Science.gov

Sample records for adapter protein sly1

  1. The orphan adapter protein SLY1 as a novel anti-apoptotic protein required for thymocyte development

    PubMed Central

    Reis, Bernhard; Pfeffer, Klaus; Beer-Hammer, Sandra

    2009-01-01

    Background SH3 containing Lymphocyte Protein (SLY1) is a putative adapter protein exclusively expressed in lymphocytes which is involved in antigen receptor induced activation. We previously have generated SLY1Δ/Δ mice harbouring a partial deletion in the N-terminal region of SLY1 which revealed profound immunological defects in T and B cell functions. Results In this study, T cell development in SLY1-/- and SLY1Δ/Δ mice was analysed ex vivo and upon cultivation with the bone marrow stromal cell line OP9. SLY1-deficient thymocytes were compromised in inducing nutrient receptor expression and ribosomal protein S6 phosphorylation, indicating a defect in mTOR complex activation. Furthermore, SLY1 was identified as a novel anti-apoptotic protein required for developmental progression of T cell precursors to the CD4+CD8+ double-positive stage by protecting from premature programmed cell death initiation in developing CD4-CD8- double-negative thymocytes. In addition, SLY1 phosphorylation was differentially regulated upon Notch ligand-mediated stimulation and expression of the preTCR. Conclusion Thus, our results suggest a non-redundant role for SLY1 in integrating signals from both receptors in early T cell progenitors in the thymus. PMID:19604361

  2. Deficiency of the adaptor protein SLy1 results in a natural killer cell ribosomopathy affecting tumor clearance.

    PubMed

    Arefanian, Saeed; Schäll, Daniel; Chang, Stephanie; Ghasemi, Reza; Higashikubo, Ryuji; Zheleznyak, Alex; Guo, Yizhan; Yu, Jinsheng; Asgharian, Hosseinali; Li, Wenjun; Gelman, Andrew E; Kreisel, Daniel; French, Anthony R; Zaher, Hani; Plougastel-Douglas, Beatrice; Maggi, Leonard; Yokoyama, Wayne; Beer-Hammer, Sandra; Krupnick, Alexander S

    2016-01-01

    Individuals with robust natural killer (NK) cell function incur lower rates of malignancies. To expand our understanding of genetic factors contributing to this phenomenon, we analyzed NK cells from cancer resistant and susceptible strains of mice. We identified a correlation between NK levels of the X-chromosome-located adaptor protein SLy1 and immunologic susceptibility to cancer. Unlike the case for T or B lymphocytes, where SLy1 shuttles between the cytoplasm and nucleus to facilitate signal transduction, in NK cells SLy1 functions as a ribosomal protein and is located solely in the cytoplasm. In its absence, ribosomal instability results in p53-mediated NK cell senescence and decreased clearance of malignancies. NK defects are reversible under inflammatory conditions and viral clearance is not impacted by SLy1 deficiency. Our work defines a previously unappreciated X-linked ribosomopathy that results in a specific and subtle NK cell dysfunction leading to immunologic susceptibility to cancer.

  3. RGL2 PROTEIN DOES NOT DISAPPEAR DURING SLY1 MUTANT SEED GERMINATION

    USDA-ARS?s Scientific Manuscript database

    The SLEEPY1 (SLY1) and RGA-like2 (RGL2) genes play an important role in the regulation of seed germination by GA in Arabidopsis. The control of seed dormancy and germination is critical for plant survival and important for proper stand establishment in crop species. The plant hormone gibberelli...

  4. E3 SUMO ligase AtSIZ1 positively regulates SLY1-mediated GA signalling and plant development.

    PubMed

    Kim, Sung-Il; Park, Bong Soo; Kim, Do Youn; Yeu, Song Yion; Song, Sang Ik; Song, Jong Tae; Seo, Hak Soo

    2015-07-15

    Gibberellins affect various plant development processes including germination, cell division and elongation, and flowering. A large number of studies have been carried out to address the molecular mechanisms that mediate gibberellin signalling effects on plant growth. However, such studies have been limited to DELLA protein degradation; the regulatory mechanisms controlling how the stability and function of SLEEPY1 (SLY1), a protein that interacts with target DELLA proteins as components of the Skp, Cullin, F-box (SCF)(SLY1) complex, are modulated at the post-translational level have not been addressed. In the present study, we show that the E3 SUMO (small ubiquitin-related modifier) ligase AtSIZ1 regulates gibberellic acid signalling in Arabidopsis species by sumoylating SLY1. SLY1 was less abundant in siz1-2 mutants than in wild-type plants, but the DELLA protein repressor of ga1-3 (RGA) was more abundant in siz1-2 mutants than in wild-type plants. SLY1 also accumulated to a high level in the SUMO protease mutant esd4. Transgenic sly1-13 mutants over-expressing SLY1 were phenotypically similar to wild-type plants; however, sly1-13 plants over-expressing a mutated mSLY1 protein (K122R, a mutation at the sumoylation site) retained the mutant dwarfing phenotype. Over-expression of SLY1 in sly1-13 mutants resulted in a return of RGA levels to wild-type levels, but RGA accumulated to high levels in mutants over-expressing mSLY1. RGA was clearly detected in Arabidopsis co-expressing AtSIZ1 and mSLY1, but not in plants co-expressing AtSIZ1 and SLY1. In addition, sumoylated SLY1 interacted with RGA and SLY1 sumoylation was significantly increased by GA. Taken together, our results indicate that, in Arabidopsis, AtSIZ1 positively controls GA signalling through SLY1 sumoylation. © 2015 Authors; published by Portland Press Limited.

  5. OsSLI1, a homeodomain containing transcription activator, involves abscisic acid related stress response in rice (Oryza sativa L.).

    PubMed

    Huang, Xi; Duan, Min; Liao, Jiakai; Yuan, Xi; Chen, Hui; Feng, Jiejie; Huang, Ji; Zhang, Hong-Sheng

    2014-01-01

    Homeodomain-leucine zipper type I (HD-Zip I) proteins are involved in the regulation of plant development and response to environmental stresses. In this study, OsSLI1 (Oryza sativa stress largely induced 1), encoding a member of the HD-Zip I subfamily, was isolated from rice. The expression of OsSLI1 was dramatically induced by multiple abiotic stresses and exogenous abscisic acid (ABA). In silico sequence analysis discovered several cis-acting elements including multiple ABREs (ABA-responsive element binding factors) in the upstream promoter region of OsSLI1. The OsSLI1-GFP fusion protein was localized in the nucleus of rice protoplast cells and the transcriptional activity of OsSLI1 was confirmed by the yeast hybrid system. Further, it was found that OsSLI1 expression was enhanced in an ABI5-Like1 (ABL1) deficiency rice mutant abl1 under stress conditions, suggesting that ABL1 probably negatively regulates OsSLI1 gene expression. Moreover, it was found that OsSLI1 was regulated in panicle development. Taken together, OsSLI1 may be a transcriptional activator regulating stress-responsive gene expression and panicle development in rice.

  6. SLY1 and Syntaxin 18 specify a distinct pathway for procollagen VII export from the endoplasmic reticulum

    PubMed Central

    Nogueira, Cristina; Erlmann, Patrik; Villeneuve, Julien; Santos, António JM; Martínez-Alonso, Emma; Martínez-Menárguez, José Ángel; Malhotra, Vivek

    2014-01-01

    TANGO1 binds and exports Procollagen VII from the endoplasmic reticulum (ER). In this study, we report a connection between the cytoplasmic domain of TANGO1 and SLY1, a protein that is required for membrane fusion. Knockdown of SLY1 by siRNA arrested Procollagen VII in the ER without affecting the recruitment of COPII components, general protein secretion, and retrograde transport of the KDEL-containing protein BIP, and ERGIC53. SLY1 is known to interact with the ER-specific SNARE proteins Syntaxin 17 and 18, however only Syntaxin 18 was required for Procollagen VII export. Neither SLY1 nor Syntaxin 18 was required for the export of the equally bulky Procollagen I from the ER. Altogether, these findings reveal the sorting of bulky collagen family members by TANGO1 at the ER and highlight the existence of different export pathways for secretory cargoes one of which is mediated by the specific SNARE complex containing SLY1 and Syntaxin 18. DOI: http://dx.doi.org/10.7554/eLife.02784.001 PMID:24842878

  7. SLI-1 Cbl Inhibits the Engulfment of Apoptotic Cells in C. elegans through a Ligase-Independent Function

    PubMed Central

    Sawin, Emma; Horvitz, H. Robert; Hurwitz, Michael E.

    2012-01-01

    The engulfment of apoptotic cells is required for normal metazoan development and tissue remodeling. In Caenorhabditis elegans, two parallel and partially redundant conserved pathways act in cell-corpse engulfment. One pathway, which includes the small GTPase CED-10 Rac and the cytoskeletal regulator ABI-1, acts to rearrange the cytoskeleton of the engulfing cell. The CED-10 Rac pathway is also required for proper migration of the distal tip cells (DTCs) during the development of the C. elegans gonad. The second pathway includes the receptor tyrosine kinase CED-1 and might recruit membranes to extend the surface of the engulfing cell. Cbl, the mammalian homolog of the C. elegans E3 ubiquitin ligase and adaptor protein SLI-1, interacts with Rac and Abi2 and modulates the actin cytoskeleton, suggesting it might act in engulfment. Our genetic studies indicate that SLI-1 inhibits apoptotic cell engulfment and DTC migration independently of the CED-10 Rac and CED-1 pathways. We found that the RING finger domain of SLI-1 is not essential to rescue the effects of SLI-1 deletion on cell migration, suggesting that its role in this process is ubiquitin ligase-independent. We propose that SLI-1 opposes the engulfment of apoptotic cells via a previously unidentified pathway. PMID:23271977

  8. Transcriptional mechanisms associated with seed dormancy and dormancy loss in the gibberellin-insensitive sly1-2 mutant of Arabidopsis thaliana

    PubMed Central

    Nelson, Sven K.

    2017-01-01

    While widespread transcriptome changes were previously observed with seed dormancy loss, this study specifically characterized transcriptional changes associated with the increased seed dormancy and dormancy loss of the gibberellin (GA) hormone-insensitive sleepy1-2 (sly1-2) mutant. The SLY1 gene encodes the F-box subunit of an SCF E3 ubiquitin ligase needed for GA-triggered proteolysis of DELLA repressors of seed germination. DELLA overaccumulation in sly1-2 seeds leads to increased dormancy that can be rescued without DELLA protein destruction either by overexpression of the GA receptor, GA-INSENSITIVE DWARF1b (GID1b-OE) (74% germination) or by extended dry after-ripening (11 months, 51% germination). After-ripening of sly1 resulted in different transcriptional changes in early versus late Phase II of germination that were consistent with the processes known to occur. Approximately half of the transcriptome changes with after-ripening appear to depend on SLY1-triggered DELLA proteolysis. Given that many of these SLY1/GA-dependent changes are genes involved in protein translation, it appears that GA signaling increases germination capacity in part by activating translation. While sly1-2 after-ripening was associated with transcript-level changes in 4594 genes over two imbibition timepoints, rescue of sly1-2 germination by GID1b-OE was associated with changes in only 23 genes. Thus, a big change in sly1-2 germination phenotype can occur with relatively little change in the global pattern of gene expression during the process of germination. Most GID1b-OE-responsive transcripts showed similar changes with after-ripening in early Phase II of imbibition, but opposite changes with after-ripening by late Phase II. This suggests that GID1b-OE stimulates germination early in imbibition, but may later trigger negative feedback regulation. PMID:28628628

  9. Protein Adaptations in Archaeal Extremophiles

    PubMed Central

    Reed, Christopher J.; Lewis, Hunter; Trejo, Eric; Winston, Vern; Evilia, Caryn

    2013-01-01

    Extremophiles, especially those in Archaea, have a myriad of adaptations that keep their cellular proteins stable and active under the extreme conditions in which they live. Rather than having one basic set of adaptations that works for all environments, Archaea have evolved separate protein features that are customized for each environment. We categorized the Archaea into three general groups to describe what is known about their protein adaptations: thermophilic, psychrophilic, and halophilic. Thermophilic proteins tend to have a prominent hydrophobic core and increased electrostatic interactions to maintain activity at high temperatures. Psychrophilic proteins have a reduced hydrophobic core and a less charged protein surface to maintain flexibility and activity under cold temperatures. Halophilic proteins are characterized by increased negative surface charge due to increased acidic amino acid content and peptide insertions, which compensates for the extreme ionic conditions. While acidophiles, alkaliphiles, and piezophiles are their own class of Archaea, their protein adaptations toward pH and pressure are less discernible. By understanding the protein adaptations used by archaeal extremophiles, we hope to be able to engineer and utilize proteins for industrial, environmental, and biotechnological applications where function in extreme conditions is required for activity. PMID:24151449

  10. Protein adaptations in archaeal extremophiles.

    PubMed

    Reed, Christopher J; Lewis, Hunter; Trejo, Eric; Winston, Vern; Evilia, Caryn

    2013-01-01

    Extremophiles, especially those in Archaea, have a myriad of adaptations that keep their cellular proteins stable and active under the extreme conditions in which they live. Rather than having one basic set of adaptations that works for all environments, Archaea have evolved separate protein features that are customized for each environment. We categorized the Archaea into three general groups to describe what is known about their protein adaptations: thermophilic, psychrophilic, and halophilic. Thermophilic proteins tend to have a prominent hydrophobic core and increased electrostatic interactions to maintain activity at high temperatures. Psychrophilic proteins have a reduced hydrophobic core and a less charged protein surface to maintain flexibility and activity under cold temperatures. Halophilic proteins are characterized by increased negative surface charge due to increased acidic amino acid content and peptide insertions, which compensates for the extreme ionic conditions. While acidophiles, alkaliphiles, and piezophiles are their own class of Archaea, their protein adaptations toward pH and pressure are less discernible. By understanding the protein adaptations used by archaeal extremophiles, we hope to be able to engineer and utilize proteins for industrial, environmental, and biotechnological applications where function in extreme conditions is required for activity.

  11. Transcriptional mechanisms associated with seed dormancy and dormancy loss in the gibberellin-insensitive sly1-2 mutant of Arabidopsis thaliana

    USDA-ARS?s Scientific Manuscript database

    While widespread transcriptome changes have been previously observed with seed dormancy loss, this study specifically characterized transcriptional changes associated with the increased seed dormancy and dormancy loss of the gibberellin (GA) hormone-insensitive sleepy1-2 (sly1-2) mutant. The SLY1 g...

  12. Production of tetraacetyl phytosphingosine (TAPS) in Wickerhamomyces ciferrii is catalyzed by acetyltransferases Sli1p and Atf2p.

    PubMed

    Ter Veld, Frank; Wolff, Daniel; Schorsch, Christoph; Köhler, Tim; Boles, Eckhard; Poetsch, Ansgar

    2013-10-01

    Wickerhamomyces ciferrii secretes tetraacetyl phytosphingosine (TAPS), and in this study, the catalyzing acetyltransferases were identified using mass spectrometry-based proteomics. The proteome of wild-type strain NRRL Y-1031 served as control and was compared to the tetraacetyl phytosphingosine defective mating type NRRL Y-1031-27. Acetylation of phytosphingosine in W. ciferrii is catalyzed by acetyltransferases Sli1p and Atf2p, encoded by genes similar to Saccharomyces cerevisiae YGR212W and YGR177C, respectively. Ablation of SLI1 resulted in an almost complete loss of tri- and tetraacetyl phytosphingosines, whereas the loss ATF2 resulted in an 15-fold increase in triacetyl phytosphingosine. Most likely, it is the concerted action of these two acetyltransferases that yields tetraacetyl phytosphingosine, in which Sli1p catalyzes initial O- and N-acetylation, producing triacetyl phytosphingosine. Finally, Atf2p catalyzes final O-acetylation to yield tetraacetyl phytosphingosine. The current study demonstrates that mass spectrometry-based proteomics can be employed to identify key steps in ill-explored metabolite biosynthesis pathways of nonconventional microorganisms. Furthermore, the identification of phytosphingosine as substrate for alcohol acetyltransferase Atf2p broadens the known substrate range of this enzyme. This interesting property of Atf2p may be exploited to enhance the secretion of heterologous compounds.

  13. Highly Significant Linkage to the SLI1 Locus in an Expanded Sample of Individuals Affected by Specific Language Impairment

    PubMed Central

    2004-01-01

    Specific language impairment (SLI) is defined as an unexplained failure to acquire normal language skills despite adequate intelligence and opportunity. We have reported elsewhere a full-genome scan in 98 nuclear families affected by this disorder, with the use of three quantitative traits of language ability (the expressive and receptive tests of the Clinical Evaluation of Language Fundamentals and a test of nonsense word repetition). This screen implicated two quantitative trait loci, one on chromosome 16q (SLI1) and a second on chromosome 19q (SLI2). However, a second independent genome screen performed by another group, with the use of parametric linkage analyses in extended pedigrees, found little evidence for the involvement of either of these regions in SLI. To investigate these loci further, we have collected a second sample, consisting of 86 families (367 individuals, 174 independent sib pairs), all with probands whose language skills are ⩾1.5 SD below the mean for their age. Haseman-Elston linkage analysis resulted in a maximum LOD score (MLS) of 2.84 on chromosome 16 and an MLS of 2.31 on chromosome 19, both of which represent significant linkage at the 2% level. Amalgamation of the wave 2 sample with the cohort used for the genome screen generated a total of 184 families (840 individuals, 393 independent sib pairs). Analysis of linkage within this pooled group strengthened the evidence for linkage at SLI1 and yielded a highly significant LOD score (MLS = 7.46, interval empirical P<.0004). Furthermore, linkage at the same locus was also demonstrated to three reading-related measures (basic reading [MLS = 1.49], spelling [MLS = 2.67], and reading comprehension [MLS = 1.99] subtests of the Wechsler Objectives Reading Dimensions). PMID:15133743

  14. A COMPARATIVE STUDY OF TWO F-BOX PROTEINS, SLEEPY1 AND SNEEZY IN GA SIGNALING

    USDA-ARS?s Scientific Manuscript database

    SNEEZY (SNE) is a homolog of SLEEPY1 (SLY1), encoding an F-box protein subunit of an SCF E3 ubiquitin ligase complex in Arabidopsis. SLY1 plays a central role in destruction of DELLA negative family proteins via 26S proteasome pathway in GA signaling pathway. DELLA proteins consist of five memb...

  15. Protein cold adaptation: Role of physico-chemical parameters in adaptation of proteins to low temperatures.

    PubMed

    Shokrollahzade, Soheila; Sharifi, Fatemeh; Vaseghi, Akbar; Faridounnia, Maryam; Jahandideh, Samad

    2015-10-21

    During years 2007 and 2008, we published three papers (Jahandideh, 2007a, JTB, 246, 159-166; Jahandideh, 2007b, JTB, 248, 721-726; Jahandideh, 2008, JTB, 255, 113-118) investigating sequence and structural parameters in adaptation of proteins to low temperatures. Our studies revealed important features in cold-adaptation of proteins. Here, we calculate values of a new set of physico-chemical parameters and perform a comparative systematic analysis on a more comprehensive database of psychrophilic-mesophilic homologous protein pairs. Our obtained results confirm that psychrophilicity rules are not merely the inverse rules of thermostability; for instance, although contact order is reported as a key feature in thermostability, our results have shown no significant difference between contact orders of psychrophilic proteins compared to mesophilic proteins. We are optimistic that these findings would help future efforts to propose a strategy for designing cold-adapted proteins.

  16. Matricellular Proteins in Cardiac Adaptation and Disease

    PubMed Central

    Frangogiannis, Nikolaos G.

    2015-01-01

    The term “matricellular proteins” describes a family of structurally unrelated extracellular macromolecules that, unlike structural matrix proteins, do not play a primary role in tissue architecture, but are induced following injury and modulate cell:cell and cell:matrix interactions. When released to the matrix, matricellular proteins associate with growth factors, cytokines and other bioactive effectors and bind to cell surface receptors transducing signaling cascades. Matricellular proteins are upregulated in the injured and remodeling heart and play an important role in regulation of inflammatory, reparative, fibrotic and angiogenic pathways. Thrombospondins (TSP)-1, -2 and -4, tenascin-C and –X, secreted protein acidic and rich in cysteine (SPARC), osteopontin, periostin and members of the CCN family (including CCN1 and CCN2/Connective Tissue Growth Factor) are involved in a variety of cardiac pathophysiologic conditions, including myocardial infarction, cardiac hypertrophy and fibrosis, aging-associated myocardial remodeling, myocarditis, diabetic cardiomyopathy and valvular disease. This review manuscript discusses the properties and characteristics of the matricellular proteins and presents our current knowledge on their role in cardiac adaptation and disease. Understanding the role of matricellular proteins in myocardial pathophysiology and identification of the functional domains responsible for their actions may lead to design of peptides with therapeutic potential for patients with heart disease. PMID:22535894

  17. Viruses are a dominant driver of protein adaptation in mammals

    PubMed Central

    Enard, David; Cai, Le; Gwennap, Carina; Petrov, Dmitri A

    2016-01-01

    Viruses interact with hundreds to thousands of proteins in mammals, yet adaptation against viruses has only been studied in a few proteins specialized in antiviral defense. Whether adaptation to viruses typically involves only specialized antiviral proteins or affects a broad array of virus-interacting proteins is unknown. Here, we analyze adaptation in ~1300 virus-interacting proteins manually curated from a set of 9900 proteins conserved in all sequenced mammalian genomes. We show that viruses (i) use the more evolutionarily constrained proteins within the cellular functions they interact with and that (ii) despite this high constraint, virus-interacting proteins account for a high proportion of all protein adaptation in humans and other mammals. Adaptation is elevated in virus-interacting proteins across all functional categories, including both immune and non-immune functions. We conservatively estimate that viruses have driven close to 30% of all adaptive amino acid changes in the part of the human proteome conserved within mammals. Our results suggest that viruses are one of the most dominant drivers of evolutionary change across mammalian and human proteomes. DOI: http://dx.doi.org/10.7554/eLife.12469.001 PMID:27187613

  18. Adapter Reagents for Protein Site Specific Dye Labeling

    PubMed Central

    Thompson, Darren A.; Evans, Eric G. B.; Kasza, Tomas; Millhauser, Glenn L.; Dawson, Philip E.

    2016-01-01

    Chemoselective protein labeling remains a significant challenge in chemical biology. Although many selective labeling chemistries have been reported, the practicalities of matching the reaction with appropriately functionalized proteins and labeling reagents is often a challenge. For example, we encountered the challenge of site specifically labeling the cellular form of the murine Prion protein with a fluorescent dye. To facilitate this labeling, a protein was expressed with site specific p-acetylphenylalanine. However, the utility of this aceto-phenone reactive group is hampered by the severe lack of commercially available aminooxy fluorophores. Here we outline a general strategy for the efficient solid phase synthesis of adapter reagents capable of converting maleimido-labels into aminooxy or azide functional groups that can be further tuned for desired length or solubility properties. The utility of the adapter strategy is demonstrated in the context of fluorescent labeling of the murine Prion protein through an adapted aminooxy-Alexa dye. PMID:24599728

  19. The role of adapter proteins in T cell activation.

    PubMed

    Koretzky, G A; Boerth, N J

    1999-12-01

    Engagement of antigen receptors on lymphocytes leads to a myriad of complex signal transduction cascades. Recently, work from several laboratories has led to the identification and characterization of novel adapter molecules, proteins with no intrinsic enzymatic activity but which integrate signal transduction pathways by mediating protein-protein interactions. Interestingly, it appears that many of these adapter proteins play as critical a role as the effector enzymes themselves in both lymphocyte development and activation. This review describes some of the biochemical and molecular features of several of these newly identified hematopoietic cell-specific adapter molecules highlighting their importance in regulating (both positively and negatively) signal transduction mediated by the T cell antigen receptor.

  20. Development and adaptation of protein digestion.

    PubMed

    Austic, R E

    1985-05-01

    Protein digestion is a complex process in which most aspects have a developmental pattern of activity. Gastric pH and intestinal peptide and amino acid transport as well as the activities of pepsinogen, trypsin, chymotrypsin, enterokinase and intestinal dipeptidases vary during development. No one species has been assessed for all these aspects and it is not possible to present an integrated developmental view of protein digestion. The following developmental changes, however, have been observed. Gastric pH declines, and peptic and pancreatic proteases exhibit increasing activity in pigs and rats after birth. The increase in pigs is gradual over several weeks starting at birth, whereas the increases in the rat begin at 2 wk, just prior to the time of weaning. The activities of dipeptidases in the rat and pig, peptide transport systems in the guinea pig and rabbit and amino acid transport systems in the rat, rabbit, guinea pig and chicken, however, appear (with few exceptions) to be active in the small intestine at the time of birth. Frequently, these activities peak in the neonate and decline during the postnatal period. In the rat, dietary protein tends to increase the activities of pancreatic proteases and intestinal peptidases and to increase the rate of uptake of amino acids by the intestinal epithelium. Individual dietary amino acids also influence amino acid transport systems. The data indicate that most processes in protein digestion undergo marked changes during prenatal and postnatal development and are influenced by the level of feeding and composition of the diet.

  1. Protein aggregation as a mechanism of adaptive cellular responses.

    PubMed

    Saarikangas, Juha; Barral, Yves

    2016-11-01

    Coalescence of proteins into different types of intracellular bodies has surfaced as a widespread adaptive mechanism to re-organize cells and cellular functions in response to specific cues. These structures, composed of proteins or protein-mRNA-complexes, regulate cellular processes through modulating enzymatic activities, gene expression or shielding macromolecules from damage. Accordingly, such bodies are associated with a wide-range of processes, including meiosis, memory-encoding, host-pathogen interactions, cancer, stress responses, as well as protein quality control, DNA replication stress and aneuploidy. Importantly, these distinct coalescence responses are controlled, and in many cases regulated by chaperone proteins. While cells can tolerate and proficiently coordinate numerous distinct types of protein bodies, some of them are also intimately linked to diseases or the adverse effects of aging. Several protein bodies that differ in composition, packing, dynamics, size, and localization were originally discovered in budding yeast. Here, we provide a concise and comparative review of their nature and nomenclature.

  2. Dietary protein requirements and adaptive advantages in athletes.

    PubMed

    Phillips, Stuart M

    2012-08-01

    Dietary guidelines from a variety of sources are generally congruent that an adequate dietary protein intake for persons over the age of 19 is between 0·8-0·9 g protein/kg body weight/d. According to the US/Canadian Dietary Reference Intakes, the RDA for protein of 0·8 g protein/kg/d is "...the average daily intake level that is sufficient to meet the nutrient requirement of nearly all [~98 %]… healthy individuals..." The panel also states that "...no additional dietary protein is suggested for healthy adults undertaking resistance or endurance exercise." These recommendations are in contrast to recommendations from the US and Canadian Dietetic Association: "Protein recommendations for endurance and strength trained athletes range from 1·2 to 1·7 g/kg/d." The disparity between those setting dietary protein requirements and those who might be considered to be making practical recommendations for athletes is substantial. This may reflect a situation where an adaptive advantage of protein intakes higher than recommended protein requirements exists. That population protein requirements are still based on nitrogen balance may also be a point of contention since achieving balanced nitrogen intake and excretion likely means little to an athlete who has the primary goal of exercise performance. The goal of the present review is to critically analyse evidence from both acute and chronic dietary protein-based studies in which athletic performance, or correlates thereof, have been measured. An attempt will be made to distinguish between protein requirements set by data from nitrogen balance studies, and a potential adaptive 'advantage' for athletes of dietary protein in excess of the RDA.

  3. An Adaptable Investigative Graduate Laboratory Course for Teaching Protein Purification

    ERIC Educational Resources Information Center

    Carroll, Christopher W.; Keller, Lani C.

    2014-01-01

    This adaptable graduate laboratory course on protein purification offers students the opportunity to explore a wide range of techniques while allowing the instructor the freedom to incorporate their own personal research interests. The course design involves two sequential purification schemes performed in a single semester. The first part…

  4. An Adaptable Investigative Graduate Laboratory Course for Teaching Protein Purification

    ERIC Educational Resources Information Center

    Carroll, Christopher W.; Keller, Lani C.

    2014-01-01

    This adaptable graduate laboratory course on protein purification offers students the opportunity to explore a wide range of techniques while allowing the instructor the freedom to incorporate their own personal research interests. The course design involves two sequential purification schemes performed in a single semester. The first part…

  5. Adaptation in protein fitness landscapes is facilitated by indirect paths

    PubMed Central

    Wu, Nicholas C; Dai, Lei; Olson, C Anders; Lloyd-Smith, James O; Sun, Ren

    2016-01-01

    The structure of fitness landscapes is critical for understanding adaptive protein evolution. Previous empirical studies on fitness landscapes were confined to either the neighborhood around the wild type sequence, involving mostly single and double mutants, or a combinatorially complete subgraph involving only two amino acids at each site. In reality, the dimensionality of protein sequence space is higher (20L) and there may be higher-order interactions among more than two sites. Here we experimentally characterized the fitness landscape of four sites in protein GB1, containing 204 = 160,000 variants. We found that while reciprocal sign epistasis blocked many direct paths of adaptation, such evolutionary traps could be circumvented by indirect paths through genotype space involving gain and subsequent loss of mutations. These indirect paths alleviate the constraint on adaptive protein evolution, suggesting that the heretofore neglected dimensions of sequence space may change our views on how proteins evolve. DOI: http://dx.doi.org/10.7554/eLife.16965.001 PMID:27391790

  6. Protein stability and molecular adaptation to extreme conditions.

    PubMed

    Jaenicke, R

    1991-12-18

    Proteins, due to the delicate balance of stabilizing and destabilizing interactions, are only marginally stable. Adaptation to extreme environments tends to shift the 'mesophilic' characteristics of proteins to the respective extremes of temperature, hydrostatic pressure, pH and salinity, such that, under the mutual physiological conditions, the molecular properties are similar regarding overall topology, flexibility and solvation. Enhanced intrinsic stability requires only minute local structural changes so that general strategies of stabilization cannot be established. Apart from mutative changes of amino-acid sequences, extrinsic factors (or cellular components) may be involved in 'extremophilic adaptation'. The molecular basis of acidophilic, alkalophilic and barophilic adaptation is still obscure. Mechanisms of enhanced thermal stability involve improved packing density, as well as specific local interactions. In halophiles, water and salt binding of the intrinsically stable protein inventory is accomplished by favoring acidic over basic amino acid residues and decreased hydrophobicity. General limits of viability are: (a) the susceptibility of the covalent structure of the polypeptide chain toward hydrolysis or hydrothermal degradation; (b) the competition of extreme solvent parameters with the weak electrostatic and hydrophobic interactions involved in protein stabilization; (c) perturbations of the folding and assembly of proteins; and (d) 'dislocation' of biochemical pathways due to effects of extreme conditions on the intricate network of metabolic reactions.

  7. How protein materials balance strength, robustness, and adaptability

    PubMed Central

    Buehler, Markus J.; Yung, Yu Ching

    2010-01-01

    Proteins form the basis of a wide range of biological materials such as hair, skin, bone, spider silk, or cells, which play an important role in providing key functions to biological systems. The focus of this article is to discuss how protein materials are capable of balancing multiple, seemingly incompatible properties such as strength, robustness, and adaptability. To illustrate this, we review bottom-up materiomics studies focused on the mechanical behavior of protein materials at multiple scales, from nano to macro. We focus on alpha-helix based intermediate filament proteins as a model system to explain why the utilization of hierarchical structural features is vital to their ability to combine strength, robustness, and adaptability. Experimental studies demonstrating the activation of angiogenesis, the growth of new blood vessels, are presented as an example of how adaptability of structure in biological tissue is achieved through changes in gene expression that result in an altered material structure. We analyze the concepts in light of the universality and diversity of the structural makeup of protein materials and discuss the findings in the context of potential fundamental evolutionary principles that control their nanoscale structure. We conclude with a discussion of multiscale science in biology and de novo materials design. PMID:20676305

  8. Molecular Bases of cyclodextrin Adapter Interactions with Engineered Protein Nanopores

    SciTech Connect

    Banerjee, A.; Mikhailova, E; Cheley, S; Gu, L; Montoya, M; Nagaoka, Y; Gouaux, E; Bayley, H

    2010-01-01

    Engineered protein pores have several potential applications in biotechnology: as sensor elements in stochastic detection and ultrarapid DNA sequencing, as nanoreactors to observe single-molecule chemistry, and in the construction of nano- and micro-devices. One important class of pores contains molecular adapters, which provide internal binding sites for small molecules. Mutants of the {alpha}-hemolysin ({alpha}HL) pore that bind the adapter {beta}-cyclodextrin ({beta}CD) {approx}10{sup 4} times more tightly than the wild type have been obtained. We now use single-channel electrical recording, protein engineering including unnatural amino acid mutagenesis, and high-resolution x-ray crystallography to provide definitive structural information on these engineered protein nanopores in unparalleled detail.

  9. Faster-X Adaptive Protein Evolution in House Mice

    PubMed Central

    Kousathanas, Athanasios; Halligan, Daniel L.; Keightley, Peter D.

    2014-01-01

    The causes of the large effect of the X chromosome in reproductive isolation and speciation have long been debated. The faster-X hypothesis predicts that X-linked loci are expected to have higher rates of adaptive evolution than autosomal loci if new beneficial mutations are on average recessive. Reproductive isolation should therefore evolve faster when contributing loci are located on the X chromosome. In this study, we have analyzed genome-wide nucleotide polymorphism data from the house mouse subspecies Mus musculus castaneus and nucleotide divergence from Mus famulus and Rattus norvegicus to compare rates of adaptive evolution for autosomal and X-linked protein-coding genes. We found significantly faster adaptive evolution for X-linked loci, particularly for genes with expression in male-specific tissues, but autosomal and X-linked genes with expression in female-specific tissues evolve at similar rates. We also estimated rates of adaptive evolution for genes expressed during spermatogenesis and found that X-linked genes that escape meiotic sex chromosome inactivation (MSCI) show rapid adaptive evolution. Our results suggest that faster-X adaptive evolution is either due to net recessivity of new advantageous mutations or due to a special gene content of the X chromosome, which regulates male function and spermatogenesis. We discuss how our results help to explain the large effect of the X chromosome in speciation. PMID:24361937

  10. Faster-X adaptive protein evolution in house mice.

    PubMed

    Kousathanas, Athanasios; Halligan, Daniel L; Keightley, Peter D

    2014-04-01

    The causes of the large effect of the X chromosome in reproductive isolation and speciation have long been debated. The faster-X hypothesis predicts that X-linked loci are expected to have higher rates of adaptive evolution than autosomal loci if new beneficial mutations are on average recessive. Reproductive isolation should therefore evolve faster when contributing loci are located on the X chromosome. In this study, we have analyzed genome-wide nucleotide polymorphism data from the house mouse subspecies Mus musculus castaneus and nucleotide divergence from Mus famulus and Rattus norvegicus to compare rates of adaptive evolution for autosomal and X-linked protein-coding genes. We found significantly faster adaptive evolution for X-linked loci, particularly for genes with expression in male-specific tissues, but autosomal and X-linked genes with expression in female-specific tissues evolve at similar rates. We also estimated rates of adaptive evolution for genes expressed during spermatogenesis and found that X-linked genes that escape meiotic sex chromosome inactivation (MSCI) show rapid adaptive evolution. Our results suggest that faster-X adaptive evolution is either due to net recessivity of new advantageous mutations or due to a special gene content of the X chromosome, which regulates male function and spermatogenesis. We discuss how our results help to explain the large effect of the X chromosome in speciation.

  11. The spatial architecture of protein function and adaptation

    PubMed Central

    McLaughlin, Richard N.; Poelwijk, Frank J.; Raman, Arjun; Gosal, Walraj S.; Ranganathan, Rama

    2014-01-01

    Statistical analysis of protein evolution suggests a design for natural proteins in which sparse networks of coevolving amino acids (termed sectors) comprise the essence of three-dimensional structure and function1, 2, 3, 4, 5. However, proteins are also subject to pressures deriving from the dynamics of the evolutionary process itself—the ability to tolerate mutation and to be adaptive to changing selection pressures6, 7, 8, 9, 10. To understand the relationship of the sector architecture to these properties, we developed a high-throughput quantitative method for a comprehensive single-mutation study in which every position is substituted individually to every other amino acid. Using a PDZ domain (PSD95pdz3) model system, we show that sector positions are functionally sensitive to mutation, whereas non-sector positions are more tolerant to substitution. In addition, we find that adaptation to a new binding specificity initiates exclusively through variation within sector residues. A combination of just two sector mutations located near and away from the ligand-binding site suffices to switch the binding specificity of PSD95pdz3 quantitatively towards a class-switching ligand. The localization of functional constraint and adaptive variation within the sector has important implications for understanding and engineering proteins. PMID:23041932

  12. Role of conservative mutations in protein multi-property adaptation

    PubMed Central

    Rodriguez-Larrea, David; Perez-Jimenez, Raul; Sanchez-Romero, Inmaculada; Delgado-Delgado, Asuncion; Fernandez, Julio M.; Sanchez-Ruiz, Jose M.

    2010-01-01

    Protein physicochemical properties must undergo complex changes during evolution, as a response to modifications in the organism environment, the result of the proteins taking up new roles or because of the need to cope with the evolution of molecular interacting partners. Recent work has emphasized the role of stability and stability–function trade-offs in these protein adaptation processes. In the present study, on the other hand, we report that combinations of a few conservative, high-frequency-of-fixation mutations in the thioredoxin molecule lead to largely independent changes in both stability and the diversity of catalytic mechanisms, as revealed by single-molecule atomic force spectroscopy. Furthermore, the changes found are evolutionarily significant, as they combine typically hyperthermophilic stability enhancements with modulations in function that span the ranges defined by the quite different catalytic patterns of thioredoxins from bacterial and eukaryotic origin. These results suggest that evolutionary protein adaptation may use, in some cases at least, the potential of conservative mutations to originate a multiplicity of evolutionarily allowed mutational paths leading to a variety of protein modulation patterns. In addition the results support the feasibility of using evolutionary information to achieve protein multi-feature optimization, an important biotechnological goal. PMID:20446918

  13. Adaptive Evolution in Rodent Seminal Vesicle Secretion Proteins

    PubMed Central

    Clark, Nathaniel L.; Nguyen, Eric D.; Swanson, Willie J.

    2008-01-01

    Proteins involved in reproductive fitness have evolved unusually rapidly across diverse groups of organisms. These reproductive proteins show unusually high rates of amino acid substitutions, suggesting that the proteins have been subject to positive selection. We sought to identify seminal fluid proteins experiencing adaptive evolution because such proteins are often involved in sperm competition, host immunity to pathogens, and manipulation of female reproductive physiology and behavior. We performed an evolutionary screen of the mouse prostate transcriptome for genes with elevated evolutionary rates between mouse and rat. We observed that secreted rodent prostate proteins evolve approximately twice as fast as nonsecreted proteins, remarkably similar to findings in the primate prostate and in the Drosophila male accessory gland. Our screen led us to identify and characterize a group of seminal vesicle secretion (Svs) proteins and to show that the gene Svs7 is evolving very rapidly, with many amino acid sites under positive selection. Another gene in this group, Svs5, showed evidence of branch-specific selection in the rat. We also found that Svs7 is under selection in primates and, by using three-dimensional models, demonstrated that the same regions have been under selection in both groups. Svs7 has been identified as mouse caltrin, a protein involved in sperm capacitation, the process responsible for the timing of changes in sperm activity and behavior, following ejaculation. We propose that the most likely explanation of the adaptive evolution of Svs7 that we have observed in rodents and primates stems from an important function in sperm competition. PMID:18718917

  14. The Nck family of adapter proteins: regulators of actin cytoskeleton.

    PubMed

    Buday, László; Wunderlich, Livius; Tamás, Peter

    2002-09-01

    SH2/SH3 domain-containing adapter proteins, such as the Nck family, play a major role in regulating tyrosine kinase signalling. They serve to recruit proline-rich effector molecules to tyrosine-phosphorylated kinases or their substrates. Initially, it was not clear why cells from nematodes to vertebrates contain redundant and closely related SH2/SH3 adapters, such as Grb2, Crk and Nck. Recent evidence suggests that their biological roles are clearly different, whereas, for example, Grb2 connects activated receptor tyrosine kinases to Sos and Ras, leading to cell proliferation. The proteins of Nck family are implicated in organisation of actin cytoskeleton, cell movement or axon guidance in flies. In this review, the author attempts to summarise signalling pathways in which Nck plays a critical role.

  15. Adaptive resolution simulation of an atomistic protein in MARTINI water

    NASA Astrophysics Data System (ADS)

    Zavadlav, Julija; Melo, Manuel Nuno; Marrink, Siewert J.; Praprotnik, Matej

    2014-02-01

    We present an adaptive resolution simulation of protein G in multiscale water. We couple atomistic water around the protein with mesoscopic water, where four water molecules are represented with one coarse-grained bead, farther away. We circumvent the difficulties that arise from coupling to the coarse-grained model via a 4-to-1 molecule coarse-grain mapping by using bundled water models, i.e., we restrict the relative movement of water molecules that are mapped to the same coarse-grained bead employing harmonic springs. The water molecules change their resolution from four molecules to one coarse-grained particle and vice versa adaptively on-the-fly. Having performed 15 ns long molecular dynamics simulations, we observe within our error bars no differences between structural (e.g., root-mean-squared deviation and fluctuations of backbone atoms, radius of gyration, the stability of native contacts and secondary structure, and the solvent accessible surface area) and dynamical properties of the protein in the adaptive resolution approach compared to the fully atomistically solvated model. Our multiscale model is compatible with the widely used MARTINI force field and will therefore significantly enhance the scope of biomolecular simulations.

  16. Dietary protein for athletes: from requirements to optimum adaptation.

    PubMed

    Phillips, Stuart M; Van Loon, Luc J C

    2011-01-01

    Opinion on the role of protein in promoting athletic performance is divided along the lines of how much aerobic-based versus resistance-based activity the athlete undertakes. Athletes seeking to gain muscle mass and strength are likely to consume higher amounts of dietary protein than their endurance-trained counterparts. The main belief behind the large quantities of dietary protein consumption in resistance-trained athletes is that it is needed to generate more muscle protein. Athletes may require protein for more than just alleviation of the risk for deficiency, inherent in the dietary guidelines, but also to aid in an elevated level of functioning and possibly adaptation to the exercise stimulus. It does appear, however, that there is a good rationale for recommending to athletes protein intakes that are higher than the RDA. Our consensus opinion is that leucine, and possibly the other branched-chain amino acids, occupy a position of prominence in stimulating muscle protein synthesis; that protein intakes in the range of 1.3-1.8 g · kg(-1) · day(-1) consumed as 3-4 isonitrogenous meals will maximize muscle protein synthesis. These recommendations may also be dependent on training status: experienced athletes would require less, while more protein should be consumed during periods of high frequency/intensity training. Elevated protein consumption, as high as 1.8-2.0 g · kg(-1) · day(-1) depending on the caloric deficit, may be advantageous in preventing lean mass losses during periods of energy restriction to promote fat loss.

  17. Phenotypical Temperature Adaptation of Protein Turnover in Desert Annuals 1

    PubMed Central

    Smrcka, Alan V.; Szarek, Stan R.

    1986-01-01

    Protein synthesis and protein degradation rates were measured in three desert annual species at four different experimental temperatures. The taxa chosen for this study were the C3 winter annuals, Bowlesia incana Ruiz & Pavon and Plantago insularis Eastw., and a C4 summer annual, Atriplex elegans (Moq.) D. Dietr. Peak rates of protein synthesis correlated well with the preferred habitat temperatures of B. incana and A. elegans; optima occurred at 25 and 35°C, respectively. Plants of P. insularis showed an optimum protein synthesis rate at 35°C; however, this optimum rate was considerably lower than for the other two species. Higher activation energies for protein synthesis tended to parallel adaptation to higher temperature habitats. Responses of protein degradation to temperature in A. elegans and B. incana were consistent with their natural thermal regimes, when evaluated for the transition from 25 to 35°C. Again, protein degradation in P. insularis shows an intermediate response to temperature during the 25 to 35°C transition. PMID:16664583

  18. Functional constraints on adaptive evolution of protein ubiquitination sites

    PubMed Central

    Lu, Liang; Li, Yang; Liu, Zhongyang; Liang, Fengji; Guo, Feifei; Yang, Shuai; Wang, Dan; He, Yangzhige; Xiong, Jianghui; Li, Dong; He, Fuchu

    2017-01-01

    It is still unclear whether there exist functional constraints on the evolution of protein ubiquitination sites, because most previous studies regarded all protein ubiquitination sites as a whole or only focused on limited structural properties. We tried to clarify the relation between functional constraints and ubiquitination sites evolution. We investigated the evolutionary conservation of human ubiquitination sites in a broad evolutionary scale from G. gorilla to S. pombe, and we found that in organisms originated after the divergence of vertebrate, ubiquitination sites are more conserved than their flanking regions, while the opposite tendency is observed before this divergence time. By grouping the ubiquitination proteins into different functional categories, we confirm that many functional constraints like certain molecular functions, protein tissue expression specificity and protein connectivity in protein-protein interaction network enhance the evolutionary conservation of ubiquitination sites. Furthermore, by analyzing the gains of ubiquitination sites at different divergence time and their functional characters, we validate that the emergences of ubiquitination sites at different evolutionary time were also affected by the uncovered functional constraints. The above results suggest that functional constraints on the adaptive evolution of ubiquitination sites increase the opportunity for ubiquitination to synthetically regulate various cellular and developmental processes during evolution. PMID:28054638

  19. A Comparison of Rosetta Stones in Adapter Protein Families

    PubMed Central

    Kumar, Hulikal Shivashankara Santosh; Kumar, Vadlapudi

    2016-01-01

    The inventory of proteins used in different kingdoms appears surprisingly similar in all sequenced eukaryotic genome. Protein domains represent the basic evolutionary units that form proteins. Domain duplication and shuffling by recombination are probably the most important forces driving protein evolution and hence the complexity of the proteome. While the duplication of whole genes as well as domain encoding exons increases the abundance of domains in the proteome, domain shuffling increases versatility, i.e. the number of distinct contexts in which a domain can occur. In this study we considered five important adapter domain families namely WD40, KELCH, Ankyrin, PDZ and Pleckstrin Homology (PH domain) family for the comparison of Domain versatility, Abundance and domain sharing between them. We used ecological statistics methods such as Jaccard’s Similarity Index (JSI), Detrended Correspondence Analysis, k-Means clustering for the domain distribution data. We found high propensity of domain sharing between PH and PDZ. We found higher abundance of only few selected domains in PH, PDZ, ANK and KELCH families. We also found WD40 family with high versatility and less redundant domain occurrence, with less domain sharing. Hence, the assignments of functions to more orphan WD40 proteins that will help in the identification of suitable drug targets. PMID:28246462

  20. Resonance Raman study of the dark-adapted form of the purple membrane protein.

    PubMed

    Aton, B; Doukas, A G; Callender, R H; Becher, B; Ebrey, T G

    1979-02-26

    The resonance Raman spectrum of the dark-adapted form of the purple membrane protein (bacteriorhodopsin) has been obtained and is compared to the light-adapted pigment and model chromophore spectra. As in the light-adapted form, the chromophore-protein linkage is found to be a protonated Schiff base. Electron delocalization appears to play the dominant role in color regulation. The dark-adapted spectrum indicates a conformation closer to 13-cis than the light-adapted spectrum.

  1. Protein structure refinement with adaptively restrained homologous replicas.

    PubMed

    Della Corte, Dennis; Wildberg, André; Schröder, Gunnar F

    2016-09-01

    A novel protein refinement protocol is presented which utilizes molecular dynamics (MD) simulations of an ensemble of adaptively restrained homologous replicas. This approach adds evolutionary information to the force field and reduces random conformational fluctuations by coupling of several replicas. It is shown that this protocol refines the majority of models from the CASP11 refinement category and that larger conformational changes of the starting structure are possible than with current state of the art methods. The performance of this protocol in the CASP11 experiment is discussed. We found that the quality of the refined model is correlated with the structural variance of the coupled replicas, which therefore provides a good estimator of model quality. Furthermore, some remarkable refinement results are discussed in detail. Proteins 2016; 84(Suppl 1):302-313. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  2. Structural adaptations of proteins to different biological membranes

    PubMed Central

    Pogozheva, Irina D.; Tristram-Nagle, Stephanie; Mosberg, Henry I.; Lomize, Andrei L.

    2013-01-01

    To gain insight into adaptations of proteins to their membranes, intrinsic hydrophobic thicknesses, distributions of different chemical groups and profiles of hydrogen-bonding capacities (α and β) and the dipolarity/polarizability parameter (π*) were calculated for lipid-facing surfaces of 460 integral α-helical, β-barrel and peripheral proteins from eight types of biomembranes. For comparison, polarity profiles were also calculated for ten artificial lipid bilayers that have been previously studied by neutron and X-ray scattering. Estimated hydrophobic thicknesses are 30-31 Å for proteins from endoplasmic reticulum, thylakoid, and various bacterial plasma membranes, but differ for proteins from outer bacterial, inner mitochondrial and eukaryotic plasma membranes (23.9, 28.6 and 33.5 Å, respectively). Protein and lipid polarity parameters abruptly change in the lipid carbonyl zone that matches the calculated hydrophobic boundaries. Maxima of positively charged protein groups correspond to the location of lipid phosphates at 20-22 Å distances from the membrane center. Locations of Tyr atoms coincide with hydrophobic boundaries, while distributions maxima of Trp rings are shifted by 3-4 Å toward the membrane center. Distributions of Trp atoms indicate the presence of two 5-8 Å-wide midpolar regions with intermediate π* values within the hydrocarbon core, whose size and symmetry depend on the lipid composition of membrane leaflets. Midpolar regions are especially asymmetric in outer bacterial membranes and cell membranes of mesophilic but not hyperthermophilic archaebacteria, indicating the larger width of the central nonpolar region in the later case. In artificial lipid bilayers, midpolar regions are observed up to the level of acyl chain double bonds. PMID:23811361

  3. Protein phosphorylation and regulation of adaptive responses in bacteria.

    PubMed Central

    Stock, J B; Ninfa, A J; Stock, A M

    1989-01-01

    Bacteria continuously adapt to changes in their environment. Responses are largely controlled by signal transduction systems that contain two central enzymatic components, a protein kinase that uses adenosine triphosphate to phosphorylate itself at a histidine residue and a response regulator that accepts phosphoryl groups from the kinase. This conserved phosphotransfer chemistry is found in a wide range of bacterial species and operates in diverse systems to provide different regulatory outputs. The histidine kinases are frequently membrane receptor proteins that respond to environmental signals and phosphorylate response regulators that control transcription. Four specific regulatory systems are discussed in detail: chemotaxis in response to attractant and repellent stimuli (Che), regulation of gene expression in response to nitrogen deprivation (Ntr), control of the expression of enzymes and transport systems that assimilate phosphorus (Pho), and regulation of outer membrane porin expression in response to osmolarity and other culture conditions (Omp). Several additional systems are also examined, including systems that control complex developmental processes such as sporulation and fruiting-body formation, systems required for virulent infections of plant or animal host tissues, and systems that regulate transport and metabolism. Finally, an attempt is made to understand how cross-talk between parallel phosphotransfer pathways can provide a global regulatory curcuitry. PMID:2556636

  4. Effects of protein conformation in docking: improved pose prediction through protein pocket adaptation

    NASA Astrophysics Data System (ADS)

    Jain, Ajay N.

    2009-06-01

    Computational methods for docking ligands have been shown to be remarkably dependent on precise protein conformation, where acceptable results in pose prediction have been generally possible only in the artificial case of re-docking a ligand into a protein binding site whose conformation was determined in the presence of the same ligand (the "cognate" docking problem). In such cases, on well curated protein/ligand complexes, accurate dockings can be returned as top-scoring over 75% of the time using tools such as Surflex-Dock. A critical application of docking in modeling for lead optimization requires accurate pose prediction for novel ligands, ranging from simple synthetic analogs to very different molecular scaffolds. Typical results for widely used programs in the "cross-docking case" (making use of a single fixed protein conformation) have rates closer to 20% success. By making use of protein conformations from multiple complexes, Surflex-Dock yields an average success rate of 61% across eight pharmaceutically relevant targets. Following docking, protein pocket adaptation and rescoring identifies single pose families that are correct an average of 67% of the time. Consideration of the best of two pose families (from alternate scoring regimes) yields a 75% mean success rate.

  5. Effects of protein conformation in docking: improved pose prediction through protein pocket adaptation.

    PubMed

    Jain, Ajay N

    2009-06-01

    Computational methods for docking ligands have been shown to be remarkably dependent on precise protein conformation, where acceptable results in pose prediction have been generally possible only in the artificial case of re-docking a ligand into a protein binding site whose conformation was determined in the presence of the same ligand (the "cognate" docking problem). In such cases, on well curated protein/ligand complexes, accurate dockings can be returned as top-scoring over 75% of the time using tools such as Surflex-Dock. A critical application of docking in modeling for lead optimization requires accurate pose prediction for novel ligands, ranging from simple synthetic analogs to very different molecular scaffolds. Typical results for widely used programs in the "cross-docking case" (making use of a single fixed protein conformation) have rates closer to 20% success. By making use of protein conformations from multiple complexes, Surflex-Dock yields an average success rate of 61% across eight pharmaceutically relevant targets. Following docking, protein pocket adaptation and rescoring identifies single pose families that are correct an average of 67% of the time. Consideration of the best of two pose families (from alternate scoring regimes) yields a 75% mean success rate.

  6. A Drosophila protein-tyrosine phosphatase associates with an adapter protein required for axonal guidance.

    PubMed

    Clemens, J C; Ursuliak, Z; Clemens, K K; Price, J V; Dixon, J E

    1996-07-19

    We have used the yeast two-hybrid system to isolate a novel Drosophila adapter protein, which interacts with the Drosophila protein-tyrosine phosphatase (PTP) dPTP61F. Absence of this protein in Drosophila causes the mutant photoreceptor axon phenotype dreadlocks (dock) (Garrity, P. A., Rao, Y., Salecker, I., and Zipursky, S. L.(1996) Cell 85, 639-650). Dock is similar to the mammalian oncoprotein Nck and contains three Src homology 3 (SH3) domains and one Src homology 2 (SH2) domain. The interaction of dPTP61F with Dock was confirmed in vivo by immune precipitation experiments. A sequence containing five PXXP motifs from the non-catalytic domain of the PTP is sufficient for interaction with Dock. This suggests that binding to the PTP is mediated by one or more of the SH3 domains of Dock. Immune precipitations of Dock also co-precipitate two tyrosine-phosphorylated proteins having molecular masses of 190 and 145 kDa. Interactions between Dock and these tyrosine-phosphorylated proteins are likely mediated by the Dock SH2 domain. These findings identify potential signal-transducing partners of Dock and propose a role for dPTP61F and the unidentified phosphoproteins in axonal guidance.

  7. Tubby family proteins are adapters for ciliary trafficking of integral membrane proteins.

    PubMed

    Badgandi, Hemant B; Hwang, Sun-Hee; Shimada, Issei S; Loriot, Evan; Mukhopadhyay, Saikat

    2017-03-06

    The primary cilium is a paradigmatic organelle for studying compartmentalized signaling; however, unlike soluble protein trafficking, processes targeting integral membrane proteins to cilia are poorly understood. In this study, we determine that the tubby family protein TULP3 functions as a general adapter for ciliary trafficking of structurally diverse integral membrane cargo, including multiple reported and novel rhodopsin family G protein-coupled receptors (GPCRs) and the polycystic kidney disease-causing polycystin 1/2 complex. The founding tubby family member TUB also localizes to cilia similar to TULP3 and determines trafficking of a subset of these GPCRs to neuronal cilia. Using minimal ciliary localization sequences from GPCRs and fibrocystin (also implicated in polycystic kidney disease), we demonstrate these motifs to be sufficient and TULP3 dependent for ciliary trafficking. We propose a three-step model for TULP3/TUB-mediated ciliary trafficking, including the capture of diverse membrane cargo by the tubby domain in a phosphoinositide 4,5-bisphosphate (PI(4,5)P2)-dependent manner, ciliary delivery by intraflagellar transport complex A binding to the TULP3/TUB N terminus, and subsequent release into PI(4,5)P2-deficient ciliary membrane. © 2017 Badgandi et al.

  8. Proteins Induced during Adaptation of Acetobacter aceti to High Acetate Concentrations

    PubMed Central

    Steiner, Peter; Sauer, Uwe

    2001-01-01

    As a typical product of microbial metabolism, the weak acid acetate is well known for its cytotoxic effects. In contrast to most other microbes, the so-called acetic acid bacteria can acquire significant resistance to high acetate concentrations when properly adapted to such hostile conditions. To characterize the molecular events that are associated with this adaptation, we analyzed global protein expression levels during adaptation of Acetobacter aceti by two-dimensional gel electrophoresis. Adaptation was achieved by using serial batch and continuous cultivations with increasing acetate supplementation. Computer-aided analysis revealed a complex proteome response with at least 50 proteins that are specifically induced by adaptation to acetate but not by other stress conditions, such as heat or oxidative or osmotic stress. Of these proteins, 19 were significantly induced in serial batch and continuous cultures and were thus noted as acetate adaptation proteins (Aaps). Here we present first microsequence information on such Aaps from A. aceti. Membrane-associated processes appear to be of major importance for adaptation, because some of the Aap bear N-terminal sequence homology to membrane proteins and 11 of about 40 resolved proteins from membrane protein-enriched fractions are significantly induced. PMID:11722895

  9. Mitogen-Activated Protein Kinase Phosphatase 1 Disrupts Proinflammatory Protein Synthesis in Endotoxin-Adapted Monocytes

    PubMed Central

    Brudecki, Laura; Ferguson, Donald A.; McCall, Charles E.

    2013-01-01

    Autotoxic production of proinflammatory mediators during early sepsis induces excessive inflammation, and their later suppression may limit the immune response. We previously reported that sepsis differentially represses transcription and translation of tumor necrosis factor alpha (TNF-α) and interleukin 1β (IL-1β) to reprogram sepsis inflammation. This switch is gene specific and plays a crucial role in the clinically relevant syndrome of endotoxin adaptation/tolerance, multiorgan failure, and poor sepsis outcome. To further define the mechanisms responsible for translation disruption that follows inflammation induction, we used THP-1 human promonocytes as a model of Toll-like receptor 4 (TLR4) responses found in sepsis. We showed that phosphorylation-dependent activation of p38 mitogen-activated protein kinase (MAPK) and translation disruption of TNF-α and IL-6 follow increased MAPK phosphatase 1 (MKP-1) expression and that MKP-1 knockdown rephosphorylates p38 and restores the capacity to translate TNF-α and IL-6 mRNAs. We also observed that the RNA-binding protein motif 4 (RBM4), a p38 MAPK target, accumulates in an unphosphorylated form in the cytosol in endotoxin-adapted cells, suggesting that dephosphorylated RBM4 may function as a translational repressor. Moreover, MKP-1 knockdown promotes RBM4 phosphorylation, blocks its transfer from the nucleus to the cytosol, and reverses translation repression. We also found that microRNA 146a (miR-146a) knockdown prevents and miR-146a transfection induces MKP-1 expression, which lead to increases or decreases in TNF-α and IL-6 translation, respectively. We conclude that a TLR4-, miR-146a-, p38 MAPK-, and MKP-1-dependent autoregulatory pathway regulates the translation of proinflammatory genes during the acute inflammatory response by spatially and temporally modifying the phosphorylation state of RBM4 translational repressor protein. PMID:23825193

  10. Tubby family proteins are adapters for ciliary trafficking of integral membrane proteins

    PubMed Central

    Shimada, Issei S.; Loriot, Evan

    2017-01-01

    The primary cilium is a paradigmatic organelle for studying compartmentalized signaling; however, unlike soluble protein trafficking, processes targeting integral membrane proteins to cilia are poorly understood. In this study, we determine that the tubby family protein TULP3 functions as a general adapter for ciliary trafficking of structurally diverse integral membrane cargo, including multiple reported and novel rhodopsin family G protein–coupled receptors (GPCRs) and the polycystic kidney disease–causing polycystin 1/2 complex. The founding tubby family member TUB also localizes to cilia similar to TULP3 and determines trafficking of a subset of these GPCRs to neuronal cilia. Using minimal ciliary localization sequences from GPCRs and fibrocystin (also implicated in polycystic kidney disease), we demonstrate these motifs to be sufficient and TULP3 dependent for ciliary trafficking. We propose a three-step model for TULP3/TUB-mediated ciliary trafficking, including the capture of diverse membrane cargo by the tubby domain in a phosphoinositide 4,5-bisphosphate (PI(4,5)P2)-dependent manner, ciliary delivery by intraflagellar transport complex A binding to the TULP3/TUB N terminus, and subsequent release into PI(4,5)P2-deficient ciliary membrane. PMID:28154160

  11. Pre-Sleep Protein Ingestion to Improve the Skeletal Muscle Adaptive Response to Exercise Training

    PubMed Central

    Trommelen, Jorn; van Loon, Luc J. C.

    2016-01-01

    Protein ingestion following resistance-type exercise stimulates muscle protein synthesis rates, and enhances the skeletal muscle adaptive response to prolonged resistance-type exercise training. As the adaptive response to a single bout of resistance exercise extends well beyond the first couple of hours of post-exercise recovery, recent studies have begun to investigate the impact of the timing and distribution of protein ingestion during more prolonged recovery periods. Recent work has shown that overnight muscle protein synthesis rates are restricted by the level of amino acid availability. Protein ingested prior to sleep is effectively digested and absorbed, and thereby stimulates muscle protein synthesis rates during overnight recovery. When applied during a prolonged period of resistance-type exercise training, protein supplementation prior to sleep can further augment gains in muscle mass and strength. Recent studies investigating the impact of pre-sleep protein ingestion suggest that at least 40 g of protein is required to display a robust increase in muscle protein synthesis rates throughout overnight sleep. Furthermore, prior exercise allows more of the pre-sleep protein-derived amino acids to be utilized for de novo muscle protein synthesis during sleep. In short, pre-sleep protein ingestion represents an effective dietary strategy to improve overnight muscle protein synthesis, thereby improving the skeletal muscle adaptive response to exercise training. PMID:27916799

  12. Pre-Sleep Protein Ingestion to Improve the Skeletal Muscle Adaptive Response to Exercise Training.

    PubMed

    Trommelen, Jorn; van Loon, Luc J C

    2016-11-28

    Protein ingestion following resistance-type exercise stimulates muscle protein synthesis rates, and enhances the skeletal muscle adaptive response to prolonged resistance-type exercise training. As the adaptive response to a single bout of resistance exercise extends well beyond the first couple of hours of post-exercise recovery, recent studies have begun to investigate the impact of the timing and distribution of protein ingestion during more prolonged recovery periods. Recent work has shown that overnight muscle protein synthesis rates are restricted by the level of amino acid availability. Protein ingested prior to sleep is effectively digested and absorbed, and thereby stimulates muscle protein synthesis rates during overnight recovery. When applied during a prolonged period of resistance-type exercise training, protein supplementation prior to sleep can further augment gains in muscle mass and strength. Recent studies investigating the impact of pre-sleep protein ingestion suggest that at least 40 g of protein is required to display a robust increase in muscle protein synthesis rates throughout overnight sleep. Furthermore, prior exercise allows more of the pre-sleep protein-derived amino acids to be utilized for de novo muscle protein synthesis during sleep. In short, pre-sleep protein ingestion represents an effective dietary strategy to improve overnight muscle protein synthesis, thereby improving the skeletal muscle adaptive response to exercise training.

  13. Co-evolution of proteins and solutions: protein adaptation versus cytoprotective micromolecules and their roles in marine organisms.

    PubMed

    Yancey, Paul H; Siebenaller, Joseph F

    2015-06-01

    Organisms experience a wide range of environmental factors such as temperature, salinity and hydrostatic pressure, which pose challenges to biochemical processes. Studies on adaptations to such factors have largely focused on macromolecules, especially intrinsic adaptations in protein structure and function. However, micromolecular cosolutes can act as cytoprotectants in the cellular milieu to affect biochemical function and they are now recognized as important extrinsic adaptations. These solutes, both inorganic and organic, have been best characterized as osmolytes, which accumulate to reduce osmotic water loss. Singly, and in combination, many cosolutes have properties beyond simple osmotic effects, e.g. altering the stability and function of proteins in the face of numerous stressors. A key example is the marine osmolyte trimethylamine oxide (TMAO), which appears to enhance water structure and is excluded from peptide backbones, favoring protein folding and stability and counteracting destabilizers like urea and temperature. Co-evolution of intrinsic and extrinsic adaptations is illustrated with high hydrostatic pressure in deep-living organisms. Cytosolic and membrane proteins and G-protein-coupled signal transduction in fishes under pressure show inhibited function and stability, while revealing a number of intrinsic adaptations in deep species. Yet, intrinsic adaptations are often incomplete, and those fishes accumulate TMAO linearly with depth, suggesting a role for TMAO as an extrinsic 'piezolyte' or pressure cosolute. Indeed, TMAO is able to counteract the inhibitory effects of pressure on the stability and function of many proteins. Other cosolutes are cytoprotective in other ways, such as via antioxidation. Such observations highlight the importance of considering the cellular milieu in biochemical and cellular adaptation. © 2015. Published by The Company of Biologists Ltd.

  14. Staphylococcus aureus surface proteins involved in adaptation to oxacillin identified using a novel cell shaving approach.

    PubMed

    Solis, Nestor; Parker, Benjamin L; Kwong, Stephen M; Robinson, Gareth; Firth, Neville; Cordwell, Stuart J

    2014-06-06

    Staphylococcus aureus is a Gram-positive pathogen responsible for a variety of infections, and some strains are resistant to virtually all classes of antibiotics. Cell shaving proteomics using a novel probability scoring algorithm to compare the surfaceomes of the methicillin-resistant, laboratory-adapted S. aureus COL strain with a COL strain in vitro adapted to high levels of oxacillin (APT). APT displayed altered cell morphology compared with COL and increased aggregation in biofilm assays. Increased resistance to β-lactam antibiotics was observed, but adaptation to oxacillin did not confer multidrug resistance. Analysis of the S. aureus COL and APT surfaceomes identified 150 proteins at a threshold determined by the scoring algorithm. Proteins unique to APT included the LytR-CpsA-Psr (LCP) domain-containing MsrR and SACOL2302. Quantitative RT-PCR showed increased expression of sacol2302 in APT grown with oxacillin (>6-fold compared with COL). Overexpression of sacol2302 in COL to levels consistent with APT (+ oxacillin) did not influence biofilm formation or β-lactam resistance. Proteomics using iTRAQ and LC-MS/MS identified 1323 proteins (∼50% of the theoretical S. aureus proteome), and cluster analysis demonstrated elevated APT abundances of LCP proteins, capsule and peptidoglycan biosynthesis proteins, and proteins involved in wall remodelling. Adaptation to oxacillin also induced urease proteins, which maintained culture pH compared to COL. These results show that S. aureus modifies surface architecture in response to antibiotic adaptation.

  15. The MRL proteins: adapting cell adhesion, migration and growth.

    PubMed

    Coló, Georgina P; Lafuente, Esther M; Teixidó, Joaquin

    2012-01-01

    MIG-10, RIAM and Lamellipodin (Lpd) are the founding members of the MRL family of multi-adaptor molecules. These proteins have common domain structures but display distinct functions in cell migration and adhesion, signaling, and in cell growth. The binding of RIAM with active Rap1 and with talin provides these MRL molecules with important regulatory roles on integrin-mediated cell adhesion and migration. Furthermore, RIAM and Lpd can regulate actin dynamics through their binding to actin regulatory Ena/VASP proteins. Recent data generated with the Drosophila MRL ortholog called Pico and with RIAM in melanoma cells indicate that these proteins can also regulate cell growth. As MRL proteins represent a relatively new family, many questions on their structure-function relationships remain unanswered, including regulation of their expression, post-translational modifications, new interactions, involvement in signaling and their knockout mice phenotype.

  16. Protein Supplementation Does Not Affect Myogenic Adaptations to Resistance Training.

    PubMed

    Reidy, Paul T; Fry, Christopher S; Igbinigie, Sherry; Deer, Rachel R; Jennings, Kristofer; Cope, Mark B; Mukherjea, Ratna; Volpi, Elena; Rasmussen, Blake B

    2017-02-14

    It has been proposed that protein supplementation during resistance exercise training enhances muscle hypertrophy. The degree of hypertrophy during training is controlled in part through activation of satellite cells and myonuclear accretion.

  17. Adaptive Resistance and Differential Protein Expression of Salmonella enterica Serovar Enteritidis Biofilms Exposed to Benzalkonium Chloride▿

    PubMed Central

    Mangalappalli-Illathu, Anil K.; Korber, Darren R.

    2006-01-01

    The development of adaptive resistance of Salmonella enterica serovar Enteritidis ATCC 4931 biofilms following exposure to benzalkonium chloride (BC) either continuously (1 μg ml−1) or intermittently (10 μg ml−1 for 10 min daily) was examined. Biofilms adapted to BC over a 144-h period could survive a normally lethal BC challenge (500 μg ml−1 for 10 min) and then regrow, as determined by increases in biofilm thickness, total biomass, and the ratio of the viable biomass to the nonviable biomass. Exposure of untreated control biofilms to the lethal BC challenge resulted in biofilm erosion and cell death. Proteins found to be up-regulated following BC adaptation were those involved in energy metabolism (TpiA and Eno), amino acid and protein biosynthesis (WrbA, TrxA, RplL, Tsf, Tuf, DsbA, and RpoZ), nutrient binding (FruB), adaptation (CspA), detoxification (Tpx, SodB, and a probable peroxidase), and degradation of 1,2-propanediol (PduJ and PduA). A putative universal stress protein (YnaF) was also found to be up-regulated. Proteins involved in proteolysis (DegQ), cell envelope formation (RfbH), adaptation (UspA), heat shock response (DnaK), and broad regulatory functions (Hns) were found to be down-regulated following adaptation. An overall increase in cellular protein biosynthesis was deduced from the significant up-regulation of ribosomal subunit proteins, translation elongation factors, and amino acid biosynthesis protein and down-regulation of serine endoprotease. The cold shock response, stress response, and detoxification are suggested to play roles in the adaptive resistance of Salmonella serovar Enteritidis biofilms to BC. PMID:16940079

  18. Adaptive resistance and differential protein expression of Salmonella enterica serovar Enteritidis biofilms exposed to benzalkonium chloride.

    PubMed

    Mangalappalli-Illathu, Anil K; Korber, Darren R

    2006-11-01

    The development of adaptive resistance of Salmonella enterica serovar Enteritidis ATCC 4931 biofilms following exposure to benzalkonium chloride (BC) either continuously (1 microg ml(-1)) or intermittently (10 microg ml(-1) for 10 min daily) was examined. Biofilms adapted to BC over a 144-h period could survive a normally lethal BC challenge (500 microg ml(-1) for 10 min) and then regrow, as determined by increases in biofilm thickness, total biomass, and the ratio of the viable biomass to the nonviable biomass. Exposure of untreated control biofilms to the lethal BC challenge resulted in biofilm erosion and cell death. Proteins found to be up-regulated following BC adaptation were those involved in energy metabolism (TpiA and Eno), amino acid and protein biosynthesis (WrbA, TrxA, RplL, Tsf, Tuf, DsbA, and RpoZ), nutrient binding (FruB), adaptation (CspA), detoxification (Tpx, SodB, and a probable peroxidase), and degradation of 1,2-propanediol (PduJ and PduA). A putative universal stress protein (YnaF) was also found to be up-regulated. Proteins involved in proteolysis (DegQ), cell envelope formation (RfbH), adaptation (UspA), heat shock response (DnaK), and broad regulatory functions (Hns) were found to be down-regulated following adaptation. An overall increase in cellular protein biosynthesis was deduced from the significant up-regulation of ribosomal subunit proteins, translation elongation factors, and amino acid biosynthesis protein and down-regulation of serine endoprotease. The cold shock response, stress response, and detoxification are suggested to play roles in the adaptive resistance of Salmonella serovar Enteritidis biofilms to BC.

  19. Catalysis of Protein Folding by Chaperones Accelerates Evolutionary Dynamics in Adapting Cell Populations

    PubMed Central

    Çetinbaş, Murat; Shakhnovich, Eugene I.

    2013-01-01

    Although molecular chaperones are essential components of protein homeostatic machinery, their mechanism of action and impact on adaptation and evolutionary dynamics remain controversial. Here we developed a physics-based ab initio multi-scale model of a living cell for population dynamics simulations to elucidate the effect of chaperones on adaptive evolution. The 6-loci genomes of model cells encode model proteins, whose folding and interactions in cellular milieu can be evaluated exactly from their genome sequences. A genotype-phenotype relationship that is based on a simple yet non-trivially postulated protein-protein interaction (PPI) network determines the cell division rate. Model proteins can exist in native and molten globule states and participate in functional and all possible promiscuous non-functional PPIs. We find that an active chaperone mechanism, whereby chaperones directly catalyze protein folding, has a significant impact on the cellular fitness and the rate of evolutionary dynamics, while passive chaperones, which just maintain misfolded proteins in soluble complexes have a negligible effect on the fitness. We find that by partially releasing the constraint on protein stability, active chaperones promote a deeper exploration of sequence space to strengthen functional PPIs, and diminish the non-functional PPIs. A key experimentally testable prediction emerging from our analysis is that down-regulation of chaperones that catalyze protein folding significantly slows down the adaptation dynamics. PMID:24244114

  20. Catalysis of protein folding by chaperones accelerates evolutionary dynamics in adapting cell populations.

    PubMed

    Cetinbaş, Murat; Shakhnovich, Eugene I

    2013-01-01

    Although molecular chaperones are essential components of protein homeostatic machinery, their mechanism of action and impact on adaptation and evolutionary dynamics remain controversial. Here we developed a physics-based ab initio multi-scale model of a living cell for population dynamics simulations to elucidate the effect of chaperones on adaptive evolution. The 6-loci genomes of model cells encode model proteins, whose folding and interactions in cellular milieu can be evaluated exactly from their genome sequences. A genotype-phenotype relationship that is based on a simple yet non-trivially postulated protein-protein interaction (PPI) network determines the cell division rate. Model proteins can exist in native and molten globule states and participate in functional and all possible promiscuous non-functional PPIs. We find that an active chaperone mechanism, whereby chaperones directly catalyze protein folding, has a significant impact on the cellular fitness and the rate of evolutionary dynamics, while passive chaperones, which just maintain misfolded proteins in soluble complexes have a negligible effect on the fitness. We find that by partially releasing the constraint on protein stability, active chaperones promote a deeper exploration of sequence space to strengthen functional PPIs, and diminish the non-functional PPIs. A key experimentally testable prediction emerging from our analysis is that down-regulation of chaperones that catalyze protein folding significantly slows down the adaptation dynamics.

  1. Thermal adaptability of Kluyveromyces marxianus in recombinant protein production

    PubMed Central

    2013-01-01

    Background Kluyveromyces marxianus combines the ease of genetic manipulation and fermentation with the ability to efficiently secrete high molecular weight proteins, performing eukaryotic post-translational modifications. It is able to grow efficiently in a wide range of temperatures. The secretion performances were analyzed in the host K. marxianus L3 in the range between 5°C and 40°C by means of 3 different reporter proteins, since temperature appears a key parameter for production and secretion of recombinant proteins. Results The recombinant strains were able to grow up to 40°C and, along the tested temperature interval (5-40°C), the specific growth rates (μ) were generally lower as compared to those of the untransformed strain. Biomass yields were slightly affected by temperature, with the highest values reached at 15°C and 30°C. The secretion of the endogenous β-fructofuranosidase, used as an internal control, was efficient in the range of the tested temperature, as evaluated by assaying the enzyme activity in the culture supernatants. The endogenous β-fructofuranosidase production was temperature dependent, with the highest yield at 30°C. The heterologous proteins HSA, GAA and Sod1p were all successfully produced and secreted between 5°C and 40°C, albeit each one presented a different optimal production temperature (15, 40, 5-30°C for HSA, GAA and Sod1p, respectively). Conclusions K. marxianus L3 has been identified as a promising and flexible cell factory. In a sole host, the optimization of growth temperatures for the efficient secretion of each individual protein can be carried out over a wide range of temperatures. PMID:23587421

  2. Adaptive evolution and functional redesign of core metabolic proteins in snakes.

    PubMed

    Castoe, Todd A; Jiang, Zhi J; Gu, Wanjun; Wang, Zhengyuan O; Pollock, David D

    2008-05-21

    Adaptive evolutionary episodes in core metabolic proteins are uncommon, and are even more rarely linked to major macroevolutionary shifts. We conducted extensive molecular evolutionary analyses on snake mitochondrial proteins and discovered multiple lines of evidence suggesting that the proteins at the core of aerobic metabolism in snakes have undergone remarkably large episodic bursts of adaptive change. We show that snake mitochondrial proteins experienced unprecedented levels of positive selection, coevolution, convergence, and reversion at functionally critical residues. We examined Cytochrome C oxidase subunit I (COI) in detail, and show that it experienced extensive modification of normally conserved residues involved in proton transport and delivery of electrons and oxygen. Thus, adaptive changes likely altered the flow of protons and other aspects of function in CO, thereby influencing fundamental characteristics of aerobic metabolism. We refer to these processes as "evolutionary redesign" because of the magnitude of the episodic bursts and the degree to which they affected core functional residues. The evolutionary redesign of snake COI coincided with adaptive bursts in other mitochondrial proteins and substantial changes in mitochondrial genome structure. It also generally coincided with or preceded major shifts in ecological niche and the evolution of extensive physiological adaptations related to lung reduction, large prey consumption, and venom evolution. The parallel timing of these major evolutionary events suggests that evolutionary redesign of metabolic and mitochondrial function may be related to, or underlie, the extreme changes in physiological and metabolic efficiency, flexibility, and innovation observed in snake evolution.

