Sample records for adapter protein sly1

  1. SLiMSearch 2.0: biological context for short linear motifs in proteins

    PubMed Central

    Davey, Norman E.; Haslam, Niall J.; Shields, Denis C.

    2011-01-01

    Short, linear motifs (SLiMs) play a critical role in many biological processes. The SLiMSearch 2.0 (Short, Linear Motif Search) web server allows researchers to identify occurrences of a user-defined SLiM in a proteome, using conservation and protein disorder context statistics to rank occurrences. User-friendly output and visualizations of motif context allow the user to quickly gain insight into the validity of a putatively functional motif occurrence. For each motif occurrence, overlapping UniProt features and annotated SLiMs are displayed. Visualization also includes annotated multiple sequence alignments surrounding each occurrence, showing conservation and protein disorder statistics in addition to known and predicted SLiMs, protein domains and known post-translational modifications. In addition, enrichment of Gene Ontology terms and protein interaction partners are provided as indicators of possible motif function. All web server results are available for download. Users can search motifs against the human proteome or a subset thereof defined by Uniprot accession numbers or GO term. The SLiMSearch server is available at: http://bioware.ucd.ie/slimsearch2.html. PMID:21622654

  2. SLY1 and Syntaxin 18 specify a distinct pathway for procollagen VII export from the endoplasmic reticulum

    PubMed Central

    Nogueira, Cristina; Erlmann, Patrik; Villeneuve, Julien; Santos, António JM; Martínez-Alonso, Emma; Martínez-Menárguez, José Ángel; Malhotra, Vivek

    2014-01-01

    TANGO1 binds and exports Procollagen VII from the endoplasmic reticulum (ER). In this study, we report a connection between the cytoplasmic domain of TANGO1 and SLY1, a protein that is required for membrane fusion. Knockdown of SLY1 by siRNA arrested Procollagen VII in the ER without affecting the recruitment of COPII components, general protein secretion, and retrograde transport of the KDEL-containing protein BIP, and ERGIC53. SLY1 is known to interact with the ER-specific SNARE proteins Syntaxin 17 and 18, however only Syntaxin 18 was required for Procollagen VII export. Neither SLY1 nor Syntaxin 18 was required for the export of the equally bulky Procollagen I from the ER. Altogether, these findings reveal the sorting of bulky collagen family members by TANGO1 at the ER and highlight the existence of different export pathways for secretory cargoes one of which is mediated by the specific SNARE complex containing SLY1 and Syntaxin 18. DOI: http://dx.doi.org/10.7554/eLife.02784.001 PMID:24842878

  3. A Bir1p–Sli15p Kinetochore Passenger Complex Regulates Septin Organization during Anaphase

    PubMed Central

    Thomas, Scott

    2007-01-01

    Kinetochore–passenger complexes in metazoans have been proposed to coordinate the segregation of chromosomes in anaphase with the induction of cytokinesis. Passenger protein homologues in the budding yeast Saccharomyces cerevisiae play a critical role early in mitosis, ensuring proper biorientation of kinetochore–microtubule attachments. Our recent work has implicated the passenger protein Bir1p (Survivin) and the inner kinetochore complex centromere binding factor 3 (CBF3) in the regulation of septin dynamics during anaphase. Here, we present data that is consistent with there being multiple passenger protein complexes. Our data show that Bir1p links together a large passenger complex containing Ndc10p, Sli15p (INCENP), and Ipl1p (Aurora B) and that the interaction between Bir1p and Sli15p is specifically involved in regulating septin dynamics during anaphase. Neither conditional alleles nor mutants of BIR1 that disrupt the interaction between Bir1p and Sli15p resulted in mono-attached kinetochores, suggesting that the Bir1p–Sli15p complex functions in anaphase and independently from Sli15p–Ipl1p complexes. We present a model for how discrete passenger complexes coordinate distinct aspects of mitosis. PMID:17652458

  4. OsSLI1, a homeodomain containing transcription activator, involves abscisic acid related stress response in rice (Oryza sativa L.).

    PubMed

    Huang, Xi; Duan, Min; Liao, Jiakai; Yuan, Xi; Chen, Hui; Feng, Jiejie; Huang, Ji; Zhang, Hong-Sheng

    2014-01-01

    Homeodomain-leucine zipper type I (HD-Zip I) proteins are involved in the regulation of plant development and response to environmental stresses. In this study, OsSLI1 (Oryza sativa stress largely induced 1), encoding a member of the HD-Zip I subfamily, was isolated from rice. The expression of OsSLI1 was dramatically induced by multiple abiotic stresses and exogenous abscisic acid (ABA). In silico sequence analysis discovered several cis-acting elements including multiple ABREs (ABA-responsive element binding factors) in the upstream promoter region of OsSLI1. The OsSLI1-GFP fusion protein was localized in the nucleus of rice protoplast cells and the transcriptional activity of OsSLI1 was confirmed by the yeast hybrid system. Further, it was found that OsSLI1 expression was enhanced in an ABI5-Like1 (ABL1) deficiency rice mutant abl1 under stress conditions, suggesting that ABL1 probably negatively regulates OsSLI1 gene expression. Moreover, it was found that OsSLI1 was regulated in panicle development. Taken together, OsSLI1 may be a transcriptional activator regulating stress-responsive gene expression and panicle development in rice.

  5. Crystal Structures of SlyA Protein, a Master Virulence Regulator of Salmonella, in Free and DNA-bound States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dolan, Kyle T.; Duguid, Erica M.; He, Chuan

    2011-11-17

    SlyA is a master virulence regulator that controls the transcription of numerous genes in Salmonella enterica. We present here crystal structures of SlyA by itself and bound to a high-affinity DNA operator sequence in the slyA gene. SlyA interacts with DNA through direct recognition of a guanine base by Arg-65, as well as interactions between conserved Arg-86 and the minor groove and a large network of non-base-specific contacts with the sugar phosphate backbone. Our structures, together with an unpublished structure of SlyA bound to the small molecule effector salicylate (Protein Data Bank code 3DEU), reveal that, unlike many other MarRmore » family proteins, SlyA dissociates from DNA without large conformational changes when bound to this effector. We propose that SlyA and other MarR global regulators rely more on indirect readout of DNA sequence to exert control over many genes, in contrast to proteins (such as OhrR) that recognize a single operator.« less

  6. Crystal structure of enterococcus faecalis sly A-like transcriptional factor.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, R.; Zhang, R.; Zagnitko, O.

    2003-05-30

    The crystal structure of a SlyA transcriptional regulator at 1.6 {angstrom} resolution is presented, and structural relationships between members of the MarR/SlyA family are discussed. The SlyA family, which includes SlyA, Rap, Hor, and RovA proteins, is widely distributed in bacterial and archaeal genomes. Current evidence suggests that SlyA-like factors act as repressors, activators, and modulators of gene transcription. These proteins have been shown to up-regulate the expression of molecular chaperones, acid-resistance proteins, and cytolysin, and down-regulate several biosynthetic enzymes. The structure of SlyA from Enterococcus faecalis, determined as a part of an ongoing structural genomics initiative (www.mcsg.anl.gov), revealed themore » same winged helix DNA-binding motif that was recently found in the MarR repressor from Escherichia coli and the MexR repressor from Pseudomonas aeruginosa, a sequence homologue of MarR. Phylogenetic analysis of the MarR/SlyA family suggests that Sly is placed between the SlyA and MarR subfamilies and shows significant sequence similarity to members of both subfamilies.« less

  7. Metal selectivity of the E. coli nickel metallochaperone, SlyD

    PubMed Central

    Kaluarachchi, Harini; Siebel, Judith F.; Kaluarachchi-Duffy, Supipi; Krecisz, Sandra; Sutherland, Duncan E. K.; Stillman, Martin J.; Zamble, Deborah B.

    2012-01-01

    SlyD is a Ni(II)-binding protein that contributes to nickel homeostasis in Escherichia coli. The C-terminal domain of SlyD contains a rich variety of metal-binding amino acids, suggesting broader metal-binding capabilities, and previous work demonstrated that the protein can coordinate several types of first row transition metals. However, the binding of SlyD to metals other than Ni(II) has not been previously characterized. To further our understanding of the in vitro metal-binding activity of SlyD and how it correlates with the in vivo function of this protein, the interactions between SlyD and the series of biologically relevant transition metals Mn(II), Fe(II), Co(II), Cu(I) and Zn(II) were examined by using a combination of optical spectroscopy and mass spectrometry. SlyD binding to Mn(II) or to Fe(II) ions was not detected but the protein coordinates multiple ions of Co(II), Zn(II) and Cu(I) with appreciable affinities (KD ≤ nM), highlighting the promiscuous nature of this protein. The order of affinities of SlyD for the metals examined is Mn(II), Fe(II) < Co(II) < Ni(II) ~ Zn(II) ≪ Cu(I). Although the purified protein is unable to overcome the large thermodynamic preference for Cu(I) and exclude Zn(II) chelation in the presence of Ni(II), in vivo studies reveal a Ni(II)-specific function for the protein. Furthermore, these latter experiments support a specific role for SlyD as a [NiFe]-hydrogenase enzyme maturation factor. The implications of the divergence between the metal selectivity of SlyD in vitro and the specific activity in vivo are discussed. PMID:22047179

  8. Generation of Nanobodies against SlyD and development of tools to eliminate this bacterial contaminant from recombinant proteins.

    PubMed

    Hu, Yaozhong; Romão, Ema; Vertommen, Didier; Vincke, Cécile; Morales-Yánez, Francisco; Gutiérrez, Carlos; Liu, Changxiao; Muyldermans, Serge

    2017-09-01

    The gene for a protein domain, derived from a tumor marker, fused to His tag codons and under control of a T7 promotor was expressed in E. coli strain BL21 (DE3). The recombinant protein was purified from cell lysates through immobilized metal affinity chromatography and size-exclusion chromatography. A contaminating bacterial protein was consistently co-purified, even using stringent washing solutions containing 50 or 100 mM imidazole. Immunization of a dromedary with this contaminated protein preparation, and the subsequent generation and panning of the immune Nanobody library yielded several Nanobodies of which 2/3 were directed against the bacterial contaminant, reflecting the immunodominance of this protein to steer the dromedary immune response. Affinity adsorption of this contaminant using one of our specific Nanobodies followed by mass spectrometry identified the bacterial contaminant as FKBP-type peptidyl-prolyl cis-trans isomerase (SlyD) from E. coli. This SlyD protein contains in its C-terminal region 14 histidines in a stretch of 31 amino acids, which explains its co-purification on Ni-NTA resin. This protein is most likely present to varying extents in all recombinant protein preparations after immobilized metal affinity chromatography. Using our SlyD-specific Nb 5 we generated an immune-complex that could be removed either by immunocapturing or by size exclusion chromatography. Both methods allow us to prepare a recombinant protein sample where the SlyD contaminant was quantitatively eliminated. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Social participation of children age 8-12 with SLI.

    PubMed

    Sylvestre, Audette; Brisson, Jacinthe; Lepage, Céline; Nadeau, Line; Deaudelin, Isabelle

    2016-01-01

    Two objectives are being pursued: (1) to describe the level of social participation of children aged 8-12 presenting a specific language impairment (SLI) and (2) to identify personal and family factors associated with their level of social participation. This cross-sectional study was conducted among 29 children with SLI and one of their parents. Parental stress and family adversity were measured as risk factors. The measure of life habits (LIFE-H) adapted to children aged 5-3 was used to measure social participation. The assumption that social participation of these children is impaired in relation to the communication dimension was generally confirmed. The statements referring to the "communication in the community" and "written communication" are those for which the results are weaker. "Communication at home" is made easier albeit with some difficulties, while "telecommunication" is totally preserved. A high level of parental stress is also confirmed, affecting the willingness of parents to support their child's autonomy. The achievement of a normal lifestyle of children with SLI is upset in many spheres of life. Methods of intervention must better reflect the needs and realities experienced by these children in their various living environments, in order to optimize social participation, and consequently, to improve their well-being and that of their families. The need to develop strategies to develop children's independence and to reduce parental stress must be recognized and all stakeholders need to be engaged in the resolution of this challenge. The realization of life habits of SLI children is compromised at various levels, especially in the domain related to "communication in the community" and "written communication". Speech-language pathologists must consider providing ongoing support throughout the primary years of these children and during adolescence, to promote and facilitate the continued realization of life habits of SLI persons. Providing ongoing

  10. SlyD-dependent nickel delivery limits maturation of [NiFe]-hydrogenases in late-stationary phase Escherichia coli cells.

    PubMed

    Pinske, Constanze; Sargent, Frank; Sawers, R Gary

    2015-04-01

    Fermentatively growing Escherichia coli cells have three active [NiFe]-hydrogenases (Hyd), two of which, Hyd-1 and Hyd-2, contribute to H2 oxidation while Hyd-3 couples formate oxidation to H2 evolution. Biosynthesis of all Hyd involves the insertion of a Fe(CN)2CO group and a subsequent insertion of nickel ions through the HypA/HybF, HypB and SlyD proteins. With high nickel concentrations the presence of none of these proteins is required, but under normal growth conditions and during late stationary growth SlyD is important for hydrogenase activities. The slyD mutation reduced H2 production during exponential phase growth by about 50%. Assaying stationary phase grown cells for the coupling of Hyd activity to the respiratory chain or formate-dependent H2 evolution showed that SlyD is essential for both H2 evolution and H2 oxidation. Although introduction of plasmid-coded slyD resulted in an overall decrease of Hyd-2 polypeptides in slyD and hypA slyD mutants, processing and dye-reducing activity of the Hyd-2 enzyme was nevertheless restored. Similarly, introduction of the slyD plasmid restored only some H2 evolution in the slyD mutant while Hyd-3 polypeptides and dye-reducing activity were fully restored. Taken together, these results indicate an essential role for SlyD in the generation of the fully cofactor-equipped hydrogenase large subunits in the stationary phase where the level of each Hyd enzyme is finely tuned by SlyD for optimal enzyme activity.

  11. Identification of new members of the Escherichia coli K-12 MG1655 SlyA regulon

    PubMed Central

    Curran, Thomas D; Abacha, Fatima; Hibberd, Stephen P; Green, Jeffrey

    2017-01-01

    SlyA is a member of the MarR family of bacterial transcriptional regulators. Previously, SlyA has been shown to directly regulate only two operons in Escherichia coli K-12 MG1655, fimB and hlyE (clyA). In both cases, SlyA activates gene expression by antagonizing repression by the nucleoid-associated protein H-NS. Here, the transcript profiles of aerobic glucose-limited steady-state chemostat cultures of E. coli K-12 MG1655, slyA mutant and slyA over-expression strains are reported. The transcript profile of the slyA mutant was not significantly different from that of the parent; however, that of the slyA expression strain was significantly different from that of the vector control. Transcripts representing 27 operons were increased in abundance, whereas 3 were decreased. Of the 30 differentially regulated operons, 24 have previously been associated with sites of H-NS binding, suggesting that antagonism of H-NS repression is a common feature of SlyA-mediated transcription regulation. Direct binding of SlyA to DNA located upstream of a selection of these targets permitted the identification of new operons likely to be directly regulated by SlyA. Transcripts of four operons coding for cryptic adhesins exhibited enhanced expression, and this was consistent with enhanced biofilm formation associated with the SlyA over-producing strain. PMID:28073397

  12. Identification of new members of the Escherichia coli K-12 MG1655 SlyA regulon.

    PubMed

    Curran, Thomas D; Abacha, Fatima; Hibberd, Stephen P; Rolfe, Matthew D; Lacey, Melissa M; Green, Jeffrey

    2017-03-01

    SlyA is a member of the MarR family of bacterial transcriptional regulators. Previously, SlyA has been shown to directly regulate only two operons in Escherichia coli K-12 MG1655, fimB and hlyE (clyA). In both cases, SlyA activates gene expression by antagonizing repression by the nucleoid-associated protein H-NS. Here, the transcript profiles of aerobic glucose-limited steady-state chemostat cultures of E. coli K-12 MG1655, slyA mutant and slyA over-expression strains are reported. The transcript profile of the slyA mutant was not significantly different from that of the parent; however, that of the slyA expression strain was significantly different from that of the vector control. Transcripts representing 27 operons were increased in abundance, whereas 3 were decreased. Of the 30 differentially regulated operons, 24 have previously been associated with sites of H-NS binding, suggesting that antagonism of H-NS repression is a common feature of SlyA-mediated transcription regulation. Direct binding of SlyA to DNA located upstream of a selection of these targets permitted the identification of new operons likely to be directly regulated by SlyA. Transcripts of four operons coding for cryptic adhesins exhibited enhanced expression, and this was consistent with enhanced biofilm formation associated with the SlyA over-producing strain.

  13. Nickel binding and [NiFe]-hydrogenase maturation by the metallochaperone SlyD with a single metal-binding site in Escherichia coli.

    PubMed

    Kaluarachchi, Harini; Altenstein, Matthias; Sugumar, Sonia R; Balbach, Jochen; Zamble, Deborah B; Haupt, Caroline

    2012-03-16

    SlyD (sensitive to lysis D) is a nickel metallochaperone involved in the maturation of [NiFe]-hydrogenases in Escherichia coli (E. coli) and specifically contributes to the nickel delivery step during enzyme biosynthesis. This protein contains a C-terminal metal-binding domain that is rich in potential metal-binding residues that enable SlyD to bind multiple nickel ions with high affinity. The SlyD homolog from Thermus thermophilus does not contain the extended cysteine- and histidine-rich C-terminal tail of the E. coli protein, yet it binds a single Ni(II) ion tightly. To investigate whether a single metal-binding motif can functionally replace the full-length domain, we generated a truncation of E. coli SlyD, SlyD155. Ni(II) binding to SlyD155 was investigated by using isothermal titration calorimetry, NMR and electrospray ionization mass spectrometry measurements. This in vitro characterization revealed that SlyD155 contains a single metal-binding motif with high affinity for nickel. Structural characterization by X-ray absorption spectroscopy and NMR indicated that nickel was coordinated in an octahedral geometry with at least two histidines as ligands. Heterodimerization between SlyD and another hydrogenase accessory protein, HypB, is essential for optimal hydrogenase maturation and was confirmed for SlyD155 via cross-linking experiments and NMR titrations, as were conserved chaperone and peptidyl-prolyl isomerase activities. Although these properties of SlyD are preserved in the truncated version, it does not modulate nickel binding to HypB in vitro or contribute to the maturation of [NiFe]-hydrogenases in vivo, unlike the full-length protein. This study highlights the importance of the unusual metal-binding domain of E. coli SlyD in hydrogenase biogenesis. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Alternate SlyA and H-NS nucleoprotein complexes control hlyE expression in Escherichia coli K-12

    PubMed Central

    Lithgow, James K; Haider, Fouzia; Roberts, Ian S; Green, Jeffrey

    2007-01-01

    Haemolysin E is a cytolytic pore-forming toxin found in several Escherichia coli and Salmonella enterica strains. Expression of hlyE is repressed by the global regulator H-NS (histone-like nucleoid structuring protein), but can be activated by the regulator SlyA. Expression of a chromosomal hlyE–lacZ fusion in an E. coli slyA mutant was reduced to 60% of the wild-type level confirming a positive role for SlyA. DNase I footprint analysis revealed the presence of two separate SlyA binding sites, one located upstream, the other downstream of the hlyE transcriptional start site. These sites overlap AT-rich H-NS binding sites. Footprint and gel shift data showed that whereas H-NS prevented binding of RNA polymerase (RNAP) at the hlyE promoter (PhlyE), SlyA allowed binding of RNAP, but inhibited binding of H-NS. Accordingly, in vitro transcription analyses showed that addition of SlyA protein relieved H-NS-mediated repression of hlyE. Based on these observations a model for SlyA/H-NS regulation of hlyE expression is proposed in which the relative concentrations of SlyA and H-NS govern the nature of the nucleoprotein complexes formed at PhlyE. When H-NS is dominant RNAP binding is inhibited and hlyE expression is silenced; when SlyA is dominant H-NS binding is inhibited allowing RNAP access to the promoter facilitating hlyE transcription. PMID:17892462

  15. Essential Function of Protein 4.1G in Targeting of Membrane Protein Palmitoylated 6 into Schmidt-Lanterman Incisures in Myelinated Nerves

    PubMed Central

    Saitoh, Yurika; Ohno, Nobuhiko; Komada, Masayuki; Saitoh, Sei; Peles, Elior; Ohno, Shinichi

    2012-01-01

    Protein 4.1G is a membrane skeletal protein found in specific subcellular structures in myelinated Schwann cells and seminiferous tubules. Here, we show that in the mouse sciatic nerve, protein 4.1G colocalized at Schmidt-Lanterman incisures (SLI) and the paranodes with a member of the membrane-associated guanylate kinase (MAGUK) family, membrane protein palmitoylated 6 (MPP6). Coimmunoprecipitation experiments revealed that MPP6 was interacting with protein 4.1G. In contrast to wild-type nerves, in 4.1G knockout mice, MPP6 was found largely in the cytoplasm near Schwann cell nuclei, indicating an abnormal protein transport. Although the SLI remained in the 4.1G knockout sciatic nerves, as confirmed by E-cadherin immunostaining, their shape was altered in aged 4.1G knockout nerves compared to their shape in wild-type nerves. In the seminiferous tubules, MPP6 was localized similarly to protein 4.1G along cell membranes of the spermatogonium and early spermatocytes. However, in contrast to myelinated peripheral nerves, the specific localization of MPP6 in the seminiferous tubules was unaltered in the absence of protein 4.1G. These results indicate that 4.1G has a specific role in the targeting of MPP6 to the SLI and the assembly of these subcellular structures. PMID:22025680

  16. SLI Artist's Concept

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA's Marshall Space Flight Center in Huntsville, Alabama, manages the Space Launch Initiative (SLI), NASA's priority developmental program focused on empowering America's leadership in space. SLI includes commercial, higher education, and defense partnerships and contracts to offer widespread participation in both the risk and success of developing our nation's next-generation reusable launch vehicle. This photo depicts an artist's concept of a future second-generation launch vehicle. For the SLI, architecture definition includes all components of the next-generation reusable launch system: Earth-to-orbit vehicles (the Space Shuttle is the first generation earth-to-orbit vehicle), crew transfer vehicles, transfer stages, ground processing systems, flight operations systems, and development of business case strategies. Three contractor teams have each been funded to develop potential second- generation reusable launch system architectures: The Boeing Company of Seal Beach, California; Lockheed Martin Corporation of Denver, Colorado along with a team including Northrop Grumman of El Segundo, California; and Orbital Sciences Corporation of Dulles, Virginia.

  17. Transcriptional mechanisms associated with seed dormancy and dormancy loss in the gibberellin-insensitive sly1-2 mutant of Arabidopsis thaliana

    USDA-ARS?s Scientific Manuscript database

    While widespread transcriptome changes have been previously observed with seed dormancy loss, this study specifically characterized transcriptional changes associated with the increased seed dormancy and dormancy loss of the gibberellin (GA) hormone-insensitive sleepy1-2 (sly1-2) mutant. The SLY1 g...

  18. The Socioemotional Behaviors of Children with SLI: Social Adaptation or Social Deviance?.

    ERIC Educational Resources Information Center

    Redmond, Sean M.; Rice, Mabel L.

    1998-01-01

    The socioemotional integrity of 17 children with specific language impairment (SLI) and 20 age-matched unaffected children was examined at kindergarten and first grade. Significant differences between groups were found for internalizing, social, and attention problems with little congruence or stability over time in clinical ratings. Results…

  19. Verb inflection in monolingual Dutch and sequential bilingual Turkish-Dutch children with and without SLI.

    PubMed

    Blom, Elma; de Jong, Jan; Orgassa, Antje; Baker, Anne; Weerman, Fred

    2013-01-01

    Both children with specific language impairment (SLI) and children who acquire a second language (L2) make errors with verb inflection. This overlap between SLI and L2 raises the question if verb inflection can discriminate between L2 children with and without SLI. In this study we addressed this question for Dutch. The secondary goal of the study was to investigate variation in error types and error profiles across groups. Data were collected from 6-8-year-old children with SLI who acquire Dutch as their first language (L1), Dutch L1 children with a typical development (TD), Dutch L2 children with SLI, and Dutch L1 TD children who were on average 2 years younger. An experimental elicitation task was employed that tested use of verb inflection; context (3SG, 3PL) was manipulated and word order and verb type were controlled. Accuracy analyses revealed effects of impairment in both L1 and L2 children with SLI. However, individual variation indicated that there is no specific error profile for SLI. Verb inflection use as measured in our study discriminated fairly well in the L1 group but classification was less accurate in the L2 group. Between-group differences emerged furthermore for certain types of errors, but all groups also showed considerable variation in errors and there was not a specific error profile that distinguished SLI from TD. © 2013 Royal College of Speech and Language Therapists.

  20. Singing abilities in children with Specific Language Impairment (SLI).

    PubMed

    Clément, Sylvain; Planchou, Clément; Béland, Renée; Motte, Jacques; Samson, Séverine

    2015-01-01

    Specific Language Impairment (SLI) is a heritable neurodevelopmental disorder diagnosed when a child has difficulties learning to produce and/or understand speech for no apparent reason (Bishop et al., 2012). The verbal difficulties of children with SLI have been largely documented, and a growing number of studies suggest that these children may also have difficulties in processing non-verbal complex auditory stimuli (Corriveau et al., 2007; Brandt et al., 2012). In a recent study, we reported that a large proportion of children with SLI present deficits in music perception (Planchou et al., under revision). Little is known, however, about the singing abilities of children with SLI. In order to investigate whether or not the impairments in expressive language extend to the musical domain, we assessed singing abilities in eight children with SLI and 15 children with Typical Language Development (TLD) matched for age and non-verbal intelligence. To this aim, we designed a ludic activity consisting of two singing tasks: a pitch-matching and a melodic reproduction task. In the pitch-matching task, the children were requested to sing single notes. In the melodic reproduction task, children were asked to sing short melodies that were either familiar (FAM-SONG and FAM-TUNE conditions) or unfamiliar (UNFAM-TUNE condition). The analysis showed that children with SLI were impaired in the pitch-matching task, with a mean pitch error of 250 cents (mean pitch error for children with TLD: 154 cents). In the melodic reproduction task, we asked 30 healthy adults to rate the quality of the sung productions of the children on a continuous rating scale. The results revealed that singing of children with SLI received lower mean ratings than the children with TLD. Our findings thus indicate that children with SLI showed impairments in musical production and are discussed in light of a general auditory-motor dysfunction in children with SLI.

  1. SLI Artist `s Launch Concept

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA's Marshall Space Flight Center in Huntsville, Alabama, manages the Space Launch Initiative (SLI), NASA's priority developmental program focused on empowering America's leadership in space. SLI includes commercial, higher education and defense partnerships and contracts to offer widespread participation in both the risk and success of developing our nation's next-generation reusable launch vehicle. This photo depicts an artist's concept of a future second-generation launch vehicle during launch. For SLI, architecture definition includes all components of the next-generation reusable launch system: Earth-to-orbit vehicles (the Space Shuttle is the first generation earth-to-orbit vehicle), crew transfer vehicles, transfer stages, ground processing systems, flight operations systems, and development of business case strategies. Three contractor teams have each been funded to develop potential second generation reusable launch system architectures: The Boeing Company of Seal Beach, California; Lockheed Martin Corporation of Denver, Colorado along with a team including Northrop Grumman of El Segundo, California; and Orbital Sciences Corporation of Dulles, Virginia.

  2. SLI Artist's Concept-Stage Separation

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA's Marshall Space Flight Center in Huntsville, Alabama, manages the Space Launch Initiative (SLI), NASA's priority developmental program focused on empowering America's leadership in space. SLI includes commercial, higher education and defense partnerships and contracts to offer widespread participation in both the risk and success of developing our nation's next-generation reusable launch vehicle. This photo depicts an artist's concept of a future second-generation launch vehicle during separation of stages. For SLI, architecture definition includes all components of the next-generation reusable launch system: Earth-to-orbit vehicles (the Space Shuttle is the first-generation earth-to-orbit vehicle), crew transfer vehicles, transfer stages, ground processing systems, flight operations systems, and development of business case strategies. Three contractor teams have each been funded to develop potential second generation reusable launch system architectures: The Boeing Company of Seal Beach, California; Lockheed Martin Corporation of Denver, Colorado; a team including Northrop Grumman of El Segundo, California; and Orbital Sciences Corporation of Dulles, Virginia.

  3. Specific Language Impairment (SLI) and Reading Development in Early School Years

    ERIC Educational Resources Information Center

    Isoaho, Pia; Kauppila, Timo; Launonen, Kaisa

    2016-01-01

    Specific language impairment (SLI) is a condition that affects children's emerging language skills. Many different language skills can be affected in SLI, but not all individuals with SLI have the same set of difficulties. As a result, SLI is a highly heterogeneous condition. The ability to read and understand written text is a higher function of…

  4. Singing abilities in children with Specific Language Impairment (SLI)

    PubMed Central

    Clément, Sylvain; Planchou, Clément; Béland, Renée; Motte, Jacques; Samson, Séverine

    2015-01-01

    Specific Language Impairment (SLI) is a heritable neurodevelopmental disorder diagnosed when a child has difficulties learning to produce and/or understand speech for no apparent reason (Bishop et al., 2012). The verbal difficulties of children with SLI have been largely documented, and a growing number of studies suggest that these children may also have difficulties in processing non-verbal complex auditory stimuli (Corriveau et al., 2007; Brandt et al., 2012). In a recent study, we reported that a large proportion of children with SLI present deficits in music perception (Planchou et al., under revision). Little is known, however, about the singing abilities of children with SLI. In order to investigate whether or not the impairments in expressive language extend to the musical domain, we assessed singing abilities in eight children with SLI and 15 children with Typical Language Development (TLD) matched for age and non-verbal intelligence. To this aim, we designed a ludic activity consisting of two singing tasks: a pitch-matching and a melodic reproduction task. In the pitch-matching task, the children were requested to sing single notes. In the melodic reproduction task, children were asked to sing short melodies that were either familiar (FAM-SONG and FAM-TUNE conditions) or unfamiliar (UNFAM-TUNE condition). The analysis showed that children with SLI were impaired in the pitch-matching task, with a mean pitch error of 250 cents (mean pitch error for children with TLD: 154 cents). In the melodic reproduction task, we asked 30 healthy adults to rate the quality of the sung productions of the children on a continuous rating scale. The results revealed that singing of children with SLI received lower mean ratings than the children with TLD. Our findings thus indicate that children with SLI showed impairments in musical production and are discussed in light of a general auditory-motor dysfunction in children with SLI. PMID:25918508

  5. SLiM 2: Flexible, Interactive Forward Genetic Simulations.

    PubMed

    Haller, Benjamin C; Messer, Philipp W

    2017-01-01

    Modern population genomic datasets hold immense promise for revealing the evolutionary processes operating in natural populations, but a crucial prerequisite for this goal is the ability to model realistic evolutionary scenarios and predict their expected patterns in genomic data. To that end, we present SLiM 2: an evolutionary simulation framework that combines a powerful, fast engine for forward population genetic simulations with the capability of modeling a wide variety of complex evolutionary scenarios. SLiM achieves this flexibility through scriptability, which provides control over most aspects of the simulated evolutionary scenarios with a simple R-like scripting language called Eidos. An example SLiM simulation is presented to illustrate the power of this approach. SLiM 2 also includes a graphical user interface for simulation construction, interactive runtime control, and dynamic visualization of simulation output, facilitating easy and fast model development with quick prototyping and visual debugging. We conclude with a performance comparison between SLiM and two other popular forward genetic simulation packages. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Source Lines Counter (SLiC) Version 4.0

    NASA Technical Reports Server (NTRS)

    Monson, Erik W.; Smith, Kevin A.; Newport, Brian J.; Gostelow, Roli D.; Hihn, Jairus M.; Kandt, Ronald K.

    2011-01-01

    Source Lines Counter (SLiC) is a software utility designed to measure software source code size using logical source statements and other common measures for 22 of the programming languages commonly used at NASA and the aerospace industry. Such metrics can be used in a wide variety of applications, from parametric cost estimation to software defect analysis. SLiC has a variety of unique features such as automatic code search, automatic file detection, hierarchical directory totals, and spreadsheet-compatible output. SLiC was written for extensibility; new programming language support can be added with minimal effort in a short amount of time. SLiC runs on a variety of platforms including UNIX, Windows, and Mac OSX. Its straightforward command-line interface allows for customization and incorporation into the software build process for tracking development metrics. T

  7. Understanding developmental language disorder - the Helsinki longitudinal SLI study (HelSLI): a study protocol.

    PubMed

    Laasonen, Marja; Smolander, Sini; Lahti-Nuuttila, Pekka; Leminen, Miika; Lajunen, Hanna-Reetta; Heinonen, Kati; Pesonen, Anu-Katriina; Bailey, Todd M; Pothos, Emmanuel M; Kujala, Teija; Leppänen, Paavo H T; Bartlett, Christopher W; Geneid, Ahmed; Lauronen, Leena; Service, Elisabet; Kunnari, Sari; Arkkila, Eva

    2018-05-21

    Developmental language disorder (DLD, also called specific language impairment, SLI) is a common developmental disorder comprising the largest disability group in pre-school-aged children. Approximately 7% of the population is expected to have developmental language difficulties. However, the specific etiological factors leading to DLD are not yet known and even the typical linguistic features appear to vary by language. We present here a project that investigates DLD at multiple levels of analysis and aims to make the reliable prediction and early identification of the difficulties possible. Following the multiple deficit model of developmental disorders, we investigate the DLD phenomenon at the etiological, neural, cognitive, behavioral, and psychosocial levels, in a longitudinal study of preschool children. In January 2013, we launched the Helsinki Longitudinal SLI study (HelSLI) at the Helsinki University Hospital ( http://tiny.cc/HelSLI ). We will study 227 children aged 3-6 years with suspected DLD and their 160 typically developing peers. Five subprojects will determine how the child's psychological characteristics and environment correlate with DLD and how the child's well-being relates to DLD, the characteristics of DLD in monolingual versus bilingual children, nonlinguistic cognitive correlates of DLD, electrophysiological underpinnings of DLD, and the role of genetic risk factors. Methods include saliva samples, EEG, computerized cognitive tasks, neuropsychological and speech and language assessments, video-observations, and questionnaires. The project aims to increase our understanding of the multiple interactive risk and protective factors that affect the developing heterogeneous cognitive and behavioral profile of DLD, including factors affecting literacy development. This accumulated knowledge will form a heuristic basis for the development of new interventions targeting linguistic and non-linguistic aspects of DLD.

  8. Space Launch Initiative (SLI) Engine Test

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama, has begun a series of engine tests on the Reaction Control Engine developed by TRW Space and Electronics for NASA's Space Launch Initiative (SLI). SLI is a technology development effort aimed at improving the safety, reliability, and cost effectiveness of space travel for reusable launch vehicles. The engine in this photo, the first engine tested at MSFC that includes SLI technology, was tested for two seconds at a chamber pressure of 185 pounds per square inch absolute (psia). Propellants used were liquid oxygen as an oxidizer and liquid hydrogen as fuel. Designed to maneuver vehicles in orbit, the engine is used as an auxiliary propulsion system for docking, reentry, fine-pointing, and orbit transfer while the vehicle is in orbit. The Reaction Control Engine has two unique features. It uses nontoxic chemicals as propellants, which creates a safer environment with less maintenance and quicker turnaround time between missions, and it operates in dual thrust modes, combining two engine functions into one engine. The engine operates at both 25 and 1,000 pounds of force, reducing overall propulsion weight and allowing vehicles to easily maneuver in space. The force of low level thrust allows the vehicle to fine-point maneuver and dock, while the force of the high level thrust is used for reentry, orbital transfer, and course positioning.

  9. Children with SLI Exhibit Delays Resolving Ambiguous Reference

    ERIC Educational Resources Information Center

    Estis, Julie M.; Beverly, Brenda L.

    2015-01-01

    Fast mapping weaknesses in children with specific language impairment (SLI) may be explained by differences in disambiguation, mapping an unknown word to an unnamed object. The impact of language ability and linguistic stimulus on disambiguation was investigated. Sixteen children with SLI (8 preschool, 8 school-age) and sixteen typically…

  10. Phonological Deficits in French Speaking Children with SLI

    ERIC Educational Resources Information Center

    Maillart, Christelle; Parisse, Christophe

    2006-01-01

    Background: This study investigated the phonological disorders of French-speaking children with specific language impairment (SLI) in production. Aims: The main goal was to confirm whether children with SLI have limitations in phonological ability as compared with normally developing children matched by mean length of utterance (MLU) and phonemic…

  11. Intervention for Verb Argument Structure in Children with Persistent SLI: A Randomized Control Trial

    ERIC Educational Resources Information Center

    Ebbels, Susan H.; van der Lely, Heather K. J.; Dockrell, Julie E.

    2007-01-01

    Purpose: The authors aimed to establish whether 2 theoretically motivated interventions could improve use of verb argument structure in pupils with persistent specific language impairment (SLI). Method: Twenty-seven pupils with SLI (ages 11;0-16;1) participated in this randomized controlled trial with "blind" assessment. Participants were randomly…

  12. Oral Narratives in Monolingual and Bilingual Preschoolers with SLI

    ERIC Educational Resources Information Center

    Rezzonico, Stefano; Chen, Xi; Cleave, Patricia L.; Greenberg, Janice; Hipfner-Boucher, Kathleen; Johnson, Carla J.; Milburn, Trelani; Pelletier, Janette; Weitzman, Elaine; Girolametto, Luigi

    2015-01-01

    Background: The body of literature on narratives of bilingual children with and without specific language impairment (SLI) is growing. However, little is known about the narrative abilities of bilingual preschool children with SLI and their patterns of growth. Aims: To determine the similarities and differences in narrative abilities between…

  13. Benefits of Repeated Book Readings in Children with SLI

    ERIC Educational Resources Information Center

    Rohlfing, Katharina J.; Ceurremans, Josefa; Horst, Jessica S.

    2018-01-01

    In this pilot study, we ask whether repeated storybook reading is also beneficial for word learning in children diagnosed with specific language impairment (SLI). We compared 3-year-old German learning children diagnosed with SLI to typically developing children matched on age and socioeconomic status (SES). One week later, children with SLI…

  14. The EpiSLI Database: A Publicly Available Database on Speech and Language

    ERIC Educational Resources Information Center

    Tomblin, J. Bruce

    2010-01-01

    Purpose: This article describes a database that was created in the process of conducting a large-scale epidemiologic study of specific language impairment (SLI). As such, this database will be referred to as the EpiSLI database. Children with SLI have unexpected and unexplained difficulties learning and using spoken language. Although there is no…

  15. Narrative comprehension and production in children with SLI: An eye movement study

    PubMed Central

    ANDREU, LLORENÇ; SANZ-TORRENT, MONICA; OLMOS, JOAN GUÀRDIA; MACWHINNEY, BRIAN

    2014-01-01

    This study investigates narrative comprehension and production in children with specific language impairment (SLI). Twelve children with SLI (mean age 5; 8 years) and 12 typically developing children (mean age 5; 6 years) participated in an eye-tracking experiment designed to investigate online narrative comprehension and production in Catalan- and Spanish-speaking children with SLI. The comprehension task involved the recording of eye movements during the visual exploration of successive scenes in a story, while listening to the associated narrative. With regard to production, the children were asked to retell the story, while once again looking at the scenes, as their eye movements were monitored. During narrative production, children with SLI look at the most semantically relevant areas of the scenes fewer times than their age-matched controls, but no differences were found in narrative comprehension. Moreover, the analyses of speech productions revealed that children with SLI retained less information and made more semantic and syntactic errors during retelling. Implications for theories that characterize SLI are discussed. PMID:21453036

  16. The role of two F-box proteins, SLEEPY1 and SNEEZY, in arabidopsis GA signaling

    USDA-ARS?s Scientific Manuscript database

    The F-box gene SLY1 is a positive regulator of gibberellin (GA) signaling and loss of SLY1 results in GA-insensitive phenotypes including dwarfism, reduced fertility, delayed flowering, and increased seed dormancy. These sly1 phenotypes can be partially rescued by overexpression of the SLY1 homolog...

  17. Sentence imitation as a marker of SLI in Czech: disproportionate impairment of verbs and clitics.

    PubMed

    Smolík, Filip; Vávru, Petra

    2014-06-01

    The authors examined sentence imitation as a potential clinical marker of specific language impairment (SLI) in Czech and its use to identify grammatical markers of SLI. Children with SLI and the age- and language-matched control groups (total N = 57) were presented with a sentence imitation task, a receptive vocabulary task, and digit span and nonword repetition tasks. Sentence imitations were scored for accuracy and error types. A separate count of inaccuracies for individual part-of-speech categories was performed. Children with SLI had substantially more inaccurate imitations than the control groups. The differences in the memory measures could not account for the differences between children with SLI and the control groups in imitation accuracy, even though they accounted for the differences between the language-matched and age-matched control groups. The proportion of grammatical errors was larger in children with SLI than in the control groups. The categories that were most affected in imitations of children with SLI were verbs and clitics. Sentence imitation is a sensitive marker of SLI. Verbs and clitics are the most vulnerable categories in Czech SLI. The pattern of errors suggests that impaired syntactic representations are the most likely source of difficulties in children with SLI.

  18. Abnormal frequency discrimination in children with SLI as indexed by mismatch negativity (MMN).

    PubMed

    Rinker, Tanja; Kohls, Gregor; Richter, Cathrin; Maas, Verena; Schulz, Eberhard; Schecker, Michael

    2007-02-14

    For several decades, the aetiology of specific language impairment (SLI) has been associated with a central auditory processing deficit disrupting the normal language development of affected children. One important aspect for language acquisition is the discrimination of different acoustic features, such as frequency information. Concerning SLI, studies to date that examined frequency discrimination abilities have been contradictory. We hypothesized that an auditory processing deficit in children with SLI depends on the frequency range and the difference between the tones used. Using a passive mismatch negativity (MMN)-design, 13 boys with SLI and 13 age- and IQ-matched controls (7-11 years) were tested with two sine tones of different frequency (700Hz versus 750Hz). Reversed hemispheric activity between groups indicated abnormal processing in SLI. In a second time window, MMN2 was absent for the children with SLI. It can therefore be assumed that a frequency discrimination deficit in children with SLI becomes particularly apparent for tones below 750Hz and for a frequency difference of 50Hz. This finding may have important implications for future research and integration of various research approaches.

  19. Correlation between PFGE Groups and mrp/epf/sly Genotypes of Human Streptococcus suis Serotype 2 in Northern Thailand.

    PubMed

    Tharavichitkul, Prasit; Wongsawan, Kanreuthai; Takenami, Naoki; Pruksakorn, Sumalee; Fongcom, Achara; Gottschalk, Marcelo; Khanthawa, Banyong; Supajatura, Volaluk; Takai, Shinji

    2014-01-01

    Streptococcus suis infection is a severe zoonotic disease commonly found in Northern Thailand where people often consume raw pork and/or pig's blood. The most frequent clinical presentations are meningitis, sepsis, and endocarditis with higher rate of mortality and hearing loss sequelae. To clarify the correlation between pulsed-field gel electrophoresis (PFGE) groups and mrp/epf/sly genotypes of S. suis serotype 2, 62 patient and 4 healthy pig isolates from Northern Thailand were studied. By PFGE analysis, at 66% homology, most human isolates (69.4%) and 1 pig isolate were in group A, whereas 14.5% of human isolates and 3 out of 4 pig isolates were in group D. According to mrp/epf/sly genotypes, 80.6% of human isolates were identified in mrp (+) epf (-) sly (-) and only 12.9% were in mrp (-) epf (-) sly (+) genotypes; in contrast, 1 and 3 pig isolates were detected in these two genotypes, respectively. Interestingly, all isolates of S. suis serotype 2 classified in PFGE groups A, B, and E were set in mrp (+) epf (-) sly (-) genotypes. These data show a close correlation between PFGE groups and mrp/epf/sly genotypes of human S. suis serotype 2.

  20. Non-Word Repetition in Adolescents with Specific Language Impairment (SLI)

    ERIC Educational Resources Information Center

    Ebbels, Susan H.; Dockrell, Julie E.; van der Lely, Heather K. J.

    2012-01-01

    Background: Non-word repetition (NWR) difficulties are common, but not universal, among children with specific language impairment (SLI). However, older children and adolescents with SLI have rarely been studied. Studies disagree on the relationship between NWR difficulties and difficulties with other areas of language and literacy. There is also…

  1. Sentence Recall by Children With SLI Across Two Nonmainstream Dialects of English

    PubMed Central

    McDonald, Janet L.; Seidel, Christy M.; Hegarty, Michael

    2016-01-01

    Purpose The inability to accurately recall sentences has proven to be a clinical marker of specific language impairment (SLI); this task yields moderate-to-high levels of sensitivity and specificity. However, it is not yet known if these results hold for speakers of dialects whose nonmainstream grammatical productions overlap with those that are produced at high rates by children with SLI. Method Using matched groups of 70 African American English speakers and 36 Southern White English speakers and dialect-strategic scoring, we examined children's sentence recall abilities as a function of their dialect and clinical status (SLI vs. typically developing [TD]). Results For both dialects, the SLI group earned lower sentence recall scores than the TD group with sensitivity and specificity values ranging from .80 to .94, depending on the analysis. Children with SLI, as compared with TD controls, manifested lower levels of verbatim recall, more ungrammatical recalls when the recall was not exact, and higher levels of error on targeted functional categories, especially those marking tense. Conclusion When matched groups are examined and dialect-strategic scoring is used, sentence recall yields moderate-to-high levels of diagnostic accuracy to identify SLI within speakers of nonmainstream dialects of English. PMID:26501934

  2. SLI Artist's Concept-Vehicle Enroute to Space Station

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA's Marshall Space Flight Center in Huntsville, Alabama, manages the Space Launch Initiative (SLI), NASA's priority developmental program focused on empowering America's leadership in space. SLI includes commercial, higher education, and Defense partnerships and contracts to offer widespread participation in both the risk and success of developing our nation's next-generation reusable launch vehicle. This photo depicts an artist's concept of a future second-generation launch vehicle enroute to the International Space Station. For the SLI, architecture definition includes all components of the next-generation reusable launch system: Earth-to-orbit vehicles (the Space Shuttle is the first generation earth-to-orbit vehicle), crew transfer vehicles, transfer stages, ground processing systems, flight operations systems, and development of business case strategies. Three contractor teams have each been funded to develop potential second-generation reusable launch system architectures: The Boeing Company of Seal Beach, California; Lockheed Martin Corporation of Denver, Colorado along with a team including Northrop Grumman of El Segundo, California; and Orbital Sciences Corporation of Dulles, Virginia.

  3. Correlation between PFGE Groups and mrp/epf/sly Genotypes of Human Streptococcus suis Serotype 2 in Northern Thailand

    PubMed Central

    Tharavichitkul, Prasit; Wongsawan, Kanreuthai; Takenami, Naoki; Pruksakorn, Sumalee; Fongcom, Achara; Gottschalk, Marcelo; Khanthawa, Banyong; Supajatura, Volaluk; Takai, Shinji

    2014-01-01

    Streptococcus suis infection is a severe zoonotic disease commonly found in Northern Thailand where people often consume raw pork and/or pig's blood. The most frequent clinical presentations are meningitis, sepsis, and endocarditis with higher rate of mortality and hearing loss sequelae. To clarify the correlation between pulsed-field gel electrophoresis (PFGE) groups and mrp/epf/sly genotypes of S. suis serotype 2, 62 patient and 4 healthy pig isolates from Northern Thailand were studied. By PFGE analysis, at 66% homology, most human isolates (69.4%) and 1 pig isolate were in group A, whereas 14.5% of human isolates and 3 out of 4 pig isolates were in group D. According to mrp/epf/sly genotypes, 80.6% of human isolates were identified in mrp + epf − sly − and only 12.9% were in mrp − epf − sly + genotypes; in contrast, 1 and 3 pig isolates were detected in these two genotypes, respectively. Interestingly, all isolates of S. suis serotype 2 classified in PFGE groups A, B, and E were set in mrp + epf − sly − genotypes. These data show a close correlation between PFGE groups and mrp/epf/sly genotypes of human S. suis serotype 2. PMID:24734186

  4. Cognitive State Verbs and Complement Clauses in Children with SLI and Their Typically Developing Peers

    ERIC Educational Resources Information Center

    Van Horne, Amanda J. Owen; Lin, Shanju

    2011-01-01

    This study investigated the use of cognitive state verbs (CSVs) and complement clauses in children with specific language impairment (SLI) and their typically developing (TD) peers. In Study 1, conversational samples from 23 children with SLI (M = 6;2), 24 age-matched TD children (M = 6;2) and 21 vocabulary-matched TD children (M = 4;9) were…

  5. Interactions between working memory and language in young children with specific language impairment (SLI).

    PubMed

    Vugs, Brigitte; Knoors, Harry; Cuperus, Juliane; Hendriks, Marc; Verhoeven, Ludo

    2016-01-01

    The underlying structure of working memory (WM) in young children with and without specific language impairment (SLI) was examined. The associations between the components of WM and the language abilities of young children with SLI were then analyzed. The Automated Working Memory Assessment and four linguistic tasks were administered to 58 children with SLI and 58 children without SLI, aged 4-5 years. The WM of the children was best represented by a model with four separate but interacting components of verbal storage, visuospatial storage, verbal central executive (CE), and visuospatial CE. The associations between the four components of WM did not differ significantly for the two groups of children. However, the individual components of WM showed varying associations with the language abilities of the children with SLI. The verbal CE component of WM was moderately to strongly associated with all the language abilities in children with SLI: receptive vocabulary, expressive vocabulary, verbal comprehension, and syntactic development. These results show verbal CE to be involved in a wide range of linguistic skills; the limited ability of young children with SLI to simultaneously store and process verbal information may constrain their acquisition of linguistic skills. Attention should thus be paid to the language problems of children with SLI, but also to the WM impairments that can contribute to their language problems.

  6. Executive Function Training in Children with SLI: A Pilot Study

    ERIC Educational Resources Information Center

    Vugs, Brigitte; Knoors, Harry; Cuperus, Juliane; Hendriks, Marc; Verhoeven, Ludo

    2017-01-01

    The aim of this study was to evaluate the effectiveness of a computer-based executive function (EF) training in children with specific language impairment (SLI). Ten children with SLI, ages 8 to 12 years, completed a 25-session training of visuospatial working memory, inhibition and cognitive flexibility over a 6-week period. Treatment outcome was…

  7. Self-regulatory speech during planning and problem-solving in children with SLI and their typically developing peers.

    PubMed

    Abdul Aziz, Safiyyah; Fletcher, Janet; Bayliss, Donna M

    2017-05-01

    Past research with children with specific language impairment (SLI) has shown them to have poorer planning and problem-solving ability, and delayed self-regulatory speech (SRS) relative to their typically developing (TD) peers. However, the studies are few in number and are restricted in terms of the number and age range of participants, which limits our understanding of the nature and extent of any delays. Moreover, no study has examined the performance of a significant subset of children with SLI, those who have hyperactive and inattentive behaviours. This cross-sectional study aimed to compare the performance of young children with SLI (aged 4-7 years) with that of their TD peers on a planning and problem-solving task and to examine the use of SRS while performing the task. Within each language group, the performance of children with and without hyperactive and inattentive behaviours was further examined. Children with SLI (n = 91) and TD children (n = 81), with and without hyperactive and inattentive behaviours across the three earliest school years (Kindergarten, Preprimary and Year 1) were video-taped while they completed the Tower of London (TOL), a planning and problem-solving task. Their recorded speech was coded and analysed to look at differences in SRS and its relation to TOL performance across the groups. Children with SLI scored lower on the TOL than TD children. Additionally, children with hyperactive and inattentive behaviours performed worse than those without hyperactive and inattentive behaviours, but only in the SLI group. This suggests that children with SLI with hyperactive and inattentive behaviours experience a double deficit. Children with SLI produced less inaudible muttering than TD children, and showed no reduction in social speech across the first three years of school. Finally, for children with SLI, a higher percentage performed better on the TOL when they used SRS than when they did not. The results point towards a significant delay

  8. Effect of verb argument structure on picture naming in children with and without specific language impairment (SLI)

    PubMed Central

    Andreu, Llorenç; Sanz-Torrent, Mònica; Legaz, Lucia Buil; MacWhinney, Brian

    2014-01-01

    Background This study investigated verb argument structure effects in children with specific language impairment (SLI). Aims A picture-naming paradigm was used to compare the response times and naming accuracy for nouns and verbs with differing argument structure between Spanish-speaking children with and without language impairment. Methods & Procedures Twenty-four children with SLI (ages 5;3–8;2 [years;months]), 24 age-matched controls (ages 5;3–8;2), 24 MLU-w controls (ages 3;3–7;1 years), and 31 adults participated in a picture-naming study. Outcomes & Results The results show all groups produced more correct responses and were faster for nouns than all verbs together. As regards verb type accuracy, there were no differences between groups in naming one-argument verbs. However, for both two- and three-argument verbs, children with SLI were less accurate than adults and age-matched controls, but similar to the MLU-matched controls. For verb type latency, children with SLI were slower than both the age-matched controls and adults for one- and two-argument verbs, while no differences were found in three-argument verbs. No differences were found between children with SLI and MLU-matched controls for any verb type. Conclusions & Implications It has been shown that the naming of verbs is delayed in Spanish children with SLI. It is suggested that children with SLI may have problems encoding semantic representations. PMID:23121524

  9. The conservation pattern of short linear motifs is highly correlated with the function of interacting protein domains.

    PubMed

    Ren, Siyuan; Yang, Guang; He, Youyu; Wang, Yiguo; Li, Yixue; Chen, Zhengjun

    2008-10-01

    Many well-represented domains recognize primary sequences usually less than 10 amino acids in length, called Short Linear Motifs (SLiMs). Accurate prediction of SLiMs has been difficult because they are short (often < 10 amino acids) and highly degenerate. In this study, we combined scoring matrixes derived from peptide library and conservation analysis to identify protein classes enriched of functional SLiMs recognized by SH2, SH3, PDZ and S/T kinase domains. Our combined approach revealed that SLiMs are highly conserved in proteins from functional classes that are known to interact with a specific domain, but that they are not conserved in most other protein groups. We found that SLiMs recognized by SH2 domains were highly conserved in receptor kinases/phosphatases, adaptor molecules, and tyrosine kinases/phosphatases, that SLiMs recognized by SH3 domains were highly conserved in cytoskeletal and cytoskeletal-associated proteins, that SLiMs recognized by PDZ domains were highly conserved in membrane proteins such as channels and receptors, and that SLiMs recognized by S/T kinase domains were highly conserved in adaptor molecules, S/T kinases/phosphatases, and proteins involved in transcription or cell cycle control. We studied Tyr-SLiMs recognized by SH2 domains in more detail, and found that SH2-recognized Tyr-SLiMs on the cytoplasmic side of membrane proteins are more highly conserved than those on the extra-cellular side. Also, we found that SH2-recognized Tyr-SLiMs that are associated with SH3 motifs and a tyrosine kinase phosphorylation motif are more highly conserved. The interactome of protein domains is reflected by the evolutionary conservation of SLiMs recognized by these domains. Combining scoring matrixes derived from peptide libraries and conservation analysis, we would be able to find those protein groups that are more likely to interact with specific domains.

  10. Spoken Word Recognition in School-Age Children with SLI: Semantic, Phonological, and Repetition Priming

    ERIC Educational Resources Information Center

    Velez, Melinda; Schwartz, Richard G.

    2010-01-01

    Purpose: The purpose of this study was to contribute to the current understanding of how children with specific language impairment (SLI) organize their mental lexicons. The study examined semantic and phonological priming in children with and without SLI. Method: Thirteen children (7;0-11;3 [years;months]) with SLI and 13 age-matched children…

  11. Detection of Irregular Verb Violations by Children with and without SLI.

    ERIC Educational Resources Information Center

    Redmond, Sean M.; Rice, Mabel L.

    2001-01-01

    Fifty-seven children (ages 5-8) with and without specific language impairment (SLI) participated in judgment and elicitation tasks designed to evaluate their understanding of irregular verb forms. Differences between SLI and control children were observed in their productions and relative levels of sensitivity to infinitive errors in finite…

  12. Self-esteem, shyness, and sociability in adolescents with specific language impairment (SLI).

    PubMed

    Wadman, Ruth; Durkin, Kevin; Conti-Ramsden, Gina

    2008-08-01

    To determine if lower global self-esteem, shyness, and low sociability are outcomes associated with SLI in adolescence. Possible concurrent predictive relationships and gender differences were also examined. Fifty-four adolescents with SLI, aged between 16 and 17 years, were compared with a group of 54 adolescents with typical language abilities on the Rosenberg Self-Esteem scale (Rosenberg, 1965) and the Cheek and Buss Shyness and Sociability scales (Cheek & Buss, 1981). The SLI group had significantly lower global self-esteem scores than the group with typical language abilities. The adolescents with SLI were more shy than their peers, but the groups did not differ in their sociability ratings. Regression analysis found that language ability was not concurrently predictive of self-esteem but shyness was. Mediation analysis suggested that shyness could be a partial but significant mediator in the relationship between language ability and global self-esteem. Older adolescents with SLI are at risk of lower global self-esteem and experience shyness, although they want to interact socially. The relationship between language ability and self-esteem at this point in adolescence is complex, with shyness potentially playing an important mediating role.

  13. Short-lived non-coding transcripts (SLiTs): Clues to regulatory long non-coding RNA.

    PubMed

    Tani, Hidenori

    2017-03-22

    Whole transcriptome analyses have revealed a large number of novel long non-coding RNAs (lncRNAs). Although the importance of lncRNAs has been documented in previous reports, the biological and physiological functions of lncRNAs remain largely unknown. The role of lncRNAs seems an elusive problem. Here, I propose a clue to the identification of regulatory lncRNAs. The key point is RNA half-life. RNAs with a long half-life (t 1/2 > 4 h) contain a significant proportion of ncRNAs, as well as mRNAs involved in housekeeping functions, whereas RNAs with a short half-life (t 1/2 < 4 h) include known regulatory ncRNAs and regulatory mRNAs. This novel class of ncRNAs with a short half-life can be categorized as Short-Lived non-coding Transcripts (SLiTs). I consider that SLiTs are likely to be rich in functionally uncharacterized regulatory RNAs. This review describes recent progress in research into SLiTs.

  14. Can Children with SLI Detect Cognitive Conflict? Behavioral and Electrophysiological Evidence

    ERIC Educational Resources Information Center

    Epstein, Baila; Shafer, Valerie L.; Melara, Robert D.; Schwartz, Richard G.

    2014-01-01

    Purpose: This study examined whether children with specific language impairment (SLI) are deficient in detecting cognitive conflict between competing response tendencies in a GO/No-GO task. Method: Twelve children with SLI (ages 10--12), 22 children with typical language development matched group-wise on age (TLD-A), and 16 younger children with…

  15. The formulation of argument structure in SLI: an eye-movement study

    PubMed Central

    ANDREU, LLORENÇ; SANZ-TORRENT, MÒNICA; OLMOS, JOAN GUÀRDIA; MACWHINNEY, BRIAN

    2014-01-01

    This study investigated the formulation of verb argument structure in Catalan- and Spanish-speaking children with specific language impairment (SLI) and typically developing age-matched controls. We compared how language production can be guided by conceptual factors, such as the organization of the entities participating in an event and knowledge regarding argument structure. Eleven children with SLI (aged 3;8 to 6;6) and eleven control children participated in an eye-tracking experiment in which participants had to describe events with different argument structure in the presence of visual scenes. Picture descriptions, latency time and eye movements were recorded and analyzed. The picture description results showed that the percentage of responses in which children with SLI substituted a non-target verb for the target verb was significantly different from that for the control group. Children with SLI made more omissions of obligatory arguments, especially of themes, as the verb argument complexity increased. Moreover, when the number of arguments of the verb increased, the children took more time to begin their descriptions, but no differences between groups were found. For verb type latency, all children were significantly faster to start describing one-argument events than two- and three-argument events. No differences in latency time were found between two- and three-argument events. There were no significant differences between the groups. Eye-movement showed that children with SLI looked less at the event zone than the age-matched controls during the first two seconds. These differences between the groups were significant for three-argument verbs, and only marginally significant for one- and two-argument verbs. Children with SLI also spent significantly less time looking at the theme zones than their age-matched controls. We suggest that both processing limitations and deficits in the semantic representation of verbs may play a role in these difficulties

  16. Children with a history of SLI show reduced sensitivity to audiovisual temporal asynchrony: An ERP Study

    PubMed Central

    Kaganovich, Natalya; Schumaker, Jennifer; Leonard, Laurence B.; Gustafson, Dana; Macias, Danielle

    2014-01-01

    Purpose We examined whether school-age children with a history of SLI (H-SLI), their typically developing (TD) peers, and adults differ in sensitivity to audiovisual temporal asynchrony and whether such difference stems from the sensory encoding of audiovisual information. Method 15 H-SLI children, 15 TD children, and 15 adults judged whether a flashed explosion-shaped figure and a 2 kHz pure tone occurred simultaneously. The stimuli were presented at 0, 100, 200, 300, 400, and 500 ms temporal offsets. This task was combined with EEG recordings. Results H-SLI children were profoundly less sensitive to temporal separations between auditory and visual modalities compared to their TD peers. Those H-SLI children who performed better at simultaneity judgment also had higher language aptitude. TD children were less accurate than adults, revealing a remarkably prolonged developmental course of the audiovisual temporal discrimination. Analysis of early ERP components suggested that poor sensory encoding was not a key factor in H-SLI children’s reduced sensitivity to audiovisual asynchrony. Conclusions Audiovisual temporal discrimination is impaired in H-SLI children and is still immature during mid-childhood in TD children. The present findings highlight the need for further evaluation of the role of atypical audiovisual processing in the development of SLI. PMID:24686922

  17. The conservation pattern of short linear motifs is highly correlated with the function of interacting protein domains

    PubMed Central

    Ren, Siyuan; Yang, Guang; He, Youyu; Wang, Yiguo; Li, Yixue; Chen, Zhengjun

    2008-01-01

    Background Many well-represented domains recognize primary sequences usually less than 10 amino acids in length, called Short Linear Motifs (SLiMs). Accurate prediction of SLiMs has been difficult because they are short (often < 10 amino acids) and highly degenerate. In this study, we combined scoring matrixes derived from peptide library and conservation analysis to identify protein classes enriched of functional SLiMs recognized by SH2, SH3, PDZ and S/T kinase domains. Results Our combined approach revealed that SLiMs are highly conserved in proteins from functional classes that are known to interact with a specific domain, but that they are not conserved in most other protein groups. We found that SLiMs recognized by SH2 domains were highly conserved in receptor kinases/phosphatases, adaptor molecules, and tyrosine kinases/phosphatases, that SLiMs recognized by SH3 domains were highly conserved in cytoskeletal and cytoskeletal-associated proteins, that SLiMs recognized by PDZ domains were highly conserved in membrane proteins such as channels and receptors, and that SLiMs recognized by S/T kinase domains were highly conserved in adaptor molecules, S/T kinases/phosphatases, and proteins involved in transcription or cell cycle control. We studied Tyr-SLiMs recognized by SH2 domains in more detail, and found that SH2-recognized Tyr-SLiMs on the cytoplasmic side of membrane proteins are more highly conserved than those on the extra-cellular side. Also, we found that SH2-recognized Tyr-SLiMs that are associated with SH3 motifs and a tyrosine kinase phosphorylation motif are more highly conserved. Conclusion The interactome of protein domains is reflected by the evolutionary conservation of SLiMs recognized by these domains. Combining scoring matrixes derived from peptide libraries and conservation analysis, we would be able to find those protein groups that are more likely to interact with specific domains. PMID:18828911

  18. Sentence Imitation as a Marker of SLI in Czech: Disproportionate Impairment of Verbs and Clitics

    ERIC Educational Resources Information Center

    Smolík, Filip; Vávru, Petra

    2014-01-01

    Purpose: The authors examined sentence imitation as a potential clinical marker of specific language impairment (SLI) in Czech and its use to identify grammatical markers of SLI. Method: Children with SLI and the age-and language-matched control groups (total N = 57) were presented with a sentence imitation task, a receptive vocabulary task, and…

  19. Morphological Deficits of Children with SLI: Evaluation of Number Marking and Agreement.

    ERIC Educational Resources Information Center

    Rice, Mabel L.; Oetting, Janna B.

    1993-01-01

    Grammatical deficits (e.g., missing feature, surface account, and missing agreement) reported for children with specific language impairment (SLI) were evaluated in spontaneous language transcripts from 108 preschool children. Results indicated that children with SLI do control number marking but find number agreement across clausal boundaries…

  20. Verb inflection in Monolingual Dutch and Sequential Bilingual Turkish-Dutch Children with and without SLI

    ERIC Educational Resources Information Center

    Blom, Elma; De Jong, Jan; Orgassa, Antje; Baker, Anne; Weerman, Fred

    2013-01-01

    Both children with specific language impairment (SLI) and children who acquire a second language (L2) make errors with verb inflection. This overlap between SLI and L2 raises the question if verb inflection can discriminate between L2 children with and without SLI. In this study we addressed this question for Dutch. The secondary goal of the study…

  1. Semantic and Pragmatic Abilities Can Be Spared in Italian Children with SLI

    ERIC Educational Resources Information Center

    Arosio, Fabrizio; Foppolo, Francesca; Pagliarini, Elena; Perugini, Maria; Guasti, Maria Teresa

    2017-01-01

    Specific language impairment (SLI) is a heterogeneous disorder affecting various aspects of language. While most studies have investigated impairments in the domain of syntax and morphosyntax, little is known about compositional semantics and the process of deriving pragmatic meanings in SLI. We selected a group of sixteen monolingual…

  2. The development and validation of Science Learning Inventory (SLI): A conceptual change framework

    NASA Astrophysics Data System (ADS)

    Seyedmonir, Mehdi

    2000-12-01

    A multidimensional theoretical model, Conceptual Change Science Learning (CCSL), was developed based on Standard Model of Conceptual Change and Cognitive Reconstruction of Knowledge Model. The model addresses three main components of science learning, namely the learner's conceptual ecology, the message along with its social context, and the cognitive engagement. A learner's conceptual ecology is organized around three clusters, including epistemological beliefs, existing conceptions, and motivation. Learner's cognitive engagement is represented by a continuum from peripheral processing involving shallow cognitive engagement to central processing involving deep cognitive engagement. Through reciprocal, non-sequential interactions of such constructs, the learners' conceptual change is achieved. Using a quantitative empirical approach, three studies were conducted to investigate the theoretical constructs based on the CCSL Model. The first study reports the development and validation of the hypothesized and factor-analytic scales comprising the instrument, Science Learning Inventory (SLI) intended for college students. The self-report instrument was designed in two parts, SLI-A (conceptual ecology and cognitive engagement) with 48 initial items, and SLI-B (science epistemology) with 49 initial items. The items for SLI-B were based on the tenets of Nature of Science as reflected in the recent reform documents, Science for All Americans (Project 2061) and National Science Education Standards. The results of factor analysis indicated seven factors for SLI-A and four factors for SLI-B. The second study investigated the criterion-related (conceptual change) predictive validity of the SLI in an instructional setting (a college-level physics course). The findings suggested the possibility of different interplay of factors and dynamics depending on the nature of the criterion (gain scores from a three-week intervention versus final course grade). Gain scores were predicted

  3. Phonological Representations in Children with SLI

    ERIC Educational Resources Information Center

    Claessen, Mary; Leitao, Suze

    2012-01-01

    It has been hypothesized that children with specific language impairment (SLI) have difficulty processing sound-based information, including storing and accessing phonological representations in the lexicon. Tasks are emerging in the literature that provide a measure of the quality of stored phonological representations, without requiring a verbal…

  4. Narrative Comprehension and Production in Children with SLI: An Eye Movement Study

    ERIC Educational Resources Information Center

    Andreu, Llorenc; Sanz-Torrent, Monica; Olmos, Joan Guardia; MacWhinney, Brian

    2011-01-01

    This study investigates narrative comprehension and production in children with specific language impairment (SLI). Twelve children with SLI (mean age 5;8 years) and 12 typically developing children (mean age 5;6 years) participated in an eye-tracking experiment designed to investigate online narrative comprehension and production in Catalan- and…

  5. Self-Esteem, Shyness, and Sociability in Adolescents with Specific Language Impairment (SLI)

    ERIC Educational Resources Information Center

    Wadman, Ruth; Durkin, Kevin; Conti-Ramsden, Gina

    2008-01-01

    Purpose: To determine if lower global self-esteem, shyness, and low sociability are outcomes associated with SLI in adolescence. Possible concurrent predictive relationships and gender differences were also examined. Method: Fifty-four adolescents with SLI, aged between 16 and 17 years, were compared with a group of 54 adolescents with typical…

  6. Mitogen-Activated Protein Kinase Phosphatase 1 Disrupts Proinflammatory Protein Synthesis in Endotoxin-Adapted Monocytes

    PubMed Central

    Brudecki, Laura; Ferguson, Donald A.; McCall, Charles E.

    2013-01-01

    Autotoxic production of proinflammatory mediators during early sepsis induces excessive inflammation, and their later suppression may limit the immune response. We previously reported that sepsis differentially represses transcription and translation of tumor necrosis factor alpha (TNF-α) and interleukin 1β (IL-1β) to reprogram sepsis inflammation. This switch is gene specific and plays a crucial role in the clinically relevant syndrome of endotoxin adaptation/tolerance, multiorgan failure, and poor sepsis outcome. To further define the mechanisms responsible for translation disruption that follows inflammation induction, we used THP-1 human promonocytes as a model of Toll-like receptor 4 (TLR4) responses found in sepsis. We showed that phosphorylation-dependent activation of p38 mitogen-activated protein kinase (MAPK) and translation disruption of TNF-α and IL-6 follow increased MAPK phosphatase 1 (MKP-1) expression and that MKP-1 knockdown rephosphorylates p38 and restores the capacity to translate TNF-α and IL-6 mRNAs. We also observed that the RNA-binding protein motif 4 (RBM4), a p38 MAPK target, accumulates in an unphosphorylated form in the cytosol in endotoxin-adapted cells, suggesting that dephosphorylated RBM4 may function as a translational repressor. Moreover, MKP-1 knockdown promotes RBM4 phosphorylation, blocks its transfer from the nucleus to the cytosol, and reverses translation repression. We also found that microRNA 146a (miR-146a) knockdown prevents and miR-146a transfection induces MKP-1 expression, which lead to increases or decreases in TNF-α and IL-6 translation, respectively. We conclude that a TLR4-, miR-146a-, p38 MAPK-, and MKP-1-dependent autoregulatory pathway regulates the translation of proinflammatory genes during the acute inflammatory response by spatially and temporally modifying the phosphorylation state of RBM4 translational repressor protein. PMID:23825193

  7. The Surgeons' Leadership Inventory (SLI): a taxonomy and rating system for surgeons' intraoperative leadership skills.

    PubMed

    Henrickson Parker, Sarah; Flin, Rhona; McKinley, Aileen; Yule, Steven

    2013-06-01

    Surgeons must demonstrate leadership to optimize performance and maximize patient safety in the operating room, but no behavior rating tool is available to measure leadership. Ten focus groups with members of the operating room team discussed surgeons' intraoperative leadership. Surgeons' leadership behaviors were extracted and used to finalize the Surgeons' Leadership Inventory (SLI), which was checked by surgeons (n = 6) for accuracy and face validity. The SLI was used to code video recordings (n = 5) of operations to test reliability. Eight elements of surgeons' leadership were included in the SLI: (1) maintaining standards, (2) managing resources, (3) making decisions, (4) directing, (5) training, (6) supporting others, (7) communicating, and (8) coping with pressure. Interrater reliability to code videos of surgeons' behaviors while operating using this tool was acceptable (κ = .70). The SLI is empirically grounded in focus group data and both the leadership and surgical literature. The interrater reliability of the system was acceptable. The inventory could be used for rating surgeons' leadership in the operating room for research or as a basis for postoperative feedback on performance. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Role of Aspect in Understanding Tense: An Investigation with Adolescents with SLI

    ERIC Educational Resources Information Center

    Stuart, Nichola J.; van der Lely, Heather

    2015-01-01

    Background: Morphosyntax has been well researched in specific language impairment (SLI) and there is general agreement that children with SLI have particular difficulties with tense-marking. Less well researched is the role that aspect plays in the difficulties found in tense-marking, especially as tense and aspect are often confounded in English.…

  9. Children with a history of SLI show reduced sensitivity to audiovisual temporal asynchrony: an ERP study.

    PubMed

    Kaganovich, Natalya; Schumaker, Jennifer; Leonard, Laurence B; Gustafson, Dana; Macias, Danielle

    2014-08-01

    The authors examined whether school-age children with a history of specific language impairment (H-SLI), their peers with typical development (TD), and adults differ in sensitivity to audiovisual temporal asynchrony and whether such difference stems from the sensory encoding of audiovisual information. Fifteen H-SLI children, 15 TD children, and 15 adults judged whether a flashed explosion-shaped figure and a 2-kHz pure tone occurred simultaneously. The stimuli were presented at 0-, 100-, 200-, 300-, 400-, and 500-ms temporal offsets. This task was combined with EEG recordings. H-SLI children were profoundly less sensitive to temporal separations between auditory and visual modalities compared with their TD peers. Those H-SLI children who performed better at simultaneity judgment also had higher language aptitude. TD children were less accurate than adults, revealing a remarkably prolonged developmental course of the audiovisual temporal discrimination. Analysis of early event-related potential components suggested that poor sensory encoding was not a key factor in H-SLI children's reduced sensitivity to audiovisual asynchrony. Audiovisual temporal discrimination is impaired in H-SLI children and is still immature during mid-childhood in TD children. The present findings highlight the need for further evaluation of the role of atypical audiovisual processing in the development of SLI.

  10. Protein cold adaptation strategy via a unique seven-amino acid domain in the icefish (Chionodraco hamatus) PEPT1 transporter

    PubMed Central

    Rizzello, Antonia; Romano, Alessandro; Kottra, Gabor; Acierno, Raffaele; Storelli, Carlo; Verri, Tiziano; Daniel, Hannelore; Maffia, Michele

    2013-01-01

    Adaptation of organisms to extreme environments requires proteins to work at thermodynamically unfavorable conditions. To adapt to subzero temperatures, proteins increase the flexibility of parts of, or even the whole, 3D structure to compensate for the lower thermal kinetic energy available at low temperatures. This may be achieved through single-site amino acid substitutions in regions of the protein that undergo large movements during the catalytic cycle, such as in enzymes or transporter proteins. Other strategies of cold adaptation involving changes in the primary amino acid sequence have not been documented yet. In Antarctic icefish (Chionodraco hamatus) peptide transporter 1 (PEPT1), the first transporter cloned from a vertebrate living at subzero temperatures, we came upon a unique principle of cold adaptation. A de novo domain composed of one to six repeats of seven amino acids (VDMSRKS), placed as an extra stretch in the cytosolic COOH-terminal region, contributed per se to cold adaptation. VDMSRKS was in a protein region uninvolved in transport activity and, notably, when transferred to the COOH terminus of a warm-adapted (rabbit) PEPT1, it conferred cold adaptation to the receiving protein. Overall, we provide a paradigm for protein cold adaptation that relies on insertion of a unique domain that confers greater affinity and maximal transport rates at low temperatures. Due to its ability to transfer a thermal trait, the VDMSRKS domain represents a useful tool for future cell biology or biotechnological applications. PMID:23569229

  11. Protein Adaptations in Archaeal Extremophiles

    PubMed Central

    Reed, Christopher J.; Lewis, Hunter; Trejo, Eric; Winston, Vern; Evilia, Caryn

    2013-01-01

    Extremophiles, especially those in Archaea, have a myriad of adaptations that keep their cellular proteins stable and active under the extreme conditions in which they live. Rather than having one basic set of adaptations that works for all environments, Archaea have evolved separate protein features that are customized for each environment. We categorized the Archaea into three general groups to describe what is known about their protein adaptations: thermophilic, psychrophilic, and halophilic. Thermophilic proteins tend to have a prominent hydrophobic core and increased electrostatic interactions to maintain activity at high temperatures. Psychrophilic proteins have a reduced hydrophobic core and a less charged protein surface to maintain flexibility and activity under cold temperatures. Halophilic proteins are characterized by increased negative surface charge due to increased acidic amino acid content and peptide insertions, which compensates for the extreme ionic conditions. While acidophiles, alkaliphiles, and piezophiles are their own class of Archaea, their protein adaptations toward pH and pressure are less discernible. By understanding the protein adaptations used by archaeal extremophiles, we hope to be able to engineer and utilize proteins for industrial, environmental, and biotechnological applications where function in extreme conditions is required for activity. PMID:24151449

  12. Lifting DELLA Repression of Arabidopsis Seed Germination by Nonproteolytic Gibberellin Signaling1[C][W][OPEN

    PubMed Central

    Ariizumi, Tohru; Hauvermale, Amber L.; Nelson, Sven K.; Hanada, Atsushi; Yamaguchi, Shinjiro; Steber, Camille M.

    2013-01-01

    DELLA repression of Arabidopsis (Arabidopsis thaliana) seed germination can be lifted either through DELLA proteolysis by the ubiquitin-proteasome pathway or through proteolysis-independent gibberellin (GA) hormone signaling. GA binding to the GIBBERELLIN-INSENSITIVE DWARF1 (GID1) GA receptors stimulates GID1-GA-DELLA complex formation, which in turn triggers DELLA protein ubiquitination and proteolysis via the SCFSLY1 E3 ubiquitin ligase and 26S proteasome. Although DELLA cannot be destroyed in the sleepy1-2 (sly1-2) F-box mutant, long dry after-ripening and GID1 overexpression can relieve the strong sly1-2 seed dormancy phenotype. It appears that sly1-2 seed dormancy results from abscisic acid (ABA) signaling downstream of DELLA, since dormant sly1-2 seeds accumulate high levels of ABA hormone and loss of ABA sensitivity rescues sly1-2 seed germination. DELLA positively regulates the expression of XERICO, an inducer of ABA biosynthesis. GID1b overexpression rescues sly1-2 germination through proteolysis-independent DELLA down-regulation associated with increased expression of GA-inducible genes and decreased ABA accumulation, apparently as a result of decreased XERICO messenger RNA levels. Higher levels of GID1 overexpression are associated with more efficient sly1 germination and increased GID1-GA-DELLA complex formation, suggesting that GID1 down-regulates DELLA through protein binding. After-ripening results in increased GA accumulation and GID1a-dependent GA signaling, suggesting that after-ripening triggers GA-stimulated GID1-GA-DELLA protein complex formation, which in turn blocks DELLA transcriptional activation of the XERICO inhibitor of seed germination. PMID:23818171

  13. Auditory Processing in Specific Language Impairment (SLI): Relations With the Perception of Lexical and Phrasal Stress.

