck, T.

    1994-07-15

    Abnormalities due to chromosomal aberration or point mutation in gene products of growth factor receptors or in ras gene products, which lie on the same signaling pathway, can cause disease in animals and humans. Thus, it can be important to determine chromosomal map positions of genes encoding {open_quotes}adapter{close_quotes} proteins, which are involved in transducing signals from receptor tyrosine kinases to downstream signal recipients such as ras, because adaptor protein genes could also, logically, serve as targets of mutation, rearrangement, or other aberration in disease. Therefore, DNAs from panels of rodent-human hybrids carrying defined complements of human chromosomes were assayed for the presence of the cognate genes for NCK, SHC, and GRB2, three SH2 or SH2/SH3 (Src homology 2 and 3) domain-containing adapter proteins. Additionally, NCK and SHC genes were more narrowly localized by chromosomal in situ hybridization. The NCK locus is at chromosome region 3q21, a region involved in neoplasia-associated changes; the SHC cognate locus, SHC1, is at 1q21, and the GRB2 locus is at 17q22-qter telomeric to the HOXB and NGFR loci. Both SHC1 and GRB2 are in chromosome regions that may be duplicated in some tumor types. 41 refs., 4 figs.

  2. The acid tolerance response of Salmonella typhimurium involves transient synthesis of key acid shock proteins.

    PubMed Central

    Foster, J W

    1993-01-01

    Although Salmonella typhimurium prefers neutral-pH environments, it can adapt to survive conditions of severe low-pH stress (pH 3.3). The process, termed the acid tolerance response (ATR), includes two distinct stages. The first stage, called pre-acid shock, is induced at pH 5.8 and involves the production of an inducible pH homeostasis system functional at external pH values below 4.0. The second stage occurs following an acid shock shift to pH 4.5 or below and is called the post-acid shock stage. During this stage of the ATR, 43 acid shock proteins (ASPs) are synthesized. The present data reveal that several ASPs important for pH 3.3 acid tolerance are only transiently produced. Their disappearance after 30 to 40 min of pH 4.4 acid shock coincides with an inability to survive subsequent pH 3.3 acid challenge. Clearly, an essential feature of inducible acid tolerance is an ability to synthesize these key ASPs. The pre-acid shock stage, with its inducible pH homeostasis system, offers the cell an enhanced ability to synthesize ASPs following rapid shifts to conditions below pH 4.0, an external pH that normally prevents ASP synthesis. The data also address possible signals for ASP synthesis. The inducing signal for 22 ASPs appears to be internal acidification, while external pH serves to induce 13 others. Of the 14 transient ASPs, 10 are induced in response to changes in internal pH. Mutations in the fur (ferric uptake regulator) locus that produce an Atr- acid-sensitive phenotype also eliminate induction of six transiently induced ASPs. Images PMID:8458840

  3. Selecting Learning Tasks: Effects of Adaptation and Shared Control on Learning Efficiency and Task Involvement

    ERIC Educational Resources Information Center

    Corbalan, Gemma; Kester, Liesbeth; van Merrienboer, Jeroen J. G.

    2008-01-01

    Complex skill acquisition by performing authentic learning tasks is constrained by limited working memory capacity [Baddeley, A. D. (1992). Working memory. "Science, 255", 556-559]. To prevent cognitive overload, task difficulty and support of each newly selected learning task can be adapted to the learner's competence level and perceived task…

  4. Genomic adaptation of Saccharomyces cerevisiae to inhibitors involving biomass conversion to ethanol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The dose-dependent inhibition of the ethanologenic yeast allowed its potential adaptation to the inhibitors to transform furfural and 5-hydroxymethylfurfural (HMF) into less toxic compounds of furan methanol (FM) and furan-2,5-dimethanol (FDM), respectively. The isolation and identification of HMF ...

  5. An Adaptive Approach to Teaching the Use of the Sonicguide with Modifications for Orthopedic Involvement.

    ERIC Educational Resources Information Center

    Kitzhoffer, Gerald J.

    1983-01-01

    Use of the Sonicguide, a binaural sensory aid, by a quadraplegic, totally blind 18-year-old student is described. The rationale for training, device adaptations, and the eventual use of the device as a primary mobility aid in areas familiar to the student are explained. (Author/MC)

  6. Adaptations of proteins to cellular and subcellular pH

    PubMed Central

    2009-01-01

    Bioinformatics-based searches for correlations between subcellular localization and pI or charge distribution of proteins have failed to detect meaningful correlations. Recent work published in BMC Biology finds that a physicochemical metric of charge distribution correlates better with subcellular pH than does pI. See research article http://www.biomedcentral.com/1741-7007/7/69 PMID:20017887

  7. Adaptations of proteins to cellular and subcellular pH.

    PubMed

    Garcia-Moreno, Bertrand

    2009-01-01

    Bioinformatics-based searches for correlations between subcellular localization and pI or charge distribution of proteins have failed to detect meaningful correlations. Recent work published in BMC Biology finds that a physicochemical metric of charge distribution correlates better with subcellular pH than does pI. See research article http://www.biomedcentral.com/1741-7007/7/69. PMID:20017887

  8. Protein-Protein and Peptide-Protein Interactions of NudE-Like 1 (Ndel1): A Protein Involved in Schizophrenia.

    PubMed

    Hayashi, M A F; Felicori, L F; Fresqui, M A C; Yonamine, C M

    2015-01-01

    Schizophrenia (SCZ) is a devastating chronic mental disease determined by genetic and environmental factors, which susceptibility may involve an impaired neural migration during the neurodevelopmental process. Several candidate risk genes potentially associated with SCZ were related to the formation of protein complexes that ultimately mediate alterations in the neuroplasticity. The most studied SCZ risk gene is the Disrupted-in-Schizophrenia 1 (DISC1) gene, which functions seem to depend on the binding with cytoskeleton proteins, as the Nuclear-distribution gene E homolog like-1 (Ndel1) protein among others. Interestingly, Ndel1 is the only binding partner of DISC1 proteins with oligopeptidase activity, besides playing roles in multiple processes, including cytoskeletal organization, cell signaling, neuron migration, and neurite outgrowth. It is still not clear if the protein-protein interaction between Ndel1 and DISC1 is enough to explain all cellular functions attributed to these proteins, but there are several lines of evidence suggesting the importance of the catalytic activity of Ndel1 for the neurite outgrowth and neuron migration during embryogenesis. Recent works of the group have demonstrated the modulation of Ndel1 activity by DISC1, which is hypothetically impaired in SCZ patients. In fact, more recently, we also showed a lower Ndel1 activity in the plasma of SCZ patients compared to control health subjects, but the physiopathological significance of this feature is still unknown. Here we discuss Ndel1 ligands involved in protein-protein complex formations related to neurodevelopmental diseases, as (1) lissencephaly or Miller-Dieker Syndrome (MDS), which is characterized by the typical craniofacial features and abnormal smooth cerebral surface, and as (2) SCZ, since they both seem to be determined by defects in neuronal migration. Although impaired lissencephaly protein Lis1 complex formation with Ndel1 is the leading cause of lissencephaly, this

  9. Bile Stress Response in Listeria monocytogenes LO28: Adaptation, Cross-Protection, and Identification of Genetic Loci Involved in Bile Resistance

    PubMed Central

    Begley, Máire; Gahan, Cormac G. M.; Hill, Colin

    2002-01-01

    Bile is one of many barriers that Listeria monocytogenes must overcome in the human gastrointestinal tract in order to infect and cause disease. We demonstrated that stationary-phase cultures of L. monocytogenes LO28 were able to tolerate concentrations of bovine, porcine, and human bile and bile acids well in excess of those encountered in vivo. Strain LO28 was relatively bile resistant compared with other clinical isolates of L. monocytogenes, as well as with Listeria innocua, Salmonella enterica serovar Typhimurium LT2, and Lactobacillus sakei. While exponential-phase L. monocytogenes LO28 cells were exquisitely sensitive to unconjugated bile acids, prior adaptation to sublethal levels of bile acids or heterologous stresses, such as acid, heat, salt, or sodium dodecyl sulfate (SDS), significantly enhanced bile resistance. This adaptive response was independent of protein synthesis, and in the cases of bile and SDS adaptation, occurred in seconds. In order to identify genetic loci involved in the bile tolerance phenotype of L. monocytogenes LO28, transposon (Tn917) and plasmid (pORI19) integration banks were screened for bile-sensitive mutants. The disrupted genes included a homologue of the capA locus required for capsule formation in Bacillus anthracis; a gene encoding the transcriptional regulator ZurR; a homologue of an Escherichia coli gene, lytB, involved in isoprenoid biosynthesis; a gene encoding a homologue of the Bacillus subtilis membrane protein YxiO; and a gene encoding an amino acid transporter with a putative role in pH homeostasis, gadE. Interestingly, all of the identified loci play putative roles in maintenance of the cell envelope or in stress responses. PMID:12450822

  10. Bile stress response in Listeria monocytogenes LO28: adaptation, cross-protection, and identification of genetic loci involved in bile resistance.

    PubMed

    Begley, Máire; Gahan, Cormac G M; Hill, Colin

    2002-12-01

    Bile is one of many barriers that Listeria monocytogenes must overcome in the human gastrointestinal tract in order to infect and cause disease. We demonstrated that stationary-phase cultures of L. monocytogenes LO28 were able to tolerate concentrations of bovine, porcine, and human bile and bile acids well in excess of those encountered in vivo. Strain LO28 was relatively bile resistant compared with other clinical isolates of L. monocytogenes, as well as with Listeria innocua, Salmonella enterica serovar Typhimurium LT2, and Lactobacillus sakei. While exponential-phase L. monocytogenes LO28 cells were exquisitely sensitive to unconjugated bile acids, prior adaptation to sublethal levels of bile acids or heterologous stresses, such as acid, heat, salt, or sodium dodecyl sulfate (SDS), significantly enhanced bile resistance. This adaptive response was independent of protein synthesis, and in the cases of bile and SDS adaptation, occurred in seconds. In order to identify genetic loci involved in the bile tolerance phenotype of L. monocytogenes LO28, transposon (Tn917) and plasmid (pORI19) integration banks were screened for bile-sensitive mutants. The disrupted genes included a homologue of the capA locus required for capsule formation in Bacillus anthracis; a gene encoding the transcriptional regulator ZurR; a homologue of an Escherichia coli gene, lytB, involved in isoprenoid biosynthesis; a gene encoding a homologue of the Bacillus subtilis membrane protein YxiO; and a gene encoding an amino acid transporter with a putative role in pH homeostasis, gadE. Interestingly, all of the identified loci play putative roles in maintenance of the cell envelope or in stress responses. PMID:12450822

  11. Protein kinase C is involved in the regulation of several calreticulin posttranslational modifications.

    PubMed

    Cristina Castañeda-Patlán, M; Razo-Paredes, Roberto; Carrisoza-Gaytán, Rolando; González-Mariscal, Lorenza; Robles-Flores, Martha

    2010-01-01

    Calreticulin (CRT) is a highly versatile lectin-like chaperone that affects many cellular functions both inside and outside the endoplasmic reticulum lumen. We previously reported that calreticulin interacts with several protein kinase C isozymes both in vitro and in vivo. The aim of this study was to elucidate the molecular determinants involved in the association between these proteins and the biochemical significance of their interaction. Using full-length or CRT-domain constructs expressed as GST-fusion proteins, we found that protein kinase C binds to the CRT N domain in overlay and pull-down assays. Phosphorylation experiments showed that only this CRT domain is phosphorylated by the kinase. Lectin blot analysis demonstrated that CRT is modified by N-glycosylation, but this modification did not affect its interaction with protein kinase C. We also demonstrated that although both domains of protein kinase C theta can bind to CRT, it is the catalytic one that binds with higher affinity to CRT. Immunofluorescence studies showed that CRT and PKC co-localize mainly at the ER (estimated in 35%). Activation of protein kinase C induced caused transient changes in CRT localization, and unexpectedly, also induced changes in posttranslational modifications found in the protein: CRT N-glycosylation is abolished, whereas tyrosine phosphorylation and O-linked beta-N-acetylglucosamine modification are increased. Together, these findings suggest that protein kinase C is involved in the regulation of CRT function. PMID:19800981

  12. IQ Domain GTPase-Activating Protein 1 is Involved in Shear Stress-Induced Progenitor-Derived Endothelial Cell Alignment

    PubMed Central

    Rami, Lila; Auguste, Patrick; Thebaud, Noélie B.; Bareille, Reine; Daculsi, Richard; Ripoche, Jean; Bordenave, Laurence

    2013-01-01

    Shear stress is one of mechanical constraints which are exerted by blood flow on endothelial cells (ECs). To adapt to shear stress, ECs align in the direction of flow through adherens junction (AJ) remodeling. However, mechanisms regulating ECs alignment under shear stress are poorly understood. The scaffold protein IQ domain GTPase activating protein 1 (IQGAP1) is a scaffold protein which couples cell signaling to the actin and microtubule cytoskeletons and is involved in cell migration and adhesion. IQGAP1 also plays a role in AJ organization in epithelial cells. In this study, we investigated the potential IQGAP1 involvement in the endothelial cells alignment under shear stress. Progenitor-derived endothelial cells (PDECs), transfected (or not) with IQGAP1 small interfering RNA, were exposed to a laminar shear stress (1.2 N/m2) and AJ proteins (VE-cadherin and β-catenin) and IQGAP1 were labeled by immunofluorescence. We show that IQGAP1 is essential for ECs alignment under shear stress. We studied the role of IQGAP1 in AJs remodeling of PDECs exposed to shear stress by studying cell localization and IQGAP1 interactions with VE-cadherin and β-catenin by immunofluorescence and Proximity Ligation Assays. In static conditions, IQGAP1 interacts with VE-cadherin but not with β-catenin at the cell membrane. Under shear stress, IQGAP1 lost its interaction from VE-cadherin to β-catenin. This “switch” was concomitant with the loss of β-catenin/VE-cadherin interaction at the cell membrane. This work shows that IQGAP1 is essential to ECs alignment under shear stress and that AJ remodeling represents one of the mechanisms involved. These results provide a new approach to understand ECs alignment under to shear stress. PMID:24278215

  13. Cloning of two sea urchin DNA-binding proteins involved in mitochondrial DNA replication and transcription.

    PubMed

    Loguercio Polosa, Paola; Megli, Fiammetta; Di Ponzio, Barbara; Gadaleta, Maria Nicola; Cantatore, Palmiro; Roberti, Marina

    2002-03-01

    The cloning of the cDNA for two mitochondrial proteins involved in sea urchin mtDNA replication and transcription is reported here. The cDNA for the mitochondrial D-loop binding protein (mtDBP) from the sea urchin Strongylocentrotus purpuratus has been cloned by a polymerase chain reaction-based approach. The protein displays a very high similarity with the Paracentrotus lividus homologue as it contains also the two leucine zipper-like domains which are thought to be involved in intramolecular interactions needed to expose the two DNA binding domains in the correct position for contacting DNA. The cDNA for the mitochondrial single-stranded DNA-binding protein (mtSSB) from P. lividus has been also cloned by a similar approach. The precursor protein is 146 amino acids long with a presequence of 16 residues. The deduced amino acid sequence shows the highest homology with the Xenopus laevis protein and the lowest with the Drosophila mtSSB. The computer modeling of the tertiary structure of P. lividus mtSSB shows a structure very similar to that experimentally determined for human mtSSB, with the conservation of the main residues involved in protein tetramerization and in DNA binding. PMID:11943466

  14. Quantitative Proteomics Reveals Membrane Protein-Mediated Hypersaline Sensitivity and Adaptation in Halophilic Nocardiopsis xinjiangensis.

    PubMed

    Zhang, Yao; Li, Yanchang; Zhang, Yongguang; Wang, Zhiqiang; Zhao, Mingzhi; Su, Na; Zhang, Tao; Chen, Lingsheng; Wei, Wei; Luo, Jing; Zhou, Yanxia; Xu, Yongru; Xu, Ping; Li, Wenjun; Tao, Yong

    2016-01-01

    The genus Nocardiopsis is one of the most dominant Actinobacteria that survives in hypersaline environments. However, the adaptation mechanisms for halophilism are still unclear. Here, we performed isobaric tags for relative and absolute quantification based quantitative proteomics to investigate the functions of the membrane proteome after salt stress. A total of 683 membrane proteins were identified and quantified, of which 126 membrane proteins displayed salt-induced changes in abundance. Intriguingly, bioinformatics analyses indicated that these differential proteins showed two expression patterns, which were further validated by phenotypic changes and functional differences. The majority of ABC transporters, secondary active transporters, cell motility proteins, and signal transduction kinases were up-regulated with increasing salt concentration, whereas cell differentiation, small molecular transporter (ions and amino acids), and secondary metabolism proteins were significantly up-regulated at optimum salinity, but down-regulated or unchanged at higher salinity. The small molecule transporters and cell differentiation-related proteins acted as sensing proteins that played a more important biological role at optimum salinity. However, the ABC transporters for compatible solutes, Na(+)-dependent transporters, and cell motility proteins acted as adaptive proteins that actively counteracted higher salinity stress. Overall, regulation of membrane proteins may provide a major protection strategy against hyperosmotic stress. PMID:26549328

  15. QTL mapping identifies candidate alleles involved in adaptive introgression and range expansion in a wild sunflower

    PubMed Central

    Whitney, Kenneth D.; Broman, Karl W.; Kane, Nolan C.; Hovick, Stephen M.; Randell, Rebecca A.; Rieseberg, Loren H.

    2014-01-01

    The wild North American sunflowers Helianthus annuus and H. debilis are participants in one of the earliest identified examples of adaptive trait introgression, and the exchange is hypothesized to have triggered a range expansion in H. annuus. However, the genetic basis of the adaptive exchange has not been examined. Here, we combine quantitative trait locus (QTL) mapping with field measurements of fitness to identify candidate H. debilis QTL alleles likely to have introgressed into H. annuus to form the natural hybrid lineage H. a. texanus. Two 500-individual BC1 mapping populations were grown in central Texas, genotyped for 384 SNP markers, and then phenotyped in the field for two fitness and 22 herbivore resistance, ecophysiological, phenological, and architectural traits. We identified a total of 110 QTL, including at least one QTL for 22 of the 24 traits. Over 75% of traits exhibited at least one H. debilis QTL allele that would shift the trait in the direction of the wild hybrid H. a. texanus. We identified three chromosomal regions where H. debilis alleles increased both female and male components of fitness; these regions are expected to be strongly favored in the wild. QTL for a number of other ecophysiological, phenological, and architectural traits co-localized with these three regions and are candidates for the actual traits driving adaptive shifts. G × E interactions played a modest role, with 17% of the QTL showing potentially divergent phenotypic effects between the two field sites. The candidate adaptive chromosomal regions identified here serve as explicit hypotheses for how the genetic architecture of the hybrid lineage came into existence. PMID:25522096

  16. Multiple Protein Interactions Involving Proposed Extracellular Loop Domains of the Tight Junction Protein Occludin

    PubMed Central

    Nusrat, Asma; Brown, G. Thomas; Tom, Jeffrey; Drake, Alex; Bui, Tam T.T.; Quan, Cliff; Mrsny, Randall J.

    2005-01-01

    Occludin is a tetraspan integral membrane protein in epithelial and endothelial tight junction (TJ) structures that is projected to have two extracellular loops. We have used peptides emulating central regions of human occludin's first and second loops, termed O-A:101–121 and O-B:210–228, respectively, to examine potential molecular interactions between these two regions of occludin and other TJ proteins. A superficial biophysical assessment of A:101–121 and O-B:210–228 showed them to have dissimilar solution conformation characteristics. Although O-A:101–121 failed to strongly interact with protein components of the human epithelial intestinal cell line T84, O-B:210–228 selectively associated with occludin, claudin-one and the junctional adhesion molecule (JAM)-A. Further, the presence of O-B:210–228, but not O-A:101–121, impeded the recovery of functional TJ structures. A scrambled peptide sequences of O-B:210–228 failed to influence TJ assembly. These studies demonstrate distinct properties for these two extracellular segments of the occludin protein and provide an improved understanding of how specific domains of occludin may interact with proteins present at TJ structures. PMID:15659655

  17. Signal Regulatory Protein alpha (SIRPalpha)+ Cells in the Adaptive Response to ESAT-6/CFP-10 Protein of Tuberculous Mycobacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Early secretory antigenic target-6 (ESAT-6) and culture filtrate protein-10(CFP-10) are co-secreted proteins of Mycobacterium tuberculosis complex mycobacteria (includes M. bovis, the zoonotic agent of bovine tuberculosis) involved in phagolysosome escape of the bacillus and, potentially, in the eff...

  18. Cold shock proteins of Lactococcus lactis MG1363 are involved in cryoprotection and in the production of cold-induced proteins.

    PubMed

    Wouters, J A; Frenkiel, H; de Vos, W M; Kuipers, O P; Abee, T

    2001-11-01

    Members of the group of 7-kDa cold-shock proteins (CSPs) are the proteins with the highest level of induction upon cold shock in the lactic acid bacterium Lactococcus lactis MG1363. By using double-crossover recombination, two L. lactis strains were generated in which genes encoding CSPs are disrupted: L. lactis NZ9000 Delta AB lacks the tandemly orientated cspA and cspB genes, and NZ9000 Delta ABE lacks cspA, cspB, and cspE. Both strains showed no differences in growth at normal and at low temperatures compared to that of the wild-type strain, L. lactis NZ9000. Two-dimensional gel electrophoresis showed that upon disruption of the cspAB genes, the production of remaining CspE at low temperature increased, and upon disruption of cspA, cspB, and cspE, the production of CspD at normal growth temperatures increased. Northern blot analysis showed that control is most likely at the transcriptional level. Furthermore, it was established by a proteomics approach that some (non-7-kDa) cold-induced proteins (CIPs) are not cold induced in the csp-lacking strains, among others the histon-like protein HslA and the signal transduction protein LlrC. This supports earlier observations (J. A. Wouters, M. Mailhes, F. M. Rombouts, W. M. De Vos, O. P. Kuipers, and T. Abee, Appl. Environ. Microbiol. 66:3756-3763, 2000). that the CSPs of L. lactis might be directly involved in the production of some CIPs upon low-temperature exposure. Remarkably, the adaptive response to freezing by prior exposure to 10 degrees C was significantly reduced in strain NZ9000 Delta ABE but not in strain NZ9000 Delta AB compared to results with wild-type strain NZ9000, indicating a notable involvement of CspE in cryoprotection. PMID:11679342

  19. Proteomic Analysis of Differentially Expressed Proteins Involved in Peel Senescence in Harvested Mandarin Fruit

    PubMed Central

    Li, Taotao; Zhang, Jingying; Zhu, Hong; Qu, Hongxia; You, Shulin; Duan, Xuewu; Jiang, Yueming

    2016-01-01

    Mandarin (Citrus reticulata), a non-climacteric fruit, is an economically important fruit worldwide. The mechanism underlying senescence of non-climacteric fruit is poorly understood. In this study, a gel-based proteomic study followed by LC-ESI-MS/MS analysis was carried out to investigate the proteomic changes involved in peel senescence in harvested mandarin “Shatangju” fruit stored for 18 days. Over the course of the storage period, the fruit gradually senesced, accompanied by a decreased respiration rate and increased chlorophyll degradation and disruption of membrane integrity. Sixty-three proteins spots that showed significant differences in abundance were identified. The up-regulated proteins were mainly associated with cell wall degradation, lipid degradation, protein degradation, senescence-related transcription factors, and transcription-related proteins. In contrast, most proteins associated with ATP synthesis and scavenging of reactive oxygen species were significantly down-regulated during peel senescence. Three thioredoxin proteins and three Ca2+ signaling-related proteins were significantly up-regulated during peel senescence. It is suggested that mandarin peel senescence is associated with energy supply efficiency, decreased antioxidant capability, and increased protein and lipid degradation. In addition, activation of Ca2+ signaling and transcription factors might be involved in cell wall degradation and primary or secondary metabolism. PMID:27303420

  20. Proteomic Analysis of Differentially Expressed Proteins Involved in Peel Senescence in Harvested Mandarin Fruit.

    PubMed

    Li, Taotao; Zhang, Jingying; Zhu, Hong; Qu, Hongxia; You, Shulin; Duan, Xuewu; Jiang, Yueming

    2016-01-01

    Mandarin (Citrus reticulata), a non-climacteric fruit, is an economically important fruit worldwide. The mechanism underlying senescence of non-climacteric fruit is poorly understood. In this study, a gel-based proteomic study followed by LC-ESI-MS/MS analysis was carried out to investigate the proteomic changes involved in peel senescence in harvested mandarin "Shatangju" fruit stored for 18 days. Over the course of the storage period, the fruit gradually senesced, accompanied by a decreased respiration rate and increased chlorophyll degradation and disruption of membrane integrity. Sixty-three proteins spots that showed significant differences in abundance were identified. The up-regulated proteins were mainly associated with cell wall degradation, lipid degradation, protein degradation, senescence-related transcription factors, and transcription-related proteins. In contrast, most proteins associated with ATP synthesis and scavenging of reactive oxygen species were significantly down-regulated during peel senescence. Three thioredoxin proteins and three Ca(2+) signaling-related proteins were significantly up-regulated during peel senescence. It is suggested that mandarin peel senescence is associated with energy supply efficiency, decreased antioxidant capability, and increased protein and lipid degradation. In addition, activation of Ca(2+) signaling and transcription factors might be involved in cell wall degradation and primary or secondary metabolism. PMID:27303420

  1. Mapping of the Regions Involved in Homotypic Interactions of Tula Hantavirus N Protein

    PubMed Central

    Kaukinen, Pasi; Vaheri, Antti; Plyusnin, Alexander

    2003-01-01

    Hantavirus nucleocapsid (N) protein has been suggested to form homodimers and homotrimers that are further integrated into the nucleocapsid filaments around the viral RNA. Here we report detailed mapping of the regions involved in the homotypic N protein interactions in Tula hantavirus (TULV). Peptide scan screening was used to define the interaction regions, and the mammalian two-hybrid assay was used for the functional analysis of N protein mutants. To study linear regions responsible for N protein interaction(s), we used peptide scanning in which N peptides synthesized on membranes recognize recombinant TULV N protein. The data showed that the N protein bound to membrane-bound peptides comprising amino acids 13 to 30 and 41 to 57 in the N-terminal part and 340 to 379, 391 to 407, and 410 to 419 in the C-terminal part of the molecule. Further mapping of the interaction regions by alanine scanning indicated the importance of basic amino acids along the N protein and especially asparagine-394, histidine-395, and phenyalanine-396 in forming the binding interface. Analysis of truncated mutants in the mammalian two-hybrid assay showed that N-terminal amino acids 1 to 43 are involved in and C-terminal amino acids 393 to 398 (VNHFHL) are absolutely crucial for the homotypic interactions. Furthermore, our data suggested a tail-to-tail and head-to-head binding scheme for the N proteins. PMID:14512541

  2. Genetic Adaptation to Climate in White Spruce Involves Small to Moderate Allele Frequency Shifts in Functionally Diverse Genes

    PubMed Central

    Hornoy, Benjamin; Pavy, Nathalie; Gérardi, Sébastien; Beaulieu, Jean; Bousquet, Jean

    2015-01-01

    Understanding the genetic basis of adaptation to climate is of paramount importance for preserving and managing genetic diversity in plants in a context of climate change. Yet, this objective has been addressed mainly in short-lived model species. Thus, expanding knowledge to nonmodel species with contrasting life histories, such as forest trees, appears necessary. To uncover the genetic basis of adaptation to climate in the widely distributed boreal conifer white spruce (Picea glauca), an environmental association study was conducted using 11,085 single nucleotide polymorphisms representing 7,819 genes, that is, approximately a quarter of the transcriptome. Linear and quadratic regressions controlling for isolation-by-distance, and the Random Forest algorithm, identified several dozen genes putatively under selection, among which 43 showed strongest signals along temperature and precipitation gradients. Most of them were related to temperature. Small to moderate shifts in allele frequencies were observed. Genes involved encompassed a wide variety of functions and processes, some of them being likely important for plant survival under biotic and abiotic environmental stresses according to expression data. Literature mining and sequence comparison also highlighted conserved sequences and functions with angiosperm homologs. Our results are consistent with theoretical predictions that local adaptation involves genes with small frequency shifts when selection is recent and gene flow among populations is high. Accordingly, genetic adaptation to climate in P. glauca appears to be complex, involving many independent and interacting gene functions, biochemical pathways, and processes. From an applied perspective, these results shall lead to specific functional/association studies in conifers and to the development of markers useful for the conservation of genetic resources. PMID:26560341

  3. Elucidating Protein Involvement in the Stabilization of the Biogenic Silver Nanoparticles.

    PubMed

    Ballottin, Daniela; Fulaz, Stephanie; Souza, Michele L; Corio, Paola; Rodrigues, Alexandre G; Souza, Ana O; Gaspari, Priscyla M; Gomes, Alexandre F; Gozzo, Fábio; Tasic, Ljubica

    2016-12-01

    Silver nanoparticles (AgNPs) have been broadly used as antibacterial and antiviral agents. Further, interests for green AgNP synthesis have increased in recent years and several results for AgNP biological synthesis have been reported using bacteria, fungi and plant extracts. The understanding of the role and nature of fungal proteins, their interaction with AgNPs and the subsequent stabilization of nanosilver is yet to be deeply investigated. Therefore, in an attempt to better understand biogenic AgNP stabilization with the extracellular fungal proteins and to describe these supramolecular interactions between proteins and silver nanoparticles, AgNPs, produced extracellularly by Aspergillus tubingensis-isolated as an endophytic fungus from Rizophora mangle-were characterized in order to study their physical characteristics, identify the involved proteins, and shed light into the interactions among protein-NPs by several techniques. AgNPs of around 35 nm in diameter as measured by TEM and a positive zeta potential of +8.48 mV were obtained. These AgNPs exhibited a surface plasmon resonance (SPR) band at 440 nm, indicating the nanoparticles formation, and another band at 280 nm, attributed to the electronic excitations in tryptophan, tyrosine, and/or phenylalanine residues in fungal proteins. Fungal proteins were covalently bounded to the AgNPs, mainly through S-Ag bonds due to cysteine residues (HS-) and with few N-Ag bonds from H2N- groups, as verified by Raman spectroscopy. Observed supramolecular interactions also occur by electrostatic and other protein-protein interactions. Furthermore, proteins that remain free on AgNP surface may perform hydrogen bonds with other proteins or water increasing thus the capping layer around the AgNPs and consequently expanding the hydrodynamic diameter of the particles (~264 nm, measured by DLS). FTIR results enabled us to state that proteins adsorbed to the AgNPs did not suffer relevant secondary structure alteration upon

  4. Elucidating Protein Involvement in the Stabilization of the Biogenic Silver Nanoparticles

    NASA Astrophysics Data System (ADS)

    Ballottin, Daniela; Fulaz, Stephanie; Souza, Michele L.; Corio, Paola; Rodrigues, Alexandre G.; Souza, Ana O.; Gaspari, Priscyla M.; Gomes, Alexandre F.; Gozzo, Fábio; Tasic, Ljubica

    2016-06-01

    Silver nanoparticles (AgNPs) have been broadly used as antibacterial and antiviral agents. Further, interests for green AgNP synthesis have increased in recent years and several results for AgNP biological synthesis have been reported using bacteria, fungi and plant extracts. The understanding of the role and nature of fungal proteins, their interaction with AgNPs and the subsequent stabilization of nanosilver is yet to be deeply investigated. Therefore, in an attempt to better understand biogenic AgNP stabilization with the extracellular fungal proteins and to describe these supramolecular interactions between proteins and silver nanoparticles, AgNPs, produced extracellularly by Aspergillus tubingensis—isolated as an endophytic fungus from Rizophora mangle—were characterized in order to study their physical characteristics, identify the involved proteins, and shed light into the interactions among protein-NPs by several techniques. AgNPs of around 35 nm in diameter as measured by TEM and a positive zeta potential of +8.48 mV were obtained. These AgNPs exhibited a surface plasmon resonance (SPR) band at 440 nm, indicating the nanoparticles formation, and another band at 280 nm, attributed to the electronic excitations in tryptophan, tyrosine, and/or phenylalanine residues in fungal proteins. Fungal proteins were covalently bounded to the AgNPs, mainly through S-Ag bonds due to cysteine residues (HS-) and with few N-Ag bonds from H2N- groups, as verified by Raman spectroscopy. Observed supramolecular interactions also occur by electrostatic and other protein-protein interactions. Furthermore, proteins that remain free on AgNP surface may perform hydrogen bonds with other proteins or water increasing thus the capping layer around the AgNPs and consequently expanding the hydrodynamic diameter of the particles (~264 nm, measured by DLS). FTIR results enabled us to state that proteins adsorbed to the AgNPs did not suffer relevant secondary structure alteration upon

  5. A Protein Involved in the Assembly of an Extracellular Calcium Storage Matrix*

    PubMed Central

    Glazer, Lilah; Shechter, Assaf; Tom, Moshe; Yudkovski, Yana; Weil, Simy; Aflalo, Eliahu David; Pamuru, Ramachandra Reddy; Khalaila, Isam; Bentov, Shmuel; Berman, Amir; Sagi, Amir

    2010-01-01

    Gastroliths, the calcium storage organs of crustaceans, consist of chitin-protein-mineral complexes in which the mineral component is stabilized amorphous calcium carbonate. To date, only three proteins, GAP 65, gastrolith matrix protein (GAMP), and orchestin, have been identified in gastroliths. Here, we report a novel protein, GAP 10, isolated from the gastrolith of the crayfish Cherax quadricarinatus and specifically expressed in its gastrolith disc. The encoding gene was cloned by partial sequencing of the protein extracted from the gastrolith matrix. Based on an assembled microarray cDNA chip, GAP 10 transcripts were found to be highly (12-fold) up-regulated in premolt gastrolith disc and significantly down-regulated in the hypodermis at the same molt stage. The deduced protein sequence of GAP 10 lacks chitin-binding domains and does not show homology to known proteins in the GenBankTM data base. It does, however, have an amino acid composition that has similarity to proteins extracted from invertebrate and ascidian-calcified extracellular matrices. The GAP 10 sequence contains a predicted signal peptide and predicted phosphorylation sites. In addition, the protein is phosphorylated and exhibits calcium-binding ability. Repeated daily injections of GAP 10 double strand RNA to premolt C. quadricarinatus resulted in a prolonged premolt stage and in the development of gastroliths with irregularly rough surfaces. These findings suggest that GAP 10 may be involved in the assembly of the gastrolith chitin-protein-mineral complex, particularly in the deposition of amorphous calcium carbonate. PMID:20150428

  6. A protein involved in the assembly of an extracellular calcium storage matrix.

    PubMed

    Glazer, Lilah; Shechter, Assaf; Tom, Moshe; Yudkovski, Yana; Weil, Simy; Aflalo, Eliahu David; Pamuru, Ramachandra Reddy; Khalaila, Isam; Bentov, Shmuel; Berman, Amir; Sagi, Amir

    2010-04-23

    Gastroliths, the calcium storage organs of crustaceans, consist of chitin-protein-mineral complexes in which the mineral component is stabilized amorphous calcium carbonate. To date, only three proteins, GAP 65, gastrolith matrix protein (GAMP), and orchestin, have been identified in gastroliths. Here, we report a novel protein, GAP 10, isolated from the gastrolith of the crayfish Cherax quadricarinatus and specifically expressed in its gastrolith disc. The encoding gene was cloned by partial sequencing of the protein extracted from the gastrolith matrix. Based on an assembled microarray cDNA chip, GAP 10 transcripts were found to be highly (12-fold) up-regulated in premolt gastrolith disc and significantly down-regulated in the hypodermis at the same molt stage. The deduced protein sequence of GAP 10 lacks chitin-binding domains and does not show homology to known proteins in the GenBank data base. It does, however, have an amino acid composition that has similarity to proteins extracted from invertebrate and ascidian-calcified extracellular matrices. The GAP 10 sequence contains a predicted signal peptide and predicted phosphorylation sites. In addition, the protein is phosphorylated and exhibits calcium-binding ability. Repeated daily injections of GAP 10 double strand RNA to premolt C. quadricarinatus resulted in a prolonged premolt stage and in the development of gastroliths with irregularly rough surfaces. These findings suggest that GAP 10 may be involved in the assembly of the gastrolith chitin-protein-mineral complex, particularly in the deposition of amorphous calcium carbonate. PMID:20150428

  7. A Comparative Pan-Genome Perspective of Niche-Adaptable Cell-Surface Protein Phenotypes in Lactobacillus rhamnosus

    PubMed Central

    Kant, Ravi; Sigvart-Mattila, Pia; Paulin, Lars; Mecklin, Jukka-Pekka; Saarela, Maria; Palva, Airi; von Ossowski, Ingemar

    2014-01-01

    Lactobacillus rhamnosus is a ubiquitously adaptable Gram-positive bacterium and as a typical commensal can be recovered from various microbe-accessible bodily orifices and cavities. Then again, other isolates are food-borne, with some of these having been long associated with naturally fermented cheeses and yogurts. Additionally, because of perceived health benefits to humans and animals, numerous L. rhamnosus strains have been selected for use as so-called probiotics and are often taken in the form of dietary supplements and functional foods. At the genome level, it is anticipated that certain genetic variances will have provided the niche-related phenotypes that augment the flexible adaptiveness of this species, thus enabling its strains to grow and survive in their respective host environments. For this present study, we considered it functionally informative to examine and catalogue the genotype-phenotype variation existing at the cell surface between different L. rhamnosus strains, with the presumption that this might be relatable to habitat preferences and ecological adaptability. Here, we conducted a pan-genomic study involving 13 genomes from L. rhamnosus isolates with various origins. In using a benchmark strain (gut-adapted L. rhamnosus GG) for our pan-genome comparison, we had focused our efforts on a detailed examination and description of gene products for certain functionally relevant surface-exposed proteins, each of which in effect might also play a part in niche adaptability among the other strains. Perhaps most significantly of the surface protein loci we had analyzed, it would appear that the spaCBA operon (known to encode SpaCBA-called pili having a mucoadhesive phenotype) is a genomic rarity and an uncommon occurrence in L. rhamnosus. However, for any of the so-piliated L. rhamnosus strains, they will likely possess an increased niche-specific fitness, which functionally might presumably be manifested by a protracted transient colonization of

  8. Proteome analysis reveals protein candidates involved in early stages of brain regeneration of teleost fish.

    PubMed

    Ilieş, I; Zupanc, M M; Zupanc, G K H

    2012-09-01

    Exploration of the molecular dynamics underlying regeneration in the central nervous system of regeneration-competent organisms has received little attention thus far. By combining a cerebellar lesion paradigm with differential proteome analysis at a post-lesion survival time of 30 min, we screened for protein candidates involved in the early stages of regeneration in the cerebellum of such an organism, the teleost fish Apteronotus leptorhynchus. Out of 769 protein spots, the intensity of 26 spots was significantly increased by a factor of at least 1.5 in the lesioned hemisphere, relative to the intact hemisphere. The intensity of 9 protein spots was significantly reduced by a factor of at least 1.5. The proteins associated with 15 of the spots were identified by peptide mass fingerprinting and/or tandem mass spectrometry, resulting in the identification of a total of 11 proteins. Proteins whose abundance was significantly increased include: erythrocyte membrane protein 4.1N, fibrinogen gamma polypeptide, fructose-biphosphate aldolase C, alpha-internexin neuronal intermediate filament protein, major histocompatibility complex class I heavy chain, 26S proteasome non-ATPase regulatory subunit 8, tubulin alpha-1C chain, and ubiquitin-specific protease 5. Proteins with significantly decreased levels of abundance include: brain glycogen phosphorylase, neuron-specific calcium-binding protein hippocalcin, and spectrin alpha 2. We hypothesize that these proteins are involved in energy metabolism, blood clotting, electron transfer in oxidative reactions, cytoskeleton degradation, apoptotic cell death, synaptic plasticity, axonal regeneration, and promotion of mitotic activity. PMID:22659563

  9. Modulation of host adaptive immunity by hRSV proteins.

    PubMed

    Espinoza, Janyra A; Bohmwald, Karen; Céspedes, Pablo F; Riedel, Claudia A; Bueno, Susan M; Kalergis, Alexis M

    2014-01-01

    Globally, the human respiratory syncytial virus (hRSV) is the major cause of lower respiratory tract infections (LRTIs) in infants and children younger than 2 years old. Furthermore, the number of hospitalizations due to LRTIs has shown a sustained increase every year due to the lack of effective vaccines against hRSV. Thus, this virus remains as a major public health and economic burden worldwide. The lung pathology developed in hRSV-infected humans is characterized by an exacerbated inflammatory and Th2 immune response. In order to rationally design new vaccines and therapies against this virus, several studies have focused in elucidating the interactions between hRSV virulence factors and the host immune system. Here, we discuss the main features of hRSV biology, the processes involved in virus recognition by the immune system and the most relevant mechanisms used by this pathogen to avoid the antiviral host response. PMID:25513775

  10. Modulation of host adaptive immunity by hRSV proteins

    PubMed Central

    Espinoza, Janyra A; Bohmwald, Karen; Céspedes, Pablo F; Riedel, Claudia A; Bueno, Susan M; Kalergis, Alexis M

    2014-01-01

    Globally, the human respiratory syncytial virus (hRSV) is the major cause of lower respiratory tract infections (LRTIs) in infants and children younger than 2 years old. Furthermore, the number of hospitalizations due to LRTIs has shown a sustained increase every year due to the lack of effective vaccines against hRSV. Thus, this virus remains as a major public health and economic burden worldwide. The lung pathology developed in hRSV-infected humans is characterized by an exacerbated inflammatory and Th2 immune response. In order to rationally design new vaccines and therapies against this virus, several studies have focused in elucidating the interactions between hRSV virulence factors and the host immune system. Here, we discuss the main features of hRSV biology, the processes involved in virus recognition by the immune system and the most relevant mechanisms used by this pathogen to avoid the antiviral host response. PMID:25513775

  11. Influence of Histidine-Containing Tags on the Biodistribution of ADAPT Scaffold Proteins.

    PubMed

    Lindbo, Sarah; Garousi, Javad; Åstrand, Mikael; Honarvar, Hadis; Orlova, Anna; Hober, Sophia; Tolmachev, Vladimir

    2016-03-16

    Engineered scaffold proteins (ESP) are high-affinity binders that can be used as probes for radionuclide imaging. Histidine-containing tags enable both efficient purification of ESP and radiolabeling with (99m)Tc(CO)3. Earlier studies demonstrated that the use of a histidine-glutamate-histidine-glutamate-histidine-glutamate (HE)3-tag instead of the commonly used hexahistidine (H6)-tag reduces hepatic uptake of radiolabeled ESP and short peptides. Here, we investigated the influence of histidine-containing tags on the biodistribution of a novel type of ESP, ADAPTs. A series of anti-HER2 ADAPT probes having H6- or (HE)3-tags in the N-termini were prepared. The constructs, (HE)3-ADAPT6 and H6-ADAPT6, were labeled with two different nuclides, (99m)Tc or (111)In. The labeling with (99m)Tc(CO)3 utilized the histidine-containing tags, while (111)In was attached through a maleimido derivative of DOTA conjugated to the N-terminus. For (111)In-labeled ADAPTs, the use of (HE)3 provided a significantly (p < 0.05) lower hepatic uptake at 1 h after injection, but there was no significant difference in hepatic uptake of (111)In-(HE)3-ADAPT6 and H6-ADAPT6 at later time points. Interestingly, in the case of (99m)Tc, (99m)Tc(CO)3-H6-ADAPT6 provided significantly (p < 0.05) lower uptake in a number of normal tissues and was more suitable as an imaging probe. Thus, the influence of histidine-containing tags on the biodistribution of the novel ADAPT scaffold proteins was different compared to its influence on other ESPs studied so far. Apparently, the effect of a histidine-containing tag on the biodistribution is highly dependent on the scaffold composition of the ESP. PMID:26781756

  12. Adaptive ability to cope with atypical or novel situations involving tool use: an fMRI approach.

    PubMed

    Wakusawa, Keisuke; Sugiura, Motoaki; Sassa, Yuko; Jeong, Hyeonjeong; Yomogida, Yukihito; Horie, Kaoru; Sato, Shigeru; Yokoyama, Hiroyuki; Kure, Shigeo; Takei, Noriyoshi; Mori, Norio; Kawashima, Ryuta

    2015-01-01

    We investigated the neural mechanisms underlying the ability to cope in atypical or novel situations using tools. We hypothesized that two cognitive components support this ability: adaptive coordination (for adapting to situational demands) and cognitive inhibition (for inhibiting the incongruent actions afforded by tools). We had subjects choose novel tools for a given task or choose among familiar tools in an atypical situation, during which we examined cortical activation in their brains using functional magnetic resonance imaging. Neural activation during adaptive coordination was observed in the left lateral orbitofrontal cortex, inferior frontal gyrus and sulcus, middle and medial frontal gyrus, intraparietal sulcus, precentral sulcus, inferior temporal gyrus, supramarginal gyrus, the bilateral insula, anterior cingulate cortex, and the right callosal sulcus. Activation indicating cognitive inhibition was observed in the right middle and inferior frontal gyrus. These findings demonstrate that the left parietal region shapes basic action, whereas the right frontal region inhibits stereotypical action. The left frontal regions are thought to be linked to the processing of ambiguous actions and play key roles in coordinating actions, whereas other regions are involved in processing situational contexts. Our results may be important for understanding the neural systems underlying adaptability to daily social situations. PMID:24709370

  13. [Protein quality control and psychiatric disorder--involvement of sigma-1 receptor].

    PubMed

    Kudo, Takashi

    2014-01-01

    The protein quality control mechanism in the endoplasmic reticulum is referred to as the unfolded protein response (UPR), and its failure may be involved in the onset of some psychiatric disorders. We showed that induction of the sigma-1 receptor plays a role in the UPR, and suggested the possibility that this mechanism is impaired in disorders such as schizophrenia. We also demonstrated that fluvoxamine induces expression of the sigma-1 receptor. Therefore, it has the potential to be developed as a drug which exerts an anti-ER-stress effect, i. e., protein quality control effect. PMID:25672212

  14. Characterization of the ArsRS regulon of Helicobacter pylori, involved in acid adaptation.

    PubMed

    Pflock, Michael; Finsterer, Nadja; Joseph, Biju; Mollenkopf, Hans; Meyer, Thomas F; Beier, Dagmar

    2006-05-01

    The human gastric pathogen Helicobacter pylori is extremely well adapted to the highly acidic conditions encountered in the stomach. The pronounced acid resistance of H. pylori relies mainly on the ammonia-producing enzyme urease; however, urease-independent mechanisms are likely to contribute to acid adaptation. Acid-responsive gene regulation is mediated at least in part by the ArsRS two-component system consisting of the essential OmpR-like response regulator ArsR and the nonessential cognate histidine kinase ArsS, whose autophosphorylation is triggered in response to low pH. In this study, by global transcriptional profiling of an ArsS-deficient H. pylori mutant grown at pH 5.0, we define the ArsR approximately P-dependent regulon consisting of 109 genes, including the urease gene cluster, the genes encoding the aliphatic amidases AmiE and AmiF, and the rocF gene encoding arginase. We show that ArsR approximately P controls the acid-induced transcription of amiE and amiF by binding to extended regions located upstream of the -10 box of the respective promoters. In contrast, transcription of rocF is repressed by ArsR approximately P at neutral, acidic, and mildly alkaline pH via high-affinity binding of the response regulator to a site overlapping the promoter of the rocF gene. PMID:16672598

  15. Vesicular trafficking in characean green algae and the possible involvement of a VAMP72-family protein

    PubMed Central

    Hoepflinger, Marion C; Hametner, Christina; Ueda, Takashi; Foissner, Ilse

    2014-01-01

    The RAB5 GTPase ARA6 of Arabidopsis thaliana is known to be involved in endosomal trafficking by targeting vesicles to the plasma membrane. During this process AtARA6 is working in close relationship with the SNARE protein VAMP727 (vesicle associated membrane protein 727). Recently, ARA6 of the characean green algae Chara australis (CaARA6) was shown to have properties similar to AtARA6, pointing to similar trafficking pathways. In order to gain further insight into the vesicle trafficking machinery of Characeae, C. australis was analyzed for homologous proteins of the VAMP72-family. A CaVAMP72 protein was detected and classified by protein sequence alignment and phylogenetic analyses. PMID:24614164

  16. Vesicular trafficking in characean green algae and the possible involvement of a VAMP72-family protein.

    PubMed

    Hoepflinger, Marion C; Hametner, Christina; Ueda, Takashi; Foissner, Ilse

    2014-01-01

    The RAB5 GTPase ARA6 of Arabidopsis thaliana is known to be involved in endosomal trafficking by targeting vesicles to the plasma membrane. During this process AtARA6 is working in close relationship with the SNARE protein VAMP727 (vesicle associated membrane protein 727). Recently, ARA6 of the characean green algae Chara australis (CaARA6) was shown to have properties similar to AtARA6, pointing to similar trafficking pathways. In order to gain further insight into the vesicle trafficking machinery of Characeae, C. australis was analyzed for homologous proteins of the VAMP72-family. A CaVAMP72 protein was detected and classified by protein sequence alignment and phylogenetic analyses. PMID:25764429

  17. Vesicular trafficking in characean green algae and the possible involvement of a VAMP72-family protein.

    PubMed

    Hoepflinger, Marion; Hametner, Christina; Ueda, Takashi; Foissner, Ilse

    2014-01-01

    The RAB5 GTPase ARA6 (AtARA6) of Arabidopsis thaliana is known to be involved in endosomal trafficking by targeting vesicles to the plasma membrane. During this process AtARA6 is working in close relationship with the SNARE protein VAMP727 (vesicle associated membrane protein 727). Recently, ARA6 of the characean green algae Chara australis (CaARA6) was shown to have properties similar to AtARA6, pointing to similar trafficking pathways. In order to gain further insight into the vesicle trafficking machinery of characeae, C. australis was analyzed for homologous proteins of the VAMP72-family. A CaVAMP72 protein was detected and classified by protein sequence alignment and phylogenetic analyses. PMID:24614164

  18. Phylogenomic analysis of the Chlamydomonas genome unmasks proteins potentially involved in photosynthetic function and regulation

    PubMed Central

    Karpowicz, Steven J.; Heinnickel, Mark; Dewez, David; Hamel, Blaise; Dent, Rachel; Niyogi, Krishna K.; Johnson, Xenie; Alric, Jean; Wollman, Francis-André; Li, Huiying; Merchant, Sabeeha S.

    2010-01-01

    Chlamydomonas reinhardtii, a unicellular green alga, has been exploited as a reference organism for identifying proteins and activities associated with the photosynthetic apparatus and the functioning of chloroplasts. Recently, the full genome sequence of Chlamydomonas was generated and a set of gene models, representing all genes on the genome, was developed. Using these gene models, and gene models developed for the genomes of other organisms, a phylogenomic, comparative analysis was performed to identify proteins encoded on the Chlamydomonas genome which were likely involved in chloroplast functions (or specifically associated with the green algal lineage); this set of proteins has been designated the GreenCut. Further analyses of those GreenCut proteins with uncharacterized functions and the generation of mutant strains aberrant for these proteins are beginning to unmask new layers of functionality/regulation that are integrated into the workings of the photosynthetic apparatus. PMID:20490922

  19. Olive seed protein bodies store degrading enzymes involved in mobilization of oil bodies

    PubMed Central

    Rodríguez-García, María Isabel

    2014-01-01

    The major seed storage reserves in oilseeds are accumulated in protein bodies and oil bodies, and serve as an energy, carbon, and nitrogen source during germination. Here, the spatio-temporal relationships between protein bodies and several key enzymes (phospholipase A, lipase, and lipoxygenase) involved in storage lipid mobilization in cotyledon cells was analysed during in vitro seed germination. Enzyme activities were assayed in-gel and their cellular localization were determined using microscopy techniques. At seed maturity, phospholipase A and triacylglycerol lipase activities were found exclusively in protein bodies. However, after seed imbibition, these activities were shifted to the cytoplasm and the surface of the oil bodies. The activity of neutral lipases was detected by using α-naphthyl palmitate and it was associated mainly with protein bodies during the whole course of germination. This pattern of distribution was highly similar to the localization of neutral lipids, which progressively appeared in protein bodies. Lipoxygenase activity was found in both the protein bodies and on the surface of the oil bodies during the initial phase of seed germination. The association of lipoxygenase with oil bodies was temporally correlated with the appearance of phospholipase A and lipase activities on the surface of oil bodies. It is concluded that protein bodies not only serve as simple storage structures, but are also dynamic and multifunctional organelles directly involved in storage lipid mobilization during olive seed germination. PMID:24170742

  20. The TSG101 protein binds to connexins and is involved in connexin degradation

    SciTech Connect

    Auth, Tanja Schlueter, Sharazad; Urschel, Stephanie; Kussmann, Petra; Sonntag, Stephan; Hoeher, Thorsten; Kreuzberg, Maria M.; Dobrowolski, Radoslaw; Willecke, Klaus

    2009-04-01

    Gap junctions mediate electrical and metabolic communication between cells in almost all tissues and are proposed to play important roles in cellular growth control, differentiation and embryonic development. Gap junctional communication and channel assembly were suggested to be regulated by interaction of connexins with different proteins including kinases and phosphatases. Here, we identified the tumor susceptibility gene 101 (TSG101) protein to bind to the carboxyterminal tail of connexin45 in a yeast two-hybrid protein interaction screen. Glutathione S-transferase pull down experiments and immunoprecipitation revealed that not only connexin45 but also connexin30.2, -36, and -43 carboxyterminal regions were associated with TSG101 protein in pull down analyses and that connexin31, -43 and -45 co-precipitate with endogenous TSG101 protein in lysates from HM1 embryonic stem cells. TSG101 has been shown to be involved in cell cycle control, transcriptional regulation and turnover of endocytosed proteins. Thus, we decided to study the functional role of this interaction. SiRNA mediated knock down of TSG101 in HM1 embryonic stem cells led to increased levels of connexin43 and -45, prolonged half life of these connexins and increased transfer of microinjected Lucifer yellow. Our results suggest that TSG101 is involved in the degradation of connexins via interaction with connexin proteins.

  1. HOPS: a novel cAMP-dependent shuttling protein involved in protein synthesis regulation.

    PubMed

    Della Fazia, Maria Agnese; Castelli, Marilena; Bartoli, Daniela; Pieroni, Stefania; Pettirossi, Valentina; Piobbico, Danilo; Viola-Magni, Mariapia; Servillo, Giuseppe

    2005-07-15

    The liver has the ability to autonomously regulate growth and mass. Following partial hepatectomy, hormones, growth factors, cytokines and their coupled signal transduction pathways have been implicated in hepatocyte proliferation. To understand the mechanisms responsible for the proliferative response, we studied liver regeneration by characterization of novel genes that are activated in residual hepatocytes. A regenerating liver cDNA library screening was performed with cDNA-subtracted probes derived from regenerating and normal liver. Here, we describe the biology of Hops (for hepatocyte odd protein shuttling). HOPS is a novel shuttling protein that contains an ubiquitin-like domain, a putative NES and a proline-rich region. HOPS is rapidly exported from the nucleus and is overexpressed during liver regeneration. Evidence shows that cAMP governs HOPS export in hepatocytes of normal and regenerating liver and is mediated via CRM-1. We demonstrate that HOPS binds to elongation factor eEF-1A and interferes in protein synthesis. HOPS overexpression in H-35-hepatoma and 3T3-NIH cells strongly reduces proliferation. PMID:16014383

  2. RUMEN MICROBE ADAPTATION TO RED CLOVER POLYPHENOL OXIDASE PROTEIN AND LIPID PROTECTION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction: Polyphenol oxidase (PPO) has been shown to reduce both proteolysis and lipolysis in incubated red clover (Lee et al. 2004). However it has not been determined whether rumen microbes can adapt to utilize PPO-protected protein and lipid. This study investigated whether rumen inoculum fro...

  3. Multidomain Carbohydrate-binding Proteins Involved in Bacteroides thetaiotaomicron Starch Metabolism*

    PubMed Central

    Cameron, Elizabeth A.; Maynard, Mallory A.; Smith, Christopher J.; Smith, Thomas J.; Koropatkin, Nicole M.; Martens, Eric C.

    2012-01-01

    Human colonic bacteria are necessary for the digestion of many dietary polysaccharides. The intestinal symbiont Bacteroides thetaiotaomicron uses five outer membrane proteins to bind and degrade starch. Here, we report the x-ray crystallographic structures of SusE and SusF, two outer membrane proteins composed of tandem starch specific carbohydrate-binding modules (CBMs) with no enzymatic activity. Examination of the two CBMs in SusE and three CBMs in SusF reveals subtle differences in the way each binds starch and is reflected in their Kd values for both high molecular weight starch and small maltooligosaccharides. Thus, each site seems to have a unique starch preference that may enable these proteins to interact with different regions of starch or its breakdown products. Proteins similar to SusE and SusF are encoded in many other polysaccharide utilization loci that are possessed by human gut bacteria in the phylum Bacteroidetes. Thus, these proteins are likely to play an important role in carbohydrate metabolism in these abundant symbiotic species. Understanding structural changes that diversify and adapt related proteins in the human gut microbial community will be critical to understanding the detailed mechanistic roles that they perform in the complex digestive ecosystem. PMID:22910908

  4. The promoter of filamentation (POF1) protein from Saccharomyces cerevisiae is an ATPase involved in the protein quality control process

    PubMed Central

    2011-01-01

    Background The gene YCL047C, which has been renamed promoter of filamentation gene (POF1), has recently been described as a cell component involved in yeast filamentous growth. The objective of this work is to understand the molecular and biological function of this gene. Results Here, we report that the protein encoded by the POF1 gene, Pof1p, is an ATPase that may be part of the Saccharomyces cerevisiae protein quality control pathway. According to the results, Δpof1 cells showed increased sensitivity to hydrogen peroxide, tert-butyl hydroperoxide, heat shock and protein unfolding agents, such as dithiothreitol and tunicamycin. Besides, the overexpression of POF1 suppressed the sensitivity of Δpct1, a strain that lacks a gene that encodes a phosphocholine cytidylyltransferase, to heat shock. In vitro analysis showed, however, that the purified Pof1p enzyme had no cytidylyltransferase activity but does have ATPase activity, with catalytic efficiency comparable to other ATPases involved in endoplasmic reticulum-associated degradation of proteins (ERAD). Supporting these findings, co-immunoprecipitation experiments showed a physical interaction between Pof1p and Ubc7p (an ubiquitin conjugating enzyme) in vivo. Conclusions Taken together, the results strongly suggest that the biological function of Pof1p is related to the regulation of protein degradation. PMID:22204397

  5. Vitamin D receptor regulates intestinal proteins involved in cell proliferation, migration and stress response

    PubMed Central

    2014-01-01

    Background Genome-wide association studies found low plasma levels of 25-hydroxyvitamin D and vitamin D receptor (VDR) polymorphisms associated with a higher prevalence of pathological changes in the intestine such as chronic inflammatory bowel diseases. Methods In this study, a proteomic approach was applied to understand the overall physiological importance of vitamin D in the small intestine, beyond its function in calcium and phosphate absorption. Results In total, 569 protein spots could be detected by two-dimensional-difference in-gel electrophoresis (2D-DIGE), and 82 proteins were considered as differentially regulated in the intestinal mucosa of VDR-deficient mice compared to that of wildtype (WT) mice. Fourteen clearly detectable proteins were identified by MS/MS and further analyzed by western blot and/or real-time RT-PCR. The differentially expressed proteins are functionally involved in cell proliferation, cell adhesion and cell migration, stress response and lipid transport. Mice lacking VDR revealed higher levels of intestinal proteins associated with proliferation and migration such as the 37/67 kDa laminin receptor, collagen type VI (alpha 1 chain), keratin-19, tropomyosin-3, adseverin and higher levels of proteins involved in protein trafficking and stress response than WT mice. In contrast, proteins that are involved in transport of bile and fatty acids were down-regulated in small intestine of mice lacking VDR compared to WT mice. However, plasma and liver concentrations of cholesterol and triglycerides were not different between the two groups of mice. Conclusion Collectively, these data imply VDR as an important factor for controlling cell proliferation, migration and stress response in the small intestine. PMID:24641763

  6. Anaerobic degradation of p-ethylphenol by "Aromatoleum aromaticum" strain EbN1: pathway, regulation, and involved proteins.