  3. Adaptive Protein Evolution in Animals and the Effective Population Size Hypothesis

    PubMed Central

    Galtier, Nicolas

    2016-01-01

    The rate at which genomes adapt to environmental changes and the prevalence of adaptive processes in molecular evolution are two controversial issues in current evolutionary genetics. Previous attempts to quantify the genome-wide rate of adaptation through amino-acid substitution have revealed a surprising diversity of patterns, with some species (e.g. Drosophila) experiencing a very high adaptive rate, while other (e.g. humans) are dominated by nearly-neutral processes. It has been suggested that this discrepancy reflects between-species differences in effective population size. Published studies, however, were mainly focused on model organisms, and relied on disparate data sets and methodologies, so that an overview of the prevalence of adaptive protein evolution in nature is currently lacking. Here we extend existing estimators of the amino-acid adaptive rate by explicitly modelling the effect of favourable mutations on non-synonymous polymorphism patterns, and we apply these methods to a newly-built, homogeneous data set of 44 non-model animal species pairs. Data analysis uncovers a major contribution of adaptive evolution to the amino-acid substitution process across all major metazoan phyla—with the notable exception of humans and primates. The proportion of adaptive amino-acid substitution is found to be positively correlated to species effective population size. This relationship, however, appears to be primarily driven by a decreased rate of nearly-neutral amino-acid substitution because of more efficient purifying selection in large populations. Our results reveal that adaptive processes dominate the evolution of proteins in most animal species, but do not corroborate the hypothesis that adaptive substitutions accumulate at a faster rate in large populations. Implications regarding the factors influencing the rate of adaptive evolution and positive selection detection in humans vs. other organisms are discussed. PMID:26752180

  4. Prolonged Adaptation to a Low or High Protein Diet Does Not Modulate Basal Muscle Protein Synthesis Rates - A Substudy.

    PubMed

    Hursel, Rick; Martens, Eveline A P; Gonnissen, Hanne K J; Hamer, Henrike M; Senden, Joan M G; van Loon, Luc J C; Westerterp-Plantenga, Margriet S

    2015-01-01

    Based on controlled 36 h experiments a higher dietary protein intake causes a positive protein balance and a negative fat balance. A positive net protein balance may support fat free mass accrual. However, few data are available on the impact of more prolonged changes in habitual protein intake on whole-body protein metabolism and basal muscle protein synthesis rates. To assess changes in whole-body protein turnover and basal muscle protein synthesis rates following 12 weeks of adaptation to a low versus high dietary protein intake. A randomized parallel study was performed in 40 subjects who followed either a high protein (2.4 g protein/kg/d) or low protein (0.4 g protein/kg/d) energy-balanced diet (30/35/35% or 5/60/35% energy from protein/carbohydrate/fat) for a period of 12 weeks. A subgroup of 7 men and 8 women (body mass index: 22.8±2.3 kg/m2, age: 24.3±4.9 y) were selected to evaluate the impact of prolonged adaptation to either a high or low protein intake on whole body protein metabolism and basal muscle protein synthesis rates. After the diet, subjects received continuous infusions with L-[ring-2H5]phenylalanine and L-[ring-2H2]tyrosine in an overnight fasted state, with blood samples and muscle biopsies being collected to assess post-absorptive whole-body protein turnover and muscle protein synthesis rates in vivo in humans. After 12 weeks of intervention, whole-body protein balance in the fasted state was more negative in the high protein treatment when compared with the low protein treatment (-4.1±0.5 vs -2.7±0.6 μmol phenylalanine/kg/h;P<0.001). Whole-body protein breakdown (43.0±4.4 vs 37.8±3.8 μmol phenylalanine/kg/h;P<0.03), synthesis (38.9±4.2 vs 35.1±3.6 μmol phenylalanine/kg/h;P<0.01) and phenylalanine hydroxylation rates (4.1±0.6 vs 2.7±0.6 μmol phenylalanine/kg/h;P<0.001) were significantly higher in the high vs low protein group. Basal muscle protein synthesis rates were maintained on a low vs high protein diet (0.042±0.01 vs 0

  5. Prolonged Adaptation to a Low or High Protein Diet Does Not Modulate Basal Muscle Protein Synthesis Rates – A Substudy

    PubMed Central

    Hursel, Rick; Martens, Eveline A. P.; Gonnissen, Hanne K. J.; Hamer, Henrike M.; Senden, Joan M. G.; van Loon, Luc J. C.; Westerterp-Plantenga, Margriet S.

    2015-01-01

    Background Based on controlled 36 h experiments a higher dietary protein intake causes a positive protein balance and a negative fat balance. A positive net protein balance may support fat free mass accrual. However, few data are available on the impact of more prolonged changes in habitual protein intake on whole-body protein metabolism and basal muscle protein synthesis rates. Objective To assess changes in whole-body protein turnover and basal muscle protein synthesis rates following 12 weeks of adaptation to a low versus high dietary protein intake. Methods A randomized parallel study was performed in 40 subjects who followed either a high protein (2.4 g protein/kg/d) or low protein (0.4 g protein/kg/d) energy-balanced diet (30/35/35% or 5/60/35% energy from protein/carbohydrate/fat) for a period of 12 weeks. A subgroup of 7 men and 8 women (body mass index: 22.8±2.3 kg/m2, age: 24.3±4.9 y) were selected to evaluate the impact of prolonged adaptation to either a high or low protein intake on whole body protein metabolism and basal muscle protein synthesis rates. After the diet, subjects received continuous infusions with L-[ring-2H5]phenylalanine and L-[ring-2H2]tyrosine in an overnight fasted state, with blood samples and muscle biopsies being collected to assess post-absorptive whole-body protein turnover and muscle protein synthesis rates in vivo in humans. Results After 12 weeks of intervention, whole-body protein balance in the fasted state was more negative in the high protein treatment when compared with the low protein treatment (-4.1±0.5 vs -2.7±0.6 μmol phenylalanine/kg/h;P<0.001). Whole-body protein breakdown (43.0±4.4 vs 37.8±3.8 μmol phenylalanine/kg/h;P<0.03), synthesis (38.9±4.2 vs 35.1±3.6 μmol phenylalanine/kg/h;P<0.01) and phenylalanine hydroxylation rates (4.1±0.6 vs 2.7±0.6 μmol phenylalanine/kg/h;P<0.001) were significantly higher in the high vs low protein group. Basal muscle protein synthesis rates were maintained on a low

  6. Protein engineering reveals ancient adaptive replacements in isocitrate dehydrogenase

    PubMed Central

    Dean, Antony M.; Golding, G. Brian

    1997-01-01

    Evolutionary analysis indicates that eubacterial NADP-dependent isocitrate dehydrogenases (EC 1.1.1.42) first evolved from an NAD-dependent precursor about 3.5 billion years ago. Selection in favor of utilizing NADP was probably a result of niche expansion during growth on acetate, where isocitrate dehydrogenase provides 90% of the NADPH necessary for biosynthesis. Amino acids responsible for differing coenzyme specificities were identified from x-ray crystallographic structures of Escherichia coli isocitrate dehydrogenase and the distantly related Thermus thermophilus NAD-dependent isopropylmalate dehydrogenase. Site-directed mutagenesis at sites lining the coenzyme binding pockets has been used to invert the coenzyme specificities of both enzymes. Reconstructed ancestral sequences indicate that these replacements are ancestral. Hence the adaptive history of molecular evolution is amenable to experimental investigation. PMID:9096353

  7. Homeodomain Interacting Protein Kinases Modulate Hypoxic Adaptation and Chemoresistance

    DTIC Science & Technology

    2015-08-01

    established cell lines. Our objectives were to (1) ectopically express or silence HIPK2 and HIPK3 in PCa cell lines (LnCAP & LnCAP-abl) , (2) define the...small RNAs for silencing . Technical difficulties prevented our group from evaluating the impact on HIPKs in PCa as ectopic expression produced a...protein of incorrect size and silencing proved ineffective. We will resolve these issue and continue to examine HIPKs in PCa in future studies. 15

  8. Protein Secondary Structure Prediction Using Local Adaptive Techniques in Training Neural Networks

    NASA Astrophysics Data System (ADS)

    Aik, Lim Eng; Zainuddin, Zarita; Joseph, Annie

    2008-01-01

    One of the most significant problems in computer molecular biology today is how to predict a protein's three-dimensional structure from its one-dimensional amino acid sequence or generally call the protein folding problem and difficult to determine the corresponding protein functions. Thus, this paper involves protein secondary structure prediction using neural network in order to solve the protein folding problem. The neural network used for protein secondary structure prediction is multilayer perceptron (MLP) of the feed-forward variety. The training set are taken from the protein data bank which are 120 proteins while 60 testing set is the proteins which were chosen randomly from the protein data bank. Multiple sequence alignment (MSA) is used to get the protein similar sequence and Position Specific Scoring matrix (PSSM) is used for network input. The training process of the neural network involves local adaptive techniques. Local adaptive techniques used in this paper comprises Learning rate by sign changes, SuperSAB, Quickprop and RPROP. From the simulation, the performance for learning rate by Rprop and Quickprop are superior to all other algorithms with respect to the convergence time. However, the best result was obtained using Rprop algorithm.

  9. In the light of directed evolution: Pathways of adaptive protein evolution

    PubMed Central

    Bloom, Jesse D.; Arnold, Frances H.

    2009-01-01

    Directed evolution is a widely-used engineering strategy for improving the stabilities or biochemical functions of proteins by repeated rounds of mutation and selection. These experiments offer empirical lessons about how proteins evolve in the face of clearly-defined laboratory selection pressures. Directed evolution has revealed that single amino acid mutations can enhance properties such as catalytic activity or stability and that adaptation can often occur through pathways consisting of sequential beneficial mutations. When there are no single mutations that improve a particular protein property experiments always find a wealth of mutations that are neutral with respect to the laboratory-defined measure of fitness. These neutral mutations can open new adaptive pathways by at least 2 different mechanisms. Functionally-neutral mutations can enhance a protein's stability, thereby increasing its tolerance for subsequent functionally beneficial but destabilizing mutations. They can also lead to changes in “promiscuous” functions that are not currently under selective pressure, but can subsequently become the starting points for the adaptive evolution of new functions. These lessons about the coupling between adaptive and neutral protein evolution in the laboratory offer insight into the evolution of proteins in nature. PMID:19528653

  10. Optimizing intramuscular adaptations to aerobic exercise: effects of carbohydrate restriction and protein supplementation on mitochondrial biogenesis.

    PubMed

    Margolis, Lee M; Pasiakos, Stefan M

    2013-11-01

    Mitochondrial biogenesis is a critical metabolic adaptation to aerobic exercise training that results in enhanced mitochondrial size, content, number, and activity. Recent evidence has shown that dietary manipulation can further enhance mitochondrial adaptations to aerobic exercise training, which may delay skeletal muscle fatigue and enhance exercise performance. Specifically, studies have demonstrated that combining carbohydrate restriction (endogenous and exogenous) with a single bout of aerobic exercise potentiates the beneficial effects of exercise on markers of mitochondrial biogenesis. Additionally, studies have demonstrated that high-quality protein supplementation enhances anabolic skeletal muscle intracellular signaling and mitochondrial protein synthesis following a single bout of aerobic exercise. Mitochondrial biogenesis is stimulated by complex intracellular signaling pathways that appear to be primarily regulated by 5'AMP-activated protein kinase and p38 mitogen-activated protein kinase mediated through proliferator-activated γ receptor co-activator 1 α activation, resulting in increased mitochondrial DNA expression and enhanced skeletal muscle oxidative capacity. However, the mechanisms by which concomitant carbohydrate restriction and dietary protein supplementation modulates mitochondrial adaptations to aerobic exercise training remains unclear. This review summarizes intracellular regulation of mitochondrial biogenesis and the effects of carbohydrate restriction and protein supplementation on mitochondrial adaptations to aerobic exercise.

  11. Exercise training-induced gender-specific heat shock protein adaptations in human skeletal muscle.

    PubMed

    Morton, James P; Holloway, Kathryn; Woods, Paul; Cable, Nigel T; Burniston, Jatin; Evans, Louise; Kayani, Anna C; McArdle, Anne

    2009-02-01

    This study investigates the effects of short-term endurance training on heat shock protein (HSP) adaptations of male and female human skeletal muscle. The data demonstrate that females did not respond to continuous or interval training in terms of increasing HSP content of the vastus lateralis muscle. In contrast, males displayed HSP adaptations to both training interventions. These data provide a platform for future human studies to examine a potential gender-specific stress response to exercise.

  12. High-resolution mapping of protein concentration reveals principles of proteome architecture and adaptation.

    PubMed

    Levy, Emmanuel D; Kowarzyk, Jacqueline; Michnick, Stephen W

    2014-05-22

    A single yeast cell contains a hundred million protein molecules. How these proteins are organized to orchestrate living processes is a central question in biology. To probe this organization in vivo, we measured the local concentration of proteins based on the strength of their nonspecific interactions with a neutral reporter protein. We first used a cytosolic reporter and measured local concentrations for ~2,000 proteins in S. cerevisiae, with accuracy comparable to that of mass spectrometry. Localizing the reporter to membranes specifically increased the local concentration measured for membrane proteins. Comparing the concentrations measured by both reporters revealed that encounter frequencies between proteins are primarily dictated by their abundances. However, to change these encounter frequencies and restructure the proteome, as in adaptation, we find that changes in localization have more impact than changes in abundance. These results highlight how protein abundance and localization contribute to proteome organization and reorganization.

  13. Adaptation.

    PubMed

    Broom, Donald M

    2006-01-01

    The term adaptation is used in biology in three different ways. It may refer to changes which occur at the cell and organ level, or at the individual level, or at the level of gene action and evolutionary processes. Adaptation by cells, especially nerve cells helps in: communication within the body, the distinguishing of stimuli, the avoidance of overload and the conservation of energy. The time course and complexity of these mechanisms varies. Adaptive characters of organisms, including adaptive behaviours, increase fitness so this adaptation is evolutionary. The major part of this paper concerns adaptation by individuals and its relationships to welfare. In complex animals, feed forward control is widely used. Individuals predict problems and adapt by acting before the environmental effect is substantial. Much of adaptation involves brain control and animals have a set of needs, located in the brain and acting largely via motivational mechanisms, to regulate life. Needs may be for resources but are also for actions and stimuli which are part of the mechanism which has evolved to obtain the resources. Hence pigs do not just need food but need to be able to carry out actions like rooting in earth or manipulating materials which are part of foraging behaviour. The welfare of an individual is its state as regards its attempts to cope with its environment. This state includes various adaptive mechanisms including feelings and those which cope with disease. The part of welfare which is concerned with coping with pathology is health. Disease, which implies some significant effect of pathology, always results in poor welfare. Welfare varies over a range from very good, when adaptation is effective and there are feelings of pleasure or contentment, to very poor. A key point concerning the concept of individual adaptation in relation to welfare is that welfare may be good or poor while adaptation is occurring. Some adaptation is very easy and energetically cheap and

  14. Measuring and Detecting Molecular Adaptation in Codon Usage Against Nonsense Errors During Protein Translation

    PubMed Central

    Gilchrist, Michael A.; Shah, Premal; Zaretzki, Russell

    2009-01-01

    Codon usage bias (CUB) has been documented across a wide range of taxa and is the subject of numerous studies. While most explanations of CUB invoke some type of natural selection, most measures of CUB adaptation are heuristically defined. In contrast, we present a novel and mechanistic method for defining and contextualizing CUB adaptation to reduce the cost of nonsense errors during protein translation. Using a model of protein translation, we develop a general approach for measuring the protein production cost in the face of nonsense errors of a given allele as well as the mean and variance of these costs across its coding synonyms. We then use these results to define the nonsense error adaptation index (NAI) of the allele or a contiguous subset thereof. Conceptually, the NAI value of an allele is a relative measure of its elevation on a specific and well-defined adaptive landscape. To illustrate its utility, we calculate NAI values for the entire coding sequence and across a set of nonoverlapping windows for each gene in the Saccharomyces cerevisiae S288c genome. Our results provide clear evidence of adaptation to reduce the cost of nonsense errors and increasing adaptation with codon position and expression. The magnitude and nature of this adaptation are also largely consistent with simulation results in which nonsense errors are the only selective force driving CUB evolution. Because NAI is derived from mechanistic models, it is both easier to interpret and more amenable to future refinement than other commonly used measures of codon bias. Further, our approach can also be used as a starting point for developing other mechanistically derived measures of adaptation such as for translational accuracy. PMID:19822731

  15. Metabolic and proteomic study of NS0 myeloma cell line following the adaptation to protein-free medium.

    PubMed

    de la Luz-Hernández, K R; Rojas-del Calvo, L; Rabasa-Legón, Y; Lage-Castellanos, A; Castillo-Vitlloch, A; Díaz, J; Gaskell, S

    2008-07-21

    Proteomics and metabolomics technologies are potentially useful tool for the study of the very complex process of cell adaptation to protein-free medium. In this work, we used the iTRAQ technology to analyze different protein levels in adapted and non-adapted NS0 myeloma cell line. Several proteins with differential expression profile were characterized and quantified. Carbohydrate metabolism, protein synthesis and membrane transport were the principal pathways that change after the adaptation. Changes in lactate production rate with respect to glucose consumption rate were observed according to the changes observed by proteomic.

  16. Influence of Histidine-Containing Tags on the Biodistribution of ADAPT Scaffold Proteins.

    PubMed

    Lindbo, Sarah; Garousi, Javad; Åstrand, Mikael; Honarvar, Hadis; Orlova, Anna; Hober, Sophia; Tolmachev, Vladimir

    2016-03-16

    Engineered scaffold proteins (ESP) are high-affinity binders that can be used as probes for radionuclide imaging. Histidine-containing tags enable both efficient purification of ESP and radiolabeling with (99m)Tc(CO)3. Earlier studies demonstrated that the use of a histidine-glutamate-histidine-glutamate-histidine-glutamate (HE)3-tag instead of the commonly used hexahistidine (H6)-tag reduces hepatic uptake of radiolabeled ESP and short peptides. Here, we investigated the influence of histidine-containing tags on the biodistribution of a novel type of ESP, ADAPTs. A series of anti-HER2 ADAPT probes having H6- or (HE)3-tags in the N-termini were prepared. The constructs, (HE)3-ADAPT6 and H6-ADAPT6, were labeled with two different nuclides, (99m)Tc or (111)In. The labeling with (99m)Tc(CO)3 utilized the histidine-containing tags, while (111)In was attached through a maleimido derivative of DOTA conjugated to the N-terminus. For (111)In-labeled ADAPTs, the use of (HE)3 provided a significantly (p < 0.05) lower hepatic uptake at 1 h after injection, but there was no significant difference in hepatic uptake of (111)In-(HE)3-ADAPT6 and H6-ADAPT6 at later time points. Interestingly, in the case of (99m)Tc, (99m)Tc(CO)3-H6-ADAPT6 provided significantly (p < 0.05) lower uptake in a number of normal tissues and was more suitable as an imaging probe. Thus, the influence of histidine-containing tags on the biodistribution of the novel ADAPT scaffold proteins was different compared to its influence on other ESPs studied so far. Apparently, the effect of a histidine-containing tag on the biodistribution is highly dependent on the scaffold composition of the ESP.

  17. Biomolecular Mechanism, Cloning, Sequencing and Analysis of Adaptive Reflection cDNAs and Proteins from Squid

    DTIC Science & Technology

    2010-05-03

    drivers of these adaptive changes in reflectance that we will investigate include electromotive ion fluxes, pH change and exposures to metal ions and...found in L. pealeii. As is the case for the other reflectin proteins (16), Ref-Lp1 and 2 contain a series of conserved subdomains (SDs). Ref-Lp1

  18. Assessment of the protein quality of 15 new northern adapted cultivars of quality protein maize using amino acid analysis.

    PubMed

    Zarkadas, C G; Hamilton, R I; Yu, Z R; Choi, V K; Khanizadeh, S; Rose, N G; Pattison, P L

    2000-11-01

    Amino acid determinations were carried out on 15 new northern adapted cultivars of quality protein maize (QPM) containing opaque-2 modifier genes to ascertain whether their amino acid scoring patterns could be used to select high-lysine QPM genotypes and to assess their protein quality. Total protein in these cultivars ranged from 8.0 to 10.2% compared to two commercial maize varieties, Dekalb DK435 (7.9%) and Pioneer 3925 (10.3%). Four of these QPM genotypes, QPM-C26, QPM-C21, QPM-C79, and QPM-C59, contained high levels of lysine (4.43-4.58 g of lysine/100 g of protein), whereas the remaining varied from 3.43 to 4.21 g of lysine/100 g of protein, compared to Dekalb DK435 and Pioneer 3925, which contained 2.9 and 3. 1 g of lysine/100 g of protein, respectively. Although lysine is the first limiting amino acid in QPM inbreds, the high-lysine QPM genotypes may supply approximately 70.2-72.6% of human protein requirements, compared to 46.2% for Dekalb DK435 and 50.1% for Pioneer 3925, 55-63% for oats, and 59-60.3% for barley. Northern adapted QPM genotypes may have the potential to increase their lysine content even further, either by an increase in specific high-lysine-containing nonzein proteins, such as the synthesis of factor EF-1a, or by a further reduction in the 19 and 22 kDa alpha-zein in the endosperm or both. This knowledge could assist maize breeders in the selection of new high-performance QPM genotypes with improved protein quality and quantity.

  19. Dynamics and Adaptive Benefits of Protein Domain Emergence and Arrangements during Plant Genome Evolution

    PubMed Central

    Kersting, Anna R.; Bornberg-Bauer, Erich; Moore, Andrew D.; Grath, Sonja

    2012-01-01

    Plant genomes are generally very large, mostly paleopolyploid, and have numerous gene duplicates and complex genomic features such as repeats and transposable elements. Many of these features have been hypothesized to enable plants, which cannot easily escape environmental challenges, to rapidly adapt. Another mechanism, which has recently been well described as a major facilitator of rapid adaptation in bacteria, animals, and fungi but not yet for plants, is modular rearrangement of protein-coding genes. Due to the high precision of profile-based methods, rearrangements can be well captured at the protein level by characterizing the emergence, loss, and rearrangements of protein domains, their structural, functional, and evolutionary building blocks. Here, we study the dynamics of domain rearrangements and explore their adaptive benefit in 27 plant and 3 algal genomes. We use a phylogenomic approach by which we can explain the formation of 88% of all arrangements by single-step events, such as fusion, fission, and terminal loss of domains. We find many domains are lost along every lineage, but at least 500 domains are novel, that is, they are unique to green plants and emerged more or less recently. These novel domains duplicate and rearrange more readily within their genomes than ancient domains and are overproportionally involved in stress response and developmental innovations. Novel domains more often affect regulatory proteins and show a higher degree of structural disorder than ancient domains. Whereas a relatively large and well-conserved core set of single-domain proteins exists, long multi-domain arrangements tend to be species-specific. We find that duplicated genes are more often involved in rearrangements. Although fission events typically impact metabolic proteins, fusion events often create new signaling proteins essential for environmental sensing. Taken together, the high volatility of single domains and complex arrangements in plant genomes

  20. Evolutionary Dynamics on Protein Bi-stability Landscapes can Potentially Resolve Adaptive Conflicts

    PubMed Central

    Sikosek, Tobias; Bornberg-Bauer, Erich; Chan, Hue Sun

    2012-01-01

    Experimental studies have shown that some proteins exist in two alternative native-state conformations. It has been proposed that such bi-stable proteins can potentially function as evolutionary bridges at the interface between two neutral networks of protein sequences that fold uniquely into the two different native conformations. Under adaptive conflict scenarios, bi-stable proteins may be of particular advantage if they simultaneously provide two beneficial biological functions. However, computational models that simulate protein structure evolution do not yet recognize the importance of bi-stability. Here we use a biophysical model to analyze sequence space to identify bi-stable or multi-stable proteins with two or more equally stable native-state structures. The inclusion of such proteins enhances phenotype connectivity between neutral networks in sequence space. Consideration of the sequence space neighborhood of bridge proteins revealed that bi-stability decreases gradually with each mutation that takes the sequence further away from an exactly bi-stable protein. With relaxed selection pressures, we found that bi-stable proteins in our model are highly successful under simulated adaptive conflict. Inspired by these model predictions, we developed a method to identify real proteins in the PDB with bridge-like properties, and have verified a clear bi-stability gradient for a series of mutants studied by Alexander et al. (Proc Nat Acad Sci USA 2009, 106:21149–21154) that connect two sequences that fold uniquely into two different native structures via a bridge-like intermediate mutant sequence. Based on these findings, new testable predictions for future studies on protein bi-stability and evolution are discussed. PMID:23028272

  1. Adapt

    NASA Astrophysics Data System (ADS)

    Bargatze, L. F.

    2015-12-01

    Active Data Archive Product Tracking (ADAPT) is a collection of software routines that permits one to generate XML metadata files to describe and register data products in support of the NASA Heliophysics Virtual Observatory VxO effort. ADAPT is also a philosophy. The ADAPT concept is to use any and all available metadata associated with scientific data to produce XML metadata descriptions in a consistent, uniform, and organized fashion to provide blanket access to the full complement of data stored on a targeted data server. In this poster, we present an application of ADAPT to describe all of the data products that are stored by using the Common Data File (CDF) format served out by the CDAWEB and SPDF data servers hosted at the NASA Goddard Space Flight Center. These data servers are the primary repositories for NASA Heliophysics data. For this purpose, the ADAPT routines have been used to generate data resource descriptions by using an XML schema named Space Physics Archive, Search, and Extract (SPASE). SPASE is the designated standard for documenting Heliophysics data products, as adopted by the Heliophysics Data and Model Consortium. The set of SPASE XML resource descriptions produced by ADAPT includes high-level descriptions of numerical data products, display data products, or catalogs and also includes low-level "Granule" descriptions. A SPASE Granule is effectively a universal access metadata resource; a Granule associates an individual data file (e.g. a CDF file) with a "parent" high-level data resource description, assigns a resource identifier to the file, and lists the corresponding assess URL(s). The CDAWEB and SPDF file systems were queried to provide the input required by the ADAPT software to create an initial set of SPASE metadata resource descriptions. Then, the CDAWEB and SPDF data repositories were queried subsequently on a nightly basis and the CDF file lists were checked for any changes such as the occurrence of new, modified, or deleted

  2. Fast automated protein NMR data collection and assignment by ADAPT-NMR on Bruker spectrometers.

    PubMed

    Lee, Woonghee; Hu, Kaifeng; Tonelli, Marco; Bahrami, Arash; Neuhardt, Elizabeth; Glass, Karen C; Markley, John L

    2013-11-01

    ADAPT-NMR (Assignment-directed Data collection Algorithm utilizing a Probabilistic Toolkit in NMR) supports automated NMR data collection and backbone and side chain assignment for [U-(13)C, U-(15)N]-labeled proteins. Given the sequence of the protein and data for the orthogonal 2D (1)H-(15)N and (1)H-(13)C planes, the algorithm automatically directs the collection of tilted plane data from a variety of triple-resonance experiments so as to follow an efficient pathway toward the probabilistic assignment of (1)H, (13)C, and (15)N signals to specific atoms in the covalent structure of the protein. Data collection and assignment calculations continue until the addition of new data no longer improves the assignment score. ADAPT-NMR was first implemented on Varian (Agilent) spectrometers [A. Bahrami, M. Tonelli, S.C. Sahu, K.K. Singarapu, H.R. Eghbalnia, J.L. Markley, PLoS One 7 (2012) e33173]. Because of broader interest in the approach, we present here a version of ADAPT-NMR for Bruker spectrometers. We have developed two AU console programs (ADAPT_ORTHO_run and ADAPT_NMR_run) that run under TOPSPIN Versions 3.0 and higher. To illustrate the performance of the algorithm on a Bruker spectrometer, we tested one protein, chlorella ubiquitin (76 amino acid residues), that had been used with the Varian version: the Bruker and Varian versions achieved the same level of assignment completeness (98% in 20 h). As a more rigorous evaluation of the Bruker version, we tested a larger protein, BRPF1 bromodomain (114 amino acid residues), which yielded an automated assignment completeness of 86% in 55 h. Both experiments were carried out on a 500 MHz Bruker AVANCE III spectrometer equipped with a z-gradient 5 mm TCI probe. ADAPT-NMR is available at http://pine.nmrfam.wisc.edu/ADAPT-NMR in the form of pulse programs, the two AU programs, and instructions for installation and use. Copyright © 2013. Published by Elsevier Inc.

  3. Fast automated protein NMR data collection and assignment by ADAPT-NMR on Bruker spectrometers

    NASA Astrophysics Data System (ADS)

    Lee, Woonghee; Hu, Kaifeng; Tonelli, Marco; Bahrami, Arash; Neuhardt, Elizabeth; Glass, Karen C.; Markley, John L.

    2013-11-01

    ADAPT-NMR (Assignment-directed Data collection Algorithm utilizing a Probabilistic Toolkit in NMR) supports automated NMR data collection and backbone and side chain assignment for [U-13C, U-15N]-labeled proteins. Given the sequence of the protein and data for the orthogonal 2D 1H-15N and 1H-13C planes, the algorithm automatically directs the collection of tilted plane data from a variety of triple-resonance experiments so as to follow an efficient pathway toward the probabilistic assignment of 1H, 13C, and 15N signals to specific atoms in the covalent structure of the protein. Data collection and assignment calculations continue until the addition of new data no longer improves the assignment score. ADAPT-NMR was first implemented on Varian (Agilent) spectrometers [A. Bahrami, M. Tonelli, S.C. Sahu, K.K. Singarapu, H.R. Eghbalnia, J.L. Markley, PLoS One 7 (2012) e33173]. Because of broader interest in the approach, we present here a version of ADAPT-NMR for Bruker spectrometers. We have developed two AU console programs (ADAPT_ORTHO_run and ADAPT_NMR_run) that run under TOPSPIN Versions 3.0 and higher. To illustrate the performance of the algorithm on a Bruker spectrometer, we tested one protein, chlorella ubiquitin (76 amino acid residues), that had been used with the Varian version: the Bruker and Varian versions achieved the same level of assignment completeness (98% in 20 h). As a more rigorous evaluation of the Bruker version, we tested a larger protein, BRPF1 bromodomain (114 amino acid residues), which yielded an automated assignment completeness of 86% in 55 h. Both experiments were carried out on a 500 MHz Bruker AVANCE III spectrometer equipped with a z-gradient 5 mm TCI probe. ADAPT-NMR is available at http://pine.nmrfam.wisc.edu/ADAPT-NMR in the form of pulse programs, the two AU programs, and instructions for installation and use.

  4. Continued Protein Synthesis at Low [ATP] and [GTP] Enables Cell Adaptation during Energy Limitation▿

    PubMed Central

    Jewett, Michael C.; Miller, Mark L.; Chen, Yvonne; Swartz, James R.

    2009-01-01

    One of biology's critical ironies is the need to adapt to periods of energy limitation by using the energy-intensive process of protein synthesis. Although previous work has identified the individual energy-requiring steps in protein synthesis, we still lack an understanding of the dependence of protein biosynthesis rates on [ATP] and [GTP]. Here, we used an integrated Escherichia coli cell-free platform that mimics the intracellular, energy-limited environment to show that protein synthesis rates are governed by simple Michaelis-Menten dependence on [ATP] and [GTP] (KmATP, 27 ± 4 μM; KmGTP, 14 ± 2 μM). Although the system-level GTP affinity agrees well with the individual affinities of the GTP-dependent translation factors, the system-level KmATP is unexpectedly low. Especially under starvation conditions, when energy sources are limited, cells need to replace catalysts that become inactive and to produce new catalysts in order to effectively adapt. Our results show how this crucial survival priority for synthesizing new proteins can be enforced after rapidly growing cells encounter energy limitation. A diminished energy supply can be rationed based on the relative ATP and GTP affinities, and, since these affinities for protein synthesis are high, the cells can adapt with substantial changes in protein composition. Furthermore, our work suggests that characterization of individual enzymes may not always predict the performance of multicomponent systems with complex interdependencies. We anticipate that cell-free studies in which complex metabolic systems are activated will be valuable tools for elucidating the behavior of such systems. PMID:19028899

  5. Intra-plastid protein trafficking: how plant cells adapted prokaryotic mechanisms to the eukaryotic condition.

    PubMed

    Celedon, Jose M; Cline, Kenneth

    2013-02-01

    Protein trafficking and localization in plastids involve a complex interplay between ancient (prokaryotic) and novel (eukaryotic) translocases and targeting machineries. During evolution, ancient systems acquired new functions and novel translocation machineries were developed to facilitate the correct localization of nuclear encoded proteins targeted to the chloroplast. Because of its post-translational nature, targeting and integration of membrane proteins posed the biggest challenge to the organelle to avoid aggregation in the aqueous compartments. Soluble proteins faced a different kind of problem since some had to be transported across three membranes to reach their destination. Early studies suggested that chloroplasts addressed these issues by adapting ancient-prokaryotic machineries and integrating them with novel-eukaryotic systems, a process called 'conservative sorting'. In the last decade, detailed biochemical, genetic, and structural studies have unraveled the mechanisms of protein targeting and localization in chloroplasts, suggesting a highly integrated scheme where ancient and novel systems collaborate at different stages of the process. In this review we focus on the differences and similarities between chloroplast ancestral translocases and their prokaryotic relatives to highlight known modifications that adapted them to the eukaryotic situation. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Life at the border: Adaptation of proteins to anisotropic membrane environment

    PubMed Central

    Pogozheva, Irina D; Mosberg, Henry I; Lomize, Andrei L

    2014-01-01

    This review discusses main features of transmembrane (TM) proteins which distinguish them from water-soluble proteins and allow their adaptation to the anisotropic membrane environment. We overview the structural limitations on membrane protein architecture, spatial arrangement of proteins in membranes and their intrinsic hydrophobic thickness, co-translational and post-translational folding and insertion into lipid bilayers, topogenesis, high propensity to form oligomers, and large-scale conformational transitions during membrane insertion and transport function. Special attention is paid to the polarity of TM protein surfaces described by profiles of dipolarity/polarizability and hydrogen-bonding capacity parameters that match polarity of the lipid environment. Analysis of distributions of Trp resides on surfaces of TM proteins from different biological membranes indicates that interfacial membrane regions with preferential accumulation of Trp indole rings correspond to the outer part of the lipid acyl chain region—between double bonds and carbonyl groups of lipids. These “midpolar” regions are not always symmetric in proteins from natural membranes. We also examined the hydrophobic effect that drives insertion of proteins into lipid bilayer and different free energy contributions to TM protein stability, including attractive van der Waals forces and hydrogen bonds, side-chain conformational entropy, the hydrophobic mismatch, membrane deformations, and specific protein–lipid binding. PMID:24947665

  7. Immunoinhibitory adapter protein Src homology domain 3 lymphocyte protein 2 (SLy2) regulates actin dynamics and B cell spreading.

    PubMed

    von Holleben, Max; Gohla, Antje; Janssen, Klaus-Peter; Iritani, Brian M; Beer-Hammer, Sandra

    2011-04-15

    Appropriate B cell activation is essential for adaptive immunity. In contrast to the molecular mechanisms that regulate positive signaling in immune responses, the counterbalancing negative regulatory pathways remain insufficiently understood. The Src homology domain 3 (SH3)-containing adapter protein SH3 lymphocyte protein 2 (SLy2, also known as hematopoietic adapter-containing SH3 and sterile α-motif (SAM) domains 1; HACS1) is strongly up-regulated upon B cell activation and functions as an endogenous immunoinhibitor in vivo, but the underlying molecular mechanisms of SLy2 function have been elusive. We have generated transgenic mice overexpressing SLy2 in B and T cells and have studied the biological effects of elevated SLy2 levels in Jurkat and HeLa cells. Our results demonstrate that SLy2 induces Rac1-dependent membrane ruffle formation and regulates cell spreading and polarization and that the SLy2 SH3 domain is essential for these effects. Using immunoprecipitation and confocal microscopy, we provide evidence that the actin nucleation-promoting factor cortactin is an SH3 domain-directed interaction partner of SLy2. Consistent with an important role of SLy2 for actin cytoskeletal reorganization, we further show that SLy2-transgenic B cells are severely defective in cell spreading. Together, our findings extend our mechanistic understanding of the immunoinhibitory roles of SLy2 in vivo and suggest that the physiological up-regulation of SLy2 observed upon B cell activation functions to counteract excessive B cell spreading.

  8. Live imaging using adaptive optics with fluorescent protein guide-stars

    PubMed Central

    Tao, Xiaodong; Crest, Justin; Kotadia, Shaila; Azucena, Oscar; Chen, Diana C.; Sullivan, William; Kubby, Joel

    2012-01-01

    Spatially and temporally dependent optical aberrations induced by the inhomogeneous refractive index of live samples limit the resolution of live dynamic imaging. We introduce an adaptive optical microscope with a direct wavefront sensing method using a Shack-Hartmann wavefront sensor and fluorescent protein guide-stars for live imaging. The results of imaging Drosophila embryos demonstrate its ability to correct aberrations and achieve near diffraction limited images of medial sections of large Drosophila embryos. GFP-polo labeled centrosomes can be observed clearly after correction but cannot be observed before correction. Four dimensional time lapse images are achieved with the correction of dynamic aberrations. These studies also demonstrate that the GFP-tagged centrosome proteins, Polo and Cnn, serve as excellent biological guide-stars for adaptive optics based microscopy. PMID:22772285

  9. Live imaging using adaptive optics with fluorescent protein guide-stars.

    PubMed

    Tao, Xiaodong; Crest, Justin; Kotadia, Shaila; Azucena, Oscar; Chen, Diana C; Sullivan, William; Kubby, Joel

    2012-07-02

    Spatially and temporally dependent optical aberrations induced by the inhomogeneous refractive index of live samples limit the resolution of live dynamic imaging. We introduce an adaptive optical microscope with a direct wavefront sensing method using a Shack-Hartmann wavefront sensor and fluorescent protein guide-stars for live imaging. The results of imaging Drosophila embryos demonstrate its ability to correct aberrations and achieve near diffraction limited images of medial sections of large Drosophila embryos. GFP-polo labeled centrosomes can be observed clearly after correction but cannot be observed before correction. Four dimensional time lapse images are achieved with the correction of dynamic aberrations. These studies also demonstrate that the GFP-tagged centrosome proteins, Polo and Cnn, serve as excellent biological guide-stars for adaptive optics based microscopy.

  10. Proteins and DNA elements essential for the CRISPR adaptation process in Escherichia coli.

    PubMed

    Yosef, Ido; Goren, Moran G; Qimron, Udi

    2012-07-01

    The clustered regularly interspaced short palindromic repeats and their associated proteins (CRISPR/Cas) constitute a recently identified prokaryotic defense mechanism against invading nucleic acids. Activity of the CRISPR/Cas system comprises of three steps: (i) insertion of alien DNA sequences into the CRISPR array to prevent future attacks, in a process called 'adaptation', (ii) expression of the relevant proteins, as well as expression and processing of the array, followed by (iii) RNA-mediated interference with the alien nucleic acid. Here we describe a robust assay in Escherichia coli to explore the hitherto least-studied process, adaptation. We identify essential genes and DNA elements in the leader sequence and in the array which are essential for the adaptation step. We also provide mechanistic insights on the insertion of the repeat-spacer unit by showing that the first repeat serves as the template for the newly inserted repeat. Taken together, our results elucidate fundamental steps in the adaptation process of the CRISPR/Cas system.

  11. Adaptability of protein structures to enable functional interactions and evolutionary implications.

    PubMed

    Haliloglu, Turkan; Bahar, Ivet

    2015-12-01

    Several studies in recent years have drawn attention to the ability of proteins to adapt to intermolecular interactions by conformational changes along structure-encoded collective modes of motions. These so-called soft modes, primarily driven by entropic effects, facilitate, if not enable, functional interactions. They represent excursions on the conformational space along principal low-ascent directions/paths away from the original free energy minimum, and they are accessible to the protein even before protein-protein/ligand interactions. An emerging concept from these studies is the evolution of structures or modular domains to favor such modes of motion that will be recruited or integrated for enabling functional interactions. Structural dynamics, including the allosteric switches in conformation that are often stabilized upon formation of complexes and multimeric assemblies, emerge as key properties that are evolutionarily maintained to accomplish biological activities, consistent with the paradigm sequence→structure→dynamics→function where 'dynamics' bridges structure and function.

  12. Adaptive optics microscopy with direct wavefront sensing using fluorescent protein guide stars.

    PubMed

    Tao, Xiaodong; Azucena, Oscar; Fu, Min; Zuo, Yi; Chen, Diana C; Kubby, Joel

    2011-09-01

    We introduce a direct wavefront sensing method using structures labeled with fluorescent proteins in tissues as guide stars. An adaptive optics confocal microscope using this method is demonstrated for imaging of mouse brain tissue. A dendrite and a cell body of a neuron labeled with yellow fluorescent protein are tested as guide stars without injection of other fluorescent labels. Photobleaching effects are also analyzed. The results shows increased image contrast and 3× improvement in the signal intensity for fixed mouse tissues at depths of 70 μm.

  13. Physical and molecular bases of protein thermal stability and cold adaptation.

    PubMed

    Pucci, Fabrizio; Rooman, Marianne

    2017-02-01

    The molecular bases of thermal and cold stability and adaptation, which allow proteins to remain folded and functional in the temperature ranges in which their host organisms live and grow, are still only partially elucidated. Indeed, both experimental and computational studies fail to yield a fully precise and global physical picture, essentially because all effects are context-dependent and thus quite intricate to unravel. We present a snapshot of the current state of knowledge of this highly complex and challenging issue, whose resolution would enable large-scale rational protein design.

  14. Bromophenol blue protein assay: improvement in buffer tolerance and adaptation for the measurement of proteolytic activity.

    PubMed

    Ahmad, H; Saleemuddin, M

    1983-07-01

    A modification of the bromophenol blue dye binding procedure of protein estimation is described. Substitution of glycine/phosphoric acid, pH 2.6, for dilute acetic acid in the colour reagent extended the applicability of the procedure to protein solutions containing buffers of various pH values. This was, however, accompanied by approximately 25% loss in the sensitivity of the procedure. The modified reagent exhibited very marked tolerance to detergents and could be successfully adapted for the measurement of proteolytic activity in acidic, neutral or alkaline pH ranges.

  15. Late embryogenesis abundant proteins: versatile players in the plant adaptation to water limiting environments.

    PubMed

    Olvera-Carrillo, Yadira; Luis Reyes, José; Covarrubias, Alejandra A

    2011-04-01

    Late Embryogenesis Abundant (LEA) proteins accumulate at the onset of seed desiccation and in response to water deficit in vegetative plant tissues. The typical LEA proteins are highly hydrophilic and intrinsically unstructured. They have been classified in different families; each one showing distinctive conserved motifs. In this manuscript we present and discuss some of the recent findings regarding their role in plant adaptation to water deficit, as well as those concerning to their possible function, and how it can be related to their intrinsic structural flexibility.

  16. Alkaline stress response in Enterococcus faecalis: adaptation, cross-protection, and changes in protein synthesis.

    PubMed Central

    Flahaut, S; Hartke, A; Giard, J C; Auffray, Y

    1997-01-01

    The alkaline shock response in Enterococcus faecalis was studied in this work. Cells adapted to an optimum pH of 10.5 were tolerate to pH 11.9 conditions but acquired sensitivity to acid damage. An analysis of stress proteins revealed that 37 polypeptides were amplified. Two of these are DnaK and GroEL. The combined results show that bile salts and alkaline stress responses are closely related. PMID:9023964

  17. Intra-plastid protein trafficking; how plant cells adapted prokaryotic mechanisms to the eukaryotic condition

    PubMed Central

    Celedon, Jose M.; Cline, Kenneth

    2012-01-01

    Protein trafficking and localization in plastids involves a complex interplay between ancient (prokaryotic) and novel (eukaryotic) translocases and targeting machineries. During evolution, ancient systems acquired new functions and novel translocation machineries were developed to facilitate the correct localization of nuclear encoded proteins targeted to the chloroplast. Because of its post-translational nature, targeting and integration of membrane proteins posed the biggest challenge to the organelle to avoid aggregation in the aqueous compartments. Soluble proteins faced a different kind of problem since some had to be transported across three membranes to reach their destination. Early studies suggested that chloroplasts addressed these issues by adapting ancient-prokaryotic machineries and integrating them with novel-eukaryotic systems, a process called ‘conservative sorting’. In the last decade, detailed biochemical, genetic, and structural studies have unraveled the mechanisms of protein targeting and localization in chloroplasts, suggesting a highly integrated scheme where ancient and novel systems collaborate at different stages of the process. In this review we focus on the differences and similarities between chloroplast ancestral translocases and their prokaryotic relatives to highlight known modifications that adapted them to the eukaryotic situation. PMID:22750312

  18. Shared and Unique Proteins in Human, Mouse and Rat Saliva Proteomes: Footprints of Functional Adaptation

    PubMed Central

    Karn, Robert C.; Chung, Amanda G.; Laukaitis, Christina M.

    2013-01-01

    The overall goal of our study was to compare the proteins found in the saliva proteomes of three mammals: human, mouse and rat. Our first objective was to compare two human proteomes with very different analysis depths. The 89 shared proteins in this comparison apparently represent a core of highly-expressed human salivary proteins. Of the proteins unique to each proteome, one-half to 2/3 lack signal peptides and probably are contaminants instead of less highly-represented salivary proteins. We recently published the first rodent saliva proteomes with saliva collected from the genome mouse (C57BL/6) and the genome rat (BN/SsNHsd/Mcwi). Our second objective was to compare the proteins in the human proteome with those we identified in the genome mouse and rat to determine those common to all three mammals, as well as the specialized rodent subset. We also identified proteins unique to each of the three mammals, because differences in the secreted protein constitutions can provide clues to differences in the evolutionary adaptation of the secretions in the three different mammals. PMID:24926433

  19. A General, Adaptive, Roadmap-Based Algorithm for Protein Motion Computation.

    PubMed

    Molloy, Kevin; Shehu, Amarda

    2016-03-01

    Precious information on protein function can be extracted from a detailed characterization of protein equilibrium dynamics. This remains elusive in wet and dry laboratories, as function-modulating transitions of a protein between functionally-relevant, thermodynamically-stable and meta-stable structural states often span disparate time scales. In this paper we propose a novel, robotics-inspired algorithm that circumvents time-scale challenges by drawing analogies between protein motion and robot motion. The algorithm adapts the popular roadmap-based framework in robot motion computation to handle the more complex protein conformation space and its underlying rugged energy surface. Given known structures representing stable and meta-stable states of a protein, the algorithm yields a time- and energy-prioritized list of transition paths between the structures, with each path represented as a series of conformations. The algorithm balances computational resources between a global search aimed at obtaining a global view of the network of protein conformations and their connectivity and a detailed local search focused on realizing such connections with physically-realistic models. Promising results are presented on a variety of proteins that demonstrate the general utility of the algorithm and its capability to improve the state of the art without employing system-specific insight.

  20. Comparative Proteomics of Mouse Tears and Saliva: Evidence from Large Protein Families for Functional Adaptation

    PubMed Central

    Karn, Robert C.; Laukaitis, Christina M.

    2015-01-01

    We produced a tear proteome of the genome mouse, C57BL/6, that contained 139 different protein identifications: 110 from a two-dimensional (2D) gel with subsequent trypsin digestion, 19 from a one-dimensional (1D) gel with subsequent trypsin digestion and ten from a 1D gel with subsequent Asp-N digestion. We compared this tear proteome with a C57BL/6 mouse saliva proteome produced previously. Sixteen of the 139 tear proteins are shared between the two proteomes, including six proteins that combat microbial growth. Among the 123 other tear proteins, were members of four large protein families that have no counterparts in humans: Androgen-binding proteins (ABPs) with different members expressed in the two proteomes, Exocrine secreted peptides (ESPs) expressed exclusively in the tear proteome, major urinary proteins (MUPs) expressed in one or both proteomes and the mouse-specific Kallikreins (subfamily b KLKs) expressed exclusively in the saliva proteome. All four families have members with suggested roles in mouse communication, which may influence some aspect of reproductive behavior. We discuss this in the context of functional adaptation involving tear and saliva proteins in the secretions of mouse lacrimal and salivary glands, respectively.

  1. Electrophoresis and spectrometric analyses of adaptation-related proteins in thermally stressed Chromobacterium violaceum.

    PubMed

    Cordeiro, I B; Castro, D P; Nogueira, P P O; Angelo, P C S; Nogueira, P A; Gonçalves, J F C; Pereira, A M R F; Garcia, J S; Souza, G H M F; Arruda, M A Z; Eberlin, M N; Astolfi-Filho, S; Andrade, E V; López-Lozano, J L

    2013-10-29

    Chromobacterium violaceum is a Gram-negative proteobacteria found in water and soil; it is widely distributed in tropical and subtropical regions, such as the Amazon rainforest. We examined protein expression changes that occur in C. violaceum at different growth temperatures using electrophoresis and mass spectrometry. The total number of spots detected was 1985; the number ranged from 99 to 380 in each assay. The proteins that were identified spectrometrically were categorized as chaperones, proteins expressed exclusively under heat stress, enzymes involved in the respiratory and fermentation cycles, ribosomal proteins, and proteins related to transport and secretion. Controlling inverted repeat of chaperone expression and inverted repeat DNA binding sequences, as well as regions recognized by sigma factor 32, elements involved in the genetic regulation of the bacterial stress response, were identified in the promoter regions of several of the genes coding proteins, involved in the C. violaceum stress response. We found that 30 °C is the optimal growth temperature for C. violaceum, whereas 25, 35, and 40 °C are stressful temperatures that trigger the expression of chaperones, superoxide dismutase, a probable small heat shock protein, a probable phasing, ferrichrome-iron receptor protein, elongation factor P, and an ornithine carbamoyltransferase catabolite. This information improves our comprehension of the mechanisms involved in stress adaptation by C. violaceum.

  2. The Role of Semidisorder in Temperature Adaptation of Bacterial FlgM Proteins

    PubMed Central

    Wang, Jihua; Yang, Yuedong; Cao, Zanxia; Li, Zhixiu; Zhao, Huiying; Zhou, Yaoqi

    2013-01-01

    Probabilities of disorder for FlgM proteins of 39 species whose optimal growth temperature ranges from 273 K (0°C) to 368 K (95°C) were predicted by a newly developed method called Sequence-based Prediction with Integrated NEural networks for Disorder (SPINE-D). We showed that the temperature-dependent behavior of FlgM proteins could be separated into two subgroups according to their sequence lengths. Only shorter sequences evolved to adapt to high temperatures (>318 K or 45°C). Their ability to adapt to high temperatures was achieved through a transition from a fully disordered state with little secondary structure to a semidisordered state with high predicted helical probability at the N-terminal region. The predicted results are consistent with available experimental data. An analysis of all orthologous protein families in 39 species suggests that such a transition from a fully disordered state to semidisordered and/or ordered states is one of the strategies employed by nature for adaptation to high temperatures. PMID:24314090

  3. [Quasi-adaptive response to alkylating agents in Escherichia coli and Ada-protein functions].

    PubMed

    Vasil'eva, S V; Moshkovskaia, E Iu; Terekhov, A S; Mikoian, V D; Vanin, A F

    2008-01-01

    In 2005 we have described in exponentially growing E. coli cells a new fundamental genetic phenomenon,--quasi-adaptive response to alkylating compounds (quasi-Ada). Phenotypic expression of quasi-Ada is similar to the true Ada response. However, in contrast to the letter, it develops in the course of pretreatment of the cells by a sublethal dose of nonalkylating agent, an NO-containing dinitrosyl iron complex with glutathione (DNICglu). To reveal the mechanisms of quasi-adaptation and its association with the function of the Ada regulatory protein, here we used a unique property of dual gene expression regulation of aidB1 gene, a part of the Ada-regulon, namely its relative independence from Ada protein in anaerobic conditions. Based on the results of aidB1 gene expression analysis an EPR spectra of E. coli MV2176 cells (aidB1::lacZ) in aerobic and anaerobic conditions after the corresponding treatments, we conclude that the function and the spatial structure of meAda and [(Cys-)2Fe+(NO+)2]Ada are identical and thus the nitrosylated protein represents a regulator of the Ada regulon gene expression during quasi-adaptation development.

  4. Kinetic Stability of Proteins in Beans and Peas: Implications for Protein Digestibility, Seed Germination, and Plant Adaptation.

    PubMed

    Xia, Ke; Pittelli, Sandy; Church, Jennifer; Colón, Wilfredo

    2016-10-12

    Kinetically stable proteins (KSPs) are resistant to the denaturing detergent sodium dodecyl sulfate (SDS). Such resilience makes KSPs resistant to proteolytic degradation and may have arisen in nature as a mechanism for organismal adaptation and survival against harsh conditions. Legumes are well-known for possessing degradation-resistant proteins that often diminish their nutritional value. Here we applied diagonal two-dimensional (D2D) SDS-polyacrylamide gel electrophoresis (PAGE), a method that allows for the proteomics-level identification of KSPs, to a group of 12 legumes (mostly beans and peas) of agricultural and nutritional importance. Our proteomics results show beans that are more difficult to digest, such as soybean, lima beans, and various common beans, have high contents of KSPs. In contrast, mung bean, red lentil, and various peas that are highly digestible contain low amounts of KSPs. Identified proteins with high kinetic stability are associated with warm-season beans, which germinate at higher temperatures. In contrast, peas and red lentil, which are cool-season legumes, contain low levels of KSPs. Thus, our results show protein kinetic stability is an important factor in the digestibility of legume proteins and may relate to nutrition efficiency, timing of seed germination, and legume resistance to biotic stressors. Furthermore, we show D2D SDS-PAGE is a powerful method that could be applied for determining the abundance and identity of KSPs in engineered and wild legumes and for advancing basic research and associated applications.

  5. The role of two F-box proteins, SLEEPY1 and SNEEZY, in arabidopsis GA signaling

    USDA-ARS?s Scientific Manuscript database

    The F-box gene SLY1 is a positive regulator of gibberellin (GA) signaling and loss of SLY1 results in GA-insensitive phenotypes including dwarfism, reduced fertility, delayed flowering, and increased seed dormancy. These sly1 phenotypes can be partially rescued by overexpression of the SLY1 homolog...

  6. The adaptive response of protein turnover to the energetic demands of reproduction in a cephalopod.

    PubMed

    Moltschaniwskyj, N A; Carter, C G

    2013-01-01

    Sourcing energy for reproduction is a major driver of the life-history characteristics of animals. Unlike other molluscs, cephalopods do not appear to have significant glycogen stores, and energy is either sourced directly from ingested food or mobilized from protein stores in the muscle. Given the importance of protein to cephalopods, this study quantified changes in protein turnover in the muscle tissue in reproductively immature and maturing/mature individuals. Quantifying protein accretion and protein synthesis allowed an assessment of protein turnover in immature and maturing individuals of the southern dumpling squid (Euprymna tasmanica), which has fast nonasymptotic growth, has a short generation time, and does not use lipid stores. This study found that protein turnover slowed in the mantle muscle tissue with gonad growth, suggesting an adaptive response to the energy demands associated with reproduction but one that allows for continued somatic growth and muscle function in these animals. However, the cost of reproduction may be indirect, with less energy available for somatic repair, and therefore may be responsible for the rapid senescence typical of many cephalopod species.

  7. Feedback Control of Snf1 Protein and Its Phosphorylation Is Necessary for Adaptation to Environmental Stress.

    PubMed

    Hsu, Hsiang-En; Liu, Tzu-Ning; Yeh, Chung-Shu; Chang, Tien-Hsien; Lo, Yi-Chen; Kao, Cheng-Fu

    2015-07-03

    Snf1, a member of the AMP-activated protein kinase family, plays a critical role in metabolic energy control in yeast cells. Snf1 activity is activated by phosphorylation of Thr-210 on the activation loop of its catalytic subunit; following activation, Snf1 regulates stress-responsive transcription factors. Here, we report that the level of Snf1 protein is dramatically decreased in a UBP8- and UBP10-deleted yeast mutant (ubp8Δ ubp10Δ), and this is independent of transcriptional regulation and proteasome-mediated degradation. Surprisingly, most Snf1-mediated functions, including glucose limitation regulation, utilization of alternative carbon sources, stress responses, and aging, are unaffected in this strain. Snf1 phosphorylation in ubp8Δ ubp10Δ cells is hyperactivated upon stress, which may compensate for the loss of the Snf1 protein and protect cells against stress and aging. Furthermore, artificial elevation of Snf1 phosphorylation (accomplished through deletion of REG1, which encodes a protein that regulates Snf1 dephosphorylation) restored Snf1 protein levels and the regulation of Snf1 activity in ubp8Δ ubp10Δ cells. Our results reveal the existence of a feedback loop that controls Snf1 protein level and its phosphorylation, which is masked by Ubp8 and Ubp10 through an unknown mechanism. We propose that this dynamic modulation of Snf1 phosphorylation and its protein level may be important for adaptation to environmental stress. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Median Modified Wiener Filter for nonlinear adaptive spatial denoising of protein NMR multidimensional spectra.

    PubMed

    Cannistraci, Carlo Vittorio; Abbas, Ahmed; Gao, Xin

    2015-01-26

    Denoising multidimensional NMR-spectra is a fundamental step in NMR protein structure determination. The state-of-the-art method uses wavelet-denoising, which may suffer when applied to non-stationary signals affected by Gaussian-white-noise mixed with strong impulsive artifacts, like those in multi-dimensional NMR-spectra. Regrettably, Wavelet's performance depends on a combinatorial search of wavelet shapes and parameters; and multi-dimensional extension of wavelet-denoising is highly non-trivial, which hampers its application to multidimensional NMR-spectra. Here, we endorse a diverse philosophy of denoising NMR-spectra: less is more! We consider spatial filters that have only one parameter to tune: the window-size. We propose, for the first time, the 3D extension of the median-modified-Wiener-filter (MMWF), an adaptive variant of the median-filter, and also its novel variation named MMWF*. We test the proposed filters and the Wiener-filter, an adaptive variant of the mean-filter, on a benchmark set that contains 16 two-dimensional and three-dimensional NMR-spectra extracted from eight proteins. Our results demonstrate that the adaptive spatial filters significantly outperform their non-adaptive versions. The performance of the new MMWF* on 2D/3D-spectra is even better than wavelet-denoising. Noticeably, MMWF* produces stable high performance almost invariant for diverse window-size settings: this signifies a consistent advantage in the implementation of automatic pipelines for protein NMR-spectra analysis.

  9. Emergence of tissue sensitivity to Hox protein levels underlies the evolution of an adaptive morphological trait.

    PubMed

    Refki, Peter Nagui; Armisén, David; Crumière, Antonin Jean Johan; Viala, Séverine; Khila, Abderrahman

    2014-08-15

    Growth control scales morphological attributes and, therefore, provides a critical contribution to the evolution of adaptive traits. Yet, the genetic mechanisms underlying growth in the context of specific ecological adaptations are poorly understood. In water striders, adaptation to locomotion on the water surface is associated with allometric and functional changes in thoracic appendages, such that T2-legs, used as propelling oars, are longer than T3-legs, used as steering rudders. The Hox gene Ubx establishes this derived morphology by elongating T2-legs but shortening T3-legs. Using gene expression assays, RNAi knockdown, and comparative transcriptomics, we demonstrate that the evolution of water surface rowing as a novel means of locomotion is associated with the evolution of a dose-dependent promoting-repressing effect of Ubx on leg growth. In the water strider Limnoporus dissortis, T3-legs express six to seven times higher levels of Ubx compared to T2-legs. Ubx RNAi shortens T2-legs and the severity of this phenotype increases with increased depletion of Ubx protein. Conversely, Ubx RNAi lengthens T3-legs but this phenotype is partially rescued when Ubx protein is further depleted. This dose-dependent effect of Ubx on leg growth is absent in non-rowing relatives that retain the ancestral relative leg length. We also show that the spatial patterns of expression of dpp, wg, hh, egfr, dll, exd, hth, and dac are unchanged in Ubx RNAi treatments. This indicates that the dose-dependent opposite effect of Ubx on T2- and T3-legs operates without any apparent effect on the spatial expression of major leg patterning genes. Our data suggest that scaling of adaptive allometries can evolve through changes in the levels of expression of Hox proteins early during ontogeny, and in the sensitivity of the tissues that express them, without any major effects on pattern formation. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Emergence of tissue sensitivity to Hox protein levels underlies the evolution of an adaptive morphological trait

    PubMed Central

    Refki, Peter Nagui; Armisén, David; Crumière, Antonin Jean Johan; Viala, Séverine; Khila, Abderrahman

    2014-01-01

    Growth control scales morphological attributes and, therefore, provides a critical contribution to the evolution of adaptive traits. Yet, the genetic mechanisms underlying growth in the context of specific ecological adaptations are poorly understood. In water striders, adaptation to locomotion on the water surface is associated with allometric and functional changes in thoracic appendages, such that T2-legs, used as propelling oars, are longer than T3-legs, used as steering rudders. The Hox gene Ubx establishes this derived morphology by elongating T2-legs but shortening T3-legs. Using gene expression assays, RNAi knockdown, and comparative transcriptomics, we demonstrate that the evolution of water surface rowing as a novel means of locomotion is associated with the evolution of a dose-dependent promoting-repressing effect of Ubx on leg growth. In the water strider Limnoporus dissortis, T3-legs express six to seven times higher levels of Ubx compared to T2-legs. Ubx RNAi shortens T2-legs and the severity of this phenotype increases with increased depletion of Ubx protein. Conversely, Ubx RNAi lengthens T3-legs but this phenotype is partially rescued when Ubx protein is further depleted. This dose-dependent effect of Ubx on leg growth is absent in non-rowing relatives that retain the ancestral relative leg length. We also show that the spatial patterns of expression of dpp, wg, hh, egfr, dll, exd, hth, and dac are unchanged in Ubx RNAi treatments. This indicates that the dose-dependent opposite effect of Ubx on T2- and T3-legs operates without any apparent effect on the spatial expression of major leg patterning genes. Our data suggest that scaling of adaptive allometries can evolve through changes in the levels of expression of Hox proteins early during ontogeny, and in the sensitivity of the tissues that express them, without any major effects on pattern formation. PMID:24886828

  11. Median Modified Wiener Filter for nonlinear adaptive spatial denoising of protein NMR multidimensional spectra

    PubMed Central

    Cannistraci, Carlo Vittorio; Abbas, Ahmed; Gao, Xin

    2015-01-01

    Denoising multidimensional NMR-spectra is a fundamental step in NMR protein structure determination. The state-of-the-art method uses wavelet-denoising, which may suffer when applied to non-stationary signals affected by Gaussian-white-noise mixed with strong impulsive artifacts, like those in multi-dimensional NMR-spectra. Regrettably, Wavelet's performance depends on a combinatorial search of wavelet shapes and parameters; and multi-dimensional extension of wavelet-denoising is highly non-trivial, which hampers its application to multidimensional NMR-spectra. Here, we endorse a diverse philosophy of denoising NMR-spectra: less is more! We consider spatial filters that have only one parameter to tune: the window-size. We propose, for the first time, the 3D extension of the median-modified-Wiener-filter (MMWF), an adaptive variant of the median-filter, and also its novel variation named MMWF*. We test the proposed filters and the Wiener-filter, an adaptive variant of the mean-filter, on a benchmark set that contains 16 two-dimensional and three-dimensional NMR-spectra extracted from eight proteins. Our results demonstrate that the adaptive spatial filters significantly outperform their non-adaptive versions. The performance of the new MMWF* on 2D/3D-spectra is even better than wavelet-denoising. Noticeably, MMWF* produces stable high performance almost invariant for diverse window-size settings: this signifies a consistent advantage in the implementation of automatic pipelines for protein NMR-spectra analysis. PMID:25619991

  12. Heat shock proteins and exercise adaptations. Our knowledge thus far and the road still ahead.

    PubMed

    Henstridge, Darren C; Febbraio, Mark A; Hargreaves, Mark

    2016-03-15

    By its very nature, exercise exerts a challenge to the body's cellular homeostatic mechanisms. This homeostatic challenge affects not only the contracting skeletal muscle but also a number of other organs and results over time in exercise-induced adaptations. Thus it is no surprise that heat shock proteins (HSPs), a group of ancient and highly conserved cytoprotective proteins critical in the maintenance of protein and cellular homeostasis, have been implicated in exercise/activity-induced adaptations. It has become evident that HSPs such as HSP72 are induced or activated with acute exercise or after chronic exercise training regimens. These observations have given scientists an insight into the protective mechanisms of these proteins and provided an opportunity to exploit their protective role to improve health and physical performance. Although our knowledge in this area of physiology has improved dramatically, many questions still remain unanswered. Further understanding of the role of HSPs in exercise physiology may prove beneficial for therapeutic targeting in diseased patient cohorts, exercise prescription for disease prevention, and training strategies for elite athletes.

  13. Adaptive Evolution of Eel Fluorescent Proteins from Fatty Acid Binding Proteins Produces Bright Fluorescence in the Marine Environment

    PubMed Central

    Gruber, David F.; Gaffney, Jean P.; Mehr, Shaadi; DeSalle, Rob; Sparks, John S.; Platisa, Jelena; Pieribone, Vincent A.

    2015-01-01

    We report the identification and characterization of two new members of a family of bilirubin-inducible fluorescent proteins (FPs) from marine chlopsid eels and demonstrate a key region of the sequence that serves as an evolutionary switch from non-fluorescent to fluorescent fatty acid-binding proteins (FABPs). Using transcriptomic analysis of two species of brightly fluorescent Kaupichthys eels (Kaupichthys hyoproroides and Kaupichthys n. sp.), two new FPs were identified, cloned and characterized (Chlopsid FP I and Chlopsid FP II). We then performed phylogenetic analysis on 210 FABPs, spanning 16 vertebrate orders, and including 163 vertebrate taxa. We show that the fluorescent FPs diverged as a protein family and are the sister group to brain FABPs. Our results indicate that the evolution of this family involved at least three gene duplication events. We show that fluorescent FABPs possess a unique, conserved tripeptide Gly-Pro-Pro sequence motif, which is not found in non-fluorescent fatty acid binding proteins. This motif arose from a duplication event of the FABP brain isoforms and was under strong purifying selection, leading to the classification of this new FP family. Residues adjacent to the motif are under strong positive selection, suggesting a further refinement of the eel protein’s fluorescent properties. We present a phylogenetic reconstruction of this emerging FP family and describe additional fluorescent FABP members from groups of distantly related eels. The elucidation of this class of fish FPs with diverse properties provides new templates for the development of protein-based fluorescent tools. The evolutionary adaptation from fatty acid-binding proteins to fluorescent fatty acid-binding proteins raises intrigue as to the functional role of bright green fluorescence in this cryptic genus of reclusive eels that inhabit a blue, nearly monochromatic, marine environment. PMID:26561348

  14. Elevated expression of surfactant proteins in newborn rats during adaptation to hyperoxia.

    PubMed

    White, C W; Greene, K E; Allen, C B; Shannon, J M

    2001-07-01

    The mechanisms whereby lung adaptation to hyperoxia occurs in the newborn period are incompletely understood. Pulmonary surfactant has been implicated in lung protection against hyperoxic injury, and elevated expression of certain surfactant proteins occurs in lungs of adult rats during adaptation to sublethal oxygen (85% O(2)). Here we report that newborn rats, which can adapt to even higher levels of hyperoxia (100% O(2)) than do adult rats, manifest changes in the lung surfactant proteins (SP), especially SP-A and SP-D. In newborn rats exposed to hyperoxia on Days 3 through 10 of life, lung messenger RNAs (mRNAs) for SP-A and SP-B gradually and progressively increased, relative to levels in age-matched, air-exposed newborns, over this 8-d period. By contrast, SP-C and SP-D mRNAs were maximally increased relative to values in simultaneously air-exposed control rats after 4 d of exposure. Lung mRNA for CC-10, a protein specific for Clara cells, was greater in hyperoxia-exposed rats than in air-exposed control rats on Day 4 of exposure, but not on other days. Lung mRNA for thyroid transcription factor (TTF)-1 was marginally increased on Days 1, 2, 4, and 6, and significantly increased on Day 8. Both SP-A and SP-D proteins were increased in lung lavage samples taken from hyperoxia-exposed newborns, relative to those taken from air-exposed controls, with the greatest increases occurring on Days 6 and 8 of exposure. However, the patterns of increase of the proteins were not identical to those of the respective mRNAs. In situ hybridization studies demonstrated increases in SP-D, and to a lesser extent in SP-A, in peripheral lung tissues from oxygen-exposed newborns. Taken together, these data indicate that specific surfactant proteins are upregulated at both the pretranslational and post-translational levels in distal lung epithelium during adaptation to hyperoxia in the newborn rat.

  15. High protein flexibility and reduced hydration water dynamics are key pressure adaptive strategies in prokaryotes

    NASA Astrophysics Data System (ADS)

    Martinez, N.; Michoud, G.; Cario, A.; Ollivier, J.; Franzetti, B.; Jebbar, M.; Oger, P.; Peters, J.

    2016-09-01

    Water and protein dynamics on a nanometer scale were measured by quasi-elastic neutron scattering in the piezophile archaeon Thermococcus barophilus and the closely related pressure-sensitive Thermococcus kodakarensis, at 0.1 and 40 MPa. We show that cells of the pressure sensitive organism exhibit higher intrinsic stability. Both the hydration water dynamics and the fast protein and lipid dynamics are reduced under pressure. In contrast, the proteome of T. barophilus is more pressure sensitive than that of T. kodakarensis. The diffusion coefficient of hydration water is reduced, while the fast protein and lipid dynamics are slightly enhanced with increasing pressure. These findings show that the coupling between hydration water and cellular constituents might not be simply a master-slave relationship. We propose that the high flexibility of the T. barophilus proteome associated with reduced hydration water may be the keys to the molecular adaptation of the cells to high hydrostatic pressure.

  16. High protein flexibility and reduced hydration water dynamics are key pressure adaptive strategies in prokaryotes

    PubMed Central

    Martinez, N.; Michoud, G.; Cario, A.; Ollivier, J.; Franzetti, B.; Jebbar, M.; Oger, P.; Peters, J.

    2016-01-01

    Water and protein dynamics on a nanometer scale were measured by quasi-elastic neutron scattering in the piezophile archaeon Thermococcus barophilus and the closely related pressure-sensitive Thermococcus kodakarensis, at 0.1 and 40 MPa. We show that cells of the pressure sensitive organism exhibit higher intrinsic stability. Both the hydration water dynamics and the fast protein and lipid dynamics are reduced under pressure. In contrast, the proteome of T. barophilus is more pressure sensitive than that of T. kodakarensis. The diffusion coefficient of hydration water is reduced, while the fast protein and lipid dynamics are slightly enhanced with increasing pressure. These findings show that the coupling between hydration water and cellular constituents might not be simply a master-slave relationship. We propose that the high flexibility of the T. barophilus proteome associated with reduced hydration water may be the keys to the molecular adaptation of the cells to high hydrostatic pressure. PMID:27595789

  17. Neandertals' large lower thorax may represent adaptation to high protein diet.

    PubMed

    Ben-Dor, Miki; Gopher, Avi; Barkai, Ran

    2016-07-01

    Humans are limited in their capacity to convert protein into energy. We present a hypothesis that a "bell" shaped thorax and a wide pelvis evolved in Neandertals, at least in part, as an adaptation to a high protein diet. A high protein diet created a need to house an enlarged liver and urinary system in a wider lower trunk. To test the hypothesis, we applied a model developed to identify points of nutritional stress. A ratio of obligatory dietary fat to total animal fat and protein sourced calories is calculated based on various known and estimated parameters. Stress is identified when the obligatory dietary fat ratio is higher than fat content ratios in available prey. The model predicts that during glacial winters, when carbohydrates weren't available, 74%-85% of Neandertals' caloric intake would have had to come from animal fat. Large animals contain around 50% fat calories, and their fat content is diminished during winter, so a significant stressful dietary fat deficit was identified by the model. This deficit could potentially be ameliorated by an increased capability to convert protein into energy. Given that high protein consumption is associated with larger liver and kidneys in animal models, it appears likely that the enlarged inferior section of the Neandertals thorax and possibly, in part, also his wide pelvis, represented an adaptation to provide encasement for those enlarged organs. Behavioral and evolutionary implications of the hypothesis are also discussed. Am J Phys Anthropol 160:367-378, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. Homeodomain Protein Otp and Activity-Dependent Splicing Modulate Neuronal Adaptation to Stress

    PubMed Central

    Amir-Zilberstein, Liat; Blechman, Janna; Sztainberg, Yehezkel; Norton, William H.J.; Reuveny, Adriana; Borodovsky, Nataliya; Tahor, Maayan; Bonkowsky, Joshua L.; Bally-Cuif, Laure; Chen, Alon; Levkowitz, Gil

    2015-01-01

    SUMMARY Regulation of corticotropin-releasing hormone (CRH) activity is critical for the animal’s adaptation to stressful challenges, and its dysregulation is associated with psychiatric disorders in humans. However, the molecular mechanism underlying this transcriptional response to stress is not well understood. Using various stress paradigms in mouse and zebrafish, we show that the hypothalamic transcription factor Orthopedia modulates the expression of CRH as well as the splicing factor Ataxin 2-Binding Protein-1 (A2BP1/Rbfox-1). We further show that the G protein coupled receptor PAC1, which is a known A2BP1/Rbfox-1 splicing target and an important mediator of CRH activity, is alternatively spliced in response to a stressful challenge. The generation of PAC1-hop messenger RNA isoform by alternative splicing is required for termination of CRH transcription, normal activation of the hypothalamic-pituitary-adrenal axis and adaptive anxiety-like behavior. Our study identifies an evolutionarily conserved biochemical pathway that modulates the neuronal adaptation to stress through transcriptional activation and alternative splicing. PMID:22284183

  19. Temperature adaptation at homologous sites in proteins from nine thermophile-mesophile species pairs.

    PubMed

    McDonald, John H

    2010-07-12

    Whether particular amino acids are favored by selection at high temperatures over others has long been an open question in protein evolution. One way to approach this question is to compare homologous sites in proteins from one thermophile and a closely related mesophile; asymmetrical substitution patterns have been taken as evidence for selection favoring certain amino acids over others. However, most pairs of prokaryotic species that differ in optimum temperature also differ in genome-wide GC content, and amino acid content is known to be associated with GC content. Here, I compare homologous sites in nine thermophilic prokaryotes and their mesophilic relatives, all with complete published genome sequences. After adjusting for the effects of differing GC content with logistic regression, 139 of the 190 pairs of amino acids show significant substitutional asymmetry, evidence of widespread adaptive amino acid substitution. The patterns are fairly consistent across the nine pairs of species (after taking the effects of differing GC content into account), suggesting that much of the asymmetry results from adaptation to temperature. Some amino acids in some species pairs deviate from the overall pattern in ways indicating that adaptation to other environmental or physiological differences between the species may also play a role. The property that is best correlated with the patterns of substitutional asymmetry is transfer free energy, a measure of hydrophobicity, with more hydrophobic amino acids favored at higher temperatures. The correlation of asymmetry and hydrophobicity is fairly weak, suggesting that other properties may also be important.

  20. Transient gene expression: recombinant protein production with suspension-adapted HEK293-EBNA cells.

    PubMed

    Meissner, P; Pick, H; Kulangara, A; Chatellard, P; Friedrich, K; Wurm, F M

    2001-10-20

    Transient gene expression (TGE) in mammalian cells at the reactor scale is becoming increasingly important for the rapid production of recombinant proteins. We improved a process for transient calcium phosphate-based transfection of HEK293-EBNA cells in a 1-3 L bioreactor volume. Cells were adapted to suspension culture using a commercially available medium (BioWhittaker, Walkersville, MD). Process parameters were optimized using a plasmid reporter vector encoding the enhanced green fluorescent protein (EGFP/CLONTECH, Palo Alto, CA, USA). Using GFP as a marker-protein, we observed by microscopic examination transfection efficiencies between 70-100%. Three different recombinant proteins were synthesized within a timeframe of 7 days from time of transfection to harvest. The first, a human recombinant IgG(1)-type antibody, was secreted into the supernatant of the cell culture and achieved a final concentration of >20 mg/L. An E. coli-derived DNA-binding protein remained intracellular, as expected, but accumulated to such a concentration that the lysate of cells, taken up into the entire culture volume, gave a concentration of 18 mg/L. The third protein, a transmembrane receptor, was expressed at 3-6 x 10(6) molecules/cell.

  1. Substrate adaptabilities of Thermotogae mannan binding proteins as a function of their evolutionary histories.

    PubMed

    Boucher, Nathalie; Noll, Kenneth M

    2016-09-01

    The Thermotogae possess a large number of ATP-binding cassette (ABC) transporters, including two mannan binding proteins, ManD and CelE (previously called ManE). We show that a gene encoding an ancestor of these was acquired by the Thermotogae from the archaea followed by gene duplication. To address the functional evolution of these proteins as a consequence of their evolutionary histories, we measured the binding affinities of ManD and CelE orthologs from representative Thermotogae. Both proteins bind cellobiose, cellotriose, cellotetraose, β-1,4-mannotriose, and β-1,4-mannotetraose. The CelE orthologs additionally bind β-1,4-mannobiose, laminaribiose, laminaritriose and sophorose while the ManD orthologs additionally only weakly bind β-1,4-mannobiose. The CelE orthologs have higher unfolding temperatures than the ManD orthologs. An examination of codon sites under positive selection revealed that many of these encode residues located near or in the binding site, suggesting that the proteins experienced selective pressures in regions that might have changed their functions. The gene arrangement, phylogeny, binding properties, and putative regulatory networks suggest that the ancestral mannan binding protein was a CelE ortholog which gave rise to the ManD orthologs. This study provides a window on how one class of proteins adapted to new functions and temperatures to fit the physiologies of their new hosts.