    PubMed

    Richards, Susan; Goswami, Usha

    2015-08-01

    We investigated whether impaired acoustic processing is a factor in developmental language disorders. The amplitude envelope of the speech signal is known to be important in language processing. We examined whether impaired perception of amplitude envelope rise time is related to impaired perception of lexical and phrasal stress in children with specific language impairment (SLI). Twenty-two children aged between 8 and 12 years participated in this study. Twelve had SLI; 10 were typically developing controls. All children completed psychoacoustic tasks measuring rise time, intensity, frequency, and duration discrimination. They also completed 2 linguistic stress tasks measuring lexical and phrasal stress perception. The SLI group scored significantly below the typically developing controls on both stress perception tasks. Performance on stress tasks correlated with individual differences in auditory sensitivity. Rise time and frequency thresholds accounted for the most unique variance. Digit Span also contributed to task success for the SLI group. The SLI group had difficulties with both acoustic and stress perception tasks. Our data suggest that poor sensitivity to amplitude rise time and sound frequency significantly contributes to the stress perception skills of children with SLI. Other cognitive factors such as phonological memory are also implicated.

  14. 135. ARAII SLI decontamination and lay down building (ARA614) north, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    135. ARA-II SL-I decontamination and lay down building (ARA-614) north, south, east, and west elevations, floor plan, and detail of doors. F.C. Torkelson Company 842-area/SL-1-614-A-1. Date: September 1960. Ineel index code no. 070-0614-00-851-150061. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID

  15. Children with SLI Can Exhibit Reduced Attention to a Talker's Mouth

    ERIC Educational Resources Information Center

    Pons, Ferran; Sanz-Torrent, Monica; Ferinu, Laura; Birulés, Joan; Andreu, Llorenç

    2018-01-01

    It has been demonstrated that children with specific language impairment (SLI) show difficulties not only with auditory but also with audiovisual speech perception. The goal of this study was to assess whether children with SLI might show reduced attention to the talker's mouth compared to their typically developing (TD) peers. An additional aim…

  16. The perception of lexical tone contrasts in Cantonese children with and without specific language impairment (SLI).

    PubMed

    Wong, Anita M-Y; Ciocca, Valter; Yung, Sun

    2009-12-01

    This study examined the perception of fundamental frequency (f0) patterns by Cantonese children with and without specific language impairment (SLI). Participants were 14 five-year-old children with SLI, and 14 age-matched (AM) and 13 four-year-old vocabulary-matched (VM) controls. The children identified a word from familiar word pairs that illustrated the 8 minimally contrastive pairs of the 6 lexical tones. They discriminated the f0 patterns within contrastive tonal pairs in speech and nonspeech stimuli. In tone identification, the SLI group performed worse than the AM group but not the VM group. In tone discrimination, the SLI group did worse than the AM group on 2 contrasts and showed a nonsignificant trend of poorer performance on all contrasts combined. The VM group generally did worse than the AM group. There were no group differences in discrimination performance between speech and nonspeech stimuli. No correlation was found between identification and discrimination performance. Only the normal controls showed a moderate correlation between vocabulary scores and performance in the 2 perception tasks. The SLI group's poor tone identification cannot be accounted for by vocabulary knowledge alone. The group's tone discrimination performance suggests that some children with SLI have a deficit in f0 processing.

  17. Metacognitive Strategies: A Foundation for Early Word Spelling and Reading in Kindergartners with SLI

    ERIC Educational Resources Information Center

    Schiff, Rachel; Nuri Ben-Shushan, Yohi; Ben-Artzi, Elisheva

    2017-01-01

    This study assessed the effect of metacognitive instruction on the spelling and word reading of Hebrew-speaking children with specific language impairment (SLI). Participants were 67 kindergarteners with SLI in a supported learning context. Children were classified into three spelling instruction groups: (a) metalinguistic instruction (ML), (b) ML…

  18. Differentiating SLI from ADHD Using Children's Sentence Recall and Production of Past Tense Morphology

    ERIC Educational Resources Information Center

    Redmond, Sean M.

    2005-01-01

    Measures of sentence recall and past tense marking were used to examine the similarities and differences between children with Attention Deficit/Hyperactivity Disorder (ADHD), children with specific language impairment (SLI), and typically developing (TD) children. Both SLI and ADHD group means for sentence recall tasks were significantly lower…

  19. Nonword Repetition Errors of Children with and without Specific Language Impairments (SLI)

    ERIC Educational Resources Information Center

    Burke, Heidi L.; Coady, Jeffry A.

    2015-01-01

    Background: Two ubiquitous findings from the literature are that (1) children with specific language impairments (SLI) repeat nonwords less accurately than peers with typical language development (TLD), and (2) all children repeat nonwords with frequent phonotactic patterns more accurately than low-probability nonwords. Many studies have examined…

  20. Speech comprehension and emotional/behavioral problems in children with specific language impairment (SLI).

    PubMed

    Gregl, Ana; Kirigin, Marin; Bilać, Snjeiana; Sućeska Ligutić, Radojka; Jaksić, Nenad; Jakovljević, Miro

    2014-09-01

    This research aims to investigate differences in speech comprehension between children with specific language impairment (SLI) and their developmentally normal peers, and the relationship between speech comprehension and emotional/behavioral problems on Achenbach's Child Behavior Checklist (CBCL) and Caregiver Teacher's Report Form (C-TRF) according to the DSMIV The clinical sample comprised 97preschool children with SLI, while the peer sample comprised 60 developmentally normal preschool children. Children with SLI had significant delays in speech comprehension and more emotional/behavioral problems than peers. In children with SLI, speech comprehension significantly correlated with scores on Attention Deficit/Hyperactivity Problems (CBCL and C-TRF), and Pervasive Developmental Problems scales (CBCL)(p<0.05). In the peer sample, speech comprehension significantly correlated with scores on Affective Problems and Attention Deficit/Hyperactivity Problems (C-TRF) scales. Regression analysis showed that 12.8% of variance in speech comprehension is saturated with 5 CBCL variables, of which Attention Deficit/Hyperactivity (beta = -0.281) and Pervasive Developmental Problems (beta = -0.280) are statistically significant (p < 0.05). In the reduced regression model Attention Deficit/Hyperactivity explains 7.3% of the variance in speech comprehension, (beta = -0.270, p < 0.01). It is possible that, to a certain degree, the same neurodevelopmental process lies in the background of problems with speech comprehension, problems with attention and hyperactivity, and pervasive developmental problems. This study confirms the importance of triage for behavioral problems and attention training in the rehabilitation of children with SLI and children with normal language development that exhibit ADHD symptoms.

  1. Rasch Analysis of the Malaysian Secondary School Student Leadership Inventory (M3SLI).

    PubMed

    Ling, Mei-Teng

    The importance of instilling leadership skills in students has always been a main subject of discussion in Malaysia. Malaysian Secondary School Students Leadership Inventory (M3SLI) is an instrument which has been piloted tested in year 2013. The main purpose of this study is to examine and optimize the functioning of the rating scale categories in M3SLI by investigating the rating scale category counts, average and expected rating scale category measures, and steps calibrations. In detail, the study was aimed to (1) identify whether the five-point rating scale was functioning as intended and (2) review the effect of a rating scale category revision on the psychometric characteristics of M3SLI. The study was carried out on students aged between 13 to 18 years (2183 students) by stratified random sampling in 26 public schools in Sabah, Malaysia, with the results analysed using Winsteps. This study found that the rating scale of Personality and Values constructs needed to be modified while the scale for Leadership Skills was maintained. For future studies, other aspects of psychometric properties like differential item functioning (DIF) based on demographic variables such as gender, school locations and forms should be researched on prior to the use of the instrument.

  2. “Whatdunit?” Sentence Comprehension Abilities of Children With SLI: Sensitivity to Word Order in Canonical and Noncanonical Structures

    PubMed Central

    Gillam, Ronald B.; Evans, Julia L.; Sergeev, Alexander V.

    2017-01-01

    Purpose With Aim 1, we compared the comprehension of and sensitivity to canonical and noncanonical word order structures in school-age children with specific language impairment (SLI) and same-age typically developing (TD) children. Aim 2 centered on the developmental improvement of sentence comprehension in the groups. With Aim 3, we compared the comprehension error patterns of the groups. Method Using a “Whatdunit” agent selection task, 117 children with SLI and 117 TD children (ages 7:0–11:11, years:months) propensity matched on age, gender, mother's education, and family income pointed to the picture that best represented the agent in semantically implausible canonical structures (subject–verb–object, subject relative) and noncanonical structures (passive, object relative). Results The SLI group performed worse than the TD group across sentence types. TD children demonstrated developmental improvement across each sentence type, but children with SLI showed improvement only for canonical sentences. Both groups chose the object noun as agent significantly more often than the noun appearing in a prepositional phrase. Conclusions In the absence of semantic–pragmatic cues, comprehension of canonical and noncanonical sentences by children with SLI is limited, with noncanonical sentence comprehension being disproportionately limited. The children's ability to make proper semantic role assignments to the noun arguments in sentences, especially noncanonical, is significantly hindered. PMID:28832884

  3. Verbal strategies and nonverbal cues in school-age children with and without specific language impairment (SLI)

    PubMed Central

    Eichorn, Naomi; Marton, Klara; Campanelli, Luca; Scheuer, Jessica

    2014-01-01

    Background Considerable evidence suggests that performance across a variety of cognitive tasks is effectively supported by the use of verbal and nonverbal strategies. Studies exploring the usefulness of such strategies in children with specific language impairment (SLI) are scarce and report inconsistent findings. Aim The present study examined effects of induced labelling and auditory cues on the performance of children with and without SLI during a categorization task. Methods & Procedures Sixty-six school-age children (22 with SLI, 22 age-matched controls, 22 language-matched controls) completed three versions of a computer-based categorization task: one baseline, one requiring overt labelling, and one with auditory cues (tones) on randomized trial blocks. Outcomes & Results Labelling had no effect on performance for typically developing children but resulted in lower accuracy and longer reaction time in children with SLI. The presence of tones had no effect on accuracy but resulted in faster reaction time and post-error slowing across groups. Conclusions & Implications Verbal strategy use was ineffective for typically developing children and negatively affected children with SLI. All children showed faster performance and increased performance monitoring as a result of tones. Overall, effects of strategy use in children appear to vary based on task demands, strategy domain, age, and language ability. Results suggest that children with SLI may benefit from auditory cues in their clinical intervention but that further research is needed to determine when and how verbal strategies might similarly support performance in this population. PMID:24861540

  4. Early preschool processing abilities predict subsequent reading outcomes in bilingual Spanish-Catalan children with Specific Language Impairment (SLI).

    PubMed

    Aguilar-Mediavilla, Eva; Buil-Legaz, Lucía; Pérez-Castelló, Josep A; Rigo-Carratalà, Eduard; Adrover-Roig, Daniel

    2014-01-01

    Children with Specific Language Impairment (SLI) have severe language difficulties without showing hearing impairments, cognitive deficits, neurological damage or socio-emotional deprivation. However, previous studies have shown that children with SLI show some cognitive and literacy problems. Our study analyses the relationship between preschool cognitive and linguistic abilities and the later development of reading abilities in Spanish-Catalan bilingual children with SLI. The sample consisted of 17 bilingual Spanish-Catalan children with SLI and 17 age-matched controls. We tested eight distinct processes related to phonological, attention, and language processing at the age of 6 years and reading at 8 years of age. Results show that bilingual Spanish-Catalan children with SLI show significantly lower scores, as compared to typically developing peers, in phonological awareness, phonological memory, and rapid automatized naming (RAN), together with a lower outcome in tasks measuring sentence repetition and verbal fluency. Regarding attentional processes, bilingual Spanish-Catalan children with SLI obtained lower scores in auditory attention, but not in visual attention. At the age of 8 years Spanish-Catalan children with SLI had lower scores than their age-matched controls in total reading score, letter identification (decoding), and in semantic task (comprehension). Regression analyses identified both phonological awareness and verbal fluency at the age of 6 years to be the best predictors of subsequent reading performance at the age of 8 years. Our data suggest that language acquisition problems and difficulties in reading acquisition in bilingual children with SLI might be related to the close interdependence between a limitation in cognitive processing and a deficit at the linguistic level. After reading this article, readers will be able to: identify their understanding of the relation between language difficulties and reading outcomes; explain how processing

  5. Sulfate production depicts fed-state adaptation to protein restriction in humans.

    PubMed

    Hamadeh, M J; Schiffrin, A; Hoffer, L J

    2001-08-01

    One feature of the adaptation to dietary protein restriction is reduced urea production over the hours after consumption of a test meal of fixed composition. This adaptation is impaired in conventionally treated insulin-dependent diabetes mellitus (Hoffer LJ, Taveroff A, and Schiffrin A. Am J Physiol Endocrinol Metab 272: E59--E67, 1997). We have now tested the response to a test meal containing less protein and included as a main outcome variable the production of sulfate, a specific indicator of sulfur amino acid catabolism. Six normal men consumed a mixed test meal containing 0.25 g protein/kg and 10 kcal/kg while adapted to high (1.5 g x kg(-1) x day(-1)) and low (0.3 g. kg(-1) x day(-1)) protein intakes. They followed the identical protocol twice. Six subjects with insulin-dependent diabetes consumed the test meal while adapted to their customary high-protein diet. Adaptation to protein restriction reproducibly reduced 9-h cumulative postmeal urea N and S production by 22--29% and 49--52%, respectively (both P < 0.05). Similar results were obtained for a postmeal collection period of 6 h. The response of the diabetic subjects was normal. We conclude that reductions in postmeal urea and sulfate production after protein restriction are reproducible and are evident using a postmeal collection period as short as 6 h. Sulfate production effectively depicts fed-state adaptation to protein restriction.

  6. Description and preliminary results from a structured specialist behavioural weight management group intervention: Specialist Lifestyle Management (SLiM) programme

    PubMed Central

    Brown, Adrian; Gouldstone, Amy; Fox, Emily; Field, Annmarie; Todd, Wendy; Shakher, Jayadave; Bellary, Srikanth; Teh, Ming Ming; Azam, Muhammad; John, Reggie; Jagielski, Alison; Arora, Teresa; Thomas, G Neil; Taheri, Shahrad

    2015-01-01

    Background Specialist Lifestyle Management (SLiM) is a structured patient education and self-management group weight management programme. Each session is run monthly over a 6-month period providing a less intensive long-term approach. The groups are patient-centred incorporating educational, motivational, behavioural and cognitive elements. The theoretical background, programme structure and preliminary results of SLiM are presented. Subjects/methods The study was a pragmatic service evaluation of obese patients with a body mass index (BMI) ≥35 kg/m2 with comorbidity or ≥40 kg/m2 without comorbidity referred to a specialist weight management service in the West Midlands, UK. 828 patients were enrolled within SLiM over a 48-month period. Trained facilitators delivered the programme. Preliminary anonymised data were analysed using the intention-to-treat principle. The primary outcome measure was weight loss at 3 and 6 months with comparisons between completers and non-completers performed. The last observation carried forward was used for missing data. Results Of the 828 enrolled within SLiM, 464 completed the programme (56%). The mean baseline weight was 135 kg (BMI=49.1 kg/m2) with 87.2% of patients having a BMI≥40 kg/m2 and 12.4% with BMI≥60 kg/m2. The mean weight change of all patients enrolled was −4.1 kg (95% CI −3.6 to −4.6 kg, p=0.0001) at the end of SLiM, with completers (n=464) achieving −5.5 kg (95% CI −4.2 to −6.2 kg, p=0.0001) and non-completers achieving −2.3 kg (p=0.0001). The majority (78.6%) who attended the 6-month programme achieved weight loss with 32.3% achieving a ≥5% weight loss. Conclusions The SLiM programme is an effective group intervention for the management of severe and complex obesity. PMID:25854970

  7. Effects of heat, cold, acid and bile salt adaptations on the stress tolerance and protein expression of kefir-isolated probiotic Lactobacillus kefiranofaciens M1.

    PubMed

    Chen, Ming-Ju; Tang, Hsin-Yu; Chiang, Ming-Lun

    2017-09-01

    Lactobacillus kefiranofaciens M1 is a probiotic strain isolated from Taiwanese kefir grains. The present study evaluated the effects of heat, cold, acid and bile salt adaptations on the stress tolerance of L. kefiranofaciens M1. The regulation of protein expression of L. kefiranofaciens M1 under these adaptation conditions was also investigated. The results showed that adaptation of L. kefiranofaciens M1 to heat, cold, acid and bile salts induced homologous tolerance and cross-protection against heterologous challenge. The extent of induced tolerance varied depending on the type and condition of stress. Proteomic analysis revealed that 27 proteins exhibited differences in expression between non-adapted and stress-adapted L. kefiranofaciens M1 cells. Among these proteins, three proteins involved in carbohydrate metabolism (triosephosphate isomerase, enolase and NAD-dependent glycerol-3-phosphate dehydrogenase), two proteins involved in pH homeostasis (ATP synthase subunits AtpA and AtpB), two stress response proteins (chaperones DnaK and GroEL) and one translation-related protein (30S ribosomal protein S2) were up-regulated by three of the four adaptation treatments examined. The increased synthesis of these stress proteins might play a critical protective role in the cellular defense against heat, cold, acid and bile salt stresses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Influence of Phonology on Morpho-Syntax in Romance Languages in Children with Specific Language Impairment (SLI)

    ERIC Educational Resources Information Center

    Aguilar-Mediavilla, Eva; Sanz-Torrent, Monica; Serra-Raventos, Miquel

    2007-01-01

    Background: The profiles of children with Specific Language Impairment (SLI) differ greatly according to the language they speak. The Surface Hypothesis attempts to explain these differences through the theory that children with SLI will incorrectly produce elements in their language with low phonological weights or that are produced in a…

  9. Children with a History of SLI Show Reduced Sensitivity to Audiovisual Temporal Asynchrony: An ERP Study

    ERIC Educational Resources Information Center

    Kaganovich, Natalya; Schumaker, Jennifer; Leonard, Laurence B.; Gustafson, Dana; Macias, Danielle

    2014-01-01

    Purpose: The authors examined whether school-age children with a history of specific language impairment (H-SLI), their peers with typical development (TD), and adults differ in sensitivity to audiovisual temporal asynchrony and whether such difference stems from the sensory encoding of audiovisual information. Method: Fifteen H-SLI children, 15…

  10. Annoying Danish Relatives: Comprehension and Production of Relative Clauses by Danish Children with and without SLI

    ERIC Educational Resources Information Center

    Jensen De Lopez, Kristine; Olsen, Lone Sundahl; Chondrogianni, Vasiliki

    2014-01-01

    This study examines the comprehension and production of subject and object relative clauses (SRCs, ORCs) by children with Specific Language Impairment (SLI) and their typically developing (TD) peers. The purpose is to investigate whether relative clauses are problematic for Danish children with SLI and to compare errors with those produced by TD…

  11. Diagnostic accuracy of repetition tasks for the identification of specific language impairment (SLI) in bilingual children: evidence from Russian and Hebrew.

    PubMed

    Armon-Lotem, Sharon; Meir, Natalia

    2016-11-01

    Previous research demonstrates that repetition tasks are valuable tools for diagnosing specific language impairment (SLI) in monolingual children in English and a variety of other languages, with non-word repetition (NWR) and sentence repetition (SRep) yielding high levels of sensitivity and specificity. Yet, only a few studies have addressed the diagnostic accuracy of repetition tasks in bilingual children, and most available research focuses on English-Spanish sequential bilinguals. To evaluate the efficacy of three repetition tasks (forward digit span (FWD), NWR and SRep) in order to distinguish mono- and bilingual children with and without SLI in Russian and Hebrew. A total of 230 mono- and bilingual children aged 5;5-6;8 participated in the study: 144 bilingual Russian-Hebrew-speaking children (27 with SLI); and 52 monolingual Hebrew-speaking children (14 with SLI) and 34 monolingual Russian-speaking children (14 with SLI). Parallel repetition tasks were designed in both Russian and Hebrew. Bilingual children were tested in both languages. The findings confirmed that NWR and SRep are valuable tools in distinguishing monolingual children with and without SLI in Russian and Hebrew, while the results for FWD were mixed. Yet, testing of bilingual children with the same tools using monolingual cut-off points resulted in inadequate diagnostic accuracy. We demonstrate, however, that the use of bilingual cut-off points yielded acceptable levels of diagnostic accuracy. The combination of SRep tasks in L1/Russian and L2/Hebrew yielded the highest overall accuracy (i.e., 94%), but even SRep alone in L2/Hebrew showed excellent levels of sensitivity (i.e., 100%) and specificity (i.e., 89%), reaching 91% of total diagnostic accuracy. The results are very promising for identifying SLI in bilingual children and for showing that testing in the majority language with bilingual cut-off points can provide an accurate classification. © 2016 Royal College of Speech and Language

  12. Protein Interactions and Localization of the Escherichia coli Accessory Protein HypA during Nickel Insertion to [NiFe] Hydrogenase*

    PubMed Central

    Chan Chung, Kim C.; Zamble, Deborah B.

    2011-01-01

    Nickel delivery during maturation of Escherichia coli [NiFe] hydrogenase 3 includes the accessory proteins HypA, HypB, and SlyD. Although the isolated proteins have been characterized, little is known about how they interact with each other and the hydrogenase 3 large subunit, HycE. In this study the complexes of HypA and HycE were investigated after modification with the Strep-tag II. Multiprotein complexes containing HypA, HypB, SlyD, and HycE were observed, consistent with the assembly of a single nickel insertion cluster. An interaction between HypA and HycE did not require the other nickel insertion proteins, but HypB was not found with the large subunit in the absence of HypA. The HypA-HycE complex was not detected in the absence of the HypC or HypD proteins, involved in the preceding iron insertion step, and this interaction is enhanced by nickel brought into the cell by the NikABCDE membrane transporter. Furthermore, without the hydrogenase 1, 2, and 3 large subunits, complexes between HypA, HypB, and SlyD were observed. These results support the hypothesis that HypA acts as a scaffold for assembly of the nickel insertion proteins with the hydrogenase precursor protein after delivery of the iron center. At different stages of the hydrogenase maturation process, HypA was observed at or near the cell membrane by using fluorescence confocal microscopy, as was HycE, suggesting membrane localization of the nickel insertion event. PMID:22016389

  13. Beyond Capacity Limitations: Determinants of Word Recall Performance on Verbal Working Memory Span Tasks in Children With SLI

    PubMed Central

    Mainela-Arnold, Elina; Evans, Julia L.

    2016-01-01

    Reduced verbal working memory capacity has been proposed as a possible account of language impairments in specific language impairment (SLI). Studies have shown, however, that differences in strength of linguistic representations in the form of word frequency affect list recall and performance on verbal working memory tasks. This suggests that verbal memory capacity and long-term linguistic knowledge may not be distinct constructs. It has been suggested that linguistic representations in SLI are weak in ways that result in a breakdown in language processing on tasks that require manipulation of unfamiliar material. In this study, the effects of word frequency, long-term linguistic knowledge, and serial order position on recall performance in the competing language processing task (CLPT) were investigated in 10 children with SLI and 10 age-matched peers (age 8 years 6 months to 12 years 4 months). The children with SLI recalled significantly fewer target words on the CLPT as compared with their age-matched controls. The SLI group did not differ, however, in their ability to recall target words having high word frequency but were significantly poorer in their ability to recall words on the CLPT having low word frequency. Differences in receptive and expressive language abilities also appeared closely related to performance on the CLPT, suggesting that working memory capacity is not distinct from language knowledge and that degraded linguistic representations may have an effect on performance on verbal working memory span tasks in children with SLI. PMID:16378481

  14. Theory of mind in SLI revisited: links with syntax, comparisons with ASD.

    PubMed

    Durrleman, Stephanie; Burnel, Morgane; Reboul, Anne

    2017-11-01

    According to the linguistic determinism approach, knowledge of sentential complements such as: John says that the earth is flat plays a crucial role in theory of mind (ToM) development by providing a means to represent explicitly people's mental attitudes and beliefs. This approach predicts that mastery of complements determines successful belief reasoning across explicit ToM tasks, even low-verbal ones, and across populations. (1) To investigate the link between a low-verbal ToM-task and complements in Specific Language Impairment (SLI), (2) To determine whether this population shows similar ToM performance to that of children with Autism Spectrum Disorder (ASD) or those with Typical Development (TD) once these groups are matched on competency for complements, (3) To explore whether complements conveying a falsehood without jeopardizing the veracity of the entire sentence, such as complements of verbs of communication, are more crucial for belief attribution than complements which do not have this property, namely complements of verbs of perception, (?John sees that the earth is flat). Children with SLI (n = 20), with ASD (n = 34) and TD (n = 30) completed sentence-picture-matching tasks assessing complementation with communication and perception verbs, as well as a picture-sequencing task assessing ToM. Children were furthermore evaluated for general grammatical and lexical abilities and non-verbal IQ. Results reveal that competency on complements relates to ToM performance with a low-verbal task in SLI, and that SLI, ASD and TD groups of equivalent performance on complements also perform similarly for ToM. Results further suggest that complements with an independent truth-value are the only ones to show a significant relation to ToM performance after teasing out the impact of non-verbal reasoning. This study suggests that clinical groups of different aetiologies as well as TD children perform comparably for ToM once they have similar complementation skills

  15. Complexity markers in morphosyntactic productions in French-speaking children with specific language impairment (SLI).

    PubMed

    Prigent, Gaïd; Parisse, Christophe; Leclercq, Anne-Lise; Maillart, Christelle

    2015-01-01

    The usage-based theory considers that the morphosyntactic productions of children with SLI are particularly dependent on input frequency. When producing complex syntax, the language of these children is, therefore, predicted to have a lower variability and to contain fewer infrequent morphosyntactic markers than that of younger children matched on morphosyntactic abilities. Using a spontaneous language task, the current study compared the complexity of the morphological and structural productions of 20 children with SLI and 20 language-matched peers (matched on both morphosyntactic comprehension and mean length of utterance). As expected, results showed that although basic structures were produced in the same way in both groups, several complex forms (i.e. tenses such as Imperfect, Future or Conditional and Conjunctions) were less frequent in the productions of children with SLI. Finally, we attempted to highlight complex linguistic forms that could be good clinical markers for these children.

  16. SSTY proteins colocalize with the postmeiotic sex chromatin and interact with regulators of its expression

    PubMed Central

    Comptour, Aurélie; Moretti, Charlotte; Serrentino, Maria-Elisabetta; Auer, Jana; Ialy-Radio, Côme; Ward, Monika A.; Touré, Aminata; Vaiman, Daniel; Cocquet, Julie

    2014-01-01

    In mammals, X- and Y-encoded genes are transcriptionally shut down during male meiosis, but the expression of many of them is (re)activated, after meiosis, in spermatids. Postmeiotic XY gene expression is timely regulated by active epigenetic marks, which are de novo incorporated in the sex chromatin of spermatids, and by repressive epigenetic marks inherited from meiosis; alteration in this process leads to male infertility. In the mouse, postmeiotic XY gene expression is known to depend on genetic information carried by the male specific region of the Y chromosome long arm (MSYq). The MSYq gene Sly has been shown to be a key regulator of postmeiotic sex chromosome gene expression and necessary for the maintenance/recruitment of repressive epigenetic marks on the sex chromatin, but studies suggest that another MSYq gene may be required. The best candidate to date is Ssty, an MSYq multicopy gene of unknown function. Here, we show that SSTY proteins are specifically expressed in round and elongating spermatids and colocalize with the postmeiotic sex chromatin. Moreover, SSTY proteins interact with SLY protein and its X-linked homolog SLX/SLXL1, and may be required for the localization of SLX/SLY proteins in the spermatid nucleus and sex chromatin. Our data suggest that SSTY is a second MSYq factor involved in the control of XY gene expression during sperm differentiation. As Slx/Slxl1 and Sly genes have been shown to be involved in the XY intragenomic conflict which affects the offspring sex-ratio, Ssty might constitute another actor of this conflict. PMID:24456183

  17. Timing resolution and time walk in SLiK SPAD: measurement and optimization

    NASA Astrophysics Data System (ADS)

    Fong, Bernicy S.; Davies, Murray; Deschamps, Pierre

    2017-08-01

    Timing resolution (or timing jitter) and time walk are separate parameters associated with a detector's response time. Studies have been done mostly on the time resolution of various single photon detectors [1]. As the designer and manufacturer of the ultra-low noise (ƙ-factor) silicon avalanche photodiode the SLiK SPAD, which is used in many single photon counting applications, we often get inquiries from customers to better understand how this detector behaves under different operating conditions. Hence, here we will be focusing on the study of these time related parameters specifically for the SLiK SPAD, as a way to provide the most direct information for users of this detector to help with its use more efficiently and effectively. We will be providing the study data on how these parameters can be affected by temperature (both intrinsic to the detector chip and environmental input based on operating conditions), operating voltage, photon wavelength, as well as light spot size. How these parameters can be optimized and the trade-offs from optimization from the desired performance will be presented.

  18. Prognostic significance of downregulated expression of the candidate tumour suppressor gene SASH1 in colon cancer.

    PubMed

    Rimkus, C; Martini, M; Friederichs, J; Rosenberg, R; Doll, D; Siewert, J R; Holzmann, B; Janssen, K P

    2006-11-20

    The gene SASH1 (SAM- and SH3-domain containing 1) has originally been identified as a candidate tumour suppressor gene in breast cancer. SASH1 is a member of the SH3-domain containing expressed in lymphocytes (SLY1) gene family that encodes signal adapter proteins composed of several protein-protein interaction domains. The other members of this family are expressed mainly in haematopoietic cells, whereas SASH1 shows ubiquitous expression. We have used quantitative real-time PCR to investigate the expression of SASH1 in tissue samples from 113 patients with colon carcinoma, and compared the expression with 15 normal colon tissue samples. Moreover, nine benign adenomas and 10 liver metastases were analysed. Expression levels of SASH1 were strongly and significantly reduced in colon cancer of UICC stage II, III, and IV, as well as in liver metastases. Moreover, SASH1 was also found to be downregulated on protein levels by immunoblot analysis. However, SASH1 expression was not significantly deregulated in precancerous adenomas and in earlier stage lesions (UICC I). Overall, 48 out of 113 primary colon tumours showed SASH1 expression that was at least 10-fold lower than the levels found in normal colon tissue. Downregulation of SASH1 expression was correlated with the formation of metachronous distant metastasis, and multivariate analysis identified SASH1 downregulation as an independent negative prognostic parameter for patient survival. This study demonstrates for the first time that expression of a member of the SLY1-gene family has prognostic significance in human cancer.

  19. SIEVE ELEMENT-LINING CHAPERONE1 Restricts Aphid Feeding on Arabidopsis during Heat Stress.

    PubMed

    Kloth, Karen J; Busscher-Lange, Jacqueline; Wiegers, Gerrie L; Kruijer, Willem; Buijs, Gonda; Meyer, Rhonda C; Albrectsen, Benedicte R; Bouwmeester, Harro J; Dicke, Marcel; Jongsma, Maarten A

    2017-10-01

    The role of phloem proteins in plant resistance to aphids is still largely elusive. By genome-wide association mapping of aphid behavior on 350 natural Arabidopsis thaliana accessions, we identified the small heat shock-like SIEVE ELEMENT-LINING CHAPERONE1 ( SLI1 ). Detailed behavioral studies on near-isogenic and knockout lines showed that SLI1 impairs phloem feeding. Depending on the haplotype, aphids displayed a different duration of salivation in the phloem. On sli1 mutants, aphids prolonged their feeding sessions and ingested phloem at a higher rate than on wild-type plants. The largest phenotypic effects were observed at 26°C, when SLI1 expression is upregulated. At this moderately high temperature, sli1 mutants suffered from retarded elongation of the inflorescence and impaired silique development. Fluorescent reporter fusions showed that SLI1 is confined to the margins of sieve elements where it lines the parietal layer and colocalizes in spherical bodies around mitochondria. This localization pattern is reminiscent of the clamp-like structures observed in previous ultrastructural studies of the phloem and shows that the parietal phloem layer plays an important role in plant resistance to aphids and heat stress. © 2017 American Society of Plant Biologists. All rights reserved.

  20. Reading's SLiCK with New Audio Texts and Strategies.

    ERIC Educational Resources Information Center

    Boyle, Elizabeth A.; Washburn, Shari Gallin; Rosenberg, Michael S.; Connelly, Vincent J.; Brinckerhoff, Loring C.; Banerjee, Manju

    2002-01-01

    This article discusses challenges for secondary students with disabilities and alternative instructional methods that teachers of students with poor reading skills can use to convey content information effectively and efficiently. The use of audio textbooks on CD-ROMs is emphasized and the SLiCK strategy is explained as a support for the CD-ROM.…

  1. Conversational Profiles of Children with ADHD, SLI and Typical Development

    ERIC Educational Resources Information Center

    Redmond, Sean M.

    2004-01-01

    Conversational indices of language impairment were used to investigate similarities and differences among children with Attention-Deficit/Hyperactivity Disorder (ADHD), children with Specific Language Impairment (SLI) and children with typical development (TD). Utterance formulation measures (per cent words mazed and average number of words per…

  2. Adaptive Local Realignment of Protein Sequences.

    PubMed

    DeBlasio, Dan; Kececioglu, John

    2018-06-11

    While mutation rates can vary markedly over the residues of a protein, multiple sequence alignment tools typically use the same values for their scoring-function parameters across a protein's entire length. We present a new approach, called adaptive local realignment, that in contrast automatically adapts to the diversity of mutation rates along protein sequences. This builds upon a recent technique known as parameter advising, which finds global parameter settings for an aligner, to now adaptively find local settings. Our approach in essence identifies local regions with low estimated accuracy, constructs a set of candidate realignments using a carefully-chosen collection of parameter settings, and replaces the region if a realignment has higher estimated accuracy. This new method of local parameter advising, when combined with prior methods for global advising, boosts alignment accuracy as much as 26% over the best default setting on hard-to-align protein benchmarks, and by 6.4% over global advising alone. Adaptive local realignment has been implemented within the Opal aligner using the Facet accuracy estimator.

  3. Adolescents with a history of specific language impairment (SLI): strengths and difficulties in social, emotional and behavioral functioning.

    PubMed

    Conti-Ramsden, Gina; Mok, Pearl L H; Pickles, Andrew; Durkin, Kevin

    2013-11-01

    Adolescents with specific language impairment (SLI) are at a greater risk of emotional and behavioral problems compared to their typically developing (TD) peers, but little is known about their self-perceived strengths and difficulties. In this study, the self-reported social, emotional and behavioral functioning of 139 adolescents with a history of SLI and 124 TD individuals at age 16 was examined. The self-report version of the Strengths and Difficulties Questionnaire (SDQ) was used to assess their prosocial behavior and levels of peer, emotional and behavioral difficulties. Associations of these areas of functioning with gender, verbal and non-verbal skills were also investigated. Adolescents with a history of SLI were more likely than their TD peers to report higher levels of peer problems, emotional symptoms, hyperactivity and conduct problems. The majority of adolescents in both groups (87% SLI and 96% TD), however, reported prosocial behavior within the typical range. Difficulty with peer relations was the strongest differentiator between the groups, with the odds of reporting borderline or abnormally high levels of peer problems being 12 times higher for individuals with a history of SLI. Adolescents with poorer receptive language skills were also more likely to report higher levels of emotional and behavioral difficulties. The findings of this study identify likely traits that may lead to referral to services. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Prognostic significance of downregulated expression of the candidate tumour suppressor gene SASH1 in colon cancer

    PubMed Central

    Rimkus, C; Martini, M; Friederichs, J; Rosenberg, R; Doll, D; Siewert, J R; Holzmann, B; Janssen, K P

    2006-01-01

    The gene SASH1 (SAM- and SH3-domain containing 1) has originally been identified as a candidate tumour suppressor gene in breast cancer. SASH1 is a member of the SH3-domain containing expressed in lymphocytes (SLY1) gene family that encodes signal adapter proteins composed of several protein–protein interaction domains. The other members of this family are expressed mainly in haematopoietic cells, whereas SASH1 shows ubiquitous expression. We have used quantitative real-time PCR to investigate the expression of SASH1 in tissue samples from 113 patients with colon carcinoma, and compared the expression with 15 normal colon tissue samples. Moreover, nine benign adenomas and 10 liver metastases were analysed. Expression levels of SASH1 were strongly and significantly reduced in colon cancer of UICC stage II, III, and IV, as well as in liver metastases. Moreover, SASH1 was also found to be downregulated on protein levels by immunoblot analysis. However, SASH1 expression was not significantly deregulated in precancerous adenomas and in earlier stage lesions (UICC I). Overall, 48 out of 113 primary colon tumours showed SASH1 expression that was at least 10-fold lower than the levels found in normal colon tissue. Downregulation of SASH1 expression was correlated with the formation of metachronous distant metastasis, and multivariate analysis identified SASH1 downregulation as an independent negative prognostic parameter for patient survival. This study demonstrates for the first time that expression of a member of the SLY1-gene family has prognostic significance in human cancer. PMID:17088907

  5. Adaptation in protein fitness landscapes is facilitated by indirect paths

    PubMed Central

    Wu, Nicholas C; Dai, Lei; Olson, C Anders; Lloyd-Smith, James O; Sun, Ren

    2016-01-01

    The structure of fitness landscapes is critical for understanding adaptive protein evolution. Previous empirical studies on fitness landscapes were confined to either the neighborhood around the wild type sequence, involving mostly single and double mutants, or a combinatorially complete subgraph involving only two amino acids at each site. In reality, the dimensionality of protein sequence space is higher (20L) and there may be higher-order interactions among more than two sites. Here we experimentally characterized the fitness landscape of four sites in protein GB1, containing 204 = 160,000 variants. We found that while reciprocal sign epistasis blocked many direct paths of adaptation, such evolutionary traps could be circumvented by indirect paths through genotype space involving gain and subsequent loss of mutations. These indirect paths alleviate the constraint on adaptive protein evolution, suggesting that the heretofore neglected dimensions of sequence space may change our views on how proteins evolve. DOI: http://dx.doi.org/10.7554/eLife.16965.001 PMID:27391790

  6. Who Is at Risk for Dyslexia? Phonological Processing in Five-to Seven-Year-Old Dutch-Speaking Children with SLI

    ERIC Educational Resources Information Center

    Vandewalle, Ellen; Boets, Bart; Ghesquiere, Pol; Zink, Inge

    2010-01-01

    A disproportionally high number of children with specific language impairment (SLI) develop dyslexia. Yet it is hard to predict which individual child is at risk. This article presents a longitudinal study of phonological and early literacy development of 18 Dutch-speaking children with SLI, compared to 18 typically developing controls over a…

  7. System Life Cycle Evaluation(SM) (SLiCE): harmonizing water treatment systems with implementers' needs.

    PubMed

    Goodman, Joseph; Caravati, Kevin; Foote, Andrew; Nelson, Molly; Woods, Emily

    2013-06-01

    One of the methods proposed to improve access to clean drinking water is the mobile packaged water treatment system (MPWTS). The lack of published system performance comparisons combined with the diversity of technology available and intended operating conditions make it difficult for stakeholders to choose the system best suited for their application. MPWTS are often deployed in emergency situations, making selection of the appropriate system crucial to avoiding wasted resources and loss of life. Measurable critical-to-quality characteristics (CTQs) and a system selection tool for MPWTS were developed by utilizing relevant literature, including field studies, and implementing and comparing seven different MPWTS. The proposed System Life Cycle Evaluation (SLiCE) method uses these CTQs to evaluate the diversity in system performance and harmonize relevant performance with stakeholder preference via a selection tool. Agencies and field workers can use SLiCE results to inform and drive decision-making. The evaluation and selection tool also serves as a catalyst for communicating system performance, common design flaws, and stakeholder needs to system manufacturers. The SLiCE framework can be adopted into other emerging system technologies to communicate system performance over the life cycle of use.

  8. Maternal recasts and activity variations: a comparison of mother-child dyads involving children with and without SLI.

    PubMed

    Rezzonico, Stefano; de Weck, Geneviève; Salazar Orvig, Anne; da Silva Genest, Christine; Rahmati, Somayeh

    2014-04-01

    This study investigated maternal recast and the children's responses comparing dyads made up of a mother and a child with typical language development (TD) or a child with specific language impairment (SLI). More specifically, this article deals with the influence of the type of activity being carried out on the number and types of maternal recasts. A sample of 17 French-speaking children with SLI (age 5 to 7 years) matched with 17 TD same-age peers was observed in interaction with their mother during four different activities (joint reading, symbolic play, question guessing game and clue guessing game). The results showed that group and activity had an impact on the number and type of recasts. Mothers of children with SLI offered more recasts than mothers of TD children. The former preferred phonological recasts whereas the latter preferred lexical ones. Moreover, recasts were more frequently used in joint reading than in other activities. Regarding the children's responses, no significant difference was observed between the two groups. Children with SLI took up the maternal proposition more frequently after a lexical recast than after a recast of another type. The findings provide evidence for considering the features of the activities in clinical settings.

  9. Central auditory processing disorder (CAPD) in children with specific language impairment (SLI). Central auditory tests.

    PubMed

    Dlouha, Olga; Novak, Alexej; Vokral, Jan

    2007-06-01

    The aim of this project is to use central auditory tests for diagnosis of central auditory processing disorder (CAPD) in children with specific language impairment (SLI), in order to confirm relationship between speech-language impairment and central auditory processing. We attempted to establish special dichotic binaural tests in Czech language modified for younger children. Tests are based on behavioral audiometry using dichotic listening (different auditory stimuli that presented to each ear simultaneously). The experimental tasks consisted of three auditory measures (test 1-3)-dichotic listening of two-syllable words presented like binaural interaction tests. Children with SLI are unable to create simple sentences from two words that are heard separately but simultaneously. Results in our group of 90 pre-school children (6-7 years old) confirmed integration deficit and problems with quality of short-term memory. Average rate of success of children with specific language impairment was 56% in test 1, 64% in test 2 and 63% in test 3. Results of control group: 92% in test 1, 93% in test 2 and 92% in test 3 (p<0.001). Our results indicate the relationship between disorders of speech-language perception and central auditory processing disorders.

  10. Viruses are a dominant driver of protein adaptation in mammals.

    PubMed

    Enard, David; Cai, Le; Gwennap, Carina; Petrov, Dmitri A

    2016-05-17

    Viruses interact with hundreds to thousands of proteins in mammals, yet adaptation against viruses has only been studied in a few proteins specialized in antiviral defense. Whether adaptation to viruses typically involves only specialized antiviral proteins or affects a broad array of virus-interacting proteins is unknown. Here, we analyze adaptation in ~1300 virus-interacting proteins manually curated from a set of 9900 proteins conserved in all sequenced mammalian genomes. We show that viruses (i) use the more evolutionarily constrained proteins within the cellular functions they interact with and that (ii) despite this high constraint, virus-interacting proteins account for a high proportion of all protein adaptation in humans and other mammals. Adaptation is elevated in virus-interacting proteins across all functional categories, including both immune and non-immune functions. We conservatively estimate that viruses have driven close to 30% of all adaptive amino acid changes in the part of the human proteome conserved within mammals. Our results suggest that viruses are one of the most dominant drivers of evolutionary change across mammalian and human proteomes.

  11. Core subjects at the end of primary school: identifying and explaining relative strengths of children with specific language impairment (SLI)

    PubMed Central

    Durkin, Kevin; Mok, Pearl L H; Conti-Ramsden, Gina

    2015-01-01

    Background In general, children with specific language impairment (SLI) tend to fall behind their typically developing (TD) peers in educational attainment. Less is known about how children with SLI fare in particular areas of the curriculum and what predicts their levels of performance. Aims To compare the distributions of performance of children with SLI in three core school subjects (English, Mathematics and Science); to test the possibility that performance would vary across the core subjects; and to examine the extent to which language impairment predicts performance. Methods & Procedures This study was conducted in England and reports historical data on educational attainments. Teacher assessment and test scores of 176 eleven-year-old children with SLI were examined in the three core subjects and compared with known national norms. Possible predictors of performance were measured, including language ability at ages 7 and 11, educational placement type, and performance IQ. Outcomes & Results Children with SLI, compared with national norms, were found to be at a disadvantage in core school subjects. Nevertheless, some children attained the levels expected of TD peers. Performance was poorest in English; relative strengths were indicated in Science and, to a lesser extent, in Mathematics. Language skills were significant predictors of performance in all three core subjects. PIQ was the strongest predictor for Mathematics. For Science, both early language skills at 7 years and PIQ made significant contributions. Conclusions & Implications Language impacts on the school performance of children with SLI, but differentially across subjects. English for these children is the most challenging of the core subjects, reflecting the high levels of language demand it incurs. Science is an area of relative strength and mathematics appears to be intermediate, arguably because some tasks in these subjects can be performed with less reliance on verbal processing. Many children

  12. Core subjects at the end of primary school: identifying and explaining relative strengths of children with specific language impairment (SLI).

    PubMed

    Durkin, Kevin; Mok, Pearl L H; Conti-Ramsden, Gina

    2015-01-01

    In general, children with specific language impairment (SLI) tend to fall behind their typically developing (TD) peers in educational attainment. Less is known about how children with SLI fare in particular areas of the curriculum and what predicts their levels of performance. To compare the distributions of performance of children with SLI in three core school subjects (English, Mathematics and Science); to test the possibility that performance would vary across the core subjects; and to examine the extent to which language impairment predicts performance. This study was conducted in England and reports historical data on educational attainments. Teacher assessment and test scores of 176 eleven-year-old children with SLI were examined in the three core subjects and compared with known national norms. Possible predictors of performance were measured, including language ability at ages 7 and 11, educational placement type, and performance IQ. Children with SLI, compared with national norms, were found to be at a disadvantage in core school subjects. Nevertheless, some children attained the levels expected of TD peers. Performance was poorest in English; relative strengths were indicated in Science and, to a lesser extent, in Mathematics. Language skills were significant predictors of performance in all three core subjects. PIQ was the strongest predictor for Mathematics. For Science, both early language skills at 7 years and PIQ made significant contributions. Language impacts on the school performance of children with SLI, but differentially across subjects. English for these children is the most challenging of the core subjects, reflecting the high levels of language demand it incurs. Science is an area of relative strength and mathematics appears to be intermediate, arguably because some tasks in these subjects can be performed with less reliance on verbal processing. Many children with SLI do have the potential to reach or exceed educational targets that are set

  13. Teasing Apart Explanations of a Developmental Delay in Binding: Experimental Evidence from the Comparison of SLI and Williams Syndrome

    ERIC Educational Resources Information Center

    Perovic, Alexandra; Wexler, Ken

    2018-01-01

    This study investigates the knowledge of binding in 21 English-speaking children with SLI, aged 6;08-16;05, compared to 21 children with WS, language- and age-matched, and 21 language-matched control children, aged 4-7;10. Our results demonstrate no difficulties in the interpretation of reflexive or personal pronouns in SLI, revealing an intact…

  14. The Role of Phonological Working Memory in Children with SLI

    ERIC Educational Resources Information Center

    Torrens, Vicenç; Yagüe, Esther

    2018-01-01

    This article studies three measures of phonological working memory as tools to identify SLI children: word repetition, nonce word repetition, and digit memory. We propose that a deficit in the phonological loop causes a delay in the acquisition of lexicon, morphosyntax, and discourse. In this research we try to find out whether the scores in these…

  15. Parental Perspectives during the Transition to Adulthood of Adolescents with a History of Specific Language Impairment (SLI)

    ERIC Educational Resources Information Center

    Conti-Ramsden, Gina; Botting, Nicola; Durkin, Kevin

    2008-01-01

    Purpose: This is the 2nd article of a companion set (the 1st article being on language and independence). It presents research examining parental perspectives on aspects of impairment in their offspring involving families rearing children with specific language impairment (SLI). Method: The same sample as that of the 1st study participated in this…

  16. The spatial architecture of protein function and adaptation

    PubMed Central

    McLaughlin, Richard N.; Poelwijk, Frank J.; Raman, Arjun; Gosal, Walraj S.; Ranganathan, Rama

    2014-01-01

    Statistical analysis of protein evolution suggests a design for natural proteins in which sparse networks of coevolving amino acids (termed sectors) comprise the essence of three-dimensional structure and function1, 2, 3, 4, 5. However, proteins are also subject to pressures deriving from the dynamics of the evolutionary process itself—the ability to tolerate mutation and to be adaptive to changing selection pressures6, 7, 8, 9, 10. To understand the relationship of the sector architecture to these properties, we developed a high-throughput quantitative method for a comprehensive single-mutation study in which every position is substituted individually to every other amino acid. Using a PDZ domain (PSD95pdz3) model system, we show that sector positions are functionally sensitive to mutation, whereas non-sector positions are more tolerant to substitution. In addition, we find that adaptation to a new binding specificity initiates exclusively through variation within sector residues. A combination of just two sector mutations located near and away from the ligand-binding site suffices to switch the binding specificity of PSD95pdz3 quantitatively towards a class-switching ligand. The localization of functional constraint and adaptive variation within the sector has important implications for understanding and engineering proteins. PMID:23041932

  17. Core Subjects at the End of Primary School: Identifying and Explaining Relative Strengths of Children with Specific Language Impairment (SLI)

    ERIC Educational Resources Information Center

    Durkin, Kevin; Mok, Pearl L. H.; Conti-Ramsden, Gina

    2015-01-01

    Background: In general, children with specific language impairment (SLI) tend to fall behind their typically developing (TD) peers in educational attainment. Less is known about how children with SLI fare in particular areas of the curriculum and what predicts their levels of performance. Aims: To compare the distributions of performance of…

  18. Grammatical Tense Deficits in Children with Specific Language Impairment (SLI) and Nonspecific Language Impairment: Relationships with Nonverbal IQ over Time

    ERIC Educational Resources Information Center

    Rice, Mabel L.; Tomblin, J. Bruce; Hoffman, Lesa; Richman, W. Allen; Marquis, Janet

    2004-01-01

    The relationship between children's language acquisition and their nonverbal intelligence has a long tradition of scientific inquiry. Current attention focuses on the use of nonverbal IQ level as an exclusionary criterion in the definition of specific language impairment (SLI). Grammatical tense deficits are known as a clinical marker of SLI, but…

  19. Viruses are a dominant driver of protein adaptation in mammals

    PubMed Central

    Enard, David; Cai, Le; Gwennap, Carina; Petrov, Dmitri A

    2016-01-01

    Viruses interact with hundreds to thousands of proteins in mammals, yet adaptation against viruses has only been studied in a few proteins specialized in antiviral defense. Whether adaptation to viruses typically involves only specialized antiviral proteins or affects a broad array of virus-interacting proteins is unknown. Here, we analyze adaptation in ~1300 virus-interacting proteins manually curated from a set of 9900 proteins conserved in all sequenced mammalian genomes. We show that viruses (i) use the more evolutionarily constrained proteins within the cellular functions they interact with and that (ii) despite this high constraint, virus-interacting proteins account for a high proportion of all protein adaptation in humans and other mammals. Adaptation is elevated in virus-interacting proteins across all functional categories, including both immune and non-immune functions. We conservatively estimate that viruses have driven close to 30% of all adaptive amino acid changes in the part of the human proteome conserved within mammals. Our results suggest that viruses are one of the most dominant drivers of evolutionary change across mammalian and human proteomes. DOI: http://dx.doi.org/10.7554/eLife.12469.001 PMID:27187613

  20. SLI Complex Curvature Friction Stir Weld Risk Reduction Program

    NASA Technical Reports Server (NTRS)

    Hartley, Paula J.; Schneider, Jules; Jones, Chip; Lawless, Kirby; Russell, Carolyn

    2003-01-01

    The Space Launch Initiative Program (SLI) in conjunction with the National Center for Advanced Manufacturing (NCAM) will demonstrate the ability to produce large-scale complex curvature hardware using the self-reacting friction stir welding process. This multi-phased risk reduction program includes friction stir welding process development and manufacture of a 22-ft diameter quarter dome using a conventional tooling approach; it culminates in a 27.5-ft diameter quarter dome demonstration performed on a 5-axis Universal Weld System. The design, fabrication, and installation of the Universal Weld System is made possible through a collaboration between the State of Louisiana, NASA, and the University of New Orleans. The Universal Weld System, manufactured by MTS Systems Corporation, will be installed at the Michoud Assembly Facility in New Orleans, Louisiana, and will be capable of manufacturing domes up to 30 ft in diameter. All welding will be accomplished using the Adaptable Adjustable Pin Tool (AdAPT) weld head and controller manufactured by MTS. Weld parameters will be developed for an aluminum alloy in gauges ranging from 0.320 to 0.400 in. thick. Weld quality will be verified through radiography, mechanical property testing at ambient and LN2 temperatures, and metallurgical analysis. The AdAPT weld head will then be mounted on a 22-ft diameter dome tool, which will be modified to include a welding track and drive system for moving the AdAPT weld head along the weld joint. This tool will then be used to manufacture a 22-ft diameter dome of an aluminum alloy, with 0.320-in. constant thickness joints, consisting of three individual gore panels. Finally, the 27.5-ft diameter quarter dome will be welded on the Universal Weld System. The quarter dome will consist of three individual gore panels with weld lands tapering from 0.320 to 0.360 in. in thickness. With the demonstration of these welds, the ability to manufacture large diameter domes using the friction stir

  1. Effects of Verb Familiarity on Finiteness Marking in Children with SLI

    ERIC Educational Resources Information Center

    Abel, Alyson D.

    2012-01-01

    Children must acquire multiple language dimensions to ultimately achieve adult levels of language competence. Two such language dimensions, finiteness marking and the verb lexicon, are considered areas of weakness in specific language impairment (SLI). Given these weaknesses, the question arises of whether these two dimensions are related in…

  2. Cross-linguistic transfer effects after phonologically based cognate therapy in a case of multilingual specific language impairment (SLI).

    PubMed

    Kambanaros, Maria; Michaelides, Michalis; Grohmann, Kleanthes K

    2017-05-01

    Clinicians globally recognize as exceptionally challenging the development of effective intervention practices for bi- or multilingual children with specific language impairment (SLI). Therapy in both or all of an impaired child's languages is rarely possible. An alternative is to develop treatment protocols that facilitate the transfer of therapy effects from a treated language to an untreated language. To explore whether cognates, words that share meaning and phonological features across languages, could be used to boost lexical retrieval in the context of multilingual SLI. This is dependent on exploiting the phonological information in the one, trained language as a mechanism for (phonological) language transfer to the other, untrained languages. The participant is an 8.5-year-old girl diagnosed with SLI who showed a severe naming deficit in her three spoken languages (Bulgarian, English and Greek). She received training on cognates (n = 20) using a picture-based naming task in English only, three times a week, over a 4-week period for 20 min each time. Phonological-based naming therapy was carried out using form-based strategies. There was a significant improvement during therapy and immediately after intervention on cognate performance in English which was maintained 1 month after intervention. Cognate production in Bulgarian and Greek also improved during all stages of the intervention. Improvement in the non-treated languages was slightly more than half of the improvement recorded in English. The findings reflected some degree of cross-linguistic transfer effects. Cross-linguistic transfer effects were evident during therapy and after therapy had finished and the effects were maintained 1 month post-treatment. Both the native language (Bulgarian) and the dominant language (Greek) benefitted equally from the treatment of cognates in English. Generalization to non-treatment words was evident, predominantly for English. The results suggest that cognates can

  3. The Formulation of Argument Structure in SLI: An Eye-Movement Study

    ERIC Educational Resources Information Center

    Andreu, Llorenc; Sanz-Torrent, Monica; Olmos, Joan Guardia; MacWhinney, Brian

    2013-01-01

    This study investigated the formulation of verb argument structure in Catalan- and Spanish-speaking children with specific language impairment (SLI) and typically developing age-matched controls. We compared how language production can be guided by conceptual factors, such as the organization of the entities participating in an event and knowledge…

  4. The messages they send: e-mail use by adolescents with and without a history of specific language impairment (SLI).

    PubMed

    Conti-Ramsden, Gina; Durkin, Kevin; Walker, Allan J

    2012-01-01

    Contemporary adolescents use e-mail for a variety of purposes, including peer communication and education. Research into these uses has focused on typically developing individuals; much less is known about the use of e-mail by exceptional youth. The present study examined the structure and form of e-mail messages sent by adolescents with and without a history of specific language impairment (SLI). Thirty-eight adolescents with a history of SLI and 56 typically developing (TD) peers were assessed on measures of nonverbal abilities, core language skills and literacy skills (reading and spelling). The participants were asked to compose an e-mail reply to a standard e-mail sent by an experimenter. These reply e-mails were coded for linguistic structure, readability and spelling errors. Two adult raters, blind to the participants' language ability, judged how understandable the e-mails were, how grammatically correct the e-mails were, and also the sender's command of the English language. Adolescents with a history of SLI produced e-mails that were similar to those sent by their TD peers in terms of structure and readability. However, they made significantly more spelling errors. Furthermore, the adult raters considered the messages from participants with a history of SLI to be of poorer standard than those sent by their TD peers. The findings suggest that the e-mail messages of adolescents with a history of SLI provide indicators of the sender's language and literacy skills. Implications for intervention and technology development are discussed. © 2011 Royal College of Speech and Language Therapists.

  5. Verb Argument Structure in Children with SLI: Evidence from Eye-Tracking

    ERIC Educational Resources Information Center

    Andreu, Llorenc

    2011-01-01

    Despite the problems found in relation to verbs, to date there have been few studies on the online processing of verb argument structure in children with Specific Language Impairment (SLI). This work explores the role of verb semantics and specifically verb argument structure in language comprehension and language production. To carry out the…

  6. Adapter reagents for protein site specific dye labeling.

    PubMed

    Thompson, Darren A; Evans, Eric G B; Kasza, Tomas; Millhauser, Glenn L; Dawson, Philip E

    2014-05-01

    Chemoselective protein labeling remains a significant challenge in chemical biology. Although many selective labeling chemistries have been reported, the practicalities of matching the reaction with appropriately functionalized proteins and labeling reagents is often a challenge. For example, we encountered the challenge of site specifically labeling the cellular form of the murine Prion protein with a fluorescent dye. To facilitate this labeling, a protein was expressed with site specific p-acetylphenylalanine. However, the utility of this acetophenone reactive group is hampered by the severe lack of commercially available aminooxy fluorophores. Here we outline a general strategy for the efficient solid phase synthesis of adapter reagents capable of converting maleimido-labels into aminooxy or azide functional groups that can be further tuned for desired length or solubility properties. The utility of the adapter strategy is demonstrated in the context of fluorescent labeling of the murine Prion protein through an adapted aminooxy-Alexa dye. © 2014 Wiley Periodicals, Inc.

  7. Adapter Reagents for Protein Site Specific Dye Labeling

    PubMed Central

    Thompson, Darren A.; Evans, Eric G. B.; Kasza, Tomas; Millhauser, Glenn L.; Dawson, Philip E.

    2016-01-01

    Chemoselective protein labeling remains a significant challenge in chemical biology. Although many selective labeling chemistries have been reported, the practicalities of matching the reaction with appropriately functionalized proteins and labeling reagents is often a challenge. For example, we encountered the challenge of site specifically labeling the cellular form of the murine Prion protein with a fluorescent dye. To facilitate this labeling, a protein was expressed with site specific p-acetylphenylalanine. However, the utility of this aceto-phenone reactive group is hampered by the severe lack of commercially available aminooxy fluorophores. Here we outline a general strategy for the efficient solid phase synthesis of adapter reagents capable of converting maleimido-labels into aminooxy or azide functional groups that can be further tuned for desired length or solubility properties. The utility of the adapter strategy is demonstrated in the context of fluorescent labeling of the murine Prion protein through an adapted aminooxy-Alexa dye. PMID:24599728

  8. SIRT1 is a Highly Networked Protein That Mediates the Adaptation to Chronic Physiological Stress

    PubMed Central

    Clark-Knowles, Katherine V.; Caron, Annabelle Z.; Gray, Douglas A.

    2013-01-01

    SIRT1 is a NAD+-dependent protein deacetylase that has a very large number of established protein substrates and an equally impressive list of biological functions thought to be regulated by its activity. Perhaps as notable is the remarkable number of points of conflict concerning the role of SIRT1 in biological processes. For example, evidence exists suggesting that SIRT1 is a tumor suppressor, is an oncogene, or has no effect on oncogenesis. Similarly, SIRT1 is variably reported to induce, inhibit, or have no effect on autophagy. We believe that the resolution of many conflicting results is possible by considering recent reports indicating that SIRT1 is an important hub interacting with a complex network of proteins that collectively regulate a wide variety of biological processes including cancer and autophagy. A number of the interacting proteins are themselves hubs that, like SIRT1, utilize intrinsically disordered regions for their promiscuous interactions. Many studies investigating SIRT1 function have been carried out on cell lines carrying undetermined numbers of alterations to the proteins comprising the SIRT1 network or on inbred mouse strains carrying fixed mutations affecting some of these proteins. Thus, the effects of modulating SIRT1 amount and/or activity are importantly determined by the genetic background of the cell (or the inbred strain of mice), and the effects attributed to SIRT1 are synthetic with the background of mutations and epigenetic differences between cells and organisms. Work on mice carrying alterations to the Sirt1 gene suggests that the network in which SIRT1 functions plays an important role in mediating physiological adaptation to various sources of chronic stress such as calorie restriction and calorie overload. Whether the catalytic activity of SIRT1 and the nuclear concentration of the co-factor, NAD+, are responsible for modulating this activity remains to be determined. However, the effect of modulating SIRT1 activity must

  9. Cognitive Predictors of Language Development in Children with Specific Language Impairment (SLI)

    ERIC Educational Resources Information Center

    van Daal, John; Verhoeven, Ludo; van Balkom, Hans

    2009-01-01

    Background: Language development is generally viewed as a multifactorial process. There are increasing indications that this similarly holds for the problematic language development process. Aims: A population of 97 young Dutch children with specific language impairment (SLI) was followed over a 2-year period to provide additional evidence for the…

  10. Laboratory testing of GNB switch 12 volt SLI (starting, lighting and ignition) battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardin, J.E.

    1990-03-01

    The purpose of this report is to describe the testing performed on the GNB Switch flooded lead SLI battery in the INEL Electric Vehicle Battery Laboratory, to present the results and conclusions of this testing, and to make appropriate recommendations. GNB Inc. is a Pacific Dunlop Company. The term SWITCH'' comes from the fact that this product consists of two batteries in one package which can be connected in parallel by a switch for higher cranking energy or reserve capacity. The smaller second battery is float charged through a diode. GNB advertising describes the SWITCH'' as The Battery With Amore » Spare''. The Switch, a BCI Group 24 SLI (Starting, Lighting and Ignition) battery, is manufactured in Georgia for sale throughout the US. The initial design work on the Switch was done in Australia under the Pulsar name by Dunlop. 11 figs., 3 tabs.« less

  11. Sentence Recall by Children with SLI across Two Nonmainstream Dialects of English

    ERIC Educational Resources Information Center

    Oetting, Janna B.; McDonald, Janet L.; Seidel, Christy M.; Hegarty, Michael

    2016-01-01

    Purpose: The inability to accurately recall sentences has proven to be a clinical marker of specific language impairment (SLI); this task yields moderate-to-high levels of sensitivity and specificity. However, it is not yet known if these results hold for speakers of dialects whose nonmainstream grammatical productions overlap with those that are…

  12. Do Children with SLI Use Verbs to Predict Arguments and Adjuncts: Evidence from Eye Movements During Listening

    PubMed Central

    Andreu, Llorenç; Sanz-Torrent, Mònica; Rodríguez-Ferreiro, Javier

    2016-01-01

    Different psycholinguistic theories have suggested the importance of verb semantics in rapidly anticipating upcoming information during real-time sentence comprehension. To date, no study has examined if children use verbs to predict arguments and adjuncts in sentence comprehension using children with specific language impairment (SLI). Twenty-five children with SLI (aged 5 years and 3 months to 8 years and 2 months), 25 age-matched controls (aged 5 years and 3 months to 8 years and 2 months), 25 MLU-w controls (aged 3 years and 3 months to 7 years and 1 month), and 31 adults took part in the study. The eye movements of participants were monitored while they heard 24 sentences, such as El hombre lee con atención un cuento en la cama (translation: The man carefully reads a storybook in bed), in the presence of four depicted objects, one of which was the target (storybook), another, the competitor (bed), and another two, distracters (wardrobe and grape). The proportion of looks revealed that, when the meaning of the verb was retrieved, the upcoming argument and adjunct referents were rapidly anticipated. However, the proportion of looks at the theme, source/goal and instrument referents were significantly higher than the looks at the locatives. This pattern was found in adults as well as children with and without language impairment. The present results suggest that, in terms of sentence comprehension, the ability to understand verb information is not severely impaired in children with SLI. PMID:26779063

  13. Selective autophagy mediated by autophagic adapter proteins

    PubMed Central

    Lamark, Trond

    2011-01-01

    Mounting evidence suggests that autophagy is a more selective process than originally anticipated. The discovery and characterization of autophagic adapters, like p62 and NBR1, has provided mechanistic insight into this process. p62 and NBR1 are both selectively degraded by autophagy and able to act as cargo receptors for degradation of ubiquitinated substrates. A direct interaction between these autophagic adapters and the autophagosomal marker protein LC3, mediated by a so-called LIR (LC3-interacting region) motif, their inherent ability to polymerize or aggregate as well as their ability to specifically recognize substrates are required for efficient selective autophagy. These three required features of autophagic cargo receptors are evolutionarily conserved and also employed in the yeast cytoplasm-to-vacuole targeting (Cvt) pathway and in the degradation of P granules in C. elegans. Here, we review the mechanistic basis of selective autophagy in mammalian cells discussing the degradation of misfolded proteins, p62 bodies, aggresomes, mitochondria and invading bacteria. The emerging picture of selective autophagy affecting the regulation of cell signaling with consequences for oxidative stress responses, tumorigenesis and innate immunity is also addressed. PMID:21189453

  14. Can you spell dyslexia without SLI? Comparing the cognitive profiles of dyslexia and specific language impairment and their roles in learning.

    PubMed

    Alloway, Tracy Packiam; Tewolde, Furtuna; Skipper, Dakota; Hijar, David

    2017-06-01

    The aim of the present study is to explore whether those with Specific Language Impairment (SLI) and dyslexia display distinct or overlapping cognitive profiles with respect to learning outcomes. In particular, we were interested in two key cognitive skills associated with academic performance - working memory and IQ. We recruited three groups of children - those with SLI, those with dyslexia, and a control group. All children were given standardized tests of working memory, IQ (vocabulary and matrix), spelling, and math. The pattern of results suggests that both children with dyslexia and SLI are characterized with poorer verbal working memory and IQ compared to controls, but preserved nonverbal cognitive skills. It appears that that these two disorder groups cannot be distinguished by the severity of their cognitive deficits. However, there was a differential pattern with respect to learning outcomes, where the children with dyslexia rely more on visual skills in spelling, while those with SLI use their relative strengths in vocabulary. These findings can have important implications for how intervention is tailored in the classroom, as disorder-specific support could yield important gains in learning. Copyright © 2017. Published by Elsevier Ltd.

  15. Simulating Sli: General Cognitive Processing Stressors Can Produce a Specific Linguistic Profile.

    ERIC Educational Resources Information Center

    Hayiou-Thomas, Marianna E.; Bishop, Dorothy V.M.; Plunkett, Kim

    2004-01-01

    This study attempted to model specific language impairment (SLI) in a group of 6year-old children with typically developing language by introducing cognitive stress factors into a grammaticality judgment task. At normal speech rate, all children had near-perfect performance. When the speech signal was compressed to 50% of its original rate, to…

  16. COBRA System Engineering Processes to Achieve SLI Strategic Goals

    NASA Technical Reports Server (NTRS)

    Ballard, Richard O.

    2003-01-01

    The COBRA Prototype Main Engine Development Project was an endeavor conducted as a joint venture between Pratt & Whitney and Aerojet to conduct risk reduction in LOX/LH2 main engine technology for the NASA Space Launch Initiative (SLI). During the seventeen months of the project (April 2001 to September 2002), approximately seventy reviews were conducted, beginning with the Engine Systems Requirements Review (SRR) and ending with the Engine Systems Interim Design Review (IDR). This paper discusses some of the system engineering practices used to support the reviews and the overall engine development effort.

  17. Mammalian Per-Arnt-Sim proteins in environmental adaptation.

    PubMed

    McIntosh, Brian E; Hogenesch, John B; Bradfield, Christopher A

    2010-01-01

    The Per-Arnt-Sim (PAS) domain is conserved across the kingdoms of life and found in an ever-growing list of proteins. This domain can bind to and sense endogenous or xenobiotic small molecules such as molecular oxygen, cellular metabolites, or polyaromatic hydrocarbons. Members of this family are often found in pathways that regulate responses to environmental change; in mammals these include the hypoxia, circadian, and dioxin response pathways. These pathways function in development and throughout life to regulate cellular, organ, and whole-organism adaptive responses. Remarkably, in the case of the clock, this adaptation includes anticipation of environmental change. In this review, we summarize the roles of PAS domain-containing proteins in mammals. We provide structural evidence that functionally classifies both known and unknown biological roles. Finally, we discuss the role of PAS proteins in anticipation of and adaptation to environmental change.

  18. Rice G-protein subunits qPE9-1 and RGB1 play distinct roles in abscisic acid responses and drought adaptation.

    PubMed

    Zhang, Dong-Ping; Zhou, Yong; Yin, Jian-Feng; Yan, Xue-Jiao; Lin, Sheng; Xu, Wei-Feng; Baluška, František; Wang, Yi-Ping; Xia, Yi-Ji; Liang, Guo-hua; Liang, Jian-Sheng

    2015-10-01

    Heterotrimeric GTP-binding protein (G-protein)-mediated abscisic acid (ABA) and drought-stress responses have been documented in numerous plant species. However, our understanding of the function of rice G-protein subunits in ABA signalling and drought tolerance is limited. In this study, the function of G-protein subunits in ABA response and drought resistance in rice plants was explored. It was found that the transcription level of qPE9-1 (rice Gγ subunit) gradually decreased with increasing ABA concentration and the lack of qPE9-1 showed an enhanced drought tolerance in rice plants. In contrast, mRNA levels of RGB1 (rice Gβ subunit) were significantly upregulated by ABA treatment and the lack of RGB1 led to reduced drought tolerance. Furthermore, the results suggested that qPE9-1 negatively regulates the ABA response by suppressing the expression of key transcription factors involved in ABA and stress responses, while RGB1 positively regulates ABA biosynthesis by upregulating NCED gene expression under both normal and drought stress conditions. Taken together, it is proposed that RGB1 is a positive regulator of the ABA response and drought adaption in rice plants, whereas qPE9-1 is modulated by RGB1 and functions as a negative regulator in the ABA-dependent drought-stress responses. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  19. The golgin protein Coy1 functions in intra-Golgi retrograde transport and interacts with the COG complex and Golgi SNAREs

    PubMed Central

    Anderson, Nadine S.; Mukherjee, Indrani; Bentivoglio, Christine M.; Barlowe, Charles

    2017-01-01

    Extended coiled-coil proteins of the golgin family play prominent roles in maintaining the structure and function of the Golgi complex. Here we further investigate the golgin protein Coy1 and document its function in retrograde transport between early Golgi compartments. Cells that lack Coy1 displayed a reduced half-life of the Och1 mannosyltransferase, an established cargo of intra-Golgi retrograde transport. Combining the coy1Δ mutation with deletions in other putative retrograde golgins (sgm1Δ and rud3Δ) caused strong glycosylation and growth defects and reduced membrane association of the conserved oligomeric Golgi (COG) complex. In contrast, overexpression of COY1 inhibited the growth of mutant strains deficient in fusion activity at the Golgi (sed5-1 and sly1-ts). To map Coy1 protein interactions, coimmunoprecipitation experiments revealed an association with the COG complex and with intra-Golgi SNARE proteins. These physical interactions are direct, as Coy1 was efficiently captured in vitro by Lobe A of the COG complex and the purified SNARE proteins Gos1, Sed5, and Sft1. Thus our genetic, in vivo, and biochemical data indicate a role for Coy1 in regulating COG complex-dependent fusion of retrograde-directed COPI vesicles. PMID:28794270

  20. Speech perception and phonological short-term memory capacity in language impairment: preliminary evidence from adolescents with specific language impairment (SLI) and autism spectrum disorders (ASD).

    PubMed

    Loucas, Tom; Riches, Nick Greatorex; Charman, Tony; Pickles, Andrew; Simonoff, Emily; Chandler, Susie; Baird, Gillian

    2010-01-01

    The cognitive bases of language impairment in specific language impairment (SLI) and autism spectrum disorders (ASD) were investigated in a novel non-word comparison task which manipulated phonological short-term memory (PSTM) and speech perception, both implicated in poor non-word repetition. This study aimed to investigate the contributions of PSTM and speech perception in non-word processing and whether individuals with SLI and ASD plus language impairment (ALI) show similar or different patterns of deficit in these cognitive processes. Three groups of adolescents (aged 14-17 years), 14 with SLI, 16 with ALI, and 17 age and non-verbal IQ matched typically developing (TD) controls, made speeded discriminations between non-word pairs. Stimuli varied in PSTM load (two- or four-syllables) and speech perception load (mismatches on a word-initial or word-medial segment). Reaction times showed effects of both non-word length and mismatch position and these factors interacted: four-syllable and word-initial mismatch stimuli resulted in the slowest decisions. Individuals with language impairment showed the same pattern of performance as those with typical development in the reaction time data. A marginal interaction between group and item length was driven by the SLI and ALI groups being less accurate with long items than short ones, a difference not found in the TD group. Non-word discrimination suggests that there are similarities and differences between adolescents with SLI and ALI and their TD peers. Reaction times appear to be affected by increasing PSTM and speech perception loads in a similar way. However, there was some, albeit weaker, evidence that adolescents with SLI and ALI are less accurate than TD individuals, with both showing an effect of PSTM load. This may indicate, at some level, the processing substrate supporting both PSTM and speech perception is intact in adolescents with SLI and ALI, but also in both there may be impaired access to PSTM resources.

  1. Dietary protein for athletes: from requirements to optimum adaptation.

    PubMed

    Phillips, Stuart M; Van Loon, Luc J C

    2011-01-01

    Opinion on the role of protein in promoting athletic performance is divided along the lines of how much aerobic-based versus resistance-based activity the athlete undertakes. Athletes seeking to gain muscle mass and strength are likely to consume higher amounts of dietary protein than their endurance-trained counterparts. The main belief behind the large quantities of dietary protein consumption in resistance-trained athletes is that it is needed to generate more muscle protein. Athletes may require protein for more than just alleviation of the risk for deficiency, inherent in the dietary guidelines, but also to aid in an elevated level of functioning and possibly adaptation to the exercise stimulus. It does appear, however, that there is a good rationale for recommending to athletes protein intakes that are higher than the RDA. Our consensus opinion is that leucine, and possibly the other branched-chain amino acids, occupy a position of prominence in stimulating muscle protein synthesis; that protein intakes in the range of 1.3-1.8 g · kg(-1) · day(-1) consumed as 3-4 isonitrogenous meals will maximize muscle protein synthesis. These recommendations may also be dependent on training status: experienced athletes would require less, while more protein should be consumed during periods of high frequency/intensity training. Elevated protein consumption, as high as 1.8-2.0 g · kg(-1) · day(-1) depending on the caloric deficit, may be advantageous in preventing lean mass losses during periods of energy restriction to promote fat loss.

  2. Adaptive resolution simulation of an atomistic protein in MARTINI water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zavadlav, Julija; Melo, Manuel Nuno; Marrink, Siewert J., E-mail: s.j.marrink@rug.nl

    2014-02-07

    We present an adaptive resolution simulation of protein G in multiscale water. We couple atomistic water around the protein with mesoscopic water, where four water molecules are represented with one coarse-grained bead, farther away. We circumvent the difficulties that arise from coupling to the coarse-grained model via a 4-to-1 molecule coarse-grain mapping by using bundled water models, i.e., we restrict the relative movement of water molecules that are mapped to the same coarse-grained bead employing harmonic springs. The water molecules change their resolution from four molecules to one coarse-grained particle and vice versa adaptively on-the-fly. Having performed 15 ns long molecularmore » dynamics simulations, we observe within our error bars no differences between structural (e.g., root-mean-squared deviation and fluctuations of backbone atoms, radius of gyration, the stability of native contacts and secondary structure, and the solvent accessible surface area) and dynamical properties of the protein in the adaptive resolution approach compared to the fully atomistically solvated model. Our multiscale model is compatible with the widely used MARTINI force field and will therefore significantly enhance the scope of biomolecular simulations.« less

  3. Adaptive resolution simulation of an atomistic protein in MARTINI water.

    PubMed

    Zavadlav, Julija; Melo, Manuel Nuno; Marrink, Siewert J; Praprotnik, Matej

    2014-02-07

    We present an adaptive resolution simulation of protein G in multiscale water. We couple atomistic water around the protein with mesoscopic water, where four water molecules are represented with one coarse-grained bead, farther away. We circumvent the difficulties that arise from coupling to the coarse-grained model via a 4-to-1 molecule coarse-grain mapping by using bundled water models, i.e., we restrict the relative movement of water molecules that are mapped to the same coarse-grained bead employing harmonic springs. The water molecules change their resolution from four molecules to one coarse-grained particle and vice versa adaptively on-the-fly. Having performed 15 ns long molecular dynamics simulations, we observe within our error bars no differences between structural (e.g., root-mean-squared deviation and fluctuations of backbone atoms, radius of gyration, the stability of native contacts and secondary structure, and the solvent accessible surface area) and dynamical properties of the protein in the adaptive resolution approach compared to the fully atomistically solvated model. Our multiscale model is compatible with the widely used MARTINI force field and will therefore significantly enhance the scope of biomolecular simulations.