    PubMed

    Wöhlbrand, Lars; Wilkes, Heinz; Halder, Thomas; Rabus, Ralf

    2008-08-01

    The denitrifying "Aromatoleum aromaticum" strain EbN1 was demonstrated to utilize p-ethylphenol under anoxic conditions and was suggested to employ a degradation pathway which is reminiscent of known anaerobic ethylbenzene degradation in the same bacterium: initial hydroxylation of p-ethylphenol to 1-(4-hydroxyphenyl)-ethanol followed by dehydrogenation to p-hydroxyacetophenone. Possibly, subsequent carboxylation and thiolytic cleavage yield p-hydroxybenzoyl-coenzyme A (CoA), which is channeled into the central benzoyl-CoA pathway. Substrate-specific formation of three of the four proposed intermediates was confirmed by gas chromatographic-mass spectrometric analysis and also by applying deuterated p-ethylphenol. Proteins suggested to be involved in this degradation pathway are encoded in a single large operon-like structure ( approximately 15 kb). Among them are a p-cresol methylhydroxylase-like protein (PchCF), two predicted alcohol dehydrogenases (ChnA and EbA309), a biotin-dependent carboxylase (XccABC), and a thiolase (TioL). Proteomic analysis (two-dimensional difference gel electrophoresis) revealed their specific and coordinated upregulation in cells adapted to anaerobic growth with p-ethylphenol and p-hydroxyacetophenone (e.g., PchF up to 29-fold). Coregulated proteins of currently unknown function (e.g., EbA329) are possibly involved in p-ethylphenol- and p-hydroxyacetophenone-specific solvent stress responses and related to other aromatic solvent-induced proteins of strain EbN1. PMID:18539747

  7. "Hitting the Streets": Youth Street Involvement as Adaptive Well-Being

    ERIC Educational Resources Information Center

    Brown, Tara A.

    2016-01-01

    Youth involved in illegal street activities such as drug trafficking and violence are at high risk for school failure and other negative outcomes. Research often seeks to identify what is "wrong" with them, what makes them different from "normal" youth, but relatively few studies focus on variations in how youth engage in and…

  8. Parental School Involvement in Relation to Children's Grades and Adaptation to School

    ERIC Educational Resources Information Center

    Tan, Edwin T.; Goldberg, Wendy A.

    2008-01-01

    From an ecological perspective, it is important to examine linkages among key settings in the child's life. The current study focuses on parents' involvement in children's education both at school and at home. Ninety-one families with school-aged children (91 fathers and 91 mothers) participated in a survey study assessing the levels of parental…

  9. Evolutionary Dynamics on Protein Bi-stability Landscapes can Potentially Resolve Adaptive Conflicts

    PubMed Central

    Sikosek, Tobias; Bornberg-Bauer, Erich; Chan, Hue Sun

    2012-01-01

    Experimental studies have shown that some proteins exist in two alternative native-state conformations. It has been proposed that such bi-stable proteins can potentially function as evolutionary bridges at the interface between two neutral networks of protein sequences that fold uniquely into the two different native conformations. Under adaptive conflict scenarios, bi-stable proteins may be of particular advantage if they simultaneously provide two beneficial biological functions. However, computational models that simulate protein structure evolution do not yet recognize the importance of bi-stability. Here we use a biophysical model to analyze sequence space to identify bi-stable or multi-stable proteins with two or more equally stable native-state structures. The inclusion of such proteins enhances phenotype connectivity between neutral networks in sequence space. Consideration of the sequence space neighborhood of bridge proteins revealed that bi-stability decreases gradually with each mutation that takes the sequence further away from an exactly bi-stable protein. With relaxed selection pressures, we found that bi-stable proteins in our model are highly successful under simulated adaptive conflict. Inspired by these model predictions, we developed a method to identify real proteins in the PDB with bridge-like properties, and have verified a clear bi-stability gradient for a series of mutants studied by Alexander et al. (Proc Nat Acad Sci USA 2009, 106:21149–21154) that connect two sequences that fold uniquely into two different native structures via a bridge-like intermediate mutant sequence. Based on these findings, new testable predictions for future studies on protein bi-stability and evolution are discussed. PMID:23028272

  10. Spermidine-Induced Improvement of Reconsolidation of Memory Involves Calcium-Dependent Protein Kinase in Rats

    ERIC Educational Resources Information Center

    Girardi, Bruna Amanda; Ribeiro, Daniela Aymone; Signor, Cristiane; Muller, Michele; Gais, Mayara Ana; Mello, Carlos Fernando; Rubin, Maribel Antonello

    2016-01-01

    In this study, we determined whether the calcium-dependent protein kinase (PKC) signaling pathway is involved in the improvement of fear memory reconsolidation induced by the intrahippocampal administration of spermidine in rats. Male Wistar rats were trained in a fear conditioning apparatus using a 0.4-mA footshock as an unconditioned stimulus.…

  11. Expression of proteins involved in host plant defense against greenbug infestation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The greenbug, Schizaphis graminum (Rondani), has been recognized as a major pest of small grains, including sorghum and wheat. To understand the molecular mechanisms involved in host plant defense against greenbug aphids, a proteomic analysis of greenbug-induced proteins in the seedlings of sorghum...

  12. Pdsg1 and Pdsg2, novel proteins involved in developmental genome remodelling in Paramecium.

    PubMed

    Arambasic, Miroslav; Sandoval, Pamela Y; Hoehener, Cristina; Singh, Aditi; Swart, Estienne C; Nowacki, Mariusz

    2014-01-01

    The epigenetic influence of maternal cells on the development of their progeny has long been studied in various eukaryotes. Multicellular organisms usually provide their zygotes not only with nutrients but also with functional elements required for proper development, such as coding and non-coding RNAs. These maternally deposited RNAs exhibit a variety of functions, from regulating gene expression to assuring genome integrity. In ciliates, such as Paramecium these RNAs participate in the programming of large-scale genome reorganization during development, distinguishing germline-limited DNA, which is excised, from somatic-destined DNA. Only a handful of proteins playing roles in this process have been identified so far, including typical RNAi-derived factors such as Dicer-like and Piwi proteins. Here we report and characterize two novel proteins, Pdsg1 and Pdsg2 (Paramecium protein involved in Development of the Somatic Genome 1 and 2), involved in Paramecium genome reorganization. We show that these proteins are necessary for the excision of germline-limited DNA during development and the survival of sexual progeny. Knockdown of PDSG1 and PDSG2 genes affects the populations of small RNAs known to be involved in the programming of DNA elimination (scanRNAs and iesRNAs) and chromatin modification patterns during development. Our results suggest an association between RNA-mediated trans-generational epigenetic signal and chromatin modifications in the process of Paramecium genome reorganization. PMID:25397898

  13. Adaptation of a Couple-Based HIV Intervention for Methamphetamine-Involved African American Men who have Sex with Men

    PubMed Central

    Wu, Elwin; El-Bassel, Nabila; Donald McVinney, L.; Fontaine, Yves-Michel; Hess, Leona

    2010-01-01

    In the U.S., incidence of HIV infection among men who have sex with men (MSM) has steadily increased since the 1990s. This points to a need for innovation to address both emerging trends as well as longer-standing disparities in HIV risk and transmission among MSM, such as the elevated rates of HIV/STIs among African American MSM and methamphetamine users. While couple-based sexual risk reduction interventions are a promising avenue to reduce HIV/STI transmission, prior research has been almost exclusively with heterosexual couples. We sought to adapt an existing, evidence-based intervention—originally developed and tested with heterosexual couples—for a new target population consisting of African American MSM in a longer-term same-sex relationship where at least one partner uses methamphetamine. The adaptation process primarily drew from data obtained from a series of focus groups with 8 couples from the target population. Attention is given to the methods used to overcome challenges faced in this adaptation process: limited time, a lead investigator who is phenotypically different from the target population, a dearth of descriptive information on the experiences and worldviews among the target population, and a concomitant lack of topical experts. We also describe a visualization tool used to ensure that the adaptation process promotes and maintains adherence to the theory that guides the intervention and behavior change. The process culminated with an intervention adapted for the new target population as well as preliminary indications that a couple-based sexual-risk reduction intervention for African American, methamphetamine-involved male couples is feasible and attractive. PMID:20657720

  14. Light-Dark Adaptation of Channelrhodopsin Involves Photoconversion between the all-trans and 13-cis Retinal Isomers.

    PubMed

    Bruun, Sara; Stoeppler, Daniel; Keidel, Anke; Kuhlmann, Uwe; Luck, Meike; Diehl, Anne; Geiger, Michel-Andreas; Woodmansee, David; Trauner, Dirk; Hegemann, Peter; Oschkinat, Hartmut; Hildebrandt, Peter; Stehfest, Katja

    2015-09-01

    Channelrhodopsins (ChR) are light-gated ion channels of green algae that are widely used to probe the function of neuronal cells with light. Most ChRs show a substantial reduction in photocurrents during illumination, a process named "light adaptation". The main objective of this spectroscopic study was to elucidate the molecular processes associated with light-dark adaptation. Here we show by liquid and solid-state nuclear magnetic resonance spectroscopy that the retinal chromophore of fully dark-adapted ChR is exclusively in an all-trans configuration. Resonance Raman (RR) spectroscopy, however, revealed that already low light intensities establish a photostationary equilibrium between all-trans,15-anti and 13-cis,15-syn configurations at a ratio of 3:1. The underlying photoreactions involve simultaneous isomerization of the C(13)═C(14) and C(15)═N bonds. Both isomers of this DAapp state may run through photoinduced reaction cycles initiated by photoisomerization of only the C(13)═C(14) bond. RR spectroscopic experiments further demonstrated that photoinduced conversion of the apparent dark-adapted (DAapp) state to the photocycle intermediates P500 and P390 is distinctly more efficient for the all-trans isomer than for the 13-cis isomer, possibly because of different chromophore-water interactions. Our data demonstrating two complementary photocycles of the DAapp isomers are fully consistent with the existence of two conducting states that vary in quantitative relation during light-dark adaptation, as suggested previously by electrical measurements. PMID:26237332

  15. Protein-protein interactions involving voltage-gated sodium channels: Post-translational regulation, intracellular trafficking and functional expression.

    PubMed

    Shao, Dongmin; Okuse, Kenji; Djamgoz, Mustafa B A

    2009-07-01

    Voltage-gated sodium channels (VGSCs), classically known to play a central role in excitability and signalling in nerves and muscles, have also been found to be expressed in a range of 'non-excitable' cells, including lymphocytes, fibroblasts and endothelia. VGSC abnormalities are associated with various diseases including epilepsy, long-QT syndrome 3, Brugada syndrome, sudden infant death syndrome and, more recently, various human cancers. Given their pivotal role in a wide range of physiological and pathophysiological processes, regulation of functional VGSC expression has been the subject of intense study. An emerging theme is post-translational regulation and macro-molecular complexing by protein-protein interactions and intracellular trafficking, leading to changes in functional VGSC expression in plasma membrane. This partially involves endoplasmic reticulum associated degradation and ubiquitin-proteasome system. Several proteins have been shown to associate with VGSCs. Here, we review the interactions involving VGSCs and the following proteins: p11, ankyrin, syntrophin, beta-subunit of VGSC, papin, ERM and Nedd4 proteins. Protein kinases A and C, as well as Ca(2+)-calmodulin dependent kinase II that have also been shown to regulate intracellular trafficking of VGSCs by changing the balance of externalization vs. internalization, and an effort is made to separate these effects from the short-term phosphorylation of mature proteins in plasma membrane. Two further modulatory mechanisms are reciprocal interactions with the cytoskeleton and, late-stage, activity-dependent regulation. Thus, the review gives an updated account of the range of post-translational molecular mechanisms regulating functional VGSC expression. However, many details of VGSC subtype-specific regulation and pathophysiological aspects remain unknown and these are highlighted throughout for completeness. PMID:19401147

  16. [Small heat shock proteins and adaptation to hypertermia in various Drosophila species].

    PubMed

    Shilova, V Iu; Garbuz, D G; Evgen'ev, M B; Zatsepina, O G

    2006-01-01

    Expression level and kinetics of accumulation of small heat shock proteins (21-27 kDa group) have been investigated in three Drosophila species differing significantly by temperature niche and thermosensitivity. It was shown that low-latitude thermotolerant species D. virilis exceeds the high-latitude thermosensitive closely-related species D. lummei as well as distant thermosensitive species D. melanogaster in terms of small heat shock proteins expression and accumulation after temperature elevation. The data obtained enable to postulate an important role of small heat shock proteins in organism basal thermotolerance and general adaptation to adverse conditions of environment. PMID:16637267

  17. Hermes RNA-binding protein targets RNAs-encoding proteins involved in meiotic maturation, early cleavage, and germline development.

    PubMed

    Song, Hye-Won; Cauffman, Karen; Chan, Agnes P; Zhou, Yi; King, Mary Lou; Etkin, Laurence D; Kloc, Malgorzata

    2007-07-01

    The early development of metazoans is mainly regulated by differential translation and localization of maternal mRNAs in the embryo. In general, these processes are orchestrated by RNA-binding proteins interacting with specific sequence motifs in the 3'-untranslated region (UTR) of their target RNAs. Hermes is an RNA-binding protein, which contains a single RNA recognition motif (RRM) and is found in various vertebrate species from fish to human. In Xenopus laevis, Hermes mRNA and protein are localized in the vegetal region of oocytes. A subpopulation of Hermes protein is concentrated in a specific structure in the vegetal cortex, called the germ plasm (believed to contain determinants of the germ cell fate) where Hermes protein co-localizes with Xcat2 and RINGO/Spy mRNAs. The level of total Hermes protein decreases during maturation. The precocious depletion of Hermes protein by injection of Hermes antisense morpholino oligonucleotide (HE-MO) accelerates the process of maturation and results in cleavage defects in vegetal blastomeres of the embryo. It is known that several maternal mRNAs including RINGO/Spy and Mos are regulated at the translational level during meiotic maturation and early cleavage in Xenopus. The ectopic expression of RINGO/Spy or Mos causes resumption of meiotic maturation and cleavage arrests, which resemble the loss of Hermes phenotypes. We found that the injection of HE-MO enhances the acceleration of maturation caused by the injection of RINGO/Spy mRNA, and that Hermes protein is present as mRNP complex containing RINGO/Spy, Mos, and Xcat2 mRNAs in vivo. We propose that as an RNA-binding protein, Hermes may be involved in maturation, cleavage events at the vegetal pole and germ cell development by negatively regulating the expression of RINGO/Spy, Mos, and Xcat2 mRNAs. PMID:17309605

  18. Hsp90 is involved in the regulation of cytosolic precursor protein abundance in tomato.

    PubMed

    Tillmann, Bodo; Röth, Sascha; Bublak, Daniela; Sommer, Manuel; Stelzer, Ernst H K; Scharf, Klaus-Dieter; Schleiff, Enrico

    2015-02-01

    Cytosolic chaperones are involved in the regulation of cellular protein homeostasis in general. Members of the families of heat stress proteins 70 (Hsp70) and 90 (Hsp90) assist the transport of preproteins to organelles such as chloroplasts or mitochondria. In addition, Hsp70 was described to be involved in the degradation of chloroplast preproteins that accumulate in the cytosol. Because a similar function has not been established for Hsp90, we analyzed the influences of Hsp90 and Hsp70 on the protein abundance in the cellular context using an in vivo system based on mesophyll protoplasts. We observed a differential behavior of preproteins with respect to the cytosolic chaperone-dependent regulation. Some preproteins such as pOE33 show a high dependence on Hsp90, whereas the abundance of preproteins such as pSSU is more strongly dependent on Hsp70. The E3 ligase, C-terminus of Hsp70-interacting protein (Chip), appears to have a more general role in the control of cytosolic protein abundance. We discuss why the different reaction modes are comparable with the cytosolic unfolded protein response. PMID:25619681

  19. Towards identifying Brassica proteins involved in mediating resistance to Leptosphaeria maculans: a proteomics-based approach.

    PubMed

    Sharma, Nidhi; Hotte, Naomi; Rahman, Muhammad H; Mohammadi, Mohsen; Deyholos, Michael K; Kav, Nat N V

    2008-09-01

    To better understand the pathogen-stress response of Brassica species against the ubiquitous hemi-biotroph fungus Leptosphaeria maculans, we conducted a comparative proteomic analysis between blackleg-susceptible Brassica napus and blackleg-resistant Brassica carinata following pathogen inoculation. We examined temporal changes (6, 12, 24, 48 and 72 h) in protein profiles of both species subjected to pathogen-challenge using two-dimensional gel electrophoresis. A total of 64 proteins were found to be significantly affected by the pathogen in the two species, out of which 51 protein spots were identified using tandem mass spectrometry. The proteins identified included antioxidant enzymes, photosynthetic and metabolic enzymes, and those involved in protein processing and signaling. Specifically, we observed that in the tolerant B. carinata, enzymes involved in the detoxification of free radicals increased in response to the pathogen whereas no such increase was observed in the susceptible B. napus. The expression of genes encoding four selected proteins was validated using quantitative real-time PCR and an additional one by Western blotting. Our findings are discussed with respect to tolerance or susceptibility of these species to the pathogen. PMID:18668695

  20. Prostaglandin and myokine involvement in the cyclooxygenase-inhibiting drug enhancement of skeletal muscle adaptations to resistance exercise in older adults.

    PubMed

    Trappe, Todd A; Standley, Robert A; Jemiolo, Bozena; Carroll, Chad C; Trappe, Scott W

    2013-02-01

    Twelve weeks of resistance training (3 days/wk) combined with daily consumption of the cyclooxygenase-inhibiting drugs acetaminophen (4.0 g/day; n = 11, 64 ± 1 yr) or ibuprofen (1.2 g/day; n = 13, 64 ± 1 yr) unexpectedly promoted muscle mass and strength gains 25-50% above placebo (n = 12, 67 ± 2 yr). To investigate the mechanism of this adaptation, muscle biopsies obtained before and ∼72 h after the last training bout were analyzed for mRNA levels of prostaglandin (PG)/cyclooxygenase pathway enzymes and receptors [arachidonic acid synthesis: cytosolic phospholipase A(2) (cPLA(2)) and secreted phospholipase A(2) (sPLA(2)); PGF(2α) synthesis: PGF(2α) synthase and PGE(2) to PGF(2α) reductase; PGE(2) synthesis: PGE(2) synthase-1, -2, and -3; PGF(2α) receptor and PGE(2) receptor-4], cytokines and myokines involved in skeletal muscle adaptation (TNF-α, IL-1β, IL-6, IL-8, IL-10), and regulators of muscle growth [myogenin, myogenic regulatory factor-4 (MRF4), myostatin] and atrophy [Forkhead box O3A (FOXO3A), atrogin-1, muscle RING finger protein 1 (MuRF-1), inhibitory κB kinase β (IKKβ)]. Training increased (P < 0.05) cPLA(2), PGF(2α) synthase, PGE(2) to PGF(2α) reductase, PGE(2) receptor-4, TNF-α, IL-1β, IL-8, and IKKβ. However, the PGF(2α) receptor was upregulated (P < 0.05) only in the drug groups, and the placebo group upregulation (P < 0.05) of IL-6, IL-10, and MuRF-1 was eliminated in both drug groups. These results highlight prostaglandin and myokine involvement in the adaptive response to exercise in older individuals and suggest two mechanisms underlying the enhanced muscle mass gains in the drug groups: 1) The drug-induced PGF(2α) receptor upregulation helped offset the drug suppression of PGF(2α)-stimulated protein synthesis after each exercise bout and enhanced skeletal muscle sensitivity to this stimulation. 2) The drug-induced suppression of intramuscular PGE(2) production increased net muscle protein balance after each exercise bout

  1. Rice LTG1 is involved in adaptive growth and fitness under low ambient temperature.

    PubMed

    Lu, Guangwen; Wu, Fu-Qing; Wu, Weixun; Wang, Hong-Jun; Zheng, Xiao-Ming; Zhang, Yunhui; Chen, Xiuling; Zhou, Kunneng; Jin, Mingna; Cheng, Zhijun; Li, Xueyong; Jiang, Ling; Wang, Haiyang; Wan, Jianmin

    2014-05-01

    Low temperature (LT) is one of the most prevalent factors limiting the productivity and geographical distribution of rice (Oryza sativa L.). Although significant progress has been made in elucidating the effect of LT on seed germination and reproductive development in rice, the genetic component affecting vegetative growth under LT remains poorly understood. Here, we report that rice cultivars harboring the dominant LTG1 (Low Temperature Growth 1) allele are more tolerant to LT (15-25°C, a temperature range prevalent in high-altitude, temperate zones and high-latitude areas), than those with the ltg1 allele. Using a map-based cloning strategy, we show that LTG1 encodes a casein kinase I. A functional nucleotide polymorphism was identified in the coding region of LTG1, causing a single amino acid substitution (I357K) that is associated with the growth rate, heading date and yield of rice plants grown at LT. We present evidence that LTG1 affects rice growth at LT via an auxin-dependent process(es). Furthermore, phylogenetic analysis of this locus suggests that the ltg1 haplotype arose before the domestication of rice in tropical climates. Together, our data demonstrate that LTG1 plays an important role in the adaptive growth and fitness of rice cultivars under conditions of low ambient temperature. PMID:24635058

  2. Adaptation of Grapevine Flowers to Cold Involves Different Mechanisms Depending on Stress Intensity

    PubMed Central

    Sawicki, Mélodie; Jeanson, Etienne; Celiz, Vanessa; Clément, Christophe

    2012-01-01

    Grapevine flower development and fruit set are influenced by cold nights in the vineyard. To investigate the impact of cold stress on carbon metabolism in the inflorescence, we exposed the inflorescences of fruiting cuttings to chilling and freezing temperatures overnight and measured fluctuations in photosynthesis and sugar content. Whatever the temperature, after the stress treatment photosynthesis was modified in the inflorescence, but the nature of the alteration depended on the intensity of the cold stress. At 4°C, photosynthesis in the inflorescence was impaired through non-stomatal limitations, whereas at 0°C it was affected through stomatal limitations. A freezing night (−3°C) severely deregulated photosynthesis in the inflorescence, acting primarily on photosystem II. Cold nights also induced accumulation of sugars. Soluble carbohydrates increased in inflorescences exposed to −3°C, 0°C and 4°C, but starch accumulated only in inflorescences of plants treated at 0 and −3°C. These results suggest that inflorescences are able to cope with cold temperatures by adapting their carbohydrate metabolism using mechanisms that are differentially induced according to stress intensity. PMID:23071684

  3. Functional adaptation of long bone extremities involves the localized ``tuning'' of the cortical bone composition; evidence from Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Buckley, Kevin; Kerns, Jemma G.; Birch, Helen L.; Gikas, Panagiotis D.; Parker, Anthony W.; Matousek, Pavel; Goodship, Allen E.

    2014-11-01

    In long bones, the functional adaptation of shape and structure occurs along the whole length of the organ. This study explores the hypothesis that adaptation of bone composition is also site-specific and that the mineral-to-collagen ratio of bone (and, thus, its mechanical properties) varies along the organ's length. Raman spectroscopy was used to map the chemical composition of long bones along their entire length in fine spatial resolution (1 mm), and then biochemical analysis was used to measure the mineral, collagen, water, and sulfated glycosaminoglycan content where site-specific differences were seen. The results show that the mineral-to-collagen ratio of the bone material in human tibiae varies by <5% along the mid-shaft but decreases by >10% toward the flared extremities of the bone. Comparisons with long bones from other large animals (horses, sheep, and deer) gave similar results with bone material composition changing across tens of centimeters. The composition of the bone apatite also varied with the phosphate-to-carbonate ratio decreasing toward the ends of the tibia. The data highlight the complexity of adaptive changes and raise interesting questions about the biochemical control mechanisms involved. In addition to their biological interest, the data provide timely information to researchers developing Raman spectroscopy as a noninvasive tool for measuring bone composition in vivo (particularly with regard to sampling and measurement protocol).

  4. Identification and Characterization of Proteins Involved in Rice Urea and Arginine Catabolism1[W

    PubMed Central

    Cao, Feng-Qiu; Werner, Andrea K.; Dahncke, Kathleen; Romeis, Tina; Liu, Lai-Hua; Witte, Claus-Peter

    2010-01-01

    Rice (Oryza sativa) production relies strongly on nitrogen (N) fertilization with urea, but the proteins involved in rice urea metabolism have not yet been characterized. Coding sequences for rice arginase, urease, and the urease accessory proteins D (UreD), F (UreF), and G (UreG) involved in urease activation were identified and cloned. The functionality of urease and the urease accessory proteins was demonstrated by complementing corresponding Arabidopsis (Arabidopsis thaliana) mutants and by multiple transient coexpression of the rice proteins in Nicotiana benthamiana. Secondary structure models of rice (plant) UreD and UreF proteins revealed a possible functional conservation to bacterial orthologs, especially for UreF. Using amino-terminally StrepII-tagged urease accessory proteins, an interaction between rice UreD and urease could be shown. Prokaryotic and eukaryotic urease activation complexes seem conserved despite limited protein sequence conservation for UreF and UreD. In plant metabolism, urea is generated by the arginase reaction. Rice arginase was transiently expressed as a carboxyl-terminally StrepII-tagged fusion protein in N. benthamiana, purified, and biochemically characterized (Km = 67 mm, kcat = 490 s−1). The activity depended on the presence of manganese (Kd = 1.3 μm). In physiological experiments, urease and arginase activities were not influenced by the external N source, but sole urea nutrition imbalanced the plant amino acid profile, leading to the accumulation of asparagine and glutamine in the roots. Our data indicate that reduced plant performance with urea as N source is not a direct result of insufficient urea metabolism but may in part be caused by an imbalance of N distribution. PMID:20631318

  5. Molecular Characterization of HIV-1 Subtype C gp-120 Regions Potentially Involved in Virus Adaptive Mechanisms

    PubMed Central

    Cenci, Alessandra; D'Avenio, Giuseppe; Tavoschi, Lara; Chiappi, Michele; Becattini, Simone; Narino, Maria del Pilar; Picconi, Orietta; Bernasconi, Daniela; Fanales-Belasio, Emanuele; Vardas, Eftyhia; Sukati, Hosea; Presti, Alessandra Lo; Ciccozzi, Massimo; Monini, Paolo; Ensoli, Barbara; Grigioni, Mauro; Buttò, Stefano

    2014-01-01

    The role of variable regions of HIV-1 gp120 in immune escape of HIV has been investigated. However, there is scant information on how conserved gp120 regions contribute to virus escaping. Here we have studied how molecular sequence characteristics of conserved C3, C4 and V3 regions of clade C HIV-1 gp120 that are involved in HIV entry and are target of the immune response, are modulated during the disease course. We found an increase of “shifting” putative N-glycosylation sites (PNGSs) in the α2 helix (in C3) and in C4 and an increase of sites under positive selection pressure in the α2 helix during the chronic stage of disease. These sites are close to CD4 and to co-receptor binding sites. We also found a negative correlation between electric charges of C3 and V4 during the late stage of disease counteracted by a positive correlation of electric charges of α2 helix and V5 during the same stage. These data allow us to hypothesize possible mechanisms of virus escape involving constant and variable regions of gp120. In particular, new mutations, including new PNGSs occurring near the CD4 and CCR5 binding sites could potentially affect receptor binding affinity and shield the virus from the immune response. PMID:24788065

  6. Adapt

    NASA Astrophysics Data System (ADS)

    Bargatze, L. F.

    2015-12-01

    Active Data Archive Product Tracking (ADAPT) is a collection of software routines that permits one to generate XML metadata files to describe and register data products in support of the NASA Heliophysics Virtual Observatory VxO effort. ADAPT is also a philosophy. The ADAPT concept is to use any and all available metadata associated with scientific data to produce XML metadata descriptions in a consistent, uniform, and organized fashion to provide blanket access to the full complement of data stored on a targeted data server. In this poster, we present an application of ADAPT to describe all of the data products that are stored by using the Common Data File (CDF) format served out by the CDAWEB and SPDF data servers hosted at the NASA Goddard Space Flight Center. These data servers are the primary repositories for NASA Heliophysics data. For this purpose, the ADAPT routines have been used to generate data resource descriptions by using an XML schema named Space Physics Archive, Search, and Extract (SPASE). SPASE is the designated standard for documenting Heliophysics data products, as adopted by the Heliophysics Data and Model Consortium. The set of SPASE XML resource descriptions produced by ADAPT includes high-level descriptions of numerical data products, display data products, or catalogs and also includes low-level "Granule" descriptions. A SPASE Granule is effectively a universal access metadata resource; a Granule associates an individual data file (e.g. a CDF file) with a "parent" high-level data resource description, assigns a resource identifier to the file, and lists the corresponding assess URL(s). The CDAWEB and SPDF file systems were queried to provide the input required by the ADAPT software to create an initial set of SPASE metadata resource descriptions. Then, the CDAWEB and SPDF data repositories were queried subsequently on a nightly basis and the CDF file lists were checked for any changes such as the occurrence of new, modified, or deleted

  7. Gene expression profiling to identify eggshell proteins involved in physical defense of the chicken egg

    PubMed Central

    2010-01-01

    Background As uricoletic animals, chickens produce cleidoic eggs, which are self-contained bacteria-resistant biological packages for extra-uterine development of the chick embryo. The eggshell constitutes a natural physical barrier against bacterial penetration if it forms correctly and remains intact. The eggshell's remarkable mechanical properties are due to interactions among mineral components and the organic matrix proteins. The purpose of our study was to identify novel eggshell proteins by examining the transcriptome of the uterus during calcification of the eggshell. An extensive bioinformatic analysis on genes over-expressed in the uterus allowed us to identify novel eggshell proteins that contribute to the egg's natural defenses. Results Our 14 K Del-Mar Chicken Integrated Systems microarray was used for transcriptional profiling in the hen's uterus during eggshell deposition. A total of 605 transcripts were over-expressed in the uterus compared with the magnum or white isthmus across a wide range of abundance (1.1- to 79.4-fold difference). The 605 highly-expressed uterine transcripts correspond to 469 unique genes, which encode 437 different proteins. Gene Ontology (GO) analysis was used for interpretation of protein function. The most over-represented GO terms are related to genes encoding ion transport proteins, which provide eggshell mineral precursors. Signal peptide sequence was found for 54 putative proteins secreted by the uterus during eggshell formation. Many functional proteins are involved in calcium binding or biomineralization--prerequisites for interacting with the mineral phase during eggshell fabrication. While another large group of proteins could be involved in proper folding of the eggshell matrix. Many secreted uterine proteins possess antibacterial properties, which would protect the egg against microbial invasion. A final group includes proteases and protease inhibitors that regulate protein activity in the acellular uterine fluid

  8. Evidence against the involvement of ionically bound cell wall proteins in pea epicotyl growth

    NASA Technical Reports Server (NTRS)

    Melan, M. A.; Cosgrove, D. J.

    1988-01-01

    Ionically bound cell wall proteins were extracted from 7 day old etiolated pea (Pisum sativum L. cv Alaska) epicotyls with 3 molar LiCl. Polyclonal antiserum was raised in rabbits against the cell wall proteins. Growth assays showed that treatment of growing region segments (5-7 millimeters) of peas with either dialyzed serum, serum globulin fraction, affinity purified immunoglobulin, or papain-cleaved antibody fragments had no effect on growth. Immunofluorescence microscopy confirmed antibody binding to cell walls and penetration of the antibodies into the tissues. Western blot analysis, immunoassay results, and affinity chromatography utilizing Sepharose-bound antibodies confirmed recognition of the protein preparation by the antibodies. Experiments employing in vitro extension as a screening measure indicated no effect upon extension by antibodies, by 50 millimolar LiCl perfusion of the apoplast or by 3 molar LiCl extraction. Addition of cell wall protein to protease pretreated segments did not restore extension nor did addition of cell wall protein to untreated segments increase extension. It is concluded that, although evidence suggests that protein is responsible for the process of extension, the class(es) of proteins which are extracted from pea cell walls with 3 molar LiCl are probably not involved in this process.

  9. Fast automated protein NMR data collection and assignment by ADAPT-NMR on Bruker spectrometers

    NASA Astrophysics Data System (ADS)

    Lee, Woonghee; Hu, Kaifeng; Tonelli, Marco; Bahrami, Arash; Neuhardt, Elizabeth; Glass, Karen C.; Markley, John L.

    2013-11-01

    ADAPT-NMR (Assignment-directed Data collection Algorithm utilizing a Probabilistic Toolkit in NMR) supports automated NMR data collection and backbone and side chain assignment for [U-13C, U-15N]-labeled proteins. Given the sequence of the protein and data for the orthogonal 2D 1H-15N and 1H-13C planes, the algorithm automatically directs the collection of tilted plane data from a variety of triple-resonance experiments so as to follow an efficient pathway toward the probabilistic assignment of 1H, 13C, and 15N signals to specific atoms in the covalent structure of the protein. Data collection and assignment calculations continue until the addition of new data no longer improves the assignment score. ADAPT-NMR was first implemented on Varian (Agilent) spectrometers [A. Bahrami, M. Tonelli, S.C. Sahu, K.K. Singarapu, H.R. Eghbalnia, J.L. Markley, PLoS One 7 (2012) e33173]. Because of broader interest in the approach, we present here a version of ADAPT-NMR for Bruker spectrometers. We have developed two AU console programs (ADAPT_ORTHO_run and ADAPT_NMR_run) that run under TOPSPIN Versions 3.0 and higher. To illustrate the performance of the algorithm on a Bruker spectrometer, we tested one protein, chlorella ubiquitin (76 amino acid residues), that had been used with the Varian version: the Bruker and Varian versions achieved the same level of assignment completeness (98% in 20 h). As a more rigorous evaluation of the Bruker version, we tested a larger protein, BRPF1 bromodomain (114 amino acid residues), which yielded an automated assignment completeness of 86% in 55 h. Both experiments were carried out on a 500 MHz Bruker AVANCE III spectrometer equipped with a z-gradient 5 mm TCI probe. ADAPT-NMR is available at http://pine.nmrfam.wisc.edu/ADAPT-NMR in the form of pulse programs, the two AU programs, and instructions for installation and use.

  10. Fast automated protein NMR data collection and assignment by ADAPT-NMR on Bruker spectrometers.

    PubMed

    Lee, Woonghee; Hu, Kaifeng; Tonelli, Marco; Bahrami, Arash; Neuhardt, Elizabeth; Glass, Karen C; Markley, John L

    2013-11-01

    ADAPT-NMR (Assignment-directed Data collection Algorithm utilizing a Probabilistic Toolkit in NMR) supports automated NMR data collection and backbone and side chain assignment for [U-(13)C, U-(15)N]-labeled proteins. Given the sequence of the protein and data for the orthogonal 2D (1)H-(15)N and (1)H-(13)C planes, the algorithm automatically directs the collection of tilted plane data from a variety of triple-resonance experiments so as to follow an efficient pathway toward the probabilistic assignment of (1)H, (13)C, and (15)N signals to specific atoms in the covalent structure of the protein. Data collection and assignment calculations continue until the addition of new data no longer improves the assignment score. ADAPT-NMR was first implemented on Varian (Agilent) spectrometers [A. Bahrami, M. Tonelli, S.C. Sahu, K.K. Singarapu, H.R. Eghbalnia, J.L. Markley, PLoS One 7 (2012) e33173]. Because of broader interest in the approach, we present here a version of ADAPT-NMR for Bruker spectrometers. We have developed two AU console programs (ADAPT_ORTHO_run and ADAPT_NMR_run) that run under TOPSPIN Versions 3.0 and higher. To illustrate the performance of the algorithm on a Bruker spectrometer, we tested one protein, chlorella ubiquitin (76 amino acid residues), that had been used with the Varian version: the Bruker and Varian versions achieved the same level of assignment completeness (98% in 20 h). As a more rigorous evaluation of the Bruker version, we tested a larger protein, BRPF1 bromodomain (114 amino acid residues), which yielded an automated assignment completeness of 86% in 55 h. Both experiments were carried out on a 500 MHz Bruker AVANCE III spectrometer equipped with a z-gradient 5 mm TCI probe. ADAPT-NMR is available at http://pine.nmrfam.wisc.edu/ADAPT-NMR in the form of pulse programs, the two AU programs, and instructions for installation and use. PMID:24091140

  11. Membrane fusion of Semliki Forest virus involves homotrimers of the fusion protein.

    PubMed Central

    Wahlberg, J M; Bron, R; Wilschut, J; Garoff, H

    1992-01-01

    Infection of cells with enveloped viruses is accomplished through membrane fusion. The binding and fusion processes are mediated by the spike proteins in the envelope of the virus particle and usually involve a series of conformational changes in these proteins. We have studied the low-pH-mediated fusion process of the alphavirus Semliki Forest virus (SFV). The spike protein of SFV is composed of three copies of the protein heterodimer E2E1. This structure is resistant to solubilization in mild detergents such as Nonidet P-40 (NP40). We have recently shown that the spike structure is reorganized during virus entry into acidic endosomes (J. M. Wahlberg and H. Garoff, J. Cell Biol. 116:339-348, 1992). The original NP40-resistant heterodimer is dissociated, and the E1 subunits form new NP40-resistant protein oligomers. Here, we show that the new oligomer is represented by an E1 trimer. From studies that use an in vitro assay for fusion of SFV with liposomes, we show that the E1 trimer is efficiently expressed during virus-mediated membrane fusion. Time course studies show that both E1 trimer formation and fusion are fast processes, occurring in seconds. It was also possible to inhibit virus binding and fusion with a monoclonal antibody directed toward the trimeric E1. These results give support for a model in which the E1 trimeric structure is involved in the SFV-mediated fusion reaction. Images PMID:1433520

  12. Identification of Host Proteins Involved in Rickettsial Invasion of Tick Cells

    PubMed Central

    Sunyakumthorn, Piyanate; Banajee, Kaikhushroo H.; Verhoeve, Victoria I.; Kearney, Michael T.; Macaluso, Kevin R.

    2014-01-01

    Tick-borne spotted fever group (SFG) Rickettsia species are obligate intracellular bacteria capable of infecting both vertebrate and invertebrate host cells, an essential process for subsequent bacterial survival in distinct hosts. The host cell signaling molecules involved in the uptake of Rickettsia into mammalian and Drosophila cells have been identified; however, invasion into tick cells is understudied. Considering the movement of SFG Rickettsia between vertebrate and invertebrate hosts, the hypothesis is that conserved mechanisms are utilized for host cell invasion. The current study employed biochemical inhibition assays to determine the tick proteins involved in Rickettsia montanensis infection of tick-derived cells from a natural host, Dermacentor variabilis. The results revealed several tick proteins important for rickettsial invasion, including actin filaments, actin-related protein 2/3 complex, phosphatidylinositol-3′-kinase, protein tyrosine kinases (PTKs), Src family PTK, focal adhesion kinase, Rho GTPase Rac1, and neural Wiskott-Aldrich syndrome protein. Delineating the molecular mechanisms of rickettsial infection is critical to a thorough understanding of rickettsial transmission in tick populations and the ecology of tick-borne rickettsial diseases. PMID:25547795

  13. Hsp90 is involved in the regulation of cytosolic precursor protein abundance in tomato.

    PubMed

    Tillmann, Bodo; Röth, Sascha; Bublak, Daniela; Sommer, Manuel; Stelzer, Ernst H K; Scharf, Klaus-Dieter; Schleiff, Enrico

    2014-10-20

    Cytosolic chaperones are involved in the regulation of cellular protein homeostasis in general. Members of the heat stress protein 70 and 90 (Hsp70 or Hsp90) families assist the transport of preproteins to organelles such as chloroplasts or mitochondria. In addition, Hsp70 was described to be involved in the degradation of chloroplast preproteins that accumulate in the cytosol. Because a similar function has not been established for Hsp90, we analyzed the influences of Hsp90 and Hsp70 on the protein abundance in the cellular context using an in vivo system based on mesophyll protoplasts. We observed a differential behavior of preproteins in respect to the cytosolic chaperone dependent regulation. Some preproteins like pOE33 show a high dependence on Hsp90, whereas the abundance of preproteins like pSSU is more strongly dependent on Hsp70. The E3 ligase Chip appears to have a more general role in the control of cytosolic protein abundance. We discuss why the different reaction modes are comparable to the cytosolic unfolded protein response. PMID:25336566

  14. Identification of host proteins involved in rickettsial invasion of tick cells.

    PubMed

    Petchampai, Natthida; Sunyakumthorn, Piyanate; Banajee, Kaikhushroo H; Verhoeve, Victoria I; Kearney, Michael T; Macaluso, Kevin R

    2015-03-01

    Tick-borne spotted fever group (SFG) Rickettsia species are obligate intracellular bacteria capable of infecting both vertebrate and invertebrate host cells, an essential process for subsequent bacterial survival in distinct hosts. The host cell signaling molecules involved in the uptake of Rickettsia into mammalian and Drosophila cells have been identified; however, invasion into tick cells is understudied. Considering the movement of SFG Rickettsia between vertebrate and invertebrate hosts, the hypothesis is that conserved mechanisms are utilized for host cell invasion. The current study employed biochemical inhibition assays to determine the tick proteins involved in Rickettsia montanensis infection of tick-derived cells from a natural host, Dermacentor variabilis. The results revealed several tick proteins important for rickettsial invasion, including actin filaments, actin-related protein 2/3 complex, phosphatidylinositol-3'-kinase, protein tyrosine kinases (PTKs), Src family PTK, focal adhesion kinase, Rho GTPase Rac1, and neural Wiskott-Aldrich syndrome protein. Delineating the molecular mechanisms of rickettsial infection is critical to a thorough understanding of rickettsial transmission in tick populations and the ecology of tick-borne rickettsial diseases. PMID:25547795

  15. The Stimulatory Gαs Protein Is Involved in Olfactory Signal Transduction in Drosophila

    PubMed Central

    Deng, Ying; Zhang, Weiyi; Farhat, Katja; Oberland, Sonja; Gisselmann, Günter; Neuhaus, Eva M.

    2011-01-01

    Seven-transmembrane receptors typically mediate olfactory signal transduction by coupling to G-proteins. Although insect odorant receptors have seven transmembrane domains like G-protein coupled receptors, they have an inverted membrane topology, constituting a key difference between the olfactory systems of insects and other animals. While heteromeric insect ORs form ligand-activated non-selective cation channels in recombinant expression systems, the evidence for an involvement of cyclic nucleotides and G-proteins in odor reception is inconsistent. We addressed this question in vivo by analyzing the role of G-proteins in olfactory signaling using electrophysiological recordings. We found that Gαs plays a crucial role for odorant induced signal transduction in OR83b expressing olfactory sensory neurons, but not in neurons expressing CO2 responsive proteins GR21a/GR63a. Moreover, signaling of Drosophila ORs involved Gαs also in a heterologous expression system. In agreement with these observations was the finding that elevated levels of cAMP result in increased firing rates, demonstrating the existence of a cAMP dependent excitatory signaling pathway in the sensory neurons. Together, we provide evidence that Gαs plays a role in the OR mediated signaling cascade in Drosophila. PMID:21490930

  16. Ancestral Protein Reconstruction Yields Insights into Adaptive Evolution of Binding Specificity in Solute-Binding Proteins.

    PubMed

    Clifton, Ben E; Jackson, Colin J

    2016-02-18

    The promiscuous functions of proteins are an important reservoir of functional novelty in protein evolution, but the molecular basis for binding promiscuity remains elusive. We used ancestral protein reconstruction to experimentally characterize evolutionary intermediates in the functional expansion of the polar amino acid-binding protein family, which has evolved to bind a variety of amino acids with high affinity and specificity. High-resolution crystal structures of an ancestral arginine-binding protein in complex with l-arginine and l-glutamine show that the promiscuous binding of l-glutamine is enabled by multi-scale conformational plasticity, water-mediated interactions, and selection of an alternative conformational substate productive for l-glutamine binding. Evolution of specialized glutamine-binding proteins from this ancestral protein was achieved by displacement of water molecules from the protein-ligand interface, reducing the entropic penalty associated with the promiscuous interaction. These results provide a structural and thermodynamic basis for the co-option of a promiscuous interaction in the evolution of binding specificity. PMID:26853627

  17. Neandertals' large lower thorax may represent adaptation to high protein diet.

    PubMed

    Ben-Dor, Miki; Gopher, Avi; Barkai, Ran

    2016-07-01

    Humans are limited in their capacity to convert protein into energy. We present a hypothesis that a "bell" shaped thorax and a wide pelvis evolved in Neandertals, at least in part, as an adaptation to a high protein diet. A high protein diet created a need to house an enlarged liver and urinary system in a wider lower trunk. To test the hypothesis, we applied a model developed to identify points of nutritional stress. A ratio of obligatory dietary fat to total animal fat and protein sourced calories is calculated based on various known and estimated parameters. Stress is identified when the obligatory dietary fat ratio is higher than fat content ratios in available prey. The model predicts that during glacial winters, when carbohydrates weren't available, 74%-85% of Neandertals' caloric intake would have had to come from animal fat. Large animals contain around 50% fat calories, and their fat content is diminished during winter, so a significant stressful dietary fat deficit was identified by the model. This deficit could potentially be ameliorated by an increased capability to convert protein into energy. Given that high protein consumption is associated with larger liver and kidneys in animal models, it appears likely that the enlarged inferior section of the Neandertals thorax and possibly, in part, also his wide pelvis, represented an adaptation to provide encasement for those enlarged organs. Behavioral and evolutionary implications of the hypothesis are also discussed. Am J Phys Anthropol 160:367-378, 2016. © 2016 Wiley Periodicals, Inc. PMID:26973080

  18. SNF1-Related Protein Kinases Type 2 Are Involved in Plant Responses to Cadmium Stress1[C][W

    PubMed Central

    Kulik, Anna; Anielska-Mazur, Anna; Bucholc, Maria; Koen, Emmanuel; Szymańska, Katarzyna; Żmieńko, Agnieszka; Krzywińska, Ewa; Wawer, Izabela; McLoughlin, Fionn; Ruszkowski, Dariusz; Figlerowicz, Marek; Testerink, Christa; Skłodowska, Aleksandra; Wendehenne, David; Dobrowolska, Grażyna

    2012-01-01

    Cadmium ions are notorious environmental pollutants. To adapt to cadmium-induced deleterious effects plants have developed sophisticated defense mechanisms. However, the signaling pathways underlying the plant response to cadmium are still elusive. Our data demonstrate that SnRK2s (for SNF1-related protein kinase2) are transiently activated during cadmium exposure and are involved in the regulation of plant response to this stress. Analysis of tobacco (Nicotiana tabacum) Osmotic Stress-Activated Protein Kinase activity in tobacco Bright Yellow 2 cells indicates that reactive oxygen species (ROS) and nitric oxide, produced mainly via an l-arginine-dependent process, contribute to the kinase activation in response to cadmium. SnRK2.4 is the closest homolog of tobacco Osmotic Stress-Activated Protein Kinase in Arabidopsis (Arabidopsis thaliana). Comparative analysis of seedling growth of snrk2.4 knockout mutants versus wild-type Arabidopsis suggests that SnRK2.4 is involved in the inhibition of root growth triggered by cadmium; the mutants were more tolerant to the stress. Measurements of the level of three major species of phytochelatins (PCs) in roots of plants exposed to Cd2+ showed a similar (PC2, PC4) or lower (PC3) concentration in snrk2.4 mutants in comparison to wild-type plants. These results indicate that the enhanced tolerance of the mutants does not result from a difference in the PCs level. Additionally, we have analyzed ROS accumulation in roots subjected to Cd2+ treatment. Our data show significantly lower Cd2+-induced ROS accumulation in the mutants’ roots. Concluding, the obtained results indicate that SnRK2s play a role in the regulation of plant tolerance to cadmium, most probably by controlling ROS accumulation triggered by cadmium ions. PMID:22885934

  19. Life at the border: Adaptation of proteins to anisotropic membrane environment

    PubMed Central

    Pogozheva, Irina D; Mosberg, Henry I; Lomize, Andrei L

    2014-01-01

    This review discusses main features of transmembrane (TM) proteins which distinguish them from water-soluble proteins and allow their adaptation to the anisotropic membrane environment. We overview the structural limitations on membrane protein architecture, spatial arrangement of proteins in membranes and their intrinsic hydrophobic thickness, co-translational and post-translational folding and insertion into lipid bilayers, topogenesis, high propensity to form oligomers, and large-scale conformational transitions during membrane insertion and transport function. Special attention is paid to the polarity of TM protein surfaces described by profiles of dipolarity/polarizability and hydrogen-bonding capacity parameters that match polarity of the lipid environment. Analysis of distributions of Trp resides on surfaces of TM proteins from different biological membranes indicates that interfacial membrane regions with preferential accumulation of Trp indole rings correspond to the outer part of the lipid acyl chain region—between double bonds and carbonyl groups of lipids. These “midpolar” regions are not always symmetric in proteins from natural membranes. We also examined the hydrophobic effect that drives insertion of proteins into lipid bilayer and different free energy contributions to TM protein stability, including attractive van der Waals forces and hydrogen bonds, side-chain conformational entropy, the hydrophobic mismatch, membrane deformations, and specific protein–lipid binding. PMID:24947665

  20. Massively parallel sampling of lattice proteins reveals foundations of thermal adaptation.

    PubMed

    Venev, Sergey V; Zeldovich, Konstantin B

    2015-08-01

    Evolution of proteins in bacteria and archaea living in different conditions leads to significant correlations between amino acid usage and environmental temperature. The origins of these correlations are poorly understood, and an important question of protein theory, physics-based prediction of types of amino acids overrepresented in highly thermostable proteins, remains largely unsolved. Here, we extend the random energy model of protein folding by weighting the interaction energies of amino acids by their frequencies in protein sequences and predict the energy gap of proteins designed to fold well at elevated temperatures. To test the model, we present a novel scalable algorithm for simultaneous energy calculation for many sequences in many structures, targeting massively parallel computing architectures such as graphics processing unit. The energy calculation is performed by multiplying two matrices, one representing the complete set of sequences, and the other describing the contact maps of all structural templates. An implementation of the algorithm for the CUDA platform is available at http://www.github.com/kzeldovich/galeprot and calculates protein folding energies over 250 times faster than a single central processing unit. Analysis of amino acid usage in 64-mer cubic lattice proteins designed to fold well at different temperatures demonstrates an excellent agreement between theoretical and simulated values of energy gap. The theoretical predictions of temperature trends of amino acid frequencies are significantly correlated with bioinformatics data on 191 bacteria and archaea, and highlight protein folding constraints as a fundamental selection pressure during thermal adaptation in biological evolution. PMID:26254668

  1. Proteins associated with adaptation of cultured tobacco cells to NaCl

    SciTech Connect

    Singh, N.K.; Handa, A.K.; Hasegawa, P.M.; Bressan, R.A.

    1985-09-01

    Cultured tobacco cells (Nicotiana tabacum L. cv Wisconsin 38) adapted to grow in medium containing high levels of NaCl or polyethylene glycol (PEG) produce several new or enhanced polypeptide bands on sodium dodecyl sulfate-polyarylamide gel electrophoresis. The intensities of some of the polypeptide bands increase with increasing levels of NaCl adaptation, while the intensities of other polypeptide bands are reduced. Synthesis of 26-kilodalton polypeptide(s) occurs at two different periods during culture growth of NaCl adapted cells. Unadapted cells also incorporate /sup 35/S into a 26-kilodalton polypeptide during the later stage of culture growth beginning at midlog phase. The 26-kilodalton polypeptides from adapted and unadapted cells have similar partial proteolysis peptide maps and are immunologically cross-reactive. During adaptation to NaCl, unadapted cells synthesize and accumulate a major 26-kilodalton polypeptide, and the beginning of synthesis corresponds to the period of osmotic adjustment and culture growth. From their results, the authors suggest an involvement of the 26-kilodalton polypeptide in the adaptation of cultured tobacco cells to NaCl and water stress. 38 references, 11 figures, 2 tables.

  2. SEORious business: structural proteins in sieve tubes and their involvement in sieve element occlusion.

    PubMed

    Knoblauch, Michael; Froelich, Daniel R; Pickard, William F; Peters, Winfried S

    2014-04-01

    The phloem provides a network of sieve tubes for long-distance translocation of photosynthates. For over a century, structural proteins in sieve tubes have presented a conundrum since they presumably increase the hydraulic resistance of the tubes while no potential function other than sieve tube or wound sealing in the case of injury has been suggested. Here we summarize and critically evaluate current speculations regarding the roles of these proteins. Our understanding suffers from the suggestive power of images; what looks like a sieve tube plug on micrographs may not actually impede translocation very much. Recent reports of an involvement of SEOR (sieve element occlusion-related) proteins, a class of P-proteins, in the sealing of injured sieve tubes are inconclusive; various lines of evidence suggest that, in neither intact nor injured plants, are SEORs determinative of translocation stoppage. Similarly, the popular notion that P-proteins serve in the defence against phloem sap-feeding insects is unsupported by empirical facts; it is conceivable that in functional sieve tubes, aphids actually could benefit from inducing a plug. The idea that rising cytosolic Ca(2+) generally triggers sieve tube blockage by P-proteins appears widely accepted, despite lacking experimental support. Even in forisomes, P-protein assemblages restricted to one single plant family and the only Ca(2+)-responsive P-proteins known, the available evidence does not unequivocally suggest that plug formation is the cause rather than a consequence of translocation stoppage. We conclude that the physiological roles of structural P-proteins remain elusive, and that in vivo studies of their dynamics in continuous sieve tube networks combined with flow velocity measurements will be required to (hopefully) resolve this scientific roadblock. PMID:24591057

  3. A Bacillus thuringiensis S-Layer Protein Involved in Toxicity against Epilachna varivestis (Coleoptera: Coccinellidae)

    PubMed Central

    Peña, Guadalupe; Miranda-Rios, Juan; de la Riva, Gustavo; Pardo-López, Liliana; Soberón, Mario; Bravo, Alejandra

    2006-01-01

    The use of Bacillus thuringiensis as a biopesticide is a viable alternative for insect control since the insecticidal Cry proteins produced by these bacteria are highly specific; harmless to humans, vertebrates, and plants; and completely biodegradable. In addition to Cry proteins, B. thuringiensis produces a number of extracellular compounds, including S-layer proteins (SLP), that contribute to virulence. The S layer is an ordered structure representing a proteinaceous paracrystalline array which completely covers the surfaces of many pathogenic bacteria. In this work, we report the identification of an S-layer protein by the screening of B. thuringiensis strains for activity against the coleopteran pest Epilachna varivestis (Mexican bean beetle; Coleoptera: Coccinellidae). We screened two B. thuringiensis strain collections containing unidentified Cry proteins and also strains isolated from dead insects. Some of the B. thuringiensis strains assayed against E. varivestis showed moderate toxicity. However, a B. thuringiensis strain (GP1) that was isolated from a dead insect showed a remarkably high insecticidal activity. The parasporal crystal produced by the GP1 strain was purified and shown to have insecticidal activity against E. varivestis but not against the lepidopteran Manduca sexta or Spodoptera frugiperda or against the dipteran Aedes aegypti. The gene encoding this protein was cloned and sequenced. It corresponded to an S-layer protein highly similar to previously described SLP in Bacillus anthracis (EA1) and Bacillus licheniformis (OlpA). The phylogenetic relationships among SLP from different bacteria showed that these proteins from Bacillus cereus, Bacillus sphaericus, B. anthracis, B. licheniformis, and B. thuringiensis are arranged in the same main group, suggesting similar origins. This is the first report that demonstrates that an S-layer protein is directly involved in toxicity to a coleopteran pest. PMID:16391064

  4. Identification and characterization of an operon of Helicobacter pylori that is involved in motility and stress adaptation.

    PubMed Central

    Beier, D; Spohn, G; Rappuoli, R; Scarlato, V

    1997-01-01

    We identified a novel stress-responsive operon (sro) of Helicobacter pylori that contains seven genes which are likely to be involved in cellular functions as diverse as chemotaxis, heat shock response, ion transport, and posttranslational protein modification. The products of three of these genes show amino acid homologies to known proteins, such as the flagellar motor switch protein CheY, a class of heat shock proteins, and the ribosomal protein L11 methyltransferase, and to a phosphatidyltransferase. In addition to containing an open reading frame of unknown function, the product of which is predicted to be membrane associated, the sro locus contains three open reading frames that have previously been described as constituting two separate loci, the ftsH gene and the copAP operon of H. pylori. Knockout mutants showed that CheY is essential for bacterial motility and that CopA, but not CopP, relieves copper toxicity. Transcriptional analyses indicated that this locus is regulated by a single promoter and that a positive effect on transcription is exerted by the addition of copper to the medium and by temperature upshift from 37 to 45 degrees C. The possible role of this locus in H. pylori virulence is discussed. PMID:9244252

  5. The RND protein is involved in the vulnibactin export system in Vibrio vulnificus M2799.

    PubMed

    Kawano, Hiroaki; Miyamoto, Katsushiro; Yasunobe, Megumi; Murata, Masahiro; Myojin, Tomoka; Tsuchiya, Takahiro; Tanabe, Tomotaka; Funahashi, Tatsuya; Sato, Takaji; Azuma, Takashi; Mino, Yoshiki; Tsujibo, Hiroshi

    2014-10-01

    Vibrio vulnificus, an opportunistic marine bacterium that causes a serious, often fatal, infection in humans, requires iron for its pathogenesis. This bacterium exports vulnibactin for iron acquisition from the environment. The mechanisms of vulnibactin biosynthesis and ferric-vulnibactin uptake systems have recently been reported, while the vulnibactin export system has not been reported. Mutant growth under low-iron concentration conditions and a bioassay of the culture supernatant indicate that the VV1_0612 protein plays a crucial role in the vulnibactin secretion as a component of the resistance-nodulation-division (RND)-type efflux system in V. vulnificus M2799. To identify which RND protein(s) together with VV1_0612 TolC constituted the RND efflux system for vulnibactin secretion, deletion mutants of 11 RND protein-encoding genes were constructed. The growth inhibition of a multiple mutant (Δ11) of the RND protein-encoding genes was observed 6 h after the beginning of the culture. Furthermore, ΔVV1_1681 exhibited a growth curve that was similar to that of Δ11, while the multiple mutant except ΔVV1_1681 showed the same growth as the wild-type strain. These results indicate that the VV1_1681 protein is involved in the vulnibactin export system of V. vulnificus M2799. This is the first genetic evidence that vulnibactin is secreted through the RND-type efflux systems in V. vulnificus. PMID:25205089

  6. Fission yeast pkl1 is a kinesin-related protein involved in mitotic spindle function.

    PubMed Central

    Pidoux, A L; LeDizet, M; Cande, W Z

    1996-01-01

    We have used anti-peptide antibodies raised against highly conserved regions of the kinesin motor domain to identify kinesin-related proteins in the fission yeast Schizosaccharomyces pombe. Here we report the identification of a new kinesin-related protein, which we have named pkl1. Sequence homology and domain organization place pkl1 in the Kar3/ncd subfamily of kinesin-related proteins. Bacterially expressed pkl1 fusion proteins display microtubule-stimulated ATPase activity, nucleotide-sensitive binding, and bundling of microtubules. Immunofluorescence studies with affinity-purified antibodies indicate that the pkl1 protein localizes to the nucleus and the mitotic spindle. Pkl1 null mutants are viable but have increased sensitivity to microtubule-disrupting drugs. Disruption of pkl1+ suppresses mutations in another kinesin-related protein, cut7, which is known to act in the spindle. Overexpression of pkl1 to very high levels causes a similar phenotype to that seen in cut7 mutants: V-shaped and star-shaped microtubule structures are observed, which we interpret to be spindles with unseparated spindle poles. These observations suggest that pkl1 and cut7 provide opposing forces in the spindle. We propose that pkl1 functions as a microtubule-dependent motor that is involved in microtubule organization in the mitotic spindle. Images PMID:8898367

  7. Live imaging using adaptive optics with fluorescent protein guide-stars

    PubMed Central

    Tao, Xiaodong; Crest, Justin; Kotadia, Shaila; Azucena, Oscar; Chen, Diana C.; Sullivan, William; Kubby, Joel

    2012-01-01

    Spatially and temporally dependent optical aberrations induced by the inhomogeneous refractive index of live samples limit the resolution of live dynamic imaging. We introduce an adaptive optical microscope with a direct wavefront sensing method using a Shack-Hartmann wavefront sensor and fluorescent protein guide-stars for live imaging. The results of imaging Drosophila embryos demonstrate its ability to correct aberrations and achieve near diffraction limited images of medial sections of large Drosophila embryos. GFP-polo labeled centrosomes can be observed clearly after correction but cannot be observed before correction. Four dimensional time lapse images are achieved with the correction of dynamic aberrations. These studies also demonstrate that the GFP-tagged centrosome proteins, Polo and Cnn, serve as excellent biological guide-stars for adaptive optics based microscopy. PMID:22772285

  8. Involvement of Fis protein in replication of the Escherichia coli chromosome.

    PubMed Central

    Filutowicz, M; Ross, W; Wild, J; Gourse, R L

    1992-01-01

    We report evidence indicating that Fis protein plays a role in initiation of replication at oriC in vivo. At high temperatures, fis null mutants form filamentous cells, show aberrant nucleoid segregation, and are unable to form single colonies. DNA synthesis is inhibited in these fis mutant strains following upshift to 44 degrees C. The pattern of DNA synthesis inhibition upon temperature upshift and the requirement for RNA synthesis, but not protein synthesis, for resumed DNA synthesis upon downshift to 32 degrees C indicate that synthesis is affected in the initiation phase. fis mutations act synergistically with gyrB alleles known to affect initiation. oriC-dependent plasmids are poorly established and maintained in fis mutant strains. Finally, purified Fis protein interacts in vitro with sites in oriC. These interactions could be involved in mediating the effect of Fis on DNA synthesis in vivo. Images PMID:1309527

  9. Involvement of Bcl-2-associated athanogene (BAG)-family proteins in the neuroprotection by rasagiline

    PubMed Central

    Guo, Ji-Feng; He, Shuang; Kang, Ji-Feng; Xu, Qian; Hu, Ya-Cen; Zhang, Hai-Nan; Wang, Chun-Yu; Yan, Xin-Xiang; Tang, Bei-Sha

    2015-01-01

    Rasagiline, a novel monoamine oxidase (MAO)-B inhibitor, has a mild to moderate effect in relieving Parkinson’s disease (PD) symptoms as well as unique neuroprotective effects. Previous studies demonstrated rasagiline protect neurons by regulating Bcl-2 family proteins. Our study aimed to study whether Bcl-2-associated athanogene (BAG)-family proteins, which were reported closely associated with neurodegenerative disease, were involved in the neuroprotective effect of rasagiline. We found that after the administration of 1-methy1-4-phenvl-1,2,3,6-tetrahvdropvridine (MPTP), BAG2 and BAG5 proteins were up-regulated in the substantia nigra dopaminergic neurons of PD mouse model. A further increase of BAG2 and BAG5 was detected after intragastric administration of rasagiline to post-MPTP lesioned mice. Thus, the current study proved the association of BAG family proteins with PD, and suggested the involvement and a positive role of BAG2, BAG5 in the neuroprotection of rasagiline. These preliminary results implicate a novel pathway for further study on neuroprotection of rasagiline. PMID:26770414

  10. Characterization of berberine transport into Coptis japonica cells and the involvement of ABC protein.

    PubMed

    Sakai, Kyoko; Shitan, Nobukazu; Sato, Fumihiko; Ueda, Kazumitsu; Yazaki, Kazufumi

    2002-09-01

    Cultured Coptis japonica cells are able to take up berberine, a benzylisoquinoline alkaloid, from the medium and transport it exclusively into the vacuoles. Uptake activity depends on the growth phase of the cultured cells whereas the culture medium had no effect on uptake. Treatment with several inhibitors suggested that berberine uptake depended on the ATP level. Some inhibitors of P-glycoprotein, an ABC transporter involved in multiple drug resistance in cancer cells, strongly inhibited berberine uptake, whereas a specific inhibitor for glutathione biosynthesis and vacuolar ATPase, bafilomycin A1, had little effect. Vanadate-induced ATP trap experiments to detect ABC proteins expressed in C. japonica cells showed that three membrane proteins of between 120 and 150 kDa were photolabelled with 8-azido-[alpha-32P] ATP. Two revealed the same photoaffinity-labelling pattern as P-glycoprotein, and the interaction of these proteins with berberine was also demonstrated. These results suggest that ABC proteins of the MDR-type are involved in the uptake of berberine from the medium. PMID:12177126

  11. Constrained peptides with target-adapted cross-links as inhibitors of a pathogenic protein-protein interaction.

    PubMed

    Glas, Adrian; Bier, David; Hahne, Gernot; Rademacher, Christoph; Ottmann, Christian; Grossmann, Tom N

    2014-02-24

    Bioactive conformations of peptides can be stabilized by macrocyclization, resulting in increased target affinity and activity. Such macrocyclic peptides proved useful as modulators of biological functions, in particular as inhibitors of protein-protein interactions (PPI). However, most peptide-derived PPI inhibitors involve stabilized α-helices, leaving a large number of secondary structures unaddressed. Herein, we present a rational approach towards stabilization of an irregular peptide structure, using hydrophobic cross-links that replace residues crucially involved in target binding. The molecular basis of this interaction was elucidated by X-ray crystallography and isothermal titration calorimetry. The resulting cross-linked peptides inhibit the interaction between human adaptor protein 14-3-3 and virulence factor exoenzyme S. Taking into consideration that irregular peptide structures participate widely in PPIs, this approach provides access to novel peptide-derived inhibitors. PMID:24504455

  12. A reversible Renilla luciferase protein complementation assay for rapid identification of protein-protein interactions reveals the existence of an interaction network involved in xyloglucan biosynthesis in the plant Golgi apparatus.