  2. Massively parallel sampling of lattice proteins reveals foundations of thermal adaptation

    NASA Astrophysics Data System (ADS)

    Venev, Sergey V.; Zeldovich, Konstantin B.

    2015-08-01

    Evolution of proteins in bacteria and archaea living in different conditions leads to significant correlations between amino acid usage and environmental temperature. The origins of these correlations are poorly understood, and an important question of protein theory, physics-based prediction of types of amino acids overrepresented in highly thermostable proteins, remains largely unsolved. Here, we extend the random energy model of protein folding by weighting the interaction energies of amino acids by their frequencies in protein sequences and predict the energy gap of proteins designed to fold well at elevated temperatures. To test the model, we present a novel scalable algorithm for simultaneous energy calculation for many sequences in many structures, targeting massively parallel computing architectures such as graphics processing unit. The energy calculation is performed by multiplying two matrices, one representing the complete set of sequences, and the other describing the contact maps of all structural templates. An implementation of the algorithm for the CUDA platform is available at http://www.github.com/kzeldovich/galeprot and calculates protein folding energies over 250 times faster than a single central processing unit. Analysis of amino acid usage in 64-mer cubic lattice proteins designed to fold well at different temperatures demonstrates an excellent agreement between theoretical and simulated values of energy gap. The theoretical predictions of temperature trends of amino acid frequencies are significantly correlated with bioinformatics data on 191 bacteria and archaea, and highlight protein folding constraints as a fundamental selection pressure during thermal adaptation in biological evolution.

  3. The effects of whey protein with or without carbohydrates on resistance training adaptations.

    PubMed

    Hulmi, Juha J; Laakso, Mia; Mero, Antti A; Häkkinen, Keijo; Ahtiainen, Juha P; Peltonen, Heikki

    2015-01-01

    Nutrition intake in the context of a resistance training (RT) bout may affect body composition and muscle strength. However, the individual and combined effects of whey protein and carbohydrates on long-term resistance training adaptations are poorly understood. A four-week preparatory RT period was conducted in previously untrained males to standardize the training background of the subjects. Thereafter, the subjects were randomized into three groups: 30 g of whey proteins (n = 22), isocaloric carbohydrates (maltodextrin, n = 21), or protein + carbohydrates (n = 25). Within these groups, the subjects were further randomized into two whole-body 12-week RT regimens aiming either for muscle hypertrophy and maximal strength or muscle strength, hypertrophy and power. The post-exercise drink was always ingested immediately after the exercise bout, 2-3 times per week depending on the training period. Body composition (by DXA), quadriceps femoris muscle cross-sectional area (by panoramic ultrasound), maximal strength (by dynamic and isometric leg press) and serum lipids as basic markers of cardiovascular health, were analysed before and after the intervention. Twelve-week RT led to increased fat-free mass, muscle size and strength independent of post-exercise nutrient intake (P < 0.05). However, the whey protein group reduced more total and abdominal area fat when compared to the carbohydrate group independent of the type of RT (P < 0.05). Thus, a larger relative increase (per kg bodyweight) in fat-free mass was observed in the protein vs. carbohydrate group (P < 0.05) without significant differences to the combined group. No systematic effects of the interventions were found for serum lipids. The RT type did not have an effect on the adaptations in response to different supplementation paradigms. Post-exercise supplementation with whey proteins when compared to carbohydrates or combination of proteins and carbohydrates did not have a major

  4. Domain requirements for the Dock adapter protein in growth- cone signaling.

    PubMed

    Rao, Y; Zipursky, S L

    1998-03-03

    Tyrosine phosphorylation has been implicated in growth-cone guidance through genetic, biochemical, and pharmacological studies. Adapter proteins containing src homology 2 (SH2) domains and src homology 3 (SH3) domains provide a means of linking guidance signaling through phosphotyrosine to downstream effectors regulating growth-cone motility. The Drosophila adapter, Dreadlocks (Dock), the homolog of mammalian Nck containing three N-terminal SH3 domains and a single SH2 domain, is highly specialized for growth-cone guidance. In this paper, we demonstrate that Dock can couple signals in either an SH2-dependent or an SH2-independent fashion in photoreceptor (R cell) growth cones, and that Dock displays different domain requirements in different neurons.

  5. Domain requirements for the Dock adapter protein in growth- cone signaling

    PubMed Central

    Rao, Yong; Zipursky, S. Lawrence

    1998-01-01

    Tyrosine phosphorylation has been implicated in growth-cone guidance through genetic, biochemical, and pharmacological studies. Adapter proteins containing src homology 2 (SH2) domains and src homology 3 (SH3) domains provide a means of linking guidance signaling through phosphotyrosine to downstream effectors regulating growth-cone motility. The Drosophila adapter, Dreadlocks (Dock), the homolog of mammalian Nck containing three N-terminal SH3 domains and a single SH2 domain, is highly specialized for growth-cone guidance. In this paper, we demonstrate that Dock can couple signals in either an SH2-dependent or an SH2-independent fashion in photoreceptor (R cell) growth cones, and that Dock displays different domain requirements in different neurons. PMID:9482841

  6. Unfolding Thermodynamics of Cysteine-Rich Proteins and Molecular Thermal-Adaptation of Marine Ciliates

    PubMed Central

    Cazzolli, Giorgia; Škrbić, Tatjana; Guella, Graziano; Faccioli, Pietro

    2013-01-01

    Euplotes nobilii and Euplotes raikovi are phylogenetically closely allied species of marine ciliates, living in polar and temperate waters, respectively. Their evolutional relation and the sharply different temperatures of their natural environments make them ideal organisms to investigate thermal-adaptation. We perform a comparative study of the thermal unfolding of disulfide-rich protein pheromones produced by these ciliates. Recent circular dichroism (CD) measurements have shown that the two psychrophilic (E. nobilii) and mesophilic (E. raikovi) protein families are characterized by very different melting temperatures, despite their close structural homology. The enhanced thermal stability of the E. raikovi pheromones is realized notwithstanding the fact that these proteins form, as a rule, a smaller number of disulfide bonds. We perform Monte Carlo (MC) simulations in a structure-based coarse-grained (CG) model to show that the higher stability of the E. raikovi pheromones is due to the lower locality of the disulfide bonds, which yields a lower entropy increase in the unfolding process. Our study suggests that the higher stability of the mesophilic E. raikovi phermones is not mainly due to the presence of a strongly hydrophobic core, as it was proposed in the literature. In addition, we argue that the molecular adaptation of these ciliates may have occurred from cold to warm, and not from warm to cold. To provide a testable prediction, we identify a point-mutation of an E. nobilii pheromone that should lead to an unfolding temperature typical of that of E. raikovi pheromones. PMID:24970199

  7. Unfolding thermodynamics of cysteine-rich proteins and molecular thermal-adaptation of marine ciliates.

    PubMed

    Cazzolli, Giorgia; Skrbić, Tatjana; Guella, Graziano; Faccioli, Pietro

    2013-11-18

    Euplotes nobilii and Euplotes raikovi are phylogenetically closely allied species of marine ciliates, living in polar and temperate waters, respectively. Their evolutional relation and the sharply different temperatures of their natural environments make them ideal organisms to investigate thermal-adaptation. We perform a comparative study of the thermal unfolding of disulfide-rich protein pheromones produced by these ciliates. Recent circular dichroism (CD) measurements have shown that the two psychrophilic (E. nobilii) and mesophilic (E. raikovi) protein families are characterized by very different melting temperatures, despite their close structural homology. The enhanced thermal stability of the E. raikovi pheromones is realized notwithstanding the fact that these proteins form, as a rule, a smaller number of disulfide bonds. We perform Monte Carlo (MC) simulations in a structure-based coarse-grained (CG) model to show that the higher stability of the E. raikovi pheromones is due to the lower locality of the disulfide bonds, which yields a lower entropy increase in the unfolding process. Our study suggests that the higher stability of the mesophilic E. raikovi phermones is not mainly due to the presence of a strongly hydrophobic core, as it was proposed in the literature. In addition, we argue that the molecular adaptation of these ciliates may have occurred from cold to warm, and not from warm to cold. To provide a testable prediction, we identify a point-mutation of an E. nobilii pheromone that should lead to an unfolding temperature typical of that of E. raikovi pheromones.

  8. CrkL is an adapter for Wiskott-Aldrich syndrome protein and Syk.

    PubMed

    Oda, A; Ochs, H D; Lasky, L A; Spencer, S; Ozaki, K; Fujihara, M; Handa, M; Ikebuchi, K; Ikeda, H

    2001-05-01

    Wiskott-Aldrich syndrome (WAS) and X-linked thrombocytopenia are caused by mutations of the WAS protein (WASP) gene. WASP may be involved in the regulation of podosome, an actin-rich dynamic cell adhesion structure formed by various types of cells. The molecular links between WASP and podosomes or other cell adhesion structures are unknown. Platelets express an SH2-SH3 adapter molecule, CrkL, that can directly associate with paxillin, which is localized in podosomes. The hypothesis that CrkL binds to WASP was, therefore, tested. Results from coprecipitation experiments using anti-CrkL and GST-fusion proteins suggest that CrkL binds to WASP through its SH3 domain and that the binding was not affected by WASP tyrosine phosphorylation. The binding of GST-fusion SH3 domain of PSTPIP1 in vitro was also not affected by WASP tyrosine phosphorylation, suggesting that the binding of the SH3 domains to WASP is not inhibited by tyrosine phosphorylation of WASP. Anti-CrkL also coprecipitates a 72-kd protein, which was identified as syk tyrosine kinase, critical for collagen induced-platelet activation. CrkL immunoprecipitates contain kinase-active syk, as evidenced by an in vitro kinase assay. Coprecipitation experiments using GST-fusion CrkL proteins suggest that both SH2 and SH3 domains of CrkL are involved in the binding of CrkL to syk. WASP, CrkL, syk, and paxillin-like Hic-5 incorporated to platelet cytoskeleton after platelet aggregation. Thus, CrkL is a novel molecular adapter for WASP and syk and may potentially transfer these molecules to the cytoskeleton through association with cytoskeletal proteins such as Hic-5.

  9. Contractile activity-induced adaptations in the mitochondrial protein import system.

    PubMed

    Takahashi, M; Chesley, A; Freyssenet, D; Hood, D A

    1998-05-01

    We previously demonstrated that subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondrial subfractions import proteins at different rates. This study was undertaken to investigate 1) whether protein import is altered by chronic contractile activity, which induces mitochondrial biogenesis, and 2) whether these two subfractions adapt similarly. Using electrical stimulation (10 Hz, 3 h/day for 7 and 14 days) to induce contractile activity, we observed that malate dehydrogenase import into the matrix of the SS and IMF mitochondia isolated from stimulated muscle was significantly increased by 1.4-to 1.7-fold, although the pattern of increase differed for each subfraction. This acceleration of import may be mitochondrial compartment specific, since the import of Bcl-2 into the outer membrane was not affected. Contractile activity also modified the mitochondrial content of proteins comprising the import machinery, as evident from increases in the levels of the intramitochondrial chaperone mtHSP70 as well as the outer membrane import receptor Tom20 in SS and IMF mitochondria. Addition of cytosol isolated from stimulated or control muscles to the import reaction resulted in similar twofold increases in the ability of mitochondria to import malate dehydrogenase, despite elevations in the concentration of mitochondrial import-stimulating factor within the cytosol of chronically stimulated muscle. These results suggest that chronic contractile activity modifies the extra- and intramitochondrial environments in a fashion that favors the acceleration of precursor protein import into the matrix of the organelle. This increase in protein import is likely an important adaptation in the overall process of mitochondrial biogenesis.

  10. Activity-Based Protein Profiling Shows Heterogeneous Signaling Adaptations to BRAF Inhibition.

    PubMed

    Sharma, Ritin; Fedorenko, Inna; Spence, Paige T; Sondak, Vernon K; Smalley, Keiran S M; Koomen, John M

    2016-12-02

    Patients with BRAF V600E mutant melanoma are typically treated with targeted BRAF kinase inhibitors, such as vemurafenib and dabrafenib. Although these drugs are initially effective, they are not curative. Most of the focus to date has been upon genetic mechanisms of acquired resistance; therefore, we must better understand the global signaling adaptations that mediate escape from BRAF inhibition. In the current study, we have used activity-based protein profiling (ABPP) with ATP-analogue probes to enrich kinases and other enzyme classes that contribute to BRAF inhibitor (BRAFi) resistance in four paired isogenic BRAFi-naïve/resistant cell line models. Our analysis showed these cell line models, which also differ in their PTEN status, have considerable heterogeneity in their kinase ATP probe uptake in comparing both naïve cells and adaptations to chronic drug exposure. A number of kinases including FAK1, SLK, and TAOK2 had increased ATP probe uptake in BRAFi resistant cells, while KHS1 (M4K5) and BRAF had decreased ATP probe uptake in the BRAFi-resistant cells. Gene ontology (GO) enrichment analysis revealed BRAFi resistance is associated with a significant enhancement in ATP probe uptake in proteins implicated in cytoskeletal organization and adhesion, and decreases in ATP probe uptake in proteins associated with cell metabolic processes. The ABPP approach was able to identify key phenotypic mediators critical for each BRAFi resistant cell line. Together, these data show that common phenotypic adaptations to BRAF inhibition can be mediated through very different signaling networks, suggesting considerable redundancy within the signaling of BRAF mutant melanoma cells.

  11. The use of amphipols as universal molecular adapters to immobilize membrane proteins onto solid supports

    PubMed Central

    Charvolin, Delphine; Perez, Jean-Baptiste; Rouvière, Florent; Giusti, Fabrice; Bazzacco, Paola; Abdine, Alaa; Rappaport, Fabrice; Martinez, Karen L.; Popot, Jean-Luc

    2009-01-01

    Because of the importance of their physiological functions, cell membranes represent critical targets in biological research. Membrane proteins, which make up ≈1/3 of the proteome, interact with a wide range of small ligands and macromolecular partners as well as with foreign molecules such as synthetic drugs, antibodies, toxins, or surface recognition proteins of pathogenic organisms. Whether it is for the sake of basic biomedical or pharmacological research, it is of great interest to develop tools facilitating the study of these interactions. Surface-based in vitro assays are appealing because they require minimum quantities of reagents, and they are suitable for multiplexing and high-throughput screening. We introduce here a general method for immobilizing functional, unmodified integral membrane proteins onto solid supports, thanks to amphipathic polymers called “amphipols.” The key point of this approach is that functionalized amphipols can be used as universal adapters to associate any membrane protein to virtually any kind of support while stabilizing its native state. The generality and versatility of this strategy is demonstrated by using 5 different target proteins, 2 types of supports (chips and beads), 2 types of ligands (antibodies and a snake toxin), and 2 detection methods (surface plasmon resonance and fluorescence microscopy). PMID:19116278

  12. Temperature dependent mistranslation in a hyperthermophile adapts proteins to lower temperatures

    PubMed Central

    Schwartz, Michael H.; Pan, Tao

    2016-01-01

    All organisms universally encode, synthesize and utilize proteins that function optimally within a subset of growth conditions. While healthy cells are thought to maintain high translational fidelity within their natural habitats, natural environments can easily fluctuate outside the optimal functional range of genetically encoded proteins. The hyperthermophilic archaeon Aeropyrum pernix (A. pernix) can grow throughout temperature variations ranging from 70 to 100°C, although the specific factors facilitating such adaptability are unknown. Here, we show that A. pernix undergoes constitutive leucine to methionine mistranslation at low growth temperatures. Low-temperature mistranslation is facilitated by the misacylation of tRNALeu with methionine by the methionyl-tRNA synthetase (MetRS). At low growth temperatures, the A. pernix MetRS undergoes a temperature dependent shift in tRNA charging fidelity, allowing the enzyme to conditionally charge tRNALeu with methionine. We demonstrate enhanced low-temperature activity for A. pernix citrate synthase that is synthesized during leucine to methionine mistranslation at low-temperature growth compared to its high-fidelity counterpart synthesized at high-temperature. Our results show that conditional leucine to methionine mistranslation can make protein adjustments capable of improving the low-temperature activity of hyperthermophilic proteins, likely by facilitating the increasing flexibility required for greater protein function at lower physiological temperatures. PMID:26657639

  13. Adaptive protein evolution grants organismal fitness by improving catalysis and flexibility

    PubMed Central

    Tomatis, Pablo E.; Fabiane, Stella M.; Simona, Fabio; Carloni, Paolo; Sutton, Brian J.; Vila, Alejandro J.

    2008-01-01

    Protein evolution is crucial for organismal adaptation and fitness. This process takes place by shaping a given 3-dimensional fold for its particular biochemical function within the metabolic requirements and constraints of the environment. The complex interplay between sequence, structure, functionality, and stability that gives rise to a particular phenotype has limited the identification of traits acquired through evolution. This is further complicated by the fact that mutations are pleiotropic, and interactions between mutations are not always understood. Antibiotic resistance mediated by β-lactamases represents an evolutionary paradigm in which organismal fitness depends on the catalytic efficiency of a single enzyme. Based on this, we have dissected the structural and mechanistic features acquired by an optimized metallo-β-lactamase (MβL) obtained by directed evolution. We show that antibiotic resistance mediated by this enzyme is driven by 2 mutations with sign epistasis. One mutation stabilizes a catalytically relevant intermediate by fine tuning the position of 1 metal ion; whereas the other acts by augmenting the protein flexibility. We found that enzyme evolution (and the associated antibiotic resistance) occurred at the expense of the protein stability, revealing that MβLs have not exhausted their stability threshold. Our results demonstrate that flexibility is an essential trait that can be acquired during evolution on stable protein scaffolds. Directed evolution aided by a thorough characterization of the selected proteins can be successfully used to predict future evolutionary events and design inhibitors with an evolutionary perspective. PMID:19098096

  14. Adaptive protein evolution grants organismal fitness by improving catalysis and flexibility.

    PubMed

    Tomatis, Pablo E; Fabiane, Stella M; Simona, Fabio; Carloni, Paolo; Sutton, Brian J; Vila, Alejandro J

    2008-12-30

    Protein evolution is crucial for organismal adaptation and fitness. This process takes place by shaping a given 3-dimensional fold for its particular biochemical function within the metabolic requirements and constraints of the environment. The complex interplay between sequence, structure, functionality, and stability that gives rise to a particular phenotype has limited the identification of traits acquired through evolution. This is further complicated by the fact that mutations are pleiotropic, and interactions between mutations are not always understood. Antibiotic resistance mediated by beta-lactamases represents an evolutionary paradigm in which organismal fitness depends on the catalytic efficiency of a single enzyme. Based on this, we have dissected the structural and mechanistic features acquired by an optimized metallo-beta-lactamase (MbetaL) obtained by directed evolution. We show that antibiotic resistance mediated by this enzyme is driven by 2 mutations with sign epistasis. One mutation stabilizes a catalytically relevant intermediate by fine tuning the position of 1 metal ion; whereas the other acts by augmenting the protein flexibility. We found that enzyme evolution (and the associated antibiotic resistance) occurred at the expense of the protein stability, revealing that MbetaLs have not exhausted their stability threshold. Our results demonstrate that flexibility is an essential trait that can be acquired during evolution on stable protein scaffolds. Directed evolution aided by a thorough characterization of the selected proteins can be successfully used to predict future evolutionary events and design inhibitors with an evolutionary perspective.

  15. MSG5, a novel protein phosphatase promotes adaptation to pheromone response in S. cerevisiae.

    PubMed Central

    Doi, K; Gartner, A; Ammerer, G; Errede, B; Shinkawa, H; Sugimoto, K; Matsumoto, K

    1994-01-01

    Pheromone-stimulated yeast cells and haploid gpa1 deletion mutants arrest their cell cycle in G1. Overexpression of a novel gene called MSG5 suppresses this inhibition of cell division. Loss of MSG5 function leads to a diminished adaptive response to pheromone. Genetic analysis indicates that MSG5 acts at a stage where the protein kinases STE7 and FUS3 function to transmit the pheromone-induced signal. Since loss of MSG5 function causes an increase in FUS3 enzyme activity but not STE7 activity, we propose that MSG5 impinges on the pathway at FUS3. Sequence analysis suggests that MSG5 encodes a protein tyrosine phosphatase. This is supported by the finding that recombinant MSG5 has phosphatase activity in vitro and is able to inactivate autophosphorylated FUS3. Thus MSG5 might stimulate recovery from pheromone by regulating the phosphorylation state of FUS3. Images PMID:8306972

  16. Adaptability in protein structures: structural dynamics and implications in ligand design.

    PubMed

    Maity, Atanu; Majumdar, Sarmistha; Priya, Prerna; De, Pallavi; Saha, Sudipto; Ghosh Dastidar, Shubhra

    2015-01-01

    The basic framework of understanding the mechanisms of protein functions is achieved from the knowledge of their structures which can model the molecular recognition. Recent advancement in the structural biology has revealed that in spite of the availability of the structural data, it is nontrivial to predict the mechanism of the molecular recognition which progresses via situation-dependent structural adaptation. The mutual selectivity of protein-protein and protein-ligand interactions often depends on the modulations of conformations empowered by their inherent flexibility, which in turn regulates the function. The mechanism of a protein's function, which used to be explained by the ideas of 'lock and key' has evolved today as the concept of 'induced fit' as well as the 'population shift' models. It is felt that the 'dynamics' is an essential feature to take into account for understanding the mechanism of protein's function. The design principles of therapeutic molecules suffer from the problems of plasticity of the receptors whose binding conformations are accurately not predictable from the prior knowledge of a template structure. On the other hand, flexibility of the receptors provides the opportunity to improve the binding affinity of a ligand by suitable substitution that will maximize the binding by modulating the receptors surface. In this paper, we discuss with example how the protein's flexibility is correlated with its functions in various systems, revealing the importance of its understanding and for making applications. We also highlight the methodological challenges to investigate it computationally and to account for the flexible nature of the molecules in drug design.

  17. Retinoid cycling proteins redistribute in light-/dark-adapted octopus retinas.

    PubMed

    Robles, L J; Camacho, J L; Torres, S C; Flores, A; Fariss, R N; Matsumoto, B

    1995-08-07

    In cephalopods, the complex rhodopsin-retinochrome system serves to regenerate metarhodopsin and metaretinochrome after illumination. In the dark, a soluble protein, retinal-binding protein (RALBP), shuttles 11-cis retinal released from metaretinochrome located in the photoreceptor inner segments to metarhodopsin present in the rhabdoms. While in the rhabdoms, RALBP delivers 11-cis retinal to regenerate rhodopsin and in turn binds the all-trans isomer released by metarhodopsin. RALBP then returns all-trans retinal to the inner segments to restore retinochrome. The conventional interpretation of retinoid cycling is contradicted by immunocytochemical studies showing that, in addition to rhodopsin, retinochrome is present in the rhabdomal compartment, making possible the direct exchange of chromophores between the metapigments with the potential exclusion of RALBP. By using immunofluorescence and laser scanning confocal microscopy, we have precisely located opsin, aporetinochrome, and RALBP in light-/dark-adapted octopus retinas. We found differences in the distribution of all three proteins throughout the retina. Most significantly, comparison of cross sections though light- and dark-adapted rhabdoms showed a dramatic shift in position of the proteins. In the dark, opsin and retinochrome colocalized at the base of the rhabdomal microvilli. In the light, opsin redistributed along the length of the microvillar membranes, and retinochrome retreated to a location that is perhaps extracellular. RALBP was present in the core cytoplasm of the photoreceptor outer segments in the dark, and RALBP moved to the periphery in the light. Because of the colocalization of opsin and retinochrome in the dark, we believe that the two metapigments participate directly in chromophore exchange. RALBP may serve to transport additional chromophore from the inner segments to the rhabdoms and may not be immediately involved in the exchange process.

  18. In vitro strain adaptation of CWD prions by serial protein misfolding cyclic amplification.

    PubMed

    Meyerett, Crystal; Michel, Brady; Pulford, Bruce; Spraker, Terry R; Nichols, Traci A; Johnson, Theodore; Kurt, Timothy; Hoover, Edward A; Telling, Glenn C; Zabel, Mark D

    2008-12-20

    We used serial protein misfolding cyclic amplification (sPMCA) to amplify the D10 strain of CWD prions in a linear relationship over two logs of D10 dilutions. The resultant PMCA-amplified D10 induced terminal TSE disease in CWD-susceptible Tg(cerPrP)1536 mice with a survival time approximately 80 days shorter than the original D10 inoculum, similar to that produced by in vivo sub-passage of D10 in Tg(cerPrP)1536 mice. Both in vitro-amplified and mouse-passaged D10 produced brain lesion profiles, glycoform ratios and conformational stabilities significantly different than those produced by the original D10 inoculum in Tg(cerPrP)1536 mice. These findings demonstrate that sPMCA can amplify and adapt prion strains in vitro as effectively and much more quickly than in vivo strain adaptation by mouse passage. Thus sPMCA may represent a powerful tool to assess prion strain adaptation and species barriers in vitro.

  19. Efficient SIVcpz replication in human lymphoid tissue requires viral matrix protein adaptation

    PubMed Central

    Bibollet-Ruche, Frederic; Heigele, Anke; Keele, Brandon F.; Easlick, Juliet L.; Decker, Julie M.; Takehisa, Jun; Learn, Gerald; Sharp, Paul M.; Hahn, Beatrice H.; Kirchhoff, Frank

    2012-01-01

    SIVs infecting wild-living apes in west central Africa have crossed the species barrier to humans on at least four different occasions, one of which spawned the AIDS pandemic. Although the chimpanzee precursor of pandemic HIV-1 strains must have been able to infect humans, the capacity of SIVcpz strains to replicate in human lymphoid tissues (HLTs) is not known. Here, we show that SIVcpz strains from two chimpanzee subspecies are capable of replicating in human tonsillary explant cultures, albeit only at low titers. However, SIVcpz replication in HLT was significantly improved after introduction of a previously identified human-specific adaptation at position 30 in the viral Gag matrix protein. An Arg or Lys at this position significantly increased SIVcpz replication in HLT, while the same mutation reduced viral replication in chimpanzee-derived CD4+ T cells. Thus, naturally occurring SIVcpz strains are capable of infecting HLTs, the major site of HIV-1 replication in vivo. However, efficient replication requires the acquisition of a host-specific adaptation in the viral matrix protein. These results identify Gag matrix as a major determinant of SIVcpz replication fitness in humans and suggest a critical role in the emergence of HIV/AIDS. PMID:22505456

  20. Aerobic Exercise Training Adaptations Are Increased by Postexercise Carbohydrate-Protein Supplementation

    PubMed Central

    Ferguson-Stegall, Lisa; McCleave, Erin; Ding, Zhenping; Doerner III, Phillip G.; Liu, Yang; Wang, Bei; Healy, Marin; Kleinert, Maximilian; Dessard, Benjamin; Lassiter, David G.; Kammer, Lynne; Ivy, John L.

    2011-01-01

    Carbohydrate-protein supplementation has been found to increase the rate of training adaptation when provided postresistance exercise. The present study compared the effects of a carbohydrate and protein supplement in the form of chocolate milk (CM), isocaloric carbohydrate (CHO), and placebo on training adaptations occurring over 4.5 weeks of aerobic exercise training. Thirty-two untrained subjects cycled 60 min/d, 5 d/wk for 4.5 wks at 75–80% of maximal oxygen consumption (VO2 max). Supplements were ingested immediately and 1 h after each exercise session. VO2 max and body composition were assessed before the start and end of training. VO2 max improvements were significantly greater in CM than CHO and placebo. Greater improvements in body composition, represented by a calculated lean and fat mass differential for whole body and trunk, were found in the CM group compared to CHO. We conclude supplementing with CM postexercise improves aerobic power and body composition more effectively than CHO alone. PMID:21773022

  1. Molecular adaptation of photoprotection: triplet states in light-harvesting proteins.

    PubMed

    Gall, Andrew; Berera, Rudi; Alexandre, Maxime T A; Pascal, Andrew A; Bordes, Luc; Mendes-Pinto, Maria M; Andrianambinintsoa, Sandra; Stoitchkova, Katerina V; Marin, Alessandro; Valkunas, Leonas; Horton, Peter; Kennis, John T M; van Grondelle, Rienk; Ruban, Alexander; Robert, Bruno

    2011-08-17

    The photosynthetic light-harvesting systems of purple bacteria and plants both utilize specific carotenoids as quenchers of the harmful (bacterio)chlorophyll triplet states via triplet-triplet energy transfer. Here, we explore how the binding of carotenoids to the different types of light-harvesting proteins found in plants and purple bacteria provides adaptation in this vital photoprotective function. We show that the creation of the carotenoid triplet states in the light-harvesting complexes may occur without detectable conformational changes, in contrast to that found for carotenoids in solution. However, in plant light-harvesting complexes, the triplet wavefunction is shared between the carotenoids and their adjacent chlorophylls. This is not observed for the antenna proteins of purple bacteria, where the triplet is virtually fully located on the carotenoid molecule. These results explain the faster triplet-triplet transfer times in plant light-harvesting complexes. We show that this molecular mechanism, which spreads the location of the triplet wavefunction through the pigments of plant light-harvesting complexes, results in the absence of any detectable chlorophyll triplet in these complexes upon excitation, and we propose that it emerged as a photoprotective adaptation during the evolution of oxygenic photosynthesis. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  2. Molecular Adaptation of Photoprotection: Triplet States in Light-Harvesting Proteins

    PubMed Central

    Gall, Andrew; Berera, Rudi; Alexandre, Maxime T.A.; Pascal, Andrew A.; Bordes, Luc; Mendes-Pinto, Maria M.; Andrianambinintsoa, Sandra; Stoitchkova, Katerina V.; Marin, Alessandro; Valkunas, Leonas; Horton, Peter; Kennis, John T.M.; van Grondelle, Rienk; Ruban, Alexander; Robert, Bruno

    2011-01-01

    The photosynthetic light-harvesting systems of purple bacteria and plants both utilize specific carotenoids as quenchers of the harmful (bacterio)chlorophyll triplet states via triplet-triplet energy transfer. Here, we explore how the binding of carotenoids to the different types of light-harvesting proteins found in plants and purple bacteria provides adaptation in this vital photoprotective function. We show that the creation of the carotenoid triplet states in the light-harvesting complexes may occur without detectable conformational changes, in contrast to that found for carotenoids in solution. However, in plant light-harvesting complexes, the triplet wavefunction is shared between the carotenoids and their adjacent chlorophylls. This is not observed for the antenna proteins of purple bacteria, where the triplet is virtually fully located on the carotenoid molecule. These results explain the faster triplet-triplet transfer times in plant light-harvesting complexes. We show that this molecular mechanism, which spreads the location of the triplet wavefunction through the pigments of plant light-harvesting complexes, results in the absence of any detectable chlorophyll triplet in these complexes upon excitation, and we propose that it emerged as a photoprotective adaptation during the evolution of oxygenic photosynthesis. PMID:21843485

  3. PSB27: A thylakoid protein enabling Arabidopsis to adapt to changing light intensity.

    PubMed

    Hou, Xin; Fu, Aigen; Garcia, Veder J; Buchanan, Bob B; Luan, Sheng

    2015-02-03

    In earlier studies we have identified FKBP20-2 and CYP38 as soluble proteins of the chloroplast thylakoid lumen that are required for the formation of photosystem II supercomplexes (PSII SCs). Subsequent work has identified another potential candidate functional in SC formation (PSB27). We have followed up on this possibility and isolated mutants defective in the PSB27 gene. In addition to lack of PSII SCs, mutant plants were severely stunted when cultivated with light of variable intensity. The stunted growth was associated with lower PSII efficiency and defective starch accumulation. In response to high light exposure, the mutant plants also displayed enhanced ROS production, leading to decreased biosynthesis of anthocyanin. Unexpectedly, we detected a second defect in the mutant, namely in CP26, an antenna protein known to be required for the formation of PSII SCs that has been linked to state transitions. Lack of PSII SCs was found to be independent of PSB27, but was due to a mutation in the previously described cp26 gene that we found had no effect on light adaptation. The present results suggest that PSII SCs, despite being required for state transitions, are not associated with acclimation to changing light intensity. Our results are consistent with the conclusion that PSB27 plays an essential role in enabling plants to adapt to fluctuating light intensity through a mechanism distinct from photosystem II supercomplexes and state transitions.

  4. PSB27: A thylakoid protein enabling Arabidopsis to adapt to changing light intensity

    PubMed Central

    Hou, Xin; Fu, Aigen; Garcia, Veder J.; Buchanan, Bob B.; Luan, Sheng

    2015-01-01

    In earlier studies we have identified FKBP20-2 and CYP38 as soluble proteins of the chloroplast thylakoid lumen that are required for the formation of photosystem II supercomplexes (PSII SCs). Subsequent work has identified another potential candidate functional in SC formation (PSB27). We have followed up on this possibility and isolated mutants defective in the PSB27 gene. In addition to lack of PSII SCs, mutant plants were severely stunted when cultivated with light of variable intensity. The stunted growth was associated with lower PSII efficiency and defective starch accumulation. In response to high light exposure, the mutant plants also displayed enhanced ROS production, leading to decreased biosynthesis of anthocyanin. Unexpectedly, we detected a second defect in the mutant, namely in CP26, an antenna protein known to be required for the formation of PSII SCs that has been linked to state transitions. Lack of PSII SCs was found to be independent of PSB27, but was due to a mutation in the previously described cp26 gene that we found had no effect on light adaptation. The present results suggest that PSII SCs, despite being required for state transitions, are not associated with acclimation to changing light intensity. Our results are consistent with the conclusion that PSB27 plays an essential role in enabling plants to adapt to fluctuating light intensity through a mechanism distinct from photosystem II supercomplexes and state transitions. PMID:25605904

  5. Subfamily-specific adaptations in the structures of two penicillin-binding proteins from Mycobacterium tuberculosis

    DOE PAGES

    Prigozhin, Daniil M.; Krieger, Inna V.; Huizar, John P.; ...

    2014-12-31

    Beta-lactam antibiotics target penicillin-binding proteins including several enzyme classes essential for bacterial cell-wall homeostasis. To better understand the functional and inhibitor-binding specificities of penicillin-binding proteins from the pathogen, Mycobacterium tuberculosis, we carried out structural and phylogenetic analysis of two predicted D,D-carboxypeptidases, Rv2911 and Rv3330. Optimization of Rv2911 for crystallization using directed evolution and the GFP folding reporter method yielded a soluble quadruple mutant. Structures of optimized Rv2911 bound to phenylmethylsulfonyl fluoride and Rv3330 bound to meropenem show that, in contrast to the nonspecific inhibitor, meropenem forms an extended interaction with the enzyme along a conserved surface. Phylogenetic analysis shows thatmore » Rv2911 and Rv3330 belong to different clades that emerged in Actinobacteria and are not represented in model organisms such as Escherichia coli and Bacillus subtilis. Clade-specific adaptations allow these enzymes to fulfill distinct physiological roles despite strict conservation of core catalytic residues. The characteristic differences include potential protein-protein interaction surfaces and specificity-determining residues surrounding the catalytic site. Overall, these structural insights lay the groundwork to develop improved beta-lactam therapeutics for tuberculosis.« less

  6. Chronic Phencyclidine Increases Synapsin-1 and Synaptic Adaptation Proteins in the Medial Prefrontal Cortex

    PubMed Central

    Pickering, Chris; Ericson, Mia; Söderpalm, Bo

    2013-01-01

    Phencyclidine (PCP) mimics many aspects of schizophrenia, yet the underlying mechanism of neurochemical adaptation for PCP is unknown. We therefore used proteomics to study changes in the medial prefrontal cortex in animals with PCP-induced behavioural deficits. Male Wistar rats were injected with saline or 5 mg/kg phencyclidine for 5 days followed by two days of washout. Spontaneous alternation behaviour was tested in a Y-maze and then proteins were extracted from the medial prefrontal cortex. 2D-DIGE analysis followed by spot picking and protein identification with mass spectrometry then provided a list of differentially expressed proteins. Treatment with 5 mg/kg phencyclidine decreased the percentage of correct alternations in the Y-maze compared to saline-treated controls. Proteomics analysis of the medial prefrontal cortex found upregulation of 6 proteins (synapsin-1, Dpysl3, Aco2, Fscn1, Tuba1c, and Mapk1) and downregulation of 11 (Bin1, Dpysl2, Sugt1, ApoE, Psme1, ERp29, Pgam1, Uchl1, Ndufv2, Pcmt1, and Vdac1). A trend to upregulation was observed for Gnb4 and Capza2, while downregulation trends were noted for alpha-enolase and Fh. Many of the hits in this study concur with recent postmortem data from schizophrenic patients and this further validates the use of phencyclidine in preclinical translational research. PMID:23738220

  7. Reciprocal Influence of Protein Domains in the Cold-Adapted Acyl Aminoacyl Peptidase from Sporosarcina psychrophila

    PubMed Central

    Parravicini, Federica; Natalello, Antonino; Papaleo, Elena; De Gioia, Luca; Doglia, Silvia Maria; Lotti, Marina; Brocca, Stefania

    2013-01-01

    Acyl aminoacyl peptidases are two-domain proteins composed by a C-terminal catalytic α/β-hydrolase domain and by an N-terminal β-propeller domain connected through a structural element that is at the N-terminus in sequence but participates in the 3D structure of the C-domain. We investigated about the structural and functional interplay between the two domains and the bridge structure (in this case a single helix named α1-helix) in the cold-adapted enzyme from Sporosarcina psychrophila (SpAAP) using both protein variants in which entire domains were deleted and proteins carrying substitutions in the α1-helix. We found that in this enzyme the inter-domain connection dramatically affects the stability of both the whole enzyme and the β-propeller. The α1-helix is required for the stability of the intact protein, as in other enzymes of the same family; however in this psychrophilic enzyme only, it destabilizes the isolated β-propeller. A single charged residue (E10) in the α1-helix plays a major role for the stability of the whole structure. Overall, a strict interaction of the SpAAP domains seems to be mandatory for the preservation of their reciprocal structural integrity and may witness their co-evolution. PMID:23457536

  8. ADP ribosylation adapts an ER chaperone response to short-term fluctuations in unfolded protein load

    PubMed Central

    Petrova, Kseniya; Tomba, Giulia; Vendruscolo, Michele

    2012-01-01

    Gene expression programs that regulate the abundance of the chaperone BiP adapt the endoplasmic reticulum (ER) to unfolded protein load. However, such programs are slow compared with physiological fluctuations in secreted protein synthesis. While searching for mechanisms that fill this temporal gap in coping with ER stress, we found elevated levels of adenosine diphosphate (ADP)–ribosylated BiP in the inactive pancreas of fasted mice and a rapid decline in this modification in the active fed state. ADP ribosylation mapped to Arg470 and Arg492 in the substrate-binding domain of hamster BiP. Mutations that mimic the negative charge of ADP-ribose destabilized substrate binding and interfered with interdomain allosteric coupling, marking ADP ribosylation as a rapid posttranslational mechanism for reversible inactivation of BiP. A kinetic model showed that buffering fluctuations in unfolded protein load with a recruitable pool of inactive chaperone is an efficient strategy to minimize both aggregation and costly degradation of unfolded proteins. PMID:22869598

  9. Adaptability of Protein Structures to Enable Functional Interactions and Evolutionary Implications

    PubMed Central

    Haliloglu, Turkan; Bahar, Ivet

    2015-01-01

    Several studies in recent years have drawn attention to the ability of proteins to adapt to intermolecular interactions by conformational changes along structure-encoded collective modes of motions. These so-called soft modes, primarily driven by entropic effects, facilitate, if not enable, functional interactions. They represent excursions on the conformational space along principal low-ascent directions/paths away from the original free energy minimum, and they are accessible to the protein even prior to protein-protein/ligand interactions. An emerging concept from these studies is the evolution of structures or modular domains to favor such modes of motion that will be recruited or integrated for enabling functional interactions. Structural dynamics, including the allosteric switches in conformation that are often stabilized upon formation of complexes and multimeric assemblies, emerge as key properties that are evolutionarily maintained to accomplish biological activities, consistent with the paradigm sequence → structure → dynamics → function where ‘dynamics’ bridges structure and function. PMID:26254902

  10. Protein restriction does not impair adaptations induced in cardiomyocytes by exercise in rats.

    PubMed

    Cabral, C A C; Natali, A J; Natali, A Y; Novaes, R D; Lavorato, V N; Drumond, L R; Carneiro Júnior, M A; Silva, M F; Quintão-Junior, J F; Gontijo, L N; Silva, C H O; Felix, L B; Silva, M E

    2013-11-01

    The effect of a treadmill running program on physical performance and morphofunctional adaptations was investigated in control and malnourished rats. Male 4-week old Wistar rats were randomized in groups of 12 animals: control trained (CT), control sedentary (CS), malnourished trained (MT) and malnourished sedentary (MS). Control and malnourished animals received chow with 12% protein or 6% protein, respectively. Trained groups were subjected to a treadmill running program for 8 weeks. Physical performance, biochemical parameters, cardiomyocytes morphology and biomechanics were determined. Malnourished animals presented reduction in body mass, serum levels of total protein, albumin and hemoglobin compared to the control groups. At 1 and 3 Hz cardiomyocytes from CT and MT showed higher cell shortening, speed of contraction and relaxation compared to the other groups. At 3 Hz cardiomyocytes from MS showed reduction in cell shortening and speed of contraction compared to CS. Protein restriction does not prevent the improvement in physical performance or cardiomyocytes biomechanical efficiency and growth in response to exercise. These findings could represent a modulatory effect of exercise to maintain cardiomyocyte growth at the expense of reducing the rate of body growth in order to ensure proper cellular function in conditions of cardiovascular overload imposed by exercise.

  11. Structural adaptation of extreme halophilic proteins through decrease of conserved hydrophobic contact surface.

    PubMed

    Siglioccolo, Alessandro; Paiardini, Alessandro; Piscitelli, Maria; Pascarella, Stefano

    2011-12-22

    Halophiles are extremophilic microorganisms growing optimally at high salt concentrations. There are two strategies used by halophiles to maintain proper osmotic pressure in their cytoplasm: accumulation of molar concentrations of potassium and chloride with extensive adaptation of the intracellular macromolecules ("salt-in" strategy) or biosynthesis and/or accumulation of organic osmotic solutes ("osmolyte" strategy). Our work was aimed at contributing to the understanding of the shared molecular mechanisms of protein haloadaptation through a detailed and systematic comparison of a sample of several three-dimensional structures of halophilic and non-halophilic proteins. Structural differences observed between the "salt-in" and the mesophilic homologous proteins were contrasted to those observed between the "osmolyte" and mesophilic pairs. The results suggest that haloadaptation strategy in the presence of molar salt concentration, but not of osmolytes, necessitates a weakening of the hydrophobic interactions, in particular at the level of conserved hydrophobic contacts. Weakening of these interactions counterbalances their strengthening by the presence of salts in solution and may help the structure preventing aggregation and/or loss of function in hypersaline environments. Considering the significant increase of biotechnology applications of halophiles, the understanding of halophilicity can provide the theoretical basis for the engineering of proteins of great interest because stable at concentrations of salts that cause the denaturation or aggregation of the majority of macromolecules.

  12. APS, an adapter protein with a PH and SH2 domain, is a substrate for the insulin receptor kinase.

    PubMed Central

    Ahmed, Z; Smith, B J; Kotani, K; Wilden, P; Pillay, T S

    1999-01-01

    APS (adapter protein with a PH and SH2 domain) is the newest member of a family of tyrosine kinase adapter proteins including SH2-B and Lnk. We previously identified SH2-B as an insulin-receptor-binding protein and substrate [Kotani, Wilden and Pillay (1998) Biochem J. 335, 103-109]. Here we show that APS interacts with the insulin receptor kinase activation loop through its SH2 domain and insulin stimulates the tyrosine-phosphorylation of APS. Furthermore, the phosphorylation of activation-loop tyrosine residues 1158 and 1162 are required for this interaction. PMID:10417330

  13. Engineering of Bispecific Affinity Proteins with High Affinity for ERBB2 and Adaptable Binding to Albumin

    PubMed Central

    Nilvebrant, Johan; Åstrand, Mikael; Georgieva-Kotseva, Maria; Björnmalm, Mattias; Löfblom, John; Hober, Sophia

    2014-01-01

    The epidermal growth factor receptor 2, ERBB2, is a well-validated target for cancer diagnostics and therapy. Recent studies suggest that the over-expression of this receptor in various cancers might also be exploited for antibody-based payload delivery, e.g. antibody drug conjugates. In such strategies, the full-length antibody format is probably not required for therapeutic effect and smaller tumor-specific affinity proteins might be an alternative. However, small proteins and peptides generally suffer from fast excretion through the kidneys, and thereby require frequent administration in order to maintain a therapeutic concentration. In an attempt aimed at combining ERBB2-targeting with antibody-like pharmacokinetic properties in a small protein format, we have engineered bispecific ERBB2-binding proteins that are based on a small albumin-binding domain. Phage display selection against ERBB2 was used for identification of a lead candidate, followed by affinity maturation using second-generation libraries. Cell surface display and flow-cytometric sorting allowed stringent selection of top candidates from pools pre-enriched by phage display. Several affinity-matured molecules were shown to bind human ERBB2 with sub-nanomolar affinity while retaining the interaction with human serum albumin. Moreover, parallel selections against ERBB2 in the presence of human serum albumin identified several amino acid substitutions that dramatically modulate the albumin affinity, which could provide a convenient means to control the pharmacokinetics. The new affinity proteins competed for ERBB2-binding with the monoclonal antibody trastuzumab and recognized the native receptor on a human cancer cell line. Hence, high affinity tumor targeting and tunable albumin binding were combined in one small adaptable protein. PMID:25089830

  14. Adaptive GDDA-BLAST: fast and efficient algorithm for protein sequence embedding.

    PubMed

    Hong, Yoojin; Kang, Jaewoo; Lee, Dongwon; van Rossum, Damian B

    2010-10-22

    A major computational challenge in the genomic era is annotating structure/function to the vast quantities of sequence information that is now available. This problem is illustrated by the fact that most proteins lack comprehensive annotations, even when experimental evidence exists. We previously theorized that embedded-alignment profiles (simply "alignment profiles" hereafter) provide a quantitative method that is capable of relating the structural and functional properties of proteins, as well as their evolutionary relationships. A key feature of alignment profiles lies in the interoperability of data format (e.g., alignment information, physio-chemical information, genomic information, etc.). Indeed, we have demonstrated that the Position Specific Scoring Matrices (PSSMs) are an informative M-dimension that is scored by quantitatively measuring the embedded or unmodified sequence alignments. Moreover, the information obtained from these alignments is informative, and remains so even in the "twilight zone" of sequence similarity (<25% identity). Although our previous embedding strategy was powerful, it suffered from contaminating alignments (embedded AND unmodified) and high computational costs. Herein, we describe the logic and algorithmic process for a heuristic embedding strategy named "Adaptive GDDA-BLAST." Adaptive GDDA-BLAST is, on average, up to 19 times faster than, but has similar sensitivity to our previous method. Further, data are provided to demonstrate the benefits of embedded-alignment measurements in terms of detecting structural homology in highly divergent protein sequences and isolating secondary structural elements of transmembrane and ankyrin-repeat domains. Together, these advances allow further exploration of the embedded alignment data space within sufficiently large data sets to eventually induce relevant statistical inferences. We show that sequence embedding could serve as one of the vehicles for measurement of low-identity alignments

  15. Adaptive GDDA-BLAST: Fast and Efficient Algorithm for Protein Sequence Embedding

    PubMed Central

    Hong, Yoojin; Kang, Jaewoo; Lee, Dongwon; van Rossum, Damian B.

    2010-01-01

    A major computational challenge in the genomic era is annotating structure/function to the vast quantities of sequence information that is now available. This problem is illustrated by the fact that most proteins lack comprehensive annotations, even when experimental evidence exists. We previously theorized that embedded-alignment profiles (simply “alignment profiles” hereafter) provide a quantitative method that is capable of relating the structural and functional properties of proteins, as well as their evolutionary relationships. A key feature of alignment profiles lies in the interoperability of data format (e.g., alignment information, physio-chemical information, genomic information, etc.). Indeed, we have demonstrated that the Position Specific Scoring Matrices (PSSMs) are an informative M-dimension that is scored by quantitatively measuring the embedded or unmodified sequence alignments. Moreover, the information obtained from these alignments is informative, and remains so even in the “twilight zone” of sequence similarity (<25% identity) [1]–[5]. Although our previous embedding strategy was powerful, it suffered from contaminating alignments (embedded AND unmodified) and high computational costs. Herein, we describe the logic and algorithmic process for a heuristic embedding strategy named “Adaptive GDDA-BLAST.” Adaptive GDDA-BLAST is, on average, up to 19 times faster than, but has similar sensitivity to our previous method. Further, data are provided to demonstrate the benefits of embedded-alignment measurements in terms of detecting structural homology in highly divergent protein sequences and isolating secondary structural elements of transmembrane and ankyrin-repeat domains. Together, these advances allow further exploration of the embedded alignment data space within sufficiently large data sets to eventually induce relevant statistical inferences. We show that sequence embedding could serve as one of the vehicles for measurement of

  16. Different genome stability proteins underpin primed and naïve adaptation in E. coli CRISPR-Cas immunity.

    PubMed

    Ivančić-Baće, Ivana; Cass, Simon D; Wearne, Stephen J; Bolt, Edward L

    2015-12-15

    CRISPR-Cas is a prokaryotic immune system built from capture and integration of invader DNA into CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) loci, termed 'Adaptation', which is dependent on Cas1 and Cas2 proteins. In Escherichia coli, Cascade-Cas3 degrades invader DNA to effect immunity, termed 'Interference'. Adaptation can interact with interference ('primed'), or is independent of it ('naïve'). We demonstrate that primed adaptation requires the RecG helicase and PriA protein to be present. Genetic analysis of mutant phenotypes suggests that RecG is needed to dissipate R-loops at blocked replication forks. Additionally, we identify that DNA polymerase I is important for both primed and naive adaptation, and that RecB is needed for naïve adaptation. Purified Cas1-Cas2 protein shows specificity for binding to and nicking forked DNA within single strand gaps, and collapsing forks into DNA duplexes. The data suggest that different genome stability systems interact with primed or naïve adaptation when responding to blocked or collapsed invader DNA replication. In this model, RecG and Cas3 proteins respond to invader DNA replication forks that are blocked by Cascade interference, enabling DNA capture. RecBCD targets DNA ends at collapsed forks, enabling DNA capture without interference. DNA polymerase I is proposed to fill DNA gaps during spacer integration.

  17. Structural adaptation of tooth enamel protein amelogenin in the presence of SDS micelles

    PubMed Central

    Chandrababu, Karthik Balakrishna; Dutta, Kaushik; Lokappa, Sowmya Bekshe; Ndao, Moise; Evans, John Spencer; Moradian-Oldak, Janet

    2014-01-01

    Amelogenin, the major extracellular matrix protein of developing tooth enamel is intrinsically disordered. Through its interaction with other proteins and mineral, amelogenin assists enamel biomineralization by controlling the formation of highly organized enamel crystal arrays. We used circular dichroism (CD), dynamic light scattering (DLS), fluorescence and NMR spectroscopy to investigate the folding propensity of recombinant porcine amelogenin rP172 following its interaction with SDS, at levels above critical micelle concentration. The rP172-SDS complex formation was confirmed by DLS, while an increase in the structure moiety of rP172 was noted through CD and fluorescence experiments. Fluorescence quenching analyses performed on several rP172 mutants where all but one Trp was replaced by Tyr at different sequence regions confirmed that the interaction of amelogenin with SDS micelles occurs via the N-terminal region close to Trp25 where helical segments can be detected by NMR. NMR spectroscopy and structural refinement calculations using CS-Rosetta modelling confirm that the highly conserved N-terminal domain is prone to form helical structure when bound to SDS micelles. Our findings reported here reveal interactions leading to significant changes in the secondary structure of rP172 upon treatment with SDS. These interactions may reflect the physiological relevance of the flexible nature of amelogenin and its sequence specific helical propensity that might enable it to structurally adapt with charged and potential targets such as cell surface, mineral, and other proteins during enamel biomineralization. PMID:24114119

  18. RNA binding proteins mediate the ability of a fungus to adapt to the cold.

    PubMed

    Fang, Weiguo; St Leger, Raymond J

    2010-03-01

    Little is known about how fungi adapt to chilling. In eubacteria, cold shock proteins (CSPs) facilitate translation by destabilizing RNA secondary structure. Animals and plants have homologous cold shock domains within proteins, and additional glycine-rich RNA binding proteins (GRPs), but their role in stress resistance is poorly understood. In this study, we identified GRP homologues in diverse fungi. However, only Aspergillus clavatus and Metarhizium anisopliae possessed cold shock domains. Both M. anisopliae's small eubacteria-like CSP (CRP1) and its GRP (CRP2) homologue were induced by cold. Disrupting either Crp1 or Crp2 greatly reduced metabolism and conidial germination rates at low temperatures, and decreased tolerance to freezing. However, while both Crp1 and Crp2 reduced freezing-induced production of reactive oxygen species, only Crp1 protected cells against H(2)O(2) and increased M. anisopliae's virulence to caterpillars. Unlike CRP2, CRP1 rescued the cold-sensitive growth defects of an Escherichia coli CSP deletion mutant, and CRP1 also demonstrated transcription anti-termination activity, so CRP1 can regulate transcription and translation at low temperature. Expressing either Crp1 or Crp2 in yeast increased metabolism at cold temperatures and Crp1 improved tolerance to freezing. Thus besides providing a model relevant to many biological systems, Crp1 and Crp2 have potential applications in biotechnology.

  19. Hypoxia reduces ER-to-Golgi protein trafficking and increases cell death by inhibiting the adaptive unfolded protein response in mouse beta cells.

    PubMed

    Bensellam, Mohammed; Maxwell, Emma L; Chan, Jeng Yie; Luzuriaga, Jude; West, Phillip K; Jonas, Jean-Christophe; Gunton, Jenny E; Laybutt, D Ross

    2016-07-01

    Hypoxia may contribute to beta cell failure in type 2 diabetes and islet transplantation. The adaptive unfolded protein response (UPR) is required for endoplasmic reticulum (ER) homeostasis. Here we investigated whether or not hypoxia regulates the UPR in beta cells and the role the adaptive UPR plays during hypoxic stress. Mouse islets and MIN6 cells were exposed to various oxygen (O2) tensions. DNA-damage inducible transcript 3 (DDIT3), hypoxia-inducible transcription factor (HIF)1α and HSPA5 were knocked down using small interfering (si)RNA; Hspa5 was also overexpressed. db/db mice were used. Hypoxia-response genes were upregulated in vivo in the islets of diabetic, but not prediabetic, db/db mice. In isolated mouse islets and MIN6 cells, O2 deprivation (1-5% vs 20%; 4-24 h) markedly reduced the expression of adaptive UPR genes, including Hspa5, Hsp90b1, Fkbp11 and spliced Xbp1. Coatomer protein complex genes (Copa, Cope, Copg [also known as Copg1], Copz1 and Copz2) and ER-to-Golgi protein trafficking were also reduced, whereas apoptotic genes (Ddit3, Atf3 and Trb3 [also known as Trib3]), c-Jun N-terminal kinase (JNK) phosphorylation and cell death were increased. Inhibition of JNK, but not HIF1α, restored adaptive UPR gene expression and ER-to-Golgi protein trafficking while protecting against apoptotic genes and cell death following hypoxia. DDIT3 knockdown delayed the loss of the adaptive UPR and partially protected against hypoxia-induced cell death. The latter response was prevented by HSPA5 knockdown. Finally, Hspa5 overexpression significantly protected against hypoxia-induced cell death. Hypoxia inhibits the adaptive UPR in beta cells via JNK and DDIT3 activation, but independently of HIF1α. Downregulation of the adaptive UPR contributes to reduced ER-to-Golgi protein trafficking and increased beta cell death during hypoxic stress.

  20. Functional Validation of Hydrophobic Adaptation to Physiological Temperature in the Small Heat Shock Protein αA-crystallin

    PubMed Central

    Posner, Mason; Kiss, Andor J.; Skiba, Jackie; Drossman, Amy; Dolinska, Monika B.; Hejtmancik, J. Fielding; Sergeev, Yuri V.

    2012-01-01

    Small heat shock proteins (sHsps) maintain cellular homeostasis by preventing stress and disease-induced protein aggregation. While it is known that hydrophobicity impacts the ability of sHsps to bind aggregation-prone denaturing proteins, the complex quaternary structure of globular sHsps has made understanding the significance of specific changes in hydrophobicity difficult. Here we used recombinant protein of the lenticular sHsp α A-crystallin from six teleost fishes environmentally adapted to temperatures ranging from -2°C to 40°C to identify correlations between physiological temperature, protein stability and chaperone-like activity. Using sequence and structural modeling analysis we identified specific amino acid differences between the warm adapted zebrafish and cold adapted Antarctic toothfish that could contribute to these correlations and validated the functional consequences of three specific hydrophobicity-altering amino acid substitutions in αA-crystallin. Site directed mutagenesis of three residues in the zebrafish (V62T, C143S, T147V) confirmed that each impacts either protein stability or chaperone-like activity or both, with the V62T substitution having the greatest impact. Our results indicate a role for changing hydrophobicity in the thermal adaptation of α A-crystallin and suggest ways to produce sHsp variants with altered chaperone-like activity. These data also demonstrate that a comparative approach can provide new information about sHsp function and evolution. PMID:22479631

  1. Cold adaptation of a psychrophilic chaperonin from Psychrobacter sp. and its application for heterologous protein expression.

    PubMed

    Kim, Han-Woo; Wi, Ah Ram; Jeon, Byoung Wook; Lee, Jun Hyuck; Shin, Seung Chul; Park, Hyun; Jeon, Sung-Jong

    2015-09-01

    A chaperonin, PsyGroELS, from the Antarctic psychrophilic bacterium Psychrobacter sp. PAMC21119, was examined for its role in cold adaptation when expressed in a mesophilic Escherichia coli strain. Growth of E. coli harboring PsyGroELS at 10 °C was increased compared to the control strain. A co-expression system using PsyGroELS was developed to increase productivity of the psychrophilic enzyme PsyEst9. PsyEst9 was cloned and expressed using three E. coli variants that co-expressed GroELS from PAMC21119, E. coli, or Oleispira antarctica RB8(T). Co-expression with PsyGroELS was more effective for the production of PsyEst9 compared tothe other chaperonins. PsyGroELS confers cold tolerance to E. coli, and shows potential as an effective co-expression system for the stable production of psychrophilic proteins.

  2. Effectively explore metastable states of proteins by adaptive nonequilibrium driving simulations

    NASA Astrophysics Data System (ADS)

    Wan, Biao; Xu, Shun; Zhou, Xin

    2017-03-01

    Nonequilibrium drivings applied in molecular dynamics (MD) simulations can efficiently extend the visiting range of protein conformations, but might compel systems to go far away from equilibrium and thus mainly explore irrelevant conformations. Here we propose a general method, called adaptive nonequilibrium simulation (ANES), to automatically adjust the external driving on the fly, based on the feedback of the short-time average response of system. Thus, the ANES approximately keeps the local equilibrium but efficiently accelerates the global motion. We illustrate the capability of the ANES in highly efficiently exploring metastable conformations in the deca-alanine peptide and find that the 0.2 -μ s ANES approximately captures the important states and folding and unfolding pathways in the HP35 solution by comparing with the result of the recent 398 -μ s equilibrium MD simulation on Anton [S. Piana et al., Proc. Natl. Acad. Sci. USA 109, 17845 (2012), 10.1073/pnas.1201811109].

  3. The effect of acute ethanol intoxication on salivary proteins of innate and adaptive immunity.

    PubMed

    Waszkiewicz, Napoleon; Szajda, Sławomir Dariusz; Jankowska, Anna; Zwierz, Piotr; Czernikiewicz, Andrzej; Szulc, Agata; Zwierz, Krzysztof

    2008-04-01

    Human salivary proteins: peroxidase, lysozyme, lactoferrin, and IgA, participate in the protection of oral tissues, as well as upper digestive and respiratory tracts, against a number of microbial pathogens. In the current study, we investigated the effect of acute consumption of a large dose of ethanol on representative human salivary proteins of the innate and adaptive immune systems. Eight healthy male volunteers drank an average of 2.0 g (1.4 to 2.5 g/kg) body weight of ethanol, in the form of vodka, in the 6-hour period. Samples of resting whole saliva were collected 12 hours before, then 36 and 108 hours after, the alcohol consumption. The levels of total protein, immunoglobulin A, lysozyme and lactoferrin as well as peroxidase activity were determined in saliva. At 36 hours after alcohol consumption, salivary protein and lysozyme concentrations as well as peroxidase activity were significantly decreased (p = 0.002, p = 0.043, and p = 0.003, respectively), in comparison to the values obtained at 12 hours before drinking. Between 36 and 108 hours after alcohol consumption, the salivary protein and lysozyme concentrations, as well as peroxidase activity showed a tendency to increase, although at 108 hours after the drinking session, the concentration of protein and peroxidase activity were still significantly lower than before drinking. There was no significant change in the level of lactoferrin, after the drinking session. The salivary concentration of IgA tended to increase at 36 hours after alcohol consumption, and at 108 hours it was significantly higher (p = 0.028), when compared to IgA concentration in the saliva collected before drinking (from 8% to 26% and 32% of total protein content, respectively). Our report is the first to show that acute ingestion of relatively large, yet tolerable dose of alcohol, significantly disturbs salivary antimicrobial defense system. Reduced lysozyme level and decreased peroxidase activity may contribute to increased

  4. Heat-shock proteins as endogenous ligands building a bridge between innate and adaptive immunity.

    PubMed

    Tamura, Yasuaki; Torigoe, Toshihiko; Kukita, Kazuharu; Saito, Keita; Okuya, Koichi; Kutomi, Goro; Hirata, Koichi; Sato, Noriyuki

    2012-08-01

    There has been growing evidence that heat-shock protein (HSP) functions as an endogenous immunomodulator for innate and adaptive immune responses. Since HSPs inherently act as chaperones within cells, passive release (e.g., by cell necrosis) and active release (including release by secretion in the form of an exosome) have been suggested as mechanisms of HSP release into the extracellular milieu. Such extracellular HSPs have been shown to be activators of innate immune responses through Toll-like receptors. However, it has also been suggested that HSPs augment the ability of associated innate ligands such as lipopolysaccharides to stimulate cytokine production and dendritic cell maturation. More interestingly, a recent study has demonstrated that innate immune responses elicited by danger signals were regulated spatiotemporally and that can be manipulated by HSPs, thereby controlling immune responses. We will discuss how spatiotemporal regulation of HSP-chaperoned molecules within antigen-presenting cells affects adaptive immunity via antigen cross-presentation and innate immune responses. Precise analysis of HSP biology should lead to the establishment of effective HSP-based immunotherapy.

  5. Different genome stability proteins underpin primed and naïve adaptation in E. coli CRISPR-Cas immunity

    PubMed Central

    Ivančić-Baće, Ivana; Cass, Simon D; Wearne, Stephen J; Bolt, Edward L

    2015-01-01

    CRISPR-Cas is a prokaryotic immune system built from capture and integration of invader DNA into CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) loci, termed ‘Adaptation’, which is dependent on Cas1 and Cas2 proteins. In Escherichia coli, Cascade-Cas3 degrades invader DNA to effect immunity, termed ‘Interference’. Adaptation can interact with interference (‘primed’), or is independent of it (‘naïve’). We demonstrate that primed adaptation requires the RecG helicase and PriA protein to be present. Genetic analysis of mutant phenotypes suggests that RecG is needed to dissipate R-loops at blocked replication forks. Additionally, we identify that DNA polymerase I is important for both primed and naive adaptation, and that RecB is needed for naïve adaptation. Purified Cas1-Cas2 protein shows specificity for binding to and nicking forked DNA within single strand gaps, and collapsing forks into DNA duplexes. The data suggest that different genome stability systems interact with primed or naïve adaptation when responding to blocked or collapsed invader DNA replication. In this model, RecG and Cas3 proteins respond to invader DNA replication forks that are blocked by Cascade interference, enabling DNA capture. RecBCD targets DNA ends at collapsed forks, enabling DNA capture without interference. DNA polymerase I is proposed to fill DNA gaps during spacer integration. PMID:26578567

  6. Assisted protein folding at low temperature: evolutionary adaptation of the Antarctic fish chaperonin CCT and its client proteins

    PubMed Central

    Cuellar, Jorge; Yébenes, Hugo; Parker, Sandra K.; Carranza, Gerardo; Serna, Marina; Valpuesta, José María; Zabala, Juan Carlos; Detrich, H. William

    2014-01-01

    ABSTRACT Eukaryotic ectotherms of the Southern Ocean face energetic challenges to protein folding assisted by the cytosolic chaperonin CCT. We hypothesize that CCT and its client proteins (CPs) have co-evolved molecular adaptations that facilitate CCT–CP interaction and the ATP-driven folding cycle at low temperature. To test this hypothesis, we compared the functional and structural properties of CCT–CP systems from testis tissues of an Antarctic fish, Gobionotothen gibberifrons (Lönnberg) (habitat/body T = −1.9 to +2°C), and of the cow (body T = 37°C). We examined the temperature dependence of the binding of denatured CPs (β-actin, β-tubulin) by fish and bovine CCTs, both in homologous and heterologous combinations and at temperatures between −4°C and 20°C, in a buffer conducive to binding of the denatured CP to the open conformation of CCT. In homologous combination, the percentage of G. gibberifrons CCT bound to CP declined linearly with increasing temperature, whereas the converse was true for bovine CCT. Binding of CCT to heterologous CPs was low, irrespective of temperature. When reactions were supplemented with ATP, G. gibberifrons CCT catalyzed the folding and release of actin at 2°C. The ATPase activity of apo-CCT from G. gibberifrons at 4°C was ∼2.5-fold greater than that of apo-bovine CCT, whereas equivalent activities were observed at 20°C. Based on these results, we conclude that the catalytic folding cycle of CCT from Antarctic fishes is partially compensated at their habitat temperature, probably by means of enhanced CP-binding affinity and increased flexibility of the CCT subunits. PMID:24659247

  7. Architectural adaptation and protein expression patterns of Salmonella enterica serovar Enteritidis biofilms under laminar flow conditions.

    PubMed

    Mangalappalli-Illathu, Anil K; Lawrence, John R; Swerhone, George D W; Korber, Darren R

    2008-03-31

    Salmonella enterica serovar Enteritidis is a significant biofilm-forming pathogen. The influence of a 10-fold difference in nutrient laminar flow velocity on the dynamics of Salmonella Enteritidis biofilm formation and protein expression profiles were compared in order to ascertain how flow velocity influenced biofilm structure and function. Low-flow (0.007 cm s(-1)) biofilms consisted of diffusely-arranged microcolonies which grew until merging by approximately 72 h. High-flow (0.07 cm s(-1)) biofilms were significantly thicker (36+/-3 microm (arithmetic mean+/-standard error; n=225) versus 16+/-2 microm for low-flow biofilms at 120 h) and consisted of large bacterial mounds interspersed by water channels. Lectin-binding analysis of biofilm exopolymers revealed a significantly higher (P<0.05) proportion of N-acetylgalactosamine (GalNAc) in low-flow biofilms (55.2%), relative to only 1.2% in high-flow biofilms. Alternatively, the proportions of alpha-L-fucose and N-acetylglucosamine (GlcNAc2)-N-acetylneuraminic acid (NeuNAc) polymer-conjugates were significantly higher (P<0.05) in high-flow biofilms (69.1% and 29.6%, respectively) than low-flow biofilms (33.1% and 11.7%, respectively). Despite an apparent flow rate-based physiologic effect on biofilm structure and exopolymer composition, no major shift in whole-cell protein expression patterns was seen between 168 h-old low-flow and high-flow biofilms, and notably did not include any response involving the stress response proteins, DnaK, SodB, and Tpx. Proteins involved in degradation and energy metabolism (PduA, GapA, GpmA, Pgk, and RpiA), RNA and protein biosynthesis (Tsf, TufA, and RpoZ), cell processes (Crr, MalE, and PtsH), and adaptation (GrcA), and some hypothetical proteins (YcbL and YnaF) became up-regulated in both biofilm systems relative to a 168 h-old planktonic cell control. Our results indicate that Salmonella Enteritidis biofilms altered their structure and extracellular glycoconjugate composition

  8. SIRT1 is a Highly Networked Protein That Mediates the Adaptation to Chronic Physiological Stress

    PubMed Central

    Clark-Knowles, Katherine V.; Caron, Annabelle Z.; Gray, Douglas A.

    2013-01-01

    SIRT1 is a NAD+-dependent protein deacetylase that has a very large number of established protein substrates and an equally impressive list of biological functions thought to be regulated by its activity. Perhaps as notable is the remarkable number of points of conflict concerning the role of SIRT1 in biological processes. For example, evidence exists suggesting that SIRT1 is a tumor suppressor, is an oncogene, or has no effect on oncogenesis. Similarly, SIRT1 is variably reported to induce, inhibit, or have no effect on autophagy. We believe that the resolution of many conflicting results is possible by considering recent reports indicating that SIRT1 is an important hub interacting with a complex network of proteins that collectively regulate a wide variety of biological processes including cancer and autophagy. A number of the interacting proteins are themselves hubs that, like SIRT1, utilize intrinsically disordered regions for their promiscuous interactions. Many studies investigating SIRT1 function have been carried out on cell lines carrying undetermined numbers of alterations to the proteins comprising the SIRT1 network or on inbred mouse strains carrying fixed mutations affecting some of these proteins. Thus, the effects of modulating SIRT1 amount and/or activity are importantly determined by the genetic background of the cell (or the inbred strain of mice), and the effects attributed to SIRT1 are synthetic with the background of mutations and epigenetic differences between cells and organisms. Work on mice carrying alterations to the Sirt1 gene suggests that the network in which SIRT1 functions plays an important role in mediating physiological adaptation to various sources of chronic stress such as calorie restriction and calorie overload. Whether the catalytic activity of SIRT1 and the nuclear concentration of the co-factor, NAD+, are responsible for modulating this activity remains to be determined. However, the effect of modulating SIRT1 activity must

  9. Perforin is required for innate and adaptive immunity induced by heat shock protein gp96.

    PubMed

    Strbo, Natasa; Oizumi, Satoshi; Sotosek-Tokmadzic, Vlatka; Podack, Eckhard R

    2003-03-01

    Tumor-secreted gp96-Ig is highly immunogenic and triggers CD8 T cell-mediated tumor rejection. In vivo secreted gp96-Ig and gp96-myc cause NK activation and clonal expansion of specific CD8(+) CTL in wild-type and in Fas-ligand-deficient (gld) mice but not in perforin- (PKO) or IFN-gamma-deficient (GKO) mice. Transfer of perforin-competent NK cells restores the ability of PKO mice to clonally expand CD8 CTL in response to gp96-Ig. The data demonstrate an essential role for perforin-mediated functions in the activation of innate and adaptive immunity by heat shock protein gp96-peptide complexes. Crosspresentation of antigens by heat shock proteins seems to require a perforin-dependent positive feedback loop between NK and DC for both sustained NK activation and clonal CTL expansion. The studies also explain how depressed NK activity in patients with tumors or after viral infections could diminish CTL responses.

  10. Positive and negative regulation of antigen receptor signaling by the Shc family of protein adapters.

    PubMed

    Finetti, Francesca; Savino, Maria Teresa; Baldari, Cosima T

    2009-11-01

    The Shc adapter family includes four members that are expressed as multiple isoforms and participate in signaling by a variety of cell-surface receptors. The biological relevance of Shc proteins as well as their variegated function, which relies on their highly conserved modular structure, is underscored by the distinct and dramatic phenotypic alterations resulting from deletion of individual Shc isoforms both in the mouse and in two model organisms, Drosophila melanogaster and Caenorhabditis elegans. The p52 isoform of ShcA couples antigen and cytokine receptors to Ras activation in both lymphoid and myeloid cells. However, the recognition of the spectrum of activities of p52ShcA in the immune system has been steadily expanding in recent years to other fundamental processes both at the cell and organism levels. Two other Shc family members, p66ShcA and p52ShcC/Rai, have been identified recently in T and B lymphocytes, where they antagonize survival and attenuate antigen receptor signaling. These developments reveal an unexpected and complex interplay of multiple Shc proteins in lymphocytes.

  11. Phospholipids and protein adaptation of Pseudomonas sp. to the xenoestrogen tributyltin chloride (TBT).

    PubMed

    Bernat, Przemysław; Siewiera, Paulina; Soboń, Adrian; Długoński, Jerzy

    2014-09-01

    A tributyltin (TBT)-resistant strain of Pseudomonas sp. isolated from an overworked car filter was tested for its adaptation to TBT. The isolate was checked for organotin degradation ability, as well as membrane lipid and cellular protein composition in the presence of TBT. The phospholipid profiles of bacteria, grown with and without increased amounts of TBT, were characterized using liquid chromatography/electrospray ionization/mass spectrometry. The strain reacted to the biocide by changing the composition of its phospholipids. TBT induced a twofold decline in the amounts of many molecular species of phosphatidylglycerol and an increase in the levels of phosphatidic acid (by 58%) and phosphatidylethanolamine (by 70%). An increase in the degree of saturation of phospholipid fatty acids of TBT exposed Pseudomonas sp. was observed. These changes in the phospholipid composition and concentration reflect the mechanisms which support optimal lipid ordering in the presence of toxic xenobiotic. In the presence of TBT the abundances of 16 proteins, including TonB-dependent receptors, porins and peroxidases were modified, which could indicate a contribution of some enzymes to TBT resistance.

  12. Adaptive evolution of the venom-targeted vWF protein in opossums that eat pitvipers.

    PubMed

    Jansa, Sharon A; Voss, Robert S

    2011-01-01

    The rapid evolution of venom toxin genes is often explained as the result of a biochemical arms race between venomous animals and their prey. However, it is not clear that an arms race analogy is appropriate in this context because there is no published evidence for rapid evolution in genes that might confer toxin resistance among routinely envenomed species. Here we report such evidence from an unusual predator-prey relationship between opossums (Marsupialia: Didelphidae) and pitvipers (Serpentes: Crotalinae). In particular, we found high ratios of replacement to silent substitutions in the gene encoding von Willebrand Factor (vWF), a venom-targeted hemostatic blood protein, in a clade of opossums known to eat pitvipers and to be resistant to their hemorrhagic venom. Observed amino-acid substitutions in venom-resistant opossums include changes in net charge and hydrophobicity that are hypothesized to weaken the bond between vWF and one of its toxic snake-venom ligands, the C-type lectin-like protein botrocetin. Our results provide the first example of rapid adaptive evolution in any venom-targeted molecule, and they support the notion that an evolutionary arms race might be driving the rapid evolution of snake venoms. However, in the arms race implied by our results, venomous snakes are prey, and their venom has a correspondingly defensive function in addition to its usual trophic role.

  13. Flavin-Induced Oligomerization in Escherichia coli Adaptive Response Protein AidB

    SciTech Connect

    Hamill, Michael J.; Jost, Marco; Wong, Cintyu; Elliott, Sean J.; Drennan, Catherine L.

    2011-11-21

    The process known as 'adaptive response' allows Escherichia coli to respond to small doses of DNA-methylating agents by upregulating the expression of four proteins. While the role of three of these proteins in mitigating DNA damage is well understood, the function of AidB is less clear. Although AidB is a flavoprotein, no catalytic role has been established for the bound cofactor. Here we investigate the possibility that flavin plays a structural role in the assembly of the AidB tetramer. We report the generation and biophysical characterization of deflavinated AidB and of an AidB mutant that has greatly reduced affinity for flavin adenine dinucleotide (FAD). Using fluorescence quenching and analytical ultracentrifugation, we find that apo AidB has a high affinity for FAD, as indicated by an apparent dissociation constant of 402.1 {+-} 35.1 nM, and that binding of substoichiometric amounts of FAD triggers a transition in the AidB oligomeric state. In particular, deflavinated AidB is dimeric, whereas the addition of FAD yields a tetramer. We further investigate the dimerization and tetramerization interfaces of AidB by determining a 2.8 {angstrom} resolution crystal structure in space group P3{sub 2} that contains three intact tetramers in the asymmetric unit. Taken together, our findings provide strong evidence that FAD plays a structural role in the formation of tetrameric AidB.

  14. Adaptive Evolution of the Venom-Targeted vWF Protein in Opossums that Eat Pitvipers

    PubMed Central

    Jansa, Sharon A.; Voss, Robert S.

    2011-01-01

    The rapid evolution of venom toxin genes is often explained as the result of a biochemical arms race between venomous animals and their prey. However, it is not clear that an arms race analogy is appropriate in this context because there is no published evidence for rapid evolution in genes that might confer toxin resistance among routinely envenomed species. Here we report such evidence from an unusual predator-prey relationship between opossums (Marsupialia: Didelphidae) and pitvipers (Serpentes: Crotalinae). In particular, we found high ratios of replacement to silent substitutions in the gene encoding von Willebrand Factor (vWF), a venom-targeted hemostatic blood protein, in a clade of opossums known to eat pitvipers and to be resistant to their hemorrhagic venom. Observed amino-acid substitutions in venom-resistant opossums include changes in net charge and hydrophobicity that are hypothesized to weaken the bond between vWF and one of its toxic snake-venom ligands, the C-type lectin-like protein botrocetin. Our results provide the first example of rapid adaptive evolution in any venom-targeted molecule, and they support the notion that an evolutionary arms race might be driving the rapid evolution of snake venoms. However, in the arms race implied by our results, venomous snakes are prey, and their venom has a correspondingly defensive function in addition to its usual trophic role. PMID:21731638

  15. Object-adapted trapping and shape-tracking to probe a bacterial protein chain motor

    NASA Astrophysics Data System (ADS)

    Roth, Julian; Koch, Matthias; Rohrbach, Alexander

    2015-03-01

    The helical bacterium Spiroplasma is a motile plant and anthropod pathogen which swims by propagating pairs of kinks along its cell body. As a well suited model system for bacterial locomotion, understanding the cell's molecular motor is of vital interest also regarding the combat of bacterial diseases. The extensive deformations related to these kinks are caused by a contractile cytoskeletal protein ribbon representing a linear motor in contrast to common rotary motors as, e.g., flagella. We present new insights into the working of this motor through experiments with object-adapted optical traps and shape-tracking techniques. We use the given laser irradiation from the optical trap to hinder bacterial energy (ATP) production through the production of O2 radicals. The results are compared with experiments performed under the influence of an O2-Scavenger and ATP inhibitors, respectively. Our results show clear dependences of the kinking properties on the ATP concentration inside the bacterium. The experiments are supported by a theoretical model which we developed to describe the switching of the ribbon's protein subunits.