  4. Subject Case in Children with SLI and Unaffected Controls: Evidence for the Agr/Tns Omission Model.

    ERIC Educational Resources Information Center

    Wexler, Kenneth; Rice, Mabel; Schutze, Carson T.

    1998-01-01

    Presents new evidence for the view that specific language impairment (SLI) involves a syntactic-feature deficit within non-evident grammar. The data involve morphological case and its interaction with verbal inflection. (Author/VWL)

  5. How protein materials balance strength, robustness, and adaptability

    PubMed Central

    Buehler, Markus J.; Yung, Yu Ching

    2010-01-01

    Proteins form the basis of a wide range of biological materials such as hair, skin, bone, spider silk, or cells, which play an important role in providing key functions to biological systems. The focus of this article is to discuss how protein materials are capable of balancing multiple, seemingly incompatible properties such as strength, robustness, and adaptability. To illustrate this, we review bottom-up materiomics studies focused on the mechanical behavior of protein materials at multiple scales, from nano to macro. We focus on alpha-helix based intermediate filament proteins as a model system to explain why the utilization of hierarchical structural features is vital to their ability to combine strength, robustness, and adaptability. Experimental studies demonstrating the activation of angiogenesis, the growth of new blood vessels, are presented as an example of how adaptability of structure in biological tissue is achieved through changes in gene expression that result in an altered material structure. We analyze the concepts in light of the universality and diversity of the structural makeup of protein materials and discuss the findings in the context of potential fundamental evolutionary principles that control their nanoscale structure. We conclude with a discussion of multiscale science in biology and de novo materials design. PMID:20676305

  6. Role of the adapter protein Abi1 in actin-associated signaling and smooth muscle contraction.

    PubMed

    Wang, Tao; Cleary, Rachel A; Wang, Ruping; Tang, Dale D

    2013-07-12

    Actin filament polymerization plays a critical role in the regulation of smooth muscle contraction. However, our knowledge regarding modulation of the actin cytoskeleton in smooth muscle just begins to accumulate. In this study, stimulation with acetylcholine (ACh) induced an increase in the association of the adapter protein c-Abl interactor 1 (Abi1) with neuronal Wiskott-Aldrich syndrome protein (N-WASP) (an actin-regulatory protein) in smooth muscle cells/tissues. Furthermore, contractile stimulation activated N-WASP in live smooth muscle cells as evidenced by changes in fluorescence resonance energy transfer efficiency of an N-WASP sensor. Abi1 knockdown by lentivirus-mediated RNAi inhibited N-WASP activation, actin polymerization, and contraction in smooth muscle. However, Abi1 silencing did not affect myosin regulatory light chain phosphorylation at Ser-19 in smooth muscle. In addition, c-Abl tyrosine kinase and Crk-associated substrate (CAS) have been shown to regulate smooth muscle contraction. The interaction of Abi1 with c-Abl and CAS has not been investigated. Here, contractile activation induced formation of a multiprotein complex including c-Abl, CAS, and Abi1. Knockdown of c-Abl and CAS attenuated the activation of Abi1 during contractile activation. More importantly, Abi1 knockdown inhibited c-Abl phosphorylation at Tyr-412 and the interaction of c-Abl with CAS. These results suggest that Abi1 is an important component of the cellular process that regulates N-WASP activation, actin dynamics, and contraction in smooth muscle. Abi1 is activated by the c-Abl-CAS pathway, and Abi1 reciprocally controls the activation of its upstream regulator c-Abl.

  7. Role of the Adapter Protein Abi1 in Actin-associated Signaling and Smooth Muscle Contraction*

    PubMed Central

    Wang, Tao; Cleary, Rachel A.; Wang, Ruping; Tang, Dale D.

    2013-01-01

    Actin filament polymerization plays a critical role in the regulation of smooth muscle contraction. However, our knowledge regarding modulation of the actin cytoskeleton in smooth muscle just begins to accumulate. In this study, stimulation with acetylcholine (ACh) induced an increase in the association of the adapter protein c-Abl interactor 1 (Abi1) with neuronal Wiskott-Aldrich syndrome protein (N-WASP) (an actin-regulatory protein) in smooth muscle cells/tissues. Furthermore, contractile stimulation activated N-WASP in live smooth muscle cells as evidenced by changes in fluorescence resonance energy transfer efficiency of an N-WASP sensor. Abi1 knockdown by lentivirus-mediated RNAi inhibited N-WASP activation, actin polymerization, and contraction in smooth muscle. However, Abi1 silencing did not affect myosin regulatory light chain phosphorylation at Ser-19 in smooth muscle. In addition, c-Abl tyrosine kinase and Crk-associated substrate (CAS) have been shown to regulate smooth muscle contraction. The interaction of Abi1 with c-Abl and CAS has not been investigated. Here, contractile activation induced formation of a multiprotein complex including c-Abl, CAS, and Abi1. Knockdown of c-Abl and CAS attenuated the activation of Abi1 during contractile activation. More importantly, Abi1 knockdown inhibited c-Abl phosphorylation at Tyr-412 and the interaction of c-Abl with CAS. These results suggest that Abi1 is an important component of the cellular process that regulates N-WASP activation, actin dynamics, and contraction in smooth muscle. Abi1 is activated by the c-Abl-CAS pathway, and Abi1 reciprocally controls the activation of its upstream regulator c-Abl. PMID:23740246

  8. Neutron scattering reveals the dynamic basis of protein adaptation to extreme temperature.

    PubMed

    Tehei, Moeava; Madern, Dominique; Franzetti, Bruno; Zaccai, Giuseppe

    2005-12-09

    To explore protein adaptation to extremely high temperatures, two parameters related to macromolecular dynamics, the mean square atomic fluctuation and structural resilience, expressed as a mean force constant, were measured by neutron scattering for hyperthermophilic malate dehydrogenase from Methanococcus jannaschii and a mesophilic homologue, lactate dehydrogenase from Oryctolagus cunniculus (rabbit) muscle. The root mean square fluctuations, defining flexibility, were found to be similar for both enzymes (1.5 A) at their optimal activity temperature. Resilience values, defining structural rigidity, are higher by an order of magnitude for the high temperature-adapted protein (0.15 Newtons/meter for O. cunniculus lactate dehydrogenase and 1.5 Newtons/meter for M. jannaschii malate dehydrogenase). Thermoadaptation appears to have been achieved by evolution through selection of appropriate structural rigidity in order to preserve specific protein structure while allowing the conformational flexibility required for activity.

  9. SLI381 (Adderall XR), a two-component, extended-release formulation of mixed amphetamine salts: bioavailability of three test formulations and comparison of fasted, fed, and sprinkled administration.

    PubMed

    Tulloch, Simon J; Zhang, Yuxin; McLean, Angus; Wolf, Kathleen N

    2002-11-01

    To assess the bioavailability of three test formulations of a single dose of extended-release Adderall 20-mg capsules compared with two doses of immediate-release Adderall 10-mg tablets, and to assess the bioequivalence of a single 30-mg dose of the chosen extended-release Adderall formulation (designated as SLI381) administered in applesauce (sprinkled) and the same dose administered as an intact capsule with or without food. Randomized, open-label, crossover study. Clinical research unit. Forty-one healthy adults. Study A had four treatment sequences: three test formulations (A, B, and C) of a single dose of extended-release Adderall 20 mg, and two 10-mg doses of Adderall given 4 hours apart. Study B had three treatment sequences: a single dose of SLI381 30 mg as an intact capsule after overnight fast, an intact capsule after a high-fat breakfast, and the contents of a capsule sprinkled in 1 tablespoon of applesauce. The 20-mg test formulation A had comparable pharmacokinetic profiles and bioequivalence in rate and extent of drug absorption to Adderall 10 mg twice/day for both d- and l-amphetamine. Formulations B and C had statistically significant differences from the reference drug in some pharmacokinetic parameters. A 30-mg dose of SLI381 showed no significant differences in rate and extent of absorption of d- and l-amphetamine for fasted or sprinkled conditions compared with the high-fat meal condition. SLI381 20 mg/day is bioequivalent to Adderall 10 mg twice/day. SLI381 30 mg administered in applesauce is bioequivalent in terms of both rate and extent of absorption to the same dose administered as an intact capsule in both fasted and fed states.

  10. Targeting Toll-like receptor (TLR) signaling by Toll/interleukin-1 receptor (TIR) domain-containing adapter protein/MyD88 adapter-like (TIRAP/Mal)-derived decoy peptides.

    PubMed

    Couture, Leah A; Piao, Wenji; Ru, Lisa W; Vogel, Stefanie N; Toshchakov, Vladimir Y

    2012-07-13

    Toll/interleukin-1 receptor (TIR) domain-containing adapter protein/MyD88 adapter-like (TIRAP/Mal) is an adapter protein that facilitates recruitment of MyD88 to TLR4 and TLR2 signaling complexes. We previously generated a library of cell-permeating TLR4 TIR-derived decoy peptides fused to the translocating segment of the Drosophila Antennapedia homeodomain and examined each peptide for the ability to inhibit TLR4 signaling (Toshchakov, V. Y., Szmacinski, H., Couture, L. A., Lakowicz, J. R., and Vogel, S. N. (2011) J. Immunol. 186, 4819-4827). We have now expanded this study to test TIRAP decoy peptides. Five TIRAP peptides, TR3 (for TIRAP region 3), TR5, TR6, TR9, and TR11, inhibited LPS-induced cytokine mRNA expression and MAPK activation. Inhibition was confirmed at the protein level; select peptides abolished the LPS-induced cytokine production measured in cell culture 24 h after a single treatment. Two of the TLR4 inhibitory peptides, TR3 and TR6, also inhibited cytokine production induced by a TLR2/TLR1 agonist, S-(2,3-bis(palmitoyloxy)-(2R,2S)-propyl)-N-palmitoyl-(R)-Cys-Ser-Lys(4)-OH; however, a higher peptide concentration was required to achieve comparable inhibition of TLR2 versus TLR4 signaling. Two TLR4 inhibitory peptides, TR5 and TR6, were examined for the ability to inhibit TLR4-driven cytokine induction in mice. Pretreatment with either peptide significantly reduced circulating TNF-α and IL-6 in mice following LPS injection. This study has identified novel TLR inhibitory peptides that block cellular signaling at low micromolar concentrations in vitro and in vivo. Comparison of TLR4 inhibition by TLR4 and TIRAP TIR-derived peptides supports the view that structurally diverse regions mediate functional interactions of TIR domains.

  11. Development of Morphosyntactic Accuracy and Grammatical Complexity in Dutch School-Age Children with SLI

    ERIC Educational Resources Information Center

    Zwitserlood, Rob; van Weerdenburg, Marjolijn; Verhoeven, Ludo; Wijnen, Frank

    2015-01-01

    Purpose: The purpose of this study was to identify the development of morphosyntactic accuracy and grammatical complexity in Dutch school-age children with specific language impairment (SLI). Method: Morphosyntactic accuracy, the use of dummy auxiliaries, and complex syntax were assessed using a narrative task that was administered at three points…

  12. Biology in the Dry Seed: Transcriptome Changes Associated with Dry Seed Dormancy and Dormancy Loss in the Arabidopsis GA-Insensitive sleepy1-2 Mutant

    PubMed Central

    Nelson, Sven K.; Ariizumi, Tohru; Steber, Camille M.

    2017-01-01

    Plant embryos can survive years in a desiccated, quiescent state within seeds. In many species, seeds are dormant and unable to germinate at maturity. They acquire the capacity to germinate through a period of dry storage called after-ripening (AR), a biological process that occurs at 5–15% moisture when most metabolic processes cease. Because stored transcripts are among the first proteins translated upon water uptake, they likely impact germination potential. Transcriptome changes associated with the increased seed dormancy of the GA-insensitive sly1-2 mutant, and with dormancy loss through long sly1-2 after-ripening (19 months) were characterized in dry seeds. The SLY1 gene was needed for proper down-regulation of translation-associated genes in mature dry seeds, and for AR up-regulation of these genes in germinating seeds. Thus, sly1-2 seed dormancy may result partly from failure to properly regulate protein translation, and partly from observed differences in transcription factor mRNA levels. Two positive regulators of seed dormancy, DELLA GAI (GA-INSENSITIVE) and the histone deacetylase HDA6/SIL1 (MODIFIERS OF SILENCING1) were strongly AR-down-regulated. These transcriptional changes appeared to be functionally relevant since loss of GAI function and application of a histone deacetylase inhibitor led to decreased sly1-2 seed dormancy. Thus, after-ripening may increase germination potential over time by reducing dormancy-promoting stored transcript levels. Differences in transcript accumulation with after-ripening correlated to differences in transcript stability, such that stable mRNAs appeared AR-up-regulated, and unstable transcripts AR-down-regulated. Thus, relative transcript levels may change with dry after-ripening partly as a consequence of differences in mRNA turnover. PMID:29312402

  13. 'Sly grog' and 'homebrew': a qualitative examination of illicit alcohol and some of its impacts on Indigenous communities with alcohol restrictions in regional and remote Queensland (Australia).

    PubMed

    Fitts, Michelle S; Robertson, Jan; Towle, Simon; Doran, Chris M; McDermott, Robyn; Miller, Adrian; Margolis, Stephen; Ypinazar, Valmae; Clough, Alan R

    2017-08-01

    Indigenous communities in Queensland (Australia) have been subject to Alcohol Management Plans since 2002/03, with significant penalties for breaching restrictions. 'Sly grog' and 'homebrew' provide access to alcohol despite restrictions. This paper describes how this alcohol is made available and the risks and impacts involved. In affected towns and communities across a large area of rural and remote Queensland, interviews and focus groups documented experiences and views of 255 long-standing community members and service providers. Using an inductive framework, transcribed interviews were analysed to identify supply mechanisms, community and service provider responses and impacts experienced. 'Homebrew' was reportedly manufactured in just a few localities, in locally-specific forms bringing locally-specific harms. However, 'sly grog' sourced from licensed premises located long distances from communities, is a widespread concern across the region. 'Sly grog' sellers circumvent retailers' takeaway liquor license conditions, stockpile alcohol outside restricted areas, send hoax messages to divert enforcement and take extraordinary risks to avoid apprehension. Police face significant challenges to enforce restrictions. On-selling of 'sly grog' appears more common in remote communities with total prohibition. Despite different motives for involvement in an illicit trade 'sly grog' consumers and sellers receive similar penalties. There is a need for: (a) a more sophisticated regional approach to managing takeaway alcohol sales from licensed suppliers, (b) targeted penalties for 'sly grog' sellers that reflect its significant community impact, (c) strategies to reduce the demand for alcohol and (d) research to assess the effects of these strategies in reducing harms.

  14. [Quasi-adaptive response to alkylating agents in Escherichia coli and Ada-protein functions].

    PubMed

    Vasil'eva, S V; Moshkovskaia, E Iu; Terekhov, A S; Mikoian, V D; Vanin, A F

    2008-01-01

    In 2005 we have described in exponentially growing E. coli cells a new fundamental genetic phenomenon,--quasi-adaptive response to alkylating compounds (quasi-Ada). Phenotypic expression of quasi-Ada is similar to the true Ada response. However, in contrast to the letter, it develops in the course of pretreatment of the cells by a sublethal dose of nonalkylating agent, an NO-containing dinitrosyl iron complex with glutathione (DNICglu). To reveal the mechanisms of quasi-adaptation and its association with the function of the Ada regulatory protein, here we used a unique property of dual gene expression regulation of aidB1 gene, a part of the Ada-regulon, namely its relative independence from Ada protein in anaerobic conditions. Based on the results of aidB1 gene expression analysis an EPR spectra of E. coli MV2176 cells (aidB1::lacZ) in aerobic and anaerobic conditions after the corresponding treatments, we conclude that the function and the spatial structure of meAda and [(Cys-)2Fe+(NO+)2]Ada are identical and thus the nitrosylated protein represents a regulator of the Ada regulon gene expression during quasi-adaptation development.

  15. Enablers and challenges of post-16 education and employment outcomes: the perspectives of young adults with a history of SLI.

    PubMed

    Carroll, Catherine; Dockrell, Julie

    2012-01-01

    Research studies have begun to investigate the post-16 outcomes for young adults with a specific language impairment (SLI). As yet only tentative conclusions can be drawn with respect to academic and employment outcomes and the factors that are associated with more positive outcomes. Evidence for these findings has relied predominantly on associations between various language, academic and psychosocial assessments. Little attention has been paid to the perspective of the young person. To investigate from the perspective of a group of young people with a history of SLI the factors they believed have enabled and presented a challenge to their post-16 education and employment outcomes and experiences. Nineteen (four female, 15 male) young people aged from 19 to 23 years (average age 21 years), who had all attended the same residential special school for pupils with SLI, were interviewed face to face to explore their views as to what had enabled and limited their transition experiences to date. The data were analysed using thematic analysis. The majority of the young people saw themselves as key agents of change and very active participants in steering their own transition since leaving school. They acknowledged the important role played by their parents and families and how factors such as SLI had affected their transition experiences. The study supports evidence from research with different groups of young people with special educational needs (SEN) and disabilities of the importance of school and post-16 curriculums which develop agency on behalf of the young person. © 2012 Royal College of Speech and Language Therapists.

  16. Co-evolution of proteins and solutions: protein adaptation versus cytoprotective micromolecules and their roles in marine organisms.

    PubMed

    Yancey, Paul H; Siebenaller, Joseph F

    2015-06-01

    Organisms experience a wide range of environmental factors such as temperature, salinity and hydrostatic pressure, which pose challenges to biochemical processes. Studies on adaptations to such factors have largely focused on macromolecules, especially intrinsic adaptations in protein structure and function. However, micromolecular cosolutes can act as cytoprotectants in the cellular milieu to affect biochemical function and they are now recognized as important extrinsic adaptations. These solutes, both inorganic and organic, have been best characterized as osmolytes, which accumulate to reduce osmotic water loss. Singly, and in combination, many cosolutes have properties beyond simple osmotic effects, e.g. altering the stability and function of proteins in the face of numerous stressors. A key example is the marine osmolyte trimethylamine oxide (TMAO), which appears to enhance water structure and is excluded from peptide backbones, favoring protein folding and stability and counteracting destabilizers like urea and temperature. Co-evolution of intrinsic and extrinsic adaptations is illustrated with high hydrostatic pressure in deep-living organisms. Cytosolic and membrane proteins and G-protein-coupled signal transduction in fishes under pressure show inhibited function and stability, while revealing a number of intrinsic adaptations in deep species. Yet, intrinsic adaptations are often incomplete, and those fishes accumulate TMAO linearly with depth, suggesting a role for TMAO as an extrinsic 'piezolyte' or pressure cosolute. Indeed, TMAO is able to counteract the inhibitory effects of pressure on the stability and function of many proteins. Other cosolutes are cytoprotective in other ways, such as via antioxidation. Such observations highlight the importance of considering the cellular milieu in biochemical and cellular adaptation. © 2015. Published by The Company of Biologists Ltd.

  17. Prolonged Adaptation to a Low or High Protein Diet Does Not Modulate Basal Muscle Protein Synthesis Rates - A Substudy.

    PubMed

    Hursel, Rick; Martens, Eveline A P; Gonnissen, Hanne K J; Hamer, Henrike M; Senden, Joan M G; van Loon, Luc J C; Westerterp-Plantenga, Margriet S

    2015-01-01

    Based on controlled 36 h experiments a higher dietary protein intake causes a positive protein balance and a negative fat balance. A positive net protein balance may support fat free mass accrual. However, few data are available on the impact of more prolonged changes in habitual protein intake on whole-body protein metabolism and basal muscle protein synthesis rates. To assess changes in whole-body protein turnover and basal muscle protein synthesis rates following 12 weeks of adaptation to a low versus high dietary protein intake. A randomized parallel study was performed in 40 subjects who followed either a high protein (2.4 g protein/kg/d) or low protein (0.4 g protein/kg/d) energy-balanced diet (30/35/35% or 5/60/35% energy from protein/carbohydrate/fat) for a period of 12 weeks. A subgroup of 7 men and 8 women (body mass index: 22.8±2.3 kg/m2, age: 24.3±4.9 y) were selected to evaluate the impact of prolonged adaptation to either a high or low protein intake on whole body protein metabolism and basal muscle protein synthesis rates. After the diet, subjects received continuous infusions with L-[ring-2H5]phenylalanine and L-[ring-2H2]tyrosine in an overnight fasted state, with blood samples and muscle biopsies being collected to assess post-absorptive whole-body protein turnover and muscle protein synthesis rates in vivo in humans. After 12 weeks of intervention, whole-body protein balance in the fasted state was more negative in the high protein treatment when compared with the low protein treatment (-4.1±0.5 vs -2.7±0.6 μmol phenylalanine/kg/h;P<0.001). Whole-body protein breakdown (43.0±4.4 vs 37.8±3.8 μmol phenylalanine/kg/h;P<0.03), synthesis (38.9±4.2 vs 35.1±3.6 μmol phenylalanine/kg/h;P<0.01) and phenylalanine hydroxylation rates (4.1±0.6 vs 2.7±0.6 μmol phenylalanine/kg/h;P<0.001) were significantly higher in the high vs low protein group. Basal muscle protein synthesis rates were maintained on a low vs high protein diet (0.042±0.01 vs 0

  18. Differential protein expression during colonic adaptation in ultra-short bowel rats

    PubMed Central

    Jiang, Hai-Ping; Chen, Tao; Yan, Guang-Rong; Chen, Dan

    2011-01-01

    AIM: To investigate the proteins involved in colonic adaptation and molecular mechanisms of colonic adaptation in rats with ultra-short bowel syndrome (USBS). METHODS: Sprague Dawley rats were randomly assigned to three groups: USBS group (10 rats) undergoing an approximately 90%-95% small bowel resection; sham-operation group (10 rats) undergoing small bowel transaction and anastomosis; and control group (ten normal rats). Colon morphology and differential protein expression was analyzed after rats were given post-surgical enteral nutrition for 21 d. Protein expression in the colonic mucosa was analyzed by two-dimensional electrophoresis (2-DE) in all groups. Differential protein spots were detected by ImageMaster 2D Platinum software and were further analyzed with matrix-assisted laser desorption/ionization-time-of-flight/time-of-flight-mass spectrometric (MALDI-TOF/TOF-MS) analysis. RESULTS: The colonic mucosal thickness significantly increased in the USBS group compared with the control group (302.1 ± 16.9 μm vs 273.7 ± 16.0 μm, P < 0.05). There was no statistically significant difference between the sham-operation group and control group (P > 0.05). The height of colon plica markedly improved in USBS group compared with the control group (998.4 ± 81.2 μm vs 883.4 ± 39.0 μm, P < 0.05). There was no statistically significant difference between the sham-operation and control groups (P > 0.05). A total of 141 differential protein spots were found in the USBS group. Forty-nine of these spots were down-regulated while 92 protein spots were up-regulated by over 2-folds. There were 133 differential protein spots in USBS group. Thirty of these spots were down-regulated and 103 were up-regulated. There were 47 common differential protein spots among the three groups, including 17 down-regulated protein spots and 30 up-regulated spots. Among 47 differential spots, eight up-regulated proteins were identified by MALDI-TOF/TOF-MS. These proteins were previously

  19. Differential protein expression during colonic adaptation in ultra-short bowel rats.

    PubMed

    Jiang, Hai-Ping; Chen, Tao; Yan, Guang-Rong; Chen, Dan

    2011-05-28

    To investigate the proteins involved in colonic adaptation and molecular mechanisms of colonic adaptation in rats with ultra-short bowel syndrome (USBS). Sprague Dawley rats were randomly assigned to three groups: USBS group (10 rats) undergoing an approximately 90%-95% small bowel resection; sham-operation group (10 rats) undergoing small bowel transaction and anastomosis; and control group (ten normal rats). Colon morphology and differential protein expression was analyzed after rats were given post-surgical enteral nutrition for 21 d. Protein expression in the colonic mucosa was analyzed by two-dimensional electrophoresis (2-DE) in all groups. Differential protein spots were detected by ImageMaster 2D Platinum software and were further analyzed with matrix-assisted laser desorption/ionization-time-of-flight/time-of-flight-mass spectrometric (MALDI-TOF/TOF-MS) analysis. The colonic mucosal thickness significantly increased in the USBS group compared with the control group (302.1 ± 16.9 μm vs 273.7 ± 16.0 μm, P < 0.05). There was no statistically significant difference between the sham-operation group and control group (P > 0.05). The height of colon plica markedly improved in USBS group compared with the control group (998.4 ± 81.2 μm vs 883.4 ± 39.0 μm, P < 0.05). There was no statistically significant difference between the sham-operation and control groups (P > 0.05). A total of 141 differential protein spots were found in the USBS group. Forty-nine of these spots were down-regulated while 92 protein spots were up-regulated by over 2-folds. There were 133 differential protein spots in USBS group. Thirty of these spots were down-regulated and 103 were up-regulated. There were 47 common differential protein spots among the three groups, including 17 down-regulated protein spots and 30 up-regulated spots. Among 47 differential spots, eight up-regulated proteins were identified by MALDI-TOF/TOF-MS. These proteins were previously reported to be involved in

  20. Gab1 Acts as an Adapter Molecule Linking the Cytokine Receptor gp130 to ERK Mitogen-Activated Protein Kinase

    PubMed Central

    Takahashi-Tezuka, Mariko; Yoshida, Yuichi; Fukada, Toshiyuki; Ohtani, Takuya; Yamanaka, Yojiro; Nishida, Keigo; Nakajima, Koichi; Hibi, Masahiko; Hirano, Toshio

    1998-01-01

    Gab1 has structural similarities with Drosophila DOS (daughter of sevenless), which is a substrate of the protein tyrosine phosphatase Corkscrew. Both Gab1 and DOS have a pleckstrin homology domain and tyrosine residues, potential binding sites for various SH2 domain-containing adapter molecules when they are phosphorylated. We found that Gab1 was tyrosine phosphorylated in response to various cytokines, such as interleukin-6 (IL-6), IL-3, alpha interferon (IFN-α), and IFN-γ. Upon the stimulation of IL-6 or IL-3, Gab1 was found to form a complex with phosphatidylinositol (PI)-3 kinase and SHP-2, a homolog of Corkscrew. Mutational analysis of gp130, the common subunit of IL-6 family cytokine receptors, revealed that neither tyrosine residues of gp130 nor its carboxy terminus was required for tyrosine phosphorylation of Gab1. Expression of Gab1 enhanced gp130-dependent mitogen-activated protein (MAP) kinase ERK2 activation. A mutation of tyrosine 759, the SHP-2 binding site of gp130, abrogated the interactions of Gab1 with SHP-2 and PI-3 kinase as well as ERK2 activation. Furthermore, ERK2 activation was inhibited by a dominant negative p85 PI-3 kinase, wortmannin, or a dominant negative Ras. These observations suggest that Gab1 acts as an adapter molecule in transmitting signals to ERK MAP kinase for the cytokine receptor gp130 and that SHP-2, PI-3 kinase, and Ras are involved in Gab1-mediated ERK activation. PMID:9632795

  1. On the Nature of Verb-Noun Dissociations in Bilectal SLI: A Psycholinguistic Perspective from Greek

    ERIC Educational Resources Information Center

    Kambanaros, Maria; Grohmann, Kleanthes K.; Michaelides, Michalis; Theodorou, Eleni

    2014-01-01

    We report on object and action picture-naming accuracy in two groups of bilectal speakers in Cyprus, children with typical language development (TLD) and children with specific language impairment (SLI). Object names were overall better retrieved than action names by both groups. Given that comprehension for action names was relatively intact for…

  2. Duration of Auditory Sensory Memory in Parents of Children with SLI: A Mismatch Negativity Study

    ERIC Educational Resources Information Center

    Barry, Johanna G.; Hardiman, Mervyn J.; Line, Elizabeth; White, Katherine B.; Yasin, Ifat; Bishop, Dorothy V. M.

    2008-01-01

    In a previous behavioral study, we showed that parents of children with SLI had a subclinical deficit in phonological short-term memory. Here, we tested the hypothesis that they also have a deficit in nonverbal auditory sensory memory. We measured auditory sensory memory using a paradigm involving an electrophysiological component called the…

  3. Structural flexibility and protein adaptation to temperature: Molecular dynamics analysis of malate dehydrogenases of marine molluscs.

    PubMed

    Dong, Yun-Wei; Liao, Ming-Ling; Meng, Xian-Liang; Somero, George N

    2018-02-06

    Orthologous proteins of species adapted to different temperatures exhibit differences in stability and function that are interpreted to reflect adaptive variation in structural "flexibility." However, quantifying flexibility and comparing flexibility across proteins has remained a challenge. To address this issue, we examined temperature effects on cytosolic malate dehydrogenase (cMDH) orthologs from differently thermally adapted congeners of five genera of marine molluscs whose field body temperatures span a range of ∼60 °C. We describe consistent patterns of convergent evolution in adaptation of function [temperature effects on K M of cofactor (NADH)] and structural stability (rate of heat denaturation of activity). To determine how these differences depend on flexibilities of overall structure and of regions known to be important in binding and catalysis, we performed molecular dynamics simulation (MDS) analyses. MDS analyses revealed a significant negative correlation between adaptation temperature and heat-induced increase of backbone atom movements [root mean square deviation (rmsd) of main-chain atoms]. Root mean square fluctuations (RMSFs) of movement by individual amino acid residues varied across the sequence in a qualitatively similar pattern among orthologs. Regions of sequence involved in ligand binding and catalysis-termed mobile regions 1 and 2 (MR1 and MR2), respectively-showed the largest values for RMSF. Heat-induced changes in RMSF values across the sequence and, importantly, in MR1 and MR2 were greatest in cold-adapted species. MDS methods are shown to provide powerful tools for examining adaptation of enzymes by providing a quantitative index of protein flexibility and identifying sequence regions where adaptive change in flexibility occurs.

  4. Comparing Multilingual Children with SLI to Their Bilectal Peers: Evidence from Object and Action Picture Naming

    ERIC Educational Resources Information Center

    Kambanaros, Maria; Grohmann, Kleanthes K.; Michaelides, Michalis; Theodorou, Elena

    2013-01-01

    Against the background of the increasing number of multilingual children with atypical language development around the world, this study reports research results on grammatical word class processing involving children with specific language impairment (SLI). The study investigates lexical retrieval of verbs (through picture-naming actions) and…

  5. GC-GAP, a Rho family GTPase-activating protein that interacts with signaling adapters Gab1 and Gab2.

    PubMed

    Zhao, Chunmei; Ma, Hong; Bossy-Wetzel, Ella; Lipton, Stuart A; Zhang, Zhuohua; Feng, Gen-Sheng

    2003-09-05

    Gab1 and Gab2 are scaffolding proteins acting downstream of cell surface receptors and interact with a variety of cytoplasmic signaling proteins such as Grb2, Shp-2, phosphatidylinositol 3-kinase, Shc, and Crk. To identify new binding partners for GAB proteins and better understand their functions, we performed a yeast two-hybrid screening with hGab2-(120-587) as bait. This work led to identification of a novel GTPase-activating protein (GAP) for Rho family GTPases. The GAP domain shows high similarity to the recently cloned CdGAP and displays activity toward RhoA, Rac1, and Cdc42 in vitro. The protein was named GC-GAP for its ability to interact with GAB proteins and its activity toward Rac and Cdc42. GC-GAP is predominantly expressed in the brain with low levels detected in other tissues. Antibodies directed against GC-GAP recognized a protein of approximately 200 kDa. Expression of GC-GAP in 293T cells led to a reduction in active Rac1 and Cdc42 levels but not RhoA. Suppression of GC-GAP expression by siRNA inhibited proliferation of C6 astroglioma cells. In addition, GC-GAP contains several classic proline-rich motifs, and it interacts with the first SH3 domain of Crk and full-length Nck in vitro. We propose that Gab1 and Gab2 in cooperation with other adapter molecules might regulate the cellular localization of GC-GAP under specific stimuli, acting to regulate precisely Rac and Cdc42 activities. Given that GC-GAP is specifically expressed in the nervous system and that it is localized to the dendritic processes of cultured neurons, GC-GAP may play a role in dendritic morphogenesis and also possibly in neural/glial cell proliferation.

  6. Communication and Social Deficits in Relatives of Individuals with SLI and Relatives of Individuals with ASD

    ERIC Educational Resources Information Center

    Pickles, Andrew; St Clair, Michelle C.; Conti-Ramsden, Gina

    2013-01-01

    We investigate two aspects of the autism triad, communication and social difficulties, in relatives of specific language impairment (SLI) probands (with and without additional autistic symptomatology) as compared to relatives of autism spectrum disorder (ASD) and Down's syndrome (DS) probands. Findings involving 726 first degree relatives of 85…

  7. The Prevalence of Autistic Spectrum Disorders in Adolescents with a History of Specific Language Impairment (SLI)

    ERIC Educational Resources Information Center

    Conti-Ramsden, Gina; Simkin, Zoe; Botting, Nicola

    2006-01-01

    Background: Traditionally, autism and specific language impairment (SLI) have been regarded as distinct disorders but, more recently, evidence has been put forward for a closer link between them: a common set of language problems, in particular receptive language difficulties and the existence of intermediate cases including pragmatic language…

  8. Prolonged Adaptation to a Low or High Protein Diet Does Not Modulate Basal Muscle Protein Synthesis Rates – A Substudy

    PubMed Central

    Hursel, Rick; Martens, Eveline A. P.; Gonnissen, Hanne K. J.; Hamer, Henrike M.; Senden, Joan M. G.; van Loon, Luc J. C.; Westerterp-Plantenga, Margriet S.

    2015-01-01

    Background Based on controlled 36 h experiments a higher dietary protein intake causes a positive protein balance and a negative fat balance. A positive net protein balance may support fat free mass accrual. However, few data are available on the impact of more prolonged changes in habitual protein intake on whole-body protein metabolism and basal muscle protein synthesis rates. Objective To assess changes in whole-body protein turnover and basal muscle protein synthesis rates following 12 weeks of adaptation to a low versus high dietary protein intake. Methods A randomized parallel study was performed in 40 subjects who followed either a high protein (2.4 g protein/kg/d) or low protein (0.4 g protein/kg/d) energy-balanced diet (30/35/35% or 5/60/35% energy from protein/carbohydrate/fat) for a period of 12 weeks. A subgroup of 7 men and 8 women (body mass index: 22.8±2.3 kg/m2, age: 24.3±4.9 y) were selected to evaluate the impact of prolonged adaptation to either a high or low protein intake on whole body protein metabolism and basal muscle protein synthesis rates. After the diet, subjects received continuous infusions with L-[ring-2H5]phenylalanine and L-[ring-2H2]tyrosine in an overnight fasted state, with blood samples and muscle biopsies being collected to assess post-absorptive whole-body protein turnover and muscle protein synthesis rates in vivo in humans. Results After 12 weeks of intervention, whole-body protein balance in the fasted state was more negative in the high protein treatment when compared with the low protein treatment (-4.1±0.5 vs -2.7±0.6 μmol phenylalanine/kg/h;P<0.001). Whole-body protein breakdown (43.0±4.4 vs 37.8±3.8 μmol phenylalanine/kg/h;P<0.03), synthesis (38.9±4.2 vs 35.1±3.6 μmol phenylalanine/kg/h;P<0.01) and phenylalanine hydroxylation rates (4.1±0.6 vs 2.7±0.6 μmol phenylalanine/kg/h;P<0.001) were significantly higher in the high vs low protein group. Basal muscle protein synthesis rates were maintained on a low

  9. Adaptive Evolution of the Streptococcus pyogenes Regulatory Aldolase LacD.1

    PubMed Central

    Cusumano, Zachary

    2013-01-01

    In the human-pathogenic bacterium Streptococcus pyogenes, the tagatose bisphosphate aldolase LacD.1 likely originated through a gene duplication event and was adapted to a role as a metabolic sensor for regulation of virulence gene transcription. Although LacD.1 retains enzymatic activity, its ancestral metabolic function resides in the LacD.2 aldolase, which is required for the catabolism of galactose. In this study, we compared these paralogous proteins to identify characteristics correlated with divergence and novel function. Surprisingly, despite the fact that these proteins have identical active sites and 82% similarity in amino acid sequence, LacD.1 was less efficient at cleaving both fructose and tagatose bisphosphates. Analysis of kinetic properties revealed that LacD.1's adaptation was associated with a decrease in kcat and an increase in Km. Construction and analysis of enzyme chimeras indicated that non-active-site residues previously associated with the variable activities of human aldolase isoenzymes modulated LacD.1's affinity for substrate. Mutant LacD.1 proteins engineered to have LacD.2-like levels of enzymatic efficiency lost the ability to function as regulators, suggesting that an alteration in efficiency was required for adaptation. In competition under growth conditions that mimic a deep-tissue environment, LacD.1 conferred a significant gain in fitness that was associated with its regulatory activity. Taken together, these data suggest that LacD.1's adaptation represents a form of neofunctionalization in which duplication facilitated the gain of regulatory function important for growth in tissue and pathogenesis. PMID:23316044

  10. Adaptive evolution of centromere proteins in plants and animals.

    PubMed

    Talbert, Paul B; Bryson, Terri D; Henikoff, Steven

    2004-01-01

    Centromeres represent the last frontiers of plant and animal genomics. Although they perform a conserved function in chromosome segregation, centromeres are typically composed of repetitive satellite sequences that are rapidly evolving. The nucleosomes of centromeres are characterized by a special H3-like histone (CenH3), which evolves rapidly and adaptively in Drosophila and Arabidopsis. Most plant, animal and fungal centromeres also bind a large protein, centromere protein C (CENP-C), that is characterized by a single 24 amino-acid motif (CENPC motif). Whereas we find no evidence that mammalian CenH3 (CENP-A) has been evolving adaptively, mammalian CENP-C proteins contain adaptively evolving regions that overlap with regions of DNA-binding activity. In plants we find that CENP-C proteins have complex duplicated regions, with conserved amino and carboxyl termini that are dissimilar in sequence to their counterparts in animals and fungi. Comparisons of Cenpc genes from Arabidopsis species and from grasses revealed multiple regions that are under positive selection, including duplicated exons in some grasses. In contrast to plants and animals, yeast CENP-C (Mif2p) is under negative selection. CENP-Cs in all plant and animal lineages examined have regions that are rapidly and adaptively evolving. To explain these remarkable evolutionary features for a single-copy gene that is needed at every mitosis, we propose that CENP-Cs, like some CenH3s, suppress meiotic drive of centromeres during female meiosis. This process can account for the rapid evolution and the complexity of centromeric DNA in plants and animals as compared to fungi.

  11. Past Tense Productivity in Dutch Children with and without SLI: The Role of Morphophonology and Frequency

    ERIC Educational Resources Information Center

    Rispens, Judith E.; De Bree, Elise H.

    2014-01-01

    This study focuses on morphophonology and frequency in past tense production. It was assessed whether Dutch five- and seven-year-old typically developing (TD) children and eight-year-old children with specific language impairment (SLI) produce the correct allomorph in regular, irregular, and novel past tense formation. Type frequency of the…

  12. Cloning, expression and crystallisation of SGT1 co-chaperone protein from Glaciozyma antarctica

    NASA Astrophysics Data System (ADS)

    Yusof, Nur Athirah; Bakar, Farah Diba Abu; Beddoe, Travis; Murad, Abdul Munir Abdul

    2013-11-01

    Studies on psycrophiles are now in the limelight of today's post genomic era as they fascinate the research and development industries. The discovery from Glaciozyma antarctica, an extreme cold adapted yeast from Antarctica shows promising future to provide cost effective natural sustainable energy and create wider understanding of the property that permits this organisms to adapt to extreme temperature downshift. In plants and yeast, studies show the interaction between SGT1 and HSP90 are essential for disease resistance and heat stress by activating a number of resistance proteins. Here we report for the first time cloning, expression and crystallization of the recombinant SGT1 protein of G. antarctica (rGa_SGT1), a highly conserved eukaryotic protein that interacts with the molecular chaperones HSP90 (heat shock protein 90) apparently associated in a role of co-chaperone that may play important role in cold adaptation. The sequence analysis of rGa_SGT1 revealed the presence of all the characteristic features of SGT1 protein. In this study, we present the outlines and results of protein structural study of G. antarctica SGT1 protein. We validate this approach by starting with cloning the target insert into Ligation Independent Cloning system proceeded with expression using E. coli system, and crystallisation of the target rGA_SGT1 protein. The work is still on going with the target subunit of the complex proteins yielded crystals. These results, still ongoing, open a platform for better understanding of the uniqueness of this crucial molecular machine function in cold adaptation.

  13. Do statistical segmentation abilities predict lexical-phonological and lexical-semantic abilities in children with and without SLI?

    PubMed Central

    Mainela-Arnold, Elina; Evans, Julia L.

    2014-01-01

    This study tested the predictions of the procedural deficit hypothesis by investigating the relationship between sequential statistical learning and two aspects of lexical ability, lexical-phonological and lexical-semantic, in children with and without specific language impairment (SLI). Participants included 40 children (ages 8;5–12;3), 20 children with SLI and 20 with typical development. Children completed Saffran’s statistical word segmentation task, a lexical-phonological access task (gating task), and a word definition task. Poor statistical learners were also poor at managing lexical-phonological competition during the gating task. However, statistical learning was not a significant predictor of semantic richness in word definitions. The ability to track statistical sequential regularities may be important for learning the inherently sequential structure of lexical-phonology, but not as important for learning lexical-semantic knowledge. Consistent with the procedural/declarative memory distinction, the brain networks associated with the two types of lexical learning are likely to have different learning properties. PMID:23425593

  14. Improved Innate and Adaptive Immunostimulation by Genetically Modified HIV-1 Protein Expressing NYVAC Vectors

    PubMed Central

    Quakkelaar, Esther D.; Redeker, Anke; Haddad, Elias K.; Harari, Alexandre; McCaughey, Stella Mayo; Duhen, Thomas; Filali-Mouhim, Abdelali; Goulet, Jean-Philippe; Loof, Nikki M.; Ossendorp, Ferry; Perdiguero, Beatriz; Heinen, Paul; Gomez, Carmen E.; Kibler, Karen V.; Koelle, David M.; Sékaly, Rafick P.; Sallusto, Federica; Lanzavecchia, Antonio; Pantaleo, Giuseppe; Esteban, Mariano; Tartaglia, Jim; Jacobs, Bertram L.; Melief, Cornelis J. M.

    2011-01-01

    Attenuated poxviruses are safe and capable of expressing foreign antigens. Poxviruses are applied in veterinary vaccination and explored as candidate vaccines for humans. However, poxviruses express multiple genes encoding proteins that interfere with components of the innate and adaptive immune response. This manuscript describes two strategies aimed to improve the immunogenicity of the highly attenuated, host-range restricted poxvirus NYVAC: deletion of the viral gene encoding type-I interferon-binding protein and development of attenuated replication-competent NYVAC. We evaluated these newly generated NYVAC mutants, encoding HIV-1 env, gag, pol and nef, for their ability to stimulate HIV-specific CD8 T-cell responses in vitro from blood mononuclear cells of HIV-infected subjects. The new vectors were evaluated and compared to the parental NYVAC vector in dendritic cells (DCs), RNA expression arrays, HIV gag expression and cross-presentation assays in vitro. Deletion of type-I interferon-binding protein enhanced expression of interferon and interferon-induced genes in DCs, and increased maturation of infected DCs. Restoration of replication competence induced activation of pathways involving antigen processing and presentation. Also, replication-competent NYVAC showed increased Gag expression in infected cells, permitting enhanced cross-presentation to HIV-specific CD8 T cells and proliferation of HIV-specific memory CD8 T-cells in vitro. The recombinant NYVAC combining both modifications induced interferon-induced genes and genes involved in antigen processing and presentation, as well as increased Gag expression. This combined replication-competent NYVAC is a promising candidate for the next generation of HIV vaccines. PMID:21347234

  15. Adaptive evolution of centromere proteins in plants and animals

    PubMed Central

    Talbert, Paul B; Bryson, Terri D; Henikoff, Steven

    2004-01-01

    Background Centromeres represent the last frontiers of plant and animal genomics. Although they perform a conserved function in chromosome segregation, centromeres are typically composed of repetitive satellite sequences that are rapidly evolving. The nucleosomes of centromeres are characterized by a special H3-like histone (CenH3), which evolves rapidly and adaptively in Drosophila and Arabidopsis. Most plant, animal and fungal centromeres also bind a large protein, centromere protein C (CENP-C), that is characterized by a single 24 amino-acid motif (CENPC motif). Results Whereas we find no evidence that mammalian CenH3 (CENP-A) has been evolving adaptively, mammalian CENP-C proteins contain adaptively evolving regions that overlap with regions of DNA-binding activity. In plants we find that CENP-C proteins have complex duplicated regions, with conserved amino and carboxyl termini that are dissimilar in sequence to their counterparts in animals and fungi. Comparisons of Cenpc genes from Arabidopsis species and from grasses revealed multiple regions that are under positive selection, including duplicated exons in some grasses. In contrast to plants and animals, yeast CENP-C (Mif2p) is under negative selection. Conclusions CENP-Cs in all plant and animal lineages examined have regions that are rapidly and adaptively evolving. To explain these remarkable evolutionary features for a single-copy gene that is needed at every mitosis, we propose that CENP-Cs, like some CenH3s, suppress meiotic drive of centromeres during female meiosis. This process can account for the rapid evolution and the complexity of centromeric DNA in plants and animals as compared to fungi. PMID:15345035

  16. The E3 SUMO ligase AtSIZ1 functions in seed germination in Arabidopsis.

    PubMed

    Kim, Sung-Il; Kwak, Jun Soo; Song, Jong Tae; Seo, Hak Soo

    2016-11-01

    Seed germination is an important stage in the lifecycle of a plant because it determines subsequent vegetative growth and reproduction. Here, we show that the E3 SUMO ligase AtSIZ1 regulates seed dormancy and germination. The germination rates of the siz1 mutants were less than 50%, even after a short period of ripening. However, their germination rates increased to wild-type levels after cold stratification or long periods of ripening. In addition, exogenous gibberellin (GA) application improved the germination rates of the siz1 mutants to the wild-type level. In transgenic plants, suppression of AtSIZ1 caused rapid post-translational decay of SLEEPY1 (SLY1), a positive regulator of GA signaling, during germination, and inducible AtSIZ1 overexpression led to increased SLY1 levels. In addition, overexpressing wild-type SLY1 in transgenic sly1 mutants increased their germination ratios to wild-type levels, whereas the germination ratio of transgenic sly1 mutants overexpressing mSLY1 was similar to that of sly1. The germination ratios of siz1 mutant seeds in immature developing siliques were much lower than those of the wild-type. Moreover, SLY1 and DELAY OF GERMINATION 1 (DOG1) transcript levels were reduced in the siz1 mutants, whereas the transcript levels of DELLA and ABSCISIC ACID INSENSITIVE 3 (ABI3) were higher than those of the wild-type. Taken together, these results indicate that the reduced germination of the siz1 mutants results from impaired GA signaling due to low SLY1 levels and activity, as well as hyperdormancy due to high levels of expression of dormancy-related genes including DOG1. © 2016 The Authors. Physiologia Plantarum published by John Wiley & Sons Ltd on behalf of Scandinavian Plant Physiology Society.

  17. Elimination of tumor by CD47/PD-L1 dual-targeting fusion protein that engages innate and adaptive immune responses.

    PubMed

    Liu, Boning; Guo, Huaizu; Xu, Jin; Qin, Ting; Guo, Qingcheng; Gu, Nana; Zhang, Dapeng; Qian, Weizhu; Dai, Jianxin; Hou, Sheng; Wang, Hao; Guo, Yajun

    The host immune system generally serves as a barrier against tumor formation. Programmed death-ligand 1 (PD-L1) is a critical "don't find me" signal to the adaptive immune system, whereas CD47 transmits an anti-phagocytic signal, known as the "don't eat me" signal, to the innate immune system. These and similar immune checkpoints are often overexpressed on human tumors. Thus, dual targeting both innate and adaptive immune checkpoints would likely maximize anti-tumor therapeutic effect and elicit more durable responses. Herein, based on the variable region of atezolizumab and consensus variant 1 (CV1) monomer, we constructed a dual-targeting fusion protein targeting both CD47 and PD-L1 using "Knobs-into-holes" technology, denoted as IAB. It was effective in inducing phagocytosis of tumor cells, stimulating T-cell activation and mediating antibody-dependent cell-mediated cytotoxicity in vitro. No obvious sign of hematological toxicity was observed in mice administered IAB at a dose of 100 mg/kg, and IAB exhibited potent antitumor activity in an immune-competent mouse model of MC38. Additionally, the anti-tumor effect of IAB was impaired by anti-CD8 antibody or clodronate liposomes, which implied that both CD8+ T cells and macrophages were required for the anti-tumor efficacy of IAB and IAB plays an essential role in the engagement of innate and adaptive immune responses. Collectively, these results demonstrate the capacity of an elicited endogenous immune response against tumors and elucidate essential characteristics of synergistic innate and adaptive immune response, and indicate dual blockade of CD47 and PD-L1 by IAB may be a synergistic therapy that activates both innate and adaptive immune response against tumors.

  18. Verb Schema Use and Input Dependence in 5-Year-Old Children with Specific Language Impairment (SLI)

    ERIC Educational Resources Information Center

    Riches, N. G.; Faragher, B.; Conti-Ramsden, G.

    2006-01-01

    It has been argued that children with Specific Language Impairment (SLI) use language in a conservative manner. For example, they are reluctant to produce word-plus-frame combinations that they have not heard in the input. In addition, there is evidence to suggest that their utterances replicate lexical and syntactic material from the immediate…

  19. Molecular Bases of cyclodextrin Adapter Interactions with Engineered Protein Nanopores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, A.; Mikhailova, E; Cheley, S

    2010-01-01

    Engineered protein pores have several potential applications in biotechnology: as sensor elements in stochastic detection and ultrarapid DNA sequencing, as nanoreactors to observe single-molecule chemistry, and in the construction of nano- and micro-devices. One important class of pores contains molecular adapters, which provide internal binding sites for small molecules. Mutants of the {alpha}-hemolysin ({alpha}HL) pore that bind the adapter {beta}-cyclodextrin ({beta}CD) {approx}10{sup 4} times more tightly than the wild type have been obtained. We now use single-channel electrical recording, protein engineering including unnatural amino acid mutagenesis, and high-resolution x-ray crystallography to provide definitive structural information on these engineered protein nanoporesmore » in unparalleled detail.« less

  20. Adaptation of influenza A(H1N1)pdm09 virus in experimental mouse models.

    PubMed

    Prokopyeva, E A; Sobolev, I A; Prokopyev, M V; Shestopalov, A M

    2016-04-01

    In the present study, three mouse-adapted variants of influenza A(H1N1)pdm09 virus were obtained by lung-to-lung passages of BALB/c, C57BL/6z and CD1 mice. The significantly increased virulence and pathogenicity of all of the mouse-adapted variants induced 100% mortality in the adapted mice. Genetic analysis indicated that the increased virulence of all of the mouse-adapted variants reflected the incremental acquisition of several mutations in PB2, PB1, HA, NP, NA, and NS2 proteins. Identical amino acid substitutions were also detected in all of the mouse-adapted variants of A(H1N1)pdm09 virus, including PB2 (K251R), PB1 (V652A), NP (I353V), NA (I106V, N248D) and NS1 (G159E). Apparently, influenza A(H1N1)pdm09 virus easily adapted to the host after serial passages in the lungs, inducing 100% lethality in the last experimental group. However, cross-challenge revealed that not all adapted variants are pathogenic for different laboratory mice. Such important results should be considered when using the influenza mice model. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. SASH1 inhibits proliferation and invasion of thyroid cancer cells through PI3K/Akt signaling pathway

    PubMed Central

    Sun, Dawei; Zhou, Rui; Liu, Huamin; Sun, Wenhai; Dong, Anbing; Zhang, Hongmei

    2015-01-01

    The SASH1 (SAM- and SH3-domain containing 1) gene, a member of the SLY-family of signal adapter proteins, has an important regulatory role in tumorigenesis, but its implication in thyroid carcinoma has not been yet investigated. In this study, we investigated the role of SASH1 in proliferation and invasion of thyroid cancer cells and the underlying mechanism. Our results demonstrated that SASH1 is down-regulated in thyroid cancer cells. Overexpression of SASH1 inhibits thyroid cancer cell proliferation, migration and invasion with decreased epithelial-mesenchymal transition (EMT). Mechanistically, overexpression of SASH1 inhibits thyroid cancer cell proliferation and invasion through down-regulation of PI3K and Akt phosphorylation. Taken together, the present study showed that the loss or inhibition of SASH1 expression may play an important role in thyroid cancer development, invasion, and metastasis and that SASH1 may be a potential therapeutic target for the treatment of thyroid cancer. PMID:26722413

  2. SASH1 inhibits proliferation and invasion of thyroid cancer cells through PI3K/Akt signaling pathway.

    PubMed

    Sun, Dawei; Zhou, Rui; Liu, Huamin; Sun, Wenhai; Dong, Anbing; Zhang, Hongmei

    2015-01-01

    The SASH1 (SAM- and SH3-domain containing 1) gene, a member of the SLY-family of signal adapter proteins, has an important regulatory role in tumorigenesis, but its implication in thyroid carcinoma has not been yet investigated. In this study, we investigated the role of SASH1 in proliferation and invasion of thyroid cancer cells and the underlying mechanism. Our results demonstrated that SASH1 is down-regulated in thyroid cancer cells. Overexpression of SASH1 inhibits thyroid cancer cell proliferation, migration and invasion with decreased epithelial-mesenchymal transition (EMT). Mechanistically, overexpression of SASH1 inhibits thyroid cancer cell proliferation and invasion through down-regulation of PI3K and Akt phosphorylation. Taken together, the present study showed that the loss or inhibition of SASH1 expression may play an important role in thyroid cancer development, invasion, and metastasis and that SASH1 may be a potential therapeutic target for the treatment of thyroid cancer.

  3. Effect of Verb Argument Structure on Picture Naming in Children with and without Specific Language Impairment (SLI)

    ERIC Educational Resources Information Center

    Andreu, Llorenc; Sanz-Torrent, Monica; Legaz, Lucia Buil; MacWhinney, Brian

    2012-01-01

    Background: This study investigated verb argument structure effects in children with specific language impairment (SLI). Aims: A picture-naming paradigm was used to compare the response times and naming accuracy for nouns and verbs with differing argument structure between Spanish-speaking children with and without language impairment. Methods…

  4. Do Statistical Segmentation Abilities Predict Lexical-Phonological and Lexical-Semantic Abilities in Children with and without SLI?

    ERIC Educational Resources Information Center

    Mainela-Arnold, Elina; Evans, Julia L.

    2014-01-01

    This study tested the predictions of the procedural deficit hypothesis by investigating the relationship between sequential statistical learning and two aspects of lexical ability, lexical-phonological and lexical-semantic, in children with and without specific language impairment (SLI). Participants included forty children (ages 8;5-12;3), twenty…

  5. Nmd3p Is a Crm1p-Dependent Adapter Protein for Nuclear Export of the Large Ribosomal Subunit

    PubMed Central

    Ho, Jennifer Hei-Ngam; Kallstrom, George; Johnson, Arlen W.

    2000-01-01

    In eukaryotic cells, nuclear export of nascent ribosomal subunits through the nuclear pore complex depends on the small GTPase Ran. However, neither the nuclear export signals (NESs) for the ribosomal subunits nor the receptor proteins, which recognize the NESs and mediate export of the subunits, have been identified. We showed previously that Nmd3p is an essential protein from yeast that is required for a late step in biogenesis of the large (60S) ribosomal subunit. Here, we show that Nmd3p shuttles and that deletion of the NES from Nmd3p leads to nuclear accumulation of the mutant protein, inhibition of the 60S subunit biogenesis, and inhibition of the nuclear export of 60S subunits. Moreover, the 60S subunits that accumulate in the nucleus can be coimmunoprecipitated with the NES-deficient Nmd3p. 60S subunit biogenesis and export of truncated Nmd3p were restored by the addition of an exogenous NES. To identify the export receptor for Nmd3p we show that Nmd3p shuttling and 60S export is blocked by the Crm1p-specific inhibitor leptomycin B. These results identify Crm1p as the receptor for Nmd3p export. Thus, export of the 60S subunit is mediated by the adapter protein Nmd3p in a Crm1p-dependent pathway. PMID:11086007

  6. Overexpression of SASH1 Inhibits TGF-β1-Induced EMT in Gastric Cancer Cells.

    PubMed

    Zong, Wei; Yu, Chen; Wang, Ping; Dong, Lei

    2016-01-01

    The epithelial-mesenchymal transition (EMT) is considered to be one of the critical steps in gastric cancer cell invasion and metastasis. SAM- and SH3-domain containing 1 (SASH1), a member of the SLY family of signal adapter proteins, is a candidate for tumor suppression in several cancers. However, the biological role of SASH1 in gastric cancer remains largely unknown. Therefore, the purpose of this study was to investigate the impact of SASH1 on the biological behavior of gastric cancer cells treated with transforming growth factor (TGF)-β1. In the current study, we provide evidence that SASH1 was lowly expressed in human gastric cancer cells, and TGF-β1 also inhibited the expression of SASH1 in TSGH cells. We found that SASH1 inhibited TGF-β1-mediated EMT in TSGH cells, as well as cell migration and invasion. Furthermore, SASH1 obviously inhibited the phosphorylation of PI3K and Akt in TGF-β1-stimulated TSGH cells. In summary, our study is the first to show that overexpression of SASH1 inhibits TGF-β1-induced EMT in gastric cancer cells through the PI3K/Akt signaling pathway. These results suggest that SASH1 may be a potential therapeutic target for the treatment of gastric cancer.

  7. Patterns of Change in the Reading Decoding and Comprehension Performance of Adolescents with Specific Language Impairment (SLI)

    ERIC Educational Resources Information Center

    Palikara, Olympia; Dockrell, Julie E.; Lindsay, Geoff

    2011-01-01

    Specific Language Impairment (SLI) is associated with reading difficulties. The evidence to support this association, typically, is drawn from studies of elementary school children. Additionally, the extent of the relationship between language and reading skills during adolescence is not yet clear. This study aimed to examine the word reading and…

  8. A novel method based on new adaptive LVQ neural network for predicting protein-protein interactions from protein sequences.

    PubMed

    Yousef, Abdulaziz; Moghadam Charkari, Nasrollah

    2013-11-07

    Protein-Protein interaction (PPI) is one of the most important data in understanding the cellular processes. Many interesting methods have been proposed in order to predict PPIs. However, the methods which are based on the sequence of proteins as a prior knowledge are more universal. In this paper, a sequence-based, fast, and adaptive PPI prediction method is introduced to assign two proteins to an interaction class (yes, no). First, in order to improve the presentation of the sequences, twelve physicochemical properties of amino acid have been used by different representation methods to transform the sequence of protein pairs into different feature vectors. Then, for speeding up the learning process and reducing the effect of noise PPI data, principal component analysis (PCA) is carried out as a proper feature extraction algorithm. Finally, a new and adaptive Learning Vector Quantization (LVQ) predictor is designed to deal with different models of datasets that are classified into balanced and imbalanced datasets. The accuracy of 93.88%, 90.03%, and 89.72% has been found on S. cerevisiae, H. pylori, and independent datasets, respectively. The results of various experiments indicate the efficiency and validity of the method. © 2013 Published by Elsevier Ltd.

  9. Self-Regulatory Speech during Planning and Problem-Solving in Children with SLI and Their Typically Developing Peers

    ERIC Educational Resources Information Center

    Abdul Aziz, Safiyyah; Fletcher, Janet; Bayliss, Donna M.

    2017-01-01

    Background: Past research with children with specific language impairment (SLI) has shown them to have poorer planning and problem-solving ability, and delayed self-regulatory speech (SRS) relative to their typically developing (TD) peers. However, the studies are few in number and are restricted in terms of the number and age range of…

  10. Tubby family proteins are adapters for ciliary trafficking of integral membrane proteins

    PubMed Central

    Shimada, Issei S.; Loriot, Evan

    2017-01-01

    The primary cilium is a paradigmatic organelle for studying compartmentalized signaling; however, unlike soluble protein trafficking, processes targeting integral membrane proteins to cilia are poorly understood. In this study, we determine that the tubby family protein TULP3 functions as a general adapter for ciliary trafficking of structurally diverse integral membrane cargo, including multiple reported and novel rhodopsin family G protein–coupled receptors (GPCRs) and the polycystic kidney disease–causing polycystin 1/2 complex. The founding tubby family member TUB also localizes to cilia similar to TULP3 and determines trafficking of a subset of these GPCRs to neuronal cilia. Using minimal ciliary localization sequences from GPCRs and fibrocystin (also implicated in polycystic kidney disease), we demonstrate these motifs to be sufficient and TULP3 dependent for ciliary trafficking. We propose a three-step model for TULP3/TUB-mediated ciliary trafficking, including the capture of diverse membrane cargo by the tubby domain in a phosphoinositide 4,5-bisphosphate (PI(4,5)P2)-dependent manner, ciliary delivery by intraflagellar transport complex A binding to the TULP3/TUB N terminus, and subsequent release into PI(4,5)P2-deficient ciliary membrane. PMID:28154160

  11. Inhibitory function of adapter-related protein complex 2 alpha 1 subunit in the process of nuclear translocation of human immunodeficiency virus type 1 genome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kitagawa, Yukiko; Department of Oral and Maxillofacial Surgery II, Osaka University, Osaka 565-0871; Kameoka, Masanori

    2008-03-30

    The transfection of human cells with siRNA against adapter-related protein complex 2 alpha 1 subunit (AP2{alpha}) was revealed to significantly up-regulate the replication of human immunodeficiency virus type 1 (HIV-1). This effect was confirmed by cell infection with vesicular stomatitis virus G protein-pseudotyped HIV-1 as well as CXCR4-tropic and CCR5-tropic HIV-1. Viral adsorption, viral entry and reverse transcription processes were not affected by cell transfection with siRNA against AP2{alpha}. In contrast, viral nuclear translocation as well as the integration process was significantly up-regulated in cells transfected with siRNA against AP2{alpha}. Confocal fluorescence microscopy revealed that a subpopulation of AP2{alpha} wasmore » not only localized in the cytoplasm but was also partly co-localized with lamin B, importin {beta} and Nup153, implying that AP2{alpha} negatively regulates HIV-1 replication in the process of nuclear translocation of viral DNA in the cytoplasm or the perinuclear region. We propose that AP2{alpha} may be a novel target for disrupting HIV-1 replication in the early stage of the viral life cycle.« less

  12. Overexpression of SASH1 Inhibits the Proliferation, Invasion, and EMT in Hepatocarcinoma Cells.

    PubMed

    He, Ping; Zhang, Hong-Xia; Sun, Chang-Yu; Chen, Chun-Yong; Jiang, He-Qing

    2016-01-01

    The SASH1 (SAM- and SH3-domain containing 1) gene, a member of the SLY (SH3 domain containing expressed in lymphocytes) family of signal adapter proteins, has been implicated in tumorigenesis of many types of cancers. However, the role and mechanism of SASH1 in the invasion and metastasis of hepatocarcinoma are largely unknown. In this study, we investigated the role and mechanism of SASH1 in the invasion and metastasis of hepatocarcinoma. Our results showed that SASH1 was lowly expressed in hepatocarcinoma cell lines. The in vitro experiments showed that overexpression of SASH1 inhibited the proliferation and migration/invasion of hepatocarcinoma cells, as well as the epithelial-mesenchymal transition (EMT) progress. Furthermore, overexpression of SASH1 suppressed the expression of Shh as well as Smo, Ptc, and Gli-1 in hepatocarcinoma cells. Taken together, these results suggest that overexpression of SASH1 inhibited the proliferation and invasion of hepatocarcinoma cells through the inactivation of Shh signaling pathway. Therefore, these findings reveal that SASH1 may be a potential therapeutic target for the treatment of hepatocarcinoma.

  13. Exploring the Outcomes of a Novel Computer-Assisted Treatment Program Targeting Expressive-Grammar Deficits in Preschoolers with SLI

    ERIC Educational Resources Information Center

    Washington, Karla N.; Warr-Leeper, Genese; Thomas-Stonell, Nancy

    2011-01-01

    Purpose: The impact of a newly designed computer-assisted treatment ("C-AT") program, "My Sentence Builder", for the remediation of expressive-grammar deficits in children with specific language impairment (SLI) was explored. This program was specifically designed with features to directly address expressive-grammar difficulties, thought to be…

  14. Children's grammatical categories of verb and noun: a comparative look at children with specific language impairment (SLI) and normal language (NL).

    PubMed

    Skipp, Amy; Windfuhr, Kirsten L; Conti-Ramsden, Gina

    2002-01-01

    The study investigated the development of grammatical categories (noun and verb) in young language learners. Twenty-eight children with specific language impairment (SLI) with a mean language age of 35 months and 28 children with normal language (NL) with a mean language age of 34 months were exposed to four novel verbs and four novel nouns during 10 experimental child-directed play sessions. The lexical items were modelled with four experimentally controlled argument structures. Both groups of children showed little productivity with syntactic marking of arguments in the novel verb conditions. Thus, both groups of children mostly followed the surface structure of the model presented to them, regardless of the argument they were trying to express. Therefore, there was little evidence of verb-general processes. In contrast, both groups used nouns in semantic roles that had not been modelled for them. Importantly, however, children with SLI still appeared to be more input dependent than NL children. This suggests that children with NL were working with a robust noun schema, whereas children with SLI were not. Taken together, the findings suggest that neither group of children had a grammatical category of verb, but demonstrated a general knowledge of the grammatical category of noun. These findings are discussed in relation to current theories of normal and impaired language development.

  15. High rate of adaptation of mammalian proteins that interact with Plasmodium and related parasites

    PubMed Central

    Telis, Natalie; Petrov, Dmitri A.

    2017-01-01

    Plasmodium parasites, along with their Piroplasm relatives, have caused malaria-like illnesses in terrestrial mammals for millions of years. Several Plasmodium-protective alleles have recently evolved in human populations, but little is known about host adaptation to blood parasites over deeper evolutionary timescales. In this work, we analyze mammalian adaptation in ~500 Plasmodium- or Piroplasm- interacting proteins (PPIPs) manually curated from the scientific literature. We show that (i) PPIPs are enriched for both immune functions and pleiotropy with other pathogens, and (ii) the rate of adaptation across mammals is significantly elevated in PPIPs, compared to carefully matched control proteins. PPIPs with high pathogen pleiotropy show the strongest signatures of adaptation, but this pattern is fully explained by their immune enrichment. Several pieces of evidence suggest that blood parasites specifically have imposed selection on PPIPs. First, even non-immune PPIPs that lack interactions with other pathogens have adapted at twice the rate of matched controls. Second, PPIP adaptation is linked to high expression in the liver, a critical organ in the parasite life cycle. Finally, our detailed investigation of alpha-spectrin, a major red blood cell membrane protein, shows that domains with particularly high rates of adaptation are those known to interact specifically with P. falciparum. Overall, we show that host proteins that interact with Plasmodium and Piroplasm parasites have experienced elevated rates of adaptation across mammals, and provide evidence that some of this adaptation has likely been driven by blood parasites. PMID:28957326

  16. Discovery of novel cold-induced CISP genes encoding small RNA-binding proteins related to cold adaptation in barley.

    PubMed

    Ying, Mengchao; Kidou, Shin-Ichiro

    2017-07-01

    To adapt to cold conditions, barley plants rely on specific mechanisms, which have not been fully understood. In this study, we characterized a novel barley cold-induced gene identified using a PCR-based high coverage gene expression profiling method. The identified gene encodes a small protein that we named CISP1 (Cold-induced Small Protein 1). Homology searches of sequence databases revealed that CISP1 homologs (CISP2 and CISP3) exist in barley genome. Further database analyses showed that the CISP1 homologs were widely distributed in cold-tolerant plants such as wheat and rye. Quantitative reverse transcription PCR analyses indicated that the expression of barley CISP genes was markedly increased in roots exposed to cold conditions. In situ hybridization analyses showed that the CISP1 transcripts were localized in the root tip and lateral root primordium. We also demonstrated that the CISP1 protein bound to RNA. Taken together, these findings indicate that CISP1 and its homologs encoding small RNA-binding proteins may serve as RNA chaperones playing a vital role in the cold adaptation of barley root. This is the first report describing the likely close relationship between root-specific genes and the cold adaptation process, as well as the potential function of the identified genes. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Beyond Capacity Limitations: Determinants of Word Recall Performance on Verbal Working Memory Span Tasks in Children with SLI

    ERIC Educational Resources Information Center

    Mainela-Arnold, Elina; Evans, Julia L.

    2005-01-01

    Reduced verbal working memory capacity has been proposed as a possible account of language impairments in specific language impairment (SLI). Studies have shown, however, that differences in strength of linguistic representations in the form of word frequency affect list recall and performance on verbal working memory tasks. This suggests that…

  18. Aerobic Exercise Training Adaptations Are Increased by Postexercise Carbohydrate-Protein Supplementation

    PubMed Central

    Ferguson-Stegall, Lisa; McCleave, Erin; Ding, Zhenping; Doerner III, Phillip G.; Liu, Yang; Wang, Bei; Healy, Marin; Kleinert, Maximilian; Dessard, Benjamin; Lassiter, David G.; Kammer, Lynne; Ivy, John L.

    2011-01-01

    Carbohydrate-protein supplementation has been found to increase the rate of training adaptation when provided postresistance exercise. The present study compared the effects of a carbohydrate and protein supplement in the form of chocolate milk (CM), isocaloric carbohydrate (CHO), and placebo on training adaptations occurring over 4.5 weeks of aerobic exercise training. Thirty-two untrained subjects cycled 60 min/d, 5 d/wk for 4.5 wks at 75–80% of maximal oxygen consumption (VO2 max). Supplements were ingested immediately and 1 h after each exercise session. VO2 max and body composition were assessed before the start and end of training. VO2 max improvements were significantly greater in CM than CHO and placebo. Greater improvements in body composition, represented by a calculated lean and fat mass differential for whole body and trunk, were found in the CM group compared to CHO. We conclude supplementing with CM postexercise improves aerobic power and body composition more effectively than CHO alone. PMID:21773022

  19. Sec34p, a Protein Required for Vesicle Tethering to the Yeast Golgi Apparatus, Is in a Complex with Sec35p

    PubMed Central

    VanRheenen, Susan M.; Cao, Xiaochun; Sapperstein, Stephanie K.; Chiang, Elbert C.; Lupashin, Vladimir V.; Barlowe, Charles; Waters, M. Gerard

    1999-01-01

    A screen for mutants of Saccharomyces cerevisiae secretory pathway components previously yielded sec34, a mutant that accumulates numerous vesicles and fails to transport proteins from the ER to the Golgi complex at the restrictive temperature (Wuestehube, L.J., R. Duden, A. Eun, S. Hamamoto, P. Korn, R. Ram, and R. Schekman. 1996. Genetics. 142:393–406). We find that SEC34 encodes a novel protein of 93-kD, peripherally associated with membranes. The temperature-sensitive phenotype of sec34-2 is suppressed by the rab GTPase Ypt1p that functions early in the secretory pathway, or by the dominant form of the ER to Golgi complex target-SNARE (soluble N-ethylmaleimide sensitive fusion protein attachment protein receptor)–associated protein Sly1p, Sly1-20p. Weaker suppression is evident upon overexpression of genes encoding the vesicle tethering factor Uso1p or the vesicle-SNAREs Sec22p, Bet1p, or Ykt6p. This genetic suppression profile is similar to that of sec35-1, a mutant allele of a gene encoding an ER to Golgi vesicle tethering factor and, like Sec35p, Sec34p is required in vitro for vesicle tethering. sec34-2 and sec35-1 display a synthetic lethal interaction, a genetic result explained by the finding that Sec34p and Sec35p can interact by two-hybrid analysis. Fractionation of yeast cytosol indicates that Sec34p and Sec35p exist in an ∼750-kD protein complex. Finally, we describe RUD3, a novel gene identified through a genetic screen for multicopy suppressors of a mutation in USO1, which suppresses the sec34-2 mutation as well. PMID:10562277

  20. Molecular mechanisms of adaptation emerging from the physics and evolution of nucleic acids and proteins.

    PubMed

    Goncearenco, Alexander; Ma, Bin-Guang; Berezovsky, Igor N

    2014-03-01

    DNA, RNA and proteins are major biological macromolecules that coevolve and adapt to environments as components of one highly interconnected system. We explore here sequence/structure determinants of mechanisms of adaptation of these molecules, links between them, and results of their mutual evolution. We complemented statistical analysis of genomic and proteomic sequences with folding simulations of RNA molecules, unraveling causal relations between compositional and sequence biases reflecting molecular adaptation on DNA, RNA and protein levels. We found many compositional peculiarities related to environmental adaptation and the life style. Specifically, thermal adaptation of protein-coding sequences in Archaea is characterized by a stronger codon bias than in Bacteria. Guanine and cytosine load in the third codon position is important for supporting the aerobic life style, and it is highly pronounced in Bacteria. The third codon position also provides a tradeoff between arginine and lysine, which are favorable for thermal adaptation and aerobicity, respectively. Dinucleotide composition provides stability of nucleic acids via strong base-stacking in ApG dinucleotides. In relation to coevolution of nucleic acids and proteins, thermostability-related demands on the amino acid composition affect the nucleotide content in the second codon position in Archaea.

  1. Molecular mechanisms of adaptation emerging from the physics and evolution of nucleic acids and proteins

    PubMed Central

    Goncearenco, Alexander; Ma, Bin-Guang; Berezovsky, Igor N.

    2014-01-01

    DNA, RNA and proteins are major biological macromolecules that coevolve and adapt to environments as components of one highly interconnected system. We explore here sequence/structure determinants of mechanisms of adaptation of these molecules, links between them, and results of their mutual evolution. We complemented statistical analysis of genomic and proteomic sequences with folding simulations of RNA molecules, unraveling causal relations between compositional and sequence biases reflecting molecular adaptation on DNA, RNA and protein levels. We found many compositional peculiarities related to environmental adaptation and the life style. Specifically, thermal adaptation of protein-coding sequences in Archaea is characterized by a stronger codon bias than in Bacteria. Guanine and cytosine load in the third codon position is important for supporting the aerobic life style, and it is highly pronounced in Bacteria. The third codon position also provides a tradeoff between arginine and lysine, which are favorable for thermal adaptation and aerobicity, respectively. Dinucleotide composition provides stability of nucleic acids via strong base-stacking in ApG dinucleotides. In relation to coevolution of nucleic acids and proteins, thermostability-related demands on the amino acid composition affect the nucleotide content in the second codon position in Archaea. PMID:24371267

  2. New insights into potential functions for the protein 4.1superfamily of proteins in kidney epithelium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calinisan, Venice; Gravem, Dana; Chen, Ray Ping-Hsu

    2005-06-17

    Members of the protein 4.1 family of adapter proteins are expressed in a broad panel of tissues including various epithelia where they likely play an important role in maintenance of cell architecture and polarity and in control of cell proliferation. We have recently characterized the structure and distribution of three members of the protein 4.1 family, 4.1B, 4.1R and 4.1N, in mouse kidney. We describe here binding partners for renal 4.1 proteins, identified through the screening of a rat kidney yeast two-hybrid system cDNA library. The identification of putative protein 4.1-based complexes enables us to envision potential functions for 4.1more » proteins in kidney: organization of signaling complexes, response to osmotic stress, protein trafficking, and control of cell proliferation. We discuss the relevance of these protein 4.1-based interactions in kidney physio-pathology in the context of their previously identified functions in other cells and tissues. Specifically, we will focus on renal 4.1 protein interactions with beta amyloid precursor protein (beta-APP), 14-3-3 proteins, and the cell swelling-activated chloride channel pICln. We also discuss the functional relevance of another member of the protein 4.1 superfamily, ezrin, in kidney physiopathology.« less

  3. Arf and Rho GAP adapter protein ARAP1 participates in the mobilization of TRAIL-R1/DR4 to the plasma membrane.

    PubMed

    Símová, Sárka; Klíma, Martin; Cermak, Lukas; Sourková, Vladimíra; Andera, Ladislav

    2008-03-01

    TRAIL, a ligand of the TNFalpha family, induces upon binding to its pro-death receptors TRAIL-R1/DR4 and TRAIL-R2/DR5 the apoptosis of cancer cells. Activated receptors incite the formation of the Death-Inducing Signaling Complex followed by the activation of the downstream apoptotic signaling. TRAIL-induced apoptosis is regulated at multiple levels, one of them being the presence and relative number of TRAIL pro- and anti-apoptotic receptors on the cytoplasmic membrane. In a yeast two-hybrid search for proteins that interact with the intracellular part (ICP) of DR4, we picked ARAP1, an adapter protein with ArfGAP and RhoGAP activities. In yeast, DR4(ICP) interacts with the alternatively spliced ARAP1 lacking 11 amino acids from the PH5 domain. Transfected ARAP1 co-precipitates with DR4 and co-localizes with it in the endoplasmic reticulum/Golgi, at the cytoplasmic membrane and in early endosomes of TRAIL-treated cells. ARAP1 knockdown significantly compromises the localization of DR4 at the cell surface of several tumor cell lines and slows down their TRAIL-induced death. ARAP1 overexpressed in HEL cells does not affect their TRAIL-induced apoptosis or the membrane localization of DR4, but it enhances the cell-surface presentation of phosphatidyl serine. Our data indicate that ARAP1 is likely involved in the regulation of the cell-specific trafficking of DR4 and might thus affect the efficacy of TRAIL-induced apoptosis.