    PubMed

    Lund, Christian H; Bromley, Jennifer R; Stenbæk, Anne; Rasmussen, Randi E; Scheller, Henrik V; Sakuragi, Yumiko

    2015-01-01

    A growing body of evidence suggests that protein-protein interactions (PPIs) occur amongst glycosyltransferases (GTs) required for plant glycan biosynthesis (e.g. cell wall polysaccharides and N-glycans) in the Golgi apparatus, and may control the functions of these enzymes. However, identification of PPIs in the endomembrane system in a relatively fast and simple fashion is technically challenging, hampering the progress in understanding the functional coordination of the enzymes in Golgi glycan biosynthesis. To solve the challenges, we adapted and streamlined a reversible Renilla luciferase protein complementation assay (Rluc-PCA), originally reported for use in human cells, for transient expression in Nicotiana benthamiana. We tested Rluc-PCA and successfully identified luminescence complementation amongst Golgi-localizing GTs known to form a heterodimer (GAUT1 and GAUT7) and those which homooligomerize (ARAD1). In contrast, no interaction was shown between negative controls (e.g. GAUT7, ARAD1, IRX9). Rluc-PCA was used to investigate PPIs amongst Golgi-localizing GTs involved in biosynthesis of hemicelluloses. Although no PPI was identified among six GTs involved in xylan biosynthesis, Rluc-PCA confirmed three previously proposed interactions and identified seven novel PPIs amongst GTs involved in xyloglucan biosynthesis. Notably, three of the novel PPIs were confirmed by a yeast-based split-ubiquitin assay. Finally, Gateway-enabled expression vectors were generated, allowing rapid construction of fusion proteins to the Rluc reporters and epitope tags. Our results show that Rluc-PCA coupled with transient expression in N. benthamiana is a fast and versatile method suitable for analysis of PPIs between Golgi resident proteins in an easy and mid-throughput fashion in planta. PMID:25326916

  13. Protein kinase C overexpression suppresses calcineurin-associated defects in Aspergillus nidulans and is involved in mitochondrial function.

    PubMed

    Colabardini, Ana Cristina; Ries, Laure Nicolas Annick; Brown, Neil Andrew; Savoldi, Marcela; Dinamarco, Taísa Magnani; von Zeska Kress, Marcia Regina; von Zeska, Marcia Regina; Goldman, Maria Helena S; Goldman, Gustavo Henrique

    2014-01-01

    In filamentous fungi, intracellular signaling pathways which are mediated by changing calcium levels and/or by activated protein kinase C (Pkc), control fungal adaptation to external stimuli. A rise in intracellular Ca2+ levels activates calcineurin subunit A (CnaA), which regulates cellular calcium homeostasis among other processes. Pkc is primarily involved in maintaining cell wall integrity (CWI) in response to different environmental stresses. Cross-talk between the Ca2+ and Pkc-mediated pathways has mainly been described in Saccharomyces cerevisiae and in a few other filamentous fungi. The presented study describes a genetic interaction between CnaA and PkcA in the filamentous fungus Aspergillus nidulans. Overexpression of pkcA partially rescues the phenotypes caused by a cnaA deletion. Furthermore, CnaA appears to affect the regulation of a mitogen-activated kinase, MpkA, involved in the CWI pathway. Reversely, PkcA is involved in controlling intracellular calcium homeostasis, as was confirmed by microarray analysis. Furthermore, overexpression of pkcA in a cnaA deletion background restores mitochondrial number and function. In conclusion, PkcA and CnaA-mediated signaling appear to share common targets, one of which appears to be MpkA of the CWI pathway. Both pathways also regulate components involved in mitochondrial biogenesis and function. This study describes targets for PkcA and CnaA-signaling pathways in an A. nidulans and identifies a novel interaction of both pathways in the regulation of cellular respiration. PMID:25153325

  14. Protein Kinase C Overexpression Suppresses Calcineurin-Associated Defects in Aspergillus nidulans and Is Involved in Mitochondrial Function

    PubMed Central

    Brown, Neil Andrew; Savoldi, Marcela; Dinamarco, Taísa Magnani; von Zeska, Marcia Regina; Goldman, Maria Helena S.; Goldman, Gustavo Henrique

    2014-01-01

    In filamentous fungi, intracellular signaling pathways which are mediated by changing calcium levels and/or by activated protein kinase C (Pkc), control fungal adaptation to external stimuli. A rise in intracellular Ca2+ levels activates calcineurin subunit A (CnaA), which regulates cellular calcium homeostasis among other processes. Pkc is primarily involved in maintaining cell wall integrity (CWI) in response to different environmental stresses. Cross-talk between the Ca2+ and Pkc-mediated pathways has mainly been described in Saccharomyces cerevisiae and in a few other filamentous fungi. The presented study describes a genetic interaction between CnaA and PkcA in the filamentous fungus Aspergillus nidulans. Overexpression of pkcA partially rescues the phenotypes caused by a cnaA deletion. Furthermore, CnaA appears to affect the regulation of a mitogen-activated kinase, MpkA, involved in the CWI pathway. Reversely, PkcA is involved in controlling intracellular calcium homeostasis, as was confirmed by microarray analysis. Furthermore, overexpression of pkcA in a cnaA deletion background restores mitochondrial number and function. In conclusion, PkcA and CnaA-mediated signaling appear to share common targets, one of which appears to be MpkA of the CWI pathway. Both pathways also regulate components involved in mitochondrial biogenesis and function. This study describes targets for PkcA and CnaA-signaling pathways in an A. nidulans and identifies a novel interaction of both pathways in the regulation of cellular respiration. PMID:25153325

  15. Cold Shock Proteins of Lactococcus lactis MG1363 Are Involved in Cryoprotection and in the Production of Cold-Induced Proteins

    PubMed Central

    Wouters, Jeroen A.; Frenkiel, Hélène; de Vos, Willem M.; Kuipers, Oscar P.; Abee, Tjakko

    2001-01-01

    Members of the group of 7-kDa cold-shock proteins (CSPs) are the proteins with the highest level of induction upon cold shock in the lactic acid bacterium Lactococcus lactis MG1363. By using double-crossover recombination, two L. lactis strains were generated in which genes encoding CSPs are disrupted: L. lactis NZ9000ΔAB lacks the tandemly orientated cspA and cspB genes, and NZ9000ΔABE lacks cspA, cspB, and cspE. Both strains showed no differences in growth at normal and at low temperatures compared to that of the wild-type strain, L. lactis NZ9000. Two-dimensional gel electrophoresis showed that upon disruption of the cspAB genes, the production of remaining CspE at low temperature increased, and upon disruption of cspA, cspB, and cspE, the production of CspD at normal growth temperatures increased. Northern blot analysis showed that control is most likely at the transcriptional level. Furthermore, it was established by a proteomics approach that some (non-7-kDa) cold-induced proteins (CIPs) are not cold induced in the csp-lacking strains, among others the histon-like protein HslA and the signal transduction protein LlrC. This supports earlier observations (J. A. Wouters, M. Mailhes, F. M. Rombouts, W. M. De Vos, O. P. Kuipers, and T. Abee, Appl. Environ. Microbiol. 66:3756–3763, 2000). that the CSPs of L. lactis might be directly involved in the production of some CIPs upon low-temperature exposure. Remarkably, the adaptive response to freezing by prior exposure to 10°C was significantly reduced in strain NZ9000ΔABE but not in strain NZ9000ΔAB compared to results with wild-type strain NZ9000, indicating a notable involvement of CspE in cryoprotection. PMID:11679342

  16. Positron Emission Tomography Imaging Reveals Auditory and Frontal Cortical Regions Involved with Speech Perception and Loudness Adaptation.

    PubMed

    Berding, Georg; Wilke, Florian; Rode, Thilo; Haense, Cathleen; Joseph, Gert; Meyer, Geerd J; Mamach, Martin; Lenarz, Minoo; Geworski, Lilli; Bengel, Frank M; Lenarz, Thomas; Lim, Hubert H

    2015-01-01

    Considerable progress has been made in the treatment of hearing loss with auditory implants. However, there are still many implanted patients that experience hearing deficiencies, such as limited speech understanding or vanishing perception with continuous stimulation (i.e., abnormal loudness adaptation). The present study aims to identify specific patterns of cerebral cortex activity involved with such deficiencies. We performed O-15-water positron emission tomography (PET) in patients implanted with electrodes within the cochlea, brainstem, or midbrain to investigate the pattern of cortical activation in response to speech or continuous multi-tone stimuli directly inputted into the implant processor that then delivered electrical patterns through those electrodes. Statistical parametric mapping was performed on a single subject basis. Better speech understanding was correlated with a larger extent of bilateral auditory cortex activation. In contrast to speech, the continuous multi-tone stimulus elicited mainly unilateral auditory cortical activity in which greater loudness adaptation corresponded to weaker activation and even deactivation. Interestingly, greater loudness adaptation was correlated with stronger activity within the ventral prefrontal cortex, which could be up-regulated to suppress the irrelevant or aberrant signals into the auditory cortex. The ability to detect these specific cortical patterns and differences across patients and stimuli demonstrates the potential for using PET to diagnose auditory function or dysfunction in implant patients, which in turn could guide the development of appropriate stimulation strategies for improving hearing rehabilitation. Beyond hearing restoration, our study also reveals a potential role of the frontal cortex in suppressing irrelevant or aberrant activity within the auditory cortex, and thus may be relevant for understanding and treating tinnitus. PMID:26046763

  17. Industrial fuel ethanol yeasts contain adaptive copy number changes in genes involved in vitamin B1 and B6 biosynthesis

    PubMed Central

    Stambuk, Boris U.; Dunn, Barbara; Alves, Sergio L.; Duval, Eduarda H.; Sherlock, Gavin

    2009-01-01

    Fuel ethanol is now a global energy commodity that is competitive with gasoline. Using microarray-based comparative genome hybridization (aCGH), we have determined gene copy number variations (CNVs) common to five industrially important fuel ethanol Saccharomyces cerevisiae strains responsible for the production of billions of gallons of fuel ethanol per year from sugarcane. These strains have significant amplifications of the telomeric SNO and SNZ genes, which are involved in the biosynthesis of vitamins B6 (pyridoxine) and B1 (thiamin). We show that increased copy number of these genes confers the ability to grow more efficiently under the repressing effects of thiamin, especially in medium lacking pyridoxine and with high sugar concentrations. These genetic changes have likely been adaptive and selected for in the industrial environment, and may be required for the efficient utilization of biomass-derived sugars from other renewable feedstocks. PMID:19897511

  18. Characterization of PXK as a Protein Involved in Epidermal Growth Factor Receptor Trafficking ▿

    PubMed Central

    Takeuchi, Hiroshi; Takeuchi, Takako; Gao, Jing; Cantley, Lewis C.; Hirata, Masato

    2010-01-01

    The phox homology (PX) domain is a phosphoinositide-binding module that typically binds phosphatidylinositol 3-phosphate. Out of 47 mammalian proteins containing PX domains, more than 30 are denoted sorting nexins and several of these have been implicated in internalization of cell surface proteins to the endosome, where phosphatidylinositol-3-phosphate is concentrated. Here we investigated a multimodular protein termed PXK, composed of a PX domain, a protein kinase-like domain, and a WASP homology 2 domain. We show that the PX domain of PXK localizes this protein to the endosomal membrane via binding to phosphatidylinositol 3-phosphate. PXK expression in COS7 cells accelerated the ligand-induced internalization and degradation of epidermal growth factor receptors by a mechanism requiring phosphatidylinositol 3-phosphate binding but not involving the WASP homology 2 domain. Conversely, depletion of PXK using RNA interference decreased the rate of epidermal growth factor receptor internalization and degradation. Ubiquitination of epidermal growth factor receptor by the ligand stimulation was enhanced in PXK-expressing cells. These results indicate that PXK plays a critical role in epidermal growth factor receptor trafficking through modulating ligand-induced ubiquitination of the receptor. PMID:20086096

  19. A histidine protein kinase is involved in polar organelle development in Caulobacter crescentus.

    PubMed Central

    Wang, S P; Sharma, P L; Schoenlein, P V; Ely, B

    1993-01-01

    Mutations having pleiotropic effects on polar organelle development (pod) in Caulobacter crescentus have been identified and shown to occur in at least 13 genes scattered throughout the genome. Mutations at each locus affect a unique combination of polar traits, suggesting that complex interactions occur among these genes. The DNA sequence of one of these genes, pleC, indicates that it is homologous to members of the family of histidine protein kinase genes. Membes of this family include the senor components of the bacterial two-component regulatory systems. Furthermore, in vitro experiments demonstrated that the PleC protein was capable of autophosphorylation. These results suggest that the PleC protein (and perhaps the proteins encoded by the other pod genes as well) regulates the expression of genes involved in polar organelle development through the phosphorylation of key regulatory proteins. The use of a phosphorelay system cued to internal changes in the cell would provide a mechanism for coordinating major changes in gene expression with the completion of specific cell cycle events. Images PMID:8421698

  20. Microtubule-severing proteins are involved in flagellar length control and mitosis in Trypanosomatids.

    PubMed

    Casanova, Magali; Crobu, Lucien; Blaineau, Christine; Bourgeois, Nathalie; Bastien, Patrick; Pagès, Michel

    2009-03-01

    Microtubules are key players in the biology of Trypanosomatid parasites, not only as classical components of the mitotic spindle, microtubule-organizing centres and flagellum but also as the essential constituent of the cytoskeleton. Their length dynamics are regulated by, among others, microtubule-severing proteins. Four and six genes encoding microtubule-severing proteins can be found bioinformatically in the Leishmania major and Trypanosoma brucei genome respectively. We investigated all these proteins in these organisms, which include the katanin, katanin-like, spastin and fidgetin, and looked at their subcellular localization as well as their putative function by examining 'loss-of-function' phenotypes. The katanin-like KAT60b was found implicated in flagellar length reduction, but not in its size increase, while the katanin p80 subunit appeared clearly involved in cytokinesis. Fidgetin and spastin homologues were both localized in the nucleus: the first as a discrete and variable number of dots during most of the cell cycle, redistributing to the spindle and midbody during mitosis; the second concentrated as < or = 5 perinucleolar punctuations, similar to the electron-dense plaques identified in T. brucei, which were assimilated to kinetochores. This first study of microtubule-severing proteins in 'divergent' eukaryotes gives further insight into the multiple functions of these proteins identified in the hitherto studied models. PMID:19183280

  1. Myomegalin is a novel A-kinase anchoring protein involved in the phosphorylation of cardiac myosin binding protein C

    PubMed Central

    2011-01-01

    Background Cardiac contractility is regulated by dynamic phosphorylation of sarcomeric proteins by kinases such as cAMP-activated protein kinase A (PKA). Efficient phosphorylation requires that PKA be anchored close to its targets by A-kinase anchoring proteins (AKAPs). Cardiac Myosin Binding Protein-C (cMyBPC) and cardiac troponin I (cTNI) are hypertrophic cardiomyopathy (HCM)-causing sarcomeric proteins which regulate contractility in response to PKA phosphorylation. Results During a yeast 2-hybrid (Y2H) library screen using a trisphosphorylation mimic of the C1-C2 region of cMyBPC, we identified isoform 4 of myomegalin (MMGL) as an interactor of this N-terminal cMyBPC region. As MMGL has previously been shown to interact with phosphodiesterase 4D, we speculated that it may be a PKA-anchoring protein (AKAP). To investigate this possibility, we assessed the ability of MMGL isoform 4 to interact with PKA regulatory subunits R1A and R2A using Y2H-based direct protein-protein interaction assays. Additionally, to further elucidate the function of MMGL, we used it as bait to screen a cardiac cDNA library. Other PKA targets, viz. CARP, COMMD4, ENO1, ENO3 and cTNI were identified as putative interactors, with cTNI being the most frequent interactor. We further assessed and confirmed these interactions by fluorescent 3D-co-localization in differentiated H9C2 cells as well as by in vivo co-immunoprecipitation. We also showed that quantitatively more interaction occurs between MMGL and cTNI under β-adrenergic stress. Moreover, siRNA-mediated knockdown of MMGL leads to reduction of cMyBPC levels under conditions of adrenergic stress, indicating that MMGL-assisted phosphorylation is requisite for protection of cMyBPC against proteolytic cleavage. Conclusions This study ascribes a novel function to MMGL isoform 4: it meets all criteria for classification as an AKAP, and we show that is involved in the phosphorylation of cMyBPC as well as cTNI, hence MMGL is an important

  2. The cytoskeletal adapter protein 4.1G organizes the internodes in peripheral myelinated nerves

    PubMed Central

    Ivanovic, Aleksandra; Horresh, Ido; Golan, Neev; Spiegel, Ivo; Sabanay, Helena; Frechter, Shahar; Ohno, Shinichi; Terada, Nobuo; Möbius, Wiebke; Rosenbluth, Jack; Brose, Nils

    2012-01-01

    Myelinating Schwann cells regulate the localization of ion channels on the surface of the axons they ensheath. This function depends on adhesion complexes that are positioned at specific membrane domains along the myelin unit. Here we show that the precise localization of internodal proteins depends on the expression of the cytoskeletal adapter protein 4.1G in Schwann cells. Deletion of 4.1G in mice resulted in aberrant distribution of both glial adhesion molecules and axonal proteins that were present along the internodes. In wild-type nerves, juxtaparanodal proteins (i.e., Kv1 channels, Caspr2, and TAG-1) were concentrated throughout the internodes in a double strand that flanked paranodal junction components (i.e., Caspr, contactin, and NF155), and apposes the inner mesaxon of the myelin sheath. In contrast, in 4.1G−/− mice, these proteins “piled up” at the juxtaparanodal region or aggregated along the internodes. These findings suggest that protein 4.1G contributes to the organization of the internodal axolemma by targeting and/or maintaining glial transmembrane proteins along the axoglial interface. PMID:22291039

  3. Identification of an Atypical Membrane Protein Involved in the Formation of Protein Disulfide Bonds in Oxygenic Photosynthetic Organisms*S⃞

    PubMed Central

    Singh, Abhay K.; Bhattacharyya-Pakrasi, Maitrayee; Pakrasi, Himadri B.

    2008-01-01

    The evolution of oxygenic photosynthesis in cyanobacteria nearly three billion years ago provided abundant reducing power and facilitated the elaboration of numerous oxygen-dependent reactions in our biosphere. Cyanobacteria contain an internal thylakoid membrane system, the site of photosynthesis, and a typical Gram-negative envelope membrane system. Like other organisms, the extracytoplasmic space in cyanobacteria houses numerous cysteine-containing proteins. However, the existence of a biochemical system for disulfide bond formation in cyanobacteria remains to be determined. Extracytoplasmic disulfide bond formation in non-photosynthetic organisms is catalyzed by coordinated interaction between two proteins, a disulfide carrier and a disulfide generator. Here we describe a novel gene, SyndsbAB, required for disulfide bond formation in the extracytoplasmic space of cyanobacteria. The SynDsbAB orthologs are present in most cyanobacteria and chloroplasts of higher plants with fully sequenced genomes. The SynDsbAB protein contains two distinct catalytic domains that display significant similarity to proteins involved in disulfide bond formation in Escherichia coli and eukaryotes. Importantly, SyndsbAB complements E. coli strains defective in disulfide bond formation. In addition, the activity of E. coli alkaline phosphatase localized to the periplasm of Synechocystis 6803 is dependent on the function of SynDsbAB. Deletion of SyndsbAB in Synechocystis 6803 causes significant growth impairment under photoautotrophic conditions and results in hyper-sensitivity to dithiothreitol, a reductant, whereas diamide, an oxidant had no effect on the growth of the mutant strains. We conclude that SynDsbAB is a critical protein for disulfide bond formation in oxygenic photosynthetic organisms and required for their optimal photoautotrophic growth. PMID:18413314

  4. Heat shock proteins and exercise adaptations. Our knowledge thus far and the road still ahead.

    PubMed

    Henstridge, Darren C; Febbraio, Mark A; Hargreaves, Mark

    2016-03-15

    By its very nature, exercise exerts a challenge to the body's cellular homeostatic mechanisms. This homeostatic challenge affects not only the contracting skeletal muscle but also a number of other organs and results over time in exercise-induced adaptations. Thus it is no surprise that heat shock proteins (HSPs), a group of ancient and highly conserved cytoprotective proteins critical in the maintenance of protein and cellular homeostasis, have been implicated in exercise/activity-induced adaptations. It has become evident that HSPs such as HSP72 are induced or activated with acute exercise or after chronic exercise training regimens. These observations have given scientists an insight into the protective mechanisms of these proteins and provided an opportunity to exploit their protective role to improve health and physical performance. Although our knowledge in this area of physiology has improved dramatically, many questions still remain unanswered. Further understanding of the role of HSPs in exercise physiology may prove beneficial for therapeutic targeting in diseased patient cohorts, exercise prescription for disease prevention, and training strategies for elite athletes. PMID:26679615

  5. Adaptive evolution of multicolored fluorescent proteins in reef-building corals.

    PubMed

    Field, Steven F; Bulina, Maria Y; Kelmanson, Ilya V; Bielawski, Joseph P; Matz, Mikhail V

    2006-03-01

    Here we investigate the evolutionary scenarios that led to the appearance of fluorescent color diversity in reef-building corals. We show that the mutations that have been responsible for the generation of new cyan and red phenotypes from the ancestral green were fixed with the help of positive natural selection. This fact strongly suggests that the color diversity is a product of adaptive evolution. An unexpected finding was a set of residues arranged as an intermolecular binding interface, which was also identified as a target of positive selection but is nevertheless not related to color diversification. We hypothesize that multicolored fluorescent proteins evolved as part of a mechanism regulating the relationships between the coral and its algal endosymbionts (zooxanthellae). We envision that the effect of the proteins' fluorescence on algal physiology may be achieved not only through photosynthesis modulation, but also through regulatory photosensors analogous to phytochromes and cryptochromes of higher plants. Such a regulation would require relatively subtle, but spectrally precise, modifications of the light field. Evolution of such a mechanism would explain both the adaptive diversification of colors and the coevolutionary chase at the putative algae-protein binding interface in coral fluorescent proteins. PMID:16474984

  6. The response to unfolded protein is involved in osmotolerance of Pichia pastoris

    PubMed Central

    2010-01-01

    Background The effect of osmolarity on cellular physiology has been subject of investigation in many different species. High osmolarity is of importance for biotechnological production processes, where high cell densities and product titers are aspired. Several studies indicated that increased osmolarity of the growth medium can have a beneficial effect on recombinant protein production in different host organisms. Thus, the effect of osmolarity on the cellular physiology of Pichia pastoris, a prominent host for recombinant protein production, was studied in carbon limited chemostat cultures at different osmolarities. Transcriptome and proteome analyses were applied to assess differences upon growth at different osmolarities in both, a wild type strain and an antibody fragment expressing strain. While our main intention was to analyze the effect of different osmolarities on P. pastoris in general, this was complemented by studying it in context with recombinant protein production. Results In contrast to the model yeast Saccharomyces cerevisiae, the main osmolyte in P. pastoris was arabitol rather than glycerol, demonstrating differences in osmotic stress response as well as energy metabolism. 2D Fluorescence Difference Gel electrophoresis and microarray analysis were applied and demonstrated that processes such as protein folding, ribosome biogenesis and cell wall organization were affected by increased osmolarity. These data indicated that upon increased osmolarity less adaptations on both the transcript and protein level occurred in a P. pastoris strain, secreting the Fab fragment, compared with the wild type strain. No transcriptional activation of the high osmolarity glycerol (HOG) pathway was observed at steady state conditions. Furthermore, no change of the specific productivity of recombinant Fab was observed at increased osmolarity. Conclusion These data point out that the physiological response to increased osmolarity is different to S. cerevisiae

  7. Median Modified Wiener Filter for nonlinear adaptive spatial denoising of protein NMR multidimensional spectra

    PubMed Central

    Cannistraci, Carlo Vittorio; Abbas, Ahmed; Gao, Xin

    2015-01-01

    Denoising multidimensional NMR-spectra is a fundamental step in NMR protein structure determination. The state-of-the-art method uses wavelet-denoising, which may suffer when applied to non-stationary signals affected by Gaussian-white-noise mixed with strong impulsive artifacts, like those in multi-dimensional NMR-spectra. Regrettably, Wavelet's performance depends on a combinatorial search of wavelet shapes and parameters; and multi-dimensional extension of wavelet-denoising is highly non-trivial, which hampers its application to multidimensional NMR-spectra. Here, we endorse a diverse philosophy of denoising NMR-spectra: less is more! We consider spatial filters that have only one parameter to tune: the window-size. We propose, for the first time, the 3D extension of the median-modified-Wiener-filter (MMWF), an adaptive variant of the median-filter, and also its novel variation named MMWF*. We test the proposed filters and the Wiener-filter, an adaptive variant of the mean-filter, on a benchmark set that contains 16 two-dimensional and three-dimensional NMR-spectra extracted from eight proteins. Our results demonstrate that the adaptive spatial filters significantly outperform their non-adaptive versions. The performance of the new MMWF* on 2D/3D-spectra is even better than wavelet-denoising. Noticeably, MMWF* produces stable high performance almost invariant for diverse window-size settings: this signifies a consistent advantage in the implementation of automatic pipelines for protein NMR-spectra analysis. PMID:25619991

  8. Median Modified Wiener Filter for nonlinear adaptive spatial denoising of protein NMR multidimensional spectra.

    PubMed

    Cannistraci, Carlo Vittorio; Abbas, Ahmed; Gao, Xin

    2015-01-01

    Denoising multidimensional NMR-spectra is a fundamental step in NMR protein structure determination. The state-of-the-art method uses wavelet-denoising, which may suffer when applied to non-stationary signals affected by Gaussian-white-noise mixed with strong impulsive artifacts, like those in multi-dimensional NMR-spectra. Regrettably, Wavelet's performance depends on a combinatorial search of wavelet shapes and parameters; and multi-dimensional extension of wavelet-denoising is highly non-trivial, which hampers its application to multidimensional NMR-spectra. Here, we endorse a diverse philosophy of denoising NMR-spectra: less is more! We consider spatial filters that have only one parameter to tune: the window-size. We propose, for the first time, the 3D extension of the median-modified-Wiener-filter (MMWF), an adaptive variant of the median-filter, and also its novel variation named MMWF*. We test the proposed filters and the Wiener-filter, an adaptive variant of the mean-filter, on a benchmark set that contains 16 two-dimensional and three-dimensional NMR-spectra extracted from eight proteins. Our results demonstrate that the adaptive spatial filters significantly outperform their non-adaptive versions. The performance of the new MMWF* on 2D/3D-spectra is even better than wavelet-denoising. Noticeably, MMWF* produces stable high performance almost invariant for diverse window-size settings: this signifies a consistent advantage in the implementation of automatic pipelines for protein NMR-spectra analysis. PMID:25619991

  9. Homeodomain Protein Scr Regulates the Transcription of Genes Involved in Juvenile Hormone Biosynthesis in the Silkworm

    PubMed Central

    Meng, Meng; Liu, Chun; Peng, Jian; Qian, Wenliang; Qian, Heying; Tian, Ling; Li, Jiarui; Dai, Dandan; Xu, Anying; Li, Sheng; Xia, Qingyou; Cheng, Daojun

    2015-01-01

    The silkworm Dominant trimolting (Moltinism, M3) mutant undergoes three larval molts and exhibits precocious metamorphosis. In this study, we found that compared with the wild-type (WT) that undergoes four larval molts, both the juvenile hormone (JH) concentration and the expression of the JH-responsive gene Krüppel homolog 1 (Kr-h1) began to be greater in the second instar of the M3 mutant. A positional cloning analysis revealed that only the homeodomain transcription factor gene Sex combs reduced (Scr) is located in the genomic region that is tightly linked to the M3 locus. The expression level of the Scr gene in the brain-corpora cardiaca-corpora allata (Br-CC-CA) complex, which controls the synthesis of JH, was very low in the final larval instar of both the M3 and WT larvae, and exhibited a positive correlation with JH titer changes. Importantly, luciferase reporter analysis and electrophoretic mobility shift assay (EMSA) demonstrated that the Scr protein could promote the transcription of genes involved in JH biosynthesis by directly binding to the cis-regulatory elements (CREs) of homeodomain protein on their promoters. These results conclude that the homeodomain protein Scr is transcriptionally involved in the regulation of JH biosynthesis in the silkworm. PMID:26540044

  10. Interferon-inducible GTPase: a novel viral response protein involved in rabies virus infection.

    PubMed

    Li, Ling; Wang, Hualei; Jin, Hongli; Cao, Zengguo; Feng, Na; Zhao, Yongkun; Zheng, Xuexing; Wang, Jianzhong; Li, Qian; Zhao, Guoxing; Yan, Feihu; Wang, Lina; Wang, Tiecheng; Gao, Yuwei; Tu, Changchun; Yang, Songtao; Xia, Xianzhu

    2016-05-01

    Rabies virus infection is a major public health concern because of its wide host-interference spectrum and nearly 100 % lethality. However, the interactions between host and virus remain unclear. To decipher the authentic response in the central nervous system after rabies virus infection, a dynamic analysis of brain proteome alteration was performed. In this study, 104 significantly differentially expressed proteins were identified, and intermediate filament, interferon-inducible GTPases, and leucine-rich repeat-containing protein 16C were the three outstanding groups among these proteins. Interferon-inducible GTPases were prominent because of their strong upregulation. Moreover, quantitative real-time PCR showed distinct upregulation of interferon-inducible GTPases at the level of transcription. Several studies have shown that interferon-inducible GTPases are involved in many biological processes, such as viral infection, endoplasmic reticulum stress response, and autophagy. These findings indicate that interferon-inducible GTPases are likely to be a potential target involved in rabies pathogenesis or the antiviral process. PMID:26906695

  11. High protein flexibility and reduced hydration water dynamics are key pressure adaptive strategies in prokaryotes.

    PubMed

    Martinez, N; Michoud, G; Cario, A; Ollivier, J; Franzetti, B; Jebbar, M; Oger, P; Peters, J

    2016-01-01

    Water and protein dynamics on a nanometer scale were measured by quasi-elastic neutron scattering in the piezophile archaeon Thermococcus barophilus and the closely related pressure-sensitive Thermococcus kodakarensis, at 0.1 and 40 MPa. We show that cells of the pressure sensitive organism exhibit higher intrinsic stability. Both the hydration water dynamics and the fast protein and lipid dynamics are reduced under pressure. In contrast, the proteome of T. barophilus is more pressure sensitive than that of T. kodakarensis. The diffusion coefficient of hydration water is reduced, while the fast protein and lipid dynamics are slightly enhanced with increasing pressure. These findings show that the coupling between hydration water and cellular constituents might not be simply a master-slave relationship. We propose that the high flexibility of the T. barophilus proteome associated with reduced hydration water may be the keys to the molecular adaptation of the cells to high hydrostatic pressure. PMID:27595789

  12. High protein flexibility and reduced hydration water dynamics are key pressure adaptive strategies in prokaryotes

    PubMed Central

    Martinez, N.; Michoud, G.; Cario, A.; Ollivier, J.; Franzetti, B.; Jebbar, M.; Oger, P.; Peters, J.

    2016-01-01

    Water and protein dynamics on a nanometer scale were measured by quasi-elastic neutron scattering in the piezophile archaeon Thermococcus barophilus and the closely related pressure-sensitive Thermococcus kodakarensis, at 0.1 and 40 MPa. We show that cells of the pressure sensitive organism exhibit higher intrinsic stability. Both the hydration water dynamics and the fast protein and lipid dynamics are reduced under pressure. In contrast, the proteome of T. barophilus is more pressure sensitive than that of T. kodakarensis. The diffusion coefficient of hydration water is reduced, while the fast protein and lipid dynamics are slightly enhanced with increasing pressure. These findings show that the coupling between hydration water and cellular constituents might not be simply a master-slave relationship. We propose that the high flexibility of the T. barophilus proteome associated with reduced hydration water may be the keys to the molecular adaptation of the cells to high hydrostatic pressure. PMID:27595789

  13. Assessment of cholesteryl ester transfer protein inhibitors for interaction with proteins involved in the immune response to infection.

    PubMed

    Clark, Ronald W; Cunningham, David; Cong, Yang; Subashi, Timothy A; Tkalcevic, George T; Lloyd, David B; Boyd, James G; Chrunyk, Boris A; Karam, George A; Qiu, Xiayang; Wang, Ing-Kae; Francone, Omar L

    2010-05-01

    The CETP inhibitor, torcetrapib, was prematurely terminated from phase 3 clinical trials due to an increase in cardiovascular and noncardiovascular mortality. Because nearly half of the latter deaths involved patients with infection, we have tested torcetrapib and other CETPIs to see if they interfere with lipopolysaccharide binding protein (LBP) or bactericidal/permeability increasing protein (BPI). No effect of these potent CETPIs on LPS binding to either protein was detected. Purified CETP itself bound weakly to LPS with a Kd >or= 25 microM compared with 0.8 and 0.5 nM for LBP and BPI, respectively, and this binding was not blocked by torcetrapib. In whole blood, LPS induced tumor necrosis factor-alpha normally in the presence of torcetrapib. Furthermore, LPS had no effect on CETP activity. We conclude that the sepsis-related mortality of the ILLUMINATE trial was unlikely due to a direct effect of torcetrapib on LBP or BPI function, nor to inhibition of an interaction of CETP with LPS. Instead, we speculate that the negative outcome seen for patients with infections might be related to the changes in plasma lipoprotein composition and metabolism, or alternatively to the known off-target effects of torcetrapib, such as aldosterone elevation, which may have aggravated the effects of sepsis. PMID:19965592

  14. Assessment of cholesteryl ester transfer protein inhibitors for interaction with proteins involved in the immune response to infection[S

    PubMed Central

    Clark, Ronald W.; Cunningham, David; Cong, Yang; Subashi, Timothy A.; Tkalcevic, George T.; Lloyd, David B.; Boyd, James G.; Chrunyk, Boris A.; Karam, George A.; Qiu, Xiayang; Wang, Ing-Kae; Francone, Omar L.

    2010-01-01

    The CETP inhibitor, torcetrapib, was prematurely terminated from phase 3 clinical trials due to an increase in cardiovascular and noncardiovascular mortality. Because nearly half of the latter deaths involved patients with infection, we have tested torcetrapib and other CETPIs to see if they interfere with lipopolysaccharide binding protein (LBP) or bactericidal/permeability increasing protein (BPI). No effect of these potent CETPIs on LPS binding to either protein was detected. Purified CETP itself bound weakly to LPS with a Kd ≥ 25 uM compared with 0.8 and 0.5 nM for LBP and BPI, respectively, and this binding was not blocked by torcetrapib. In whole blood, LPS induced tumor necrosis factor-α normally in the presence of torcetrapib. Furthermore, LPS had no effect on CETP activity. We conclude that the sepsis-related mortality of the ILLUMINATE trial was unlikely due to a direct effect of torcetrapib on LBP or BPI function, nor to inhibition of an interaction of CETP with LPS. Instead, we speculate that the negative outcome seen for patients with infections might be related to the changes in plasma lipoprotein composition and metabolism, or alternatively to the known off-target effects of torcetrapib, such as aldosterone elevation, which may have aggravated the effects of sepsis. PMID:19965592

  15. The Prediction of Key Cytoskeleton Components Involved in Glomerular Diseases Based on a Protein-Protein Interaction Network

    PubMed Central

    Ju, Wenjun; Li, Xuejuan; Li, Shao; Ding, Jie

    2016-01-01

    Maintenance of the physiological morphologies of different types of cells and tissues is essential for the normal functioning of each system in the human body. Dynamic variations in cell and tissue morphologies depend on accurate adjustments of the cytoskeletal system. The cytoskeletal system in the glomerulus plays a key role in the normal process of kidney filtration. To enhance the understanding of the possible roles of the cytoskeleton in glomerular diseases, we constructed the Glomerular Cytoskeleton Network (GCNet), which shows the protein-protein interaction network in the glomerulus, and identified several possible key cytoskeletal components involved in glomerular diseases. In this study, genes/proteins annotated to the cytoskeleton were detected by Gene Ontology analysis, and glomerulus-enriched genes were selected from nine available glomerular expression datasets. Then, the GCNet was generated by combining these two sets of information. To predict the possible key cytoskeleton components in glomerular diseases, we then examined the common regulation of the genes in GCNet in the context of five glomerular diseases based on their transcriptomic data. As a result, twenty-one cytoskeleton components as potential candidate were highlighted for consistently down- or up-regulating in all five glomerular diseases. And then, these candidates were examined in relation to existing known glomerular diseases and genes to determine their possible functions and interactions. In addition, the mRNA levels of these candidates were also validated in a puromycin aminonucleoside(PAN) induced rat nephropathy model and were also matched with existing Diabetic Nephropathy (DN) transcriptomic data. As a result, there are 15 of 21 candidates in PAN induced nephropathy model were consistent with our predication and also 12 of 21 candidates were matched with differentially expressed genes in the DN transcriptomic data. By providing a novel interaction network and prediction, GCNet

  16. The interactome of a PTB domain-containing adapter protein, Odin, revealed by SILAC

    PubMed Central

    Zhong, Jun; Chaerkady, Raghothama; Kandasamy, Kumaran; Gucek, Marjan; Cole, Robert N.; Pandey, Akhilesh

    2011-01-01

    Signal transduction pathways are tightly controlled by positive and negative regulators. We have previously identified Odin (also known as ankyrin repeat and sterile alpha motif domain containing 1A; gene symbol AKNS1A) as a negative regulator of growth factor signaling; however, the mechanisms through which Odin regulates these pathways remain to be elucidated. To determine how Odin negatively regulates growth factor signaling, we undertook a proteomic approach to systematically identify proteins that interact with Odin using the SILAC strategy. In this study, we identified 18 molecules that were specifically associated in a protein complex with Odin. Our study established that the complete family of 14-3-3 proteins occur in a protein complex with Odin, which is also supported by earlier reports that identified a few members of the 14-3-3 family as Odin interactors. Among the novel protein interactors of Odin were CD2-associated protein, SH3 domain kinase binding protein 1 and DAB2 interacting protein. We confirmed 8 of the eighteen interactions identified in the Odin protein complex by co-immunoprecipitation experiments. Finally, a literature-based network analysis revealed that Odin interacting partners are involved in various cellular processes, some of which are key molecules in regulating receptor endocytosis. PMID:21081186

  17. A reversible Renilla luciferase protein complementation assay for rapid identification of protein-protein interactions reveals the existence of an interaction network involved in xyloglucan biosynthesis in the plant Golgi apparatus

    SciTech Connect

    Lund, C. H.; Bromley, J. R.; Stenbaek, A.; Rasmussen, R. E.; Scheller, H. V.; Sakuragi, Y.

    2014-10-18

    A growing body of evidence suggests that protein–protein interactions (PPIs) occur amongst glycosyltransferases (GTs) required for plant glycan biosynthesis (e.g. cell wall polysaccharides and N-glycans) in the Golgi apparatus, and may control the functions of these enzymes. However, identification of PPIs in the endomembrane system in a relatively fast and simple fashion is technically challenging, hampering the progress in understanding the functional coordination of the enzymes in Golgi glycan biosynthesis. To solve the challenges, we adapted and streamlined a reversible Renilla luciferase protein complementation assay (Rluc-PCA), originally reported for use in human cells, for transient expression in Nicotiana benthamiana. We tested Rluc-PCA and successfully identified luminescence complementation amongst Golgi-localizing GTs known to form a heterodimer (GAUT1 and GAUT7) and those which homooligomerize (ARAD1). In contrast, no interaction was shown between negative controls (e.g. GAUT7, ARAD1, IRX9). Rluc-PCA was used to investigate PPIs amongst Golgi-localizing GTs involved in biosynthesis of hemicelluloses. Although no PPI was identified among six GTs involved in xylan biosynthesis, Rluc-PCA confirmed three previously proposed interactions and identified seven novel PPIs amongst GTs involved in xyloglucan biosynthesis. Notably, three of the novel PPIs were confirmed by a yeast-based split-ubiquitin assay. Finally, Gateway-enabled expression vectors were generated, allowing rapid construction of fusion proteins to the Rluc reporters and epitope tags. In conclusion, our results show that Rluc-PCA coupled with transient expression in N. benthamiana is a fast and versatile method suitable for analysis of PPIs between Golgi resident proteins in an easy and mid-throughput fashion in planta.

  18. A reversible Renilla luciferase protein complementation assay for rapid identification of protein-protein interactions reveals the existence of an interaction network involved in xyloglucan biosynthesis in the plant Golgi apparatus

    DOE PAGESBeta

    Lund, C. H.; Bromley, J. R.; Stenbaek, A.; Rasmussen, R. E.; Scheller, H. V.; Sakuragi, Y.

    2014-10-18

    A growing body of evidence suggests that protein–protein interactions (PPIs) occur amongst glycosyltransferases (GTs) required for plant glycan biosynthesis (e.g. cell wall polysaccharides and N-glycans) in the Golgi apparatus, and may control the functions of these enzymes. However, identification of PPIs in the endomembrane system in a relatively fast and simple fashion is technically challenging, hampering the progress in understanding the functional coordination of the enzymes in Golgi glycan biosynthesis. To solve the challenges, we adapted and streamlined a reversible Renilla luciferase protein complementation assay (Rluc-PCA), originally reported for use in human cells, for transient expression in Nicotiana benthamiana. Wemore » tested Rluc-PCA and successfully identified luminescence complementation amongst Golgi-localizing GTs known to form a heterodimer (GAUT1 and GAUT7) and those which homooligomerize (ARAD1). In contrast, no interaction was shown between negative controls (e.g. GAUT7, ARAD1, IRX9). Rluc-PCA was used to investigate PPIs amongst Golgi-localizing GTs involved in biosynthesis of hemicelluloses. Although no PPI was identified among six GTs involved in xylan biosynthesis, Rluc-PCA confirmed three previously proposed interactions and identified seven novel PPIs amongst GTs involved in xyloglucan biosynthesis. Notably, three of the novel PPIs were confirmed by a yeast-based split-ubiquitin assay. Finally, Gateway-enabled expression vectors were generated, allowing rapid construction of fusion proteins to the Rluc reporters and epitope tags. In conclusion, our results show that Rluc-PCA coupled with transient expression in N. benthamiana is a fast and versatile method suitable for analysis of PPIs between Golgi resident proteins in an easy and mid-throughput fashion in planta.« less

  19. GidA is an FAD-binding protein involved in development of Myxococcus xanthus.

    PubMed

    White, D J; Merod, R; Thomasson, B; Hartzell, P L

    2001-10-01

    A gene encoding a homologue of the Escherichia coli GidA protein (glucose-inhibited division protein A) lies immediately upstream of aglU, a gene encoding a WD-repeat protein required for motility and development in Myxococcus xanthus. The GidA protein of M. xanthus shares about 48% identity overall with the small (approximately equal to 450 amino acid) form of GidA from eubacteria and about 24% identity overall with the large (approximately equal to 620 amino acid) form of GidA from eubacteria and eukaryotes. Each of these proteins has a conserved dinucleotide-binding motif at the N-terminus. To determine if GidA binds dinucleotide, the M. xanthus gene was expressed with a His6 tag in E. coli cells. Purified rGidA is a yellow protein that absorbs maximally at 374 and 450 nm, consistent with FAD or FMN. Thin-layer chromatography (TLC) showed that rGidA contains an FAD cofactor. Fractionation and immunocytochemical localization show that full length GidA protein is present in the cytoplasm and transported to the periplasm of vegetative-grown M. xanthus cells. In cells that have been starved for nutrients, GidA is found in the cytoplasm. Although GidA lacks an obvious signal sequence, it contains a twin arginine transport (Tat) motif, which is conserved among proteins that bind cofactors in the cytoplasm and are transported to the periplasm as folded proteins. To determine if GidA, like AglU, is involved in motility and development, the gidA gene was disrupted. The gidA- mutant has wild-type gliding motility and initially is able to form fruiting bodies like the wild type when starved for nutrients. However, after several generations, a stable derivative arises, gidA*, which is indistinguishable from the gidA- parent on vegetative medium, but is no longer able to form fruiting bodies. The gidA* mutant releases a heat-stable, protease-resistant, small molecular weight molecule that acts in trans to inhibit aggregation and gene expression of wild-type cells during

  20. Stress-Regulated Translational Attenuation Adapts Mitochondrial Protein Import Through Tim17A Degradation

    PubMed Central

    Rainbolt, T. Kelly; Atanassova, Neli; Genereux, Joseph C.; Wiseman, R. Luke

    2014-01-01

    SUMMARY Stress-regulated signaling pathways protect mitochondrial proteostasis, and thus mitochondrial function, from pathologic insults. Despite the importance of stress-regulated signaling pathways in mitochondrial proteome maintenance, the molecular mechanisms by which these pathways maintain mitochondrial proteostasis remain largely unknown. Here, we identify Tim17A as a stress-regulated subunit of the Translocase of the Inner Membrane 23 (TIM23) mitochondrial protein import complex. We show that Tim17A protein levels are decreased downstream of stress-regulated translational attenuation induced by eIF2α phosphorylation through a mechanism dependent on the mitochondrial protease YME1L. Furthermore, we demonstrate that decreasing Tim17A protein levels attenuates TIM23-dependent protein import, promotes the induction of mitochondrial Unfolded Protein Response-associated proteostasis genes, and confers stress-resistance in C. elegans and mammalian cells. Thus, our results indicate that Tim17A degradation is a stress-responsive mechanism by which cells adapt mitochondrial protein import efficiency and promote mitochondrial proteostasis in response to the numerous pathologic insults that induce stress-regulated translation attenuation. PMID:24315374

  1. Substrate adaptabilities of Thermotogae mannan binding proteins as a function of their evolutionary histories.

    PubMed

    Boucher, Nathalie; Noll, Kenneth M

    2016-09-01

    The Thermotogae possess a large number of ATP-binding cassette (ABC) transporters, including two mannan binding proteins, ManD and CelE (previously called ManE). We show that a gene encoding an ancestor of these was acquired by the Thermotogae from the archaea followed by gene duplication. To address the functional evolution of these proteins as a consequence of their evolutionary histories, we measured the binding affinities of ManD and CelE orthologs from representative Thermotogae. Both proteins bind cellobiose, cellotriose, cellotetraose, β-1,4-mannotriose, and β-1,4-mannotetraose. The CelE orthologs additionally bind β-1,4-mannobiose, laminaribiose, laminaritriose and sophorose while the ManD orthologs additionally only weakly bind β-1,4-mannobiose. The CelE orthologs have higher unfolding temperatures than the ManD orthologs. An examination of codon sites under positive selection revealed that many of these encode residues located near or in the binding site, suggesting that the proteins experienced selective pressures in regions that might have changed their functions. The gene arrangement, phylogeny, binding properties, and putative regulatory networks suggest that the ancestral mannan binding protein was a CelE ortholog which gave rise to the ManD orthologs. This study provides a window on how one class of proteins adapted to new functions and temperatures to fit the physiologies of their new hosts. PMID:27457081

  2. Massively parallel sampling of lattice proteins reveals foundations of thermal adaptation

    NASA Astrophysics Data System (ADS)

    Venev, Sergey V.; Zeldovich, Konstantin B.

    2015-08-01

    Evolution of proteins in bacteria and archaea living in different conditions leads to significant correlations between amino acid usage and environmental temperature. The origins of these correlations are poorly understood, and an important question of protein theory, physics-based prediction of types of amino acids overrepresented in highly thermostable proteins, remains largely unsolved. Here, we extend the random energy model of protein folding by weighting the interaction energies of amino acids by their frequencies in protein sequences and predict the energy gap of proteins designed to fold well at elevated temperatures. To test the model, we present a novel scalable algorithm for simultaneous energy calculation for many sequences in many structures, targeting massively parallel computing architectures such as graphics processing unit. The energy calculation is performed by multiplying two matrices, one representing the complete set of sequences, and the other describing the contact maps of all structural templates. An implementation of the algorithm for the CUDA platform is available at http://www.github.com/kzeldovich/galeprot and calculates protein folding energies over 250 times faster than a single central processing unit. Analysis of amino acid usage in 64-mer cubic lattice proteins designed to fold well at different temperatures demonstrates an excellent agreement between theoretical and simulated values of energy gap. The theoretical predictions of temperature trends of amino acid frequencies are significantly correlated with bioinformatics data on 191 bacteria and archaea, and highlight protein folding constraints as a fundamental selection pressure during thermal adaptation in biological evolution.

  3. Possible involvement of lipoic acid in binding protein-dependent transport systems in Escherichia coli.

    PubMed

    Richarme, G

    1985-04-01

    We describe the properties of the binding protein dependent-transport of ribose, galactose, and maltose and of the lactose permease, and the phosphoenolpyruvate-glucose phosphotransferase transport systems in a strain of Escherichia coli which is deficient in the synthesis of lipoic acid, a cofactor involved in alpha-keto acid dehydrogenation. Such a strain can grow in the absence of lipoic acid in minimal medium supplemented with acetate and succinate. Although the lactose permease and the phosphoenolypyruvate-glucose phosphotransferase are not affected by lipoic acid deprivation, the binding protein-dependent transports are reduced by 70% in conditions of lipoic acid deprivation when compared with their activity in conditions of lipoic acid supply. The remaining transport is not affected by arsenate but is inhibited by the uncoupler carbonylcyanide-m-chlorophenylhydrazone; however the lipoic acid-dependent transport is completely inhibited by arsenate and only weakly inhibited by carbonylcyanide-m-chlorophenylhydrazone. The known inhibitor of alpha-keto acid dehydrogenases, 5-methoxyindole-2-carboxylic acid, completely inhibits all binding protein-dependent transports whether in conditions of lipoic supply or deprivation; the results suggest a possible relation between binding protein-dependent transport and alpha-keto acid dehydrogenases and shed light on the inhibition of these transports by arsenicals and uncouplers. PMID:3920206

  4. Tyrosine phosphorylation and protein degradation control the transcriptional activity of WRKY involved in benzylisoquinoline alkaloid biosynthesis.

    PubMed

    Yamada, Yasuyuki; Sato, Fumihiko

    2016-01-01

    Benzylisoquinoline alkaloids (BIQ) are among the most structurally diverse and pharmaceutically valuable secondary metabolites. A plant-specific WRKY-type transcription factor, CjWRKY1, was isolated from Coptis japonica and identified as a transcriptional activator of BIQ biosynthesis. However, the expression of CjWRKY1 gene alone was not sufficient for the activation of genes encoding biosynthetic enzymes. Here, we report the importance of post-translational regulation of CjWRKY1 in BIQ biosynthesis. First, we detected the differential accumulation of CjWRKY1 protein in two cell lines with similar CjWRKY1 gene expression but different levels of accumulated alkaloids. Further investigation of the WRKY protein identified the phosphorylation of the WRKYGQK core domain at Y115. The CjWRKY(Y115E) phosphorylation-mimic mutant showed loss of nuclear localization, DNA-binding activity, and transactivation activity compared to wild-type CjWRKY1. Rapid degradation of the CjWRKY1 protein was also confirmed following treatment with inhibitors of the 26S proteasome and protease inhibitors. The existence of two independent degradation pathways as well as protein phosphorylation suggests the fine-tuning of CjWRKY1 activities is involved in the regulation of biosynthesis of BIQs. PMID:27552928

  5. Intrahippocampal infusion of spermidine improves memory persistence: Involvement of protein kinase A.

    PubMed

    Signor, Cristiane; Temp, Fernanda R; Mello, Carlos F; Oliveira, Mauro S; Girardi, Bruna A; Gais, Mayara A; Funck, Vinicius R; Rubin, Maribel A

    2016-05-01

    Spermidine (SPD) is an endogenous aliphatic amine that modulates GluN2B-containing NMDA receptors and improves memory. Recent evidence suggests that systemic SPD improves the persistence of the long term memory of fear. However, the role of hippocampal polyamines and its binding sites in the persistence of fear memory is to be determined, as well as its putative underlying mechanisms. This study investigated whether the intrahippocampal (i.h.) infusion of spermidine or arcaine, modulators of polyamine binding site at GluN2B-containing NMDA receptors, alters the persistence of the memory of contextual fear conditioning task in rats. We also investigated whether protein synthesis and cAMP dependent protein kinase (PKA) play a role in SPD-induced improvement of the fear memory persistence. While 12h post-training infusion of spermidine facilitated, arcaine and the inhibitor of protein synthesis (anisomycin) impaired the memory of fear assessed 7days after training. The infusion of arcaine, anisomycin or a selective PKA inhibitor (H-89), at doses that have no effect on memory per se, prevented the SPD-induced improvement of memory persistence. H-89 prevented the stimulatory effect of SPD on phospho-PKA/total-PKA ratio. These results suggests that the improvement of fear memory persistence induced by spermidine involves GluN2B-containing NMDA receptors, PKA pathway and protein synthesis in rats. PMID:26968655

  6. Water-soluble chlorophyll protein is involved in herbivore resistance activation during greening of Arabidopsis thaliana

    PubMed Central

    Boex-Fontvieille, Edouard; Rustgi, Sachin; von Wettstein, Diter; Reinbothe, Steffen; Reinbothe, Christiane

    2015-01-01

    Water-soluble chlorophyll proteins (WSCPs) constitute a small family of unusual chlorophyll (Chl)-binding proteins that possess a Kunitz-type protease inhibitor domain. In Arabidopsis thaliana, a WSCP has been identified, named AtWSCP, that forms complexes with Chl and the Chl precursor chlorophyllide (Chlide) in vitro. AtWSCP exhibits a quite unexpected expression pattern for a Chl binding protein and accumulated to high levels in the apical hook of etiolated plants. AtWSCP expression was negatively light-regulated. Transgenic expression of AtWSCP fused to green fluorescent protein (GFP) revealed that AtWSCP is localized to cell walls/apoplastic spaces. Biochemical assays identified AtWSCP as interacting with RD21 (RESPONSIVE TO DESICCATION 21), a granulin domain-containing cysteine protease implicated in stress responses and defense. Reconstitution experiments showed tight interactions between RD21 and WSCP that were relieved upon Chlide binding. Laboratory feeding experiments with two herbivorous isopod crustaceans, Porcellio scaber (woodlouse) and Armadillidium vulgare (pillbug), identified the apical hook as Achilles’ heel of etiolated plants and that this was protected by RD21 during greening. Because Chlide is formed in the apical hook during seedling emergence from the soil, our data suggest an unprecedented mechanism of herbivore resistance activation that is triggered by light and involves AtWSCP. PMID:26016527

  7. Water-soluble chlorophyll protein is involved in herbivore resistance activation during greening of Arabidopsis thaliana.

    PubMed

    Boex-Fontvieille, Edouard; Rustgi, Sachin; von Wettstein, Diter; Reinbothe, Steffen; Reinbothe, Christiane

    2015-06-01

    Water-soluble chlorophyll proteins (WSCPs) constitute a small family of unusual chlorophyll (Chl)-binding proteins that possess a Kunitz-type protease inhibitor domain. In Arabidopsis thaliana, a WSCP has been identified, named AtWSCP, that forms complexes with Chl and the Chl precursor chlorophyllide (Chlide) in vitro. AtWSCP exhibits a quite unexpected expression pattern for a Chl binding protein and accumulated to high levels in the apical hook of etiolated plants. AtWSCP expression was negatively light-regulated. Transgenic expression of AtWSCP fused to green fluorescent protein (GFP) revealed that AtWSCP is localized to cell walls/apoplastic spaces. Biochemical assays identified AtWSCP as interacting with RD21 (responsive to desiccation 21), a granulin domain-containing cysteine protease implicated in stress responses and defense. Reconstitution experiments showed tight interactions between RD21 and WSCP that were relieved upon Chlide binding. Laboratory feeding experiments with two herbivorous isopod crustaceans, Porcellio scaber (woodlouse) and Armadillidium vulgare (pillbug), identified the apical hook as Achilles' heel of etiolated plants and that this was protected by RD21 during greening. Because Chlide is formed in the apical hook during seedling emergence from the soil, our data suggest an unprecedented mechanism of herbivore resistance activation that is triggered by light and involves AtWSCP. PMID:26016527

  8. Tyrosine phosphorylation and protein degradation control the transcriptional activity of WRKY involved in benzylisoquinoline alkaloid biosynthesis

    PubMed Central

    Yamada, Yasuyuki; Sato, Fumihiko

    2016-01-01

    Benzylisoquinoline alkaloids (BIQ) are among the most structurally diverse and pharmaceutically valuable secondary metabolites. A plant-specific WRKY-type transcription factor, CjWRKY1, was isolated from Coptis japonica and identified as a transcriptional activator of BIQ biosynthesis. However, the expression of CjWRKY1 gene alone was not sufficient for the activation of genes encoding biosynthetic enzymes. Here, we report the importance of post-translational regulation of CjWRKY1 in BIQ biosynthesis. First, we detected the differential accumulation of CjWRKY1 protein in two cell lines with similar CjWRKY1 gene expression but different levels of accumulated alkaloids. Further investigation of the WRKY protein identified the phosphorylation of the WRKYGQK core domain at Y115. The CjWRKYY115E phosphorylation-mimic mutant showed loss of nuclear localization, DNA-binding activity, and transactivation activity compared to wild-type CjWRKY1. Rapid degradation of the CjWRKY1 protein was also confirmed following treatment with inhibitors of the 26S proteasome and protease inhibitors. The existence of two independent degradation pathways as well as protein phosphorylation suggests the fine-tuning of CjWRKY1 activities is involved in the regulation of biosynthesis of BIQs. PMID:27552928

  9. Identification of proteins involved in desiccation tolerance in the red seaweed Pyropia orbicularis (Rhodophyta, Bangiales).