  16. Adaptive evolution of tight junction protein claudin-14 in echolocating whales.

    PubMed

    Xu, Huihui; Liu, Yang; He, Guimei; Rossiter, Stephen J; Zhang, Shuyi

    2013-11-10

    Toothed whales and bats have independently evolved specialized ultrasonic hearing for echolocation. Recent findings have suggested that several genes including Prestin, Tmc1, Pjvk and KCNQ4 appear to have undergone molecular adaptations associated with the evolution of this ultrasonic hearing in mammals. Here we studied the hearing gene Cldn14, which encodes the claudin-14 protein and is a member of tight junction proteins that functions in the organ of Corti in the inner ear to maintain a cationic gradient between endolymph and perilymph. Particular mutations in human claudin-14 give rise to non-syndromic deafness, suggesting an essential role in hearing. Our results uncovered two bursts of positive selection, one in the ancestral branch of all toothed whales and a second in the branch leading to the delphinid, phocoenid and ziphiid whales. These two branches are the same as those previously reported to show positive selection in the Prestin gene. Furthermore, as with Prestin, the estimated hearing frequencies of whales significantly correlate with numbers of branch-wise non-synonymous substitutions in Cldn14, but not with synonymous changes. However, in contrast to Prestin, we found no evidence of positive selection in bats. Our findings from Cldn14, and comparisons with Prestin, strongly implicate multiple loci in the acquisition of echolocation in cetaceans, but also highlight possible differences in the evolutionary route to echolocation taken by whales and bats.

  17. Genomic and Protein Structural Maps of Adaptive Evolution of Human Influenza A Virus to Increased Virulence in the Mouse

    PubMed Central

    Dankar, Samar; Stecho, William; Tyler, Shaun; Zhou, Yan; Babiuk, Lorne; Weingartl, Hana; Halpin, Rebecca A.; Boyne, Alex; Bera, Jayati; Hostetler, Jessicah; Fedorova, Nadia B.; Proudfoot, Katie; Katzel, Dan A.; Stockwell, Tim B.; Ghedin, Elodie; Spiro, David J.; Brown, Earl G.

    2011-01-01

    Adaptive evolution is characterized by positive and parallel, or repeated selection of mutations. Mouse adaptation of influenza A virus (IAV) produces virulent mutants that demonstrate positive and parallel evolution of mutations in the hemagglutinin (HA) receptor and non-structural protein 1 (NS1) interferon antagonist genes. We now present a genomic analysis of all 11 genes of 39 mouse adapted IAV variants from 10 replicate adaptation experiments. Mutations were mapped on the primary and structural maps of each protein and specific mutations were validated with respect to virulence, replication, and RNA polymerase activity. Mouse adapted (MA) variants obtained after 12 or 20–21 serial infections acquired on average 5.8 and 7.9 nonsynonymous mutations per genome of 11 genes, respectively. Among a total of 115 nonsynonymous mutations, 51 demonstrated properties of natural selection including 27 parallel mutations. The greatest degree of parallel evolution occurred in the HA receptor and ribonucleocapsid components, polymerase subunits (PB1, PB2, PA) and NP. Mutations occurred in host nuclear trafficking factor binding sites as well as sites of virus-virus protein subunit interaction for NP, NS1, HA and NA proteins. Adaptive regions included cap binding and endonuclease domains in the PB2 and PA polymerase subunits. Four mutations in NS1 resulted in loss of binding to the host cleavage and polyadenylation specificity factor (CPSF30) suggesting that a reduction in inhibition of host gene expression was being selected. The most prevalent mutations in PB2 and NP were shown to increase virulence but differed in their ability to enhance replication and demonstrated epistatic effects. Several positively selected RNA polymerase mutations demonstrated increased virulence associated with >300% enhanced polymerase activity. Adaptive mutations that control host range and virulence were identified by their repeated selection to comprise a defined model for studying IAV

  18. Comparative proteome profiling of bovine and human Staphylococcus epidermidis strains for screening specifically expressed virulence and adaptation proteins.

    PubMed

    Siljamäki, Pia; Varmanen, Pekka; Kankainen, Matti; Pyörälä, Satu; Karonen, Taru; Iivanainen, Antti; Auvinen, Petri; Paulin, Lars; Laine, Pia K; Taponen, Suvi; Simojoki, Heli; Sukura, Antti; Nyman, Tuula A; Savijoki, Kirsi

    2014-08-01

    The present study reports a comparative proteome cataloging of a bovine mastitis and a human-associated Staphylococcus epidermidis strain with a specific focus on surfome (cell-wall bound and extracellular) proteins. Protein identification by 1DE coupled with LC-MS/MS analyses resulted in 1400 and 1287 proteins from the bovine (PM221) and human (ATCC12228) strains, respectively, covering over 50% of all predicted and more than 30% of all predicted surfome proteins in both strains. Comparison of the identification results suggests elevated levels of proteins involved in adherence, biofilm formation, signal transduction, house-keeping functions, and immune evasion in PM221, whereas ATCC12228 was more effective in expressing host defense evasion proteases, skin adaptation lipases, hemagglutination, and heavy-metal resistance proteins. Phenotypic analyses showed that only PM221 displays protein- and DNA-mediated adherent growth, and that PM221 was more efficient in cleaving tributyrin, a natural compound of milk fat under low CO2 conditions. These findings are in line with the identification data and suggest that distinct expression of lipases and adhesive surfome proteins could lead to the observed phenotypes. This study is the first extensive survey of S. epidermidis proteomes to date, providing several protein candidates to be examined for their roles in adaptation and virulence in vivo. All MS data have been deposited in the ProteomeXchange with identifier PXD000404 (http://proteomecentral.proteomexchange.org/dataset/PXD000404).

  19. Osmotin: A protein associated with osmotic stress adaptation in plant cells: Final report, September 1, 1983--August 31, 1988

    SciTech Connect

    Bressan, R.A.

    1988-12-01

    Osmotin is a cationic protein which accumulates (up to 12% of total cell protein) in cells adapted to grow in the medium with low water potentials. The synthesis of osmotin is developmentally regulated and is induced by abscisic acid (ABA) in cultured cells. In whole plants, both the synthesis and accumulation of osmotin is tissue specific. The highest rate of synthesis occurs in outer stem tissue and the highest level of accumulation occurs in roots. ABA induced synthesis of osmotin is transient in cells and NaCl stabilizes its synthesis and accumulation. NaCl adapted tobacco cells exhibit a stable increase in both their ability to tolerate salt and to produce osmotin in the absence of NaCl. Osmotin is localized in vacuolar inclusions, but also appears to be loosely associated with the tonoplast and plasma membrane. Osmotin is also found in the culture medium of adapted cells during all stages of cell growth. The molecular weight of mature osmotin deduced from the cDNA nucleotide sequence is 23,984 daltons. Osmotin is synthesized as a preprotein 2.5 kD larger than the mature protein. Three proteins, thaumatin, TPR and MAI, exhibit a very high level (52% to 61%) of sequence homology with osmotin. Osmotin mRNA synthesis is induced by ABA. The level of osmotin mRNA increases after NaCl adaptation. 34 refs., 11 figs.

  20. Adaptations of protein structure and function to temperature: there is more than one way to 'skin a cat'.

    PubMed

    Fields, Peter A; Dong, Yunwei; Meng, Xianliang; Somero, George N

    2015-06-01

    Sensitivity to temperature helps determine the success of organisms in all habitats, and is caused by the susceptibility of biochemical processes, including enzyme function, to temperature change. A series of studies using two structurally and catalytically related enzymes, A4-lactate dehydrogenase (A4-LDH) and cytosolic malate dehydrogenase (cMDH) have been especially valuable in determining the functional attributes of enzymes most sensitive to temperature, and identifying amino acid substitutions that lead to changes in those attributes. The results of these efforts indicate that ligand binding affinity and catalytic rate are key targets during temperature adaptation: ligand affinity decreases during cold adaptation to allow more rapid catalysis. Structural changes causing these functional shifts often comprise only a single amino acid substitution in an enzyme subunit containing approximately 330 residues; they occur on the surface of the protein in or near regions of the enzyme that move during catalysis, but not in the active site; and they decrease stability in cold-adapted orthologs by altering intra-molecular hydrogen bonding patterns or interactions with the solvent. Despite these structure-function insights, we currently are unable to predict a priori how a particular substitution alters enzyme function in relation to temperature. A predictive ability of this nature might allow a proteome-wide survey of adaptation to temperature and reveal what fraction of the proteome may need to adapt to temperature changes of the order predicted by global warming models. Approaches employing algorithms that calculate changes in protein stability in response to a mutation have the potential to help predict temperature adaptation in enzymes; however, using examples of temperature-adaptive mutations in A4-LDH and cMDH, we find that the algorithms we tested currently lack the sensitivity to detect the small changes in flexibility that are central to enzyme adaptation to

  1. Evolutionary adaptation of an AraC-like regulatory protein in Citrobacter rodentium and Escherichia species.

    PubMed

    Tan, Aimee; Petty, Nicola K; Hocking, Dianna; Bennett-Wood, Vicki; Wakefield, Matthew; Praszkier, Judyta; Tauschek, Marija; Yang, Ji; Robins-Browne, Roy

    2015-04-01

    The evolution of pathogenic bacteria is a multifaceted and complex process, which is strongly influenced by the horizontal acquisition of genetic elements and their subsequent expression in their new hosts. A well-studied example is the RegA regulon of the enteric pathogen Citrobacter rodentium. The RegA regulatory protein is a member of the AraC/XylS superfamily, which coordinates the expression of a gene repertoire that is necessary for full pathogenicity of this murine pathogen. Upon stimulation by an exogenous, gut-associated signal, namely, bicarbonate ions, RegA activates the expression of a series of genes, including virulence factors, such as autotransporters, fimbriae, a dispersin-like protein, and the grlRA operon on the locus of enterocyte effacement pathogenicity island. Interestingly, the genes encoding RegA homologues are distributed across the genus Escherichia, encompassing pathogenic and nonpathogenic subtypes. In this study, we carried out a series of bioinformatic, transcriptional, and functional analyses of the RegA regulons of these bacteria. Our results demonstrated that regA has been horizontally transferred to Escherichia spp. and C. rodentium. Comparative studies of two RegA homologues, namely, those from C. rodentium and E. coli SMS-3-5, a multiresistant environmental strain of E. coli, showed that the two regulators acted similarly in vitro but differed in terms of their abilities to activate the virulence of C. rodentium in vivo, which evidently was due to their differential activation of grlRA. Our data indicate that RegA from C. rodentium has strain-specific adaptations that facilitate infection of its murine host. These findings shed new light on the development of virulence by C. rodentium and on the evolution of virulence-regulatory genes of bacterial pathogens in general.

  2. Evolutionary Adaptation of an AraC-Like Regulatory Protein in Citrobacter rodentium and Escherichia Species

    PubMed Central

    Tan, Aimee; Petty, Nicola K.; Hocking, Dianna; Bennett-Wood, Vicki; Wakefield, Matthew; Praszkier, Judyta; Tauschek, Marija; Yang, Ji

    2015-01-01

    The evolution of pathogenic bacteria is a multifaceted and complex process, which is strongly influenced by the horizontal acquisition of genetic elements and their subsequent expression in their new hosts. A well-studied example is the RegA regulon of the enteric pathogen Citrobacter rodentium. The RegA regulatory protein is a member of the AraC/XylS superfamily, which coordinates the expression of a gene repertoire that is necessary for full pathogenicity of this murine pathogen. Upon stimulation by an exogenous, gut-associated signal, namely, bicarbonate ions, RegA activates the expression of a series of genes, including virulence factors, such as autotransporters, fimbriae, a dispersin-like protein, and the grlRA operon on the locus of enterocyte effacement pathogenicity island. Interestingly, the genes encoding RegA homologues are distributed across the genus Escherichia, encompassing pathogenic and nonpathogenic subtypes. In this study, we carried out a series of bioinformatic, transcriptional, and functional analyses of the RegA regulons of these bacteria. Our results demonstrated that regA has been horizontally transferred to Escherichia spp. and C. rodentium. Comparative studies of two RegA homologues, namely, those from C. rodentium and E. coli SMS-3-5, a multiresistant environmental strain of E. coli, showed that the two regulators acted similarly in vitro but differed in terms of their abilities to activate the virulence of C. rodentium in vivo, which evidently was due to their differential activation of grlRA. Our data indicate that RegA from C. rodentium has strain-specific adaptations that facilitate infection of its murine host. These findings shed new light on the development of virulence by C. rodentium and on the evolution of virulence-regulatory genes of bacterial pathogens in general. PMID:25624355

  3. Specific adaptation of gastric emptying to diets with differing protein content in the rat: is endogenous cholecystokinin implicated?

    PubMed Central

    Shi, G; Leray, V; Scarpignato, C; Bentouimou, N; Varannes, S; Cherbut, C; Galmiche, J

    1997-01-01

    Background—Recent studies indicate that gastric emptying may be influenced by patterns of previous nutrient intake. Endogenous cholecystokinin (CCK), whose synthesis and release can be affected by dietary intake, has a major role in the regulation of gastric emptying. 
Aims—To evaluate the influence of diets with differing protein content on gastric emptying of differing liquid test meals and plasma CCK levels in the rat and to check whether the inhibitory effect of exogenous CCK on gastric emptying is modified after long term intake of diets with differing protein content. 
Methods—Rats were fed for three weeks with high protein, medium protein (regular), or low protein diet. On day 22 gastric emptying of a peptone meal was studied. In addition, basal and postprandial CCK levels after the different dietary regimens were measured by bioassay. The time course of dietary adaptation was studied and its specificity assessed through the use of different (peptone, glucose, and methylcellulose) test meals. The effect of exogenous CCK-8 on gastric emptying was studied at the end of the adaptation period (three weeks).
Results—Feeding the animals with a high protein diet for three weeks resulted in a significant (p<0.05) acceleration (by 21.2(8.2)%) of gastric emptying while feeding with a low protein diet was followed by a significant (p<0.05) delay (by 24.0 (6.2)%) in the emptying rate. When the time course of the effect of dietary adaptation on gastric emptying was studied, it appeared that at least two weeks are required for dietary protein to be effective. The regulatory effect of dietary protein on gastric emptying proved to be dependent on meal composition. Only the emptying rate of a protein containing meal (40% peptone) was significantly modified by previous dietary intake. No significant (p>0.05) changes were observed with glucose and methylcellulose meals whose emptying rates were similar in rats receiving a high protein or low protein diet. A

  4. Amino acid contacts in proteins adapted to different temperatures: hydrophobic interactions and surface charges play a key role.

    PubMed

    Saelensminde, Gisle; Halskau, Øyvind; Jonassen, Inge

    2009-01-01

    Thermophiles, mesophiles, and psychrophiles have different amino acid frequencies in their proteins, probably because of the way the species adapt to very different temperatures in their environment. In this paper, we analyse how contacts between sidechains vary between homologous proteins from species that are adapted to different temperatures, but displaying relatively high sequence similarity. We investigate whether specific contacts between amino acids sidechains is a key factor in thermostabilisation in proteins. The dataset was divided into two subsets with optimal growth temperatures from 0-40 and 35-102 degrees C. Comparison of homologues was made between low-temperature species and high-temperature species within each subset. We found that unspecific interactions like hydrophobic interactions in the core and solvent interactions and entropic effects at the surface, appear to be more important factors than specific contact types like salt bridges and aromatic clusters.

  5. Cth2 Protein Mediates Early Adaptation of Yeast Cells to Oxidative Stress Conditions.

    PubMed

    Castells-Roca, Laia; Pijuan, Jordi; Ferrezuelo, Francisco; Bellí, Gemma; Herrero, Enrique

    2016-01-01

    Cth2 is an mRNA-binding protein that participates in remodeling yeast cell metabolism in iron starvation conditions by promoting decay of the targeted molecules, in order to avoid excess iron consumption. This study shows that in the absence of Cth2 immediate upregulation of expression of several of the iron regulon genes (involved in high affinity iron uptake and intracellular iron redistribution) upon oxidative stress by hydroperoxide is more intense than in wild type conditions where Cth2 is present. The oxidative stress provokes a temporary increase in the levels of Cth2 (itself a member of the iron regulon). In such conditions Cth2 molecules accumulate at P bodies-like structures when the constitutive mRNA decay machinery is compromised. In addition, a null Δcth2 mutant shows defects, in comparison to CTH2 wild type cells, in exit from α factor-induced arrest at the G1 stage of the cell cycle when hydroperoxide treatment is applied. The cell cycle defects are rescued in conditions that compromise uptake of external iron into the cytosol. The observations support a role of Cth2 in modulating expression of diverse iron regulon genes, excluding those specifically involved in the reductive branch of the high-affinity transport. This would result in immediate adaptation of the yeast cells to an oxidative stress, by controlling uptake of oxidant-promoting iron cations.

  6. T cell proliferation and adaptive immune responses are critically regulated by protein phosphatase 4

    PubMed Central

    Liao, Fang-Hsuean; Hsiao, Wan-Yi; Lin, Yu-Chun; Chan, Yi-Chiao; Huang, Ching-Yu

    2016-01-01

    ABSTRACT The clonal expansion of activated T cells is pivotal for the induction of protective immunity. Protein phosphatase 4 (PP4) is a ubiquitously expressed serine/threonine phosphatase with reported functions in thymocyte development and DNA damage responses. However, the role of PP4 in T cell immunity has not been thoroughly investigated. In this report, our data showed that T cell-specific ablation of PP4 resulted in defective adaptive immunity, impaired T cell homeostatic expansion, and inefficient T cell proliferation. This hypo-proliferation was associated with a partial G1-S cell cycle arrest, enhanced transcriptions of CDK inhibitors and elevated activation of AMPK. In addition, resveratrol, a known AMPK activator, induced similar G1-S arrests, while lentivirally-transduced WT or constitutively-active AMPKα1 retarded the proliferation of WT T cells. Further investigations showed that PP4 co-immunoprecipitated with AMPKα1, and the over-expression of PP4 inhibited AMPK phosphorylation, thereby implicating PP4 for the negative regulation of AMPK. In summary, our results indicate that PP4 is an essential modulator for T cell proliferation and immune responses; they further suggest a potential link between PP4 functions, AMPK activation and G1-S arrest in activated T cells. PMID:26940341

  7. Cth2 Protein Mediates Early Adaptation of Yeast Cells to Oxidative Stress Conditions

    PubMed Central

    Ferrezuelo, Francisco; Bellí, Gemma; Herrero, Enrique

    2016-01-01

    Cth2 is an mRNA-binding protein that participates in remodeling yeast cell metabolism in iron starvation conditions by promoting decay of the targeted molecules, in order to avoid excess iron consumption. This study shows that in the absence of Cth2 immediate upregulation of expression of several of the iron regulon genes (involved in high affinity iron uptake and intracellular iron redistribution) upon oxidative stress by hydroperoxide is more intense than in wild type conditions where Cth2 is present. The oxidative stress provokes a temporary increase in the levels of Cth2 (itself a member of the iron regulon). In such conditions Cth2 molecules accumulate at P bodies-like structures when the constitutive mRNA decay machinery is compromised. In addition, a null Δcth2 mutant shows defects, in comparison to CTH2 wild type cells, in exit from α factor-induced arrest at the G1 stage of the cell cycle when hydroperoxide treatment is applied. The cell cycle defects are rescued in conditions that compromise uptake of external iron into the cytosol. The observations support a role of Cth2 in modulating expression of diverse iron regulon genes, excluding those specifically involved in the reductive branch of the high-affinity transport. This would result in immediate adaptation of the yeast cells to an oxidative stress, by controlling uptake of oxidant-promoting iron cations. PMID:26824473

  8. Arabinogalactan Proteins Are Involved in Salt-Adaptation and Vesicle Trafficking in Tobacco by-2 Cell Cultures.

    PubMed

    Olmos, Enrique; García De La Garma, Jesús; Gomez-Jimenez, Maria C; Fernandez-Garcia, Nieves

    2017-01-01

    Arabinogalactan proteins (AGPs) are a highly diverse family of glycoproteins that are commonly found in most plant species. However, little is known about the physiological and molecular mechanisms of their function. AGPs are involved in different biological processes such as cell differentiation, cell expansion, tissue development and somatic embryogenesis. AGPs are also involved in abiotic stress response such as salinity modulating cell wall expansion. In this study, we describe how salt-adaptation in tobacco BY-2 cell cultures induces important changes in arabinogalactan proteins distribution and contents. Using the immuno-dot blot technique with different anti-AGP antibodies (JIM13, JIM15, and others), we observed that AGPs were highly accumulated in the culture medium of salt-adapted tobacco cells, probably due to the action of phospholipases. We located these AGP epitopes using immunogold labeling in the cytoplasm associated to the endoplasmic reticulum, the golgi apparatus, and vesicles, plasma membrane and tonoplast. Our results show that salt-adaptation induced a significant reduction of the cytoplasm, plasma membrane and tonoplast content of these epitopes. Yariv reagent was added to the control and salt-adapted tobacco cell cultures, leading to cell death induction in control cells but not in salt-adapted cells. Ultrastructural and immunogold labeling revealed that cell death induced by Yariv reagent in control cells was due to the interaction of Yariv reagent with the AGPs linked to the plasma membranes. Finally, we propose a new function of AGPs as a possible sodium carrier through the mechanism of vesicle trafficking from the apoplast to the vacuoles in salt-adapted tobacco BY-2 cells. This mechanism may contribute to sodium homeostasis during salt-adaptation to high saline concentrations.

  9. Uncoupling protein and ATP/ADP carrier increase mitochondrial proton conductance after cold adaptation of king penguins.

    PubMed

    Talbot, Darren A; Duchamp, Claude; Rey, Benjamin; Hanuise, Nicolas; Rouanet, Jean Louis; Sibille, Brigitte; Brand, Martin D

    2004-07-01

    Juvenile king penguins develop adaptive thermogenesis after repeated immersion in cold water. However, the mechanisms of such metabolic adaptation in birds are unknown, as they lack brown adipose tissue and uncoupling protein-1 (UCP1), which mediate adaptive non-shivering thermogenesis in mammals. We used three different groups of juvenile king penguins to investigate the mitochondrial basis of avian adaptive thermogenesis in vitro. Skeletal muscle mitochondria isolated from penguins that had never been immersed in cold water showed no superoxide-stimulated proton conductance, indicating no functional avian UCP. Skeletal muscle mitochondria from penguins that had been either experimentally immersed or naturally adapted to cold water did possess functional avian UCP, demonstrated by a superoxide-stimulated, GDP-inhibitable proton conductance across their inner membrane. This was associated with a markedly greater abundance of avian UCP mRNA. In the presence (but not the absence) of fatty acids, these mitochondria also showed a greater adenine nucleotide translocase-catalysed proton conductance than those from never-immersed penguins. This was due to an increase in the amount of adenine nucleotide translocase. Therefore, adaptive thermogenesis in juvenile king penguins is linked to two separate mechanisms of uncoupling of oxidative phosphorylation in skeletal muscle mitochondria: increased proton transport activity of avian UCP (dependent on superoxide and inhibited by GDP) and increased proton transport activity of the adenine nucleotide translocase (dependent on fatty acids and inhibited by carboxyatractylate).

  10. Uncoupling protein and ATP/ADP carrier increase mitochondrial proton conductance after cold adaptation of king penguins

    PubMed Central

    Talbot, Darren A; Duchamp, Claude; Rey, Benjamin; Hanuise, Nicolas; Rouanet, Jean Louis; Sibille, Brigitte; Brand, Martin D

    2004-01-01

    Juvenile king penguins develop adaptive thermogenesis after repeated immersion in cold water. However, the mechanisms of such metabolic adaptation in birds are unknown, as they lack brown adipose tissue and uncoupling protein-1 (UCP1), which mediate adaptive non-shivering thermogenesis in mammals. We used three different groups of juvenile king penguins to investigate the mitochondrial basis of avian adaptive thermogenesis in vitro. Skeletal muscle mitochondria isolated from penguins that had never been immersed in cold water showed no superoxide-stimulated proton conductance, indicating no functional avian UCP. Skeletal muscle mitochondria from penguins that had been either experimentally immersed or naturally adapted to cold water did possess functional avian UCP, demonstrated by a superoxide-stimulated, GDP-inhibitable proton conductance across their inner membrane. This was associated with a markedly greater abundance of avian UCP mRNA. In the presence (but not the absence) of fatty acids, these mitochondria also showed a greater adenine nucleotide translocase-catalysed proton conductance than those from never-immersed penguins. This was due to an increase in the amount of adenine nucleotide translocase. Therefore, adaptive thermogenesis in juvenile king penguins is linked to two separate mechanisms of uncoupling of oxidative phosphorylation in skeletal muscle mitochondria: increased proton transport activity of avian UCP (dependent on superoxide and inhibited by GDP) and increased proton transport activity of the adenine nucleotide translocase (dependent on fatty acids and inhibited by carboxyatractylate). PMID:15146050

  11. Hyperefficient PrP Sc amplification of mouse-adapted BSE and scrapie strain by protein misfolding cyclic amplification technique.

    PubMed

    Fujihara, Aiko; Atarashi, Ryuichiro; Fuse, Takayuki; Ubagai, Kaori; Nakagaki, Takehiro; Yamaguchi, Naohiro; Ishibashi, Daisuke; Katamine, Shigeru; Nishida, Noriyuki

    2009-05-01

    Abnormal forms of prion protein (PrP(Sc)) accumulate via structural conversion of normal PrP (PrP(C)) in the progression of transmissible spongiform encephalopathy. Under cell-free conditions, the process can be efficiently replicated using in vitro PrP(Sc) amplification methods, including protein misfolding cyclic amplification. These methods enable ultrasensitive detection of PrP(Sc); however, there remain difficulties in utilizing them in practice. For example, to date, several rounds of protein misfolding cyclic amplification have been necessary to reach maximal sensitivity, which not only take several weeks, but also result in an increased risk of contamination. In this study, we sought to further promote the rate of PrP(Sc) amplification in the protein misfolding cyclic amplification technique using mouse transmissible spongiform encephalopathy models infected with either mouse-adapted bovine spongiform encephalopathy or mouse-adapted scrapie, Chandler strain. Here, we demonstrate that appropriate regulation of sonication dramatically accelerates PrP(Sc) amplification in both strains. In fact, we reached maximum sensitivity, allowing the ultrasensitive detection of < 1 LD(50) of PrP(Sc) in the diluted brain homogenates, after only one or two reaction rounds, and in addition, we detected PrP(Sc) in the plasma of mouse-adapted bovine spongiform encephalopathy-infected mice. We believe that these results will advance the establishment of a fast, ultrasensitive diagnostic test for transmissible spongiform encephalopathies.

  12. Structural Basis for Phosphotyrosine Recognition by the Src Homology-2 Domains of the Adapter Proteins SH2-B and APS

    SciTech Connect

    Hu,J.; Hubbard, S.

    2006-01-01

    SH2-B, APS, and Lnk constitute a family of adapter proteins that modulate signaling by protein tyrosine kinases. These adapters contain an N-terminal dimerization region, a pleckstrin homology domain, and a C-terminal Src homology-2 (SH2) domain. SH2-B is recruited via its SH2 domain to various protein tyrosine kinases, including Janus kinase-2 (Jak2) and the insulin receptor. Here, we present the crystal structure at 2.35 Angstroms resolution of the SH2 domain of SH2-B in complex with a phosphopeptide representing the SH2-B recruitment site in Jak2 (pTyr813). The structure reveals a canonical SH2 domain-phosphopeptide binding mode, but with specific recognition of a glutamate at the +1 position relative to phosphotyrosine, in addition to recognition of a hydrophobic residue at the +3 position. Biochemical studies of SH2-B and APS demonstrate that, although the SH2 domains of these two adapter proteins share 79% sequence identity, the SH2-B SH2 domain binds preferentially to Jak2, whereas the APS SH2 domain has higher affinity for the insulin receptor. This differential specificity is attributable to the difference in the oligomeric states of the two SH2 domains: monomeric for SH2-B and dimeric for APS.

  13. ADAPT, a Novel Scaffold Protein-Based Probe for Radionuclide Imaging of Molecular Targets That Are Expressed in Disseminated Cancers.

    PubMed

    Garousi, Javad; Lindbo, Sarah; Nilvebrant, Johan; Åstrand, Mikael; Buijs, Jos; Sandström, Mattias; Honarvar, Hadis; Orlova, Anna; Tolmachev, Vladimir; Hober, Sophia

    2015-10-15

    Small engineered scaffold proteins have attracted attention as probes for radionuclide-based molecular imaging. One class of these imaging probes, termed ABD-Derived Affinity Proteins (ADAPT), has been created using the albumin-binding domain (ABD) of streptococcal protein G as a stable protein scaffold. In this study, we report the development of a clinical lead probe termed ADAPT6 that binds HER2, an oncoprotein overexpressed in many breast cancers that serves as a theranostic biomarker for several approved targeting therapies. Surface-exposed amino acids of ABD were randomized to create a combinatorial library enabling selection of high-affinity binders to various proteins. Furthermore, ABD was engineered to enable rapid purification, to eradicate its binding to albumin, and to enable rapid blood clearance. Incorporation of a unique cysteine allowed site-specific conjugation to a maleimido derivative of a DOTA chelator, enabling radionuclide labeling, ¹¹¹In for SPECT imaging and ⁶⁸Ga for PET imaging. Pharmacologic studies in mice demonstrated that the fully engineered molecule (111)In/⁶⁸Ga-DOTA-(HE)3-ADAPT6 was specifically bound and taken up by HER2-expressing tumors, with a high tumor-to-normal tissue ratio in xenograft models of human cancer. Unbound tracer underwent rapid renal clearance followed by high renal reabsorption. HER2-expressing xenografts were visualized by gamma-camera or PET at 1 hour after infusion. PET experiments demonstrated feasibility for discrimination of xenografts with high or low HER2 expression. Our results offer a preclinical proof of concept for the use of ADAPT probes for noninvasive in vivo imaging.

  14. The negatively charged regions of lactoferrin binding protein B, an adaptation against anti-microbial peptides.

    PubMed

    Morgenthau, Ari; Beddek, Amanda; Schryvers, Anthony B

    2014-01-01

    Lactoferrin binding protein B (LbpB) is a bi-lobed membrane bound lipoprotein that is part of the lactoferrin receptor complex in a variety of Gram-negative pathogens. Despite high sequence diversity among LbpBs from various strains and species, a cluster of negatively charged amino acids is invariably present in the protein's C-terminal lobe in all species except Moraxella bovis. The function of LbpB in iron acquisition has yet to be experimentally demonstrated, whereas in vitro studies have shown that LbpB confers protection against lactoferricin, a short cationic antimicrobial peptide released from the N- terminus of lactoferrin. In this study we demonstrate that the negatively charged regions can be removed from the Neisseria meningitidis LbpB without compromising stability, and this results in the inability of LbpB to protect against the bactericidal effects of lactoferricin. The release of LbpB from the cell surface by the autotransporter NalP reduces the protection against lactoferricin in the in vitro killing assay, attributed to removal of LbpB during washing steps, but is unlikely to have a similar impact in vivo. The protective effect of the negatively charged polysaccharide capsule in the killing assay was less than the protection conferred by LbpB, suggesting that LbpB plays a major role in protection against cationic antimicrobial peptides in vivo. The selective release of LbpB by NalP has been proposed to be a mechanism for evading the adaptive immune response, by reducing the antibody binding to the cell surface, but may also provide insights into the primary function of LbpB in vivo. Although TbpB and LbpB have been shown to be major targets of the human immune response, the selective release of LbpB suggests that unlike TbpB, LbpB may not be essential for iron acquisition, but important for protection against cationic antimicrobial peptides.

  15. Adaptive aneuploidy protects against thiol peroxidase deficiency by increasing respiration via key mitochondrial proteins.

    PubMed

    Kaya, Alaattin; Gerashchenko, Maxim V; Seim, Inge; Labarre, Jean; Toledano, Michel B; Gladyshev, Vadim N

    2015-08-25

    Aerobic respiration is a fundamental energy-generating process; however, there is cost associated with living in an oxygen-rich environment, because partially reduced oxygen species can damage cellular components. Organisms evolved enzymes that alleviate this damage and protect the intracellular milieu, most notably thiol peroxidases, which are abundant and conserved enzymes that mediate hydrogen peroxide signaling and act as the first line of defense against oxidants in nearly all living organisms. Deletion of all eight thiol peroxidase genes in yeast (∆8 strain) is not lethal, but results in slow growth and a high mutation rate. Here we characterized mechanisms that allow yeast cells to survive under conditions of thiol peroxidase deficiency. Two independent ∆8 strains increased mitochondrial content, altered mitochondrial distribution, and became dependent on respiration for growth but they were not hypersensitive to H2O2. In addition, both strains independently acquired a second copy of chromosome XI and increased expression of genes encoded by it. Survival of ∆8 cells was dependent on mitochondrial cytochrome-c peroxidase (CCP1) and UTH1, present on chromosome XI. Coexpression of these genes in ∆8 cells led to the elimination of the extra copy of chromosome XI and improved cell growth, whereas deletion of either gene was lethal. Thus, thiol peroxidase deficiency requires dosage compensation of CCP1 and UTH1 via chromosome XI aneuploidy, wherein these proteins support hydroperoxide removal with the reducing equivalents generated by the electron transport chain. To our knowledge, this is the first evidence of adaptive aneuploidy counteracting oxidative stress.

  16. Plant natriuretic peptides induce proteins diagnostic for an adaptive response to stress

    PubMed Central

    Turek, Ilona; Marondedze, Claudius; Wheeler, Janet I.; Gehring, Chris; Irving, Helen R.

    2014-01-01

    In plants, structural and physiological evidence has suggested the presence of biologically active natriuretic peptides (PNPs). PNPs are secreted into the apoplast, are systemically mobile and elicit a range of responses signaling via cGMP. The PNP-dependent responses include tissue specific modifications of cation transport and changes in stomatal conductance and the photosynthetic rate. PNP also has a critical role in host defense responses. Surprisingly, PNP-homologs are produced by several plant pathogens during host colonization suppressing host defense responses. Here we show that a synthetic peptide representing the biologically active fragment of the Arabidopsis thaliana PNP (AtPNP-A) induces the production of reactive oxygen species in suspension-cultured A. thaliana (Col-0) cells. To identify proteins whose expression changes in an AtPNP-A dependent manner, we undertook a quantitative proteomic approach, employing tandem mass tag (TMT) labeling, to reveal temporal responses of suspension-cultured cells to 1 nM and 10 pM PNP at two different time-points post-treatment. Both concentrations yield a distinct differential proteome signature. Since only the higher (1 nM) concentration induces a ROS response, we conclude that the proteome response at the lower concentration reflects a ROS independent response. Furthermore, treatment with 1 nM PNP results in an over-representation of the gene ontology (GO) terms “oxidation-reduction process,” “translation” and “response to salt stress” and this is consistent with a role of AtPNP-A in the adaptation to environmental stress conditions. PMID:25505478

  17. Changes in the receptorbinding haemagglutinin protein of wild-type morbilliviruses are not required for adaptation to Vero cells.

    PubMed

    Nielsen, Line; Andersen, Mads Klindt; Jensen, Tove Dannemann; Blixenkrone-Møller, Merete; Bolt, Gert

    2003-10-01

    We examined the consequences of isolation and adaptation to Vero cells for the receptorbinding haemagglutinin (H) gene of four syncytia-forming isolates of canine distemper virus (CDV) and of a dolphin morbillivirus isolate. A Vero-adapted CDV isolate exhibited biased hypermutation, since 11 out of 12 nucleotide differences to other isolates from the same epidemic were U-C transitions. Most of these transitions appeared to have taken place during in vitro cultivation. Previously, biased hypermutation in morbilliviruses has almost exclusively been described for subacute sclerosing panencephalitis and measles inclusion body encephalitis, which are rare measles virus brain infections. Amino acid changes in the H proteins were not required for Vero cell adaptation, suggesting that Vero cells express receptors for wild-type morbilliviruses. This strongly indicate the existence of other morbillivirus receptors than CD46 and CDw150.

  18. Adaptive changes in protein expression in Escherichia coli as a consequence of growth in milk

    USDA-ARS?s Scientific Manuscript database

    Bacteria must adapt to the environment in the mammary gland and the pressures exerted by the host immune system in order to survive. Understanding bacterial adaptation to their environment could become a foundation to research into better therapeutics for treatment of bacterial infections. As a fi...

  19. [The possible role of the elements of protein secondary structure in adaptation to the action of ionizing radiation].

    PubMed

    Kharchenko, L I; Pavlovskaia, T E

    1997-01-01

    Changes in the secondary structure of enzymes induced by gamma-rays 60Co at doses not exceeding one ionization per macromolecule were studied to elucidate a possible role of radiation-chemical processes in the evolution of proteins. The data on the comparative radioresistance of various types of secondary protein structures, alpha-helix, parallel and anti-parallel beta-structures, and beta-turn, were obtained by the method of circular dichroism. It was shown that beta-turns were resistant against radiation, alpha-helix was relatively stable, and beta-layer underwent significant changes. The importance of these structural types in the evolution of proteins is discussed. A special role of beta-turn as structural elements fixing the confirmation of macromolecules and therefore responsible for adaptation of the protein structure against a constant radiation background is proposed.

  20. Vav and Rac activation in B cell antigen receptor endocytosis involves Vav recruitment to the adapter protein LAB.

    PubMed

    Malhotra, Shikha; Kovats, Susan; Zhang, Weiguo; Coggeshall, K Mark

    2009-12-25

    The signal transduction events supporting B cell antigen receptor (BCR) endocytosis are not well understood. We have identified a pathway supporting BCR internalization that begins with tyrosine phosphorylation of the adapter protein LAB. Phosphorylated LAB recruits a complex of Grb2-dynamin and the guanine nucleotide exchange factor Vav. Vav is required for activation of the small GTPases Rac1 and Rac2. All these proteins contribute to (and dynamin, Vav, and Rac1/2 are required for) BCR endocytosis and presentation of antigen to T cells. This is the first description of a sequential signal transduction pathway from BCR to internalization and antigen presentation.

  1. Effects of heat, cold, acid and bile salt adaptations on the stress tolerance and protein expression of kefir-isolated probiotic Lactobacillus kefiranofaciens M1.

    PubMed

    Chen, Ming-Ju; Tang, Hsin-Yu; Chiang, Ming-Lun

    2017-09-01

    Lactobacillus kefiranofaciens M1 is a probiotic strain isolated from Taiwanese kefir grains. The present study evaluated the effects of heat, cold, acid and bile salt adaptations on the stress tolerance of L. kefiranofaciens M1. The regulation of protein expression of L. kefiranofaciens M1 under these adaptation conditions was also investigated. The results showed that adaptation of L. kefiranofaciens M1 to heat, cold, acid and bile salts induced homologous tolerance and cross-protection against heterologous challenge. The extent of induced tolerance varied depending on the type and condition of stress. Proteomic analysis revealed that 27 proteins exhibited differences in expression between non-adapted and stress-adapted L. kefiranofaciens M1 cells. Among these proteins, three proteins involved in carbohydrate metabolism (triosephosphate isomerase, enolase and NAD-dependent glycerol-3-phosphate dehydrogenase), two proteins involved in pH homeostasis (ATP synthase subunits AtpA and AtpB), two stress response proteins (chaperones DnaK and GroEL) and one translation-related protein (30S ribosomal protein S2) were up-regulated by three of the four adaptation treatments examined. The increased synthesis of these stress proteins might play a critical protective role in the cellular defense against heat, cold, acid and bile salt stresses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Mutation of a cuticular protein, BmorCPR2, alters larval body shape and adaptability in silkworm, Bombyx mori.

    PubMed

    Qiao, Liang; Xiong, Gao; Wang, Ri-xin; He, Song-zhen; Chen, Jie; Tong, Xiao-ling; Hu, Hai; Li, Chun-lin; Gai, Ting-ting; Xin, Ya-qun; Liu, Xiao-fan; Chen, Bin; Xiang, Zhong-huai; Lu, Cheng; Dai, Fang-yin

    2014-04-01

    Cuticular proteins (CPs) are crucial components of the insect cuticle. Although numerous genes encoding cuticular proteins have been identified in known insect genomes to date, their functions in maintaining insect body shape and adaptability remain largely unknown. In the current study, positional cloning led to the identification of a gene encoding an RR1-type cuticular protein, BmorCPR2, highly expressed in larval chitin-rich tissues and at the mulberry leaf-eating stages, which is responsible for the silkworm stony mutant. In the Dazao-stony strain, the BmorCPR2 allele is a deletion mutation with significantly lower expression, compared to the wild-type Dazao strain. Dysfunctional BmorCPR2 in the stony mutant lost chitin binding ability, leading to reduced chitin content in larval cuticle, limitation of cuticle extension, abatement of cuticle tensile properties, and aberrant ratio between internodes and intersegmental folds. These variations induce a significant decrease in cuticle capacity to hold the growing internal organs in the larval development process, resulting in whole-body stiffness, tightness, and hardness, bulging intersegmental folds, and serious defects in larval adaptability. To our knowledge, this is the first study to report the corresponding phenotype of stony in insects caused by mutation of RR1-type cuticular protein. Our findings collectively shed light on the specific role of cuticular proteins in maintaining normal larval body shape and will aid in the development of pest control strategies for the management of Lepidoptera.

  3. Assessment of the protein quality of nine northern adapted yellow and brown seed coated soybean cultivars by amino acid analysis.

    PubMed

    Zarkadas, C G; Voldeng, H D; Yu, Z R; Choi, V K

    1999-12-01

    Accurate and detailed amino acid determinations were carried out on nine northern adapted soybean cultivars to ascertain whether their amino acid profiles could be used as potentially useful indices for assessing their protein quality. The cultivars were Maple Amber, Maple Donovan, Maple Glen, Maple Isle, Maple Presto, Maple Ridge, and three brown seed coat near-isogenic lines, Maple Presto Brown, Maple Ridge Brown, and Maple Arrow Brown. Their total protein and amino acid composition were compared with those of an established cultivar, Maple Arrow. Mean protein values for the new cultivars ranged from 30.1 to 33.1% compared to Maple Arrow, which was 33.2%. The total nitrogen content was also variable among these cultivars, ranging from 5.0 to 5.4%. All nine Maple series soybean cultivars were higher in their essential amino acid (EAA) content, that is, EAA(9) = 45.2-46.5%, than the FAO/WHO reference protein pattern value of EAA(9) = 33.9%, for a 2-5-year-old child. Each of the nine new soybean cultivars was limited only in methionine and to a lesser extent in valine and isoleucine and had a protein digestibility corrected amino acid score of 91% for all cultivars, compared to the value of egg protein (97%). These results suggest that the most accurate evaluation of protein quality in soybeans, and possibly other legumes and cereals, is by the protein digestibility-corrected amino acid score.

  4. Decoupling of rapid and adaptive evolution among seminal fluid proteins in heliconius butterflies with divergent mating systems.

    PubMed

    Walters, James R; Harrison, Richard G

    2011-10-01

    Reproductive proteins often diverge rapidly between species. This pattern is frequently attributed to postmating sexual selection. Heliconius butterflies offer a good opportunity to examine this hypothesis by contrasting patterns of reproductive protein evolution between clades with divergent mating systems. Pupal-mating Heliconius females typically mate only once, limiting opportunity for postmating sexual selection. In contrast, adult-mating females remate throughout life. Reproductive protein evolution is therefore predicted to be slower and show little evidence of positive selection in the pupal-mating clade. We examined this prediction by sequencing 18 seminal fluid protein genes from a dozen Heliconius species and a related outgroup. Two proteins exhibited dN/dS > 1, implicating positive selection in the rapid evolution of at least a few Heliconius seminal fluid proteins. However, contrary to predictions, the average evolutionary rate of seminal fluid proteins was greater among pupal-mating Heliconius. Based on these results, we suggest that positive selection and relaxed constraint can generate conflicting patterns of reproductive protein evolution between mating systems. As predicted, some loci may show elevated evolutionary rates in promiscuous taxa relative to monandrous taxa resulting from adaptations to postmating sexual selection. However, when monandry is derived (as in Heliconius), the opposite pattern may result from relaxed selective constraints. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.

  5. Signal Regulatory Protein alpha (SIRPalpha)+ Cells in the Adaptive Response to ESAT-6/CFP-10 Protein of Tuberculous Mycobacteria

    USDA-ARS?s Scientific Manuscript database

    Early secretory antigenic target-6 (ESAT-6) and culture filtrate protein-10(CFP-10) are co-secreted proteins of Mycobacterium tuberculosis complex mycobacteria (includes M. bovis, the zoonotic agent of bovine tuberculosis) involved in phagolysosome escape of the bacillus and, potentially, in the eff...

  6. PSB27: A thylakoid protein enabling Arabidopsis to adapt to changing light intensity

    SciTech Connect

    Hou, Xin; Garcia, Veder J.; Buchanan, Bob B.; Luan, Sheng

    2016-08-22

    complex that might be PSII supercomplex. Under objective 2, we have found that FKBP16-2 interacted with PSB27 that was further pursuited and published a research article in PNAS (attached). Under Objective 3, we have identified several mutants of other FKBPs in the thyalkoid lumen that should be further studied if future funding is available. Under Objective 4, we have started to build a network of lumenal proteins that play a number of roles in photosynthesis. For example, the CYP37 and CYP28 are linked to chloroplast signaling to nucleus, critical for controlling plant response to high light and adaptation to climate change. Unfortunately these studies have been terminated due to funding shortage.

  7. Adaptive Control of Two-Photon Excitation of Green Fluorescent Protein with Shaped Femtosecond Pulses

    NASA Astrophysics Data System (ADS)

    Kawano, Hiroyuki; Nabekawa, Yasuo; Suda, Akira; Oishi, Yu; Mizuno, Hideaki; Miyawaki, Atsushi; Midorikawa, Katsumi

    For many years, it has been believed that a Fourier-transform-limited (FTL) laser pulse is the most effective light source for the generation of nonlinear phenomena, since the FTL pulse has the shortest pulse duration, that is, the highest intensity, that can be limited by the spectral width due to the principle of uncertainty. Recently, many reports have been published on the adaptive control of nonlinear phenomena with shaped femtosecond excitation laser pulses [1, 2]. Their reports have shown that the modification of the spectral and temporal phases of excitation pulses can increase or decrease the probabilities and efficiencies of such nonlinear phenomena. This method has been widely applied to studies on the active control of molecular motions or chemical reactions [3,4]. Considering further novel biological applications, we focus on the two-photon excited fluorescence (TPEF) of the green fluorescent protein (GFP) from the jellyfish Aequorea victoria. GFP is spontaneously fluorescent and is relatively nontoxic compared with other organic dyes used as optical markers. Therefore, it has been widely used as a "tag" material for the fluorescence observation of living cells [5]. Two-photon excitation microscopy (TPEM) is a powerful tool for biological real-time observation due to its various advantages, such as a clear contrast, good S/N ratio, and high spatial resolution [7]. From a practical point of view, however, there is a serious problem with TPEM, which is the photobleaching of a dye. The intensity of a fluorescence signal decreases significantly during observation. One of the reasons for this is that the chromophore structure is degraded by intense excitation laser pulses that are required for efficient two-photon excitation. In this study, therefore, we attempted to determine the optimal phase for maximizing the fluorescence efficiency of a GFP variant with excitation laser pulses of minimal intensity. We considered that GFP can be an ideal dye for the

  8. The Negatively Charged Regions of Lactoferrin Binding Protein B, an Adaptation against Anti-Microbial Peptides

    PubMed Central

    Morgenthau, Ari; Beddek, Amanda; Schryvers, Anthony B.

    2014-01-01

    Lactoferrin binding protein B (LbpB) is a bi-lobed membrane bound lipoprotein that is part of the lactoferrin receptor complex in a variety of Gram-negative pathogens. Despite high sequence diversity among LbpBs from various strains and species, a cluster of negatively charged amino acids is invariably present in the protein’s C-terminal lobe in all species except Moraxella bovis. The function of LbpB in iron acquisition has yet to be experimentally demonstrated, whereas in vitro studies have shown that LbpB confers protection against lactoferricin, a short cationic antimicrobial peptide released from the N- terminus of lactoferrin. In this study we demonstrate that the negatively charged regions can be removed from the Neisseria meningitidis LbpB without compromising stability, and this results in the inability of LbpB to protect against the bactericidal effects of lactoferricin. The release of LbpB from the cell surface by the autotransporter NalP reduces the protection against lactoferricin in the in vitro killing assay, attributed to removal of LbpB during washing steps, but is unlikely to have a similar impact in vivo. The protective effect of the negatively charged polysaccharide capsule in the killing assay was less than the protection conferred by LbpB, suggesting that LbpB plays a major role in protection against cationic antimicrobial peptides in vivo. The selective release of LbpB by NalP has been proposed to be a mechanism for evading the adaptive immune response, by reducing the antibody binding to the cell surface, but may also provide insights into the primary function of LbpB in vivo. Although TbpB and LbpB have been shown to be major targets of the human immune response, the selective release of LbpB suggests that unlike TbpB, LbpB may not be essential for iron acquisition, but important for protection against cationic antimicrobial peptides. PMID:24465982

  9. Self-adaptive differential evolution algorithm incorporating local search for protein-ligand docking

    NASA Astrophysics Data System (ADS)

    Chung, Hwan Won; Cho, Seung Joo; Lee, Kwang-Ryeol; Lee, Kyu-Hwan

    2013-02-01

    Differential Evolution (DE) algorithm is powerful in optimization problems over several real parameters. DE depends on strategies to generate new trial solutions and the associated parameter values for searching performance. In self-adaptive DE, the automatic learning about previous evolution was used to determine the best mutation strategy and its parameter settings. By combining the self-adaptive DE and Hooke Jeeves local search, we developed a new docking method named SADock (Strategy Adaptation Dock) with the help of AutoDock4 scoring function. As the accuracy and performance of SADock was evaluated in self-docking using the Astex diverse set, the introduced SADock showed better success ratio (89%) than the success ratio (60%) of the Lamarckian genetic algorithm (LGA) of AutoDock4. The self-adapting scheme enabled our new docking method to converge fast and to be robust through the various docking problems.

  10. SH3P7 is a cytoskeleton adapter protein and is coupled to signal transduction from lymphocyte antigen receptors.

    PubMed

    Larbolette, O; Wollscheid, B; Schweikert, J; Nielsen, P J; Wienands, J

    1999-02-01

    Lymphocytes respond to antigen receptor engagement with tyrosine phosphorylation of many cellular proteins, some of which have been identified and functionally characterized. Here we describe SH3P7, a novel substrate protein for Src and Syk family kinases. SH3P7 migrates in sodium dodecyl sulfate-polyacrylamide gel electrophoresis as a 55-kDa protein that is preferentially expressed in brain, thymus, and spleen. It contains multiple amino acid sequence motifs, including two consensus tyrosine phosphorylation sites of the YXXP type and one SH3 domain. A region of sequence similarity, which we named SCAD, was found in SH3P7 and three actin-binding proteins. The SCAD region may represent a new type of protein-protein interaction domain that mediates binding to actin. Consistent with this possibility, SH3P7 colocalizes with actin filaments of the cytoskeleton. Altogether, our data implicate SH3P7 as an adapter protein which links antigen receptor signaling to components of the cytoskeleton.

  11. Structural insights into the cold adaptation of the photosynthetic pigment-protein C-phycocyanin from an Arctic cyanobacterium.

    PubMed

    Su, Hai-Nan; Wang, Qian-Min; Li, Chun-Yang; Li, Kang; Luo, Wei; Chen, Bo; Zhang, Xi-Ying; Qin, Qi-Long; Zhou, Bai-Cheng; Chen, Xiu-Lan; Zhang, Yu-Zhong; Xie, Bin-Bin

    2017-04-01

    The cold adaptation mechanism of phycobiliproteins, the major photosynthetic pigment-proteins in cyanobacteria and red algae, has rarely been studied. Here we reported the biochemical, structural, and molecular dynamics simulation study of the C-phycocyanin from Arctic cyanobacterial strain Pseudanabaena sp. LW0831. We characterized the phycobilisome components of LW0831 and obtained their gene sequences. Compared to the mesophilic counterpart from Arthrospira platensis (Ar-C-PC), LW0831 C-phycocyanin (Ps-C-PC) has a decreased thermostability (∆Tm of -16°C), one of the typical features of cold-adapted enzymes. To uncover its structural basis, we resolved the crystal structure of Ps-C-PC 1 at 2.04Å. Consistent with the decrease in thermostability, comparative structural analyses revealed decreased intra-trimer and inter-trimer interactions in Ps-C-PC 1, compared to Ar-C-PC. However, comparative molecular dynamics simulations indicated that Ps-C-PC 1 shows similar flexibilities to Ar-C-PC for both the (αβ)3 trimer and (αβ)6 hexamer. Therefore, the optimization mode is clearly different from cold-adapted enzymes, which usually have increased flexibilities. Detailed analyses demonstrated different optimization modes for the α and β subunits and it was revealed that hydrophobic interactions are key to this difference, though salt bridges, hydrogen bonds, and surface hydrophobicity are also involved. This study is the first report of the structure of cold-adapted phycobiliproteins and provides insights into the cold-adaptation strategies of non-enzyme proteins.

  12. A Comparative Pan-Genome Perspective of Niche-Adaptable Cell-Surface Protein Phenotypes in Lactobacillus rhamnosus

    PubMed Central

    Kant, Ravi; Sigvart-Mattila, Pia; Paulin, Lars; Mecklin, Jukka-Pekka; Saarela, Maria; Palva, Airi; von Ossowski, Ingemar

    2014-01-01

    Lactobacillus rhamnosus is a ubiquitously adaptable Gram-positive bacterium and as a typical commensal can be recovered from various microbe-accessible bodily orifices and cavities. Then again, other isolates are food-borne, with some of these having been long associated with naturally fermented cheeses and yogurts. Additionally, because of perceived health benefits to humans and animals, numerous L. rhamnosus strains have been selected for use as so-called probiotics and are often taken in the form of dietary supplements and functional foods. At the genome level, it is anticipated that certain genetic variances will have provided the niche-related phenotypes that augment the flexible adaptiveness of this species, thus enabling its strains to grow and survive in their respective host environments. For this present study, we considered it functionally informative to examine and catalogue the genotype-phenotype variation existing at the cell surface between different L. rhamnosus strains, with the presumption that this might be relatable to habitat preferences and ecological adaptability. Here, we conducted a pan-genomic study involving 13 genomes from L. rhamnosus isolates with various origins. In using a benchmark strain (gut-adapted L. rhamnosus GG) for our pan-genome comparison, we had focused our efforts on a detailed examination and description of gene products for certain functionally relevant surface-exposed proteins, each of which in effect might also play a part in niche adaptability among the other strains. Perhaps most significantly of the surface protein loci we had analyzed, it would appear that the spaCBA operon (known to encode SpaCBA-called pili having a mucoadhesive phenotype) is a genomic rarity and an uncommon occurrence in L. rhamnosus. However, for any of the so-piliated L. rhamnosus strains, they will likely possess an increased niche-specific fitness, which functionally might presumably be manifested by a protracted transient colonization of

  13. A comparative pan-genome perspective of niche-adaptable cell-surface protein phenotypes in Lactobacillus rhamnosus.

    PubMed

    Kant, Ravi; Rintahaka, Johanna; Yu, Xia; Sigvart-Mattila, Pia; Paulin, Lars; Mecklin, Jukka-Pekka; Saarela, Maria; Palva, Airi; von Ossowski, Ingemar

    2014-01-01

    Lactobacillus rhamnosus is a ubiquitously adaptable Gram-positive bacterium and as a typical commensal can be recovered from various microbe-accessible bodily orifices and cavities. Then again, other isolates are food-borne, with some of these having been long associated with naturally fermented cheeses and yogurts. Additionally, because of perceived health benefits to humans and animals, numerous L. rhamnosus strains have been selected for use as so-called probiotics and are often taken in the form of dietary supplements and functional foods. At the genome level, it is anticipated that certain genetic variances will have provided the niche-related phenotypes that augment the flexible adaptiveness of this species, thus enabling its strains to grow and survive in their respective host environments. For this present study, we considered it functionally informative to examine and catalogue the genotype-phenotype variation existing at the cell surface between different L. rhamnosus strains, with the presumption that this might be relatable to habitat preferences and ecological adaptability. Here, we conducted a pan-genomic study involving 13 genomes from L. rhamnosus isolates with various origins. In using a benchmark strain (gut-adapted L. rhamnosus GG) for our pan-genome comparison, we had focused our efforts on a detailed examination and description of gene products for certain functionally relevant surface-exposed proteins, each of which in effect might also play a part in niche adaptability among the other strains. Perhaps most significantly of the surface protein loci we had analyzed, it would appear that the spaCBA operon (known to encode SpaCBA-called pili having a mucoadhesive phenotype) is a genomic rarity and an uncommon occurrence in L. rhamnosus. However, for any of the so-piliated L. rhamnosus strains, they will likely possess an increased niche-specific fitness, which functionally might presumably be manifested by a protracted transient colonization of

  14. Proteins Associated with Adaptation of Cultured Tobacco Cells to NaCl 1

    PubMed Central

    Singh, Narendra K.; Handa, Avtar K.; Hasegawa, Paul M.; Bressan, Ray A.

    1985-01-01

    Cultured tobacco cells (Nicotiana tabacum L. cv Wisconsin 38) adapted to grow in medium containing high levels of NaCl or polyethylene glycol (PEG) produce several new or enhanced polypeptide bands on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The intensities of some of the polypeptide bands (molecular weights of 58, 37, 35.5, 34, 26, 21, 19.5, and 18 kilodaltons) increase with increasing levels of NaCl adaptation, while the intensities of other polypeptide bands (54, 52, 17.5, and 16.5 kilodaltons) are reduced. Enhanced levels of 43- and 26-kilodalton polypeptides are present in both NaCl and PEG-induced water stress adapted cells but are not detectable in unadapted cells. In addition, PEG adapted cells have enhanced levels of 29-, 17.5-, 16.5-, and 11-kilodalton polypeptides and reduced levels of 58-, 54-, 52-, 37-, 35.5-, 34-, 21-, 19.5-, and 18-kilodalton polypeptide bands. Synthesis of 26-kilodalton polypeptide(s) occurs at two different periods during culture growth of NaCl adapted cells. Unadapted cells also incorporate 35S into a 26-kilodalton polypeptide during the later stage of culture growth beginning at midlog phase. The 26-kilodalton polypeptides from adapted and unadapted cells have similar partial proteolysis peptide maps and are immunologically cross-reactive. During adaptation to NaCl, unadapted cells synthesize and accumulate a major 26-kilodalton polypeptide, and the beginning of synthesis corresponds to the period of osmotic adjustment and culture growth. From our results, we suggest an involvement of the 26-kilodalton polypeptide in the adaptation of cultured tobacco cells to NaCl and water stress. Images Fig. 1 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 PMID:16664357

  15. The E-Id Protein Axis Specifies Adaptive Lymphoid Cell Identity and Suppresses Thymic Innate Lymphoid Cell Development.

    PubMed

    Miyazaki, Masaki; Miyazaki, Kazuko; Chen, Kenian; Jin, Yi; Turner, Jacob; Moore, Amanda J; Saito, Rintaro; Yoshida, Kenichi; Ogawa, Seishi; Rodewald, Hans-Reimer; Lin, Yin C; Kawamoto, Hiroshi; Murre, Cornelis

    2017-05-16

    Innate and adaptive lymphoid development is orchestrated by the activities of E proteins and their antagonist Id proteins, but how these factors regulate early T cell progenitor (ETP) and innate lymphoid cell (ILC) development remains unclear. Using multiple genetic strategies, we demonstrated that E proteins E2A and HEB acted in synergy in the thymus to establish T cell identity and to suppress the aberrant development of ILCs, including ILC2s and lymphoid-tissue-inducer-like cells. E2A and HEB orchestrated T cell fate and suppressed the ILC transcription signature by activating the expression of genes associated with Notch receptors, T cell receptor (TCR) assembly, and TCR-mediated signaling. E2A and HEB acted in ETPs to establish and maintain a T-cell-lineage-specific enhancer repertoire, including regulatory elements associated with the Notch1, Rag1, and Rag2 loci. On the basis of these and previous observations, we propose that the E-Id protein axis specifies innate and adaptive lymphoid cell fate. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. The Cytoplasmic Adapter-Protein Dok7 Activates the Receptor Tyrosine Kinase MuSK via Dimerization

    PubMed Central

    Bergamin, Elisa; Hallock, Peter T.; Burden, Steven J.; Hubbard, Stevan R.

    2010-01-01

    SUMMARY Formation of the vertebrate neuromuscular junction requires, among others proteins, Agrin, a neuronally derived ligand, and the following muscle proteins: LRP4, the receptor for Agrin; MuSK, a receptor tyrosine kinase (RTK); and Dok7, a cytoplasmic adapter protein. Dok7 comprises a pleckstrin-homology (PH) domain, a phosphotyrosine-binding (PTB) domain, and C-terminal sites of tyrosine phosphorylation. Unique among adapter proteins recruited to RTKs, Dok7 is not only a substrate of MuSK but also an activator of MuSK’s kinase activity. Here, we present the crystal structure of the Dok7 PH-PTB domains in complex with a phosphopeptide representing the Dok7 binding site on MuSK. The structure and biochemical data reveal a dimeric arrangement of Dok7 PH-PTB that facilitates trans-autophosphorylation of the kinase activation loop. The structure provides the molecular basis for MuSK activation by Dok7 and for rationalizing several Dok7 loss-of-function mutations found in patients with congenital myasthenic syndromes. PMID:20603078

  17. Using adaptive K-nearest neighbor algorithm and cellular automata images to predicting G-Protein-Coupled Receptor classes.

    PubMed

    Xiao, Xuan; Qiu, Wang-Ren

    2010-06-01

    G-Protein-Coupled Receptors (GPCRs) are the largest of cell surface receptor, accounting for >1% of the human genome. They play a key role in cellular signaling networks that regulate various physiological processes. The functions of many of GPCRs are unknown, because they are difficult to crystallize and most of them will not dissolve in normal solvents. This difficulty has motivated and challenged the development of a computational method which can predict the classification of the families and subfamilies of GPCRs based on their primary sequence so as to help us classify drugs. In this paper the adaptive K-nearest neighbor algorithm and protein cellular automata image (CAI) is introduced. Based on the CAI, the complexity measure factors derived from each of the protein sequences concerned are adopted for its Pseudo amino acid composition. GPCRs were categorized into nine subtypes. The overall success rate in identifying GPCRs among their nine family classes was about 83.5%. The high success rate suggests that the adaptive K-nearest neighbor algorithm and protein CAI holds very high potential to become a useful tool for understanding the actions of drugs that target GPCRs and designing new medications with fewer side effects and greater efficacy.

  18. Differential compartmentalization of Streptococcus pyogenes virulence factors and host protein binding properties as a mechanism for host adaptation.

    PubMed

    Kilsgård, Ola; Karlsson, Christofer; Malmström, Erik; Malmström, Johan

    2016-11-01

    Streptococcus pyogenes is an important human pathogen responsible for substantial morbidity and mortality worldwide. Although S. pyogenes is a strictly human pathogen with no other known animal reservoir, several murine infection models exist to explore different aspects of the bacterial pathogenesis. Inoculating mice with wild-type S. pyogenes strains can result in the generation of new bacterial phenotypes that are hypervirulent compared to the original inoculum. In this study, we used a serial mass spectrometry based proteomics strategy to investigate if these hypervirulent strains have an altered distribution of virulence proteins across the intracellular, surface associated and secreted bacterial compartments and if any change in compartmentalization can alter the protein-protein interaction network between bacteria and host proteins. Quantitative analysis of the S. pyogenes surface and secreted proteomes revealed that animal passaged strains are associated with significantly higher amount of virulence factors on the bacterial surface and in the media. This altered virulence factor compartmentalization results in increased binding of several mouse plasma proteins to the bacterial surface, a trend that was consistent for mouse plasma from several different mouse strains. In general, both the wild-type strain and animal passaged strain were capable of binding high amounts of human plasma proteins. However, compared to the non-passaged strains, the animal passaged strains displayed an increased ability to bind mouse plasma proteins, in particular for M protein binders, indicating that the increased affinity for mouse blood plasma proteins is a consequence of host adaptation of this pathogen to a new host. In conclusion, plotting the total amount of virulence factors against the total amount of plasma proteins associated to the bacterial surface could clearly separate out animal passaged strains from wild type strains indicating a virulence model that could

  19. Deletion of the protein kinase A/protein kinase G target SMTNL1 promotes an exercise-adapted phenotype in vascular smooth muscle.

    PubMed

    Wooldridge, Anne A; Fortner, Christopher N; Lontay, Beata; Akimoto, Takayuki; Neppl, Ronald L; Facemire, Carie; Datto, Michael B; Kwon, Ashley; McCook, Everett; Li, Ping; Wang, Shiliang; Thresher, Randy J; Miller, Sara E; Perriard, Jean-Claude; Gavin, Timothy P; Hickner, Robert C; Coffman, Thomas M; Somlyo, Avril V; Yan, Zhen; Haystead, Timothy A J

    2008-04-25

    In vivo protein kinases A and G (PKA and PKG) coordinately phosphorylate a broad range of substrates to mediate their various physiological effects. The functions of many of these substrates have yet to be defined genetically. Herein we show a role for smoothelin-like protein 1 (SMTNL1), a novel in vivo target of PKG/PKA, in mediating vascular adaptations to exercise. Aortas from smtnl1(-/-) mice exhibited strikingly enhanced vasorelaxation before exercise, similar in extent to that achieved after endurance training of wild-type littermates. Additionally, contractile responses to alpha-adrenergic agonists were greatly attenuated. Immunological studies showed SMTNL1 is expressed in smooth muscle and type 2a striated muscle fibers. Consistent with a role in adaptations to exercise, smtnl1(-/-) mice also exhibited increased type 2a fibers before training and better performance after forced endurance training compared smtnl1(+/+) mice. Furthermore, exercise was found to reduce expression of SMTNL1, particularly in female mice. In both muscle types, SMTNL1 is phosphorylated at Ser-301 in response to adrenergic signals. In vitro SMTNL1 suppresses myosin phosphatase activity through a substrate-directed effect, which is relieved by Ser-301 phosphorylation. Our findings suggest roles for SMTNL1 in cGMP/cAMP-mediated adaptations to exercise through mechanisms involving direct modulation of contractile activity.

  20. Menthol response and adaptation in nociceptive-like and nonnociceptive-like neurons: role of protein kinases

    PubMed Central

    2010-01-01

    Menthol-sensitive/capsaicin-insensitive neurons (MS/CI) and menthol-sensitive/capsaicin-sensitive neurons (MS/CS) are thought to represent two functionally distinct populations of cold-sensing neurons that use TRPM8 receptors to convey innocuous and noxious cold information respectively. However, TRPM8-mediated responses have not been well characterized in these two neuron populations. Using rat dorsal root ganglion neurons, here we show that MS/CI neurons had larger menthol responses with greater adaptation. In contrast, MS/CS neurons had smaller menthol responses with less adaptation. All menthol-sensitive neurons showed significant reduction of menthol responses following the treatment of cells with the protein kinase C (PKC) activator PDBu (Phorbol 12,13-dibutyrate). PDBu-induced reduction of menthol responses was completely abolished in the presence of PKC inhibitors BIM (bisindolylmaleimide) or staurosporine. When menthol responses were examined in the presence of protein kinase inhibitors, it was found that the adaptation was significantly attenuated by either BIM or staurosporine and also by the Ca2+/calmodulin-dependent protein kinase (CamKII) inhibitor KN62 (N,O-bis(5-isoquinolinesulfonyl)-N-methyl-L-tyrosyl]-4-phenylpiperazine) in MS/CI neurons. In contrast, in MS/CS neurons menthol response was not affected significantly by BIM, staurosporine or KN62. In both MS/CI and MS/CS neurons, the menthol responses were not affected by PKA activators forskolin and 8-Br-cAMP (8-Bromoadenosine-3', 5'-cyclic monophosphate) or by protein kinase A (PKA) inhibitor Rp-cAMPs (Rp-Adenosine-3',5'-cyclic monophosphorothioate). Taken together, these results suggest that TRPM8-mediated responses are significantly different between non-nociceptive-like and nociceptive-like neurons. PMID:20727164

  1. Prolonged illumination up-regulates arrestin and two guanylate cyclase activating proteins: a novel mechanism for light adaptation

    PubMed Central

    Codega, Paolo; Santina, Luca Della; Gargini, Claudia; Bedolla, Diana E; Subkhankulova, Tatiana; Livesey, Frederick J; Cervetto, Luigi; Torre, Vincent

    2009-01-01

    Light adaptation in vertebrate photoreceptors is mediated by multiple mechanisms, one of which could involve nuclear feedback and changes in gene expression. Therefore, we have investigated light adaptation-associated changes in gene expression using microarrays and real-time PCR in isolated photoreceptors, in cultured isolated retinas and in acutely isolated retinas. In all three preparations after 2 h of an exposure to a bright light, we observed an up-regulation of almost 100% of three genes, Sag, Guca1a and Guca1b, coding for proteins known to play a major role in phototransduction: arrestin, GCAP1 and GCAP2. No detectable up-regulation occurred for light exposures of less than 1 h. Functional in vivo electroretinographic tests show that a partial recovery of the dark current occurred 1–2 h after prolonged illumination with a steady light that initially caused a substantial suppression of the photoresponse. These observations demonstrate that prolonged illumination results in the up-regulation of genes coding for proteins involved in the phototransduction signalling cascade, possibly underlying a novel component of light adaptation occurring 1–2 h after the onset of a steady bright light. PMID:19332500

  2. Prolonged illumination up-regulates arrestin and two guanylate cyclase activating proteins: a novel mechanism for light adaptation.

    PubMed

    Codega, Paolo; Della Santina, Luca; Gargini, Claudia; Bedolla, Diana E; Subkhankulova, Tatiana; Livesey, Frederick J; Cervetto, Luigi; Torre, Vincent

    2009-06-01

    Light adaptation in vertebrate photoreceptors is mediated by multiple mechanisms, one of which could involve nuclear feedback and changes in gene expression. Therefore, we have investigated light adaptation-associated changes in gene expression using microarrays and real-time PCR in isolated photoreceptors, in cultured isolated retinas and in acutely isolated retinas. In all three preparations after 2 h of an exposure to a bright light, we observed an up-regulation of almost 100% of three genes, Sag, Guca1a and Guca1b, coding for proteins known to play a major role in phototransduction: arrestin, GCAP1 and GCAP2. No detectable up-regulation occurred for light exposures of less than 1 h. Functional in vivo electroretinographic tests show that a partial recovery of the dark current occurred 1-2 h after prolonged illumination with a steady light that initially caused a substantial suppression of the photoresponse. These observations demonstrate that prolonged illumination results in the up-regulation of genes coding for proteins involved in the phototransduction signalling cascade, possibly underlying a novel component of light adaptation occurring 1-2 h after the onset of a steady bright light.

  3. p38γ Mitogen-Activated Protein Kinase Is a Key Regulator in Skeletal Muscle Metabolic Adaptation in Mice

    PubMed Central

    Pogozelski, Andrew R.; Geng, Tuoyu; Li, Ping; Yin, Xinhe; Lira, Vitor A.; Zhang, Mei; Chi, Jen-Tsan; Yan, Zhen

    2009-01-01

    Regular endurance exercise induces skeletal muscle contractile and metabolic adaptations, conferring salutary health benefits, such as protection against the metabolic syndrome. The plasticity of skeletal muscle has been extensively investigated, but how the adaptive processes are precisely controlled is largely unknown. Using muscle-specific gene deletion in mice, we now show that p38γ mitogen-activated protein kinase (MAPK), but not p38α and p38β, is required for endurance exercise-induced mitochondrial biogenesis and angiogenesis, whereas none of the p38 isoforms are required for IIb-to-IIa fiber-type transformation. These phenotypic findings were further supported by microarray and real-time PCR analyses revealing contractile activity-dependent p38γ target genes, including peroxisome proliferator-activated receptor γ co-activator-1α (Pgc-1α) and vascular endothelial growth factor (Vegf), in skeletal muscle following motor nerve stimulation. Gene transfer-mediated overexpression of a dominant negative form of p38γ, but not that of p38α or p38β, blocked motor nerve stimulation-induced Pgc-1α transcription. These findings provide direct evidence for an obligated role of p38γ MAPK-PGC-1α regulatory axis in endurance exercise-induced metabolic adaptation, but not contractile adaptation, in skeletal muscle. PMID:19936205

  4. Phages have adapted the same protein fold to fulfill multiple functions in virion assembly

    PubMed Central

    Cardarelli, Lia; Pell, Lisa G.; Neudecker, Philipp; Pirani, Nawaz; Liu, Amanda; Baker, Lindsay A.; Rubinstein, John L.; Maxwell, Karen L.; Davidson, Alan R.

    2010-01-01

    Evolutionary relationships may exist among very diverse groups of proteins even though they perform different functions and display little sequence similarity. The tailed bacteriophages present a uniquely amenable system for identifying such groups because of their huge diversity yet conserved genome structures. In this work, we used structural, functional, and genomic context comparisons to conclude that the head–tail connector protein and tail tube protein of bacteriophage λ diverged from a common ancestral protein. Further comparisons of tertiary and quaternary structures indicate that the baseplate hub and tail terminator proteins of bacteriophage may also be part of this same family. We propose that all of these proteins evolved from a single ancestral tail tube protein fold, and that gene duplication followed by differentiation led to the specialized roles of these proteins seen in bacteriophages today. Although this type of evolutionary mechanism has been proposed for other systems, our work provides an evolutionary mechanism for a group of proteins with different functions that bear no sequence similarity. Our data also indicate that the addition of a structural element at the N terminus of the λ head–tail connector protein endows it with a distinctive protein interaction capability compared with many of its putative homologues. PMID:20660769

  5. A Binary Bivalent Supramolecular Assembly Platform Based on Cucurbit[8]uril and Dimeric Adapter Protein 14-3-3.

    PubMed

    de Vink, Pim J; Briels, Jeroen M; Schrader, Thomas; Milroy, Lech-Gustav; Brunsveld, Luc; Ottmann, Christian

    2017-07-24

    Interactions between proteins frequently involve recognition sequences based on multivalent binding events. Dimeric 14-3-3 adapter proteins are a prominent example and typically bind partner proteins in a phosphorylation-dependent mono- or bivalent manner. Herein we describe the development of a cucurbit[8]uril (Q8)-based supramolecular system, which in conjunction with the 14-3-3 protein dimer acts as a binary and bivalent protein assembly platform. We fused the phenylalanine-glycine-glycine (FGG) tripeptide motif to the N-terminus of the 14-3-3-binding epitope of the estrogen receptor α (ERα) for selective binding to Q8. Q8-induced dimerization of the ERα epitope augmented its affinity towards 14-3-3 through a binary bivalent binding mode. The crystal structure of the Q8-induced ternary complex revealed molecular insight into the multiple supramolecular interactions between the protein, the peptide, and Q8. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  6. A Binary Bivalent Supramolecular Assembly Platform Based on Cucurbit[8]uril and Dimeric Adapter Protein 14‐3‐3

    PubMed Central

    de Vink, Pim J.; Briels, Jeroen M.; Schrader, Thomas; Milroy, Lech‐Gustav

    2017-01-01

    Abstract Interactions between proteins frequently involve recognition sequences based on multivalent binding events. Dimeric 14‐3‐3 adapter proteins are a prominent example and typically bind partner proteins in a phosphorylation‐dependent mono‐ or bivalent manner. Herein we describe the development of a cucurbit[8]uril (Q8)‐based supramolecular system, which in conjunction with the 14‐3‐3 protein dimer acts as a binary and bivalent protein assembly platform. We fused the phenylalanine–glycine–glycine (FGG) tripeptide motif to the N‐terminus of the 14‐3‐3‐binding epitope of the estrogen receptor α (ERα) for selective binding to Q8. Q8‐induced dimerization of the ERα epitope augmented its affinity towards 14‐3‐3 through a binary bivalent binding mode. The crystal structure of the Q8‐induced ternary complex revealed molecular insight into the multiple supramolecular interactions between the protein, the peptide, and Q8. PMID:28510303

  7. Proteomic Analysis of Rhizoctonia solani Identifies Infection-specific, Redox Associated Proteins and Insight into Adaptation to Different Plant Hosts.

    PubMed

    Anderson, Jonathan P; Hane, James K; Stoll, Thomas; Pain, Nicholas; Hastie, Marcus L; Kaur, Parwinder; Hoogland, Christine; Gorman, Jeffrey J; Singh, Karam B

    2016-04-01

    Rhizoctonia solaniis an important root infecting pathogen of a range of food staples worldwide including wheat, rice, maize, soybean, potato and others. Conventional resistance breeding strategies are hindered by the absence of tractable genetic resistance in any crop host. Understanding the biology and pathogenicity mechanisms of this fungus is important for addressing these disease issues, however, little is known about howR. solanicauses disease. This study capitalizes on recent genomic studies by applying mass spectrometry based proteomics to identify soluble, membrane-bound and culture filtrate proteins produced under wheat infection and vegetative growth conditions. Many of the proteins found in the culture filtrate had predicted functions relating to modification of the plant cell wall, a major activity required for pathogenesis on the plant host, including a number found only under infection conditions. Other infection related proteins included a high proportion of proteins with redox associated functions and many novel proteins without functional classification. The majority of infection only proteins tested were confirmed to show transcript up-regulation during infection including a thaumatin which increased susceptibility toR. solaniwhen expressed inNicotiana benthamiana In addition, analysis of expression during infection of different plant hosts highlighted how the infection strategy of this broad host range pathogen can be adapted to the particular host being encountered. Data are available via ProteomeXchange with identifier PXD002806.