  4. Tumor imaging using a standardized radiolabeled adapter protein docked to vascular endothelial growth factor.

    PubMed

    Blankenberg, Francis G; Mandl, Stefanie; Cao, Yu-An; O'Connell-Rodwell, Caitlin; Contag, Christopher; Mari, Carina; Gaynutdinov, Timur I; Vanderheyden, Jean-Luc; Backer, Marina V; Backer, Joseph M

    2004-08-01

    Direct radiolabeling of proteins can result in the loss of targeting activity, requires highly customized procedures, and yields heterogeneous products. Here we describe a novel imaging complex comprised of a standardized (99m)Tc-radiolabeled adapter protein noncovalently bound to a "Docking tag" fused to a "Targeting protein". The assembly of this complex is based on interactions between human 109-amino acid (HuS) and 15-amino acid (Hu-tag) fragments of ribonuclease I, which serve as an "Adapter protein" and a Docking tag, respectively. HuS modified with hydrazinonicotinamide (HYNIC) was radiolabeled using (99m)Tc-tricine to a specific activity of 3.4-7.4 MBq/microg. Protein complexes were then formed by mixing (99m)Tc-HuS with equimolar amounts of either Hu-tagged VEGF(121) (Hu-VEGF [vascular endothelial growth factor]) or Hu-tagged anti-VEGFR-2 single-chain antibody (Hu-P4G7) and incubating on ice for 15 min. 4T1 luc/gfp luciferase-expressing murine mammary adenocarcinoma cells (1 x 10(4)) were implanted subcutaneously or injected intravenously into BALB/c mice. Bioluminescent imaging (BLI) was performed 10 d later. Immediately after BLI visualization of tumor, 18.5-37 MBq of tracer (5-10 microg of protein) were injected via tail vein. One hour later planar or SPECT images were obtained, followed by killing the mice. There was significantly (P = 0.0128) increased uptake of (99m)Tc-HuS/Hu-VEGF (n = 10) within subcutaneous tumor as compared with (99m)Tc-HuS/Hu-P4G7 (n = 5) at biodistribution assay (2.68 +/- 0.75 vs. 1.8 +/- 0.21; tumor-to-subcutaneous tissue [ratio of specific activities], respectively), despite similar molecular weights. The focal (99m)Tc-HuS/Hu-VEGF uptake seen on planar images (3.44 +/- 1.16 [tumor to soft-tissue background]) corresponded directly to the locations of tumor observed by BLI. Region of interest analyses of SPECT images revealed a significant increase of (99m)Tc-HuS/Hu-VEGF (n = 5) within the lungs with BLI-detectable pulmonary

  5. Network Analysis of Protein Adaptation: Modeling the Functional Impact of Multiple Mutations

    PubMed Central

    Beleva Guthrie, Violeta; Masica, David L; Fraser, Andrew; Federico, Joseph; Fan, Yunfan; Camps, Manel; Karchin, Rachel

    2018-01-01

    Abstract The evolution of new biochemical activities frequently involves complex dependencies between mutations and rapid evolutionary radiation. Mutation co-occurrence and covariation have previously been used to identify compensating mutations that are the result of physical contacts and preserve protein function and fold. Here, we model pairwise functional dependencies and higher order interactions that enable evolution of new protein functions. We use a network model to find complex dependencies between mutations resulting from evolutionary trade-offs and pleiotropic effects. We present a method to construct these networks and to identify functionally interacting mutations in both extant and reconstructed ancestral sequences (Network Analysis of Protein Adaptation). The time ordering of mutations can be incorporated into the networks through phylogenetic reconstruction. We apply NAPA to three distantly homologous β-lactamase protein clusters (TEM, CTX-M-3, and OXA-51), each of which has experienced recent evolutionary radiation under substantially different selective pressures. By analyzing the network properties of each protein cluster, we identify key adaptive mutations, positive pairwise interactions, different adaptive solutions to the same selective pressure, and complex evolutionary trajectories likely to increase protein fitness. We also present evidence that incorporating information from phylogenetic reconstruction and ancestral sequence inference can reduce the number of spurious links in the network, whereas preserving overall network community structure. The analysis does not require structural or biochemical data. In contrast to function-preserving mutation dependencies, which are frequently from structural contacts, gain-of-function mutation dependencies are most commonly between residues distal in protein structure. PMID:29522102

  6. NT-PGC-1α protein is sufficient to link β3-adrenergic receptor activation to transcriptional and physiological components of adaptive thermogenesis.

    PubMed

    Chang, Ji Suk; Fernand, Vivian; Zhang, Yubin; Shin, Jeho; Jun, Hee-Jin; Joshi, Yagini; Gettys, Thomas W

    2012-03-16

    PGC-1α is an inducible transcriptional coactivator that regulates cellular energy metabolism and adaptation to environmental and nutritional stimuli. In tissues expressing PGC-1α, alternative splicing produces a truncated protein (NT-PGC-1α) corresponding to the first 267 amino acids of PGC-1α. Brown adipose tissue also expresses two novel exon 1b-derived isoforms of PGC-1α and NT-PGC-1α, which are 4 and 13 amino acids shorter in the N termini than canonical PGC-1α and NT-PGC-1α, respectively. To evaluate the ability of NT-PGC-1α to substitute for PGC-1α and assess the isoform-specific role of NT-PGC-1α, adaptive thermogenic responses of adipose tissue were evaluated in mice lacking full-length PGC-1α (FL-PGC-1(-/-)) but expressing slightly shorter but functionally equivalent forms of NT-PGC-1α (NT-PGC-1α(254)). At room temperature, NT-PGC-1α and NT-PGC-1α(254) were produced from conventional exon 1a-derived transcripts in brown adipose tissue of wild type and FL-PGC-1α(-/-) mice, respectively. However, cold exposure shifted transcription to exon 1b, increasing exon 1b-derived mRNA levels. The resulting transcriptional responses produced comparable increases in energy expenditure and maintenance of core body temperature in WT and FL-PGC-1α(-/-) mice. Moreover, treatment of the two genotypes with a selective β(3)-adrenergic receptor agonist produced similar increases in energy expenditure, mitochondrial DNA, and reductions in adiposity. Collectively, these findings illustrate that the transcriptional and physiological responses to sympathetic input are unabridged in FL-PGC-1α(-/-) mice, and that NT-PGC-1α is sufficient to link β(3)-androgenic receptor activation to adaptive thermogenesis in adipose tissue. Furthermore, the transcriptional shift from exon 1a to 1b supports isoform-specific roles for NT-PGC-1α in basal and adaptive thermogenesis.

  7. SASH1 inhibits cervical cancer cell proliferation and invasion by suppressing the FAK pathway.

    PubMed

    Chen, Hui; Wang, Dongliang; Liu, Yuling

    2016-04-01

    SAM and SH3 domain containing 1 (SASH1), a member of the SLY-family of signal adapter proteins, is a candidate tumor suppressor in several types of cancer. However, the role of SASH1 in cervical cancer remains to be elucidated. Therefore, in the present study, the role of SASH1 in cervical cancer and the underlying mechanism was investigated. Cell proliferation was detected by the MTT assay. Cell invasion was measured by Transwell assay. The mRNA expression levels of SASH1, matrix metalloproteinase (MMP)‑2 and MMP‑9 were determined by reverse transcription quantitative polymerase chain reaction. The protein expression levels of SASH1, MMP‑2, MMP‑9 and focal adhesion kinase (FAK) were determined by western blot analysis. The results demonstrated that SASH1 was downregulated in cervical cancer tissues and cell lines. Subsequently, a vector that overexpresses SASH1 was constructed. Overexpression of SASH1 was found to significantly inhibit cervical cancer cell proliferation and invasion, and also significantly reduce the expression of MMP‑2 and MMP‑9 in cancer cells. In addition, SASH1 modulated the FAK signaling pathway. Overexpression of SASH1 suppressed the expression of FAK in cancer cells. Taken together, the results suggested that SASH1 inhibits cervical cancer cell proliferation and invasion by suppressing the FAK pathway.

  8. Pharmacogenetic study of second-generation antipsychotic long-term treatment metabolic side effects (the SLiM Study): rationale, objectives, design and sample description.

    PubMed

    Pina-Camacho, Laura; Díaz-Caneja, Covadonga M; Saiz, Pilar A; Bobes, Julio; Corripio, Iluminada; Grasa, Eva; Rodriguez-Jimenez, Roberto; Fernández, Miryam; Sanjuán, Julio; García-López, Aurelio; Tapia-Casellas, Cecilia; Álvarez-Blázquez, María; Fraguas, David; Mitjans, Marina; Arias, Bárbara; Arango, Celso

    2014-01-01

    Weight gain is an important and common side effect of second generation antipsychotics (SGAs). Furthermore, these drugs can induce other side effects associated with higher cardiovascular morbidity and mortality, such as insulin resistance, diabetes or metabolic syndrome. Preliminary studies show that inter-individual genetic differences produce varying degrees of vulnerability to the different SGA-induced side effects. The Second-generation antipsychotic Long-term treatment Metabolic side effects (SLiM) study aims to identify clinical, environmental and genetic factors that explain inter-individual differences in weight gain and metabolic changes in drug-naïve patients after six months of treatment with SGAs. The SLIM study is a multicenter, observational, six-month pharmacogenetic study where a cohort of 307 drug-naïve paediatric and adult patients (age range 8.8-90.1 years) and a cohort of 150 age- and sex- matched healthy controls (7.8-73.2 years) were recruited. This paper describes the rationale, objectives and design of the study and provides a description of the sample at baseline. Results from the SLiM study will provide a better understanding of the clinical, environmental, and genetic factors involved in weight gain and metabolic disturbances associated with SGA treatment. Copyright © 2014 SEP y SEPB. Published by Elsevier España. All rights reserved.

  9. The E-Id Protein Axis Specifies Adaptive Lymphoid Cell Identity and Suppresses Thymic Innate Lymphoid Cell Development.

    PubMed

    Miyazaki, Masaki; Miyazaki, Kazuko; Chen, Kenian; Jin, Yi; Turner, Jacob; Moore, Amanda J; Saito, Rintaro; Yoshida, Kenichi; Ogawa, Seishi; Rodewald, Hans-Reimer; Lin, Yin C; Kawamoto, Hiroshi; Murre, Cornelis

    2017-05-16

    Innate and adaptive lymphoid development is orchestrated by the activities of E proteins and their antagonist Id proteins, but how these factors regulate early T cell progenitor (ETP) and innate lymphoid cell (ILC) development remains unclear. Using multiple genetic strategies, we demonstrated that E proteins E2A and HEB acted in synergy in the thymus to establish T cell identity and to suppress the aberrant development of ILCs, including ILC2s and lymphoid-tissue-inducer-like cells. E2A and HEB orchestrated T cell fate and suppressed the ILC transcription signature by activating the expression of genes associated with Notch receptors, T cell receptor (TCR) assembly, and TCR-mediated signaling. E2A and HEB acted in ETPs to establish and maintain a T-cell-lineage-specific enhancer repertoire, including regulatory elements associated with the Notch1, Rag1, and Rag2 loci. On the basis of these and previous observations, we propose that the E-Id protein axis specifies innate and adaptive lymphoid cell fate. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Live imaging using adaptive optics with fluorescent protein guide-stars

    PubMed Central

    Tao, Xiaodong; Crest, Justin; Kotadia, Shaila; Azucena, Oscar; Chen, Diana C.; Sullivan, William; Kubby, Joel

    2012-01-01

    Spatially and temporally dependent optical aberrations induced by the inhomogeneous refractive index of live samples limit the resolution of live dynamic imaging. We introduce an adaptive optical microscope with a direct wavefront sensing method using a Shack-Hartmann wavefront sensor and fluorescent protein guide-stars for live imaging. The results of imaging Drosophila embryos demonstrate its ability to correct aberrations and achieve near diffraction limited images of medial sections of large Drosophila embryos. GFP-polo labeled centrosomes can be observed clearly after correction but cannot be observed before correction. Four dimensional time lapse images are achieved with the correction of dynamic aberrations. These studies also demonstrate that the GFP-tagged centrosome proteins, Polo and Cnn, serve as excellent biological guide-stars for adaptive optics based microscopy. PMID:22772285

  11. The Nck family of adapter proteins: regulators of actin cytoskeleton.

    PubMed

    Buday, László; Wunderlich, Livius; Tamás, Peter

    2002-09-01

    SH2/SH3 domain-containing adapter proteins, such as the Nck family, play a major role in regulating tyrosine kinase signalling. They serve to recruit proline-rich effector molecules to tyrosine-phosphorylated kinases or their substrates. Initially, it was not clear why cells from nematodes to vertebrates contain redundant and closely related SH2/SH3 adapters, such as Grb2, Crk and Nck. Recent evidence suggests that their biological roles are clearly different, whereas, for example, Grb2 connects activated receptor tyrosine kinases to Sos and Ras, leading to cell proliferation. The proteins of Nck family are implicated in organisation of actin cytoskeleton, cell movement or axon guidance in flies. In this review, the author attempts to summarise signalling pathways in which Nck plays a critical role.

  12. Design and methods in a survey of living conditions in the Arctic - the SLiCA study.

    PubMed

    Eliassen, Bent-Martin; Melhus, Marita; Kruse, Jack; Poppel, Birger; Broderstad, Ann Ragnhild

    2012-03-19

    The main objective of this study is to describe the methods and design of the survey of living conditions in the Arctic (SLiCA), relevant participation rates and the distribution of participants, as applicable to the survey data in Alaska, Greenland and Norway. This article briefly addresses possible selection bias in the data and also the ways to tackle it in future studies. Population-based cross-sectional survey. Indigenous individuals aged 16 years and older, living in Greenland, Alaska and in traditional settlement areas in Norway, were invited to participate. Random sampling methods were applied in Alaska and Greenland, while non-probability sampling methods were applied in Norway. Data were collected in 3 periods: in Alaska, from January 2002 to February 2003; in Greenland, from December 2003 to August 2006; and in Norway, in 2003 and from June 2006 to June 2008. The principal method in SLiCA was standardised face-to-face interviews using a questionnaire. A total of 663, 1,197 and 445 individuals were interviewed in Alaska, Greenland and Norway, respectively. Very high overall participation rates of 83% were obtained in Greenland and Alaska, while a more conventional rate of 57% was achieved in Norway. A predominance of female respondents was obtained in Alaska. Overall, the Sami cohort is older than the cohorts from Greenland and Alaska. Preliminary assessments suggest that selection bias in the Sami sample is plausible but not a major threat. Few or no threats to validity are detected in the data from Alaska and Greenland. Despite different sampling and recruitment methods, and sociocultural differences, a unique database has been generated, which shall be used to explore relationships between health and other living conditions variables.

  13. Effects of Immediate and Cumulative Syntactic Experience in Language Impairment: Evidence from Priming of Subject Relatives in Children with SLI

    ERIC Educational Resources Information Center

    Garraffa, Maria; Coco, Moreno I.; Branigan, Holly P.

    2015-01-01

    We investigated the production of subject relative clauses (SRc) in Italian pre-school children with Specific Language Impairment (SLI) and age-matched typically-developing children (TD) controls. In a structural priming paradigm, children described pictures after hearing the experimenter produce a bare noun or an SRc description, as part of a…

  14. Identification of combinatorial host-specific signatures with a potential to affect host adaptation in influenza A H1N1 and H3N2 subtypes.

    PubMed

    Khaliq, Zeeshan; Leijon, Mikael; Belák, Sándor; Komorowski, Jan

    2016-07-29

    The underlying strategies used by influenza A viruses (IAVs) to adapt to new hosts while crossing the species barrier are complex and yet to be understood completely. Several studies have been published identifying singular genomic signatures that indicate such a host switch. The complexity of the problem suggested that in addition to the singular signatures, there might be a combinatorial use of such genomic features, in nature, defining adaptation to hosts. We used computational rule-based modeling to identify combinatorial sets of interacting amino acid (aa) residues in 12 proteins of IAVs of H1N1 and H3N2 subtypes. We built highly accurate rule-based models for each protein that could differentiate between viral aa sequences coming from avian and human hosts. We found 68 host-specific combinations of aa residues, potentially associated to host adaptation on HA, M1, M2, NP, NS1, NEP, PA, PA-X, PB1 and PB2 proteins of the H1N1 subtype and 24 on M1, M2, NEP, PB1 and PB2 proteins of the H3N2 subtypes. In addition to these combinations, we found 132 novel singular aa signatures distributed among all proteins, including the newly discovered PA-X protein, of both subtypes. We showed that HA, NA, NP, NS1, NEP, PA-X and PA proteins of the H1N1 subtype carry H1N1-specific and HA, NA, PA-X, PA, PB1-F2 and PB1 of the H3N2 subtype carry H3N2-specific signatures. M1, M2, PB1-F2, PB1 and PB2 of H1N1 subtype, in addition to H1N1 signatures, also carry H3N2 signatures. Similarly M1, M2, NP, NS1, NEP and PB2 of H3N2 subtype were shown to carry both H3N2 and H1N1 host-specific signatures (HSSs). To sum it up, we computationally constructed simple IF-THEN rule-based models that could distinguish between aa sequences of avian and human IAVs. From the rules we identified HSSs having a potential to affect the adaptation to specific hosts. The identification of combinatorial HSSs suggests that the process of adaptation of IAVs to a new host is more complex than previously suggested

  15. Cold shock domain proteins and glycine-rich RNA-binding proteins from Arabidopsis thaliana can promote the cold adaptation process in Escherichia coli

    PubMed Central

    Kim, Jin Sun; Park, Su Jung; Kwak, Kyung Jin; Kim, Yeon Ok; Kim, Joo Yeol; Song, Jinkyung; Jang, Boseung; Jung, Che-Hun; Kang, Hunseung

    2007-01-01

    Despite the fact that cold shock domain proteins (CSDPs) and glycine-rich RNA-binding proteins (GRPs) have been implicated to play a role during the cold adaptation process, their importance and function in eukaryotes, including plants, are largely unknown. To understand the functional role of plant CSDPs and GRPs in the cold response, two CSDPs (CSDP1 and CSDP2) and three GRPs (GRP2, GRP4 and GRP7) from Arabidopsis thaliana were investigated. Heterologous expression of CSDP1 or GRP7 complemented the cold sensitivity of BX04 mutant Escherichia coli that lack four cold shock proteins (CSPs) and is highly sensitive to cold stress, and resulted in better survival rate than control cells during incubation at low temperature. In contrast, CSDP2 and GRP4 had very little ability. Selective evolution of ligand by exponential enrichment (SELEX) revealed that GRP7 does not recognize specific RNAs but binds preferentially to G-rich RNA sequences. CSDP1 and GRP7 had DNA melting activity, and enhanced RNase activity. In contrast, CSDP2 and GRP4 had no DNA melting activity and did not enhance RNAase activity. Together, these results indicate that CSDPs and GRPs help E.coli grow and survive better during cold shock, and strongly imply that CSDP1 and GRP7 exhibit RNA chaperone activity during the cold adaptation process. PMID:17169986

  16. A motor neuron strategy to save time and energy in neurodegeneration: adaptive protein stoichiometry.

    PubMed

    Zucchi, Elisabetta; Lu, Ching-Hua; Cho, Yunju; Chang, Rakwoo; Adiutori, Rocco; Zubiri, Irene; Ceroni, Mauro; Cereda, Cristina; Pansarasa, Orietta; Greensmith, Linda; Malaspina, Andrea; Petzold, Axel

    2018-06-30

    Neurofilament proteins (Nf) are a biomarker of disease progression in amyotrophic lateral sclerosis (ALS). This study investigated whether there are major differences in expression from in vivo measurements of neurofilament isoforms, from the light chain, NfL (68 kDa), compared to larger proteins, the medium chain (NfM, 150 kDa) and the heavy (NfH, 200-210 kDa) chains in ALS patients and healthy controls. New immunological methods were combined with Nf subunit stoichiometry calculations and Monte-Carlo simulations of a coarse-grained Nf brush model. Based on a physiological Nf subunit stoichiometry of 7:3:2 (NfL:NfM:NfH) we found an "adaptive" Nf subunit stoichiometry of 24:2.4:1.6 in ALS. Adaptive Nf stoichiometry preserved NfL gyration radius in the Nf brush model. The energy and time requirements for Nf translation were 56±27k ATP (5.6 hours) in control subjects compared to 123±102k (12.3 h) in ALS with "adaptive" Nf stoichiometry (not significant) and increased significantly to 355±330k (35.5 h) with "luxury" Nf subunit stoichiometry (p<0.0001 for each comparison). Longitudinal disease progression related energy consumption was highest with a "luxury" Nf stoichiometry. Therefore, an energy and time saving option for motor neurons is to shift protein expression from larger to smaller (cheaper) subunits, at little or no costs on a protein structural level, to compensate for increased energy demands. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  17. Enablers and Challenges of Post-16 Education and Employment Outcomes: The Perspectives of Young Adults with a History of SLI

    ERIC Educational Resources Information Center

    Carroll, Catherine; Dockrell, Julie

    2012-01-01

    Background: Research studies have begun to investigate the post-16 outcomes for young adults with a specific language impairment (SLI). As yet only tentative conclusions can be drawn with respect to academic and employment outcomes and the factors that are associated with more positive outcomes. Evidence for these findings has relied predominantly…

  18. Guanylate cyclase-activating protein 2 contributes to phototransduction and light adaptation in mouse cone photoreceptors.

    PubMed

    Vinberg, Frans; Peshenko, Igor V; Chen, Jeannie; Dizhoor, Alexander M; Kefalov, Vladimir J

    2018-05-11

    Light adaptation of photoreceptor cells is mediated by Ca 2+ -dependent mechanisms. In darkness, Ca 2+ influx through cGMP-gated channels into the outer segment of photoreceptors is balanced by Ca 2+ extrusion via Na + /Ca 2+ , K + exchangers (NCKXs). Light activates a G protein signaling cascade, which closes cGMP-gated channels and decreases Ca 2+ levels in photoreceptor outer segment because of continuing Ca 2+ extrusion by NCKXs. Guanylate cyclase-activating proteins (GCAPs) then up-regulate cGMP synthesis by activating retinal membrane guanylate cyclases (RetGCs) in low Ca 2+ This activation of RetGC accelerates photoresponse recovery and critically contributes to light adaptation of the nighttime rod and daytime cone photoreceptors. In mouse rod photoreceptors, GCAP1 and GCAP2 both contribute to the Ca 2+ -feedback mechanism. In contrast, only GCAP1 appears to modulate RetGC activity in mouse cones because evidence of GCAP2 expression in cones is lacking. Surprisingly, we found that GCAP2 is expressed in cones and can regulate light sensitivity and response kinetics as well as light adaptation of GCAP1-deficient mouse cones. Furthermore, we show that GCAP2 promotes cGMP synthesis and cGMP-gated channel opening in mouse cones exposed to low Ca 2+ Our biochemical model and experiments indicate that GCAP2 significantly contributes to the activation of RetGC1 at low Ca 2+ when GCAP1 is not present. Of note, in WT mouse cones, GCAP1 dominates the regulation of cGMP synthesis. We conclude that, under normal physiological conditions, GCAP1 dominates the regulation of cGMP synthesis in mouse cones, but if its function becomes compromised, GCAP2 contributes to the regulation of phototransduction and light adaptation of cones. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. The T-cell-specific adapter protein family: TSAd, ALX, and SH2D4A/SH2D4B.

    PubMed

    Lapinski, Philip E; Oliver, Jennifer A; Bodie, Jennifer N; Marti, Francesc; King, Philip D

    2009-11-01

    Adapter proteins play key roles in intracellular signal transduction through complex formation with catalytically active signaling molecules. In T lymphocytes, the role of several different types of adapter proteins in T-cell antigen receptor signal transduction is well established. An exception to this is the family of T-cell-specific adapter (TSAd) proteins comprising of TSAd, adapter protein of unknown function (ALX), SH2D4A, and SH2D4B. Only recently has the function of these adapters in T-cell signal transduction been explored. Here, we discuss advances in our understanding of the role of this family of adapter proteins in T cells. Their function as regulators of signal transduction in other cell types is also discussed.

  20. Diagnostic Accuracy of Repetition Tasks for the Identification of Specific Language Impairment (SLI) in Bilingual Children: Evidence from Russian and Hebrew

    ERIC Educational Resources Information Center

    Armon-Lotem, Sharon; Meir, Natalia

    2016-01-01

    Background: Previous research demonstrates that repetition tasks are valuable tools for diagnosing specific language impairment (SLI) in monolingual children in English and a variety of other languages, with non-word repetition (NWR) and sentence repetition (SRep) yielding high levels of sensitivity and specificity. Yet, only a few studies have…

  1. Epistatically Interacting Substitutions Are Enriched during Adaptive Protein Evolution

    PubMed Central

    Gong, Lizhi Ian; Bloom, Jesse D.

    2014-01-01

    Most experimental studies of epistasis in evolution have focused on adaptive changes—but adaptation accounts for only a portion of total evolutionary change. Are the patterns of epistasis during adaptation representative of evolution more broadly? We address this question by examining a pair of protein homologs, of which only one is subject to a well-defined pressure for adaptive change. Specifically, we compare the nucleoproteins from human and swine influenza. Human influenza is under continual selection to evade recognition by acquired immune memory, while swine influenza experiences less such selection due to the fact that pigs are less likely to be infected with influenza repeatedly in a lifetime. Mutations in some types of immune epitopes are therefore much more strongly adaptive to human than swine influenza—here we focus on epitopes targeted by human cytotoxic T lymphocytes. The nucleoproteins of human and swine influenza possess nearly identical numbers of such epitopes. However, mutations in these epitopes are fixed significantly more frequently in human than in swine influenza, presumably because these epitope mutations are adaptive only to human influenza. Experimentally, we find that epistatically constrained mutations are fixed only in the adaptively evolving human influenza lineage, where they occur at sites that are enriched in epitopes. Overall, our results demonstrate that epistatically interacting substitutions are enriched during adaptation, suggesting that the prevalence of epistasis is dependent on the underlying evolutionary forces at play. PMID:24811236

  2. Voices of Young People with a History of Specific Language Impairment (SLI) in the First Year of Post-16 Education

    ERIC Educational Resources Information Center

    Palikara, Olympia; Lindsay, Geoff; Dockrell, Julie E.

    2009-01-01

    Background: Giving young people more and better opportunities to have their voices heard is a key feature of current educational policy and research internationally and in the UK. Aims: To examine the views of young people with a history of specific language impairment (SLI) as they entered post-16 education. Methods & Procedures: A total of…

  3. Evolutionary Dynamics on Protein Bi-stability Landscapes can Potentially Resolve Adaptive Conflicts

    PubMed Central

    Sikosek, Tobias; Bornberg-Bauer, Erich; Chan, Hue Sun

    2012-01-01

    Experimental studies have shown that some proteins exist in two alternative native-state conformations. It has been proposed that such bi-stable proteins can potentially function as evolutionary bridges at the interface between two neutral networks of protein sequences that fold uniquely into the two different native conformations. Under adaptive conflict scenarios, bi-stable proteins may be of particular advantage if they simultaneously provide two beneficial biological functions. However, computational models that simulate protein structure evolution do not yet recognize the importance of bi-stability. Here we use a biophysical model to analyze sequence space to identify bi-stable or multi-stable proteins with two or more equally stable native-state structures. The inclusion of such proteins enhances phenotype connectivity between neutral networks in sequence space. Consideration of the sequence space neighborhood of bridge proteins revealed that bi-stability decreases gradually with each mutation that takes the sequence further away from an exactly bi-stable protein. With relaxed selection pressures, we found that bi-stable proteins in our model are highly successful under simulated adaptive conflict. Inspired by these model predictions, we developed a method to identify real proteins in the PDB with bridge-like properties, and have verified a clear bi-stability gradient for a series of mutants studied by Alexander et al. (Proc Nat Acad Sci USA 2009, 106:21149–21154) that connect two sequences that fold uniquely into two different native structures via a bridge-like intermediate mutant sequence. Based on these findings, new testable predictions for future studies on protein bi-stability and evolution are discussed. PMID:23028272

  4. Core-shell Li2S@Li3PS4 nanoparticles incorporated into graphene aerogel for lithium-sulfur batteries with low potential barrier and overpotential

    NASA Astrophysics Data System (ADS)

    Jiao, Zheng; Chen, Lu; Si, Jian; Xu, Chuxiong; Jiang, Yong; Zhu, Ying; Yang, Yaqing; Zhao, Bing

    2017-06-01

    Lithium sulfide as a promising cathode material not only have a high theoretical specific capacity, but also can be paired with Li-free anode material to avoid potential safety issues. However, how to prepare high electrochemical performance material is still challenge. Herein, we present a facile way to obtain high crystal quality Li2S nanomaterials with average particle size of about 55 nm and coated with Li3PS4 to form the nano-scaled core-shell Li2S@Li3PS4 composite. Then nano-Li2S@Li3PS4/graphene aerogel is prepared by a simple liquid infiltration-evaporation coating process and used directly as a composite cathode without metal substrate for lithium-sulfur batteries. Electrochemical tests demonstrate that the composite delivers a high discharge capacity of 934.4 mAh g-1 in the initial cycle and retains 485.5 mAh g-1 after 100 cycles at 0.1 C rate. In addition, the composite exhibits much lower potential barrier (∼2.40 V) and overpotential compared with previous reports, indicating that Li2S needs only a little energy to be activated. The excellent electrochemical performances could be attributed to the tiny particle size of Li2S and the superionic conducting Li3PS4 coating layer, which can shorten Li-ion and electron diffusion paths, improve the ionic conductivity, as well as retarding polysulfides dissolution into the electrolyte to some extent.

  5. Lentiviral-mediated gene therapy results in sustained expression of β-glucuronidase for up to 12 months in the gus(mps/mps) and up to 18 months in the gus(tm(L175F)Sly) mouse models of mucopolysaccharidosis type VII.

    PubMed

    Derrick-Roberts, Ainslie L K; Pyragius, Carmen E; Kaidonis, Xenia M; Jackson, Matilda R; Anson, Donald S; Byers, Sharon

    2014-09-01

    A number of mucopolysaccharidosis type VII (MPS VII) mouse models with different levels of residual enzyme activity have been created replicating the range of clinical phenotypes observed in human MPS VII patients. In this study, a lentivirus encoding murine β-glucuronidase was administered intravenously at birth to both the severe (Gus(mps/mps) strain) and attenuated (Gus(tm(L175F)Sly) strain) mouse models of MPS VII. Circulating enzyme levels were normalized in the Gus(mps/mps) mice and were 3.5-fold higher than normal in the Gus(tm(L175F)Sly) mouse 12 and 18 months after administration. Tissue β-glucuronidase activity increased over untreated levels in all tissues evaluated in both strains at 12 months, and the elevated level was maintained in Gus(tm(L175F)Sly) tissues at 18 months. These elevated enzyme levels reduced glycosaminoglycan storage in the liver, spleen, kidney, and heart in both models. Bone mineral volume decreased toward normal in both models after 12 months of therapy and after 18 months in the Gus(tm(L175F)Sly) mouse. Open-field exploration was improved in 18-month-old treated Gus(tm(L175F)Sly) mice, while spatial learning improved in both 12- and 18-month-old treated Gus(tm(L175F)Sly) mice. Overall, neonatal administration of lentiviral gene therapy resulted in sustained enzyme expression for up to 18 months in murine models of MPS VII. Significant improvements in biochemistry and enzymology as well as functional improvement of bone and behavior deficits in the Gus(tm(L175F)Sly) model were observed. Therapy significantly increased the lifespan of Gus(mps/mps) mice, with 12 months being the longest reported lentiviral treatment for this strain. It is important to assess the long-term outcome on enzyme levels and effect on pathology for lentiviral gene therapy to be a potential therapy for MPS patients.

  6. Differentiating the Differentiation Models: A Comparison of the Retrieving Effectively from Memory Model (REM) and the Subjective Likelihood Model (SLiM)

    ERIC Educational Resources Information Center

    Criss, Amy H.; McClelland, James L.

    2006-01-01

    The subjective likelihood model [SLiM; McClelland, J. L., & Chappell, M. (1998). Familiarity breeds differentiation: a subjective-likelihood approach to the effects of experience in recognition memory. "Psychological Review," 105(4), 734-760.] and the retrieving effectively from memory model [REM; Shiffrin, R. M., & Steyvers, M. (1997). A model…

  7. Compensatory increases in nuclear PGC1alpha protein are primarily associated with subsarcolemmal mitochondrial adaptations in ZDF rats.

    PubMed

    Holloway, Graham P; Gurd, Brendon J; Snook, Laelie A; Lally, Jamie; Bonen, Arend

    2010-04-01

    We examined in insulin-resistant muscle if, in contrast to long-standing dogma, mitochondrial fatty acid oxidation is increased and whether this is attributed to an increased nuclear content of peroxisome proliferator-activated receptor (PPAR) gamma coactivator (PGC) 1alpha and the adaptations of specific mitochondrial subpopulations. Skeletal muscles from male control and Zucker diabetic fatty (ZDF) rats were used to determine 1) intramuscular lipid distribution, 2) subsarcolemmal and intermyofibrillar mitochondrial morphology, 3) rates of palmitate oxidation in subsarcolemmal and intermyofibrillar mitochondria, and 4) the subcellular localization of PGC1alpha. Electotransfection of PGC1alpha cDNA into lean animals tested the notion that increased nuclear PGC1alpha preferentially targeted subsarcolemmal mitochondria. Transmission electron microscope analysis revealed that in ZDF animals the number (+50%), width (+69%), and density (+57%) of subsarcolemmal mitochondria were increased (P < 0.05). In contrast, intermyofibrillar mitochondria remained largely unchanged. Rates of palmitate oxidation were approximately 40% higher (P < 0.05) in ZDF subsarcolemmal and intermyofibrillar mitochondria, potentially as a result of the increased PPAR-targeted proteins, carnitine palmitoyltransferase-I, and fatty acid translocase (FAT)/CD36. PGC1alpha mRNA and total protein were not altered in ZDF animals; however, a greater (approximately 70%; P < 0.05) amount of PGC1alpha was located in nuclei. Overexpression of PGC1alpha only increased subsarcolemmal mitochondrial oxidation rates. In ZDF animals, intramuscular lipids accumulate in the intermyofibrillar region (increased size and number), and this is primarily associated with increased oxidative capacity in subsarcolemmal mitochondria (number, size, density, and oxidation rates). These changes may result from an increased nuclear content of PGC1alpha, as under basal conditions, overexpression of PGC1alpha appears to target

  8. Language and Social Factors in the Use of Cell Phone Technology by Adolescents with and without Specific Language Impairment (SLI)

    ERIC Educational Resources Information Center

    Conti-Ramsden, Gina; Durkin, Kevin; Simkin, Zoe

    2010-01-01

    Purpose: This study aimed to compare cell phone use (both oral and text-based) by adolescents with and without specific language impairment (SLI) and examine the extent to which language and social factors affect frequency of use. Method: Both interview and diary methods were used to compare oral and text-based communication using cell phones by…

  9. [Study on the molecular epidemiology of Streptococcus suis type 2 from healthy pigs in Guangxi].

    PubMed

    Xiong, Yi; Liu, Qi; Qin, Fang-yun; Bai, Yun; Zhu, Wei; Li, Hua-ming; Guo, Jian-gang; Qin, Lun; Pan, Jie; Long, Jian-ming; Chen, Lei

    2007-06-01

    In order to investigate the positive rate of streptococcus suis type 2 and the genes of their suilysin (sly), extracellular protein (epf) and muramidasa-released protein ( mrp) and to understand the antibiotic susceptibility of S. suis type 2. S. suis type 2, isolated from slaughtered healthy pig's tonsil in 10 county area of Guangxi, were identified by Multiplex PCR, and the genes of their sly, epf, mrp and the antimicrobial sensitivity analysis were performed. 1105 strains of Streptococcus including 667 strains of S. suis and 33 strains of S. suis type 2 were detected from 1179 samples. In these S. suis type 2 strains, there were 22 strains of sly + mrp + epf+ type,1 strain of sly + mrp + epf - type, 2 strains of sly - mrp + epf + type, 7 strains of sly - mrp + epf - type and 1 strain of sly - mrp - epf- type. When these strains were subjected to be tested with penicillin, eritrocina, vacocin, gentamycin, specti-nomysin, enraxacin, ciprofloxaxin, cephalothin VI, sulfadiazine sodium, cyantin, mycifradin, amikacin and achromcin, some were found to be resistant to but most strains were susceptible to cephalothin VI, penicillin and enraxacin. There were 31, 29 and 27 strains over medium sensitivity, respectively, but 28 and 27 resistant strains to amikacin and achromcin were found. The positive rate of S. suis type 2 in clinical healthy pigs was low (2.8%) and did not show obvious difference between the counties with or without a history of S. suis infection. All the isolated strains were susceptible to cephalothin VI, but most strains were virulent.

  10. Proteomics-based identification of differentially abundant proteins reveals adaptation mechanisms of Xanthomonas citri subsp. citri during Citrus sinensis infection.

    PubMed

    Moreira, Leandro M; Soares, Márcia R; Facincani, Agda P; Ferreira, Cristiano B; Ferreira, Rafael M; Ferro, Maria I T; Gozzo, Fábio C; Felestrino, Érica B; Assis, Renata A B; Garcia, Camila Carrião M; Setubal, João C; Ferro, Jesus A; de Oliveira, Julio C F

    2017-07-11

    Xanthomonas citri subsp. citri (Xac) is the causal agent of citrus canker. A proteomic analysis under in planta infectious and non-infectious conditions was conducted in order to increase our knowledge about the adaptive process of Xac during infection. For that, a 2D-based proteomic analysis of Xac at 1, 3 and 5 days after inoculation, in comparison to Xac growth in NB media was carried out and followed by MALDI-TOF-TOF identification of 124 unique differentially abundant proteins. Among them, 79 correspond to up-regulated proteins in at least one of the three stages of infection. Our results indicate an important role of proteins related to biofilm synthesis, lipopolysaccharides biosynthesis, and iron uptake and metabolism as possible modulators of plant innate immunity, and revealed an intricate network of proteins involved in reactive oxygen species adaptation during Plants` Oxidative Burst response. We also identified proteins previously unknown to be involved in Xac-Citrus interaction, including the hypothetical protein XAC3981. A mutant strain for this gene has proved to be non-pathogenic in respect to classical symptoms of citrus canker induced in compatible plants. This is the first time that a protein repertoire is shown to be active and working in an integrated manner during the infection process in a compatible host, pointing to an elaborate mechanism for adaptation of Xac once inside the plant.

  11. Dynamics and Adaptive Benefits of Protein Domain Emergence and Arrangements during Plant Genome Evolution

    PubMed Central

    Kersting, Anna R.; Bornberg-Bauer, Erich; Moore, Andrew D.; Grath, Sonja

    2012-01-01

    Plant genomes are generally very large, mostly paleopolyploid, and have numerous gene duplicates and complex genomic features such as repeats and transposable elements. Many of these features have been hypothesized to enable plants, which cannot easily escape environmental challenges, to rapidly adapt. Another mechanism, which has recently been well described as a major facilitator of rapid adaptation in bacteria, animals, and fungi but not yet for plants, is modular rearrangement of protein-coding genes. Due to the high precision of profile-based methods, rearrangements can be well captured at the protein level by characterizing the emergence, loss, and rearrangements of protein domains, their structural, functional, and evolutionary building blocks. Here, we study the dynamics of domain rearrangements and explore their adaptive benefit in 27 plant and 3 algal genomes. We use a phylogenomic approach by which we can explain the formation of 88% of all arrangements by single-step events, such as fusion, fission, and terminal loss of domains. We find many domains are lost along every lineage, but at least 500 domains are novel, that is, they are unique to green plants and emerged more or less recently. These novel domains duplicate and rearrange more readily within their genomes than ancient domains and are overproportionally involved in stress response and developmental innovations. Novel domains more often affect regulatory proteins and show a higher degree of structural disorder than ancient domains. Whereas a relatively large and well-conserved core set of single-domain proteins exists, long multi-domain arrangements tend to be species-specific. We find that duplicated genes are more often involved in rearrangements. Although fission events typically impact metabolic proteins, fusion events often create new signaling proteins essential for environmental sensing. Taken together, the high volatility of single domains and complex arrangements in plant genomes

  12. Stress and Protein Turnover in Lemna minor1

    PubMed Central

    Cooke, Robert J.; Oliver, Jane; Davies, David D.

    1979-01-01

    Transfer of fronds of Lemna minor L. to adverse growth conditions or stress situations causes a lowering of the growth rate and a loss of soluble protein per frond, the extent of the loss being dependent on the nature of the stress. The loss or protein is due to two factors: (a) a decrease in the rate constant of protein synthesis (ks); (b) an increase in the rate constant of protein degradation (kd). In plants adapted to the stresses, protein synthesis increases and the initially rapid rate of proteolysis is reduced. Addition of abscisic acid both lowers ks and increases kd, whereas benzyladenine seems to alleviate the effects of stress on protein content by decreasing kd rather than by altering ks. Based on the measurement of enzyme activities, stress-induced protein degradation appears to be a general phenomenon, affecting many soluble proteins. The adaptive significance of stress-induced proteolysis is discussed. PMID:16661102

  13. Golgi-to-Endoplasmic Reticulum (ER) Retrograde Traffic in Yeast Requires Dsl1p, a Component of the ER Target Site that Interacts with a COPI Coat Subunit

    PubMed Central

    Reilly, Barbara A.; Kraynack, Bryan A.; VanRheenen, Susan M.; Waters, M. Gerard

    2001-01-01

    DSL1 was identified through its genetic interaction with SLY1, which encodes a t-SNARE-interacting protein that functions in endoplasmic reticulum (ER)-to-Golgi traffic. Conditional dsl1 mutants exhibit a block in ER-to-Golgi traffic at the restrictive temperature. Here, we show that dsl1 mutants are defective for retrograde Golgi-to-ER traffic, even under conditions where no anterograde transport block is evident. These results suggest that the primary function of Dsl1p may be in retrograde traffic, and that retrograde defects can lead to secondary defects in anterograde traffic. Dsl1p is an ER-localized peripheral membrane protein that can be extracted from the membrane in a multiprotein complex. Immunoisolation of the complex yielded Dsl1p and proteins of ∼80 and ∼55 kDa. The ∼80-kDa protein has been identified as Tip20p, a protein that others have shown to exist in a tight complex with Sec20p, which is ∼50 kDa. Both Sec20p and Tip20p function in retrograde Golgi-to-ER traffic, are ER-localized, and bind to the ER t-SNARE Ufe1p. These findings suggest that an ER-localized complex of Dsl1p, Sec20p, and Tip20p functions in retrograde traffic, perhaps upstream of a Sly1p/Ufe1p complex. Last, we show that Dsl1p interacts with the δ-subunit of the retrograde COPI coat, Ret2p, and discuss possible roles for this interaction. PMID:11739780

  14. Effect of Sentence Length and Complexity on Working Memory Performance in Hungarian Children with Specific Language Impairment (SLI): A Cross-Linguistic Comparison

    ERIC Educational Resources Information Center

    Marton, Klara; Schwartz, Richard G.; Farkas, Lajos; Katsnelson, Valeriya

    2006-01-01

    Background: English-speaking children with specific language impairment (SLI) perform more poorly than their typically developing peers in verbal working memory tasks where processing and storage are simultaneously required. Hungarian is a language with a relatively free word order and a rich agglutinative morphology. Aims: To examine the effect…

  15. Commentary: Increased Risk of Later Emotional and Behavioural Problems in Children with SLI -- Reflections on Yew and O'Kearney (2013)

    ERIC Educational Resources Information Center

    Conti-Ramsden, Gina

    2013-01-01

    Children with Specific Language Impairment (SLI) find it effortful to learn to talk and these difficulties can be persistent. Given the importance of language to human behaviour, it is not surprising to find that language difficulties are a risk factor for associated difficulties in other aspects of children's development. This article asks…

  16. The redox protein thioredoxin-1 (Trx-1) increases hypoxia-inducible factor 1alpha protein expression: Trx-1 overexpression results in increased vascular endothelial growth factor production and enhanced tumor angiogenesis.

    PubMed

    Welsh, Sarah J; Bellamy, William T; Briehl, Margaret M; Powis, Garth

    2002-09-01

    Hypoxia-inducible factor 1 (HIF-1), a heterodimer of HIF-1alpha and HIF-1beta subunits, is a transcriptional activator central to the cellular response to low oxygen that includes metabolic adaptation, angiogenesis, metastasis, and inhibited apoptosis. Thioredoxin-1 (Trx-1) is a small redox protein overexpressed in a number of human primary tumors. We have examined the effects of Trx-1 on HIF activity and the activation of downstream genes. Stable transfection of human breast carcinoma MCF-7 cells with human Trx-1 caused a significant increase in HIF-1alpha protein levels under both normoxic (20% oxygen) and hypoxic (1% oxygen) conditions. Trx-1 increased hypoxia-induced HIF-1 transactivation activity measured using a luciferase reporter under the control of the hypoxia response element. Changes in HIF-1alpha mRNA levels did not account for the changes observed at the protein level, and HIF-1beta protein levels did not change. Trx-1 transfection also caused a significant increase in the protein products of hypoxia-responsive genes, including vascular endothelial growth factor (VEGF) and nitric oxide synthase 2 in a number of different cell lines (MCF-7 human breast and HT29 human colon carcinomas and WEHI7.2 mouse lymphoma cells) under both normoxic and hypoxic conditions. The pattern of expression of the different isoforms of VEGF was not changed by Trx-1. Transfection of a redox-inactive Trx-1 (C32S/C35S) markedly decreased levels of HIF-1alpha protein, HIF-1 transactivating activity, and VEGF protein in MCF-7 cells compared with empty vector controls. In vivo studies using WEHI7.2 cells transfected with Trx-1 showed significantly increased tumor VEGF and angiogenesis. The results suggest that Trx-1 increases HIF-1alpha protein levels in cancer cells and increases VEGF production and tumor angiogenesis.

  17. Heg1 and Ccm1/2 proteins control endocardial mechanosensitivity during zebrafish valvulogenesis

    PubMed Central

    Otten, Cécile; Renz, Marc

    2018-01-01

    Endothelial cells respond to different levels of fluid shear stress through adaptations of their mechanosensitivity. Currently, we lack a good understanding of how this contributes to sculpting of the cardiovascular system. Cerebral cavernous malformation (CCM) is an inherited vascular disease that occurs when a second somatic mutation causes a loss of CCM1/KRIT1, CCM2, or CCM3 proteins. Here, we demonstrate that zebrafish Krit1 regulates the formation of cardiac valves. Expression of heg1, which encodes a binding partner of Krit1, is positively regulated by blood-flow. In turn, Heg1 stabilizes levels of Krit1 protein, and both Heg1 and Krit1 dampen expression levels of klf2a, a major mechanosensitive gene. Conversely, loss of Krit1 results in increased expression of klf2a and notch1b throughout the endocardium and prevents cardiac valve leaflet formation. Hence, the correct balance of blood-flow-dependent induction and Krit1 protein-mediated repression of klf2a and notch1b ultimately shapes cardiac valve leaflet morphology. PMID:29364115

  18. An Adaptable Investigative Graduate Laboratory Course for Teaching Protein Purification

    ERIC Educational Resources Information Center

    Carroll, Christopher W.; Keller, Lani C.

    2014-01-01

    This adaptable graduate laboratory course on protein purification offers students the opportunity to explore a wide range of techniques while allowing the instructor the freedom to incorporate their own personal research interests. The course design involves two sequential purification schemes performed in a single semester. The first part…

  19. Adaptation to ER Stress Is Mediated by Differential Stabilities of Pro-Survival and Pro-Apoptotic mRNAs and Proteins

    PubMed Central

    Rutkowski, D. Thomas; Arnold, Stacey M; Miller, Corey N; Wu, Jun; Li, Jack; Gunnison, Kathryn M; Mori, Kazutoshi; Sadighi Akha, Amir A.; Raden, David; Kaufman, Randal J

    2006-01-01

    The accumulation of unfolded proteins in the endoplasmic reticulum (ER) activates a signaling cascade known as the unfolded protein response (UPR). Although activation of the UPR is well described, there is little sense of how the response, which initiates both apoptotic and adaptive pathways, can selectively allow for adaptation. Here we describe the reconstitution of an adaptive ER stress response in a cell culture system. Monitoring the activation and maintenance of representative UPR gene expression pathways that facilitate either adaptation or apoptosis, we demonstrate that mild ER stress activates all UPR sensors. However, survival is favored during mild stress as a consequence of the intrinsic instabilities of mRNAs and proteins that promote apoptosis compared to those that facilitate protein folding and adaptation. As a consequence, the expression of apoptotic proteins is short-lived as cells adapt to stress. We provide evidence that the selective persistence of ER chaperone expression is also applicable to at least one instance of genetic ER stress. This work provides new insight into how a stress response pathway can be structured to allow cells to avert death as they adapt. It underscores the contribution of posttranscriptional and posttranslational mechanisms in influencing this outcome. PMID:17090218

  20. Adaptation to a high-protein diet progressively increases the postprandial accumulation of carbon skeletons from dietary amino acids in rats.

    PubMed

    Stepien, Magdalena; Azzout-Marniche, Dalila; Even, Patrick C; Khodorova, Nadezda; Fromentin, Gilles; Tomé, Daniel; Gaudichon, Claire

    2016-10-01

    We aimed to determine whether oxidative pathways adapt to the overproduction of carbon skeletons resulting from the progressive activation of amino acid (AA) deamination and ureagenesis under a high-protein (HP) diet. Ninety-four male Wistar rats, of which 54 were implanted with a permanent jugular catheter, were fed a normal protein diet for 1 wk and were then switched to an HP diet for 1, 3, 6, or 14 days. On the experimental day, they were given their meal containing a mixture of 20 U-[ 15 N]-[ 13 C] AA, whose metabolic fate was followed for 4 h. Gastric emptying tended to be slower during the first 3 days of adaptation. 15 N excretion in urine increased progressively during the first 6 days, reaching 29% of ingested protein. 13 CO 2 excretion was maximal, as early as the first day, and represented only 16% of the ingested proteins. Consequently, the amount of carbon skeletons remaining in the metabolic pools 4 h after the meal ingestion progressively increased to 42% of the deaminated dietary AA after 6 days of HP diet. In contrast, 13 C enrichment of plasma glucose tended to increase from 1 to 14 days of the HP diet. We conclude that there is no oxidative adaptation in the early postprandial period to an excess of carbon skeletons resulting from AA deamination in HP diets. This leads to an increase in the postprandial accumulation of carbon skeletons throughout the adaptation to an HP diet, which can contribute to the sustainable satiating effect of this diet. Copyright © 2016 the American Physiological Society.

  1. Neandertals' large lower thorax may represent adaptation to high protein diet.

    PubMed

    Ben-Dor, Miki; Gopher, Avi; Barkai, Ran

    2016-07-01

    Humans are limited in their capacity to convert protein into energy. We present a hypothesis that a "bell" shaped thorax and a wide pelvis evolved in Neandertals, at least in part, as an adaptation to a high protein diet. A high protein diet created a need to house an enlarged liver and urinary system in a wider lower trunk. To test the hypothesis, we applied a model developed to identify points of nutritional stress. A ratio of obligatory dietary fat to total animal fat and protein sourced calories is calculated based on various known and estimated parameters. Stress is identified when the obligatory dietary fat ratio is higher than fat content ratios in available prey. The model predicts that during glacial winters, when carbohydrates weren't available, 74%-85% of Neandertals' caloric intake would have had to come from animal fat. Large animals contain around 50% fat calories, and their fat content is diminished during winter, so a significant stressful dietary fat deficit was identified by the model. This deficit could potentially be ameliorated by an increased capability to convert protein into energy. Given that high protein consumption is associated with larger liver and kidneys in animal models, it appears likely that the enlarged inferior section of the Neandertals thorax and possibly, in part, also his wide pelvis, represented an adaptation to provide encasement for those enlarged organs. Behavioral and evolutionary implications of the hypothesis are also discussed. Am J Phys Anthropol 160:367-378, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Quantitative Proteomics Reveals Membrane Protein-Mediated Hypersaline Sensitivity and Adaptation in Halophilic Nocardiopsis xinjiangensis.

    PubMed

    Zhang, Yao; Li, Yanchang; Zhang, Yongguang; Wang, Zhiqiang; Zhao, Mingzhi; Su, Na; Zhang, Tao; Chen, Lingsheng; Wei, Wei; Luo, Jing; Zhou, Yanxia; Xu, Yongru; Xu, Ping; Li, Wenjun; Tao, Yong

    2016-01-04

    The genus Nocardiopsis is one of the most dominant Actinobacteria that survives in hypersaline environments. However, the adaptation mechanisms for halophilism are still unclear. Here, we performed isobaric tags for relative and absolute quantification based quantitative proteomics to investigate the functions of the membrane proteome after salt stress. A total of 683 membrane proteins were identified and quantified, of which 126 membrane proteins displayed salt-induced changes in abundance. Intriguingly, bioinformatics analyses indicated that these differential proteins showed two expression patterns, which were further validated by phenotypic changes and functional differences. The majority of ABC transporters, secondary active transporters, cell motility proteins, and signal transduction kinases were up-regulated with increasing salt concentration, whereas cell differentiation, small molecular transporter (ions and amino acids), and secondary metabolism proteins were significantly up-regulated at optimum salinity, but down-regulated or unchanged at higher salinity. The small molecule transporters and cell differentiation-related proteins acted as sensing proteins that played a more important biological role at optimum salinity. However, the ABC transporters for compatible solutes, Na(+)-dependent transporters, and cell motility proteins acted as adaptive proteins that actively counteracted higher salinity stress. Overall, regulation of membrane proteins may provide a major protection strategy against hyperosmotic stress.

  3. RNA-Interference Pathways Display High Rates of Adaptive Protein Evolution in Multiple Invertebrates

    PubMed Central

    Palmer, William H.; Hadfield, Jarrod D.; Obbard, Darren J.

    2018-01-01

    Conflict between organisms can lead to a reciprocal adaptation that manifests as an increased evolutionary rate in genes mediating the conflict. This adaptive signature has been observed in RNA-interference (RNAi) pathway genes involved in the suppression of viruses and transposable elements in Drosophila melanogaster, suggesting that a subset of Drosophila RNAi genes may be locked in an arms race with these parasites. However, it is not known whether rapid evolution of RNAi genes is a general phenomenon across invertebrates, or which RNAi genes generally evolve adaptively. Here we use population genomic data from eight invertebrate species to infer rates of adaptive sequence evolution, and to test for past and ongoing selective sweeps in RNAi genes. We assess rates of adaptive protein evolution across species using a formal meta-analytic framework to combine data across species and by implementing a multispecies generalized linear mixed model of mutation counts. Across species, we find that RNAi genes display a greater rate of adaptive protein substitution than other genes, and that this is primarily mediated by positive selection acting on the genes most likely to defend against viruses and transposable elements. In contrast, evidence for recent selective sweeps is broadly spread across functional classes of RNAi genes and differs substantially among species. Finally, we identify genes that exhibit elevated adaptive evolution across the analyzed insect species, perhaps due to concurrent parasite-mediated arms races. PMID:29437826

  4. Efficiency of Adaptive Temperature-Based Replica Exchange for Sampling Large-Scale Protein Conformational Transitions.

    PubMed

    Zhang, Weihong; Chen, Jianhan

    2013-06-11

    Temperature-based replica exchange (RE) is now considered a principal technique for enhanced sampling of protein conformations. It is also recognized that existence of sharp cooperative transitions (such as protein folding/unfolding) can lead to temperature exchange bottlenecks and significantly reduce the sampling efficiency. Here, we revisit two adaptive temperature-based RE protocols, namely, exchange equalization (EE) and current maximization (CM), that were previously examined using atomistic simulations (Lee and Olson, J. Chem. Physics2011, 134, 24111). Both protocols aim to overcome exchange bottlenecks by adaptively adjusting the simulation temperatures, either to achieve uniform exchange rates (in EE) or to maximize temperature diffusion (CM). By designing a realistic yet computationally tractable coarse-grained protein model, one can sample many reversible folding/unfolding transitions using conventional constant temperature molecular dynamics (MD), standard REMD, EE-REMD, and CM-REMD. This allows rigorous evaluation of the sampling efficiency, by directly comparing the rates of folding/unfolding transitions and convergence of various thermodynamic properties of interest. The results demonstrate that both EE and CM can indeed enhance temperature diffusion compared to standard RE, by ∼3- and over 10-fold, respectively. Surprisingly, the rates of reversible folding/unfolding transitions are similar in all three RE protocols. The convergence rates of several key thermodynamic properties, including the folding stability and various 1D and 2D free energy surfaces, are also similar. Therefore, the efficiency of RE protocols does not appear to be limited by temperature diffusion, but by the inherent rates of spontaneous large-scale conformational rearrangements. This is particularly true considering that virtually all RE simulations of proteins in practice involve exchange attempt frequencies (∼ps(-1)) that are several orders of magnitude faster than the

  5. Mitochondrial protein acetylation mediates nutrient sensing of mitochondrial protein synthesis and mitonuclear protein balance.

    PubMed

    Di Domenico, Antonella; Hofer, Annette; Tundo, Federica; Wenz, Tina

    2014-11-01

    Changes in nutrient supply require global metabolic reprogramming to optimize the utilization of the nutrients. Mitochondria as a central component of the cellular metabolism play a key role in this adaptive process. Since mitochondria harbor their own genome, which encodes essential enzymes, mitochondrial protein synthesis is a determinant of metabolic adaptation. While regulation of cytoplasmic protein synthesis in response to metabolic challenges has been studied in great detail, mechanisms which adapt mitochondrial translation in response to metabolic challenges remain elusive. Our results suggest that the mitochondrial acetylation status controlled by Sirt3 and its proposed opponent GCN5L1 is an important regulator of the metabolic adaptation of mitochondrial translation. Moreover, both proteins modulate regulators of cytoplasmic protein synthesis as well as the mitonuclear protein balance making Sirt3 and GCN5L1 key players in synchronizing mitochondrial and cytoplasmic translation. Our results thereby highlight regulation of mitochondrial translation as a novel component in the cellular nutrient sensing scheme and identify mitochondrial acetylation as a new regulatory principle for the metabolic competence of mitochondrial protein synthesis. © 2014 International Union of Biochemistry and Molecular Biology.

  6. Role of PDZK1 Protein in Apical Membrane Expression of Renal Sodium-coupled Phosphate Transporters*

    PubMed Central

    Giral, Hector; Lanzano, Luca; Caldas, Yupanqui; Blaine, Judith; Verlander, Jill W.; Lei, Tim; Gratton, Enrico; Levi, Moshe

    2011-01-01

    The sodium-dependent phosphate (Na/Pi) transporters NaPi-2a and NaPi-2c play a major role in the renal reabsorption of Pi. The functional need for several transporters accomplishing the same role is still not clear. However, the fact that these transporters show differential regulation under dietary and hormonal stimuli suggests different roles in Pi reabsorption. The pathways controlling this differential regulation are still unknown, but one of the candidates involved is the NHERF family of scaffolding PDZ proteins. We propose that differences in the molecular interaction with PDZ proteins are related with the differential adaptation of Na/Pi transporters. Pdzk1−/− mice adapted to chronic low Pi diets showed an increased expression of NaPi-2a protein in the apical membrane of proximal tubules but impaired up-regulation of NaPi-2c. These results suggest an important role for PDZK1 in the stabilization of NaPi-2c in the apical membrane. We studied the specific protein-protein interactions of Na/Pi transporters with NHERF-1 and PDZK1 by FRET. FRET measurements showed a much stronger interaction of NHERF-1 with NaPi-2a than with NaPi-2c. However, both Na/Pi transporters showed similar FRET efficiencies with PDZK1. Interestingly, in cells adapted to low Pi concentrations, there were increases in NaPi-2c/PDZK1 and NaPi-2a/NHERF-1 interactions. The differential affinity of the Na/Pi transporters for NHERF-1 and PDZK1 proteins could partially explain their differential regulation and/or stability in the apical membrane. In this regard, direct interaction between NaPi-2c and PDZK1 seems to play an important role in the physiological regulation of NaPi-2c. PMID:21388960

  7. Two-step purification of His-tagged Nef protein in native condition using heparin and immobilized metal ion affinity chromatographies.

    PubMed

    Finzi, Andrés; Cloutier, Jonathan; Cohen, Eric A

    2003-07-01

    The Nef protein encoded by human immunodeficiency virus type 1 (HIV-1) has been shown to be an important factor of progression of viral growth and pathogenesis in both in vitro and in vivo. The lack of a simple procedure to purify Nef in its native conformation has limited molecular studies on Nef function. A two-step procedure that includes heparin and immobilized metal ion affinity chromatographies (IMACs) was developed to purify His-tagged Nef (His(6)-Nef) expressed in bacteria in native condition. During the elaboration of this purification procedure, we identified two closely SDS-PAGE-migrating contaminating bacterial proteins, SlyD and GCHI, that co-eluted with His(6)-Nef in IMAC in denaturing condition and developed purification steps to eliminate these contaminants in native condition. Overall, this study describes a protocol that allows rapid purification of His(6)-Nef protein expressed in bacteria in native condition and that removes metal affinity resin-binding bacterial proteins that can contaminate recombinant His-tagged protein preparation.

  8. PHYTOCHROME KINASE SUBSTRATE 1 is a phototropin 1 binding protein required for phototropism.

    PubMed

    Lariguet, Patricia; Schepens, Isabelle; Hodgson, Daniel; Pedmale, Ullas V; Trevisan, Martine; Kami, Chitose; de Carbonnel, Matthieu; Alonso, José M; Ecker, Joseph R; Liscum, Emmanuel; Fankhauser, Christian

    2006-06-27

    Phototropism, or plant growth in response to unidirectional light, is an adaptive response of crucial importance. Lateral differences in low fluence rates of blue light are detected by phototropin 1 (phot1) in Arabidopsis. Only NONPHOTOTROPIC HYPOCOTYL 3 (NPH3) and root phototropism 2, both belonging to the same family of proteins, have been previously identified as phototropin-interacting signal transducers involved in phototropism. PHYTOCHROME KINASE SUBSTRATE (PKS) 1 and PKS2 are two phytochrome signaling components belonging to a small gene family in Arabidopsis (PKS1-PKS4). The strong enhancement of PKS1 expression by blue light and its light induction in the elongation zone of the hypocotyl prompted us to study the function of this gene family during phototropism. Photobiological experiments show that the PKS proteins are critical for hypocotyl phototropism. Furthermore, PKS1 interacts with phot1 and NPH3 in vivo at the plasma membrane and in vitro, indicating that the PKS proteins may function directly with phot1 and NPH3 to mediate phototropism. The phytochromes are known to influence phototropism but the mechanism involved is still unclear. We show that PKS1 induction by a pulse of blue light is phytochrome A-dependent, suggesting that the PKS proteins may provide a molecular link between these two photoreceptor families.

  9. MFN1 deacetylation activates adaptive mitochondrial fusion and protects metabolically challenged mitochondria.

    PubMed

    Lee, Joo-Yong; Kapur, Meghan; Li, Ming; Choi, Moon-Chang; Choi, Sujin; Kim, Hak-June; Kim, Inhye; Lee, Eunji; Taylor, J Paul; Yao, Tso-Pang

    2014-11-15

    Fasting and glucose shortage activate a metabolic switch that shifts more energy production to mitochondria. This metabolic adaptation ensures energy supply, but also elevates the risk of mitochondrial oxidative damage. Here, we present evidence that metabolically challenged mitochondria undergo active fusion to suppress oxidative stress. In response to glucose starvation, mitofusin 1 (MFN1) becomes associated with the protein deacetylase HDAC6. This interaction leads to MFN1 deacetylation and activation, promoting mitochondrial fusion. Deficiency in HDAC6 or MFN1 prevents mitochondrial fusion induced by glucose deprivation. Unexpectedly, failure to undergo fusion does not acutely affect mitochondrial adaptive energy production; instead, it causes excessive production of mitochondrial reactive oxygen species and oxidative damage, a defect suppressed by an acetylation-resistant MFN1 mutant. In mice subjected to fasting, skeletal muscle mitochondria undergo dramatic fusion. Remarkably, fasting-induced mitochondrial fusion is abrogated in HDAC6-knockout mice, resulting in extensive mitochondrial degeneration. These findings show that adaptive mitochondrial fusion protects metabolically challenged mitochondria. © 2014. Published by The Company of Biologists Ltd.

  10. Exploring Short Linear Motifs Using the ELM Database and Tools.

    PubMed

    Gouw, Marc; Sámano-Sánchez, Hugo; Van Roey, Kim; Diella, Francesca; Gibson, Toby J; Dinkel, Holger

    2017-06-27

    The Eukaryotic Linear Motif (ELM) resource is dedicated to the characterization and prediction of short linear motifs (SLiMs). SLiMs are compact, degenerate peptide segments found in many proteins and essential to almost all cellular processes. However, despite their abundance, SLiMs remain largely uncharacterized. The ELM database is a collection of manually annotated SLiM instances curated from experimental literature. In this article we illustrate how to browse and search the database for curated SLiM data, and cover the different types of data integrated in the resource. We also cover how to use this resource in order to predict SLiMs in known as well as novel proteins, and how to interpret the results generated by the ELM prediction pipeline. The ELM database is a very rich resource, and in the following protocols we give helpful examples to demonstrate how this knowledge can be used to improve your own research. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  11. An Ancestral Role for CONSTITUTIVE TRIPLE RESPONSE1 Proteins in Both Ethylene and Abscisic Acid Signaling1[OPEN

    PubMed Central

    Yasumura, Yuki; Pierik, Ronald; Kelly, Steven; Sakuta, Masaaki; Voesenek, Laurentius A.C.J.; Harberd, Nicholas P.

    2015-01-01

    Land plants have evolved adaptive regulatory mechanisms enabling the survival of environmental stresses associated with terrestrial life. Here, we focus on the evolution of the regulatory CONSTITUTIVE TRIPLE RESPONSE1 (CTR1) component of the ethylene signaling pathway that modulates stress-related changes in plant growth and development. First, we compare CTR1-like proteins from a bryophyte, Physcomitrella patens (representative of early divergent land plants), with those of more recently diverged lycophyte and angiosperm species (including Arabidopsis [Arabidopsis thaliana]) and identify a monophyletic CTR1 family. The fully sequenced P. patens genome encodes only a single member of this family (PpCTR1L). Next, we compare the functions of PpCTR1L with that of related angiosperm proteins. We show that, like angiosperm CTR1 proteins (e.g. AtCTR1 of Arabidopsis), PpCTR1L modulates downstream ethylene signaling via direct interaction with ethylene receptors. These functions, therefore, likely predate the divergence of the bryophytes from the land-plant lineage. However, we also show that PpCTR1L unexpectedly has dual functions and additionally modulates abscisic acid (ABA) signaling. In contrast, while AtCTR1 lacks detectable ABA signaling functions, Arabidopsis has during evolution acquired another homolog that is functionally distinct from AtCTR1. In conclusion, the roles of CTR1-related proteins appear to have functionally diversified during land-plant evolution, and angiosperm CTR1-related proteins appear to have lost an ancestral ABA signaling function. Our study provides new insights into how molecular events such as gene duplication and functional differentiation may have contributed to the adaptive evolution of regulatory mechanisms in plants. PMID:26243614

  12. Exome Sequencing in an Admixed Isolated Population Indicates NFXL1 Variants Confer a Risk for Specific Language Impairment

    PubMed Central

    Villanueva, Pía; Nudel, Ron; Hoischen, Alexander; Fernández, María Angélica; Simpson, Nuala H.; Gilissen, Christian; Reader, Rose H.; Jara, Lillian; Echeverry, Maria Magdalena; Francks, Clyde; Baird, Gillian; Conti-Ramsden, Gina; O’Hare, Anne; Bolton, Patrick F.; Hennessy, Elizabeth R.; Palomino, Hernán; Carvajal-Carmona, Luis; Veltman, Joris A.; Cazier, Jean-Baptiste; De Barbieri, Zulema

    2015-01-01

    Children affected by Specific Language Impairment (SLI) fail to acquire age appropriate language skills despite adequate intelligence and opportunity. SLI is highly heritable, but the understanding of underlying genetic mechanisms has proved challenging. In this study, we use molecular genetic techniques to investigate an admixed isolated founder population from the Robinson Crusoe Island (Chile), who are affected by a high incidence of SLI, increasing the power to discover contributory genetic factors. We utilize exome sequencing in selected individuals from this population to identify eight coding variants that are of putative significance. We then apply association analyses across the wider population to highlight a single rare coding variant (rs144169475, Minor Allele Frequency of 4.1% in admixed South American populations) in the NFXL1 gene that confers a nonsynonymous change (N150K) and is significantly associated with language impairment in the Robinson Crusoe population (p = 2.04 × 10–4, 8 variants tested). Subsequent sequencing of NFXL1 in 117 UK SLI cases identified four individuals with heterozygous variants predicted to be of functional consequence. We conclude that coding variants within NFXL1 confer an increased risk of SLI within a complex genetic model. PMID:25781923

  13. Exome sequencing in an admixed isolated population indicates NFXL1 variants confer a risk for specific language impairment.

    PubMed

    Villanueva, Pía; Nudel, Ron; Hoischen, Alexander; Fernández, María Angélica; Simpson, Nuala H; Gilissen, Christian; Reader, Rose H; Jara, Lillian; Echeverry, María Magdalena; Echeverry, Maria Magdalena; Francks, Clyde; Baird, Gillian; Conti-Ramsden, Gina; O'Hare, Anne; Bolton, Patrick F; Hennessy, Elizabeth R; Palomino, Hernán; Carvajal-Carmona, Luis; Veltman, Joris A; Cazier, Jean-Baptiste; De Barbieri, Zulema; Fisher, Simon E; Newbury, Dianne F

    2015-03-01

    Children affected by Specific Language Impairment (SLI) fail to acquire age appropriate language skills despite adequate intelligence and opportunity. SLI is highly heritable, but the understanding of underlying genetic mechanisms has proved challenging. In this study, we use molecular genetic techniques to investigate an admixed isolated founder population from the Robinson Crusoe Island (Chile), who are affected by a high incidence of SLI, increasing the power to discover contributory genetic factors. We utilize exome sequencing in selected individuals from this population to identify eight coding variants that are of putative significance. We then apply association analyses across the wider population to highlight a single rare coding variant (rs144169475, Minor Allele Frequency of 4.1% in admixed South American populations) in the NFXL1 gene that confers a nonsynonymous change (N150K) and is significantly associated with language impairment in the Robinson Crusoe population (p = 2.04 × 10-4, 8 variants tested). Subsequent sequencing of NFXL1 in 117 UK SLI cases identified four individuals with heterozygous variants predicted to be of functional consequence. We conclude that coding variants within NFXL1 confer an increased risk of SLI within a complex genetic model.

  14. Mutual adaptation of a membrane protein and its lipid bilayer during conformational changes.

    PubMed

    Sonntag, Yonathan; Musgaard, Maria; Olesen, Claus; Schiøtt, Birgit; Møller, Jesper Vuust; Nissen, Poul; Thøgersen, Lea

    2011-01-01

    The structural elucidation of membrane proteins continues to gather pace, but we know little about their molecular interactions with the lipid environment or how they interact with the surrounding bilayer. Here, with the aid of low-resolution X-ray crystallography, we present direct structural information on membrane interfaces as delineated by lipid phosphate groups surrounding the sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) in its phosphorylated and dephosphorylated Ca(2+)-free forms. The protein-lipid interactions are further analysed using molecular dynamics simulations. We find that SERCA adapts to membranes of different hydrophobic thicknesses by inducing local deformations in the lipid bilayers and by undergoing small rearrangements of the amino-acid side chains and helix tilts. These mutually adaptive interactions allow smooth transitions through large conformational changes associated with the transport cycle of SERCA, a strategy that may be of general nature for many membrane proteins.

  15. ADAPT, a Novel Scaffold Protein-Based Probe for Radionuclide Imaging of Molecular Targets That Are Expressed in Disseminated Cancers.

    PubMed

    Garousi, Javad; Lindbo, Sarah; Nilvebrant, Johan; Åstrand, Mikael; Buijs, Jos; Sandström, Mattias; Honarvar, Hadis; Orlova, Anna; Tolmachev, Vladimir; Hober, Sophia

    2015-10-15

    Small engineered scaffold proteins have attracted attention as probes for radionuclide-based molecular imaging. One class of these imaging probes, termed ABD-Derived Affinity Proteins (ADAPT), has been created using the albumin-binding domain (ABD) of streptococcal protein G as a stable protein scaffold. In this study, we report the development of a clinical lead probe termed ADAPT6 that binds HER2, an oncoprotein overexpressed in many breast cancers that serves as a theranostic biomarker for several approved targeting therapies. Surface-exposed amino acids of ABD were randomized to create a combinatorial library enabling selection of high-affinity binders to various proteins. Furthermore, ABD was engineered to enable rapid purification, to eradicate its binding to albumin, and to enable rapid blood clearance. Incorporation of a unique cysteine allowed site-specific conjugation to a maleimido derivative of a DOTA chelator, enabling radionuclide labeling, ¹¹¹In for SPECT imaging and ⁶⁸Ga for PET imaging. Pharmacologic studies in mice demonstrated that the fully engineered molecule (111)In/⁶⁸Ga-DOTA-(HE)3-ADAPT6 was specifically bound and taken up by HER2-expressing tumors, with a high tumor-to-normal tissue ratio in xenograft models of human cancer. Unbound tracer underwent rapid renal clearance followed by high renal reabsorption. HER2-expressing xenografts were visualized by gamma-camera or PET at 1 hour after infusion. PET experiments demonstrated feasibility for discrimination of xenografts with high or low HER2 expression. Our results offer a preclinical proof of concept for the use of ADAPT probes for noninvasive in vivo imaging. ©2015 American Association for Cancer Research.

  16. Construction of recombinant Kluyveromyces marxianus UFV-3 to express dengue virus type 1 nonstructural protein 1 (NS1).

    PubMed

    Bragança, Caio Roberto Soares; Colombo, Lívia Tavares; Roberti, Alvaro Soares; Alvim, Mariana Caroline Tocantins; Cardoso, Silvia Almeida; Reis, Kledna Constancio Portes; de Paula, Sérgio Oliveira; da Silveira, Wendel Batista; Passos, Flavia Maria Lopes

    2015-02-01

    The yeast Kluyveromyces marxianus is a convenient host for industrial synthesis of biomolecules. However, despite its potential, there are few studies reporting the expression of heterologous proteins using this yeast. Here, we report expression of a dengue virus protein in K. marxianus for the first time. The dengue virus type 1 nonstructural protein 1 (NS1) was integrated into the K. marxianus UFV-3 genome at the LAC4 locus using an adapted integrative vector designed for high-level expression of recombinant protein in Kluyveromyces lactis. The NS1 gene sequence was codon-optimized to increase the level of protein expression in yeast. The synthetic gene was cloned in frame with K. lactis α-mating factor signal peptide, and the recombinant plasmid obtained was used to transform K. marxianus UFV-3 by electroporation. The transformed cells, selected in yeast extract peptone dextrose containing 200 μg mL(-1) Geneticin, were mitotically stable. Analysis of recombinant strains by RT-PCR and protein detection using blot analysis confirmed both transcription and expression of extracellular NS1 polypeptide. After induction with galactose, the NS1 protein was analyzed by sodium dodecyl sulfate-PAGE and immunogenic detection. Protein production was investigated under two conditions: with galactose and biotin pulses at 24-h intervals during 96 h of induction and without galactose and biotin supplementation. Protease activity was not detected in post-growth medium. Our results indicate that recombinant K. marxianus is a good host for the production of dengue virus NS1 protein, which has potential for diagnostic applications.

  17. Measuring Helicase Inhibition of the DEAD-box Protein Dbp2 by Yra1

    PubMed Central

    Ma, Wai Kit; Tran, Elizabeth J.

    2016-01-01

    Despite the highly conserved helicase core, individual DEAD-box proteins are specialized in diverse RNA metabolic processes. One mechanism that determines DEAD-box protein specificity is enzymatic regulation by other protein cofactors. In this chapter, we describe a protocol for purifying the Saccharomyces cerevisiae DEAD-box RNA helicase Dbp2 and RNA-binding protein Yra1 and subsequent analysis of helicase regulation. The experiments described here can be adapted to RNA helicase and purified co-factor. PMID:25579587

  18. Structural analysis of intermolecular interactions in the kinesin adaptor complex fasciculation and elongation protein zeta 1/ short coiled-coil protein (FEZ1/SCOCO).

    PubMed

    Alborghetti, Marcos Rodrigo; Furlan, Ariane da Silva; da Silva, Júlio César; Sforça, Maurício Luís; Honorato, Rodrigo Vargas; Granato, Daniela Campos; dos Santos Migueleti, Deivid Lucas; Neves, Jorge L; de Oliveira, Paulo Sergio Lopes; Paes-Leme, Adriana Franco; Zeri, Ana Carolina de Mattos; de Torriani, Iris Concepcion Linares; Kobarg, Jörg

    2013-01-01

    Cytoskeleton and protein trafficking processes, including vesicle transport to synapses, are key processes in neuronal differentiation and axon outgrowth. The human protein FEZ1 (fasciculation and elongation protein zeta 1 / UNC-76, in C. elegans), SCOCO (short coiled-coil protein / UNC-69) and kinesins (e.g. kinesin heavy chain / UNC116) are involved in these processes. Exploiting the feature of FEZ1 protein as a bivalent adapter of transport mediated by kinesins and FEZ1 protein interaction with SCOCO (proteins involved in the same path of axonal growth), we investigated the structural aspects of intermolecular interactions involved in this complex formation by NMR (Nuclear Magnetic Resonance), cross-linking coupled with mass spectrometry (MS), SAXS (Small Angle X-ray Scattering) and molecular modelling. The topology of homodimerization was accessed through NMR (Nuclear Magnetic Resonance) studies of the region involved in this process, corresponding to FEZ1 (92-194). Through studies involving the protein in its monomeric configuration (reduced) and dimeric state, we propose that homodimerization occurs with FEZ1 chains oriented in an anti-parallel topology. We demonstrate that the interaction interface of FEZ1 and SCOCO defined by MS and computational modelling is in accordance with that previously demonstrated for UNC-76 and UNC-69. SAXS and literature data support a heterotetrameric complex model. These data provide details about the interaction interfaces probably involved in the transport machinery assembly and open perspectives to understand and interfere in this assembly and its involvement in neuronal differentiation and axon outgrowth.