    PubMed

    López-Cristoffanini, Camilo; Zapata, Javier; Gaillard, Fanny; Potin, Philippe; Correa, Juan A; Contreras-Porcia, Loretto

    2015-12-01

    Extreme reduction in cellular water content leads to desiccation, which, if persistent, affects the physiology of organisms, mainly through oxidative stress. Some organisms are highly tolerant to desiccation, including resurrection plants and certain intertidal seaweeds. One such species is Pyropia orbicularis, a rhodophycean that colonizes upper intertidal zones along the Chilean coast. Despite long, daily periods of air exposure due to tides, this alga is highly tolerant to desiccation. The present study examined the proteome of P. orbicularis by 2DE and LC-MS/MS analyses to determine the proteins associated with desiccation tolerance (DT). The results showed that, under natural conditions, there were significant changes in the protein profile during low tide as compared to naturally hydrated plants at high tide. These changes were mainly in newly appeared proteins spots such as chaperones, monodehydroascorbate reductase, and manganese superoxide dismutase, among others. Previously undescribed proteins under desiccation conditions included phycobiliproteins, glyoxalase I, and phosphomannomutase. These changes evidenced that several physiological responses involved in DT are activated during low tide, including decreased photosynthetic activity, increased antioxidant capacity, and the preservation of cell physiology by regulating water content, cell wall structure, and cell volume. Similar responses have been observed in resurrection plants and bryophytes exposed to desiccation. Therefore, the coordinated activation of different desiccation tolerance pathways in P. orbicularis could explain the successful biological performance of this seaweed in the upper intertidal rocky zones. PMID:26154304

  10. Centlein, a novel microtubule-associated protein stabilizing microtubules and involved in neurite formation.

    PubMed

    Jing, Zhenli; Yin, Huilong; Wang, Pan; Gao, Juntao; Yuan, Li

    2016-04-01

    We have previously reported that the centriolar protein centlein functions as a molecular link between C-Nap1 and Cep68 to maintain centrosome cohesion [1]. In this study, we identified centlein as a novel microtubule-associated protein (MAP), directly binding to purified microtubules (MTs) via its longest coiled-coil domain. Overexpression of centlein caused profound nocodazole- and cold-resistant MT bundles, which also relied on its MT-binding domain. siRNA-mediated centlein depletion resulted in a significant reduction in tubulin acetylation level and overall fluorescence intensity of cytoplasmic MT acetylation. Centlein was further characterized in neurons. We found that centlein overexpression inhibited neurite formation in retinoic acid (RA)-induced SH-SY5Y and N2a cells. Taken together, we propose that centlein is involved in MT stability and neuritogenesis in vivo. PMID:26915804

  11. Yeast Irc22 Is a Novel Dsk2-Interacting Protein that Is Involved in Salt Tolerance

    PubMed Central

    Ishii, Takashi; Funakoshi, Minoru; Kobayashi, Hideki; Sekiguchi, Takeshi

    2014-01-01

    The yeast ubiquitin-like and ubiquitin-associated protein Dsk2 is one of the ubiquitin receptors that function in the ubiquitin-proteasome pathway. We screened the Dsk2-interacting proteins in Saccharomyces cerevisiae by a two-hybrid assay and identified a novel Dsk2-interacting protein, Irc22, the gene locus of which has previously been described as YEL001C, but the function of which is unknown. IRC22/YEL001C encodes 225 amino acid residues with a calculated molecular weight of 25 kDa. The Irc22 protein was detected in yeast cells. IRC22 was a nonessential gene for yeast growth, and its homologs were found among ascomycetous yeasts. Irc22 interacted with Dsk2 in yeast cells, but not with Rad23 and Ddi1. Ubiquitin-dependent degradation was impaired mildly by over-expression or disruption of IRC22. Compared with the wild-type strain, dsk2Δ exhibited salt sensitivity while irc22Δ exhibited salt tolerance at high temperatures. The salt-tolerant phenotype that was observed in irc22Δ disappeared in the dsk2Δirc22Δ double disruptant, indicating that DSK2 is positively and IRC22 is negatively involved in salt stress tolerance. IRC22 disruption did not affect any responses to DNA damage and oxidative stress when comparing the irc22Δ and wild-type strains. Collectively, these results suggest that Dsk2 and Irc22 are involved in salt stress tolerance in yeast. PMID:24709957

  12. Development of neurodevelopmental disorders: a regulatory mechanism involving bromodomain-containing proteins

    PubMed Central

    2013-01-01

    Neurodevelopmental disorders are classified as diseases that cause abnormal functions of the brain or central nervous system. Children with neurodevelopmental disorders show impaired language and speech abilities, learning and memory damage, and poor motor skills. However, we still know very little about the molecular etiology of these disorders. Recent evidence implicates the bromodomain-containing proteins (BCPs) in the initiation and development of neurodevelopmental disorders. BCPs have a particular domain, the bromodomain (Brd), which was originally identified as specifically binding acetyl-lysine residues at the N-terminus of histone proteins in vitro and in vivo. Other domains of BCPs are responsible for binding partner proteins to form regulatory complexes. Once these complexes are assembled, BCPs alter chromosomal states and regulate gene expression. Some BCP complexes bind nucleosomes, are involved in basal transcription regulation, and influence the transcription of many genes. However, most BCPs are involved in targeting. For example, some BCPs function as a recruitment platform or scaffold through their Brds-binding targeting sites. Others are recruited to form a complex to bind the targeting sites of their partners. The regulation mediated by these proteins is especially critical during normal and abnormal development. Mutant BCPs or dysfunctional BCP-containing complexes are implicated in the initiation and development of neurodevelopmental disorders. However, the pathogenic molecular mechanisms are not fully understood. In this review, we focus on the roles of regulatory BCPs associated with neurodevelopmental disorders, including mental retardation, Fragile X syndrome (FRX), Williams syndrome (WS), Rett syndrome and Rubinstein-Taybi syndrome (RTS). A better understanding of the molecular pathogenesis, based upon the roles of BCPs, will lead to screening of targets for the treatment of neurodevelopmental disorders. PMID:23425632

  13. Development of neurodevelopmental disorders: a regulatory mechanism involving bromodomain-containing proteins.

    PubMed

    Li, Junlin; Zhao, Guifang; Gao, Xiaocai

    2013-01-01

    Neurodevelopmental disorders are classified as diseases that cause abnormal functions of the brain or central nervous system. Children with neurodevelopmental disorders show impaired language and speech abilities, learning and memory damage, and poor motor skills. However, we still know very little about the molecular etiology of these disorders. Recent evidence implicates the bromodomain-containing proteins (BCPs) in the initiation and development of neurodevelopmental disorders. BCPs have a particular domain, the bromodomain (Brd), which was originally identified as specifically binding acetyl-lysine residues at the N-terminus of histone proteins in vitro and in vivo. Other domains of BCPs are responsible for binding partner proteins to form regulatory complexes. Once these complexes are assembled, BCPs alter chromosomal states and regulate gene expression. Some BCP complexes bind nucleosomes, are involved in basal transcription regulation, and influence the transcription of many genes. However, most BCPs are involved in targeting. For example, some BCPs function as a recruitment platform or scaffold through their Brds-binding targeting sites. Others are recruited to form a complex to bind the targeting sites of their partners. The regulation mediated by these proteins is especially critical during normal and abnormal development. Mutant BCPs or dysfunctional BCP-containing complexes are implicated in the initiation and development of neurodevelopmental disorders. However, the pathogenic molecular mechanisms are not fully understood. In this review, we focus on the roles of regulatory BCPs associated with neurodevelopmental disorders, including mental retardation, Fragile X syndrome (FRX), Williams syndrome (WS), Rett syndrome and Rubinstein-Taybi syndrome (RTS). A better understanding of the molecular pathogenesis, based upon the roles of BCPs, will lead to screening of targets for the treatment of neurodevelopmental disorders. PMID:23425632

  14. Mouse neuron navigator 1, a novel microtubule-associated protein involved in neuronal migration.

    PubMed

    Martínez-López, María José; Alcántara, Soledad; Mascaró, Cristina; Pérez-Brangulí, Francesc; Ruiz-Lozano, Pilar; Maes, Tamara; Soriano, Eduardo; Buesa, Carlos

    2005-04-01

    The development of the nervous system (NS) requires the coordinated migration of multiple waves of neurons and subsequent processes of neurite maturation, both involving selective guidance mechanisms. In Caenorhabditis elegans, unc-53 codes for a new multidomain protein involved in the directional migration of a subset of cells. We describe here the first functional characterization of the mouse homologue, mouse Neuron navigator 1 (mNAV1), whose expression is largely restricted to the NS during development. EGFP-mNAV1 associates with microtubules (MTs) plus ends present in the growth cone through a new microtubule-binding (MTB) domain. Moreover, its overexpression in transfected cells leads to MT bundling. The abolition of mNAV1 causes loss of directionality in the leading processes of pontine-migrating cells, providing evidence for a role of mNAV1 in mediating Netrin-1-induced directional migration. PMID:15797708

  15. Involvement of calmodulin and calmodulin-like proteins in plant responses to abiotic stresses

    PubMed Central

    Zeng, Houqing; Xu, Luqin; Singh, Amarjeet; Wang, Huizhong; Du, Liqun; Poovaiah, B. W.

    2015-01-01

    Transient changes in intracellular Ca2+ concentration have been well recognized to act as cell signals coupling various environmental stimuli to appropriate physiological responses with accuracy and specificity in plants. Calmodulin (CaM) and calmodulin-like proteins (CMLs) are major Ca2+ sensors, playing critical roles in interpreting encrypted Ca2+ signals. Ca2+-loaded CaM/CMLs interact and regulate a broad spectrum of target proteins such as channels/pumps/antiporters for various ions, transcription factors, protein kinases, protein phosphatases, metabolic enzymes, and proteins with unknown biochemical functions. Many of the target proteins of CaM/CMLs directly or indirectly regulate plant responses to environmental stresses. Basic information about stimulus-induced Ca2+ signal and overview of Ca2+ signal perception and transduction are briefly discussed in the beginning of this review. How CaM/CMLs are involved in regulating plant responses to abiotic stresses are emphasized in this review. Exciting progress has been made in the past several years, such as the elucidation of Ca2+/CaM-mediated regulation of AtSR1/CAMTA3 and plant responses to chilling and freezing stresses, Ca2+/CaM-mediated regulation of CAT3, MAPK8 and MKP1 in homeostasis control of reactive oxygen species signals, discovery of CaM7 as a DNA-binding transcription factor regulating plant response to light signals. However, many key questions in Ca2+/CaM-mediated signaling warrant further investigation. Ca2+/CaM-mediated regulation of most of the known target proteins is presumed based on their interaction. The downstream targets of CMLs are mostly unknown, and how specificity of Ca2+ signaling could be realized through the actions of CaM/CMLs and their target proteins is largely unknown. Future breakthroughs in Ca2+/CaM-mediated signaling will not only improve our understanding of how plants respond to environmental stresses, but also provide the knowledge base to improve stress-tolerance of

  16. STAT5 proteins are involved in down-regulation of iron regulatory protein 1 gene expression by nitric oxide.

    PubMed

    Starzynski, Rafal Radoslaw; Gonçalves, Ana Sofia; Muzeau, Françoise; Tyrolczyk, Zofia; Smuda, Ewa; Drapier, Jean-Claude; Beaumont, Carole; Lipinski, Pawel

    2006-12-01

    RNA-binding activity of IRP1 (iron regulatory protein 1) is regulated by the insertion/extrusion of a [4Fe-4S] cluster into/from the IRP1 molecule. NO (nitic oxide), whose ability to activate IRP1 by removing its [4Fe-4S] cluster is well known, has also been shown to down-regulate expression of the IRP1 gene. In the present study, we examine whether this regulation occurs at the transcriptional level. Analysis of the mouse IRP1 promoter sequence revealed two conserved putative binding sites for transcription factor(s) regulated by NO and/or changes in intracellular iron level: Sp1 (promoter-selective transcription factor 1) and MTF1 (metal transcription factor 1), plus GAS (interferon-gamma-activated sequence), a binding site for STAT (signal transducer and activator of transcription) proteins. In order to define the functional activity of these sequences, reporter constructs were generated through the insertion of overlapping fragments of the mouse IRP1 promoter upstream of the luciferase gene. Transient expression assays following transfection of HuH7 cells with these plasmids revealed that while both the Sp1 and GAS sequences are involved in basal transcriptional activity of the IRP1 promoter, the role of the latter is predominant. Analysis of protein binding to these sequences in EMSAs (electrophoretic mobility-shift assays) using nuclear extracts from mouse RAW 264.7 macrophages stimulated to synthesize NO showed a significant decrease in the formation of Sp1-DNA and STAT-DNA complexes, compared with controls. We have also demonstrated that the GAS sequence is involved in NO-dependent down-regulation of IRP1 transcription. Further analysis revealed that levels of STAT5a and STAT5b in the nucleus and cytosol of NO-producing macrophages are substantially lower than in control cells. These findings provide evidence that STAT5 proteins play a role in NO-mediated down-regulation of IRP1 gene expression. PMID:16886906

  17. STAT5 proteins are involved in down-regulation of iron regulatory protein 1 gene expression by nitric oxide

    PubMed Central

    Starzynski, Rafal Radoslaw; Gonçalves, Ana Sofia; Muzeau, Françoise; Tyrolczyk, Zofia; Smuda, Ewa; Drapier, Jean-Claude; Beaumont, Carole; Lipinski, Pawel

    2006-01-01

    RNA-binding activity of IRP1 (iron regulatory protein 1) is regulated by the insertion/extrusion of a [4Fe-4S] cluster into/from the IRP1 molecule. NO (nitic oxide), whose ability to activate IRP1 by removing its [4Fe-4S] cluster is well known, has also been shown to down-regulate expression of the IRP1 gene. In the present study, we examine whether this regulation occurs at the transcriptional level. Analysis of the mouse IRP1 promoter sequence revealed two conserved putative binding sites for transcription factor(s) regulated by NO and/or changes in intracellular iron level: Sp1 (promoter-selective transcription factor 1) and MTF1 (metal transcription factor 1), plus GAS (interferon-γ-activated sequence), a binding site for STAT (signal transducer and activator of transcription) proteins. In order to define the functional activity of these sequences, reporter constructs were generated through the insertion of overlapping fragments of the mouse IRP1 promoter upstream of the luciferase gene. Transient expression assays following transfection of HuH7 cells with these plasmids revealed that while both the Sp1 and GAS sequences are involved in basal transcriptional activity of the IRP1 promoter, the role of the latter is predominant. Analysis of protein binding to these sequences in EMSAs (electrophoretic mobility-shift assays) using nuclear extracts from mouse RAW 264.7 macrophages stimulated to synthesize NO showed a significant decrease in the formation of Sp1–DNA and STAT–DNA complexes, compared with controls. We have also demonstrated that the GAS sequence is involved in NO-dependent down-regulation of IRP1 transcription. Further analysis revealed that levels of STAT5a and STAT5b in the nucleus and cytosol of NO-producing macrophages are substantially lower than in control cells. These findings provide evidence that STAT5 proteins play a role in NO-mediated down-regulation of IRP1 gene expression. PMID:16886906

  18. Pancreatic adaptive responses in alcohol abuse: Role of the unfolded protein response.

    PubMed

    Lugea, Aurelia; Waldron, Richard T; Pandol, Stephen J

    2015-07-01

    The majority of those who drink excessive amounts of alcohol do not develop pancreatic disease. One overarching hypothesis is that alcohol abuse requires additional risk factors, either environmental or genetic, for disease to occur. However, another reason be a result of alcohol-induced activation of adaptive systems that protect the pancreas from the toxic effects of alcohol. We show that mechanisms within the unfolded protein response (UPR) of the endoplasmic reticulum (ER) that can lead to protection of the pancreas from pancreatic diseases with alcohol abuse. The remarkable ability of the pancreas to adapt its machinery to alcohol abuse using UPR systems and continue functioning is the likely reason that pancreatitis from alcohol abuse does not occur in the majority of heavy drinkers. These findings indicate that methods to enhance the protective responses of the UPR can provide opportunities for prevention and treatment of pancreatic diseases. PMID:25736240

  19. Unfolding Thermodynamics of Cysteine-Rich Proteins and Molecular Thermal-Adaptation of Marine Ciliates

    PubMed Central

    Cazzolli, Giorgia; Škrbić, Tatjana; Guella, Graziano; Faccioli, Pietro

    2013-01-01

    Euplotes nobilii and Euplotes raikovi are phylogenetically closely allied species of marine ciliates, living in polar and temperate waters, respectively. Their evolutional relation and the sharply different temperatures of their natural environments make them ideal organisms to investigate thermal-adaptation. We perform a comparative study of the thermal unfolding of disulfide-rich protein pheromones produced by these ciliates. Recent circular dichroism (CD) measurements have shown that the two psychrophilic (E. nobilii) and mesophilic (E. raikovi) protein families are characterized by very different melting temperatures, despite their close structural homology. The enhanced thermal stability of the E. raikovi pheromones is realized notwithstanding the fact that these proteins form, as a rule, a smaller number of disulfide bonds. We perform Monte Carlo (MC) simulations in a structure-based coarse-grained (CG) model to show that the higher stability of the E. raikovi pheromones is due to the lower locality of the disulfide bonds, which yields a lower entropy increase in the unfolding process. Our study suggests that the higher stability of the mesophilic E. raikovi phermones is not mainly due to the presence of a strongly hydrophobic core, as it was proposed in the literature. In addition, we argue that the molecular adaptation of these ciliates may have occurred from cold to warm, and not from warm to cold. To provide a testable prediction, we identify a point-mutation of an E. nobilii pheromone that should lead to an unfolding temperature typical of that of E. raikovi pheromones. PMID:24970199

  20. Oxidation by Neutrophils-Derived HOCl Increases Immunogenicity of Proteins by Converting Them into Ligands of Several Endocytic Receptors Involved in Antigen Uptake by Dendritic Cells and Macrophages

    PubMed Central

    Biedroń, Rafał; Konopiński, Maciej K.; Marcinkiewicz, Janusz; Józefowski, Szczepan

    2015-01-01

    The initiation of adaptive immune responses to protein antigens has to be preceded by their uptake by antigen presenting cells and intracellular proteolytic processing. Paradoxically, endocytic receptors involved in antigen uptake do not bind the majority of proteins, which may be the main reason why purified proteins stimulate at most weak immune responses. A shared feature of different types of adjuvants, capable of boosting immunogenicity of protein vaccines, is their ability to induce acute inflammation, characterized by early influx of activated neutrophils. Neutrophils are also rapidly recruited to sites of tissue injury or infection. These cells are the source of potent oxidants, including hypochlorous acid (HOCl), causing oxidation of proteins present in inflammatory foci. We demonstrate that oxidation of proteins by endogenous, neutrophils-derived HOCl increases their immunogenicity. Upon oxidation, different, randomly chosen simple proteins (yeast alcohol dehydrogenase, human and bovine serum albumin) and glycoproteins (human apo-transferrin, ovalbumin) gain the ability to bind with high affinity to several endocytic receptors on antigen presenting cells, which seems to be the major mechanism of their increased immunogenicity. The mannose receptor (CD206), scavenger receptors A (CD204) and CD36 were responsible for the uptake and presentation of HOCl-modified proteins by murine dendritic cells and macrophages. Other scavenger receptors, SREC-I and LOX-1, as well as RAGE were also able to bind HOCl-modified proteins, but they did not contribute significantly to these ligands uptake by dendritic cells because they were either not expressed or exhibited preference for more heavily oxidised proteins. Our results indicate that oxidation by neutrophils-derived HOCl may be a physiological mechanism of conferring immunogenicity on proteins which in their native forms do not bind to endocytic receptors. This mechanism might enable the immune system to detect

  1. Oxidation by neutrophils-derived HOCl increases immunogenicity of proteins by converting them into ligands of several endocytic receptors involved in antigen uptake by dendritic cells and macrophages.

    PubMed

    Biedroń, Rafał; Konopiński, Maciej K; Marcinkiewicz, Janusz; Józefowski, Szczepan

    2015-01-01

    The initiation of adaptive immune responses to protein antigens has to be preceded by their uptake by antigen presenting cells and intracellular proteolytic processing. Paradoxically, endocytic receptors involved in antigen uptake do not bind the majority of proteins, which may be the main reason why purified proteins stimulate at most weak immune responses. A shared feature of different types of adjuvants, capable of boosting immunogenicity of protein vaccines, is their ability to induce acute inflammation, characterized by early influx of activated neutrophils. Neutrophils are also rapidly recruited to sites of tissue injury or infection. These cells are the source of potent oxidants, including hypochlorous acid (HOCl), causing oxidation of proteins present in inflammatory foci. We demonstrate that oxidation of proteins by endogenous, neutrophils-derived HOCl increases their immunogenicity. Upon oxidation, different, randomly chosen simple proteins (yeast alcohol dehydrogenase, human and bovine serum albumin) and glycoproteins (human apo-transferrin, ovalbumin) gain the ability to bind with high affinity to several endocytic receptors on antigen presenting cells, which seems to be the major mechanism of their increased immunogenicity. The mannose receptor (CD206), scavenger receptors A (CD204) and CD36 were responsible for the uptake and presentation of HOCl-modified proteins by murine dendritic cells and macrophages. Other scavenger receptors, SREC-I and LOX-1, as well as RAGE were also able to bind HOCl-modified proteins, but they did not contribute significantly to these ligands uptake by dendritic cells because they were either not expressed or exhibited preference for more heavily oxidised proteins. Our results indicate that oxidation by neutrophils-derived HOCl may be a physiological mechanism of conferring immunogenicity on proteins which in their native forms do not bind to endocytic receptors. This mechanism might enable the immune system to detect

  2. Compositional changes in RNA, DNA and proteins for bacterial adaptation to higher and lower temperatures.

    PubMed

    Nakashima, Hiroshi; Fukuchi, Satoshi; Nishikawa, Ken

    2003-04-01

    It is known that in thermophiles the G+C content of ribosomal RNA linearly correlates with growth temperature, while that of genomic DNA does not. Although the G+C contents (singlet) of the genomic DNAs of thermophiles and methophiles do not differ significantly, the dinucleotide (doublet) compositions of the two bacterial groups clearly do. The average amino acid compositions of proteins of the two groups are also distinct. Based on these facts, we here analyzed the DNA and protein compositions of various bacteria in terms of the optimal growth temperature (OGT). Regression analyses of the sequence data for thermophilic, mesophilic and psychrophilic bacteria revealed good linear relationships between OGT and the dinucleotide compositions of DNA, and between OGT and the amino acid compositions of proteins. Together with the above-mentioned linear relationship between ribosomal RNA and OGT, the DNA and protein compositions can be regarded as thermostability measures for RNA, DNA and proteins, covering a wide range of temperatures. Both the DNA and proteins of psychrophiles apparently exhibit characteristics diametrically opposite to those of thermophiles. The physicochemical parameters of dinucleotides suggested that supercoiling of DNA is relevant to its thermostability. Protein stability in thermophiles is realized primarily through global changes that increase charged residues (i.e., Glu, Arg, and Lys) on the molecular surface of all proteins. This kind of global change is attainable through a change in the amino acid composition coupled with alterations in the DNA base composition. The general strategies of thermophiles and psychrophiles for adaptation to higher and lower temperatures, respectively, that are suggested by the present study are discussed. PMID:12761299

  3. Distribution of phosphorylated protein kinase C alpha in goldfish retinal bipolar synaptic terminals: control by state of adaptation and pharmacological treatment.

    PubMed

    Behrens, Uwe D; Borde, Johannes; Mack, Andreas F; Wagner, Hans-Joachim

    2007-02-01

    Protein kinase C (PKC) is a signalling enzyme critically involved in many aspects of synaptic plasticity. In cyprinid retinae, the PKC alpha isoform is localized in a subpopulation of depolarizing bipolar cells that show adaptation-related morphological changes of their axon terminals. We have studied the subcellular localization of phosphorylated PKC alpha (pPKC alpha) in retinae under various conditions by immunohistochemistry with a phosphospecific antibody. In dark-adapted retinae, pPKC alpha immunoreactivity is weak in the cytoplasm of synaptic terminals, labelling being predominantly associated with the membrane compartment. In light-adapted cells, immunoreactivity is diffusely distributed throughout the terminal. Western blot analysis has revealed a reduction of pPKC alpha immunoreactivity in cytosolic fractions of homogenized dark-adapted retinae compared with light-adapted retinae. Pharmacological experiments with the isoform-specific PKC blocker Goe6976 have shown that inhibition of the enzyme influences immunolabelling for pPKC alpha, mimicking the effects of light on the subcellular distribution of immunoreactivity. Our findings suggest that the state of adaptation modifies the subcellular localization of a signalling molecule (PKC alpha) at the ribbon-type synaptic complex. We propose that changes in the subcellular distribution of PKC alpha immunoreactivity might be one component regulating the strength of the signal transfer of the bipolar cell terminal. PMID:17043793

  4. Adaptation of Extremophilic Proteins with Temperature and Pressure: Evidence from Initiation Factor 6.

    PubMed

    Calligari, Paolo A; Calandrini, Vania; Ollivier, Jacques; Artero, Jean-Baptiste; Härtlein, Michael; Johnson, Mark; Kneller, Gerald R

    2015-06-25

    In this work, we study dynamical properties of an extremophilic protein, Initiation Factor 6 (IF6), produced by the archeabacterium Methanocaldococcus jannascii, which thrives close to deep-sea hydrothermal vents where temperatures reach 80 °C and the pressure is up to 750 bar. Molecular dynamics simulations (MD) and quasi-elastic neutron scattering (QENS) measurements give new insights into the dynamical properties of this protein with respect to its eukaryotic and mesophilic homologue. Results obtained by MD are supported by QENS data and are interpreted within the framework of a fractional Brownian dynamics model for the characterization of protein relaxation dynamics. IF6 from M. jannaschii at high temperature and pressure shares similar flexibility with its eukaryotic homologue from S. cerevisieae under ambient conditions. This work shows for the first time, to our knowledge, that the very common pattern of corresponding states for thermophilic protein adaptation can be extended to thermo-barophilic proteins. A detailed analysis of dynamic properties and of local structural fluctuations reveals a complex pattern for "corresponding" structural flexibilities. In particular, in the case of IF6, the latter seems to be strongly related to the entropic contribution given by an additional, C-terminal, 20 amino-acid tail which is evolutionary conserved in all mesophilic IF6s. PMID:25996652

  5. Temperature dependent mistranslation in a hyperthermophile adapts proteins to lower temperatures

    PubMed Central

    Schwartz, Michael H.; Pan, Tao

    2016-01-01

    All organisms universally encode, synthesize and utilize proteins that function optimally within a subset of growth conditions. While healthy cells are thought to maintain high translational fidelity within their natural habitats, natural environments can easily fluctuate outside the optimal functional range of genetically encoded proteins. The hyperthermophilic archaeon Aeropyrum pernix (A. pernix) can grow throughout temperature variations ranging from 70 to 100°C, although the specific factors facilitating such adaptability are unknown. Here, we show that A. pernix undergoes constitutive leucine to methionine mistranslation at low growth temperatures. Low-temperature mistranslation is facilitated by the misacylation of tRNALeu with methionine by the methionyl-tRNA synthetase (MetRS). At low growth temperatures, the A. pernix MetRS undergoes a temperature dependent shift in tRNA charging fidelity, allowing the enzyme to conditionally charge tRNALeu with methionine. We demonstrate enhanced low-temperature activity for A. pernix citrate synthase that is synthesized during leucine to methionine mistranslation at low-temperature growth compared to its high-fidelity counterpart synthesized at high-temperature. Our results show that conditional leucine to methionine mistranslation can make protein adjustments capable of improving the low-temperature activity of hyperthermophilic proteins, likely by facilitating the increasing flexibility required for greater protein function at lower physiological temperatures. PMID:26657639

  6. Presynaptic kainate receptor facilitation of glutamate release involves protein kinase A in the rat hippocampus

    PubMed Central

    Rodríguez-Moreno, Antonio; Sihra, Talvinder S

    2004-01-01

    We have explored the mechanisms involved in the facilitation of glutamate release mediated by the activation of kainate receptors in the rat hippocampus using isolated nerve terminal (synaptosome) and slice preparations. In hippocampal nerve terminals, kainate (KA) produced an increase of glutamate release at concentrations of agonist ranging from 10 to 1000 μm. In hippocampal slices, KA at low nanomolar concentrations (20–50 nm) also produced an increase of evoked excitatory postsynaptic currents (eEPSCs) at mossy fibre–CA3 synapses. In both, synaptosomes and slices, the effect of KA was antagonized by CNQX, and persisted after pretreatment with a cocktail of antagonists for other receptors whose activation could potentially have produced facilitation of release. These data indicate that the facilitation of glutamate release observed is mediated by the activation of presynaptic glutamate receptors of the kainate type. Mechanistically, the observed effects of KA appear to be the same in synaptosomal and slice preparations. Thus, the effect of KA on glutamate release and mossy fibre–CA3 synaptic transmission was occluded by the stimulation of adenylyl cyclase by forskolin and suppressed by the inhibition of protein kinase A by H-89 or Rp-Br-cAMP. We conclude that kainate receptors present at presynaptic terminals in the rat hippocampus mediate the facilitation of glutamate release through a mechanism involving the activation of an adenylyl cyclase–second messenger cAMP–protein kinase A signalling cascade. PMID:15107475

  7. De novo Assembly of the Indo-Pacific Humpback Dolphin Leucocyte Transcriptome to Identify Putative Genes Involved in the Aquatic Adaptation and Immune Response

    PubMed Central

    Xia, Jia; Yang, Lili; Chen, Jialin; Wu, Yuping; Yi, Meisheng

    2013-01-01

    Background The Indo-Pacific humpback dolphin (Sousa chinensis), a marine mammal species inhabited in the waters of Southeast Asia, South Africa and Australia, has attracted much attention because of the dramatic decline in population size in the past decades, which raises the concern of extinction. So far, this species is poorly characterized at molecular level due to little sequence information available in public databases. Recent advances in large-scale RNA sequencing provide an efficient approach to generate abundant sequences for functional genomic analyses in the species with un-sequenced genomes. Principal Findings We performed a de novo assembly of the Indo-Pacific humpback dolphin leucocyte transcriptome by Illumina sequencing. 108,751 high quality sequences from 47,840,388 paired-end reads were generated, and 48,868 and 46,587 unigenes were functionally annotated by BLAST search against the NCBI non-redundant and Swiss-Prot protein databases (E-value<10−5), respectively. In total, 16,467 unigenes were clustered into 25 functional categories by searching against the COG database, and BLAST2GO search assigned 37,976 unigenes to 61 GO terms. In addition, 36,345 unigenes were grouped into 258 KEGG pathways. We also identified 9,906 simple sequence repeats and 3,681 putative single nucleotide polymorphisms as potential molecular markers in our assembled sequences. A large number of unigenes were predicted to be involved in immune response, and many genes were predicted to be relevant to adaptive evolution and cetacean-specific traits. Conclusion This study represented the first transcriptome analysis of the Indo-Pacific humpback dolphin, an endangered species. The de novo transcriptome analysis of the unique transcripts will provide valuable sequence information for discovery of new genes, characterization of gene expression, investigation of various pathways and adaptive evolution, as well as identification of genetic markers. PMID:24015242

  8. Identification and Characterization of Anaplasma phagocytophilum Proteins Involved in Infection of the Tick Vector, Ixodes scapularis

    PubMed Central

    Kocan, Katherine M.; Bonzón-Kulichenko, Elena; Alberdi, Pilar; Blouin, Edmour F.; Weisheit, Sabine; Mateos-Hernández, Lourdes; Cabezas-Cruz, Alejandro; Bell-Sakyi, Lesley; Vancová, Marie; Bílý, Tomáš; Meyer, Damien F.; Sterba, Jan; Contreras, Marinela; Rudenko, Nataliia; Grubhoffer, Libor; Vázquez, Jesús; de la Fuente, José

    2015-01-01

    Anaplasma phagocytophilum is an emerging zoonotic pathogen transmitted by Ixodes scapularis that causes human granulocytic anaplasmosis. Here, a high throughput quantitative proteomics approach was used to characterize A. phagocytophilum proteome during rickettsial multiplication and identify proteins involved in infection of the tick vector, I. scapularis. The first step in this research was focused on tick cells infected with A. phagocytophilum and sampled at two time points containing 10–15% and 65–71% infected cells, respectively to identify key bacterial proteins over-represented in high percentage infected cells. The second step was focused on adult female tick guts and salivary glands infected with A. phagocytophilum to compare in vitro results with those occurring during bacterial infection in vivo. The results showed differences in the proteome of A. phagocytophilum in infected ticks with higher impact on protein synthesis and processing than on bacterial replication in tick salivary glands. These results correlated well with the developmental cycle of A. phagocytophilum, in which cells convert from an intracellular reticulated, replicative form to the nondividing infectious dense-core form. The analysis of A. phagocytophilum differentially represented proteins identified stress response (GroEL, HSP70) and surface (MSP4) proteins that were over-represented in high percentage infected tick cells and salivary glands when compared to low percentage infected cells and guts, respectively. The results demonstrated that MSP4, GroEL and HSP70 interact and bind to tick cells, thus playing a role in rickettsia-tick interactions. The most important finding of these studies is the increase in the level of certain bacterial stress response and surface proteins in A. phagocytophilum-infected tick cells and salivary glands with functional implication in tick-pathogen interactions. These results gave a new dimension to the role of these stress response and surface

  9. An isoform of Nedd4-2 is critically involved in the renal adaptation to high salt intake in mice

    PubMed Central

    Minegishi, Shintaro; Ishigami, Tomoaki; Kino, Tabito; Chen, Lin; Nakashima-Sasaki, Rie; Araki, Naomi; Yatsu, Keisuke; Fujita, Megumi; Umemura, Satoshi

    2016-01-01

    Epithelial sodium channels (ENaCs) play critical roles in the maintenance of fluid and electrolyte homeostasis, and their genetic abnormalities cause one type of hereditary salt-sensitive hypertension, Liddle syndrome. As we reported previously, both human and rodent Nedd4L/Nedd4-2 showed molecular diversity, with and without a C2 domain in their N-terminal. Nedd4L/Nedd4-2 isoforms with a C2 domain are hypothesized to be related closely to ubiquitination of ENaCs. We generated Nedd4-2 C2 domain knockout mice. We demonstrate here that loss of Nedd4-2 C2 isoform causes salt-sensitive hypertension under conditions of a high dietary salt intake in vivo. The knockout mice had reduced urinary sodium excretion, osmotic pressure and increased water intake and urine volume with marked dilatation of cortical tubules while receiving a high salt diet. To the contrary, there was no difference in metabolic data between wild-type and knockout mice receiving a normal control diet. In the absence of Nedd4-2 C2 domain, a high salt intake accelerated ENaC expression. Coimmunoprecipitation studies revealed suppressed ubiquitination for ENaC with a high salt intake. Taken together, our findings demonstrate that during a high oral salt intake the Nedd4-2 C2 protein plays a pivotal role in maintaining adaptive salt handling in the kidney. PMID:27256588

  10. An isoform of Nedd4-2 is critically involved in the renal adaptation to high salt intake in mice.

    PubMed

    Minegishi, Shintaro; Ishigami, Tomoaki; Kino, Tabito; Chen, Lin; Nakashima-Sasaki, Rie; Araki, Naomi; Yatsu, Keisuke; Fujita, Megumi; Umemura, Satoshi

    2016-01-01

    Epithelial sodium channels (ENaCs) play critical roles in the maintenance of fluid and electrolyte homeostasis, and their genetic abnormalities cause one type of hereditary salt-sensitive hypertension, Liddle syndrome. As we reported previously, both human and rodent Nedd4L/Nedd4-2 showed molecular diversity, with and without a C2 domain in their N-terminal. Nedd4L/Nedd4-2 isoforms with a C2 domain are hypothesized to be related closely to ubiquitination of ENaCs. We generated Nedd4-2 C2 domain knockout mice. We demonstrate here that loss of Nedd4-2 C2 isoform causes salt-sensitive hypertension under conditions of a high dietary salt intake in vivo. The knockout mice had reduced urinary sodium excretion, osmotic pressure and increased water intake and urine volume with marked dilatation of cortical tubules while receiving a high salt diet. To the contrary, there was no difference in metabolic data between wild-type and knockout mice receiving a normal control diet. In the absence of Nedd4-2 C2 domain, a high salt intake accelerated ENaC expression. Coimmunoprecipitation studies revealed suppressed ubiquitination for ENaC with a high salt intake. Taken together, our findings demonstrate that during a high oral salt intake the Nedd4-2 C2 protein plays a pivotal role in maintaining adaptive salt handling in the kidney. PMID:27256588

  11. Bioinformatic analysis of functional proteins involved in obesity associated with diabetes.

    PubMed

    Rao, Allam Appa; Tayaru, N Manga; Thota, Hanuman; Changalasetty, Suresh Babu; Thota, Lalitha Saroja; Gedela, Srinubabu

    2008-03-01

    The twin epidemic of diabetes and obesity pose daunting challenges worldwide. The dramatic rise in obesity-associated diabetes resulted in an alarming increase in the incidence and prevalence of obesity an important complication of diabetes. Differences among individuals in their susceptibility to both these conditions probably reflect their genetic constitutions. The dramatic improvements in genomic and bioinformatic resources are accelerating the pace of gene discovery. It is tempting to speculate the key susceptible genes/proteins that bridges diabetes mellitus and obesity. In this regard, we evaluated the role of several genes/proteins that are believed to be involved in the evolution of obesity associated diabetes by employing multiple sequence alignment using ClustalW tool and constructed a phylogram tree using functional protein sequences extracted from NCBI. Phylogram was constructed using Neighbor-Joining Algorithm a bioinformatic tool. Our bioinformatic analysis reports resistin gene as ominous link with obesity associated diabetes. This bioinformatic study will be useful for future studies towards therapeutic inventions of obesity associated type 2 diabetes. PMID:23675069

  12. Xanthorrhizol induced DNA fragmentation in HepG2 cells involving Bcl-2 family proteins

    SciTech Connect

    Tee, Thiam-Tsui; Cheah, Yew-Hoong; Meenakshii, Nallappan; Mohd Sharom, Mohd Yusof; Azimahtol Hawariah, Lope Pihie

    2012-04-20

    Highlights: Black-Right-Pointing-Pointer We isolated xanthorrhizol, a sesquiterpenoid compound from Curcuma xanthorrhiza. Black-Right-Pointing-Pointer Xanthorrhizol induced apoptosis in HepG2 cells as observed using SEM. Black-Right-Pointing-Pointer Apoptosis in xanthorrhizol-treated HepG2 cells involved Bcl-2 family proteins. Black-Right-Pointing-Pointer DNA fragmentation was observed in xanthorrhizol-treated HepG2 cells. Black-Right-Pointing-Pointer DNA fragmentation maybe due to cleavage of PARP and DFF45/ICAD proteins. -- Abstract: Xanthorrhizol is a plant-derived pharmacologically active sesquiterpenoid compound isolated from Curcuma xanthorrhiza. Previously, we have reported that xanthorrhizol inhibited the proliferation of HepG2 human hepatoma cells by inducing apoptotic cell death via caspase activation. Here, we attempt to further elucidate the mode of action of xanthorrhizol. Apoptosis in xanthorrhizol-treated HepG2 cells as observed by scanning electron microscopy was accompanied by truncation of BID; reduction of both anti-apoptotic Bcl-2 and Bcl-X{sub L} expression; cleavage of PARP and DFF45/ICAD proteins and DNA fragmentation. Taken together, these results suggest xanthorrhizol as a potent antiproliferative agent on HepG2 cells by inducing apoptosis via Bcl-2 family members. Hence we proposed that xanthorrhizol could be used as an anti-liver cancer drug for future studies.

  13. Chemical genetic screen for AMPKα2 substrates uncovers a network of proteins involved in mitosis

    PubMed Central

    Banko, Max R.; Allen, Jasmina J.; Schaffer, Bethany E.; Wilker, Erik W.; Tsou, Peiling; White, Jamie L.; Villén, Judit; Wang, Beatrice; Kim, Sara R.; Sakamoto, Kei; Gygi, Steven P.; Cantley, Lewis C.; Yaffe, Michael B.; Shokat, Kevan M.; Brunet, Anne

    2011-01-01

    SUMMARY The energy-sensing AMP-activated protein kinase (AMPK) is activated by low nutrient levels. Functions of AMPK, other than its role in cellular metabolism, are just beginning to emerge. Here we use a chemical genetics screen to identify direct substrates of AMPK in human cells. We find that AMPK phosphorylates 28 previously unidentified substrates, several of which are involved in mitosis and cytokinesis. We identify the residues phosphorylated by AMPK in vivo in several substrates, including protein phosphatase 1 regulatory subunit 12C (PPP1R12C) and p21 -activated protein kinase (PAK2). AMPK-induced phosphorylation is necessary for PPP1R12C interaction with 14-3-3 and phosphorylation of myosin regulatory light chain. Both AMPK activity and PPP1R12C phosphorylation are increased in mitotic cells and are important for mitosis completion. These findings suggest that AMPK coordinates nutrient status with mitosis completion, which may be critical for the organism’s response to low nutrients during development, or in adult stem and cancer cells. PMID:22137581

  14. Interatomic Coulombic Decay Effects in Theoretical DNA Recombination Systems Involving Protein Interaction Sites

    NASA Astrophysics Data System (ADS)

    Vargas, E. L.; Rivas, D. A.; Duot, A. C.; Hovey, R. T.; Andrianarijaona, V. M.

    2015-03-01

    DNA replication is the basis for all biological reproduction. A strand of DNA will ``unzip'' and bind with a complimentary strand, creating two identical strands. In this study, we are considering how this process is affected by Interatomic Coulombic Decay (ICD), specifically how ICD affects the individual coding proteins' ability to hold together. ICD mainly deals with how the electron returns to its original state after excitation and how this affects its immediate atomic environment, sometimes affecting the connectivity between interaction sites on proteins involved in the DNA coding process. Biological heredity is fundamentally controlled by DNA and its replication therefore it affects every living thing. The small nature of the proteins (within the range of nanometers) makes it a good candidate for research of this scale. Understanding how ICD affects DNA molecules can give us invaluable insight into the human genetic code and the processes behind cell mutations that can lead to cancer. Authors wish to give special thanks to Pacific Union College Student Senate in Angwin, California, for their financial support.

  15. A VAMP-associated protein, PVA31 is involved in leaf senescence in Arabidopsis

    PubMed Central

    Ichikawa, Mie; Nakai, Yusuke; Arima, Keita; Nishiyama, Sayo; Hirano, Tomoko; Sato, Masa H

    2015-01-01

    VAMP-associated proteins (VAPs) are highly conserved among eukaryotes. Here, we report a functional analysis of one of the VAPs, PVA31, and demonstrate its novel function on leaf senescence in Arabidopsis. The expression of PVA31 is highly induced in senescence leaves, and localizes to the plasma membrane as well as the ARA7-positive endosomes. Yeast two-hybrid analysis demonstrates that PVA31 is interacted with the plasma membrane localized-VAMP proteins, VAMP721/722/724 but not with the endosome-localized VAMPs, VAMP711 and VAMP727, indicating that PVA31 is associated with VAMP721/722/724 on the plasma membrane. Strong constitutive expression of PVA31 under the control of the Cauliflower mosaic virus 35S promoter induces the typical symptom of leaf senescence earlier than WT in normal growth and an artificially induced senescence conditions. In addition, the marker genes for the SA-mediated signaling pathways, PR-1, is promptly expressed with elicitor application. These data indicate that PVA31-overexpressing plants exhibit the early senescence phenotype in their leaves, and suggest that PVA31 is involved in the SA-mediated programmed cell death process during leaf senescence and PR-protein secretion during pathogen infection in Arabidopsis. PMID:25897470

  16. Five RecA-like proteins of Schizosaccharomyces pombe are involved in meiotic recombination.

    PubMed Central

    Grishchuk, A L; Kohli, J

    2003-01-01

    The genome of Schizosaccharomyces pombe contains five genes that code for proteins with sequence similarity to the Escherichia coli recombination protein RecA: rad51+, rhp55+, rhp57+, rlp1+, and dmc1+. We analyzed the effect of deletion of each of these genes on meiotic recombination and viability of spores. Meiotic recombination levels were different from wild type in all recA-related mutants in several genetic intervals, suggesting that all five RecA homologs of S. pombe are required for normal levels of meiotic recombination. Spore viability was reduced in rad51, rhp55, and rhp57 mutants, but not in rlp1 and dmc1. It is argued that reduction of crossover is not the only cause for the observed reduction of spore viability. Analysis of double and triple mutants revealed that Rad51 and Dmc1 play major and partially overlapping roles in meiotic recombination, while Rhp55, Rhp57, and Rlp1 play accessory roles. Remarkably, deletion of Rlp1 decreases the frequency of intergenic recombination (crossovers), but increases intragenic recombination (gene conversion). On the basis of our results, we present a model for the involvement of five RecA-like proteins of S. pombe in meiotic recombination and discuss their respective roles. PMID:14668362

  17. Abrogation of TNF-mediated cytotoxicity by space flight involves protein kinase C

    NASA Technical Reports Server (NTRS)

    Woods, K. M.; Chapes, S. K.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    Experiments conducted on STS-50 indicated that space flight significantly inhibited tumor necrosis factor (TNF)-mediated killing of LM929 cells compared to ground controls. In ground-based studies, activation of protein kinase C (PKC) with phorbol 12-myristate 13-acetate (PMA) also inhibited TNF-mediated killing of LM929 cells. Therefore, we used PKC inhibitors to determine if the inhibitory effects of spaceflight on TNF-mediated cytotoxicity involved the activation of PKC. In experiments conducted onboard space shuttle mission STS-54, we saw that in the presence of the protein kinase C inhibitors H7 and H8, TNF-mediated cytotoxicity was restored to levels of those observed in the ground controls. Subsequent experiments done during the STS-57 mission tested the dose response of two protein kinase inhibitors, H7 and HA1004. We again saw that killing was restored in a dose-dependent manner, with inhibitor concentrations known to inhibit PKC being most effective. These data suggest that space flight ameliorates the action of TNF by affecting PKC in target cells.

  18. Ras family proteins: new players involved in the diplotene arrest of Xenopus oocytes.

    PubMed

    Jessus, C; Rime, H; Ozon, R

    1998-11-01

    Oogonia undergo numerous mitotic cell cycles before completing the last DNA replication and entering the meiotic prophase I. After chromosome pairing and chromatid exchanges between paired chromosomes, the oocyte I remains arrested at the diplotene stage of the first meiotic prophase. Oocyte growth then occurs independently of cell division; indeed, during this growth period, oocytes (4n DNA) are prevented from completing the meiotic divisions. How is the prophase arrest regulated? One of the players of the prophase block is the high level of intracellular cAMP, maintained by an active adenylate cyclase. By using lethal toxin from Clostridium sordellii (LT), a glucosyltransferase that glucosylates and inactivates small G proteins of the Ras subfamily, we have shown that inhibition of either Ras or Rap or both proteins is sufficient to release the prophase block of Xenopus oocytes in a cAMP-dependent manner. The implications of Ras family proteins as new players involved in the prophase arrest of Xenopus oocytes will be discussed here. PMID:10069002

  19. Noc2, a putative zinc finger protein involved in exocytosis in endocrine cells.

    PubMed

    Kotake, K; Ozaki, N; Mizuta, M; Sekiya, S; Inagaki, N; Seino, S

    1997-11-21

    We have cloned a cDNA encoding a novel protein of 302 amino acids (designated Noc2, no C2 domain) that has 40.7% amino acid identity with and 77.9% similarity to the N-terminal region of rabphilin-3A, a target molecule of Rab3A. However, unlike rabphilin-3A, Noc2 lacks two C2 domains that are thought to interact with Ca2+ and phospholipids. Noc2 is expressed predominantly in endocrine tissues and hormone-secreting cell lines and at very low levels in brain. Immunoblot analysis of subcellular fractions of the insulin-secreting cell line MIN6 and immunocytochemistry reveal that Noc2 is a 38-kDa protein present in the cytoplasm. Overexpression of Noc2 in PC12 cells cotransfected with growth hormone enhances high K+-induced growth hormone secretion. Screening a mouse embryonic cDNA library with the yeast two-hybrid system shows that Noc2 interacts with the LIM domain-containing protein zyxin, a component of the cytoskeleton, and this interaction is further confirmed by the coimmunoprecipitation experiment. Accordingly, Noc2 is probably involved in regulated exocytosis in endocrine cells by interacting with the cytoskeleton. PMID:9367993

  20. Involvement of the nuclear cap-binding protein complex in alternative splicing in Arabidopsis thaliana

    PubMed Central

    Raczynska, Katarzyna Dorota; Simpson, Craig G.; Ciesiolka, Adam; Szewc, Lukasz; Lewandowska, Dominika; McNicol, Jim; Szweykowska-Kulinska, Zofia; Brown, John W. S.; Jarmolowski, Artur

    2010-01-01

    The nuclear cap-binding protein complex (CBC) participates in 5′ splice site selection of introns that are proximal to the mRNA cap. However, it is not known whether CBC has a role in alternative splicing. Using an RT–PCR alternative splicing panel, we analysed 435 alternative splicing events in Arabidopsis thaliana genes, encoding mainly transcription factors, splicing factors and stress-related proteins. Splicing profiles were determined in wild type plants, the cbp20 and cbp80(abh1) single mutants and the cbp20/80 double mutant. The alternative splicing events included alternative 5′ and 3′ splice site selection, exon skipping and intron retention. Significant changes in the ratios of alternative splicing isoforms were found in 101 genes. Of these, 41% were common to all three CBC mutants and 15% were observed only in the double mutant. The cbp80(abh1) and cbp20/80 mutants had many more changes in alternative splicing in common than did cbp20 and cbp20/80 suggesting that CBP80 plays a more significant role in alternative splicing than CBP20, probably being a platform for interactions with other splicing factors. Cap-binding proteins and the CBC are therefore directly involved in alternative splicing of some Arabidopsis genes and in most cases influenced alternative splicing of the first intron, particularly at the 5′ splice site. PMID:19864257

  1. Unconventional N-H…N Hydrogen Bonds Involving Proline Backbone Nitrogen in Protein Structures.

    PubMed

    Deepak, R N V Krishna; Sankararamakrishnan, Ramasubbu

    2016-05-10

    Contrary to DNA double-helical structures, hydrogen bonds (H-bonds) involving nitrogen as the acceptor are not common in protein structures. We systematically searched N-H…N H-bonds in two different sets of protein structures. Data set I consists of neutron diffraction and ultrahigh-resolution x-ray structures (0.9 Å resolution or better) and the hydrogen atom positions in these structures were determined experimentally. Data set II contains structures determined using x-ray diffraction (resolution ≤ 1.8 Å) and the positions of hydrogen atoms were generated using a computational method. We identified 114 and 14,347 potential N-H…N H-bonds from these two data sets, respectively, and 56-66% of these were of the Ni+1-Hi+1…Ni type, with Ni being the proline backbone nitrogen. To further understand the nature of such unusual contacts, we performed quantum chemical calculations on the model compound N-acetyl-L-proline-N-methylamide (Ace-Pro-NMe) with coordinates taken from the experimentally determined structures. A potential energy profile generated by varying the ψ dihedral angle in Ace-Pro-NMe indicates that the conformation with the N-H…N H-bond is the most stable. An analysis of H-bond-forming proline residues reveals that more than 30% of the proline carbonyl groups are also involved in n → π(∗) interactions with the carbonyl carbon of the preceding residue. Natural bond orbital analyses demonstrate that the strength of N-H…N H-bonds is less than half of that observed for a conventional H-bond. This study clearly establishes the H-bonding capability of proline nitrogen and its prevalence in protein structures. We found many proteins with multiple instances of H-bond-forming prolines. With more than 15% of all proline residues participating in N-H…N H-bonds, we suggest a new, to our knowledge, structural role for proline in providing stability to loops and capping regions of secondary structures in proteins. PMID:27166805

  2. Macrophage Replication Screen Identifies a Novel Francisella Hydroperoxide Resistance Protein Involved in Virulence

    PubMed Central

    Llewellyn, Anna C.; Bina, James E.; Weiss, David S.

    2011-01-01

    Francisella tularensis is a Gram-negative facultative intracellular pathogen and the causative agent of tularemia. Recently, genome-wide screens have identified Francisella genes required for virulence in mice. However, the mechanisms by which most of the corresponding proteins contribute to pathogenesis are still largely unknown. To further elucidate the roles of these virulence determinants in Francisella pathogenesis, we tested whether each gene was required for replication of the model pathogen F. novicida within macrophages, an important virulence trait. Fifty-three of the 224 genes tested were involved in intracellular replication, including many of those within the Francisella pathogenicity island (FPI), validating our results. Interestingly, over one third of the genes identified are annotated as hypothetical, indicating that F. novicida likely utilizes novel virulence factors for intracellular replication. To further characterize these virulence determinants, we selected two hypothetical genes to study in more detail. As predicted by our screen, deletion mutants of FTN_0096 and FTN_1133 were attenuated for replication in macrophages. The mutants displayed differing levels of attenuation in vivo, with the FTN_1133 mutant being the most attenuated. FTN_1133 has sequence similarity to the organic hydroperoxide resistance protein Ohr, an enzyme involved in the bacterial response to oxidative stress. We show that FTN_1133 is required for F. novicida resistance to, and degradation of, organic hydroperoxides as well as resistance to the action of the NADPH oxidase both in macrophages and mice. Furthermore, we demonstrate that F. holarctica LVS, a strain derived from a highly virulent human pathogenic species of Francisella, also requires this protein for organic hydroperoxide resistance as well as replication in macrophages and mice. This study expands our knowledge of Francisella's largely uncharacterized intracellular lifecycle and demonstrates that FTN_1133 is

  3. Involvement of breast cancer resistance protein (ABCG2) in the biliary excretion mechanism of fluoroquinolones.

    PubMed

    Ando, Tomohiro; Kusuhara, Hiroyuki; Merino, Gracia; Alvarez, Ana I; Schinkel, Alfred H; Sugiyama, Yuichi

    2007-10-01

    Fluoroquinolones are effective antibiotics for the treatment of bile duct infections. It has been shown that the biliary excretion of grepafloxacin is partly accounted for by multidrug resistance-associated protein 2 (MRP2/ABCC2), whereas neither MRP2 nor P-glycoprotein is involved in the biliary excretion of ulifloxacin. In the present study, we examined the involvement of breast cancer resistance protein (BCRP/ABCG2) in the biliary excretion of fluoroquinolones (grepafloxacin, ulifloxacin, ciprofloxacin, and ofloxacin). In Madin-Darby canine kidney II cells expressing human BCRP or mouse Bcrp, the basal-to-apical transport of grepafloxacin and ulifloxacin was greater than that of the mock control, which was inhibited by a BCRP inhibitor, 3-(6-isobutyl-9-methoxy-1,4-dioxo-1,2,3,4,6,7,12,12a-octahydropyrazino[1',2':1,6]pyrido[3,4-b]indol-3-yl)-propionic acid tert-butyl ester (Ko143). Plasma and bile concentrations of fluoroquinolones were determined in wild-type and Bcrp(-/-) mice after i.v. bolus injection. The cumulative biliary excretion of fluoroquinolones was significantly reduced in Bcrp(-/-) mice, resulting in a reduction of the biliary excretion clearances to 86, 50, 40, and 16 of the control values, for ciprofloxacin, grepafloxacin, ofloxacin, and ulifloxacin, respectively. Preinfusion of sulfobromophthalein significantly inhibited the biliary excretion of grepafloxacin in Bcrp(-/-) mice. There was no change in the tissue/plasma concentration ratios of fluoroquinolones in the liver or brain, whereas those in the kidney were increased 3.6- and 1.5-fold for ciprofloxacin and grepafloxacin, respectively, in Bcrp(-/-) mice but were unchanged for ofloxacin and ulifloxacin. The present study shows that BCRP mediates the biliary excretion of fluoroquinolones and suggests that it is also involved in the tubular secretion of ciprofloxacin and grepafloxacin. PMID:17639028

  4. Tau pathology involves protein phosphatase 2A in parkinsonism-dementia of Guam.

    PubMed

    Arif, Mohammad; Kazim, Syed Faraz; Grundke-Iqbal, Inge; Garruto, Ralph M; Iqbal, Khalid

    2014-01-21

    Parkinsonism-dementia (PD) of Guam is a neurodegenerative disease with parkinsonism and early-onset Alzheimer-like dementia associated with neurofibrillary tangles composed of hyperphosphorylated microtubule-associated protein, tau. β-N-methylamino-l-alanine (BMAA) has been suspected of being involved in the etiology of PD, but the mechanism by which BMAA leads to tau hyperphosphorylation is not known. We found a decrease in protein phosphatase 2A (PP2A) activity associated with an increase in inhibitory phosphorylation of its catalytic subunit PP2Ac at Tyr(307) and abnormal hyperphosphorylation of tau in brains of patients who had Guam PD. To test the possible involvement of BMAA in the etiopathogenesis of PD, we studied the effect of this environmental neurotoxin on PP2A activity and tau hyperphosphorylation in mouse primary neuronal cultures and metabolically active rat brain slices. BMAA treatment significantly decreased PP2A activity, with a concomitant increase in tau kinase activity resulting in elevated tau hyperphosphorylation at PP2A favorable sites. Moreover, we found an increase in the phosphorylation of PP2Ac at Tyr(307) in BMAA-treated rat brains. Pretreatment with metabotropic glutamate receptor 5 (mGluR5) and Src antagonists blocked the BMAA-induced inhibition of PP2A and the abnormal hyperphosphorylation of tau, indicating the involvement of an Src-dependent PP2A pathway. Coimmunoprecipitation experiments showed that BMAA treatment dissociated PP2Ac from mGluR5, making it available for phosphorylation at Tyr(307). These findings suggest a scenario in which BMAA can lead to tau pathology by inhibiting PP2A through the activation of mGluR5, the consequent release of PP2Ac from the mGluR5-PP2A complex, and its phosphorylation at Tyr(307) by Src. PMID:24395787

  5. Tau pathology involves protein phosphatase 2A in Parkinsonism-dementia of Guam

    PubMed Central

    Arif, Mohammad; Kazim, Syed Faraz; Grundke-Iqbal, Inge; Garruto, Ralph M.; Iqbal, Khalid

    2014-01-01

    Parkinsonism-dementia (PD) of Guam is a neurodegenerative disease with parkinsonism and early-onset Alzheimer-like dementia associated with neurofibrillary tangles composed of hyperphosphorylated microtubule-associated protein, tau. β-N-methylamino-l-alanine (BMAA) has been suspected of being involved in the etiology of PD, but the mechanism by which BMAA leads to tau hyperphosphorylation is not known. We found a decrease in protein phosphatase 2A (PP2A) activity associated with an increase in inhibitory phosphorylation of its catalytic subunit PP2Ac at Tyr307 and abnormal hyperphosphorylation of tau in brains of patients who had Guam PD. To test the possible involvement of BMAA in the etiopathogenesis of PD, we studied the effect of this environmental neurotoxin on PP2A activity and tau hyperphosphorylation in mouse primary neuronal cultures and metabolically active rat brain slices. BMAA treatment significantly decreased PP2A activity, with a concomitant increase in tau kinase activity resulting in elevated tau hyperphosphorylation at PP2A favorable sites. Moreover, we found an increase in the phosphorylation of PP2Ac at Tyr307 in BMAA-treated rat brains. Pretreatment with metabotropic glutamate receptor 5 (mGluR5) and Src antagonists blocked the BMAA-induced inhibition of PP2A and the abnormal hyperphosphorylation of tau, indicating the involvement of an Src-dependent PP2A pathway. Coimmunoprecipitation experiments showed that BMAA treatment dissociated PP2Ac from mGluR5, making it available for phosphorylation at Tyr307. These findings suggest a scenario in which BMAA can lead to tau pathology by inhibiting PP2A through the activation of mGluR5, the consequent release of PP2Ac from the mGluR5–PP2A complex, and its phosphorylation at Tyr307 by Src. PMID:24395787

  6. Vaccination with proteins involved in tick-pathogen interactions reduces vector infestations and pathogen infection.

    PubMed

    Merino, Octavio; Antunes, Sandra; Mosqueda, Juan; Moreno-Cid, Juan A; Pérez de la Lastra, José M; Rosario-Cruz, Rodrigo; Rodríguez, Sergio; Domingos, Ana; de la Fuente, José

    2013-12-01

    Tick-borne pathogens cause diseases that greatly impact animal health and production worldwide. The ultimate goal of tick vaccines is to protect against tick-borne diseases through the control of vector infestations and reducing pathogen infection and transmission. Tick genetic traits are involved in vector-pathogen interactions and some of these molecules such as Subolesin (SUB) have been shown to protect against vector infestations and pathogen infection. Based on these premises, herein we characterized the efficacy of cattle vaccination with tick proteins involved in vector-pathogen interactions, TROSPA, SILK, and Q38 for the control of cattle tick, Rhipicephalus (Boophilus) microplus infestations and infection with Anaplasma marginale and Babesia bigemina. SUB and adjuvant/saline placebo were used as positive and negative controls, respectively. The results showed that vaccination with Q38, SILK and SUB reduced tick infestations and oviposition with vaccine efficacies of 75% (Q38), 62% (SILK) and 60% (SUB) with respect to ticks fed on placebo control cattle. Vaccination with TROSPA did not have a significant effect on any of the tick parameters analyzed. The results also showed that vaccination with Q38, TROSPA and SUB reduced B. bigemina DNA levels in ticks while vaccination with SILK and SUB resulted in lower A. marginale DNA levels when compared to ticks fed on placebo control cattle. The positive correlation between antigen-specific antibody titers and reduction of tick infestations and pathogen infection strongly suggested that the effect of the vaccine was the result of the antibody response in vaccinated cattle. Vaccination and co-infection with A. marginale and B. bigemina also affected the expression of genes encoding for vaccine antigens in ticks fed on cattle. These results showed that vaccines using tick proteins involved in vector-pathogen interactions could be used for the dual control of tick infestations and pathogen infection. PMID:24084474

  7. Drought adaptation in plants with crassulacean acid metabolism involves the flexible use of different storage carbohydrate pools

    PubMed Central

    Borland, Anne M; De Proft, Maurice P

    2009-01-01

    Nocturnal CO2 uptake in CAM plants is sustained by the degradation of storage carbohydrate which provides the acceptor (PEP) for the nocturnal carboxylase (PEPC). The investment of resources into a transient storage carbohydrate pool unavoidably places restriction on other metabolic activities including dark respiration, growth and acclimation to abiotic stress. In our recent report the flexible use of different storage carbohydrate pools is shown to be involved in the acclimation process to drought and recovery from dehydration. While starch breakdown stoichiometrically accounts for nocturnal CO2 uptake under well-watered conditions, the sucrose pool is maintained in preference to starch during progressing drought and sucrose becomes the major source of carbon fuelling the dark reactions after 45 days of water deprivation. Re-watering plants results in a recovery to the original situation, with starch constituting the main carbohydrate reserve for nocturnal provision of PEP. However, substantial amounts of starch are also retained in the leaves of re-watered plants by restricting export/respiration and thus provides a potential buffer capacity against a return to water deprivation. This significant conservation of starch suggests the ability to perceive, remember and anticipate the formerly encountered drought stress in some way, with the adaptation of the equilibrium of carbohydrate balance as a central factor underpinning the physiological homeostasis of CAM plants. PMID:19721752

  8. Homologies between the Salmonella typhimurium CheY protein and proteins involved in the regulation of chemotaxis, membrane protein synthesis, and sporulation.