  8. Proteomic Analysis of Rhizoctonia solani Identifies Infection-specific, Redox Associated Proteins and Insight into Adaptation to Different Plant Hosts*

    PubMed Central

    Anderson, Jonathan P.; Hane, James K.; Stoll, Thomas; Pain, Nicholas; Hastie, Marcus L.; Kaur, Parwinder; Hoogland, Christine; Gorman, Jeffrey J.; Singh, Karam B.

    2016-01-01

    Rhizoctonia solani is an important root infecting pathogen of a range of food staples worldwide including wheat, rice, maize, soybean, potato and others. Conventional resistance breeding strategies are hindered by the absence of tractable genetic resistance in any crop host. Understanding the biology and pathogenicity mechanisms of this fungus is important for addressing these disease issues, however, little is known about how R. solani causes disease. This study capitalizes on recent genomic studies by applying mass spectrometry based proteomics to identify soluble, membrane-bound and culture filtrate proteins produced under wheat infection and vegetative growth conditions. Many of the proteins found in the culture filtrate had predicted functions relating to modification of the plant cell wall, a major activity required for pathogenesis on the plant host, including a number found only under infection conditions. Other infection related proteins included a high proportion of proteins with redox associated functions and many novel proteins without functional classification. The majority of infection only proteins tested were confirmed to show transcript up-regulation during infection including a thaumatin which increased susceptibility to R. solani when expressed in Nicotiana benthamiana. In addition, analysis of expression during infection of different plant hosts highlighted how the infection strategy of this broad host range pathogen can be adapted to the particular host being encountered. Data are available via ProteomeXchange with identifier PXD002806. PMID:26811357

  9. Proteomic Profiling of Cereal Aphid Saliva Reveals Both Ubiquitous and Adaptive Secreted Proteins

    PubMed Central

    Wilkinson, Tom L.

    2013-01-01

    The secreted salivary proteins from two cereal aphid species, Sitobion avenae and Metopolophium dirhodum, were collected from artificial diets and analysed by tandem mass spectrometry. Protein identification was performed by searching MS data against the official protein set from the current pea aphid (Acyrthosiphon pisum) genome assembly and revealed 12 and 7 proteins in the saliva of S. avenae and M. dirhodum, respectively. When combined with a comparable dataset from A. pisum, only three individual proteins were common to all the aphid species; two paralogues of the GMC oxidoreductase family (glucose dehydrogenase; GLD) and ACYPI009881, an aphid specific protein previously identified as a putative component of the salivary sheath. Antibodies were designed from translated protein sequences obtained from partial cDNA sequences for ACYPI009881 and both saliva associated GLDs. The antibodies detected all parent proteins in secreted saliva from the three aphid species, but could only detect ACYPI009881, and not saliva associated GLDs, in protein extractions from the salivary glands. This result was confirmed by immunohistochemistry using whole and sectioned salivary glands, and in addition, localised ACYPI009881 to specific cell types within the principal salivary gland. The implications of these findings for the origin of salivary components and the putative role of the proteins identified are discussed in the context of our limited understanding of the functional relationship between aphid saliva and the plants they feed on. The mass spectrometry data have been deposited to the ProteomeXchange and can be accessed under the identifier PXD000113. PMID:23460852

  10. Proteomic profiling of cereal aphid saliva reveals both ubiquitous and adaptive secreted proteins.

    PubMed

    Rao, Sohail A K; Carolan, James C; Wilkinson, Tom L

    2013-01-01

    The secreted salivary proteins from two cereal aphid species, Sitobion avenae and Metopolophium dirhodum, were collected from artificial diets and analysed by tandem mass spectrometry. Protein identification was performed by searching MS data against the official protein set from the current pea aphid (Acyrthosiphon pisum) genome assembly and revealed 12 and 7 proteins in the saliva of S. avenae and M. dirhodum, respectively. When combined with a comparable dataset from A. pisum, only three individual proteins were common to all the aphid species; two paralogues of the GMC oxidoreductase family (glucose dehydrogenase; GLD) and ACYPI009881, an aphid specific protein previously identified as a putative component of the salivary sheath. Antibodies were designed from translated protein sequences obtained from partial cDNA sequences for ACYPI009881 and both saliva associated GLDs. The antibodies detected all parent proteins in secreted saliva from the three aphid species, but could only detect ACYPI009881, and not saliva associated GLDs, in protein extractions from the salivary glands. This result was confirmed by immunohistochemistry using whole and sectioned salivary glands, and in addition, localised ACYPI009881 to specific cell types within the principal salivary gland. The implications of these findings for the origin of salivary components and the putative role of the proteins identified are discussed in the context of our limited understanding of the functional relationship between aphid saliva and the plants they feed on. The mass spectrometry data have been deposited to the ProteomeXchange and can be accessed under the identifier PXD000113.

  11. Two single-headed myosin V motors bound to a tetrameric adapter protein form a processive complex

    PubMed Central

    Krementsova, Elena B.; Hodges, Alex R.; Bookwalter, Carol S.; Sladewski, Thomas E.; Travaglia, Mirko; Sweeney, H. Lee

    2011-01-01

    Myo4p, one of two class V myosins in budding yeast, continuously transports messenger RNA (mRNA) cargo in the cell but is nonprocessive when characterized in vitro. The adapter protein She3p tightly binds to the Myo4p rod, forming a single-headed motor complex. In this paper, we show that two Myo4p–She3p motors are recruited by the tetrameric mRNA-binding protein She2p to form a processive double-headed complex. The binding site for She3p was mapped to a single α helix that protrudes at right angles from She2p. Processive runs of several micrometers on yeast actin–tropomyosin filaments were observed only in the presence of She2p, and, thus, motor activity is regulated by cargo binding. While moving processively, each head steps ∼72 nm in a hand-over-hand motion. Coupling two high-duty cycle monomeric motors via a common cargo-binding adapter protein creates a complex with transport properties comparable with a single dimeric processive motor such as vertebrate myosin Va. PMID:22084309

  12. Grp78 Heterozygosity Promotes Adaptive Unfolded Protein Response and Attenuates Diet-Induced Obesity and Insulin Resistance

    PubMed Central

    Ye, Risheng; Jung, Dae Young; Jun, John Y.; Li, Jianze; Luo, Shengzhan; Ko, Hwi Jin; Kim, Jason K.; Lee, Amy S.

    2010-01-01

    OBJECTIVE To investigate the role of the endoplasmic reticulum (ER) chaperone glucose-regulated protein (GRP) 78/BiP in the pathogenesis of obesity, insulin resistance, and type 2 diabetes. RESEARCH DESIGN AND METHODS Male Grp78+/− mice and their wild-type littermates were subjected to a high-fat diet (HFD) regimen. Pathogenesis of obesity and type 2 diabetes was examined by multiple approaches of metabolic phenotyping. Tissue-specific insulin sensitivity was analyzed by hyperinsulinemic-euglycemic clamps. Molecular mechanism was explored via immunoblotting and tissue culture manipulation. RESULTS Grp78 heterozygosity increases energy expenditure and attenuates HFD-induced obesity. Grp78+/− mice are resistant to diet-induced hyperinsulinemia, liver steatosis, white adipose tissue (WAT) inflammation, and hyperglycemia. Hyperinsulinemic-euglycemic clamp studies revealed that Grp78 heterozygosity improves glucose metabolism independent of adiposity and following an HFD increases insulin sensitivity predominantly in WAT. As mechanistic explanations, Grp78 heterozygosity in WAT under HFD stress promotes adaptive unfolded protein response (UPR), attenuates translational block, and upregulates ER degradation-enhancing α-mannosidase–like protein (EDEM) and ER chaperones, thus improving ER quality control and folding capacity. Further, overexpression of the active form of ATF6 induces protective UPR and improves insulin signaling upon ER stress. CONCLUSIONS HFD-induced obesity and type 2 diabetes are improved in Grp78+/− mice. Adaptive UPR in WAT could contribute to this improvement, linking ER homeostasis to energy balance and glucose metabolism. PMID:19808896

  13. Seasonal proteomic changes reveal molecular adaptations to preserve and replenish liver proteins during ground squirrel hibernation.

    PubMed

    Epperson, L Elaine; Rose, James C; Carey, Hannah V; Martin, Sandra L

    2010-02-01

    Hibernators are unique among mammals in their ability to survive extended periods of time with core body temperatures near freezing and with dramatically reduced heart, respiratory, and metabolic rates in a state known as torpor. To gain insight into the molecular events underlying this remarkable physiological phenotype, we applied a proteomic screening approach to identify liver proteins that differ between the summer active (SA) and the entrance (Ent) phase of winter hibernation in 13-lined ground squirrels. The relative abundance of 1,600 protein spots separated on two-dimensional gels was quantitatively determined using fluorescence difference gel electrophoresis, and 74 unique proteins exhibiting significant differences between the two states were identified using liquid chromatography followed by tandem mass spectrometry (LC-MS/MS). Proteins elevated in Ent hibernators included liver fatty acid-binding protein, fatty acid transporter, and 3-hydroxy-3-methylglutaryl-CoA synthase, which support the known metabolic fuel switch to lipid and ketone body utilization in winter. Several proteins involved in protein stability and protein folding were also elevated in the Ent phase, consistent with previous findings. In contrast to transcript screening results, there was a surprising increase in the abundance of proteins involved in protein synthesis during Ent hibernation, including several initiation and elongation factors. This finding, coupled with decreased abundance of numerous proteins involved in amino acid and nitrogen metabolism, supports the intriguing hypothesis that the mechanism of protein preservation and resynthesis is used by hibernating ground squirrels to help avoid nitrogen toxicity and ensure preservation of essential amino acids throughout the long winter fast.

  14. The interactome of a PTB domain-containing adapter protein, Odin, revealed by SILAC.

    PubMed

    Zhong, Jun; Chaerkady, Raghothama; Kandasamy, Kumaran; Gucek, Marjan; Cole, Robert N; Pandey, Akhilesh

    2011-03-01

    Signal transduction pathways are tightly controlled by positive and negative regulators. We have previously identified Odin (also known as ankyrin repeat and sterile alpha motif domain-containing 1A; gene symbol ANKS1A) as a negative regulator of growth factor signaling; however, the mechanisms through which Odin regulates these pathways remain to be elucidated. To determine how Odin negatively regulates growth factor signaling, we undertook a proteomic approach to systematically identify proteins that interact with Odin using the SILAC strategy. In this study, we identified 18 molecules that were specifically associated in a protein complex with Odin. Our study established that the complete family of 14-3-3 proteins occur in a protein complex with Odin, which is also supported by earlier reports that identified a few members of the 14-3-3 family as Odin interactors. Among the novel protein interactors of Odin were CD2-associated protein, SH3 domain kinase binding protein 1 and DAB2 interacting protein. We confirmed 8 of the eighteen interactions identified in the Odin protein complex by co-immunoprecipitation experiments. Finally, a literature-based network analysis revealed that Odin interacting partners are involved in various cellular processes, some of which are key molecules in regulating receptor endocytosis. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. The interactome of a PTB domain-containing adapter protein, Odin, revealed by SILAC

    PubMed Central

    Zhong, Jun; Chaerkady, Raghothama; Kandasamy, Kumaran; Gucek, Marjan; Cole, Robert N.; Pandey, Akhilesh

    2011-01-01

    Signal transduction pathways are tightly controlled by positive and negative regulators. We have previously identified Odin (also known as ankyrin repeat and sterile alpha motif domain containing 1A; gene symbol AKNS1A) as a negative regulator of growth factor signaling; however, the mechanisms through which Odin regulates these pathways remain to be elucidated. To determine how Odin negatively regulates growth factor signaling, we undertook a proteomic approach to systematically identify proteins that interact with Odin using the SILAC strategy. In this study, we identified 18 molecules that were specifically associated in a protein complex with Odin. Our study established that the complete family of 14-3-3 proteins occur in a protein complex with Odin, which is also supported by earlier reports that identified a few members of the 14-3-3 family as Odin interactors. Among the novel protein interactors of Odin were CD2-associated protein, SH3 domain kinase binding protein 1 and DAB2 interacting protein. We confirmed 8 of the eighteen interactions identified in the Odin protein complex by co-immunoprecipitation experiments. Finally, a literature-based network analysis revealed that Odin interacting partners are involved in various cellular processes, some of which are key molecules in regulating receptor endocytosis. PMID:21081186

  16. Multi-omic profiling -of EPO-producing Chinese hamster ovary cell panel reveals metabolic adaptation to heterologous protein production.

    PubMed

    Ley, Daniel; Seresht, Ali Kazemi; Engmark, Mikael; Magdenoska, Olivera; Nielsen, Kristian Fog; Kildegaard, Helene Faustrup; Andersen, Mikael Rørdam

    2015-11-01

    Chinese hamster ovary (CHO) cells are the preferred production host for many therapeutic proteins. The production of heterologous proteins in CHO cells imposes a burden on the host cell metabolism and impact cellular physiology on a global scale. In this work, a multi-omics approach was applied to study the production of erythropoietin (EPO) in a panel of CHO-K1 cells under growth-limited and unlimited conditions in batch and chemostat cultures. Physiological characterization of the EPO-producing cells included global transcriptome analysis, targeted metabolome analysis, including intracellular pools of glycolytic intermediates, NAD(P)H/NAD(P)(+) , adenine nucleotide phosphates (ANP), and extracellular concentrations of sugars, organic acids, and amino acids. Potential impact of EPO expression on the protein secretory pathway was assessed at multiple stages using quantitative PCR (qPCR), reverse transcription PCR (qRT-PCR), Western blots (WB), and global gene expression analysis to assess EPO gene copy numbers, EPO gene expression, intracellular EPO retention, and differentially expressed genes functionally related to secretory protein processing, respectively. We found no evidence supporting the existence of production bottlenecks in energy metabolism (i.e., glycolytic metabolites, NAD(P)H/NAD(P)(+) and ANPs) in batch culture or in the secretory protein production pathway (i.e., gene dosage, transcription and post-translational processing of EPO) in chemostat culture at specific productivities up to 5 pg/cell/day. Time-course analysis of high- and low-producing clones in chemostat culture revealed rapid adaptation of transcription levels of amino acid catabolic genes in favor of EPO production within nine generations. Interestingly, the adaptation was followed by an increase in specific EPO productivity.

  17. AptRank: an adaptive PageRank model for protein function prediction on   bi-relational graphs.

    PubMed

    Jiang, Biaobin; Kloster, Kyle; Gleich, David F; Gribskov, Michael

    2017-06-15

    Diffusion-based network models are widely used for protein function prediction using protein network data and have been shown to outperform neighborhood-based and module-based methods. Recent studies have shown that integrating the hierarchical structure of the Gene Ontology (GO) data dramatically improves prediction accuracy. However, previous methods usually either used the GO hierarchy to refine the prediction results of multiple classifiers, or flattened the hierarchy into a function-function similarity kernel. No study has taken the GO hierarchy into account together with the protein network as a two-layer network model. We first construct a Bi-relational graph (Birg) model comprised of both protein-protein association and function-function hierarchical networks. We then propose two diffusion-based methods, BirgRank and AptRank, both of which use PageRank to diffuse information on this two-layer graph model. BirgRank is a direct application of traditional PageRank with fixed decay parameters. In contrast, AptRank utilizes an adaptive diffusion mechanism to improve the performance of BirgRank. We evaluate the ability of both methods to predict protein function on yeast, fly and human protein datasets, and compare with four previous methods: GeneMANIA, TMC, ProteinRank and clusDCA. We design four different validation strategies: missing function prediction, de novo function prediction, guided function prediction and newly discovered function prediction to comprehensively evaluate predictability of all six methods. We find that both BirgRank and AptRank outperform the previous methods, especially in missing function prediction when using only 10% of the data for training. The MATLAB code is available at https://github.rcac.purdue.edu/mgribsko/aptrank . gribskov@purdue.edu. Supplementary data are available at Bioinformatics online.

  18. Early origin and adaptive evolution of the GW182 protein family, the key component of RNA silencing in animals.

    PubMed

    Zielezinski, Andrzej; Karlowski, Wojciech M

    2015-01-01

    The GW182 proteins are a key component of the miRNA-dependent post-transcriptional silencing pathway in animals. They function as scaffold proteins to mediate the interaction of Argonaute (AGO)-containing complexes with cytoplasmic poly(A)-binding proteins (PABP) and PAN2-PAN3 and CCR4-NOT deadenylases. The AGO-GW182 complexes mediate silencing of the target mRNA through induction of translational repression and/or mRNA degradation. Although the GW182 proteins are a subject of extensive experimental research in the recent years, very little is known about their origin and evolution. Here, based on complex functional annotation and phylogenetic analyses, we reveal 448 members of the GW182 protein family from the earliest animals to humans. Our results indicate that a single-copy GW182/TNRC6C progenitor gene arose with the emergence of multicellularity and it multiplied in the last common ancestor of vertebrates in 2 rounds of whole genome duplication (WGD) resulting in 3 genes. Before the divergence of vertebrates, both the AGO- and CCR4-NOT-binding regions of GW182s showed significant acceleration in the accumulation of amino acid changes, suggesting functional adaptation toward higher specificity to the molecules of the silencing complex. We conclude that the silencing ability of the GW182 proteins improves with higher position in the taxonomic classification and increasing complexity of the organism. The first reconstruction of the molecular journey of GW182 proteins from the ancestral metazoan protein to the current mammalian configuration provides new insight into development of the miRNA-dependent post-transcriptional silencing pathway in animals.

  19. Reversal of charge selectivity in transmembrane protein pores by using noncovalent molecular adapters

    PubMed Central

    Gu, Li-Qun; Dalla Serra, Mauro; Vincent, J. Bryan; Vigh, Gyula; Cheley, Stephen; Braha, Orit; Bayley, Hagan

    2000-01-01

    In this study, the charge selectivity of staphylococcal α-hemolysin (αHL), a bacterial pore-forming toxin, is manipulated by using cyclodextrins as noncovalent molecular adapters. Anion-selective versions of αHL, including the wild-type pore and various mutants, become more anion selective when β-cyclodextrin (βCD) is lodged within the channel lumen. By contrast, the negatively charged adapter, hepta-6-sulfato-β-cyclodextrin (s7βCD), produces cation selectivity. The cyclodextrin adapters have similar effects when placed in cation-selective mutant αHL pores. Most probably, hydrated Cl− ions partition into the central cavity of βCD more readily than K+ ions, whereas s7βCD introduces a charged ring near the midpoint of the channel lumen and confers cation selectivity through electrostatic interactions. The molecular adapters generate permeability ratios (PK+/PCl−) over a 200-fold range and should be useful in the de novo design of membrane channels both for basic studies of ion permeation and for applications in biotechnology. PMID:10760267

  20. Protein evaluation of four oat (Avena sativa L.) cultivars adapted for cultivation in the south of Brazil.

    PubMed

    Pedó, I; Sgarbieri, V C; Gutkoski, L C

    1999-01-01

    Four oat cultivars adapted for soil and climate conditions in the southern region of Brazil were evaluated for protein nutritive value. Evaluations were done both in vitro and in vivo. In vitro evaluation was done by essential amino acid profile, available lysine, amino acid scoring, and protein digestibility corrected amino acid-scoring (PDCAAS). Nitrogen balance indices and PER were determined in vivo with rats. In all four cultivars (UFP-15, UFP-16, CTC-03, UFRGS-14), lysine was the most limiting amino acid. Available lysine, amino acid score and PDCAAS were highest for cultivar UFRGS-14 and lowest for CTC-03. When compared to casein, only nitrogen retention for UFRGS-14 did not differ statistically (p>0.05); all other indices of protein quality were inferior to casein for the oat cultivars. The oat cultivars tended to be identical among themselves, except for apparent protein digestibility which was significantly higher in the UFRGS-14 and CTC-03 cultivars. On average, the PER values of the oat cultivars were 82% of casein; the net protein utilization was 88% of casein as determined in vivo and 49% by the estimation in vitro (PDCAAS).

  1. A Monte Carlo sampling method of amino acid sequences adaptable to given main-chain atoms in the proteins.

    PubMed

    Ogata, Koji; Soejima, Kenji; Higo, Junichi

    2006-10-01

    We have developed a computational method of protein design to detect amino acid sequences that are adaptable to given main-chain coordinates of a protein. In this method, the selection of amino acid types employs a Metropolis Monte Carlo method with a scoring function in conjunction with the approximation of free energies computed from 3D structures. To compute the scoring function, a side-chain prediction using another Metropolis Monte Carlo method was performed to select structurally suitable side-chain conformations from a side-chain library. In total, two layers of Monte Carlo procedures were performed, first to select amino acid types (1st layer Monte Carlo) and then to predict side-chain conformations (2nd layers Monte Carlo). We applied this method to sequence design for the entire sequence on the SH3 domain, Protein G, and BPTI. The predicted sequences were similar to those of the wild-type proteins. We compared the results of the predictions with and without the 2nd layer Monte Carlo method. The results revealed that the two-layer Monte Carlo method produced better sequence similarity to the wild-type proteins than the one-layer method. Finally, we applied this method to neuraminidase of influenza virus. The results were consistent with the sequences identified from the isolated viruses.

  2. Amino Acid Substitutions in Cold-Adapted Proteins from Halorubrum lacusprofundi, an Extremely Halophilic Microbe from Antarctica

    PubMed Central

    DasSarma, Shiladitya; Capes, Melinda D.; Karan, Ram; DasSarma, Priya

    2013-01-01

    The halophilic Archaeon Halorubrum lacusprofundi, isolated from the perennially cold and hypersaline Deep Lake in Antarctica, was recently sequenced and compared to 12 Haloarchaea from temperate climates by comparative genomics. Amino acid substitutions for 604 H. lacusprofundi proteins belonging to conserved haloarchaeal orthologous groups (cHOGs) were determined and found to occur at 7.85% of positions invariant in proteins from mesophilic Haloarchaea. The following substitutions were observed most frequently: (a) glutamic acid with aspartic acid or alanine; (b) small polar residues with other small polar or non-polar amino acids; (c) small non-polar residues with other small non-polar residues; (d) aromatic residues, especially tryptophan, with other aromatic residues; and (e) some larger polar residues with other similar residues. Amino acid substitutions for a cold-active H. lacusprofundi β-galactosidase were then examined in the context of a homology modeled structure at residues invariant in homologous enzymes from mesophilic Haloarchaea. Similar substitutions were observed as in the genome-wide approach, with the surface accessible regions of β-galactosidase displaying reduced acidity and increased hydrophobicity, and internal regions displaying mainly subtle changes among smaller non-polar and polar residues. These findings are consistent with H. lacusprofundi proteins displaying amino acid substitutions that increase structural flexibility and protein function at low temperature. We discuss the likely mechanisms of protein adaptation to a cold, hypersaline environment on Earth, with possible relevance to life elsewhere. PMID:23536799

  3. Amino acid substitutions in cold-adapted proteins from Halorubrum lacusprofundi, an extremely halophilic microbe from antarctica.

    PubMed

    Dassarma, Shiladitya; Capes, Melinda D; Karan, Ram; Dassarma, Priya

    2013-01-01

    The halophilic Archaeon Halorubrum lacusprofundi, isolated from the perennially cold and hypersaline Deep Lake in Antarctica, was recently sequenced and compared to 12 Haloarchaea from temperate climates by comparative genomics. Amino acid substitutions for 604 H. lacusprofundi proteins belonging to conserved haloarchaeal orthologous groups (cHOGs) were determined and found to occur at 7.85% of positions invariant in proteins from mesophilic Haloarchaea. The following substitutions were observed most frequently: (a) glutamic acid with aspartic acid or alanine; (b) small polar residues with other small polar or non-polar amino acids; (c) small non-polar residues with other small non-polar residues; (d) aromatic residues, especially tryptophan, with other aromatic residues; and (e) some larger polar residues with other similar residues. Amino acid substitutions for a cold-active H. lacusprofundi β-galactosidase were then examined in the context of a homology modeled structure at residues invariant in homologous enzymes from mesophilic Haloarchaea. Similar substitutions were observed as in the genome-wide approach, with the surface accessible regions of β-galactosidase displaying reduced acidity and increased hydrophobicity, and internal regions displaying mainly subtle changes among smaller non-polar and polar residues. These findings are consistent with H. lacusprofundi proteins displaying amino acid substitutions that increase structural flexibility and protein function at low temperature. We discuss the likely mechanisms of protein adaptation to a cold, hypersaline environment on Earth, with possible relevance to life elsewhere.

  4. Adaptation of aphid stylectomy for analyses of proteins and mRNAs in barley phloem sap.

    PubMed

    Gaupels, Frank; Buhtz, Anja; Knauer, Torsten; Deshmukh, Sachin; Waller, Frank; van Bel, Aart J E; Kogel, Karl-Heinz; Kehr, Julia

    2008-01-01

    Sieve tubes are transport conduits not only for photoassimilates but also for macromolecules and other compounds that are involved in sieve tube maintenance and systemic signalling. In order to gain sufficient amounts of pure phloem exudates from barley plants for analyses of the protein and mRNA composition, a previously described stylectomy set-up was optimized. Aphids were placed in sealed cages, which, immediately after microcauterization of the stylets, were flooded with water-saturated silicon oil. The exuding phloem sap was collected with a capillary connected to a pump. Using up to 30 plants and 600 aphids (Rhopalosiphum padi) in parallel, an average of 10 mul of phloem sap could be obtained within 6 h of sampling. In first analyses of the macromolecular content, eight so far unknown phloem mRNAs were identified by cDNA-amplified fragment length polymorphism. Transcripts in barley phloem exudates are related to metabolism, signalling, and pathogen defence, for example coding for a protein kinase and a pathogen- and insect-responsive WIR1A (wheat-induced resistance 1A)-like protein. Further, one-dimensional gel electrophoresis and subsequent partial sequencing by mass spectrometry led to the identification of seven major proteins with putative functions in stress responses and transport of mRNAs, proteins, and sugars. Two of the discovered proteins probably represent isoforms of a new phloem-mobile sucrose transporter. Notably, two-dimensional electrophoresis confirmed that there are >250 phloem proteins awaiting identification in future studies.

  5. Comparative expression study to increase the solubility of cold adapted Vibrio proteins in Escherichia coli.

    PubMed

    Niiranen, Laila; Espelid, Sigrun; Karlsen, Christian R; Mustonen, Milla; Paulsen, Steinar M; Heikinheimo, Pirkko; Willassen, Nils P

    2007-03-01

    Functional and structural studies require gene overexpression and purification of soluble proteins. We wanted to express proteins from the psychrophilic bacterium Vibrio salmonicida in Escherichia coli, but encountered solubility problems. To improve the solubility of the proteins, we compared the effects of six N-terminal fusion proteins (Gb1, Z, thioredoxin, GST, MBP and NusA) and an N-terminal His6-tag. The selected test set included five proteins from the fish pathogen V. salmonicida and two related products from the mesophilic human pathogen Vibrio cholerae. We tested the expression in two different expression strains and at three different temperatures (16, 23 and 37 degrees C). His6-tag was the least effective tag, and these vector constructs were also difficult to transform. MBP and NusA performed best, expressing soluble proteins with all fusion partners in at least one of the cell types. In some cases MBP, GST and thioredoxin fusions resulted in products of incorrect size. The effect of temperature is complex: in most cases level of expression increased with temperature, whereas the effect on solubility was opposite. We found no clear connection between the preferred expression temperature of the protein and the temperature of the original host organism's natural habitat.

  6. Differential cold-adaptation among protein components of the thioredoxin system in the psychrophilic eubacterium Pseudoalteromonas haloplanktis TAC 125.

    PubMed

    Cotugno, Roberta; Rosaria Ruocco, Maria; Marco, Salvatore; Falasca, Patrizia; Evangelista, Giovanna; Raimo, Gennaro; Chambery, Angela; Di Maro, Antimo; Masullo, Mariorosario; De Vendittis, Emmanuele

    2009-05-01

    Thioredoxin and thioredoxin reductase from the psychrophilic eubacterium Pseudoalteromonas haloplanktis were obtained as recombinant His-tagged proteins (rPhTrx and rPhTrxR, respectively). rPhTrxR is organised as a homodimeric flavoenzyme, whereas rPhTrx is a small monomeric protein, both containing a functional disulfide bridge. However, three additional cysteines are present as free thiols in purified rPhTrxR. When individually tested in specific assays, rPhTrxR and rPhTrx display a full activity at low temperatures, an indispensable requirement for cold-adapted proteins. In particular, rPhTrxR catalyses the NADPH dependent reduction of DTNB and rPhTrx provokes the insulin precipitation in the presence of DTT. The analysis of the effect of temperature on these reactions indicates that rPhTrxR is more cold-adapted than rPhTrx, having a higher psychrophilicity. The combined activity of rPhTrxR and rPhTrx, tested in a reconstituted assay containing NADPH as electrons donor and human insulin as the thioredoxin substrate, demonstrates a direct functional interaction between the purified recombinant components of the thioredoxin system of P. haloplanktis. Furthermore, the NADPH-dependent reduction of rPhTrx catalysed by rPhTrxR is fully reversible and allows the determination of its redox potential, whose value is in the range of other bacterial and archaeal thioredoxins. The analysis of the thermostability of rPhTrxR points to its discrete heat resistance. However, rPhTrx is much more heat resistant, with a half inactivation time of about 4 h at 95 degrees C. This exceptional heat resistance for a psychrophilic protein is significantly decreased by the reduction of the disulfide bridge of rPhTrx. Functionality, thermodependence and thermostability of the P. haloplanktis thioredoxin system point to the relevance of this key mechanism for the preservation of the reduced state of cytoplasmic proteins even in a cold-adapted source.

  7. Computation of the protein molecular mechanism using adaptive dihedral angle increments

    NASA Astrophysics Data System (ADS)

    Diez, Mikel; Petuya, Victor; Urizar, Mónica; Macho, Erik; Altuzarrra, Oscar

    2013-03-01

    Protein motion simulation is still a troublesome problem yet to be solved, especially due to its high computational requirements. The procedure presented in this paper makes use of the proteins' real degrees of freedom (DOFs). The procedure makes no use of any intermediate energy minimization processes that may alter the motion path or result in very high computational cost requirements. In order to reduce the computational cost, presented algorithms make use of the balls and rods approach for protein structure modelization. Also, structures are normalized in order to minimize inaccuracies introduced by experimental methods, providing a more efficient but still accurate structure for motion simulation.

  8. A proteomic adaptation of small intestinal mucosa in response to dietary protein limitation.

    PubMed

    Qin, Chunfu; Qiu, Kai; Sun, Wenjuan; Jiao, Ning; Zhang, Xin; Che, Lianqiang; Zhao, Haiyi; Shen, Hexiao; Yin, Jingdong

    2016-11-14

    Dietary protein limitation (PL) is not only beneficial to human health but also applied to minimize nitrogen excretion in livestock production. However, the impact of PL on intestinal physiology is largely unknown. In this study, we identified 5275 quantitative proteins using a porcine model in which pigs suffered PL. A total of 202 proteins |log2 fold-change| > 1 were taken as differentially expressed proteins and subjected to functional and pathway enrichment analysis to reveal proteomic alterations of the jejunal mucosa. Combining with the results of western blotting analysis, we found that protein/carbohydrate digestion, intestinal mucosal tight junction and cell adhesion molecules, and the immune response to foreign antigens were increased in the jejunal mucosa of the pigs upon PL. In contrast, amino acid transport, innate and auto immunity, as well as cell proliferation and apoptosis were reduced. In addition, the expression of functional proteins that involved in DNA replication, transcription and mRNA splicing as well as translation were altered in the jejunal mucosa in response to PL. Furthermore, PL may reduce amino acid transport and cell proliferation through the depression of mTOR pathway. This study provides new insights into the molecular mechanisms underlying the small intestinal response to PL.

  9. A proteomic adaptation of small intestinal mucosa in response to dietary protein limitation

    PubMed Central

    Qin, Chunfu; Qiu, Kai; Sun, Wenjuan; Jiao, Ning; Zhang, Xin; Che, Lianqiang; Zhao, Haiyi; Shen, Hexiao; Yin, Jingdong

    2016-01-01

    Dietary protein limitation (PL) is not only beneficial to human health but also applied to minimize nitrogen excretion in livestock production. However, the impact of PL on intestinal physiology is largely unknown. In this study, we identified 5275 quantitative proteins using a porcine model in which pigs suffered PL. A total of 202 proteins |log2 fold-change| > 1 were taken as differentially expressed proteins and subjected to functional and pathway enrichment analysis to reveal proteomic alterations of the jejunal mucosa. Combining with the results of western blotting analysis, we found that protein/carbohydrate digestion, intestinal mucosal tight junction and cell adhesion molecules, and the immune response to foreign antigens were increased in the jejunal mucosa of the pigs upon PL. In contrast, amino acid transport, innate and auto immunity, as well as cell proliferation and apoptosis were reduced. In addition, the expression of functional proteins that involved in DNA replication, transcription and mRNA splicing as well as translation were altered in the jejunal mucosa in response to PL. Furthermore, PL may reduce amino acid transport and cell proliferation through the depression of mTOR pathway. This study provides new insights into the molecular mechanisms underlying the small intestinal response to PL. PMID:27841298

  10. Involvement of the 90 kDa heat shock protein during adaptation of Paracoccidioides brasiliensis to different environmental conditions.

    PubMed

    Tamayo, Diana; Muñoz, Jose F; Torres, Isaura; Almeida, Agostinho J; Restrepo, Angela; McEwen, Juan G; Hernández, Orville

    2013-02-01

    HSP90 is a molecular chaperone that participates in folding, stabilization, activation, and assembly of several proteins, all of which are key regulators in cell signaling. In dimorphic pathogenic fungi such as Paracoccidioides brasiliensis, the adaptation to a higher temperature, acid pH and oxidative stress, is an essential event for fungal survival and also for the establishing of the infectious process. To further understand the role of this protein, we used antisense RNA technology to generate a P. brasiliensis isolate with reduced PbHSP90 gene expression (PbHSP90-aRNA). Reduced expression of HSP90 decreased yeast cell viability during batch culture growth and increased susceptibility to acid pH environments and imposed oxidative stress. Also, PbHSP90-aRNA yeast cells presented reduced viability upon interaction with macrophages. The findings presented here suggest a protective role for HSP90 during adaptation to hostile environments, one that promotes survival of the fungus during host-pathogen interactions.

  11. Subfamily-specific adaptations in the structures of two penicillin-binding proteins from Mycobacterium tuberculosis

    SciTech Connect

    Prigozhin, Daniil M.; Krieger, Inna V.; Huizar, John P.; Mavrici, Daniela; Waldo, Geoffrey S.; Hung, Li -Wei; Sacchettini, James C.; Terwilliger, Thomas C.; Alber, Tom; Mayer, Claudine

    2014-12-31

    Beta-lactam antibiotics target penicillin-binding proteins including several enzyme classes essential for bacterial cell-wall homeostasis. To better understand the functional and inhibitor-binding specificities of penicillin-binding proteins from the pathogen, Mycobacterium tuberculosis, we carried out structural and phylogenetic analysis of two predicted D,D-carboxypeptidases, Rv2911 and Rv3330. Optimization of Rv2911 for crystallization using directed evolution and the GFP folding reporter method yielded a soluble quadruple mutant. Structures of optimized Rv2911 bound to phenylmethylsulfonyl fluoride and Rv3330 bound to meropenem show that, in contrast to the nonspecific inhibitor, meropenem forms an extended interaction with the enzyme along a conserved surface. Phylogenetic analysis shows that Rv2911 and Rv3330 belong to different clades that emerged in Actinobacteria and are not represented in model organisms such as Escherichia coli and Bacillus subtilis. Clade-specific adaptations allow these enzymes to fulfill distinct physiological roles despite strict conservation of core catalytic residues. The characteristic differences include potential protein-protein interaction surfaces and specificity-determining residues surrounding the catalytic site. Overall, these structural insights lay the groundwork to develop improved beta-lactam therapeutics for tuberculosis.

  12. Redox stress proteins are involved in adaptation response of the hyperthermoacidophilic archaeon Sulfolobus solfataricus to nickel challenge

    PubMed Central

    Salzano, Anna M; Febbraio, Ferdinando; Farias, Tiziana; Cetrangolo, Giovanni P; Nucci, Roberto; Scaloni, Andrea; Manco, Giuseppe

    2007-01-01

    Background Exposure to nickel (Ni) and its chemical derivatives has been associated with severe health effects in human. On the contrary, poor knowledge has been acquired on target physiological processes or molecular mechanisms of this metal in model organisms, including Bacteria and Archaea. In this study, we describe an analysis focused at identifying proteins involved in the recovery of the archaeon Sulfolobus solfataricus strain MT4 from Ni-induced stress. Results To this purpose, Sulfolobus solfataricus was grown in the presence of the highest nickel sulphate concentration still allowing cells to survive; crude extracts from treated and untreated cells were compared at the proteome level by using a bi-dimensional chromatography approach. We identified several proteins specifically repressed or induced as result of Ni treatment. Observed up-regulated proteins were largely endowed with the ability to trigger recovery from oxidative and osmotic stress in other biological systems. It is noteworthy that most of the proteins induced following Ni treatment perform similar functions and a few have eukaryal homologue counterparts. Conclusion These findings suggest a series of preferential gene expression pathways activated in adaptation response to metal challenge. PMID:17692131

  13. Adaptation of aphid stylectomy for analyses of proteins and mRNAs in barley phloem sap

    PubMed Central

    Gaupels, Frank; Buhtz, Anja; Knauer, Torsten; Deshmukh, Sachin; Waller, Frank; van Bel, Aart J. E.; Kogel, Karl-Heinz; Kehr, Julia

    2008-01-01

    Sieve tubes are transport conduits not only for photoassimilates but also for macromolecules and other compounds that are involved in sieve tube maintenance and systemic signalling. In order to gain sufficient amounts of pure phloem exudates from barley plants for analyses of the protein and mRNA composition, a previously described stylectomy set-up was optimized. Aphids were placed in sealed cages, which, immediately after microcauterization of the stylets, were flooded with water-saturated silicon oil. The exuding phloem sap was collected with a capillary connected to a pump. Using up to 30 plants and 600 aphids (Rhopalosiphum padi) in parallel, an average of 10 μl of phloem sap could be obtained within 6 h of sampling. In first analyses of the macromolecular content, eight so far unknown phloem mRNAs were identified by cDNA-amplified fragment length polymorphism. Transcripts in barley phloem exudates are related to metabolism, signalling, and pathogen defence, for example coding for a protein kinase and a pathogen- and insect-responsive WIR1A (wheat-induced resistance 1A)-like protein. Further, one-dimensional gel electrophoresis and subsequent partial sequencing by mass spectrometry led to the identification of seven major proteins with putative functions in stress responses and transport of mRNAs, proteins, and sugars. Two of the discovered proteins probably represent isoforms of a new phloem-mobile sucrose transporter. Notably, two-dimensional electrophoresis confirmed that there are >250 phloem proteins awaiting identification in future studies. PMID:18632729

  14. Different BCR/Abl protein suppression patterns as a converging trait of chronic myeloid leukemia cell adaptation to energy restriction.

    PubMed

    Bono, Silvia; Lulli, Matteo; D'Agostino, Vito Giuseppe; Di Gesualdo, Federico; Loffredo, Rosa; Cipolleschi, Maria Grazia; Provenzani, Alessandro; Rovida, Elisabetta; Dello Sbarba, Persio

    2016-12-20

    BCR/Abl protein drives the onset and progression of Chronic Myeloid Leukemia (CML). We previously showed that BCR/Abl protein is suppressed in low oxygen, where viable cells retain stem cell potential. This study addressed the regulation of BCR/Abl protein expression under oxygen or glucose shortage, characteristic of the in vivo environment where cells resistant to tyrosine kinase inhibitors (TKi) persist. We investigated, at transcriptional, translational and post-translational level, the mechanisms involved in BCR/Abl suppression in K562 and KCL22 CML cells. BCR/abl mRNA steady-state analysis and ChIP-qPCR on BCR promoter revealed that BCR/abl transcriptional activity is reduced in K562 cells under oxygen shortage. The SUnSET assay showed an overall reduction of protein synthesis under oxygen/glucose shortage in both cell lines. However, only low oxygen decreased polysome-associated BCR/abl mRNA significantly in KCL22 cells, suggesting a decreased BCR/Abl translation. The proteasome inhibitor MG132 or the pan-caspase inhibitor z-VAD-fmk extended BCR/Abl expression under oxygen/glucose shortage in K562 cells. Glucose shortage induced autophagy-dependent BCR/Abl protein degradation in KCL22 cells. Overall, our results showed that energy restriction induces different cell-specific BCR/Abl protein suppression patterns, which represent a converging route to TKi-resistance of CML cells. Thus, the interference with BCR/Abl expression in environment-adapted CML cells may become a useful implement to current therapy.

  15. The matricellular protein cysteine-rich protein 61 (CCN1/Cyr61) enhances physiological adaptation of retinal vessels and reduces pathological neovascularization associated with ischemic retinopathy.

    PubMed

    Hasan, Adeel; Pokeza, Nataliya; Shaw, Lynn; Lee, Hyun-Seung; Lazzaro, Douglas; Chintala, Hemabindu; Rosenbaum, Daniel; Grant, Maria B; Chaqour, Brahim

    2011-03-18

    Retinal vascular damages are the cardinal hallmarks of retinopathy of prematurity (ROP), a leading cause of vision impairment and blindness in childhood. Both angiogenesis and vasculogenesis are disrupted in the hyperoxia-induced vaso-obliteration phase, and recapitulated, although aberrantly, in the subsequent ischemia-induced neovessel formation phase of ROP. Yet, whereas the histopathological features of ROP are well characterized, many key modulators with a therapeutic potential remain unknown. The CCN1 protein also known as cysteine-rich protein 61 (Cyr61) is a dynamically expressed, matricellular protein required for proper angiogenesis and vasculogenesis during development. The expression of CCN1 becomes abnormally reduced during the hyperoxic and ischemic phases of ROP modeled in the mouse eye with oxygen-induced retinopathy (OIR). Lentivirus-mediated re-expression of CCN1 enhanced physiological adaptation of the retinal vasculature to hyperoxia and reduced pathological angiogenesis following ischemia. Remarkably, injection into the vitreous of OIR mice of hematopoietic stem cells (HSCs) engineered to express CCN1 harnessed ischemia-induced neovessel outgrowth without adversely affecting the physiological adaptation of retinal vessels to hyperoxia. In vitro exposure of HSCs to recombinant CCN1 induced integrin-dependent cell adhesion, migration, and expression of specific endothelial cell markers as well as many components of the Wnt signaling pathway including Wnt ligands, their receptors, inhibitors, and downstream targets. CCN1-induced Wnt signaling mediated, at least in part, adhesion and endothelial differentiation of cultured HSCs, and inhibition of Wnt signaling interfered with normalization of the retinal vasculature induced by CCN1-primed HSCs in OIR mice. These newly identified functions of CCN1 suggest its possible therapeutic utility in ischemic retinopathy.

  16. Wiskott-Aldrich syndrome protein is associated with the adapter protein Grb2 and the epidermal growth factor receptor in living cells.

    PubMed Central

    She, H Y; Rockow, S; Tang, J; Nishimura, R; Skolnik, E Y; Chen, M; Margolis, B; Li, W

    1997-01-01

    Src homology domains [i.e., Src homology domain 2 (SH2) and Src homology domain 3 (SH3)] play a critical role in linking receptor tyrosine kinases to downstream signaling networks. A well-defined function of the SH3-SH2-SH3 adapter Grb2 is to link receptor tyrosine kinases, such as the epidermal growth factor receptor (EGFR), to the p21ras-signaling pathway. Grb2 has also been implicated to play a role in growth factor-regulated actin assembly and receptor endocytosis, although the underlying mechanisms remain unclear. In this study, we show that Grb2 interacts through its SH3 domains with the human Wiskott-Aldrich syndrome protein (WASp), which plays a role in regulation of the actin cytoskeleton. We find that WASp is expressed in a variety of cell types and is exclusively cytoplasmic. Although the N-terminal SH3 domain of Grb2 binds significantly stronger than the C-terminal SH3 domain to WASp, full-length Grb2 shows the strongest binding. Both phosphorylation of WASp and its interaction with Grb2, as well as with another adapter protein Nck, remain constitutive in serum-starved or epidermal growth factor-stimulated cells. WASp coimmunoprecipitates with the activated EGFR after epidermal growth factor stimulation. Purified glutathione S-transferase-full-length-Grb2 fusion protein, but not the individual domains of Grb2, enhances the association of WASp with the EGFR, suggesting that Grb2 mediates the association of WASp with EGFR. This study suggests that Grb2 translocates WASp from the cytoplasm to the plasma membrane and the Grb2-WASp complex may play a role in linking receptor tyrosine kinases to the actin cytoskeleton. Images PMID:9307968

  17. Thermal adaptation analyzed by comparison of protein sequences from mesophilic and extremely thermophilic Methanococcus species

    NASA Technical Reports Server (NTRS)

    Haney, P. J.; Badger, J. H.; Buldak, G. L.; Reich, C. I.; Woese, C. R.; Olsen, G. J.

    1999-01-01

    The genome sequence of the extremely thermophilic archaeon Methanococcus jannaschii provides a wealth of data on proteins from a thermophile. In this paper, sequences of 115 proteins from M. jannaschii are compared with their homologs from mesophilic Methanococcus species. Although the growth temperatures of the mesophiles are about 50 degrees C below that of M. jannaschii, their genomic G+C contents are nearly identical. The properties most correlated with the proteins of the thermophile include higher residue volume, higher residue hydrophobicity, more charged amino acids (especially Glu, Arg, and Lys), and fewer uncharged polar residues (Ser, Thr, Asn, and Gln). These are recurring themes, with all trends applying to 83-92% of the proteins for which complete sequences were available. Nearly all of the amino acid replacements most significantly correlated with the temperature change are the same relatively conservative changes observed in all proteins, but in the case of the mesophile/thermophile comparison there is a directional bias. We identify 26 specific pairs of amino acids with a statistically significant (P < 0.01) preferred direction of replacement.

  18. Thermal adaptation analyzed by comparison of protein sequences from mesophilic and extremely thermophilic Methanococcus species

    NASA Technical Reports Server (NTRS)

    Haney, P. J.; Badger, J. H.; Buldak, G. L.; Reich, C. I.; Woese, C. R.; Olsen, G. J.

    1999-01-01

    The genome sequence of the extremely thermophilic archaeon Methanococcus jannaschii provides a wealth of data on proteins from a thermophile. In this paper, sequences of 115 proteins from M. jannaschii are compared with their homologs from mesophilic Methanococcus species. Although the growth temperatures of the mesophiles are about 50 degrees C below that of M. jannaschii, their genomic G+C contents are nearly identical. The properties most correlated with the proteins of the thermophile include higher residue volume, higher residue hydrophobicity, more charged amino acids (especially Glu, Arg, and Lys), and fewer uncharged polar residues (Ser, Thr, Asn, and Gln). These are recurring themes, with all trends applying to 83-92% of the proteins for which complete sequences were available. Nearly all of the amino acid replacements most significantly correlated with the temperature change are the same relatively conservative changes observed in all proteins, but in the case of the mesophile/thermophile comparison there is a directional bias. We identify 26 specific pairs of amino acids with a statistically significant (P < 0.01) preferred direction of replacement.

  19. Thermal adaptation analyzed by comparison of protein sequences from mesophilic and extremely thermophilic Methanococcus species

    PubMed Central

    Haney, Paul J.; Badger, Jonathan H.; Buldak, Gerald L.; Reich, Claudia I.; Woese, Carl R.; Olsen, Gary J.

    1999-01-01

    The genome sequence of the extremely thermophilic archaeon Methanococcus jannaschii provides a wealth of data on proteins from a thermophile. In this paper, sequences of 115 proteins from M. jannaschii are compared with their homologs from mesophilic Methanococcus species. Although the growth temperatures of the mesophiles are about 50°C below that of M. jannaschii, their genomic G+C contents are nearly identical. The properties most correlated with the proteins of the thermophile include higher residue volume, higher residue hydrophobicity, more charged amino acids (especially Glu, Arg, and Lys), and fewer uncharged polar residues (Ser, Thr, Asn, and Gln). These are recurring themes, with all trends applying to 83–92% of the proteins for which complete sequences were available. Nearly all of the amino acid replacements most significantly correlated with the temperature change are the same relatively conservative changes observed in all proteins, but in the case of the mesophile/thermophile comparison there is a directional bias. We identify 26 specific pairs of amino acids with a statistically significant (P < 0.01) preferred direction of replacement. PMID:10097079

  20. Thermal adaptation analyzed by comparison of protein sequences from mesophilic and extremely thermophilic Methanococcus species.

    PubMed

    Haney, P J; Badger, J H; Buldak, G L; Reich, C I; Woese, C R; Olsen, G J

    1999-03-30

    The genome sequence of the extremely thermophilic archaeon Methanococcus jannaschii provides a wealth of data on proteins from a thermophile. In this paper, sequences of 115 proteins from M. jannaschii are compared with their homologs from mesophilic Methanococcus species. Although the growth temperatures of the mesophiles are about 50 degrees C below that of M. jannaschii, their genomic G+C contents are nearly identical. The properties most correlated with the proteins of the thermophile include higher residue volume, higher residue hydrophobicity, more charged amino acids (especially Glu, Arg, and Lys), and fewer uncharged polar residues (Ser, Thr, Asn, and Gln). These are recurring themes, with all trends applying to 83-92% of the proteins for which complete sequences were available. Nearly all of the amino acid replacements most significantly correlated with the temperature change are the same relatively conservative changes observed in all proteins, but in the case of the mesophile/thermophile comparison there is a directional bias. We identify 26 specific pairs of amino acids with a statistically significant (P < 0.01) preferred direction of replacement.

  1. A convenient and adaptable microcomputer environment for DNA and protein sequence manipulation and analysis.

    PubMed Central

    Pustell, J; Kafatos, F C

    1986-01-01

    We describe the further development of a widely used package of DNA and protein sequence analysis programs for microcomputers (1,2,3). The package now provides a screen oriented user interface, and an enhanced working environment with powerful formatting, disk access, and memory management tools. The new GenBank floppy disk database is supported transparently to the user and a similar version of the NBRF protein database is provided. The programs can use sequence file annotation to automatically annotate printouts and translate or extract specified regions from sequences by name. The sequence comparison programs can now perform a 5000 X 5000 bp analysis in 12 minutes on an IBM PC. A program to locate potential protein coding regions in nucleic acids, a digitizer interface, and other additions are also described. PMID:3753784

  2. Kisspeptin inhibits a slow afterhyperpolarization current via protein kinase C and reduces spike frequency adaptation in GnRH neurons

    PubMed Central

    Zhang, Chunguang

    2013-01-01

    Kisspeptin signaling via its cognate receptor G protein-coupled receptor 54 (GPR54) in gonadotropin-releasing hormone (GnRH) neurons plays a critical role in regulating pituitary secretion of luteinizing hormone and thus reproductive function. GPR54 is Gq-coupled to activation of phospholipase C and multiple second messenger signaling pathways. Previous studies have shown that kisspeptin potently depolarizes GnRH neurons through the activation of canonical transient receptor potential channels and inhibition of inwardly rectifying K+ channels to generate sustained firing. Since the initial studies showing that kisspeptin has prolonged effects, the question has been why is there very little spike frequency adaption during sustained firing? Presently, we have discovered that kisspeptin reduces spike frequency adaptation and prolongs firing via the inhibition of a calcium-activated slow afterhyperpolarization current (IsAHP). GnRH neurons expressed two distinct IsAHP, a kisspeptin-sensitive and an apamin-sensitive IsAHP. Essentially, kisspeptin inhibited 50% of the IsAHP and apamin inhibited the other 50% of the current. Furthermore, the kisspeptin-mediated inhibition of IsAHP was abrogated by the protein kinase C (PKC) inhibitor calphostin C, and the PKC activator phorbol 12,13-dibutyrate mimicked and occluded any further effects of kisspeptin on IsAHP. The protein kinase A (PKA) inhibitors H-89 and the Rp diastereomer of adenosine 3′,5′-cyclic monophosphorothioate had no effect on the kisspeptin-mediated inhibition but were able to abrogate the inhibitory effects of forskolin on the IsAHP, suggesting that PKA is not involved. Therefore, in addition to increasing the firing rate through an overt depolarization, kisspeptin can also facilitate sustained firing through inhibiting an apamin-insensitive IsAHP in GnRH neurons via a PKC. PMID:23548613

  3. Duplication and Adaptive Evolution of a Key Centromeric Protein in Mimulus, a Genus with Female Meiotic Drive.

    PubMed

    Finseth, Findley R; Dong, Yuzhu; Saunders, Arpiar; Fishman, Lila

    2015-10-01

    The fundamental asymmetry of female meiosis creates an arena for genetic elements to compete for inclusion in the egg, promoting the selfish evolution of centromere variants that maximize their transmission to the future egg. Such "female meiotic drive" has been hypothesized to explain the paradoxically complex and rapidly evolving nature of centromeric DNA and proteins. Although theoretically widespread, few cases of active drive have been observed, thereby limiting the opportunities to directly assess the impact of centromeric drive on molecular variation at centromeres and binding proteins. Here, we characterize the molecular evolutionary patterns of CENH3, the centromere-defining histone variant, in Mimulus monkeyflowers, a genus with one of the few known cases of active centromere-associated female meiotic drive. First, we identify a novel duplication of CENH3 in diploid Mimulus, including in lineages with actively driving centromeres. Second, we demonstrate long-term adaptive evolution at several sites in the N-terminus of CENH3, a region with some meiosis-specific functions that putatively interacts with centromeric DNA. Finally, we infer that the paralogs evolve under different selective regimes; some sites in the N-terminus evolve under positive selection in the pro-orthologs or only one paralog (CENH3_B) and the paralogs exhibit significantly different patterns of polymorphism within populations. Our finding of long-term, adaptive evolution at CENH3 in the context of centromere-associated meiotic drive supports an antagonistic, coevolutionary battle for evolutionary dominance between centromeric DNA and binding proteins. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Elucidation of phenotypic adaptations: Molecular analyses of dim-light vision proteins in vertebrates

    PubMed Central

    Yokoyama, Shozo; Tada, Takashi; Zhang, Huan; Britt, Lyle

    2008-01-01

    Vertebrate ancestors appeared in a uniform, shallow water environment, but modern species flourish in highly variable niches. A striking array of phenotypes exhibited by contemporary animals is assumed to have evolved by accumulating a series of selectively advantageous mutations. However, the experimental test of such adaptive events at the molecular level is remarkably difficult. One testable phenotype, dim-light vision, is mediated by rhodopsins. Here, we engineered 11 ancestral rhodopsins and show that those in early ancestors absorbed light maximally (λmax) at 500 nm, from which contemporary rhodopsins with variable λmaxs of 480–525 nm evolved on at least 18 separate occasions. These highly environment-specific adaptations seem to have occurred largely by amino acid replacements at 12 sites, and most of those at the remaining 191 (≈94%) sites have undergone neutral evolution. The comparison between these results and those inferred by commonly-used parsimony and Bayesian methods demonstrates that statistical tests of positive selection can be misleading without experimental support and that the molecular basis of spectral tuning in rhodopsins should be elucidated by mutagenesis analyses using ancestral pigments. PMID:18768804

  5. Discs large 1 (Dlg1) scaffolding protein participates with clathrin and adaptator protein complex 1 (AP-1) in forming Weibel-Palade bodies of endothelial cells.

    PubMed

    Philippe, Monique; Léger, Thibaut; Desvaux, Raphaëlle; Walch, Laurence

    2013-05-03

    Weibel-Palade bodies (WPBs) are specific cigar-shaped granules that store von Willebrand factor (VWF) for its regulated secretion by endothelial cells. The first steps of the formation of these granules at the trans-Golgi network specifically require VWF aggregation and an external scaffolding complex that contains the adaptator protein complex 1 (AP-1) and clathrin. Discs large 1 (Dlg1) is generally considered to be a modular scaffolding protein implicated in the control of cell polarity in a large variety of cells by specific recruiting of receptors, channels, or signaling proteins to specialized zones of the plasma membrane. We propose here that in endothelial cells, Dlg1, in a complex with AP-1 and clathrin, participates in the biogenesis of WPBs. Supporting data show that Dlg1 colocalizes with microtubules, intermediate filaments, and Golgi markers. Tandem mass spectrometry experiments led to the identification of clathrin as an Dlg1-interacting partner. Interaction was confirmed by in situ proximity ligation assays. Furthermore, AP-1 and VWF immunoprecipitate and colocalize with Dlg1 in the juxtanuclear zone. Finally, Dlg1 depletion by siRNA duplexes disrupts trans-Golgi network morphology and WPB formation. Our results provide the first evidence for an unexpected role of Dlg1 in controlling the formation of specific secretory granules involved in VWF exocytosis in endothelial cells.

  6. Phosphoproteome Analysis Links Protein Phosphorylation to Cellular Remodeling and Metabolic Adaptation during Magnaporthe oryzae Appressorium Development.

    PubMed

    Franck, William L; Gokce, Emine; Randall, Shan M; Oh, Yeonyee; Eyre, Alex; Muddiman, David C; Dean, Ralph A

    2015-06-05

    The rice pathogen, Magnaporthe oryzae, undergoes a complex developmental process leading to formation of an appressorium prior to plant infection. In an effort to better understand phosphoregulation during appressorium development, a mass spectrometry based phosphoproteomics study was undertaken. A total of 2924 class I phosphosites were identified from 1514 phosphoproteins from mycelia, conidia, germlings, and appressoria of the wild type and a protein kinase A (PKA) mutant. Phosphoregulation during appressorium development was observed for 448 phosphosites on 320 phosphoproteins. In addition, a set of candidate PKA targets was identified encompassing 253 phosphosites on 227 phosphoproteins. Network analysis incorporating regulation from transcriptomic, proteomic, and phosphoproteomic data revealed new insights into the regulation of the metabolism of conidial storage reserves and phospholipids, autophagy, actin dynamics, and cell wall metabolism during appressorium formation. In particular, protein phosphorylation appears to play a central role in the regulation of autophagic recycling and actin dynamics during appressorium formation. Changes in phosphorylation were observed in multiple components of the cell wall integrity pathway providing evidence that this pathway is highly active during appressorium development. Several transcription factors were phosphoregulated during appressorium formation including the bHLH domain transcription factor MGG_05709. Functional analysis of MGG_05709 provided further evidence for the role of protein phosphorylation in regulation of glycerol metabolism and the metabolic reprogramming characteristic of appressorium formation. The data presented here represent a comprehensive investigation of the M. oryzae phosphoproteome and provide key insights on the role of protein phosphorylation during infection-related development.

  7. Identifying the adaptive mechanism in globular proteins: Fluctuations in densely packed regions manipulate flexible parts

    NASA Astrophysics Data System (ADS)

    Yilmaz, Lutfu Safak; Atilgan, Ali Rana

    2000-09-01

    A low-resolution structural model based on the packing geometry of α-carbons is utilized to establish a connection between the flexible and rigid parts of a folded protein. The former commonly recognizes a complementing molecule for making a complex, while the latter manipulates the necessary conformational change for binding. We attempt analytically to distinguish this control architecture that intrinsically exists in globular proteins. First with two-dimensional simple models, then for a native protein, bovine pancreatic trypsin inhibitor, we explicitly demonstrate that inserting fluctuations in tertiary contacts supported by the stable core, one can regulate the displacement of residues on loop regions. The positional fluctuations of the flexible regions are annihilated by the rest of the protein in conformity with the Le Chatelier-Braun principle. The results indicate that the distortion of the principal nonbonded contacts between highly packed residues is accompanied by that of the slavery fluctuations that are widely distributed over the native structure. These positional arrangements do not appear in a reciprocal relation between a perturbation and the associated response; the effect of a movement of residue i on residue j is not equal to that of the same movement of residue j on residue i.

  8. Signaling pathway adaptations and novel protein kinase A substrates related to behavioral sensitization to cocaine.

    PubMed

    Boudreau, Amy C; Ferrario, Carrie R; Glucksman, Marc J; Wolf, Marina E

    2009-07-01

    Behavioral sensitization is an animal model for aspects of cocaine addiction. Cocaine-sensitized rats exhibit increased AMPA receptor (AMPAR) surface expression in the nucleus accumbens (NAc) which may in turn enhance drug seeking. To identify signaling pathways contributing to AMPAR up-regulation, we measured AMPAR surface expression and signaling pathway activation in the NAc of cocaine-sensitized rats, cocaine-exposed rats that failed to sensitize and saline controls on withdrawal days (WD) 1, 7, and 21. We focused on calcium/calmodulin-dependent protein kinase II (CaMKII), extracellular signal-regulated protein kinase (ERK), and protein kinase A (PKA). In sensitized rats, AMPAR surface expression was elevated on WD7 and WD21 but not WD1. ERK2 activation followed a parallel time-course, suggesting a role in AMPAR up-regulation. Both sensitized and non-sensitized rats exhibited CaMKII activation on WD7, suggesting that CaMKII activation is not sufficient for AMPAR up-regulation. PKA phosphorylation, measured using an antibody recognizing phosphorylated PKA substrates, increased gradually over withdrawal in sensitized rats, from below control levels on WD1 to significantly greater than controls on WD21. Using proteomics, novel sensitization-related PKA substrates were identified, including two structural proteins (CRMP-2 and alpha-tubulin) that we speculate may link PKA signaling to previously reported dendritic remodeling in NAc neurons of cocaine-sensitized rats.

  9. Cooperation of two mRNA-binding proteins drives metabolic adaptation to iron deficiency

    PubMed Central

    Puig, Sergi; Vergara, Sandra V.; Thiele, Dennis J.

    2008-01-01

    Summary Iron (Fe) is an essential co-factor for a wide range of cellular processes. We have previously demonstrated that during Fe-deficiency yeast Cth2 is expressed and promotes degradation of a battery of mRNAs leading to reprogramming of Fe-dependent metabolism and Fe-storage. We report that the Cth2-homologous protein, Cth1, is transiently expressed during Fe-deprivation and participates in the response to Fe-deficiency through the degradation of mRNAs primarily involved in mitochondrially-localized activities including respiration and amino acid biosynthesis. In parallel, wild type but not cth1Δ cth2Δ cells accumulate mRNAs encoding proteins that function in glucose import and storage and store high levels of glycogen. In addition, Fe-deficiency leads to Snf1 phosphorylation, a member of the AMP-activated protein kinase family required for the cellular response to glucose starvation. These studies demonstrate a metabolic reprogramming as a consequence of Fe-starvation that is dependent on the coordinated activities of two mRNA-binding proteins. PMID:18522836

  10. Pre- versus post-exercise protein intake has similar effects on muscular adaptations

    PubMed Central

    Aragon, Alan; Wilborn, Colin; Urbina, Stacie L.; Hayward, Sara E.; Krieger, James

    2017-01-01

    The purpose of this study was to test the anabolic window theory by investigating muscle strength, hypertrophy, and body composition changes in response to an equal dose of protein consumed either immediately pre- versus post-resistance training (RT) in trained men. Subjects were 21 resistance-trained men (>1 year RT experience) recruited from a university population. After baseline testing, participants were randomly assigned to 1 of 2 experimental groups: a group that consumed a supplement containing 25 g protein and 1 g carbohydrate immediately prior to exercise (PRE-SUPP) (n = 9) or a group that consumed the same supplement immediately post-exercise (POST-SUPP) (n = 12). The RT protocol consisted of three weekly sessions performed on non-consecutive days for 10 weeks. A total-body routine was employed with three sets of 8–12 repetitions for each exercise. Results showed that pre- and post-workout protein consumption had similar effects on all measures studied (p > 0.05). These findings refute the contention of a narrow post-exercise anabolic window to maximize the muscular response and instead lends support to the theory that the interval for protein intake may be as wide as several hours or perhaps more after a training bout depending on when the pre-workout meal was consumed. PMID:28070459

  11. Pre- versus post-exercise protein intake has similar effects on muscular adaptations.

    PubMed

    Schoenfeld, Brad Jon; Aragon, Alan; Wilborn, Colin; Urbina, Stacie L; Hayward, Sara E; Krieger, James

    2017-01-01

    The purpose of this study was to test the anabolic window theory by investigating muscle strength, hypertrophy, and body composition changes in response to an equal dose of protein consumed either immediately pre- versus post-resistance training (RT) in trained men. Subjects were 21 resistance-trained men (>1 year RT experience) recruited from a university population. After baseline testing, participants were randomly assigned to 1 of 2 experimental groups: a group that consumed a supplement containing 25 g protein and 1 g carbohydrate immediately prior to exercise (PRE-SUPP) (n = 9) or a group that consumed the same supplement immediately post-exercise (POST-SUPP) (n = 12). The RT protocol consisted of three weekly sessions performed on non-consecutive days for 10 weeks. A total-body routine was employed with three sets of 8-12 repetitions for each exercise. Results showed that pre- and post-workout protein consumption had similar effects on all measures studied (p > 0.05). These findings refute the contention of a narrow post-exercise anabolic window to maximize the muscular response and instead lends support to the theory that the interval for protein intake may be as wide as several hours or perhaps more after a training bout depending on when the pre-workout meal was consumed.

  12. Activation of protein kinase D1 in mast cells in response to innate, adaptive, and growth factor signals.

    PubMed

    Murphy, Thomas R; Legere, Henry J; Katz, Howard R

    2007-12-01

    Little is known about the serine/threonine kinase protein kinase D (PKD)1 in mast cells. We sought to define ligands that activate PKD1 in mast cells and to begin to address the contributions of this enzyme to mast cell activation induced by diverse agonists. Mouse bone marrow-derived mast cells (BMMC) contained both PKD1 mRNA and immunoreactive PKD1 protein. Activation of BMMC through TLR2, Kit, or FcepsilonRI with Pam(3)CSK(4) (palmitoyl-3-cysteine-serine-lysine-4), stem cell factor (SCF), and cross-linked IgE, respectively, induced activation of PKD1, as determined by immunochemical detection of autophosphorylation. Activation of PKD1 was inhibited by the combined PKD1 and protein kinase C (PKC) inhibitor Gö 6976 but not by broad-spectrum PKC inhibitors, including bisindolylmaleimide (Bim) I. Pam(3)CSK(4) and SCF also induced phosphorylation of heat shock protein 27, a known substrate of PKD1, which was also inhibited by Gö 6976 but not Bim I in BMMC. This pattern also extended to activation-induced increases in mRNA encoding the chemokine CCL2 (MCP-1) and release of the protein. In contrast, both pharmacologic agents inhibited exocytosis of beta-hexosaminidase induced by SCF or cross-linked IgE. Our findings establish that stimuli representing innate, adaptive, and growth factor pathways activate PKD1 in mast cells. In contrast with certain other cell types, activation of PKD1 in BMMC is largely independent of PKC activation. Furthermore, our findings also indicate that PKD1 preferentially influences transcription-dependent production of CCL2, whereas PKC predominantly regulates the rapid exocytosis of preformed secretory granule mediators.

  13. Differential metabolic and endocrine adaptations in llamas, sheep, and goats fed high- and low-protein grass-based diets.

    PubMed

    Kiani, A; Alstrup, L; Nielsen, M O

    2015-10-01

    This study aimed to elucidate whether distinct endocrine and metabolic adaptations provide llamas superior ability to adapt to low protein content grass-based diets as compared with the true ruminants. Eighteen adult, nonpregnant females (6 llamas, 6 goats, and 6 sheep) were fed either green grass hay with (HP) or grass seed straw (LP) in a cross-over design experiment over 2 periods of 21 d. Blood samples were taken on day 21 in each period at -30, 60, 150, and 240 min after feeding the morning meal and analyzed for plasma contents of glucose, triglyceride, nonesterified fatty acids, β-hydroxy butyrate (BOHB), urea, creatinine, insulin, and leptin. Results showed that llamas vs sheep and goats had higher plasma concentrations of glucose (7.1 vs 3.5 and 3.6 ± 0.18 mmol/L), creatinine (209 vs 110 and 103 ± 10 μmol/L), and urea (6.7 vs 5.6 and 4.9 ± 0.5 mmol/L) but lower leptin (0.33 vs 1.49 and 1.05 ± 0.1 ng/mL) and BOHB (0.05 vs 0.26 and 0.12 ± 0.02 mmol/L), respectively. BOHB in llamas was extremely low for a ruminating animal. Llamas showed that hyperglycemia coexisted with hyperinsulinemia (in general on the HP diet; postprandially on the LP diet). Llamas were clearly hypercreatinemic compared with the true ruminants, which became further exacerbated on the LP diet, where they also sustained plasma urea at markedly higher concentrations. However, llamas had markedly lower leptin concentrations than the true ruminants. In conclusion, llamas appear to have an intrinsic insulin resistant phenotype. Augmentation of creatinine and sustenance of elevated plasma urea concentrations in llamas when fed the LP diet must reflect distinct metabolic adaptations of intermediary protein and/or nitrogen metabolism, not observed in the true ruminants. These features can contribute to explain lower metabolic rates in llamas compared with the true ruminants, which must improve the chances of survival on low protein content diets. Copyright © 2015 Elsevier Inc. All

  14. Binding and inhibition of the ternary complex factor Elk-4/Sap1 by the adapter protein Dok-4.

    PubMed

    Hooker, Erika; Baldwin, Cindy; Roodman, Victoria; Batra, Anupam; Takano, Tomoko; Lemay, Serge

    2017-03-08

    The adapter protein Dok-4 has been reported as both activator and inhibitor of Erk and Elk-1, but lack of knowledge about the identity of its partner molecules has precluded any mechanistic insight into these seemingly conflicting properties. We report that Dok-4 interacts with the transactivation domain of Elk-4  through an atypical PTB domain-mediated interaction. Dok-4 possesses a nuclear export signal and can relocalize Elk-4 from nucleus to cytosol, whereas Elk-4 possesses two nuclear localization signals that restrict interaction with Dok-4. Elk-4 protein, unlike Elk-1, is highly unstable in the presence of Dok-4, through both a an interaction-dependent mechanism and a PH domain-dependent but interaction-independent mechanism. This is reversed by proteasome inhibition, depletion of endogenous Dok-4 or lysine-to-arginine mutation of putative Elk-4 ubiquitination sites. Finally, Elk-4 transactivation is potently inhibited by Dok-4 overexpression but enhanced by Dok-4 knockdown in MDCK renal tubular cells, which correlates with  increased basal and EGF-induced expression of Egr-1, Fos and cylcinD1 mRNA and cell proliferation despite reduced Erk activation. Thus, Dok-4 can target Elk-4 activity through multiple mechanisms including binding of the transactivation domain, nuclear exclusion and protein destabilization, without a requirement for inhibition of Erk.

  15. Adaptive mutation in nuclear export protein allows stable transgene expression in a chimaeric influenza A virus vector.

    PubMed

    Kuznetsova, Irina; Shurygina, Anna-Polina; Wolf, Brigitte; Wolschek, Markus; Enzmann, Florian; Sansyzbay, Abylay; Khairullin, Berik; Sandybayev, Nurlan; Stukova, Marina; Kiselev, Oleg; Egorov, Andrej; Bergmann, Michael

    2014-02-01

    The development of influenza virus vectors with long insertions of foreign sequences remains difficult due to the small size and instable nature of the virus. Here, we used the influenza virus inherent property of self-optimization to generate a vector stably expressing long transgenes from the NS1 protein ORF. This was achieved by continuous selection of bright fluorescent plaques of a GFP-expressing vector during multiple passages in mouse B16f1 cells. The newly generated vector acquired stability in IFN-competent cell lines and in vivo in murine lungs. Although improved vector fitness was associated with the appearance of four coding mutations in the polymerase (PB2), haemagglutinin and non-structural (NS) segments, the stability of the transgene expression was dependent primarily on the single mutation Q20R in the nuclear export protein (NEP). Importantly, a longer insert, such as a cassette of 1299 nt encoding two Mycobacterium tuberculosis Esat6 and Ag85A proteins, could substitute for the GFP transgene. Thus, the inherent property of the influenza virus to adapt can also be used to adjust a vector backbone to give stable expression of long transgenes.

  16. Enhanced Priming of Adaptive Immunity by Mycobacterium smegmatis Mutants with High-Level Protein Secretion

    PubMed Central

    Taylor, Natalie; Bahunde, Faith; Thompson, Afton; Yu, Jae-Sung; Jacobs, William R.; Letvin, Norm L.; Haynes, Barton F.

    2012-01-01

    Mycobacteria have features that make them attractive as potential vaccine vectors. The nonpathogenic and rapidly growing Mycobacterium smegmatis can express both Mycobacterium tuberculosis antigens and heterologous antigens from other pathogens, and it has been used as a viable vector for the development of live vaccines. In order to further improve antigen-specific immunogenicity of M. smegmatis, we screened a random transposon mutant library for mutants displaying enhanced efficiency of protein secretion (“high secretors”) and isolated 61 mutants showing enhanced endogenic and transgenic protein secretion. Sequence analysis identified a total of 54 genes involved in optimal secretion of insert proteins, as well as multiple independent transposon insertions localized within the same genomic loci and operons. The majority of transposon insertions occurred in genes that have no known protein secretion function. These transposon mutants were shown to prime antigen-specific CD8+ T cell responses better than the parental strain. Specifically, upon introducing the simian immunodeficiency virus (SIV) gag gene into these transposon mutant strains, we observed that they primed SIV Gag-specific CD8+ T cell responses significantly better than the control prime immunization in a heterologous prime/boost regimen. Our results reveal a dependence on bacterial secretion of mycobacterial and foreign antigens for the induction of antigen-specific CD8+ T cells in vivo. The data also suggest that these M. smegmatis transposon mutants could be used as novel live attenuated vaccine strains to express foreign antigens, such as those of human immunodeficiency virus type 1 (HIV-1), and induce strong antigen-specific T cell responses. PMID:22787192

  17. Sexual selection and the adaptive evolution of PKDREJ protein in primates and rodents

    PubMed Central

    Vicens, Alberto; Gómez Montoto, Laura; Couso-Ferrer, Francisco; Sutton, Keith A.; Roldan, Eduardo R.S.

    2015-01-01

    PKDREJ is a testis-specific protein thought to be located on the sperm surface. Functional studies in the mouse revealed that loss of PKDREJ has effects on sperm transport and the ability to undergo an induced acrosome reaction. Thus, PKDREJ has been considered a potential target of post-copulatory sexual selection in the form of sperm competition. Proteins involved in reproductive processes often show accelerated evolution. In many cases, this rapid divergence is promoted by positive selection which may be driven, at least in part, by post-copulatory sexual selection. We analysed the evolution of the PKDREJ protein in primates and rodents and assessed whether PKDREJ divergence is associated with testes mass relative to body mass, which is a reliable proxy of sperm competition levels. Evidence of an association between the evolutionary rate of the PKDREJ gene and testes mass relative to body mass was not found in primates. Among rodents, evidence of positive selection was detected in the Pkdrej gene in the family Cricetidae but not in Muridae. We then assessed whether Pkdrej divergence is associated with episodes of sperm competition in these families. We detected a positive significant correlation between the evolutionary rates of Pkdrej and testes mass relative to body mass in cricetids. These findings constitute the first evidence of post-copulatory sexual selection influencing the evolution of a protein that participates in the mechanisms regulating sperm transport and the acrosome reaction, strongly suggesting that positive selection may act on these fertilization steps, leading to advantages in situations of sperm competition. PMID:25304980

  18. Sexual selection and the adaptive evolution of PKDREJ protein in primates and rodents.

    PubMed

    Vicens, Alberto; Gómez Montoto, Laura; Couso-Ferrer, Francisco; Sutton, Keith A; Roldan, Eduardo R S

    2015-02-01

    PKDREJ is a testis-specific protein thought to be located on the sperm surface. Functional studies in the mouse revealed that loss of PKDREJ has effects on sperm transport and the ability to undergo an induced acrosome reaction. Thus, PKDREJ has been considered a potential target of post-copulatory sexual selection in the form of sperm competition. Proteins involved in reproductive processes often show accelerated evolution. In many cases, this rapid divergence is promoted by positive selection which may be driven, at least in part, by post-copulatory sexual selection. We analysed the evolution of the PKDREJ protein in primates and rodents and assessed whether PKDREJ divergence is associated with testes mass relative to body mass, which is a reliable proxy of sperm competition levels. Evidence of an association between the evolutionary rate of the PKDREJ gene and testes mass relative to body mass was not found in primates. Among rodents, evidence of positive selection was detected in the Pkdrej gene in the family Cricetidae but not in Muridae. We then assessed whether Pkdrej divergence is associated with episodes of sperm competition in these families. We detected a positive significant correlation between the evolutionary rates of Pkdrej and testes mass relative to body mass in cricetids. These findings constitute the first evidence of post-copulatory sexual selection influencing the evolution of a protein that participates in the mechanisms regulating sperm transport and the acrosome reaction, strongly suggesting that positive selection may act on these fertilization steps, leading to advantages in situations of sperm competition.