  19. Structural Analysis of Intermolecular Interactions in the Kinesin Adaptor Complex Fasciculation and Elongation Protein Zeta 1/ Short Coiled-Coil Protein (FEZ1/SCOCO)

    PubMed Central

    da Silva, Júlio César; Sforça, Maurício Luís; Honorato, Rodrigo Vargas; Granato, Daniela Campos; dos Santos Migueleti, Deivid Lucas; Neves, Jorge L.; de Oliveira, Paulo Sergio Lopes; Paes-Leme, Adriana Franco; Zeri, Ana Carolina de Mattos; de Torriani, Iris Concepcion Linares; Kobarg, Jörg

    2013-01-01

    Cytoskeleton and protein trafficking processes, including vesicle transport to synapses, are key processes in neuronal differentiation and axon outgrowth. The human protein FEZ1 (fasciculation and elongation protein zeta 1 / UNC-76, in C. elegans), SCOCO (short coiled-coil protein / UNC-69) and kinesins (e.g. kinesin heavy chain / UNC116) are involved in these processes. Exploiting the feature of FEZ1 protein as a bivalent adapter of transport mediated by kinesins and FEZ1 protein interaction with SCOCO (proteins involved in the same path of axonal growth), we investigated the structural aspects of intermolecular interactions involved in this complex formation by NMR (Nuclear Magnetic Resonance), cross-linking coupled with mass spectrometry (MS), SAXS (Small Angle X-ray Scattering) and molecular modelling. The topology of homodimerization was accessed through NMR (Nuclear Magnetic Resonance) studies of the region involved in this process, corresponding to FEZ1 (92-194). Through studies involving the protein in its monomeric configuration (reduced) and dimeric state, we propose that homodimerization occurs with FEZ1 chains oriented in an anti-parallel topology. We demonstrate that the interaction interface of FEZ1 and SCOCO defined by MS and computational modelling is in accordance with that previously demonstrated for UNC-76 and UNC-69. SAXS and literature data support a heterotetrameric complex model. These data provide details about the interaction interfaces probably involved in the transport machinery assembly and open perspectives to understand and interfere in this assembly and its involvement in neuronal differentiation and axon outgrowth. PMID:24116125

  20. A General, Adaptive, Roadmap-Based Algorithm for Protein Motion Computation.

    PubMed

    Molloy, Kevin; Shehu, Amarda

    2016-03-01

    Precious information on protein function can be extracted from a detailed characterization of protein equilibrium dynamics. This remains elusive in wet and dry laboratories, as function-modulating transitions of a protein between functionally-relevant, thermodynamically-stable and meta-stable structural states often span disparate time scales. In this paper we propose a novel, robotics-inspired algorithm that circumvents time-scale challenges by drawing analogies between protein motion and robot motion. The algorithm adapts the popular roadmap-based framework in robot motion computation to handle the more complex protein conformation space and its underlying rugged energy surface. Given known structures representing stable and meta-stable states of a protein, the algorithm yields a time- and energy-prioritized list of transition paths between the structures, with each path represented as a series of conformations. The algorithm balances computational resources between a global search aimed at obtaining a global view of the network of protein conformations and their connectivity and a detailed local search focused on realizing such connections with physically-realistic models. Promising results are presented on a variety of proteins that demonstrate the general utility of the algorithm and its capability to improve the state of the art without employing system-specific insight.

  1. Sequential Actions of SIRT1-RELB-SIRT3 Coordinate Nuclear-Mitochondrial Communication during Immunometabolic Adaptation to Acute Inflammation and Sepsis*

    PubMed Central

    Liu, Tie Fu; Vachharajani, Vidula; Millet, Patrick; Bharadwaj, Manish S.; Molina, Anthony J.; McCall, Charles E.

    2015-01-01

    We reported that NAD+-dependent SIRT1, RELB, and SIRT6 nuclear proteins in monocytes regulate a switch from the glycolysis-dependent acute inflammatory response to fatty acid oxidation-dependent sepsis adaptation. We also found that disrupting SIRT1 activity during adaptation restores immunometabolic homeostasis and rescues septic mice from death. Here, we show that nuclear SIRT1 guides RELB to differentially induce SIRT3 expression and also increases mitochondrial biogenesis, which alters bioenergetics during sepsis adaptation. We constructed this concept using TLR4-stimulated THP1 human promonocytes, a model that mimics the initiation and adaptation stages of sepsis. Following increased expression, mitochondrial SIRT3 deacetylase activates the rate-limiting tricarboxylic acid cycle (TCA) isocitrate dehydrogenase 2 and superoxide dismutase 2, concomitant with increases in citrate synthase activity. Mitochondrial oxygen consumption rate increases early and decreases during adaptation, parallel with modifications to membrane depolarization, ATP generation, and production of mitochondrial superoxide and whole cell hydrogen peroxide. Evidence of SIRT1-RELB induction of mitochondrial biogenesis included increases in mitochondrial mass, mitochondrial-to-nuclear DNA ratios, and both nuclear and mitochondrial encoded proteins. We confirmed the SIRT-RELB-SIRT3 adaptation link to mitochondrial bioenergetics in both TLR4-stimulated normal and sepsis-adapted human blood monocytes and mouse splenocytes. We also found that SIRT1 inhibition ex vivo reversed the sepsis-induced changes in bioenergetics. PMID:25404738

  2. A Drosophila protein-tyrosine phosphatase associates with an adapter protein required for axonal guidance.

    PubMed

    Clemens, J C; Ursuliak, Z; Clemens, K K; Price, J V; Dixon, J E

    1996-07-19

    We have used the yeast two-hybrid system to isolate a novel Drosophila adapter protein, which interacts with the Drosophila protein-tyrosine phosphatase (PTP) dPTP61F. Absence of this protein in Drosophila causes the mutant photoreceptor axon phenotype dreadlocks (dock) (Garrity, P. A., Rao, Y., Salecker, I., and Zipursky, S. L.(1996) Cell 85, 639-650). Dock is similar to the mammalian oncoprotein Nck and contains three Src homology 3 (SH3) domains and one Src homology 2 (SH2) domain. The interaction of dPTP61F with Dock was confirmed in vivo by immune precipitation experiments. A sequence containing five PXXP motifs from the non-catalytic domain of the PTP is sufficient for interaction with Dock. This suggests that binding to the PTP is mediated by one or more of the SH3 domains of Dock. Immune precipitations of Dock also co-precipitate two tyrosine-phosphorylated proteins having molecular masses of 190 and 145 kDa. Interactions between Dock and these tyrosine-phosphorylated proteins are likely mediated by the Dock SH2 domain. These findings identify potential signal-transducing partners of Dock and propose a role for dPTP61F and the unidentified phosphoproteins in axonal guidance.

  3. PHYTOCHROME KINASE SUBSTRATE 1 is a phototropin 1 binding protein required for phototropism

    PubMed Central

    Lariguet, Patricia; Schepens, Isabelle; Hodgson, Daniel; Pedmale, Ullas V.; Trevisan, Martine; Kami, Chitose; de Carbonnel, Matthieu; Alonso, José M.; Ecker, Joseph R.; Liscum, Emmanuel; Fankhauser, Christian

    2006-01-01

    Phototropism, or plant growth in response to unidirectional light, is an adaptive response of crucial importance. Lateral differences in low fluence rates of blue light are detected by phototropin 1 (phot1) in Arabidopsis. Only NONPHOTOTROPIC HYPOCOTYL 3 (NPH3) and root phototropism 2, both belonging to the same family of proteins, have been previously identified as phototropin-interacting signal transducers involved in phototropism. PHYTOCHROME KINASE SUBSTRATE (PKS) 1 and PKS2 are two phytochrome signaling components belonging to a small gene family in Arabidopsis (PKS1–PKS4). The strong enhancement of PKS1 expression by blue light and its light induction in the elongation zone of the hypocotyl prompted us to study the function of this gene family during phototropism. Photobiological experiments show that the PKS proteins are critical for hypocotyl phototropism. Furthermore, PKS1 interacts with phot1 and NPH3 in vivo at the plasma membrane and in vitro, indicating that the PKS proteins may function directly with phot1 and NPH3 to mediate phototropism. The phytochromes are known to influence phototropism but the mechanism involved is still unclear. We show that PKS1 induction by a pulse of blue light is phytochrome A-dependent, suggesting that the PKS proteins may provide a molecular link between these two photoreceptor families. PMID:16777956

  4. FK506 binding protein 51 integrates pathways of adaptation: FKBP51 shapes the reactivity to environmental change.

    PubMed

    Rein, Theo

    2016-09-01

    This review portraits FK506 binding protein (FKBP) 51 as "reactivity protein" and collates recent publications to develop the concept of FKBP51 as contributor to different levels of adaptation. Adaptation is a fundamental process that enables unicellular and multicellular organisms to adjust their molecular circuits and structural conditions in reaction to environmental changes threatening their homeostasis. FKBP51 is known as chaperone and co-chaperone of heat shock protein (HSP) 90, thus involved in processes ensuring correct protein folding in response to proteotoxic stress. In mammals, FKBP51 both shapes the stress response and is calibrated by the stress levels through an ultrashort molecular feedback loop. More recently, it has been linked to several intracellular pathways related to the reactivity to drug exposure and stress. Through its role in autophagy and DNA methylation in particular it influences adaptive pathways, possibly also in a transgenerational fashion. Also see the video abstract here. © 2016 WILEY Periodicals, Inc.

  5. Uncoupling protein and ATP/ADP carrier increase mitochondrial proton conductance after cold adaptation of king penguins.

    PubMed

    Talbot, Darren A; Duchamp, Claude; Rey, Benjamin; Hanuise, Nicolas; Rouanet, Jean Louis; Sibille, Brigitte; Brand, Martin D

    2004-07-01

    Juvenile king penguins develop adaptive thermogenesis after repeated immersion in cold water. However, the mechanisms of such metabolic adaptation in birds are unknown, as they lack brown adipose tissue and uncoupling protein-1 (UCP1), which mediate adaptive non-shivering thermogenesis in mammals. We used three different groups of juvenile king penguins to investigate the mitochondrial basis of avian adaptive thermogenesis in vitro. Skeletal muscle mitochondria isolated from penguins that had never been immersed in cold water showed no superoxide-stimulated proton conductance, indicating no functional avian UCP. Skeletal muscle mitochondria from penguins that had been either experimentally immersed or naturally adapted to cold water did possess functional avian UCP, demonstrated by a superoxide-stimulated, GDP-inhibitable proton conductance across their inner membrane. This was associated with a markedly greater abundance of avian UCP mRNA. In the presence (but not the absence) of fatty acids, these mitochondria also showed a greater adenine nucleotide translocase-catalysed proton conductance than those from never-immersed penguins. This was due to an increase in the amount of adenine nucleotide translocase. Therefore, adaptive thermogenesis in juvenile king penguins is linked to two separate mechanisms of uncoupling of oxidative phosphorylation in skeletal muscle mitochondria: increased proton transport activity of avian UCP (dependent on superoxide and inhibited by GDP) and increased proton transport activity of the adenine nucleotide translocase (dependent on fatty acids and inhibited by carboxyatractylate).

  6. Structural adaptations of proteins to different biological membranes

    PubMed Central

    Pogozheva, Irina D.; Tristram-Nagle, Stephanie; Mosberg, Henry I.; Lomize, Andrei L.

    2013-01-01

    To gain insight into adaptations of proteins to their membranes, intrinsic hydrophobic thicknesses, distributions of different chemical groups and profiles of hydrogen-bonding capacities (α and β) and the dipolarity/polarizability parameter (π*) were calculated for lipid-facing surfaces of 460 integral α-helical, β-barrel and peripheral proteins from eight types of biomembranes. For comparison, polarity profiles were also calculated for ten artificial lipid bilayers that have been previously studied by neutron and X-ray scattering. Estimated hydrophobic thicknesses are 30-31 Å for proteins from endoplasmic reticulum, thylakoid, and various bacterial plasma membranes, but differ for proteins from outer bacterial, inner mitochondrial and eukaryotic plasma membranes (23.9, 28.6 and 33.5 Å, respectively). Protein and lipid polarity parameters abruptly change in the lipid carbonyl zone that matches the calculated hydrophobic boundaries. Maxima of positively charged protein groups correspond to the location of lipid phosphates at 20-22 Å distances from the membrane center. Locations of Tyr atoms coincide with hydrophobic boundaries, while distributions maxima of Trp rings are shifted by 3-4 Å toward the membrane center. Distributions of Trp atoms indicate the presence of two 5-8 Å-wide midpolar regions with intermediate π* values within the hydrocarbon core, whose size and symmetry depend on the lipid composition of membrane leaflets. Midpolar regions are especially asymmetric in outer bacterial membranes and cell membranes of mesophilic but not hyperthermophilic archaebacteria, indicating the larger width of the central nonpolar region in the later case. In artificial lipid bilayers, midpolar regions are observed up to the level of acyl chain double bonds. PMID:23811361

  7. Mutation of a cuticular protein, BmorCPR2, alters larval body shape and adaptability in silkworm, Bombyx mori.

    PubMed

    Qiao, Liang; Xiong, Gao; Wang, Ri-xin; He, Song-zhen; Chen, Jie; Tong, Xiao-ling; Hu, Hai; Li, Chun-lin; Gai, Ting-ting; Xin, Ya-qun; Liu, Xiao-fan; Chen, Bin; Xiang, Zhong-huai; Lu, Cheng; Dai, Fang-yin

    2014-04-01

    Cuticular proteins (CPs) are crucial components of the insect cuticle. Although numerous genes encoding cuticular proteins have been identified in known insect genomes to date, their functions in maintaining insect body shape and adaptability remain largely unknown. In the current study, positional cloning led to the identification of a gene encoding an RR1-type cuticular protein, BmorCPR2, highly expressed in larval chitin-rich tissues and at the mulberry leaf-eating stages, which is responsible for the silkworm stony mutant. In the Dazao-stony strain, the BmorCPR2 allele is a deletion mutation with significantly lower expression, compared to the wild-type Dazao strain. Dysfunctional BmorCPR2 in the stony mutant lost chitin binding ability, leading to reduced chitin content in larval cuticle, limitation of cuticle extension, abatement of cuticle tensile properties, and aberrant ratio between internodes and intersegmental folds. These variations induce a significant decrease in cuticle capacity to hold the growing internal organs in the larval development process, resulting in whole-body stiffness, tightness, and hardness, bulging intersegmental folds, and serious defects in larval adaptability. To our knowledge, this is the first study to report the corresponding phenotype of stony in insects caused by mutation of RR1-type cuticular protein. Our findings collectively shed light on the specific role of cuticular proteins in maintaining normal larval body shape and will aid in the development of pest control strategies for the management of Lepidoptera.

  8. Madm (Mlf1 adapter molecule) cooperates with Bunched A to promote growth in Drosophila

    PubMed Central

    2010-01-01

    Background The TSC-22 domain family (TSC22DF) consists of putative transcription factors harboring a DNA-binding TSC-box and an adjacent leucine zipper at their carboxyl termini. Both short and long TSC22DF isoforms are conserved from flies to humans. Whereas the short isoforms include the tumor suppressor TSC-22 (Transforming growth factor-β1 stimulated clone-22), the long isoforms are largely uncharacterized. In Drosophila, the long isoform Bunched A (BunA) acts as a growth promoter, but how BunA controls growth has remained obscure. Results In order to test for functional conservation among TSC22DF members, we expressed the human TSC22DF proteins in the fly and found that all long isoforms can replace BunA function. Furthermore, we combined a proteomics-based approach with a genetic screen to identify proteins that interact with BunA. Madm (Mlf1 adapter molecule) physically associates with BunA via a conserved motif that is only contained in long TSC22DF proteins. Moreover, Drosophila Madm acts as a growth-promoting gene that displays growth phenotypes strikingly similar to bunA phenotypes. When overexpressed, Madm and BunA synergize to increase organ growth. Conclusions The growth-promoting potential of long TSC22DF proteins is evolutionarily conserved. Furthermore, we provide biochemical and genetic evidence for a growth-regulating complex involving the long TSC22DF protein BunA and the adapter molecule Madm. See minireview at http://jbiol.com/content/9/1/8. PMID:20149264

  9. Lack of adaptation to human tetherin in HIV-1 Group O and P

    PubMed Central

    2011-01-01

    Background HIV-1 viruses are categorized into four distinct groups: M, N, O and P. Despite the same genomic organization, only the group M viruses are responsible for the world-wide pandemic of AIDS, suggesting better adaptation to human hosts. Previously, it has been reported that the group M Vpu protein is capable of both down-modulating CD4 and counteracting BST-2/tetherin restriction, while the group O Vpu cannot antagonize tetherin. This led us to investigate if group O, and the related group P viruses, possess functional anti-tetherin activities in Vpu or another viral protein, and to further map the residues required for group M Vpu to counteract human tetherin. Results We found a lack of activity against human tetherin for both the Vpu and Nef proteins from group O and P viruses. Furthermore, we found no evidence of anti-human tetherin activity in a fully infectious group O proviral clone, ruling out the possibility of an alternative anti-tetherin factor in this virus. Interestingly, an activity against primate tetherins was retained in the Nef proteins from both a group O and a group P virus. By making chimeras between a functional group M and non-functional group O Vpu protein, we were able to map the first 18 amino acids of group M Vpu as playing an essential role in the ability of the protein to antagonize human tetherin. We further demonstrated the importance of residue alanine-18 for the group M Vpu activity. This residue lies on a diagonal face of conserved alanines in the TM domain of the protein, and is necessary for specific Vpu-tetherin interactions. Conclusions The absence of human specific anti-tetherin activities in HIV-1 group O and P suggests a failure of these viruses to adapt to human hosts, which may have limited their spread. PMID:21955466

  10. Reciprocal Influence of Protein Domains in the Cold-Adapted Acyl Aminoacyl Peptidase from Sporosarcina psychrophila

    PubMed Central

    Parravicini, Federica; Natalello, Antonino; Papaleo, Elena; De Gioia, Luca; Doglia, Silvia Maria; Lotti, Marina; Brocca, Stefania

    2013-01-01

    Acyl aminoacyl peptidases are two-domain proteins composed by a C-terminal catalytic α/β-hydrolase domain and by an N-terminal β-propeller domain connected through a structural element that is at the N-terminus in sequence but participates in the 3D structure of the C-domain. We investigated about the structural and functional interplay between the two domains and the bridge structure (in this case a single helix named α1-helix) in the cold-adapted enzyme from Sporosarcina psychrophila (SpAAP) using both protein variants in which entire domains were deleted and proteins carrying substitutions in the α1-helix. We found that in this enzyme the inter-domain connection dramatically affects the stability of both the whole enzyme and the β-propeller. The α1-helix is required for the stability of the intact protein, as in other enzymes of the same family; however in this psychrophilic enzyme only, it destabilizes the isolated β-propeller. A single charged residue (E10) in the α1-helix plays a major role for the stability of the whole structure. Overall, a strict interaction of the SpAAP domains seems to be mandatory for the preservation of their reciprocal structural integrity and may witness their co-evolution. PMID:23457536

  11. Reciprocal influence of protein domains in the cold-adapted acyl aminoacyl peptidase from Sporosarcina psychrophila.

    PubMed

    Parravicini, Federica; Natalello, Antonino; Papaleo, Elena; De Gioia, Luca; Doglia, Silvia Maria; Lotti, Marina; Brocca, Stefania

    2013-01-01

    Acyl aminoacyl peptidases are two-domain proteins composed by a C-terminal catalytic α/β-hydrolase domain and by an N-terminal β-propeller domain connected through a structural element that is at the N-terminus in sequence but participates in the 3D structure of the C-domain. We investigated about the structural and functional interplay between the two domains and the bridge structure (in this case a single helix named α1-helix) in the cold-adapted enzyme from Sporosarcina psychrophila (SpAAP) using both protein variants in which entire domains were deleted and proteins carrying substitutions in the α1-helix. We found that in this enzyme the inter-domain connection dramatically affects the stability of both the whole enzyme and the β-propeller. The α1-helix is required for the stability of the intact protein, as in other enzymes of the same family; however in this psychrophilic enzyme only, it destabilizes the isolated β-propeller. A single charged residue (E10) in the α1-helix plays a major role for the stability of the whole structure. Overall, a strict interaction of the SpAAP domains seems to be mandatory for the preservation of their reciprocal structural integrity and may witness their co-evolution.

  12. Assisted Design of Antibody and Protein Therapeutics (ADAPT)

    PubMed Central

    Vivcharuk, Victor; Baardsnes, Jason; Deprez, Christophe; Sulea, Traian; Jaramillo, Maria; Corbeil, Christopher R.; Mullick, Alaka; Magoon, Joanne; Marcil, Anne; Durocher, Yves; O’Connor-McCourt, Maureen D.

    2017-01-01

    Effective biologic therapeutics require binding affinities that are fine-tuned to their disease-related molecular target. The ADAPT (Assisted Design of Antibody and Protein Therapeutics) platform aids in the selection of mutants that improve/modulate the affinity of antibodies and other biologics. It uses a consensus z-score from three scoring functions and interleaves computational predictions with experimental validation, significantly enhancing the robustness of the design and selection of mutants. The platform was tested on three antibody Fab-antigen systems that spanned a wide range of initial binding affinities: bH1-VEGF-A (44 nM), bH1-HER2 (3.6 nM) and Herceptin-HER2 (0.058 nM). Novel triple mutants were obtained that exhibited 104-, 46- and 32-fold improvements in binding affinity for each system, respectively. Moreover, for all three antibody-antigen systems over 90% of all the intermediate single and double mutants that were designed and tested showed higher affinities than the parent sequence. The contributions of the individual mutants to the change in binding affinity appear to be roughly additive when combined to form double and triple mutants. The new interactions introduced by the affinity-enhancing mutants included long-range electrostatics as well as short-range nonpolar interactions. This diversity in the types of new interactions formed by the mutants was reflected in SPR kinetics that showed that the enhancements in affinities arose from increasing on-rates, decreasing off-rates or a combination of the two effects, depending on the mutation. ADAPT is a very focused search of sequence space and required only 20–30 mutants for each system to be made and tested to achieve the affinity enhancements mentioned above. PMID:28750054

  13. The VP40 protein of Marburg virus exhibits impaired budding and increased sensitivity to human tetherin following mouse adaptation.

    PubMed

    Feagins, Alicia R; Basler, Christopher F

    2014-12-01

    The Marburg virus VP40 protein is a viral matrix protein that spontaneously buds from cells. It also functions as an interferon (IFN) signaling antagonist by targeting Janus kinase 1 (JAK1). A previous study demonstrated that the VP40 protein of the Ravn strain of Marburg virus (Ravn virus [RAVV]) failed to block IFN signaling in mouse cells, whereas the mouse-adapted RAVV (maRAVV) VP40 acquired the ability to inhibit IFN responses in mouse cells. The increased IFN antagonist function of maRAVV VP40 mapped to residues 57 and 165, which were mutated during the mouse adaptation process. In the present study, we demonstrate that maRAVV VP40 lost the capacity to efficiently bud from human cell lines, despite the fact that both parental and maRAVV VP40s bud efficiently from mouse cell lines. The impaired budding in human cells corresponds with the appearance of protrusions on the surface of maRAVV VP40-expressing Huh7 cells and with an increased sensitivity of maRAVV VP40 to restriction by human tetherin but not mouse tetherin. However, transfer of the human tetherin cytoplasmic tail to mouse tetherin restored restriction of maRAVV VP40. Residues 57 and 165 were demonstrated to contribute to the failure of maRAVV VP40 to bud from human cells, and residue 57 was demonstrated to alter VP40 oligomerization, as assessed by coprecipitation assay, and to determine sensitivity to human tetherin. This suggests that RAVV VP40 acquired, during adaptation to mice, changes in its oligomerization potential that enhanced IFN antagonist function. However, this new capacity impaired RAVV VP40 budding from human cells. Filoviruses, which include Marburg viruses and Ebola viruses, are zoonotic pathogens that cause severe disease in humans and nonhuman primates but do not cause similar disease in wild-type laboratory strains of mice unless first adapted to these animals. Although mouse adaptation has been used as a method to develop small animal models of pathogenesis, the molecular

  14. Intra-plastid protein trafficking: how plant cells adapted prokaryotic mechanisms to the eukaryotic condition.

    PubMed

    Celedon, Jose M; Cline, Kenneth

    2013-02-01

    Protein trafficking and localization in plastids involve a complex interplay between ancient (prokaryotic) and novel (eukaryotic) translocases and targeting machineries. During evolution, ancient systems acquired new functions and novel translocation machineries were developed to facilitate the correct localization of nuclear encoded proteins targeted to the chloroplast. Because of its post-translational nature, targeting and integration of membrane proteins posed the biggest challenge to the organelle to avoid aggregation in the aqueous compartments. Soluble proteins faced a different kind of problem since some had to be transported across three membranes to reach their destination. Early studies suggested that chloroplasts addressed these issues by adapting ancient-prokaryotic machineries and integrating them with novel-eukaryotic systems, a process called 'conservative sorting'. In the last decade, detailed biochemical, genetic, and structural studies have unraveled the mechanisms of protein targeting and localization in chloroplasts, suggesting a highly integrated scheme where ancient and novel systems collaborate at different stages of the process. In this review we focus on the differences and similarities between chloroplast ancestral translocases and their prokaryotic relatives to highlight known modifications that adapted them to the eukaryotic situation. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Sequence-Based Analysis of Thermal Adaptation and Protein Energy Landscapes in an Invasive Blue Mussel (Mytilus galloprovincialis).

    PubMed

    Saarman, Norah P; Kober, Kord M; Simison, W Brian; Pogson, Grant H

    2017-10-01

    Adaptive responses to thermal stress in poikilotherms plays an important role in determining competitive ability and species distributions. Amino acid substitutions that affect protein stability and modify the thermal optima of orthologous proteins may be particularly important in this context. Here, we examine a set of 2,770 protein-coding genes to determine if proteins in a highly invasive heat tolerant blue mussel (Mytilus galloprovincialis) contain signals of adaptive increases in protein stability relative to orthologs in a more cold tolerant M. trossulus. Such thermal adaptations might help to explain, mechanistically, the success with which the invasive marine mussel M. galloprovincialis has displaced native species in contact zones in the eastern (California) and western (Japan) Pacific. We tested for stabilizing amino acid substitutions in warm tolerant M. galloprovincialis relative to cold tolerant M. trossulus with a generalized linear model that compares in silico estimates of recent changes in protein stability among closely related congeners. Fixed substitutions in M. galloprovincialis were 3,180.0 calories per mol per substitution more stabilizing at genes with both elevated dN/dS ratios and transcriptional responses to heat stress, and 705.8 calories per mol per substitution more stabilizing across all 2,770 loci investigated. Amino acid substitutions concentrated in a small number of genes were more stabilizing in M. galloprovincialis compared with cold tolerant M. trossulus. We also tested for, but did not find, enrichment of a priori GO terms in genes with elevated dN/dS ratios in M. galloprovincialis. This might indicate that selection for thermodynamic stability is generic across all lineages, and suggests that the high change in estimated protein stability that we observed in M. galloprovincialis is driven by selection for extra stabilizing substitutions, rather than by higher incidence of selection in a greater number of genes in this lineage

  16. Madm (Mlf1 adapter molecule) cooperates with Bunched A to promote growth in Drosophila.

    PubMed

    Gluderer, Silvia; Brunner, Erich; Germann, Markus; Jovaisaite, Virginija; Li, Changqing; Rentsch, Cyrill A; Hafen, Ernst; Stocker, Hugo

    2010-01-01

    The TSC-22 domain family (TSC22DF) consists of putative transcription factors harboring a DNA-binding TSC-box and an adjacent leucine zipper at their carboxyl termini. Both short and long TSC22DF isoforms are conserved from flies to humans. Whereas the short isoforms include the tumor suppressor TSC-22 (Transforming growth factor-beta1 stimulated clone-22), the long isoforms are largely uncharacterized. In Drosophila, the long isoform Bunched A (BunA) acts as a growth promoter, but how BunA controls growth has remained obscure. In order to test for functional conservation among TSC22DF members, we expressed the human TSC22DF proteins in the fly and found that all long isoforms can replace BunA function. Furthermore, we combined a proteomics-based approach with a genetic screen to identify proteins that interact with BunA. Madm (Mlf1 adapter molecule) physically associates with BunA via a conserved motif that is only contained in long TSC22DF proteins. Moreover, Drosophila Madm acts as a growth-promoting gene that displays growth phenotypes strikingly similar to bunA phenotypes. When overexpressed, Madm and BunA synergize to increase organ growth. The growth-promoting potential of long TSC22DF proteins is evolutionarily conserved. Furthermore, we provide biochemical and genetic evidence for a growth-regulating complex involving the long TSC22DF protein BunA and the adapter molecule Madm.

  17. Speech Perception and Phonological Short-Term Memory Capacity in Language Impairment: Preliminary Evidence from Adolescents with Specific Language Impairment (SLI) and Autism Spectrum Disorders (ASD)

    ERIC Educational Resources Information Center

    Loucas, Tom; Riches, Nick Greatorex; Charman, Tony; Pickles, Andrew; Simonoff, Emily; Chandler, Susie; Baird, Gillian

    2010-01-01

    Background: The cognitive bases of language impairment in specific language impairment (SLI) and autism spectrum disorders (ASD) were investigated in a novel non-word comparison task which manipulated phonological short-term memory (PSTM) and speech perception, both implicated in poor non-word repetition. Aims: This study aimed to investigate the…

  18. Endothelial AMPK Activation Induces Mitochondrial Biogenesis and Stress Adaptation via eNOS-Dependent mTORC1 Signaling

    PubMed Central

    Li, Chunying; Reif, Michaella M; Craige, Siobhan; Kant, Shashi; Keaney, John F.

    2016-01-01

    Metabolic stress sensors like AMP-activated protein kinase (AMPK) are known to confer stress adaptation and promote longevity in lower organisms. This study demonstrates that activating the metabolic stress sensor AMP-activated protein kinase (AMPK) in endothelial cells helps maintain normal cellular function by promoting mitochondrial biogenesis and stress adaptation. To better define the mechanisms whereby AMPK promotes endothelial stress resistance, we used 5-aminoimidazole-4-carboxamide riboside (AICAR) to chronically activate AMPK and observed stimulation of mitochondrial biogenesis in wild type mouse endothelium, but not in endothelium from endothelial nitric oxide synthase knockout (eNOS-null) mice. Interestingly, AICAR-enhanced mitochondrial biogenesis was blocked by pretreatment with the mammalian target of rapamycin complex 1 (mTORC1) inhibitor, rapamycin. Further, AICAR stimulated mTORC1 as determined by phosphorylation of its known downstream effectors in wild type, but not eNOS-null, endothelial cells. Together these data indicate that eNOS is needed to couple AMPK activation to mTORC1 and thus promote mitochondrial biogenesis and stress adaptation in the endothelium. These data suggest a novel mechanism for mTORC1 activation that is significant for investigations in vascular dysfunction. PMID:26989010

  19. Life at the border: Adaptation of proteins to anisotropic membrane environment

    PubMed Central

    Pogozheva, Irina D; Mosberg, Henry I; Lomize, Andrei L

    2014-01-01

    This review discusses main features of transmembrane (TM) proteins which distinguish them from water-soluble proteins and allow their adaptation to the anisotropic membrane environment. We overview the structural limitations on membrane protein architecture, spatial arrangement of proteins in membranes and their intrinsic hydrophobic thickness, co-translational and post-translational folding and insertion into lipid bilayers, topogenesis, high propensity to form oligomers, and large-scale conformational transitions during membrane insertion and transport function. Special attention is paid to the polarity of TM protein surfaces described by profiles of dipolarity/polarizability and hydrogen-bonding capacity parameters that match polarity of the lipid environment. Analysis of distributions of Trp resides on surfaces of TM proteins from different biological membranes indicates that interfacial membrane regions with preferential accumulation of Trp indole rings correspond to the outer part of the lipid acyl chain region—between double bonds and carbonyl groups of lipids. These “midpolar” regions are not always symmetric in proteins from natural membranes. We also examined the hydrophobic effect that drives insertion of proteins into lipid bilayer and different free energy contributions to TM protein stability, including attractive van der Waals forces and hydrogen bonds, side-chain conformational entropy, the hydrophobic mismatch, membrane deformations, and specific protein–lipid binding. PMID:24947665

  20. The adapter protein SLP-76 mediates "outside-in" integrin signaling and function in T cells.

    PubMed

    Baker, R G; Hsu, C J; Lee, D; Jordan, M S; Maltzman, J S; Hammer, D A; Baumgart, T; Koretzky, G A

    2009-10-01

    The adapter protein SH2 domain-containing leukocyte protein of 76 kDa (SLP-76) is an essential mediator of signaling from the T-cell antigen receptor (TCR). We report here that SLP-76 also mediates signaling downstream of integrins in T cells and that SLP-76-deficient T cells fail to support adhesion to integrin ligands. In response to both TCR and integrin stimulation, SLP-76 relocalizes to surface microclusters that colocalize with phosphorylated signaling proteins. Disruption of SLP-76 recruitment to the protein named LAT (linker for activation of T cells) inhibits SLP-76 clustering downstream of the TCR but not downstream of integrins. Conversely, an SLP-76 mutant unable to bind ADAP (adhesion and degranulation-promoting adapter protein) forms clusters following TCR but not integrin engagement and fails to support T-cell adhesion to integrin ligands. These findings demonstrate that SLP-76 relocalizes to integrin-initiated signaling complexes by a mechanism different from that employed during TCR signaling and that SLP-76 relocalization corresponds to SLP-76-dependent integrin function in T cells.

  1. The effects of whey protein with or without carbohydrates on resistance training adaptations.

    PubMed

    Hulmi, Juha J; Laakso, Mia; Mero, Antti A; Häkkinen, Keijo; Ahtiainen, Juha P; Peltonen, Heikki

    2015-01-01

    Nutrition intake in the context of a resistance training (RT) bout may affect body composition and muscle strength. However, the individual and combined effects of whey protein and carbohydrates on long-term resistance training adaptations are poorly understood. A four-week preparatory RT period was conducted in previously untrained males to standardize the training background of the subjects. Thereafter, the subjects were randomized into three groups: 30 g of whey proteins (n = 22), isocaloric carbohydrates (maltodextrin, n = 21), or protein + carbohydrates (n = 25). Within these groups, the subjects were further randomized into two whole-body 12-week RT regimens aiming either for muscle hypertrophy and maximal strength or muscle strength, hypertrophy and power. The post-exercise drink was always ingested immediately after the exercise bout, 2-3 times per week depending on the training period. Body composition (by DXA), quadriceps femoris muscle cross-sectional area (by panoramic ultrasound), maximal strength (by dynamic and isometric leg press) and serum lipids as basic markers of cardiovascular health, were analysed before and after the intervention. Twelve-week RT led to increased fat-free mass, muscle size and strength independent of post-exercise nutrient intake (P < 0.05). However, the whey protein group reduced more total and abdominal area fat when compared to the carbohydrate group independent of the type of RT (P < 0.05). Thus, a larger relative increase (per kg bodyweight) in fat-free mass was observed in the protein vs. carbohydrate group (P < 0.05) without significant differences to the combined group. No systematic effects of the interventions were found for serum lipids. The RT type did not have an effect on the adaptations in response to different supplementation paradigms. Post-exercise supplementation with whey proteins when compared to carbohydrates or combination of proteins and carbohydrates did not have a major

  2. Physical and molecular bases of protein thermal stability and cold adaptation.

    PubMed

    Pucci, Fabrizio; Rooman, Marianne

    2017-02-01

    The molecular bases of thermal and cold stability and adaptation, which allow proteins to remain folded and functional in the temperature ranges in which their host organisms live and grow, are still only partially elucidated. Indeed, both experimental and computational studies fail to yield a fully precise and global physical picture, essentially because all effects are context-dependent and thus quite intricate to unravel. We present a snapshot of the current state of knowledge of this highly complex and challenging issue, whose resolution would enable large-scale rational protein design. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. PSSMSearch: a server for modeling, visualization, proteome-wide discovery and annotation of protein motif specificity determinants.

    PubMed

    Krystkowiak, Izabella; Manguy, Jean; Davey, Norman E

    2018-06-05

    There is a pressing need for in silico tools that can aid in the identification of the complete repertoire of protein binding (SLiMs, MoRFs, miniMotifs) and modification (moiety attachment/removal, isomerization, cleavage) motifs. We have created PSSMSearch, an interactive web-based tool for rapid statistical modeling, visualization, discovery and annotation of protein motif specificity determinants to discover novel motifs in a proteome-wide manner. PSSMSearch analyses proteomes for regions with significant similarity to a motif specificity determinant model built from a set of aligned motif-containing peptides. Multiple scoring methods are available to build a position-specific scoring matrix (PSSM) describing the motif specificity determinant model. This model can then be modified by a user to add prior knowledge of specificity determinants through an interactive PSSM heatmap. PSSMSearch includes a statistical framework to calculate the significance of specificity determinant model matches against a proteome of interest. PSSMSearch also includes the SLiMSearch framework's annotation, motif functional analysis and filtering tools to highlight relevant discriminatory information. Additional tools to annotate statistically significant shared keywords and GO terms, or experimental evidence of interaction with a motif-recognizing protein have been added. Finally, PSSM-based conservation metrics have been created for taxonomic range analyses. The PSSMSearch web server is available at http://slim.ucd.ie/pssmsearch/.

  4. Metabolic adaptation to chronic inhibition of mitochondrial protein synthesis in acute myeloid leukemia cells.

    PubMed

    Jhas, Bozhena; Sriskanthadevan, Shrivani; Skrtic, Marko; Sukhai, Mahadeo A; Voisin, Veronique; Jitkova, Yulia; Gronda, Marcela; Hurren, Rose; Laister, Rob C; Bader, Gary D; Minden, Mark D; Schimmer, Aaron D

    2013-01-01

    Recently, we demonstrated that the anti-bacterial agent tigecycline preferentially induces death in leukemia cells through the inhibition of mitochondrial protein synthesis. Here, we sought to understand mechanisms of resistance to tigecycline by establishing a leukemia cell line resistant to the drug. TEX leukemia cells were treated with increasing concentrations of tigecycline over 4 months and a population of cells resistant to tigecycline (RTEX+TIG) was selected. Compared to wild type cells, RTEX+TIG cells had undetectable levels of mitochondrially translated proteins Cox-1 and Cox-2, reduced oxygen consumption and increased rates of glycolysis. Moreover, RTEX+TIG cells were more sensitive to inhibitors of glycolysis and more resistant to hypoxia. By electron microscopy, RTEX+TIG cells had abnormally swollen mitochondria with irregular cristae structures. RNA sequencing demonstrated a significant over-representation of genes with binding sites for the HIF1α:HIF1β transcription factor complex in their promoters. Upregulation of HIF1α mRNA and protein in RTEX+TIG cells was confirmed by Q-RTPCR and immunoblotting. Strikingly, upon removal of tigecycline from RTEX+TIG cells, the cells re-established aerobic metabolism. Levels of Cox-1 and Cox-2, oxygen consumption, glycolysis, mitochondrial mass and mitochondrial membrane potential returned to wild type levels, but HIF1α remained elevated. However, upon re-treatment with tigecycline for 72 hours, the glycolytic phenotype was re-established. Thus, we have generated cells with a reversible metabolic phenotype by chronic treatment with an inhibitor of mitochondrial protein synthesis. These cells will provide insight into cellular adaptations used to cope with metabolic stress.

  5. Uncoupling protein and ATP/ADP carrier increase mitochondrial proton conductance after cold adaptation of king penguins

    PubMed Central

    Talbot, Darren A; Duchamp, Claude; Rey, Benjamin; Hanuise, Nicolas; Rouanet, Jean Louis; Sibille, Brigitte; Brand, Martin D

    2004-01-01

    Juvenile king penguins develop adaptive thermogenesis after repeated immersion in cold water. However, the mechanisms of such metabolic adaptation in birds are unknown, as they lack brown adipose tissue and uncoupling protein-1 (UCP1), which mediate adaptive non-shivering thermogenesis in mammals. We used three different groups of juvenile king penguins to investigate the mitochondrial basis of avian adaptive thermogenesis in vitro. Skeletal muscle mitochondria isolated from penguins that had never been immersed in cold water showed no superoxide-stimulated proton conductance, indicating no functional avian UCP. Skeletal muscle mitochondria from penguins that had been either experimentally immersed or naturally adapted to cold water did possess functional avian UCP, demonstrated by a superoxide-stimulated, GDP-inhibitable proton conductance across their inner membrane. This was associated with a markedly greater abundance of avian UCP mRNA. In the presence (but not the absence) of fatty acids, these mitochondria also showed a greater adenine nucleotide translocase-catalysed proton conductance than those from never-immersed penguins. This was due to an increase in the amount of adenine nucleotide translocase. Therefore, adaptive thermogenesis in juvenile king penguins is linked to two separate mechanisms of uncoupling of oxidative phosphorylation in skeletal muscle mitochondria: increased proton transport activity of avian UCP (dependent on superoxide and inhibited by GDP) and increased proton transport activity of the adenine nucleotide translocase (dependent on fatty acids and inhibited by carboxyatractylate). PMID:15146050

  6. Direct CRISPR spacer acquisition from RNA by a natural reverse-transcriptase-Cas1 fusion protein

    PubMed Central

    Sidote, David J.; Markham, Laura M.; Sanchez-Amat, Antonio; Bhaya, Devaki; Lambowitz, Alan M.; Fire, Andrew Z.

    2016-01-01

    CRISPR (Clustered Regularly Interspaced Short Palindromic Repeat) systems mediate adaptive immunity in diverse prokaryotes. CRISPR-associated Cas1 and Cas2 proteins have been shown to enable adaptation to new threats in Type I and II CRISPR systems by the acquisition of short segments of DNA (“spacers”) from invasive elements. In several Type III CRISPR systems, Cas1 is naturally fused to a reverse transcriptase (RT). In the marine bacterium Marinomonas mediterranea (MMB-1), we show that an RT-Cas1 fusion enables the acquisition of RNA spacers in vivo in an RT-dependent manner. In vitro, the MMB-1 RT-Cas1 and Cas2 proteins catalyze ligation of RNA segments into the CRISPR array, followed by reverse transcription. These observations outline a host-mediated mechanism for reverse information flow from RNA to DNA. PMID:26917774

  7. An Auxilin-Like J-Domain Protein, JAC1, Regulates Phototropin-Mediated Chloroplast Movement in Arabidopsis1[w

    PubMed Central

    Suetsugu, Noriyuki; Kagawa, Takatoshi; Wada, Masamitsu

    2005-01-01

    The ambient-light conditions mediate chloroplast relocation in plant cells. Under the low-light conditions, chloroplasts accumulate in the light (accumulation response), while under the high-light conditions, they avoid the light (avoidance response). In Arabidopsis (Arabidopsis thaliana), the accumulation response is mediated by two blue-light receptors, termed phototropins (phot1 and phot2) that act redundantly, and the avoidance response is mediated by phot2 alone. A mutant, J-domain protein required for chloroplast accumulation response 1 (jac1), lacks the accumulation response under weak blue light but shows a normal avoidance response under strong blue light. In dark-adapted wild-type cells, chloroplasts accumulate on the bottom of cells. Both the jac1 and phot2 mutants are defective in this chloroplast movement in darkness. Positional cloning of JAC1 reveals that this gene encodes a J-domain protein, resembling clathrin-uncoating factor auxilin at its C terminus. The amounts of JAC1 transcripts and JAC1 proteins are not regulated by light and by phototropins. A green fluorescent protein-JAC1 fusion protein showed a similar localization pattern to green fluorescent protein alone in a transient expression assay using Arabidopsis mesophyll cells and onion (Allium cepa) epidermal cells, suggesting that the JAC1 protein may be a soluble cytosolic protein. Together, these results suggest that JAC1 is an essential component of phototropin-mediated chloroplast movement. PMID:16113208

  8. Transcription Factor CBF4 Is a Regulator of Drought Adaptation in Arabidopsis1

    PubMed Central

    Haake, Volker; Cook, Daniel; Riechmann, José Luis; Pineda, Omaira; Thomashow, Michael F.; Zhang, James Z.

    2002-01-01

    In plants, low temperature and dehydration activate a set of genes containing C-repeat/dehydration-responsive elements in their promoter. It has been shown previously that the Arabidopsis CBF/DREB1 transcription activators are critical regulators of gene expression in the signal transduction of cold acclimation. Here, we report the isolation of an apparent homolog of the CBF/DREB1 proteins (CBF4) that plays the equivalent role during drought adaptation. In contrast to the three already identified CBF/DREB1 homologs, which are induced under cold stress, CBF4 gene expression is up-regulated by drought stress, but not by low temperature. Overexpression of CBF4 in transgenic Arabidopsis plants results in the activation of C-repeat/dehydration-responsive element containing downstream genes that are involved in cold acclimation and drought adaptation. As a result, the transgenic plants are more tolerant to freezing and drought stress. Because of the physiological similarity between freezing and drought stress, and the sequence and structural similarity of the CBF/DREB1 and the CBF4 proteins, we propose that the plant's response to cold and drought evolved from a common CBF-like transcription factor, first through gene duplication and then through promoter evolution. PMID:12376631

  9. Protein Supplementation Does Not Affect Myogenic Adaptations to Resistance Training.

    PubMed

    Reidy, Paul T; Fry, Christopher S; Igbinigie, Sherry; Deer, Rachel R; Jennings, Kristofer; Cope, Mark B; Mukherjea, Ratna; Volpi, Elena; Rasmussen, Blake B

    2017-06-01

    It has been proposed that protein supplementation during resistance exercise training enhances muscle hypertrophy. The degree of hypertrophy during training is controlled in part through the activation of satellite cells and myonuclear accretion. This study aimed to determine the efficacy of protein supplementation (and the type of protein) during traditional resistance training on myofiber cross-sectional area, satellite cell content, and myonuclear addition. Healthy young men participated in supervised whole-body progressive resistance training 3 d·wk for 12 wk. Participants were randomized to one of three groups ingesting a daily 22-g macronutrient dose of soy-dairy protein blend (PB, n = 22), whey protein isolate (WP, n = 15), or an isocaloric maltodextrin placebo (MDP, n = 17). Lean mass, vastus lateralis myofiber-type-specific cross-sectional area, satellite cell content, and myonuclear addition were assessed before and after resistance training. PB and the pooled protein treatments (PB + WP = PRO) exhibited a greater whole-body lean mass %change compared with MDP (P = 0.057 for PB) and (P = 0.050 for PRO), respectively. All treatments demonstrated similar leg muscle hypertrophy and vastus lateralis myofiber-type-specific cross-sectional area (P < 0.05). Increases in myosin heavy chain I and II myofiber satellite cell content and myonuclei content were also detected after exercise training (P < 0.05). Protein supplementation during resistance training has a modest effect on whole-body lean mass as compared with exercise training without protein supplementation, and there was no effect on any outcome between protein supplement types (blend vs whey). However, protein supplementation did not enhance resistance exercise-induced increases in myofiber hypertrophy, satellite cell content, or myonuclear addition in young healthy men. We propose that as long as protein intake is adequate during muscle overload, the adaptations in muscle growth and function will not

  10. Domain requirements for the Dock adapter protein in growth- cone signaling

    PubMed Central

    Rao, Yong; Zipursky, S. Lawrence

    1998-01-01

    Tyrosine phosphorylation has been implicated in growth-cone guidance through genetic, biochemical, and pharmacological studies. Adapter proteins containing src homology 2 (SH2) domains and src homology 3 (SH3) domains provide a means of linking guidance signaling through phosphotyrosine to downstream effectors regulating growth-cone motility. The Drosophila adapter, Dreadlocks (Dock), the homolog of mammalian Nck containing three N-terminal SH3 domains and a single SH2 domain, is highly specialized for growth-cone guidance. In this paper, we demonstrate that Dock can couple signals in either an SH2-dependent or an SH2-independent fashion in photoreceptor (R cell) growth cones, and that Dock displays different domain requirements in different neurons. PMID:9482841

  11. Domain requirements for the Dock adapter protein in growth- cone signaling.

    PubMed

    Rao, Y; Zipursky, S L

    1998-03-03

    Tyrosine phosphorylation has been implicated in growth-cone guidance through genetic, biochemical, and pharmacological studies. Adapter proteins containing src homology 2 (SH2) domains and src homology 3 (SH3) domains provide a means of linking guidance signaling through phosphotyrosine to downstream effectors regulating growth-cone motility. The Drosophila adapter, Dreadlocks (Dock), the homolog of mammalian Nck containing three N-terminal SH3 domains and a single SH2 domain, is highly specialized for growth-cone guidance. In this paper, we demonstrate that Dock can couple signals in either an SH2-dependent or an SH2-independent fashion in photoreceptor (R cell) growth cones, and that Dock displays different domain requirements in different neurons.

  12. Adaptability of Protein Structures to Enable Functional Interactions and Evolutionary Implications

    PubMed Central

    Haliloglu, Turkan; Bahar, Ivet

    2015-01-01

    Several studies in recent years have drawn attention to the ability of proteins to adapt to intermolecular interactions by conformational changes along structure-encoded collective modes of motions. These so-called soft modes, primarily driven by entropic effects, facilitate, if not enable, functional interactions. They represent excursions on the conformational space along principal low-ascent directions/paths away from the original free energy minimum, and they are accessible to the protein even prior to protein-protein/ligand interactions. An emerging concept from these studies is the evolution of structures or modular domains to favor such modes of motion that will be recruited or integrated for enabling functional interactions. Structural dynamics, including the allosteric switches in conformation that are often stabilized upon formation of complexes and multimeric assemblies, emerge as key properties that are evolutionarily maintained to accomplish biological activities, consistent with the paradigm sequence → structure → dynamics → function where ‘dynamics’ bridges structure and function. PMID:26254902

  13. Degradation of Human PDZ-Proteins by Human Alphapapillomaviruses Represents an Evolutionary Adaptation to a Novel Cellular Niche.

    PubMed

    Van Doorslaer, Koenraad; DeSalle, Rob; Einstein, Mark H; Burk, Robert D

    2015-06-01

    In order to complete their life cycle, papillomaviruses have evolved to manipulate a plethora of cellular pathways. The products of the human Alphapapillomavirus E6 proteins specifically interact with and target PDZ containing proteins for degradation. This viral phenotype has been suggested to play a role in viral oncogenesis. To analyze the association of HPV E6 mediated PDZ-protein degradation with cervical oncogenesis, a high-throughput cell culture assay was developed. Degradation of an epitope tagged human MAGI1 isoform was visualized by immunoblot. The correlation between HPV E6-induced degradation of hMAGI1 and epidemiologically determined HPV oncogenicity was evaluated using a Bayesian approach within a phylogenetic context. All tested oncogenic types degraded the PDZ-containing protein hMAGI1d; however, E6 proteins isolated from several related albeit non-oncogenic viral types were equally efficient at degrading hMAGI1. The relationship between both traits (oncogenicity and PDZ degradation potential) is best explained by a model in which the potential to degrade PDZ proteins was acquired prior to the oncogenic phenotype. This analysis provides evidence that the ancestor of both oncogenic and non-oncogenic HPVs acquired the potential to degrade human PDZ-containing proteins. This suggests that HPV E6 directed degradation of PDZ-proteins represents an ancient ecological niche adaptation. Phylogenetic modeling indicates that this phenotype is not specifically correlated with oncogenic risk, but may act as an enabling phenotype. The role of PDZ protein degradation in HPV fitness and oncogenesis needs to be interpreted in the context of Alphapapillomavirus evolution.

  14. Degradation of Human PDZ-Proteins by Human Alphapapillomaviruses Represents an Evolutionary Adaptation to a Novel Cellular Niche

    PubMed Central

    Van Doorslaer, Koenraad; DeSalle, Rob; Einstein, Mark H.; Burk, Robert D.

    2015-01-01

    In order to complete their life cycle, papillomaviruses have evolved to manipulate a plethora of cellular pathways. The products of the human Alphapapillomavirus E6 proteins specifically interact with and target PDZ containing proteins for degradation. This viral phenotype has been suggested to play a role in viral oncogenesis. To analyze the association of HPV E6 mediated PDZ-protein degradation with cervical oncogenesis, a high-throughput cell culture assay was developed. Degradation of an epitope tagged human MAGI1 isoform was visualized by immunoblot. The correlation between HPV E6-induced degradation of hMAGI1 and epidemiologically determined HPV oncogenicity was evaluated using a Bayesian approach within a phylogenetic context. All tested oncogenic types degraded the PDZ-containing protein hMAGI1d; however, E6 proteins isolated from several related albeit non-oncogenic viral types were equally efficient at degrading hMAGI1. The relationship between both traits (oncogenicity and PDZ degradation potential) is best explained by a model in which the potential to degrade PDZ proteins was acquired prior to the oncogenic phenotype. This analysis provides evidence that the ancestor of both oncogenic and non-oncogenic HPVs acquired the potential to degrade human PDZ-containing proteins. This suggests that HPV E6 directed degradation of PDZ-proteins represents an ancient ecological niche adaptation. Phylogenetic modeling indicates that this phenotype is not specifically correlated with oncogenic risk, but may act as an enabling phenotype. The role of PDZ protein degradation in HPV fitness and oncogenesis needs to be interpreted in the context of Alphapapillomavirus evolution. PMID:26086730

  15. Protein domain evolution is associated with reproductive diversification and adaptive radiation in the genus Eucalyptus.

    PubMed

    Kersting, Anna R; Mizrachi, Eshchar; Bornberg-Bauer, Erich; Myburg, Alexander A

    2015-06-01

    Eucalyptus is a pivotal genus within the rosid order Myrtales with distinct geographic history and adaptations. Comparative analysis of protein domain evolution in the newly sequenced Eucalyptus grandis genome and other rosid lineages sheds light on the adaptive mechanisms integral to the success of this genus of woody perennials. We reconstructed the ancestral domain content to elucidate the gain, loss and expansion of protein domains and domain arrangements in Eucalyptus in the context of rosid phylogeny. We used functional gene ontology (GO) annotation of genes to investigate the possible biological and evolutionary consequences of protein domain expansion. We found that protein modulation within the angiosperms occurred primarily on the level of expansion of certain domains and arrangements. Using RNA-Seq data from E. grandis, we showed that domain expansions have contributed to tissue-specific expression of tandemly duplicated genes. Our results indicate that tandem duplication of genes, a key feature of the Eucalyptus genome, has played an important role in the expansion of domains, particularly in proteins related to the specialization of reproduction and biotic and abiotic interactions affecting root and floral biology, and that tissue-specific expression of proteins with expanded domains has facilitated subfunctionalization in domain families. © 2014 University of Pretoria New Phytologist © 2014 New Phytologist Trust.

  16. Adaptive evolution during the establishment of European avian-like H1N1 influenza A virus in swine.

    PubMed

    Joseph, Udayan; Vijaykrishna, Dhanasekaran; Smith, Gavin J D; Su, Yvonne C F

    2018-04-01

    An H1N1 subtype influenza A virus with all eight gene segments derived from wild birds (including mallards), ducks and chickens, caused severe disease outbreaks in swine populations in Europe beginning in 1979 and successfully adapted to form the European avian-like swine (EA-swine) influenza lineage. Genes of the EA-swine lineage that are clearly segregated from its closest avian relatives continue to circulate in swine populations globally and represent a unique opportunity to study the adaptive process of an avian-to-mammalian cross-species transmission. Here, we used a relaxed molecular clock model to test whether the EA-swine virus originated through the introduction of a single avian ancestor as an entire genome, followed by an analysis of host-specific selection pressures among different gene segments. Our data indicated independent introduction of gene segments via transmission of avian viruses into swine followed by reassortment events that occurred at least 1-4 years prior to the EA-swine outbreak. All EA-swine gene segments exhibit greater selection pressure than avian viruses, reflecting both adaptive pressures and relaxed selective constraints that are associated with host switching. Notably, we identified key amino acid mutations in the viral surface proteins (H1 and N1) that play a role in adaptation to new hosts. Following the establishment of EA-swine lineage, we observed an increased frequency of intrasubtype reassortment of segments compared to the earlier strains that has been associated with adaptive amino acid replacements, disease severity and vaccine escape. Taken together, our study provides key insights into the adaptive changes in viral genomes following the transmission of avian influenza viruses to swine and the early establishment of the EA-swine lineage.

  17. STOREKEEPER RELATED1/G-Element Binding Protein (STKR1) Interacts with Protein Kinase SnRK1.

    PubMed

    Nietzsche, Madlen; Guerra, Tiziana; Alseekh, Saleh; Wiermer, Marcel; Sonnewald, Sophia; Fernie, Alisdair R; Börnke, Frederik

    2018-02-01

    Sucrose nonfermenting related kinase1 (SnRK1) is a conserved energy sensor kinase that regulates cellular adaptation to energy deficit in plants. Activation of SnRK1 leads to the down-regulation of ATP-consuming biosynthetic processes and the stimulation of energy-generating catabolic reactions by transcriptional reprogramming and posttranslational modifications. Although considerable progress has been made during the last years in understanding the SnRK1 signaling pathway, many of its components remain unidentified. Here, we show that the catalytic α-subunits KIN10 and KIN11 of the Arabidopsis ( Arabidopsis thaliana ) SnRK1 complex interact with the STOREKEEPER RELATED1/G-Element Binding Protein (STKR1) inside the plant cell nucleus. Overexpression of STKR1 in transgenic Arabidopsis plants led to reduced growth, a delay in flowering, and strongly attenuated senescence. Metabolite profiling revealed that the transgenic lines exhausted their carbohydrates during the dark period to a greater extent than the wild type and accumulated a range of amino acids. At the global transcriptome level, genes affected by STKR1 overexpression were broadly associated with systemic acquired resistance, and transgenic plants showed enhanced resistance toward a virulent strain of the biotrophic oomycete pathogen Hyaloperonospora arabidopsidis Noco2. We discuss a possible connection of STKR1 function, SnRK1 signaling, and plant immunity. © 2018 American Society of Plant Biologists. All Rights Reserved.

  18. Functional Evolution of Influenza Virus NS1 Protein in Currently Circulating Human 2009 Pandemic H1N1 Viruses.

    PubMed

    Clark, Amelia M; Nogales, Aitor; Martinez-Sobrido, Luis; Topham, David J; DeDiego, Marta L

    2017-09-01

    In 2009, a novel H1N1 influenza virus emerged in humans, causing a global pandemic. It was previously shown that the NS1 protein from this human 2009 pandemic H1N1 (pH1N1) virus was an effective interferon (IFN) antagonist but could not inhibit general host gene expression, unlike other NS1 proteins from seasonal human H1N1 and H3N2 viruses. Here we show that the NS1 protein from currently circulating pH1N1 viruses has evolved to encode 6 amino acid changes (E55K, L90I, I123V, E125D, K131E, and N205S) with respect to the original protein. Notably, these 6 residue changes restore the ability of pH1N1 NS1 to inhibit general host gene expression, mainly by their ability to restore binding to the cellular factor CPSF30. This is the first report describing the ability of the pH1N1 NS1 protein to naturally acquire mutations that restore this function. Importantly, a recombinant pH1N1 virus containing these 6 amino acid changes in the NS1 protein (pH1N1/NSs-6mut) inhibited host IFN and proinflammatory responses to a greater extent than that with the parental virus (pH1N1/NS1-wt), yet virus titers were not significantly increased in cell cultures or in mouse lungs, and the disease was partially attenuated. The pH1N1/NSs-6mut virus grew similarly to pH1N1/NSs-wt in mouse lungs, but infection with pH1N1/NSs-6mut induced lower levels of proinflammatory cytokines, likely due to a general inhibition of gene expression mediated by the mutated NS1 protein. This lower level of inflammation induced by the pH1N1/NSs-6mut virus likely accounts for the attenuated disease phenotype and may represent a host-virus adaptation affecting influenza virus pathogenesis. IMPORTANCE Seasonal influenza A viruses (IAVs) are among the most common causes of respiratory infections in humans. In addition, occasional pandemics are caused when IAVs circulating in other species emerge in the human population. In 2009, a swine-origin H1N1 IAV (pH1N1) was transmitted to humans, infecting people then and up

  19. Functional Evolution of Influenza Virus NS1 Protein in Currently Circulating Human 2009 Pandemic H1N1 Viruses

    PubMed Central

    Clark, Amelia M.; Nogales, Aitor; Martinez-Sobrido, Luis

    2017-01-01

    ABSTRACT In 2009, a novel H1N1 influenza virus emerged in humans, causing a global pandemic. It was previously shown that the NS1 protein from this human 2009 pandemic H1N1 (pH1N1) virus was an effective interferon (IFN) antagonist but could not inhibit general host gene expression, unlike other NS1 proteins from seasonal human H1N1 and H3N2 viruses. Here we show that the NS1 protein from currently circulating pH1N1 viruses has evolved to encode 6 amino acid changes (E55K, L90I, I123V, E125D, K131E, and N205S) with respect to the original protein. Notably, these 6 residue changes restore the ability of pH1N1 NS1 to inhibit general host gene expression, mainly by their ability to restore binding to the cellular factor CPSF30. This is the first report describing the ability of the pH1N1 NS1 protein to naturally acquire mutations that restore this function. Importantly, a recombinant pH1N1 virus containing these 6 amino acid changes in the NS1 protein (pH1N1/NSs-6mut) inhibited host IFN and proinflammatory responses to a greater extent than that with the parental virus (pH1N1/NS1-wt), yet virus titers were not significantly increased in cell cultures or in mouse lungs, and the disease was partially attenuated. The pH1N1/NSs-6mut virus grew similarly to pH1N1/NSs-wt in mouse lungs, but infection with pH1N1/NSs-6mut induced lower levels of proinflammatory cytokines, likely due to a general inhibition of gene expression mediated by the mutated NS1 protein. This lower level of inflammation induced by the pH1N1/NSs-6mut virus likely accounts for the attenuated disease phenotype and may represent a host-virus adaptation affecting influenza virus pathogenesis. IMPORTANCE Seasonal influenza A viruses (IAVs) are among the most common causes of respiratory infections in humans. In addition, occasional pandemics are caused when IAVs circulating in other species emerge in the human population. In 2009, a swine-origin H1N1 IAV (pH1N1) was transmitted to humans, infecting people

  20. Hepatic IRE1α regulates fasting-induced metabolic adaptive programs through the XBP1s-PPARα axis signalling.

    PubMed

    Shao, Mengle; Shan, Bo; Liu, Yang; Deng, Yiping; Yan, Cheng; Wu, Ying; Mao, Ting; Qiu, Yifu; Zhou, Yubo; Jiang, Shan; Jia, Weiping; Li, Jingya; Li, Jia; Rui, Liangyou; Yang, Liu; Liu, Yong

    2014-03-27

    Although the mammalian IRE1α-XBP1 branch of the cellular unfolded protein response has been implicated in glucose and lipid metabolism, the exact metabolic role of IRE1α signalling in vivo remains poorly understood. Here we show that hepatic IRE1α functions as a nutrient sensor that regulates the metabolic adaptation to fasting. We find that prolonged deprivation of food or consumption of a ketogenic diet activates the IRE1α-XBP1 pathway in mouse livers. Hepatocyte-specific abrogation of Ire1α results in impairment of fatty acid β-oxidation and ketogenesis in the liver under chronic fasting or ketogenic conditions, leading to hepatosteatosis; liver-specific restoration of XBP1s reverses the defects in IRE1α null mice. XBP1s directly binds to and activates the promoter of PPARα, the master regulator of starvation responses. Hence, our results demonstrate that hepatic IRE1α promotes the adaptive shift of fuel utilization during starvation by stimulating mitochondrial β-oxidation and ketogenesis through the XBP1s-PPARα axis.

  1. The candidate tumor suppressor SASH1 interacts with the actin cytoskeleton and stimulates cell-matrix adhesion.

    PubMed

    Martini, Melanie; Gnann, Alexandra; Scheikl, Daniela; Holzmann, Bernhard; Janssen, Klaus-Peter

    2011-11-01

    SASH1, a member of the SLY-family of signal adapter proteins, is a candidate tumor suppressor in breast and colon cancer. Reduced expression of SASH1 is correlated with aggressive tumor growth, metastasis formation, and inferior prognosis. However, the biological role of SASH1 remains largely unknown. To unravel the function of SASH1, we have analyzed the intracellular localization of endogenous SASH1, and have generated structural SASH1 mutants. SASH1 localized to the nucleus as well as to the cytoplasm in epithelial cells. In addition, SASH1 was enriched in lamellipodia and membrane ruffles, where it co-distributed with the actin cytoskeleton. Moreover, we demonstrate a novel interaction of SASH1 with the oncoprotein cortactin, a known regulator of actin polymerization in lamellipodia. Enhanced SASH1 expression significantly increased the content of filamentous actin, leading to the formation of cell protrusions and elongated cell shape. This activity was mapped to the central, evolutionarily conserved domain of SASH1. Furthermore, expression of SASH1 inhibited cell migration and lead to increased cell adhesion to fibronectin and laminin, whereas knock-down of endogenous SASH1 resulted in significantly reduced cell-matrix adhesion. Taken together, our findings unravel for the first time a mechanistic role for SASH1 in tumor formation by regulating the adhesive and migratory behaviour of cancer cells. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Metabolic Adaptation to Chronic Inhibition of Mitochondrial Protein Synthesis in Acute Myeloid Leukemia Cells

    PubMed Central

    Jhas, Bozhena; Sriskanthadevan, Shrivani; Skrtic, Marko; Sukhai, Mahadeo A.; Voisin, Veronique; Jitkova, Yulia; Gronda, Marcela; Hurren, Rose; Laister, Rob C.; Bader, Gary D.; Minden, Mark D.; Schimmer, Aaron D.

    2013-01-01

    Recently, we demonstrated that the anti-bacterial agent tigecycline preferentially induces death in leukemia cells through the inhibition of mitochondrial protein synthesis. Here, we sought to understand mechanisms of resistance to tigecycline by establishing a leukemia cell line resistant to the drug. TEX leukemia cells were treated with increasing concentrations of tigecycline over 4 months and a population of cells resistant to tigecycline (RTEX+TIG) was selected. Compared to wild type cells, RTEX+TIG cells had undetectable levels of mitochondrially translated proteins Cox-1 and Cox-2, reduced oxygen consumption and increased rates of glycolysis. Moreover, RTEX+TIG cells were more sensitive to inhibitors of glycolysis and more resistant to hypoxia. By electron microscopy, RTEX+TIG cells had abnormally swollen mitochondria with irregular cristae structures. RNA sequencing demonstrated a significant over-representation of genes with binding sites for the HIF1α:HIF1β transcription factor complex in their promoters. Upregulation of HIF1α mRNA and protein in RTEX+TIG cells was confirmed by Q-RTPCR and immunoblotting. Strikingly, upon removal of tigecycline from RTEX+TIG cells, the cells re-established aerobic metabolism. Levels of Cox-1 and Cox-2, oxygen consumption, glycolysis, mitochondrial mass and mitochondrial membrane potential returned to wild type levels, but HIF1α remained elevated. However, upon re-treatment with tigecycline for 72 hours, the glycolytic phenotype was re-established. Thus, we have generated cells with a reversible metabolic phenotype by chronic treatment with an inhibitor of mitochondrial protein synthesis. These cells will provide insight into cellular adaptations used to cope with metabolic stress. PMID:23520503

  3. CREB1 Genotype Modulates Adaptive Reward-Based Decisions in Humans.

    PubMed

    Wolf, Claudia; Mohr, Holger; Diekhof, Esther K; Vieker, Henning; Goya-Maldonado, Roberto; Trost, Sarah; Krämer, Bernd; Keil, Maria; Binder, Elisabeth B; Gruber, Oliver

    2016-07-01

    Cyclic AMP response element-binding protein (CREB) contributes to adaptation of mesocorticolimbic networks by modulating activity-regulated transcription and plasticity in neurons. Activity or expression changes of CREB in the nucleus accumbens (NAc) and orbital frontal cortex (OFC) interact with behavioral changes during reward-motivated learning. However, these findings from animal models have not been evaluated in humans. We tested whether CREB1 genotypes affect reward-motivated decisions and related brain activation, using BOLD fMRI in 224 young and healthy participants. More specifically, participants needed to adapt their decision to either pursue or resist immediate rewards to optimize the reward outcome. We found significant CREB1 genotype effects on choices to pursue increases of the reward outcome and on BOLD signal in the NAc, OFC, insula cortex, cingulate gyrus, hippocampus, amygdala, and precuneus during these decisions in comparison with those decisions avoiding total reward loss. Our results suggest that CREB1 genotype effects in these regions could contribute to individual differences in reward- and associative memory-based decision-making. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. REEPs Are Membrane Shaping Adapter Proteins That Modulate Specific G Protein-Coupled Receptor Trafficking by Affecting ER Cargo Capacity

    PubMed Central

    Ho, Vincent K.; Angelotti, Timothy

    2013-01-01

    Receptor expression enhancing proteins (REEPs) were identified by their ability to enhance cell surface expression of a subset of G protein-coupled receptors (GPCRs), specifically GPCRs that have proven difficult to express in heterologous cell systems. Further analysis revealed that they belong to the Yip (Ypt-interacting protein) family and that some REEP subtypes affect ER structure. Yip family comparisons have established other potential roles for REEPs, including regulation of ER-Golgi transport and processing/neuronal localization of cargo proteins. However, these other potential REEP functions and the mechanism by which they selectively enhance GPCR cell surface expression have not been clarified. By utilizing several REEP family members (REEP1, REEP2, and REEP6) and model GPCRs (α2A and α2C adrenergic receptors), we examined REEP regulation of GPCR plasma membrane expression, intracellular processing, and trafficking. Using a combination of immunolocalization and biochemical methods, we demonstrated that this REEP subset is localized primarily to ER, but not plasma membranes. Single cell analysis demonstrated that these REEPs do not specifically enhance surface expression of all GPCRs, but affect ER cargo capacity of specific GPCRs and thus their surface expression. REEP co-expression with α2 adrenergic receptors (ARs) revealed that this REEP subset interacts with and alter glycosidic processing of α2C, but not α2A ARs, demonstrating selective interaction with cargo proteins. Specifically, these REEPs enhanced expression of and interacted with minimally/non-glycosylated forms of α2C ARs. Most importantly, expression of a mutant REEP1 allele (hereditary spastic paraplegia SPG31) lacking the carboxyl terminus led to loss of this interaction. Thus specific REEP isoforms have additional intracellular functions besides altering ER structure, such as enhancing ER cargo capacity, regulating ER-Golgi processing, and interacting with select cargo proteins

  5. Large-scale interaction profiling of PDZ domains through proteomic peptide-phage display using human and viral phage peptidomes.

    PubMed

    Ivarsson, Ylva; Arnold, Roland; McLaughlin, Megan; Nim, Satra; Joshi, Rakesh; Ray, Debashish; Liu, Bernard; Teyra, Joan; Pawson, Tony; Moffat, Jason; Li, Shawn Shun-Cheng; Sidhu, Sachdev S; Kim, Philip M

    2014-02-18

    The human proteome contains a plethora of short linear motifs (SLiMs) that serve as binding interfaces for modular protein domains. Such interactions are crucial for signaling and other cellular processes, but are difficult to detect because of their low to moderate affinities. Here we developed a dedicated approach, proteomic peptide-phage display (ProP-PD), to identify domain-SLiM interactions. Specifically, we generated phage libraries containing all human and viral C-terminal peptides using custom oligonucleotide microarrays. With these libraries we screened the nine PSD-95/Dlg/ZO-1 (PDZ) domains of human Densin-180, Erbin, Scribble, and Disks large homolog 1 for peptide ligands. We identified several known and putative interactions potentially relevant to cellular signaling pathways and confirmed interactions between full-length Scribble and the target proteins β-PIX, plakophilin-4, and guanylate cyclase soluble subunit α-2 using colocalization and coimmunoprecipitation experiments. The affinities of recombinant Scribble PDZ domains and the synthetic peptides representing the C termini of these proteins were in the 1- to 40-μM range. Furthermore, we identified several well-established host-virus protein-protein interactions, and confirmed that PDZ domains of Scribble interact with the C terminus of Tax-1 of human T-cell leukemia virus with micromolar affinity. Previously unknown putative viral protein ligands for the PDZ domains of Scribble and Erbin were also identified. Thus, we demonstrate that our ProP-PD libraries are useful tools for probing PDZ domain interactions. The method can be extended to interrogate all potential eukaryotic, bacterial, and viral SLiMs and we suggest it will be a highly valuable approach for studying cellular and pathogen-host protein-protein interactions.

  6. Adaptation of model proteins from cold to hot environments involves continuous and small adjustments of average parameters related to amino acid composition.

    PubMed

    De Vendittis, Emmanuele; Castellano, Immacolata; Cotugno, Roberta; Ruocco, Maria Rosaria; Raimo, Gennaro; Masullo, Mariorosario

    2008-01-07

    The growth temperature adaptation of six model proteins has been studied in 42 microorganisms belonging to eubacterial and archaeal kingdoms, covering optimum growth temperatures from 7 to 103 degrees C. The selected proteins include three elongation factors involved in translation, the enzymes glyceraldehyde-3-phosphate dehydrogenase and superoxide dismutase, the cell division protein FtsZ. The common strategy of protein adaptation from cold to hot environments implies the occurrence of small changes in the amino acid composition, without altering the overall structure of the macromolecule. These continuous adjustments were investigated through parameters related to the amino acid composition of each protein. The average value per residue of mass, volume and accessible surface area allowed an evaluation of the usage of bulky residues, whereas the average hydrophobicity reflected that of hydrophobic residues. The specific proportion of bulky and hydrophobic residues in each protein almost linearly increased with the temperature of the host microorganism. This finding agrees with the structural and functional properties exhibited by proteins in differently adapted sources, thus explaining the great compactness or the high flexibility exhibited by (hyper)thermophilic or psychrophilic proteins, respectively. Indeed, heat-adapted proteins incline toward the usage of heavier-size and more hydrophobic residues with respect to mesophiles, whereas the cold-adapted macromolecules show the opposite behavior with a certain preference for smaller-size and less hydrophobic residues. An investigation on the different increase of bulky residues along with the growth temperature observed in the six model proteins suggests the relevance of the possible different role and/or structure organization played by protein domains. The significance of the linear correlations between growth temperature and parameters related to the amino acid composition improved when the analysis was

  7. Differential changes in hippocampal CaMKII and GluA1 activity after memory training involving different levels of adaptive forgetting

    PubMed Central

    Fraize, Nicolas; Hamieh, Al Mahdy; Joseph, Mickaël Antoine; Touret, Monique; Parmentier, Régis; Salin, Paul Antoine; Malleret, Gaël

    2017-01-01

    Phosphorylation of CaMKII and AMPA receptor GluA1 subunit has been shown to play a major role in hippocampal-dependent long-term/reference memory (RM) and in the expression of long-term synaptic potentiation (LTP). In contrast, it has been proposed that dephosphorylation of these proteins could be involved in the opposite phenomenon of hippocampal long-term synaptic depression (LTD) and in adaptive forgetting. Adaptive forgetting allows interfering old memories to be forgotten to give new ones the opportunity to be stored in memory, and in particular in short-term/working memory (WM) that was shown to be very sensitive to proactive interference. To determine the role of CaMKII and GluA1 in adaptive forgetting, we adopted a comparative approach to assess the relative quantity and phosphorylation state of these proteins in the brain of rats trained in one of three radial maze paradigms: a RM task, a WM task involving a high level of adaptive forgetting, or a WM involving a low level of adaptive forgetting. Surprisingly, Western blot analyses revealed that training in a WM task involving a high level of adaptive forgetting specifically increased the expression of AMPA receptor GluA1 subunit and the activity of CaMKII in the dentate gyrus. These results highlight that WM with proactive interference involves mechanisms of synaptic plasticity selectively in the dentate gyrus. PMID:28096498

  8. The role of protein-protein interactions in the intracellular traffic of the potassium channels TASK-1 and TASK-3.

    PubMed

    Kilisch, Markus; Lytovchenko, Olga; Schwappach, Blanche; Renigunta, Vijay; Daut, Jürgen

    2015-05-01

    The intracellular transport of membrane proteins is controlled by trafficking signals: Short peptide motifs that mediate the contact with COPI, COPII or various clathrin-associated coat proteins. In addition, many membrane proteins interact with accessory proteins that are involved in the sorting of these proteins to different intracellular compartments. In the K2P channels, TASK-1 and TASK-3, the influence of protein-protein interactions on sorting decisions has been studied in some detail. Both TASK paralogues interact with the adaptor protein 14-3-3; TASK-1 interacts, in addition, with the adaptor protein p11 (S100A10) and the endosomal SNARE protein syntaxin-8. The role of these interacting proteins in controlling the intracellular traffic of the channels and the underlying molecular mechanisms are summarised in this review. In the case of 14-3-3, the interacting protein masks a retention signal in the C-terminus of the channel; in the case of p11, the interacting protein carries a retention signal that localises the channel to the endoplasmic reticulum; and in the case of syntaxin-8, the interacting protein carries an endocytosis signal that complements an endocytosis signal of the channel. These examples illustrate some of the mechanisms by which interacting proteins may determine the itinerary of a membrane protein within a cell and suggest that the intracellular traffic of membrane proteins may be adapted to the specific functions of that protein by multiple protein-protein interactions.

  9. Proteomic analysis of endothelial cold-adaptation

    PubMed Central

    2011-01-01

    Background Understanding how human cells in tissue culture adapt to hypothermia may aid in developing new clinical procedures for improved ischemic and hypothermic protection. Human coronary artery endothelial cells grown to confluence at 37°C and then transferred to 25°C become resistant over time to oxidative stress and injury induced by 0°C storage and rewarming. This protection correlates with an increase in intracellular glutathione at 25°C. To help understand the molecular basis of endothelial cold-adaptation, isolated proteins from cold-adapted (25°C/72 h) and pre-adapted cells were analyzed by quantitative proteomic methods and differentially expressed proteins were categorized using the DAVID Bioinformatics Resource. Results Cells adapted to 25°C expressed changes in the abundance of 219 unique proteins representing a broad range of categories such as translation, glycolysis, biosynthetic (anabolic) processes, NAD, cytoskeletal organization, RNA processing, oxidoreductase activity, response-to-stress and cell redox homeostasis. The number of proteins that decreased significantly with cold-adaptation exceeded the number that increased by 2:1. Almost half of the decreases were associated with protein metabolic processes and a third were related to anabolic processes including protein, DNA and fatty acid synthesis. Changes consistent with the suppression of cytoskeletal dynamics provided further evidence that cold-adapted cells are in an energy conserving state. Among the specific changes were increases in the abundance and activity of redox proteins glutathione S-transferase, thioredoxin and thioredoxin reductase, which correlated with a decrease in oxidative stress, an increase in protein glutathionylation, and a recovery of reduced protein thiols during rewarming from 0°C. Increases in S-adenosylhomocysteine hydrolase and nicotinamide phosphoribosyltransferase implicate a central role for the methionine-cysteine transulfuration pathway in increasing

  10. The protein level of hypoxia-inducible factor-1alpha is increased in the plateau pika (Ochotona curzoniae) inhabiting high altitudes.