    PubMed Central

    Stock, A; Koshland, D E; Stock, J

    1985-01-01

    Chemotactic receptors at the bacterial cell surface communicate with flagellar basal structures to elicit appropriate motor behavior in response to extracellular stimuli. Genetic and physiological studies indicate that the product of the cheY gene interacts directly with components of the flagellar motor to control swimming behavior. We have purified and characterized the Salmonella typhimurium CheY protein and have determined the nucleotide sequence of the cheY gene. Amino acid sequence comparisons showed CheY to be homologous over its entire length (129 residues) to the N-terminal regulatory domain of another protein involved in chemotaxis, the CheB methyl esterase. The entire CheY protein and the regulatory domain of CheB also homologous to the N-terminal portions of the Escherichia coli OmpR and Dye proteins and the Bacillus subtilis Spo0A protein. These homologies suggest an evolutionary and functional relationship between the chemotaxis system and systems that are thought to regulate gene expression in response to changing environmental conditions. Images PMID:2999789

  9. Effects of Radiation and Dietary Iron on Expression of Genes and Proteins Involved in Drug Metabolism

    NASA Technical Reports Server (NTRS)

    Faust, K. M.; Wotring, V. E.

    2014-01-01

    Liver function, especially the rate of metabolic enzyme activities, determines the concentration of circulating drugs and the duration of their efficacy. Most pharmaceuticals are metabolized by the liver, and clinically-used medication doses are given with normal liver function in mind. A drug overdose can result in the case of a liver that is damaged and removing pharmaceuticals from the circulation at a rate slower than normal. Alternatively, if liver function is elevated and removing drugs from the system more quickly than usual, it would be as if too little drug had been given for effective treatment. Because of the importance of the liver in drug metabolism, we want to understand any effects of spaceflight on the enzymes of the liver. Dietary factors and exposure to radiation are aspects of spaceflight that are potential oxidative stressors and both can be modeled in ground experiments. In this experiment, we examined the effects of high dietary iron and low dose gamma radiation (individually and combined) on the gene expression of enzymes involved in drug metabolism, redox homeostasis, and DNA repair. METHODS All procedures were approved by the JSC Animal Care and Use Committee. Male Sprague-Dawley rats were divided into 4 groups (n=8); control, high Fe diet (650 mg iron/kg), radiation (fractionated 3 Gy exposure from a Cs- 137 source) and combined high Fe diet + radiation exposure. Animals were euthanized 24h after the last treatment of radiation; livers were removed immediately and flash -frozen in liquid nitrogen. Expression of genes thought to be involved in redox homeostasis, drug metabolism and DNA damage repair was measured by RT-qPCR. Where possible, protein expression of the same genes was measured by western blotting. All data are expressed as % change in expression normalized to reference gene expression; comparisons were then made of each treatment group to the sham exposed/ normal diet control group. Data was considered significant at p< 0

  10. SUCROSE NON-FERMENTING 1-RELATED PROTEIN KINASE 2 (SNRK2): A FAMILY OF PROTEIN KINASES INVOLVED IN HYPEROSMOTIC STRESS SIGNALING

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our understanding of plant adaptation to abiotic stresses, which include drought, salinity, non-optimal temperatures and poor soil nutrition, is still limiting although significant strides have been made in identifying some of the gene players and signaling partners. Several protein kinases get acti...

  11. Aerobic Exercise Training Adaptations Are Increased by Postexercise Carbohydrate-Protein Supplementation

    PubMed Central

    Ferguson-Stegall, Lisa; McCleave, Erin; Ding, Zhenping; Doerner III, Phillip G.; Liu, Yang; Wang, Bei; Healy, Marin; Kleinert, Maximilian; Dessard, Benjamin; Lassiter, David G.; Kammer, Lynne; Ivy, John L.

    2011-01-01

    Carbohydrate-protein supplementation has been found to increase the rate of training adaptation when provided postresistance exercise. The present study compared the effects of a carbohydrate and protein supplement in the form of chocolate milk (CM), isocaloric carbohydrate (CHO), and placebo on training adaptations occurring over 4.5 weeks of aerobic exercise training. Thirty-two untrained subjects cycled 60 min/d, 5 d/wk for 4.5 wks at 75–80% of maximal oxygen consumption (VO2 max). Supplements were ingested immediately and 1 h after each exercise session. VO2 max and body composition were assessed before the start and end of training. VO2 max improvements were significantly greater in CM than CHO and placebo. Greater improvements in body composition, represented by a calculated lean and fat mass differential for whole body and trunk, were found in the CM group compared to CHO. We conclude supplementing with CM postexercise improves aerobic power and body composition more effectively than CHO alone. PMID:21773022

  12. Subfamily-specific adaptations in the structures of two penicillin-binding proteins from Mycobacterium tuberculosis

    DOE PAGESBeta

    Prigozhin, Daniil M.; Krieger, Inna V.; Huizar, John P.; Mavrici, Daniela; Waldo, Geoffrey S.; Hung, Li -Wei; Sacchettini, James C.; Terwilliger, Thomas C.; Alber, Tom; Mayer, Claudine

    2014-12-31

    Beta-lactam antibiotics target penicillin-binding proteins including several enzyme classes essential for bacterial cell-wall homeostasis. To better understand the functional and inhibitor-binding specificities of penicillin-binding proteins from the pathogen, Mycobacterium tuberculosis, we carried out structural and phylogenetic analysis of two predicted D,D-carboxypeptidases, Rv2911 and Rv3330. Optimization of Rv2911 for crystallization using directed evolution and the GFP folding reporter method yielded a soluble quadruple mutant. Structures of optimized Rv2911 bound to phenylmethylsulfonyl fluoride and Rv3330 bound to meropenem show that, in contrast to the nonspecific inhibitor, meropenem forms an extended interaction with the enzyme along a conserved surface. Phylogenetic analysis shows thatmore » Rv2911 and Rv3330 belong to different clades that emerged in Actinobacteria and are not represented in model organisms such as Escherichia coli and Bacillus subtilis. Clade-specific adaptations allow these enzymes to fulfill distinct physiological roles despite strict conservation of core catalytic residues. The characteristic differences include potential protein-protein interaction surfaces and specificity-determining residues surrounding the catalytic site. Overall, these structural insights lay the groundwork to develop improved beta-lactam therapeutics for tuberculosis.« less

  13. Subfamily-Specific Adaptations in the Structures of Two Penicillin-Binding Proteins from Mycobacterium tuberculosis

    PubMed Central

    Prigozhin, Daniil M.; Krieger, Inna V.; Huizar, John P.; Mavrici, Daniela; Waldo, Geoffrey S.; Hung, Li-Wei; Sacchettini, James C.; Terwilliger, Thomas C.; Alber, Tom

    2014-01-01

    Beta-lactam antibiotics target penicillin-binding proteins including several enzyme classes essential for bacterial cell-wall homeostasis. To better understand the functional and inhibitor-binding specificities of penicillin-binding proteins from the pathogen, Mycobacterium tuberculosis, we carried out structural and phylogenetic analysis of two predicted D,D-carboxypeptidases, Rv2911 and Rv3330. Optimization of Rv2911 for crystallization using directed evolution and the GFP folding reporter method yielded a soluble quadruple mutant. Structures of optimized Rv2911 bound to phenylmethylsulfonyl fluoride and Rv3330 bound to meropenem show that, in contrast to the nonspecific inhibitor, meropenem forms an extended interaction with the enzyme along a conserved surface. Phylogenetic analysis shows that Rv2911 and Rv3330 belong to different clades that emerged in Actinobacteria and are not represented in model organisms such as Escherichia coli and Bacillus subtilis. Clade-specific adaptations allow these enzymes to fulfill distinct physiological roles despite strict conservation of core catalytic residues. The characteristic differences include potential protein-protein interaction surfaces and specificity-determining residues surrounding the catalytic site. Overall, these structural insights lay the groundwork to develop improved beta-lactam therapeutics for tuberculosis. PMID:25551456

  14. NMR studies of conformational states of proteins involved in biosynthesis of iron-sulfur clusters

    NASA Astrophysics Data System (ADS)

    Dai, Ziqi

    Iron-sulfur (Fe-S) clusters are the most ancient and ubiquitous cofactors that exist throughout evolution. The most important biosynthetic system of the cluster in both prokaryotes and eukaryotes is the ISC system. Defects in this system can be lethal and have been associated with a number of human diseases. Previous works show that a number of proteins are involved in the [Fe-S] biosynthetic processes and the structural flexibility may play an important role. For example, it was shown that apo-IscU, the scaffold protein, from Escherichia coli populates two functionally important conformational states, one dynamically disordered (D-state) and the other more structured (S-state) (Kim et al., 2009; Kim et al., 2012c). To further investigate the characteristics and transition of the conformational states of proteins involved in this system, I performed extensive NMR studies. Here, I present the findings based on my studies of two important players of the ISC system, IscU and HscB. In this research, I find that a peptidyl-prolyl cis/trans isomerization might account for the slow step in the S-D interconversion of IscU. More specifically, P14 and P101 are trans in the S-state, but become cis in the D-state. In addition, I discover that IscU is very responsive to pH changes, and I postulate that this response is correlated to conserved histidine residues, H10 and H105. Moreover, my thermodynamic analyses reveal that the S-D equilibrium of IscU is also very sensitive to change in temperature, pressure, and amino acid sequence compared to other proteins. In the study, I also discovered a novel state of IscU, the unfolded U-state. I suspect that this state may serve as an intermediate of interconversion between IscU S-/D-states. Finally, I extended the effort to HscB, and find that it may possess more conformational flexibility than expected earlier. I postulate that this flexibility may be the cause of the line-broadening observed during interaction of HscB with Isc

  15. TEC protein tyrosine kinase is involved in the Erk signaling pathway induced by HGF

    SciTech Connect

    Li, Feifei; Jiang, Yinan; Zheng, Qiping; Yang, Xiaoming; Wang, Siying

    2011-01-07

    Research highlights: {yields} TEC is rapidly tyrosine-phosphorylated and activated by HGF-stimulation in vivo or after partial hepatectomy in mice. {yields} TEC enhances the activity of Elk and serum response element (SRE) in HGF signaling pathway in hepatocyte. {yields} TEC promotes hepatocyte proliferation through the Erk-MAPK pathway. -- Abstract: Background/aims: TEC, a member of the TEC family of non-receptor type protein tyrosine kinases, has recently been suggested to play a role in hepatocyte proliferation and liver regeneration. This study aims to investigate the putative mechanisms of TEC kinase regulation of hepatocyte differentiation, i.e. to explore which signaling pathway TEC is involved in, and how TEC is activated in hepatocyte after hepatectomy and hepatocyte growth factor (HGF) stimulation. Methods: We performed immunoprecipitation (IP) and immunoblotting (IB) to examine TEC tyrosine phosphorylation after partial hepatectomy in mice and HGF stimulation in WB F-344 hepatic cells. The TEC kinase activity was determined by in vitro kinase assay. Reporter gene assay, antisense oligonucleotide and TEC dominant negative mutant (TEC{sup KM}) were used to examine the possible signaling pathways in which TEC is involved. The cell proliferation rate was evaluated by {sup 3}H-TdR incorporation. Results: TEC phosphorylation and kinase activity were increased in 1 h after hepatectomy or HGF treatment. TEC enhanced the activity of Elk and serum response element (SRE). Inhibition of MEK1 suppressed TEC phosphorylation. Blocking TEC activity dramatically decreased the activation of Erk. Reduced TEC kinase activity also suppressed the proliferation of WB F-344 cells. These results suggest TEC is involved in the Ras-MAPK pathway and acts between MEK1 and Erk. Conclusions: TEC promotes hepatocyte proliferation and regeneration and is involved in HGF-induced Erk signaling pathway.

  16. The icmF3 locus is involved in multiple adaptation- and virulence-related characteristics in Pseudomonas aeruginosa PAO1.

    PubMed

    Lin, Jinshui; Cheng, Juanli; Chen, Keqi; Guo, Chenghao; Zhang, Weipeng; Yang, Xu; Ding, Wei; Ma, Li; Wang, Yao; Shen, Xihui

    2015-01-01

    The type VI secretion system (T6SS) is widely distributed in Gram-negative bacteria. Three separate T6SSs called H1-, H2-, and H3-T6SS have been discovered in Pseudomonas aeruginosa PAO1. Recent studies suggest that, in contrast to the H1-T6SS that targets prokaryotic cells, H2- and H3-T6SS are involved in interactions with both prokaryotic and eukaryotic cells. However, the detailed functions of T6SS components are still uncharacterized. The intracellular multiplication factor (IcmF) protein is conserved in type VI secretion systems (T6SS) of all different bacterial pathogens. Bioinformatic analysis revealed that IcmF3 in P. aeruginosa PAO1 is different from other IcmF homologs and may represent a new branch of these proteins with distinct functions. Herein, we have investigated the function of IcmF3 in this strain. We have shown that deletion of the icmF3 gene in P. aeruginosa PAO1 is associated with pleiotropic phenotypes. The icmF3 mutant has variant colony morphology and an hypergrowth phenotype in iron-limiting medium. Surprisingly, this mutant is also defective for the production of pyoverdine, as well as defects in swimming motility and virulence in a C. elegans worm model. The icmF3 mutant exhibits higher conjugation frequency than the wild type and increased biofilm formation on abiotic surfaces. Additionally, expression of two phenazine biosynthetic loci is increased in the icmF3 mutant, leading to the overproduction of pyocyanin. Finally, the mutant exhibits decreased susceptibility to aminoglycosides such as tobramycin and gentamicin. And the detected phenotypes can be restored completely or partially by trans complementation of wild type icmF3 gene. The pleiotropic effects observed upon icmF3 deletion demonstrate that icmF3 plays critical roles in both pathogenesis and environmental adaptation in P. aeruginosa PAO1. PMID:26484316

  17. The icmF3 locus is involved in multiple adaptation- and virulence-related characteristics in Pseudomonas aeruginosa PAO1

    PubMed Central

    Lin, Jinshui; Cheng, Juanli; Chen, Keqi; Guo, Chenghao; Zhang, Weipeng; Yang, Xu; Ding, Wei; Ma, Li; Wang, Yao; Shen, Xihui

    2015-01-01

    The type VI secretion system (T6SS) is widely distributed in Gram-negative bacteria. Three separate T6SSs called H1-, H2-, and H3-T6SS have been discovered in Pseudomonas aeruginosa PAO1. Recent studies suggest that, in contrast to the H1-T6SS that targets prokaryotic cells, H2- and H3-T6SS are involved in interactions with both prokaryotic and eukaryotic cells. However, the detailed functions of T6SS components are still uncharacterized. The intracellular multiplication factor (IcmF) protein is conserved in type VI secretion systems (T6SS) of all different bacterial pathogens. Bioinformatic analysis revealed that IcmF3 in P. aeruginosa PAO1 is different from other IcmF homologs and may represent a new branch of these proteins with distinct functions. Herein, we have investigated the function of IcmF3 in this strain. We have shown that deletion of the icmF3 gene in P. aeruginosa PAO1 is associated with pleiotropic phenotypes. The icmF3 mutant has variant colony morphology and an hypergrowth phenotype in iron-limiting medium. Surprisingly, this mutant is also defective for the production of pyoverdine, as well as defects in swimming motility and virulence in a C. elegans worm model. The icmF3 mutant exhibits higher conjugation frequency than the wild type and increased biofilm formation on abiotic surfaces. Additionally, expression of two phenazine biosynthetic loci is increased in the icmF3 mutant, leading to the overproduction of pyocyanin. Finally, the mutant exhibits decreased susceptibility to aminoglycosides such as tobramycin and gentamicin. And the detected phenotypes can be restored completely or partially by trans complementation of wild type icmF3 gene. The pleiotropic effects observed upon icmF3 deletion demonstrate that icmF3 plays critical roles in both pathogenesis and environmental adaptation in P. aeruginosa PAO1. PMID:26484316

  18. A Dopamine- and Protein Kinase A-Dependent Mechanism for Network Adaptation in Retinal Ganglion Cells

    PubMed Central

    Vaquero, C. F.; Pignatelli, A.; Partida, G. J.; Ishida, A. T.

    2011-01-01

    Vertebrates can detect light intensity changes in vastly different photic environments, in part, because post-receptoral neurons undergo “network adaptation”. Previous data implicated dopaminergic, cAMP-dependent inhibition of retinal ganglion cells in this process, yet left unclear how this occurs, and whether this occurs in darkness versus light. To test for light- and dopamine-dependent changes in ganglion cell cAMP levels in situ, we immunostained dark- and light-adapted retinas with anti-cAMP antisera, in the presence and absence of various dopamine receptor ligands. To test for direct effects of dopamine receptor ligands and membrane-permeable protein kinase ligands on ganglion cell excitability, we recorded spikes from isolated ganglion cells in perforated-patch whole-cell mode, before and during application of these agents by microperfusion. Our immunostainings show that light, endogenous dopamine, and exogenous dopamine elevate ganglion cell cAMP levels in situ by activating D1-type dopamine receptors. Our spike recordings show that D1-type agonists and 8-bromo cAMP reduce spike frequency and curtail sustained spike firing, and that these effects entail protein kinase A activation. These effects resemble those of background light on ganglion cell responses to light flashes. Network adaptation could thus be produced, to some extent, by dopaminergic modulation of ganglion cell spike generation, a mechanism distinct from modulation of transmitter release onto ganglion cells or of transmitter-gated currents in ganglion cells. Combining these observations, with results obtained in studies of photoreceptor, bipolar, and horizontal cells, indicates that all three layers of neurons in the retina are equipped with mechanisms for adaptation to ambient light. PMID:11606650

  19. Role of the cellular prion protein in the neuron adaptation strategy to copper deficiency.

    PubMed

    Urso, Emanuela; Manno, Daniela; Serra, Antonio; Buccolieri, Alessandro; Rizzello, Antonia; Danieli, Antonio; Acierno, Raffaele; Salvato, Benedetto; Maffia, Michele

    2012-08-01

    Copper transporter 1 (CTR1), cellular prion protein (PrP(C)), natural resistance-associated macrophage protein 2 (NRAMP2) and ATP7A proteins control the cell absorption and efflux of copper (Cu) ions in nervous tissues upon physiological conditions. Little is known about their regulation under reduced Cu availability, a condition underlying the onset of diffused neurodegenerative disorders. In this study, rat neuron-like cells were exposed to Cu starvation for 48 h. The activation of Caspase-3 enzymes and the impairment of Cu,Zn superoxide dismutase (Cu,Zn SOD) activity depicted the initiation of a pro-apoptotic program, preliminary to the appearance of the morphological signs of apoptosis. The transcriptional response related to Cu transport proteins has been investigated. Notably, PrP(C) transcript and protein levels were consistently elevated upon Cu deficiency. The CTR1 protein amount was stable, despite a two-fold increase in the transcript amount, meaning the activation of post-translational regulatory mechanisms. NRAMP2 and ATP7A expressions were unvaried. The up-regulated PrP(C) has been demonstrated to enhance the cell Cu uptake ability by about 50% with respect to the basal transport, and so sustain the Cu delivery to the Cu,Zn SOD cuproenzymes. Conclusively, the study suggests a pivotal role for PrP(C) in the cell adaptation to Cu limitation through a direct activity of ion uptake. In this view, the PrP(C) accumulation observed in several cancer cell lines could be interpreted as a molecular marker of cell Cu deficiency and a potential target of therapeutic interventions against disorders caused by metal imbalances. PMID:22362149

  20. AN ODORANT-BINDING PROTEIN INVOLVED IN PERCEPTION OF HOST PLANT ODORANTS IN LOCUST Locusta migratoria.

    PubMed

    Li, Jia; Zhang, Long; Wang, Xiaoqi

    2016-04-01

    Locusts, Locusta migratoria (Orthoptera: Acrididae), are extremely destructive agricultural pests, but very little is known of their molecular aspects of perception to host plant odorants including related odorant-binding proteins (OBPs), though several OBPs have been identified in locust. To elucidate the function of LmigOBP1, the first OBP identified from locust, RNA interference was employed in this study to silence LmigOBP1, which was achieved by injection of dsRNA targeting LmigOBP1 into the hemolymph of male nymphs. Compared with LmigOBP1 normal nymphs, LmigOBP1 knockdown nymphs significantly decreased food (maize leaf, Zea mays) consumption and electro-antennography responses to five maize leaf volatiles, ((Z)-3-hexenol, linalool, nonanal, decanal, and (Z)-3-hexenyl acetate). These suggest that LmigOBP1 is involved in perception of host plant odorants. PMID:26864243

  1. The collagen-binding protein of Streptococcus mutans is involved in haemorrhagic stroke

    PubMed Central

    Nakano, Kazuhiko; Hokamura, Kazuya; Taniguchi, Naho; Wada, Koichiro; Kudo, Chiho; Nomura, Ryota; Kojima, Ayuchi; Naka, Shuhei; Muranaka, Yoshinori; Thura, Min; Nakajima, Atsushi; Masuda, Katsuhiko; Nakagawa, Ichiro; Speziale, Pietro; Shimada, Nobumitsu; Amano, Atsuo; Kamisaki, Yoshinori; Tanaka, Tokutaro; Umemura, Kazuo; Ooshima, Takashi

    2011-01-01

    Although several risk factors for stroke have been identified, one-third remain unexplained. Here we show that infection with Streptococcus mutans expressing collagen-binding protein (CBP) is a potential risk factor for haemorrhagic stroke. Infection with serotype k S. mutans, but not a standard strain, aggravates cerebral haemorrhage in mice. Serotype k S. mutans accumulates in the damaged, but not the contralateral hemisphere, indicating an interaction of bacteria with injured blood vessels. The most important factor for high-virulence is expression of CBP, which is a common property of most serotype k strains. The detection frequency of CBP-expressing S. mutans in haemorrhagic stroke patients is significantly higher than in control subjects. Strains isolated from haemorrhagic stroke patients aggravate haemorrhage in a mouse model, indicating that they are haemorrhagic stroke-associated. Administration of recombinant CBP causes aggravation of haemorrhage. Our data suggest that CBP of S. mutans is directly involved in haemorrhagic stroke. PMID:21952219

  2. Charged MVB protein 5 is involved in T-cell receptor signaling

    PubMed Central

    Wi, Sae Mi; Min, Yoon; Lee, Ki-Young

    2016-01-01

    Charged multivesicular body protein 5 (CHMP5) has a key role in multivesicular body biogenesis and a critical role in the downregulation of signaling pathways through receptor degradation. However, the role of CHMP5 in T-cell receptor (TCR)–mediated signaling has not been previously investigated. In this study, we utilized a short hairpin RNA-based RNA interference approach to investigate the functional role of CHMP5. Upon TCR stimulation, CHMP5-knockdown (CHMP5KD) Jurkat T cells exhibited activation of TCR downstream signaling molecules, such as PKCθ and IKKαβ, and resulted in the activation of nuclear factor-κB and the marked upregulation of TCR-induced gene expression. Moreover, we found that activator protein-1 and nuclear factor of activated T-cells transcriptional factors were markedly activated in CHMP5KD Jurkat cells in response to TCR stimulation, which led to a significant increase in interleukin-2 secretion. Biochemical studies revealed that CHMP5 endogenously forms high-molecular-weight complexes, including TCR molecules, and specifically interacts with TCRβ. Interestingly, flow cytometry analysis also revealed that CHMP5KD Jurkat T cells exhibit upregulation of TCR expression on the cell surface compared with control Jurkat T cells. Taken together, these findings demonstrated that CHMP5 might be involved in the homeostatic regulation of TCR on the cell surface, presumably through TCR recycling or degradation. Thus CHMP5 is implicated in TCR-mediated signaling. PMID:26821576

  3. Hepatitis B virus-induced calreticulin protein is involved in IFN resistance.

    PubMed

    Yue, Xin; Wang, Hui; Zhao, Fanpeng; Liu, Shi; Wu, Jianguo; Ren, Wendan; Zhu, Ying

    2012-07-01

    IFN-α is a widely used treatment for hepatitis B virus (HBV) infection, and IFN resistance caused by viral and/or host factors is currently a challenging clinical problem. A better understanding of the molecular mechanisms underlying IFN immunotherapy in the treatment of viral infection would be very beneficial clinically and is of immense clinical importance. Calreticulin (CRT) is an endoplasmic reticulum luminal calcium-binding chaperone that is involved in the regulation of calcium homoeostasis, the folding of newly synthesized proteins, and many other cellular functions. However, little is known about the role of CRT in HBV infection. In this study, we observed high levels of CRT expression in the sera and PBMCs of patients with HBV relative to those of healthy individuals. HBV upregulated the expression of CRT at the transcriptional level. Further investigation showed that HBV-induced CRT enhanced HBV replication by antagonizing the IFN pathway. CRT suppressed the production of endogenous IFN-α by reducing the nuclear translocation of IFN regulatory factor-7 but not IFN regulatory factor-3. Furthermore, CRT also suppressed the antiviral activity of IFN-α by inhibiting the phosphorylation of STAT1 and decreasing the expression of two IFN-α downstream effectors, protein kinase R and 2',5'-oligoadenylate synthetase. Our results offer new insights into the pathogenesis of HBV infection and may provide potential targets for anti-HBV therapy. PMID:22661095

  4. Simiate is an Actin binding protein involved in filopodia dynamics and arborization of neurons

    PubMed Central

    Derlig, Kristin; Ehrhardt, Toni; Gießl, Andreas; Brandstätter, Johann H.; Enz, Ralf; Dahlhaus, Regina

    2014-01-01

    The Actin cytoskeleton constitutes the functional base for a multitude of cellular processes extending from motility and migration to cell mechanics and morphogenesis. The latter is particularly important to neuronal cells since the accurate functioning of the brain crucially depends on the correct arborization of neurons, a process that requires the formation of several dozens to hundreds of dendritic branches. Recently, a model was proposed where different transcription factors are detailed to distinct facets and phases of dendritogenesis and exert their function by acting on the Actin cytoskeleton, however, the proteins involved as well as the underlying molecular mechanisms are largely unknown. Here, we demonstrate that Simiate, a protein previously indicated to activate transcription, directly associates with both, G- and F-Actin and in doing so, affects Actin polymerization and Actin turnover in living cells. Imaging studies illustrate that Simiate particularly influences filopodia dynamics and specifically increases the branching of proximal, but not distal dendrites of developing neurons. The data suggests that Simiate functions as a direct molecular link between transcription regulation on one side, and dendritogenesis on the other, wherein Simiate serves to coordinate the development of proximal and distal dendrites by acting on the Actin cytoskeleton of filopodia and on transcription regulation, hence supporting the novel model. PMID:24782708

  5. A Wiskott-Aldrich syndrome protein is involved in endocytosis in Aspergillus nidulans.

    PubMed

    Hoshi, Hiro-Omi; Zheng, Lu; Ohta, Akinori; Horiuchi, Hiroyuki

    2016-09-01

    Endocytosis is vital for hyphal tip growth in filamentous fungi and is involved in the tip localization of various membrane proteins. To investigate the function of a Wiskott-Aldrich syndrome protein (WASP) in endocytosis of filamentous fungi, we identified a WASP ortholog-encoding gene, wspA, in Aspergillus nidulans and characterized it. The wspA product, WspA, localized to the tips of germ tubes during germination and actin rings in the subapical regions of mature hyphae. wspA is essential for the growth and functioned in the polarity establishment and maintenance during germination of conidia. We also investigated its function in endocytosis and revealed that endocytosis of SynA, a synaptobrevin ortholog that is known to be endocytosed at the subapical regions of hyphal tips in A. nidulans, did not occur when wspA expression was repressed. These results suggest that WspA plays roles in endocytosis at hyphal tips and polarity establishment during germination. PMID:26927610

  6. Increased protein nitration in mitochondrial diseases: evidence for vessel wall involvement.

    PubMed

    Vattemi, Gaetano; Mechref, Yehia; Marini, Matteo; Tonin, Paola; Minuz, Pietro; Grigoli, Laura; Guglielmi, Valeria; Klouckova, Iveta; Chiamulera, Cristiano; Meneguzzi, Alessandra; Di Chio, Marzia; Tedesco, Vincenzo; Lovato, Laura; Degan, Maurizio; Arcaro, Guido; Lechi, Alessandro; Novotny, Milos V; Tomelleri, Giuliano

    2011-04-01

    Mitochondrial diseases (MD) are heterogeneous disorders because of impairment of respiratory chain function leading to oxidative stress. We hypothesized that in MD the vascular endothelium may be affected by increased oxidative/nitrative stress causing a reduction of nitric oxide availability. We therefore, investigated the pathobiology of vasculature in MD patients by assaying the presence of 3-nitrotyrosine in muscle biopsies followed by the proteomic identification of proteins which undergo tyrosine nitration. We then measured the flow-mediated vasodilatation as a proof of altered nitric oxide generation/bioactivity. Here, we show that 3-nitrotyrosine staining is specifically located in the small vessels of muscle tissue and that the reaction is stronger and more evident in a significant percentage of vessels from MD patients as compared with controls. Eleven specific proteins which are nitrated under pathological conditions were identified; most of them are involved in energy metabolism and are located mainly in mitochondria. In MD patients the flow-mediated vasodilatation was reduced whereas baseline arterial diameters, blood flow velocity and endothelium-independent vasodilatation were similar to controls. The present results provide evidence that in MD the vessel wall is a target of increased oxidative/nitrative stress. PMID:21156839

  7. The Ku70 DNA-repair protein is involved in centromere function in a grasshopper species.

    PubMed

    Cabrero, Josefa; Bakkali, Mohammed; Navarro-Domínguez, Beatriz; Ruíz-Ruano, Francisco J; Martín-Blázquez, Rubén; López-León, María Dolores; Camacho, Juan Pedro M

    2013-06-25

    The Ku70 protein is involved in numerous cell functions, the nonhomologous end joining (NHEJ) DNA repair pathway being the best known. Here, we report a novel function for this protein in the grasshopper Eyprepocnemis plorans. We observed the presence of large Ku70 foci on the centromeres of meiotic and mitotic chromosomes during the cell cycle stages showing the highest centromeric activity (i.e., metaphase and anaphase). The fact that colchicine treatment prevented centromeric location of Ku70, suggests a microtubule-dependent centromeric function for Ku70. Likewise, the absence of Ku70 at metaphase-anaphase centromeres from three males whose Ku70 gene had been knocked down using interference RNA, and the dramatic increase in the frequency of polyploid spermatids observed in these males, suggest that the centromeric presence of Ku70 is required for normal cytokinesis in this species. The centromeric function of Ku70 was not observed in 14 other grasshopper and locust species, or in the mouse, thus suggesting that it is an autapomorphy in E. plorans. PMID:23797468

  8. Identification of novel residues involved in nuclear localization of a baculovirus polyhedrin protein.

    PubMed

    Katsuma, S; Deng, D X; Zhou, C L; Iwanaga, M; Noguchi, Y; Kobayashi, M; Maeda, S

    2000-10-01

    A baculovirus polyhedrin protein has proven to possess a nuclear localization signal (NLS) sequence and a domain required for supramolecular assembly. Here we investigated five Bombyx mori nucleopolyhedrovirus (BmNPV) mutants that did not produce polyhedra. Two of five mutants were generated during routine baculoviral expression vector screening, and three were isolated by treatment with the mutagen 5-bromo-2'-deoxyuridine (BrdU). Marker rescue mapping and nucleotide sequence analysis showed that mutations in the polyhedrin gene caused the altered phenotype of these mutants. Biochemical fractionation indicated that cells infected with these mutants exhibited polyhedrin protein in both the nucleus and the cytoplasm. Electron microscopic observation revealed that polyhedrin produced by these mutants ocurred in both the nucleus and the cytoplasm, but did not form a crystalline lattice. Despite the incompleteness of polyhedrin nuclear localization, the NLSs of the five mutants were unchanged, although some of the mutations occurred within residues just outside of the domain reported to be required for polyhedron assembly (4). This result suggests that (a) the polyhedrin NLS directs polyhedrin to the nucleus, but the efficiency of this localization is regulated by regions other than the NLS (probably, polyhedrin conformation and its association with the nucleus are also involved), and (b) formation of a crystalline lattice may also be determined by several domains within polyhedrin. PMID:11129641

  9. Cellular COPII Proteins Are Involved in Production of the Vesicles That Form the Poliovirus Replication Complex

    PubMed Central

    Rust, René C.; Landmann, Lukas; Gosert, Rainer; Tang, Bor Luen; Hong, Wanjin; Hauri, Hans-Peter; Egger, Denise; Bienz, Kurt

    2001-01-01

    Poliovirus (PV) replicates its genome in association with membranous vesicles in the cytoplasm of infected cells. To elucidate the origin and mode of formation of PV vesicles, immunofluorescence labeling with antibodies against the viral vesicle marker proteins 2B and 2BC, as well as cellular markers of the endoplasmic reticulum (ER), anterograde transport vesicles, and the Golgi complex, was performed in BT7-H cells. Optical sections obtained by confocal laser scanning microscopy were subjected to a deconvolution process to enhance resolution and signal-to-noise ratio and to allow for a three-dimensional representation of labeled membrane structures. The mode of formation of the PV vesicles was, on morphological grounds, similar to the formation of anterograde membrane traffic vesicles in uninfected cells. ER-resident membrane markers were excluded from both types of vesicles, and the COPII components Sec13 and Sec31 were both found to be colocalized on the vesicular surface, indicating the presence of a functional COPII coat. PV vesicle formation during early time points of infection did not involve the Golgi complex. The expression of PV protein 2BC or the entire P2 and P3 genomic region led to the production of vesicles carrying a COPII coat and showing the same mode of formation as vesicles produced after PV infection. These results indicate that PV vesicles are formed at the ER by the cellular COPII budding mechanism and thus are homologous to the vesicles of the anterograde membrane transport pathway. PMID:11559814

  10. Charged MVB protein 5 is involved in T-cell receptor signaling.

    PubMed

    Wi, Sae Mi; Min, Yoon; Lee, Ki-Young

    2016-01-01

    Charged multivesicular body protein 5 (CHMP5) has a key role in multivesicular body biogenesis and a critical role in the downregulation of signaling pathways through receptor degradation. However, the role of CHMP5 in T-cell receptor (TCR)-mediated signaling has not been previously investigated. In this study, we utilized a short hairpin RNA-based RNA interference approach to investigate the functional role of CHMP5. Upon TCR stimulation, CHMP5-knockdown (CHMP5(KD)) Jurkat T cells exhibited activation of TCR downstream signaling molecules, such as PKCθ and IKKαβ, and resulted in the activation of nuclear factor-κB and the marked upregulation of TCR-induced gene expression. Moreover, we found that activator protein-1 and nuclear factor of activated T-cells transcriptional factors were markedly activated in CHMP5(KD) Jurkat cells in response to TCR stimulation, which led to a significant increase in interleukin-2 secretion. Biochemical studies revealed that CHMP5 endogenously forms high-molecular-weight complexes, including TCR molecules, and specifically interacts with TCRβ. Interestingly, flow cytometry analysis also revealed that CHMP5(KD) Jurkat T cells exhibit upregulation of TCR expression on the cell surface compared with control Jurkat T cells. Taken together, these findings demonstrated that CHMP5 might be involved in the homeostatic regulation of TCR on the cell surface, presumably through TCR recycling or degradation. Thus CHMP5 is implicated in TCR-mediated signaling. PMID:26821576

  11. Increased Protein Nitration in Mitochondrial Diseases: Evidence for Vessel Wall Involvement

    PubMed Central

    Vattemi, Gaetano; Mechref, Yehia; Marini, Matteo; Tonin, Paola; Minuz, Pietro; Grigoli, Laura; Guglielmi, Valeria; Klouckova, Iveta; Chiamulera, Cristiano; Meneguzzi, Alessandra; Di Chio, Marzia; Tedesco, Vincenzo; Lovato, Laura; Degan, Maurizio; Arcaro, Guido; Lechi, Alessandro; Novotny, Milos V.; Tomelleri, Giuliano

    2011-01-01

    Mitochondrial diseases (MD) are heterogeneous disorders because of impairment of respiratory chain function leading to oxidative stress. We hypothesized that in MD the vascular endothelium may be affected by increased oxidative/nitrative stress causing a reduction of nitric oxide availability. We therefore, investigated the pathobiology of vasculature in MD patients by assaying the presence of 3-nitrotyrosine in muscle biopsies followed by the proteomic identification of proteins which undergo tyrosine nitration. We then measured the flow-mediated vasodilatation as a proof of altered nitric oxide generation/bioactivity. Here, we show that 3-nitrotyrosine staining is specifically located in the small vessels of muscle tissue and that the reaction is stronger and more evident in a significant percentage of vessels from MD patients as compared with controls. Eleven specific proteins which are nitrated under pathological conditions were identified; most of them are involved in energy metabolism and are located mainly in mitochondria. In MD patients the flow-mediated vasodilatation was reduced whereas baseline arterial diameters, blood flow velocity and endothelium-independent vasodilatation were similar to controls. The present results provide evidence that in MD the vessel wall is a target of increased oxidative/nitrative stress. PMID:21156839

  12. Equatorial Segment Protein (ESP) Is a Human Alloantigen Involved in Sperm-Egg Binding and Fusion

    PubMed Central

    Wolkowicz, M. J.; Digilio, L.; Klotz, K.; Shetty, J.; Flickinger, C. J.; Herr, J. C.

    2010-01-01

    The equatorial segment of the sperm head is known to play a role in fertilization; however, the specific sperm molecules contributing to the integrity of the equatorial segment and in binding and fusion at the oolemma remain incomplete. Moreover, identification of molecular mediators of fertilization that are also immunogenic in humans is predicted to advance both the diagnosis and treatment of immune infertility. We previously reported the cloning of Equatorial Segment Protein (ESP), a protein localized to the equatorial segment of ejaculated human sperm. ESP is a biomarker for a subcompartment of the acrosomal matrix that can be traced through all stages of acrosome biogenesis (Wolkowicz et al, 2003). In the present study, ESP immunoreacted on Western blots with 4 (27%) of 15 antisperm antibody (ASA)–positive serum samples from infertile male patients and 2 (40%) of 5 ASA-positive female sera. Immunofluorescent studies revealed ESP in the equatorial segment of 89% of acrosome-reacted sperm. ESP persisted as a defined equatorial segment band on 100% of sperm tightly bound to the oolemma of hamster eggs. Antisera to recombinant human ESP inhibited both oolemmal binding and fusion of human sperm in the hamster egg penetration assay. The results indicate that ESP is a human alloantigen involved in sperm-egg binding and fusion. Defined recombinant sperm immunogens, such as ESP, may offer opportunities for differential diagnosis of immune infertility. PMID:17978344

  13. Small G proteins in peroxisome biogenesis: the potential involvement of ADP-ribosylation factor 6

    PubMed Central

    2009-01-01

    Background Peroxisomes execute diverse and vital functions in virtually every eukaryote. New peroxisomes form by budding from pre-existing organelles or de novo by vesiculation of the ER. It has been suggested that ADP-ribosylation factors and COPI coatomer complexes are involved in these processes. Results Here we show that all viable Saccharomyces cerevisiae strains deficient in one of the small GTPases which have an important role in the regulation of vesicular transport contain functional peroxisomes, and that the number of these organelles in oleate-grown cells is significantly upregulated in the arf1 and arf3 null strains compared to the wild-type strain. In addition, we provide evidence that a portion of endogenous Arf6, the mammalian orthologue of yeast Arf3, is associated with the cytoplasmic face of rat liver peroxisomes. Despite this, ablation of Arf6 did neither influence the regulation of peroxisome abundance nor affect the localization of peroxisomal proteins in cultured fetal hepatocytes. However, co-overexpression of wild-type, GTP hydrolysis-defective or (dominant-negative) GTP binding-defective forms of Arf1 and Arf6 caused mislocalization of newly-synthesized peroxisomal proteins and resulted in an alteration of peroxisome morphology. Conclusion These observations suggest that Arf6 is a key player in mammalian peroxisome biogenesis. In addition, they also lend strong support to and extend the concept that specific Arf isoform pairs may act in tandem to regulate exclusive trafficking pathways. PMID:19686593

  14. Adaptive GDDA-BLAST: Fast and Efficient Algorithm for Protein Sequence Embedding

    PubMed Central

    Hong, Yoojin; Kang, Jaewoo; Lee, Dongwon; van Rossum, Damian B.

    2010-01-01

    A major computational challenge in the genomic era is annotating structure/function to the vast quantities of sequence information that is now available. This problem is illustrated by the fact that most proteins lack comprehensive annotations, even when experimental evidence exists. We previously theorized that embedded-alignment profiles (simply “alignment profiles” hereafter) provide a quantitative method that is capable of relating the structural and functional properties of proteins, as well as their evolutionary relationships. A key feature of alignment profiles lies in the interoperability of data format (e.g., alignment information, physio-chemical information, genomic information, etc.). Indeed, we have demonstrated that the Position Specific Scoring Matrices (PSSMs) are an informative M-dimension that is scored by quantitatively measuring the embedded or unmodified sequence alignments. Moreover, the information obtained from these alignments is informative, and remains so even in the “twilight zone” of sequence similarity (<25% identity) [1]–[5]. Although our previous embedding strategy was powerful, it suffered from contaminating alignments (embedded AND unmodified) and high computational costs. Herein, we describe the logic and algorithmic process for a heuristic embedding strategy named “Adaptive GDDA-BLAST.” Adaptive GDDA-BLAST is, on average, up to 19 times faster than, but has similar sensitivity to our previous method. Further, data are provided to demonstrate the benefits of embedded-alignment measurements in terms of detecting structural homology in highly divergent protein sequences and isolating secondary structural elements of transmembrane and ankyrin-repeat domains. Together, these advances allow further exploration of the embedded alignment data space within sufficiently large data sets to eventually induce relevant statistical inferences. We show that sequence embedding could serve as one of the vehicles for measurement of

  15. Quantitative characterization of protein–protein complexes involved in base excision DNA repair

    PubMed Central

    Moor, Nina A.; Vasil'eva, Inna A.; Anarbaev, Rashid O.; Antson, Alfred A.; Lavrik, Olga I.

    2015-01-01

    Base Excision Repair (BER) efficiently corrects the most common types of DNA damage in mammalian cells. Step-by-step coordination of BER is facilitated by multiple interactions between enzymes and accessory proteins involved. Here we characterize quantitatively a number of complexes formed by DNA polymerase β (Polβ), apurinic/apyrimidinic endonuclease 1 (APE1), poly(ADP-ribose) polymerase 1 (PARP1), X-ray repair cross-complementing protein 1 (XRCC1) and tyrosyl-DNA phosphodiesterase 1 (TDP1), using fluorescence- and light scattering-based techniques. Direct physical interactions between the APE1-Polβ, APE1-TDP1, APE1-PARP1 and Polβ-TDP1 pairs have been detected and characterized for the first time. The combined results provide strong evidence that the most stable complex is formed between XRCC1 and Polβ. Model DNA intermediates of BER are shown to induce significant rearrangement of the Polβ complexes with XRCC1 and PARP1, while having no detectable influence on the protein–protein binding affinities. The strength of APE1 interaction with Polβ, XRCC1 and PARP1 is revealed to be modulated by BER intermediates to different extents, depending on the type of DNA damage. The affinity of APE1 for Polβ is higher in the complex with abasic site-containing DNA than after the APE1-catalyzed incision. Our findings advance understanding of the molecular mechanisms underlying coordination and regulation of the BER process. PMID:26013813

  16. Involvement of Arabidopsis RACK1 in Protein Translation and Its Regulation by Abscisic Acid

    SciTech Connect

    Guo, Jianjun; Wang, Shucai; Valerius, Oliver; Hall, Hardy; Zeng, Qingning; Li, Jian-Feng; Weston, David; Ellis, Brian; Chen, Jay

    2011-01-01

    Earlier studies have shown that RACK1 functions as a negative regulator of ABA responses in Arabidopsis, but the molecular mechanism of the action of RACK1 in these processes remains elusive. Global gene expression profiling revealed that approximately 40% of the genes affected by ABA treatment were affected in a similar manner by the rack1 mutation, supporting the view that RACK1 is an important regulator of ABA responses. On the other hand, co-expression analysis revealed that >80% of the genes co-expressed with RACK1 encode ribosome proteins, implying a close relationship between RACK1 s function and the ribosome complex. These results implied that the regulatory role for RACK1 in ABA responses may be partially due to its putative function in protein translation, which is one of the major cellular processes that mammalian and yeast RACK1 is involved in. Consistently, all three Arabidopsis RACK1 homologous genes, namely RACK1A, RACK1B and RACK1C, complemented the growth defects of the S. cerevisiae cpc2/rack1 mutant. In addition, RACK1 physically interacts with Arabidopsis Eukaryotic Initiation Factor 6 (eIF6), whose mammalian homologue is a key regulator of 80S ribosome assembly. Moreover, rack1 mutants displayed hypersensitivity to anisomycin, an inhibitor of protein translation, and displayed characteristics of impaired 80S functional ribosome assembly and 60S ribosomal subunit biogenesis in a ribosome profiling assay. Gene expression analysis revealed that ABA inhibits the expression of both RACK1 and eIF6. Taken together, these results suggest that RACK1 may be required for normal production of 60S and 80S ribosomes and that its action in these processes may be regulated by ABA.

  17. Cotton photosynthesis-related PSAK1 protein is involved in plant response to aphid attack.

    PubMed

    Zhang, Jian-Min; Huang, Geng-Qing; Li, Yang; Zheng, Yong; Li, Xue-Bao

    2014-05-01

    It is believed that hundreds of genes, including photosynthesis-related genes, are typically involved in plant response to aphid feeding. Up to now, however, it is little known on the relationship between the photosynthesis-related genes and plant response to herbivores. In this study, we identified a cotton photosynthesis-related gene (GhPSAK1) which belongs to PSI-PSAK family and encodes a putative protein of 162 amino acids. RT-PCR analysis revealed that GhPSAK1 transcripts in leaves were increased at 12-24 h, but decreased at 48-72 h after cotton aphid attack or wounding induction. Choice assay and no-choice assay demonstrated that overexpression of GhPSAK1 in Arabidopsis improved plant tolerance to green peach aphids (Myzus persicae). The defense response genes related to salicylic acid signaling pathway were enhanced in the GhPSAK1 overexpressing transgenic plants. In addition, the callose amount in transgenic Arabidopsis leaves was more than that of wild type. Contents of the soluble sugars and total amino acids were also altered in leaves of transgenic Arabidopsis plants. Activities of superoxide dismutase and peroxidase in transgenic leaves were higher than those of wild type. These results suggested that GhPSAK1 may be involved in regulation of cotton response and tolerance to aphid attack. PMID:24469731

  18. Involvement of calcitonin gene-related peptide and receptor component protein in experimental autoimmune encephalomyelitis

    PubMed Central

    Sardi, Claudia; Zambusi, Laura; Finardi, Annamaria; Ruffini, Francesca; Tolun, Adviye A.; Dickerson, Ian M.; Righi, Marco; Zacchetti, Daniele; Grohovaz, Fabio; Provini, Luciano; Furlan, Roberto; Morara, Stefano

    2015-01-01

    Calcitonin Gene-Related Peptide (CGRP) inhibits microglia inflammatory activation in vitro. We here analyzed the involvement of CGRP and Receptor Component Protein (RCP) in experimental autoimmune encephalomyelitis (EAE). Alpha-CGRP deficiency increased EAE scores which followed the scale alpha-CGRP null > heterozygote > wild type. In wild type mice, CGRP delivery into the cerebrospinal fluid (CSF) 1) reduced chronic EAE (C-EAE) signs, 2) inhibited microglia activation (revealed by quantitative shape analysis), and 3) did not alter GFAP expression, cell density, lymphocyte infiltration, and peripheral lymphocyte production of IFN-gamma, TNF-alpha, IL-17, IL-2, and IL-4. RCP (probe for receptor involvement) was expressed in white matter microglia, astrocytes, oligodendrocytes, and vascular-endothelial cells: in EAE, also in infiltrating lymphocytes. In relapsing–remitting EAE (R-EAE) RCP increased during relapse, without correlation with lymphocyte density. RCP nuclear localization (stimulated by CGRP in vitro) was I) increased in microglia and decreased in astrocytes (R-EAE), and II) increased in microglia by CGRP CSF delivery (C-EAE). Calcitonin like receptor was rarely localized in nuclei of control and relapse mice. CGRP increased in motoneurons. In conclusion, CGRP can inhibit microglia activation in vivo in EAE. CGRP and its receptor may represent novel protective factors in EAE, apparently acting through the differential cell-specific intracellular translocationof RCP. PMID:24746422

  19. Evidence for the involvement of the CXCL12 system in the adaptation of skeletal muscles to physical exercise.

    PubMed

    Puchert, Malte; Adams, Volker; Linke, Axel; Engele, Jürgen

    2016-09-01

    The chemokine CXCL12 and its primary receptor, CXCR4, not only promote developmental myogenesis, but also muscle regeneration. CXCL12 chemoattracts CXCR4-positive satellite cells/blood-borne progenitors to the injured muscle, promotes myoblast fusion, partially with existing myofibers, and induces angiogenesis in regenerating muscles. Interestingly, the mechanisms underlying muscle regeneration are in part identical to those involved in muscular adaptation to intensive physical exercise. These similarities now prompted us to determine whether physical exercise would impact the CXCL12 system in skeletal muscle. We found that CXCL12 and CXCR4 are upregulated in the gastrocnemius muscle of rats that underwent a four-week period of constrained daily running exercise on a treadmill. Double-staining experiments confirmed that CXCL12 and CXCR4 are predominantly expressed in MyHC-positive muscle fibers. Moreover, these training-dependent increases in CXCL12 and CXCR4 expression also occurred in rats with surgical coronary artery occlusion, implying that the muscular CXCL12 system is still active in skeletal myopathy resulting from chronic heart failure. Expression of the second CXCL12 receptor, CXCR7, which presumably acts as a scavenger receptor in muscle, was not affected by training. Attempts to dissect the molecular events underlying the training-dependent effects of CXCL12 revealed that the CXCL12-CXCR4 axis activates anabolic mTOR-p70S6K signaling and prevents upregulation of the catabolic ubiquitin ligase MurF-1 in C2C12 myotubes, eventually increasing myotube diameters. Together, these findings point to a pivotal role of the CXCL12-CXCR4 axis in exercise-induced muscle maintenance and/or growth. PMID:27237374

  20. Adapting and implementing an evidence-based treatment with justice-involved adolescents: the example of multidimensional family therapy.

    PubMed

    Liddle, Howard A

    2014-09-01

    For over four decades family therapy research and family centered evidence-based therapies for justice-involved youths have played influential roles in changing policies and services for these young people and their families. But research always reveals challenges as well as advances. To be sure, demonstration that an evidence-based therapy yields better outcomes than comparison treatments or services as usual is an accomplishment. But the extraordinary complexity embedded in that assertion feels tiny relative to what we are now learning about the so-called transfer of evidence-based treatments to real world practice settings. Today's family therapy studies continue to assess outcome with diverse samples and presenting problems, but research and funding priorities also include studying particular treatments in nonresearch settings. Does an evidence-based intervention work as well in a community clinic, with clinic personnel? How much of a treatment has to change to be accepted and implemented in a community clinic? Perhaps it is the setting and existing procedures that have to change? And, in those cases, do accommodations to the context compromise outcomes? Thankfully, technology transfer notions gave way to more systemic, dynamic, and frankly, more family therapy-like conceptions of the needed process. Implementation science became the more sensible, as well as the theoretically and empirically stronger overarching framework within which the evidence-based family based therapies now operate. Using the example of Multidimensional Family Therapy, this article discusses treatment development, refinement, and implementation of that adapted approach in a particular clinical context-a sector of the juvenile justice system-juvenile detention. PMID:25099536

  1. Identification of Proteins Secreted into the Medium by Human Lymphocytes Irradiated in Vitro with or Without Adaptive Environments

    PubMed Central

    Rithidech, Kanokporn Noy; Lai, Xianyin; Honikel, Louise; Reungpatthanaphong, Paiboon; Witzmann, Frank A.

    2013-01-01

    There is increasing evidence to support the hypothesis of adaptive response, a phenomenon in which protection arises from a low-dose radiation (<0.1 Gy) against damage induced by subsequent exposure to high-dose radiation. The molecular mechanisms underlying such protection are poorly understood. The goal of this study was to fill this knowledge gap. Mass spectrometry-based proteomics was used to characterize global protein expression profiles in the medium collected from human lymphocyte cultures given sham irradiation (0 Gy) or a priming low dose of 0.03 Gy 137Cs γ rays 4 h prior to a challenging dose of 1 Gy 137Cs γ rays. Adaptive response was determined by decreased micronucleus frequencies in lymphocytes receiving low dose irradiation prior to high dose irradiation compared to those receiving only high dose irradiation. Adaptive response was found in these experiments. Proteomic analysis of media revealed: (a) 55 proteins with similar abundance in both groups; (b) 23 proteins in both groups, but 7 of them were high abundance in medium with adaptive environment, while 16 high abundance proteins were in medium without adaptive environment; (c) 17 proteins in medium with adaptive environment only; and (d) 8 proteins in medium without adaptive environment only. The results provide a foundation for improving understanding of the molecular mechanisms associated with the beneficial effects of low dose radiation that, in turn, will have an important impact on radiation risk estimation. Hence, these studies are highly relevant to radiation protection due to an increased use of low dose radiation in daily life (e.g., medical diagnosis or airport safety) or an unavoidable exposure to low level background radiation. PMID:22134077

  2. Adaptation of HepG2 cells to a steady-state reduction in the content of protein phosphatase 6 (PP6) catalytic subunit

    SciTech Connect

    Boylan, Joan M.; Salomon, Arthur R.; Tantravahi, Umadevi; Gruppuso, Philip A.

    2015-07-15

    Protein phosphatase 6 (PP6) is a ubiquitous Ser/Thr phosphatase involved in an array of cellular processes. To assess the potential of PP6 as a therapeutic target in liver disorders, we attenuated expression of the PP6 catalytic subunit in HepG2 cells using lentiviral-transduced shRNA. Two PP6 knock-down (PP6KD) cell lines (90% reduction of PP6-C protein content) were studied in depth. Both proliferated at a rate similar to control cells. However, flow cytometry indicated G2/M cell cycle arrest that was accounted for by a shift of the cells from a diploid to tetraploid state. PP6KD cells did not show an increase in apoptosis, nor did they exhibit reduced viability in the presence of bleomycin or taxol. Gene expression analysis by microarray showed attenuated anti-inflammatory signaling. Genes associated with DNA replication were downregulated. Mass spectrometry-based phosphoproteomic analysis yielded 80 phosphopeptides representing 56 proteins that were significantly affected by a stable reduction in PP6-C. Proteins involved in DNA replication, DNA damage repair and pre-mRNA splicing were overrepresented among these. PP6KD cells showed intact mTOR signaling. Our studies demonstrated involvement of PP6 in a diverse set of biological pathways and an adaptive response that may limit the effectiveness of targeting PP6 in liver disorders. - Highlights: • Lentiviral-transduced shRNA was used to generate a stable knockdown of PP6 in HepG2 cells. • Cells adapted to reduced PP6; cell proliferation was unaffected, and cell survival was normal. • However, PP6 knockdown was associated with a transition to a tetraploid state. • Genomic profiling showed downregulated anti-inflammatory signaling and DNA replication. • Phosphoproteomic profiling showed changes in proteins associated with DNA replication and repair.

  3. Protein kinase C is involved in resistance to myocardial infarction induced by heat stress.

    PubMed

    Joyeux, M; Baxter, G F; Thomas, D L; Ribuot, C; Yellon, D M

    1997-12-01

    Heat stress (HS) is known to protect against mechanical dysfunction and myocardial necrosis in myocardial ischemia-reperfusion models both in vivo and in vitro. However, the mechanisms involved in this form of cardioprotection remain unclear. Protein kinase C (PKC) and tyrosine kinase activation have both been shown to be involved in the delayed phase of protection following ischemic preconditioning, a phenomenon which appears to be analogous to HS-induced protection. Therefore, we investigated the role of PKC and tyrosine kinase in HS-induced resistance to myocardial infarction, in the isolated rat heart. The selective inhibitors chelerythrine (Che) and genistein (Gen) were used to inhibit PKC and tyrosine kinase, respectively. Rats were treated with Che (5 mg/kg, i.p.) or Gen (5 mg/kg, i.p.) or vehicle before they were either heat stressed (42 degrees C for 15 min) or sham anesthetized. Twenty-four h later their hearts were isolated, retrogradely perfused, and subjected to 35-min occlusion of the left coronary artery followed by 120-min of reperfusion. Infarct-to-risk ratio was significantly reduced in HS (19.9+/-1.1%) compared to sham (43.1+/-1.1%) hearts. This reduction in infarct size was abolished in chelerythrine-treated groups (43.8+/-1.9% in HS+Che v 44.9+/-2.0% in sham+Che), but was conserved in genistein-treated groups (17.7+/-0.9% in HS+Gen v 36.4+/-2.8% in sham+Gen). In order to confirm that genistein at this dose was effectively inhibiting tyrosine kinase activity, we observed the ability of the agent to prevent the hypoglycemic responses to insulin in a separate group of anesthetised rats receiving an i.v. insulin infusion. Western blot analysis of the myocardial hsp72 showed a HS-induced increase of this protein, which was modified by neither the PKC inhibitor, chelerythrine, nor the tyrosine kinase inhibitor, genistein. We conclude that the activation of PKC, but not of tyrosine kinase, appears to play a role in the functional cardioprotection

  4. Inner Membrane Protein YhcB Interacts with RodZ Involved in Cell Shape Maintenance in Escherichia coli

    PubMed Central

    Li, Gaochi; Hamamoto, Kentaro; Kitakawa, Madoka

    2012-01-01

    Depletion of YhcB, an inner membrane protein of Escherichia coli, inhibited the growth of rodZ deletion mutant showing that the loss of both YhcB and RodZ is synthetically lethal. Furthermore, YhcB was demonstrated to interact with RodZ as well as several other proteins involved in cell shape maintenance and an inner membrane protein YciS of unknown function, using bacterial two-hybrid system. These observations seem to indicate that YhcB is involved in the biogenesis of cell envelope and the maintenance of cell shape together with RodZ.

  5. Hepatic acute phase proteins--regulation by IL-6- and IL-1-type cytokines involving STAT3 and its crosstalk with NF-κB-dependent signaling.