  19. Morphological adaptation and protein modulation of myotendinous junction following moderate aerobic training.

    PubMed

    Curzi, Davide; Baldassarri, Valentina; De Matteis, Rita; Salamanna, Francesca; Bolotta, Alessandra; Frizziero, Antonio; Fini, Milena; Marini, Marina; Falcieri, Elisabetta

    2015-04-01

    Myotendinous junction is the muscle-tendon interface through which the contractile force can be transferred from myofibrils to the tendon extracellular matrix. At the ultrastructural level, aerobic training can modify the distal myotendinous junction of rat gastrocnemius, increasing the contact area between tissues. The aim of this work is to investigate the correlation between morphological changes and protein modulation of the myotendinous junction following moderate training. For this reason, talin, vinculin and type IV collagen amount and spatial distribution were investigated by immunohistochemistry and confocal microscopy. The images were then digitally analyzed by evaluating fluorescence intensity. Morphometric analysis revealed a significant increased thickening of muscle basal lamina in the trained group (53.1 ± 0.4 nm) with respect to the control group (43.9 ± 0.3 nm), and morphological observation showed the presence of an electron-dense area in the exercised muscles, close to the myotendinous junction. Protein concentrations appeared significantly increased in the trained group (talin +22.2%; vinculin +22.8% and type IV collagen +11.8%) with respect to the control group. Therefore, our findings suggest that moderate aerobic training induces/causes morphological changes at the myotendinous junction, correlated to the synthesis of structural proteins of the muscular basal lamina and of the cytoskeleton.

  20. Adaptive expression pattern of different proteins involved in cellular calcium homeostasis in denervated rat vas deferens.

    PubMed

    Quintas, Luis Eduardo M; Cunha, Valéria M N; Scaramello, Christianne B V; da Silva, Cláudia L M; Caricati-Neto, Afonso; Lafayette, Simone S L; Jurkiewicz, Aron; Noël, François

    2005-11-21

    The activity and protein expression of plasma membrane and sarco(endo)plasmic reticulum (Ca2+-Mg2+)ATPases and ryanodine receptors were investigated in surgically denervated rat vas deferens. The function of thapsigargin-sensitive but not thapsigargin-resistant (Ca2+-Mg2+)ATPase (from sarco(endo)plasmic reticulum and plasma membrane, respectively), evidenced by enzyme activity and Ca2+ uptake experiments, was significantly depressed by 30-50% when compared to innervated vas. Western blots showed that such reduction in sarco(endo)plasmic reticulum (Ca2+-Mg2+)ATPase performance was accompanied by a decrement of similar magnitude in sarco(endo)plasmic reticulum (Ca2+-Mg2+)ATPase type 2 protein expression, without any significant change in plasma membrane (Ca2+-Mg2+)ATPase expression. Finally, [3H]ryanodine binding revealed that the density of ryanodine binding sites was reduced by 45% after denervation without modification in affinity. The present findings demonstrate that sarco(endo)plasmic reticulum proteins involved in intracellular calcium homeostasis are clearly down-regulated and brings further evidence of a modified calcium translocation in denervated rat vas deferens.

  1. Heat Shock Partially Dissociates the Overlapping Modules of the Yeast Protein-Protein Interaction Network: A Systems Level Model of Adaptation

    PubMed Central

    Mihalik, Ágoston; Csermely, Peter

    2011-01-01

    Network analysis became a powerful tool giving new insights to the understanding of cellular behavior. Heat shock, the archetype of stress responses, is a well-characterized and simple model of cellular dynamics. S. cerevisiae is an appropriate model organism, since both its protein-protein interaction network (interactome) and stress response at the gene expression level have been well characterized. However, the analysis of the reorganization of the yeast interactome during stress has not been investigated yet. We calculated the changes of the interaction-weights of the yeast interactome from the changes of mRNA expression levels upon heat shock. The major finding of our study is that heat shock induced a significant decrease in both the overlaps and connections of yeast interactome modules. In agreement with this the weighted diameter of the yeast interactome had a 4.9-fold increase in heat shock. Several key proteins of the heat shock response became centers of heat shock-induced local communities, as well as bridges providing a residual connection of modules after heat shock. The observed changes resemble to a ‘stratus-cumulus’ type transition of the interactome structure, since the unstressed yeast interactome had a globally connected organization, similar to that of stratus clouds, whereas the heat shocked interactome had a multifocal organization, similar to that of cumulus clouds. Our results showed that heat shock induces a partial disintegration of the global organization of the yeast interactome. This change may be rather general occurring in many types of stresses. Moreover, other complex systems, such as single proteins, social networks and ecosystems may also decrease their inter-modular links, thus develop more compact modules, and display a partial disintegration of their global structure in the initial phase of crisis. Thus, our work may provide a model of a general, system-level adaptation mechanism to environmental changes. PMID:22022244

  2. "Adapted Linear Interaction Energy": A Structure-Based LIE Parametrization for Fast Prediction of Protein-Ligand Affinities.

    PubMed

    Linder, Mats; Ranganathan, Anirudh; Brinck, Tore

    2013-02-12

    We present a structure-based parametrization of the Linear Interaction Energy (LIE) method and show that it allows for the prediction of absolute protein-ligand binding energies. We call the new model "Adapted" LIE (ALIE) because the α and β coefficients are defined by system-dependent descriptors and do therefore not require any empirical γ term. The best formulation attains a mean average deviation of 1.8 kcal/mol for a diverse test set and depends on only one fitted parameter. It is robust with respect to additional fitting and cross-validation. We compare this new approach with standard LIE by Åqvist and co-workers and the LIE + γSASA model (initially suggested by Jorgensen and co-workers) against in-house and external data sets and discuss their applicabilities.

  3. Hsp70 protein levels and thermotolerance in Drosophila subobscura: a reassessment of the thermal co-adaptation hypothesis.

    PubMed

    Calabria, Gemma; Dolgova, O; Rego, C; Castañeda, L E; Rezende, E L; Balanyà, J; Pascual, M; Sørensen, J G; Loeschcke, V; Santos, M

    2012-04-01

    Theory predicts that geographic variation in traits and genes associated with climatic adaptation may be initially driven by the correlated evolution of thermal preference and thermal sensitivity. This assumes that an organism's preferred body temperature corresponds with the thermal optimum in which performance is maximized; hence, shifts in thermal preferences affect the subsequent evolution of thermal-related traits. Drosophila subobscura evolved worldwide latitudinal clines in several traits including chromosome inversion frequencies, with some polymorphic inversions being apparently associated with thermal preference and thermal tolerance. Here we show that flies carrying the warm-climate chromosome arrangement O(3+4) have higher basal protein levels of Hsp70 than their cold-climate O(st) counterparts, but this difference disappears after heat hardening. O(3+4) carriers are also more heat tolerant, although it is difficult to conclude from our results that this is causally linked to their higher basal levels of Hsp70. The observed patterns are consistent with the thermal co-adaptation hypothesis and suggest that the interplay between behaviour and physiology underlies latitudinal and seasonal shifts in inversion frequencies. © 2012 The Authors. Journal of Evolutionary Biology © 2012 European Society For Evolutionary Biology.

  4. Adaptive evolution of the uncoupling protein 1 gene contributed to the acquisition of novel nonshivering thermogenesis in ancestral eutherian mammals.

    PubMed

    Saito, Shigeru; Saito, Claire Tanaka; Shingai, Ryuzo

    2008-01-31

    Homeotherms possess various physiological mechanisms to maintain their body temperature, thus allowing them to adapt to various environments. Under cold conditions, most eutherian mammals upregulate heat production in brown adipose tissue (BAT), and uncoupling protein (UCP) 1 is an essential factor in BAT thermogenesis. The evolutionary origin of UCP1 was believed to have been a specific event occurring in eutherian lineages. Recently, however, the UCP1 ortholog was found in fishes, which uncovers a more ancient origin of this gene than previously believed. Here we investigate the evolutionary process of UCP1 by comparative genomic approach. We found that UCP1 evolved rapidly by positive Darwinian selection in the common ancestor of eutherians, although this gene arose in the ancestral vertebrate, since the orthologous genes were shared among most of the vertebrate species. Adaptive evolution occurred after the divergence between eutherians and marsupials, which is consistent with the fact that BAT has been found only in eutherians. Our findings indicate that positive Darwinian selection acted on UCP1 contributed to the acquisition of an efficient mechanism for body temperature regulation in primitive eutherians. Phylogenetic reconstruction of UCP1 with two paralogs (UCP2 and UCP3) among vertebrate species revealed that the gene duplication events which produced these three genes occurred in the common ancestor of vertebrates much earlier than the emergence of eutherians. Thus, our data demonstrate that novel gene function can evolve without de novo gene duplication event.

  5. Mitogen-Activated Protein Kinase Hog1 Mediates Adaptation to G1 Checkpoint Arrest during Arsenite and Hyperosmotic Stress▿

    PubMed Central

    Migdal, Iwona; Ilina, Yulia; Tamás, Markus J.; Wysocki, Robert

    2008-01-01

    Cells slow down cell cycle progression in order to adapt to unfavorable stress conditions. Yeast (Saccharomyces cerevisiae) responds to osmotic stress by triggering G1 and G2 checkpoint delays that are dependent on the mitogen-activated protein kinase (MAPK) Hog1. The high-osmolarity glycerol (HOG) pathway is also activated by arsenite, and the hog1Δ mutant is highly sensitive to arsenite, partly due to increased arsenite influx into hog1Δ cells. Yeast cell cycle regulation in response to arsenite and the role of Hog1 in this process have not yet been analyzed. Here, we found that long-term exposure to arsenite led to transient G1 and G2 delays in wild-type cells, whereas cells that lack the HOG1 gene or are defective in Hog1 kinase activity displayed persistent G1 cell cycle arrest. Elevated levels of intracellular arsenite and “cross talk” between the HOG and pheromone response pathways, observed in arsenite-treated hog1Δ cells, prolonged the G1 delay but did not cause a persistent G1 arrest. In contrast, deletion of the SIC1 gene encoding a cyclin-dependent kinase inhibitor fully suppressed the observed block of G1 exit in hog1Δ cells. Moreover, the Sic1 protein was stabilized in arsenite-treated hog1Δ cells. Interestingly, Sic1-dependent persistent G1 arrest was also observed in hog1Δ cells during hyperosmotic stress. Taken together, our data point to an important role of the Hog1 kinase in adaptation to stress-induced G1 cell cycle arrest. PMID:18552285

  6. Protein surface softness is the origin of enzyme cold-adaptation of trypsin.

    PubMed

    Isaksen, Geir Villy; Åqvist, Johan; Brandsdal, Bjørn Olav

    2014-08-01

    Life has effectively colonized most of our planet and extremophilic organisms require specialized enzymes to survive under harsh conditions. Cold-loving organisms (psychrophiles) express heat-labile enzymes that possess a high specific activity and catalytic efficiency at low temperatures. A remarkable universal characteristic of cold-active enzymes is that they show a reduction both in activation enthalpy and entropy, compared to mesophilic orthologs, which makes their reaction rates less sensitive to falling temperature. Despite significant efforts since the early 1970s, the important question of the origin of this effect still largely remains unanswered. Here we use cold- and warm-active trypsins as model systems to investigate the temperature dependence of the reaction rates with extensive molecular dynamics free energy simulations. The calculations quantitatively reproduce the catalytic rates of the two enzymes and further yield high-precision Arrhenius plots, which show the characteristic trends in activation enthalpy and entropy. Detailed structural analysis indicates that the relationship between these parameters and the 3D structure is reflected by significantly different internal protein energy changes during the reaction. The origin of this effect is not localized to the active site, but is found in the outer regions of the protein, where the cold-active enzyme has a higher degree of softness. Several structural mechanisms for softening the protein surface are identified, together with key mutations responsible for this effect. Our simulations further show that single point-mutations can significantly affect the thermodynamic activation parameters, indicating how these can be optimized by evolution.

  7. Adaptive diffusion kernel learning from biological networks for protein function prediction

    PubMed Central

    Sun, Liang; Ji, Shuiwang; Ye, Jieping

    2008-01-01

    Background Machine-learning tools have gained considerable attention during the last few years for analyzing biological networks for protein function prediction. Kernel methods are suitable for learning from graph-based data such as biological networks, as they only require the abstraction of the similarities between objects into the kernel matrix. One key issue in kernel methods is the selection of a good kernel function. Diffusion kernels, the discretization of the familiar Gaussian kernel of Euclidean space, are commonly used for graph-based data. Results In this paper, we address the issue of learning an optimal diffusion kernel, in the form of a convex combination of a set of pre-specified kernels constructed from biological networks, for protein function prediction. Most prior work on this kernel learning task focus on variants of the loss function based on Support Vector Machines (SVM). Their extensions to other loss functions such as the one based on Kullback-Leibler (KL) divergence, which is more suitable for mining biological networks, lead to expensive optimization problems. By exploiting the special structure of the diffusion kernel, we show that this KL divergence based kernel learning problem can be formulated as a simple optimization problem, which can then be solved efficiently. It is further extended to the multi-task case where we predict multiple functions of a protein simultaneously. We evaluate the efficiency and effectiveness of the proposed algorithms using two benchmark data sets. Conclusion Results show that the performance of linearly combined diffusion kernel is better than every single candidate diffusion kernel. When the number of tasks is large, the algorithms based on multiple tasks are favored due to their competitive recognition performance and small computational costs. PMID:18366736

  8. Adaptations required for mitochondrial import following mitochondrial to nucleus gene transfer of ribosomal protein S10.

    PubMed

    Murcha, Monika W; Rudhe, Charlotta; Elhafez, Dina; Adams, Keith L; Daley, Daniel O; Whelan, James

    2005-08-01

    The minimal requirements to support protein import into mitochondria were investigated in the context of the phenomenon of ongoing gene transfer from the mitochondrion to the nucleus in plants. Ribosomal protein 10 of the small subunit is encoded in the mitochondrion in soybean and many other angiosperms, whereas in several other species it is nuclear encoded and thus must be imported into the mitochondrial matrix to function. When encoded by the nuclear genome, it has adopted different strategies for mitochondrial targeting and import. In lettuce (Lactuca sativa) and carrot (Daucus carota), Rps10 independently gained different N-terminal extensions from other genes, following transfer to the nucleus. (The designation of Rps10 follows the following convention. The gene is indicated in italics. If encoded in the mitochondrion, it is rps10; if encoded in the nucleus, it is Rps10.) Here, we show that the N-terminal extensions of Rps10 in lettuce and carrot are both essential for mitochondrial import. In maize (Zea mays), Rps10 has not acquired an extension upon transfer but can be readily imported into mitochondria. Deletion analysis located the mitochondrial targeting region to the first 20 amino acids. Using site directed mutagenesis, we changed residues in the first 20 amino acids of the mitochondrial encoded soybean (Glycine max) rps10 to the corresponding amino acids in the nuclear encoded maize Rps10 until import was achieved. Changes were required that altered charge, hydrophobicity, predicted ability to form an amphipathic alpha-helix, and generation of a binding motif for the outer mitochondrial membrane receptor, translocase of the outer membrane 20. In addition to defining the changes required to achieve mitochondrial localization, the results demonstrate that even proteins that do not present barriers to import can require substantial changes to acquire a mitochondrial targeting signal.

  9. Functions of heat shock proteins in pathways of the innate and adaptive immune system.

    PubMed

    Binder, Robert Julian

    2014-12-15

    For more than 50 years, heat shock proteins (HSPs) have been studied for their role in protecting cells from elevated temperature and other forms of stress. More recently, several roles have been ascribed to HSPs in the immune system. These include intracellular roles in Ag presentation and expression of innate receptors, as well as extracellular roles in tumor immunosurveillance and autoimmunity. Exogenously administered HSPs can elicit a variety of immune responses that have been used in immunotherapy of cancer, infectious diseases, and autoimmune disease.

  10. Drosophila photoreceptor axon guidance and targeting requires the dreadlocks SH2/SH3 adapter protein.

    PubMed

    Garrity, P A; Rao, Y; Salecker, I; McGlade, J; Pawson, T; Zipursky, S L

    1996-05-31

    Mutations in the Drosophila gene dreadlocks (dock) disrupt photoreceptor cell (R cell) axon guidance and targeting. Genetic mosaic analysis and cell-type-specific expression of dock transgenes demonstrate dock is required in R cells for proper innervation. Dock protein contains one SH2 and three SH3 domains, implicating it in tyrosine kinase signaling, and is highly related to the human proto-oncogene Nck. Dock expression is detected in R cell growth cones in the target region. We propose Dock transmits signals in the growth cone in response to guidance and targeting cues. These findings provide an important step for dissection of signaling pathways regulating growth cone motility.

  11. HTLV-1 Tax-mediated TAK1 activation involves TAB2 adapter protein

    SciTech Connect

    Yu Qingsheng; Minoda, Yasumasa; Yoshida, Ryoko; Yoshida, Hideyuki; Iha, Hidekatsu; Kobayashi, Takashi; Yoshimura, Akihiko; Takaesu, Giichi

    2008-01-04

    Human T cell leukemia virus type 1 (HTLV-1) Tax is an oncoprotein that plays a crucial role in the proliferation and transformation of HTLV-1-infected T lymphocytes. It has recently been reported that Tax activates a MAPKKK family, TAK1. However, the molecular mechanism of Tax-mediated TAK1 activation is not well understood. In this report, we investigated the role of TAK1-binding protein 2 (TAB2) in Tax-mediated TAK1 activation. We found that TAB2 physically interacts with Tax and augments Tax-induced NF-{kappa}B activity. Tax and TAB2 cooperatively activate TAK1 when they are coexpressed. Furthermore, TAK1 activation by Tax requires TAB2 binding as well as ubiquitination of Tax. We also found that the overexpression of TRAF2, 5, or 6 strongly induces Tax ubiquitination. These results suggest that TAB2 may be critically involved in Tax-mediated activation of TAK1 and that NF-{kappa}B-activating TRAF family proteins are potential cellular E3 ubiquitin ligases toward Tax.

  12. Adaptation of Clostridium difficile toxin A for use as a protein translocation system

    SciTech Connect

    Kern, Stephanie M.; Feig, Andrew L.

    2011-02-25

    Research highlights: {yields} Catalytic domain of TcdA was replaced by a luciferase reporter. {yields} Each functional domain retains activity in the context of the fusion protein. {yields} We provide evidence that reporter proteins are delivered into vero cells. {yields} System releases cargo into the cytosol, providing a powerful new biotechnology tool. -- Abstract: A cellular delivery system is a useful biotechnology tool, with many possible applications. Two derivatives of Clostridium difficile toxin A (TcdA) have been constructed (GFP-TcdA and Luc-TcdA), by fusing reporter genes to functional domains of TcdA, and evaluated for their ability to translocate their cargo into mammalian cells. The cysteine protease and receptor binding domains of TcdA have been examined and found to be functional when expressed in the chimeric construct. Whereas GFP failed to internalize in the context of the TcdA fusion, significant cellular luciferase activity was detected in vero cell lysates after treatment with Luc-TcdA. Treatment with bafilomycin A1, which inhibits endosomal acidification, traps the luciferase activity within endosomes. To further understand these results, clarified lysates were subjected to molecular weight sieving, demonstrating that active luciferase was released from Luc-TcdA after translocation and internal processing.

  13. Birth and Rapid Subcellular Adaptation of a Hominoid-Specific CDC14 Protein

    PubMed Central

    Weier, Manuela; Lambert, Nelle; Lambot, Marie-Alexandra; Vanderhaeghen, Pierre; Kaessmann, Henrik

    2008-01-01

    Gene duplication was prevalent during hominoid evolution, yet little is known about the functional fate of new ape gene copies. We characterized the CDC14B cell cycle gene and the functional evolution of its hominoid-specific daughter gene, CDC14Bretro. We found that CDC14B encodes four different splice isoforms that show different subcellular localizations (nucleus or microtubule-associated) and functional properties. A microtubular CDC14B variant spawned CDC14Bretro through retroposition in the hominoid ancestor 18–25 million years ago (Mya). CDC14Bretro evolved brain-/testis-specific expression after the duplication event and experienced a short period of intense positive selection in the African ape ancestor 7–12 Mya. Using resurrected ancestral protein variants, we demonstrate that by virtue of amino acid substitutions in distinct protein regions during this time, the subcellular localization of CDC14Bretro progressively shifted from the association with microtubules (stabilizing them) to an association with the endoplasmic reticulum. CDC14Bretro evolution represents a paradigm example of rapid, selectively driven subcellular relocalization, thus revealing a novel mode for the emergence of new gene function. PMID:18547142

  14. A kinetic model of catabolic adaptation and protein reprofiling in Saccharomyces cerevisiae during temperature shifts.

    PubMed

    Mensonides, Femke I C; Brul, Stanley; Hellingwerf, Klaas J; Bakker, Barbara M; Teixeira de Mattos, M Joost

    2014-02-01

    In this article, we aim to find an explanation for the surprisingly thin line, with regard to temperature, between cell growth, growth arrest and ultimately loss of cell viability. To this end, we used an integrative approach including both experimental and modelling work. We measured the short- and long-term effects of increases in growth temperature from 28 °C to 37, 39, 41, 42 or 43 °C on the central metabolism of Saccharomyces cerevisiae. Based on the experimental data, we developed a kinetic mathematical model that describes the metabolic and energetic changes in growing bakers' yeast when exposed to a specific temperature upshift. The model includes the temperature dependence of core energy-conserving pathways, trehalose synthesis, protein synthesis and proteolysis. Because our model focuses on protein synthesis and degradation, the net result of which is important in determining the cell's capacity to grow, the model includes growth, i.e. glucose is consumed and biomass and adenosine nucleotide cofactors are produced. The model reproduces both the observed initial metabolic response and the subsequent relaxation into a new steady-state, compatible with the new ambient temperature. In addition, it shows that the energy consumption for proteome reprofiling may be a major determinant of heat-induced growth arrest and subsequent recovery or cell death.

  15. Distribution of cold adaptation proteins in microbial mats in Lake Joyce, Antarctica: Analysis of metagenomic data by using two bioinformatics tools.

    PubMed

    Koo, Hyunmin; Hakim, Joseph A; Fisher, Phillip R E; Grueneberg, Alexander; Andersen, Dale T; Bej, Asim K

    2016-01-01

    In this study, we report the distribution and abundance of cold-adaptation proteins in microbial mat communities in the perennially ice-covered Lake Joyce, located in the McMurdo Dry Valleys, Antarctica. We have used MG-RAST and R code bioinformatics tools on Illumina HiSeq2000 shotgun metagenomic data and compared the filtering efficacy of these two methods on cold-adaptation proteins. Overall, the abundance of cold-shock DEAD-box protein A (CSDA), antifreeze proteins (AFPs), fatty acid desaturase (FAD), trehalose synthase (TS), and cold-shock family of proteins (CSPs) were present in all mat samples at high, moderate, or low levels, whereas the ice nucleation protein (INP) was present only in the ice and bulbous mat samples at insignificant levels. Considering the near homogeneous temperature profile of Lake Joyce (0.08-0.29 °C), the distribution and abundance of these proteins across various mat samples predictively correlated with known functional attributes necessary for microbial communities to thrive in this ecosystem. The comparison of the MG-RAST and the R code methods showed dissimilar occurrences of the cold-adaptation protein sequences, though with insignificant ANOSIM (R = 0.357; p-value = 0.012), ADONIS (R(2) = 0.274; p-value = 0.03) and STAMP (p-values = 0.521-0.984) statistical analyses. Furthermore, filtering targeted sequences using the R code accounted for taxonomic groups by avoiding sequence redundancies, whereas the MG-RAST provided total counts resulting in a higher sequence output. The results from this study revealed for the first time the distribution of cold-adaptation proteins in six different types of microbial mats in Lake Joyce, while suggesting a simpler and more manageable user-defined method of R code, as compared to a web-based MG-RAST pipeline.

  16. Adaptive hydrophobic and hydrophilic interactions of mussel foot proteins with organic thin films.

    PubMed

    Yu, Jing; Kan, Yajing; Rapp, Michael; Danner, Eric; Wei, Wei; Das, Saurabh; Miller, Dusty R; Chen, Yunfei; Waite, J Herbert; Israelachvili, Jacob N

    2013-09-24

    The adhesion of mussel foot proteins (Mfps) to a variety of specially engineered mineral and metal oxide surfaces has previously been investigated extensively, but the relevance of these studies to adhesion in biological environments remains unknown. Most solid surfaces exposed to seawater or physiological fluids become fouled by organic conditioning films and biofilms within minutes. Understanding the binding mechanisms of Mfps to organic films with known chemical and physical properties therefore is of considerable theoretical and practical interest. Using self-assembled monolayers (SAMs) on atomically smooth gold substrates and the surface forces apparatus, we explored the force-distance profiles and adhesion energies of three different Mfps, Mfp-1, Mfp-3, and Mfp-5, on (i) hydrophobic methyl (CH3)- and (ii) hydrophilic alcohol (OH)-terminated SAM surfaces between pH 3 and pH 7.5. At acidic pH, all three Mfps adhered strongly to the CH3-terminated SAM surfaces via hydrophobic interactions (range of adhesive interaction energy = -4 to -9 mJ/m(2)) but only weakly to the OH-terminated SAM surfaces through H- bonding (adhesive interaction energy ≤ -0.5 mJ/m(2)). 3, 4-Dihydroxyphenylalanine (Dopa) residues in Mfps mediate binding to both SAM surface types but do so through different interactions: typical bidentate H-bonding by Dopa is frustrated by the longer spacing of OH-SAMs; in contrast, on CH3-SAMs, Dopa in synergy with other nonpolar residues partitions to the hydrophobic surface. Asymmetry in the distribution of hydrophobic residues in intrinsically unstructured proteins, the distortion of bond geometry between H-bonding surfaces, and the manipulation of physisorbed binding lifetimes represent important concepts for the design of adhesive and nonfouling surfaces.

  17. Adaptive hydrophobic and hydrophilic interactions of mussel foot proteins with organic thin films

    PubMed Central

    Yu, Jing; Kan, Yajing; Rapp, Michael; Danner, Eric; Wei, Wei; Das, Saurabh; Miller, Dusty R.; Chen, Yunfei; Waite, J. Herbert; Israelachvili, Jacob N.

    2013-01-01

    The adhesion of mussel foot proteins (Mfps) to a variety of specially engineered mineral and metal oxide surfaces has previously been investigated extensively, but the relevance of these studies to adhesion in biological environments remains unknown. Most solid surfaces exposed to seawater or physiological fluids become fouled by organic conditioning films and biofilms within minutes. Understanding the binding mechanisms of Mfps to organic films with known chemical and physical properties therefore is of considerable theoretical and practical interest. Using self-assembled monolayers (SAMs) on atomically smooth gold substrates and the surface forces apparatus, we explored the force–distance profiles and adhesion energies of three different Mfps, Mfp-1, Mfp-3, and Mfp-5, on (i) hydrophobic methyl (CH3)- and (ii) hydrophilic alcohol (OH)-terminated SAM surfaces between pH 3 and pH 7.5. At acidic pH, all three Mfps adhered strongly to the CH3-terminated SAM surfaces via hydrophobic interactions (range of adhesive interaction energy = −4 to −9 mJ/m2) but only weakly to the OH-terminated SAM surfaces through H- bonding (adhesive interaction energy ≤ −0.5 mJ/m2). 3, 4-Dihydroxyphenylalanine (Dopa) residues in Mfps mediate binding to both SAM surface types but do so through different interactions: typical bidentate H-bonding by Dopa is frustrated by the longer spacing of OH-SAMs; in contrast, on CH3-SAMs, Dopa in synergy with other nonpolar residues partitions to the hydrophobic surface. Asymmetry in the distribution of hydrophobic residues in intrinsically unstructured proteins, the distortion of bond geometry between H-bonding surfaces, and the manipulation of physisorbed binding lifetimes represent important concepts for the design of adhesive and nonfouling surfaces. PMID:24014592

  18. Extensive amino acid polymorphism at the pgm locus is consistent with adaptive protein evolution in Drosophila melanogaster.

    PubMed Central

    Verrelli, B C; Eanes, W F

    2000-01-01

    PGM plays a central role in the glycolytic pathway at the branch point leading to glycogen metabolism and is highly polymorphic in allozyme studies of many species. We have characterized the nucleotide diversity across the Pgm gene in Drosophila melanogaster and D. simulans to investigate the role that protein polymorphism plays at this crucial metabolic branch point shared with several other enzymes. Although D. melanogaster and D. simulans share common allozyme mobility alleles, we find these allozymes are the result of many different amino acid changes at the nucleotide level. In addition, specific allozyme classes within species contain several amino acid changes, which may explain the absence of latitudinal clines for PGM allozyme alleles, the lack of association of PGM allozymes with the cosmopolitan In(3L)P inversion, and the failure to detect differences between PGM allozymes in functional studies. We find a significant excess of amino acid polymorphisms within D. melanogaster when compared to the complete absence of fixed replacements with D. simulans. There is also strong linkage disequilibrium across the 2354 bp of the Pgm locus, which may be explained by a specific amino acid haplotype that is high in frequency yet contains an excess of singleton polymorphisms. Like G6pd, Pgm shows strong evidence for a branch point enzyme that exhibits adaptive protein evolution. PMID:11102370

  19. The LIM protein complex establishes a retinal circuitry of visual adaptation by regulating Pax6 α-enhancer activity

    PubMed Central

    Kim, Yeha; Lim, Soyeon; Ha, Taejeong; Song, You-Hyang; Sohn, Young-In; Park, Dae-Jin; Paik, Sun-Sook; Kim-Kaneyama, Joo-ri; Song, Mi-Ryoung; Leung, Amanda; Levine, Edward M; Kim, In-Beom; Goo, Yong Sook; Lee, Seung-Hee; Kang, Kyung Hwa; Kim, Jin Woo

    2017-01-01

    The visual responses of vertebrates are sensitive to the overall composition of retinal interneurons including amacrine cells, which tune the activity of the retinal circuitry. The expression of Paired-homeobox 6 (PAX6) is regulated by multiple cis-DNA elements including the intronic α-enhancer, which is active in GABAergic amacrine cell subsets. Here, we report that the transforming growth factor ß1-induced transcript 1 protein (Tgfb1i1) interacts with the LIM domain transcription factors Lhx3 and Isl1 to inhibit the α-enhancer in the post-natal mouse retina. Tgfb1i1-/- mice show elevated α-enhancer activity leading to overproduction of Pax6ΔPD isoform that supports the GABAergic amacrine cell fate maintenance. Consequently, the Tgfb1i1-/- mouse retinas show a sustained light response, which becomes more transient in mice with the auto-stimulation-defective Pax6ΔPBS/ΔPBS mutation. Together, we show the antagonistic regulation of the α-enhancer activity by Pax6 and the LIM protein complex is necessary for the establishment of an inner retinal circuitry, which controls visual adaptation. DOI: http://dx.doi.org/10.7554/eLife.21303.001 PMID:28139974

  20. Sterol Regulatory Element Binding Protein (Srb1) Is Required for Hypoxic Adaptation and Virulence in the Dimorphic Fungus Histoplasma capsulatum

    PubMed Central

    DuBois, Juwen C.; Smulian, A. George

    2016-01-01

    The Histoplasma capsulatum sterol regulatory element binding protein (SREBP), Srb1 is a member of the basic helix-loop-helix (bHLH), leucine zipper DNA binding protein family of transcription factors that possess a unique tyrosine (Y) residue instead of an arginine (R) residue in the bHLH region. We have determined that Srb1 message levels increase in a time dependent manner during growth under oxygen deprivation (hypoxia). To further understand the role of Srb1 during infection and hypoxia, we silenced the gene encoding Srb1 using RNA interference (RNAi); characterized the resulting phenotype, determined its response to hypoxia, and its ability to cause disease within an infected host. Silencing of Srb1 resulted in a strain of H. capsulatum that is incapable of surviving in vitro hypoxia. We found that without complete Srb1 expression, H. capsulatum is killed by murine macrophages and avirulent in mice given a lethal dose of yeasts. Additionally, silencing Srb1 inhibited the hypoxic upregulation of other known H. capsulatum hypoxia-responsive genes (HRG), and genes that encode ergosterol biosynthetic enzymes. Consistent with these regulatory functions, Srb1 silenced H. capsulatum cells were hypersensitive to the antifungal azole drug itraconazole. These data support the theory that the H. capsulatum SREBP is critical for hypoxic adaptation and is required for H. capsulatum virulence. PMID:27711233

  1. Association of heat stress protein 90 and 70 gene polymorphism with adaptability traits in Indian sheep (Ovis aries).

    PubMed

    Singh, K M; Singh, S; Ganguly, I; Nachiappan, Raja K; Ganguly, A; Venkataramanan, R; Chopra, A; Narula, H K

    2017-03-06

    Heat stress proteins assist cellular proteins in the acquisition of native structure. The present research was conducted to study how thermo-tolerance is modulated by HSP90 and HSP70 gene polymorphism and its association with hemato-physio-biochemical parameters, supported by their expression profiles in Chokla, Magra, Marwari, and Madras Red sheep breeds. Least square analysis revealed significant effect (P < 0.05) of season and breed on all the physiological parameters, i.e., temperature, respiratory rate, and pulse rate (a.m. and p.m.), as well as hematological parameters like Hb, packed cell volume, total erythrocyte count (TEC), neutrophil/lymphocyte (N/L) ratio, and total leukocyte count (TLC). There was a significant influence (P < 0.05) of breed on biochemical parameters such as glucose, SGOT, phosphorous, triglyceride, and cholesterol. Eight fragments were amplified and sequenced in HSP90, and 70 genes and 13 single-nucleotide polymorphisms (SNPs) were identified. Tetra-primer amplification refractory mutation system PCR, PCR-RFLP, and allele-specific PCR genotyping protocols were developed for large-scale genotyping of five SNPs. A significant difference (P < 0.05) of rectal temperature (a.m.), respiratory rate (p.m.), triglyceride, and total protein was observed at SNP01; albumin at SNP2; pulse rate (p.m.) at SNP3; and rectal temperature (p.m.), pulse rate (p.m.), Hb (g/dL), and N/L ratio at SNP4 and TLC at SNP5. Gene expression analysis revealed lower expression in less adapted animals with Madras Red < Magra < Chokla < Marwari expression pattern. Predominant allele was found to be superior in most of the SNPs (SNP1-4) indicating the selection acting in directional manner (positive selection). Finally, it is concluded that TACCA haplotype combination of SNP1-SNP2-SNP3-SNP4-SNP5 might be of some selection advantage for the identification of animals more adaptable to heat stress.

  2. Adaptation of yellow fever virus 17D to Vero cells is associated with mutations in structural and non-structural protein genes.

    PubMed

    Beasley, David W C; Morin, Merribeth; Lamb, Ashley R; Hayman, Edward; Watts, Douglas M; Lee, Cynthia K; Trent, Dennis W; Monath, Thomas P

    2013-09-01

    Serial passaging of yellow fever virus 17D in Vero cells was employed to derive seed material for a novel inactivated vaccine, XRX-001. Two independent passaging series identified a novel lysine to arginine mutation at amino acid 160 of the envelope protein, a surface-exposed residue in structural domain I. A third passage series resulted in an isoleucine to methionine mutation at residue 113 of the NS4B protein, a central membrane spanning region of the protein which has previously been associated with Vero cell adaptation of other mosquito-borne flaviviruses. These studies confirm that flavivirus adaptation to growth in Vero cells can be mediated by structural or non-structural protein mutations.

  3. Testing for adaptive evolution of the female reproductive protein ZPC in mammals, birds and fishes reveals problems with the M7-M8 likelihood ratio test.

    PubMed

    Berlin, Sofia; Smith, Nick G C

    2005-11-10

    Adaptive evolution appears to be a common feature of reproductive proteins across a very wide range of organisms. A promising way of addressing the evolutionary forces responsible for this general phenomenon is to test for adaptive evolution in the same gene but among groups of species, which differ in their reproductive biology. One can then test evolutionary hypotheses by asking whether the variation in adaptive evolution is consistent with the variation in reproductive biology. We have attempted to apply this approach to the study of a female reproductive protein, zona pellucida C (ZPC), which has been previously shown by the use of likelihood ratio tests (LRTs) to be under positive selection in mammals. We tested for evidence of adaptive evolution of ZPC in 15 mammalian species, in 11 avian species and in six fish species using three different LRTs (M1a-M2a, M7-M8, and M8a-M8). The only significant findings of adaptive evolution came from the M7-M8 test in mammals and fishes. Since LRTs of adaptive evolution may yield false positives in some situations, we examined the properties of the LRTs by several different simulation methods. When we simulated data to test the robustness of the LRTs, we found that the pattern of evolution in ZPC generates an excess of false positives for the M7-M8 LRT but not for the M1a-M2a or M8a-M8 LRTs. This bias is strong enough to have generated the significant M7-M8 results for mammals and fishes. We conclude that there is no strong evidence for adaptive evolution of ZPC in any of the vertebrate groups we studied, and that the M7-M8 LRT can be biased towards false inference of adaptive evolution by certain patterns of non-adaptive evolution.

  4. Increase in proteins involved in mitochondrial fission, mitophagy, proteolysis and antioxidant response in type I endometrial cancer as an adaptive response to respiratory complex I deficiency.

    PubMed

    Cormio, Antonella; Musicco, Clara; Gasparre, Giuseppe; Cormio, Gennaro; Pesce, Vito; Sardanelli, Anna Maria; Gadaleta, Maria Nicola

    2017-09-09

    Pathogenic mtDNA mutations associated with alterations of respiratory complex I, mitochondrial proliferation (oncocytic-like phenotype) and increase in antioxidant response were previously reported in type I endometrial carcinoma (EC). To evaluate whether in the presence of pathogenic mtDNA mutations other mitochondrial adaptive processes are triggered by cancer cells, the expression level of proteins involved in mitochondrial dynamics, mitophagy, proteolysis and apoptosis were evaluated in type I ECs harboring pathogenic mtDNA mutations and complex I deficiency. An increase in the fission protein Drp1, in the mitophagy protein BNIP3, in the mitochondrial protease CLPP, in the antioxidant and anti-apoptotic protein ALR and in Bcl-2 as well as a decrease in the fusion protein Mfn2 were found in cancer compared to matched non malignant tissue. Moreover, the level of these proteins was measured in type I EC, in hyperplastic (the premalignant form) and in non malignant tissues to verify whether the altered expression of these proteins is a common feature of endometrial cancer and of hyperplastic tissue. This analysis confirmed in type I EC samples, but not in hyperplasia, an alteration of the expression level of these proteins. These results suggest that in this cancer mitochondrial fission, antioxidant and anti-apoptotic response may be activated, as well as the discharge of damaged mitochondrial proteins as adaptation processes to mitochondrial dysfunction. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Cellular prion protein (PrP(C)) modulates ethanol-induced behavioral adaptive changes in mice.

    PubMed

    Rial, Daniel; Pandolfo, Pablo; Bitencourt, Rafael M; Pamplona, Fabrício A; Moreira, Karin M; Hipolide, Débora; Dombrowski, Patrícia A; Da Cunha, Claudio; Walz, Roger; Cunha, Rodrigo A; Takahashi, Reinaldo N; Prediger, Rui D

    2014-09-01

    Chronic consumption of drugs with addictive potential induces profound synaptic changes in the dopaminergic mesocorticolimbic pathway that underlie the long-term behavioral alterations seen in addicted subjects. Thus, exploring modulation systems of dopaminergic function may reveal novel targets to interfere with drug addiction. We recently showed that cellular prion protein (PrP(C)) affects the homeostasis of the dopaminergic system by interfering with dopamine synthesis, content, receptor density and signaling pathways in different brain areas. Here we report that the genetic deletion of PrP(C) modulates ethanol (EtOH)-induced behavioral alterations including the maintenance of drug seeking, voluntary consumption and the development of EtOH tolerance, all pivotal steps in drug addiction. Notably, these behavioral changes were accompanied by a significant depletion of dopamine levels in the prefrontal cortex and reduced dopamine D1 receptors in PrP(C) knockout mice. Furthermore, the pharmacological blockade of dopamine D1 receptors, but not D2 receptors, attenuated the abnormal EtOH consumption in PrP(C) knockout mice. Altogether, these findings provide new evidence that the PrP(C)/dopamine interaction plays a pivotal role in EtOH addictive properties in mice. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. [Protein kinases role in adaptive phenomenon of heart ischemic postconditioning development].

    PubMed

    Maslov, L N; Mrochek, A G; Shchepetkin, I A; Headrick, J P; Hanus, L; Barzakh, E I; Lishmanov, A Iu; Gorbunov, A S; Tsybul'nikov, S Iu; Baĭkov, A N

    2013-04-01

    Authors submitted an analysis of papers given up an involvement of protein kinases in heart ischemic postconditioning. This analysis of literature source allowed to authors affirms that signaling system of postconditioning can involve kinases: PKC, PI3K, Akt, MEKl/2, ERK1/2, MTOR, p70s6K, GSK3b, PKG and also eNOS, NO, GC, motoKATP channel, ROS, MPT pore. At the same time it is unclear a real contributions of kinases mTOR, p70s6, AMPK and GSK3b in the mechanism of infarct limiting impact of postconditioning. It is required a further study of the chain of signaling events following JAK2 and p38 kinase activation. The knowledge of Ras and Raf-1 role in postconditioning has hypothetical character. The tyrosine kinase significance in postcondi-tioning is unclear, particular Src kinase, which plays an important role in the regulation of cardiac tolerance to an impact of ischemia and reperfusion.

  7. The Cytoskeletal Adapter Protein Spinophilin Regulates Invadopodia Dynamics and Tumor Cell Invasion in Glioblastoma.

    PubMed

    Cheerathodi, Mujeeburahiman; Avci, Naze G; Guerrero, Paola A; Tang, Leung K; Popp, Julia; Morales, John E; Chen, Zhihua; Carnero, Amancio; Lang, Frederick F; Ballif, Bryan A; Rivera, Gonzalo M; McCarty, Joseph H

    2016-12-01

    Glioblastoma is a primary brain cancer that is resistant to all treatment modalities. This resistance is due, in large part, to invasive cancer cells that disperse from the main tumor site, escape surgical resection, and contribute to recurrent secondary lesions. The adhesion and signaling mechanisms that drive glioblastoma cell invasion remain enigmatic, and as a result there are no effective anti-invasive clinical therapies. Here we have characterized a novel adhesion and signaling pathway comprised of the integrin αvβ8 and its intracellular binding partner, Spinophilin (Spn), which regulates glioblastoma cell invasion in the brain microenvironment. We show for the first time that Spn binds directly to the cytoplasmic domain of β8 integrin in glioblastoma cells. Genetically targeting Spn leads to enhanced invasive cell growth in preclinical models of glioblastoma. Spn regulates glioblastoma cell invasion by modulating the formation and dissolution of invadopodia. Spn-regulated invadopodia dynamics are dependent, in part, on proper spatiotemporal activation of the Rac1 GTPase. Glioblastoma cells that lack Spn showed diminished Rac1 activities, increased numbers of invadopodia, and enhanced extracellular matrix degradation. Collectively, these data identify Spn as a critical adhesion and signaling protein that is essential for modulating glioblastoma cell invasion in the brain microenvironment.

  8. Detecting the signatures of adaptive evolution in protein-coding genes.

    PubMed

    Bielawski, Joseph P

    2013-01-01

    The field of molecular evolution, which includes genome evolution, is devoted to finding variation within and between groups of organisms and explaining the processes responsible for generating this variation. Many DNA changes are believed to have little to no functional effect, and a neutral process will best explain their evolution. Thus, a central task is to discover which changes had positive fitness consequences and were subject to Darwinian natural selection during the course of evolution. Due the size and complexity of modern molecular datasets, the field has come to rely extensively on statistical modeling techniques to meet this analytical challenge. For DNA sequences that encode proteins, one of the most powerful approaches is to employ a statistical model of codon evolution. This unit provides a general introduction to the practice of modeling codon evolution using the statistical framework of maximum likelihood. Four real-data analysis activities are used to illustrate the principles of parameter estimation, robustness, hypothesis testing, and site classification. Each activity includes an explicit analytical protocol based on programs provided by the Phylogenetic Analysis by Maximum Likelihood (PAML) package.

  9. Dehydration-responsive Nuclear Proteome of Rice (Oryza sativa L.) Illustrates Protein Network, Novel Regulators of Cellular Adaptation, and Evolutionary Perspective*

    PubMed Central

    Choudhary, Mani Kant; Basu, Debarati; Datta, Asis; Chakraborty, Niranjan; Chakraborty, Subhra

    2009-01-01

    Water deficit or dehydration is the most crucial environmental constraint on plant growth and development and crop productivity. It has been postulated that plants respond and adapt to dehydration by altering their cellular metabolism and by activating various defense machineries. The nucleus, the regulatory hub of the eukaryotic cell, is a dynamic system and a repository of various macromolecules that serve as modulators of cell signaling dictating the cell fate decision. To better understand the molecular mechanisms of dehydration-responsive adaptation in plants, we developed a comprehensive nuclear proteome of rice. The proteome was determined using a sequential method of organellar enrichment followed by two-dimensional electrophoresis-based protein identification by LC-ESI-MS/MS. We initially screened several commercial rice varieties and parental lines and established their relative dehydration tolerance. The differential display of nuclear proteins in the tolerant variety under study revealed 150 spots that showed changes in their intensities by more than 2.5-fold. The proteomics analysis led to the identification of 109 differentially regulated proteins presumably involved in a variety of functions, including transcriptional regulation and chromatin remodeling, signaling and gene regulation, cell defense and rescue, and protein degradation. The dehydration-responsive nuclear proteome revealed a coordinated response involving both regulatory and functional proteins, impinging upon the molecular mechanism of dehydration adaptation. Furthermore a comparison between the dehydration-responsive nuclear proteome of rice and that of a legume, the chickpea, showed an evolutionary divergence in dehydration response comprising a few conserved proteins, whereas most of the proteins may be involved in crop-specific adaptation. These results might help in understanding the spectrum of nuclear proteins and the biological processes they control under dehydration as well as

  10. Plasma phospholipid transfer protein (PLTP) modulates adaptive immune functions through alternation of T helper cell polarization

    PubMed Central

    Desrumaux, Catherine; Lemaire-Ewing, Stéphanie; Ogier, Nicolas; Yessoufou, Akadiri; Hammann, Arlette; Sequeira-Le Grand, Anabelle; Deckert, Valérie; Pais de Barros, Jean-Paul; Le Guern, Naïg; Guy, Julien; Khan, Naim A; Lagrost, Laurent

    2016-01-01

    Objective: Plasma phospholipid transfer protein (PLTP) is a key determinant of lipoprotein metabolism, and both animal and human studies converge to indicate that PLTP promotes atherogenesis and its thromboembolic complications. Moreover, it has recently been reported that PLTP modulates inflammation and immune responses. Although earlier studies from our group demonstrated that PLTP can modify macrophage activation, the implication of PLTP in the modulation of T-cell-mediated immune responses has never been investigated and was therefore addressed in the present study. Approach and results: In the present study, we demonstrated that PLTP deficiency in mice has a profound effect on CD4+ Th0 cell polarization, with a shift towards the anti-inflammatory Th2 phenotype under both normal and pathological conditions. In a model of contact hypersensitivity, a significantly impaired response to skin sensitization with the hapten-2,4-dinitrofluorobenzene (DNFB) was observed in PLTP-deficient mice compared to wild-type (WT) mice. Interestingly, PLTP deficiency in mice exerted no effect on the counts of total white blood cells, lymphocytes, granulocytes, or monocytes in the peripheral blood. Moreover, PLTP deficiency did not modify the amounts of CD4+ and CD8+ T lymphocyte subsets. However, PLTP-deficiency, associated with upregulation of the Th2 phenotype, was accompanied by a significant decrease in the production of the pro-Th1 cytokine interleukin 18 by accessory cells. Conclusions: For the first time, this work reports a physiological role for PLTP in the polarization of CD4+ T cells toward the pro-inflammatory Th1 phenotype. PMID:26320740

  11. cAMP-responsive element binding protein: a vital link in embryonic hormonal adaptation.

    PubMed

    Schindler, Maria; Fischer, Sünje; Thieme, René; Fischer, Bernd; Santos, Anne Navarrete

    2013-06-01

    The transcription factor cAMP responsive element-binding protein (CREB) and activating transcription factors (ATFs) are downstream components of the insulin/IGF cascade, playing crucial roles in maintaining cell viability and embryo survival. One of the CREB target genes is adiponectin, which acts synergistically with insulin. We have studied the CREB-ATF-adiponectin network in rabbit preimplantation development in vivo and in vitro. From the blastocyst stage onwards, CREB and ATF1, ATF3, and ATF4 are present with increasing expression for CREB, ATF1, and ATF3 during gastrulation and with a dominant expression in the embryoblast (EB). In vitro stimulation with insulin and IGF-I reduced CREB and ATF1 transcripts by approximately 50%, whereas CREB phosphorylation was increased. Activation of CREB was accompanied by subsequent reduction in adiponectin and adiponectin receptor (adipoR)1 expression. Under in vivo conditions of diabetes type 1, maternal adiponectin levels were up-regulated in serum and endometrium. Embryonic CREB expression was altered in a cell lineage-specific pattern. Although in EB cells CREB localization did not change, it was translocated from the nucleus into the cytosol in trophoblast (TB) cells. In TB, adiponectin expression was increased (diabetic 427.8 ± 59.3 pg/mL vs normoinsulinaemic 143.9 ± 26.5 pg/mL), whereas it was no longer measureable in the EB. Analysis of embryonic adipoRs showed an increased expression of adipoR1 and no changes in adipoR2 transcription. We conclude that the transcription factors CREB and ATFs vitally participate in embryo-maternal cross talk before implantation in a cell lineage-specific manner. Embryonic CREB/ATFs act as insulin/IGF sensors. Lack of insulin is compensated by a CREB-mediated adiponectin expression, which may maintain glucose uptake in blastocysts grown in diabetic mothers.

  12. Influence of training intensity on adaptations in acid/base transport proteins, muscle buffer capacity, and repeated-sprint ability in active men.

    PubMed

    McGinley, Cian; Bishop, David J

    2016-12-01

    McGinley C, Bishop DJ. Influence of training intensity on adaptations in acid/base transport proteins, muscle buffer capacity, and repeated-sprint ability in active men. J Appl Physiol 121: 1290-1305, 2016. First published October 14, 2016; doi:10.1152/japplphysiol.00630.2016-This study measured the adaptive response to exercise training for each of the acid-base transport protein families, including providing isoform-specific evidence for the monocarboxylate transporter (MCT)1/4 chaperone protein basigin and for the electrogenic sodium-bicarbonate cotransporter (NBCe)1. We investigated whether 4 wk of work-matched, high-intensity interval training (HIIT), performed either just above the lactate threshold (HIITΔ20; n = 8), or close to peak aerobic power (HIITΔ90; n = 8), influenced adaptations in acid-base transport protein abundance, nonbicarbonate muscle buffer capacity (βmin vitro), and exercise capacity in active men. Training intensity did not discriminate between adaptations for most proteins measured, with abundance of MCT1, sodium/hydrogen exchanger (NHE) 1, NBCe1, carbonic anhydrase (CA) II, and CAXIV increasing after 4 wk, whereas there was little change in CAIII and CAIV abundance. βmin vitro also did not change. However, MCT4 protein content only increased for HIITΔ20 [effect size (ES): 1.06, 90% confidence limits × / ÷ 0.77], whereas basigin protein content only increased for HIITΔ90 (ES: 1.49, × / ÷ 1.42). Repeated-sprint ability (5 × 6-s sprints; 24 s passive rest) improved similarly for both groups. Power at the lactate threshold only improved for HIITΔ20 (ES: 0.49; 90% confidence limits ± 0.38), whereas peak O2 uptake did not change for either group. Detraining was characterized by the loss of adaptations for all of the proteins measured and for repeated-sprint ability 6 wk after removing the stimulus of HIIT. In conclusion, 4 wk of HIIT induced improvements in each of the acid-base transport protein families, but, remarkably, a 40

  13. Peptide-polymer ligands for a tandem WW-domain, an adaptive multivalent protein-protein interaction: lessons on the thermodynamic fitness of flexible ligands.

    PubMed

    Koschek, Katharina; Durmaz, Vedat; Krylova, Oxana; Wieczorek, Marek; Gupta, Shilpi; Richter, Martin; Bujotzek, Alexander; Fischer, Christina; Haag, Rainer; Freund, Christian; Weber, Marcus; Rademann, Jörg

    2015-01-01

    Three polymers, poly(N-(2-hydroxypropyl)methacrylamide) (pHPMA), hyperbranched polyglycerol (hPG), and dextran were investigated as carriers for multivalent ligands targeting the adaptive tandem WW-domain of formin-binding protein (FBP21). Polymer carriers were conjugated with 3-9 copies of the proline-rich decapeptide GPPPRGPPPR-NH2 (P1). Binding of the obtained peptide-polymer conjugates to the tandem WW-domain was investigated employing isothermal titration calorimetry (ITC) to determine the binding affinity, the enthalpic and entropic contributions to free binding energy, and the stoichiometry of binding for all peptide-polymer conjugates. Binding affinities of all multivalent ligands were in the µM range, strongly amplified compared to the monovalent ligand P1 with a K D > 1 mM. In addition, concise differences were observed, pHPMA and hPG carriers showed moderate affinity and bound 2.3-2.8 peptides per protein binding site resulting in the formation of aggregates. Dextran-based conjugates displayed affinities down to 1.2 µM, forming complexes with low stoichiometry, and no precipitation. Experimental results were compared with parameters obtained from molecular dynamics simulations in order to understand the observed differences between the three carrier materials. In summary, the more rigid and condensed peptide-polymer conjugates based on the dextran scaffold seem to be superior to induce multivalent binding and to increase affinity, while the more flexible and dendritic polymers, pHPMA and hPG are suitable to induce crosslinking upon binding.

  14. Microchidia protein 2, MORC2, downregulates the cytoskeleton adapter protein, ArgBP2, via histone methylation in gastric cancer cells

    SciTech Connect

    Tong, Yuxin; Li, Yan; Gu, Hui; Wang, Chunyu; Liu, Funan; Shao, Yangguang; Li, Jiabin; Cao, Liu; Li, Feng

    2015-11-27

    ArgBP2 is an adapter protein that plays an important role in actin-dependent processes such as cell adhesion and migration. However, its function and regulation mechanisms in gastric cancer have not yet been investigated. Here, we showed the low expression of ArgBP2 mRNA level in gastric tumor samples and its repressive function in the proliferation, migration, and invasion of gastric cancer cells. Then, we cloned and identified ArgBP2 promoter and verified that MORC2 bound to the promoter. Moreover, we demonstrated that MORC2 enhanced the recruitment of EZH2, which promoted the tri-methylation of H3K27, leading to the transcriptional repression of ArgBP2. Our results might thus contribute to understanding the molecular mechanisms of ArgBP2 regulation and suggesting ArgBP2 as a potential therapeutic target for gastric cancer. - Highlights: • ArgBP2 inhibits proliferation, migration, and invasion of gastric cancer cells. • Identification of ArgBP2 promoter and its transcription factor MORC2. • EZH2 is required in MORC2 down-regulating ArgBP2 via histone methylation.

  15. A Mage3/Heat Shock Protein70 DNA vaccine induces both innate and adaptive immune responses for the antitumor activity.

    PubMed

    Wang, Lifeng; Rollins, Lisa; Gu, Qinlong; Chen, Si-Yi; Huang, Xue F

    2009-12-11

    Heat shock proteins (HSPs) are highly effective and versatile molecules in promoting antitumor immune responses. We tested whether a HSP-based DNA vaccine can induce effective immune response against Mage3, a cancer testis (CT) antigen frequently expressed in many human tumors, thereby controlling the Mage3-expressing tumor. The vaccine was constructed by linking human inducible HSP70 to the C-terminus of a modified Mage3 gene (sMage3) that was attached at its N-terminus with the signal leader sequence of the human RANTES for releasing the expressed fusion protein from the transduced cells. Intramuscular injection of sMage3Hsp DNA induced CD4(+)/CD8(+) T cell and antibody responses. Vaccination with sMage3Hsp DNA was more effective in inhibiting Mage3-expressing TC-1 tumors. When we dissected the antitumor activity of CD4(+) and CD8(+) T cells by immunizing CD4(+) and CD8(+) knockout mice with sMage3Hsp DNA, we found that both CD8(+) T and CD4(+) T cells played a role in control of inoculated tumor, but did not constitute the whole of immune protection in the prophylactic immunization. Instead, depletion of natural killer (NK) cells led to a major loss of antitumor activity in the immunized mice. These results indicate that the HSP-based Mage3 DNA vaccine can more effectively inhibit tumor growth by inducing both the innate immune responses and Mage3-specific adaptive immune responses via the Hsp-associated adjuvant function.

  16. Compensatory increases in nuclear PGC1alpha protein are primarily associated with subsarcolemmal mitochondrial adaptations in ZDF rats.

    PubMed

    Holloway, Graham P; Gurd, Brendon J; Snook, Laelie A; Lally, Jamie; Bonen, Arend

    2010-04-01

    We examined in insulin-resistant muscle if, in contrast to long-standing dogma, mitochondrial fatty acid oxidation is increased and whether this is attributed to an increased nuclear content of peroxisome proliferator-activated receptor (PPAR) gamma coactivator (PGC) 1alpha and the adaptations of specific mitochondrial subpopulations. Skeletal muscles from male control and Zucker diabetic fatty (ZDF) rats were used to determine 1) intramuscular lipid distribution, 2) subsarcolemmal and intermyofibrillar mitochondrial morphology, 3) rates of palmitate oxidation in subsarcolemmal and intermyofibrillar mitochondria, and 4) the subcellular localization of PGC1alpha. Electotransfection of PGC1alpha cDNA into lean animals tested the notion that increased nuclear PGC1alpha preferentially targeted subsarcolemmal mitochondria. Transmission electron microscope analysis revealed that in ZDF animals the number (+50%), width (+69%), and density (+57%) of subsarcolemmal mitochondria were increased (P < 0.05). In contrast, intermyofibrillar mitochondria remained largely unchanged. Rates of palmitate oxidation were approximately 40% higher (P < 0.05) in ZDF subsarcolemmal and intermyofibrillar mitochondria, potentially as a result of the increased PPAR-targeted proteins, carnitine palmitoyltransferase-I, and fatty acid translocase (FAT)/CD36. PGC1alpha mRNA and total protein were not altered in ZDF animals; however, a greater (approximately 70%; P < 0.05) amount of PGC1alpha was located in nuclei. Overexpression of PGC1alpha only increased subsarcolemmal mitochondrial oxidation rates. In ZDF animals, intramuscular lipids accumulate in the intermyofibrillar region (increased size and number), and this is primarily associated with increased oxidative capacity in subsarcolemmal mitochondria (number, size, density, and oxidation rates). These changes may result from an increased nuclear content of PGC1alpha, as under basal conditions, overexpression of PGC1alpha appears to target

  17. Manganese superoxide dismutase interacts with a large scale of cellular and mitochondrial proteins in low dose radiation-induced adaptive radioprotection

    PubMed Central

    Eldridge, Angela; Fan, Ming; Woloschak, Gayle; Grdina, David J.; Chromy, Brett A.; Li, Jian Jian

    2012-01-01

    Cellular adaptive response to certain low level genotoxic stresses including the exposure to low dose ionizing radiation (LDIR) shows promise as a tool to enhance radioprotection in normal cells but not in tumor cells. Manganese superoxide dismutase (MnSOD), a fundamental mitochondrial antioxidant in mammalian cells plays a key role in LDIR-induced adaptive response. In this study, we aim to elucidate the signaling network associated with the MnSOD-induced radiation protection. A MnSOD-interacting protein profile was established in LDIR-treated human skin cells. Human skin keratinocytes (HK18) were irradiated with a single dose LDIR (10 cGy x-ray) and the cell lysates were immunoprecipitated using α-MnSOD and applied to two different gel-based proteomics followed by mass spectrometry for protein identification. Analysis of the profiles of MnSOD interacting partners before and after LDIR detected different patterns of MnSOD protein-protein interactions in response to LDIR. Interestingly, many of the MnSOD interacting proteins are known to have functions related to mitochondrial regulations on cell metabolism, apoptosis and DNA repair. These results provide the evidence indicating that in addition to the enzymatic action detoxifying superoxide, the antioxidant MnSOD may function as a signaling regulator in stress induced adaptive protection through cell survival pathways. PMID:23000060

  18. Manganese superoxide dismutase interacts with a large scale of cellular and mitochondrial proteins in low-dose radiation-induced adaptive radioprotection.

    PubMed

    Eldridge, Angela; Fan, Ming; Woloschak, Gayle; Grdina, David J; Chromy, Brett A; Li, Jian Jian

    2012-11-15

    The cellular adaptive response to certain low-level genotoxic stresses, including exposure to low-dose ionizing radiation (LDIR), shows promise as a tool to enhance radioprotection in normal cells but not in tumor cells. Manganese superoxide dismutase (MnSOD), a fundamental mitochondrial antioxidant in mammalian cells, plays a key role in the LDIR-induced adaptive response. In this study, we aimed to elucidate the signaling network associated with MnSOD-induced radiation protection. A MnSOD-interacting protein profile was established in LDIR-treated human skin cells. Human skin keratinocytes (HK18) were irradiated with a single dose of LDIR (10 cGy X-ray) and the cell lysates were immunoprecipitated using α-MnSOD and applied to two different gel-based proteomic experiments followed by mass spectrometry for protein identification. Analysis of the profiles of MnSOD-interacting partners before and after LDIR detected various patterns of MnSOD protein-protein interactions in response to LDIR. Interestingly, many of the MnSOD-interacting proteins are known to have functions related to mitochondrial regulation of cell metabolism, apoptosis, and DNA repair. These results provide evidence indicating that in addition to the enzymatic action of detoxifying superoxide, the antioxidant MnSOD may function as a signaling regulator in stress-induced adaptive protection through cell survival pathways. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Inferring the Frequency Spectrum of Derived Variants to Quantify Adaptive Molecular Evolution in Protein-Coding Genes of Drosophila melanogaster

    PubMed Central

    Keightley, Peter D.; Campos, José L.; Booker, Tom R.; Charlesworth, Brian

    2016-01-01

    Many approaches for inferring adaptive molecular evolution analyze the unfolded site frequency spectrum (SFS), a vector of counts of sites with different numbers of copies of derived alleles in a sample of alleles from a population. Accurate inference of the high-copy-number elements of the SFS is difficult, however, because of misassignment of alleles as derived vs. ancestral. This is a known problem with parsimony using outgroup species. Here we show that the problem is particularly serious if there is variation in the substitution rate among sites brought about by variation in selective constraint levels. We present a new method for inferring the SFS using one or two outgroups that attempts to overcome the problem of misassignment. We show that two outgroups are required for accurate estimation of the SFS if there is substantial variation in selective constraints, which is expected to be the case for nonsynonymous sites in protein-coding genes. We apply the method to estimate unfolded SFSs for synonymous and nonsynonymous sites in a population of Drosophila melanogaster from phase 2 of the Drosophila Population Genomics Project. We use the unfolded spectra to estimate the frequency and strength of advantageous and deleterious mutations and estimate that ∼50% of amino acid substitutions are positively selected but that <0.5% of new amino acid mutations are beneficial, with a scaled selection strength of Nes ≈ 12. PMID:27098912

  20. Escherichia coli Dps interacts with DnaA protein to impede initiation: a model of adaptive mutation.

    PubMed

    Chodavarapu, Sundari; Gomez, Ruben; Vicente, Matias; Kaguni, Jon M

    2008-03-01

    During exponential growth, the level of Dps transiently increases in response to oxidative stress to sequester and oxidize Fe2+, which would otherwise lead to hydroxyl radicals that damage the bacterial chromosome. We report that Dps specifically interacts with DnaA protein by affinity chromatography and a solid phase binding assay, requiring the N-terminal region of DnaA to interact. In vitro, Dps inhibits DnaA function in initiation by interfering with strand opening of the replication origin. Comparing isogenic dps+ and dps::kan strains by flow cytometry and by quantitative polymerase chain reaction assays at either the chromosomally encoded level, or at an elevated level encoded by an inducible plasmid, we show that Dps causes less frequent initiations. Results from genetic experiments support this conclusion. We suggest that Dps acts as a checkpoint during oxidative stress to reduce initiations, providing an opportunity for mechanisms to repair oxidative DNA damage. Because Dps does not block initiations absolutely, duplication of the damaged DNA is expected to increase the genetic variation of a population, and the probability that genetic adaptation leads to survival under conditions of oxidative stress.

  1. N-acetyl ornithine deacetylase is a moonlighting protein and is involved in the adaptation of Entamoeba histolytica to nitrosative stress

    PubMed Central

    Shahi, Preeti; Trebicz-Geffen, Meirav; Nagaraja, Shruti; Hertz, Rivka; Alterzon-Baumel, Sharon; Methling, Karen; Lalk, Michael; Mazumder, Mohit; Samudrala, Gourinath; Ankri, Serge

    2016-01-01

    Adaptation of the Entamoeba histolytica parasite to toxic levels of nitric oxide (NO) that are produced by phagocytes may be essential for the establishment of chronic amebiasis and the parasite’s survival in its host. In order to obtain insight into the mechanism of E. histolytica’s adaptation to NO, E. histolytica trophozoites were progressively adapted to increasing concentrations of the NO donor drug, S-nitrosoglutathione (GSNO) up to a concentration of 110 μM. The transcriptome of NO adapted trophozoites (NAT) was investigated by RNA sequencing (RNA-seq). N-acetyl ornithine deacetylase (NAOD) was among the 208 genes that were upregulated in NAT. NAOD catalyzes the deacetylation of N-acetyl-L-ornithine to yield ornithine and acetate. Here, we report that NAOD contributes to the better adaptation of the parasite to nitrosative stress (NS) and that this function does not depend on NAOD catalytic activity. We also demonstrated that glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is detrimental to E. histolytica exposed to NS and that this detrimental effect is neutralized by NAOD or by a catalytically inactive NAOD (mNAOD). These results establish NAOD as a moonlighting protein, and highlight the unexpected role of this metabolic enzyme in the adaptation of the parasite to NS. PMID:27808157

  2. Distribution of phosphorylated protein kinase C alpha in goldfish retinal bipolar synaptic terminals: control by state of adaptation and pharmacological treatment.

    PubMed

    Behrens, Uwe D; Borde, Johannes; Mack, Andreas F; Wagner, Hans-Joachim

    2007-02-01

    Protein kinase C (PKC) is a signalling enzyme critically involved in many aspects of synaptic plasticity. In cyprinid retinae, the PKC alpha isoform is localized in a subpopulation of depolarizing bipolar cells that show adaptation-related morphological changes of their axon terminals. We have studied the subcellular localization of phosphorylated PKC alpha (pPKC alpha) in retinae under various conditions by immunohistochemistry with a phosphospecific antibody. In dark-adapted retinae, pPKC alpha immunoreactivity is weak in the cytoplasm of synaptic terminals, labelling being predominantly associated with the membrane compartment. In light-adapted cells, immunoreactivity is diffusely distributed throughout the terminal. Western blot analysis has revealed a reduction of pPKC alpha immunoreactivity in cytosolic fractions of homogenized dark-adapted retinae compared with light-adapted retinae. Pharmacological experiments with the isoform-specific PKC blocker Goe6976 have shown that inhibition of the enzyme influences immunolabelling for pPKC alpha, mimicking the effects of light on the subcellular distribution of immunoreactivity. Our findings suggest that the state of adaptation modifies the subcellular localization of a signalling molecule (PKC alpha) at the ribbon-type synaptic complex. We propose that changes in the subcellular distribution of PKC alpha immunoreactivity might be one component regulating the strength of the signal transfer of the bipolar cell terminal.

  3. N-acetyl ornithine deacetylase is a moonlighting protein and is involved in the adaptation of Entamoeba histolytica to nitrosative stress.

    PubMed

    Shahi, Preeti; Trebicz-Geffen, Meirav; Nagaraja, Shruti; Hertz, Rivka; Alterzon-Baumel, Sharon; Methling, Karen; Lalk, Michael; Mazumder, Mohit; Samudrala, Gourinath; Ankri, Serge

    2016-11-03

    Adaptation of the Entamoeba histolytica parasite to toxic levels of nitric oxide (NO) that are produced by phagocytes may be essential for the establishment of chronic amebiasis and the parasite's survival in its host. In order to obtain insight into the mechanism of E. histolytica's adaptation to NO, E. histolytica trophozoites were progressively adapted to increasing concentrations of the NO donor drug, S-nitrosoglutathione (GSNO) up to a concentration of 110 μM. The transcriptome of NO adapted trophozoites (NAT) was investigated by RNA sequencing (RNA-seq). N-acetyl ornithine deacetylase (NAOD) was among the 208 genes that were upregulated in NAT. NAOD catalyzes the deacetylation of N-acetyl-L-ornithine to yield ornithine and acetate. Here, we report that NAOD contributes to the better adaptation of the parasite to nitrosative stress (NS) and that this function does not depend on NAOD catalytic activity. We also demonstrated that glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is detrimental to E. histolytica exposed to NS and that this detrimental effect is neutralized by NAOD or by a catalytically inactive NAOD (mNAOD). These results establish NAOD as a moonlighting protein, and highlight the unexpected role of this metabolic enzyme in the adaptation of the parasite to NS.

  4. Functional analysis of the group 4 late embryogenesis abundant proteins reveals their relevance in the adaptive response during water deficit in Arabidopsis.

    PubMed

    Olvera-Carrillo, Yadira; Campos, Francisco; Reyes, José Luis; Garciarrubio, Alejandro; Covarrubias, Alejandra A

    2010-09-01

    Late-Embryogenesis Abundant (LEA) proteins accumulate to high levels during the last stages of seed development, when desiccation tolerance is acquired, and in vegetative and reproductive tissues under water deficit, leading to the hypothesis that these proteins play a role in the adaptation of plants to this stress condition. In this work, we obtained the accumulation patterns of the Arabidopsis (Arabidopsis thaliana) group 4 LEA proteins during different developmental stages and plant organs in response to water deficit. We demonstrate that overexpression of a representative member of this group of proteins confers tolerance to severe drought in Arabidopsis plants. Moreover, we show that deficiency of LEA proteins in this group leads to susceptible phenotypes upon water limitation, during germination, or in mature plants after recovery from severe dehydration. Upon recovery from this stress condition, mutant plants showed a reduced number of floral and axillary buds when compared with wild-type plants. The lack of these proteins also correlates with a reduced seed production under optimal irrigation, supporting a role in fruit and/or seed development. A bioinformatic analysis of group 4 LEA proteins from many plant genera showed that there are two subgroups, originated through ancient gene duplication and a subsequent functional specialization. This study represents, to our knowledge, the first genetic evidence showing that one of the LEA protein groups is directly involved in the adaptive response of higher plants to water deficit, and it provides data indicating that the function of these proteins is not redundant to that of the other LEA proteins.

  5. Functional Analysis of the Group 4 Late Embryogenesis Abundant Proteins Reveals Their Relevance in the Adaptive Response during Water Deficit in Arabidopsis1[C][W][OA

    PubMed Central

    Olvera-Carrillo, Yadira; Campos, Francisco; Reyes, José Luis; Garciarrubio, Alejandro; Covarrubias, Alejandra A.

    2010-01-01

    Late-Embryogenesis Abundant (LEA) proteins accumulate to high levels during the last stages of seed development, when desiccation tolerance is acquired, and in vegetative and reproductive tissues under water deficit, leading to the hypothesis that these proteins play a role in the adaptation of plants to this stress condition. In this work, we obtained the accumulation patterns of the Arabidopsis (Arabidopsis thaliana) group 4 LEA proteins during different developmental stages and plant organs in response to water deficit. We demonstrate that overexpression of a representative member of this group of proteins confers tolerance to severe drought in Arabidopsis plants. Moreover, we show that deficiency of LEA proteins in this group leads to susceptible phenotypes upon water limitation, during germination, or in mature plants after recovery from severe dehydration. Upon recovery from this stress condition, mutant plants showed a reduced number of floral and axillary buds when compared with wild-type plants. The lack of these proteins also correlates with a reduced seed production under optimal irrigation, supporting a role in fruit and/or seed development. A bioinformatic analysis of group 4 LEA proteins from many plant genera showed that there are two subgroups, originated through ancient gene duplication and a subsequent functional specialization. This study represents, to our knowledge, the first genetic evidence showing that one of the LEA protein groups is directly involved in the adaptive response of higher plants to water deficit, and it provides data indicating that the function of these proteins is not redundant to that of the other LEA proteins. PMID:20668063

  6. Amino acid substitutions in σ1 and μ1 outer capsid proteins are selected during mammalian reovirus adaptation to Vero cells.

    PubMed

    Jabre, Roland; Sandekian, Véronique; Lemay, Guy

    2013-09-01

    Establishment of viral persistence in cell culture has previously led to the selection of mammalian reovirus mutants, although very few of those have been characterized in details. In the present study, reovirus was adapted to Vero cells that, in contrast to classically-used L929 cells, are inefficient in supporting the early steps of reovirus uncoating and are also unable to produce interferon as an antiviral response once infection occurs. The Vero cell-adapted reovirus exhibits amino acids substitutions in both the σ1 and μ1 proteins. This contrasts with uncoating mutants from persistently infected L929 cells, and various other cell types, that generally harbor amino acids substitutions in the σ3 outer capsid protein. The Vero cell-adapted virus remained sensitive to an inhibitor of lysosomal proteases; furthermore, in the absence of selective pressure for its maintenance, the virus has partially lost its ability to resist interferon. The positions of the amino acids substitutions on the known protein structures suggest an effect on binding of the viral σ1 protein to the cell surface and on μ1 disassembly from the outer capsid.

  7. Dose response and adaptive response of non-homologous end joining repair genes and proteins in resting human peripheral blood mononuclear cells exposed to γ radiation.

    PubMed

    Shelke, Shridevi; Das, Birajalaxmi

    2015-05-01

    Ionising radiation induces single-strand breaks, double-strand breaks (DSB) and base damages in human cell. DSBs are the most deleterious and if not repaired may lead to genomic instability and cell death. DSB can be repaired through non-homologous end joining (NHEJ) pathway in resting lymphocytes. In this study, NHEJ genes and proteins were studied in irradiated human peripheral blood mononuclear cells (PBMC) at resting stage. Dose-response, time point kinetics and adaptive-response studies were conducted in irradiated PBMC at various end points such as DNA damage quantitation, transcription and protein expression profile. Venous blood samples were collected from 20 random, normal and healthy donors with written informed consent. PBMC was separated and irradiated with various doses between 0.1 and 2.0 Gy ((60)CO-γ source) for dose-response study. Repair kinetics of DNA damage and time point changes in expression of genes and proteins were studied in post-irradiated PBMC at 2.0 Gy at various time points up to 240 min. Adaptive-response study was conducted with a priming dose of 0.1 Gy followed by a challenging dose of 2.0 Gy after 4-h incubation. Our results revealed that Ku70, Ku80, XLF and Ligase IV were significantly upregulated (P < 0.05) at 4-h post-irradiation at transcript and protein level. Adaptive-response study showed significantly increased expression of the proteins involved in NHEJ, suggesting their role in adaptive response in human PBMC at G0/G1, which has important implications to human health. © The Author 2014. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Proteomic analysis of a nutritional shift-up in Saccharomyces cerevisiae identifies Gvp36 as a BAR-containing protein involved in vesicular traffic and nutritional adaptation.

    PubMed

    Querin, Lorenzo; Sanvito, Rossella; Magni, Fulvio; Busti, Stefano; Van Dorsselaer, Alain; Alberghina, Lilia; Vanoni, Marco

    2008-02-22

    Yeast cells undergoing a nutritional shift-up from a poor to a rich carbon source take several hours to adapt to the novel, richer carbon source. The budding index is a physiologically relevant "global" parameter that reflects the complex links between cell growth and division that are both coordinately and deeply affected by nutritional conditions. We used changes in budding index as a guide to choose appropriate, relevant time points during an ethanol to glucose nutritional shift-up for preparation of samples for the analysis of proteome by two-dimensional electrophoresis/mass spectrometry. About 600 spots were detected. 90 spots, mostly comprising proteins involved in intermediary metabolism, protein synthesis, and response to stress, showed differential expression after glucose addition. Among modulated proteins we identified a protein of previously unknown function, Gvp36, showing a transitory increase corresponding to the drop of the fraction of budded cells. A gvp36Delta strain shares several phenotypes (including general growth defects, heat shock, and high salt sensitivity, defects in polarization of the actin cytoskeleton, in endocytosis and in vacuolar biogenesis, defects in entering stationary phase upon nutrient starvation) with secretory pathway mutants and with mutants in genes encoding the two previously known yeast BAR proteins (RSV161 and RSV167). We thus propose that Gvp36 represents a novel yeast BAR protein involved in vesicular traffic and in nutritional adaptation.

  9. Cross-talk between protein kinase A and mitogen-activated protein kinases signalling in the adaptive changes observed during morphine withdrawal in the heart.

    PubMed

    Almela, P; Atucha, N M; Milanés, M V; Laorden, M L

    2009-09-01

    Our previous studies have shown that morphine withdrawal induced an increase in the expression of protein kinase (PK) A and mitogen-activated extracellular kinase (MAPK) pathways in the heart during morphine withdrawal. The purpose of the present study was to evaluate the interaction between PKA and extracellular signal-regulated kinase (ERK) signaling pathways mediating the cardiac adaptive changes observed after naloxone administration to morphine-dependent rats. Dependence on morphine was induced by a 7-day subcutaneous implantation of morphine pellets. Morphine withdrawal was precipitated on day 8 by an injection of naloxone (2 mg/kg). ERK1/2 and tyrosine hydroxylase (TH) phosphorylation was determined by quantitative blot immunolabeling using phosphorylation state-specific antibodies. Naloxone-induced morphine withdrawal activates ERK1/2 and phosphorylates TH at Ser31 in the right and left ventricle, with an increase in the mean arterial blood pressure and heart rate. When N-(2-guanidinoethyl)-5-isoquinolinesulfonamide (HA-1004), a PKA inhibitor, was infused, concomitantly with morphine, it diminished the expression of ERK1/2. In contrast, the infusion of calphostin C (a PKC inhibitor) did not modify the morphine withdrawal-induced activation of ERK1/2. The ability of morphine withdrawal to activate ERK that phosphorylates TH at Ser31 was reduced by HA-1004. The present findings demonstrate that the enhancement of ERK1/2 expression and the phosphorylation state of TH at Ser31 during morphine withdrawal are dependent on PKA and suggest cross-talk between PKA and ERK1/2 transduction pathway mediating morphine withdrawal-induced activation (phosphorylation) of TH.