    PubMed

    Li, Hong-Ge; Ren, Yong-Ming; Guo, Song-Chang; Cheng, Long; Wang, De-Peng; Yang, Jie; Chang, Zhi-Jie; Zhao, Xin-Quan

    2009-02-01

    The plateau pika (Ochotona curzoniae) is a high hypoxia-tolerant species living only at 3,000-5,000 m above sea-level on the Qinghai-Tibetan plateau. Hypoxia-inducible factor-1 (HIF-1) is a key transcription factor that regulates a variety of cellular and systemic adaptations to hypoxia. To investigate how the plateau pika adapts to a high-altitude hypoxic environment at the molecular level, we examined the expression pattern of the HIF-1alpha protein in the pika by Western blot and immunohistochemical analysis. We found that HIF-1alpha protein is expressed at a significantly high level in the pika, which is higher in most tissues (particularly in the lung, liver, spleen and kidney) of the plateau pika than that of mice living at sea-level. Importantly, we found that the protein levels of HIF-1alpha in the lung, liver, spleen and kidney of the pika were increased with increased habitat altitudes. We observed that the plateau pika HIF-1alpha localized to the nucleus of cells by an immunostaining analysis, and enhanced HRE-driven gene expression by luciferase reporter assays. Our study suggests that the HIF-1alpha protein levels are related to the adaptation of the plateau pika to the high-altitude hypoxic environment.

  11. UV-C Adaptation of Shigella: Morphological, Outer Membrane Proteins, Secreted Proteins, and Lipopolysaccharides Effects.

    PubMed

    Chourabi, Kalthoum; Campoy, Susana; Rodriguez, Jesus A; Kloula, Salma; Landoulsi, Ahmed; Chatti, Abdelwaheb

    2017-11-01

    Water UV disinfection remains extremely important, particularly in developing countries where drinking and reclaimed crop irrigation water may spread devastating infectious diseases. Enteric bacterial pathogens, among which Shigella, are possible contaminants of drinking and bathing water and foods. To study the effect of UV light on Shigella, four strains were exposed to different doses in a laboratory-made irradiation device, given that the ultraviolet radiation degree of inactivation is directly related to the UV dose applied to water. Our results showed that the UV-C rays are effective against all the tested Shigella strains. However, UV-C doses appeared as determinant factors for Shigella eradication. On the other hand, Shigella-survived strains changed their outer membrane protein profiles, secreted proteins, and lipopolysaccharides. Also, as shown by electron microscopy transmission, morphological alterations were manifested by an internal cytoplasm disorganized and membrane envelope breaks. Taken together, the focus of interest of our study is to know the adaptive mechanism of UV-C resistance of Shigella strains.

  12. HSPB8 and BAG3 cooperate to promote spatial sequestration of ubiquitinated proteins and coordinate the cellular adaptive response to proteasome insufficiency.

    PubMed

    Guilbert, Solenn M; Lambert, Herman; Rodrigue, Marc-Antoine; Fuchs, Margit; Landry, Jacques; Lavoie, Josée N

    2018-02-05

    BCL2-associated athanogene (BAG)-3 is viewed as a platform that would physically and functionally link distinct classes of molecular chaperones of the heat shock protein (HSP) family for the stabilization and clearance of damaged proteins. In this study, we show that HSPB8, a member of the small heat shock protein subfamily, cooperates with BAG3 to coordinate the sequestration of harmful proteins and the cellular adaptive response upon proteasome inhibition. Silencing of HSPB8, like depletion of BAG3, inhibited targeting of ubiquitinated proteins to the juxtanuclear aggresome, a mammalian system of spatial quality control. However, aggresome targeting was restored in BAG3-depleted cells by a mutant BAG3 defective in HSPB8 binding, uncoupling HSPB8 function from its binding to BAG3. Depletion of HSPB8 impaired formation of ubiquitinated microaggregates in an early phase and interfered with accurate modifications of the stress sensor p62/sequestosome (SQSTM)-1. This impairment correlated with decreased coupling of BAG3 to p62/SQSTM1 in response to stress, hindering Kelch-like ECH-associated protein (KEAP)-1 sequestration and stabilization of nuclear factor E2-related factor (Nrf)-2, an important arm of the antioxidant defense. Notably, the myopathy-associated mutation of BAG3 (P209L), which lies within the HSPB8-binding motif, deregulated the association between BAG3 and p62/SQSTM1 and the KEAP1-Nrf2 signaling axis. Together, our findings support a so-far-unrecognized role for the HSPB8-BAG3 connection in mounting of an efficient stress response, which may be involved in BAG3-related human diseases.-Guilbert, S. M., Lambert, H., Rodrigue, M.-A., Fuchs, M., Landry, J., Lavoie, J. N. HSPB8 and BAG3 cooperate to promote spatial sequestration of ubiquitinated proteins and coordinate the cellular adaptive response to proteasome insufficiency.

  13. NS1-binding protein abrogates the elevation of cell viability by the influenza A virus NS1 protein in association with CRKL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyazaki, Masaya; Nishihara, Hiroshi, E-mail: hnishihara@med.hokudai.ac.jp; Hasegawa, Hideki

    Highlights: •NS1 induced excessive phosphorylation of ERK and elevated cell viability. •NS1-BP expression and CRKL knockdown abolished survival effect of NS1. •NS1-BP and NS1 formed the complex through the interaction with CRKL-SH3(N). -- Abstract: The influenza A virus non-structural protein 1 (NS1) is a multifunctional virulence factor consisting of an RNA binding domain and several Src-homology (SH) 2 and SH3 binding motifs, which promotes virus replication in the host cell and helps to evade antiviral immunity. NS1 modulates general host cell physiology in association with various cellular molecules including NS1-binding protein (NS1-BP) and signaling adapter protein CRK-like (CRKL), while themore » physiological role of NS1-BP during influenza A virus infection especially in association with NS1 remains unclear. In this study, we analyzed the intracellular association of NS1-BP, NS1 and CRKL to elucidate the physiological roles of these molecules in the host cell. In HEK293T cells, enforced expression of NS1 of A/Beijing (H1N1) and A/Indonesia (H5N1) significantly induced excessive phosphorylation of ERK and elevated cell viability, while the over-expression of NS1-BP and the abrogation of CRKL using siRNA abolished such survival effect of NS1. The pull-down assay using GST-fusion CRKL revealed the formation of intracellular complexes of NS1-BP, NS1 and CRKL. In addition, we identified that the N-terminus SH3 domain of CRKL was essential for binding to NS1-BP using GST-fusion CRKL-truncate mutants. This is the first report to elucidate the novel function of NS1-BP collaborating with viral protein NS1 in modulation of host cell physiology. In addition, an alternative role of adaptor protein CRKL in association with NS1 and NS1-BP during influenza A virus infection is demonstrated.« less

  14. Application of 1-aminocyclohexane carboxylic acid to protein nanostructure computer design

    PubMed Central

    Rodríguez-Ropero, Francisco; Zanuy, David; Casanovas, Jordi; Nussinov, Ruth; Alemán, Carlos

    2009-01-01

    Conformationally restricted amino acids are promising candidates to serve as basic pieces in redesigned protein motifs which constitute the basic modules in synthetic nanoconstructs. Here we study the ability of constrained cyclic amino acid 1-aminocyclohexane-1-carboxylic acid (Ac6c) to stabilize highly regular β-helical motifs excised from naturally occurring proteins. Calculations indicate that the conformational flexibility observed in both the ring and the main chain is significantly higher than that detected for other 1-aminocycloalkane-1-carboxylic acid (Acnc, where n refers to the size of the ring) with smaller cycles. Incorporation of Ac6c into the flexible loops of β-helical motifs indicates that the stability of such excised building blocks as well as the nano-assemblies derived from them is significantly enhanced. Thus, the intrinsic Ac6c tendency to adopt folded conformations combined with the low structural strain of the cyclohexane ring confers the ability to both self-adapt to the β-helix motif and to stabilize the overall structure by absorbing part of its conformational fluctuations. Comparison with other Acnc residues indicates that the ability to adapt to the targeted position improves considerably with the ring size, i.e. when the rigidity introduced by the strain of the ring decreases. PMID:18201062

  15. Interaction between two adapter proteins, PAG and EBP50: a possible link between membrane rafts and actin cytoskeleton.

    PubMed

    Brdicková, N; Brdicka, T; Andera, L; Spicka, J; Angelisová, P; Milgram, S L; Horejsí, V

    2001-10-26

    Phosphoprotein associated with GEMs (PAG), also known as Csk-binding protein (Cbp), is a broadly expressed palmitoylated transmembrane adapter protein found in membrane rafts, also called GEMs (glycosphingolipid-enriched membrane microdomains). PAG is known to bind and activate the essential regulator of Src-family kinases, cytoplasmic protein tyrosine kinase Csk. In the present study we used the yeast 2-hybrid system to search for additional proteins which might bind to PAG. We have identified the abundant cytoplasmic adapter protein EBP50 (ezrin/radixin/moesin (ERM)-binding phosphoprotein of 50 kDa), also known as NHERF (Na(+)/H(+) exchanger regulatory factor), as a specific PAG-binding partner. The interaction involves the C-terminal sequence (TRL) of PAG and N-terminal PDZ domain(s) of EBP50. As EBP50 is known to interact via its C-terminal domain with the ERM-family proteins, which in turn bind to actin cytoskeleton, the PAG-EBP50 interaction may be important for connecting membrane rafts to the actin cytoskeleton.

  16. Role of protein kinase C in light adaptation of molluscan microvillar photoreceptors

    PubMed Central

    Piccoli, Giuseppe; del Pilar Gomez, Maria; Nasi, Enrico

    2002-01-01

    The mechanisms by which Ca2+ regulates light adaptation in microvillar photoreceptors remain poorly understood. Protein kinase C (PKC) is a likely candidate, both because some sub-types are activated by Ca2+ and because of its association with the macromolecular ‘light-transduction complex’ in Drosophila. We investigated the possible role of PKC in the modulation of the light response in molluscan photoreceptors. Western blot analysis with isoform-specific antibodies revealed the presence of PKCα in retinal homogenates. Immunocytochemistry in isolated cell preparations confirmed PKCα localization in microvillar photoreceptors, preferentially confined to the light-sensing lobe. Light stimulation induced translocation of PKCα immunofluorescence to the photosensitive membrane, an effect that provides independent evidence for PKC activation by illumination; a similar outcome was observed after incubation with the phorbol ester PMA. Several chemically distinct activators of PKC, such as phorbol-12-myristate-13-acetate (PMA), (-)indolactam V and 1,2,-dioctanoyl-sn-glycerol (DOG) inhibited the light response of voltage-clamped microvillar photoreceptors, but were ineffective in ciliary photoreceptors, in which light does not activate the Gq/PLC cascade, nor elevates intracellular Ca2+. Pharmacological inhibition of PKC antagonized the desensitization produced by adapting lights and also caused a small, but consistent enhancement of basal sensitivity. These results strongly support the involvement of PKC activation in the light-dependent regulation of response sensitivity. However, unlike adapting background light or elevation of [Ca2+]i, PKC activators did not speed up the photoresponse, nor did PKC inhibitors antagonize the accelerating effects of background adaptation, suggesting that modulation of photoresponse time course may involve a separate Ca2+-dependent signal. PMID:12205183

  17. Judgments of Omitted BE and DO in Questions as Extended Finiteness Clinical Markers of Specific Language Impairment (SLI) to 15 Years: A Study of Growth and Asymptote

    ERIC Educational Resources Information Center

    Rice, Mabel L.; Hoffman, Lesa; Wexler, Ken

    2009-01-01

    Purpose: Clinical grammar markers are needed for children with SLI older than 8 years. This study followed children who were previously studied on sentences with omitted finiteness to determine if affected children continue to perform at low levels and to examine possible predictors of low performance. This is the first longitudinal report of…

  18. Species-Specific Inhibition of RIG-I Ubiquitination and IFN Induction by the Influenza A Virus NS1 Protein

    PubMed Central

    Rajsbaum, Ricardo; Albrecht, Randy A.; Wang, May K.; Maharaj, Natalya P.; Versteeg, Gijs A.; Nistal-Villán, Estanislao; García-Sastre, Adolfo; Gack, Michaela U.

    2012-01-01

    Influenza A viruses can adapt to new host species, leading to the emergence of novel pathogenic strains. There is evidence that highly pathogenic viruses encode for non-structural 1 (NS1) proteins that are more efficient in suppressing the host immune response. The NS1 protein inhibits type-I interferon (IFN) production partly by blocking the TRIM25 ubiquitin E3 ligase-mediated Lys63-linked ubiquitination of the viral RNA sensor RIG-I, required for its optimal downstream signaling. In order to understand possible mechanisms of viral adaptation and host tropism, we examined the ability of NS1 encoded by human (Cal04), avian (HK156), swine (SwTx98) and mouse-adapted (PR8) influenza viruses to interact with TRIM25 orthologues from mammalian and avian species. Using co-immunoprecipitation assays we show that human TRIM25 binds to all tested NS1 proteins, whereas the chicken TRIM25 ortholog binds preferentially to the NS1 from the avian virus. Strikingly, none of the NS1 proteins were able to bind mouse TRIM25. Since NS1 can inhibit IFN production in mouse, we tested the impact of TRIM25 and NS1 on RIG-I ubiquitination in mouse cells. While NS1 efficiently suppressed human TRIM25-dependent ubiquitination of RIG-I 2CARD, NS1 inhibited the ubiquitination of full-length mouse RIG-I in a mouse TRIM25-independent manner. Therefore, we tested if the ubiquitin E3 ligase Riplet, which has also been shown to ubiquitinate RIG-I, interacts with NS1. We found that NS1 binds mouse Riplet and inhibits its activity to induce IFN-β in murine cells. Furthermore, NS1 proteins of human but not swine or avian viruses were able to interact with human Riplet, thereby suppressing RIG-I ubiquitination. In conclusion, our results indicate that influenza NS1 protein targets TRIM25 and Riplet ubiquitin E3 ligases in a species-specific manner for the inhibition of RIG-I ubiquitination and antiviral IFN production. PMID:23209422

  19. Species-specific inhibition of RIG-I ubiquitination and IFN induction by the influenza A virus NS1 protein.

    PubMed

    Rajsbaum, Ricardo; Albrecht, Randy A; Wang, May K; Maharaj, Natalya P; Versteeg, Gijs A; Nistal-Villán, Estanislao; García-Sastre, Adolfo; Gack, Michaela U

    2012-01-01

    Influenza A viruses can adapt to new host species, leading to the emergence of novel pathogenic strains. There is evidence that highly pathogenic viruses encode for non-structural 1 (NS1) proteins that are more efficient in suppressing the host immune response. The NS1 protein inhibits type-I interferon (IFN) production partly by blocking the TRIM25 ubiquitin E3 ligase-mediated Lys63-linked ubiquitination of the viral RNA sensor RIG-I, required for its optimal downstream signaling. In order to understand possible mechanisms of viral adaptation and host tropism, we examined the ability of NS1 encoded by human (Cal04), avian (HK156), swine (SwTx98) and mouse-adapted (PR8) influenza viruses to interact with TRIM25 orthologues from mammalian and avian species. Using co-immunoprecipitation assays we show that human TRIM25 binds to all tested NS1 proteins, whereas the chicken TRIM25 ortholog binds preferentially to the NS1 from the avian virus. Strikingly, none of the NS1 proteins were able to bind mouse TRIM25. Since NS1 can inhibit IFN production in mouse, we tested the impact of TRIM25 and NS1 on RIG-I ubiquitination in mouse cells. While NS1 efficiently suppressed human TRIM25-dependent ubiquitination of RIG-I 2CARD, NS1 inhibited the ubiquitination of full-length mouse RIG-I in a mouse TRIM25-independent manner. Therefore, we tested if the ubiquitin E3 ligase Riplet, which has also been shown to ubiquitinate RIG-I, interacts with NS1. We found that NS1 binds mouse Riplet and inhibits its activity to induce IFN-β in murine cells. Furthermore, NS1 proteins of human but not swine or avian viruses were able to interact with human Riplet, thereby suppressing RIG-I ubiquitination. In conclusion, our results indicate that influenza NS1 protein targets TRIM25 and Riplet ubiquitin E3 ligases in a species-specific manner for the inhibition of RIG-I ubiquitination and antiviral IFN production.

  20. The signaling adapter Gab1 regulates cell polarity by acting as a PAR protein scaffold

    PubMed Central

    Yang, Ziqiang; Xue, Bin; Umitsu, Masataka; Ikura, Mitsuhiko; Muthuswamy, Senthil K.; Neel, Benjamin G.

    2012-01-01

    Summary Cell polarity plays a key role in development and is disrupted in tumors, yet the molecules and mechanisms that regulate polarity remain poorly defined. We found that the scaffolding adaptor GAB1 interacts with two polarity proteins, PAR1 and PAR3. GAB1 binds PAR1 and enhances its kinase activity. GAB1 brings PAR1 and PAR3 into a transient complex, stimulating PAR3 phosphorylation by PAR1. GAB1 and PAR6 bind the PAR3 PDZ1 domain and thereby compete for PAR3 binding. Consequently, GAB1 depletion causes PAR3 hypo-phosphorylation and increases PAR3/PAR6 complex formation, resulting in accelerated and enhanced tight junction formation, increased trans-epithelial resistance and lateral domain shortening. Conversely, GAB1 over-expression, in a PAR1/PAR3-dependent manner, disrupts epithelial apical-basal polarity, promotes multi-lumen cyst formation, and enhances growth factor-induced epithelial cell scattering. Our results identify GAB1 as a novel negative regulator of epithelial cell polarity that functions as a scaffold for modulating PAR protein complexes on the lateral membrane. PMID:22883624

  1. Direct association between the Ret receptor tyrosine kinase and the Src homology 2-containing adapter protein Grb7.

    PubMed

    Pandey, A; Liu, X; Dixon, J E; Di Fiore, P P; Dixit, V M

    1996-05-03

    Adapter proteins containing Src homology 2 (SH2) domains link transmembrane receptor protein-tyrosine kinases to downstream signal transducing molecules. A family of SH2 containing adapter proteins including Grb7 and Grb10 has been recently identified. We had previously shown that Grb10 associates with Ret via its SH2 domain in an activation-dependent manner (Pandey, A., Duan, H., Di Fiore, P.P., and Dixit, V.M. (1995) J. Biol, Chem. 270, 21461-21463). We now demonstrate that the related adapter molecule Grb7 also associates with Ret in vitro and in vivo, and that the binding of the SH2 domain of Grb7 to Ret is direct. This binding is dependent upon Ret autophosphorylation since Grb7 is incapable of binding a kinase-defective mutant of Ret. Thus two members of the Grb family, Grb7 and Grb10, likely relay signals emanating from Ret to other, as yet, unidentified targets within the cell.

  2. Differential changes in hippocampal CaMKII and GluA1 activity after memory training involving different levels of adaptive forgetting.

    PubMed

    Fraize, Nicolas; Hamieh, Al Mahdy; Joseph, Mickaël Antoine; Touret, Monique; Parmentier, Régis; Salin, Paul Antoine; Malleret, Gaël

    2017-02-01

    Phosphorylation of CaMKII and AMPA receptor GluA1 subunit has been shown to play a major role in hippocampal-dependent long-term/reference memory (RM) and in the expression of long-term synaptic potentiation (LTP). In contrast, it has been proposed that dephosphorylation of these proteins could be involved in the opposite phenomenon of hippocampal long-term synaptic depression (LTD) and in adaptive forgetting. Adaptive forgetting allows interfering old memories to be forgotten to give new ones the opportunity to be stored in memory, and in particular in short-term/working memory (WM) that was shown to be very sensitive to proactive interference. To determine the role of CaMKII and GluA1 in adaptive forgetting, we adopted a comparative approach to assess the relative quantity and phosphorylation state of these proteins in the brain of rats trained in one of three radial maze paradigms: a RM task, a WM task involving a high level of adaptive forgetting, or a WM involving a low level of adaptive forgetting. Surprisingly, Western blot analyses revealed that training in a WM task involving a high level of adaptive forgetting specifically increased the expression of AMPA receptor GluA1 subunit and the activity of CaMKII in the dentate gyrus. These results highlight that WM with proactive interference involves mechanisms of synaptic plasticity selectively in the dentate gyrus. © 2017 Fraize et al.; Published by Cold Spring Harbor Laboratory Press.

  3. Extracellular signal-regulated protein kinases 1 and 2 activation by addictive drugs: a signal toward pathological adaptation.

    PubMed

    Pascoli, Vincent; Cahill, Emma; Bellivier, Frank; Caboche, Jocelyne; Vanhoutte, Peter

    2014-12-15

    Addiction is a chronic and relapsing psychiatric disorder that is thought to occur in vulnerable individuals. Synaptic plasticity evoked by drugs of abuse in the so-called neuronal circuits of reward has been proposed to underlie behavioral adaptations that characterize addiction. By increasing dopamine in the striatum, addictive drugs alter the balance of dopamine and glutamate signals converging onto striatal medium-sized spiny neurons (MSNs) and activate intracellular events involved in long-term behavioral alterations. Our laboratory contributed to the identification of salient molecular changes induced by administration of addictive drugs to rodents. We pioneered the observation that a common feature of addictive drugs is to activate, by a double tyrosine/threonine phosphorylation, the extracellular signal-regulated kinases 1 and 2 (ERK1/2) in the striatum, which control a plethora of substrates, some of them being critically involved in cocaine-mediated molecular and behavioral adaptations. Herein, we review how the interplay between dopamine and glutamate signaling controls cocaine-induced ERK1/2 activation in MSNs. We emphasize the key role of N-methyl-D-aspartate receptor potentiation by D1 receptor to trigger ERK1/2 activation and its subsequent nuclear translocation where it modulates both epigenetic and genetic processes engaged by cocaine. We discuss how cocaine-induced long-term synaptic and structural plasticity of MSNs, as well as behavioral adaptations, are influenced by ERK1/2-controlled targets. We conclude that a better knowledge of molecular mechanisms underlying ERK1/2 activation by drugs of abuse and/or its role in long-term neuronal plasticity in the striatum may provide a new route for therapeutic treatment in addiction. Copyright © 2014 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  4. Somatomedin-1 binding protein-3: insulin-like growth factor-1 binding protein-3, insulin-like growth factor-1 carrier protein.

    PubMed

    2003-01-01

    Somatomedin-1 binding protein-3 [insulin-like growth factor-1 binding protein-3, SomatoKine] is a recombinant complex of insulin-like growth factor-1 (rhIGF-1) and binding protein-3 (IGFBP-3), which is the major circulating somatomedin (insulin-like growth factor) binding protein; binding protein-3 regulates the delivery of somatomedin-1 to target tissues. Somatomedin-1 binding protein-3 has potential as replacement therapy for somatomedin-1 which may become depleted in indications such as major surgery, organ damage/failure and traumatic injury, resulting in catabolism. It also has potential for the treatment of osteoporosis; diseases associated with protein wasting including chronic renal failure, cachexia and severe trauma; and to attenuate cardiac dysfunction in a variety of disease states, including after severe burn trauma. Combined therapy with somatomedin-1 and somatomedin-1 binding protein-3 would prolong the duration of action of somatomedin-1 and would reduce or eliminate some of the undesirable effects associated with somatomedin-1 monotherapy. Somatomedin-1 is usually linked to binding protein-3 in the normal state of the body, and particular proteases clip them apart in response to stresses and release somatomedin-1 as needed. Therefore, somatomedin-1 binding protein-3 is a self-dosing system and SomatoKine would augment the natural supply of these linked compounds. Somatomedin-1 binding protein-3 was developed by Celtrix using its proprietary recombinant protein production technology. Subsequently, Celtrix was acquired by Insmed Pharmaceuticals on June 1 2000. Insmed and Avecia, UK, have signed an agreement for the manufacturing of SomatoKine and its components, IGF-1 and binding protein-3. CGMP clinical production of SomatoKine and its components will be done in Avecia's Advanced Biologics Centre, Billingham, UK, which manufactures recombinant-based medicines and vaccines with a capacity of up to 1000 litres. In 2003, manufacturing of SomatoKine is

  5. Judgments of Omitted BE and DO in Questions as Extended Finiteness Clinical Markers of SLI to Fifteen Years: A Study of Growth and Asymptote

    PubMed Central

    Rice, Mabel L; Hoffman, Lesa; Wexler, Ken

    2009-01-01

    Purpose Clinical grammar markers are needed for children with SLI older than 8 years. This study followed children studied earlier on sentences with omitted finiteness to determine if affected children continue to perform at low levels and to examine possible predictors of low performance. This is the first longitudinal report of grammaticality judgments of questions. Method Three groups of children participated: 20 SLI, 20 age controls and 18 language-matched controls, followed from ages 6–15 years. An experimental grammaticality judgment task was administered with BE copula/auxiliary and DO auxiliary in Wh- and Yes/No questions for 9 times of measurement. Predictors were indices of vocabulary, nonverbal intelligence, and maternal education. Results Growth curve analyses show that the affected group performed below the younger controls at each time of measurement, for each variable. Growth analyses show linear and quadratic effects for both groups across variables, with the exception of BE acquisition which was flat for both groups. The control children reached ceiling levels; the affected children reached a lower asymptote. Conclusions The results suggest an on-going maturational lag in finiteness marking for affected children with promise as a clinical marker for language impairment in school-aged and adolescent children and probably adults as well. PMID:19786705

  6. Flavin-Induced Oligomerization in Escherichia coli Adaptive Response Protein AidB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamill, Michael J.; Jost, Marco; Wong, Cintyu

    2011-11-21

    The process known as 'adaptive response' allows Escherichia coli to respond to small doses of DNA-methylating agents by upregulating the expression of four proteins. While the role of three of these proteins in mitigating DNA damage is well understood, the function of AidB is less clear. Although AidB is a flavoprotein, no catalytic role has been established for the bound cofactor. Here we investigate the possibility that flavin plays a structural role in the assembly of the AidB tetramer. We report the generation and biophysical characterization of deflavinated AidB and of an AidB mutant that has greatly reduced affinity formore » flavin adenine dinucleotide (FAD). Using fluorescence quenching and analytical ultracentrifugation, we find that apo AidB has a high affinity for FAD, as indicated by an apparent dissociation constant of 402.1 {+-} 35.1 nM, and that binding of substoichiometric amounts of FAD triggers a transition in the AidB oligomeric state. In particular, deflavinated AidB is dimeric, whereas the addition of FAD yields a tetramer. We further investigate the dimerization and tetramerization interfaces of AidB by determining a 2.8 {angstrom} resolution crystal structure in space group P3{sub 2} that contains three intact tetramers in the asymmetric unit. Taken together, our findings provide strong evidence that FAD plays a structural role in the formation of tetrameric AidB.« less

  7. Impaired spine formation and learning in GPCR kinase 2 interacting protein-1 (GIT1) knockout mice.

    PubMed

    Menon, Prashanthi; Deane, Rashid; Sagare, Abhay; Lane, Steven M; Zarcone, Troy J; O'Dell, Michael R; Yan, Chen; Zlokovic, Berislav V; Berk, Bradford C

    2010-03-04

    The G-protein coupled receptor (GPCR)-kinase interacting proteins 1 and 2 (GIT1 and GIT2) are scaffold proteins with ADP-ribosylating factor GTPase activity. GIT1 and GIT2 control numerous cellular functions and are highly expressed in neurons, endothelial cells and vascular smooth muscle cells. GIT1 promotes dendritic spine formation, growth and motility in cultured neurons, but its role in brain in vivo is unknown. By using global GIT1 knockout mice (GIT1 KO), we show that compared to WT controls, deletion of GIT1 results in markedly reduced dendritic length and spine density in the hippocampus by 36.7% (p<0.0106) and 35.1% (p<0.0028), respectively. This correlated with their poor adaptation to new environments as shown by impaired performance on tasks dependent on learning. We also studied the effect of GIT1 gene deletion on brain microcirculation. In contrast to findings in systemic circulation, GIT1 KO mice had an intact blood-brain barrier and normal regional cerebral blood flow as determined with radiotracers. Thus, our data suggest that GIT1 plays an important role in brain in vivo by regulating spine density involved in synaptic plasticity that is required for processes involved in learning. 2009 Elsevier B.V. All rights reserved.

  8. In vivo functional mapping of the conserved protein domains within murine Themis1.

    PubMed

    Zvezdova, Ekaterina; Lee, Jan; El-Khoury, Dalal; Barr, Valarie; Akpan, Itoro; Samelson, Lawrence; Love, Paul E

    2014-09-01

    Thymocyte development requires the coordinated input of signals that originate from numerous cell surface molecules. Although the majority of thymocyte signal-initiating receptors are lineage-specific, most trigger 'ubiquitous' downstream signaling pathways. T-lineage-specific receptors are coupled to these signaling pathways by lymphocyte-restricted adapter molecules. We and others recently identified a new putative adapter protein, Themis1, whose expression is largely restricted to the T lineage. Mice lacking Themis1 exhibit a severe block in thymocyte development and a striking paucity of mature T cells revealing a critical role for Themis1 in T-cell maturation. Themis1 orthologs contain three conserved domains: a proline-rich region (PRR) that binds to the ubiquitous cytosolic adapter Grb2, a nuclear localization sequence (NLS), and two copies of a novel cysteine-containing globular (CABIT) domain. In the present study, we evaluated the functional importance of each of these motifs by retroviral reconstitution of Themis1(-/-) progenitor cells. The results demonstrate an essential requirement for the PRR and NLS motifs but not the conserved CABIT cysteines for Themis1 function.

  9. Arabinogalactan Proteins Are Involved in Salt-Adaptation and Vesicle Trafficking in Tobacco by-2 Cell Cultures

    PubMed Central

    Olmos, Enrique; García De La Garma, Jesús; Gomez-Jimenez, Maria C.; Fernandez-Garcia, Nieves

    2017-01-01

    Arabinogalactan proteins (AGPs) are a highly diverse family of glycoproteins that are commonly found in most plant species. However, little is known about the physiological and molecular mechanisms of their function. AGPs are involved in different biological processes such as cell differentiation, cell expansion, tissue development and somatic embryogenesis. AGPs are also involved in abiotic stress response such as salinity modulating cell wall expansion. In this study, we describe how salt-adaptation in tobacco BY-2 cell cultures induces important changes in arabinogalactan proteins distribution and contents. Using the immuno-dot blot technique with different anti-AGP antibodies (JIM13, JIM15, and others), we observed that AGPs were highly accumulated in the culture medium of salt-adapted tobacco cells, probably due to the action of phospholipases. We located these AGP epitopes using immunogold labeling in the cytoplasm associated to the endoplasmic reticulum, the golgi apparatus, and vesicles, plasma membrane and tonoplast. Our results show that salt-adaptation induced a significant reduction of the cytoplasm, plasma membrane and tonoplast content of these epitopes. Yariv reagent was added to the control and salt-adapted tobacco cell cultures, leading to cell death induction in control cells but not in salt-adapted cells. Ultrastructural and immunogold labeling revealed that cell death induced by Yariv reagent in control cells was due to the interaction of Yariv reagent with the AGPs linked to the plasma membranes. Finally, we propose a new function of AGPs as a possible sodium carrier through the mechanism of vesicle trafficking from the apoplast to the vacuoles in salt-adapted tobacco BY-2 cells. This mechanism may contribute to sodium homeostasis during salt-adaptation to high saline concentrations. PMID:28676820

  10. Arabinogalactan Proteins Are Involved in Salt-Adaptation and Vesicle Trafficking in Tobacco by-2 Cell Cultures.

    PubMed

    Olmos, Enrique; García De La Garma, Jesús; Gomez-Jimenez, Maria C; Fernandez-Garcia, Nieves

    2017-01-01

    Arabinogalactan proteins (AGPs) are a highly diverse family of glycoproteins that are commonly found in most plant species. However, little is known about the physiological and molecular mechanisms of their function. AGPs are involved in different biological processes such as cell differentiation, cell expansion, tissue development and somatic embryogenesis. AGPs are also involved in abiotic stress response such as salinity modulating cell wall expansion. In this study, we describe how salt-adaptation in tobacco BY-2 cell cultures induces important changes in arabinogalactan proteins distribution and contents. Using the immuno-dot blot technique with different anti-AGP antibodies (JIM13, JIM15, and others), we observed that AGPs were highly accumulated in the culture medium of salt-adapted tobacco cells, probably due to the action of phospholipases. We located these AGP epitopes using immunogold labeling in the cytoplasm associated to the endoplasmic reticulum, the golgi apparatus, and vesicles, plasma membrane and tonoplast. Our results show that salt-adaptation induced a significant reduction of the cytoplasm, plasma membrane and tonoplast content of these epitopes. Yariv reagent was added to the control and salt-adapted tobacco cell cultures, leading to cell death induction in control cells but not in salt-adapted cells. Ultrastructural and immunogold labeling revealed that cell death induced by Yariv reagent in control cells was due to the interaction of Yariv reagent with the AGPs linked to the plasma membranes. Finally, we propose a new function of AGPs as a possible sodium carrier through the mechanism of vesicle trafficking from the apoplast to the vacuoles in salt-adapted tobacco BY-2 cells. This mechanism may contribute to sodium homeostasis during salt-adaptation to high saline concentrations.

  11. Glucose uptake and glycolytic flux in adipose tissue from rats adapted to a high-protein, carbohydrate-free diet.

    PubMed

    Brito, S R; Moura, M A; Kawashita, N H; Brito, M N; Kettelhut, I C; Migliorini, R H

    2001-10-01

    Rates of glucose uptake by epididymal and retroperitoneal adipose tissue in vivo, as well as rates of hexose uptake and glycolytic flux in isolated adipocytes, were determined in rats adapted to a high-protein, carbohydrate-free (HP) diet and in control rats fed a balanced (N) diet. Adaptation to the HP diet induced a significant reduction in rates of glucose uptake, estimated with 2-deoxy-[1-(3)H]-glucose, both by adipose tissue (epididymal and retroperitoneal) in vivo and by isolated adipocytes. Twelve hours after replacement of the HP diet with the balanced diet, rates of adipose tissue uptake in vivo in HP-adapted rats returned to levels that did not differ significantly from those in N-fed rats. The rate of flux in the glycolytic pathway, estimated with (3)H[5]-glucose, was also significantly reduced in adipocytes from HP-fed rats. In agreement with the above findings, the activities of hexokinase (HK), phosphofructo-1-kinase (PFK-1), and pyruvate kinase (PK) were markedly reduced in adipose tissue from HP-adapted rats. The activity of pyruvate kinase was partially reverted by diet replacement for 12 hours. The low-plasma insulin and high-glucagon levels in HP-fed rats may have played an important role in the reduction of adipose tissue glucose utilization in these animals. Copyright 2001 by W.B. Saunders Company

  12. Chromosomal localization of the mouse Src-like adapter protein (Slap) gene and its putative human homolog SLA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angrist, M.; Chakravarti, A.; Wells, D.E.

    1995-12-10

    Molecules containing Src-homology 2 (SH2) and Src-homology 3 (SH3) domains are critical components of signal transduction pathways that serve to relay signals originating from the cell surface to the interior of the cell. Src-like adapter protein (SLAP) is a recently described adapter protein that binds activated the Eck receptor protein-tyrosine kinase. Although SLAP bears a striking homology to the SH3 and SH2 domains of the Src family of nonreceptor tyrosine kinases, it does not contain a tyrosine kinase catalytic domain. In this report, the Slap gene was mapped by linkage analysis to mouse chromosome 15, while its putative human homologmore » (SLA) was identified and mapped to human 8q22.3-qter using a panel of somatic cell hybrids. 10 refs., 2 figs.« less

  13. Calculation of Turbine Axial Thrust by Coupled CFD Simulations of the Main Flow Path and Secondary Cavity Flow in an SLI LOX Turbine

    NASA Technical Reports Server (NTRS)

    Dorney, D. J.; Marci, Bogdan; Tran, Ken; Sargent, Scott

    2003-01-01

    Each single reusable Space Launch Initiative (SLI) booster rocket is an engine operating at a record vacuum thrust level of over 730,000 Ibf using LOX and LH2. This thrust is more than 10% greater than that of the Delta IV rocket, resulting in relatively large LOX and LH2 turbopumps. Since the SLI rocket employs a staged combustion cycle the level of pressure is very high (thousands of psia). This high pressure creates many engineering challenges, including the balancing of axial-forces on the turbopumps. One of the main parameters in the calculation of the axial force is the cavity pressure upstream of the turbine disk. The flow in this cavity is very complex. The lack of understanding of this flow environment hinders the accurate prediction of axial thrust. In order to narrow down the uncertainty band around the actual turbine axial force, a coupled, unsteady computational methodology has been developed to simulate the interaction between the turbine main flow path and the cavity flow. The CORSAIR solver, an unsteady three- dimensional Navier-Stokes code for turbomachinery applications, was used to solve for both the main and the secondary flow fields. Turbine axial thrust values are presented in conjunction with the CFD simulation, together with several considerations regarding the turbine instrumentation for axial thrust estimations during test.

  14. The complex becomes more complex: protein-protein interactions of SnRK1 with DUF581 family proteins provide a framework for cell- and stimulus type-specific SnRK1 signaling in plants.

    PubMed

    Nietzsche, Madlen; Schießl, Ingrid; Börnke, Frederik

    2014-01-01

    In plants, SNF1-related kinase (SnRK1) responds to the availability of carbohydrates as well as to environmental stresses by down-regulating ATP consuming biosynthetic processes, while stimulating energy-generating catabolic reactions through gene expression and post-transcriptional regulation. The functional SnRK1 complex is a heterotrimer where the catalytic α subunit associates with a regulatory β subunit and an activating γ subunit. Several different metabolites as well as the hormone abscisic acid (ABA) have been shown to modulate SnRK1 activity in a cell- and stimulus-type specific manner. It has been proposed that tissue- or stimulus-specific expression of adapter proteins mediating SnRK1 regulation can at least partly explain the differences observed in SnRK1 signaling. By using yeast two-hybrid and in planta bi-molecular fluorescence complementation assays we were able to demonstrate that proteins containing the domain of unknown function (DUF) 581 could interact with both isoforms of the SnRK1α subunit (AKIN10/11) of Arabidopsis. A structure/function analysis suggests that the DUF581 is a generic SnRK1 interaction module and co-expression with DUF581 proteins in plant cells leads to reallocation of the kinase to specific regions within the nucleus. Yeast two-hybrid analyses suggest that SnRK1 and DUF581 proteins share common interaction partners inside the nucleus. The analysis of available microarray data implies that expression of the 19 members of the DUF581 encoding gene family in Arabidopsis is differentially regulated by hormones and environmental cues, indicating specialized functions of individual family members. We hypothesize that DUF581 proteins could act as mediators conferring tissue- and stimulus-type specific differences in SnRK1 regulation.

  15. The complex becomes more complex: protein-protein interactions of SnRK1 with DUF581 family proteins provide a framework for cell- and stimulus type-specific SnRK1 signaling in plants

    PubMed Central

    Nietzsche, Madlen; Schießl, Ingrid; Börnke, Frederik

    2014-01-01

    In plants, SNF1-related kinase (SnRK1) responds to the availability of carbohydrates as well as to environmental stresses by down-regulating ATP consuming biosynthetic processes, while stimulating energy-generating catabolic reactions through gene expression and post-transcriptional regulation. The functional SnRK1 complex is a heterotrimer where the catalytic α subunit associates with a regulatory β subunit and an activating γ subunit. Several different metabolites as well as the hormone abscisic acid (ABA) have been shown to modulate SnRK1 activity in a cell- and stimulus-type specific manner. It has been proposed that tissue- or stimulus-specific expression of adapter proteins mediating SnRK1 regulation can at least partly explain the differences observed in SnRK1 signaling. By using yeast two-hybrid and in planta bi-molecular fluorescence complementation assays we were able to demonstrate that proteins containing the domain of unknown function (DUF) 581 could interact with both isoforms of the SnRK1α subunit (AKIN10/11) of Arabidopsis. A structure/function analysis suggests that the DUF581 is a generic SnRK1 interaction module and co-expression with DUF581 proteins in plant cells leads to reallocation of the kinase to specific regions within the nucleus. Yeast two-hybrid analyses suggest that SnRK1 and DUF581 proteins share common interaction partners inside the nucleus. The analysis of available microarray data implies that expression of the 19 members of the DUF581 encoding gene family in Arabidopsis is differentially regulated by hormones and environmental cues, indicating specialized functions of individual family members. We hypothesize that DUF581 proteins could act as mediators conferring tissue- and stimulus-type specific differences in SnRK1 regulation. PMID:24600465

  16. Heat shock protein 70 and heat shock protein 90 expression in light- and dark-adapted adult octopus retinas.

    PubMed

    Ochoa, Gina H; Clark, Ying Mei; Matsumoto, Brian; Torres-Ruiz, Jose A; Robles, Laura J

    2002-02-01

    Light- and dark-adaptation leads to changes in rhabdom morphology and photopigment distribution in the octopus retina. Molecular chaperones, including heat shock proteins (Hsps), may be involved in specific signaling pathways that cause changes in photoreceptor actin- and tubulin-based cytoskeletons and movement of the photopigments, rhodopsin and retinochrome. In this study, we used immunoblotting, in situ RT-PCR, immunofluorescence and confocal microscopy to localize the inducible form of Hsp70 and the larger Hsp90 in light- and dark-adapted and dorsal and ventral halves of adult octopus retinas. The Hsps showed differences in distribution between the light and dark and in dorsal vs. ventral position in the retina. Double labeling confocal microscopy co-localized Hsp70 with actin and tubulin, and Hsp90 with the photopigment, retinochrome. Our results demonstrate the presence of Hsp70 and Hsp90 in otherwise non-stressed light- and dark-adapted octopus retinas. These Hsps may help stabilize the cytoskeleton, important for rhabdom structure, and are perhaps involved in the redistribution of retinochrome in conditions of light and dark.

  17. Distribution of cold adaptation proteins in microbial mats in Lake Joyce, Antarctica: Analysis of metagenomic data by using two bioinformatics tools.

    PubMed

    Koo, Hyunmin; Hakim, Joseph A; Fisher, Phillip R E; Grueneberg, Alexander; Andersen, Dale T; Bej, Asim K

    2016-01-01

    In this study, we report the distribution and abundance of cold-adaptation proteins in microbial mat communities in the perennially ice-covered Lake Joyce, located in the McMurdo Dry Valleys, Antarctica. We have used MG-RAST and R code bioinformatics tools on Illumina HiSeq2000 shotgun metagenomic data and compared the filtering efficacy of these two methods on cold-adaptation proteins. Overall, the abundance of cold-shock DEAD-box protein A (CSDA), antifreeze proteins (AFPs), fatty acid desaturase (FAD), trehalose synthase (TS), and cold-shock family of proteins (CSPs) were present in all mat samples at high, moderate, or low levels, whereas the ice nucleation protein (INP) was present only in the ice and bulbous mat samples at insignificant levels. Considering the near homogeneous temperature profile of Lake Joyce (0.08-0.29 °C), the distribution and abundance of these proteins across various mat samples predictively correlated with known functional attributes necessary for microbial communities to thrive in this ecosystem. The comparison of the MG-RAST and the R code methods showed dissimilar occurrences of the cold-adaptation protein sequences, though with insignificant ANOSIM (R = 0.357; p-value = 0.012), ADONIS (R(2) = 0.274; p-value = 0.03) and STAMP (p-values = 0.521-0.984) statistical analyses. Furthermore, filtering targeted sequences using the R code accounted for taxonomic groups by avoiding sequence redundancies, whereas the MG-RAST provided total counts resulting in a higher sequence output. The results from this study revealed for the first time the distribution of cold-adaptation proteins in six different types of microbial mats in Lake Joyce, while suggesting a simpler and more manageable user-defined method of R code, as compared to a web-based MG-RAST pipeline.

  18. SUMO Ligase Protein Inhibitor of Activated STAT1 (PIAS1) Is a Constituent Promyelocytic Leukemia Nuclear Body Protein That Contributes to the Intrinsic Antiviral Immune Response to Herpes Simplex Virus 1

    PubMed Central

    Brown, James R.; Conn, Kristen L.; Wasson, Peter; Charman, Matthew; Tong, Lily; Grant, Kyle; McFarlane, Steven

    2016-01-01

    ABSTRACT Aspects of intrinsic antiviral immunity are mediated by promyelocytic leukemia nuclear body (PML-NB) constituent proteins. During herpesvirus infection, these antiviral proteins are independently recruited to nuclear domains that contain infecting viral genomes to cooperatively promote viral genome silencing. Central to the execution of this particular antiviral response is the small ubiquitin-like modifier (SUMO) signaling pathway. However, the participating SUMOylation enzymes are not fully characterized. We identify the SUMO ligase protein inhibitor of activated STAT1 (PIAS1) as a constituent PML-NB protein. We show that PIAS1 localizes at PML-NBs in a SUMO interaction motif (SIM)-dependent manner that requires SUMOylated or SUMOylation-competent PML. Following infection with herpes simplex virus 1 (HSV-1), PIAS1 is recruited to nuclear sites associated with viral genome entry in a SIM-dependent manner, consistent with the SIM-dependent recruitment mechanisms of other well-characterized PML-NB proteins. In contrast to that of Daxx and Sp100, however, the recruitment of PIAS1 is enhanced by PML. PIAS1 promotes the stable accumulation of SUMO1 at nuclear sites associated with HSV-1 genome entry, whereas the accumulation of other evaluated PML-NB proteins occurs independently of PIAS1. We show that PIAS1 cooperatively contributes to HSV-1 restriction through mechanisms that are additive to those of PML and cooperative with those of PIAS4. The antiviral mechanisms of PIAS1 are counteracted by ICP0, the HSV-1 SUMO-targeted ubiquitin ligase, which disrupts the recruitment of PIAS1 to nuclear domains that contain infecting HSV-1 genomes through mechanisms that do not directly result in PIAS1 degradation. IMPORTANCE Adaptive, innate, and intrinsic immunity cooperatively and efficiently restrict the propagation of viral pathogens. Intrinsic immunity mediated by constitutively expressed cellular proteins represents the first line of intracellular defense against

  19. SUMO Ligase Protein Inhibitor of Activated STAT1 (PIAS1) Is a Constituent Promyelocytic Leukemia Nuclear Body Protein That Contributes to the Intrinsic Antiviral Immune Response to Herpes Simplex Virus 1.

    PubMed

    Brown, James R; Conn, Kristen L; Wasson, Peter; Charman, Matthew; Tong, Lily; Grant, Kyle; McFarlane, Steven; Boutell, Chris

    2016-07-01

    Aspects of intrinsic antiviral immunity are mediated by promyelocytic leukemia nuclear body (PML-NB) constituent proteins. During herpesvirus infection, these antiviral proteins are independently recruited to nuclear domains that contain infecting viral genomes to cooperatively promote viral genome silencing. Central to the execution of this particular antiviral response is the small ubiquitin-like modifier (SUMO) signaling pathway. However, the participating SUMOylation enzymes are not fully characterized. We identify the SUMO ligase protein inhibitor of activated STAT1 (PIAS1) as a constituent PML-NB protein. We show that PIAS1 localizes at PML-NBs in a SUMO interaction motif (SIM)-dependent manner that requires SUMOylated or SUMOylation-competent PML. Following infection with herpes simplex virus 1 (HSV-1), PIAS1 is recruited to nuclear sites associated with viral genome entry in a SIM-dependent manner, consistent with the SIM-dependent recruitment mechanisms of other well-characterized PML-NB proteins. In contrast to that of Daxx and Sp100, however, the recruitment of PIAS1 is enhanced by PML. PIAS1 promotes the stable accumulation of SUMO1 at nuclear sites associated with HSV-1 genome entry, whereas the accumulation of other evaluated PML-NB proteins occurs independently of PIAS1. We show that PIAS1 cooperatively contributes to HSV-1 restriction through mechanisms that are additive to those of PML and cooperative with those of PIAS4. The antiviral mechanisms of PIAS1 are counteracted by ICP0, the HSV-1 SUMO-targeted ubiquitin ligase, which disrupts the recruitment of PIAS1 to nuclear domains that contain infecting HSV-1 genomes through mechanisms that do not directly result in PIAS1 degradation. Adaptive, innate, and intrinsic immunity cooperatively and efficiently restrict the propagation of viral pathogens. Intrinsic immunity mediated by constitutively expressed cellular proteins represents the first line of intracellular defense against infection. PML

  20. Hsp90 Orchestrates Transcriptional Regulation by Hsf1 and Cell Wall Remodelling by MAPK Signalling during Thermal Adaptation in a Pathogenic Yeast

    PubMed Central

    Leach, Michelle D.; Budge, Susan; Walker, Louise; Munro, Carol; Cowen, Leah E.; Brown, Alistair J. P.

    2012-01-01

    Thermal adaptation is essential in all organisms. In yeasts, the heat shock response is commanded by the heat shock transcription factor Hsf1. Here we have integrated unbiased genetic screens with directed molecular dissection to demonstrate that multiple signalling cascades contribute to thermal adaptation in the pathogenic yeast Candida albicans. We show that the molecular chaperone heat shock protein 90 (Hsp90) interacts with and down-regulates Hsf1 thereby modulating short term thermal adaptation. In the longer term, thermal adaptation depends on key MAP kinase signalling pathways that are associated with cell wall remodelling: the Hog1, Mkc1 and Cek1 pathways. We demonstrate that these pathways are differentially activated and display cross talk during heat shock. As a result ambient temperature significantly affects the resistance of C. albicans cells to cell wall stresses (Calcofluor White and Congo Red), but not osmotic stress (NaCl). We also show that the inactivation of MAP kinase signalling disrupts this cross talk between thermal and cell wall adaptation. Critically, Hsp90 coordinates this cross talk. Genetic and pharmacological inhibition of Hsp90 disrupts the Hsf1-Hsp90 regulatory circuit thereby disturbing HSP gene regulation and reducing the resistance of C. albicans to proteotoxic stresses. Hsp90 depletion also affects cell wall biogenesis by impairing the activation of its client proteins Mkc1 and Hog1, as well as Cek1, which we implicate as a new Hsp90 client in this study. Therefore Hsp90 modulates the short term Hsf1-mediated activation of the classic heat shock response, coordinating this response with long term thermal adaptation via Mkc1- Hog1- and Cek1-mediated cell wall remodelling. PMID:23300438

  1. Exogenous C3 protein enhances the adaptive immune response to polymicrobial sepsis through down-regulation of regulatory T cells.

    PubMed

    Yuan, Yujie; Ren, Jianan; Cao, Shougen; Zhang, Weiwei; Li, Jieshou

    2012-01-01

    The role of complement system in bridging innate and adaptive immunity has been confirmed in various invasive pathogens. It is still obscure how complement proteins promote T cell-mediated immune response during sepsis. The aim of this study is to investigate the role of exogenous C3 protein in the T-cell responses to sepsis. Sepsis was induced by colon ascendens stent peritonitis (CASP) in wild-type C57BL/6 mice, sham-operated mice for control. Human purified C3 protein (HuC3, 1 mg) was intraperitoneally injected at 6 h post-surgery, with 200 μl phosphate-buffered saline as control. The levels of C3 and cytokines, the expression of FOXP3 and NF-κB, and the percentages of CD4(+) T-cell subsets were compared among the groups at given time points. The polymicrobial sepsis produced considerable release of TNF-α and IL-10, and caused complement C3 exhaustion. Exogenous C3 administration markedly improved the 48 h survival rate, as compared with nontreatment (40% vs. 5%, P<0.01). The expression of FOXP3 protein was increased during sepsis, but can be suppressed by HuC3 administration. A single injection of HuC3 postponed the decline of differentiated Th1 cells, and depressed the activation of Th2/Th17 cells. Besides, the Th1-Th2 shift in late stage of sepsis can be controlled under C3 supplementation. The suppression of NF-κB pathway might be related to the appearance of immunocompromise. The study confirmed the important role of exogenous C3 in up-regulation of adaptive immune response to sepsis. The complement pathway would be a pivotal target for severe sepsis management. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Adaptive facultative diet-induced thermogenesis in wild-type but not in UCP1-ablated mice.

    PubMed

    von Essen, Gabriella; Lindsund, Erik; Cannon, Barbara; Nedergaard, Jan

    2017-11-01

    The significance of diet-induced thermogenesis (DIT) for metabolic control is still debated. Although obesogenic diets recruit UCP1 and adrenergically inducible thermogenesis, and although the absence of UCP1 may promote the development of obesity, no actual UCP1-related thermogenesis identifiable as diet-induced thermogenesis has to date been unambiguously demonstrated. Examining mice living at thermoneutrality, we have identified a process of facultative (directly elicited by acute eating), adaptive (magnitude develops over weeks on an obesogenic diet), and fully UCP1-dependent thermogenesis. We found no evidence for UCP1-independent diet-induced thermogenesis. The thermogenesis was proportional to the total amount of UCP1 protein in brown adipose tissue and was not dependent on any contribution of UCP1 in brite/beige adipose tissue, since no UCP1 protein was found there under these conditions. Total UCP1 protein amount developed proportionally to total body fat content. The physiological messenger linking obesity level and acute eating to increased thermogenesis is not known. Thus UCP1-dependent diet-induced thermogenesis limits obesity development during exposure to obesogenic diets but does not prevent obesity as such. Copyright © 2017 the American Physiological Society.

  3. Iron deficiency stress can induce MxNRAMP1 protein endocytosis in M. xiaojinensis.

    PubMed

    Pan, Haifa; Wang, Yi; Zha, Qian; Yuan, Mudan; Yin, Lili; Wu, Ting; Zhang, Xinzhong; Xu, Xuefeng; Han, Zhenhai

    2015-08-10

    Iron deficiency is one of the most common nutritional disorders in plants, especially in fruit trees grown in calcareous soil. Iron deficiency stress can induce a series of adaptive responses in plants, the cellular and molecular mechanisms of which remain unclear. NRAMPs (natural resistance-associated macrophage proteins) play an important role in divalent metal ion transportation. In this study, we cloned MxNRAMP1, an NRAMP family gene from a highly iron-efficient apple genotype, Malus xiaojinensis. Further research showed that iron deficiency stress could induce MxNRAMP1 expression in roots and leaves. A protoplast transient expression system and immune electron microscopy localization techniques were used to prove that MxNRAMP1 mainly exists in the plasma membrane and vesicles. Interestingly, iron deficiency stress could induce the MxNRAMP protein to transport iron ions to specific organelles (lysosome and chloroplast) through vesicle endocytosis. Stable transgenic tobacco showed that MxNRAMP1 over-expression could promote iron absorption and accumulation in plants, and increase the plant's resistance against iron deficiency stress. These results showed that, in M. xiaojinensis, MxNRAMP1 not only plays an important role in iron absorption and transportation, it can also produce adaptive responses against iron deficiency through endocytosis. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Adapter-directed display: a modular design for shuttling display on phage surfaces.

    PubMed

    Wang, Kevin Caili; Wang, Xinwei; Zhong, Pingyu; Luo, Peter Peizhi

    2010-02-05

    A novel adapter-directed phage display system was developed with modular features. In this system, the target protein is expressed as a fusion protein consisting of adapter GR1 from the phagemid vector, while the recombinant phage coat protein is expressed as a fusion protein consisting of adapter GR2 in the helper phage vector. Surface display of the target protein is accomplished through specific heterodimerization of GR1 and GR2 adapters, followed by incorporation of the heterodimers into phage particles. A series of engineered helper phages were constructed to facilitate both display valency and formats, based on various phage coat proteins. As the target protein is independent of a specific phage coat protein, this modular system allows the target protein to be displayed on any given phage coat protein and allows various display formats from the same vector without the need for reengineering. Here, we demonstrate the shuttling display of a single-chain Fv antibody on phage surfaces between multivalent and monovalent formats, as well as the shuttling display of an antigen-binding fragment molecule on phage coat proteins pIII, pVII, and pVIII using the same phagemid vectors combined with different helper phage vectors. This adapter-directed display concept has been applied to eukaryotic yeast surface display and to a novel cross-species display that can shuttle between prokaryotic phage and eukaryotic yeast systems. Copyright 2009 Elsevier Ltd. All rights reserved.

  5. Genetic basis of adaptation in Arabidopsis thaliana: local adaptation at the seed dormancy QTL DOG1.

    PubMed

    Kronholm, Ilkka; Picó, F Xavier; Alonso-Blanco, Carlos; Goudet, Jérôme; de Meaux, Juliette

    2012-07-01

    Local adaptation provides an opportunity to study the genetic basis of adaptation and investigate the allelic architecture of adaptive genes. We study delay of germination 1 (DOG1), a gene controlling natural variation in seed dormancy in Arabidopsis thaliana and investigate evolution of dormancy in 41 populations distributed in four regions separated by natural barriers. Using F(ST) and Q(ST) comparisons, we compare variation at DOG1 with neutral markers and quantitative variation in seed dormancy. Patterns of genetic differentiation among populations suggest that the gene DOG1 contributes to local adaptation. Although Q(ST) for seed dormancy is not different from F(ST) for neutral markers, a correlation with variation in summer precipitation supports that seed dormancy is adaptive. We characterize dormancy variation in several F(2) -populations and show that a series of functionally distinct alleles segregate at the DOG1 locus. Theoretical models have shown that the number and effect of alleles segregatin at quantitative trait loci (QTL) have important consequences for adaptation. Our results provide support to models postulating a large number of alleles at quantitative trait loci involved in adaptation. © 2012 The Author(s).

  6. Adaptation of Pandemic H1N1 Influenza Viruses in Mice▿

    PubMed Central

    Ilyushina, Natalia A.; Khalenkov, Alexey M.; Seiler, Jon P.; Forrest, Heather L.; Bovin, Nicolai V.; Marjuki, Henju; Barman, Subrata; Webster, Robert G.; Webby, Richard J.

    2010-01-01

    The molecular mechanism by which pandemic 2009 influenza A viruses were able to sufficiently adapt to humans is largely unknown. Subsequent human infections with novel H1N1 influenza viruses prompted an investigation of the molecular determinants of the host range and pathogenicity of pandemic influenza viruses in mammals. To address this problem, we assessed the genetic basis for increased virulence of A/CA/04/09 (H1N1) and A/TN/1-560/09 (H1N1) isolates, which are not lethal for mice, in a new mammalian host by promoting their mouse adaptation. The resulting mouse lung-adapted variants showed significantly enhanced growth characteristics in eggs, extended extrapulmonary tissue tropism, and pathogenicity in mice. All mouse-adapted viruses except A/TN/1-560/09-MA2 grew faster and to higher titers in cells than the original strains. We found that 10 amino acid changes in the ribonucleoprotein (RNP) complex (PB2 E158G/A, PA L295P, NP D101G, and NP H289Y) and hemagglutinin (HA) glycoprotein (K119N, G155E, S183P, R221K, and D222G) controlled enhanced mouse virulence of pandemic isolates. HA mutations acquired during adaptation affected viral receptor specificity by enhancing binding to α2,3 together with decreasing binding to α2,6 sialyl receptors. PB2 E158G/A and PA L295P amino acid substitutions were responsible for the significant enhancement of transcription and replication activity of the mouse-adapted H1N1 variants. Taken together, our findings suggest that changes optimizing receptor specificity and interaction of viral polymerase components with host cellular factors are the major mechanisms that contribute to the optimal competitive advantage of pandemic influenza viruses in mice. These modulators of virulence, therefore, may have been the driving components of early evolution, which paved the way for novel 2009 viruses in mammals. PMID:20592084

  7. FK506-Binding Protein 22 from a Psychrophilic Bacterium, a Cold Shock-Inducible Peptidyl Prolyl Isomerase with the Ability to Assist in Protein Folding

    PubMed Central

    Budiman, Cahyo; Koga, Yuichi; Takano, Kazufumi; Kanaya, Shigenori

    2011-01-01

    Adaptation of microorganisms to low temperatures remains to be fully elucidated. It has been previously reported that peptidyl prolyl cis-trans isomerases (PPIases) are involved in cold adaptation of various microorganisms whether they are hyperthermophiles, mesophiles or phsycrophiles. The rate of cis-trans isomerization at low temperatures is much slower than that at higher temperatures and may cause problems in protein folding. However, the mechanisms by which PPIases are involved in cold adaptation remain unclear. Here we used FK506-binding protein 22, a cold shock protein from the psychrophilic bacterium Shewanella sp. SIB1 (SIB1 FKBP22) as a model protein to decipher the involvement of PPIases in cold adaptation. SIB1 FKBP22 is homodimer that assumes a V-shaped structure based on a tertiary model. Each monomer consists of an N-domain responsible for dimerization and a C-catalytic domain. SIB1 FKBP22 is a typical cold-adapted enzyme as indicated by the increase of catalytic efficiency at low temperatures, the downward shift in optimal temperature of activity and the reduction in the conformational stability. SIB1 FKBP22 is considered as foldase and chaperone based on its ability to catalyze refolding of a cis-proline containing protein and bind to a folding intermediate protein, respectively. The foldase and chaperone activites of SIB1 FKBP22 are thought to be important for cold adaptation of Shewanella sp. SIB1. These activities are also employed by other PPIases for being involved in cold adaptation of various microorganisms. Despite other biological roles of PPIases, we proposed that foldase and chaperone activities of PPIases are the main requirement for overcoming the cold-stress problem in microorganisms due to folding of proteins. PMID:21954357

  8. The Iron-regulated Transporter, MbNRAMP1, Isolated from Malus baccata is Involved in Fe, Mn and Cd Trafficking

    PubMed Central

    Xiao, Haihua; Yin, Liping; Xu, Xuefeng; Li, Tianzhong; Han, Zhenhai

    2008-01-01

    Background and Aims Iron deficiency is one of the most common nutritional disorders in plants, especially in fruit trees grown in calcareous soil. Malus baccata is widely used as an apple rootstock in north China and is highly resistant to low temperatures. There are few studies on iron absorption by this species at the molecular level. It is very important to understand the mechanism of iron uptake and transport in such woody plants. As a helpful tool, the aim of the present study was the cloning and functional analysis of NRAMP (natural resistance-associated macrophage protein) genes from the apple tree in relation to trafficking of micronutrients (Fe, Mn and Cd). Methods Reverse transcription-PCR (RT-PCR) combined with RACE (rapid amplification of cDNA ends) was adopted to isolate the full-length NRAMP1 cDNA. Southern blotting was used to test gene copy information, and northern blot was used to detect the gene's expression level. Complementation experiments using the yeast mutant strains DEY1453 and SLY8 were employed to confirm the iron- and manganese-transporting ability of NRAMP1 from apple, and inductively coupled plasma (ICP) spectrometry was used to measure Cd accumulation in yeast. NRAMP1–green fluorescent protein (GFP) fusion protein was used to determine the cellular localization in yeast. Key Results A 2090 bp cDNA was isolated and named MbNRAMP1. It encodes a predicted polypeptide of 551 amino acids. MbNRAMP1 exists in the M. baccata genome as a single copy and was expressed mainly in roots. MbNRAMP1 rescued the phenotype of yeast mutant strains DEY1453 and SLY8, and also increased Cd2+ sensitivity and accumulation. MbNRAMP1 expression in yeast was largely influenced by iron status, and the expression pattern of MbNRAMP1–GFP varied with the environmental iron nutrition status. Conclusions MbNRAMP1 encodes a functional metal transporter capable of mediating the distribution of ions as well as transport of the micronutrients, Fe and Mn, and the

  9. Mitogen-activated protein kinase phosphatase-1 expression in macrophages is controlled by lymphocytes during macrophage activation.

    PubMed

    Luo, Chong; Yang, Xiqiang; Yao, Lan; Jiang, Liping; Liu, Wei; Li, Xin; Wang, Lijia

    2012-01-01

    The viewpoints on the control of innate immune cells by the adaptive immune system during sepsis remain controversial. Mitogen-activated protein kinase phosphatase-1 (MKP-1) is essential to the negative control of innate immunity and suppresses the activation of macrophages by inhibiting activated mitogen-activated protein kinase (MAPK). The purpose of the current study was to observe inflammatory response and macrophage activation in mice with severe combined immunodeficiency (SCID) with endotoxemia and to determine the role of MKP-1 in the control of macrophage activation by the adaptive immune system. Endotoxemia was induced in wild-type and SCID mice by an intraperitoneal injection of lipopolysaccharide (LPS), and all of the SCID mice died. SCID mice produced more inflammatory cytokines than BALB/c mice systemically and locally. TNF-α mRNA expression was higher and MKP-1 mRNA expression was lower in peritoneal macrophages (PMa) from SCID mice compared to PMa from wild-type mice after and even before LPS injection. Thioglycollate-stimulated PMa from wild-type mice were stimulated with LPS in vitro in the presence or absence of pan-T cells. The levels of TNF-α and IL-6 were higher in the supernatants from PMa cultured alone compared to PMa co-cultured with pan-T cells, and PMa MKP-1 mRNA and protein expression were higher when PMa were co-cultured with pan-T cells. Therefore, pan-T cells can up-regulate MKP-1 expression in macrophages and inhibit the secretion of inflammatory cytokines secretion by macrophages. In SCID mice, lymphocyte deficiency, especially T cell deficiency, causes insufficient MKP-1 expression in macrophages, which can be responsible for the severe inflammation and bad prognosis of septic SCID mice. MKP-1 plays an important role in the control of macrophage activation by the adaptive immune system.

  10. Light interference as a possible stressor altering HSP70 and its gene expression levels in brain and hepatic tissues of golden spiny mice.

    PubMed

    Ashkenazi, Lilach; Haim, Abraham

    2012-11-15

    Light at night and light interference (LI) disrupt the natural light:dark cycle, causing alterations at physiological and molecular levels, partly by suppressing melatonin (MLT) secretion at night. Heat shock proteins (HSPs) can be activated in response to environmental changes. We assessed changes in gene expression and protein level of HSP70 in brain and hepatic tissues of golden spiny mice (Acomys russatus) acclimated to LI for two (SLI), seven (MLI) and 21 nights (LLI). The effect of MLT treatment on LI-mice was also assessed. HSP70 levels increased in brain and hepatic tissues after SLI, whereas after MLI and LLI, HSP70 decreased to control levels. Changes in HSP70 levels as a response to MLT occurred after SLI only in hepatic tissue. However, hsp70 expression following SLI increased in brain tissue, but not in hepatic tissue. MLT treatment and SLI caused a decrease in hsp70 levels in brain tissue and an increase in hsp70 in hepatic tissue. SLI acclimation elicited a stress response in A. russatus, as expressed by increased HSP70 levels and gene expression. Longer acclimation decreases protein and gene expression to their control levels. We conclude that for brain and hepatic tissues of A. russatus, LI is a short-term stressor. Our results also revealed that A. russatus can acclimate to LI, possibly because of its circadian system plasticity, which allows it to behave both as a nocturnal and as a diurnal rodent. To the best of our knowledge, this is the first study showing the effect of LI as a stressor at the cellular level, by activating HSP70.

  11. A reduced amino acid alphabet for understanding and designing protein adaptation to mutation.

    PubMed

    Etchebest, C; Benros, C; Bornot, A; Camproux, A-C; de Brevern, A G

    2007-11-01

    Protein sequence world is considerably larger than structure world. In consequence, numerous non-related sequences may adopt similar 3D folds and different kinds of amino acids may thus be found in similar 3D structures. By grouping together the 20 amino acids into a smaller number of representative residues with similar features, sequence world simplification may be achieved. This clustering hence defines a reduced amino acid alphabet (reduced AAA). Numerous works have shown that protein 3D structures are composed of a limited number of building blocks, defining a structural alphabet. We previously identified such an alphabet composed of 16 representative structural motifs (5-residues length) called Protein Blocks (PBs). This alphabet permits to translate the structure (3D) in sequence of PBs (1D). Based on these two concepts, reduced AAA and PBs, we analyzed the distributions of the different kinds of amino acids and their equivalences in the structural context. Different reduced sets were considered. Recurrent amino acid associations were found in all the local structures while other were specific of some local structures (PBs) (e.g Cysteine, Histidine, Threonine and Serine for the alpha-helix Ncap). Some similar associations are found in other reduced AAAs, e.g Ile with Val, or hydrophobic aromatic residues Trp with Phe and Tyr. We put into evidence interesting alternative associations. This highlights the dependence on the information considered (sequence or structure). This approach, equivalent to a substitution matrix, could be useful for designing protein sequence with different features (for instance adaptation to environment) while preserving mainly the 3D fold.

  12. Molecular evolution and thermal adaptation

    NASA Astrophysics Data System (ADS)

    Chen, Peiqiu

    2011-12-01

    In this thesis, we address problems in molecular evolution, thermal adaptation, and the kinetics of adaptation of bacteria and viruses to elevated environmental temperatures. We use a nearly neutral fitness model where the replication speed of an organism is proportional to the copy number of folded proteins. Our model reproduces the distribution of stabilities of natural proteins in excellent agreement with experiment. We find that species with high mutation rates tend to have less stable proteins compared to species with low mutation rate. We found that a broad distribution of protein stabilities observed in the model and in experiment is the key determinant of thermal response for viruses and bacteria. Our results explain most of the earlier experimental observations: striking asymmetry of thermal response curves, the absence of evolutionary trade-off which was expected but not found in experiments, correlation between denaturation temperature for several protein families and the Optimal Growth Temperature (OGT) of their carrier organisms, and proximity of bacterial or viral OGTs to their evolutionary temperatures. Our theory quantitatively and with high accuracy described thermal response curves for 35 bacterial species. The model also addresses the key to adaptation is in weak-link genes (WLG), which encode least thermodynamically stable essential proteins in the proteome. We observe, as in experiment, a two-stage adaptation process. The first stage is a Luria-Delbruck type of selection, whereby rare WLG alleles, whose proteins are more stable than WLG proteins of the majority of the population (either due to standing genetic variation or due to an early acquired mutation), rapidly rise to fixation. The second stage constitutes subsequent slow accumulation of mutations in an adapted population. As adaptation progresses, selection regime changes from positive to neutral: Selection coefficient of beneficial mutations scales as a negative power of number of

  13. Electrophoresis and spectrometric analyses of adaptation-related proteins in thermally stressed Chromobacterium violaceum.

    PubMed

    Cordeiro, I B; Castro, D P; Nogueira, P P O; Angelo, P C S; Nogueira, P A; Gonçalves, J F C; Pereira, A M R F; Garcia, J S; Souza, G H M F; Arruda, M A Z; Eberlin, M N; Astolfi-Filho, S; Andrade, E V; López-Lozano, J L

    2013-10-29

    Chromobacterium violaceum is a Gram-negative proteobacteria found in water and soil; it is widely distributed in tropical and subtropical regions, such as the Amazon rainforest. We examined protein expression changes that occur in C. violaceum at different growth temperatures using electrophoresis and mass spectrometry. The total number of spots detected was 1985; the number ranged from 99 to 380 in each assay. The proteins that were identified spectrometrically were categorized as chaperones, proteins expressed exclusively under heat stress, enzymes involved in the respiratory and fermentation cycles, ribosomal proteins, and proteins related to transport and secretion. Controlling inverted repeat of chaperone expression and inverted repeat DNA binding sequences, as well as regions recognized by sigma factor 32, elements involved in the genetic regulation of the bacterial stress response, were identified in the promoter regions of several of the genes coding proteins, involved in the C. violaceum stress response. We found that 30 °C is the optimal growth temperature for C. violaceum, whereas 25, 35, and 40 °C are stressful temperatures that trigger the expression of chaperones, superoxide dismutase, a probable small heat shock protein, a probable phasing, ferrichrome-iron receptor protein, elongation factor P, and an ornithine carbamoyltransferase catabolite. This information improves our comprehension of the mechanisms involved in stress adaptation by C. violaceum.

  14. Inhibition of latent membrane protein 1 impairs the growth and tumorigenesis of latency II Epstein-Barr virus-transformed T cells.

    PubMed

    Ndour, Papa Alioune; Brocqueville, Guillaume; Ouk, Tan-Sothéa; Goormachtigh, Gautier; Morales, Olivier; Mougel, Alexandra; Bertout, Julie; Melnyk, Oleg; Fafeur, Véronique; Feuillard, Jean; Coll, Jean; Adriaenssens, Eric

    2012-04-01

    Epstein-Barr virus (EBV) is a common human herpesvirus. Infection with EBV is associated with several human malignancies in which the virus expresses a set of latent proteins, among which is latent membrane protein 1 (LMP1). LMP1 is able to transform numerous cell types and is considered the main oncogenic protein of EBV. The mechanism of action is based on mimicry of activated members of the tumor necrosis factor (TNF) receptor superfamily, through the ability of LMP1 to bind similar adapters and to activate signaling pathways. We previously generated two unique models: a monocytic cell line and a lymphocytic (NC5) cell line immortalized by EBV that expresses the type II latency program. Here we generated LMP1 dominant negative forms (DNs), based on fusion between green fluorescent protein (GFP) and transformation effector site 1 (TES1) or TES2 of LMP1. Then we generated cell lines conditionally expressing these DNs. These DNs inhibit NF-κB and Akt pathways, resulting in the impairment of survival processes and increased apoptosis in these cell lines. This proapoptotic effect is due to reduced interaction of LMP1 with specific adapters and the recruitment of these adapters to DNs, which enable the generation of an apoptotic complex involving TRADD, FADD, and caspase 8. Similar results were obtained with cell lines displaying a latency III program in which LMP1-DNs decrease cell viability. Finally, we prove that synthetic peptides display similar inhibitory effects in EBV-infected cells. DNs derived from LMP1 could be used to develop therapeutic approaches for malignant diseases associated with EBV.

  15. Inhibition of Latent Membrane Protein 1 Impairs the Growth and Tumorigenesis of Latency II Epstein-Barr Virus-Transformed T Cells

    PubMed Central

    Ndour, Papa Alioune; Brocqueville, Guillaume; Ouk, Tan-Sothéa; Goormachtigh, Gautier; Morales, Olivier; Mougel, Alexandra; Bertout, Julie; Melnyk, Oleg; Fafeur, Véronique; Feuillard, Jean; Coll, Jean

    2012-01-01

    Epstein-Barr virus (EBV) is a common human herpesvirus. Infection with EBV is associated with several human malignancies in which the virus expresses a set of latent proteins, among which is latent membrane protein 1 (LMP1). LMP1 is able to transform numerous cell types and is considered the main oncogenic protein of EBV. The mechanism of action is based on mimicry of activated members of the tumor necrosis factor (TNF) receptor superfamily, through the ability of LMP1 to bind similar adapters and to activate signaling pathways. We previously generated two unique models: a monocytic cell line and a lymphocytic (NC5) cell line immortalized by EBV that expresses the type II latency program. Here we generated LMP1 dominant negative forms (DNs), based on fusion between green fluorescent protein (GFP) and transformation effector site 1 (TES1) or TES2 of LMP1. Then we generated cell lines conditionally expressing these DNs. These DNs inhibit NF-κB and Akt pathways, resulting in the impairment of survival processes and increased apoptosis in these cell lines. This proapoptotic effect is due to reduced interaction of LMP1 with specific adapters and the recruitment of these adapters to DNs, which enable the generation of an apoptotic complex involving TRADD, FADD, and caspase 8. Similar results were obtained with cell lines displaying a latency III program in which LMP1-DNs decrease cell viability. Finally, we prove that synthetic peptides display similar inhibitory effects in EBV-infected cells. DNs derived from LMP1 could be used to develop therapeutic approaches for malignant diseases associated with EBV. PMID:22258264

  16. Human Immunodeficiency Virus Type 1 Employs the Cellular Dynein Light Chain 1 Protein for Reverse Transcription through Interaction with Its Integrase Protein

    PubMed Central

    Jayappa, Kallesh Danappa; Ao, Zhujun; Wang, Xiaoxia; Mouland, Andrew J.; Shekhar, Sudhanshu; Yang, Xi

    2015-01-01

    ABSTRACT In this study, we examined the requirement for host dynein adapter proteins such as dynein light chain 1 (DYNLL1), dynein light chain Tctex-type 1 (DYNLT1), and p150Glued in early steps of human immunodeficiency virus type 1 (HIV-1) replication. We found that the knockdown (KD) of DYNLL1, but not DYNLT1 or p150Glued, resulted in significantly lower levels of HIV-1 reverse transcription in cells. Following an attempt to determine how DYNLL1 could impact HIV-1 reverse transcription, we detected the DYNLL1 interaction with HIV-1 integrase (IN) but not with capsid (CA), matrix (MA), or reverse transcriptase (RT) protein. Furthermore, by mutational analysis of putative DYNLL1 interaction motifs in IN, we identified the motifs 52GQVD and 250VIQD in IN as essential for DYNLL1 interaction. The DYNLL1 interaction-defective IN mutant HIV-1 (HIV-1INQ53A/Q252A) exhibited impaired reverse transcription. Through further investigations, we have also detected relatively smaller amounts of particulate CA in DYNLL1-KD cells or in infections with HIV-1INQ53A/Q252A mutant virus. Overall, our study demonstrates the novel interaction between HIV-1 IN and cellular DYNLL1 proteins and suggests the requirement of this virus-cell interaction for proper uncoating and efficient reverse transcription of HIV-1. IMPORTANCE Host cellular DYNLL1, DYNLT1, and p150Glued proteins have been implicated in the replication of several viruses. However, their roles in HIV-1 replication have not been investigated. For the first time, we demonstrated that during viral infection, HIV-1 IN interacts with DYNLL1, and their interaction was found to have a role in proper uncoating and efficient reverse transcription of HIV-1. Thus, interaction of IN and DYNLL1 may be a potential target for future anti-HIV therapy. Moreover, while our study has evaluated the involvement of IN in HIV-1 uncoating and reverse transcription, it also predicts a possible mechanism by which IN contributes to these early viral

  17. Kinetic Stability of Proteins in Beans and Peas: Implications for Protein Digestibility, Seed Germination, and Plant Adaptation.