    PubMed

    Bode, Johannes G; Albrecht, Ute; Häussinger, Dieter; Heinrich, Peter C; Schaper, Fred

    2012-01-01

    The function of the liver as an important constituent of the immune system involved in innate as well as adaptive immunity is warranted by different highly specialized cell populations. As the major source of acute phase proteins, including secreted pathogen recognition receptors (PRRs), short pentraxins, components of the complement system or regulators of iron metabolism, hepatocytes are essential constituents of innate immunity and largely contribute to the control of a systemic inflammatory response. The production of acute phase proteins in hepatocytes is controlled by a variety of different cytokines released during the inflammatory process with IL-1- and IL-6-type cytokines as the leading regulators operating both as a cascade and as a network having additive, inhibitory, or synergistic regulatory effects on acute phase protein expression. Hence, IL-1β substantially modifies IL-6-induced acute phase protein production as it almost completely abrogates production of acute phase proteins such as γ-fibrinogen, α(2)-macroglobulin or α(1)-antichymotrypsin, whereas production of for example hepcidin, C-reactive protein and serum amyloid A is strongly up-regulated. This switch-like regulation of IL-6-induced acute phase protein production by IL-1β is due to a complex processing of the intracellular signaling events activated in response to IL-6 and/or IL-1β, with the crosstalk between STAT3- and NF-κB-mediated signal transduction being of particular importance. Recent data suggest that in this context complex formation between STAT3 and the p65 subunit of NF-κB might be of key importance. The present review summarizes the regulation of acute phase protein production focusing on the role of the crosstalk of STAT3- and NF-κB-driven pathways for transcriptional control of acute phase gene expression. PMID:22093287

  6. Minimising the error in eigenvalue calculations involving the Boltzmann transport equation using goal-based adaptivity on unstructured meshes

    SciTech Connect

    Goffin, Mark A.; Baker, Christopher M.J.; Buchan, Andrew G.; Pain, Christopher C.; Eaton, Matthew D.; Smith, Paul N.

    2013-06-01

    This article presents a method for goal-based anisotropic adaptive methods for the finite element method applied to the Boltzmann transport equation. The neutron multiplication factor, k{sub eff}, is used as the goal of the adaptive procedure. The anisotropic adaptive algorithm requires error measures for k{sub eff} with directional dependence. General error estimators are derived for any given functional of the flux and applied to k{sub eff} to acquire the driving force for the adaptive procedure. The error estimators require the solution of an appropriately formed dual equation. Forward and dual error indicators are calculated by weighting the Hessian of each solution with the dual and forward residual respectively. The Hessian is used as an approximation of the interpolation error in the solution which gives rise to the directional dependence. The two indicators are combined to form a single error metric that is used to adapt the finite element mesh. The residual is approximated using a novel technique arising from the sub-grid scale finite element discretisation. Two adaptive routes are demonstrated: (i) a single mesh is used to solve all energy groups, and (ii) a different mesh is used to solve each energy group. The second method aims to capture the benefit from representing the flux from each energy group on a specifically optimised mesh. The k{sub eff} goal-based adaptive method was applied to three examples which illustrate the superior accuracy in criticality problems that can be obtained.

  7. cDNA Library Screening Identifies Protein Interactors Potentially Involved in Non-Telomeric Roles of Arabidopsis Telomerase

    PubMed Central

    Dokládal, Ladislav; Honys, David; Rana, Rajiv; Lee, Lan-Ying; Gelvin, Stanton B.; Sýkorová, Eva

    2015-01-01

    Telomerase-reverse transcriptase (TERT) plays an essential catalytic role in maintaining telomeres. However, in animal systems telomerase plays additional non-telomeric functional roles. We previously screened an Arabidopsis cDNA library for proteins that interact with the C-terminal extension (CTE) TERT domain and identified a nuclear-localized protein that contains an RNA recognition motif (RRM). This RRM-protein forms homodimers in both plants and yeast. Mutation of the gene encoding the RRM-protein had no detectable effect on plant growth and development, nor did it affect telomerase activity or telomere length in vivo, suggesting a non-telomeric role for TERT/RRM-protein complexes. The gene encoding the RRM-protein is highly expressed in leaf and reproductive tissues. We further screened an Arabidopsis cDNA library for proteins that interact with the RRM-protein and identified five interactors. These proteins are involved in numerous non-telomere-associated cellular activities. In plants, the RRM-protein, both alone and in a complex with its interactors, localizes to nuclear speckles. Transcriptional analyses in wild-type and rrm mutant plants, as well as transcriptional co-analyses, suggest that TERT, the RRM-protein, and the RRM-protein interactors may play important roles in non-telomeric cellular functions. PMID:26617625

  8. cDNA Library Screening Identifies Protein Interactors Potentially Involved in Non-Telomeric Roles of Arabidopsis Telomerase.

    PubMed

    Dokládal, Ladislav; Honys, David; Rana, Rajiv; Lee, Lan-Ying; Gelvin, Stanton B; Sýkorová, Eva

    2015-01-01

    Telomerase-reverse transcriptase (TERT) plays an essential catalytic role in maintaining telomeres. However, in animal systems telomerase plays additional non-telomeric functional roles. We previously screened an Arabidopsis cDNA library for proteins that interact with the C-terminal extension (CTE) TERT domain and identified a nuclear-localized protein that contains an RNA recognition motif (RRM). This RRM-protein forms homodimers in both plants and yeast. Mutation of the gene encoding the RRM-protein had no detectable effect on plant growth and development, nor did it affect telomerase activity or telomere length in vivo, suggesting a non-telomeric role for TERT/RRM-protein complexes. The gene encoding the RRM-protein is highly expressed in leaf and reproductive tissues. We further screened an Arabidopsis cDNA library for proteins that interact with the RRM-protein and identified five interactors. These proteins are involved in numerous non-telomere-associated cellular activities. In plants, the RRM-protein, both alone and in a complex with its interactors, localizes to nuclear speckles. Transcriptional analyses in wild-type and rrm mutant plants, as well as transcriptional co-analyses, suggest that TERT, the RRM-protein, and the RRM-protein interactors may play important roles in non-telomeric cellular functions. PMID:26617625

  9. A reduced amino acid alphabet for understanding and designing protein adaptation to mutation.

    PubMed

    Etchebest, C; Benros, C; Bornot, A; Camproux, A-C; de Brevern, A G

    2007-11-01

    Protein sequence world is considerably larger than structure world. In consequence, numerous non-related sequences may adopt similar 3D folds and different kinds of amino acids may thus be found in similar 3D structures. By grouping together the 20 amino acids into a smaller number of representative residues with similar features, sequence world simplification may be achieved. This clustering hence defines a reduced amino acid alphabet (reduced AAA). Numerous works have shown that protein 3D structures are composed of a limited number of building blocks, defining a structural alphabet. We previously identified such an alphabet composed of 16 representative structural motifs (5-residues length) called Protein Blocks (PBs). This alphabet permits to translate the structure (3D) in sequence of PBs (1D). Based on these two concepts, reduced AAA and PBs, we analyzed the distributions of the different kinds of amino acids and their equivalences in the structural context. Different reduced sets were considered. Recurrent amino acid associations were found in all the local structures while other were specific of some local structures (PBs) (e.g Cysteine, Histidine, Threonine and Serine for the alpha-helix Ncap). Some similar associations are found in other reduced AAAs, e.g Ile with Val, or hydrophobic aromatic residues Trp with Phe and Tyr. We put into evidence interesting alternative associations. This highlights the dependence on the information considered (sequence or structure). This approach, equivalent to a substitution matrix, could be useful for designing protein sequence with different features (for instance adaptation to environment) while preserving mainly the 3D fold. PMID:17565494

  10. Involvement of protein phosphatases in the destabilization of methamphetamine-associated contextual memory.

    PubMed

    Yu, Yang-Jung; Huang, Chien-Hsuan; Chang, Chih-Hua; Gean, Po-Wu

    2016-09-01

    Destabilization refers to a memory that becomes unstable when reactivated and is susceptible to disruption by amnestic agents. Here we delineated the cellular mechanism underlying the destabilization of drug memory. Mice were conditioned with methamphetamine (MeAM) for 3 d, and drug memory was assessed with a conditioned place preference (CPP) protocol. Anisomycin (ANI) was administered 60 min after the CPP retrieval to disrupt reconsolidation. We found that destabilization of MeAM CPP after the application of ANI was blocked by the N-methyl-d-aspartate receptor (NMDAR) antagonist MK-801 and the NR2B antagonist ifenprodil (IFN) but not by the NR2A antagonist NVP-AAM077 (NVP). In addition, decrease in the phosphorylation of GluR1 at Serine845 (p-GluR1-Ser845), decrease in spine density, and a reduction in the AMPAR/NMDAR ratio in the basolateral amygdala (BLA) were reversed after the MK-801 treatment. The effect of ANI on destabilization was prevented by the protein phosphatase 2B (calcineurin, CaN) inhibitors cyclosporine A (CsA) and FK-506 and the protein phosphatase 1 (PP1) inhibitors calyculin A (CA) and okadaic acid (OA). These results suggest that memory destabilization involves the activation of NR2B-containing NMDARs, which in turn allows the influx of Ca(2+) Increased intracellular Ca(2+) stimulates CaN, leading to the dephosphorylation and inactivation of inhibitor 1 and the activation of PP1. PP1 then dephosphorylates p-GluR1-Ser845 to elicit AMPA receptor (AMPAR) endocytosis and destabilization of the drug memory. PMID:27531839

  11. Decreased activity of neutrophils in the presence of diferuloylmethane (curcumin) involves protein kinase C inhibition.

    PubMed

    Jancinová, Viera; Perecko, Tomás; Nosál, Radomír; Kostálová, Daniela; Bauerová, Katarína; Drábiková, Katarína

    2009-06-10

    Diferuloylmethane (curcumin) has been shown to act beneficially in arthritis, particularly through downregulated expression of proinflammatory cytokines and collagenase as well as through the modulated activities of T lymphocytes and macrophages. In this study its impact on activated neutrophils was investigated both in vitro and in experimental arthritis. Formation of reactive oxygen species in neutrophils was recorded on the basis of luminol- or isoluminol-enhanced chemiluminescence. Phosphorylation of neutrophil protein kinases C alpha and beta II was assessed by Western blotting, using phosphospecific antibodies. Adjuvant arthritis was induced in Lewis rats by heat-killed Mycobacterium butyricum. Diferuloylmethane or methotrexate was administered over a period of 28 days after arthritis induction. Under in vitro conditions, diferuloylmethane (1-100 microM) reduced dose-dependently oxidant formation both at extra- and intracellular level and it effectively reduced protein kinase C activation. Adjuvant arthritis was accompanied by an increased number of neutrophils in blood and by a more pronounced spontaneous as well as PMA (phorbol myristate acetate) stimulated chemiluminescence. Whereas the arthritis-related alterations in neutrophil count and in spontaneous chemiluminescence were not modified by diferuloylmethane, the increased reactivity of neutrophils to PMA was less evident in diferuloylmethane-treated animals. The effects of diferuloylmethane were comparable with those of methotrexate. Diferuloylmethane was found to be a potent inhibitor of neutrophil functions both in vitro and in experimental arthritis. As neutrophils are considered to be cells with the greatest capacity to inflict damage within diseased joints, the observed effects could represent a further mechanism involved in the antirheumatic activity of diferuloylmethane. PMID:19371737

  12. The effects of (-)-epicatechin on endothelial cells involve the G protein-coupled estrogen receptor (GPER).

    PubMed

    Moreno-Ulloa, Aldo; Mendez-Luna, David; Beltran-Partida, Ernesto; Castillo, Carmen; Guevara, Gustavo; Ramirez-Sanchez, Israel; Correa-Basurto, José; Ceballos, Guillermo; Villarreal, Francisco

    2015-10-01

    We have provided evidence that the stimulatory effects of (-)-epicatechin ((-)-EPI) on endothelial cell nitric oxide (NO) production may involve the participation of a cell-surface receptor. Thus far, such entity(ies) has not been fully elucidated. The G protein-coupled estrogen receptor (GPER) is a cell-surface receptor that has been linked to protective effects on the cardiovascular system and activation of intracellular signaling pathways (including NO production) similar to those reported with (-)-EPI. In bovine coronary artery endothelial cells (BCAEC) by the use of confocal imaging, we evidence the presence of GPER at the cell-surface and on F-actin filaments. Using in silico studies we document the favorable binding mode between (-)-EPI and GPER. Such binding is comparable to that of the GPER agonist, G1. By the use of selective blockers, we demonstrate that the activation of ERK 1/2 and CaMKII by (-)-EPI is dependent on the GPER/c-SRC/EGFR axis mimicking those effects noted with G1. We also evidence by the use of siRNA the role that GPER has on mediating ERK1/2 activation by (-)-EPI. GPER appears to be coupled to a non Gαi/o or Gαs, protein subtype. To extrapolate our findings to an ex vivo model, we employed phenylephrine pre-contracted aortic rings evidencing that (-)-EPI can mediate vasodilation through GPER activation. In conclusion, we provide evidence that suggests the GPER as a potential mediator of (-)-EPI effects and highlights the important role that GPER may have on cardiovascular system protection. PMID:26303816

  13. Signatures of nitrogen limitation in the elemental composition of the proteins involved in the metabolic apparatus.

    PubMed

    Acquisti, Claudia; Kumar, Sudhir; Elser, James J

    2009-07-22

    Nitrogen (N) is a fundamental component of nucleotides and amino acids and is often a limiting nutrient in natural ecosystems. Thus, study of the N content of biomolecules may establish important connections between ecology and genomics. However, while significant differences in the elemental composition of whole organisms are well documented, how the flux of nutrients in the cell has shaped the evolution of different cellular processes remains poorly understood. By examining the elemental composition of major functional classes of proteins in four multicellular eukaryotic model organisms, we find that the catabolic machinery shows substantially lower N content than the anabolic machinery and the rest of the proteome. This pattern suggests that ecological selection for N conservation specifically targets cellular components that are highly expressed in response to nutrient limitation. We propose that the RNA component of the anabolic machineries is the mechanistic force driving the elemental imbalance we found, and that RNA functions as an intracellular nutrient reservoir that is degraded and recycled during starvation periods. A comparison of the elemental composition of the anabolic and catabolic machineries in species that have experienced different levels of N limitation in their evolutionary history (animals versus plants) suggests that selection for N conservation has preferentially targeted the catabolic machineries of plants, resulting in a lower N content of the proteins involved in their catabolic processes. These findings link the composition of major cellular components to the environmental factors that trigger the activation of those components, suggesting that resource availability has constrained the atomic composition and the molecular architecture of the biotic processes that enable cells to respond to reduced nutrient availability. PMID:19369262

  14. Heat shock protein 90 is involved in IL-17-mediated skin inflammation following thermal stimulation.

    PubMed

    Kim, Bo-Kyung; Park, Minhwa; Kim, Ji-Yon; Lee, Kyung-Ho; Woo, So-Youn

    2016-08-01

    The pathogenesis of inflammatory skin diseases involves interactions between immune cells and keratinocytes, including the T helper 17 (Th17)-mediated immune response. Several chemokines [chemokine (C-X-C motif) ligand (CXCL)1, CXCL5 and CXCL8] and antimicrobial peptides [β-defensin 1 (BD1), LL-37, S100A8 and S100A9] were transcriptionally upregulated in the keratinocyte cell line HaCaT upon stimulation with interleukin (IL)-17. Balneotherapy, the treatment of disease by bathing, is an alternative therapy that has frequently been used for the treatment of inflammatory skin diseases. Immersion in pools of thermal mineral water is often considered to have chemical, thermal, mechanical and immunomodulatory benefits. We examined the effect of thermal treatment on IL-17-mediated inflammation in a model of skin disease. As Act1 is required for IL-17 signaling and is a client protein of heat shock protein 90 (HSP90), we evaluated the effect of HSP90 inhibition on IL-17-mediated cytokine and antimicrobial peptide expression in keratinocytes following heat treatment. We found that after thermal stimulation, Act1 binding to HSP90α was significantly increased in the presence of IL-17 (100 ng/ml) and 17-N-allylamino-17-demethoxygeldanamycin (17-AAG, 1 µM). Antimicrobial peptide and chemokine expression generally increased after heat treatment; Act1 knockdown and 17‑AAG reversed this effect. These observations demonstrate the possible immunomodulatory effect of heat on keratinocytes during the progression of IL-17-mediated inflammatory skin diseases. PMID:27279135

  15. Involvement of decreased neuroglobin protein level in cognitive dysfunction induced by 1-bromopropane in rats.

    PubMed

    Guo, Ying; Yuan, Hua; Jiang, Lulu; Yang, Junlin; Zeng, Tao; Xie, Keqin; Zhang, Cuili; Zhao, Xiulan

    2015-03-10

    1-Bromopropane (1-BP) is used as a substitute for ozone-depleting solvents (ODS) in industrial applications. 1-BP could display central nervous system (CNS) neurotoxicity manifested by cognitive dysfunction. Neuroglobin (Ngb) is an endogenous neuroprotectant and is predominantly expressed in the nervous system. The present study aimed to investigate Ngb involvement in CNS neurotoxicity induced by 1-BP in rats. Male Wistar rats were randomly divided into 5 groups (n=14) and treated with 0, 100, 200, 400 and 800 mg/kg bw 1-BP, respectively, by gavage for consecutive 12 days. Rats displayed cognitive dysfunction dose-dependently through Morris water maze (MWM) test. Significant neuron loss in layer 5 of the prelimbic cortex (PL) was observed. Moreover, 1-BP decreased Ngb protein level in cerebral cortex and Ngb decrease was significantly positively correlated with cognitive dysfunction. Glutathione (GSH) content, GSH/oxidized glutathione (GSSG) ratio and glutamate cysteine ligase (GCL) activity decreased in cerebral cortex, coupled with the increase in GSSG content. GSH and GSH/GSSG ratio decrease were significantly positively correlated with cortical Ngb decrease. Additionally, levels of N-epsilon-hexanoyl-lysine (HEL) and 4-hydroxy-2-nonenal (4-HNE) modified proteins in cerebral cortex of 1-BP-treated rats increased significantly. In conclusion, it was suggested that 1-BP resulted in decreased endogenous neuroprotectant Ngb in cerebral cortex, which might play an important role in CNS neurotoxicity induced by 1-BP and that 1-BP-induced oxidative stress in cerebral cortex might partly be responsible for Ngb decrease. PMID:25557405

  16. Development of Novel In Vivo Chemical Probes to Address CNS Protein Kinase Involvement in Synaptic Dysfunction

    PubMed Central

    Watterson, D. Martin; Grum-Tokars, Valerie L.; Roy, Saktimayee M.; Schavocky, James P.; Bradaric, Brinda Desai; Bachstetter, Adam D.; Xing, Bin; Dimayuga, Edgardo; Saeed, Faisal; Zhang, Hong; Staniszewski, Agnieszka; Pelletier, Jeffrey C.; Minasov, George; Anderson, Wayne F.; Arancio, Ottavio; Van Eldik, Linda J.

    2013-01-01

    Serine-threonine protein kinases are critical to CNS function, yet there is a dearth of highly selective, CNS-active kinase inhibitors for in vivo investigations. Further, prevailing assumptions raise concerns about whether single kinase inhibitors can show in vivo efficacy for CNS pathologies, and debates over viable approaches to the development of safe and efficacious kinase inhibitors are unsettled. It is critical, therefore, that these scientific challenges be addressed in order to test hypotheses about protein kinases in neuropathology progression and the potential for in vivo modulation of their catalytic activity. Identification of molecular targets whose in vivo modulation can attenuate synaptic dysfunction would provide a foundation for future disease-modifying therapeutic development as well as insight into cellular mechanisms. Clinical and preclinical studies suggest a critical link between synaptic dysfunction in neurodegenerative disorders and the activation of p38αMAPK mediated signaling cascades. Activation in both neurons and glia also offers the unusual potential to generate enhanced responses through targeting a single kinase in two distinct cell types involved in pathology progression. However, target validation has been limited by lack of highly selective inhibitors amenable to in vivo use in the CNS. Therefore, we employed high-resolution co-crystallography and pharmacoinformatics to design and develop a novel synthetic, active site targeted, CNS-active, p38αMAPK inhibitor (MW108). Selectivity was demonstrated by large-scale kinome screens, functional GPCR agonist and antagonist analyses of off-target potential, and evaluation of cellular target engagement. In vitro and in vivo assays demonstrated that MW108 ameliorates beta-amyloid induced synaptic and cognitive dysfunction. A serendipitous discovery during co-crystallographic analyses revised prevailing models about active site targeting of inhibitors, providing insights that will

  17. Different genome stability proteins underpin primed and naïve adaptation in E. coli CRISPR-Cas immunity

    PubMed Central

    Ivančić-Baće, Ivana; Cass, Simon D; Wearne, Stephen J; Bolt, Edward L

    2015-01-01

    CRISPR-Cas is a prokaryotic immune system built from capture and integration of invader DNA into CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) loci, termed ‘Adaptation’, which is dependent on Cas1 and Cas2 proteins. In Escherichia coli, Cascade-Cas3 degrades invader DNA to effect immunity, termed ‘Interference’. Adaptation can interact with interference (‘primed’), or is independent of it (‘naïve’). We demonstrate that primed adaptation requires the RecG helicase and PriA protein to be present. Genetic analysis of mutant phenotypes suggests that RecG is needed to dissipate R-loops at blocked replication forks. Additionally, we identify that DNA polymerase I is important for both primed and naive adaptation, and that RecB is needed for naïve adaptation. Purified Cas1-Cas2 protein shows specificity for binding to and nicking forked DNA within single strand gaps, and collapsing forks into DNA duplexes. The data suggest that different genome stability systems interact with primed or naïve adaptation when responding to blocked or collapsed invader DNA replication. In this model, RecG and Cas3 proteins respond to invader DNA replication forks that are blocked by Cascade interference, enabling DNA capture. RecBCD targets DNA ends at collapsed forks, enabling DNA capture without interference. DNA polymerase I is proposed to fill DNA gaps during spacer integration. PMID:26578567

  18. A mammalian germ cell-specific RNA-binding protein interacts with ubiquitously expressed proteins involved in splice site selection

    NASA Astrophysics Data System (ADS)

    Elliott, David J.; Bourgeois, Cyril F.; Klink, Albrecht; Stévenin, James; Cooke, Howard J.

    2000-05-01

    RNA-binding motif (RBM) genes are found on all mammalian Y chromosomes and are implicated in spermatogenesis. Within human germ cells, RBM protein shows a similar nuclear distribution to components of the pre-mRNA splicing machinery. To address the function of RBM, we have used protein-protein interaction assays to test for possible physical interactions between these proteins. We find that RBM protein directly interacts with members of the SR family of splicing factors and, in addition, strongly interacts with itself. We have mapped the protein domains responsible for mediating these interactions and expressed the mouse RBM interaction region as a bacterial fusion protein. This fusion protein can pull-down several functionally active SR protein species from cell extracts. Depletion and add-back experiments indicate that these SR proteins are the only splicing factors bound by RBM which are required for the splicing of a panel of pre-mRNAs. Our results suggest that RBM protein is an evolutionarily conserved mammalian splicing regulator which operates as a germ cell-specific cofactor for more ubiquitously expressed pre-mRNA splicing activators.

  19. Spermidine-induced improvement of reconsolidation of memory involves calcium-dependent protein kinase in rats.

    PubMed

    Girardi, Bruna Amanda; Ribeiro, Daniela Aymone; Signor, Cristiane; Muller, Michele; Gais, Mayara Ana; Mello, Carlos Fernando; Rubin, Maribel Antonello

    2016-01-01

    In this study, we determined whether the calcium-dependent protein kinase (PKC) signaling pathway is involved in the improvement of fear memory reconsolidation induced by the intrahippocampal administration of spermidine in rats. Male Wistar rats were trained in a fear conditioning apparatus using a 0.4-mA footshock as an unconditioned stimulus. Twenty-four hours after training, animals were re-exposed to the apparatus in the absence of shock (reactivation session). Immediately after the reactivation session, spermidine (2-200 pmol/site), the PKC inhibitor 3-[1-(dimethylaminopropyl)indol-3-yl]-4-(indol-3-yl) maleimide hydrochloride (GF 109203X, 0.3-30 pg/site), the antagonist of the polyamine-binding site at the NMDA receptor, arcaine (0.2-200 pmol/site), or the PKC activator phorbol 12-myristate 13-acetate (PMA, 0.02-2 nmol/site) was injected. While the post-reactivation administration of spermidine (20 and 200 pmol/site) and PMA (2 nmol/site) improved memory reconsolidation, GF 109203X (1, 10, and 30 pg/site) and arcaine (200 pmol/site) impaired it. GF 109203X (0.3 pg/site) impaired memory reconsolidation in the presence of spermidine (200 pmol/site). PMA (0.2 nmol/site) prevented the arcaine (200 pmol/site)-induced impairment of memory reconsolidation. Anisomycin (2 µg/site) also impaired memory reconsolidation in the presence of spermidine (200 pmol/site). Drugs had no effect when they were administered in the absence of reactivation. These results suggest that the spermidine-induced enhancement of memory reconsolidation involves PKC activation. PMID:26670183

  20. Involvement of Cyclic Guanosine Monophosphate-Dependent Protein Kinase I in Renal Antifibrotic Effects of Serelaxin

    PubMed Central

    Wetzl, Veronika; Schinner, Elisabeth; Kees, Frieder; Hofmann, Franz; Faerber, Lothar; Schlossmann, Jens

    2016-01-01

    Introduction: Kidney fibrosis has shown to be ameliorated through the involvement of cyclic guanosine monophosphate (cGMP) and its dependent protein kinase I (cGKI). Serelaxin, the recombinant form of human relaxin-II, increases cGMP levels and has shown beneficial effects on kidney function in acute heart failure patients. Antifibrotic properties of serelaxin are supposed to be mediated via relaxin family peptide receptor 1 and subsequently enhanced nitric oxide/cGMP to inhibit transforming growth factor-β (TGF-β) signaling. This study examines the involvement of cGKI in the antifibrotic signaling of serelaxin. Methods and Results: Kidney fibrosis was induced by unilateral ureteral obstruction in wildtype (WT) and cGKI knock-out (KO) mice. After 7 days, renal antifibrotic effects of serelaxin were assessed. Serelaxin treatment for 7 days significantly increased cGMP in the kidney of WT and cGKI-KO. In WT, renal fibrosis was reduced through decreased accumulation of collagen1A1, total collagen, and fibronectin. The profibrotic connective tissue growth factor as well as myofibroblast differentiation were reduced and matrix metalloproteinases-2 and -9 were positively modulated after treatment. Moreover, Smad2 as well as extracellular signal-regulated kinase 1 (ERK1) phosphorylation were decreased, whereas phosphodiesterase (PDE) 5a phosphorylation was increased. However, these effects were not observed in cGKI-KO. Conclusion: Antifibrotic renal effects of serelaxin are mediated via cGMP/cGKI to inhibit Smad2- and ERK1-dependent TGF-β signaling and increased PDE5a phosphorylation. PMID:27462268

  1. Assisted protein folding at low temperature: evolutionary adaptation of the Antarctic fish chaperonin CCT and its client proteins

    PubMed Central

    Cuellar, Jorge; Yébenes, Hugo; Parker, Sandra K.; Carranza, Gerardo; Serna, Marina; Valpuesta, José María; Zabala, Juan Carlos; Detrich, H. William

    2014-01-01

    ABSTRACT Eukaryotic ectotherms of the Southern Ocean face energetic challenges to protein folding assisted by the cytosolic chaperonin CCT. We hypothesize that CCT and its client proteins (CPs) have co-evolved molecular adaptations that facilitate CCT–CP interaction and the ATP-driven folding cycle at low temperature. To test this hypothesis, we compared the functional and structural properties of CCT–CP systems from testis tissues of an Antarctic fish, Gobionotothen gibberifrons (Lönnberg) (habitat/body T = −1.9 to +2°C), and of the cow (body T = 37°C). We examined the temperature dependence of the binding of denatured CPs (β-actin, β-tubulin) by fish and bovine CCTs, both in homologous and heterologous combinations and at temperatures between −4°C and 20°C, in a buffer conducive to binding of the denatured CP to the open conformation of CCT. In homologous combination, the percentage of G. gibberifrons CCT bound to CP declined linearly with increasing temperature, whereas the converse was true for bovine CCT. Binding of CCT to heterologous CPs was low, irrespective of temperature. When reactions were supplemented with ATP, G. gibberifrons CCT catalyzed the folding and release of actin at 2°C. The ATPase activity of apo-CCT from G. gibberifrons at 4°C was ∼2.5-fold greater than that of apo-bovine CCT, whereas equivalent activities were observed at 20°C. Based on these results, we conclude that the catalytic folding cycle of CCT from Antarctic fishes is partially compensated at their habitat temperature, probably by means of enhanced CP-binding affinity and increased flexibility of the CCT subunits. PMID:24659247

  2. SIRT1 is a Highly Networked Protein That Mediates the Adaptation to Chronic Physiological Stress

    PubMed Central

    Clark-Knowles, Katherine V.; Caron, Annabelle Z.; Gray, Douglas A.

    2013-01-01

    SIRT1 is a NAD+-dependent protein deacetylase that has a very large number of established protein substrates and an equally impressive list of biological functions thought to be regulated by its activity. Perhaps as notable is the remarkable number of points of conflict concerning the role of SIRT1 in biological processes. For example, evidence exists suggesting that SIRT1 is a tumor suppressor, is an oncogene, or has no effect on oncogenesis. Similarly, SIRT1 is variably reported to induce, inhibit, or have no effect on autophagy. We believe that the resolution of many conflicting results is possible by considering recent reports indicating that SIRT1 is an important hub interacting with a complex network of proteins that collectively regulate a wide variety of biological processes including cancer and autophagy. A number of the interacting proteins are themselves hubs that, like SIRT1, utilize intrinsically disordered regions for their promiscuous interactions. Many studies investigating SIRT1 function have been carried out on cell lines carrying undetermined numbers of alterations to the proteins comprising the SIRT1 network or on inbred mouse strains carrying fixed mutations affecting some of these proteins. Thus, the effects of modulating SIRT1 amount and/or activity are importantly determined by the genetic background of the cell (or the inbred strain of mice), and the effects attributed to SIRT1 are synthetic with the background of mutations and epigenetic differences between cells and organisms. Work on mice carrying alterations to the Sirt1 gene suggests that the network in which SIRT1 functions plays an important role in mediating physiological adaptation to various sources of chronic stress such as calorie restriction and calorie overload. Whether the catalytic activity of SIRT1 and the nuclear concentration of the co-factor, NAD+, are responsible for modulating this activity remains to be determined. However, the effect of modulating SIRT1 activity must

  3. Large-scale study of the interactions between proteins involved in type IV pilus biology in Neisseria meningitidis: characterization of a subcomplex involved in pilus assembly.

    PubMed

    Georgiadou, Michaella; Castagnini, Marta; Karimova, Gouzel; Ladant, Daniel; Pelicic, Vladimir

    2012-06-01

    The functionally versatile type IV pili (Tfp) are one of the most widespread virulence factors in bacteria. However, despite generating much research interest for decades, the molecular mechanisms underpinning the various aspects of Tfp biology remain poorly understood, mainly because of the complexity of the system. In the human pathogen Neisseria meningitidis for example, 23 proteins are dedicated to Tfp biology, 15 of which are essential for pilus biogenesis. One of the important gaps in our knowledge concerns the topology of this multiprotein machinery. Here we have used a bacterial two-hybrid system to identify and quantify the interactions between 11 Pil proteins from N. meningitidis. We identified 20 different binary interactions, many of which are novel. This represents the most complex interaction network between Pil proteins reported to date and indicates, among other things, that PilE, PilM, PilN and PilO, which are involved in pilus assembly, indeed interact. We focused our efforts on this subset of proteins and used a battery of assays to determine the membrane topology of PilN and PilO, map the interaction domains between PilE, PilM, PilN and PilO, and show that a widely conserved N-terminal motif in PilN is essential for both PilM-PilN interactions and pilus assembly. Finally, we show that PilP (another protein involved in pilus assembly) forms a complex with PilM, PilN and PilO. Taken together, these findings have numerous implications for understanding Tfp biology and provide a useful blueprint for future studies. PMID:22486968

  4. Identification of domains on the extrinsic 23 kDa protein possibly involved in electrostatic interaction with the extrinsic 33 kDa protein in spinach photosystem II.

    PubMed

    Tohri, Akihiko; Dohmae, Naoshi; Suzuki, Takehiro; Ohta, Hisataka; Inoue, Yasunori; Enami, Isao

    2004-03-01

    To elucidate the domains on the extrinsic 23 kDa protein involved in electrostatic interaction with the extrinsic 33 kDa protein in spinach photosystem II, we modified amino or carboxyl groups of the 23 kDa protein to uncharged methyl ester groups with N-succinimidyl propionate or glycine methyl ester in the presence of a water-soluble carbodiimide, respectively. The N-succinimidyl propionate-modified 23 kDa protein did not bind to the 33 kDa protein associated with PSII membranes, whereas the glycine methyl ester-modified 23 kDa protein completely bound. This indicates that positive charges on the 23 kDa protein are important for electrostatic interaction with the 33 kDa protein associated with the PSII membranes. Mapping of the N-succinimidyl propionate-modified sites of the 23 kDa protein was performed using Staphylococcus V8 protease digestion of the modified protein followed by determination of the mass of the resultant peptide fragments with MALDI-TOF MS. The results showed that six domains (Lys11-Lys14, Lys27-Lys38, Lys40, Lys90-Lys96, Lys143-Lys152, Lys166-Lys174) were modified with N-succinimidyl propionate. In these domains, Lys11, Lys13, Lys33, Lys38, Lys143, Lys166, Lys170 and Lys174 were wholly conserved in the 23 kDa protein from 12 species of higher plants. These positively charged lysyl residues on the 23 kDa protein may be involved in electrostatic interactions with the negatively charged carboxyl groups on the 33 kDa protein, the latter has been suggested to be important for the 23 kDa binding [Bricker, T.M. & Frankel, L.K. (2003) Biochemistry42, 2056-2061]. PMID:15009208

  5. Elevated expression of protein regulator of cytokinesis 1, involved in the growth of breast cancer cells.

    PubMed

    Shimo, Arata; Nishidate, Toshihiko; Ohta, Tomohiko; Fukuda, Mamoru; Nakamura, Yusuke; Katagiri, Toyomasa

    2007-02-01

    To elucidate molecular mechanisms of mammary carcinogenesis and discover novel therapeutic targets for breast cancer, we previously carried out a genome-wide expression profile analysis of 81 breast cancer cases by means of a combination of cDNA microarray and laser microbeam microdissection. Among the upregulated genes, we focused on the functional significance of protein regulator of cytokinesis 1 (PRC1) in the development of breast cancer. Western blot analysis using breast cancer cell lines revealed a significant increase in endogenous PRC1 levels in G(2)/M phase. Treatment of breast cancer cells with small interfering RNA against PRC1 effectively suppressed its expression and inhibited the growth of breast cancer cell lines T47D and HBC5. Furthermore, we found an interaction between PRC1 and kinesin family member 2C/mitotic centromere-associated kinesin (KIF2C/MCAK) by coimmunoprecipitation and immunoblotting using COS-7 cells, in which these molecules were introduced exogenously. These findings suggest the involvement of a PRC1-KIF2C/MCAK complex in breast tumorigenesis, and this complex should be a promising target for the development of novel treatments for breast cancer. PMID:17233835

  6. Shrinkage activates a nonselective conductance: involvement of a Walker-motif protein and PKC.

    PubMed

    Nelson, D J; Tien, X Y; Xie, W; Brasitus, T A; Kaetzel, M A; Dedman, J R

    1996-01-01

    The ability of all cells to maintain their volume during an osmotic challenge is dependent on the regulated movement of salt and water across the plasma membrane. We demonstrate the phosphorylation-dependent gating of a nonselective conductance in Caco-2 cells during cellular shrinkage. Intracellular application of exogenous purified rat brain protein kinase C (PKC) resulted in the activation of a current similar to that activated during shrinkage with a Na(+)-to-Cl- permeability ratio of approximately 1.7:1. To prevent possible PKC- and/or shrinkage-dependent activation of cystic fibrosis transmembrane regulator (CFTR), which is expressed at high levels in Caco-2 cells, a functional anti-peptide antibody, anti-CFTR505-511, was introduced into the cells via the patch pipette. Anti-CFTR505-511, which is directed against the Walker motif in the first nucleotide binding fold of CFTR, prevented the PKC/shrink-age current activation. The peptide CFTR505-511 also induced current inhibition, suggesting the possible involvement of a regulatory element in close proximity to the channel that shares sequence homology with the first nucleotide binding fold of CFTR and whose binding to the channel is required for channel gating. PMID:8772443

  7. Maize yellow stripe1 encodes a membrane protein directly involved in Fe(III) uptake.

    PubMed

    Curie, C; Panaviene, Z; Loulergue, C; Dellaporta, S L; Briat, J F; Walker, E L

    2001-01-18

    Frequently, crop plants do not take up adequate amounts of iron from the soil, leading to chlorosis, poor yield and decreased nutritional quality. Extremely limited soil bioavailability of iron has led plants to evolve two distinct uptake strategies: chelation, which is used by the world's principal grain crops; and reduction, which is used by other plant groups. The chelation strategy involves extrusion of low-molecular-mass secondary amino acids (mugineic acids) known as 'phytosiderophores' which chelate sparingly soluble iron. The Fe(III)-phytosiderophore complex is then taken up by an unknown transporter at the root surface. The maize yellow stripe1 (ys1) mutant is deficient in Fe(III)-phytosiderophore uptake, therefore YS1 has been suggested to be the Fe(III)-phytosiderophore transporter. Here we show that ys1 is a membrane protein that mediates iron uptake. Expression of YS1 in a yeast iron uptake mutant restores growth specifically on Fe(III)-phytosiderophore media. Under iron-deficient conditions, ys1 messenger RNA levels increase in both roots and shoots. Cloning of ys1 is an important step in understanding iron uptake in grasses, and has implications for mechanisms controlling iron homeostasis in all plants. PMID:11201743

  8. The involvement of heat-shock proteins in the pathogenesis of autoimmune arthritis: a critical appraisal

    PubMed Central

    Huang, Min-Nung; Yu, Hua; Moudgil, Kamal D.

    2012-01-01

    Objectives To review the literature on the role of heat-shock proteins (HSPs) in the pathogenesis of autoimmune arthritis in animal models ans patients with rheumatoid arthritis (RA). Methods The published literature in Medline (PubMed), including our published work on the cell-mediated as well as humoral immune response to various HSPs was reviewed. Studies in both the pre-clinical animal models of arthritis as well as RA were examined critically and the data presented. Results In experimental arthritis, disease induction by different arthritogenic stimuli, including an adjuvant, led to immune response to mycobacterial HSP65 (BHSP65). However, attempts to induce arthritis by a purified HSP have not met with success. There are several reports of a significant immune response to HSP65 in RA patients. But, the issue of cause and effect is difficult to address. Nevertheless, several studies in animal models and a couple of clinical trials in RA patients have shown the beneficial effect of HSPs against autoimmune arthritis. Conclusions There is a clear association between immune response to HSPs, particularly HSP65, and the initiation and propagation of autoimmune arthritis in experimental models. The correlation is relatively less convincing in RA patients. In both cases, the ability of HSPs to modulate arthritis offers support, albeit an indirect one, for the involvement of these antigens in the disease process. PMID:19969325

  9. Are G-protein-coupled receptors involved in mediating larval settlement and metamorphosis of coral planulae?

    PubMed

    Tran, Cawa; Hadfield, Michael G

    2012-04-01

    Larvae of the scleractinian coral Pocillopora damicornis are induced to settle and metamorphose by the presence of marine bacterial biofilms, and the larvae of Montipora capitata respond to a combination of filamentous and crustose coralline algae. The primary goal of this study was to better understand metamorphosis of cnidarian larvae by determining what types of receptors and signal-transduction pathways are involved during stimulation of metamorphosis of P. damicornis and M. capitata. Evidence from studies on larvae of hydrozoans suggests that G-protein-coupled receptors (GPCRs) are good candidates. Settlement experiments were conducted in which competent larvae were exposed to neuropharmacological agents that affect GPCRs and their associated signal-transduction pathways, AC/cAMP and PI/DAG/PKC. On the basis of the results of these experiments, we conclude that GPCRs and these pathways do not mediate settlement and metamorphosis in either coral species. Two compounds that had an effect on both species, forskolin and phorbol-12-myristate-13-acetate (TPA), may be acting on other cellular processes not related to GPCRs. This study strengthens our understanding of the underlying physiological mechanisms that regulate metamorphosis in coral larvae. PMID:22589403

  10. Lincomycin Biosynthesis Involves a Tyrosine Hydroxylating Heme Protein of an Unusual Enzyme Family

    PubMed Central

    Novotna, Jitka; Olsovska, Jana; Novak, Petr; Mojzes, Peter; Chaloupkova, Radka; Kamenik, Zdenek; Spizek, Jaroslav; Kutejova, Eva; Mareckova, Marketa; Tichy, Pavel; Damborsky, Jiri; Janata, Jiri

    2013-01-01

    The gene lmbB2 of the lincomycin biosynthetic gene cluster of Streptomyces lincolnensis ATCC 25466 was shown to code for an unusual tyrosine hydroxylating enzyme involved in the biosynthetic pathway of this clinically important antibiotic. LmbB2 was expressed in Escherichia coli, purified near to homogeneity and shown to convert tyrosine to 3,4-dihydroxyphenylalanine (DOPA). In contrast to the well-known tyrosine hydroxylases (EC 1.14.16.2) and tyrosinases (EC 1.14.18.1), LmbB2 was identified as a heme protein. Mass spectrometry and Soret band-excited Raman spectroscopy of LmbB2 showed that LmbB2 contains heme b as prosthetic group. The CO-reduced differential absorption spectra of LmbB2 showed that the coordination of Fe was different from that of cytochrome P450 enzymes. LmbB2 exhibits sequence similarity to Orf13 of the anthramycin biosynthetic gene cluster, which has recently been classified as a heme peroxidase. Tyrosine hydroxylating activity of LmbB2 yielding DOPA in the presence of (6R)-5,6,7,8-tetrahydro-L-biopterin (BH4) was also observed. Reaction mechanism of this unique heme peroxidases family is discussed. Also, tyrosine hydroxylation was confirmed as the first step of the amino acid branch of the lincomycin biosynthesis. PMID:24324587

  11. Increased abundance of proteins involved in phytosiderophore production in boron-tolerant barley.

    PubMed

    Patterson, John; Ford, Kris; Cassin, Andrew; Natera, Siria; Bacic, Antony

    2007-07-01

    Boron (B) phytotoxicity affects cereal-growing regions worldwide. Although B-tolerant barley (Hordeum vulgare) germplasm is available, molecules responsible for this tolerance mechanism have not been defined. We describe and use a new comparative proteomic technique, iTRAQ peptide tagging (iTRAQ), to compare the abundances of proteins from B-tolerant and -intolerant barley plants from a 'Clipper' x 'Sahara' doubled-haploid population selected on the basis of a presence or absence of two B-tolerance quantitative trait loci. iTRAQ was used to identify three enzymes involved in siderophore production (Iron Deficiency Sensitive2 [IDS2], IDS3, and a methylthio-ribose kinase) as being elevated in abundance in the B-tolerant plants. Following from this result, we report a potential link between iron, B, and the siderophore hydroxymugineic acid. We believe that this study highlights the potency of the iTRAQ approach to better understand mechanisms of abiotic stress tolerance in cereals, particularly when applied in conjunction with bulked segregant analysis. PMID:17478636

  12. The Fragile X Protein binds mRNAs involved in cancer progression and modulates metastasis formation

    PubMed Central

    Lucá, Rossella; Averna, Michele; Zalfa, Francesca; Vecchi, Manuela; Bianchi, Fabrizio; Fata, Giorgio La; Del Nonno, Franca; Nardacci, Roberta; Bianchi, Marco; Nuciforo, Paolo; Munck, Sebastian; Parrella, Paola; Moura, Rute; Signori, Emanuela; Alston, Robert; Kuchnio, Anna; Farace, Maria Giulia; Fazio, Vito Michele; Piacentini, Mauro; De Strooper, Bart; Achsel, Tilmann; Neri, Giovanni; Neven, Patrick; Evans, D Gareth; Carmeliet, Peter; Mazzone, Massimiliano; Bagni, Claudia

    2013-01-01

    The role of the fragile X mental retardation protein (FMRP) is well established in brain, where its absence leads to the fragile X syndrome (FXS). FMRP is almost ubiquitously expressed, suggesting that, in addition to its effects in brain, it may have fundamental roles in other organs. There is evidence that FMRP expression can be linked to cancer. FMR1 mRNA, encoding FMRP, is overexpressed in hepatocellular carcinoma cells. A decreased risk of cancer has been reported in patients with FXS while a patient-case with FXS showed an unusual decrease of tumour brain invasiveness. However, a role for FMRP in regulating cancer biology, if any, remains unknown. We show here that FMRP and FMR1 mRNA levels correlate with prognostic indicators of aggressive breast cancer, lung metastases probability and triple negative breast cancer (TNBC). We establish that FMRP overexpression in murine breast primary tumours enhances lung metastasis while its reduction has the opposite effect regulating cell spreading and invasion. FMRP binds mRNAs involved in epithelial mesenchymal transition (EMT) and invasion including E-cadherin and Vimentin mRNAs, hallmarks of EMT and cancer progression. PMID:24092663

  13. The fragile X protein binds mRNAs involved in cancer progression and modulates metastasis formation.

    PubMed

    Lucá, Rossella; Averna, Michele; Zalfa, Francesca; Vecchi, Manuela; Bianchi, Fabrizio; La Fata, Giorgio; Del Nonno, Franca; Nardacci, Roberta; Bianchi, Marco; Nuciforo, Paolo; Munck, Sebastian; Parrella, Paola; Moura, Rute; Signori, Emanuela; Alston, Robert; Kuchnio, Anna; Farace, Maria Giulia; Fazio, Vito Michele; Piacentini, Mauro; De Strooper, Bart; Achsel, Tilmann; Neri, Giovanni; Neven, Patrick; Evans, D Gareth; Carmeliet, Peter; Mazzone, Massimiliano; Bagni, Claudia

    2013-10-01

    The role of the fragile X mental retardation protein (FMRP) is well established in brain, where its absence leads to the fragile X syndrome (FXS). FMRP is almost ubiquitously expressed, suggesting that, in addition to its effects in brain, it may have fundamental roles in other organs. There is evidence that FMRP expression can be linked to cancer. FMR1 mRNA, encoding FMRP, is overexpressed in hepatocellular carcinoma cells. A decreased risk of cancer has been reported in patients with FXS while a patient-case with FXS showed an unusual decrease of tumour brain invasiveness. However, a role for FMRP in regulating cancer biology, if any, remains unknown. We show here that FMRP and FMR1 mRNA levels correlate with prognostic indicators of aggressive breast cancer, lung metastases probability and triple negative breast cancer (TNBC). We establish that FMRP overexpression in murine breast primary tumours enhances lung metastasis while its reduction has the opposite effect regulating cell spreading and invasion. FMRP binds mRNAs involved in epithelial mesenchymal transition (EMT) and invasion including E-cadherin and Vimentin mRNAs, hallmarks of EMT and cancer progression. PMID:24092663

  14. Yeast Mitochondrial Interactosome Model: Metabolon Membrane Proteins Complex Involved in the Channeling of ADP/ATP

    PubMed Central

    Clémençon, Benjamin

    2012-01-01

    The existence of a mitochondrial interactosome (MI) has been currently well established in mammalian cells but the exact composition of this super-complex is not precisely known, and its organization seems to be different from that in yeast. One major difference is the absence of mitochondrial creatine kinase (MtCK) in yeast, unlike that described in the organization model of MI, especially in cardiac, skeletal muscle and brain cells. The aim of this review is to provide a detailed description of different partner proteins involved in the synergistic ADP/ATP transport across the mitochondrial membranes in the yeast Saccharomyces cerevisiae and to propose a new mitochondrial interactosome model. The ADP/ATP (Aacp) and inorganic phosphate (PiC) carriers as well as the VDAC (or mitochondrial porin) catalyze the import and export of ADP, ATP and Pi across the mitochondrial membranes. Aacp and PiC, which appear to be associated with the ATP synthase, consist of two nanomotors (F0, F1) under specific conditions and form ATP synthasome. Identification and characterization of such a complex were described for the first time by Pedersen and co-workers in 2003. PMID:22408429

  15. Direct Involvement of Retinoblastoma Family Proteins in DNA Repair by Non-homologous End-Joining

    PubMed Central

    Cook, Rebecca; Zoumpoulidou, Georgia; Luczynski, Maciej T.; Rieger, Simone; Moquet, Jayne; Spanswick, Victoria J.; Hartley, John A.; Rothkamm, Kai; Huang, Paul H.; Mittnacht, Sibylle

    2015-01-01

    Summary Deficiencies in DNA double-strand break (DSB) repair lead to genetic instability, a recognized cause of cancer initiation and evolution. We report that the retinoblastoma tumor suppressor protein (RB1) is required for DNA DSB repair by canonical non-homologous end-joining (cNHEJ). Support of cNHEJ involves a mechanism independent of RB1’s cell-cycle function and depends on its amino terminal domain with which it binds to NHEJ components XRCC5 and XRCC6. Cells with engineered loss of RB family function as well as cancer-derived cells with mutational RB1 loss show substantially reduced levels of cNHEJ. RB1 variants disabled for the interaction with XRCC5 and XRCC6, including a cancer-associated variant, are unable to support cNHEJ despite being able to confer cell-cycle control. Our data identify RB1 loss as a candidate driver of structural genomic instability and a causative factor for cancer somatic heterogeneity and evolution. PMID:25818292

  16. The methyltransferase adaptor protein Trm112 is involved in biogenesis of both ribosomal subunits

    PubMed Central

    Sardana, Richa; Johnson, Arlen W.

    2012-01-01

    We previously identified Bud23 as the methyltransferase that methylates G1575 of rRNA in the P-site of the small (40S) ribosomal subunit. In this paper, we show that Bud23 requires the methyltransferase adaptor protein Trm112 for stability in vivo. Deletion of Trm112 results in a bud23Δ-like mutant phenotype. Thus Trm112 is required for efficient small-subunit biogenesis. Genetic analysis suggests the slow growth of a trm112Δ mutant is due primarily to the loss of Bud23. Surprisingly, suppression of the bud23Δ-dependent 40S defect revealed a large (60S) biogenesis defect in a trm112Δ mutant. Using sucrose gradient sedimentation analysis and coimmunoprecipitation, we show that Trm112 is also involved in 60S subunit biogenesis. The 60S defect may be dependent on Nop2 and Rcm1, two additional Trm112 interactors that we identify. Our work extends the known range of Trm112 function from modification of tRNAs and translation factors to both ribosomal subunits, showing that its effects span all aspects of the translation machinery. Although Trm112 is required for Bud23 stability, our results suggest that Trm112 is not maintained in a stable complex with Bud23. We suggest that Trm112 stabilizes its free methyltransferase partners not engaged with substrate and/or helps to deliver its methyltransferase partners to their substrates. PMID:22956767

  17. Protein binding sites involved in the assembly of the KplE1 prophage intasome.

    PubMed

    Panis, Gaël; Duverger, Yohann; Champ, Stéphanie; Ansaldi, Mireille

    2010-08-15

    The organization of the recombination regions of the KplE1 prophage in Escherichia coli K12 differs from that observed in the lambda prophage. Indeed, the binding sites characterized for the IntS integrase, the TorI recombination directionality factor (RDF) and the integration host factor (IHF) vary in number, spacing and orientation on the attL and attR regions. In this paper, we performed site-directed mutagenesis of the recombination sites to decipher if all sites are essential for the site-specific recombination reaction and how the KplE1 intasome is assembled. We also show that TorI and IntS form oligomers that are stabilized in the presence of their target DNA. Moreover, we found that IHF is the only nucleoid associated protein (NAP) involved in KplE1 recombination, although it is dispensable. This is consistent with the presence of only one functional IHF site on attR and none on attL. PMID:20494389

  18. Adaptive Evolution of the Venom-Targeted vWF Protein in Opossums that Eat Pitvipers

    PubMed Central

    Jansa, Sharon A.; Voss, Robert S.

    2011-01-01

    The rapid evolution of venom toxin genes is often explained as the result of a biochemical arms race between venomous animals and their prey. However, it is not clear that an arms race analogy is appropriate in this context because there is no published evidence for rapid evolution in genes that might confer toxin resistance among routinely envenomed species. Here we report such evidence from an unusual predator-prey relationship between opossums (Marsupialia: Didelphidae) and pitvipers (Serpentes: Crotalinae). In particular, we found high ratios of replacement to silent substitutions in the gene encoding von Willebrand Factor (vWF), a venom-targeted hemostatic blood protein, in a clade of opossums known to eat pitvipers and to be resistant to their hemorrhagic venom. Observed amino-acid substitutions in venom-resistant opossums include changes in net charge and hydrophobicity that are hypothesized to weaken the bond between vWF and one of its toxic snake-venom ligands, the C-type lectin-like protein botrocetin. Our results provide the first example of rapid adaptive evolution in any venom-targeted molecule, and they support the notion that an evolutionary arms race might be driving the rapid evolution of snake venoms. However, in the arms race implied by our results, venomous snakes are prey, and their venom has a correspondingly defensive function in addition to its usual trophic role. PMID:21731638

  19. Object-adapted trapping and shape-tracking to probe a bacterial protein chain motor

    NASA Astrophysics Data System (ADS)

    Roth, Julian; Koch, Matthias; Rohrbach, Alexander

    2015-03-01

    The helical bacterium Spiroplasma is a motile plant and anthropod pathogen which swims by propagating pairs of kinks along its cell body. As a well suited model system for bacterial locomotion, understanding the cell's molecular motor is of vital interest also regarding the combat of bacterial diseases. The extensive deformations related to these kinks are caused by a contractile cytoskeletal protein ribbon representing a linear motor in contrast to common rotary motors as, e.g., flagella. We present new insights into the working of this motor through experiments with object-adapted optical traps and shape-tracking techniques. We use the given laser irradiation from the optical trap to hinder bacterial energy (ATP) production through the production of O2 radicals. The results are compared with experiments performed under the influence of an O2-Scavenger and ATP inhibitors, respectively. Our results show clear dependences of the kinking properties on the ATP concentration inside the bacterium. The experiments are supported by a theoretical model which we developed to describe the switching of the ribbon's protein subunits.

  20. Adaptive evolution of tight junction protein claudin-14 in echolocating whales.

    PubMed

    Xu, Huihui; Liu, Yang; He, Guimei; Rossiter, Stephen J; Zhang, Shuyi

    2013-11-10

    Toothed whales and bats have independently evolved specialized ultrasonic hearing for echolocation. Recent findings have suggested that several genes including Prestin, Tmc1, Pjvk and KCNQ4 appear to have undergone molecular adaptations associated with the evolution of this ultrasonic hearing in mammals. Here we studied the hearing gene Cldn14, which encodes the claudin-14 protein and is a member of tight junction proteins that functions in the organ of Corti in the inner ear to maintain a cationic gradient between endolymph and perilymph. Particular mutations in human claudin-14 give rise to non-syndromic deafness, suggesting an essential role in hearing. Our results uncovered two bursts of positive selection, one in the ancestral branch of all toothed whales and a second in the branch leading to the delphinid, phocoenid and ziphiid whales. These two branches are the same as those previously reported to show positive selection in the Prestin gene. Furthermore, as with Prestin, the estimated hearing frequencies of whales significantly correlate with numbers of branch-wise non-synonymous substitutions in Cldn14, but not with synonymous changes. However, in contrast to Prestin, we found no evidence of positive selection in bats. Our findings from Cldn14, and comparisons with Prestin, strongly implicate multiple loci in the acquisition of echolocation in cetaceans, but also highlight possible differences in the evolutionary route to echolocation taken by whales and bats. PMID:23965379

  1. Flavin-Induced Oligomerization in Escherichia coli Adaptive Response Protein AidB

    PubMed Central

    2011-01-01

    The process known as “adaptive response” allows Escherichia coli to respond to small doses of DNA-methylating agents by upregulating the expression of four proteins. While the role of three of these proteins in mitigating DNA damage is well understood, the function of AidB is less clear. Although AidB is a flavoprotein, no catalytic role has been established for the bound cofactor. Here we investigate the possibility that flavin plays a structural role in the assembly of the AidB tetramer. We report the generation and biophysical characterization of deflavinated AidB and of an AidB mutant that has greatly reduced affinity for flavin adenine dinucleotide (FAD). Using fluorescence quenching and analytical ultracentrifugation, we find that apo AidB has a high affinity for FAD, as indicated by an apparent dissociation constant of 402.1 ± 35.1 nM, and that binding of substoichiometric amounts of FAD triggers a transition in the AidB oligomeric state. In particular, deflavinated AidB is dimeric, whereas the addition of FAD yields a tetramer. We further investigate the dimerization and tetramerization interfaces of AidB by determining a 2.8 Å resolution crystal structure in space group P32 that contains three intact tetramers in the asymmetric unit. Taken together, our findings provide strong evidence that FAD plays a structural role in the formation of tetrameric AidB. PMID:22004173

  2. NMR identification of the binding surfaces involved in the Salmonella and Shigella Type III secretion tip-translocon protein-protein interactions.

    PubMed

    McShan, Andrew C; Kaur, Kawaljit; Chatterjee, Srirupa; Knight, Kevin M; De Guzman, Roberto N

    2016-08-01

    The type III secretion system (T3SS) is essential for the pathogenesis of many bacteria including Salmonella and Shigella, which together are responsible for millions of deaths worldwide each year. The structural component of the T3SS consists of the needle apparatus, which is assembled in part by the protein-protein interaction between the tip and the translocon. The atomic detail of the interaction between the tip and the translocon proteins is currently unknown. Here, we used NMR methods to identify that the N-terminal domain of the Salmonella SipB translocon protein interacts with the SipD tip protein at a surface at the distal region of the tip formed by the mixed α/β domain and a portion of its coiled-coil domain. Likewise, the Shigella IpaB translocon protein and the IpaD tip protein interact with each other using similar surfaces identified for the Salmonella homologs. Furthermore, removal of the extreme N-terminal residues of the translocon protein, previously thought to be important for the interaction, had little change on the binding surface. Finally, mutations at the binding surface of SipD reduced invasion of Salmonella into human intestinal epithelial cells. Together, these results reveal the binding surfaces involved in the tip-translocon protein-protein interaction and advance our understanding of the assembly of the T3SS needle apparatus. Proteins 2016; 84:1097-1107. © 2016 Wiley Periodicals, Inc. PMID:27093649

  3. Fibronectin-binding protein of Streptococcus pyogenes: sequence of the binding domain involved in adherence of streptococci to epithelial cells.

    PubMed Central

    Talay, S R; Valentin-Weigand, P; Jerlström, P G; Timmis, K N; Chhatwal, G S

    1992-01-01

    The sequence of the fibronectin-binding domain of the fibronectin-binding protein of Streptococcus pyogenes (Sfb protein) was determined, and its role in streptococcal adherence was investigated by use of an Sfb fusion protein in adherence studies. A 1-kb DNA fragment coding for the binding domain of Sfb protein was cloned into the expression vector pEX31 to produce an Sfb fusion protein consisting of the N-terminal part of MS2 polymerase and a C-terminal fragment of the streptococcal protein. Induction of the vector promoter resulted in hyperexpression of fibronectin-binding fusion protein in the cytoplasm of the recombinant Escherichia coli cells. Sequence determination of the cloned 1-kb fragment revealed an in-frame reading frame for a 268-amino-acid peptide composed of a 37-amino-acid sequence which is completely repeated three times and incompletely repeated a fourth time. Cloning of one repeat into pEX31 resulted in expression of small fusion peptides that show fibronectin-binding activity, indicating that one repeat contains at least one binding domain. Each repeat exhibits two charged domains and shows high homology with the 38-amino-acid D3 repeat of the fibronectin-binding protein of Staphylococcus aureus. Sequence comparison with other streptococcal ligand-binding surface proteins, including M protein, failed to reveal significant homology, which suggests that Sfb protein represents a novel type of functional protein in S. pyogenes. The Sfb fusion protein isolated from the cytoplasm of recombinant cells was purified by fast protein liquid chromatography. It showed a strong competitive inhibition of fibronectin binding to S. pyogenes and of the adherence of bacteria to cultured epithelial cells. In contrast, purified streptococcal lipoteichoic acid showed only a weak inhibition of fibronectin binding and streptococcal adherence. These results demonstrate that Sfb protein is directly involved in the fibronectin-mediated adherence of S. pyogenes to

  4. Identification of Protein Networks Involved in the Disease Course of Experimental Autoimmune Encephalomyelitis, an Animal Model of Multiple Sclerosis

    PubMed Central

    Plaisance, Stéphane; Baeten, Kurt; Hendriks, Jerome J. A.; Leprince, Pierre; Dumont, Debora; Robben, Johan; Brône, Bert; Stinissen, Piet; Noben, Jean-Paul; Hellings, Niels

    2012-01-01

    A more detailed insight into disease mechanisms of multiple sclerosis (MS) is crucial for the development of new and more effective therapies. MS is a chronic inflammatory autoimmune disease of the central nervous system. The aim of this study is to identify novel disease associated proteins involved in the development of inflammatory brain lesions, to help unravel underlying disease processes. Brainstem proteins were obtained from rats with MBP induced acute experimental autoimmune encephalomyelitis (EAE), a well characterized disease model of MS. Samples were collected at different time points: just before onset of symptoms, at the top of the disease and following recovery. To analyze changes in the brainstem proteome during the disease course, a quantitative proteomics study was performed using two-dimensional difference in-gel electrophoresis (2D-DIGE) followed by mass spectrometry. We identified 75 unique proteins in 92 spots with a significant abundance difference between the experimental groups. To find disease-related networks, these regulated proteins were mapped to existing biological networks by Ingenuity Pathway Analysis (IPA). The analysis revealed that 70% of these proteins have been described to take part in neurological disease. Furthermore, some focus networks were created by IPA. These networks suggest an integrated regulation of the identified proteins with the addition of some putative regulators. Post-synaptic density protein 95 (DLG4), a key player in neuronal signalling and calcium-activated potassium channel alpha 1 (KCNMA1), involved in neurotransmitter release, are 2 putative regulators connecting 64% of the identified proteins. Functional blocking of the KCNMA1 in macrophages was able to alter myelin phagocytosis, a disease mechanism highly involved in EAE and MS pathology. Quantitative analysis of differentially expressed brainstem proteins in an animal model of MS is a first step to identify disease-associated proteins and networks that

  5. Polyamine biosynthesis inhibitors alter protein-protein interactions involving estrogen receptor in MCF-7 breast cancer cells.