  10. A modular and adaptive mass spectrometry-based platform for support of bioprocess development toward optimal host cell protein clearance.

    PubMed

    Walker, Donald E; Yang, Feng; Carver, Joseph; Joe, Koman; Michels, David A; Yu, X Christopher

    2017-03-27

    A modular and adaptive mass spectrometry (MS)-based platform was developed to provide fast, robust and sensitive host cell protein (HCP) analytics to support process development. This platform relies on one-dimensional ultra-high performance liquid chromatography (1D UHPLC) combined with several different MS data acquisition strategies to meet the needs of purification process development. The workflow was designed to allow HCP composition and quantitation for up to 20 samples per day, a throughput considered essential for real time bioprocess development support. With data-dependent acquisition (DDA), the 1D UHPLC-MS/MS method had excellent speed and demonstrated robustness in detecting unknown HCPs at ≥ 50 ng/mg (ppm) level. Combining 1D UHPLC with sequential window acquisition of all theoretical spectra (SWATH) MS enabled simultaneous detection and quantitation of all HCPs in single-digit ng/mg range within 1 hour, demonstrating for the first time the benefit of SWATH MS as a technique for HCP analysis. As another alternative, a targeted MS approach can be used to track the clearance of specific known HCP under various process conditions. This study highlights the importance of designing a robust LC-MS/MS workflow that not only allows HCP discovery, but also affords greatly improved process knowledge and capability in HCP removal. As an orthogonal and complementary detection approach to traditional HCP analysis by enzyme-linked immunosorbent assay, the reported LC-MS/MS workflow supports the development of bioprocesses with optimal HCP clearance and the production of safe and high quality therapeutic biopharmaceuticals.

  11. Harmonin-b, an actin-binding scaffold protein, is involved in the adaptation of mechanoelectrical transduction by sensory hair cells.

    PubMed

    Michalski, Nicolas; Michel, Vincent; Caberlotto, Elisa; Lefèvre, Gaelle M; van Aken, Alexander F J; Tinevez, Jean-Yves; Bizard, Emilie; Houbron, Christophe; Weil, Dominique; Hardelin, Jean-Pierre; Richardson, Guy P; Kros, Corné J; Martin, Pascal; Petit, Christine

    2009-11-01

    We assessed the involvement of harmonin-b, a submembranous protein containing PDZ domains, in the mechanoelectrical transduction machinery of inner ear hair cells. Harmonin-b is located in the region of the upper insertion point of the tip link that joins adjacent stereocilia from different rows and that is believed to gate transducer channel(s) located in the region of the tip link's lower insertion point. In Ush1c (dfcr-2J/dfcr-2J) mutant mice defective for harmonin-b, step deflections of the hair bundle evoked transduction currents with altered speed and extent of adaptation. In utricular hair cells, hair bundle morphology and maximal transduction currents were similar to those observed in wild-type mice, but adaptation was faster and more complete. Cochlear outer hair cells displayed reduced maximal transduction currents, which may be the consequence of moderate structural anomalies of their hair bundles. Their adaptation was slower and displayed a variable extent. The latter was positively correlated with the magnitude of the maximal transduction current, but the cells that showed the largest currents could be either hyperadaptive or hypoadaptive. To interpret our observations, we used a theoretical description of mechanoelectrical transduction based on the gating spring theory and a motor model of adaptation. Simulations could account for the characteristics of transduction currents in wild-type and mutant hair cells, both vestibular and cochlear. They led us to conclude that harmonin-b operates as an intracellular link that limits adaptation and engages adaptation motors, a dual role consistent with the scaffolding property of the protein and its binding to both actin filaments and the tip link component cadherin-23.

  12. Smooth statistical torsion angle potential derived from a large conformational database via adaptive kernel density estimation improves the quality of NMR protein structures.

    PubMed

    Bermejo, Guillermo A; Clore, G Marius; Schwieters, Charles D

    2012-12-01

    Statistical potentials that embody torsion angle probability densities in databases of high-quality X-ray protein structures supplement the incomplete structural information of experimental nuclear magnetic resonance (NMR) datasets. By biasing the conformational search during the course of structure calculation toward highly populated regions in the database, the resulting protein structures display better validation criteria and accuracy. Here, a new statistical torsion angle potential is developed using adaptive kernel density estimation to extract probability densities from a large database of more than 10⁶ quality-filtered amino acid residues. Incorporated into the Xplor-NIH software package, the new implementation clearly outperforms an older potential, widely used in NMR structure elucidation, in that it exhibits simultaneously smoother and sharper energy surfaces, and results in protein structures with improved conformation, nonbonded atomic interactions, and accuracy. Copyright © 2012 The Protein Society.

  13. Time Course Analysis Reveals Gene-Specific Transcript and Protein Kinetics of Adaptation to Short-Term Aerobic Exercise Training in Human Skeletal Muscle

    PubMed Central

    Egan, Brendan; O’Connor, Paul L.; Zierath, Juleen R.; O’Gorman, Donal J.

    2013-01-01

    Repeated bouts of episodic myofibrillar contraction associated with exercise training are potent stimuli for physiological adaptation. However, the time course of adaptation and the continuity between alterations in mRNA expression and protein content are not well described in human skeletal muscle. Eight healthy, sedentary males cycled for 60 min at 80% of peak oxygen consumption (VO2peak) each day for fourteen consecutive days, resulting in an increase in VO2peak of 17.5±3.8%. Skeletal muscle biopsies were taken at baseline, and on the morning following (+16 h after exercise) the first, third, seventh, tenth and fourteenth training sessions. Markers of mitochondrial adaptation (Cyt c and COXIV expression, and citrate synthase activity) were increased within the first week of training, but the mtDNA/nDNA ratio was unchanged by two weeks of training. Accumulation of PGC-1α and ERRα protein during training suggests a regulatory role for these factors in adaptations of mitochondrial and metabolic gene expression. A subset of genes were transiently increased after one training session, but returned to baseline levels thereafter, which is supportive of the concept of transcriptional capacity being particularly sensitive to the onset of a new level of contractile activity. Thus, gene-specific temporal patterns of induction of mRNA expression and protein content are described. Our results illustrate the phenomenology of skeletal muscle plasticity and support the notion that transcript level adjustments, coupled to accumulation of encoded protein, underlie the modulation of skeletal muscle metabolism and phenotype by regular exercise. PMID:24069271

  14. Reflections on: "A general role for adaptations in G-Proteins and the cyclic AMP system in mediating the chronic actions of morphine and cocaine on neuronal function".

    PubMed

    Nestler, Eric J

    2016-08-15

    In 1991 we demonstrated that chronic morphine exposure increased levels of adenylyl cyclase and protein kinase A (PKA) in several regions of the rat central nervous system as inferred from measures of enzyme activity in crude extracts (Terwilliger et al., 1991). These findings led us to hypothesize that a concerted upregulation of the cAMP pathway is a general mechanism of opiate tolerance and dependence. Moreover, in the same study we showed similar induction of adenylyl cyclase and PKA activity in nucleus accumbens (NAc) in response to chronic administration of cocaine, but not of several non-abused psychoactive drugs. Morphine and cocaine also induced equivalent changes in inhibitory G protein subunits in this brain region. We thus extended our hypothesis to suggest that, particularly within brain reward regions such as NAc, cAMP pathway upregulation represents a common mechanism of reward tolerance and dependence shared by several classes of drugs of abuse. Research since that time, by many laboratories, has provided substantial support for these hypotheses. Specifically, opiates in several CNS regions including NAc, and cocaine more selectively in NAc, induce expression of certain adenylyl cyclase isoforms and PKA subunits via the transcription factor, CREB, and these transcriptional adaptations serve a homeostatic function to oppose drug action. In certain brain regions, such as locus coeruleus, these adaptations mediate aspects of physical opiate dependence and withdrawal, whereas in NAc they mediate reward tolerance and dependence that drives increased drug self-administration. This work has had important implications for understanding the molecular basis of addiction. "A general role for adaptations in G-proteins and the cyclic AMP system in mediating the chronic actions of morphine and cocaine on neuronal function". Previous studies have shown that chronic morphine increases levels of the G-protein subunits Giα and Goα, adenylate cyclase, cyclic AMP

  15. Ethanol and NaCl susceptibility and protein expression of acid-adapted B. cereus 1-4-1 as well as its growth patterns in the presence of various carbon and nitrogen sources.

    PubMed

    Chen, Jui-Lin; Chiang, Ming-Lun; Chou, Cheng-Chun

    2009-05-01

    In the present study, the foodborne pathogen Bacillus cereus 1-4-1 was subjected to acid adaptation treatment by suspending the test organism in tryptic soy broth (pH 5.5) for 2 hours. The susceptibility of the acid-adapted and nonadapted cells of B. cereus 1-4-1 to high concentrations of ethanol (20%) and NaCl (20%) was then examined. In addition, the effect of acid adaptation on the protein expression profile of B. cereus 1-4-1 as well as the growth patterns of the acid-adapted and nonadapted cells of the test organism in the presence of various carbon and nitrogen sources were compared. Results revealed that acid-adapted B. cereus 1-4-1 was more susceptible to ethanol (20%) and NaCl (20%) than its nonadapted counterpart. Analysis with one-dimensional SDS-PAGE showed no distinct difference in the expression of the 16 proteins bands noted in the nonadapted cells compared with those of acid-adapted cells. Two-dimensional electrophoresis revealed that the acid adaptation treatment affected the expression of 26 species of protein, with the levels of 12 proteins increasing and 14 proteins decreasing in the cells of acid-adapted B. cereus 1-4-1 compared with those of the control cells. Furthermore, immunoblotting detected GroEL-like protein with a similar level in the acid-adapted and nonadapted cells of B. cereus 1-4-1 while failing to find the presence of a DnaK-like protein. B. cereus 1-4-1, regardless of acid adaptation, exhibited the highest maximum growth with sucrose as the carbon source while the maximum growth was found in the presence of either peptone, soytone, tryptone, or yeast extract as the nitrogen source, with these showing no significant difference. Finally, the growth patterns of the acid-adapted and nonadapted cells were similar.

  16. Characterization of interactions of adapter protein RAPL/Nore1B with RAP GTPases and their role in T cell migration.

    PubMed

    Miertzschke, Mandy; Stanley, Paula; Bunney, Tom D; Rodrigues-Lima, Fernando; Hogg, Nancy; Katan, Matilda

    2007-10-19

    Using a model of integrin-triggered random migration of T cells, we show that stimulation of LFA-1 integrins leads to the activation of Rap1 and Rap2 small GTPases. We further show that Rap1 and Rap2 have distinct roles in adhesion and random migration of these cells and that an adapter protein from the Ras association domain family (Rassf), RAPL, has a role downstream of Rap2 in addition to its link to Rap1. Further characterization of the RAPL protein and its interactions with small GTPases from the Ras family shows that RAPL forms more stable complexes with Rap2 and classical Ras proteins compared with Rap1. The different interaction pattern of RAPL with Rap1 and Rap2 is not affected by the disruption of the C-terminal SARAH domain that we identified as the alpha-helical region responsible for RAPL dimerization in vitro and in cells. Based on mutagenesis and three-dimensional modeling, we propose that interaction surfaces in RAPL-Rap1 and RAPL-Rap2 complexes are different and that a single residue in the switch I region of Rap proteins (residue 39) contributes considerably to the different kinetics of these protein-protein interactions. Furthermore, the distinct role of Rap2 in migration of T cells is lost when this critical residue is converted to the residue present in Rap1. Together, these observations suggest a wider role for Rassf adapter protein RAPL and Rap GTPases in cell motility and show that subtle differences between highly similar Rap proteins could be reflected in distinct interactions with common effectors and their cellular function.

  17. Structural, Thermodynamic, and Functional Mechanisms of Adaptations WrbA and AdoMetDC Proteins in Extremophilic Organisms

    DTIC Science & Technology

    2007-08-15

    Exiguobacterium sibiricin (psychrophile), Petrotoga mobilis (thermophilic anaerobe), and Oceanobacillus iheyensis ( halophilic ). All these proteins...psychrophile), Petrotoga mobilis (thermophilic anaerobe), and Oceanobacillus iheyensis ( halophilic ). All these proteins have been expressed and purified, and... halophilic ), in addition to the protein from Thermatoga maritima (thermophilic archea) (see Figure 1 for sequences). All of the proteins have been

  18. Inter- and intra-molecular interactions of Arabidopsis thaliana DELLA protein RGL1

    PubMed Central

    Sheerin, David J.; Buchanan, Jeremy; Kirk, Chris; Harvey, Dawn; Sun, Xiaolin; Spagnuolo, Julian; Li, Sheng; Liu, Tong; Woods, Virgil A.; Foster, Toshi; Jones, William T.; Rakonjac, Jasna

    2011-01-01

    The phytohormone gibberellin and the DELLA proteins act together to control key aspects of plant development. Gibberellin induces degradation of DELLA proteins by recruitment of an F-box protein using a molecular switch: a gibberellin-bound nuclear receptor interacts with the N-terminal domain of DELLA proteins, and this event primes the DELLA C-terminal domain for interaction with the F-box protein. However, the mechanism of signalling between the N- and C-terminal domains of DELLA proteins is unresolved. In the present study, we used in vivo and in vitro approaches to characterize di- and tri-partite interactions of the DELLA protein RGL1 (REPRESSOR OF GA1-3-LIKE 1) of Arabidopsis thaliana with the gibberellin receptor GID1A (GIBBERELLIC ACID-INSENSITIVE DWARF-1A) and the F-box protein SLY1 (SLEEPY1). Deuterium-exchange MS unequivocally showed that the entire N-terminal domain of RGL1 is disordered prior to interaction with the GID1A; furthermore, association/dissociation kinetics, determined by surface plasmon resonance, predicts a two-state conformational change of the RGL1 N-terminal domain upon interaction with GID1A. Additionally, competition assays with monoclonal antibodies revealed that contacts mediated by the short helix Asp-Glu-Leu-Leu of the hallmark DELLA motif are not essential for the GID1A–RGL1 N-terminal domain interaction. Finally, yeast two- and three-hybrid experiments determined that unabated communication between N- and C-terminal domains of RGL1 is required for recruitment of the F-box protein SLY1. PMID:21323638

  19. Why does the silica-binding protein "Si-tag" bind strongly to silica surfaces? Implications of conformational adaptation of the intrinsically disordered polypeptide to solid surfaces.

    PubMed

    Ikeda, Takeshi; Kuroda, Akio

    2011-09-01

    We recently reported that the bacterial 50S ribosomal protein L2 binds strongly to silica surfaces even in the presence of high salt concentrations, detergents, and denaturants such as 8 M urea. We designated L2 as Si-tag, a fusion tag for immobilizing functional proteins on silica materials. Here we discuss the remarkable properties of the Si-tag polypeptide in order to understand the mechanism underlying this binding. Experimental and theoretical studies have shown that the 60-aa N-terminal region and the 71-aa C-terminal region, both of which are rich in positively charged residues, lack a well-defined three-dimensional structure under physiological conditions. This lack of a stable tertiary structure suggests that Si-tag belongs to a family of intrinsically disordered (ID) proteins that exist as dynamic ensembles of rapidly fluctuating structures in aqueous solution. Because of its inherent flexibility, Si-tag could form a large intermolecular interface and optimize its structure for surface interactions by conformational adaptation at the binding interface. Such conformational adaptation occurring concomitantly with binding is common to many ID proteins and is called "coupled folding and binding". Through this conformational adaptation, Si-tag could optimize the interactions between its positively charged side chains and ionized surface silanol groups and between its apolar side chains and hydrophobic surface siloxane sites. The cumulative contribution of these contacts would significantly strengthen the binding of Si-tag, resulting in strong, virtually irreversible binding. Our study suggests that flexible ID proteins have tremendous potential for connecting biomolecules to inorganic materials. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Phosphoinositide Dependent Protein Kinase 1 is Required for Exercise-induced Cardiac Hypertrophy but not the Associated Mitochondrial Adaptations

    PubMed Central

    Noh, Junghyun; Wende, Adam R.; Olsen, Curtis D; Kim, Bumjun; Bevins, Jack; Zhu, Yi; Zhang, Quan-Jiang; Riehle, Christian; Abel, E. Dale

    2015-01-01

    Phosphoinositide-dependent protein kinase-1 (PDPK1) is an important mediator of phosphatidylinositol 3-kinase (PI3K) signaling. We previously reported that PI3K but not Akt signaling mediates the increase of mitochondrial oxidative capacity to physiological cardiac hypertrophy. To determine if PDPK1 regulates these metabolic adaptations we examined mice with cardiomyocyte-specific heterozygous knockout of PDPK1 (cPDPK1+/−) after 5 wk. exercise swim training. Akt phosphorylation at Thr308 increased by 43% in wildtype (WT) mice but not in cPDPK1+/− mice following exercise training. Ventricular contractile function was not different between WT and cPDPK1+/− mice at baseline. In addition, exercise did not influence ventricular function in WT or cPDPK1+/− mice. Heart weight normalized to tibia length ratios increased by 13.8% in WT mice (6.2 ± 0.2 vs. 7.1 ± 0.2, P=0.001), but not in cPDPK1+/− (6.2 ± 0.3 vs. 6.5 ± 0.2, P=0.20) mice after swim training. Diastolic LV dimension increased in WT mice (3.7 ± 0.1 vs. 4.0 ± 0.1 mm, P=0.01) but not in cPDPK1+/− (3.8 ± 0.1 vs. 3.7 ± 0.1 mm, P=0.56) following swim training. Maximal mitochondrial oxygen consumption (VADP, nmol/min/mg) using palmitoyl carnitine as a substrate was significantly increased in mice of all genotypes following swim training (WT: 13.6 ± 0.6 vs.16.1 ± 0.9, P=0.04; cPDPK1+/−: 12.4 ± 0.6 vs.15.9 ± 1.2, P=0.04). These findings suggest that PDPK1 is required for exercise-induced cardiac hypertrophy but does not contribute to exercise-induced increases in mitochondrial function. PMID:26476238

  1. Phosphoinositide dependent protein kinase 1 is required for exercise-induced cardiac hypertrophy but not the associated mitochondrial adaptations.

    PubMed

    Noh, Junghyun; Wende, Adam R; Olsen, Curtis D; Kim, Bumjun; Bevins, Jack; Zhu, Yi; Zhang, Quan-Jiang; Riehle, Christian; Abel, E Dale

    2015-12-01

    Phosphoinositide-dependent protein kinase-1 (PDPK1) is an important mediator of phosphatidylinositol 3-kinase (PI3K) signaling. We previously reported that PI3K but not Akt signaling mediates the increase in mitochondrial oxidative capacity following physiological cardiac hypertrophy. To determine if PDPK1 regulates these metabolic adaptations we examined mice with cardiomyocyte-specific heterozygous knockout of PDPK1 (cPDPK1(+/-)) after 5 wk. exercise swim training. Akt phosphorylation at Thr308 increased by 43% in wildtype (WT) mice but not in cPDPK1(+/-) mice following exercise training. Ventricular contractile function was not different between WT and cPDPK1(+/-) mice at baseline. In addition, exercise did not influence ventricular function in WT or cPDPK1(+/-) mice. Heart weight normalized to tibia length ratios increased by 13.8% in WT mice (6.2±0.2 vs. 7.1±0.2, P=0.001), but not in cPDPK1(+/-) (6.2±0.3 vs. 6.5±0.2, P=0.20) mice after swim training. Diastolic LV dimension increased in WT mice (3.7±0.1 vs. 4.0±0.1 mm, P=0.01) but not in cPDPK1(+/-) (3.8±0.1 vs. 3.7±0.1 mm, P=0.56) following swim training. Maximal mitochondrial oxygen consumption (VADP, nmol/min/mg) using palmitoyl carnitine as a substrate was significantly increased in mice of all genotypes following swim training (WT: 13.6±0.6 vs.16.1±0.9, P=0.04; cPDPK1(+/-): 12.4±0.6 vs.15.9±1.2, P=0.04). These findings suggest that PDPK1 is required for exercise-induced cardiac hypertrophy but does not contribute to exercise-induced increases in mitochondrial function. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Shift in the isoelectric-point of milk proteins as a consequence of adaptive divergence between the milks of mammalian species

    PubMed Central

    2011-01-01

    Background Milk proteins are required to proceed through a variety of conditions of radically varying pH, which are not identical across mammalian digestive systems. We wished to investigate if the shifts in these requirements have resulted in marked changes in the isoelectric point and charge of milk proteins during evolution. Results We investigated nine major milk proteins in 13 mammals. In comparison with a group of orthologous non-milk proteins, we found that 3 proteins κ-casein, lactadherin, and muc1 have undergone the highest change in isoelectric point during evolution. The pattern of non-synonymous substitutions indicate that selection has played a role in the isoelectric point shift, since residues that show significant evidence of positive selection are much more likely to be charged (p = 0.03 for κ-casein; p < 10-8 for muc1). However, this selection does not appear to be solely due to adaptation to the diversity of mammalian digestive systems, since striking changes are seen among species that resemble each other in terms of their digestion. Conclusion The changes in charge are most likely due to changes of other protein functions, rather than an adaptation to the different mammalian digestive systems. These functions may include differences in bioactive peptide releases in the gut between different mammals, which are known to be a major contributing factor in the functional and nutritional value of mammalian milk. This raises the question of whether bovine milk is optimal in terms of particular protein functions, for human nutrition and possibly disease resistance. This article was reviewed by Fyodor Kondrashov, David Liberles (nominated by David Ardell), and Christophe Lefevre (nominated by Mark Ragan). PMID:21801421

  3. Role of Cell Cycle Regulation and MLH1, A Key DNA Mismatch Repair Protein, In Adaptive Survival Responses. Final Report

    SciTech Connect

    David A. Boothman

    1999-08-11

    Due to several interesting findings on both adaptive survival responses (ASRs) and DNA mismatch repair (MMR), this grant was separated into two discrete Specific Aim sets (each with their own discrete hypotheses). The described experiments were simultaneously performed.

  4. Rapid and Adaptable Measurement of Protein Thermal Stability by Differential Scanning Fluorimetry: Updating a Common Biochemical Laboratory Experiment

    ERIC Educational Resources Information Center

    Johnson, R. Jeremy; Savas, Christopher J.; Kartje, Zachary; Hoops, Geoffrey C.

    2014-01-01

    Measurement of protein denaturation and protein folding is a common laboratory technique used in undergraduate biochemistry laboratories. Differential scanning fluorimetry (DSF) provides a rapid, sensitive, and general method for measuring protein thermal stability in an undergraduate biochemistry laboratory. In this method, the thermal…

  5. Rapid and Adaptable Measurement of Protein Thermal Stability by Differential Scanning Fluorimetry: Updating a Common Biochemical Laboratory Experiment

    ERIC Educational Resources Information Center

    Johnson, R. Jeremy; Savas, Christopher J.; Kartje, Zachary; Hoops, Geoffrey C.

    2014-01-01

    Measurement of protein denaturation and protein folding is a common laboratory technique used in undergraduate biochemistry laboratories. Differential scanning fluorimetry (DSF) provides a rapid, sensitive, and general method for measuring protein thermal stability in an undergraduate biochemistry laboratory. In this method, the thermal…

  6. High-intensity interval training-induced metabolic adaptation coupled with an increase in Hif-1α and glycolytic protein expression.

    PubMed

    Abe, Takaaki; Kitaoka, Yu; Kikuchi, Dale Manjiro; Takeda, Kohei; Numata, Osamu; Takemasa, Tohru

    2015-12-01

    It is known that repeated bouts of high-intensity interval training (HIIT) lead to enhanced levels of glycolysis, glycogenesis, and lactate transport proteins in skeletal muscle; however, little is known about the molecular mechanisms underlying these adaptations. To decipher the mechanism leading to improvement of skeletal muscle glycolytic capacity associated with HIIT, we examined the role of hypoxia-inducible factor-1α (Hif-1α), the major transcription factor regulating the expression of genes related to anaerobic metabolism, in the adaptation to HIIT. First, we induced Hif-1α accumulation using ethyl 3,4-dihydroxybenzoate (EDHB) to assess the potential role of Hif-1α in skeletal muscle. Treatment with EDHB significantly increased the protein levels of Hif-1α in gastrocnemius muscles, accompanied by elevated expression of genes related to glycolysis, glycogenesis, and lactate transport. Daily administration of EDHB for 1 wk resulted in elevated glycolytic enzyme activity in gastrocnemius muscles. Second, we examined whether a single bout of HIIT could induce Hif-1α protein accumulation and subsequent increase in the expression of genes related to anaerobic metabolism in skeletal muscle. We observed that the protein levels of Hif-1α and expression of the target genes were elevated 3 h after an acute bout of HIIT in gastrocnemius muscles. Last, we examined the effects of long-term HIIT. We found that long-term HIIT increased the basal levels of Hif-1α as well as the glycolytic capacity in gastrocnemius muscles. Our results suggest that Hif-1α is a key regulator in the metabolic adaptation to high-intensity training.

  7. Amino acids substitutions in σ1 and μ1 outer capsid proteins of a Vero cell-adapted mammalian orthoreovirus are required for optimal virus binding and disassembly.

    PubMed

    Sandekian, Véronique; Lemay, Guy

    2015-01-22

    In a recent study, the serotype 3 Dearing strain of mammalian orthoreovirus was adapted to Vero cells; cells that exhibit a limited ability to support the early steps of reovirus uncoating and are unable to produce interferon as an antiviral response upon infection. The Vero cell-adapted virus (VeroAV) exhibits amino acids substitutions in both the σ1 and μ1 outer capsid proteins but no changes in the σ3 protein. Accordingly, the virus was shown not to behave as a classical uncoating mutant. In the present study, an increased ability of the virus to bind at the Vero cell surface was observed and is likely associated with an increased ability to bind onto cell-surface sialic acid residues. In addition, the kinetics of μ1 disassembly from the virions appears to be altered. The plasmid-based reverse genetics approach confirmed the importance of σ1 amino acids substitutions in VeroAV's ability to efficiently infect Vero cells, although μ1 co-adaptation appears necessary to optimize viral infection. This approach of combining in vitro selection of reoviruses with reverse genetics to identify pertinent amino acids substitutions appears promising in the context of eventual reovirus modification to increase its potential as an oncolytic virus.

  8. Integron-associated mobile gene cassettes code for folded proteins: the structure of Bal32a, a new member of the adaptable alpha+beta barrel family.

    PubMed

    Robinson, Andrew; Wu, Peter S-C; Harrop, Stephen J; Schaeffer, Patrick M; Dosztányi, Zsuzsanna; Gillings, Michael R; Holmes, Andrew J; Nevalainen, K M Helena; Stokes, H W; Otting, Gottfried; Dixon, Nicholas E; Curmi, Paul M G; Mabbutt, Bridget C

    2005-03-11

    The wide-ranging physiology and large genetic variability observed for prokaryotes is largely attributed, not to the prokaryotic genome itself, but rather to mechanisms of lateral gene transfer. Cassette PCR has been used to sample the integron/gene cassette metagenome from different natural environments without laboratory cultivation of the host organism, and without prior knowledge of any target protein sequence. Since over 90% of cassette genes are unrelated to any sequence in the current databases, it is not clear whether these genes code for folded functional proteins. We have selected a sample of eight cassette-encoded genes with no known homologs; five have been isolated as soluble protein products and shown by biophysical techniques to be folded. In solution, at least three of these proteins organise as stable oligomeric assemblies. The tertiary structure of one of these, Bal32a derived from a contaminated soil site, has been solved by X-ray crystallography to 1.8 A resolution. From the three-dimensional structure, Bal32a is found to be a member of the highly adaptable alpha+beta barrel family of transport proteins and enzymes. In Bal32a, the barrel cavity is unusually deep and inaccessible to solvent. Polar side-chains in its interior are reminiscent of catalytic sites of limonene-1,2-epoxide hydrolase and nogalonic acid methyl ester cyclase. These studies demonstrate the viability of direct sampling of mobile DNA as a route for the discovery of novel proteins.

  9. [Protection of radiosensitive human cells against the action of heavy metals by antimutagens and adapting factors: association with genetic and protein polymorphisms].

    PubMed

    Vasil'eva, I M; Shagirova, Zh M; Sinel'shchikova, T A; Mavletova, D A; Kuz'mina, N S; Zasukhina, G D

    2009-06-01

    Cells of a diploid line obtained from embryos with the Down's syndrome, known to be unable to repair gamma-induced DNA damage, were treated with natural (garlic extract, retinol) and synthetic (crown compound) antimutagens and with adapting factors (heat shock, low CdCl2 concentrations, 10(-8) M). The protective effect was evaluated by registering DNA breaks and cell survival, and the protection coefficients were calculated. The most effective results were obtained with the use of the garlic extract and retinol. No protection of the DNA structure was observed when cells were treated with low concentrations of cadmium chloride and then with high concentrations, i. e., no adaptive response (AR) was formed under these conditions. The spectrum of proteins in treated and control cells as well as detoxication genes (GSTM1, GSTT1 , CYPIA1) were determined.

  10. Protein Misfolding Cyclic Amplification Cross-Species Products of Mouse-Adapted Scrapie Strain 139A and Hamster-Adapted Scrapie Strain 263K with Brain and Muscle Tissues of Opposite Animals Generate Infectious Prions.

    PubMed

    Gao, Chen; Han, Jun; Zhang, Jin; Wei, Jing; Zhang, Bao-Yun; Tian, Chan; Zhang, Jie; Shi, Qi; Dong, Xiao-Ping

    2017-07-01

    Transmission of prions between mammalian species is limited by a "species barrier," a biological effect involving an increase in incubation period to decrease the percentage of animals succumbing to disease. In this study, we used protein misfolding cyclic amplification (PMCA) technique, which accelerates the conversion of prion proteins in vitro. Direct interspecies PMCA involving 144 cycles confirmed that both mouse-adapted scrapie strain 139A and hamster-adapted 263K could use brain homogenates of opposite species to form proteinase K (PK)-resistant PrP proteins (PrP(res)). Newly formed interspecies prions could stably propagate themselves in subsequent serial PMCA passages. The two types of PMCA-generated cross-species PrP(res) changed their glycosylation profiles, which was similar to that observed during interspecies infection by the mouse agent 139A in vivo. These profiles were distinct from individual seeded PrP(Sc) and possessed properties of new hosts. Comparative analysis with respect to PK resistance showed no significant diversity between PMCA-PrP(res) and native PrP(Sc) or between brain and muscle PrP(res). However, PrP(res) from the relatively early cycles of serial PMCA showed lower PK resistance than those from later cycles. Inoculation of these PMCA products amplified with homogeneous or heterogeneous brain tissues (cross-species products) induced experimental transmissible spongiform encephalopathies. These results suggested that PMCA can help prion strains to overcome species barrier and to propagate efficiently both in vitro and in vivo.

  11. Adaptive functional divergence of the warm temperature acclimation-related protein (WAP65) in fishes and the ortholog hemopexin (HPX) in mammals.

    PubMed

    Machado, João Paulo; Vasconcelos, Vitor; Antunes, Agostinho

    2014-01-01

    Gene duplication is an important mechanism that leads to genetic novelty. Different, nonexclusive processes are likely involved, and many adaptive and nonadaptive events may contribute to the maintenance of duplicated genes. In some teleosts, a duplicate copy of the mammalian ortholog Hemopexin (HPX) is present, known as the warm temperature acclimation-related protein (WAP65). Both WAP65 and HPX have been associated with iron homeostasis due to the affinity to bind the toxic-free heme circulating in the blood stream. We have assessed the evolutionary dynamics of WAP65 and HPX genes to understand the adaptive role of positive selection at both nucleotide and amino acid level. Our results showed an asymmetrical evolution between the paralogs WAP65-1 and WAP65-2 after duplication with a slight acceleration of the evolutionary rate in WAP65-1, but not in WAP65-2, and few sites contributing to the functional distinction between the paralogs, whereas the majority of the protein remained under negative selection or relaxed negative selection. WAP65-1 is functionally more distinct from the ancestral protein function than WAP65-2. HPX is phylogenetically closer to WAP65-2 but even so functional divergence was detected between both proteins. In addition, HPX showed a fast rate of evolution when compared with both WAP65-1 and WAP65-2 genes. The assessed 3-dimensional (3-D) structure of WAP65-1 and WAP65-2 suggests that the functional differences detected are not causing noticeable structural changes in these proteins. However, such subtle changes between WAP65 paralogs may be important to understand the differential gene retention of both copies in 20 out of 30 teleosts species studied.

  12. Correlation of cell surface proteins of distinct Beauveria bassiana cell types and adaption to varied environment and interaction with the host insect.

    PubMed

    Yang, Zhi; Jiang, Hongyan; Zhao, Xin; Lu, Zhuoyue; Luo, Zhibing; Li, Xuebing; Zhao, Jing; Zhang, Yongjun

    2017-02-01

    The insect fungal pathogen Beauveria bassiana produces a number of distinct cell types that include aerial conidia, blastospores and haemolymph-derived cells, termed hyphal bodies, to adapt varied environment niches and within the host insect. These cells display distinct biochemical properties and surface structures, and a highly ordered outermost brush-like structure uniquely present on hyphal bodies, but not on any in vitro cells. Here, we found that the outermost structure on the hyphal bodies mainly consisted of proteins associated to structural wall components in that most of it could be removed by dithiothreitol (DTT) or proteinase K. DTT-treatment also caused delayed germination, decreased tolerance to ultraviolet irradiation and virulence of conidia or blastospores, with decreased adherence and alternated carbohydrate epitopes, suggesting involvement in fungal development, stress responses and virulence. To characterize these cell surface molecules, proteins were released from the living cells using DTT, and identified and quantitated using label-free quantitative mass spectrometry. Thereafter, a series of bioinformatics programs were used to predict cell surface-associated proteins (CSAPs), and 96, 166 and 54 CSAPs were predicted from the identified protein pools of conidia, blastospores and hyphal bodies, respectively, which were involved in utilization of carbohydrate, nitrogen, and lipid, detoxification, pathogen-host interaction, and likely other cellular processes. Thirteen, sixty-nine and six CSAPs were exclusive in conidia, blastospores and hyphal bodies, respectively, which were verified by eGFP-tagged proteins at their N-terminus. Our data provide a crucial cue to understand mechanism of B. bassiana to adapt to varied environment and interaction with insect host.

  13. Adaptation of HepG2 cells to a steady-state reduction in the content of protein phosphatase 6 (PP6) catalytic subunit

    SciTech Connect

    Boylan, Joan M.; Salomon, Arthur R.; Tantravahi, Umadevi; Gruppuso, Philip A.

    2015-07-15

    Protein phosphatase 6 (PP6) is a ubiquitous Ser/Thr phosphatase involved in an array of cellular processes. To assess the potential of PP6 as a therapeutic target in liver disorders, we attenuated expression of the PP6 catalytic subunit in HepG2 cells using lentiviral-transduced shRNA. Two PP6 knock-down (PP6KD) cell lines (90% reduction of PP6-C protein content) were studied in depth. Both proliferated at a rate similar to control cells. However, flow cytometry indicated G2/M cell cycle arrest that was accounted for by a shift of the cells from a diploid to tetraploid state. PP6KD cells did not show an increase in apoptosis, nor did they exhibit reduced viability in the presence of bleomycin or taxol. Gene expression analysis by microarray showed attenuated anti-inflammatory signaling. Genes associated with DNA replication were downregulated. Mass spectrometry-based phosphoproteomic analysis yielded 80 phosphopeptides representing 56 proteins that were significantly affected by a stable reduction in PP6-C. Proteins involved in DNA replication, DNA damage repair and pre-mRNA splicing were overrepresented among these. PP6KD cells showed intact mTOR signaling. Our studies demonstrated involvement of PP6 in a diverse set of biological pathways and an adaptive response that may limit the effectiveness of targeting PP6 in liver disorders. - Highlights: • Lentiviral-transduced shRNA was used to generate a stable knockdown of PP6 in HepG2 cells. • Cells adapted to reduced PP6; cell proliferation was unaffected, and cell survival was normal. • However, PP6 knockdown was associated with a transition to a tetraploid state. • Genomic profiling showed downregulated anti-inflammatory signaling and DNA replication. • Phosphoproteomic profiling showed changes in proteins associated with DNA replication and repair.

  14. Cell culture adaptation mutations in foot-and-mouth disease virus serotype A capsid proteins: implications for receptor interactions

    USDA-ARS?s Scientific Manuscript database

    In this study we describe the adaptive changes fixed on the capsid of several foot-and-mouth disease virus serotype A strains during propagation in cell monolayers. Viruses passaged extensively in three cell lines (BHK-21, LFBK and IB-RS-2), consistently gained several positively charged amino acids...

  15. Rest interval duration does not influence adaptations in acid/base transport proteins following 10 weeks of sprint-interval training in active women.

    PubMed

    McGinley, Cian; Bishop, David John

    2017-02-01

    The removal of protons (H(+)) produced during intense exercise is important for skeletal muscle function, yet it remains unclear how best to structure exercise training to improve muscle pH regulation. We investigated whether 4 weeks of work-matched, sprint-interval training (SIT), performed 3 days per week, with either 1 min (Rest-1; n = 7) or 5 min (Rest-5; n = 7) of rest between sprints, influenced adaptations in acid/base transport protein content, non-bicarbonate muscle buffer capacity (βmin vitro), and exercise capacity in active women. Following one week of post-testing, comprising a biopsy, a repeated-sprint ability (RSA) test, and a graded-exercise test, maintenance of adaptations was then studied by reducing SIT volume to one day per week for a further 5 weeks. After 4 weeks of SIT, there was increased protein abundance of monocarboxylate transporter (MCT)1, sodium/hydrogen exchanger (NHE)1, and carbonic anhydrase (CA)XIV for both groups, but rest interval duration did not influence the adaptive response. In contrast, greater improvements in total work performed during the RSA test after 4 weeks of SIT was evident for Rest-5 compared to Rest-1 [effect size (ES): 0.51; 90% confidence limits ±0.37), whereas both groups had similarly modest improvements in VO2peak When training volume was reduced to one day per week, enhanced acid/base transport protein abundance was maintained, although NHE1 content increased further for Rest-5 only. Finally, our data support intracellular lactate as a signaling molecule for inducing MCT1 expression, but neither lactate nor H(+) accumulation appear to be important signaling factors in MCT4 regulation.

  16. Evidence of a New Role for the High-Osmolarity Glycerol Mitogen-Activated Protein Kinase Pathway in Yeast: Regulating Adaptation to Citric Acid Stress†

    PubMed Central

    Lawrence, Clare L.; Botting, Catherine H.; Antrobus, Robin; Coote, Peter J.

    2004-01-01

    Screening the Saccharomyces cerevisiae disruptome, profiling transcripts, and determining changes in protein expression have identified an important new role for the high-osmolarity glycerol (HOG) mitogen-activated protein kinase (MAPK) pathway in the regulation of adaptation to citric acid stress. Deletion of HOG1, SSK1, PBS2, PTC2, PTP2, and PTP3 resulted in sensitivity to citric acid. Furthermore, citric acid resulted in the dual phosphorylation, and thus activation, of Hog1p. Despite minor activation of glycerol biosynthesis, the inhibitory effect of citric acid was not due to an osmotic shock. HOG1 negatively regulated the expression of a number of proteins in response to citric acid stress, including Bmh1p. Evidence suggests that BMH1 is induced by citric acid to counteract the effect of amino acid starvation. In addition, deletion of BMH2 rendered cells sensitive to citric acid. Deletion of the transcription factor MSN4, which is known to be regulated by Bmh1p and Hog1p, had a similar effect. HOG1 was also required for citric acid-induced up-regulation of Ssa1p and Eno2p. To counteract the cation chelating activity of citric acid, the plasma membrane Ca2+ channel, CCH1, and a functional vacuolar membrane H+-ATPase were found to be essential for optimal adaptation. Also, the transcriptional regulator CYC8, which mediates glucose derepression, was required for adaptation to citric acid to allow cells to metabolize excess citrate via the tricarboxylic acid (TCA) cycle. Supporting this, Mdh1p and Idh1p, both TCA cycle enzymes, were up-regulated in response to citric acid. PMID:15060153

  17. Evidence of a new role for the high-osmolarity glycerol mitogen-activated protein kinase pathway in yeast: regulating adaptation to citric acid stress.

    PubMed

    Lawrence, Clare L; Botting, Catherine H; Antrobus, Robin; Coote, Peter J

    2004-04-01

    Screening the Saccharomyces cerevisiae disruptome, profiling transcripts, and determining changes in protein expression have identified an important new role for the high-osmolarity glycerol (HOG) mitogen-activated protein kinase (MAPK) pathway in the regulation of adaptation to citric acid stress. Deletion of HOG1, SSK1, PBS2, PTC2, PTP2, and PTP3 resulted in sensitivity to citric acid. Furthermore, citric acid resulted in the dual phosphorylation, and thus activation, of Hog1p. Despite minor activation of glycerol biosynthesis, the inhibitory effect of citric acid was not due to an osmotic shock. HOG1 negatively regulated the expression of a number of proteins in response to citric acid stress, including Bmh1p. Evidence suggests that BMH1 is induced by citric acid to counteract the effect of amino acid starvation. In addition, deletion of BMH2 rendered cells sensitive to citric acid. Deletion of the transcription factor MSN4, which is known to be regulated by Bmh1p and Hog1p, had a similar effect. HOG1 was also required for citric acid-induced up-regulation of Ssa1p and Eno2p. To counteract the cation chelating activity of citric acid, the plasma membrane Ca(2+) channel, CCH1, and a functional vacuolar membrane H(+)-ATPase were found to be essential for optimal adaptation. Also, the transcriptional regulator CYC8, which mediates glucose derepression, was required for adaptation to citric acid to allow cells to metabolize excess citrate via the tricarboxylic acid (TCA) cycle. Supporting this, Mdh1p and Idh1p, both TCA cycle enzymes, were up-regulated in response to citric acid.

  18. Autophagic adapter protein NBR1 is localized in Lewy bodies and glial cytoplasmic inclusions and is involved in aggregate formation in α-synucleinopathy.

    PubMed

    Odagiri, Saori; Tanji, Kunikazu; Mori, Fumiaki; Kakita, Akiyoshi; Takahashi, Hitoshi; Wakabayashi, Koichi

    2012-08-01

    Macroautophagy is a dynamic process whereby cytoplasmic components are initially sequestered within autophagosomes. Recent studies have shown that the autophagosome membrane can selectively recognize ubiquitinated proteins and organelles through interaction with adapter proteins such as p62 and NBR1. Both proteins are structurally similar at the amino acid level, and bind with ubiquitin and ubiquitinated proteins. Although p62 is incorporated into a wide spectrum of pathological inclusions in various neurodegenerative diseases, abnormalities of NBR1 have not been reported in these diseases. Our immunohistochemical examination revealed that the vast majority of Lewy bodies (LBs) in Parkinson's disease and dementia with LBs (DLB) as well as of glial cytoplasmic inclusions in multiple system atrophy (MSA) were positive for NBR1. Neuronal and glial inclusions in tauopathies and TAR DNA-binding protein of 43 kDa proteinopathies were rarely immunolabeled, or were unstained. Using cultured cells bearing LB-like inclusions, formation of α-synuclein aggregates was repressed in cells with NBR1 knockdown. Immunoblot analysis showed that the level of NBR1 was significantly increased by 2.5-fold in MSA, but not in DLB. These findings suggest that NBR1 is involved in the formation of cytoplasmic inclusions in α-synucleinopathy.

  19. A modified enzyme-linked immunosorbent assay adapted for immunodetection of low amounts of water-insoluble proteins.

    PubMed

    Godfrin, Dominique; Sénéchal, Hélène; Sutra, Jean-Pierre; Busnel, Jean-Marc; Desvaux, François-Xavier; Peltre, Gabriel

    2007-09-30

    A mixture of thiourea, urea and CHAPS (TUC) is an excellent solvent compatible with isoelectrofocusing (IEF) separation of water-insoluble protein extracts, and their subsequent two-dimensional gel electrophoresis is an important step in proteomic studies. The main aim of this work was to quantify extremely low amounts of water-insoluble proteins contained, for instance, in samples collected in bio-aerosol samplers. High CHAPS concentrations solubilize many proteins. However, enzyme-linked immunosorbent assay (ELISA), which is the most popular immunodetection method of quantifying antigens, is unfortunately not compatible with these high CHAPS concentrations and with the low protein concentrations of TUC extracts. The most common mixture used to solubilize these proteins contains 2 mol l(-1) thiourea, 7 mol l(-1) urea and 5% w/v CHAPS. This paper shows that these components inhibit the adsorption and/or recognition of proteins on microtitration plates, preventing antigen quantification under classic ELISA conditions. We have tried several solvents (ethanol, isopropanol, acetonitrile and trichloroacetic acid) to make the TUC-soluble proteins stick to the ELISA plates, and ethanol was shown to be the most appropriate. In this study, we have defined a new ELISA protocol allowing rapid and sensitive detection of low concentrations (60-500 ng ml(-1)) of water-insoluble proteins extracted with high concentrations of TUC.

  20. How rods respond to single photons: Key adaptations of a G-protein cascade that enable vision at the physical limit of perception.

    PubMed

    Reingruber, Jürgen; Holcman, David; Fain, Gordon L

    2015-11-01

    Rod photoreceptors are among the most sensitive light detectors in nature. They achieve their remarkable sensitivity across a wide variety of species through a number of essential adaptations: a specialized cellular geometry, a G-protein cascade with an unusually stable receptor molecule, a low-noise transduction mechanism, a nearly perfect effector enzyme, and highly evolved mechanisms of feedback control and receptor deactivation. Practically any change in protein expression, enzyme activity, or feedback control can be shown to impair photon detection, either by decreasing sensitivity or signal-to-noise ratio, or by reducing temporal resolution. Comparison of mammals to amphibians suggests that rod outer-segment morphology and the molecules and mechanism of transduction may have evolved together to optimize light sensitivity in darkness, which culminates in the extraordinary ability of these cells to respond to single photons at the ultimate limit of visual perception. © 2015 WILEY Periodicals, Inc.

  1. The 3BP2 Adapter Protein Is Required for Optimal B-Cell Activation and Thymus-Independent Type 2 Humoral Response▿

    PubMed Central

    Chen, Grace; Dimitriou, Ioannis D.; La Rose, Jose; Ilangumaran, Subburaj; Yeh, Wen-Chen; Doody, Gina; Turner, Martin; Gommerman, Jennifer; Rottapel, Robert

    2007-01-01

    3BP2 is a pleckstrin homology domain- and Src homology 2 (SH2) domain-containing adapter protein that is mutated in the rare human bone disorder cherubism and which has also been implicated in immunoreceptor signaling. However, a function for this protein has yet to be established. Here we show that mice lacking 3BP2 exhibited a perturbation in the peritoneal B1 and splenic marginal-zone B-cell compartments and diminished thymus-independent type 2 antigen response. 3BP2−/− B cells demonstrated a proliferation defect in response to antigen receptor cross-linking and a heightened sensitivity to B-cell receptor-induced death via a caspase-3-dependent apoptotic pathway. We show that 3BP2 binds via its SH2 domain to the CD19 signaling complex and is required for optimum Syk phosphorylation and calcium flux. PMID:17283041

  2. Mechanisms of plant adaptation/memory in rice seedlings under arsenic and heat stress: expression of heat-shock protein gene HSP70

    PubMed Central

    Goswami, Alakananda; Banerjee, Rahul; Raha, Sanghamitra

    2010-01-01

    Background and aims Plants can withstand many abiotic stresses. Stress adaptation through retention of imprints of previous stress exposure has also been described in plants. We have characterized the imprint or memory of adaptive stress responses of rice seedlings to arsenic (As) and heat stress. Methodology Two-week-old rice seedlings (both with and without As) were given a 45 °C heat shock for 3 h. While under heat shock, the leafy portion of the seedlings was harvested at regular intervals. Subsequently, the seedlings were kept at room temperature for recovery and sampling continued over 3 h. Total RNA and protein were extracted from the leafy portion of the seedlings and complementary DNA (cDNA) was prepared from total RNA. The cDNA was used as a template for the polymerase chain reaction to identify the transcription level of HSP70. Protein extracted from the seedlings was western-blotted. HSP70 and actin (loading control) antibodies were used to recognize the proteins on the same blot. Principal results Our studies reveal that HSP70, a cellular chaperone gene, is over-expressed at the mRNA and protein levels when rice seedlings are exposed to As and heat. The effect is cumulative and increases with the duration of stress for 3 h. During 3 h recovery from heat stress at ambient temperatures for 3 h, the chaperone remains expressed at higher levels in plants pre-exposed to As. Conclusions Our findings demonstrate a retention of the imprint of previous stress exposure, perhaps through sustained activation of the signalling pathways upstream of over-expression of HSP70. Furthermore, stress-induced HSP70 expression was additive/cumulative for continued exposure to similar or different kinds of stress, indicating that a commonality of signal transduction networks is adopted when plants experience more than one stress. PMID:22476080

  3. Yeast hEST1A/B (SMG5/6)-like proteins contribute to environment-sensing adaptive gene expression responses.

    PubMed

    Lai, Xianning; Beilharz, Traude; Au, Wei-Chun; Hammet, Andrew; Preiss, Thomas; Basrai, Munira A; Heierhorst, Jörg

    2013-10-03

    During its natural life cycle, budding yeast (Saccharomyces cerevisiae) has to adapt to drastically changing environments, but how environmental-sensing pathways are linked to adaptive gene expression changes remains incompletely understood. Here, we describe two closely related yeast hEST1A-B (SMG5-6)-like proteins termed Esl1 and Esl2 that contain a 14-3-3-like domain and a putative PilT N-terminus ribonuclease domain. We found that, unlike their metazoan orthologs, Esl1 and Esl2 were not involved in nonsense-mediated mRNA decay or telomere maintenance pathways. However, in genome-wide expression array analyses, absence of Esl1 and Esl2 led to more than two-fold deregulation of ∼50 transcripts, most of which were expressed inversely to the appropriate metabolic response to environmental nutrient supply; for instance, normally glucose-repressed genes were derepressed in esl1Δ esl2Δ double mutants during growth in a high-glucose environment. Likewise, in a genome-wide synthetic gene array screen, esl1Δ esl2Δ double mutants were synthetic sick with null mutations for Rim8 and Dfg16, which form the environmental-sensing complex of the Rim101 pH response gene expression pathway. Overall, these results suggest that Esl1 and Esl2 contribute to the regulation of adaptive gene expression responses of environmental sensing pathways.

  4. Adaptation of cholesterol-requiring NS0 mouse myeloma cells to high density growth in a fully defined protein-free and cholesterol-free culture medium.

    PubMed

    Keen, M J; Steward, T W

    1995-10-01

    NS0 has been used as a fusion partner for the production of hybridomas and has more recently been engineered to produce recombinant protein. A protein-free culture medium, designated W38 medium, has previously been developed which supported high density growth of rat myeloma and hybridoma cell lines. NS0 cells failed to grow in W38 medium and in a number of protein-free culture media which support the growth of other myeloma cell lines. NS0 cells are derived from the NS-1 cell line, which is known to require exogencus cholesterol. It was found that NS0 cells grew in W38 medium supplemented with phosphatidylcholine, cholesterol, and albumin and that NS0 were auxotrophic for cholesterol. Protein-free growth of NS0 cells was achieved by using β-cyclodextrin to replace albumin as a lipid carrier. The maximal cell density reached in this protein-free medium was in excess of 1.5×10(6) cell ml(-1). The lipid supplements in the medium precipitated after a few days storage at +4°C. In order to overcome this problem a protocol was developed which allowed NS0 cells to be adapted to cholesterol-independent growth in W38 medium. NS0.CF (cholesterol-independent NS0 cells) were cultured continuously in W38 medium for several months. In shake flask culture a cell density of 2.4×10(6) cells ml(-1) was achieved in W38 medium compared with 1.41×10(6) cells ml(-1) in RPMI 1640 medium containing 10% foetal bovine serum. NS0.CF cells readily grew in a 1 litre stirred bioreactor using W38 medium supplemented with Pluronic F68 reaching a density of 3.24×10(6) cells ml(-1). NS0.CF were cloned protein-free by limiting dilution in W38 medium, giving colonies in wells that were seeded at an average density of 0.32 cells per 200 μl. This study has demonstrated for the first time the growth of a cholesterol-requiring mouse myeloma cell line in a completely defined protein-free medium and its subsequent adaptation to cholesterol-independence.

  5. Enhanced Protein Translation Underlies Improved Metabolic and Physical Adaptations to Different Exercise Training Modes in Young and Old Humans.

    PubMed

    Robinson, Matthew M; Dasari, Surendra; Konopka, Adam R; Johnson, Matthew L; Manjunatha, S; Esponda, Raul Ruiz; Carter, Rickey E; Lanza, Ian R; Nair, K Sreekumaran

    2017-03-07

    The molecular transducers of benefits from different exercise modalities remain incompletely defined. Here we report that 12 weeks of high-intensity aerobic interval (HIIT), resistance (RT), and combined exercise training enhanced insulin sensitivity and lean mass, but only HIIT and combined training improved aerobic capacity and skeletal muscle mitochondrial respiration. HIIT revealed a more robust increase in gene transcripts than other exercise modalities, particularly in older adults, although little overlap with corresponding individual protein abundance was noted. HIIT reversed many age-related differences in the proteome, particularly of mitochondrial proteins in concert with increased mitochondrial protein synthesis. Both RT and HIIT enhanced proteins involved in translational machinery irrespective of age. Only small changes of methylation of DNA promoter regions were observed. We provide evidence for predominant exercise regulation at the translational level, enhancing translational capacity and proteome abundance to explain phenotypic gains in muscle mitochondrial function and hypertrophy in all ages.

  6. Chemical and Biological Approaches for Adapting Proteostasis to Ameliorate Protein Misfolding and Aggregation Diseases–Progress and Prognosis

    PubMed Central

    Lindquist, Susan L.; Kelly, Jeffery W.

    2011-01-01

    Maintaining the proteome to preserve the health of an organism in the face of developmental changes, environmental insults, infectious diseases, and rigors of aging is a formidable task. The challenge is magnified by the inheritance of mutations that render individual proteins subject to misfolding and/or aggregation. Maintenance of the proteome requires the orchestration of protein synthesis, folding, degradation, and trafficking by highly conserved/deeply integrated cellular networks. In humans, no less than 2000 genes are involved. Stress sensors detect the misfolding and aggregation of proteins in specific organelles and respond by activating stress-responsive signaling pathways. These culminate in transcriptional and posttranscriptional programs that up-regulate the homeostatic mechanisms unique to that organelle. Proteostasis is also strongly influenced by the general properties of protein folding that are intrinsic to every proteome. These include the kinetics and thermodynamics of the folding, misfolding, and aggregation of individual proteins. We examine a growing body of evidence establishing that when cellular proteostasis goes awry, it can be reestablished by deliberate chemical and biological interventions. We start with approaches that employ chemicals or biological agents to enhance the general capacity of the proteostasis network. We then introduce chemical approaches to prevent the misfolding or aggregation of specific proteins through direct binding interactions. We finish with evidence that synergy is achieved with the combination of mechanistically distinct approaches to reestablish organismal proteostasis. PMID:21900404

  7. Adaptation of Tri-molecular fluorescence complementation allows assaying of regulatory Csr RNA-protein interactions in bacteria.

    PubMed

    Gelderman, Grant; Sivakumar, Anusha; Lipp, Sarah; Contreras, Lydia

    2015-02-01

    sRNAs play a significant role in controlling and regulating cellular metabolism. One of the more interesting aspects of certain sRNAs is their ability to make global changes in the cell by interacting with regulatory proteins. In this work, we demonstrate the use of an in vivo Tri-molecular Fluorescence Complementation assay to detect and visualize the central regulatory sRNA-protein interaction of the Carbon Storage Regulatory system in E. coli. The Carbon Storage Regulator consists primarily of an RNA binding protein, CsrA, that alters the activity of mRNA targets and of an sRNA, CsrB, that modulates the activity of CsrA. We describe the construction of a fluorescence complementation system that detects the interactions between CsrB and CsrA. Additionally, we demonstrate that the intensity of the fluorescence of this system is able to detect changes in the affinity of the CsrB-CsrA interaction, as caused by mutations in the protein sequence of CsrA. While previous methods have adopted this technique to study mRNA or RNA localization, this is the first attempt to use this technique to study the sRNA-protein interaction directly in bacteria. This method presents a potentially powerful tool to study complex bacterial RNA protein interactions in vivo.

  8. Chemical and biological approaches for adapting proteostasis to ameliorate protein misfolding and aggregation diseases: progress and prognosis.

    PubMed

    Lindquist, Susan L; Kelly, Jeffery W

    2011-12-01

    Maintaining the proteome to preserve the health of an organism in the face of developmental changes, environmental insults, infectious diseases, and rigors of aging is a formidable task. The challenge is magnified by the inheritance of mutations that render individual proteins subject to misfolding and/or aggregation. Maintenance of the proteome requires the orchestration of protein synthesis, folding, degradation, and trafficking by highly conserved/deeply integrated cellular networks. In humans, no less than 2000 genes are involved. Stress sensors detect the misfolding and aggregation of proteins in specific organelles and respond by activating stress-responsive signaling pathways. These culminate in transcriptional and posttranscriptional programs that up-regulate the homeostatic mechanisms unique to that organelle. Proteostasis is also strongly influenced by the general properties of protein folding that are intrinsic to every proteome. These include the kinetics and thermodynamics of the folding, misfolding, and aggregation of individual proteins. We examine a growing body of evidence establishing that when cellular proteostasis goes awry, it can be reestablished by deliberate chemical and biological interventions. We start with approaches that employ chemicals or biological agents to enhance the general capacity of the proteostasis network. We then introduce chemical approaches to prevent the misfolding or aggregation of specific proteins through direct binding interactions. We finish with evidence that synergy is achieved with the combination of mechanistically distinct approaches to reestablish organismal proteostasis.

  9. Testis-enriched heat shock protein A2 (HSPA2): Adaptive advantages of the birds with internal testes over the mammals with testicular descent.

    PubMed

    Padhi, Abinash; Ghaly, Mona M; Ma, Li

    2016-01-06

    The molecular chaperone heat shock protein A2 (HSPA2), a member of the 70 kDa heat shock protein (HSP70) family, plays an important role in spermatogenesis and male fertility. Although HSPA2 is evolutionarily highly conserved across the metazoan lineages, the observation of striking differences in temperature-sensitive expressions, testicular physiology, spermatogenesis, as well as its role in male fertility indicates that avian and mammalian HSPA2 may exhibit distinct evolutionary trajectory. The present study reports that while mammalian HSPA2 is constrained by intense purifying selection, avian HSPA2 has been subjected to positive selection. The majority of the positively selected amino acid residues fall on the α-helix and β-sheets of the peptide-binding domain located at the carboxyl-terminal region of the avian HSPA2. The detection of positively selected sites at the helix and β-sheets, which are less tolerant to molecular adaptation, indicates an important functional consequence and contribution to the structural and functional diversification of the avian HSPA2. Collectively, avian HSPA2 may have an adaptive advantage over the mammals in response to heat stress, and therefore, mammals with testicular descent may be at a greater risk in the event of scrotal temperature rise.

  10. Increased expression of a cGMP-dependent protein kinase in rotation-adapted western corn rootworm (Diabrotica virgifera virgifera L.).

    PubMed

    Garabagi, Freydoun; Wade French, B; Schaafsma, Arthur W; Peter Pauls, K

    2008-07-01

    A new 'variant' behavior in western corn rootworm (WCR) has resulted in egg-laying into non-cornfields, compared to 'normal' deposition of eggs in cornfields, allowing these insects to circumvent crop rotation. No morphological or genetic characteristics have been defined to differentiate between the normal and variant biotypes. Cyclic GMP-dependent protein kinases (PKG) have been implicated in the regulation of behaviors in vertebrates, insects, and nematodes, including foraging behavior in Drosophila. A cDNA with homology to the Drosophila melanogaster foraging gene (called Dvfor1) was cloned from WCR. The deduced DvFOR1 protein is approximately 70% similar to FOR proteins in Drosophila, silkworm (Bombyx mori) and honeybee (Apis mellifera). It contains a coiled-coil region, two tandem cyclic nucleotide-binding domains, a serine/threonine kinase catalytic domain, and a serine/threonine kinase catalytic domain extension, which are all characteristically found in PKG proteins. Real-time PCR assays of foraging transcript levels in heads of normal and rotation adapted females of WCR obtained from lab-reared insect colonies indicated that the variants had higher levels (25%) of PKG expression than normals. The magnitude of this increase is similar to that observed in Drosophila rover phenotypes compared to sitter phenotypes. However, Diabrotica contains at least two different foraging gene transcripts, which complicates establishing a direct link between the level of gene expression and insect behavior.

  11. Seasonal adaptations of the tuberous roots of Ranunculus asiaticus to desiccation and resurrection by changes in cell structure and protein content.

    PubMed

    Kamenetsky, Rina; Peterson, R Larry; Melville, Lewis H; Machado, Cibele F; Bewley, J Derek

    2005-04-01

    The annual developmental cycle of tuberous roots of Ranunculus asiaticus was studied with respect to structure and content of their cells, to understand how these roots are adapted to desiccation, high temperature and rehydration. Light microscopy, histochemical analysis, and protein analyses by SDS-PAGE were employed at eight stages of annual root development. During growth and maturation of the roots, cortical cells increased in size and their cell walls accumulated pectin materials in a distinct layer to the inside of the primary walls, with pits between adjoining cells. The number of starch granules and protein bodies also increased within the cells. Several discrete proteins accumulated. Following quiescence and rehydration of the roots there was a loss of starch and proteins from the cells, and cell walls decreased in thickness. The resurrection geophyte R. asiaticus possesses desiccation-tolerant annual roots. They store carbon and nitrogen reserves within their cells, and pectin within the walls to support growth of the plant following summer quiescence and rehydration.

  12. Secretome profile analysis of hypervirulent Mycobacterium tuberculosis CPT31 reveals increased production of EsxB and proteins involved in adaptation to intracellular lifestyle.

    PubMed

    Vargas-Romero, Fernado; Guitierrez-Najera, Nora; Mendoza-Hernández, Guillermo; Ortega-Bernal, Daniel; Hernández-Pando, Rogelio; Castañón-Arreola, Mauricio

    2016-03-01

    Epidemiological information and animal models have shown various Mycobacterium tuberculosis phenotypes ranging from hyper- to hypovirulent forms. Recent genomic and proteomic studies suggest that the outcome of infection depends on the M. tuberculosis fitness, which is a direct consequence of its phenotype. However, little is known about the molecular and cellular mechanisms used by mycobacteria to survive, replicate and persist during infection. The aim of this study was to perform a comprehensive proteomic analysis of culture filtrate from hypo- (CPT23) and hypervirulent (CPT31) M. tuberculosis isolates. Using two-dimensional electrophoresis we observed that 70 proteins were unique, or more abundant in culture filtrate of CPT31, and 15 of these were identified by mass spectrometry. Our analysis of protein expression showed that most of the proteins identified are involved in lipid metabolism (FadA3, FbpB and EchA3), detoxification and adaptation (GroEL2, SodB and HspX) and cell wall processes (LprA, Tig and EsxB). These results suggest that overrepresented proteins in M. tuberculosis CPT31 secretome could facilitate mycobacterial infection and persistence.

  13. Mismatch Repair Protein Deficiency Is a Risk Factor for Aberrant Expression of HLA Class I Molecules: A Putative "Adaptive Immune Escape" Phenomenon.

    PubMed

    Kubo, Terufumi; Hirohashi, Yoshihiko; Matsuo, Kazuhiko; Sonoda, Tomoko; Sakamoto, Hiroki; Furumura, Kiyoshi; Tsukahara, Tomohide; Kanaseki, Takayuki; Nakatsugawa, Munehide; Hirano, Hiroshi; Furuhata, Tomohisa; Takemasa, Ichiro; Hasegawa, Tadashi; Torigoe, Toshihiko

    2017-03-01

    Accumulating evidence indicates that immune checkpoint inhibition-mediated cancer immunotherapies greatly improve the prognosis of certain types of cancer. This approach is now becoming a standard therapy, joining surgery, radiotherapy, and chemotherapy. Because the costs of antibody drugs are now a socioeconomic burden in many countries, an urgent need in cancer immunotherapy is the identification of relevant biomarkers that can predict therapy efficacy. Recent studies have reported that colorectal adenocarcinoma with hereditary or sporadic deficiency in mismatch repair (MMR) proteins has high antigenicity and that detection of these proteins could be a promising way to estimate clinical response. In this study of 135 patients with colorectal cancer, we used immunohistochemistry to investigate the correlation between deficiency in MMR proteins and expression of human leukocyte antigen (HLA) class I molecules, a prerequisite of cytotoxic T-cell-based immunotherapy. Interestingly, MMR protein deficiency was an independent risk factor for the impaired expression of HLA class I molecules (odds ratio (OR)=10.44, 95% confidence interval (CI)=3.15-34.62, p<0.001), suggesting the existence of a putative entity that we have named "adaptive immune escape". Moreover, our results might provide a potential novel biomarker for the selection of patients who would respond to cancer immunotherapies. At the same time, the results suggest that we have to overcome the impaired expression of HLA class I molecules to further improve the cure rate of cancer immunotherapies. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  14. Asymmetric Requirements for a Rab Gtpase and Snare Proteins in Fusion of Copii Vesicles with Acceptor Membranes

    PubMed Central

    Cao, Xiaochun; Barlowe, Charles

    2000-01-01

    Soluble NSF attachment protein receptor (SNARE) proteins are essential for membrane fusion in transport between the yeast ER and Golgi compartments. Subcellular fractionation experiments demonstrate that the ER/Golgi SNAREs Bos1p, Sec22p, Bet1p, Sed5p, and the Rab protein, Ypt1p, are distributed similarly but localize primarily with Golgi membranes. All of these SNARE proteins are efficiently packaged into COPII vesicles and suggest a dynamic cycling of SNARE machinery between ER and Golgi compartments. Ypt1p is not efficiently packaged into vesicles under these conditions. To determine in which membranes protein function is required, temperature-sensitive alleles of BOS1, BET1, SED5, SLY1, and YPT1 that prevent ER/Golgi transport in vitro at restrictive temperatures were used to selectively inactivate these gene products on vesicles or on Golgi membranes. Vesicles bearing mutations in Bet1p or Bos1p inhibit fusion with wild-type acceptor membranes, but acceptor membranes containing these mutations are fully functional. In contrast, vesicles bearing mutations in Sed5p, Sly1p, or Ypt1p are functional, whereas acceptor membranes containing these mutations block fusion. Thus, this set of SNARE proteins is symmetrically distributed between vesicle and acceptor compartments, but they function asymmetrically such that Bet1p and Bos1p are required on vesicles and Sed5p activity is required on acceptor membranes. We propose the asymmetry in SNARE protein function is maintained by an asymmetric distribution and requirement for the Ypt1p GTPase in this fusion event. When a transmembrane-anchored form of Ypt1p is used to restrict this GTPase to the acceptor compartment, vesicles depleted of Ypt1p remain competent for fusion. PMID:10747087

  15. Optimizing electrostatic field calculations with the adaptive Poisson-Boltzmann Solver to predict electric fields at protein-protein interfaces. I. Sampling and focusing.

    PubMed

    Ritchie, Andrew W; Webb, Lauren J

    2013-10-03

    Continuum electrostatics methods are commonly used to calculate electrostatic potentials in proteins and at protein-protein interfaces to aid many types of biophysical studies. Despite their ubiquity throughout the biophysical literature, these calculations are difficult to test against experimental data to determine their accuracy and validity. To address this, we have calculated the Boltzmann-weighted electrostatic field at the midpoint of a nitrile bond placed at a variety of locations on the surface of the protein RalGDS, both in its monomeric form as well as when docked to four different constructs of the protein Rap, and compared the computation results to vibrational absorption energy measurements of the nitrile oscillator. This was done by generating a statistical ensemble of protein structures using enhanced molecular dynamics sampling with the Amber03 force field, followed by solving the linear Poisson-Boltzmann equation for each structure using the Applied Poisson-Boltzmann Solver (APBS) software package. Using a two-stage focusing strategy, we examined numerous second stage box dimensions, grid point densities, box locations, and compared the numerical result to the result obtained from the sum of the numeric reaction field and the analytic Coulomb field. It was found that the reaction field method yielded higher correlation with experiment for the absolute calculation of fields, while the numeric solutions yielded higher correlation with experiment for the relative field calculations. Finer grid spacing typically improved the calculation, although this effect was less pronounced in the reaction field method. These sorts of calculations were also very sensitive to the box location, particularly for the numeric calculations of absolute fields using a 10(3) Å(3) box.

  16. Full-Length Venom Protein cDNA Sequences from Venom-Derived mRNA: Exploring Compositional Variation and Adaptive Multigene Evolution.

    PubMed

    Modahl, Cassandra M; Mackessy, Stephen P

    2016-06-01

    Envenomation of humans by snakes is a complex and continuously evolving medical emergency, and treatment is made that much more difficult by the diverse biochemical composition of many venoms. Venomous snakes and their venoms also provide models for the study of molecular evolutionary processes leading to adaptation and genotype-phenotype relationships. To compare venom complexity and protein sequences, venom gland transcriptomes are assembled, which usually requires the sacrifice of snakes for tissue. However, toxin transcripts are also present in venoms, offering the possibility of obtaining cDNA sequences directly from venom. This study provides evidence that unknown full-length venom protein transcripts can be obtained from the venoms of multiple species from all major venomous snake families. These unknown venom protein cDNAs are obtained by the use of primers designed from conserved signal peptide sequences within each venom protein superfamily. This technique was used to assemble a partial venom gland transcriptome for the Middle American Rattlesnake (Crotalus simus tzabcan) by amplifying sequences for phospholipases A2, serine proteases, C-lectins, and metalloproteinases from within venom. Phospholipase A2 sequences were also recovered from the venoms of several rattlesnakes and an elapid snake (Pseudechis porphyriacus), and three-finger toxin sequences were recovered from multiple rear-fanged snake species, demonstrating that the three major clades of advanced snakes (Elapidae, Viperidae, Colubridae) have stable mRNA present in their venoms. These cDNA sequences from venom were then used to explore potential activities derived from protein sequence similarities and evolutionary histories within these large multigene superfamilies. Venom-derived sequences can also be used to aid in characterizing venoms that lack proteomic profiles and identify sequence characteristics indicating specific envenomation profiles. This approach, requiring only venom, provides

  17. Full-Length Venom Protein cDNA Sequences from Venom-Derived mRNA: Exploring Compositional Variation and Adaptive Multigene Evolution

    PubMed Central

    Modahl, Cassandra M.; Mackessy, Stephen P.

    2016-01-01

    Envenomation of humans by snakes is a complex and continuously evolving medical emergency, and treatment is made that much more difficult by the diverse biochemical composition of many venoms. Venomous snakes and their venoms also provide models for the study of molecular evolutionary processes leading to adaptation and genotype-phenotype relationships. To compare venom complexity and protein sequences, venom gland transcriptomes are assembled, which usually requires the sacrifice of snakes for tissue. However, toxin transcripts are also present in venoms, offering the possibility of obtaining cDNA sequences directly from venom. This study provides evidence that unknown full-length venom protein transcripts can be obtained from the venoms of multiple species from all major venomous snake families. These unknown venom protein cDNAs are obtained by the use of primers designed from conserved signal peptide sequences within each venom protein superfamily. This technique was used to assemble a partial venom gland transcriptome for the Middle American Rattlesnake (Crotalus simus tzabcan) by amplifying sequences for phospholipases A2, serine proteases, C-lectins, and metalloproteinases from within venom. Phospholipase A2 sequences were also recovered from the venoms of several rattlesnakes and an elapid snake (Pseudechis porphyriacus), and three-finger toxin sequences were recovered from multiple rear-fanged snake species, demonstrating that the three major clades of advanced snakes (Elapidae, Viperidae, Colubridae) have stable mRNA present in their venoms. These cDNA sequences from venom were then used to explore potential activities derived from protein sequence similarities and evolutionary histories within these large multigene superfamilies. Venom-derived sequences can also be used to aid in characterizing venoms that lack proteomic profiles and identify sequence characteristics indicating specific envenomation profiles. This approach, requiring only venom, provides

  18. Radio-adaptive response of base excision repair genes and proteins in human peripheral blood mononuclear cells exposed to gamma radiation.

    PubMed

    Toprani, Sneh M; Das, Birajalaxmi

    2015-09-01

    Radio-adaptive response is a mechanism whereby a low-dose exposure (priming dose) induces resistance to a higher dose (challenging dose) thus significantly reducing its detrimental effects. Radiation-induced DNA damage gets repaired through various DNA repair pathways in human cells depending upon the type of lesion. The base excision repair (BER) pathway repairs radiation-induced base damage, abasic sites and single-strand breaks in cellular DNA. In the present study, an attempt has been made to investigate the involvement of BER genes and proteins in the radio-adaptive response in human resting peripheral blood mononuclear cells (PBMC). Venous blood samples were collected from 20 randomly selected healthy male individuals with written informed consent. PBMC were isolated and irradiated at a priming dose of 0.1 Gy followed 4h later with a challenging dose of 2.0 Gy (primed cells). Quantitation of DNA damage was done using the alkaline comet assay immediately and expression profile of BER genes and proteins were studied 30 min after the challenging dose using real-time quantitative polymerase chain reaction and western blot, respectively. The overall result showed significant (P ≤ 0.05) reduction of DNA damage in terms of percentage of DNA in tail (%T) with a priming dose of 0.1 Gy followed by a challenging dose of 2.0 Gy after 4 h. Twelve individuals showed significant (P ≤ 0.05) reduction in %T whereas eight individuals showed marginal reduction in DNA damage that was not statistically significant. However, at the transcriptional level, BER genes such as APE1, FEN1 and LIGASE1 showed significant (P ≤ 0.05) up-regulation in both groups. Significant (P ≤ 0.05) up-regulation was also observed at the protein level for OGG1, APE1, MBD4, FEN1 and LIGASE1 in primed cells. Up-regulation of some BER genes and proteins such as APE1, FEN1 and LIGASE1 in primed cells of resting PBMC is suggestive of active involvement of the BER pathway in radio-adaptive response.

  19. Translational control in the stress adaptive response of cancer cells: a novel role for the heat shock protein TRAP1

    PubMed Central

    Matassa, D S; Amoroso, M R; Agliarulo, I; Maddalena, F; Sisinni, L; Paladino, S; Romano, S; Romano, M F; Sagar, V; Loreni, F; Landriscina, M; Esposito, F

    2013-01-01

    TNF receptor-associated protein 1 (TRAP1), the main mitochondrial member of the heat shock protein (HSP) 90 family, is induced in most tumor types and is involved in the regulation of proteostasis in the mitochondria of tumor cells through the control of folding and stability of selective proteins, such as Cyclophilin D and Sorcin. Notably, we have recently demonstrated that TRAP1 also interacts with the regulatory protein particle TBP7 in the endoplasmic reticulum (ER), where it is involved in a further extra-mitochondrial quality control of nuclear-encoded mitochondrial proteins through the regulation of their ubiquitination/degradation. Here we show that TRAP1 is involved in the translational control of cancer cells through an attenuation of global protein synthesis, as evidenced by an inverse correlation between TRAP1 expression and ubiquitination/degradation of nascent stress-protective client proteins. This study demonstrates for the first time that TRAP1 is associated with ribosomes and with several translation factors in colon carcinoma cells and, remarkably, is found co-upregulated with some components of the translational apparatus (eIF4A, eIF4E, eEF1A and eEF1G) in human colorectal cancers, with potential new opportunities for therapeutic intervention in humans. Moreover, TRAP1 regulates the rate of protein synthesis through the eIF2α pathway either under basal conditions or under stress, favoring the activation of GCN2 and PERK kinases, with consequent phosphorylation of eIF2α and attenuation of cap-dependent translation. This enhances the synthesis of selective stress-responsive proteins, such as the transcription factor ATF4 and its downstream effectors BiP/Grp78, and the cystine antiporter system xCT, thereby providing protection against ER stress, oxidative damage and nutrient deprivation. Accordingly, TRAP1 silencing sensitizes cells to apoptosis induced by novel antitumoral drugs that inhibit cap-dependent translation, such as ribavirin or 4EGI

  20. Urb-RIP – An Adaptable and Efficient Approach for Immunoprecipitation of RNAs and Associated RNAs/Proteins

    PubMed Central

    Cottrell, Kyle A.; Djuranovic, Sergej

    2016-01-01

    Post-transcriptional regulation of gene expression is an important process that is mediated by interactions between mRNAs and RNA binding proteins (RBP), non-coding RNAs (ncRNA) or ribonucleoproteins (RNP). Key to the study of post-transcriptional regulation of mRNAs and the function of ncRNAs such as long non-coding RNAs (lncRNAs) is an understanding of what factors are interacting with these transcripts. While several techniques exist for the enrichment of a transcript whether it is an mRNA or an ncRNA, many of these techniques are cumbersome or limited in their application. Here we present a novel method for the immunoprecipitation of mRNAs and ncRNAs, Urb—RNA immunoprecipitation (Urb-RIP). This method employs the RRM1 domain of the “resurrected” snRNA-binding protein Urb to enrich messages containing a stem-loop tag. Unlike techniques which employ the MS2 protein, which require large repeats of the MS2 binding element, Urb-RIP requires only one stem-loop. This method routinely provides over ~100-fold enrichment of tagged messages. Using this technique we have shown enrichment of tagged mRNAs and lncRNAs as well as miRNAs and RNA-binding proteins bound to those messages. We have confirmed, using Urb-RIP, interaction between RNA PolIII transcribed lncRNA BC200 and polyA binding protein. PMID:27930710

  1. Adaptive expansion of the maize maternally expressed gene (Meg) family involves changes in expression patterns and protein secondary structures of its members

    PubMed Central

    2014-01-01

    Background The Maternally expressed gene (Meg) family is a locally-duplicated gene family of maize which encodes cysteine-rich proteins (CRPs). The founding member of the family, Meg1, is required for normal development of the basal endosperm transfer cell layer (BETL) and is involved in the allocation of maternal nutrients to growing seeds. Despite the important roles of Meg1 in maize seed development, the evolutionary history of the Meg cluster and the activities of the duplicate genes are not understood. Results In maize, the Meg gene cluster resides in a 2.3 Mb-long genomic region that exhibits many features of non-centromeric heterochromatin. Using phylogenetic reconstruction and syntenic alignments, we identified the pedigree of the Meg family, in which 11 of its 13 members arose in maize after allotetraploidization ~4.8 mya. Phylogenetic and population-genetic analyses identified possible signatures suggesting recent positive selection in Meg homologs. Structural analyses of the Meg proteins indicated potentially adaptive changes in secondary structure from α-helix to β-strand during the expansion. Transcriptomic analysis of the maize endosperm indicated that 6 Meg genes are selectively activated in the BETL, and younger Meg genes are more active than older ones. In endosperms from B73 by Mo17 reciprocal crosses, most Meg genes did not display parent-specific expression patterns. Conclusions Recently-duplicated Meg genes have different protein secondary structures, and their expressions in the BETL dominate over those of older members. Together with the signs of positive selections in the young Meg genes, these results suggest that the expansion of the Meg family involves potentially adaptive transitions in which new members with novel functions prevailed over older members. PMID:25084677

  2. Population Growth of the Generalist Mite Tyrophagus putrescentiae (Acari: Acaridida) Following Adaptation to High- or Low-Fat and High- or Low-Protein Diets and the Effect of Dietary Switch.