    PubMed

    Xia, Ke; Pittelli, Sandy; Church, Jennifer; Colón, Wilfredo

    2016-10-12

    Kinetically stable proteins (KSPs) are resistant to the denaturing detergent sodium dodecyl sulfate (SDS). Such resilience makes KSPs resistant to proteolytic degradation and may have arisen in nature as a mechanism for organismal adaptation and survival against harsh conditions. Legumes are well-known for possessing degradation-resistant proteins that often diminish their nutritional value. Here we applied diagonal two-dimensional (D2D) SDS-polyacrylamide gel electrophoresis (PAGE), a method that allows for the proteomics-level identification of KSPs, to a group of 12 legumes (mostly beans and peas) of agricultural and nutritional importance. Our proteomics results show beans that are more difficult to digest, such as soybean, lima beans, and various common beans, have high contents of KSPs. In contrast, mung bean, red lentil, and various peas that are highly digestible contain low amounts of KSPs. Identified proteins with high kinetic stability are associated with warm-season beans, which germinate at higher temperatures. In contrast, peas and red lentil, which are cool-season legumes, contain low levels of KSPs. Thus, our results show protein kinetic stability is an important factor in the digestibility of legume proteins and may relate to nutrition efficiency, timing of seed germination, and legume resistance to biotic stressors. Furthermore, we show D2D SDS-PAGE is a powerful method that could be applied for determining the abundance and identity of KSPs in engineered and wild legumes and for advancing basic research and associated applications.

  18. Spacer-length DNA intermediates are associated with Cas1 in cells undergoing primed CRISPR adaptation.

    PubMed

    Musharova, Olga; Klimuk, Evgeny; Datsenko, Kirill A; Metlitskaya, Anastasia; Logacheva, Maria; Semenova, Ekaterina; Severinov, Konstantin; Savitskaya, Ekaterina

    2017-04-07

    During primed CRISPR adaptation spacers are preferentially selected from DNA recognized by CRISPR interference machinery, which in the case of Type I CRISPR-Cas systems consists of CRISPR RNA (crRNA) bound effector Cascade complex that locates complementary targets, and Cas3 executor nuclease/helicase. A complex of Cas1 and Cas2 proteins is capable of inserting new spacers in the CRISPR array. Here, we show that in Escherichia coli cells undergoing primed adaptation, spacer-sized fragments of foreign DNA are associated with Cas1. Based on sensitivity to digestion with nucleases, the associated DNA is not in a standard double-stranded state. Spacer-sized fragments are cut from one strand of foreign DNA in Cas1- and Cas3-dependent manner. These fragments are generated from much longer S1-nuclease sensitive fragments of foreign DNA that require Cas3 for their production. We propose that in the course of CRISPR interference Cas3 generates fragments of foreign DNA that are recognized by the Cas1-Cas2 adaptation complex, which excises spacer-sized fragments and channels them for insertion into CRISPR array. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. Targeting protein-protein interaction between MLL1 and reciprocal proteins for leukemia therapy.

    PubMed

    Wang, Zhi-Hui; Li, Dong-Dong; Chen, Wei-Lin; You, Qi-Dong; Guo, Xiao-Ke

    2018-01-15

    The mixed lineage leukemia protein-1 (MLL1), as a lysine methyltransferase, predominantly regulates the methylation of histone H3 lysine 4 (H3K4) and functions in hematopoietic stem cell (HSC) self-renewal. MLL1 gene fuses with partner genes that results in the generation of MLL1 fusion proteins (MLL1-FPs), which are frequently detected in acute leukemia. In the progress of leukemogenesis, a great deal of proteins cooperate with MLL1 to form multiprotein complexes serving for the dysregulation of H3K4 methylation, the overexpression of homeobox (HOX) cluster genes, and the consequent generation of leukemia. Hence, disrupting the interactions between MLL1 and the reciprocal proteins has been considered to be a new treatment strategy for leukemia. Here, we reviewed potential protein-protein interactions (PPIs) between MLL1 and its reciprocal proteins, and summarized the inhibitors to target MLL1 PPIs. The druggability of MLL1 PPIs for leukemia were also discussed. Copyright © 2017. Published by Elsevier Ltd.

  20. Adaptation of yellow fever virus 17D to Vero cells is associated with mutations in structural and non-structural protein genes.

    PubMed

    Beasley, David W C; Morin, Merribeth; Lamb, Ashley R; Hayman, Edward; Watts, Douglas M; Lee, Cynthia K; Trent, Dennis W; Monath, Thomas P

    2013-09-01

    Serial passaging of yellow fever virus 17D in Vero cells was employed to derive seed material for a novel inactivated vaccine, XRX-001. Two independent passaging series identified a novel lysine to arginine mutation at amino acid 160 of the envelope protein, a surface-exposed residue in structural domain I. A third passage series resulted in an isoleucine to methionine mutation at residue 113 of the NS4B protein, a central membrane spanning region of the protein which has previously been associated with Vero cell adaptation of other mosquito-borne flaviviruses. These studies confirm that flavivirus adaptation to growth in Vero cells can be mediated by structural or non-structural protein mutations. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Functional Adaptation of the N-Methyl-d-aspartate Receptor to Inhibition by Ethanol Is Modulated by Striatal-Enriched Protein Tyrosine Phosphatase and p38 Mitogen-Activated Protein Kinase

    PubMed Central

    Coultrap, Steven J.; Browning, Michael D.; Proctor, William R.

    2011-01-01

    The hippocampal N-methyl-d-aspartate receptor (NMDAR) activity plays important roles in cognition and is a major substrate for ethanol-induced memory dysfunction. This receptor is a glutamate-gated ion channel, which is composed of NR1 and NR2 subunits in various brain areas. Although homomeric NR1 subunits form an active ion channel that conducts Na+ and Ca2+ currents, the incorporation of NR2 subunits allows this channel to be modulated by the Src family of kinases, phosphatases, and by simple molecules such as ethanol. We have found that short-term ethanol application inhibits the NMDAR activity via striatal enriched protein tyrosine phosphatase (STEP)-regulated mechanisms. The genetic deletion of the active form of STEP, STEP61, leads to marked attenuation of ethanol inhibition of NMDAR currents. In addition, STEP61 negatively regulates Fyn and p38 mitogen-activated protein kinase (MAPK), and these proteins are members of the NMDAR super molecular complex. Here we demonstrate, using whole-cell electrophysiological recording, Western blot analysis, and pharmacological manipulations, that neurons exposed to a 3-h, 45 mM ethanol treatment develop an adaptive attenuation of short-term ethanol inhibition of NMDAR currents in brain slices. Our results suggest that this adaptation of NMDAR responses is associated with a partial inactivation of STEP61, an activation of p38 MAPK, and a requirement for NR2B activity. Together, these data indicate that altered STEP61 and p38 MAPK signaling contribute to the modulation of ethanol inhibition of NMDARs in brain neurons. PMID:21680777

  2. The Wor1-like Protein Fgp1 Regulates Pathogenicity, Toxin Synthesis and Reproduction in the Phytopathogenic Fungus Fusarium graminearum

    PubMed Central

    Jonkers, Wilfried; Dong, Yanhong; Broz, Karen; Corby Kistler, H.

    2012-01-01

    WOR1 is a gene for a conserved fungal regulatory protein controlling the dimorphic switch and pathogenicity determents in Candida albicans and its ortholog in the plant pathogen Fusarium oxysporum, called SGE1, is required for pathogenicity and expression of key plant effector proteins. F. graminearum, an important pathogen of cereals, is not known to employ switching and no effector proteins from F. graminearum have been found to date that are required for infection. In this study, the potential role of the WOR1-like gene in pathogenesis was tested in this toxigenic fungus. Deletion of the WOR1 ortholog (called FGP1) in F. graminearum results in greatly reduced pathogenicity and loss of trichothecene toxin accumulation in infected wheat plants and in vitro. The loss of toxin accumulation alone may be sufficient to explain the loss of pathogenicity to wheat. Under toxin-inducing conditions, expression of genes for trichothecene biosynthesis and many other genes are not detected or detected at lower levels in Δfgp1 strains. FGP1 is also involved in the developmental processes of conidium formation and sexual reproduction and modulates a morphological change that accompanies mycotoxin production in vitro. The Wor1-like proteins in Fusarium species have highly conserved N-terminal regions and remarkably divergent C-termini. Interchanging the N- and C- terminal portions of proteins from F. oxysporum and F. graminearum resulted in partial to complete loss of function. Wor1-like proteins are conserved but have evolved to regulate pathogenicity in a range of fungi, likely by adaptations to the C-terminal portion of the protein. PMID:22693448

  3. Altered gravity downregulates aquaporin-1 protein expression in choroid plexus.

    PubMed

    Masseguin, C; Corcoran, M; Carcenac, C; Daunton, N G; Güell, A; Verkman, A S; Gabrion, J

    2000-03-01

    Aquaporin-1 (AQP1) is a water channel expressed abundantly at the apical pole of choroidal epithelial cells. The protein expression was quantified by immunocytochemistry and confocal microscopy in adult rats adapted to altered gravity. AQP1 expression was decreased by 64% at the apical pole of choroidal cells in rats dissected 5.5-8 h after a 14-day spaceflight. AQP1 was significantly overexpressed in rats readapted for 2 days to Earth's gravity after an 11-day flight (48% overshoot, when compared with the value measured in control rats). In a ground-based model that simulates some effects of weightlessness and alters choroidal structures and functions, apical AQP1 expression was reduced by 44% in choroid plexus from rats suspended head down for 14 days and by 69% in rats suspended for 28 days. Apical AQP1 was rapidly enhanced in choroid plexus of rats dissected 6 h after a 14-day suspension (57% overshoot, in comparison with control rats) and restored to the control level when rats were dissected 2 days after the end of a 14-day suspension. Decreases in the apical expression of choroidal AQP1 were also noted in rats adapted to hypergravity in the NASA 24-ft centrifuge: AQP1 expression was reduced by 47% and 85% in rats adapted for 14 days to 2 G and 3 G, respectively. AQP1 is downregulated in the apical membrane of choroidal cells in response to altered gravity and is rapidly restored after readaptation to normal gravity. This suggests that water transport, which is partly involved in the choroidal production of cerebrospinal fluid, might be decreased during spaceflight and after chronic hypergravity.

  4. Nucleolar protein trafficking in response to HIV-1 Tat: rewiring the nucleolus.

    PubMed

    Jarboui, Mohamed Ali; Bidoia, Carlo; Woods, Elena; Roe, Barbara; Wynne, Kieran; Elia, Giuliano; Hall, William W; Gautier, Virginie W

    2012-01-01

    proteins collectively participate in interconnected networks converging to adapt the nucleolus dynamic activities, which favor host biosynthetic activities and may contribute to create a cellular environment supporting robust HIV-1 production.

  5. Nucleolar Protein Trafficking in Response to HIV-1 Tat: Rewiring the Nucleolus

    PubMed Central

    Jarboui, Mohamed Ali; Bidoia, Carlo; Woods, Elena; Roe, Barbara; Wynne, Kieran; Elia, Giuliano; Hall, William W.; Gautier, Virginie W.

    2012-01-01

    proteins collectively participate in interconnected networks converging to adapt the nucleolus dynamic activities, which favor host biosynthetic activities and may contribute to create a cellular environment supporting robust HIV-1 production. PMID:23166591

  6. Evidence that the tandem-pleckstrin-homology-domain-containing protein TAPP1 interacts with Ptd(3,4)P2 and the multi-PDZ-domain-containing protein MUPP1 in vivo.

    PubMed Central

    Kimber, Wendy A; Trinkle-Mulcahy, Laura; Cheung, Peter C F; Deak, Maria; Marsden, Louisa J; Kieloch, Agnieszka; Watt, Stephen; Javier, Ronald T; Gray, Alex; Downes, C Peter; Lucocq, John M; Alessi, Dario R

    2002-01-01

    PtdIns(3,4,5)P3 is an established second messenger of growth-factor and insulin-induced signalling pathways. There is increasing evidence that one of the immediate breakdown products of PtdIns(3,4,5)P3, namely PtdIns(3,4)P2, whose levels are elevated by numerous extracellular agonists, might also function as a signalling molecule. Recently, we identified two related pleckstrin-homology (PH)-domain-containing proteins, termed 'tandem-PH-domain-containing protein-1' (TAPP1) and TAPP2, which interacted in vitro with high affinity with PtdIns(3,4)P2, but did not bind PtdIns(3,4,5)P3 or other phosphoinositides. In the present study we demonstrate that stimulation of Swiss 3T3 or 293 cells with agonists that stimulate PtdIns(3,4)P2 production results in the marked translocation of TAPP1 to the plasma membrane. This recruitment is dependent on a functional PtdIns(3,4)P2-binding PH domain and is inhibited by wortmannin, a phosphoinositide 3-kinase inhibitor that prevents PtdIns(3,4)P2 generation. A search for proteins that interact with TAPP1 identified the multi-PDZ-containing protein termed 'MUPP1', a protein possessing 13 PDZ domains and no other known modular or catalytic domains [PDZ is postsynaptic density protein (PSD-95)/Drosophila disc large tumour suppressor (dlg)/tight junction protein (ZO1)]. We demonstrate that immunoprecipitation of endogenously expressed TAPP1 from 293-cell lysates results in the co-immunoprecipitation of endogenous MUPP1, indicating that these proteins are likely to interact with each other physiologically. We show that TAPP1 and TAPP2 interact with the 10th and 13th PDZ domain of MUPP1 through their C-terminal amino acids. The results of the present study suggest that TAPP1 and TAPP2 could function in cells as adapter proteins to recruit MUPP1, or other proteins that they may interact with, to the plasma membrane in response to signals that elevate PtdIns(3,4)P2. PMID:11802782

  7. Gab-family adapter proteins act downstream of cytokine and growth factor receptors and T- and B-cell antigen receptors.

    PubMed

    Nishida, K; Yoshida, Y; Itoh, M; Fukada, T; Ohtani, T; Shirogane, T; Atsumi, T; Takahashi-Tezuka, M; Ishihara, K; Hibi, M; Hirano, T

    1999-03-15

    We previously found that the adapter protein Gab1 (110 kD) is tyrosine-phosphorylated and forms a complex with SHP-2 and PI-3 kinase upon stimulation through either the interleukin-3 receptor (IL-3R) or gp130, the common receptor subunit of IL-6-family cytokines. In this report, we identified another adapter molecule (100 kD) interacting with SHP-2 and PI-3 kinase in response to various stimuli. The molecule displays striking homology to Gab1 at the amino acid level; thus, we named it Gab2. It contains a PH domain, proline-rich sequences, and tyrosine residues that bind to SH2 domains when they are phosphorylated. Gab1 is phosphorylated on tyrosine upon stimulation through the thrombopoietin receptor (TPOR), stem cell factor receptor (SCFR), and T-cell and B-cell antigen receptors (TCR and BCR, respectively), in addition to IL-3R and gp130. Tyrosine phosphorylation of Gab2 was induced by stimulation through gp130, IL-2R, IL-3R, TPOR, SCFR, and TCR. Gab1 and Gab2 were shown to be substrates for SHP-2 in vitro. Overexpression of Gab2 enhanced the gp130 or Src-related kinases-mediated ERK2 activation as that of Gab1 did. These data indicate that Gab-family molecules act as adapters for transmitting various signals.

  8. Ultramafics-Hydrothermalism-Hydrogenesis-HyperSLiME (UltraH3) Linkage is a key for Occurrence of Last Universal Common Ancestral (LUCA) Community: Where is it, Lost City or Kairei (Rainbow)?

    NASA Astrophysics Data System (ADS)

    Takai, K.; Inagaki, F.; Nakamura, K.; Suzuki, K.; Kumagai, H.

    2005-12-01

    hyperthermophilic subsurface lithoautotrophic microbial ecosystem (HyperSLiME) currently discovered beneath the Central Indian Ridge hydrothermal field. The environmental settings for the occurrence of HyperSLiME are now being characterized and an important linkage among the occurrence of HyperSLiME, extraordinary amount of hydrogen in the hydrothermal fluids and ultramfics-hosted hydrothermal systems is proposed. This ultramafics-hydrothermalism-hydrogen-HyperSLiME (UltraH3) linkage is very likely a key for the genesis of the LUCA community. We would like to discuss the possible UltraH3 linkage in the Archean earth. In addition, we would like to discuss which of modern deep-sea hydrothermal systems is the most plausible proxy for the Archean LUCA habitats.

  9. The LIM protein complex establishes a retinal circuitry of visual adaptation by regulating Pax6 α-enhancer activity

    PubMed Central

    Kim, Yeha; Lim, Soyeon; Ha, Taejeong; Song, You-Hyang; Sohn, Young-In; Park, Dae-Jin; Paik, Sun-Sook; Kim-Kaneyama, Joo-ri; Song, Mi-Ryoung; Leung, Amanda; Levine, Edward M; Kim, In-Beom; Goo, Yong Sook; Lee, Seung-Hee; Kang, Kyung Hwa; Kim, Jin Woo

    2017-01-01

    The visual responses of vertebrates are sensitive to the overall composition of retinal interneurons including amacrine cells, which tune the activity of the retinal circuitry. The expression of Paired-homeobox 6 (PAX6) is regulated by multiple cis-DNA elements including the intronic α-enhancer, which is active in GABAergic amacrine cell subsets. Here, we report that the transforming growth factor ß1-induced transcript 1 protein (Tgfb1i1) interacts with the LIM domain transcription factors Lhx3 and Isl1 to inhibit the α-enhancer in the post-natal mouse retina. Tgfb1i1-/- mice show elevated α-enhancer activity leading to overproduction of Pax6ΔPD isoform that supports the GABAergic amacrine cell fate maintenance. Consequently, the Tgfb1i1-/- mouse retinas show a sustained light response, which becomes more transient in mice with the auto-stimulation-defective Pax6ΔPBS/ΔPBS mutation. Together, we show the antagonistic regulation of the α-enhancer activity by Pax6 and the LIM protein complex is necessary for the establishment of an inner retinal circuitry, which controls visual adaptation. DOI: http://dx.doi.org/10.7554/eLife.21303.001 PMID:28139974

  10. Complete-proteome mapping of human influenza A adaptive mutations: implications for human transmissibility of zoonotic strains.

    PubMed

    Miotto, Olivo; Heiny, A T; Albrecht, Randy; García-Sastre, Adolfo; Tan, Tin Wee; August, J Thomas; Brusic, Vladimir

    2010-02-03

    There is widespread concern that H5N1 avian influenza A viruses will emerge as a pandemic threat, if they become capable of human-to-human (H2H) transmission. Avian strains lack this capability, which suggests that it requires important adaptive mutations. We performed a large-scale comparative analysis of proteins from avian and human strains, to produce a catalogue of mutations associated with H2H transmissibility, and to detect their presence in avian isolates. We constructed a dataset of influenza A protein sequences from 92,343 public database records. Human and avian sequence subsets were compared, using a method based on mutual information, to identify characteristic sites where human isolates present conserved mutations. The resulting catalogue comprises 68 characteristic sites in eight internal proteins. Subtype variability prevented the identification of adaptive mutations in the hemagglutinin and neuraminidase proteins. The high number of sites in the ribonucleoprotein complex suggests interdependence between mutations in multiple proteins. Characteristic sites are often clustered within known functional regions, suggesting their functional roles in cellular processes. By isolating and concatenating characteristic site residues, we defined adaptation signatures, which summarize the adaptive potential of specific isolates. Most adaptive mutations emerged within three decades after the 1918 pandemic, and have remained remarkably stable thereafter. Two lineages with stable internal protein constellations have circulated among humans without reassorting. On the contrary, H5N1 avian and swine viruses reassort frequently, causing both gains and losses of adaptive mutations. Human host adaptation appears to be complex and systemic, involving nearly all influenza proteins. Adaptation signatures suggest that the ability of H5N1 strains to infect humans is related to the presence of an unusually high number of adaptive mutations. However, these mutations appear

  11. Modulator of Apoptosis 1 (MOAP-1) Is a Tumor Suppressor Protein Linked to the RASSF1A Protein*

    PubMed Central

    Law, Jennifer; Salla, Mohamed; Zare, Alaa; Wong, Yoke; Luong, Le; Volodko, Natalia; Svystun, Orysya; Flood, Kayla; Lim, Jonathan; Sung, Miranda; Dyck, Jason R. B.; Tan, Chong Teik; Su, Yu-Chin; Yu, Victor C.; Mackey, John; Baksh, Shairaz

    2015-01-01

    Modulator of apoptosis 1 (MOAP-1) is a BH3-like protein that plays key roles in cell death or apoptosis. It is an integral partner to the tumor suppressor protein, Ras association domain family 1A (RASSF1A), and functions to activate the Bcl-2 family pro-apoptotic protein Bax. Although RASSF1A is now considered a bona fide tumor suppressor protein, the role of MOAP-1 as a tumor suppressor protein has yet to be determined. In this study, we present several lines of evidence from cancer databases, immunoblotting of cancer cells, proliferation, and xenograft assays as well as DNA microarray analysis to demonstrate the role of MOAP-1 as a tumor suppressor protein. Frequent loss of MOAP-1 expression, in at least some cancers, appears to be attributed to mRNA down-regulation and the rapid proteasomal degradation of MOAP-1 that could be reversed utilizing the proteasome inhibitor MG132. Overexpression of MOAP-1 in several cancer cell lines resulted in reduced tumorigenesis and up-regulation of genes involved in cancer regulatory pathways that include apoptosis (p53, Fas, and MST1), DNA damage control (poly(ADP)-ribose polymerase and ataxia telangiectasia mutated), those within the cell metabolism (IR-α, IR-β, and AMP-activated protein kinase), and a stabilizing effect on microtubules. The loss of RASSF1A (an upstream regulator of MOAP-1) is one of the earliest detectable epigenetically silenced tumor suppressor proteins in cancer, and we speculate that the additional loss of function of MOAP-1 may be a second hit to functionally compromise the RASSF1A/MOAP-1 death receptor-dependent pathway and drive tumorigenesis. PMID:26269600

  12. The utility of protein structure as a predictor of site-wise dN/dS varies widely among HIV-1 proteins.

    PubMed

    Meyer, Austin G; Wilke, Claus O

    2015-10-06

    Protein structure acts as a general constraint on the evolution of viral proteins. One widely recognized structural constraint explaining evolutionary variation among sites is the relative solvent accessibility (RSA) of residues in the folded protein. In influenza virus, the distance from functional sites has been found to explain an additional portion of the evolutionary variation in the external antigenic proteins. However, to what extent RSA and distance from a reference site in the protein can be used more generally to explain protein adaptation in other viruses and in the different proteins of any given virus remains an open question. To address this question, we have carried out an analysis of the distribution and structural predictors of site-wise dN/dS in HIV-1. Our results indicate that the distribution of dN/dS in HIV follows a smooth gamma distribution, with no special enrichment or depletion of sites with dN/dS at or above one. The variation in dN/dS can be partially explained by RSA and distance from a reference site in the protein, but these structural constraints do not act uniformly among the different HIV-1 proteins. Structural constraints are highly predictive in just one of the three enzymes and one of three structural proteins in HIV-1. For these two proteins, the protease enzyme and the gp120 structural protein, structure explains between 30 and 40% of the variation in dN/dS. Finally, for the gp120 protein of the receptor-binding complex, we also find that glycosylation sites explain just 2% of the variation in dN/dS and do not explain gp120 evolution independently of either RSA or distance from the apical surface. © 2015 The Author(s).

  13. Adaptive evolution of tight junction protein claudin-14 in echolocating whales.

    PubMed

    Xu, Huihui; Liu, Yang; He, Guimei; Rossiter, Stephen J; Zhang, Shuyi

    2013-11-10

    Toothed whales and bats have independently evolved specialized ultrasonic hearing for echolocation. Recent findings have suggested that several genes including Prestin, Tmc1, Pjvk and KCNQ4 appear to have undergone molecular adaptations associated with the evolution of this ultrasonic hearing in mammals. Here we studied the hearing gene Cldn14, which encodes the claudin-14 protein and is a member of tight junction proteins that functions in the organ of Corti in the inner ear to maintain a cationic gradient between endolymph and perilymph. Particular mutations in human claudin-14 give rise to non-syndromic deafness, suggesting an essential role in hearing. Our results uncovered two bursts of positive selection, one in the ancestral branch of all toothed whales and a second in the branch leading to the delphinid, phocoenid and ziphiid whales. These two branches are the same as those previously reported to show positive selection in the Prestin gene. Furthermore, as with Prestin, the estimated hearing frequencies of whales significantly correlate with numbers of branch-wise non-synonymous substitutions in Cldn14, but not with synonymous changes. However, in contrast to Prestin, we found no evidence of positive selection in bats. Our findings from Cldn14, and comparisons with Prestin, strongly implicate multiple loci in the acquisition of echolocation in cetaceans, but also highlight possible differences in the evolutionary route to echolocation taken by whales and bats. © 2013.

  14. Structural Insights into the Unusually Strong ATPase Activity of the AAA Domain of the Caenorhabditis elegans Fidgetin-like 1 (FIGL-1) Protein*

    PubMed Central

    Peng, Wentao; Lin, Zhijie; Li, Weirong; Lu, Jing; Shen, Yuequan; Wang, Chunguang

    2013-01-01

    The FIGL-1 (fidgetin like-1) protein is a homolog of fidgetin, a protein whose mutation leads to multiple developmental defects. The FIGL-1 protein contains an AAA (ATPase associated with various activities) domain and belongs to the AAA superfamily. However, the biological functions and developmental implications of this protein remain unknown. Here, we show that the AAA domain of the Caenorhabditis elegans FIGL-1 protein (CeFIGL-1-AAA), in clear contrast to homologous AAA domains, has an unusually high ATPase activity and forms a hexamer in solution. By determining the crystal structure of CeFIGL-1-AAA, we found that the loop linking helices α9 and α10 folds into the short helix α9a, which has an acidic surface and interacts with a positively charged surface of the neighboring subunit. Disruption of this charge interaction by mutagenesis diminishes both the ATPase activity and oligomerization capacity of the protein. Interestingly, the acidic residues in helix α9a of CeFIGL-1-AAA are not conserved in other homologous AAA domains that have relatively low ATPase activities. These results demonstrate that the sequence of CeFIGL-1-AAA has adapted to establish an intersubunit charge interaction, which contributes to its strong oligomerization and ATPase activity. These unique properties of CeFIGL-1-AAA distinguish it from other homologous proteins, suggesting that CeFIGL-1 may have a distinct biological function. PMID:23979136

  15. Structural insights into the unusually strong ATPase activity of the AAA domain of the Caenorhabditis elegans fidgetin-like 1 (FIGL-1) protein.

    PubMed

    Peng, Wentao; Lin, Zhijie; Li, Weirong; Lu, Jing; Shen, Yuequan; Wang, Chunguang

    2013-10-11

    The FIGL-1 (fidgetin like-1) protein is a homolog of fidgetin, a protein whose mutation leads to multiple developmental defects. The FIGL-1 protein contains an AAA (ATPase associated with various activities) domain and belongs to the AAA superfamily. However, the biological functions and developmental implications of this protein remain unknown. Here, we show that the AAA domain of the Caenorhabditis elegans FIGL-1 protein (CeFIGL-1-AAA), in clear contrast to homologous AAA domains, has an unusually high ATPase activity and forms a hexamer in solution. By determining the crystal structure of CeFIGL-1-AAA, we found that the loop linking helices α9 and α10 folds into the short helix α9a, which has an acidic surface and interacts with a positively charged surface of the neighboring subunit. Disruption of this charge interaction by mutagenesis diminishes both the ATPase activity and oligomerization capacity of the protein. Interestingly, the acidic residues in helix α9a of CeFIGL-1-AAA are not conserved in other homologous AAA domains that have relatively low ATPase activities. These results demonstrate that the sequence of CeFIGL-1-AAA has adapted to establish an intersubunit charge interaction, which contributes to its strong oligomerization and ATPase activity. These unique properties of CeFIGL-1-AAA distinguish it from other homologous proteins, suggesting that CeFIGL-1 may have a distinct biological function.

  16. Protein phosphatase PPM1G regulates protein translation and cell growth by dephosphorylating 4E binding protein 1 (4E-BP1).

    PubMed

    Liu, Jianyu; Stevens, Payton D; Eshleman, Nichole E; Gao, Tianyan

    2013-08-09

    Protein translation initiation is a tightly controlled process responding to nutrient availability and mitogen stimulation. Serving as one of the most important negative regulators of protein translation, 4E binding protein 1 (4E-BP1) binds to translation initiation factor 4E and inhibits cap-dependent translation in a phosphorylation-dependent manner. Although it has been demonstrated previously that the phosphorylation of 4E-BP1 is controlled by mammalian target of rapamycin in the mammalian target of rapamycin complex 1, the mechanism underlying the dephosphorylation of 4E-BP1 remains elusive. Here, we report the identification of PPM1G as the phosphatase of 4E-BP1. A coimmunoprecipitation experiment reveals that PPM1G binds to 4E-BP1 in cells and that purified PPM1G dephosphorylates 4E-BP1 in vitro. Knockdown of PPM1G in 293E and colon cancer HCT116 cells results in an increase in the phosphorylation of 4E-BP1 at both the Thr-37/46 and Ser-65 sites. Furthermore, the time course of 4E-BP1 dephosphorylation induced by amino acid starvation or mammalian target of rapamycin inhibition is slowed down significantly in PPM1G knockdown cells. Functionally, the amount of 4E-BP1 bound to the cap-dependent translation initiation complex is decreased when the expression of PPM1G is depleted. As a result, the rate of cap-dependent translation, cell size, and protein content are increased in PPM1G knockdown cells. Taken together, our study has identified protein phosphatase PPM1G as a novel regulator of cap-dependent protein translation by negatively controlling the phosphorylation of 4E-BP1.

  17. Adaptive Evolution of Eel Fluorescent Proteins from Fatty Acid Binding Proteins Produces Bright Fluorescence in the Marine Environment.

    PubMed

    Gruber, David F; Gaffney, Jean P; Mehr, Shaadi; DeSalle, Rob; Sparks, John S; Platisa, Jelena; Pieribone, Vincent A

    2015-01-01

    We report the identification and characterization of two new members of a family of bilirubin-inducible fluorescent proteins (FPs) from marine chlopsid eels and demonstrate a key region of the sequence that serves as an evolutionary switch from non-fluorescent to fluorescent fatty acid-binding proteins (FABPs). Using transcriptomic analysis of two species of brightly fluorescent Kaupichthys eels (Kaupichthys hyoproroides and Kaupichthys n. sp.), two new FPs were identified, cloned and characterized (Chlopsid FP I and Chlopsid FP II). We then performed phylogenetic analysis on 210 FABPs, spanning 16 vertebrate orders, and including 163 vertebrate taxa. We show that the fluorescent FPs diverged as a protein family and are the sister group to brain FABPs. Our results indicate that the evolution of this family involved at least three gene duplication events. We show that fluorescent FABPs possess a unique, conserved tripeptide Gly-Pro-Pro sequence motif, which is not found in non-fluorescent fatty acid binding proteins. This motif arose from a duplication event of the FABP brain isoforms and was under strong purifying selection, leading to the classification of this new FP family. Residues adjacent to the motif are under strong positive selection, suggesting a further refinement of the eel protein's fluorescent properties. We present a phylogenetic reconstruction of this emerging FP family and describe additional fluorescent FABP members from groups of distantly related eels. The elucidation of this class of fish FPs with diverse properties provides new templates for the development of protein-based fluorescent tools. The evolutionary adaptation from fatty acid-binding proteins to fluorescent fatty acid-binding proteins raises intrigue as to the functional role of bright green fluorescence in this cryptic genus of reclusive eels that inhabit a blue, nearly monochromatic, marine environment.

  18. β-Amylase1 and β-Amylase3 Are Plastidic Starch Hydrolases in Arabidopsis That Seem to Be Adapted for Different Thermal, pH, and Stress Conditions1[W][OPEN

    PubMed Central

    Monroe, Jonathan D.; Storm, Amanda R.; Badley, Elizabeth M.; Lehman, Michael D.; Platt, Samantha M.; Saunders, Lauren K.; Schmitz, Jonathan M.; Torres, Catherine E.

    2014-01-01

    Starch degradation in chloroplasts requires β-amylase (BAM) activity, which is encoded by a multigene family. Of nine Arabidopsis (Arabidopsis thaliana) BAM genes, six encode plastidic enzymes, but only four of these are catalytically active. In vegetative plants, BAM1 acts during the day in guard cells, whereas BAM3 is the dominant activity in mesophyll cells at night. Plastidic BAMs have been difficult to assay in leaf extracts, in part because of a cytosolic activity encoded by BAM5. We generated a series of double mutants lacking BAM5 and each of the active plastidic enzymes (BAM1, BAM2, BAM3, and BAM6) and found that most of the plastidic activity in 5-week-old plants was encoded by BAM1 and BAM3. Both of these activities were relatively constant during the day and the night. Analysis of leaf extracts from double mutants and purified BAM1 and BAM3 proteins revealed that these proteins have distinct properties. Using soluble starch as the substrate, BAM1 and BAM3 had optimum activity at pH 6.0 to 6.5, but at high pH, BAM1 was more active than BAM3, consistent with its known daytime role in the guard cell stroma. The optimum temperature for BAM1, which is transcriptionally induced by heat stress, was about 10°C higher than that of BAM3, which is transcriptionally induced by cold stress. The amino acid composition of BAM1 and BAM3 orthologs reflected differences that are consistent with known adaptations of proteins from heat- and cold-adapted organisms, suggesting that these day- and night-active enzymes have undergone thermal adaptation. PMID:25293962

  19. STOREKEEPER RELATED1/G-Element Binding Protein (STKR1) Interacts with Protein Kinase SnRK11[OPEN

    PubMed Central

    Nietzsche, Madlen; Guerra, Tiziana; Fernie, Alisdair R.

    2018-01-01

    Sucrose nonfermenting related kinase1 (SnRK1) is a conserved energy sensor kinase that regulates cellular adaptation to energy deficit in plants. Activation of SnRK1 leads to the down-regulation of ATP-consuming biosynthetic processes and the stimulation of energy-generating catabolic reactions by transcriptional reprogramming and posttranslational modifications. Although considerable progress has been made during the last years in understanding the SnRK1 signaling pathway, many of its components remain unidentified. Here, we show that the catalytic α-subunits KIN10 and KIN11 of the Arabidopsis (Arabidopsis thaliana) SnRK1 complex interact with the STOREKEEPER RELATED1/G-Element Binding Protein (STKR1) inside the plant cell nucleus. Overexpression of STKR1 in transgenic Arabidopsis plants led to reduced growth, a delay in flowering, and strongly attenuated senescence. Metabolite profiling revealed that the transgenic lines exhausted their carbohydrates during the dark period to a greater extent than the wild type and accumulated a range of amino acids. At the global transcriptome level, genes affected by STKR1 overexpression were broadly associated with systemic acquired resistance, and transgenic plants showed enhanced resistance toward a virulent strain of the biotrophic oomycete pathogen Hyaloperonospora arabidopsidis Noco2. We discuss a possible connection of STKR1 function, SnRK1 signaling, and plant immunity. PMID:29192025

  20. Proteomic analysis of the intestinal adaptation response reveals altered expression of fatty acid binding proteins following massive small bowel resection.

    PubMed

    Stephens, Andrew N; Pereira-Fantini, Prue M; Wilson, Guineva; Taylor, Russell G; Rainczuk, Adam; Meehan, Katie L; Sourial, Magdy; Fuller, Peter J; Stanton, Peter G; Robertson, David M; Bines, Julie E

    2010-03-05

    Intestinal adaptation in response to the loss of the small intestine is essential to restore enteral autonomy in patients who have undergone massive small bowel resection (MSBR). In a proportion of patients, intestinal function is not restored, resulting in chronic intestinal failure (IF). Early referral of such patients for transplant provides the best prognosis; however, the molecular mechanisms underlying intestinal adaptation remain elusive and there is currently no convenient marker to predict whether patients will develop IF. We have investigated the adaptation response in a well-characterized porcine model of intestinal adaptation. 2D DIGE analysis of ileal epithelium from piglets recovering from massive small bowel resection (MSBR) identified over 60 proteins that changed specifically in MSBR animals relative to nonoperational or sham-operated controls. Three fatty acid binding proteins (L-FABP, FABP-6, and I-FABP) showed changes in MSBR animals. The expression changes and localization of each FABP were validated by immunoblotting and immunohistochemical analysis. FABP expression changes in MSBR animals occurred concurrently with altered triglyceride and bile acid metabolism as well as weight gain. The observed FABP expression changes in the ileal epithelium occur as part of the intestinal adaptation response and could provide a clinically useful marker to evaluate adaptation following MSBR.

  1. The Epstein-Barr virus lytic protein BZLF1 as a candidate target antigen for vaccine development1

    PubMed Central

    Hartlage, Alex S.; Liu, Tom; Patton, John T.; Garman, Sabrina L.; Zhang, Xiaoli; Kurt, Habibe; Lozanski, Gerard; Lustberg, Mark E.; Caligiuri, Michael A.; Baiocchi, Robert A.

    2015-01-01

    The Epstein-Barr virus (EBV) is an oncogenic, γ-herpesvirus associated with a broad spectrum of disease. While most immune-competent individuals can effectivley develop efficient adaptive immune responses to EBV, immunocompromised individuals are at serious risk for developing life threatening diseases such as Hodgkin’s lymphoma and post-transplant lymphoproliferative disorder (PTLD). Given the significant morbidity associated with EBV infection in high-risk populations, there is a need to develop vaccine strategies that restore or enhance EBV-specific immune responses. Here, we identify the EBV immediate-early protein BZLF1 as a potential target antigen for vaccine development. Primary tumors from patients with PTLD and a chimeric human-murine model of EBV-driven lymphoproliferative disorder (EBV-LPD) express BZLF1 protein. Pulsing human dendritic cells (DC) with recombinant BZLF1 followed by incubation with autologous mononuclear cells led to expansion of BZLF1-specific CD8(+) T cells in vitro and primed BZLF1-specific T-cell responses in vivo. In addition, vaccination of hu-PBL-SCID mice with BZLF1-transduced DCs induced specific cellular immunity and significantly prolonged survival from fatal EBV-LPD. These findings identify BZLF1 as a candidate target protein in the immunosurveillance of EBV and provide rationale for considering BZLF1 in vaccine strategies to enhance primary and recall immune responses and potentially prevent EBV-associated diseases. PMID:25735952

  2. A method for examining productivity of grammatical morphology in children with and without specific language impairment.

    PubMed

    Miller, Carol A; Deevy, Patricia

    2003-10-01

    Children with specific language impairment (SLI) show inconsistent use of grammatical morphology. Children who are developing language typically also show a period during which they produce grammatical morphemes inconsistently. Various theories claim that both young typically developing children and children with SLI achieve correct production through memorization of some inflected forms (M. Gopnik, 1997; M. Tomasello, 2000a, 2000b). Adapting a method introduced by C. Miller and L. Leonard (1998), the authors investigated the use of present tense third singular -s by 24 typically developing preschoolers and 36 preschoolers with SLI. Each group was divided into 2 mean length of utterance (MLU) levels. Group and individual data provided little evidence that memorization could explain the correct productions of the third singular morpheme for either children with SLI or typically developing children, and there was no difference between children with higher and lower MLUs.

  3. Production of antibodies against glycolipids from the Mycobacterium tuberculosis cell wall in aerosol murine models of tuberculosis.

    PubMed

    Cardona, P J; Julián, E; Vallès, X; Gordillo, S; Muñoz, M; Luquin, M; Ausina, V

    2002-06-01

    Evolution of antibodies against glycolipids from the Mycobacterium tuberculosis cell wall has been studied for the first time in experimental murine models of tuberculosis induced by aerosol, in which infection, reinfection, reactivation, prophylaxis and treatment with antibiotics have been assayed. Results show a significant humoral response against these antigens, where diacyltrehaloses (DAT) and sulpholipid I (SL-I) elicited higher antibody levels than protein antigens like antigen 85 protein complex (Ag85), culture filtrate proteins (CFP) and purified protein derivative (PPD). Only immunoglobulin M (IgM) antibodies have been detected against DAT and SL-I. Their evolution has a positive correlation with bacillary concentration in tissues.

  4. Selection of unadapted, pathogenic SHIVs encoding newly transmitted HIV-1 envelope proteins.

    PubMed

    Del Prete, Gregory Q; Ailers, Braiden; Moldt, Brian; Keele, Brandon F; Estes, Jacob D; Rodriguez, Anthony; Sampias, Marissa; Oswald, Kelli; Fast, Randy; Trubey, Charles M; Chertova, Elena; Smedley, Jeremy; LaBranche, Celia C; Montefiori, David C; Burton, Dennis R; Shaw, George M; Markowitz, Marty; Piatak, Michael; KewalRamani, Vineet N; Bieniasz, Paul D; Lifson, Jeffrey D; Hatziioannou, Theodora

    2014-09-10

    Infection of macaques with chimeric viruses based on SIVMAC but expressing the HIV-1 envelope (Env) glycoproteins (SHIVs) remains the most powerful model for evaluating prevention and therapeutic strategies against AIDS. Unfortunately, only a few SHIVs are currently available. Furthermore, their generation has required extensive adaptation of the HIV-1 Env sequences in macaques so they may not accurately represent HIV-1 Env proteins circulating in humans, potentially limiting their translational utility. We developed a strategy for generating large numbers of SHIV constructs expressing Env proteins from newly transmitted HIV-1 strains. By inoculating macaques with cocktails of multiple SHIV variants, we selected SHIVs that can replicate and cause AIDS-like disease in immunologically intact rhesus macaques without requiring animal-to-animal passage. One of these SHIVs could be transmitted mucosally. We demonstrate the utility of the SHIVs generated by this method for evaluating neutralizing antibody administration as a protection against mucosal SHIV challenge. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. A Conceptual Model of Childhood Adaptation to Type 1 Diabetes

    PubMed Central

    Whittemore, Robin; Jaser, Sarah; Guo, Jia; Grey, Margaret

    2010-01-01

    The Childhood Adaptation Model to Chronic Illness: Diabetes Mellitus was developed to identify factors that influence childhood adaptation to type 1 diabetes (T1D). Since this model was proposed, considerable research has been completed. The purpose of this paper is to update the model on childhood adaptation to T1D using research conducted since the original model was proposed. The framework suggests that individual and family characteristics, such as age, socioeconomic status, and in children with T1D, treatment modality (pump vs. injections), psychosocial responses (depressive symptoms and anxiety), and individual and family responses (self-management, coping, self-efficacy, family functioning, social competence) influence the level of adaptation. Adaptation has both physiologic (metabolic control) and psychosocial (QOL) components. This revised model provides greater specificity to the factors that influence adaptation to chronic illness in children. Research and clinical implications are discussed. PMID:20934079

  6. Multi‐omic profiling ­of EPO‐producing Chinese hamster ovary cell panel reveals metabolic adaptation to heterologous protein production

    PubMed Central

    Ley, Daniel; Seresht, Ali Kazemi; Engmark, Mikael; Magdenoska, Olivera; Nielsen, Kristian Fog; Kildegaard, Helene Faustrup

    2015-01-01

    ABSTRACT Chinese hamster ovary (CHO) cells are the preferred production host for many therapeutic proteins. The production of heterologous proteins in CHO cells imposes a burden on the host cell metabolism and impact cellular physiology on a global scale. In this work, a multi‐omics approach was applied to study the production of erythropoietin (EPO) in a panel of CHO‐K1 cells under growth‐limited and unlimited conditions in batch and chemostat cultures. Physiological characterization of the EPO‐producing cells included global transcriptome analysis, targeted metabolome analysis, including intracellular pools of glycolytic intermediates, NAD(P)H/NAD(P)+, adenine nucleotide phosphates (ANP), and extracellular concentrations of sugars, organic acids, and amino acids. Potential impact of EPO expression on the protein secretory pathway was assessed at multiple stages using quantitative PCR (qPCR), reverse transcription PCR (qRT‐PCR), Western blots (WB), and global gene expression analysis to assess EPO gene copy numbers, EPO gene expression, intracellular EPO retention, and differentially expressed genes functionally related to secretory protein processing, respectively. We found no evidence supporting the existence of production bottlenecks in energy metabolism (i.e., glycolytic metabolites, NAD(P)H/NAD(P)+ and ANPs) in batch culture or in the secretory protein production pathway (i.e., gene dosage, transcription and post‐translational processing of EPO) in chemostat culture at specific productivities up to 5 pg/cell/day. Time‐course analysis of high‐ and low‐producing clones in chemostat culture revealed rapid adaptation of transcription levels of amino acid catabolic genes in favor of EPO production within nine generations. Interestingly, the adaptation was followed by an increase in specific EPO productivity. Biotechnol. Bioeng. 2015;112: 2373–2387. © 2015 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc. PMID

  7. NS1 codon usage adaptation to humans in pandemic Zika virus.

    PubMed

    Freire, Caio César de Melo; Palmisano, Giuseppe; Braconi, Carla T; Cugola, Fernanda R; Russo, Fabiele B; Beltrão-Braga, Patricia Cb; Iamarino, Atila; Lima Neto, Daniel Ferreira de; Sall, Amadou Alpha; Rosa-Fernandes, Livia; Larsen, Martin R; Zanotto, Paolo Marinho de Andrade

    2018-05-10

    Zika virus (ZIKV) was recognised as a zoonotic pathogen in Africa and southeastern Asia. Human infections were infrequently reported until 2007, when the first known epidemic occurred in Micronesia. After 2013, the Asian lineage of ZIKV spread along the Pacific Islands and Americas, causing severe outbreaks with millions of human infections. The recent human infections of ZIKV were also associated with severe complications, such as an increase in cases of Guillain-Barre syndrome and the emergence of congenital Zika syndrome. To better understand the recent and rapid expansion of ZIKV, as well as the presentation of novel complications, we compared the genetic differences between the African sylvatic lineage and the Asian epidemic lineage that caused the recent massive outbreaks. The epidemic lineages have significant codon adaptation in NS1 gene to translate these proteins in human and Aedes aegypti mosquito cells compared to the African zoonotic lineage. Accordingly, a Brazilian epidemic isolate (ZBR) produced more NS1 protein than the MR766 African lineage (ZAF) did, as indicated by proteomic data from infections of neuron progenitor cells-derived neurospheres. Although ZBR replicated more efficiently in these cells, the differences observed in the stoichiometry of ZIKV proteins were not exclusively explained by the differences in viral replication between the lineages. Our findings suggest that natural, silent translational selection in the second half of 20th century could have improved the fitness of Asian ZIKV lineage in human and mosquito cells.

  8. Genetic characterization of an adapted pandemic 2009 H1N1 influenza virus that reveals improved replication rates in human lung epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wörmann, Xenia; Lesch, Markus; Steinbeis Innovation gGmbH, Center for Systems Biomedicine, Falkensee

    The 2009 influenza pandemic originated from a swine-origin H1N1 virus, which, although less pathogenic than anticipated, may acquire additional virulence-associated mutations in the future. To estimate the potential risk, we sequentially passaged the isolate A/Hamburg/04/2009 in A549 human lung epithelial cells. After passage 6, we observed a 100-fold increased replication rate. High-throughput sequencing of viral gene segments identified five dominant mutations, whose contribution to the enhanced growth was analyzed by reverse genetics. The increased replication rate was pinpointed to two mutations within the hemagglutinin (HA) gene segment (HA{sub 1} D130E, HA{sub 2} I91L), near the receptor binding site and themore » stem domain. The adapted virus also replicated more efficiently in mice in vivo. Enhanced replication rate correlated with increased fusion pH of the HA protein and a decrease in receptor affinity. Our data might be relevant for surveillance of pre-pandemic strains and development of high titer cell culture strains for vaccine production. - Highlights: • We observed a spontaneous mutation of a 2009-pandemic H1N1 influenza virus in vitro. • The adaptation led to a 100-fold rise in replication rate in human A549 cells. • Adaptation was caused by two mutations in the HA gene segment. • Adaptation correlates with increased fusion pH and decreased receptor affinity.« less

  9. A conceptual model of childhood adaptation to type 1 diabetes.

    PubMed

    Whittemore, Robin; Jaser, Sarah; Guo, Jia; Grey, Margaret

    2010-01-01

    The Childhood Adaptation Model to Chronic Illness: Diabetes Mellitus was developed to identify factors that influence childhood adaptation to type 1 diabetes (T1D). Since this model was proposed, considerable research has been completed. The purpose of this article is to update the model on childhood adaptation to T1D using research conducted since the original model was proposed. The framework suggests that, in individuals and families, characteristics such as age and socioeconomic status as well as the individuals' and families' responses (self-management, coping, self-efficacy, family functioning, social competence) influence the level of adaptation; in children with T1D, characteristics such as treatment modality (pump vs injections) and psychosocial responses (depressive symptoms and anxiety) also influence the level of adaptation. Adaptation has both physiologic (metabolic control) and psychosocial (Quality of Life [QOL]) components. This revised model provides greater specificity to the factors that influence adaptation to chronic illness in children. Research and clinical implications are discussed. Copyright © 2010 Mosby, Inc. All rights reserved.

  10. Enhanced HIV-1 neutralization by a CD4-VH3-IgG1 fusion protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyuhas, Ronit; Noy, Hava; Fishman, Sigal

    2009-08-21

    HIV-1 gp120 is an alleged B cell superantigen, binding certain VH3+ human antibodies. We reasoned that a CD4-VH3 fusion protein could possess higher affinity for gp120 and improved HIV-1 inhibitory capacity. To test this we produced several human IgG1 immunoligands harboring VH3. Unlike VH3-IgG1 or VH3-CD4-IgG1, CD4-VH3-IgG1 bound gp120 considerably stronger than CD4-IgG1. CD4-VH3-IgG1 exhibited {approx}1.5-2.5-fold increase in neutralization of two T-cell laboratory-adapted strains when compared to CD4-IgG1. CD4-VH3-IgG1 improved neutralization of 7/10 clade B primary isolates or pseudoviruses, exceeding 20-fold for JR-FL and 13-fold for Ba-L. It enhanced neutralization of 4/8 clade C viruses, and had negligible effect onmore » 1/4 clade A pseudoviruses. We attribute this improvement to possible pairing of VH3 with CD4 D1 and stabilization of an Ig Fv-like structure, rather than to superantigen interactions. These novel findings support the current notion that CD4 fusion proteins can act as better HIV-1 entry inhibitors with potential clinical implications.« less

  11. Flavivirus NS1 protein in infected host sera enhances viral acquisition by mosquitoes.

    PubMed

    Liu, Jianying; Liu, Yang; Nie, Kaixiao; Du, Senyan; Qiu, Jingjun; Pang, Xiaojing; Wang, Penghua; Cheng, Gong

    2016-06-20

    The arbovirus life cycle involves viral transfer between a vertebrate host and an arthropod vector, and acquisition of virus from an infected mammalian host by a vector is an essential step in this process. Here, we report that flavivirus nonstructural protein-1 (NS1), which is abundantly secreted into the serum of an infected host, plays a critical role in flavivirus acquisition by mosquitoes. The presence of dengue virus (DENV) and Japanese encephalitis virus NS1s in the blood of infected interferon-α and γ receptor-deficient mice (AG6) facilitated virus acquisition by their native mosquito vectors because the protein enabled the virus to overcome the immune barrier of the mosquito midgut. Active immunization of AG6 mice with a modified DENV NS1 reduced DENV acquisition by mosquitoes and protected mice against a lethal DENV challenge, suggesting that immunization with NS1 could reduce the number of virus-carrying mosquitoes as well as the incidence of flaviviral diseases. Our study demonstrates that flaviviruses utilize NS1 proteins produced during their vertebrate phases to enhance their acquisition by vectors, which might be a result of flavivirus evolution to adapt to multiple host environments.

  12. Flavivirus NS1 protein in infected host sera enhances viral acquisition by mosquitoes

    PubMed Central

    Liu, Jianying; Liu, Yang; Nie, Kaixiao; Du, Senyan; Qiu, Jingjun; Pang, Xiaojing; Wang, Penghua; Cheng, Gong

    2016-01-01

    Summary The arbovirus life cycle involves viral transfer between a vertebrate host and an arthropod vector, and acquisition of virus from an infected mammalian host by a vector is an essential step in this process. Here, we report that flavivirus nonstructural protein-1 (NS1), which is abundantly secreted into the serum of an infected host, plays a critical role in flavivirus acquisition by mosquitoes. The presence of dengue virus (DENV) and Japanese encephalitis virus (JEV) NS1s in the blood of infected interferon alpha and gamma receptor-deficient mice (AG6) facilitated virus acquisition by their native mosquito vectors because the protein enabled the virus to overcome the immune barrier of the mosquito midgut. Active immunization of AG6 mice with a modified DENV NS1 reduced DENV acquisition by mosquitoes and protected mice against a lethal DENV challenge, suggesting that immunization with NS1 could reduce the number of virus-carrying mosquitoes as well as the incidence of flaviviral diseases. Our study demonstrates that flaviviruses utilize NS1 proteins produced during their vertebrate phases to enhance their acquisition by vectors, which might be a result of flavivirus evolution to adapt to multiple host environments. PMID:27562253

  13. Nutrition and training adaptations in aquatic sports.

    PubMed

    Mujika, Iñigo; Stellingwerff, Trent; Tipton, Kevin

    2014-08-01

    The adaptive response to training is determined by the combination of the intensity, volume, and frequency of the training. Various periodized approaches to training are used by aquatic sports athletes to achieve performance peaks. Nutritional support to optimize training adaptations should take periodization into consideration; that is, nutrition should also be periodized to optimally support training and facilitate adaptations. Moreover, other aspects of training (e.g., overload training, tapering and detraining) should be considered when making nutrition recommendations for aquatic athletes. There is evidence, albeit not in aquatic sports, that restricting carbohydrate availability may enhance some training adaptations. More research needs to be performed, particularly in aquatic sports, to determine the optimal strategy for periodizing carbohydrate intake to optimize adaptations. Protein nutrition is an important consideration for optimal training adaptations. Factors other than the total amount of daily protein intake should be considered. For instance, the type of protein, timing and pattern of protein intake and the amount of protein ingested at any one time influence the metabolic response to protein ingestion. Body mass and composition are important for aquatic sport athletes in relation to power-to-mass and for aesthetic reasons. Protein may be particularly important for athletes desiring to maintain muscle while losing body mass. Nutritional supplements, such as b-alanine and sodium bicarbonate, may have particular usefulness for aquatic athletes' training adaptation.

  14. Which Preschool Children with Specific Language Impairment Receive Language Intervention?

    ERIC Educational Resources Information Center

    Wittke, Kacie; Spaulding, Tammie J.

    2018-01-01

    Purpose: Potential biases in service provision for preschool children with specific language impairment (SLI) were explored. Method: In Study 1, children with SLI receiving treatment (SLI-T) and those with SLI not receiving treatment (SLI-NT) were compared on demographic characteristics and developmental abilities. Study 2 recruited children with…

  15. Hydrogenase activity in the foodborne pathogen Campylobacter jejuni depends upon a novel ABC-type nickel transporter (NikZYXWV) and is SlyD-independent.

    PubMed

    Howlett, Robert M; Hughes, Bethan M; Hitchcock, Andrew; Kelly, David J

    2012-06-01

    Campylobacter jejuni is a human pathogen of worldwide significance. It is commensal in the gut of many birds and mammals, where hydrogen is a readily available electron donor. The bacterium possesses a single membrane-bound, periplasmic-facing NiFe uptake hydrogenase that depends on the acquisition of environmental nickel for activity. The periplasmic binding protein Cj1584 (NikZ) of the ATP binding cassette (ABC) transporter encoded by the cj1584c-cj1580c (nikZYXWV) operon in C. jejuni strain NCTC 11168 was found to be nickel-repressed and to bind free nickel ions with a submicromolar K(d) value, as measured by fluorescence spectroscopy. Unlike the Escherichia coli NikA protein, NikZ did not bind EDTA-chelated nickel and lacks key conserved residues implicated in metallophore interaction. A C. jejuni cj1584c null mutant strain showed an approximately 22-fold decrease in intracellular nickel content compared with the wild-type strain and a decreased rate of uptake of (63)NiCl(2). The inhibition of residual nickel uptake at higher nickel concentrations in this mutant by hexa-ammine cobalt (III) chloride or magnesium ions suggests that low-affinity uptake occurs partly through the CorA magnesium transporter. Hydrogenase activity was completely abolished in the cj1584c mutant after growth in unsupplemented media, but was fully restored after growth with 0.5 mM nickel chloride. Mutation of the putative metallochaperone gene slyD (cj0115) had no effect on either intracellular nickel accumulation or hydrogenase activity. Our data reveal a strict dependence of hydrogenase activity in C. jejuni on high-affinity nickel uptake through an ABC transporter that has distinct properties compared with the E. coli Nik system.

  16. mPLR-Loc: an adaptive decision multi-label classifier based on penalized logistic regression for protein subcellular localization prediction.

    PubMed

    Wan, Shibiao; Mak, Man-Wai; Kung, Sun-Yuan

    2015-03-15

    Proteins located in appropriate cellular compartments are of paramount importance to exert their biological functions. Prediction of protein subcellular localization by computational methods is required in the post-genomic era. Recent studies have been focusing on predicting not only single-location proteins but also multi-location proteins. However, most of the existing predictors are far from effective for tackling the challenges of multi-label proteins. This article proposes an efficient multi-label predictor, namely mPLR-Loc, based on penalized logistic regression and adaptive decisions for predicting both single- and multi-location proteins. Specifically, for each query protein, mPLR-Loc exploits the information from the Gene Ontology (GO) database by using its accession number (AC) or the ACs of its homologs obtained via BLAST. The frequencies of GO occurrences are used to construct feature vectors, which are then classified by an adaptive decision-based multi-label penalized logistic regression classifier. Experimental results based on two recent stringent benchmark datasets (virus and plant) show that mPLR-Loc remarkably outperforms existing state-of-the-art multi-label predictors. In addition to being able to rapidly and accurately predict subcellular localization of single- and multi-label proteins, mPLR-Loc can also provide probabilistic confidence scores for the prediction decisions. For readers' convenience, the mPLR-Loc server is available online (http://bioinfo.eie.polyu.edu.hk/mPLRLocServer). Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Sulfolobus Spindle-Shaped Virus 1 Contains Glycosylated Capsid Proteins, a Cellular Chromatin Protein, and Host-Derived Lipids

    PubMed Central

    Quemin, Emmanuelle R. J.; Pietilä, Maija K.; Oksanen, Hanna M.; Forterre, Patrick; Rijpstra, W. Irene C.; Schouten, Stefan; Bamford, Dennis H.; Prangishvili, David

    2015-01-01

    ABSTRACT Geothermal and hypersaline environments are rich in virus-like particles, among which spindle-shaped morphotypes dominate. Currently, viruses with spindle- or lemon-shaped virions are exclusive to Archaea and belong to two distinct viral families. The larger of the two families, the Fuselloviridae, comprises tail-less, spindle-shaped viruses, which infect hosts from phylogenetically distant archaeal lineages. Sulfolobus spindle-shaped virus 1 (SSV1) is the best known member of the family and was one of the first hyperthermophilic archaeal viruses to be isolated. SSV1 is an attractive model for understanding virus-host interactions in Archaea; however, the constituents and architecture of SSV1 particles remain only partially characterized. Here, we have conducted an extensive biochemical characterization of highly purified SSV1 virions and identified four virus-encoded structural proteins, VP1 to VP4, as well as one DNA-binding protein of cellular origin. The virion proteins VP1, VP3, and VP4 undergo posttranslational modification by glycosylation, seemingly at multiple sites. VP1 is also proteolytically processed. In addition to the viral DNA-binding protein VP2, we show that viral particles contain the Sulfolobus solfataricus chromatin protein Sso7d. Finally, we provide evidence indicating that SSV1 virions contain glycerol dibiphytanyl glycerol tetraether (GDGT) lipids, resolving a long-standing debate on the presence of lipids within SSV1 virions. A comparison of the contents of lipids isolated from the virus and its host cell suggests that GDGTs are acquired by the virus in a selective manner from the host cytoplasmic membrane, likely during progeny egress. IMPORTANCE Although spindle-shaped viruses represent one of the most prominent viral groups in Archaea, structural data on their virion constituents and architecture still are scarce. The comprehensive biochemical characterization of the hyperthermophilic virus SSV1 presented here brings novel and

  18. Huntingtin-associated protein-1 (HAP1) regulates endocytosis and interacts with multiple trafficking-related proteins.

    PubMed

    Mackenzie, Kimberly D; Lim, Yoon; Duffield, Michael D; Chataway, Timothy; Zhou, Xin-Fu; Keating, Damien J

    2017-07-01

    Huntingtin-associated protein 1 (HAP1) was initially identified as a binding partner of huntingtin, mutations in which underlie Huntington's disease. Subcellular localization and protein interaction data indicate that HAP1 may be important in vesicle trafficking, cell signalling and receptor internalization. In this study, a proteomics approach was used for the identification of novel HAP1-interacting partners to attempt to shed light on the physiological function of HAP1. Using affinity chromatography with HAP1-GST protein fragments bound to Sepharose columns, this study identified a number of trafficking-related proteins that bind to HAP1. Interestingly, many of the proteins that were identified by mass spectrometry have trafficking-related functions and include the clathrin light chain B and Sec23A, an ER to Golgi trafficking vesicle coat component. Using co-immunoprecipitation and GST-binding assays the association between HAP1 and clathrin light chain B has been validated in vitro. This study also finds that HAP1 co-localizes with clathrin light chain B. In line with a physiological function of the HAP1-clathrin interaction this study detected a dramatic reduction in vesicle retrieval and endocytosis in adrenal chromaffin cells. Furthermore, through examination of transferrin endocytosis in HAP1 -/- cortical neurons, this study has determined that HAP1 regulates neuronal endocytosis. In this study, the interaction between HAP1 and Sec23A was also validated through endogenous co-immunoprecipitation in rat brain homogenate. Through the identification of novel HAP1 binding partners, many of which have putative trafficking roles, this study provides us with new insights into the mechanisms underlying the important physiological function of HAP1 as an intracellular trafficking protein through its protein-protein interactions. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. A Comparative Pan-Genome Perspective of Niche-Adaptable Cell-Surface Protein Phenotypes in Lactobacillus rhamnosus

    PubMed Central

    Kant, Ravi; Sigvart-Mattila, Pia; Paulin, Lars; Mecklin, Jukka-Pekka; Saarela, Maria; Palva, Airi; von Ossowski, Ingemar

    2014-01-01

    Lactobacillus rhamnosus is a ubiquitously adaptable Gram-positive bacterium and as a typical commensal can be recovered from various microbe-accessible bodily orifices and cavities. Then again, other isolates are food-borne, with some of these having been long associated with naturally fermented cheeses and yogurts. Additionally, because of perceived health benefits to humans and animals, numerous L. rhamnosus strains have been selected for use as so-called probiotics and are often taken in the form of dietary supplements and functional foods. At the genome level, it is anticipated that certain genetic variances will have provided the niche-related phenotypes that augment the flexible adaptiveness of this species, thus enabling its strains to grow and survive in their respective host environments. For this present study, we considered it functionally informative to examine and catalogue the genotype-phenotype variation existing at the cell surface between different L. rhamnosus strains, with the presumption that this might be relatable to habitat preferences and ecological adaptability. Here, we conducted a pan-genomic study involving 13 genomes from L. rhamnosus isolates with various origins. In using a benchmark strain (gut-adapted L. rhamnosus GG) for our pan-genome comparison, we had focused our efforts on a detailed examination and description of gene products for certain functionally relevant surface-exposed proteins, each of which in effect might also play a part in niche adaptability among the other strains. Perhaps most significantly of the surface protein loci we had analyzed, it would appear that the spaCBA operon (known to encode SpaCBA-called pili having a mucoadhesive phenotype) is a genomic rarity and an uncommon occurrence in L. rhamnosus. However, for any of the so-piliated L. rhamnosus strains, they will likely possess an increased niche-specific fitness, which functionally might presumably be manifested by a protracted transient colonization of

  20. Experimental Validation of L1 Adaptive Control: Rohrs' Counterexample in Flight

    NASA Technical Reports Server (NTRS)

    Xargay, Enric; Hovakimyan, Naira; Dobrokhodov, Vladimir; Kaminer, Issac; Kitsios, Ioannis; Cao, Chengyu; Gregory, Irene M.; Valavani, Lena

    2010-01-01

    The paper presents new results on the verification and in-flight validation of an L1 adaptive flight control system, and proposes a general methodology for verification and validation of adaptive flight control algorithms. The proposed framework is based on Rohrs counterexample, a benchmark problem presented in the early 80s to show the limitations of adaptive controllers developed at that time. In this paper, the framework is used to evaluate the performance and robustness characteristics of an L1 adaptive control augmentation loop implemented onboard a small unmanned aerial vehicle. Hardware-in-the-loop simulations and flight test results confirm the ability of the L1 adaptive controller to maintain stability and predictable performance of the closed loop adaptive system in the presence of general (artificially injected) unmodeled dynamics. The results demonstrate the advantages of L1 adaptive control as a verifiable robust adaptive control architecture with the potential of reducing flight control design costs and facilitating the transition of adaptive control into advanced flight control systems.

  1. Cuscuta europaea plastid apparatus in various developmental stages: localization of THF1 protein.

    PubMed

    Švubová, Renáta; Ovečka, Miroslav; Pavlovič, Andrej; Slováková, L'udmila; Blehová, Alžbeta

    2013-05-01

    It was generally accepted that Cuscuta europaea is mostly adapted to a parasitic lifestyle with no detectable levels of chlorophylls. We found out relatively high level of chlorophylls (Chls a+b) in young developmental stages of dodder. Significant lowering of Chls (a+b) content and increase of carotenoid concentration was typical only for ontogenetically more developed stages. Lower content of photosynthesis-related proteins involved in Chls biosynthesis and in photosystem formation as well as low photochemical activity of PSII indicate that photosynthesis is not the main activity of C. europaea plastids. Previously, it has been shown in other species that the Thylakoid Formation Protein 1 (THF1) is involved in thylakoid membrane differentiation, plant-fungal and plant-bacterial interactions and in sugar signaling with its preferential localization to plastids. Our immunofluorescence localization studies and analyses of haustorial plasma membrane fractions revealed that in addition to plastids, the THF1 protein localizes also to the plasma membrane and plasmodesmata in developing C. europaea haustorium, most abundantly in the digitate cells of the endophyte primordium. These results are supported by western blot analysis, documenting the highest levels of the THF1 protein in "get together" tissues of dodder and tobacco. Based on the fact that photosynthesis is not a typical process in the C. europaea haustorium and on the extra-plastidial localization pattern of the THF1, our data support rather other functions of this protein in the complex relationship between C. europaea and its host.

  2. Testing for adaptive evolution of the female reproductive protein ZPC in mammals, birds and fishes reveals problems with the M7-M8 likelihood ratio test.

    PubMed

    Berlin, Sofia; Smith, Nick G C

    2005-11-10

    Adaptive evolution appears to be a common feature of reproductive proteins across a very wide range of organisms. A promising way of addressing the evolutionary forces responsible for this general phenomenon is to test for adaptive evolution in the same gene but among groups of species, which differ in their reproductive biology. One can then test evolutionary hypotheses by asking whether the variation in adaptive evolution is consistent with the variation in reproductive biology. We have attempted to apply this approach to the study of a female reproductive protein, zona pellucida C (ZPC), which has been previously shown by the use of likelihood ratio tests (LRTs) to be under positive selection in mammals. We tested for evidence of adaptive evolution of ZPC in 15 mammalian species, in 11 avian species and in six fish species using three different LRTs (M1a-M2a, M7-M8, and M8a-M8). The only significant findings of adaptive evolution came from the M7-M8 test in mammals and fishes. Since LRTs of adaptive evolution may yield false positives in some situations, we examined the properties of the LRTs by several different simulation methods. When we simulated data to test the robustness of the LRTs, we found that the pattern of evolution in ZPC generates an excess of false positives for the M7-M8 LRT but not for the M1a-M2a or M8a-M8 LRTs. This bias is strong enough to have generated the significant M7-M8 results for mammals and fishes. We conclude that there is no strong evidence for adaptive evolution of ZPC in any of the vertebrate groups we studied, and that the M7-M8 LRT can be biased towards false inference of adaptive evolution by certain patterns of non-adaptive evolution.

  3. Aquaporin water channel AgAQP1 in the malaria vector mosquito Anopheles gambiae during blood feeding and humidity adaptation

    PubMed Central

    Liu, Kun; Tsujimoto, Hitoshi; Cha, Sung-Jae; Agre, Peter; Rasgon, Jason L.

    2011-01-01

    Altered patterns of malaria endemicity reflect, in part, changes in feeding behavior and climate adaptation of mosquito vectors. Aquaporin (AQP) water channels are found throughout nature and confer high-capacity water flow through cell membranes. The genome of the major malaria vector mosquito Anopheles gambiae contains at least seven putative AQP sequences. Anticipating that transmembrane water movements are important during the life cycle of A. gambiae, we identified and characterized the A. gambiae aquaporin 1 (AgAQP1) protein that is homologous to AQPs known in humans, Drosophila, and sap-sucking insects. When expressed in Xenopus laevis oocytes, AgAQP1 transports water but not glycerol. Similar to mammalian AQPs, water permeation of AgAQP1 is inhibited by HgCl2 and tetraethylammonium, with Tyr185 conferring tetraethylammonium sensitivity. AgAQP1 is more highly expressed in adult female A. gambiae mosquitoes than in males. Expression is high in gut, ovaries, and Malpighian tubules where immunofluorescence microscopy reveals that AgAQP1 resides in stellate cells but not principal cells. AgAQP1 expression is up-regulated in fat body and ovary by blood feeding but not by sugar feeding, and it is reduced by exposure to a dehydrating environment (42% relative humidity). RNA interference reduces AgAQP1 mRNA and protein levels. In a desiccating environment (<20% relative humidity), mosquitoes with reduced AgAQP1 protein survive significantly longer than controls. These studies support a role for AgAQP1 in water homeostasis during blood feeding and humidity adaptation of A. gambiae, a major mosquito vector of human malaria in sub-Saharan Africa. PMID:21444767

  4. Computational Analysis of the CB1 Carboxyl-terminus in the Receptor-G Protein Complex

    PubMed Central

    Shim, Joong-Youn; Khurana, Leepakshi; Kendall, Debra A.

    2016-01-01

    Despite the important role of the carboxyl-terminus (Ct) of the activated brain cannabinoid receptor one (CB1) in the regulation of G protein signaling, a structural understanding of interactions with G proteins is lacking. This is largely due to the highly flexible nature of the CB1 Ct that dynamically adapts its conformation to the presence of G proteins. In the present study, we explored how the CB1 Ct can interact with the G protein by building on our prior modeling of the CB1-Gi complex (Shim J-Y, Ahn KH, Kendall DA. The Journal of Biological Chemistry 2013;288:32449-32465) to incorporate a complete CB1 Ct (Glu416Ct–Leu472Ct). Based upon the structural constraints from NMR studies, we employed ROSETTA to predict tertiary folds, ZDOCK to predict docking orientation, and molecular dynamics (MD) simulations to obtain two distinct plausible models of CB1 Ct in the CB1-Gi complex. The resulting models were consistent with the NMR-determined helical structure (H9) in the middle region of the CB1 Ct. The CB1 Ct directly interacted with both Gα and Gβ and stabilized the receptor at the Gi interface. The results of site-directed mutagenesis studies of Glu416Ct, Asp423Ct, Asp428Ct, and Arg444Ct of CB1 Ct suggested that the CB1 Ct can influence receptor-G protein coupling by stabilizing the receptor at the Gi interface. This research provided, for the first time, models of the CB1 Ct in contact with the G protein. PMID:26994549

  5. Different Material States of Pub1 Condensates Define Distinct Modes of Stress Adaptation and Recovery.

    PubMed

    Kroschwald, Sonja; Munder, Matthias C; Maharana, Shovamayee; Franzmann, Titus M; Richter, Doris; Ruer, Martine; Hyman, Anthony A; Alberti, Simon

    2018-06-12

    How cells adapt to varying environmental conditions is largely unknown. Here, we show that, in budding yeast, the RNA-binding and stress granule protein Pub1 has an intrinsic property to form condensates upon starvation or heat stress and that condensate formation is associated with cell-cycle arrest. Release from arrest coincides with condensate dissolution, which takes minutes (starvation) or hours (heat shock). In vitro reconstitution reveals that the different dissolution rates of starvation- and heat-induced condensates are due to their different material properties: starvation-induced Pub1 condensates form by liquid-liquid demixing and subsequently convert into reversible gel-like particles; heat-induced condensates are more solid-like and require chaperones for disaggregation. Our data suggest that different physiological stresses, as well as stress durations and intensities, induce condensates with distinct physical properties and thereby define different modes of stress adaptation and rates of recovery. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Metabolic Adaptation in Transplastomic Plants Massively Accumulating Recombinant Proteins

    PubMed Central

    Bally, Julia; Job, Claudette; Belghazi, Maya; Job, Dominique

    2011-01-01

    Background Recombinant chloroplasts are endowed with an astonishing capacity to accumulate foreign proteins. However, knowledge about the impact on resident proteins of such high levels of recombinant protein accumulation is lacking. Methodology/Principal Findings Here we used proteomics to characterize tobacco (Nicotiana tabacum) plastid transformants massively accumulating a p-hydroxyphenyl pyruvate dioxygenase (HPPD) or a green fluorescent protein (GFP). While under the conditions used no obvious modifications in plant phenotype could be observed, these proteins accumulated to even higher levels than ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco), the most abundant protein on the planet. This accumulation occurred at the expense of a limited number of leaf proteins including Rubisco. In particular, enzymes involved in CO2 metabolism such as nuclear-encoded plastidial Calvin cycle enzymes and mitochondrial glycine decarboxylase were found to adjust their accumulation level to these novel physiological conditions. Conclusions/Significance The results document how protein synthetic capacity is limited in plant cells. They may provide new avenues to evaluate possible bottlenecks in recombinant protein technology and to maintain plant fitness in future studies aiming at producing recombinant proteins of interest through chloroplast transformation. PMID:21966485

  7. Toll‐Like Receptor‐2 Mediates Adaptive Cardiac Hypertrophy in Response to Pressure Overload Through Interleukin‐1β Upregulation via Nuclear Factor κB Activation

    PubMed Central

    Higashikuni, Yasutomi; Tanaka, Kimie; Kato, Megumi; Nureki, Osamu; Hirata, Yasunobu; Nagai, Ryozo; Komuro, Issei; Sata, Masataka

    2013-01-01

    Background Inflammation is induced in the heart during the development of cardiac hypertrophy. The initiating mechanisms and the role of inflammation in cardiac hypertrophy, however, remain unclear. Toll‐like receptor‐2 (TLR2) recognizes endogenous molecules that induce noninfectious inflammation. Here, we examined the role of TLR2‐mediated inflammation in cardiac hypertrophy. Methods and Results At 2 weeks after transverse aortic constriction, Tlr2−/− mice showed reduced cardiac hypertrophy and fibrosis with greater left ventricular dilatation and impaired systolic function compared with wild‐type mice, which indicated impaired cardiac adaptation in Tlr2−/− mice. Bone marrow transplantation experiment revealed that TLR2 expressed in the heart, but not in bone marrow–derived cells, is important for cardiac adaptive response to pressure overload. In vitro experiments demonstrated that TLR2 signaling can induce cardiomyocyte hypertrophy and fibroblast and vascular endothelial cell proliferation through nuclear factor–κB activation and interleukin‐1β upregulation. Systemic administration of a nuclear factor–κB inhibitor or anti–interleukin‐1β antibodies to wild‐type mice resulted in impaired adaptive cardiac hypertrophy after transverse aortic constriction. We also found that heat shock protein 70, which was increased in murine plasma after transverse aortic constriction, can activate TLR2 signaling in vitro and in vivo. Systemic administration of anti–heat shock protein 70 antibodies to wild‐type mice impaired adaptive cardiac hypertrophy after transverse aortic constriction. Conclusions Our results demonstrate that TLR2‐mediated inflammation induced by extracellularly released heat shock protein 70 is essential for adaptive cardiac hypertrophy in response to pressure overload. Thus, modulation of TLR2 signaling in the heart may provide a novel strategy for treating heart failure due to inadequate adaptation to hemodynamic

  8. Adaptation of Hybridization Capture of Chromatin-associated Proteins for Proteomics to Mammalian Cells.

    PubMed

    Guillen-Ahlers, Hector; Rao, Prahlad K; Perumalla, Danu S; Montoya, Maria J; Jadhav, Avinash Y L; Shortreed, Michael R; Smith, Lloyd M; Olivier, Michael

    2018-06-01

    The hybridization capture of chromatin-associated proteins for proteomics (HyCCAPP) technology was initially developed to uncover novel DNA-protein interactions in yeast. It allows analysis of a target region of interest without the need for prior knowledge about likely proteins bound to the target region. This, in theory, allows HyCCAPP to be used to analyze any genomic region of interest, and it provides sufficient flexibility to work in different cell systems. This method is not meant to study binding sites of known transcription factors, a task better suited for Chromatin Immunoprecipitation (ChIP) and ChIP-like methods. The strength of HyCCAPP lies in its ability to explore DNA regions for which there is limited or no knowledge about the proteins bound to it. It can also be a convenient method to avoid biases (present in ChIP-like methods) introduced by protein-based chromatin enrichment using antibodies. Potentially, HyCCAPP can be a powerful tool to uncover truly novel DNA-protein interactions. To date, the technology has been predominantly applied to yeast cells or to high copy repeat sequences in mammalian cells. In order to become the powerful tool we envision, HyCCAPP approaches need to be optimized to efficiently capture single-copy loci in mammalian cells. Here, we present our adaptation of the initial yeast HyCCAPP capture protocol to human cell lines, and show that single-copy chromatin regions can be efficiently isolated with this modified protocol.

  9. PGC-1α and exercise intensity dependent adaptations in mouse skeletal muscle

    PubMed Central

    Dethlefsen, Maja Munk; Bangsbo, Jens; Pilegaard, Henriette

    2017-01-01

    The aim of the present study was to examine the role of PGC-1α in intensity dependent exercise and exercise training-induced metabolic adaptations in mouse skeletal muscle. Whole body PGC-1α knockout (KO) and littermate wildtype (WT) mice performed a single treadmill running bout at either low intensity (LI) for 40 min or moderate intensity (MI) for 20 min. Blood and quadriceps muscles were removed either immediately after exercise or at 3h or 6h into recovery from exercise and from resting controls. In addition PGC-1α KO and littermate WT mice were exercise trained at either low intensity (LIT) for 40 min or at moderate intensity (MIT) for 20 min 2 times pr. day for 5 weeks. In the first and the last week of the intervention period, mice performed a graded running endurance test. Quadriceps muscles were removed before and after the training period for analyses. The acute exercise bout elicited intensity dependent increases in LC3I and LC3II protein and intensity independent decrease in p62 protein in skeletal muscle late in recovery and increased LC3II with exercise training independent of exercise intensity and volume in WT mice. Furthermore, acute exercise and exercise training did not increase LC3I and LC3II protein in PGC-1α KO. In addition, exercise-induced mRNA responses of PGC-1α isoforms were intensity dependent. In conclusion, these findings indicate that exercise intensity affected autophagy markers differently in skeletal muscle and suggest that PGC-1α regulates both acute and exercise training-induced autophagy in skeletal muscle potentially in a PGC-1α isoform specific manner. PMID:29049322

  10. Optimized Design and Synthesis of Cell Permeable Biarsenical Cyanine Probe for Imaging Tagged Cytosolic Bacterial Proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Na; Xiong, Yijia; Squier, Thomas C.