    PubMed

    Thomas, T; Shah, N; Klinge, C M; Faaland, C A; Adihkarakunnathu, S; Gallo, M A; Thomas, T J

    1999-04-01

    We investigated the effects of polyamine biosynthesis inhibition on the estrogenic signaling pathway of MCF-7 breast cancer cells using a protein-protein interaction system. Estrogen receptor (ER) linked to glutathione-S-transferase (GST) was used to examine the effects of two polyamine biosynthesis inhibitors, difluoromethylornithine (DFMO) and CGP 48664. ER was specifically associated with a 45 kDa protein in control cells. In cells treated with estradiol, nine proteins were associated with ER. Cells treated with polyamine biosynthesis inhibitors in the absence of estradiol retained the binding of their ER with a 45 kDa protein and the ER also showed low-affinity interactions with a number of cellular proteins; however, these associations were decreased by the presence of estradiol and the inhibitors. When samples from the estradiol+DFMO treatment group were incubated with spermidine prior to GST-ER pull down assay, an increased association of several proteins with ER was detected. The intensity of the ER-associated 45 kDa protein increased by 10-fold in the presence of 1000 microM spermidine. These results indicate a specific role for spermidine in ER association of proteins. Western blot analysis of samples eluted from GST-ER showed the presence of chicken ovalbumin upstream promoter-transcription factor, an orphan nuclear receptor, and the endogenous full-length ER. These results show that multiple proteins associate with ER and that the binding of some of these proteins is highly sensitive to intracellular polyamine concentrations. Overall, our results indicate the importance of the polyamine pathway in the gene regulatory function of estradiol in breast cancer cells. PMID:10194516

  6. Plastid ribosomal protein S5 is involved in photosynthesis, plant development, and cold stress tolerance in Arabidopsis.

    PubMed

    Zhang, Junxiang; Yuan, Hui; Yang, Yong; Fish, Tara; Lyi, Sangbom M; Thannhauser, Theodore W; Zhang, Lugang; Li, Li

    2016-04-01

    Plastid ribosomal proteins are essential components of protein synthesis machinery and have diverse roles in plant growth and development. Mutations in plastid ribosomal proteins lead to a range of developmental phenotypes in plants. However, how they regulate these processes is not fully understood, and the functions of some individual plastid ribosomal proteins remain unknown. To identify genes responsible for chloroplast development, we isolated and characterized a mutant that exhibited pale yellow inner leaves with a reduced growth rate in Arabidopsis. The mutant (rps5) contained a missense mutation of plastid ribosomal protein S5 (RPS5), which caused a dramatically reduced abundance of chloroplast 16S rRNA and seriously impaired 16S rRNA processing to affect ribosome function and plastid translation. Comparative proteomic analysis revealed that the rps5 mutation suppressed the expression of a large number of core components involved in photosystems I and II as well as many plastid ribosomal proteins. Unexpectedly, a number of proteins associated with cold stress responses were greatly decreased in rps5, and overexpression of the plastid RPS5 improved plant cold stress tolerance. Our results indicate that RPS5 is an important constituent of the plastid 30S subunit and affects proteins involved in photosynthesis and cold stress responses to mediate plant growth and development. PMID:27006483

  7. A Proteomic Approach for the Identification of Up-Regulated Proteins Involved in the Metabolic Process of the Leiomyoma

    PubMed Central

    Ura, Blendi; Scrimin, Federica; Arrigoni, Giorgio; Franchin, Cinzia; Monasta, Lorenzo; Ricci, Giuseppe

    2016-01-01

    Uterine leiomyoma is the most common benign smooth muscle cell tumor of the uterus. Proteomics is a powerful tool for the analysis of complex mixtures of proteins. In our study, we focused on proteins that were upregulated in the leiomyoma compared to the myometrium. Paired samples of eight leiomyomas and adjacent myometrium were obtained and submitted to two-dimensional gel electrophoresis (2-DE) and mass spectrometry for protein identification and to Western blotting for 2-DE data validation. The comparison between the patterns revealed 24 significantly upregulated (p < 0.05) protein spots, 12 of which were found to be associated with the metabolic processes of the leiomyoma and not with the normal myometrium. The overexpression of seven proteins involved in the metabolic processes of the leiomyoma was further validated by Western blotting and 2D Western blotting. Four of these proteins have never been associated with the leiomyoma before. The 2-DE approach coupled with mass spectrometry, which is among the methods of choice for comparative proteomic studies, identified a number of proteins overexpressed in the leiomyoma and involved in several biological processes, including metabolic processes. A better understanding of the mechanism underlying the overexpression of these proteins may be important for therapeutic purposes. PMID:27070597

  8. A New MAP Kinase Protein Involved in Estradiol-Stimulated Reproduction of the Helminth Parasite Taenia crassiceps

    PubMed Central

    Escobedo, Galileo; Soldevila, Gloria; Ortega-Pierres, Guadalupe; Chávez-Ríos, Jesús Ramsés; Nava, Karen; Fonseca-Liñán, Rocío; López-Griego, Lorena; Hallal-Calleros, Claudia; Ostoa-Saloma, Pedro; Morales-Montor, Jorge

    2010-01-01

    MAP kinases (MAPK) are involved in the regulation of cellular processes such as reproduction and growth. In parasites, the role of MAPK has been scarcely studied. Here, we describe the participation of an ERK-like protein in estrogen-dependent reproduction of the helminth parasite Taenia crassiceps. Our results show that 17β-estradiol induces a concentration-dependent increase in the bud number of in vitro cultured cysticerci. If parasites are also incubated in presence of an ERK-inhibitor, the stimulatory effect of estrogen is blocked. The expression of ERK-like mRNA and its corresponding protein was detected in the parasite. The ERK-like protein was over-expressed by all treatments. Nevertheless, a strong induction of phosphorylation of this protein was observed only in response to 17β-estradiol. Cross-contamination by host cells was discarded by flow cytometry analysis. Parasite cells expressing the ERK-like protein were exclusively located at the subtegument tissue by confocal microscopy. Finally, the ERK-like protein was separated by bidimensional electrophoresis and then sequenced, showing the conserved TEY activation motif, typical of all known ERK 1/2 proteins. Our results show that an ERK-like protein is involved in the molecular signalling during the interaction between the host and T. crassiceps, and may be considered as target for anti-helminth drugs design. PMID:20145710

  9. Plastid ribosomal protein S5 is involved in photosynthesis, plant development, and cold stress tolerance in Arabidopsis

    PubMed Central

    Zhang, Junxiang; Yuan, Hui; Yang, Yong; Fish, Tara; Lyi, Sangbom M.; Thannhauser, Theodore W; Zhang, Lugang; Li, Li

    2016-01-01

    Plastid ribosomal proteins are essential components of protein synthesis machinery and have diverse roles in plant growth and development. Mutations in plastid ribosomal proteins lead to a range of developmental phenotypes in plants. However, how they regulate these processes is not fully understood, and the functions of some individual plastid ribosomal proteins remain unknown. To identify genes responsible for chloroplast development, we isolated and characterized a mutant that exhibited pale yellow inner leaves with a reduced growth rate in Arabidopsis. The mutant (rps5) contained a missense mutation of plastid ribosomal protein S5 (RPS5), which caused a dramatically reduced abundance of chloroplast 16S rRNA and seriously impaired 16S rRNA processing to affect ribosome function and plastid translation. Comparative proteomic analysis revealed that the rps5 mutation suppressed the expression of a large number of core components involved in photosystems I and II as well as many plastid ribosomal proteins. Unexpectedly, a number of proteins associated with cold stress responses were greatly decreased in rps5, and overexpression of the plastid RPS5 improved plant cold stress tolerance. Our results indicate that RPS5 is an important constituent of the plastid 30S subunit and affects proteins involved in photosynthesis and cold stress responses to mediate plant growth and development. PMID:27006483

  10. Laboratory adaptation of Bactrocera tryoni (Diptera: Tephritidae) decreases mating age and increases protein consumption and number of eggs produced per milligram of protein.

    PubMed

    Meats, A; Holmes, H M; Kelly, G L

    2004-12-01

    A significant reduction in age of mating occurred during the first four generations (G1-G4) of laboratory adaptation of wild Bactrocera tryoni (Froggatt) and this was associated with the earlier attainment of peak egg load although no significant differences were detected in the peak egg load itself. A long term laboratory (LTL) strain had a significantly earlier mating age and higher peak egg load than flies of wild origin or those from the first four laboratory generations. The amount of protein consumed by females in the first week of adult life was significantly higher in the LTL strain than in flies of wild origin or G1-G4 but there were no significant changes (or only slight changes) with laboratory adaptation in the amounts of protein consumed up to the ages of mating and peak egg load. Laboratory adaptation resulted in no significant changes in egg size, egg dry weight, puparial fresh weight and the dry weight of newly emerged females. The large increase in fecundity with laboratory adaptation is associated with a 4- to 5-fold increase in the rate of conversion of dietary protein to eggs (i.e. eggs produced per mg of protein consumed). PMID:15541191

  11. Light-regulated stapled peptides to inhibit protein-protein interactions involved in clathrin-mediated endocytosis.

    PubMed

    Nevola, Laura; Martín-Quirós, Andrés; Eckelt, Kay; Camarero, Núria; Tosi, Sébastien; Llobet, Artur; Giralt, Ernest; Gorostiza, Pau

    2013-07-22

    Control of membrane traffic: Photoswitchable inhibitors of protein-protein interactions were applied to photoregulate clathrin-mediated endocytosis (CME) in living cells. Traffic light (TL) peptides acting as "stop" and "go" signals for membrane traffic can be used to dissect the role of CME in receptor internalization and in cell growth, division, and differentiation. PMID:23775788

  12. Acquisition of heme iron by Neisseria meningitidis does not involve meningococcal transferrin-binding proteins.

    PubMed

    Martel, N; Lee, B C

    1994-02-01

    Similarities in size between hemin-binding protein 1 (HmBP1) and transferrin-binding protein 1 (TBP1) of Neisseria meningitidis suggest that these proteins are functionally homologous. However, a meningococcal mutant lacking the transferrin-binding proteins retained the capacity to acquire iron from heme and hemoglobin. In immunoblots, hyperimmune polyclonal antiserum against TBP1 did not react with HmBP1. PMID:8300227

  13. Gene cloning of cold-adapted isocitrate lyase from a psychrophilic bacterium, Colwellia psychrerythraea, and analysis of amino acid residues involved in cold adaptation of this enzyme.

    PubMed

    Sato, Yuhya; Watanabe, Seiya; Yamaoka, Naoto; Takada, Yasuhiro

    2008-01-01

    The gene (icl) encoding cold-adapted isocitrate lyase (ICL) of a psychrophilic bacterium, Colwellia psychrerythraea, was cloned and sequenced. Open reading frame of the gene was 1,587 bp in length and corresponded to a polypeptide composed of 528 amino acids. The deduced amino acid sequence showed high homology with that of cold-adapted ICL from other psychrophilic bacterium, C. maris (88% identity), but the sequential homology with that of the Escherichia coli ICL was low (28% identity). Primer extension analysis revealed that transcriptional start site for the C. psychrerythraea icl gene was guanine, located at 87 bases upstream of translational initiation codon. The expression of this gene in the cells of an E. coli mutant defective in ICL was induced by not only low temperature but also acetate. However, cis-acting elements for cold-inducible expression known in the several other bacterial genes were absent in the promoter region of the C. psychrerythraea icl gene. The substitution of Ala214 for Ser in the C. psychrerythraea ICL introduced by point mutation resulted in the increased thermostability and lowering of the specific activity at low temperature, indicating that Ala214 is important for psychrophilic properties of this enzyme. PMID:17965824

  14. DNA Processing Proteins Involved in the UV-Induced Stress Response of Sulfolobales

    PubMed Central

    van Wolferen, Marleen; Ma, Xiaoqing

    2015-01-01

    ABSTRACT The ups operon of Sulfolobus species is highly induced upon UV stress. Previous studies showed that the pili encoded by this operon are involved in cellular aggregation, which is essential for subsequent DNA exchange between cells, resulting in homologous recombination. The presence of this pilus system increases the fitness of Sulfolobus cells under UV light-induced stress conditions, as the transfer of DNA takes place in order to repair UV-induced DNA lesions via homologous recombination. Four conserved genes (saci_1497 to saci_1500) which encode proteins with putative DNA processing functions are present downstream of the ups operon. In this study, we show that after UV treatment the cellular aggregation of strains with saci_1497, saci_1498, and saci_1500 deletions is similar to that of wild-type strains; their survival rates, however, were reduced and similar to or lower than those of the pilus deletion strains, which could not aggregate anymore. DNA recombination assays indicated that saci_1498, encoding a ParB-like protein, plays an important role in DNA transfer. Moreover, biochemical analysis showed that the endonuclease III encoded by saci_1497 nicks UV-damaged DNA. In addition, RecQ-like helicase Saci_1500 is able to unwind homologous recombination intermediates, such as Holliday junctions. Interestingly, a saci_1500 deletion mutant was more sensitive to UV light but not to the replication-stalling agents hydroxyurea and methyl methanesulfonate, suggesting that Saci_1500 functions specifically in the UV damage pathway. Together these results suggest a role of Saci_1497 to Saci_1500 in the repair or transfer of DNA that takes place after UV-induced damage to the genomic DNA of Sulfolobus acidocaldarius. IMPORTANCE Sulfolobales species increase their fitness after UV stress by a UV-inducible pilus system that enables high rates of DNA exchange between cells. Downstream of the pilus operon, three genes that seem to play a role in the repair or

  15. Expression of proteins involved in DNA damage response in familial and sporadic breast cancer patients.

    PubMed

    Partipilo, Giulia; Simone, Giovanni; Scattone, Anna; Scarpi, Emanuela; Azzariti, Amalia; Mangia, Anita

    2016-01-01

    Understanding the expression of proteins involved in DNA damage response could improve knowledge of the pathways that contribute to familial and sporadic breast cancer (BC). We aimed to assess the different roles of BRCA1, poly(ADP-ribose) polymerase-1 (PARP1), BRCT-repeat inhibitor of hTERT expression (BRIT1) and novel SWItch 5 (SWI5) expression in 130 sporadic and 73 familial BC samples, by immunohistochemistry. In the sporadic group, negative nuclear BRCA1 (nBRCA1) expression was associated with positive PgR (p = 0.037). Negative association was found between nBRCA1 expression and HER2 (p = 0.001). In the familial group, nBRCA1 expression was associated with ER (p = 0.002). Reduced nBRCA1 expression was associated with higher histological grade and positive Ki67 both in sporadic (p = 0.0010, p = 0.047) and familial groups (p < 0.001, p = 0.001). Nuclear PARP1 (nPARP1) expression was associated with histological grade (p = 0.035) and positive PgR (p = 0.047) in sporadic cases. High cytoplasmic and low nuclear BRIT1 (cBRIT1 and nBRIT1) expression were associated with high histological grade in the familial group (p = 0.013, p = 0.025). Various statistical associations between the protein expressions were observed in the sporadic group, while in familial group only few associations were found. Univariate analyses showed that nPARP1 expression is able to discriminate between sporadic and familial tumors (OR 2.80, p = 0.002). Multivariate analyses proved that its overexpression is an independent factor associated with a high risk of sporadic tumor (OR 2.96, p = 0.017). Our findings indicate that nPARP1 expression is an independent factor for sporadic BCs and PARP1 inhibitors could be a promising therapy for different phenotypes. PMID:26205471

  16. Osmotin: A protein associated with osmotic stress adaptation in plant cells: Final report, September 1, 1983--August 31, 1988

    SciTech Connect

    Bressan, R.A.

    1988-12-01

    Osmotin is a cationic protein which accumulates (up to 12% of total cell protein) in cells adapted to grow in the medium with low water potentials. The synthesis of osmotin is developmentally regulated and is induced by abscisic acid (ABA) in cultured cells. In whole plants, both the synthesis and accumulation of osmotin is tissue specific. The highest rate of synthesis occurs in outer stem tissue and the highest level of accumulation occurs in roots. ABA induced synthesis of osmotin is transient in cells and NaCl stabilizes its synthesis and accumulation. NaCl adapted tobacco cells exhibit a stable increase in both their ability to tolerate salt and to produce osmotin in the absence of NaCl. Osmotin is localized in vacuolar inclusions, but also appears to be loosely associated with the tonoplast and plasma membrane. Osmotin is also found in the culture medium of adapted cells during all stages of cell growth. The molecular weight of mature osmotin deduced from the cDNA nucleotide sequence is 23,984 daltons. Osmotin is synthesized as a preprotein 2.5 kD larger than the mature protein. Three proteins, thaumatin, TPR and MAI, exhibit a very high level (52% to 61%) of sequence homology with osmotin. Osmotin mRNA synthesis is induced by ABA. The level of osmotin mRNA increases after NaCl adaptation. 34 refs., 11 figs.

  17. Pseudomonas aeruginosa Cell Membrane Protein Expression from Phenotypically Diverse Cystic Fibrosis Isolates Demonstrates Host-Specific Adaptations.

    PubMed

    Kamath, Karthik Shantharam; Pascovici, Dana; Penesyan, Anahit; Goel, Apurv; Venkatakrishnan, Vignesh; Paulsen, Ian T; Packer, Nicolle H; Molloy, Mark P

    2016-07-01

    Pseudomonas aeruginosa is a Gram-negative, nosocomial, highly adaptable opportunistic pathogen especially prevalent in immuno-compromised cystic fibrosis (CF) patients. The bacterial cell surface proteins are important contributors to virulence, yet the membrane subproteomes of phenotypically diverse P. aeruginosa strains are poorly characterized. We carried out mass spectrometry (MS)-based proteome analysis of the membrane proteins of three novel P. aeruginosa strains isolated from the sputum of CF patients and compared protein expression to the widely used laboratory strain, PAO1. Microbes were grown in planktonic growth condition using minimal M9 media, and a defined synthetic lung nutrient mimicking medium (SCFM) limited passaging. Two-dimensional LC-MS/MS using iTRAQ labeling enabled quantitative comparisons among 3171 and 2442 proteins from the minimal M9 medium and in the SCFM, respectively. The CF isolates showed marked differences in membrane protein expression in comparison with PAO1 including up-regulation of drug resistance proteins (MexY, MexB, MexC) and down-regulation of chemotaxis and aerotaxis proteins (PA1561, PctA, PctB) and motility and adhesion proteins (FliK, FlgE, FliD, PilJ). Phenotypic analysis using adhesion, motility, and drug susceptibility assays confirmed the proteomics findings. These results provide evidence of host-specific microevolution of P. aeruginosa in the CF lung and shed light on the adaptation strategies used by CF pathogens. PMID:27246823

  18. Heat-shock protein 70 is involved in hyperbaric oxygen preconditioning on decompression sickness in rats.

    PubMed

    Ni, Xiao-Xiao; Ni, Ming; Fan, Dan-Feng; Sun, Qiang; Kang, Zhi-Min; Cai, Zhi-Yu; Liu, Yun; Liu, Kan; Li, Run-Ping; Xu, Wei-Gang

    2013-01-01

    Decompression sickness (DCS) is a major concern in diving and space walk. Hyperbaric oxygen (HBO) preconditioning has been proved to enhance tolerance to DCS via nitric oxide. Heat-shock protein (HSP) 70 was also found to have protective effects against DCS. We hypothesized that the beneficial effects of HBO preconditioning on DCS was related to levels of elevated HSP70. HSPs (70, 27 and 90) expressed in tissues of spinal cord and lung in rats was detected at different time points following HBO exposure by Western blot. HSP27 and HSP90 showed a slight but not significant increase after HBO. HSP70 increased and reached highest at 18 h following exposure before decreasing. Then rats were exposed to HBO and subjected to simulated air dive and rapid decompression to induce DCS 18 h after HBO. The severity of DCS, along with levels of HSP70 expression, as well as the extent of oxidative and apoptotic parameters in the lung and spinal cord were compared among different groups of rats pretreated with HBO, HBO plus NG-nitro-l-arginine-methyl ester (l-NAME), HBO plus quercetin or normobaric air. HBO preconditioning significantly reduced the morbidity of DCS (from 66.7% to 36.7%), reduced levels of oxidation (malondialdehyde, 8-hydroxyguanine and hydrogen peroxide) and apoptosis (caspase-3 and -9 activities and the number of apoptotic cells). l-NAME or quercetin eliminated most of the beneficial effects of HBO on DCS, and counteracted the stimulation of HSP70 by HBO. Bubbles in pulmonary artery were detected using ultrasound imaging to observe the possible effect of HBO preconditioning on DCS bubble formation. The amounts of bubbles in rats pretreated with HBO or air showed no difference. These results suggest that HSP70 was involved in the beneficial effects of HBO on DCS in rats, suspected be by the antioxidation and antiapoptosis effects. PMID:23479759

  19. AMP-activated protein kinase is involved in perfluorohexanesulfonate -induced apoptosis of neuronal cells.

    PubMed

    Lee, Youn Ju; Choi, So-Young; Yang, Jae-Ho

    2016-04-01

    Perfluorohexanesulfonate (PFHxS), one of the major perfluoroalkyl compounds (PFCs), has been used in a variety of industrial and consumer applications and detected in serum in the general population. This raised a concern over its possible detrimental health effects, including neurotoxic effects. We have previously shown that PFHxS induced neuronal apoptosis via the NMDA receptor-mediated extracellular signal-regulated kinase (ERK) pathway. Recently, it has been reported that AMP-activated protein kinase (AMPK) acts as a key signal molecule in neuronal excitotoxicity as well as providing a neuroprotective function. In the present study, we have examined the involvement of AMPK in PFHxS-induced neuronal apoptosis using neuronal differentiated PC12 cells. PFHxS induced significant increases in intracellular [Ca(2+)] via the NMDA receptor and the L-type voltage-gated calcium channel (L-VGCC). The inhibition of Ca(2+) loading by the NMDA receptor antagonist, MK801 and the L-VGCC blockers, nifedipine and diltiazem significantly reduced PFHxS-induced apoptosis. PFHxS induced sustained activation of AMPK and the inhibition of AMPK activation by compound C and AMPK siRNA significantly reduced PFHxS-induced caspase-3 activity. These results indicate the pro-apoptotic role of AMPK. The activation of AMPK was attenuated by MK801, nifedipine and diltiazem. However, the activation of AMPK was not affected by the ERK inhibitor, PD98059. Likewise, ERK activation was not affected by compound C but was substantially reduced by MK801, nifedipine or diltiazem. This suggests that the activation of AMPK and ERK is regulated by intracellular Ca(2+) loading in distinct pathways. Taken together, PFHxS-induced neuronal apoptosis is mediated by AMPK and ERK pathways, which are distinctly regulated by increased intracellular Ca(2+) via the NMDA receptor and L-VGCC. PMID:26826296

  20. Thermoregulatory uncoupling in heart muscle mitochondria: involvement of the ATP/ADP antiporter and uncoupling protein.

    PubMed

    Simonyan, R A; Skulachev, V P

    1998-09-25

    Possible involvement of the ATP/ADP antiporter and uncoupling protein (UCP) in thermoregulatory uncoupling of oxidative phosphorylation in heart muscle has been studied. To this end, effects of carboxyatractylate (cAtr) and GDP, specific inhibitors of the antiporter and UCP, on the membrane potential of the oligomycin-treated mitochondria from cold-exposed (6 degrees C, 48 h) and control rats have been measured. It is found that cAtr increases the membrane potential level in both cold-exposed and non-exposed groups, the effect being strongly enhanced by cooling. As for GDP, it is effective only in mitochondria from the cold-exposed rats. In these mitochondria, the coupling effect of GDP is smaller than that of cAtr. CDP, which does not interact with UCP, is without any influence on membrane potential. The cold exposure is found to increase the uncoupling efficiency of added natural (palmitate) or artificial (SF6847) uncouplers, the increase being cAtr- and GDP-sensitive in the case of palmitate. The fatty acid-free bovine serum albumin enhances delta psi in both cold-exposed and control groups, the effect being much larger in the former case. It is concluded that in heart muscle mitochondria the ATP/ADP antiporter is responsible for the 'mild uncoupling' under normal conditions and for major portion of the thermoregulatory uncoupling in the cold whereas the rest of thermoregulatory uncoupling is served by UCP (presumably by UCP2 since the UCP2 mRNA level is shown to strongly increase in rat heart muscle under the cold exposure conditions used). PMID:9771898

  1. Ligand-induced association of surface immunoglobulin with the detergent insoluble cytoskeleton may involve an 89K protein

    SciTech Connect

    Gupta, S.K.; Woda, B.

    1986-03-01

    Membrane immunoglobulin of B-lymphocytes is thought to play an important role in antigen recognition and cellular activation. Binding of cross-linking ligands to surface immunoglobulin (SIg) on intact cells converts it to a detergent insoluble state, and this conversion is associated with the transmission of a mitogenic signal. Insolubilized membrane proteins may be solubilized by incubating the detergent insoluble cytoskeletons in buffers which convert F-actin to G-actin ((Buffer 1), 0.34M sucrose, 0.5mM ATP, 0.5mM Dithiothrietol and lmM EDTA). Immunoprecipitation of SIg from the detergent soluble fraction of /sup 35/S-methionine labeled non ligand treated rat B-cells results in the co-isolation of an 89K protein and a 44K protein, presumably actin. The 89K protein is not associated with the fraction of endogenous detergent insoluble SIg. On treatment of rat B cells with cross-linking ligand (anti-Ig) the 89K protein becomes detergent insoluble along with most of the SIg and co-isolates with SIg on immunoprecipitation of the detergent insoluble, buffer l solubilized fraction. The migration of the SIg-associated 89K protein from the detergent soluble fraction to the detergent insoluble fraction after ligand treatment, suggests that this protein might be involved in linking SIg to the underlying cytoskeleton and could be involved in the transmission of a mitogenic signal.

  2. Proteomics displays cytoskeletal proteins and chaperones involvement in Hedyotis corymbosa-induced photokilling in skin cancer cells.

    PubMed

    You, Bang-Jau; Wu, Yang-Chang; Wu, Chi-Yu; Bao, Bo-Ying; Chen, Mei-Yu; Chang, Yu-Hao; Lee, Hong-Zin

    2011-08-01

    Photodynamic therapy was found to be an effective therapy for local malignant tumors. This study demonstrated that 80 μg/ml Hedyotis corymbosa extracts with 0.8 J/cm(2) fluence dose caused M21 skin cancer cell death. Photoactivated H. corymbosa-induced M21 cell death is a typical apoptosis that is accompanied by nuclear condensation, externalization of phosphatidylserine and the changes in protein expression of apoptosis-related proteins, such as Bcl-2 and caspase family members. This study applied 2D electrophoresis to analyse the proteins involved in the photoactivated H. corymbosa-induced M21 cell apoptosis. We found 12 proteins to be markedly changed. According to the results of protein sequence analysis of these altered protein spots, we identified that the expression of cytoskeletal proteins and chaperones were involved in the photoactivated H. corymbosa-induced M21 cell apoptosis. We further demonstrated that photoactivated H. corymbosa caused a significant effect on the cytoskeleton distribution and mitochondrial activity in M21 cells. Based on the above findings, this study characterized the effects and mechanisms of the photoactivated H. corymbosa-induced apoptosis in M21 skin cancer cells. PMID:21569101

  3. Proteomic analysis of differentially expressed proteins involved in ethylene-induced chilling tolerance in harvested banana fruit

    PubMed Central

    Li, Taotao; Yun, Ze; Zhang, Dandan; Yang, Chengwei; Zhu, Hong; Jiang, Yueming; Duan, Xuewu

    2015-01-01

    To better understand the mechanism involved in ethylene-induced chilling tolerance in harvested banana fruit, a gel-based proteomic study followed by MALDI-TOF-TOF MS was carried out. Banana fruit were treated with 500 ppm ethylene for 12 h and then stored at 6°C. During cold storage, the chilling tolerance was assessed and the proteins from the peel were extracted for proteomic analysis. It was observed that ethylene pretreatment significantly induced the chilling tolerance in harvested banana fruit, manifesting as increases in maximal chlorophyll fluorescence (Fv/Fm) and decreased electrolyte leakage. Sixty-four proteins spots with significant differences in abundance were identified, most of which were induced by ethylene pretreatment during cold storage. The up-regulated proteins induced by ethylene pretreatment were mainly related to energy metabolism, stress response and defense, methionine salvage cycle and protein metabolism. These proteins were involved in ATP synthesis, ROS scavenging, protective compounds synthesis, protein refolding and degradation, and polyamine biosynthesis. It is suggested that these up-regulated proteins might play a role in the ethylene-induced chilling tolerance in harvested banana fruit. PMID:26528309

  4. Proteomic analysis of differentially expressed proteins involved in ethylene-induced chilling tolerance in harvested banana fruit.

    PubMed

    Li, Taotao; Yun, Ze; Zhang, Dandan; Yang, Chengwei; Zhu, Hong; Jiang, Yueming; Duan, Xuewu

    2015-01-01

    To better understand the mechanism involved in ethylene-induced chilling tolerance in harvested banana fruit, a gel-based proteomic study followed by MALDI-TOF-TOF MS was carried out. Banana fruit were treated with 500 ppm ethylene for 12 h and then stored at 6°C. During cold storage, the chilling tolerance was assessed and the proteins from the peel were extracted for proteomic analysis. It was observed that ethylene pretreatment significantly induced the chilling tolerance in harvested banana fruit, manifesting as increases in maximal chlorophyll fluorescence (Fv/Fm) and decreased electrolyte leakage. Sixty-four proteins spots with significant differences in abundance were identified, most of which were induced by ethylene pretreatment during cold storage. The up-regulated proteins induced by ethylene pretreatment were mainly related to energy metabolism, stress response and defense, methionine salvage cycle and protein metabolism. These proteins were involved in ATP synthesis, ROS scavenging, protective compounds synthesis, protein refolding and degradation, and polyamine biosynthesis. It is suggested that these up-regulated proteins might play a role in the ethylene-induced chilling tolerance in harvested banana fruit. PMID:26528309

  5. Sexual selection and the adaptive evolution of PKDREJ protein in primates and rodents.

    PubMed

    Vicens, Alberto; Gómez Montoto, Laura; Couso-Ferrer, Francisco; Sutton, Keith A; Roldan, Eduardo R S

    2015-02-01

    PKDREJ is a testis-specific protein thought to be located on the sperm surface. Functional studies in the mouse revealed that loss of PKDREJ has effects on sperm transport and the ability to undergo an induced acrosome reaction. Thus, PKDREJ has been considered a potential target of post-copulatory sexual selection in the form of sperm competition. Proteins involved in reproductive processes often show accelerated evolution. In many cases, this rapid divergence is promoted by positive selection which may be driven, at least in part, by post-copulatory sexual selection. We analysed the evolution of the PKDREJ protein in primates and rodents and assessed whether PKDREJ divergence is associated with testes mass relative to body mass, which is a reliable proxy of sperm competition levels. Evidence of an association between the evolutionary rate of the PKDREJ gene and testes mass relative to body mass was not found in primates. Among rodents, evidence of positive selection was detected in the Pkdrej gene in the family Cricetidae but not in Muridae. We then assessed whether Pkdrej divergence is associated with episodes of sperm competition in these families. We detected a positive significant correlation between the evolutionary rates of Pkdrej and testes mass relative to body mass in cricetids. These findings constitute the first evidence of post-copulatory sexual selection influencing the evolution of a protein that participates in the mechanisms regulating sperm transport and the acrosome reaction, strongly suggesting that positive selection may act on these fertilization steps, leading to advantages in situations of sperm competition. PMID:25304980

  6. RNA-protein interactions: involvement of NS3, NS5, and 3' noncoding regions of Japanese encephalitis virus genomic RNA.

    PubMed Central

    Chen, C J; Kuo, M D; Chien, L J; Hsu, S L; Wang, Y M; Lin, J H

    1997-01-01

    The mechanism of replication of the flavivirus Japanese encephalitis virus (JEV) is not well known. The structures at the 3' end of the viral genome are highly conserved among divergent flaviviruses, suggesting that they may function as cis-acting signals for RNA replication and, as such, might specifically bind to cellular or viral proteins. UV cross-linking experiments were performed to identify the proteins that bind with the JEV plus-strand 3' noncoding region (NCR). Two proteins, p71 and p110, from JEV-infected but not from uninfected cell extracts were shown to bind specifically to the plus-strand 3' NCR. The quantities of these binding proteins increased during the course of JEV infection and correlated with the levels of JEV RNA synthesis in cell extracts. UV cross-linking coupled with Western blot and immunoprecipitation analysis showed that the p110 and p71 proteins were JEV NS5 and NS3, respectively, which are proposed as components of the RNA replicase. The putative stem-loop structure present within the plus-strand 3' NCR was required for the binding of these proteins. Furthermore, both proteins could interact with each other and form a protein-protein complex in vivo. These findings suggest that the 3' NCR of JEV genomic RNA may form a replication complex together with NS3 and NS5; this complex may be involved in JEV minus-strand RNA synthesis. PMID:9094618

  7. Proteomic characterization of HIV-modulated membrane receptors, kinases and signaling proteins involved in novel angiogenic pathways

    PubMed Central

    Rasheed, Suraiya; Yan, Jasper S; Hussain, Adil; Lai, Bruce

    2009-01-01

    Background Kaposi's sarcoma (KS), hemangioma, and other angioproliferative diseases are highly prevalent in HIV-infected individuals. While KS is etiologically linked to the human herpesvirus-8 (HHV8) infection, HIV-patients without HHV-8 and those infected with unrelated viruses also develop angiopathies. Further, HIV-Tat can activate protein-tyrosine-kinase (PTK-activity) of the vascular endothelial growth factor receptor involved in stimulating angiogenic processes. However, Tat by itself or HHV8-genes alone cannot induce angiogenesis in vivo unless specific proteins/enzymes are produced synchronously by different cell-types. We therefore tested a hypothesis that chronic HIV-replication in non-endothelial cells may produce novel factors that provoke angiogenic pathways. Methods Genome-wide proteins from HIV-infected and uninfected T-lymphocytes were tested by subtractive proteomics analyses at various stages of virus and cell growth in vitro over a period of two years. Several thousand differentially regulated proteins were identified by mass spectrometry (MS) and >200 proteins were confirmed in multiple gels. Each protein was scrutinized extensively by protein-interaction-pathways, bioinformatics, and statistical analyses. Results By functional categorization, 31 proteins were identified to be associated with various signaling events involved in angiogenesis. 88% proteins were located in the plasma membrane or extracellular matrix and >90% were found to be essential for regeneration, neovascularization and angiogenic processes during embryonic development. Conclusion Chronic HIV-infection of T-cells produces membrane receptor-PTKs, serine-threonine kinases, growth factors, adhesion molecules and many diffusible signaling proteins that have not been previously reported in HIV-infected cells. Each protein has been associated with endothelial cell-growth, morphogenesis, sprouting, microvessel-formation and other biological processes involved in angiogenesis (p

  8. Cybip, a starfish cyclin B-binding protein, is involved in meiotic M-phase exit.

    PubMed

    Offner, Nicolas; Derancourt, Jean; Lozano, Jean Claude; Schatt, Philippe; Picard, André; Peaucellier, Gérard

    2003-01-01

    We designed a screen to identify starfish oocyte proteins able to bind monomeric cyclin B by affinity chromatography on a cyclin B splice variant displaying low affinity for cdc2. We identified a 15kDa protein previously described as a cdk-binding protein [Biochim. Biophys. Acta Mol. Cell Res. 1589 (2002) 219-231]. Cybip is encoded by a single polymorphic gene and the native protein is matured by cleaving a signal peptide. We firmly establish the fact that it is a true cyclin B-binding protein, since the recombinant protein binds recombinant cyclin B in absence of any cdk. Finally, we show that the microinjection of GST-cybip, and of anti-cybip antibody, in maturing starfish oocytes, inhibits H1 kinase and MPF inactivation, and first polar body emission. PMID:12480530

  9. Interacting Proteins on Human Spermatozoa: Adaptive Evolution of the Binding of Semenogelin I to EPPIN

    PubMed Central

    Silva, Erick J. R.; Hamil, Katherine G.; O’Rand, Michael G.

    2013-01-01

    Semenogelin I (SEMG1) is found in human semen coagulum and on the surface of spermatozoa bound to EPPIN. The physiological significance of the SEMG1/EPPIN interaction on the surface of spermatozoa is its capacity to modulate sperm progressive motility. The present study investigates the hypothesis that the interacting surface of SEMG1 and EPPIN co-evolved within the Hominoidea time scale, as a result of adaptive pressures applied by their roles in sperm protection and reproductive fitness. Our results indicate that some amino acid residues of SEMG1 and EPPIN possess a remarkable deficiency of variation among hominoid primates. We observe a distinct residue change unique to humans within the EPPIN sequence containing a SEMG1 interacting surface, namely His92. In addition, Bayes Empirical Bayes analysis for positive selection indicates that the SEMG1 Cys239 residue underwent positive selection in humans, probably as a consequence of its role in increasing the binding affinity of these interacting proteins. We confirm the critical role of Cys239 residue for SEMG1 binding to EPPIN and inhibition of sperm motility by showing that recombinant SEMG1 mutants in which Cys239 residue was changed to glycine, aspartic acid, histidine, serine or arginine have reduced capacity to interact to EPPIN and to inhibit human sperm motility in vitro. In conclusion, our results indicate that EPPIN and SEMG1 rapidly co-evolved in primates due to their critical role in the modulation of sperm motility in the semen coagulum, providing unique insights into the molecular co-evolution of sperm surface interacting proteins. PMID:24312623

  10. Evolutionary Adaptation of an AraC-Like Regulatory Protein in Citrobacter rodentium and Escherichia Species

    PubMed Central

    Tan, Aimee; Petty, Nicola K.; Hocking, Dianna; Bennett-Wood, Vicki; Wakefield, Matthew; Praszkier, Judyta; Tauschek, Marija; Yang, Ji

    2015-01-01

    The evolution of pathogenic bacteria is a multifaceted and complex process, which is strongly influenced by the horizontal acquisition of genetic elements and their subsequent expression in their new hosts. A well-studied example is the RegA regulon of the enteric pathogen Citrobacter rodentium. The RegA regulatory protein is a member of the AraC/XylS superfamily, which coordinates the expression of a gene repertoire that is necessary for full pathogenicity of this murine pathogen. Upon stimulation by an exogenous, gut-associated signal, namely, bicarbonate ions, RegA activates the expression of a series of genes, including virulence factors, such as autotransporters, fimbriae, a dispersin-like protein, and the grlRA operon on the locus of enterocyte effacement pathogenicity island. Interestingly, the genes encoding RegA homologues are distributed across the genus Escherichia, encompassing pathogenic and nonpathogenic subtypes. In this study, we carried out a series of bioinformatic, transcriptional, and functional analyses of the RegA regulons of these bacteria. Our results demonstrated that regA has been horizontally transferred to Escherichia spp. and C. rodentium. Comparative studies of two RegA homologues, namely, those from C. rodentium and E. coli SMS-3-5, a multiresistant environmental strain of E. coli, showed that the two regulators acted similarly in vitro but differed in terms of their abilities to activate the virulence of C. rodentium in vivo, which evidently was due to their differential activation of grlRA. Our data indicate that RegA from C. rodentium has strain-specific adaptations that facilitate infection of its murine host. These findings shed new light on the development of virulence by C. rodentium and on the evolution of virulence-regulatory genes of bacterial pathogens in general. PMID:25624355

  11. Biochemical localization of a protein involved in Gluconacetobacter hansenii cellulose synthesis

    SciTech Connect

    Iyer, Prashanti R; Catchmark, Jeffrey M; Brown, Nicole Robitaille; Tien, Ming

    2011-02-08

    Using subcellular fractionation and Western blot methods, we have shown that AcsD, one of the proteins encoded by the Acetobacter cellulose synthase (acs) operon, is localized in the periplasmic region of the cell. AcsD protein was heterologously expressed in Escherichia coli and purified using histidine tag affinity methods. The purified protein was used to obtain rabbit polyclonal antibodies. The purity of the subcellular fractions was assessed by marker enzyme assays.

  12. Two regions of mature periplasmic maltose-binding protein of Escherichia coli involved in secretion.

    PubMed

    Duplay, P; Hofnung, M

    1988-10-01

    Six mutations in malE, the structural gene for the periplasmic maltose-binding protein (MBP) from Escherichia coli, prevent growth on maltose as a carbon source, as well as release of the mutant proteins by the cold osmotic-shock procedure. These mutations correspond to insertion of an oligonucleotide linker, concomitant with a deletion. One of the mutations (malE127) affects the N-terminal extension (the signal peptide), whereas the five others lie within the mature protein. As expected, the export of protein MalE127 is blocked at an early stage. This protein is neither processed to maturity nor sensitive to proteinase K in spheroplasts. In contrast, in the five other mutants, the signal peptide is cleaved and the protein is accessible to proteinase K added to spheroplasts. This indicates that the five mutant proteins are, at least in part, exported through the inner membrane. We propose that the corresponding mutations define two regions of the mature protein (between residues 18 and 42 and between residues 280 and 306), which are important for release of the protein from the inner membrane into the periplasm. We discuss the results in terms of possible conformational changes at this late step of export to the periplasm. PMID:3049532

  13. Identification of domains of the Tomato spotted wilt virus NSm protein involved in tubule formation, movement and symptomatology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Deletion and alanine-substitution mutants of the Tomato spotted wilt virus NSm protein were generated to identify domains involved in tubule formation, movement and symptomatology, using a heterologous expression system derived from Tobacco mosaic virus. Two regions of NSm were required for both tub...

  14. Quantitative trait locus mapping identifies candidate alleles involved in adaptive introgression and range expansion in a wild sunflower.

    PubMed

    Whitney, Kenneth D; Broman, Karl W; Kane, Nolan C; Hovick, Stephen M; Randell, Rebecca A; Rieseberg, Loren H

    2015-05-01

    The wild North American sunflowers Helianthus annuus and H. debilis are participants in one of the earliest identified examples of adaptive trait introgression, and the exchange is hypothesized to have triggered a range expansion in H. annuus. However, the genetic basis of the adaptive exchange has not been examined. Here, we combine quantitative trait locus (QTL) mapping with field measurements of fitness to identify candidate H. debilis QTL alleles likely to have introgressed into H. annuus to form the natural hybrid lineage H. a. texanus. Two 500-individual BC1 mapping populations were grown in central Texas, genotyped for 384 single nucleotide polymorphism (SNP) markers and then phenotyped in the field for two fitness and 22 herbivore resistance, ecophysiological, phenological and architectural traits. We identified a total of 110 QTL, including at least one QTL for 22 of the 24 traits. Over 75% of traits exhibited at least one H. debilis QTL allele that would shift the trait in the direction of the wild hybrid H. a. texanus. We identified three chromosomal regions where H. debilis alleles increased both female and male components of fitness; these regions are expected to be strongly favoured in the wild. QTL for a number of other ecophysiological, phenological and architectural traits colocalized with these three regions and are candidates for the actual traits driving adaptive shifts. G × E interactions played a modest role, with 17% of the QTL showing potentially divergent phenotypic effects between the two field sites. The candidate adaptive chromosomal regions identified here serve as explicit hypotheses for how the genetic architecture of the hybrid lineage came into existence. PMID:25522096

  15. AMP Activated Protein Kinase Is Indispensable for Myocardial Adaptation to Caloric Restriction in Mice

    PubMed Central

    Chen, Kai; Kobayashi, Satoru; Xu, Xianmin; Viollet, Benoit; Liang, Qiangrong

    2013-01-01

    Caloric restriction (CR) is a robust dietary intervention known to enhance cardiovascular health. AMP activated protein kinase (AMPK) has been suggested to mediate the cardioprotective effects of CR. However, this hypothesis remains to be tested by using definitive loss-of-function animal models. In the present study, we subjected AMPKα2 knockout (KO) mice and their wild type (WT) littermates to a CR regimen that reduces caloric intake by 20%–40% for 4 weeks. CR decreased body weight, heart weight and serum levels of insulin in both WT and KO mice to the same degree, indicating the effectiveness of the CR protocol. CR activated cardiac AMPK signaling in WT mice, but not in AMPKα2 KO mice. Correspondingly, AMPKα2 KO mice had markedly reduced cardiac function during CR as determined by echocardiography and hemodynamic measurements. The compromised cardiac function was associated with increased markers of oxidative stress, endoplasmic reticulum stress and myocyte apoptosis. Mechanistically, CR down-regulated the expression of ATP5g2, a subunit of mitochondrial ATP synthase, and reduced ATP content in AMPKα2 KO hearts, but not in WT hearts. In addition, CR accelerated cardiac autophagic flux in WT mice, but failed to do so in AMPKα2 KO mice. These results demonstrated that without AMPK, CR triggers adverse effects that can lead to cardiac dysfunction, suggesting that AMPK signaling pathway is indispensible for energy homeostasis and myocardial adaptation to CR, a dietary intervention that normally produces beneficial cardiac effects. PMID:23527250

  16. Electrochemical Characterization of Escherichia coli Adaptive Response Protein AidB

    PubMed Central

    Hamill, Michael J.; Jost, Marco; Wong, Cintyu; Bene, Nicholas C.; Drennan, Catherine L.; Elliott, Sean J.

    2012-01-01

    When exposed to known DNA-damaging alkylating agents, Escherichia coli cells increase production of four DNA repair enzymes: Ada, AlkA, AlkB, and AidB. The role of three enzymes (Ada, AlkA, and AlkB) in repairing DNA lesions has been well characterized, while the function of AidB is poorly understood. AidB has a distinct cofactor that is potentially related to the elusive role of AidB in adaptive response: a redox active flavin adenine dinucleotide (FAD). In this study, we report the thermodynamic redox properties of the AidB flavin for the first time, both for free protein and in the presence of potential substrates. We find that the midpoint reduction potential of the AidB flavin is within a biologically relevant window for redox chemistry at −181 mV, that AidB significantly stabilizes the flavin semiquinone, and that small molecule binding perturbs the observed reduction potential. Our electrochemical results combined with structural analysis allow for fresh comparisons between AidB and the homologous acyl-coenzyme A dehydrogenase (ACAD) family of enzymes. AidB exhibits several discrepancies from ACADs that suggest a novel catalytic mechanism distinct from that of the ACAD family enzymes. PMID:23443126

  17. RNA-Binding Proteins in Trichomonas vaginalis: Atypical Multifunctional Proteins Involved in a Posttranscriptional Iron Regulatory Mechanism

    PubMed Central

    Figueroa-Angulo, Elisa E.; Calla-Choque, Jaeson S.; Mancilla-Olea, Maria Inocente; Arroyo, Rossana

    2015-01-01

    Iron homeostasis is highly regulated in vertebrates through a regulatory system mediated by RNA-protein interactions between the iron regulatory proteins (IRPs) that interact with an iron responsive element (IRE) located in certain mRNAs, dubbed the IRE-IRP regulatory system. Trichomonas vaginalis, the causal agent of trichomoniasis, presents high iron dependency to regulate its growth, metabolism, and virulence properties. Although T. vaginalis lacks IRPs or proteins with aconitase activity, possesses gene expression mechanisms of iron regulation at the transcriptional and posttranscriptional levels. However, only one gene with iron regulation at the transcriptional level has been described. Recently, our research group described an iron posttranscriptional regulatory mechanism in the T. vaginalis tvcp4 and tvcp12 cysteine proteinase mRNAs. The tvcp4 and tvcp12 mRNAs have a stem-loop structure in the 5'-coding region or in the 3'-UTR, respectively that interacts with T. vaginalis multifunctional proteins HSP70, α-Actinin, and Actin under iron starvation condition, causing translation inhibition or mRNA stabilization similar to the previously characterized IRE-IRP system in eukaryotes. Herein, we summarize recent progress and shed some light on atypical RNA-binding proteins that may participate in the iron posttranscriptional regulation in T. vaginalis. PMID:26703754

  18. Direct interaction between nucleosome assembly protein 1 and the papillomavirus E2 proteins involved in activation of transcription.

    PubMed

    Rehtanz, Manuela; Schmidt, Hanns-Martin; Warthorst, Ursula; Steger, Gertrud

    2004-03-01

    Using a yeast two-hybrid screen, we identified human nucleosome assembly protein 1 (hNAP-1) as a protein interacting with the activation domain of the transcriptional activator encoded by papillomaviruses (PVs), the E2 protein. We show that the interaction between E2 and hNAP-1 is direct and not merely mediated by the transcriptional coactivator p300, which is bound by both proteins. Coexpression of hNAP-1 strongly enhances activation by E2, indicating a functional interaction as well. E2 binds to at least two separate domains within hNAP-1, one within the C terminus and an internal domain. The binding of E2 to hNAP-1 is necessary for cooperativity between the factors. Moreover, the N-terminal 91 amino acids are crucial for the transcriptional activity of hNAP-1, since deletion mutants lacking this N-terminal portion fail to cooperate with E2. We provide evidence that hNAP-1, E2, and p300 can form a ternary complex efficient in the activation of transcription. We also show that p53 directly interacts with hNAP-1, indicating that transcriptional activators in addition to PV E2 interact with hNAP-1. These results suggest that the binding of sequence-specific DNA binding proteins to hNAP-1 may be an important step contributing to the activation of transcription. PMID:14966293

  19. Involvement of heat shock protein 47 in Schistosoma japonicum-induced hepatic fibrosis in mice.

    PubMed

    Huang, Jia-Quan; Tao, Ran; Li, Lan; Ma, Ke; Xu, Lei; Ai, Guo; Fan, Xiang-Xue; Jiao, Yun-Tao; Ning, Qin

    2014-01-01

    Chronic infection with the blood fluke Schistosoma japonicum is associated with both liver cirrhosis and liver cancer. Previously, heat shock protein 47, a collagen-specific molecular chaperone, was shown to play a critical role in the maturation of procollagen. However, less is known about the role of heat shock protein 47 in S. japonicum-induced hepatic fibrosis. We therefore investigated the expression of heat shock protein 47 in S. japonicum-induced liver fibrosis and attempted to determine whether inhibition of heat shock protein 47 could have beneficial effects on fibrosis in vitro and in vivo. In this study, we found that the expression of heat shock protein 47 was significantly increased in patients with Schistosoma-induced fibrosis, as well as in rodent models. Immunohistochemistry revealed heat shock protein 47-positive cells were found in the periphery of egg granulomas. Administration of heat shock protein 47-targeted short hairpin (sh)RNA remarkably reduced heat shock protein 47 expression and collagen deposition in NIH3T3 cells and liver tissue of S. japonicum-infected mice. Life-table analysis revealed a dose-dependent prolongation of survival rates with the treatment of heat shock protein 47-shRNA in murine fibrosis models. Moreover, serum alanine aminotransferase and aspartate transaminase activity, splenomegaly, spleen weight index and portal hypertension were also measured, which showed improvement with the anti-fibrosis treatment. The fibrosis-related parameters assessed were expressions of Col1a1, Col3a1, TGF-β1, CTGF, IL-13, IL-17, MMP-9, TIMP-1 and PAI-1 in the liver. This study demonstrated that heat shock protein 47-targeted shRNA directly reduced collagen production of mouse liver fibrosis associated with S. japonicum. We conclude that heat shock protein 47 plays an essential role in S. japonicum-induced hepatic fibrosis in mice and may be a potential target for ameliorating the hepatic fibrosis caused by this parasite. PMID:24295791

  20. Morphine-Induced Preconditioning: Involvement of Protein Kinase A and Mitochondrial Permeability Transition Pore

    PubMed Central

    Dorsch, Marianne; Behmenburg, Friederike; Raible, Miriam; Blase, Dominic; Grievink, Hilbert; Hollmann, Markus W.; Heinen, André; Huhn, Ragnar

    2016-01-01

    hearts STAT3 inhibitor Stattic completely abolished morphine-induced preconditioning. Administration of Stattic and mPTP inhibitor cyclosporine A reduced infarct size to 31±6% (Stat+CsA, P<0.05 vs. Con). Cyclosporine A alone reduced infarct size to 26±7% (CsA P<0.05 vs. Con). In cardiomyocytes, PKA activity was increased by morphine. Conclusion Our data suggest that morphine-induced cardioprotection is mediated by STAT3-activation and inhibition of mPTP, with STA3 located upstream of mPTP. There is some evidence that protein kinase A is involved within the signalling pathway. PMID:26968004

  1. The death-associated protein DAXX is a novel histone chaperone involved in the replication-independent deposition of H3.3

    PubMed Central

    Drané, Pascal; Ouararhni, Khalid; Depaux, Arnaud; Shuaib, Muhammad; Hamiche, Ali

    2010-01-01

    The histone variant H3.3 marks active chromatin by replacing the conventional histone H3.1. In this study, we investigate the detailed mechanism of H3.3 replication-independent deposition. We found that the death domain-associated protein DAXX and the chromatin remodeling factor ATRX (α-thalassemia/mental retardation syndrome protein) are specifically associated with the H3.3 deposition machinery. Bacterially expressed DAXX has a marked binding preference for H3.3 and assists the deposition of (H3.3–H4)2 tetramers on naked DNA, thus showing that DAXX is a H3.3 histone chaperone. In DAXX-depleted cells, a fraction of H3.3 was found associated with the replication-dependent machinery of deposition, suggesting that cells adapt to the depletion. The reintroduced DAXX in these cells colocalizes with H3.3 into the promyelocytic leukemia protein (PML) bodies. Moreover, DAXX associates with pericentric DNA repeats, and modulates the transcription from these repeats through assembly of H3.3 nucleosomes. These findings establish a new link between the PML bodies and the regulation of pericentric DNA repeat chromatin structure. Taken together, our data demonstrate that DAXX functions as a bona fide histone chaperone involved in the replication-independent deposition of H3.3. PMID:20504901

  2. Identification of Proteins Possibly Involved in Glucosinolate Metabolism in L. agilis R16 and E. coli VL8.

    PubMed

    Luang-In, Vijitra; Narbad, Arjan; Cebeci, Fatma; Bennett, Mark; Rossiter, John T

    2015-04-01

    This study was aimed to identify sinigrin-induced bacterial proteins potentially involved in the metabolism of glucosinolate in two glucosinolate-metabolising bacteria Lactobacillus agilis R16 and Escherichia coli VL8. Sinigrin (2 mM) was used to induce the proteins in both bacteria under anaerobic incubation for 8 h at 30 °C for L. agilis R16 and 37 °C for E. coli VL8 and the controls without sinigrin were performed. Allyl isothiocyanate and allyl nitrile as two degradation products of sinigrin were detected in sinigrin-induced cultures of L. agilis R16 (27% total products) and E. coli VL8 (38% total products) from a complete sinigrin degradation in 8 h for both bacteria. 2D gel electrophoresis was conducted to identify induced proteins with at least twofold increased abundance. Sinigrin-induced L. agilis R16 and the control produced 1561 and 1543 protein spots, respectively. For E. coli VL8, 1363 spots were detected in sinigrin-induced and 1354 spots in the control. A combination of distinct proteins and upregulated proteins of 32 and 35 spots in L. agilis R16 and E. coli VL8, respectively were detected upon sinigrin induction. Of these, 12 and 16 spots from each bacterium respectively were identified by LC-MS/MS. In both bacteria most of the identified proteins are involved in carbohydrate metabolism, oxidoreduction system and sugar transport while the minority belong to purine metabolism, hydrolysis, and proteolysis. This indicated that sinigrin induction led to the expressions of proteins with similar functions in both bacteria and these proteins may play a role in bacterial glucosinolate metabolism. PMID:25805049

  3. Systematic Phenotypic Screen of Arabidopsis Peroxisomal Mutants Identifies Proteins Involved in β-Oxidation1[W][OPEN

    PubMed Central

    Cassin-Ross, Gaëlle; Hu, Jianping

    2014-01-01

    Peroxisomes are highly dynamic and multifunctional organelles essential to development. Plant peroxisomes accommodate a multitude of metabolic reactions, many of which are related to the β-oxidation of fatty acids or fatty acid-related metabolites. Recently, several dozens of novel peroxisomal proteins have been identified from Arabidopsis (Arabidopsis thaliana) through in silico and experimental proteomic analyses followed by in vivo protein targeting validations. To determine the functions of these proteins, we interrogated their transfer DNA insertion mutants with a series of physiological, cytological, and biochemical assays to reveal peroxisomal deficiencies. Sugar dependence and 2,4-dichlorophenoxybutyric acid and 12-oxo-phytodienoic acid response assays uncovered statistically significant phenotypes in β-oxidation-related processes in mutants for 20 of 27 genes tested. Additional investigations uncovered a subset of these mutants with abnormal seed germination, accumulation of oil bodies, and delayed degradation of long-chain fatty acids during early seedling development. Mutants for seven genes exhibited deficiencies in multiple assays, strongly suggesting the involvement of their gene products in peroxisomal β-oxidation and initial seedling growth. Proteins identified included isoforms of enzymes related to β-oxidation, such as acyl-CoA thioesterase2, acyl-activating enzyme isoform1, and acyl-activating enzyme isoform5, and proteins with functions previously unknown to be associated with β-oxidation, such as Indigoidine synthase A, Senescence-associated protein/B12D-related protein1, Betaine aldehyde dehydrogenase, and Unknown protein5. This multipronged phenotypic screen allowed us to reveal β-oxidation proteins that have not been discovered by single assay-based mutant screens and enabled the functional dissection of different isoforms of multigene families involved in β-oxidation. PMID:25253886

  4. Leucine alleviates dexamethasone-induced suppression of muscle protein synthesis via synergy involvement of mTOR and AMPK pathways.

    PubMed

    Wang, Xiao J; Yang, Xin; Wang, Ru X; Jiao, Hong C; Zhao, Jing P; Song, Zhi G; Lin, Hai

    2016-07-01

    Glucocorticoids (GCs) are negative muscle protein regulators that contribute to the whole-body catabolic state during stress. Mammalian target of rapamycin (mTOR)-signalling pathway, which acts as a central regulator of protein metabolism, can be activated by branched-chain amino acids (BCAA). In the present study, the effect of leucine on the suppression of protein synthesis induced by GCs and the pathway involved were investigated. In vitro experiments were conducted using cultured C2C12 myoblasts to study the effect of GCs on protein synthesis, and the involvement of mTOR pathway was investigated as well. After exposure to dexamethasone (DEX, 100 μmol/l) for 24 h, protein synthesis in muscle cells was significantly suppressed (P<0.05), the phosphorylations of mTOR, ribosomal protein S6 protein kinase 1 (p70s6k1) and eukaryotic initiation factor 4E binding protein 1 (4EBP1) were significantly reduced (P<0.05). Leucine supplementation (5 mmol/l, 10 mmol/l and 15 mmol/l) for 1 h alleviated the suppression of protein synthesis induced by DEX (P<0.05) and was accompanied with the increased phosphorylation of mTOR and decreased phosphorylation of AMPK (P<0.05). Branched-chain amino transferase 2 (BCAT2) mRNA level was not influenced by DEX (P>0.05) but was increased by leucine supplementation at a dose of 5 mmol/l (P<0.05). PMID:27129299

  5. Identification of candidate effector proteins potentially involved in Fusarium graminearum-wheat interactions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pathogen-derived small secreted cysteine-rich proteins (SSCPs) are known to be a common source of fungal effectors that trigger resistance or susceptibility in specific host plants. This group of proteins has not been well studied in Fusarium graminearum, the primary cause of Fusarium head blight (...