    PubMed

    Erban, Tomas; Rybanska, Dagmar; Hubert, Jan

    2015-12-01

    Tyrophagus putrescentiae (Schrank, 1781) is a cosmopolitan generalist feeder that prefers foodstuffs of high-fat and high-protein content. Our aim was to investigate the population growth of T. putrescentiae after long-term nutritional adaptation to two distinct diets that are commonly infested in the synanthropic environment. Crushed dry dog food kernels provided a high-fat, high-protein, and low-carbohydrate diet, whereas wholemeal spelt flour provided a low-protein, low-fat, and high-carbohydrate diet. After >6 mo of nutritional adaptation, each of the two populations were used in two 28-d population growth tests: one that mites remained on their adaptation diet (homogenous diet treatment) and one that mites underwent a dietary switch (dietary switch treatment). Dietary treatment, nutritional adaptation, and their interaction all significantly influenced population growth. The homogenous diet treatment showed 7.5 times higher growth on the dog food diet than on flour. In the dietary switch, flour-adapted mites switching to dog food experienced five times greater population growth than the flour-adapted mites remained on flour, whereas the dog food-adapted population showed a 2.8-fold decrease in population growth when transferred to the flour. A comparison of means between the two dietary switch treatments showed a 1.9-fold higher population growth after flour-adapted mites were shifted to dog food than when the dog food-adapted mites were shifted to flour. We demonstrated that T. putrescentiae is able survive and reproduce for many generations on dry dog food and flour with different levels of success. High-fat and -protein food accelerated T. putrescentiae population growth compared with the high-carbohydrate diet.

  3. Cold shock protein A plays an important role in the stress adaptation and virulence of Brucella melitensis.

    PubMed

    Wang, Zhen; Wang, Shuangshan; Wu, Qingmin

    2014-05-01

    Brucella melitensis is a facultative intracellular pathogen that mainly resides within macrophages. The mechanisms employed by Brucella to adapt to harsh intracellular environments and survive within host macrophages are not clearly understood. Here, we constructed a cspA gene deletion mutant, NIΔcspA, that did not exhibit any discernible growth defect at a normal culture temperature (37 °C) or at a low temperature (15 °C). However, expression of the cspA gene in Brucella was induced by cold, acidic, and oxidative conditions, as determined via quantitative reverse transcription PCR. Unlike its parental strain, B. melitensis NI, the NIΔcspA mutant showed an increased sensitivity to acidic and H2 O2 stresses, especially during the mid-log-phase, and these stress conditions would presumably be encountered by bacteria during intracellular infections. Moreover, macrophage and mouse infection assays indicated that the NIΔcspA mutant fails to replicate in cultured J774.A1 murine macrophages and is rapidly cleared from the spleens of experimentally infected BALB/c mice. These findings suggest that the Brucella cspA gene makes an essential contribution to virulence in vitro and in vivo, most likely by allowing brucellae to adapt appropriately to the harsh environmental conditions encountered within host macrophages.

  4. Functional Cloning of Src-like Adapter Protein-2 (SLAP-2), a Novel Inhibitor of Antigen Receptor Signaling

    PubMed Central

    Holland, Sacha J.; Liao, X. Charlene; Mendenhall, Marcy K.; Zhou, Xiulan; Pardo, Jorge; Chu, Peter; Spencer, Collin; Fu, Alan; Sheng, Ning; Yu, Peiwen; Pali, Erlina; Nagin, Anup; Shen, Mary; Yu, Simon; Chan, Eva; Wu, Xian; Li, Connie; Woisetschlager, Max; Aversa, Gregorio; Kolbinger, Frank; Bennett, Mark K.; Molineaux, Susan; Luo, Ying; Payan, Donald G.; Mancebo, Helena S.Y.; Wu, Jun

    2001-01-01

    In an effort to identify novel therapeutic targets for autoimmunity and transplant rejection, we developed and performed a large-scale retroviral-based functional screen to select for proteins that inhibit antigen receptor-mediated activation of lymphocytes. In addition to known regulators of antigen receptor signaling, we identified a novel adaptor protein, SLAP-2 which shares 36% sequence similarity with the known Src-like adaptor protein, SLAP. Similar to SLAP, SLAP-2 is predominantly expressed in hematopoietic cells. Overexpression of SLAP-2 in B and T cell lines specifically impaired antigen receptor-mediated signaling events, including CD69 surface marker upregulation, nuclear factor of activated T cells (NFAT) promoter activation and calcium influx. Signaling induced by phorbol myristate acetate (PMA) and ionomycin was not significantly reduced, suggesting SLAP-2 functions proximally in the antigen receptor signaling cascade. The SLAP-2 protein contains an NH2-terminal myristoylation consensus sequence and SH3 and SH2 Src homology domains, but lacks a tyrosine kinase domain. In antigen receptor–stimulated cells, SLAP-2 associated with several tyrosine phosphorylated proteins, including the ubiquitin ligase Cbl. Deletion of the COOH terminus of SLAP-2 blocked function and abrogated its association with Cbl. Mutation of the putative myristoylation site of SLAP-2 compromised its inhibitory activity and impaired its localization to the membrane compartment. Our identification of the negative regulator SLAP-2 demonstrates that a retroviral-based screening strategy may be an efficient way to identify and characterize the function of key components of many signal transduction systems. PMID:11696592

  5. Adaptation of the wine bacterium Oenococcus oeni to ethanol stress: role of the small heat shock protein Lo18 in membrane integrity.

    PubMed

    Maitre, Magali; Weidmann, Stéphanie; Dubois-Brissonnet, Florence; David, Vanessa; Covès, Jacques; Guzzo, Jean

    2014-05-01

    Malolactic fermentation in wine is often carried out by Oenococcus oeni. Wine is a stressful environment for bacteria because ethanol is a toxic compound that impairs the integrity of bacterial membranes. The small heat shock protein (sHsp) Lo18 is an essential actor of the stress response in O. oeni. Lo18 prevents the thermal aggregation of proteins and plays a crucial role in membrane quality control. Here, we investigated the interaction between Lo18 and four types of liposomes: one was prepared from O. oeni grown under optimal growth conditions (here, control liposomes), one was prepared from O. oeni grown in the presence of 8% ethanol (here, ethanol liposomes), one was prepared from synthetic phospholipids, and one was prepared from phospholipids from Bacillus subtilis or Lactococcus lactis. We observed the strongest interaction between Lo18 and control liposomes. The lipid binding activity of Lo18 required the dissociation of oligomeric structures into dimers. Protein protection experiments carried out in the presence of the liposomes from O. oeni suggested that Lo18 had a higher affinity for control liposomes than for a model protein. In anisotropy experiments, we mimicked ethanol action by temperature-dependent fluidization of the liposomes. Results suggest that the principal determinant of Lo18-membrane interaction is lipid bilayer phase behavior rather than phospholipid composition. We suggest a model to describe the ethanol adaptation of O. oeni. This model highlights the dual role of Lo18 in the protection of proteins from aggregation and membrane stabilization and suggests how modifications of phospholipid content may be a key factor determining the balance between these two functions.

  6. Primary photochemistry of the dark- and light-adapted states of the YtvA protein from Bacillus subtilis.

    PubMed

    Song, Sang-Hun; Madsen, Dorte; van der Steen, Jeroen B; Pullman, Robert; Freer, Lucy H; Hellingwerf, Klaas J; Larsen, Delmar S

    2013-11-12

    The primary (100 fs to 10 ns) and secondary (10 ns to 100 μs) photodynamics in the type II light-oxygen-voltage (LOV) domain from the blue light YtvA photoreceptor extracted from Bacillus subtilis were explored with transient absorption spectroscopy. The photodynamics of full-length YtvA were characterized after femtosecond 400 nm excitation of both the dark-adapted D447 state and the light-adapted S390 state. The S390 state relaxes on a 43 min time scale at room temperature back into D447, which is weakly accelerated by the introduction of imidazole. This is ascribed to an obstructed cavity in YtvA that hinders access to the embedded FMN chromophore and is more open in type I LOV domains. The primary photochemistry of dark-adapted YtvA is qualitatively similar to that of the type I LOV domains, including AsLOV2 from Avena sativa, but exhibits an appreciably higher (60% greater) terminal triplet yield, estimated near the maximal ΦISC value of ≈78%; the other 22% decays via non-triplet-generating fluorescence. The subsequent secondary dynamics are inhomogeneous, with three triplet populations co-evolving: the faster-decaying (I)T* population (38% occupancy) with a 200 ns decay time is nonproductive in generating the S390 adduct state, a slower (II)T* population (57% occupancy) exhibits a high yield (Φadduct ≈ 100%) in generating S390 and a third (5%) (III)T*population persists (>100 μs) with unresolved photoactivity. The ultrafast photoswitching dynamics of the S390 state appreciably differ from those previously resolved for the type I AcLOV2 domain from Adiantum capillus-veneris [Kennis, J. T., et al. (2004) J. Am. Chem. Soc. 126, 4512], with a low-yield dissociation (Φdis ≈ 2.5%) reaction, which is due to an ultrafast recombination reaction, following photodissociation, and is absent in AcLOV2, which results in the increased photoswitching activity of the latter domain.

  7. Translational Arrest Due to Cytoplasmic Redox Stress Delays Adaptation to Growth on Methanol and Heterologous Protein Expression in a Typical Fed-Batch Culture of Pichia pastoris

    PubMed Central

    Edwards-Jones, Bryn; Aw, Rochelle; Barton, Geraint R.; Tredwell, Gregory D.; Bundy, Jacob G.; Leak, David J.

    2015-01-01

    Results We have followed a typical fed-batch induction regime for heterologous protein production under the control of the AOX1 promoter using both microarray and metabolomic analysis. The genetic constructs involved 1 and 3 copies of the TRY1 gene, encoding human trypsinogen. In small-scale laboratory cultures, expression of the 3 copy-number construct induced the unfolded protein response (UPR) sufficiently that titres of extracellular trypsinogen were lower in the 3-copy construct than with the 1-copy construct. In the fed-batch-culture, a similar pattern was observed, with higher expression from the 1-copy construct, but in this case there was no significant induction of UPR with the 3-copy strain. Analysis of the microarray and metabolomic information indicates that the 3-copy strain was undergoing cytoplasmic redox stress at the point of induction with methanol. In this Crabtree-negative yeast, this redox stress appeared to delay the adaptation to growth on methanol and supressed heterologous protein production, probably due to a block in translation. Conclusion Although redox imbalance as a result of artificially imposed hypoxia has previously been described, this is the first time that it has been characterised as a result of a transient metabolic imbalance and shown to involve a stress response which can lead to translational arrest. Without detailed analysis of the underlying processes it could easily have been mis-interpreted as secretion stress, transmitted through the UPR. PMID:25785713

  8. Phosphorylation controls a dual-function polybasic nuclear localization sequence in the adapter protein SH2B1β to regulate its cellular function and distribution.

    PubMed

    Maures, Travis J; Su, Hsiao-Wen; Argetsinger, Lawrence S; Grinstein, Sergio; Carter-Su, Christin

    2011-05-01

    An intriguing question in cell biology is what targets proteins to, and regulates their translocation between, specific cellular locations. Here we report that the polybasic nuclear localization sequence (NLS) required for nuclear entry of the adapter protein and candidate human obesity gene product SH2B1β, also localizes SH2B1β to the plasma membrane (PM), most probably via electrostatic interactions. Binding of SH2B1β to the PM also requires its dimerization domain. Phosphorylation of serine residues near this polybasic region, potentially by protein kinase C, releases SH2B1β from the PM and enhances nuclear entry. Release of SH2B1β from the PM and/or nuclear entry appear to be required for SH2B1β enhancement of nerve growth factor (NGF)-induced expression of urokinase plasminogen activator receptor gene and neurite outgrowth of PC12 cells. Taken together, our results provide strong evidence that the polybasic NLS region of SH2B1 serves the dual function of localizing SH2B1 to both the nucleus and the PM, the latter most probably through electrostatic interactions that are enhanced by SH2B1β dimerization. Cycling between the different cellular compartments is a consequence of the phosphorylation and dephosphorylation of serine residues near the NLS and is important for physiological effects of SH2B1, including NGF-induced gene expression and neurite outgrowth.

  9. Adaptive Calcified Matrix Response of Dental Pulp to Bacterial Invasion Is Associated with Establishment of a Network of Glial Fibrillary Acidic Protein+/Glutamine Synthetase+ Cells

    PubMed Central

    Farahani, Ramin M.; Nguyen, Ky-Anh; Simonian, Mary; Hunter, Neil

    2010-01-01

    We report evidence for anatomical and functional changes of dental pulp in response to bacterial invasion through dentin that parallel responses to noxious stimuli reported in neural crest-derived sensory tissues. Sections of resin-embedded carious adult molar teeth were prepared for immunohistochemistry, in situ hybridization, ultrastructural analysis, and microdissection to extract mRNA for quantitative analyses. In odontoblasts adjacent to the leading edge of bacterial invasion in carious teeth, expression levels of the gene encoding dentin sialo-protein were 16-fold greater than in odontoblasts of healthy teeth, reducing progressively with distance from this site of the carious lesion. In contrast, gene expression for dentin matrix protein-1 by odontoblasts was completely suppressed in carious teeth relative to healthy teeth. These changes in gene expression were related to a gradient of deposited reactionary dentin that displayed a highly modified structure. In carious teeth, interodontoblastic dentin sialo-protein− cells expressing glutamine synthetase (GS) showed up-regulation of glial fibrillary acidic protein (GFAP). These cells extended processes that associated with odontoblasts. Furthermore, connexin 43 established a linkage between adjacent GFAP+/GS+ cells in carious teeth only. These findings indicate an adaptive pulpal response to encroaching caries that includes the deposition of modified, calcified, dentin matrix associated with networks of GFAP+/GS+ interodontoblastic cells. A regulatory role for the networks of GFAP+/GS+ cells is proposed, mediated by the secretion of glutamate to modulate odontoblastic response. PMID:20802180

  10. OH-PRED: prediction of protein hydroxylation sites by incorporating adapted normal distribution bi-profile Bayes feature extraction and physicochemical properties of amino acids.

    PubMed

    Jia, Cang-Zhi; He, Wen-Ying; Yao, Yu-Hua

    2017-03-01

    Hydroxylation of proline or lysine residues in proteins is a common post-translational modification event, and such modifications are found in many physiological and pathological processes. Nonetheless, the exact molecular mechanism of hydroxylation remains under investigation. Because experimental identification of hydroxylation is time-consuming and expensive, bioinformatics tools with high accuracy represent desirable alternatives for large-scale rapid identification of protein hydroxylation sites. In view of this, we developed a supporter vector machine-based tool, OH-PRED, for the prediction of protein hydroxylation sites using the adapted normal distribution bi-profile Bayes feature extraction in combination with the physicochemical property indexes of the amino acids. In a jackknife cross validation, OH-PRED yields an accuracy of 91.88% and a Matthew's correlation coefficient (MCC) of 0.838 for the prediction of hydroxyproline sites, and yields an accuracy of 97.42% and a MCC of 0.949 for the prediction of hydroxylysine sites. These results demonstrate that OH-PRED increased significantly the prediction accuracy of hydroxyproline and hydroxylysine sites by 7.37 and 14.09%, respectively, when compared with the latest predictor PredHydroxy. In independent tests, OH-PRED also outperforms previously published methods.

  11. Decreased collagen-induced arthritis severity and adaptive immunity in mitogen activated protein kinase kinase 6 -deficient mice

    PubMed Central

    Hammaker, Deepa; Topolewski, Katharyn; Edgar, Meghan; Yoshizawa, Toshio; Fukushima, Akihisa; Boyle, David L.; Firestein, Gary S.

    2011-01-01

    Objective MAPK kinases MKK3 and MKK6 regulate p38 MAPK activation in inflammatory diseases such as rheumatoid arthritis. Previous studies demonstrated that MKK3- or MKK6-deficiency inhibits K/BxN serum-induced arthritis. However, the role of these kinases in adaptive immunity-dependent models of chronic arthritis is not known. The goal of this study was to evaluate MKK3- and MKK6-deficiency in the collagen induced arthritis model. Methods Wildtype, MKK3−/−, and MKK6−/− mice were immunized with bovine type II collagen (CII). Disease activity was evaluated by semiquantitative scoring, histology, and microcomputed tomography. Serum anti-collagen antibody levels were quantified by ELISA. In-vitro T cell cytokine response was measured by flow cytometry and multiplex analysis. Expression of joint cytokines and matrix metalloproteinase was determined by qPCR. Results MKK6-deficiency markedly reduced arthritis severity compared with WT mice, while absence of MKK3 had an intermediate effect. Joint damage was minimal in arthritic MKK6−/− mice and intermediate in MKK3−/− mice compared with wild type mice. MKK6−/− mice had modestly lower levels of pathogenic anti-collagen antibodies than WT or MKK3−/− mice. In vitro T cell assays showed reduced proliferation and IL-17 production by MKK6−/− cells in response to type II collagen. Gene expression of synovial IL-6, matrix metalloproteinases MMP3, and MMP13 was significantly inhibited in MKK6-deficient mice. Conclusion Reduced disease severity in MKK6−/− mice correlated with decreased anti-collagen responses indicating that MKK6 is a crucial regulator of inflammation joint destruction in CIA. MKK6 is a potential therapeutic target in complex diseases involving adaptive immune responses like rheumatoid arthritis. PMID:21953132

  12. Adapting Poisson-Boltzmann to the self-consistent mean field theory: Application to protein side-chain modeling

    NASA Astrophysics Data System (ADS)

    Koehl, Patrice; Orland, Henri; Delarue, Marc

    2011-08-01

    We present an extension of the self-consistent mean field theory for protein side-chain modeling in which solvation effects are included based on the Poisson-Boltzmann (PB) theory. In this approach, the protein is represented with multiple copies of its side chains. Each copy is assigned a weight that is refined iteratively based on the mean field energy generated by the rest of the protein, until self-consistency is reached. At each cycle, the variational free energy of the multi-copy system is computed; this free energy includes the internal energy of the protein that accounts for vdW and electrostatics interactions and a solvation free energy term that is computed using the PB equation. The method converges in only a few cycles and takes only minutes of central processing unit time on a commodity personal computer. The predicted conformation of each residue is then set to be its copy with the highest weight after convergence. We have tested this method on a database of hundred highly refined NMR structures to circumvent the problems of crystal packing inherent to x-ray structures. The use of the PB-derived solvation free energy significantly improves prediction accuracy for surface side chains. For example, the prediction accuracies for χ1 for surface cysteine, serine, and threonine residues improve from 68%, 35%, and 43% to 80%, 53%, and 57%, respectively. A comparison with other side-chain prediction algorithms demonstrates that our approach is consistently better in predicting the conformations of exposed side chains.

  13. Adapting Poisson-Boltzmann to the self-consistent mean field theory: application to protein side-chain modeling.

    PubMed

    Koehl, Patrice; Orland, Henri; Delarue, Marc

    2011-08-07

    We present an extension of the self-consistent mean field theory for protein side-chain modeling in which solvation effects are included based on the Poisson-Boltzmann (PB) theory. In this approach, the protein is represented with multiple copies of its side chains. Each copy is assigned a weight that is refined iteratively based on the mean field energy generated by the rest of the protein, until self-consistency is reached. At each cycle, the variational free energy of the multi-copy system is computed; this free energy includes the internal energy of the protein that accounts for vdW and electrostatics interactions and a solvation free energy term that is computed using the PB equation. The method converges in only a few cycles and takes only minutes of central processing unit time on a commodity personal computer. The predicted conformation of each residue is then set to be its copy with the highest weight after convergence. We have tested this method on a database of hundred highly refined NMR structures to circumvent the problems of crystal packing inherent to x-ray structures. The use of the PB-derived solvation free energy significantly improves prediction accuracy for surface side chains. For example, the prediction accuracies for χ(1) for surface cysteine, serine, and threonine residues improve from 68%, 35%, and 43% to 80%, 53%, and 57%, respectively. A comparison with other side-chain prediction algorithms demonstrates that our approach is consistently better in predicting the conformations of exposed side chains.

  14. Directed Evolution and In Silico Analysis of Reaction Centre Proteins Reveal Molecular Signatures of Photosynthesis Adaptation to Radiation Pressure

    PubMed Central

    Rea, Giuseppina; Lambreva, Maya; Polticelli, Fabio; Bertalan, Ivo; Antonacci, Amina; Pastorelli, Sandro; Damasso, Mario; Johanningmeier, Udo; Giardi, Maria Teresa

    2011-01-01

    Evolutionary mechanisms adopted by the photosynthetic apparatus to modifications in the Earth's atmosphere on a geological time-scale remain a focus of intense research. The photosynthetic machinery has had to cope with continuously changing environmental conditions and particularly with the complex ionizing radiation emitted by solar flares. The photosynthetic D1 protein, being the site of electron tunneling-mediated charge separation and solar energy transduction, is a hot spot for the generation of radiation-induced radical injuries. We explored the possibility to produce D1 variants tolerant to ionizing radiation in Chlamydomonas reinhardtii and clarified the effect of radiation-induced oxidative damage on the photosynthetic proteins evolution. In vitro directed evolution strategies targeted at the D1 protein were adopted to create libraries of chlamydomonas random mutants, subsequently selected by exposures to radical-generating proton or neutron sources. The common trend observed in the D1 aminoacidic substitutions was the replacement of less polar by more polar amino acids. The applied selection pressure forced replacement of residues more sensitive to oxidative damage with less sensitive ones, suggesting that ionizing radiation may have been one of the driving forces in the evolution of the eukaryotic photosynthetic apparatus. A set of the identified aminoacidic substitutions, close to the secondary plastoquinone binding niche and oxygen evolving complex, were introduced by site-directed mutagenesis in un-transformed strains, and their sensitivity to free radicals attack analyzed. Mutants displayed reduced electron transport efficiency in physiological conditions, and increased photosynthetic performance stability and oxygen evolution capacity in stressful high-light conditions. Finally, comparative in silico analyses of D1 aminoacidic sequences of organisms differently located in the evolution chain, revealed a higher ratio of residues more sensitive to

  15. Adapting Poisson-Boltzmann to the self-consistent mean field theory: Application to protein side-chain modeling

    PubMed Central

    Koehl, Patrice; Orland, Henri; Delarue, Marc

    2011-01-01

    We present an extension of the self-consistent mean field theory for protein side-chain modeling in which solvation effects are included based on the Poisson-Boltzmann (PB) theory. In this approach, the protein is represented with multiple copies of its side chains. Each copy is assigned a weight that is refined iteratively based on the mean field energy generated by the rest of the protein, until self-consistency is reached. At each cycle, the variational free energy of the multi-copy system is computed; this free energy includes the internal energy of the protein that accounts for vdW and electrostatics interactions and a solvation free energy term that is computed using the PB equation. The method converges in only a few cycles and takes only minutes of central processing unit time on a commodity personal computer. The predicted conformation of each residue is then set to be its copy with the highest weight after convergence. We have tested this method on a database of hundred highly refined NMR structures to circumvent the problems of crystal packing inherent to x-ray structures. The use of the PB-derived solvation free energy significantly improves prediction accuracy for surface side chains. For example, the prediction accuracies for χ1 for surface cysteine, serine, and threonine residues improve from 68%, 35%, and 43% to 80%, 53%, and 57%, respectively. A comparison with other side-chain prediction algorithms demonstrates that our approach is consistently better in predicting the conformations of exposed side chains. PMID:21823735

  16. Cytoskeleton alterations in melanoma: aberrant expression of cortactin, an actin-binding adapter protein, correlates with melanocytic tumor progression

    PubMed Central

    Xu, Xu-Zhi; Garcia, Marileila Varella; Li, Tian-yu; Khor, Li-Yan; Gajapathy, R Sujatha; Spittle, Cindy; Weed, Scott; Lessin, Stuart R; Wu, Hong

    2010-01-01

    Cortactin is a multidomain actin-binding protein important for the functions of cytoskeleton by regulating cortical actin dynamics. It is involved in a diverse array of basic cellular functions. Tumorigenesis and tumor progression involves alterations in actin cytoskeleton proteins. We sought to study the role of cortactin in melanocytic tumor progression using immunohistochemistry on human tissues. The results reveal quantitative differences between benign and malignant lesions. Significantly higher cortactin expression is found in melanomas than in nevi (P<0.0001), with levels greater in metastatic than in invasive melanomas (P<0.05). Qualitatively, tumor tissues often show aberrant cortactin localization at the cell periphery, corresponding to its colocalization with filamentous actin in cell cortex of cultured melanoma cells. This suggests an additional level of protein dysregulation. Furthermore, in patients with metastatic disease, high-level cortactin expression correlates with poor disease-specific survival. Our data, in conjunction with outcome data on several other types of human cancers and experimental data from melanoma cell lines, supports a potential role of aberrant cortactin expression in melanoma tumor progression and a rational for targeting key elements of actin-signaling pathway for developmental therapeutics in melanomas. PMID:19898426

  17. Bidirectional Regulation of the Cyclic-AMP Response Element Binding Protein Encodes Spatial Map Alignment in Prism-Adapting Barn Owls

    PubMed Central

    Nichols, Grant S; DeBello, William M

    2012-01-01

    The barn owl midbrain contains mutually aligned maps of auditory and visual space. Throughout life, map alignment is maintained through the actions of an instructive signal that encodes the magnitude of auditory-visual mismatch. The intracellular signaling pathways activated by this signal are unknown. Here we tested the hypothesis that CREB (cAMP response element binding protein) provides a cell-specific readout of instructive information. Owls were fitted with prismatic or control spectacles and provided rich auditory-visual experience - hunting live mice. CREB activation was analyzed within 30 minutes of hunting using phosphorylation state-specific (pCREB) and CREB antibodies, confocal imaging and immunofluorescence measurements at individual cell nuclei. In control owls or prism-adapted owls, which experience small instructive signals, the frequency distributions of pCREB/CREB values obtained for cell nuclei within the external nucleus of the inferior colliculus (ICX) were unimodal. In contrast, in owls adapting to prisms or re-adapting to normal conditions, the distributions were bimodal: certain cells had received a signal that positively regulated CREB, and by extension, transcription of CREB-dependent genes, while others a signal that negatively regulated it. These changes were restricted to the sub-region of the inferior colliculus that received optically displaced input, the rostral ICX, and not evident in the caudal ICX or central nucleus. Finally, the topographic pattern of CREB regulation was patchy, not continuous, as expected from the actions of a topographically precise signal encoding discrete events. These results support a model in which the magnitude of CREB activation within individual cells provides a readout of the instructive signal that guides plasticity and learning. PMID:18829948

  18. A Fasciola hepatica-derived fatty acid binding protein induces protection against schistosomiasis caused by Schistosoma bovis using the adjuvant adaptation (ADAD) vaccination system.

    PubMed

    Vicente, Belén; López-Abán, Julio; Rojas-Caraballo, José; Pérez del Villar, Luis; Hillyer, George V; Martínez-Fernández, Antonio R; Muro, Antonio

    2014-10-01

    Several efforts have been made to identify anti-schistosomiasis vaccine candidates and new vaccination systems. The fatty acid binding protein (FAPB) has been shown to induce a high level of protection in trematode infection. The adjuvant adaptation (ADAD) vaccination system was used in this study, including recombinant FABP, a natural immunomodulator and saponins. Mice immunised with the ADAD system were able to up-regulate proinflammatory cytokines (IL-1 and IL-6) and induce high IgG2a levels. Moreover, there was a significant reduction in worm burden, egg liver and hepatic lesion in vaccinated mice in two independent experiments involving Schistosoma bovis infected mice. The foregoing data shows that ADAD system using FABP provide a good alternative for triggering an effective immune response against animal schistosomiasis. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Differential protein expression and localization of CYP450 enzymes in three species of earthworm; is this a reflection of environmental adaptation?

    PubMed

    Lu, Xiaoxu; Li, Yinsheng; Thunders, Michelle; Cavanagh, Jo; Matthew, Cory; Wang, Xiuhong; Zhou, Xinchu; Qiu, Jiangping

    2017-03-01

    Cytochrome P450 (CYP450) is a hemoprotein superfamily, among which CYP1, CYP2 and CYP3 play a major role in the metabolism of vast array of xenobiotics and endobiotics. This paper reports on three CYP enzyme variants (CYP1A2, CYP2E1 and CYP3A4) in three species of earthworm (Eisenia fetida, Metaphire guillelmi and Amynthas carnosus). The relative expression levels and localization of the three associated proteins were investigated at three life-cycle points (juvenile, sub-adult and adult), through comparison of anterior and posterior body tissue and between specific organs (body wall, intestine and reproductive tissues) using western blot analysis. This study confirmed the presence of CYP3A4, CYP1A2 and CYP2E1 in all three species of earthworm tested. The levels of expression varied with earthworm species, age, and body location. These differences in occurrence of the three CYP enzymes appeared to reflect the ecological niche (the spatial and temporal location and functional relationship of each individual or population in populations or communities), and the likelihood of contact with soil contaminants of the respective species. These results may help to explain why earthworms are capable of adapting to very different and extensively polluted soil environments and provide important data for subsequent ecotoxicology and ecological adaptability studies.

  20. Comparison of two adaptive temperature-based replica exchange methods applied to a sharp phase transition of protein unfolding-folding.

    PubMed

    Lee, Michael S; Olson, Mark A

    2011-06-28

    Temperature-based replica exchange (T-ReX) enhances sampling of molecular dynamics simulations by autonomously heating and cooling simulation clients via a Metropolis exchange criterion. A pathological case for T-ReX can occur when a change in state (e.g., folding to unfolding of a protein) has a large energetic difference over a short temperature interval leading to insufficient exchanges amongst replica clients near the transition temperature. One solution is to allow the temperature set to dynamically adapt in the temperature space, thereby enriching the population of clients near the transition temperature. In this work, we evaluated two approaches for adapting the temperature set: a method that equalizes exchange rates over all neighbor temperature pairs and a method that attempts to induce clients to visit all temperatures (dubbed "current maximization") by positioning many clients at or near the transition temperature. As a test case, we simulated the 57-residue SH3 domain of alpha-spectrin. Exchange rate equalization yielded the same unfolding-folding transition temperature as fixed-temperature ReX with much smoother convergence of this value. Surprisingly, the current maximization method yielded a significantly lower transition temperature, in close agreement with experimental observation, likely due to more extensive sampling of the transition state.

  1. Distinct protein and mRNA kinetics of skeletal muscle proton transporters following exercise can influence interpretation of adaptations to training.

    PubMed

    McGinley, Cian; Bishop, David J

    2016-12-01

    What is the central question of this study? Following a training intervention, how is the interpretation of adaptations in skeletal muscle H(+) transporters influenced by biopsy timing in the context of individual protein and mRNA kinetics after the final exercise bout? What is the main finding and its importance? We show that distinct postexercise protein and mRNA kinetics for monocarboxylate transporter 1/4 and sodium-hydrogen exchanger 1 indicate that timing of a single end-point biopsy after a training intervention can influence the inferences made. Furthermore, we found the intrasubject, intersample variability of the muscle buffer capacity titration assay to be greater than the typical training effect. In order to gain a better understanding of training-induced adaptations in skeletal muscle pH regulation, in this study we measured protein and mRNA kinetics of proton (H(+) ) transporters for 72 h following a bout of high-intensity interval exercise (HIIE), conducted after 4 weeks of similar training. We also assayed muscle buffer capacity (βm) by a titration technique (βmin vitro ) over the same period. Sixteen active men cycled for seven bouts of 2 min at ∼80% of peak aerobic power, interspersed with 1 min rest. Compared with the first 9 h postexercise, monocarboxylate transporter (MCT) 1 protein content was ∼1.3-fold greater 24-72 h post-HIIE, whereas there was no such change in MCT4 protein content. Conversely, MCT1 and MCT4 mRNA expression progressively decreased 9-72 h post-HIIE. Sodium-hydrogen exchanger 1 (NHE1) protein content was lower 9 h post-HIIE (∼0.8-fold) compared with every other postexercise time point, but NHE1 mRNA expression was 2.2 to 2.9-fold greater 24-72 h post-HIIE, compared with the first 24 h post-HIIE. Furthermore, we determined the intrasubject, intersample variability (11.5%) of βmin vitro for resting samples taken on consecutive days to be greater than the typical training effect (mean 6%; 95% confidence

  2. The effects of protein and amino acid supplementation on performance and training adaptations during ten weeks of resistance training.

    PubMed

    Kerksick, Chad M; Rasmussen, Christopher J; Lancaster, Stacy L; Magu, Bharat; Smith, Penney; Melton, Charles; Greenwood, Michael; Almada, Anthony L; Earnest, Conrad P; Kreider, Richard B

    2006-08-01

    The purpose of this study was to examine the effects of whey protein supplementation on body composition, muscular strength, muscular endurance, and anaerobic capacity during 10 weeks of resistance training. Thirty-six resistance-trained males (31.0 +/- 8.0 years, 179.1 +/- 8.0 cm, 84.0 +/- 12.9 kg, 17.8 +/- 6.6%) followed a 4 days-per-week split body part resistance training program for 10 weeks. Three groups of supplements were randomly assigned, prior to the beginning of the exercise program, in a double-blind manner to all subjects: 48 g per day (g.d(-1)) carbohydrate placebo (P), 40 g.d(-1) of whey protein + 8 g.d(-1) of casein (WC), or 40 g.d(-1) of whey protein + 3 g.d(-1) branched-chain amino acids + 5 g.d(-1) L-glutamine (WBG). At 0, 5, and 10 weeks, subjects were tested for fasting blood samples, body mass, body composition using dual-energy x-ray absorptiometry (DEXA), 1 repetition maximum (1RM) bench and leg press, 80% 1RM maximal repetitions to fatigue for bench press and leg press, and 30-second Wingate anaerobic capacity tests. No changes (p > 0.05) were noted in all groups for energy intake, training volume, blood parameters, and anaerobic capacity. WC experienced the greatest increases in DEXA lean mass (P = 0.0 +/- 0.9; WC = 1.9 +/- 0.6; WBG = -0.1 +/- 0.3 kg, p < 0.05) and DEXA fat-free mass (P = 0.1 +/- 1.0; WC = 1.8 +/- 0.6; WBG = -0.1 +/- 0.2 kg, p < 0.05). Significant increases in 1RM bench press and leg press were observed in all groups after 10 weeks. In this study, the combination of whey and casein protein promoted the greatest increases in fat-free mass after 10 weeks of heavy resistance training. Athletes, coaches, and nutritionists can use these findings to increase fat-free mass and to improve body composition during resistance training.

  3. A convenient and adaptable package of computer programs for DNA and protein sequence management, analysis and homology determination.

    PubMed Central

    Pustell, J; Kafatos, F C

    1984-01-01

    We describe the further development of a widely used package of DNA/protein sequence analysis programs (1). Important revisions have been made based on user experience, and new features, multi-user capability, and a set of large scale homology programs have been added. The programs are very user friendly, economical of time and memory, and extremely transportable. They are written in a version of FORTRAN which will compile, with a few defined changes, as FORTRAN 66, FORTRAN 77, FORTRAN IV, FORTRAN IV+, and others. They are running on a variety of microcomputers, minicomputers, and mainframes, in both single user and multi-user configurations. PMID:6320100

  4. Transgenerational Adaptation of Arabidopsis to Stress Requires DNA Methylation and the Function of Dicer-Like Proteins

    PubMed Central

    Boyko, Alex; Blevins, Todd; Yao, Youli; Golubov, Andrey; Bilichak, Andriy; Ilnytskyy, Yaroslav; Hollander, Jens; Meins, Frederick; Kovalchuk, Igor

    2010-01-01

    Epigenetic states and certain environmental responses in mammals and seed plants can persist in the next sexual generation. These transgenerational effects have potential adaptative significance as well as medical and agronomic ramifications. Recent evidence suggests that some abiotic and biotic stress responses of plants are transgenerational. For example, viral infection of tobacco plants and exposure of Arabidopsis thaliana plants to UVC and flagellin can induce transgenerational increases in homologous recombination frequency (HRF). Here we show that exposure of Arabidopsis plants to stresses, including salt, UVC, cold, heat and flood, resulted in a higher HRF, increased global genome methylation, and higher tolerance to stress in the untreated progeny. This transgenerational effect did not, however, persist in successive generations. Treatment of the progeny of stressed plants with 5-azacytidine was shown to decrease global genomic methylation and enhance stress tolerance. Dicer-like (DCL) 2 and DCL3 encode Dicer activities important for small RNA-dependent gene silencing. Stress-induced HRF and DNA methylation were impaired in dcl2 and dcl3 deficiency mutants, while in dcl2 mutants, only stress-induced stress tolerance was impaired. Our results are consistent with the hypothesis that stress-induced transgenerational responses in Arabidopsis depend on altered DNA methylation and smRNA silencing pathways. PMID:20209086

  5. Progress in the development of Fasciola hepatica vaccine using recombinant fatty acid binding protein with the adjuvant adaptation system ADAD.

    PubMed

    López-Abán, J; Casanueva, P; Nogal, J; Arias, M; Morrondo, P; Diez-Baños, P; Hillyer, G V; Martínez-Fernández, A R; Muro, A

    2007-04-30

    Fatty acid binding proteins (FABP) have been designed as a potential vaccine against fasciolosis. In this work, the immunoprophylaxis of the recombinant Fh15 FABP from F. hepatica (Fh15) in adjuvant/immunomodulator ADAD system was evaluated using mice and sheep challenged with F. hepatica. The ADAD system combines the Fh15 antigen with an immunomodulator (hydroalcoholic extract of Polypodium leucotomos; PAL) and/or an adjuvant (saponins of Quillaja saponaria; Qs) in a water/oil emulsion (30/70) with a non-mineral oil (Montanide). All the infected control mice died by 41-48 days post-infection. The mice vaccinated with ADAD only with PAL+Fh15 present a survival rate of 40-50% and those vaccinated with ADAD containing PAL+Qs+Fh15 had a survival rate of 50-62.5%. IgG1 antibodies were lower in surviving mice in comparison with non-surviving mice. The sheep vaccinated with ADAD PAL+Qs+Fh15 showed lower fluke recovery (43%), less hepatic lesions and higher post-infection daily weight gain than F. hepatica infected control animals. Thus, the ADAD system using recombinant fatty acid binding proteins from F. hepatica could be a good option to develop vaccines against F. hepatica.

  6. Cyclic di-GMP contributes to adaption and virulence of Bacillus thuringiensis through a riboswitch-regulated collagen adhesion protein

    PubMed Central

    Tang, Qing; Yin, Kang; Qian, Hongliang; Zhao, Youwen; Wang, Wen; Chou, Shan-Ho; Fu, Yang; He, Jin

    2016-01-01

    Cyclic di-GMP is a ubiquitous second messenger that regulates diverse cellular processes in bacteria by binding to various protein or riboswitch effectors. In Bacillus thuringiensis BMB171, a c-di-GMP riboswitch termed Bc2 RNA resides in the 5′-untranslated region (5′-UTR) of an mRNA that encodes a collagen adhesion protein (Cap). The expression of cap was strongly repressed in parent strain BMB171 because of the presence of Bc2 RNA but was significantly promoted in the Bc2 RNA markerless deletion mutant. Bc2 RNA acts as a genetic “on” switch, which forms an anti-terminator structure to promote cap read-through transcription upon c-di-GMP binding. As a result, cap transcription was de-repressed under high c-di-GMP levels. Therefore, Bc2 RNA regulates cap expression using a repression/de-repression model. Bc2 RNA-regulated Cap was also found to be tightly associated with motility, aggregation, exopolysaccharide secretion, biofilm formation, and virulence of B. thuringiensis BMB171 against its host insect Helicoverpa armigera. PMID:27381437

  7. 5-Lipoxygenase-activating protein: a potential link between innate and adaptive immunity in atherosclerosis and adipose tissue inflammation.

    PubMed

    Bäck, Magnus; Sultan, Ariane; Ovchinnikova, Olga; Hansson, Göran K

    2007-04-13

    Transforming growth factor-beta (TGF-beta) is a major antiinflammatory mediator in atherosclerosis. Transgenic ApoE(-/-) mice with a dominant-negative TGFbeta type II receptor (dnTGFbetaRII) on CD4(+) and CD8(+) T cells display aggravated atherosclerosis. The aim of the present study was to elucidate the mechanisms involved in this enhanced inflammatory response. Gene array analyses identified the 5-lipoxygenase-activating protein (FLAP) among the most upregulated genes in both the aorta and adipose tissue of dnTGFbetaRII transgenic ApoE(-/-) mice compared with their ApoE(-/-) littermates, a finding that was confirmed by real-time quantitative RT-PCR. Aortas from the former mice in addition produced increased amounts of the lipoxygenase product leukotriene B(4) after ex vivo stimulation. FLAP protein expression in both the aorta and adipose tissue was detected in macrophages, but not in T cells. Four weeks of treatment with the FLAP inhibitor MK-886 (10 mg/kg in 1% tylose delivered by osmotic pumps) significantly reduced atherosclerotic lesion size and T-cell content. Finally, FLAP mRNA levels were upregulated approximately 8-fold in adipose tissue derived from obese ob/ob mice. In conclusion, the results of the present study suggest a key role for mediators of the 5-lipoxygenase pathway in inflammatory reactions of atherosclerosis and metabolic disease.

  8. The Sec1p/Munc18 protein Vps45p binds its cognate SNARE proteins via two distinct modes

    PubMed Central

    Carpp, Lindsay N.; Ciufo, Leonora F.; Shanks, Scott G.; Boyd, Alan; Bryant, Nia J.

    2006-01-01

    Sec1p/Munc18 (SM) proteins are essential for SNARE-mediated membrane trafficking. The formulation of unifying hypotheses for the function of the SM protein family has been hampered by the observation that two of its members bind their cognate syntaxins (Sxs) in strikingly different ways. The SM protein Vps45p binds its Sx Tlg2p in a manner analogous to that captured by the Sly1p–Sed5p crystal structure, whereby the NH2-terminal peptide of the Sx inserts into a hydrophobic pocket on the outer face of domain I of the SM protein. In this study, we report that although this mode of interaction is critical for the binding of Vps45p to Tlg2p, the SM protein also binds Tlg2p-containing SNARE complexes via a second mode that involves neither the NH2 terminus of Tlg2p nor the region of Vps45p that facilitates this interaction. Our findings point to the possibility that SM proteins interact with their cognate SNARE proteins through distinct mechanisms at different stages in the SNARE assembly/disassembly cycle. PMID:16769821

  9. The Sec1p/Munc18 protein Vps45p binds its cognate SNARE proteins via two distinct modes.

    PubMed

    Carpp, Lindsay N; Ciufo, Leonora F; Shanks, Scott G; Boyd, Alan; Bryant, Nia J

    2006-06-19

    Sec1p/Munc18 (SM) proteins are essential for SNARE-mediated membrane trafficking. The formulation of unifying hypotheses for the function of the SM protein family has been hampered by the observation that two of its members bind their cognate syntaxins (Sxs) in strikingly different ways. The SM protein Vps45p binds its Sx Tlg2p in a manner analogous to that captured by the Sly1p-Sed5p crystal structure, whereby the NH2-terminal peptide of the Sx inserts into a hydrophobic pocket on the outer face of domain I of the SM protein. In this study, we report that although this mode of interaction is critical for the binding of Vps45p to Tlg2p, the SM protein also binds Tlg2p-containing SNARE complexes via a second mode that involves neither the NH2 terminus of Tlg2p nor the region of Vps45p that facilitates this interaction. Our findings point to the possibility that SM proteins interact with their cognate SNARE proteins through distinct mechanisms at different stages in the SNARE assembly/disassembly cycle.

  10. Proteins.

    ERIC Educational Resources Information Center

    Doolittle, Russell F.

    1985-01-01

    Examines proteins which give rise to structure and, by virtue of selective binding to other molecules, make genes. Binding sites, amino acids, protein evolution, and molecular paleontology are discussed. Work with encoding segments of deoxyribonucleic acid (exons) and noncoding stretches (introns) provides new information for hypotheses. (DH)

  11. Proteins.

    ERIC Educational Resources Information Center

    Doolittle, Russell F.

    1985-01-01

    Examines proteins which give rise to structure and, by virtue of selective binding to other molecules, make genes. Binding sites, amino acids, protein evolution, and molecular paleontology are discussed. Work with encoding segments of deoxyribonucleic acid (exons) and noncoding stretches (introns) provides new information for hypotheses. (DH)

  12. Protein

    USDA-ARS?s Scientific Manuscript database

    Proteins are the major structural and functional components of all cells in the body. They are macromolecules that comprise 1 or more chains of amino acids that vary in their sequence and length and are folded into specific 3-dimensional structures. The sizes and conformations of proteins, therefor...

  13. Multifunctional nutrient-binding proteins adapt human symbiotic bacteria for glycan competition in the gut by separately promoting enhanced sensing and catalysis.

    PubMed

    Cameron, Elizabeth A; Kwiatkowski, Kurt J; Lee, Byung-Hoo; Hamaker, Bruce R; Koropatkin, Nicole M; Martens, Eric C

    2014-09-09

    To compete for the dynamic stream of nutrients flowing into their ecosystem, colonic bacteria must respond rapidly to new resources and then catabolize them efficiently once they are detected. The Bacteroides thetaiotaomicron starch utilization system (Sus) is a model for nutrient acquisition by symbiotic gut bacteria, which harbor thousands of related Sus-like systems. Structural investigation of the four Sus outer membrane proteins (SusD, -E, -F, and -G) revealed that they contain a total of eight starch-binding sites that we demonstrated, using genetic and biochemical approaches, to play distinct roles in starch metabolism in vitro and in vivo in gnotobiotic mice. SusD, whose homologs are abundant in the human microbiome, is critical for the initial sensing of available starch, allowing sus transcriptional activation at much lower concentrations than without this function. In contrast, seven additional binding sites across SusE, -F, and -G are dispensable for sus activation. However, they optimize the rate of growth on starch in a manner dependent on the expression of the bacterial polysaccharide capsule, suggesting that they have evolved to offset the diffusion barrier created by this structure. These findings demonstrate how proteins with similar biochemical behavior can serve orthogonal functions during different stages of cellular adaptation to nutrients. Finally, we demonstrated in gnotobiotic mice fed a starch-rich diet that the Sus binding sites confer a competitive advantage to B. thetaiotaomicron in vivo in a manner that is dependent on other colonizing microbes. This study reveals how numerically dominant families of carbohydrate-binding proteins in the human microbiome fulfill separate and sometimes cooperative roles to optimize gut commensal bacteria for nutrient acquisition. Our intestinal tract harbors trillions of symbiotic microbes. A critical function contributed by this microbial community is the ability to degrade most of the complex

  14. The sterol regulatory element binding proteins are essential for the metabolic programming of effector T cells and adaptive immunity

    PubMed Central

    Kidani, Yoko; Elsaesser, Heidi; Hock, M Benjamin; Vergnes, Laurent; Williams, Kevin J; Argus, Joseph P; Marbois, Beth N; Komisopoulou, Evangelia; Wilson, Elizabeth B; Osborne, Timothy F; Graeber, Thomas G; Reue, Karen; Brooks, David G; Bensinger, Steven J

    2013-01-01

    Newly activated CD8+ T cells reprogram their metabolism to meet the extraordinary biosynthetic demands of clonal expansion; however, the signals mediating metabolic reprogramming remain poorly defined. Herein, we demonstrate an essential role for sterol regulatory element binding proteins (SREBPs) in the acquisition of effector cell metabolism. Without SREBP signaling, CD8+ T cells are unable to blast, resulting in markedly attenuated clonal expansion during viral infection. Mechanistic studies indicate that SREBPs are essential to meet the heightened lipid requirements of membrane synthesis during blastogenesis. SREBPs are dispensable for homeostatic proliferation, indicating a context-specific requirement for SREBPs in effector responses. These studies provide insights into the molecular signals underlying metabolic reprogramming of CD8+ T cells during the transition from quiescence to activation. PMID:23563690

  15. Monocyte Adhesion and Plaque Recruitment During Atherosclerosis Development Is Regulated by the Adapter Protein Chat-H/SHEP1.

    PubMed

    Herbin, Olivier; Regelmann, Adam G; Ramkhelawon, Bhama; Weinstein, Erica G; Moore, Kathryn J; Alexandropoulos, Konstantina

    2016-09-01

    The chronic inflammation associated with atherosclerosis is caused by lipid deposition followed by leukocyte recruitment to the arterial wall. We previously showed that the hematopoietic cell-specific adaptor protein Cas- and Hef1-associated signal transducer hematopoietic isoform (Chat-H)/SHEP1 regulated lymphocyte adhesion and migration. In this study, we analyzed the role of Chat-H in atherosclerosis development. Using Chat-H-deficient bone marrow transplantation in low-density lipoprotein receptor-deficient mice, we found that Chat-H regulated atherosclerotic plaque formation. Chat-H deficiency in hematopoietic cells associated with lower plaque complexity and fewer leukocytes in the lesions, whereas myeloid-specific deletion of Chat-H was sufficient for conferring atheroprotection. Chat-H deficiency resulted in reduced recruitment of classical Ly6c(high) and nonclassical Ly6c(low) monocytes to the plaques, which was accompanied by increased numbers of both monocyte subsets in the blood. This associated with defective adhesion of Chat-H-deficient Ly6c(high) and Ly6c(low) monocytes to vascular cell adhesion molecule-1 in vitro and impaired infiltration of fluorescent bead-loaded monocytes to atherosclerotic plaques. In contrast, Chat-H was dispensable for CX3CL1 and CCR1/CCR5-dependent migration of monocytes. Our findings highlight Chat-H as a key protein that regulates atherosclerosis development by controlling monocyte adhesion and recruitment to the plaques and identify a novel target that may be exploited for treating atherosclerosis. © 2016 American Heart Association, Inc.

  16. The Modular Adaptive Ribosome.

    PubMed

    Yadav, Anupama; Radhakrishnan, Aparna; Panda, Anshuman; Singh, Amartya; Sinha, Himanshu; Bhanot, Gyan

    2016-01-01

    The ribosome is an ancient machine, performing the same function across organisms. Although functionally unitary, recent experiments suggest specialized roles for some ribosomal proteins. Our central thesis is that ribosomal proteins function in a modular fashion to decode genetic information in a context dependent manner. We show through large data analyses that although many ribosomal proteins are essential with consistent effect on growth in different conditions in yeast and similar expression across cell and tissue types in mice and humans, some ribosomal proteins are used in an environment specific manner. The latter set of variable ribosomal proteins further function in a coordinated manner forming modules, which are adapted to different environmental cues in different organisms. We show that these environment specific modules of ribosomal proteins in yeast have differential genetic interactions with other pathways and their 5'UTRs show differential signatures of selection in yeast strains, presumably to facilitate adaptation. Similarly, we show that in higher metazoans such as mice and humans, different modules of ribosomal proteins are expressed in different cell types and tissues. A clear example is nervous tissue that uses a ribosomal protein module distinct from the rest of the tissues in both mice and humans. Our results suggest a novel stratification of ribosomal proteins that could have played a role in adaptation, presumably to optimize translation for adaptation to diverse ecological niches and tissue microenvironments.

  17. The Modular Adaptive Ribosome

    PubMed Central

    Yadav, Anupama; Radhakrishnan, Aparna; Panda, Anshuman; Singh, Amartya; Sinha, Himanshu; Bhanot, Gyan

    2016-01-01

    The ribosome is an ancient machine, performing the same function across organisms. Although functionally unitary, recent experiments suggest specialized roles for some ribosomal proteins. Our central thesis is that ribosomal proteins function in a modular fashion to decode genetic information in a context dependent manner. We show through large data analyses that although many ribosomal proteins are essential with consistent effect on growth in different conditions in yeast and similar expression across cell and tissue types in mice and humans, some ribosomal proteins are used in an environment specific manner. The latter set of variable ribosomal proteins further function in a coordinated manner forming modules, which are adapted to different environmental cues in different organisms. We show that these environment specific modules of ribosomal proteins in yeast have differential genetic interactions with other pathways and their 5’UTRs show differential signatures of selection in yeast strains, presumably to facilitate adaptation. Similarly, we show that in higher metazoans such as mice and humans, different modules of ribosomal proteins are expressed in different cell types and tissues. A clear example is nervous tissue that uses a ribosomal protein module distinct from the rest of the tissues in both mice and humans. Our results suggest a novel stratification of ribosomal proteins that could have played a role in adaptation, presumably to optimize translation for adaptation to diverse ecological niches and tissue microenvironments. PMID:27812193

  18. Crk-like adapter protein regulates CCL19/CCR7-mediated epithelial-to-mesenchymal transition via ERK signaling pathway in epithelial ovarian carcinomas.

    PubMed

    Cheng, Shaomei; Guo, Jingyan; Yang, Qing; Yang, Xiangshan

    2015-03-01

    Recent studies have suggested that Crk-like adapter protein (CrkL) and epithelial-to-mesenchymal transition (EMT) induced by CCL19/CCR7 play an important role in ovarian epithelial carcinogenesis. However, the regulatory mechanisms of CrkL on the CCL19/CCR7 signaling pathways in epithelial ovarian carcinomas (EOC) are not well characterized. Here, CCR7 and CrkL proteins were tested in 30 EOC tissues and cell lines. In vitro, the roles of CrkL in CCL19-stimulated SKOV-3 cell invasion and migration were investigated. In this work, CCR7 and CrkL over-expressed in EOC tissues and cell lines and correlated with FIGO stage and lymph node metastasis. Moreover, CCR7 and CrkL serve as an independent prognostic factor. In SKOV-3 cells, CrkL knockdown markedly suppressed the CCL19-stimulated expression of p-ERK and EMT biomarkers (N-cadherin, Snail and MMP9), compared with control. In contrast, p-AKT expression level did not change. On the other hand, functional analysis revealed CrkL knockdown could significantly decrease SKOV-3 cell invasion number of transwell invasion assay, and wound closure area of wound healing assay, compared to control. In conclusion, CrkL regulates CCL19/CCR7-induced EMT via ERK signaling pathway in EOC patients, which further suggested CrkL could be suggested as an efficient target in ovarian cancer treatment.

  19. Crk-like adapter protein is overexpressed in cervical carcinoma, facilitates proliferation, invasion and chemoresistance, and regulates Src and Akt signaling

    PubMed Central

    Ji, Hong; Li, Bo; Zhang, Shitai; He, Zheng; Zhou, Yang; Ouyang, Ling

    2016-01-01

    Overexpression of Crk-like (CrkL) adapter protein has been implicated in a number of types of human cancer. However, its involvement in human cervical carcinoma remains unclear. The present study aimed to explore the clinical significance and biological characteristics of CrkL in human cervical carcinoma. CrkL protein expression was examined in tissue samples from 92 cases of cervical carcinoma using immunohistochemistry, and was found to be overexpressed in 48.9% (45/92 cases). CrkL was transfected into HeLa and CaSki cervical carcinoma cell lines and its effects on biological behavior were examined. CrkL overexpression was revealed to promote cell proliferation, invasion and chemoresistance. In addition, CrkL overexpression increased the level of Src and Akt phosphorylation. Treatment with the Src inhibitor dasatinib eliminated the effect of CrkL on cell invasion. In conclusion, the current results demonstrate that CrkL is an oncoprotein overexpressed in cervical carcinoma which contributes to malignant cell growth and chemoresistance. In addition, the findings indicate that CrkL promotes cervical cancer cell invasion through a Src-dependent pathway. PMID:27895735

  20. Inhibitory function of adapter-related protein complex 2 alpha 1 subunit in the process of nuclear translocation of human immunodeficiency virus type 1 genome

    SciTech Connect

    Kitagawa, Yukiko; Kameoka, Masanori Shoji-Kawata, Sanae; Iwabu, Yukie; Mizuta, Hiroyuki; Tokunaga, Kenzo; Fujino, Masato; Natori, Yukikazu; Yura, Yoshiaki; Ikuta, Kazuyoshi

    2008-03-30

    The transfection of human cells with siRNA against adapter-related protein complex 2 alpha 1 subunit (AP2{alpha}) was revealed to significantly up-regulate the replication of human immunodeficiency virus type 1 (HIV-1). This effect was confirmed by cell infection with vesicular stomatitis virus G protein-pseudotyped HIV-1 as well as CXCR4-tropic and CCR5-tropic HIV-1. Viral adsorption, viral entry and reverse transcription processes were not affected by cell transfection with siRNA against AP2{alpha}. In contrast, viral nuclear translocation as well as the integration process was significantly up-regulated in cells transfected with siRNA against AP2{alpha}. Confocal fluorescence microscopy revealed that a subpopulation of AP2{alpha} was not only localized in the cytoplasm but was also partly co-localized with lamin B, importin {beta} and Nup153, implying that AP2{alpha} negatively regulates HIV-1 replication in the process of nuclear translocation of viral DNA in the cytoplasm or the perinuclear region. We propose that AP2{alpha} may be a novel target for disrupting HIV-1 replication in the early stage of the viral life cycle.

  1. Effects of dihydrocapsiate on adaptive and diet-induced thermogenesis with a high protein very low calorie diet: a randomized control trial.

    PubMed

    Lee, Tszying Amy; Li, Zhaoping; Zerlin, Alona; Heber, David

    2010-10-06

    Dihydrocapsiate (DCT) is a natural safe food ingredient which is structurally related to capsaicin from chili pepper and is found in the non-pungent pepper strain, CH-19 Sweet. It has been shown to elicit the thermogenic effects of capsaicin but without its gastrointestinal side effects. The present study was designed to examine the effects of DCT on both adaptive thermogenesis as the result of caloric restriction with a high protein very low calorie diet (VLCD) and to determine whether DCT would increase post-prandial energy expenditure (PPEE) in response to a 400 kcal/60 g protein liquid test meal. Thirty-three subjects completed an outpatient very low calorie diet (800 kcal/day providing 120 g/day protein) over 4 weeks and were randomly assigned to receive either DCT capsules three times per day (3 mg or 9 mg) or placebo. At baseline and 4 weeks, fasting basal metabolic rate and PPEE were measured in a metabolic hood and fat free mass (FFM) determined using displacement plethysmography (BOD POD). PPEE normalized to FFM was increased significantly in subjects receiving 9 mg/day DCT by comparison to placebo (p < 0.05), but decreases in resting metabolic rate were not affected. Respiratory quotient (RQ) increased by 0.04 in the placebo group (p < 0.05) at end of the 4 weeks, but did not change in groups receiving DCT. These data provide evidence for postprandial increases in thermogenesis and fat oxidation secondary to administration of dihydrocapsiate. clinicaltrial.govNCT01142687.

  2. Effects of dihydrocapsiate on adaptive and diet-induced thermogenesis with a high protein very low calorie diet: a randomized control trial

    PubMed Central

    2010-01-01

    Background Dihydrocapsiate (DCT) is a natural safe food ingredient which is structurally related to capsaicin from chili pepper and is found in the non-pungent pepper strain, CH-19 Sweet. It has been shown to elicit the thermogenic effects of capsaicin but without its gastrointestinal side effects. Methods The present study was designed to examine the effects of DCT on both adaptive thermogenesis as the result of caloric restriction with a high protein very low calorie diet (VLCD) and to determine whether DCT would increase post-prandial energy expenditure (PPEE) in response to a 400 kcal/60 g protein liquid test meal. Thirty-three subjects completed an outpatient very low calorie diet (800 kcal/day providing 120 g/day protein) over 4 weeks and were randomly assigned to receive either DCT capsules three times per day (3 mg or 9 mg) or placebo. At baseline and 4 weeks, fasting basal metabolic rate and PPEE were measured in a metabolic hood and fat free mass (FFM) determined using displacement plethysmography (BOD POD). Results PPEE normalized to FFM was increased significantly in subjects receiving 9 mg/day DCT by comparison to placebo (p < 0.05), but decreases in resting metabolic rate were not affected. Respiratory quotient (RQ) increased by 0.04 in the placebo group (p < 0.05) at end of the 4 weeks, but did not change in groups receiving DCT. Conclusions These data provide evidence for postprandial increases in thermogenesis and fat oxidation secondary to administration of dihydrocapsiate. Trial registration clinicaltrial.govNCT01142687 PMID:20925950

  3. Multifunctional Nutrient-Binding Proteins Adapt Human Symbiotic Bacteria for Glycan Competition in the Gut by Separately Promoting Enhanced Sensing and Catalysis

    PubMed Central

    Cameron, Elizabeth A.; Kwiatkowski, Kurt J.; Lee, Byung-Hoo; Hamaker, Bruce R.; Koropatkin, Nicole M.

    2014-01-01

    ABSTRACT To compete for the dynamic stream of nutrients flowing into their ecosystem, colonic bacteria must respond rapidly to new resources and then catabolize them efficiently once they are detected. The Bacteroides thetaiotaomicron starch utilization system (Sus) is a model for nutrient acquisition by symbiotic gut bacteria, which harbor thousands of related Sus-like systems. Structural investigation of the four Sus outer membrane proteins (SusD, -E, -F, and -G) revealed that they contain a total of eight starch-binding sites that we demonstrated, using genetic and biochemical approaches, to play distinct roles in starch metabolism in vitro and in vivo in gnotobiotic mice. SusD, whose homologs are abundant in the human microbiome, is critical for the initial sensing of available starch, allowing sus transcriptional activation at much lower concentrations than without this function. In contrast, seven additional binding sites across SusE, -F, and -G are dispensable for sus activation. However, they optimize the rate of growth on starch in a manner dependent on the expression of the bacterial polysaccharide capsule, suggesting that they have evolved to offset the diffusion barrier created by this structure. These findings demonstrate how proteins with similar biochemical behavior can serve orthogonal functions during different stages of cellular adaptation to nutrients. Finally, we demonstrated in gnotobiotic mice fed a starch-rich diet that the Sus binding sites confer a competitive advantage to B. thetaiotaomicron in vivo in a manner that is dependent on other colonizing microbes. This study reveals how numerically dominant families of carbohydrate-binding proteins in the human microbiome fulfill separate and sometimes cooperative roles to optimize gut commensal bacteria for nutrient acquisition. PMID:25205092

  4. Adaptive changes of pancreatic protease secretion to a short-term vegan diet: influence of reduced intake and modification of protein.

    PubMed

    Walkowiak, Jaroslaw; Mądry, Edyta; Lisowska, Aleksandra; Szaflarska-Popławska, Anna; Grzymisławski, Marian; Stankowiak-Kulpa, Hanna; Przysławski, Juliusz

    2012-01-01

    In our previous study, we demonstrated that abstaining from meat, for 1 month, by healthy omnivores (lacto-ovovegetarian model) resulted in a statistical decrease in pancreatic secretion as measured by faecal elastase-1 output. However, no correlation between relative and non-relative changes of energy and nutrient consumption and pancreatic secretion was documented. Therefore, in the present study, we aimed to assess the changes of exocrine pancreatic secretion with a more restrictive dietetic modification, by applying a vegan diet. A total of twenty-one healthy omnivores (sixteen females and five males) participated in the prospective study lasting for 6 weeks. The nutrient intake and faecal output of pancreatic enzymes (elastase-1, chymotrypsin and lipase) were assessed twice during the study. Each assessment period lasted for 7 d: the first before the transition to the vegan diet (omnivore diet) and the second during the last week of the study (vegan diet). The dietary modification resulted in a significant decrease in faecal elastase-1 (P < 0·05) and chymotrypsin output (P < 0·04). The lipase excretion remained unchanged. The decrease in proteolytic enzymes was documented to be positively correlated with a decreased protein intake (P < 0·05). In addition, elastase-1 and chymotrypsin outputs were also related to the changes of protein type, plant v. animal (P < 0·04 and P < 0·03, respectively). It was concluded that significant reduction and modification of protein intake due to a short-term vegan diet resulted in an adaptation of pancreatic protease secretion in healthy volunteers.

  5. Protein

    MedlinePlus

    ... Search for: Harvard T.H. Chan School of Public Health Email People Departments Calendar Careers Give my.harvard ... Nutrition Source Harvard T.H. Chan School of Public Health > The Nutrition Source > What Should I Eat? > Protein ...

  6. Accuracy and Power of Statistical Methods for Detecting Adaptive Evolution in Protein Coding Sequences and for Identifying Positively Selected Sites

    PubMed Central

    Wong, Wendy S. W.; Yang, Ziheng; Goldman, Nick; Nielsen, Rasmus

    2004-01-01

    The parsimony method of Suzuki and Gojobori (1999) and the maximum likelihood method developed from the work of Nielsen and Yang (1998) are two widely used methods for detecting positive selection in homologous protein coding sequences. Both methods consider an excess of nonsynonymous (replacement) substitutions as evidence for positive selection. Previously published simulation studies comparing the performance of the two methods show contradictory results. Here we conduct a more thorough simulation study to cover and extend the parameter space used in previous studies. We also reanalyzed an HLA data set that was previously proposed to cause problems when analyzed using the maximum likelihood method. Our new simulations and a reanalysis of the HLA data demonstrate that the maximum likelihood method has good power and accuracy in detecting positive selection over a wide range of parameter values. Previous studies reporting poor performance of the method appear to be due to numerical problems in the optimization algorithms and did not reflect the true performance of the method. The parsimony method has a very low rate of false positives but very little power for detecting positive selection or identifying positively selected sites. PMID:15514074

  7. Molecular adaptation within the coat protein-encoding gene of Tunisian almond isolates of Prunus necrotic ringspot virus.

    PubMed

    Boulila, Moncef; Ben Tiba, Sawssen; Jilani, Saoussen

    2013-04-01

    The sequence alignments of five Tunisian isolates of Prunus necrotic ringspot virus (PNRSV) were searched for evidence of recombination and diversifying selection. Since failing to account for recombination can elevate the false positive error rate in positive selection inference, a genetic algorithm (GARD) was used first and led to the detection of potential recombination events in the coat protein-encoding gene of that virus. The Recco algorithm confirmed these results by identifying, additionally, the potential recombinants. For neutrality testing and evaluation of nucleotide polymorphism in PNRSV CP gene, Tajima's D, and Fu and Li's D and F statistical tests were used. About selection inference, eight algorithms (SLAC, FEL, IFEL, REL, FUBAR, MEME, PARRIS, and GA branch) incorporated in HyPhy package were utilized to assess the selection pressure exerted on the expression of PNRSV capsid. Inferred phylogenies pointed out, in addition to the three classical groups (PE-5, PV-32, and PV-96), the delineation of a fourth cluster having the new proposed designation SW6, and a fifth clade comprising four Tunisian PNRSV isolates which underwent recombination and selective pressure and to which the name Tunisian outgroup was allocated.

  8. Optimizing electrostatic field calculations with the Adaptive Poisson-Boltzmann Solver to predict electric fields at protein-protein interfaces II: explicit near-probe and hydrogen-bonding water molecules.

    PubMed

    Ritchie, Andrew W; Webb, Lauren J

    2014-07-17

    We have examined the effects of including explicit, near-probe solvent molecules in a continuum electrostatics strategy using the linear Poisson-Boltzmann equation with the Adaptive Poisson-Boltzmann Solver (APBS) to calculate electric fields at the midpoint of a nitrile bond both at the surface of a monomeric protein and when docked at a protein-protein interface. Results were compared to experimental vibrational absorption energy measurements of the nitrile oscillator. We examined three methods for selecting explicit water molecules: (1) all water molecules within 5 Å of the nitrile nitrogen; (2) the water molecule closest to the nitrile nitrogen; and (3) any single water molecule hydrogen-bonding to the nitrile. The correlation between absolute field strengths with experimental absorption energies were calculated and it was observed that method 1 was only an improvement for the monomer calculations, while methods 2 and 3 were not significantly different from the purely implicit solvent calculations for all protein systems examined. Upon taking the difference in calculated electrostatic fields and comparing to the difference in absorption frequencies, we typically observed an increase in experimental correlation for all methods, with method 1 showing the largest gain, likely due to the improved absolute monomer correlations using that method. These results suggest that, unlike with quantum mechanical methods, when calculating absolute fields using entirely classical models, implicit solvent is typically sufficient and additional work to identify hydrogen-bonding or nearest waters does not significantly impact the results. Although we observed that a sphere of solvent near the field of interest improved results for relative field calculations, it should not be consider a panacea for all situations.

  9. The immunomodulatory adapter proteins DAP12 and Fc receptor γ-chain (FcRγ) regulate development of functional osteoclasts through the Syk tyrosine kinase

    PubMed Central

    Mócsai, Attila; Humphrey, Mary Beth; Van Ziffle, Jessica A. G.; Hu, Yongmei; Burghardt, Andrew; Spusta, Steven C.; Majumdar, Sharmila; Lanier, Lewis L.; Lowell, Clifford A.; Nakamura, Mary C.

    2004-01-01

    Osteoclasts, the only bone-resorbing cells, are central to the pathogenesis of osteoporosis, yet their development and regulation are incompletely understood. Multiple receptors of the immune system use a common signaling paradigm whereby phosphorylated immunoreceptor tyrosine-based activation motifs (ITAMs) within receptor-associated adapter proteins recruit the Syk tyrosine kinase. Here we demonstrate that a similar mechanism is required for development of functional osteoclasts. Mice lacking two ITAM-bearing adapters, DAP12 and the Fc receptor γ-chain (FcRγ), are severely osteopetrotic. DAP12-/-FcRγ-/- bone marrow cells fail to differentiate into multinucleated osteoclasts or resorb bone in vitro and show impaired phosphorylation of the Syk tyrosine kinase. syk-/- progenitors are similarly defective in osteoclast development and bone resorption. Intact SH2-domains of Syk, introduced by retroviral transduction, are required for functional reconstitution of syk-/- osteoclasts, whereas intact ITAM-domains on DAP12 are required for reconstitution of DAP12-/- FcRγ-/- cells. These data indicate that recruitment of Syk to phosphorylated ITAMs is critical for osteoclastogenesis. Although DAP12 appears to be primarily responsible for osteoclast differentiation in cultures directly stimulated with macrophage-colony stimulating factor and receptor activator of NF-κB ligand cytokines, DAP12 and FcRγ have overlapping roles in supporting osteoclast development in osteoblast–osteoclast cocultures, which mirrors their overlapping functions in vivo. These results provide new insight into the biology of osteoclasts and suggest novel therapeutic targets in diseases of bony remodeling. PMID:15073337

  10. Bidirectional regulation of the cAMP response element binding protein encodes spatial map alignment in prism-adapting barn owls.

    PubMed

    Nichols, Grant S; DeBello, William M

    2008-10-01

    The barn owl midbrain contains mutually aligned maps of auditory and visual space. Throughout life, map alignment is maintained through the actions of an instructive signal that encodes the magnitude of auditory-visual mismatch. The intracellular signaling pathways activated by this signal are unknown. Here we tested the hypothesis that CREB (cAMP response element-binding protein) provides a cell-specific readout of instructive information. Owls were fitted with prismatic or control spectacles and provided rich auditory-visual experience: hunting live mice. CREB activation was analyzed within 30 min of hunting using phosphorylation state-specific CREB (pCREB) and CREB antibodies, confocal imaging, and immunofluorescence measurements at individual cell nuclei. In control owls or prism-adapted owls, which experience small instructive signals, the frequency distributions of pCREB/CREB values obtained for cell nuclei within the external nucleus of the inferior colliculus (ICX) were unimodal. In contrast, in owls adapting to prisms or readapting to normal conditions, the distributions were bimodal: certain cells had received a signal that positively regulated CREB and, by extension, transcription of CREB-dependent genes, whereas others received a signal that negatively regulated it. These changes were restricted to the subregion of the inferior colliculus that received optically displaced input, the rostral ICX, and were not evident in the caudal ICX or central nucleus. Finally, the topographic pattern of CREB regulation was patchy, not continuous, as expected from the actions of a topographically precise signal encoding discrete events. These results support a model in which the magnitude of CREB activation within individual cells provides a readout of the instructive signal that guides plasticity and learning.

  11. Divergent evolution and molecular adaptation in the Drosophila odorant-binding protein family: inferences from sequence variation at the OS-E and OS-F genes

    PubMed Central

    2008-01-01

    Background The Drosophila Odorant-Binding Protein (Obp) genes constitute a multigene family with moderate gene number variation across species. The OS-E and OS-F genes are the two phylogenetically closest members of this family in the D. melanogaster genome. In this species, these genes are arranged in the same genomic cluster and likely arose by tandem gene duplication, the major mechanism proposed for the origin of new members in this olfactory-system family. Results We have analyzed the genomic cluster encompassing OS-E and OS-F genes (Obp83 genomic region) to determine the role of the functional divergence and molecular adaptation on the Obp family size evolution. We compared nucleotide and amino acid variation across 18 Drosophila and 4 mosquito species applying a phylogenetic-based maximum likelihood approach complemented with information of the OBP three-dimensional structure and function. We show that, in spite the OS-E and OS-F genes are currently subject to similar and strong selective constraints, they likely underwent divergent evolution. Positive selection was likely involved in the functional diversification of new copies in the early stages after the gene duplication event; moreover, it might have shaped nucleotide variation of the OS-E gene concomitantly with the loss of functionally related members. Besides, molecular adaptation likely affecting the functional OBP conformational changes was supported by the analysis of the evolution of physicochemical properties of the OS-E protein and the location of the putative positive selected amino acids on the OBP three-dimensional structure. Conclusion Our results support that positive selection was likely involved in the functional differentiation of new copies of the OBP multigene family in the early stages after their birth by gene duplication; likewise, it might shape variation of some members of the family concomitantly with the loss of functionally related genes. Thus, the stochastic gene gain

  12. A Unique Set of the Burkholderia Collagen-Like Proteins Provides Insight into Pathogenesis, Genome Evolution and Niche Adaptation, and Infection Detection

    PubMed Central

    Bachert, Beth A.; Choi, Soo J.; Snyder, Anna K.; Rio, Rita V. M.; Durney, Brandon C.; Holland, Lisa A.; Amemiya, Kei; Welkos, Susan L.; Bozue, Joel A.; Cote, Christopher K.; Berisio, Rita; Lukomski, Slawomir

    2015-01-01

    Burkholderia pseudomallei and Burkholderia mallei, classified as category B priority pathogens, are significant human and animal pathogens that are highly infectious and broad-spectrum antibiotic resistant. Currently, the pathogenicity mechanisms utilized by Burkholderia are not fully understood, and correct diagnosis of B. pseudomallei and B. mallei infection remains a challenge due to limited detection methods. Here, we provide a comprehensive analysis of a set of 13 novel Burkholderia collagen-like proteins (Bucl) that were identified among B. pseudomallei and B. mallei select agents. We infer that several Bucl proteins participate in pathogenesis based on their noncollagenous domains that are associated with the components of a type III secretion apparatus and membrane transport systems. Homology modeling of the outer membrane efflux domain of Bucl8 points to a role in multi-drug resistance. We determined that bucl genes are widespread in B. pseudomallei and B. mallei; Fischer’s exact test and Cramer’s V2 values indicate that the majority of bucl genes are highly associated with these pathogenic species versus nonpathogenic B. thailandensis. We designed a bucl-based quantitative PCR assay which was able to detect B. pseudomallei infection in a mouse with a detection limit of 50 CFU. Finally, chromosomal mapping and phylogenetic analysis of bucl loci revealed considerable genomic plasticity and adaptation of Burkholderia spp. to host and environmental niches. In this study, we identified a large set of phylogenetically unrelated bucl genes commonly found in Burkholderia select agents, encoding predicted pathogenicity factors, detection targets, and vaccine candidates. PMID:26356298

  13. Increases in mature brain-derived neurotrophic factor protein in the frontal cortex and basal forebrain during chronic sleep restriction in rats: possible role in initiating allostatic adaptation.

    PubMed

    Wallingford, J K; Deurveilher, S; Currie, R W; Fawcett, J P; Semba, K

    2014-09-26

    Chronic sleep restriction (CSR) has various negative consequences on cognitive performance and health. Using a rat model of CSR that uses alternating cycles of 3h of sleep deprivation (using slowly rotating activity wheels) and 1h of slee