  6. Quantitative Proteomic Analysis of Differentially Expressed Protein Profiles Involved in Pancreatic Ductal Adenocarcinoma

    PubMed Central

    Kuo, Kung-Kai; Kuo, Chao-Jen; Chiu, Chiang-Yen; Liang, Shih-Shin; Huang, Chun-Hao; Chi, Shu-Wen; Tsai, Kun-Bow; Chen, Chiao-Yun; Hsi, Edward; Cheng, Kuang-Hung; Chiou, Shyh-Horng

    2016-01-01

    Objectives The aim of this study was to identify differentially expressed proteins among various stages of pancreatic ductal adenocarcinoma (PDAC) by shotgun proteomics using nano-liquid chromatography coupled tandem mass spectrometry and stable isotope dimethyl labeling. Methods Differentially expressed proteins were identified and compared based on the mass spectral differences of their isotope-labeled peptide fragments generated from protease digestion. Results Our quantitative proteomic analysis of the differentially expressed proteins with stable isotope (deuterium/hydrogen ratio, ≥2) identified a total of 353 proteins, with at least 5 protein biomarker proteins that were significantly differentially expressed between cancer and normal mice by at least a 2-fold alteration. These 5 protein biomarker candidates include α-enolase, α-catenin, 14-3-3 β, VDAC1, and calmodulin with high confidence levels. The expression levels were also found to be in agreement with those examined by Western blot and histochemical staining. Conclusions The systematic decrease or increase of these identified marker proteins may potentially reflect the morphological aberrations and diseased stages of pancreas carcinoma throughout progressive developments leading to PDAC. The results would form a firm foundation for future work concerning validation and clinical translation of some identified biomarkers into targeted diagnosis and therapy for various stages of PDAC. PMID:26262590

  7. Classical Swine Fever Virus p7 protein is a viroporin involved in virulence in swine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The non-structural protein p7 of Classical Swine Fever Virus (CSFV) is a hydrophobic polypeptide with an apparent molecular mass of 7 kDa. The protein contains two hydrophobic stretches of amino acids interrupted by a short charged segment that are predicted to form transmembrane helices and a cytos...

  8. Involvement of the "A" isozyme of methyltransferase II and the 29-kilodalton corrinoid protein in methanogenesis from monomethylamine.

    PubMed Central

    Burke, S A; Krzycki, J A

    1995-01-01

    An assay which allowed detection of proteins involved in the trimethylamine- or monomethylamine (MMA)-dependent methylation of coenzyme M (CoM) was developed. The two activities could be separated by anion-exchange chromatography. The unresolved activity responsible for MMA:CoM methyl transfer eluted from a gel permeation column in the molecular mass range of 32 kDa. The activity was purified to two monomeric proteins of 40 and 29 kDa. The preparation contained protein-bound corrinoid in a mixture of Co(II) and Co(III) states, as well as methyl-B12:CoM methyltransferase (MT2) activity. N-terminal sequence analysis demonstrated that the polypeptides were two previously identified proteins of undefined physiological function. The smaller polypeptide was the monomeric 29-kDa corrinoid protein. The larger polypeptide was the "A" isozyme of MT2. Individually purified preparations of both proteins increased the rate of MMA-dependent CoM methylation by approximately 1.7 mumol/min/mg of purified protein above background activity in the extract of methanol-grown cells. These results indicate that the 29-kDa corrinoid protein and the "A" isozyme of MT2 function in methanogenesis from MMA. A likely mechanism is that the 29-kDa corrinoid is methylated by MMA and the methyl group is then transferred by the "A" isozyme of MT2 to CoM. PMID:7635826

  9. The role of residue stability in transient protein-protein interactions involved in enzymatic phosphate hydrolysis. A computational study.

    PubMed

    Bonet, Jaume; Caltabiano, Gianluigi; Khan, Abdul Kareem; Johnston, Michael A; Corbí, Carles; Gómez, Alex; Rovira, Xavier; Teyra, Joan; Villà-Freixa, Jordi

    2006-04-01

    Finding why protein-protein interactions (PPIs) are so specific can provide a valuable tool in a variety of fields. Statistical surveys of so-called transient complexes (like those relevant for signal transduction mechanisms) have shown a tendency of polar residues to participate in the interaction region. Following this scheme, residues in the unbound partners have to compete between interacting with water or interacting with other residues of the protein. On the other hand, several works have shown that the notion of active site electrostatic preorganization can be used to interpret the high efficiency in enzyme reactions. This preorganization can be related to the instability of the residues important for catalysis. In some enzymes, in addition, conformational changes upon binding to other proteins lead to an increase in the activity of the enzymatic partner. In this article the linear response approximation version of the semimacroscopic protein dipoles Langevin dipoles (PDLD/S-LRA) model is used to evaluate the stability of several residues in two phosphate hydrolysis enzymes upon complexation with their activating partners. In particular, the residues relevant for PPI and for phosphate hydrolysis in the CDK2/Cyclin A and Ras/GAP complexes are analyzed. We find that the evaluation of the stability of residues in these systems can be used to identify not only active site regions but it can also be used as a guide to locate "hot spots" for PPIs. We also show that conformational changes play a major role in positioning interfacing residues in a proper "energetic" orientation, ready to interact with the residues in the partner protein surface. Thus, we extend the preorganization theory to PPIs, extrapolating the results we obtained from the above-mentioned complexes to a more general case. We conclude that the correlation between stability of a residue in the surface and the likelihood that it participates in the interaction can be a general fact for transient

  10. Mapping the H(+) (V)-ATPase interactome: identification of proteins involved in trafficking, folding, assembly and phosphorylation.

    PubMed

    Merkulova, Maria; Păunescu, Teodor G; Azroyan, Anie; Marshansky, Vladimir; Breton, Sylvie; Brown, Dennis

    2015-01-01

    V-ATPases (H(+) ATPases) are multisubunit, ATP-dependent proton pumps that regulate pH homeostasis in virtually all eukaryotes. They are involved in key cell biological processes including vesicle trafficking, endosomal pH sensing, membrane fusion and intracellular signaling. They also have critical systemic roles in renal acid excretion and blood pH balance, male fertility, bone remodeling, synaptic transmission, olfaction and hearing. Furthermore, V-ATPase dysfunction either results in or aggravates various other diseases, but little is known about the complex protein interactions that regulate these varied V-ATPase functions. Therefore, we performed a proteomic analysis to identify V-ATPase associated proteins and construct a V-ATPase interactome. Our analysis using kidney tissue revealed V-ATPase-associated protein clusters involved in protein quality control, complex assembly and intracellular trafficking. ARHGEF7, DMXL1, EZR, NCOA7, OXR1, RPS6KA3, SNX27 and 9 subunits of the chaperonin containing TCP1 complex (CCT) were found to interact with V-ATPase for the first time in this study. Knockdown of two interacting proteins, DMXL1 and WDR7, inhibited V-ATPase-mediated intracellular vesicle acidification in a kidney cell line, providing validation for the utility of our interactome as a screen for functionally important novel V-ATPase-regulating proteins. Our data, therefore, provide new insights and directions for the analysis of V-ATPase cell biology and (patho)physiology. PMID:26442671

  11. Mapping the H+ (V)-ATPase interactome: identification of proteins involved in trafficking, folding, assembly and phosphorylation

    PubMed Central

    Merkulova, Maria; Păunescu, Teodor G.; Azroyan, Anie; Marshansky, Vladimir; Breton, Sylvie; Brown, Dennis

    2015-01-01

    V-ATPases (H+ ATPases) are multisubunit, ATP-dependent proton pumps that regulate pH homeostasis in virtually all eukaryotes. They are involved in key cell biological processes including vesicle trafficking, endosomal pH sensing, membrane fusion and intracellular signaling. They also have critical systemic roles in renal acid excretion and blood pH balance, male fertility, bone remodeling, synaptic transmission, olfaction and hearing. Furthermore, V-ATPase dysfunction either results in or aggravates various other diseases, but little is known about the complex protein interactions that regulate these varied V-ATPase functions. Therefore, we performed a proteomic analysis to identify V-ATPase associated proteins and construct a V-ATPase interactome. Our analysis using kidney tissue revealed V-ATPase-associated protein clusters involved in protein quality control, complex assembly and intracellular trafficking. ARHGEF7, DMXL1, EZR, NCOA7, OXR1, RPS6KA3, SNX27 and 9 subunits of the chaperonin containing TCP1 complex (CCT) were found to interact with V-ATPase for the first time in this study. Knockdown of two interacting proteins, DMXL1 and WDR7, inhibited V-ATPase-mediated intracellular vesicle acidification in a kidney cell line, providing validation for the utility of our interactome as a screen for functionally important novel V-ATPase-regulating proteins. Our data, therefore, provide new insights and directions for the analysis of V-ATPase cell biology and (patho)physiology. PMID:26442671

  12. Cox17 Protein Is an Auxiliary Factor Involved in the Control of the Mitochondrial Contact Site and Cristae Organizing System*

    PubMed Central

    Chojnacka, Magdalena; Gornicka, Agnieszka; Oeljeklaus, Silke; Warscheid, Bettina; Chacinska, Agnieszka

    2015-01-01

    The mitochondrial contact site and cristae organizing system (MICOS) is a recently discovered protein complex that is crucial for establishing and maintaining the proper inner membrane architecture and contacts with the outer membrane of mitochondria. The ways in which the MICOS complex is assembled and its integrity is regulated remain elusive. Here, we report a direct link between Cox17, a protein involved in the assembly of cytochrome c oxidase, and the MICOS complex. Cox17 interacts with Mic60, thereby modulating MICOS complex integrity. This interaction does not involve Sco1, a partner of Cox17 in transferring copper ions to cytochrome c oxidase. However, the Cox17-MICOS interaction is regulated by copper ions. We propose that Cox17 is a newly identified factor involved in maintaining the architecture of the MICOS complex. PMID:25918166

  13. Evolution of an ancient protein function involved in organized multicellularity in animals.

    PubMed

    Anderson, Douglas P; Whitney, Dustin S; Hanson-Smith, Victor; Woznica, Arielle; Campodonico-Burnett, William; Volkman, Brian F; King, Nicole; Thornton, Joseph W; Prehoda, Kenneth E

    2016-01-01

    To form and maintain organized tissues, multicellular organisms orient their mitotic spindles relative to neighboring cells. A molecular complex scaffolded by the GK protein-interaction domain (GKPID) mediates spindle orientation in diverse animal taxa by linking microtubule motor proteins to a marker protein on the cell cortex localized by external cues. Here we illuminate how this complex evolved and commandeered control of spindle orientation from a more ancient mechanism. The complex was assembled through a series of molecular exploitation events, one of which - the evolution of GKPID's capacity to bind the cortical marker protein - can be recapitulated by reintroducing a single historical substitution into the reconstructed ancestral GKPID. This change revealed and repurposed an ancient molecular surface that previously had a radically different function. We show how the physical simplicity of this binding interface enabled the evolution of a new protein function now essential to the biological complexity of many animals. PMID:26740169

  14. Adaptive responses of Bacillus cereus ATCC14579 cells upon exposure to acid conditions involve ATPase activity to maintain their internal pH

    PubMed Central

    Senouci-Rezkallah, Khadidja; Jobin, Michel P; Schmitt, Philippe

    2015-01-01

    This study examined the involvement of ATPase activity in the acid tolerance response (ATR) of Bacillus cereus ATCC14579 strain. In the current work, B. cereus cells were grown in anaerobic chemostat culture at external pH (pHe) 7.0 or 5.5 and at a growth rate of 0.2 h−1. Population reduction and internal pH (pHi) after acid shock at pH 4.0 was examined either with or without ATPase inhibitor N,N’-dicyclohexylcarbodiimide (DCCD) and ionophores valinomycin and nigericin. Population reduction after acid shock at pH 4.0 was strongly limited in cells grown at pH 5.5 (acid-adapted cells) compared with cells grown at pH 7.0 (unadapted cells), indicating that B. cereus cells grown at low pHe were able to induce a significant ATR and Exercise-induced increase in ATPase activity. However, DCCD and ionophores had a negative effect on the ability of B. cereus cells to survive and maintain their pHi during acid shock. When acid shock was achieved after DCCD treatment, pHi was markedly dropped in unadapted and acid-adapted cells. The ATPase activity was also significantly inhibited by DCCD and ionophores in acid-adapted cells. Furthermore, transcriptional analysis revealed that atpB (ATP beta chain) transcripts was increased in acid-adapted cells compared to unadapted cells before and after acid shock. Our data demonstrate that B. cereus is able to induce an ATR during growth at low pH. These adaptations depend on the ATPase activity induction and pHi homeostasis. Our data demonstrate that the ATPase enzyme can be implicated in the cytoplasmic pH regulation and in acid tolerance of B. cereus acid-adapted cells. PMID:25740257

  15. STP1, a gene involved in pre-tRNA processing, encodes a nuclear protein containing zinc finger motifs.

    PubMed Central

    Wang, S S; Stanford, D R; Silvers, C D; Hopper, A K

    1992-01-01

    STP1 is an unessential yeast gene involved in the removal of intervening sequences from some, but not all, families of intervening sequence-containing pre-tRNAs. Previously, we proposed that STP1 might encode a product that generates pre-tRNA conformations efficiently recognized by tRNA-splicing endonuclease. To test the predictions of this model, we have undertaken a molecular analysis of the STP1 gene and its products. The STP1 locus is located on chromosome IV close to at least two other genes involved in RNA splicing: PRP3 and SPP41. The STP1 open reading frame (ORF) could encode a peptide of 64,827 Da; however, inspection of putative transcriptional and translational regulatory signals and mapping of the 5' ends of mRNA provide evidence that translation of the STP1 ORF usually initiates at a second AUG to generate a protein of 58,081 Da. The STP1 ORF contains three putative zinc fingers. The first of these closely resembles both the DNA transcription factor consensus and the Xenopus laevis p43 RNA-binding protein consensus. The third motif more closely resembles the fingers found in spliceosomal proteins. Employing antisera to the endogenous STP1 protein and to STP1-LacZ fusion proteins, we show that the STP1 protein is localized to nuclei. The presence of zinc finger motifs and the nuclear location of the STP1 protein support the model that this gene product is involved directly in pre-tRNA splicing. Images PMID:1588961

  16. Uncoupling protein and ATP/ADP carrier increase mitochondrial proton conductance after cold adaptation of king penguins

    PubMed Central

    Talbot, Darren A; Duchamp, Claude; Rey, Benjamin; Hanuise, Nicolas; Rouanet, Jean Louis; Sibille, Brigitte; Brand, Martin D

    2004-01-01

    Juvenile king penguins develop adaptive thermogenesis after repeated immersion in cold water. However, the mechanisms of such metabolic adaptation in birds are unknown, as they lack brown adipose tissue and uncoupling protein-1 (UCP1), which mediate adaptive non-shivering thermogenesis in mammals. We used three different groups of juvenile king penguins to investigate the mitochondrial basis of avian adaptive thermogenesis in vitro. Skeletal muscle mitochondria isolated from penguins that had never been immersed in cold water showed no superoxide-stimulated proton conductance, indicating no functional avian UCP. Skeletal muscle mitochondria from penguins that had been either experimentally immersed or naturally adapted to cold water did possess functional avian UCP, demonstrated by a superoxide-stimulated, GDP-inhibitable proton conductance across their inner membrane. This was associated with a markedly greater abundance of avian UCP mRNA. In the presence (but not the absence) of fatty acids, these mitochondria also showed a greater adenine nucleotide translocase-catalysed proton conductance than those from never-immersed penguins. This was due to an increase in the amount of adenine nucleotide translocase. Therefore, adaptive thermogenesis in juvenile king penguins is linked to two separate mechanisms of uncoupling of oxidative phosphorylation in skeletal muscle mitochondria: increased proton transport activity of avian UCP (dependent on superoxide and inhibited by GDP) and increased proton transport activity of the adenine nucleotide translocase (dependent on fatty acids and inhibited by carboxyatractylate). PMID:15146050

  17. Surface proteins of C6/36 cells involved in dengue virus 4 binding and entry.

    PubMed

    Vega-Almeida, Tania Olivia; Salas-Benito, Mariana; De Nova-Ocampo, Mónica Ascensión; Del Angel, Rosa María; Salas-Benito, Juan Santiago

    2013-06-01

    Dengue virus (DENV) is the causative agent of the most important mosquito-borne viral disease, which is endemic to over 100 countries in tropical and subtropical areas of the world. It is transmitted to humans by Aedes mosquitoes. The first step in the viral infection of host cells is virion attachment to the plasma membrane, which is mediated by specific surface molecules. There are several molecules that participate in DENV infection of mosquitoes, but only a few have been identified. In this work, we co-purified 4 proteins from C6/36 cells using a recombinant DENV 4 E protein and identified them as 70 kDa Heat Shock and 70 kDa Heat Shock cognate proteins (HSP70/HSc70), Binding immunoglobulin protein (BiP), Thioredoxin/protein disulphide isomerase (PDI), and 44 kDa Endoplasmic reticulum resident protein (ERp44) via matrix-assisted laser desorption/ionisation time of flight (Maldi-ToF) analysis. Using immunofluorescence and flow cytometry assays, we observed re-localisation of HSP70/HSc70 and, to a lesser extent, BiP to the plasma membrane under stress conditions, such as during DENV infection. By performing binding and infection assays independently, we found that all 4 proteins participate in both processes, but to differing extents: HSP70/HSc70 is the most critical component, while ERp44 is less important. Viral infection was not inhibited when the cells were incubated with antibodies against all of the surface proteins after virus binding, which suggests that DENV entry to C6/36 cells is mediated by these proteins at the same step and not sequentially. PMID:23344777

  18. ADAPT, a Novel Scaffold Protein-Based Probe for Radionuclide Imaging of Molecular Targets That Are Expressed in Disseminated Cancers.

    PubMed

    Garousi, Javad; Lindbo, Sarah; Nilvebrant, Johan; Åstrand, Mikael; Buijs, Jos; Sandström, Mattias; Honarvar, Hadis; Orlova, Anna; Tolmachev, Vladimir; Hober, Sophia

    2015-10-15

    Small engineered scaffold proteins have attracted attention as probes for radionuclide-based molecular imaging. One class of these imaging probes, termed ABD-Derived Affinity Proteins (ADAPT), has been created using the albumin-binding domain (ABD) of streptococcal protein G as a stable protein scaffold. In this study, we report the development of a clinical lead probe termed ADAPT6 that binds HER2, an oncoprotein overexpressed in many breast cancers that serves as a theranostic biomarker for several approved targeting therapies. Surface-exposed amino acids of ABD were randomized to create a combinatorial library enabling selection of high-affinity binders to various proteins. Furthermore, ABD was engineered to enable rapid purification, to eradicate its binding to albumin, and to enable rapid blood clearance. Incorporation of a unique cysteine allowed site-specific conjugation to a maleimido derivative of a DOTA chelator, enabling radionuclide labeling, ¹¹¹In for SPECT imaging and ⁶⁸Ga for PET imaging. Pharmacologic studies in mice demonstrated that the fully engineered molecule (111)In/⁶⁸Ga-DOTA-(HE)3-ADAPT6 was specifically bound and taken up by HER2-expressing tumors, with a high tumor-to-normal tissue ratio in xenograft models of human cancer. Unbound tracer underwent rapid renal clearance followed by high renal reabsorption. HER2-expressing xenografts were visualized by gamma-camera or PET at 1 hour after infusion. PET experiments demonstrated feasibility for discrimination of xenografts with high or low HER2 expression. Our results offer a preclinical proof of concept for the use of ADAPT probes for noninvasive in vivo imaging. PMID:26297736

  19. Development of a Cold-Adapted Pseudoalteromonas Expression System for the Pseudoalteromonas Proteins Intractable for the Escherichia coli System.

    PubMed

    Yu, Zi-Chao; Tang, Bai-Lu; Zhao, Dian-Li; Pang, Xiuhua; Qin, Qi-Long; Zhou, Bai-Cheng; Zhang, Xi-Ying; Chen, Xiu-Lan; Zhang, Yu-Zhong

    2015-01-01

    Although the Escherichia coli expression system is the most commonly used expression system, some proteins are still difficult to be expressed by this system, such as proteins with high thermolability and enzymes that cannot mature by autoprocessing. Therefore, it is necessary to develop alternative expression systems. In this study, a cold-adapted Pseudoalteromonas expression system was developed. A shuttle vector was constructed, and a conjugational transfer system between E. coli and psychrophilic strain Pseudoalteromonas sp. SM20429 was established. Based on the shuttle vector, three reporter vectors were constructed to compare the strength of the cloned promoters at low temperature. The promoter of xylanase gene from Pseudoalteromonas sp. BSi20429 was chosen due to its high activity at 10-15°C. An expression vector pEV containing the chosen promoter, multiple cloning sites and a His tag was constructed for protein expression and purification. With pEV as expression vector and SM20429 as the host, a cold-adapted protease, pseudoalterin, which cannot be maturely expressed in E. coli, was successfully expressed as an active extracellular enzyme when induced by 2% oat spelt xylan at 15°C for 48 h. Recombinant pseudoalterin purified from the culture by Ni affinity chromatography had identical N-terminal sequence, similar molecular mass and substrate specificity as the native pseudoalterin. In addition, another two cold-adapted enzymes were also successfully expressed by this system. Our results indicate that this cold-adapted Pseudoalteromonas expression system will provide an alternative choice for protein expression, especially for the Pseudoalteromonas proteins intractable for the E. coli system. PMID:26333173

  20. Identification of Vibrio harveyi proteins involved in the specific immune response of Senegalese sole (Solea senegalensis, Kaup).

    PubMed

    Medina, A; Mancera, J M; Martínez-Manzanares, E; Moriñigo, M A; Arijo, S

    2015-11-01

    Senegalese sole cultures are frequently affected by Vibrio harveyi disease outbreaks. Vaccines in aquaculture are one of the most successful methods of preventing fish pathologies; however, these vaccines are usually composed of inactivated whole cells containing a wide pool of antigens, and some do not induce any protection against pathogens. Thus, the aim of this study was to identify immunogenic proteins of V. harveyi involved in the specific antibody production by Senegalese sole. S. senegalensis specimens were immunized, by intraperitoneal injection, with V. harveyi bacterin supplemented with inactivated extracellular polymeric substances (ECP) and Freund incomplete adjuvant to obtain polyclonal antiserum. One month later, specimens were re-inoculated with the same antigens. Sera from immunized fish were collected two months post first immunization. Strong specific immune response to V. harveyi antigens was detected by ELISA using bacterin (limit dilutions of sera were 1:64000), ECP (1:4000) and outer membrane proteins (OMP) (1:4000) as antigens. Presence of immunogenic proteins in V. harveyi ECP and OMP were determined by 2D-PAGE. For Western Blot analysis some gels were transferred onto nitrocellulose membranes and incubated with sera from S. senegalensis specimens immunized against V. harveyi. 2D-PAGE and Western Blot showed at least five reactive proteins in the ECP and two in the OMP fraction. The spots that clearly reacted with the sole antiserum were excised from stained gel, and analyzed by mass spectrometry (MALDI/TOFTOF). A database search was then performed, using MASCOT as the search method. According to the results, the five ECP spots were identified as Maltoporine, protein homologous to Metal dependent phosphohydrolase, two porins isoforms of V. harveyi and a protein homologous to the cell division protein FtsH. Reactive proteins in the OMP fraction were identified as the protein 3-hydroxyisobutyrate dehydrogenase and a protein homologous to acid

  1. Structural Insights into the MMACHC-MMADHC Protein Complex Involved in Vitamin B12 Trafficking.

    PubMed

    Froese, D Sean; Kopec, Jolanta; Fitzpatrick, Fiona; Schuller, Marion; McCorvie, Thomas J; Chalk, Rod; Plessl, Tanja; Fettelschoss, Victoria; Fowler, Brian; Baumgartner, Matthias R; Yue, Wyatt W

    2015-12-01

    Conversion of vitamin B12 (cobalamin, Cbl) into the cofactor forms methyl-Cbl (MeCbl) and adenosyl-Cbl (AdoCbl) is required for the function of two crucial enzymes, mitochondrial methylmalonyl-CoA mutase and cytosolic methionine synthase, respectively. The intracellular proteins MMACHC and MMADHC play important roles in processing and targeting the Cbl cofactor to its destination enzymes, and recent evidence suggests that they may interact while performing these essential trafficking functions. To better understand the molecular basis of this interaction, we have mapped the crucial protein regions required, indicate that Cbl is likely processed by MMACHC prior to interaction with MMADHC, and identify patient mutations on both proteins that interfere with complex formation, via different mechanisms. We further report the crystal structure of the MMADHC C-terminal region at 2.2 Å resolution, revealing a modified nitroreductase fold with surprising homology to MMACHC despite their poor sequence conservation. Because MMADHC demonstrates no known enzymatic activity, we propose it as the first protein known to repurpose the nitroreductase fold solely for protein-protein interaction. Using small angle x-ray scattering, we reveal the MMACHC-MMADHC complex as a 1:1 heterodimer and provide a structural model of this interaction, where the interaction region overlaps with the MMACHC-Cbl binding site. Together, our findings provide novel structural evidence and mechanistic insight into an essential biological process, whereby an intracellular "trafficking chaperone" highly specific for a trace element cofactor functions via protein-protein interaction, which is disrupted by inherited disease mutations. PMID:26483544

  2. Structural Insights into the MMACHC-MMADHC Protein Complex Involved in Vitamin B12 Trafficking*

    PubMed Central

    Froese, D. Sean; Kopec, Jolanta; Fitzpatrick, Fiona; Schuller, Marion; McCorvie, Thomas J.; Chalk, Rod; Plessl, Tanja; Fettelschoss, Victoria; Fowler, Brian; Baumgartner, Matthias R.; Yue, Wyatt W.

    2015-01-01

    Conversion of vitamin B12 (cobalamin, Cbl) into the cofactor forms methyl-Cbl (MeCbl) and adenosyl-Cbl (AdoCbl) is required for the function of two crucial enzymes, mitochondrial methylmalonyl-CoA mutase and cytosolic methionine synthase, respectively. The intracellular proteins MMACHC and MMADHC play important roles in processing and targeting the Cbl cofactor to its destination enzymes, and recent evidence suggests that they may interact while performing these essential trafficking functions. To better understand the molecular basis of this interaction, we have mapped the crucial protein regions required, indicate that Cbl is likely processed by MMACHC prior to interaction with MMADHC, and identify patient mutations on both proteins that interfere with complex formation, via different mechanisms. We further report the crystal structure of the MMADHC C-terminal region at 2.2 Å resolution, revealing a modified nitroreductase fold with surprising homology to MMACHC despite their poor sequence conservation. Because MMADHC demonstrates no known enzymatic activity, we propose it as the first protein known to repurpose the nitroreductase fold solely for protein-protein interaction. Using small angle x-ray scattering, we reveal the MMACHC-MMADHC complex as a 1:1 heterodimer and provide a structural model of this interaction, where the interaction region overlaps with the MMACHC-Cbl binding site. Together, our findings provide novel structural evidence and mechanistic insight into an essential biological process, whereby an intracellular “trafficking chaperone” highly specific for a trace element cofactor functions via protein-protein interaction, which is disrupted by inherited disease mutations. PMID:26483544

  3. Protein kinase C is involved in regulation of Ca2+ channels in plasmalemma of Nitella syncarpa.

    PubMed

    Zherelova, O M

    1989-01-01

    Ca2+ current recordings have been made on Nitella syncarpa cells using the intracellular perfusion and the voltage-clamp technique. TPA (12-O-tetradecanoylphorbol-13-acetate), a substance capable of activating protein kinase C from plasmalemma of Nitella cells, modulates voltage-dependent Ca2+ channels. Polymixin B, inhibitor of protein kinase C, blocks the Nitella plasmalemma Ca2+ channels; the rate of channel blockage depends on the concentration and exposure time of the substance. PMID:2536617

  4. The Shwachman-Bodian-Diamond Syndrome Protein Family Is Involved in RNA Metabolism

    SciTech Connect

    Savchenko, A; Krogan, Nevan; Cort, John R.; Evdokimova, Elena; Lew, Jocelyne M.; Yee, Adelinda; Sanchez-Pulido, Luis; Andrade, Miguel; Bochkarev, Alexey; Watson, James D.; Kennedy, Michael A.; Greenblatt, Jack; Hughes, Timothy; Arrowsmith, Cheryl H.; Rommens, Johanna M.; Edwards, Aled M.

    2005-05-13

    A combination of structural, biochemical, and genetic studies in model organisms was used to infer a cellular role for the human protein (SBDS) responsible for Shwachman-Bodian-Diamond syndrome. The crystal structure of the SBDS homologue in Archaeoglobus fulgidus, AF0491, revealed a three domain protein. The N-terminal domain, which harbors the majority of disease-linked mutations, has a novel three-dimensional fold.

  5. Whole Cell Formaldehyde Cross-Linking Simplifies Purification of Mitochondrial Nucleoids and Associated Proteins Involved in Mitochondrial Gene Expression

    PubMed Central

    Rajala, Nina; Hensen, Fenna; Wessels, Hans J. C. T.; Ives, Daniel; Gloerich, Jolein; Spelbrink, Johannes N.

    2015-01-01

    Mitochondrial DNA/protein complexes (nucleoids) appear as discrete entities inside the mitochondrial network when observed by live-cell imaging and immunofluorescence. This somewhat trivial observation in recent years has spurred research towards isolation of these complexes and the identification of nucleoid-associated proteins. Here we show that whole cell formaldehyde crosslinking combined with affinity purification and tandem mass-spectrometry provides a simple and reproducible method to identify potential nucleoid associated proteins. The method avoids spurious mitochondrial isolation and subsequent multifarious nucleoid enrichment protocols and can be implemented to allow for label-free quantification (LFQ) by mass-spectrometry. Using expression of a Flag-tagged Twinkle helicase and appropriate controls we show that this method identifies many previously identified nucleoid associated proteins. Using LFQ to compare HEK293 cells with and without mtDNA, but both expressing Twinkle-FLAG, identifies many proteins that are reduced or absent in the absence of mtDNA. This set not only includes established mtDNA maintenance proteins but also many proteins involved in mitochondrial RNA metabolism and translation and therefore represents what can be considered an mtDNA gene expression proteome. Our data provides a very valuable resource for both basic mitochondrial researchers as well as clinical geneticists working to identify novel disease genes on the basis of exome sequence data. PMID:25695250

  6. Determining protein adducts of fipexide: mass spectrometry based assay for confirming the involvement of its reactive metabolite in covalent binding.

    PubMed

    Sleno, Lekha; Varesio, Emmanuel; Hopfgartner, Gérard

    2007-01-01

    Fipexide is a nootropic drug, withdrawn from the market due to its idiosyncratic drug reactions causing adverse effects in man. Previous work on its metabolites has identified several potential reactive metabolites which could be implicated in protein binding. Here, we investigated the formation of these metabolites in rat and human hepatocytes. Based on these results, the o-quinone of fipexide (FIP), formed via the demethylenation reaction through a catechol intermediate, was chosen for further investigation. Studies were then pursued in order to relate this metabolite to protein binding, and thus better understand potential mechanisms for the toxicity of the parent compound. An assay was developed for determining the fipexide catechol-cysteine adduct in the microsomal protein fractions following in vitro incubations. This method digests the entire protein fraction into amino acids, followed by the detection of the Cys-metabolite adduct by liquid chromatography/mass spectrometry (LC/MS). We have designed a strategy where drug metabolism taking place in microsomal incubations and involved in protein binding can be assessed after the proteins have been digested, with the detection of the specific amino acid adduct. In this study, the structure of the fipexide adduct was hypothesized using knowledge previously gained in glutathione and N-acetylcysteine trapping experiments. Acetaminophen was used as a positive control for detecting a drug metabolite-cysteine adduct by LC/MS. This approach has the potential to be applicable as a protein-binding assay in early drug discovery without the need for radioactive compounds. PMID:18022964

  7. The pupylation machinery is involved in iron homeostasis by targeting the iron storage protein ferritin

    PubMed Central

    Küberl, Andreas; Polen, Tino; Bott, Michael

    2016-01-01

    The balance of sufficient iron supply and avoidance of iron toxicity by iron homeostasis is a prerequisite for cellular metabolism and growth. Here we provide evidence that, in Actinobacteria, pupylation plays a crucial role in this process. Pupylation is a posttranslational modification in which the prokaryotic ubiquitin-like protein Pup is covalently attached to a lysine residue in target proteins, thus resembling ubiquitination in eukaryotes. Pupylated proteins are recognized and unfolded by a dedicated AAA+ ATPase (Mycobacterium proteasomal AAA+ ATPase; ATPase forming ring-shaped complexes). In Mycobacteria, degradation of pupylated proteins by the proteasome serves as a protection mechanism against several stress conditions. Other bacterial genera capable of pupylation such as Corynebacterium lack a proteasome, and the fate of pupylated proteins is unknown. We discovered that Corynebacterium glutamicum mutants lacking components of the pupylation machinery show a strong growth defect under iron limitation, which was caused by the absence of pupylation and unfolding of the iron storage protein ferritin. Genetic and biochemical data support a model in which the pupylation machinery is responsible for iron release from ferritin independent of degradation. PMID:27078093

  8. The pupylation machinery is involved in iron homeostasis by targeting the iron storage protein ferritin.

    PubMed

    Küberl, Andreas; Polen, Tino; Bott, Michael

    2016-04-26

    The balance of sufficient iron supply and avoidance of iron toxicity by iron homeostasis is a prerequisite for cellular metabolism and growth. Here we provide evidence that, in Actinobacteria, pupylation plays a crucial role in this process. Pupylation is a posttranslational modification in which the prokaryotic ubiquitin-like protein Pup is covalently attached to a lysine residue in target proteins, thus resembling ubiquitination in eukaryotes. Pupylated proteins are recognized and unfolded by a dedicated AAA+ ATPase (Mycobacterium proteasomal AAA+ ATPase; ATPase forming ring-shaped complexes). In Mycobacteria, degradation of pupylated proteins by the proteasome serves as a protection mechanism against several stress conditions. Other bacterial genera capable of pupylation such as Corynebacterium lack a proteasome, and the fate of pupylated proteins is unknown. We discovered that Corynebacterium glutamicum mutants lacking components of the pupylation machinery show a strong growth defect under iron limitation, which was caused by the absence of pupylation and unfolding of the iron storage protein ferritin. Genetic and biochemical data support a model in which the pupylation machinery is responsible for iron release from ferritin independent of degradation. PMID:27078093

  9. Yeast hEST1A/B (SMG5/6)-like proteins contribute to environment-sensing adaptive gene expression responses.

    PubMed

    Lai, Xianning; Beilharz, Traude; Au, Wei-Chun; Hammet, Andrew; Preiss, Thomas; Basrai, Munira A; Heierhorst, Jörg

    2013-10-01

    During its natural life cycle, budding yeast (Saccharomyces cerevisiae) has to adapt to drastically changing environments, but how environmental-sensing pathways are linked to adaptive gene expression changes remains incompletely understood. Here, we describe two closely related yeast hEST1A-B (SMG5-6)-like proteins termed Esl1 and Esl2 that contain a 14-3-3-like domain and a putative PilT N-terminus ribonuclease domain. We found that, unlike their metazoan orthologs, Esl1 and Esl2 were not involved in nonsense-mediated mRNA decay or telomere maintenance pathways. However, in genome-wide expression array analyses, absence of Esl1 and Esl2 led to more than two-fold deregulation of ∼50 transcripts, most of which were expressed inversely to the appropriate metabolic response to environmental nutrient supply; for instance, normally glucose-repressed genes were derepressed in esl1Δ esl2Δ double mutants during growth in a high-glucose environment. Likewise, in a genome-wide synthetic gene array screen, esl1Δ esl2Δ double mutants were synthetic sick with null mutations for Rim8 and Dfg16, which form the environmental-sensing complex of the Rim101 pH response gene expression pathway. Overall, these results suggest that Esl1 and Esl2 contribute to the regulation of adaptive gene expression responses of environmental sensing pathways. PMID:23893744

  10. Yeast hEST1A/B (SMG5/6)–Like Proteins Contribute to Environment-Sensing Adaptive Gene Expression Responses

    PubMed Central

    Lai, Xianning; Beilharz, Traude; Au, Wei-Chun; Hammet, Andrew; Preiss, Thomas; Basrai, Munira A.; Heierhorst, Jörg

    2013-01-01

    During its natural life cycle, budding yeast (Saccharomyces cerevisiae) has to adapt to drastically changing environments, but how environmental-sensing pathways are linked to adaptive gene expression changes remains incompletely understood. Here, we describe two closely related yeast hEST1A-B (SMG5-6)–like proteins termed Esl1 and Esl2 that contain a 14-3-3–like domain and a putative PilT N-terminus ribonuclease domain. We found that, unlike their metazoan orthologs, Esl1 and Esl2 were not involved in nonsense-mediated mRNA decay or telomere maintenance pathways. However, in genome-wide expression array analyses, absence of Esl1 and Esl2 led to more than two-fold deregulation of ∼50 transcripts, most of which were expressed inversely to the appropriate metabolic response to environmental nutrient supply; for instance, normally glucose-repressed genes were derepressed in esl1Δ esl2Δ double mutants during growth in a high-glucose environment. Likewise, in a genome-wide synthetic gene array screen, esl1Δ esl2Δ double mutants were synthetic sick with null mutations for Rim8 and Dfg16, which form the environmental-sensing complex of the Rim101 pH response gene expression pathway. Overall, these results suggest that Esl1 and Esl2 contribute to the regulation of adaptive gene expression responses of environmental sensing pathways. PMID:23893744

  11. The negatively charged regions of lactoferrin binding protein B, an adaptation against anti-microbial peptides.

    PubMed

    Morgenthau, Ari; Beddek, Amanda; Schryvers, Anthony B

    2014-01-01

    Lactoferrin binding protein B (LbpB) is a bi-lobed membrane bound lipoprotein that is part of the lactoferrin receptor complex in a variety of Gram-negative pathogens. Despite high sequence diversity among LbpBs from various strains and species, a cluster of negatively charged amino acids is invariably present in the protein's C-terminal lobe in all species except Moraxella bovis. The function of LbpB in iron acquisition has yet to be experimentally demonstrated, whereas in vitro studies have shown that LbpB confers protection against lactoferricin, a short cationic antimicrobial peptide released from the N- terminus of lactoferrin. In this study we demonstrate that the negatively charged regions can be removed from the Neisseria meningitidis LbpB without compromising stability, and this results in the inability of LbpB to protect against the bactericidal effects of lactoferricin. The release of LbpB from the cell surface by the autotransporter NalP reduces the protection against lactoferricin in the in vitro killing assay, attributed to removal of LbpB during washing steps, but is unlikely to have a similar impact in vivo. The protective effect of the negatively charged polysaccharide capsule in the killing assay was less than the protection conferred by LbpB, suggesting that LbpB plays a major role in protection against cationic antimicrobial peptides in vivo. The selective release of LbpB by NalP has been proposed to be a mechanism for evading the adaptive immune response, by reducing the antibody binding to the cell surface, but may also provide insights into the primary function of LbpB in vivo. Although TbpB and LbpB have been shown to be major targets of the human immune response, the selective release of LbpB suggests that unlike TbpB, LbpB may not be essential for iron acquisition, but important for protection against cationic antimicrobial peptides. PMID:24465982

  12. Adaptive aneuploidy protects against thiol peroxidase deficiency by increasing respiration via key mitochondrial proteins.

    PubMed

    Kaya, Alaattin; Gerashchenko, Maxim V; Seim, Inge; Labarre, Jean; Toledano, Michel B; Gladyshev, Vadim N

    2015-08-25

    Aerobic respiration is a fundamental energy-generating process; however, there is cost associated with living in an oxygen-rich environment, because partially reduced oxygen species can damage cellular components. Organisms evolved enzymes that alleviate this damage and protect the intracellular milieu, most notably thiol peroxidases, which are abundant and conserved enzymes that mediate hydrogen peroxide signaling and act as the first line of defense against oxidants in nearly all living organisms. Deletion of all eight thiol peroxidase genes in yeast (∆8 strain) is not lethal, but results in slow growth and a high mutation rate. Here we characterized mechanisms that allow yeast cells to survive under conditions of thiol peroxidase deficiency. Two independent ∆8 strains increased mitochondrial content, altered mitochondrial distribution, and became dependent on respiration for growth but they were not hypersensitive to H2O2. In addition, both strains independently acquired a second copy of chromosome XI and increased expression of genes encoded by it. Survival of ∆8 cells was dependent on mitochondrial cytochrome-c peroxidase (CCP1) and UTH1, present on chromosome XI. Coexpression of these genes in ∆8 cells led to the elimination of the extra copy of chromosome XI and improved cell growth, whereas deletion of either gene was lethal. Thus, thiol peroxidase deficiency requires dosage compensation of CCP1 and UTH1 via chromosome XI aneuploidy, wherein these proteins support hydroperoxide removal with the reducing equivalents generated by the electron transport chain. To our knowledge, this is the first evidence of adaptive aneuploidy counteracting oxidative stress. PMID:26261310

  13. Plant natriuretic peptides induce proteins diagnostic for an adaptive response to stress

    PubMed Central

    Turek, Ilona; Marondedze, Claudius; Wheeler, Janet I.; Gehring, Chris; Irving, Helen R.

    2014-01-01

    In plants, structural and physiological evidence has suggested the presence of biologically active natriuretic peptides (PNPs). PNPs are secreted into the apoplast, are systemically mobile and elicit a range of responses signaling via cGMP. The PNP-dependent responses include tissue specific modifications of cation transport and changes in stomatal conductance and the photosynthetic rate. PNP also has a critical role in host defense responses. Surprisingly, PNP-homologs are produced by several plant pathogens during host colonization suppressing host defense responses. Here we show that a synthetic peptide representing the biologically active fragment of the Arabidopsis thaliana PNP (AtPNP-A) induces the production of reactive oxygen species in suspension-cultured A. thaliana (Col-0) cells. To identify proteins whose expression changes in an AtPNP-A dependent manner, we undertook a quantitative proteomic approach, employing tandem mass tag (TMT) labeling, to reveal temporal responses of suspension-cultured cells to 1 nM and 10 pM PNP at two different time-points post-treatment. Both concentrations yield a distinct differential proteome signature. Since only the higher (1 nM) concentration induces a ROS response, we conclude that the proteome response at the lower concentration reflects a ROS independent response. Furthermore, treatment with 1 nM PNP results in an over-representation of the gene ontology (GO) terms “oxidation-reduction process,” “translation” and “response to salt stress” and this is consistent with a role of AtPNP-A in the adaptation to environmental stress conditions. PMID:25505478

  14. Involvement of small heat shock proteins, trehalose, and lipids in the thermal stress management in Schizosaccharomyces pombe.

    PubMed

    Glatz, Attila; Pilbat, Ana-Maria; Németh, Gergely L; Vince-Kontár, Katalin; Jósvay, Katalin; Hunya, Ákos; Udvardy, Andor; Gombos, Imre; Péter, Mária; Balogh, Gábor; Horváth, Ibolya; Vígh, László; Török, Zsolt

    2016-03-01

    Changes in the levels of three structurally and functionally different important thermoprotectant molecules, namely small heat shock proteins (sHsps), trehalose, and lipids, have been investigated upon heat shock in Schizosaccharomyces pombe. Both α-crystallin-type sHsps (Hsp15.8 and Hsp16) were induced after prolonged high-temperature treatment but with different kinetic profiles. The shsp null mutants display a weak, but significant, heat sensitivity indicating their importance in the thermal stress management. The heat induction of sHsps is different in wild type and in highly heat-sensitive trehalose-deficient (tps1Δ) cells; however, trehalose level did not show significant alteration in shsp mutants. The altered timing of trehalose accumulation and induction of sHsps suggest that the disaccharide might provide protection at the early stage of the heat stress while elevated amount of sHsps are required at the later phase. The cellular lipid compositions of two different temperature-adapted wild-type S. pombe cells are also altered according to the rule of homeoviscous adaptation, indicating their crucial role in adapting to the environmental temperature changes. Both Hsp15.8 and Hsp16 are able to bind to different lipids isolated from S. pombe, whose interaction might provide a powerful protection against heat-induced damages of the membranes. Our data suggest that all the three investigated thermoprotectant macromolecules play a pivotal role during the thermal stress management in the fission yeast. PMID:26631139

  15. Comparative analysis of zinc finger proteins involved in plant disease resistance.

    PubMed

    Gupta, Santosh Kumar; Rai, Amit Kumar; Kanwar, Shamsher Singh; Sharma, Tilak R

    2012-01-01

    A meta-analysis was performed to understand the role of zinc finger domains in proteins of resistance (R) genes cloned from different crops. We analyzed protein sequences of seventy R genes of various crops in which twenty six proteins were found to have zinc finger domains along with nucleotide binding sites - leucine rice repeats (NBS-LRR) domains. We identified thirty four zinc finger domains in the R proteins of nine crops and were grouped into 19 types of zinc fingers. The size of individual zinc finger domain within the R genes varied from 11 to 84 amino acids, whereas the size of proteins containing these domains varied from 263 to 1305 amino acids. The biophysical analysis revealed that molecular weight of Pi54 zinc finger was lowest whereas the highest one was found in rice Pib zinc finger named as Transposes Transcription Factor (TTF). The instability (R(2) =0.95) and the aliphatic (R(2) =0.94) indices profile of zinc finger domains follows the polynomial distribution pattern. The pairwise identity analysis showed that the Lin11, Isl-1 & Mec-3 (LIM) zinc finger domain of rice blast resistance protein pi21 have 12.3% similarity with the nuclear transcription factor, X-box binding-like 1 (NFX) type zinc finger domain of Pi54 protein. For the first time, we reported that Pi54 (Pi-k(h)-Tetep), a rice blast resistance (R) protein have a small zinc finger domain of NFX type located on the C-terminal in between NBS and LRR domains of the R-protein. Compositional analysis depicted by the helical wheel diagram revealed the presence of a hydrophobic region within this domain which might help in exposing the LRR region for a possible R-Avr interaction. This domain is unique among all other cloned plant disease resistance genes and might play an important role in broad-spectrum nature of rice blast resistance gene Pi54. PMID:22916136

  16. Comparative Analysis of Zinc Finger Proteins Involved in Plant Disease Resistance

    PubMed Central

    Gupta, Santosh Kumar; Rai, Amit Kumar; Kanwar, Shamsher Singh; Sharma, Tilak R.

    2012-01-01

    A meta-analysis was performed to understand the role of zinc finger domains in proteins of resistance (R) genes cloned from different crops. We analyzed protein sequences of seventy R genes of various crops in which twenty six proteins were found to have zinc finger domains along with nucleotide binding sites - leucine rice repeats (NBS-LRR) domains. We identified thirty four zinc finger domains in the R proteins of nine crops and were grouped into 19 types of zinc fingers. The size of individual zinc finger domain within the R genes varied from 11 to 84 amino acids, whereas the size of proteins containing these domains varied from 263 to 1305 amino acids. The biophysical analysis revealed that molecular weight of Pi54 zinc finger was lowest whereas the highest one was found in rice Pib zinc finger named as Transposes Transcription Factor (TTF). The instability (R2 = 0.95) and the aliphatic (R2 = 0.94) indices profile of zinc finger domains follows the polynomial distribution pattern. The pairwise identity analysis showed that the Lin11, Isl-1 & Mec-3 (LIM) zinc finger domain of rice blast resistance protein pi21 have 12.3% similarity with the nuclear transcription factor, X-box binding-like 1 (NFX) type zinc finger domain of Pi54 protein. For the first time, we reported that Pi54 (Pi-kh-Tetep), a rice blast resistance (R) protein have a small zinc finger domain of NFX type located on the C-terminal in between NBS and LRR domains of the R-protein. Compositional analysis depicted by the helical wheel diagram revealed the presence of a hydrophobic region within this domain which might help in exposing the LRR region for a possible R-Avr interaction. This domain is unique among all other cloned plant disease resistance genes and might play an important role in broad-spectrum nature of rice blast resistance gene Pi54. PMID:22916136

  17. Identification of proteins involved in inhibition of spheroid formation under microgravity.

    PubMed

    Riwaldt, Stefan; Pietsch, Jessica; Sickmann, Albert; Bauer, Johann; Braun, Markus; Segerer, Juergen; Schwarzwälder, Achim; Aleshcheva, Ganna; Corydon, Thomas J; Infanger, Manfred; Grimm, Daniela

    2015-09-01

    Many types of cells transit in vitro from a two- to a three-dimensional growth, when they are exposed to microgravity. The underlying mechanisms are not yet understood. Hence, we investigated the impact of microgravity on protein content and growth behavior. For this purpose, the human thyroid cancer cells FTC-133 were seeded either in recently developed cell containers that can endure enhanced physical forces and perform media changes and cell harvesting automatically or in T-25 culture flasks. All cells were cultured for five days at 1g. Afterwards, a part of the cell containers were flown to the International Space Station, while another part was kept on the ground. T-25 flasks were mounted on and next to a Random Positioning Machine. The cells were cultured for 12 days under the various conditions, before they were fixed with RNAlater. All fixed cultures showed monolayers, but three-dimensional aggregates were not detected. In a subsequent protein analysis, 180 proteins were identified by mass spectrometry. These proteins did not indicate significant differences between cells exposed to microgravity and their 1g controls. However, they suggest that an enhanced production of proteins related to the extracellular matrix could detain the cells from spheroid formation, while profilin-1 is phosphorylated. PMID:25930030

  18. Involvement of RNA binding proteins AUF1 in mammary gland differentiation

    SciTech Connect

    Nagaoka, Kentaro . E-mail: akenaga@mail.ecc.u-tokyo.ac.jp; Tanaka, Tetsuya; Imakawa, Kazuhiko; Sakai, Senkiti

    2007-08-01

    The expression of many genes, such as {beta}-casein, c-myc, and cyclin D1, is altered by lactogenic hormone stimulation during mammary epithelial cell differentiation. Here, we demonstrate that post-transcriptional regulation plays an important role to establish gene expression required to initiate milk production as well as transcriptional control. AUF1 protein, a member of the AU-rich element (ARE)-binding protein family, plays a role in ARE-mRNA turnover by regulating mRNA stability and/or translational control. Cytoplasmic localization of AUF1 protein is critically linked to function. We show that as the mammary gland differentiates, AUF1 protein moves from the cytoplasm to the nucleus. Moreover, in mammary gland epithelial cells (HC11), stimulation by lactogenic hormone decreased cytoplasmic and increased nuclear AUF1 levels. Direct binding of AUF1 protein was observed on c-myc mRNA, but not {beta}-casein or cyclin D1 mRNA. AUF1 downregulation in HC11 cells increased the expression of {beta}-casein mRNA and decreased the expression of c-myc mRNA by lactogenic hormone. Conversely, overexpression of AUF1 inhibited these effects of lactogenic hormone stimulation in HC11 cells. These results suggest that AUF1 participates in mammary gland differentiation processes under the control of lactogenic hormone signals.

  19. The presence of disulfide bonds reveals an evolutionarily conserved mechanism involved in mitochondrial protein translocase assembly

    PubMed Central

    Wrobel, Lidia; Sokol, Anna M.; Chojnacka, Magdalena; Chacinska, Agnieszka

    2016-01-01

    Disulfide bond formation is crucial for the biogenesis and structure of many proteins that are localized in the intermembrane space of mitochondria. The importance of disulfide bond formation within mitochondrial proteins was extended beyond soluble intermembrane space proteins. Tim22, a membrane protein and core component of the mitochondrial translocase TIM22, forms an intramolecular disulfide bond in yeast. Tim22 belongs to the Tim17/Tim22/Tim23 family of protein translocases. Here, we present evidence of the high evolutionary conservation of disulfide bond formation in Tim17 and Tim22 among fungi and metazoa. Topological models are proposed that include the location of disulfide bonds relative to the predicted transmembrane regions. Yeast and human Tim22 variants that are not oxidized do not properly integrate into the membrane complex. Moreover, the lack of Tim17 oxidation disrupts the TIM23 translocase complex. This underlines the importance of disulfide bond formation for mature translocase assembly through membrane stabilization of weak transmembrane domains. PMID:27265872

  20. Differential involvement of sarcomeric proteins in myofibrillar myopathies: a morphological and immunohistochemical study.

    PubMed

    Claeys, Kristl G; van der Ven, Peter F M; Behin, Anthony; Stojkovic, Tanya; Eymard, Bruno; Dubourg, Odile; Laforêt, Pascal; Faulkner, Georgine; Richard, Pascale; Vicart, Patrick; Romero, Norma B; Stoltenburg, Gisela; Udd, Bjarne; Fardeau, Michel; Voit, Thomas; Fürst, Dieter O

    2009-03-01

    Myofibrillar myopathies (MFMs) are rare inherited or sporadic progressive neuromuscular disorders with considerable clinical and genetic heterogeneity. In the current study, we have analyzed histopathological and immunohistochemical characteristics in genetically identified MFMs. We performed a morphological and morphometrical study in a cohort of 24 genetically identified MFM patients (12 desmin, 6 alphaB-crystallin, 4 ZASP, 2 myotilin), and an extensive immunohistochemical study in 15 of these patients, using both well-known and novel antibodies directed against distinct compartments of the muscle fibers, including Z-disc and M-band proteins. Our morphological data revealed some significant differences between the distinct MFM subgroups: the consistent presence of 'rubbed-out' fibers in desminopathies and alphaB-crystallinopathies, an elevated frequency of vacuoles in ZASPopathies and myotilinopathies, and the presence of a few necrotic fibers in the two myotilinopathy patients. Immunohistochemistry showed that in MFM only a subset of Z-disc proteins, such as filamin C and its ligands myotilin and Xin, exhibited significant alterations in their localization, whereas other Z-disc proteins like alpha-actinin, myopodin and tritopodin, did not. In contrast, M-band proteins revealed no abnormalities in MFM. We conclude that the presence of 'rubbed-out' fibers are a suggestive feature for desminopathy or alphaB-crystallinopathy, and that MFM is not a general disease of the myofibril, but primarily affects a subgroup of stress-responsive Z-disc proteins. PMID:19151983

  1. N-terminal modifications of cellular proteins: The enzymes involved, their substrate specificities and biological effects

    PubMed Central

    Varland, Sylvia; Osberg, Camilla; Arnesen, Thomas

    2015-01-01

    The vast majority of eukaryotic proteins are N-terminally modified by one or more processing enzymes. Enzymes acting on the very first amino acid of a polypeptide include different peptidases, transferases, and ligases. Methionine aminopeptidases excise the initiator methionine leaving the nascent polypeptide with a newly exposed amino acid that may be further modified. N-terminal acetyl-, methyl-, myristoyl-, and palmitoyltransferases may attach an acetyl, methyl, myristoyl, or palmitoyl group, respectively, to the α-amino group of the target protein N-terminus. With the action of ubiquitin ligases, one or several ubiquitin molecules are transferred, and hence, constitute the N-terminal modification. Modifications at protein N-termini represent an important contribution to proteomic diversity and complexity, and are essential for protein regulation and cellular signaling. Consequently, dysregulation of the N-terminal modifying enzymes is implicated in human diseases. We here review the different protein N-terminal modifications occurring co- or post-translationally with emphasis on the responsible enzymes and their substrate specificities. PMID:25914051

  2. Evolution of an ancient protein function involved in organized multicellularity in animals

    PubMed Central

    Anderson, Douglas P; Whitney, Dustin S; Hanson-Smith, Victor; Woznica, Arielle; Campodonico-Burnett, William; Volkman, Brian F; King, Nicole; Thornton, Joseph W; Prehoda, Kenneth E

    2016-01-01

    To form and maintain organized tissues, multicellular organisms orient their mitotic spindles relative to neighboring cells. A molecular complex scaffolded by the GK protein-interaction domain (GKPID) mediates spindle orientation in diverse animal taxa by linking microtubule motor proteins to a marker protein on the cell cortex localized by external cues. Here we illuminate how this complex evolved and commandeered control of spindle orientation from a more ancient mechanism. The complex was assembled through a series of molecular exploitation events, one of which – the evolution of GKPID’s capacity to bind the cortical marker protein – can be recapitulated by reintroducing a single historical substitution into the reconstructed ancestral GKPID. This change revealed and repurposed an ancient molecular surface that previously had a radically different function. We show how the physical simplicity of this binding interface enabled the evolution of a new protein function now essential to the biological complexity of many animals. DOI: http://dx.doi.org/10.7554/eLife.10147.001 PMID:26740169

  3. Involvement of 14-3-3 Proteins in Regulating Tumor Progression of Hepatocellular Carcinoma.

    PubMed

    Wu, Yi-Ju; Jan, Yee-Jee; Ko, Bor-Sheng; Liang, Shu-Man; Liou, Jun-Yang

    2015-01-01

    There are seven mammalian isoforms of the 14-3-3 protein, which regulate multiple cellular functions via interactions with phosphorylated partners. Increased expression of 14-3-3 proteins contributes to tumor progression of various malignancies. Several isoforms of 14-3-3 are overexpressed and associate with higher metastatic risks and poorer survival rates of hepatocellular carcinoma (HCC). 14-3-3β and 14-3-3ζ regulate HCC cell proliferation, tumor growth and chemosensitivity via modulating mitogen-activated protein kinase (MAPK), c-Jun N-terminal kinase (JNK) and p38 signal pathways. Moreover, 14-3-3ε suppresses E-cadherin and induces focal adhesion kinase (FAK) expression, thereby enhancing epithelial-mesenchymal transition (EMT) and HCC cell migration. 14-3-3ζ forms complexes with αB-crystallin, which induces EMT and is the cause of sorafenib resistance in HCC. Finally, a recent study has indicated that 14-3-3σ induces heat shock protein 70 (HSP70) expression, which increases HCC cell migration. These results suggest that selective 14-3-3 isoforms contribute to cell proliferation, EMT and cell migration of HCC by regulating distinct targets and signal pathways. Targeting 14-3-3 proteins together with specific downstream effectors therefore has potential to be therapeutic and prognostic factors of HCC. In this article, we will overview 14-3-3's regulation of its downstream factors and contributions to HCC EMT, cell migration and proliferation. PMID:26083935

  4. Physiological Adaptations Involved in Alkane Assimilation at a Low Temperature by Rhodococcus sp. Strain Q15†

    PubMed Central

    Whyte, L. G.; Slagman, S. J.; Pietrantonio, F.; Bourbonnière, L.; Koval, S. F.; Lawrence, J. R.; Inniss, W. E.; Greer, C. W.

    1999-01-01

    We examined physiological adaptations which allow the psychrotroph Rhodococcus sp. strain Q15 to assimilate alkanes at a low temperature (alkanes are contaminants which are generally insoluble and/or solid at low temperatures). During growth at 5°C on hexadecane or diesel fuel, strain Q15 produced a cell surface-associated biosurfactant(s) and, compared to glucose-acetate-grown cells, exhibited increased cell surface hydrophobicity. A transmission electron microscopy examination of strain Q15 grown at 5°C revealed the presence of intracellular electron-transparent inclusions and flocs of cells connected by an extracellular polymeric substance (EPS) when cells were grown on a hydrocarbon and morphological differences between the EPS of glucose-acetate-grown and diesel fuel-grown cells. A lectin binding analysis performed by using confocal scanning laser microscopy (CSLM) showed that the EPS contained a complex mixture of glycoconjugates, depending on both the growth temperature and the carbon source. Two glycoconjugates [β-d-Gal-(1-3)-d-GlcNAc and α-l-fucose] were detected only on the surfaces of cells grown on diesel fuel at 5°C. Using scanning electron microscopy, we observed strain Q15 cells on the surfaces of octacosane crystals, and using CSLM, we observed strain Q15 cells covering the surfaces of diesel fuel microdroplets; these findings indicate that this organism assimilates both solid and liquid alkane substrates at a low temperature by adhering to the alkane phase. Membrane fatty acid analysis demonstrated that strain Q15 adapted to growth at a low temperature by decreasing the degree of saturation of membrane lipid fatty acids, but it did so to a lesser extent when it was grown on hydrocarbons at 5°C; these findings suggest that strain Q15 modulates membrane fluidity in response to the counteracting influences of low temperature and hydrocarbon toxicity. PMID:10388690

  5. Cardiac hypertrophy and failure--a disease of adaptation. Modifications in membrane proteins provide a molecular basis for arrhythmogenicity.

    PubMed

    Moalic, J M; Charlemagne, D; Mansier, P; Chevalier, B; Swynghedauw, B

    1993-05-01

    Cardiac hypertrophy is the physiological adaptation of the heart to chronic mechanical overload. Cardiac failure indicates the limits of the process. Cardiac hypertrophy is only one example of biological adaptation and results from the induction of several changes in gene expression, mostly of the fetal type, including those coding for the myosin heavy chain or the alpha-subunit of the Na+,K(+)-ATPase. From a thermodynamic point of view, the decrease in Vmax allows the heart to produce a normal tension at a lower cost. This process results from changes both in the sarcomere and in the expression of certain membrane proteins. The decrease in calcium transient is determined by several changes in membrane proteins that result in a rather fragile equilibrium in terms of calcium homeostasis. Any abnormal input in calcium will have exaggerated detrimental consequences on a hypertrophied myocyte and may cause automaticity and arrhythmias or an exaggerated response to anoxia in terms of compliance. PMID:8485830

  6. Glucocorticoid regulation of human pulmonary surfactant protein-B mRNA stability involves the 3'-untranslated region.