    2013-01-21

    To optimize cellular delivery and specific labeling of tagged cytosolic proteins by biarsenical fluorescent probes build around a cyanine dye scaffold, we have systematically varied the polarity of the hydrophobic tails (i.e., 4-5 methylene groups appended by a sulfonate or methoxy ester moiety) and arsenic capping reagent (ethanedithiol versus benzenedithiol). Targeted labeling of the cytosolic proteins SlyD and the alpha subunit of RNA polymerase engineered with a tetracysteine tagging sequences demonstrate the utility of the newly synthesized probes for live-cell visualization, albeit with varying efficiencies and background intensities. Optimal routine labeling and visualization is apparent using the ethanedithiol capping reagentmore » with the uncharged methoxy ester functionalized acyl chains. These measurements demonstrate the general utility of this class of photostable and highly fluorescent biarsenical reagents based on the cyanine scaffold for in vivo targeting of tagged cellular proteins for live cell measurements of protein dynamics.« less

  11. Control of dopaminergic neuron survival by the unfolded protein response transcription factor XBP1

    PubMed Central

    Valdés, Pamela; Mercado, Gabriela; Vidal, Rene L.; Molina, Claudia; Parsons, Geoffrey; Court, Felipe A.; Martinez, Alexis; Galleguillos, Danny; Armentano, Donna; Schneider, Bernard L.; Hetz, Claudio

    2014-01-01

    Parkinson disease (PD) is characterized by the selective loss of dopaminergic neurons of the substantia nigra pars compacta (SNpc). Although growing evidence indicates that endoplasmic reticulum (ER) stress is a hallmark of PD, its exact contribution to the disease process is not well understood. Here we report that developmental ablation of X-Box binding protein 1 (XBP1) in the nervous system, a key regulator of the unfolded protein response (UPR), protects dopaminergic neurons against a PD-inducing neurotoxin. This survival effect was associated with a preconditioning condition that resulted from induction of an adaptive ER stress response in dopaminergic neurons of the SNpc, but not in other brain regions. In contrast, silencing XBP1 in adult animals triggered chronic ER stress and dopaminergic neuron degeneration. Supporting this finding, gene therapy to deliver an active form of XBP1 provided neuroprotection and reduced striatal denervation in animals injected with 6-hydroxydopamine. Our results reveal a physiological role of the UPR in the maintenance of protein homeostasis in dopaminergic neurons that may help explain the differential neuronal vulnerability observed in PD. PMID:24753614

  12. Microtubule Actin Cross-linking Factor 1 regulates cardiomyocyte microtubule distribution and adaptation to hemodynamic overload.

    PubMed

    Fassett, John T; Xu, Xin; Kwak, Dongmin; Wang, Huan; Liu, Xiaoyu; Hu, Xinli; Bache, Robert J; Chen, Yingjie

    2013-01-01

    Aberrant cardiomyocyte microtubule growth is a feature of pressure overload induced cardiac hypertrophy believed to contribute to left ventricular (LV) dysfunction. Microtubule Actin Cross-linking Factor 1 (MACF1/Acf7) is a 600 kd spectraplakin that stabilizes and guides microtubule growth along actin filaments. MACF1 is expressed in the heart, but its impact on cardiac microtubules, and how this influences cardiac structure, function, and adaptation to hemodynamic overload is unknown. Here we used inducible cardiac-specific MACF1 knockout mice (MACF1 KO) to determine the impact of MACF1 on cardiac microtubules and adaptation to pressure overload (transverse aortic constriction (TAC).In adult mouse hearts, MACF1 expression was low under basal conditions, but increased significantly in response to TAC. While MACF1 KO had no observable effect on heart size or function under basal conditions, MACF1 KO exacerbated TAC induced LV hypertrophy, LV dilation and contractile dysfunction. Interestingly, subcellular fractionation of ventricular lysates revealed that MACF1 KO altered microtubule distribution in response to TAC, so that more tubulin was associated with the cell membrane fraction. Moreover, TAC induced microtubule redistribution into this cell membrane fraction in both WT and MACF1 KO mice correlated strikingly with the level of contractile dysfunction (r(2) = 0.786, p<.001). MACF1 disruption also resulted in reduction of membrane caveolin 3 levels, and increased levels of membrane PKCα and β1 integrin after TAC, suggesting MACF1 function is important for spatial regulation of several physiologically relevant signaling proteins during hypertrophy. Together, these data identify for the first time, a role for MACF1 in cardiomyocyte microtubule distribution and in adaptation to hemodynamic overload.

  13. [Role of thyroid system in adaptation to cold].

    PubMed

    Maslov, L N; Vychuzhanova, E A; Gorbunov, A S; Tsybul'nikov, S Iu; Khaliulin, I G; Chauski, E

    2014-06-01

    Adaptation to cold promotes an increase in blood T3 and T4 levels in men and animals. The long-term cold exposure can induce a decrease in concentration of serum total and free T3 in human due to an enhancement of this hormone clearance. Endogenous catecholamines during adaptation to cold raise iodothyronine deiodinase D2 activity in brown fat due to α1-adrenergic receptor stimulation. Triiodothyronine is an inductor of iodothyronine deiodinase expression in brown fat, liver and kidney. Iodothyronine deiodinase D2 plays an important role in adaptation of organism to cold contributing to the high adrenergic reactivity of brown fat. At adaptation to cold T3 interacts with T3Rβ, it is formed T3Rβ-RXR complex, which binds to DNA with following transcription of UCP-1 and UCP-3 genes and UCP-1 and UCP-3 protein synthesis and uncoupling oxidative phosphorylation and an increase in heat production, where T3Rβ is T3-receptor-β, RXR is retinoid X-receptor, UCP is uncoupling protein. Triiodothyronine contributes to normal response to adrenergic agents of brown fat due to T3Rα activation. Sympatho-adrenomedullary and thyroid systems act as synergists in adaptation to cold.

  14. Mucin-like protein, a saliva component involved in brown planthopper virulence and host adaptation.

    PubMed

    Huang, Hai-Jian; Liu, Cheng-Wen; Xu, Hai-Jun; Bao, Yan-Yuan; Zhang, Chuan-Xi

    2017-04-01

    The rice brown planthopper (BPH), Nilaparvata lugens, can rapidly adapt to new resistant rice varieties within several generations, rendering its management burdensome. However, the molecular mechanism underlying its adaptability remains unclear. In this study, we investigated the potential role of mucin-like protein (NlMul) in N. lugens virulence and adaptation to host resistance. NlMul is an important glycoprotein that constitutes both gelling and watery saliva, and specifically expressed in the salivary glands at all developmental stages except the egg period. Knocking down the expression of NlMul resulted in the secretion of short and single-branched salivary sheaths. NlMul might help BPH deal with plant resistance, and altered gene expression was observed when BPHs were transferred from a susceptible rice variety to a resistant one. The NlMul-deficient BPHs showed disordered developmental duration and a portion of these insects reared on resistant rice exhibited lethal effects. Our results uncover a saliva-mediated interaction between insect and host plant, and provide useful information in rice breeding and planthopper management. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Pregnancy and Smoothelin-like Protein 1 (SMTNL1) Deletion Promote the Switching of Skeletal Muscle to a Glycolytic Phenotype in Human and Mice.

    PubMed

    Lontay, Beata; Bodoor, Khaldon; Sipos, Adrienn; Weitzel, Douglas H; Loiselle, David; Safi, Rachid; Zheng, Donghai; Devente, James; Hickner, Robert C; McDonnell, Donald P; Ribar, Thomas; Haystead, Timothy A

    2015-07-17

    Pregnancy promotes physiological adaptations throughout the body, mediated by the female sex hormones progesterone and estrogen. Changes in the metabolic properties of skeletal muscle enable the female body to cope with the physiological challenges of pregnancy and may also be linked to the development of insulin resistance. We conducted global microarray, proteomic, and metabolic analyses to study the role of the progesterone receptor and its transcriptional regulator, smoothelin-like protein 1 (SMTNL1) in the adaptation of skeletal muscle to pregnancy. We demonstrate that pregnancy promotes fiber-type changes from an oxidative to glycolytic isoform in skeletal muscle. This phenomenon is regulated through an interaction between SMTNL1 and progesterone receptor, which alters the expression of contractile and metabolic proteins. smtnl1(-/-) mice are metabolically less efficient and show impaired glucose tolerance. Pregnancy antagonizes these effects by inducing metabolic activity and increasing glucose tolerance. Our results suggest that SMTNL1 has a role in mediating the actions of steroid hormones to promote fiber switching in skeletal muscle during pregnancy. Our findings also bear on the management of gestational diabetes that develops as a complication of pregnancy in ~4% of women. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Ablation of Lgr4 enhances energy adaptation in skeletal muscle via activation of Ampk/Sirt1/Pgc1α pathway.

    PubMed

    Sun, Yingkai; Hong, Jie; Chen, Maopei; Ke, Yingying; Zhao, Shaoqian; Liu, Wen; Ma, Qinyun; Shi, Juan; Zou, Yaoyu; Ning, Tinglu; Zhang, Zhiguo; Liu, Ruixin; Wang, Jiqiu; Ning, Guang

    2015-08-21

    Leucine-rich repeat-containing G protein-coupled receptor 4 (Lgr4) is a newfound obese-associated gene. Previous study reveals that heterozygous mutation of Lgr4 correlates with decreased body weight in human. In our recent study, we demonstrate that Lgr4 ablation promotes browning of white adipose tissue and improves whole-body metabolic status. However little is known about its role in other metabolic tissues. Herein, we show that Lgr4 homozygous mutant (Lgr4(m/m)) mice show increased respiratory exchange ratio (RER, closer to 1.0) than wild-type mice at 12:00 AM (food-intake time for mice) while decreased RER (closer to 0.75) at 12:00 PM (fasting for mice), indicating a glucose-prone versus fatty acid-prone metabolic pattern, respectively. Furthermore, Lgr4 ablation increases lipid oxidation-related gene expression while suppresses glucose transporter type 4 (Glut4) levels in skeletal muscle under fasting condition. These data suggest that Lgr4 ablation enhances the flexibility of skeletal muscle to switch energy provider from glucose to fatty acid in response to glucose depletion. We further reveal the activation of Ampk/Sirt1/Pgc1α pathway during this adaptive fuel shift due to Lgr4 ablation. This study suggests that Lgr4 might serve as an adaptive regulator between glucose and lipid metabolism in skeletal muscle and reveals a potentially new regulator for a well-established adaptive network. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. MOS1 Osmosensor of Metarhizium anisopliae Is Required for Adaptation to Insect Host Hemolymph▿

    PubMed Central

    Wang, Chengshu; Duan, Zhibing; St. Leger, Raymond J.

    2008-01-01

    Entomopathogenic fungi such as Metarhizium anisopliae infect insects by direct penetration of the cuticle, after which the fungus adapts to the high osmotic pressure of the hemolymph and multiplies. Here we characterize the M. anisopliae Mos1 gene and demonstrate that it encodes the osmosensor required for this process. MOS1 contains transmembrane regions and a C-terminal Src homology 3 domain similar to those of yeast osmotic adaptor proteins, and homologs of MOS1 are widely distributed in the fungal kingdom. Reverse transcription-PCR demonstrated that Mos1 is up-regulated in insect hemolymph as well as artificial media with high osmotic pressure. Transformants containing an antisense vector directed to the Mos1 mRNA depleted transcript levels by 80%. This produced selective alterations in regulation of genes involved in hyphal body formation, cell membrane stiffness, and generation of intracellular turgor pressure, suggesting that these processes are mediated by MOS1. Consistent with a role in stress responses, transcript depletion of Mos1 increased sensitivity to osmotic and oxidative stresses and to compounds that interfere with cell wall biosynthesis. It also disrupted developmental processes, including formation of appressoria and hyphal bodies. Insect bioassays confirmed that Mos1 knockdown significantly reduces virulence. Overall, our data show that M. anisopliae MOS1 mediates cellular responses to high osmotic pressure and subsequent adaptations to colonize host hemolymph. PMID:18055914

  18. Alkaline stress response in Enterococcus faecalis: adaptation, cross-protection, and changes in protein synthesis.

    PubMed Central

    Flahaut, S; Hartke, A; Giard, J C; Auffray, Y

    1997-01-01

    The alkaline shock response in Enterococcus faecalis was studied in this work. Cells adapted to an optimum pH of 10.5 were tolerate to pH 11.9 conditions but acquired sensitivity to acid damage. An analysis of stress proteins revealed that 37 polypeptides were amplified. Two of these are DnaK and GroEL. The combined results show that bile salts and alkaline stress responses are closely related. PMID:9023964

  19. Sigmar1 regulates endoplasmic reticulum stress-induced C/EBP-homologous protein expression in cardiomyocytes.

    PubMed

    Alam, Shafiul; Abdullah, Chowdhury S; Aishwarya, Richa; Orr, A Wayne; Traylor, James; Miriyala, Sumitra; Panchatcharam, Manikandan; Pattillo, Christopher B; Bhuiyan, Md Shenuarin

    2017-08-31

    C/EBP-homologous protein (CHOP) is a ubiquitously expressed stress-inducible transcription factor robustly induced by maladaptive endoplasmic reticulum (ER) stresses in a wide variety of cells. Here, we examined a novel function of Sigma 1 receptor (Sigmar1) in regulating CHOP expression under ER stress in cardiomyocytes. We also defined Sigmar1-dependent activation of the adaptive ER-stress pathway in regulating CHOP expression. We used adenovirus-mediated Sigmar1 overexpression as well as Sigmar1 knockdown by siRNA in neonatal rat ventricular cardiomyocytes (NRCs); to induce ER stress, cardiomyocytes were treated with tunicamycin. Sigmar1-siRNA knockdown significantly increased the expression of CHOP and significantly induced cellular toxicity by sustained activation of ER stress in cardiomyocytes. Sigmar1 overexpression decreased the expression of CHOP and significantly decreased cellular toxicity in cells. Using biochemical and immunocytochemical experiments, we also defined the specific ER-stress pathway associated with Sigmar1-dependent regulation of CHOP expression and cellular toxicity. We found that Sigmar1 overexpression significantly increased inositol requiring kinase 1α (IRE1α) phosphorylation and increased spliced X-box-binding proteins (XBP1s) expression as well as nuclear localization. In contrast, Sigmar1 knockdown significantly decreased IRE1α phosphorylation and decreased XBP1s expression as well as nuclear transport. Taken together, these results indicate that Sigmar1-dependent activation of IRE1α-XBP1s ER-stress response pathways are associated with inhibition of CHOP expression and suppression of cellular toxicity. Hence, Sigmar1 is an essential component of the adaptive ER-stress response pathways eliciting cellular protection in cardiomyocytes. © 2017 The Author(s).

  20. Sigmar1 regulates endoplasmic reticulum stress-induced C/EBP-homologous protein expression in cardiomyocytes

    PubMed Central

    Alam, Shafiul; Abdullah, Chowdhury S.; Aishwarya, Richa; Orr, A. Wayne; Traylor, James; Miriyala, Sumitra; Panchatcharam, Manikandan; Pattillo, Christopher B.

    2017-01-01

    C/EBP-homologous protein (CHOP) is a ubiquitously expressed stress-inducible transcription factor robustly induced by maladaptive endoplasmic reticulum (ER) stresses in a wide variety of cells. Here, we examined a novel function of Sigma 1 receptor (Sigmar1) in regulating CHOP expression under ER stress in cardiomyocytes. We also defined Sigmar1-dependent activation of the adaptive ER-stress pathway in regulating CHOP expression. We used adenovirus-mediated Sigmar1 overexpression as well as Sigmar1 knockdown by siRNA in neonatal rat ventricular cardiomyocytes (NRCs); to induce ER stress, cardiomyocytes were treated with tunicamycin. Sigmar1-siRNA knockdown significantly increased the expression of CHOP and significantly induced cellular toxicity by sustained activation of ER stress in cardiomyocytes. Sigmar1 overexpression decreased the expression of CHOP and significantly decreased cellular toxicity in cells. Using biochemical and immunocytochemical experiments, we also defined the specific ER-stress pathway associated with Sigmar1-dependent regulation of CHOP expression and cellular toxicity. We found that Sigmar1 overexpression significantly increased inositol requiring kinase 1α (IRE1α) phosphorylation and increased spliced X-box-binding proteins (XBP1s) expression as well as nuclear localization. In contrast, Sigmar1 knockdown significantly decreased IRE1α phosphorylation and decreased XBP1s expression as well as nuclear transport. Taken together, these results indicate that Sigmar1-dependent activation of IRE1α-XBP1s ER-stress response pathways are associated with inhibition of CHOP expression and suppression of cellular toxicity. Hence, Sigmar1 is an essential component of the adaptive ER-stress response pathways eliciting cellular protection in cardiomyocytes. PMID:28667101

  1. The adapter protein, Grb10, is a positive regulator of vascular endothelial growth factor signaling.

    PubMed

    Giorgetti-Peraldi, S; Murdaca, J; Mas, J C; Van Obberghen, E

    2001-07-05

    Vascular endothelial growth factor (VEGF) is an important regulator of vasculogenesis and angiogenesis. Activation of VEGF receptors leads to the recruitment of SH2 containing proteins which link the receptors to the activation of signaling pathways. Here we report that Grb10, an adapter protein of which the biological role remains unknown, is tyrosine phosphorylated in response to VEGF in endothelial cells (HUVEC) and in 293 cells expressing the VEGF receptor KDR. An intact SH2 domain is required for Grb10 tyrosine phosphorylation in response to VEGF, and this phosphorylation is mediated in part through the activation of Src. In HUVEC, VEGF increases Grb10 mRNA level. Expression of Grb10 in HUVEC or in KDR expressing 293 cells results in an increase in the amount and in the tyrosine phosphorylation of KDR. In 293 cells, this is correlated with the activation of signaling molecules, such as MAP kinase. By expressing mutants of Grb10, we found that the positive action of Grb10 is independent of its SH2 domain. Moreover, these Grb10 effects on KDR seem to be specific since Grb10 has no effect on the insulin receptor, and Grb2, another adapter protein, does not mimic the effect of Grb10 on KDR. In conclusion, we propose that VEGF up-regulates Grb10 level, which in turn increases KDR molecules, suggesting that Grb10 could be involved in a positive feedback loop in VEGF signaling.

  2. Hepatitis A Virus Capsid Protein VP1 Has a Heterogeneous C Terminus

    PubMed Central

    Graff, Judith; Richards, Oliver C.; Swiderek, Kristine M.; Davis, Michael T.; Rusnak, Felicia; Harmon, Shirley A.; Jia, Xi-Yu; Summers, Donald F.; Ehrenfeld, Ellie

    1999-01-01

    Hepatitis A virus (HAV) encodes a single polyprotein which is posttranslationally processed into the functional structural and nonstructural proteins. Only one protease, viral protease 3C, has been implicated in the nine protein scissions. Processing of the capsid protein precursor region generates a unique intermediate, PX (VP1-2A), which accumulates in infected cells and is assumed to serve as precursor to VP1 found in virions, although the details of this reaction have not been determined. Coexpression in transfected cells of a variety of P1 precursor proteins with viral protease 3C demonstrated efficient production of PX, as well as VP0 and VP3; however, no mature VP1 protein was detected. To identify the C-terminal amino acid residue of HAV VP1, we performed peptide sequence analysis by protease-catalyzed [18O]H2O incorporation followed by liquid chromatography ion-trap microspray tandem mass spectrometry of HAV VP1 isolated from purified virions. Two different cell culture-adapted isolates of HAV, strains HM175pE and HM175p35, were used for these analyses. VP1 preparations from both virus isolates contained heterogeneous C termini. The predominant C-terminal amino acid in both virus preparations was VP1-Ser274, which is located N terminal to a methionine residue in VP1-2A. In addition, the analysis of HM175pE recovered smaller amounts of amino acids VP1-Glu273 and VP1-Thr272. In the case of HM175p35, which contains valine at amino acid position VP1-273, VP1-Thr272 was found in addition to VP1-Ser274. The data suggest that HAV 3C is not the protease responsible for generation of the VP1 C terminus. We propose the involvement of host cell protease(s) in the production of HAV VP1. PMID:10364353

  3. Chronology of UPR activation in skeletal muscle adaptations to chronic contractile activity

    PubMed Central

    Memme, Jonathan M.; Oliveira, Ashley N.

    2016-01-01

    The mitochondrial and endoplasmic reticulum unfolded protein responses (UPRmt and UPRER) are important for cellular homeostasis during stimulus-induced increases in protein synthesis. Exercise triggers the synthesis of mitochondrial proteins, regulated in part by peroxisome proliferator activator receptor-γ coactivator 1α (PGC-1α). To investigate the role of the UPR in exercise-induced adaptations, we subjected rats to 3 h of chronic contractile activity (CCA) for 1, 2, 3, 5, or 7 days followed by 3 h of recovery. Mitochondrial biogenesis signaling, through PGC-1α mRNA, increased 14-fold after 1 day of CCA. This resulted in 10–32% increases in cytochrome c oxidase activity, indicative of mitochondrial content, between days 3 and 7, as well as increases in the autophagic degradation of p62 and microtubule-associated proteins 1A/1B light chain 3A (LC3)-II protein. Before these adaptations, the UPRER transcripts activating transcription factor-4, spliced X-box-binding protein 1, and binding immunoglobulin protein were elevated (1.3- to 3.8-fold) at days 1–3, while CCAAT/enhancer-binding protein homologous protein (CHOP) and chaperones binding immunoglobulin protein and heat shock protein (HSP) 70 were elevated at mRNA and protein levels (1.5- to 3.9-fold) at days 1–7 of CCA. The mitochondrial chaperones 10-kDa chaperonin, HSP60, and 75-kDa mitochondrial HSP, the protease ATP-dependent Clp protease proteolytic subunit, and the regulatory protein sirtuin-3 of the UPRmt were concurrently induced 10–80% between days 1 and 7. To test the role of the UPR in CCA-induced remodeling, we treated animals with the endoplasmic reticulum stress suppressor tauroursodeoxycholic acid and subjected them to 2 or 7 days of CCA. Tauroursodeoxycholic acid attenuated CHOP and HSP70 protein induction; however, this failed to impact mitochondrial remodeling. Our data indicate that signaling to the UPR is rapidly activated following acute contractile activity, that this is

  4. Mammalian Adaptation in the PB2 Gene of Avian H5N1 Influenza Virus

    PubMed Central

    Min, Ji-Young; Santos, Celia; Fitch, Adam; Twaddle, Alan; Toyoda, Yoshiko; DePasse, Jay V.

    2013-01-01

    The substitution of glutamic acid (E) for lysine (K) at position 627 of the PB2 protein of avian H5N1 viruses has been identified as a virulence and host range determinant for infection of mammals. Here, we report that the E-to-K host-adaptive mutation in the PB2 gene appeared from day 4 and 5 along the respiratory tracts of mice and was complete by day 6 postinoculation. This mutation correlated with efficient replication of the virus in mice. PMID:23864613

  5. Pig has no uncoupling protein 1.

    PubMed

    Hou, Lianjie; Shi, Jia; Cao, Lingbo; Xu, Guli; Hu, Chingyuan; Wang, Chong

    2017-06-10

    Brown adipose tissue (BAT) is critical for mammal's survival in the cold environment. Uncoupling protein 1 (UCP1) is responsible for the non-shivering thermogenesis in the BAT. Pig is important economically as a meat-producing livestock. However, whether BAT or more precisely UCP1 protein exists in pig remains a controversy. The objective of this study was to ascertain whether pig has UCP1 protein. In this study, we used rapid amplification of cDNA ends (RACE) technique to obtain the UCP1 mRNA 3' end sequence, confirmed only exons 1 and 2 of the UCP1 gene are transcribed in the pig. Then we cloned the pig UCP1 gene exons 1 and 2, and expressed the UCP1 protein from the truncated pig gene using E. coli BL21. We used the expressed pig UCP1 protein as antigen for antibody production in a rabbit. We could not detect any UCP1 protein expression in different pig adipose tissues by the specific pig UCP1 antibody, while our antibody can detect the cloned pig UCP1 as well as the mice adipose UCP1 protein. This result shows although exons 1 and 2 of the pig UCP1 gene were transcribed but not translated in the pig adipose tissue. Furthermore, we detected no uncoupled respiration in the isolated pig adipocytes. Thus, these results unequivocally demonstrate that pig has no UCP1 protein. Our results have resolved the controversy of whether pigs have the brown adipose tissue. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. iELM—a web server to explore short linear motif-mediated interactions

    PubMed Central

    Weatheritt, Robert J.; Jehl, Peter; Dinkel, Holger; Gibson, Toby J.

    2012-01-01

    The recent expansion in our knowledge of protein–protein interactions (PPIs) has allowed the annotation and prediction of hundreds of thousands of interactions. However, the function of many of these interactions remains elusive. The interactions of Eukaryotic Linear Motif (iELM) web server provides a resource for predicting the function and positional interface for a subset of interactions mediated by short linear motifs (SLiMs). The iELM prediction algorithm is based on the annotated SLiM classes from the Eukaryotic Linear Motif (ELM) resource and allows users to explore both annotated and user-generated PPI networks for SLiM-mediated interactions. By incorporating the annotated information from the ELM resource, iELM provides functional details of PPIs. This can be used in proteomic analysis, for example, to infer whether an interaction promotes complex formation or degradation. Furthermore, details of the molecular interface of the SLiM-mediated interactions are also predicted. This information is displayed in a fully searchable table, as well as graphically with the modular architecture of the participating proteins extracted from the UniProt and Phospho.ELM resources. A network figure is also presented to aid the interpretation of results. The iELM server supports single protein queries as well as large-scale proteomic submissions and is freely available at http://i.elm.eu.org. PMID:22638578

  7. Genome-wide analysis of protein disorder in Arabidopsis thaliana: implications for plant environmental adaptation.

    PubMed

    Pietrosemoli, Natalia; García-Martín, Juan A; Solano, Roberto; Pazos, Florencio

    2013-01-01

    Intrinsically disordered proteins/regions (IDPs/IDRs) are currently recognized as a widespread phenomenon having key cellular functions. Still, many aspects of the function of these proteins need to be unveiled. IDPs conformational flexibility allows them to recognize and interact with multiple partners, and confers them larger interaction surfaces that may increase interaction speed. For this reason, molecular interactions mediated by IDPs/IDRs are particularly abundant in certain types of protein interactions, such as those of signaling and cell cycle control. We present the first large-scale study of IDPs in Arabidopsis thaliana, the most widely used model organism in plant biology, in order to get insight into the biological roles of these proteins in plants. The work includes a comparative analysis with the human proteome to highlight the differential use of disorder in both species. Results show that while human proteins are in general more disordered, certain functional classes, mainly related to environmental response, are significantly more enriched in disorder in Arabidopsis. We propose that because plants cannot escape from environmental conditions as animals do, they use disorder as a simple and fast mechanism, independent of transcriptional control, for introducing versatility in the interaction networks underlying these biological processes so that they can quickly adapt and respond to challenging environmental conditions.

  8. Msp1 Is a Membrane Protein Dislocase for Tail-Anchored Proteins.

    PubMed

    Wohlever, Matthew L; Mateja, Agnieszka; McGilvray, Philip T; Day, Kasey J; Keenan, Robert J

    2017-07-20

    Mislocalized tail-anchored (TA) proteins of the outer mitochondrial membrane are cleared by a newly identified quality control pathway involving the conserved eukaryotic protein Msp1 (ATAD1 in humans). Msp1 is a transmembrane AAA-ATPase, but its role in TA protein clearance is not known. Here, using purified components reconstituted into proteoliposomes, we show that Msp1 is both necessary and sufficient to drive the ATP-dependent extraction of TA proteins from the membrane. A crystal structure of the Msp1 cytosolic region modeled into a ring hexamer suggests that active Msp1 contains a conserved membrane-facing surface adjacent to a central pore. Structure-guided mutagenesis of the pore residues shows that they are critical for TA protein extraction in vitro and for functional complementation of an msp1 deletion in yeast. Together, these data provide a molecular framework for Msp1-dependent extraction of mislocalized TA proteins from the outer mitochondrial membrane. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Are Specific Language Impairment and Dyslexia Distinct Disorders?

    PubMed Central

    Catts, Hugh W.; Adlof, Suzanne M.; Hogan, Tiffany; Weismer, Susan Ellis

    2010-01-01

    Purpose The purpose of this study was to determine whether specific language impairment (SLI) and dyslexia are distinct developmental disorders. Method Study 1 investigated the overlap between SLI identified in kindergarten and dyslexia identified in 2nd, 4th, or 8th grades in a representative sample of 527 children. Study 2 examined phonological processing in a subsample of participants, including 21 children with dyslexia only, 43 children with SLI only, 18 children with SLI and dyslexia, and 165 children with typical language/reading development. Measures of phonological awareness and nonword repetition were considered. Results Study 1 showed limited but statistically significant overlap between SLI and dyslexia. Study 2 found that children with dyslexia or a combination of dyslexia and SLI performed significantly less well on measures of phonological processing than did children with SLI only and those with typical development. Children with SLI only showed only mild deficits in phonological processing compared with typical children. Conclusions These results support the view that SLI and dyslexia are distinct but potentially comorbid developmental language disorders. A deficit in phonological processing is closely associated with dyslexia but not with SLI when it occurs in the absence of dyslexia. PMID:16478378

  10. Increased expression of a cGMP-dependent protein kinase in rotation-adapted western corn rootworm (Diabrotica virgifera virgifera L.).

    PubMed

    Garabagi, Freydoun; Wade French, B; Schaafsma, Arthur W; Peter Pauls, K

    2008-07-01

    A new 'variant' behavior in western corn rootworm (WCR) has resulted in egg-laying into non-cornfields, compared to 'normal' deposition of eggs in cornfields, allowing these insects to circumvent crop rotation. No morphological or genetic characteristics have been defined to differentiate between the normal and variant biotypes. Cyclic GMP-dependent protein kinases (PKG) have been implicated in the regulation of behaviors in vertebrates, insects, and nematodes, including foraging behavior in Drosophila. A cDNA with homology to the Drosophila melanogaster foraging gene (called Dvfor1) was cloned from WCR. The deduced DvFOR1 protein is approximately 70% similar to FOR proteins in Drosophila, silkworm (Bombyx mori) and honeybee (Apis mellifera). It contains a coiled-coil region, two tandem cyclic nucleotide-binding domains, a serine/threonine kinase catalytic domain, and a serine/threonine kinase catalytic domain extension, which are all characteristically found in PKG proteins. Real-time PCR assays of foraging transcript levels in heads of normal and rotation adapted females of WCR obtained from lab-reared insect colonies indicated that the variants had higher levels (25%) of PKG expression than normals. The magnitude of this increase is similar to that observed in Drosophila rover phenotypes compared to sitter phenotypes. However, Diabrotica contains at least two different foraging gene transcripts, which complicates establishing a direct link between the level of gene expression and insect behavior.

  11. Microtubule Actin Cross-Linking Factor 1 Regulates Cardiomyocyte Microtubule Distribution and Adaptation to Hemodynamic Overload

    PubMed Central

    Kwak, Dongmin; Wang, Huan; Liu, Xiaoyu; Hu, Xinli; Bache, Robert J.; Chen, Yingjie

    2013-01-01

    Aberrant cardiomyocyte microtubule growth is a feature of pressure overload induced cardiac hypertrophy believed to contribute to left ventricular (LV) dysfunction. Microtubule Actin Cross-linking Factor 1 (MACF1/Acf7) is a 600 kd spectraplakin that stabilizes and guides microtubule growth along actin filaments. MACF1 is expressed in the heart, but its impact on cardiac microtubules, and how this influences cardiac structure, function, and adaptation to hemodynamic overload is unknown. Here we used inducible cardiac-specific MACF1 knockout mice (MACF1 KO) to determine the impact of MACF1 on cardiac microtubules and adaptation to pressure overload (transverse aortic constriction (TAC).In adult mouse hearts, MACF1 expression was low under basal conditions, but increased significantly in response to TAC. While MACF1 KO had no observable effect on heart size or function under basal conditions, MACF1 KO exacerbated TAC induced LV hypertrophy, LV dilation and contractile dysfunction. Interestingly, subcellular fractionation of ventricular lysates revealed that MACF1 KO altered microtubule distribution in response to TAC, so that more tubulin was associated with the cell membrane fraction. Moreover, TAC induced microtubule redistribution into this cell membrane fraction in both WT and MACF1 KO mice correlated strikingly with the level of contractile dysfunction (r2 = 0.786, p<.001). MACF1 disruption also resulted in reduction of membrane caveolin 3 levels, and increased levels of membrane PKCα and β1 integrin after TAC, suggesting MACF1 function is important for spatial regulation of several physiologically relevant signaling proteins during hypertrophy. Together, these data identify for the first time, a role for MACF1 in cardiomyocyte microtubule distribution and in adaptation to hemodynamic overload. PMID:24086300

  12. Cold-Adapted Enzymes

    NASA Astrophysics Data System (ADS)

    Georlette, D.; Bentahir, M.; Claverie, P.; Collins, T.; D'amico, S.; Delille, D.; Feller, G.; Gratia, E.; Hoyoux, A.; Lonhienne, T.; Meuwis, M.-a.; Zecchinon, L.; Gerday, Ch.

    In the last few years, increased attention has been focused on enzymes produced by cold-adapted micro-organisms. It has emerged that psychrophilic enzymes represent an extremely powerful tool in both protein folding investigations and for biotechnological purposes. Such enzymes are characterised by an increased thermosensitivity and, most of them, by a higher catalytic efficiency at low and moderate temperatures, when compared to their mesophilic counterparts. The high thermosensitivity probably originates from an increased flexibility of either a selected area of the molecular edifice or the overall protein structure, providing enhanced abilities to undergo conformational changes during catalysis at low temperatures. Structure modelling and recent crystallographic data have allowed to elucidate the structural parameters that could be involved in this higher resilience. It was demonstrated that each psychrophilic enzyme adopts its own adaptive strategy. It appears, moreover, that there is a continuum in the strategy of protein adaptation to temperature, as the previously mentioned structural parameters are implicated in the stability of thermophilic proteins. Additional 3D crystal structures, site-directed and random mutagenesis experiments should now be undertaken to further investigate the stability-flexibility-activity relationship.

  13. Subfamily-specific adaptations in the structures of two penicillin-binding proteins from Mycobacterium tuberculosis

    DOE PAGES

    Prigozhin, Daniil M.; Krieger, Inna V.; Huizar, John P.; ...

    2014-12-31

    Beta-lactam antibiotics target penicillin-binding proteins including several enzyme classes essential for bacterial cell-wall homeostasis. To better understand the functional and inhibitor-binding specificities of penicillin-binding proteins from the pathogen, Mycobacterium tuberculosis, we carried out structural and phylogenetic analysis of two predicted D,D-carboxypeptidases, Rv2911 and Rv3330. Optimization of Rv2911 for crystallization using directed evolution and the GFP folding reporter method yielded a soluble quadruple mutant. Structures of optimized Rv2911 bound to phenylmethylsulfonyl fluoride and Rv3330 bound to meropenem show that, in contrast to the nonspecific inhibitor, meropenem forms an extended interaction with the enzyme along a conserved surface. Phylogenetic analysis shows thatmore » Rv2911 and Rv3330 belong to different clades that emerged in Actinobacteria and are not represented in model organisms such as Escherichia coli and Bacillus subtilis. Clade-specific adaptations allow these enzymes to fulfill distinct physiological roles despite strict conservation of core catalytic residues. The characteristic differences include potential protein-protein interaction surfaces and specificity-determining residues surrounding the catalytic site. Overall, these structural insights lay the groundwork to develop improved beta-lactam therapeutics for tuberculosis.« less

  14. Subfamily-specific adaptations in the structures of two penicillin-binding proteins from Mycobacterium tuberculosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prigozhin, Daniil M.; Krieger, Inna V.; Huizar, John P.

    Beta-lactam antibiotics target penicillin-binding proteins including several enzyme classes essential for bacterial cell-wall homeostasis. To better understand the functional and inhibitor-binding specificities of penicillin-binding proteins from the pathogen, Mycobacterium tuberculosis, we carried out structural and phylogenetic analysis of two predicted D,D-carboxypeptidases, Rv2911 and Rv3330. Optimization of Rv2911 for crystallization using directed evolution and the GFP folding reporter method yielded a soluble quadruple mutant. Structures of optimized Rv2911 bound to phenylmethylsulfonyl fluoride and Rv3330 bound to meropenem show that, in contrast to the nonspecific inhibitor, meropenem forms an extended interaction with the enzyme along a conserved surface. Phylogenetic analysis shows thatmore » Rv2911 and Rv3330 belong to different clades that emerged in Actinobacteria and are not represented in model organisms such as Escherichia coli and Bacillus subtilis. Clade-specific adaptations allow these enzymes to fulfill distinct physiological roles despite strict conservation of core catalytic residues. The characteristic differences include potential protein-protein interaction surfaces and specificity-determining residues surrounding the catalytic site. Overall, these structural insights lay the groundwork to develop improved beta-lactam therapeutics for tuberculosis.« less

  15. The histone-like protein HU has a role in gene expression during the acid adaptation response in Helicobacter pylori.

    PubMed

    Álvarez, Alhejandra; Toledo, Héctor

    2017-08-01

    Gastritis, ulcers, and gastric malignancy have been linked to human gastric epithelial colonization by Helicobacter pylori. Characterization of the mechanisms by which H. pylori adapts to the human stomach environment is of crucial importance to understand H. pylori pathogenesis. In an effort to extend our knowledge of these mechanisms, we used proteomic analysis and qRT-PCR to characterize the role of the histone-like protein HU in the response of H. pylori to low pH. Proteomic analysis revealed that genes involved in chemotaxis, oxidative stress, or metabolism are under control of the HU protein. Also, expression of the virulence factors Ggt and NapA is affected by the null mutation of hup gene both at neutral and acid pH, as evidenced by qRT-PCR analysis. Those results showed that H. pylori gene expression is altered by shift to low pH, thus confirming that acid exposure leads to profound changes in genomic expression, and suggest that the HU protein is a regulator that may help the bacterium adapt to the acid stress. In accordance with previous reports, we found that the HU protein participates in gene expression regulation when the microorganism is exposed to acid stress. Such transcriptional regulation underlies protein accumulation in the H. pylori cell. © 2017 John Wiley & Sons Ltd.

  16. Genomic adaptation of the ISA virus to Salmo salar codon usage.

    PubMed

    Tello, Mario; Vergara, Francisco; Spencer, Eugenio

    2013-07-05

    The ISA virus (ISAV) is an Orthomyxovirus whose genome encodes for at least 10 proteins. Low protein identity and lack of genetic tools have hampered the study of the molecular mechanism behind its virulence. It has been shown that viral codon usage controls several processes such as translational efficiency, folding, tuning of protein expression, antigenicity and virulence. Despite this, the possible role that adaptation to host codon usage plays in virulence and viral evolution has not been studied in ISAV. Intergenomic adaptation between viral and host genomes was calculated using the codon adaptation index score with EMBOSS software and the Kazusa database. Classification of host genes according to GeneOnthology was performed using Blast2go. A non parametric test was applied to determine the presence of significant correlations among CAI, mortality and time. Using the codon adaptation index (CAI) score, we found that the encoding genes for nucleoprotein, matrix protein M1 and antagonist of Interferon I signaling (NS1) are the ISAV genes that are more adapted to host codon usage, in agreement with their requirement for production of viral particles and inactivation of antiviral responses. Comparison to host genes showed that ISAV shares CAI values with less than 0.45% of Salmo salar genes. GeneOntology classification of host genes showed that ISAV genes share CAI values with genes from less than 3% of the host biological process, far from the 14% shown by Influenza A viruses and closer to the 5% shown by Influenza B and C. As well, we identified a positive correlation (p<0.05) between CAI values of a virus and the duration of the outbreak disease in given salmon farms, as well as a weak relationship between codon adaptation values of PB1 and the mortality rates of a set of ISA viruses. Our analysis shows that ISAV is the least adapted viral Salmo salar pathogen and Orthomyxovirus family member less adapted to host codon usage, avoiding the general behavior of

  17. The Surface Layer Homology Domain-Containing Proteins of Alkaliphilic Bacillus pseudofirmus OF4 Play an Important Role in Alkaline Adaptation via Peptidoglycan Synthesis.

    PubMed

    Fujinami, Shun; Ito, Masahiro

    2018-01-01

    It is well known that the Na + cycle and the cell wall are essential for alkaline adaptation of Na + -dependent alkaliphilic Bacillus species. In Bacillus pseudofirmus OF4, surface layer protein A (SlpA), the most abundant protein in the surface layer (S-layer) of the cell wall, is involved in alkaline adaptation, especially under low Na + concentrations. The presence of a large number of genes that encode S-layer homology (SLH) domain-containing proteins has been suggested from the genome sequence of B. pseudofirmus OF4. However, other than SlpA, the functions of SLH domain-containing proteins are not well known. Therefore, a deletion mutant of the csaB gene, required for the retention of SLH domain-containing proteins on the cell wall, was constructed to investigate its physiological properties. The csaB mutant strain of B. pseudofirmus OF4 had a chained morphology and alkaline sensitivity even under a 230 mM Na + concentration at which there is no growth difference between the parental strain and the slpA mutant strain. Ultra-thin section transmission electron microscopy showed that a csaB mutant strain lacked an S-layer part, and its peptidoglycan (PG) layer was disturbed. The slpA mutant strain also lacked an S-layer part, although its PG layer was not disturbed. These results suggested that the surface layer homology domain-containing proteins of B. pseudofirmus OF4 play an important role in alkaline adaptation via peptidoglycan synthesis.

  18. Trichinella spiralis: Adaptation and parasitism

    PubMed Central

    Zarlenga, Dante; Wang, Zhengyuan; Mitreva, Makedonka

    2016-01-01

    Publication of the genome from the clade I organism, Trichinella spiralis, has provided us an avenue to address more holistic problems in parasitology; namely the processes of adaptation and the evolution of parasitism. Parasitism among nematodes has evolved in multiple, independent events. Deciphering processes that drive species diversity and adaptation are keys to understanding parasitism and advancing control strategies. Studies have been put forth on morphological and physiological aspects of parasitism and adaptation in nematodes; however, data is now coming available to investigate adaptation, host switching and parasitism at the genomic level. Herein we compare proteomic data from the clade I parasite, Trichinella spiralis with data from Brugia malayi (clade III), Meloidogyne hapla and Meloidogyne incognita (clade IV), and free-living nematodes belonging to the genera Caenorhabditis and Pristionchus (clade V). We explore changes in protein family birth/death and expansion/reduction over the course of metazoan evolution using Homo sapiens, Drosophila melanogaster and Saccharomyces cerevisiae as out-groups for the phylum Nematoda. We further examine relationships between these changes and the ability and/or result of nematodes adapting to their environments. Data are consistent with gene loss occurring in conjunction with nematode specialization resulting from parasitic worms acclimating to well-defined, environmental niches. We observed evidence for independent, lateral gene transfer events involving conserved genes that may have played a role in the evolution of nematode parasitism. In general, parasitic nematodes gained proteins through duplication and lateral gene transfer, and lost proteins through random mutation and deletions. Data suggest independent acquisition rather than ancestral inheritance among the Nematoda followed by selective gene loss over evolutionary time. Data also show that parasitism and adaptation affected a broad range of proteins

  19. Role of DISC1 interacting proteins in schizophrenia risk from genome-wide analysis of missense SNPs.

    PubMed

    Costas, Javier; Suárez-Rama, Jose Javier; Carrera, Noa; Paz, Eduardo; Páramo, Mario; Agra, Santiago; Brenlla, Julio; Ramos-Ríos, Ramón; Arrojo, Manuel

    2013-11-01

    A balanced translocation affecting DISC1 cosegregates with several psychiatric disorders, including schizophrenia, in a Scottish family. DISC1 is a hub protein of a network of protein-protein interactions involved in multiple developmental pathways within the brain. Gene set-based analysis has been proposed as an alternative to individual analysis of single nucleotide polymorphisms (SNPs) to get information from genome-wide association studies. In this work, we tested for an overrepresentation of the DISC1 interacting proteins within the top results of our ranked list of genes based on our previous genome-wide association study of missense SNPs in schizophrenia. Our data set consisted of 5100 common missense SNPs genotyped in 476 schizophrenic patients and 447 control subjects from Galicia, NW Spain. We used a modification of the Gene Set Enrichment Analysis adapted for SNPs, as implemented in the GenGen software. The analysis detected an overrepresentation of the DISC1 interacting proteins (permuted P-value=0.0158), indicative of the role of this gene set in schizophrenia risk. We identified seven leading-edge genes, MACF1, UTRN, DST, DISC1, KIF3A, SYNE1, and AKAP9, responsible for the overrepresentation. These genes are involved in neuronal cytoskeleton organization and intracellular transport through the microtubule cytoskeleton, suggesting that these processes may be impaired in schizophrenia. © 2013 John Wiley & Sons Ltd/University College London.

  20. DEPLETION OF CELLULAR PROTEIN THIOLS AS AN INDICATOR OF ARYLATION IN ISOLATED TROUT HEPATOCYTES EXPOSED TO 1,4-BENZOQUINONE

    EPA Science Inventory

    A method for the measurement of protein thiols (PrSH), un-reacted as well as oxidized, i.e. dithiothreitol recoverable, was adapted for the determination of PrSH depletion in isolated rainbow trout hepatocytes exposed to an arylating agent, 1,4-benzoquinone (BQ). Toxicant analysi...

  1. Insulin Resistance Is a Risk Factor for Silent Lacunar Infarction.

    PubMed

    Lee, Ji Eun; Shin, Dong Wook; Yun, Jae Moon; Kim, Sang Hyuck; Nam, You-Seon; Cho, BeLong; Lim, Jae-Sung; Jeong, Han-Yeong; Kwon, Hyung-Min; Park, Jin-Ho

    2016-12-01

    This study aims to investigate the association between insulin resistance (IR) and silent lacunar infarction (SLI) in healthy adults. We recruited 2326 healthy Korean adults who took health checkups, including a brain magnetic resonance imaging. SLI was defined as an infarction measuring 0.3 to 1.5 cm in diameter that was localized in the territory of perforating branches of cerebral arteries, as seen in the brain magnetic resonance imaging. The homeostasis model assessment-estimated insulin resistance index was used for IR estimation, and the cutoff value for its diagnosis for Koreans was 2.56. The mean age of the study population was 56.2 years (range, 40-79 years), and 1279 subjects (55.0%) were male. The prevalence of SLI and IR was 8.1% and 18.1%, respectively. In multivariate logistic analysis, after adjusting for traditional SLI-associated risk factors, IR was positively associated with the prevalence of SLI (adjusted odds ratio, 1.69; 95% confidence interval, 1.16-2.46). The proportion of subjects with multiple SLI lesions (≥2) was also higher in the IR (+) group than that in the IR (-) group (4.3% versus 1.7%; P<0.001). In ordered logistic regression, IR was positively associated with an increase in SLI severity (adjusted odds ratio, 1.76; 95% confidence interval, 1.21-2.56). IR is an independent risk factor of SLI presence and its severity in Koreans. Whether improvement of IR might prevent SLI occurrence needs to be addressed by clinical trials. © 2016 American Heart Association, Inc.

  2. Ameliorating Endothelial Mitochondrial Dysfunction Restores Coronary Function via Transient Receptor Potential Vanilloid 1-Mediated Protein Kinase A/Uncoupling Protein 2 Pathway.

    PubMed

    Xiong, Shiqiang; Wang, Peijian; Ma, Liqun; Gao, Peng; Gong, Liuping; Li, Li; Li, Qiang; Sun, Fang; Zhou, Xunmei; He, Hongbo; Chen, Jing; Yan, Zhencheng; Liu, Daoyan; Zhu, Zhiming

    2016-02-01

    Coronary heart disease arising from atherosclerosis is a leading cause of cardiogenic death worldwide. Mitochondria are the principal source of reactive oxygen species (ROS), and defective oxidative phosphorylation by the mitochondrial respiratory chain contributes to ROS generation. Uncoupling protein 2 (UCP2), an adaptive antioxidant defense factor, protects against mitochondrial ROS-induced endothelial dysfunction in atherosclerosis. The activation of transient receptor potential vanilloid 1 (TRPV1) attenuates vascular dysfunction. Therefore, whether TRPV1 activation antagonizes coronary lesions by alleviating endothelial mitochondrial dysfunction and enhancing the activity of the protein kinase A/UCP2 pathway warrants examination. ApoE(-/-), ApoE(-/-)/TRPV1(-/-), and ApoE(-/-)/UCP2(-/-) mice were fed standard chow, a high-fat diet (HFD), or the HFD plus 0.01% capsaicin. HFD intake profoundly impaired coronary vasodilatation and myocardial perfusion and shortened the survival duration of ApoE(-/-) mice. TRPV1 or UCP2 deficiency exacerbated HFD-induced coronary dysfunction and was associated with increased ROS generation and reduced nitric oxide production in the endothelium. The activation of TRPV1 by capsaicin upregulated UCP2 expression via protein kinase A phosphorylation, thereby alleviating endothelial mitochondrial dysfunction and inhibiting mitochondrial ROS generation. In vivo, dietary capsaicin supplementation enhanced coronary relaxation and prolonged the survival duration of HFD-fed ApoE(-/-) mice. These effects were not observed in ApoE(-/-) mice lacking the TRPV1 or UCP2 gene. The upregulation of protein kinase A /UCP2 via TRPV1 activation ameliorates coronary dysfunction and prolongs the lifespan of atherosclerotic mice by ameliorating endothelial mitochondrial dysfunction. Dietary capsaicin supplementation may represent a promising intervention for the primary prevention of coronary heart disease. © 2015 American Heart Association, Inc.

  3. Structural adaptation of extreme halophilic proteins through decrease of conserved hydrophobic contact surface

    PubMed Central

    2011-01-01

    Background Halophiles are extremophilic microorganisms growing optimally at high salt concentrations. There are two strategies used by halophiles to maintain proper osmotic pressure in their cytoplasm: accumulation of molar concentrations of potassium and chloride with extensive adaptation of the intracellular macromolecules ("salt-in" strategy) or biosynthesis and/or accumulation of organic osmotic solutes ("osmolyte" strategy). Our work was aimed at contributing to the understanding of the shared molecular mechanisms of protein haloadaptation through a detailed and systematic comparison of a sample of several three-dimensional structures of halophilic and non-halophilic proteins. Structural differences observed between the "salt-in" and the mesophilic homologous proteins were contrasted to those observed between the "osmolyte" and mesophilic pairs. Results The results suggest that haloadaptation strategy in the presence of molar salt concentration, but not of osmolytes, necessitates a weakening of the hydrophobic interactions, in particular at the level of conserved hydrophobic contacts. Weakening of these interactions counterbalances their strengthening by the presence of salts in solution and may help the structure preventing aggregation and/or loss of function in hypersaline environments. Conclusions Considering the significant increase of biotechnology applications of halophiles, the understanding of halophilicity can provide the theoretical basis for the engineering of proteins of great interest because stable at concentrations of salts that cause the denaturation or aggregation of the majority of macromolecules. PMID:22192175

  4. Strategies of biochemical adaptation for hibernation in a South American marsupial Dromiciops gliroides: 1. Mitogen-activated protein kinases and the cell stress response.

    PubMed

    Wijenayake, Sanoji; Luu, Bryan E; Zhang, Jing; Tessier, Shannon N; Quintero-Galvis, Julian F; Gaitán-Espitia, Juan Diego; Nespolo, Roberto F; Storey, Kenneth B

    2017-12-14

    Hibernation is a period of torpor and heterothermy that is typically associated with a strong reduction in metabolic rate, global suppression of transcription and translation, and upregulation of various genes/proteins that are central to the cellular stress response such as protein kinases, antioxidants, and heat shock proteins. The current study examined cell signaling cascades in hibernating monito del monte, Dromiciops gliroides, a South American marsupial of the Order Microbiotheria. Responses to hibernation by members of the mitogen-activated protein kinase (MAPK) pathways, and their roles in coordinating hibernator metabolism were examined in liver, kidney, heart and brain of control and versus hibernating (4days continuous torpor) D. gliroides. The targets evaluated included key protein kinases in their activated phosphorylated forms (p-ERK/MAPK 1/2, p-MEK1, p-MSK1, p-p38, p-JNK) and related target proteins (p-CREB 2, p-ATF2, p-c-Jun and p-p53). Liver exhibited a strong coordinated response by MAPK members to hibernation with significant increases in protein phosphorylation levels of p-MEK1, p-ERK/MAPK1/2, p-MSK1, p-JNK and target proteins c-Jun, and p-ATF2, all combining to signify a strong activation of MAPK signaling during hibernation. Kidney also showed activation of MAPK cascades with significant increases in p-MEK1, p-ERK/MAPK1/2, p-p38, and p-c-Jun levels in hibernating animals. By contrast, responses by heart and brain indicated reduced MAPK pathway function during torpor with reduced phosphorylation of targets including p-ERK/MAPK 1/2 in both tissues as well as lower p-p38 and p-JNK content in heart. Overall, the data indicate a vital role for MAPK signaling in regulating the cell stress response during marsupial hibernation. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Orion EM-1 Crew Module Adapter Move to Clean Room

    NASA Image and Video Library

    2016-11-29

    Inside the Neil Armstrong Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, the Orion crew module adapter (CMA) for Exploration Mission 1 (EM-1) is in a clean room with protective walls secured around it. The adapter will undergo propellant and environmental control and life support system tube installation and welding. The adapter will connect the Orion crew module to the European Space Agency-provided service module. The Orion spacecraft will launch atop NASA’s Space Launch System rocket on EM-1, its first deep space mission, in late 2018.

  6. Optimizing electrostatic field calculations with the Adaptive Poisson-Boltzmann Solver to predict electric fields at protein-protein interfaces II: explicit near-probe and hydrogen-bonding water molecules.

    PubMed

    Ritchie, Andrew W; Webb, Lauren J

    2014-07-17

    We have examined the effects of including explicit, near-probe solvent molecules in a continuum electrostatics strategy using the linear Poisson-Boltzmann equation with the Adaptive Poisson-Boltzmann Solver (APBS) to calculate electric fields at the midpoint of a nitrile bond both at the surface of a monomeric protein and when docked at a protein-protein interface. Results were compared to experimental vibrational absorption energy measurements of the nitrile oscillator. We examined three methods for selecting explicit water molecules: (1) all water molecules within 5 Å of the nitrile nitrogen; (2) the water molecule closest to the nitrile nitrogen; and (3) any single water molecule hydrogen-bonding to the nitrile. The correlation between absolute field strengths with experimental absorption energies were calculated and it was observed that method 1 was only an improvement for the monomer calculations, while methods 2 and 3 were not significantly different from the purely implicit solvent calculations for all protein systems examined. Upon taking the difference in calculated electrostatic fields and comparing to the difference in absorption frequencies, we typically observed an increase in experimental correlation for all methods, with method 1 showing the largest gain, likely due to the improved absolute monomer correlations using that method. These results suggest that, unlike with quantum mechanical methods, when calculating absolute fields using entirely classical models, implicit solvent is typically sufficient and additional work to identify hydrogen-bonding or nearest waters does not significantly impact the results. Although we observed that a sphere of solvent near the field of interest improved results for relative field calculations, it should not be consider a panacea for all situations.

  7. HIF-1-dependent regulation of lifespan in Caenorhabditis elegans by the acyl-CoA-binding protein MAA-1.

    PubMed

    Shamalnasab, Mehrnaz; Dhaoui, Manel; Thondamal, Manjunatha; Harvald, Eva Bang; Færgeman, Nils J; Aguilaniu, Hugo; Fabrizio, Paola

    2017-07-27

    In yeast, the broadly conserved acyl-CoA-binding protein (ACBP) is a negative regulator of stress resistance and longevity. Here, we have turned to the nematode C. elegans as a model organism in which to determine whether ACBPs play similar roles in multicellular organisms. We systematically inactivated each of the seven C. elegans ACBP paralogs and found that one of them, maa-1 (which encodes membrane-associated ACBP 1), is indeed involved in the regulation of longevity. In fact, loss of maa-1 promotes lifespan extension and resistance to different types of stress. Through genetic and gene expression studies we have demonstrated that HIF-1, a master transcriptional regulator of adaptation to hypoxia, plays a central role in orchestrating the anti-aging response induced by MAA-1 deficiency. This response relies on the activation of molecular chaperones known to contribute to maintenance of the proteome. Our work extends to C. elegans the role of ACBP in aging, implicates HIF-1 in the increase of lifespan of maa-1 -deficient worms, and sheds light on the anti-aging function of HIF-1. Given that both ACBP and HIF-1 are highly conserved, our results suggest the possible involvement of these proteins in the age-associated decline in proteostasis in mammals.

  8. Adaptation in CRISPR-Cas Systems.

    PubMed

    Sternberg, Samuel H; Richter, Hagen; Charpentier, Emmanuelle; Qimron, Udi

    2016-03-17

    Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) proteins constitute an adaptive immune system in prokaryotes. The system preserves memories of prior infections by integrating short segments of foreign DNA, termed spacers, into the CRISPR array in a process termed adaptation. During the past 3 years, significant progress has been made on the genetic requirements and molecular mechanisms of adaptation. Here we review these recent advances, with a focus on the experimental approaches that have been developed, the insights they generated, and a proposed mechanism for self- versus non-self-discrimination during the process of spacer selection. We further describe the regulation of adaptation and the protein players involved in this fascinating process that allows bacteria and archaea to harbor adaptive immunity. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Quantum changes in Helicobacter pylori gene expression accompany host-adaptation

    PubMed Central

    Wise, Michael J.; Khosravi, Yalda; Seow, Shih-Wee; Amoyo, Arlaine A.; Pettersson, Sven; Peters, Fanny; Tay, Chin-Yen; Perkins, Timothy T.; Loke, Mun-Fai; Marshall, Barry J.; Vadivelu, Jamuna

    2017-01-01

    Abstract Helicobacter pylori is a highly successful gastric pathogen. High genomic plasticity allows its adaptation to changing host environments. Complete genomes of H. pylori clinical isolate UM032 and its mice-adapted serial derivatives 298 and 299, generated using both PacBio RS and Illumina MiSeq sequencing technologies, were compared to identify novel elements responsible for host-adaptation. The acquisition of a jhp0562-like allele, which encodes for a galactosyltransferase, was identified in the mice-adapted strains. Our analysis implies a new β-1,4-galactosyltransferase role for this enzyme, essential for Ley antigen expression. Intragenomic recombination between babA and babB genes was also observed. Further, we expanded on the list of candidate genes whose expression patterns have been mediated by upstream homopolymer-length alterations to facilitate host adaption. Importantly, greater than four-fold reduction of mRNA levels was demonstrated in five genes. Among the down-regulated genes, three encode for outer membrane proteins, including BabA, BabB and HopD. As expected, a substantial reduction in BabA protein abundance was detected in mice-adapted strains 298 and 299 via Western analysis. Our results suggest that the expression of Ley antigen and reduced outer membrane protein expressions may facilitate H. pylori colonisation of mouse gastric epithelium. PMID:27803027

  10. Cold-Adapted Influenza and Recombinant Adenovirus Vaccines Induce Cross-Protective Immunity against pH1N1 Challenge in Mice

    PubMed Central

    Soboleski, Mark R.; Gabbard, Jon D.; Price, Graeme E.; Misplon, Julia A.; Lo, Chia-Yun; Perez, Daniel R.; Ye, Jianqiang; Tompkins, S. Mark; Epstein, Suzanne L.

    2011-01-01

    Background The rapid spread of the 2009 H1N1 pandemic influenza virus (pH1N1) highlighted problems associated with relying on strain-matched vaccines. A lengthy process of strain identification, manufacture, and testing is required for current strain-matched vaccines and delays vaccine availability. Vaccines inducing immunity to conserved viral proteins could be manufactured and tested in advance and provide cross-protection against novel influenza viruses until strain-matched vaccines became available. Here we test two prototype vaccines for cross-protection against the recent pandemic virus. Methodology/Principal Findings BALB/c and C57BL/6 mice were intranasally immunized with a single dose of cold-adapted (ca) influenza viruses from 1977 or recombinant adenoviruses (rAd) expressing 1934 nucleoprotein (NP) and consensus matrix 2 (M2) (NP+M2-rAd). Antibodies against the M2 ectodomain (M2e) were seen in NP+M2-rAd immunized BALB/c but not C57BL/6 mice, and cross-reacted with pH1N1 M2e. The ca-immunized mice did not develop antibodies against M2e. Despite sequence differences between vaccine and challenge virus NP and M2e epitopes, extensive cross-reactivity of lung T cells with pH1N1 peptides was detected following immunization. Both ca and NP+M2-rAd immunization protected BALB/c and C57BL/6 mice against challenge with a mouse-adapted pH1N1 virus. Conclusion/Significance Cross-protective vaccines such as NP+M2-rAd and ca virus are effective against pH1N1 challenge within 3 weeks of immunization. Protection was not dependent on recognition of the highly variable external viral proteins and could be achieved with a single vaccine dose. The rAd vaccine was superior to the ca vaccine by certain measures, justifying continued investigation of this experimental vaccine even though ca vaccine is already available. This study highlights the potential for cross-protective vaccines as a public health option early in an influenza pandemic. PMID:21789196

  11. Adaptive behavior in young children with neurofibromatosis type 1.

    PubMed

    Klein-Tasman, Bonita P; Colon, Alina M; Brei, Natalie; van der Fluit, Faye; Casnar, Christina L; Janke, Kelly M; Basel, Donald; Siegel, Dawn H; Walker, Jasmine A

    2013-01-01

    Neurofibromatosis-1 is the most common single gene disorder affecting 1 in 3000. In children, it is associated not only with physical features but also with attention and learning problems. Research has identified a downward shift in intellectual functioning as well, but to date, there are no published studies about the everyday adaptive behavior of children with NF1. In this study, parental reports of adaptive behavior of 61 children with NF1 ages 3 through 8 were compared to an unaffected contrast group (n = 55) that comprised siblings and community members. Significant group differences in adaptive skills were evident and were largely related to group differences in intellectual functioning. In a subsample of children with average-range intellectual functioning, group differences in parent-reported motor skills were apparent even after controlling statistically for group differences in intellectual functioning. The implications of the findings for the care of children with NF1 are discussed.

  12. Superoxide dismutase 1 is positively selected to minimize protein aggregation in great apes.

    PubMed

    Dasmeh, Pouria; Kepp, Kasper P

    2017-08-01

    Positive (adaptive) selection has recently been implied in human superoxide dismutase 1 (SOD1), a highly abundant antioxidant protein with energy signaling and antiaging functions, one of very few examples of direct selection on a human protein product (exon); the molecular drivers of this selection are unknown. We mapped 30 extant SOD1 sequences to the recently established mammalian species tree and inferred ancestors, key substitutions, and signatures of selection during the protein's evolution. We detected elevated substitution rates leading to great apes (Hominidae) at ~1 per 2 million years, significantly higher than in other primates and rodents, although these paradoxically generally evolve much faster. The high evolutionary rate was partly due to relaxation of some selection pressures and partly to distinct positive selection of SOD1 in great apes. We then show that higher stability and net charge and changes at the dimer interface were selectively introduced upon separation from old world monkeys and lesser apes (gibbons). Consequently, human, chimpanzee and gorilla SOD1s have a net charge of -6 at physiological pH, whereas the closely related gibbons and macaques have -3. These features consistently point towards selection against the malicious aggregation effects of elevated SOD1 levels in long-living great apes. The findings mirror the impact of human SOD1 mutations that reduce net charge and/or stability and cause ALS, a motor neuron disease characterized by oxidative stress and SOD1 aggregates and triggered by aging. Our study thus marks an example of direct selection for a particular chemical phenotype (high net charge and stability) in a single human protein with possible implications for the evolution of aging.

  13. The Halophile protein database.

    PubMed

    Sharma, Naveen; Farooqi, Mohammad Samir; Chaturvedi, Krishna Kumar; Lal, Shashi Bhushan; Grover, Monendra; Rai, Anil; Pandey, Pankaj

    2014-01-01

    Halophilic archaea/bacteria adapt to different salt concentration, namely extreme, moderate and low. These type of adaptations may occur as a result of modification of protein structure and other changes in different cell organelles. Thus proteins may play an important role in the adaptation of halophilic archaea/bacteria to saline conditions. The Halophile protein database (HProtDB) is a systematic attempt to document the biochemical and biophysical properties of proteins from halophilic archaea/bacteria which may be involved in adaptation of these organisms to saline conditions. In this database, various physicochemical properties such as molecular weight, theoretical pI, amino acid composition, atomic composition, estimated half-life, instability index, aliphatic index and grand average of hydropathicity (Gravy) have been listed. These physicochemical properties play an important role in identifying the protein structure, bonding pattern and function of the specific proteins. This database is comprehensive, manually curated, non-redundant catalogue of proteins. The database currently contains 59 897 proteins properties extracted from 21 different strains of halophilic archaea/bacteria. The database can be accessed through link. Database URL: http://webapp.cabgrid.res.in/protein/ © The Author(s) 2014. Published by Oxford University Press.

  14. Genetic interactions between diverged alleles of Early heading date 1 (Ehd1) and Heading date 3a (Hd3a)/ RICE FLOWERING LOCUS T1 (RFT1) control differential heading and contribute to regional adaptation in rice (Oryza sativa).

    PubMed

    Zhao, Jing; Chen, Hongyi; Ren, Ding; Tang, Huiwu; Qiu, Rong; Feng, Jinglei; Long, Yunming; Niu, Baixiao; Chen, Danping; Zhong, Tianyu; Liu, Yao-Guang; Guo, Jingxin

    2015-11-01

    Initiation of flowering, also called heading, in rice (Oryza sativa) is determined by the florigens encoded by Heading date 3a (Hd3a) and RICE FLOWERING LOCUS T1 (RFT1). Early heading date 1 (Ehd1) regulates Hd3a and RFT1. However, different rice varieties have diverged alleles of Ehd1 and Hd3a/RFT1 and their genetic interactions remain largely unclear. Here we generated three segregating populations for different combinations of diverged Ehd1 and Hd3a/RFT1 alleles, and analyzed their genetic interactions between these alleles. We demonstrated that, in an ehd1 mutant background, Hd3a was silenced, but RFT1 was expressed (although at lower levels than in plants with a functional Ehd1) under short-day (SD) and long-day (LD) conditions. We identified a nonfunctional RFT1 allele (rft1); the lines carrying homozygous ehd1 and Hd3a/rft1 failed to induce the floral transition under SD and LD conditions. Like Hd3a, RFT1 also interacted with 14-3-3 proteins, the florigen receptors, but a nonfunctional RFT1 with a crucial E105K mutation failed to interact with 14-3-3 proteins. Furthermore, analyses of sequence variation and geographic distribution suggested that functional RFT1 alleles were selected during rice adaptation to high-latitude regions. Our results demonstrate the important roles of RFT1 in rice flowering and regional adaptation. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  15. Amphipathic helical peptides hamper protein-protein interactions of the intrinsically disordered chromatin nuclear protein 1 (NUPR1).

    PubMed

    Santofimia-Castaño, Patricia; Rizzuti, Bruno; Abián, Olga; Velázquez-Campoy, Adrián; Iovanna, Juan L; Neira, José L

    2018-06-01

    NUPR1 is a multifunctional intrinsically disordered protein (IDP) involved, among other functions, in chromatin remodelling, and development of pancreatic ductal adenocarcinoma (PDAC). It interacts with several biomolecules through hydrophobic patches around residues Ala33 and Thr68. The drug trifluoperazine (TFP), which hampers PDAC development in xenografted mice, also binds to those regions. Because of the large size of the hot-spot interface of NUPR1, small molecules could not be adequate to modulate its functions. We explored how amphipathic helical-designed peptides were capable of interacting with wild-type NUPR1 and the Thr68Gln mutant, inhibiting the interaction with NUPR1 protein partners. We used in vitro biophysical techniques (fluorescence, circular dichroism (CD), nuclear magnetic resonance (NMR) and isothermal titration calorimetry (ITC)), in silico studies (docking and molecular dynamics (MD)), and in cellulo protein ligation assays (PLAs) to study the interaction. Peptide dissociation constants towards wild-type NUPR1 were ~ 3 μM, whereas no interaction was observed with the Thr68Gln mutant. Peptides interacted with wild-type NUPR1 residues around Ala33 and residues at the C terminus, as shown by NMR. The computational results clarified the main determinants of the interactions, providing a mechanism for the ligand-capture that explains why peptide binding was not observed for Thr68Gln mutant. Finally, the in cellulo assays indicated that two out of four peptides inhibited the interaction of NUPR1 with the C-terminal region of the Polycomb RING protein 1 (C-RING1B). Designed peptides can be used as lead compounds to inhibit NUPR1 interactions. Peptides may be exploited as drugs to target IDPs. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Three Fusarium oxysporum mitogen-activated protein kinases (MAPKs) have distinct and complementary roles in stress adaptation and cross-kingdom pathogenicity.

    PubMed

    Segorbe, David; Di Pietro, Antonio; Pérez-Nadales, Elena; Turrà, David

    2017-09-01

    Mitogen-activated protein kinase (MAPK) cascades mediate cellular responses to environmental signals. Previous studies in the fungal pathogen Fusarium oxysporum have revealed a crucial role of Fmk1, the MAPK orthologous to Saccharomyces cerevisiae Fus3/Kss1, in vegetative hyphal fusion and plant infection. Here, we genetically dissected the individual and combined contributions of the three MAPKs Fmk1, Mpk1 and Hog1 in the regulation of development, stress response and virulence of F. oxysporum on plant and animal hosts. Mutants lacking Fmk1 or Mpk1 were affected in reactive oxygen species (ROS) homeostasis and impaired in hyphal fusion and aggregation. Loss of Mpk1 also led to increased sensitivity to cell wall and heat stress, which was exacerbated by simultaneous inactivation of Fmk1, suggesting that both MAPKs contribute to cellular adaptation to high temperature, a prerequisite for mammalian pathogens. Deletion of Hog1 caused increased sensitivity to hyperosmotic stress and resulted in partial rescue of the restricted colony growth phenotype of the mpk1Δ mutant. Infection assays on tomato plants and the invertebrate animal host Galleria mellonella revealed distinct and additive contributions of the different MAPKs to virulence. Our results indicate that positive and negative cross-talk between the three MAPK pathways regulates stress adaptation, development and virulence in the cross-kingdom pathogen F. oxysporum. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  17. Mutations in the F-box gene SNEEZY result in decreased arabidopsis GA signaling

    USDA-ARS?s Scientific Manuscript database

    We previously reported that the SLEEPY1 (SLY1) homolog, F-box gene SNEEZY/SLEEPY2 (SNE/SLY2), can partly replace SLY1 in gibberellin (GA) hormone signaling through interaction with DELLAs RGA and GAI. To determine whether SNE normally functions in GA signaling, we characterized the phenotypes of tw...

  18. HIF-1-driven skeletal muscle adaptations to chronic hypoxia: molecular insights into muscle physiology.

    PubMed

    Favier, F B; Britto, F A; Freyssenet, D G; Bigard, X A; Benoit, H

    2015-12-01

    Skeletal muscle is a metabolically active tissue and the major body protein reservoir. Drop in ambient oxygen pressure likely results in a decrease in muscle cells oxygenation, reactive oxygen species (ROS) overproduction and stabilization of the oxygen-sensitive hypoxia-inducible factor (HIF)-1α. However, skeletal muscle seems to be quite resistant to hypoxia compared to other organs, probably because it is accustomed to hypoxic episodes during physical exercise. Few studies have observed HIF-1α accumulation in skeletal muscle during ambient hypoxia probably because of its transient stabilization. Nevertheless, skeletal muscle presents adaptations to hypoxia that fit with HIF-1 activation, although the exact contribution of HIF-2, I kappa B kinase and activating transcription factors, all potentially activated by hypoxia, needs to be determined. Metabolic alterations result in the inhibition of fatty acid oxidation, while activation of anaerobic glycolysis is less evident. Hypoxia causes mitochondrial remodeling and enhanced mitophagy that ultimately lead to a decrease in ROS production, and this acclimatization in turn contributes to HIF-1α destabilization. Likewise, hypoxia has structural consequences with muscle fiber atrophy due to mTOR-dependent inhibition of protein synthesis and transient activation of proteolysis. The decrease in muscle fiber area improves oxygen diffusion into muscle cells, while inhibition of protein synthesis, an ATP-consuming process, and reduction in muscle mass decreases energy demand. Amino acids released from muscle cells may also have protective and metabolic effects. Collectively, these results demonstrate that skeletal muscle copes with the energetic challenge imposed by O2 rarefaction via metabolic optimization.

  19. HIV-1 Tat addresses dendritic cells to induce a predominant Th1-type adaptive immune response that appears prevalent in the asymptomatic stage of infection.

    PubMed

    Fanales-Belasio, Emanuele; Moretti, Sonia; Fiorelli, Valeria; Tripiciano, Antonella; Pavone Cossut, Maria R; Scoglio, Arianna; Collacchi, Barbara; Nappi, Filomena; Macchia, Iole; Bellino, Stefania; Francavilla, Vittorio; Caputo, Antonella; Barillari, Giovanni; Magnani, Mauro; Laguardia, Maria Elena; Cafaro, Aurelio; Titti, Fausto; Monini, Paolo; Ensoli, Fabrizio; Ensoli, Barbara

    2009-03-01

    Tat is an early regulatory protein that plays a major role in human HIV-1 replication and AIDS pathogenesis, and therefore, it represents a key target for the host immune response. In natural infection, however, Abs against Tat are produced only by a small fraction (approximately 20%) of asymptomatic individuals and are rarely seen in progressors, suggesting that Tat may possess properties diverting the adaptive immunity from generating humoral responses. Here we show that a Th1-type T cell response against Tat is predominant over a Th2-type B cell response in natural HIV-1 infection. This is likely due to the capability of Tat to selectively target and very efficiently enter CD1a-expressing monocyte-derived dendritic cells (MDDC), which represent a primary target for the recognition and response to virus Ag. Upon cellular uptake, Tat induces MDDC maturation and Th1-associated cytokines and beta-chemokines production and polarizes the immune response in vitro to the Th1 pattern through the transcriptional activation of TNF-alpha gene expression. This requires the full conservation of Tat transactivation activity since neither MDDC maturation nor TNF-alpha production are found with either an oxidized Tat, which does not enter MDDC, or with a Tat protein mutated in the cysteine-rich region (cys22 Tat), which enters MDDC as the wild-type Tat but is transactivation silent. Consistently with these data, inoculation of monkeys with the native wild-type Tat induced a predominant Th1 response, whereas cys22 Tat generated mostly Th2 responses, therefore providing evidence that Tat induces a predominant Th1 polarized adaptive immune response in the host.

  20. Preparation and characterization of human recombinant protein 1/Clara cell M(r) 10,000 protein.

    PubMed

    Okutani, R; Itoh, Y; Yamada, T; Yamaguchi, T; Singh, G; Yagisawa, H; Kawai, T

    1996-09-01

    Protein 1, which is identical to human Clara cell M(r) 10(4) protein, is a homodimeric, low molecular mass protein (M(r) 14,000) and an effective inhibitor of phospholipase A2 activity. We have expressed this protein in E. coli and characterized its physiochemical and biological properties. Using a pET expression system, about 1.7 mg of purified recombinant protein 1 was obtained from 250 ml of E. coli culture. The amino-terminal sequence of recombinant protein 1 up to the 20th residue was identical to that of native protein 1 except for an extra methionine at the amino-terminus. On reversed-phase HPLC, recombinant protein 1 eluted at the same retention time as native protein 1. The dose-response curves of recombinant protein 1 and native protein 1 in an enzyme-linked immunosorbent assay for protein 1 were identical. Recombinant protein 1 inhibited both porcine pancreas and cobra venom phospholipase A2 activities. These results indicated that recombinant protein 1 is structurally and biologically identical to native protein 1. We found that recombinant protein 1 also inhibits phosphatidylinositol-specific phospholipase C activity.

  1. Loss of PINK1 attenuates HIF-1α induction by preventing 4E-BP1-dependent switch in protein translation under hypoxia.

    PubMed

    Lin, William; Wadlington, Natasha L; Chen, Linan; Zhuang, Xiaoxi; Brorson, James R; Kang, Un Jung

    2014-02-19

    Parkinson's disease (PD) has multiple proposed etiologies with implication of abnormalities in cellular homeostasis ranging from proteostasis to mitochondrial dynamics to energy metabolism. PINK1 mutations are associated with familial PD and here we discover a novel PINK1 mechanism in cellular stress response. Using hypoxia as a physiological trigger of oxidative stress and disruption in energy metabolism, we demonstrate that PINK1(-/-) mouse cells exhibited significantly reduced induction of HIF-1α protein, HIF-1α transcriptional activity, and hypoxia-responsive gene upregulation. Loss of PINK1 impairs both hypoxia-induced 4E-BP1 dephosphorylation and increase in the ratio of internal ribosomal entry site (IRES)-dependent to cap-dependent translation. These data suggest that PINK1 mediates adaptive responses by activating IRES-dependent translation, and the impairments in translation and the HIF-1α pathway may contribute to PINK1-associated PD pathogenesis that manifests under cellular stress.

  2. Role of Ingested Amino Acids and Protein in the Promotion of Resistance Exercise–Induced Muscle Protein Anabolism123

    PubMed Central

    Rasmussen, Blake B

    2016-01-01

    The goal of this critical review is to comprehensively assess the evidence for the molecular, physiologic, and phenotypic skeletal muscle responses to resistance exercise (RE) combined with the nutritional intervention of protein and/or amino acid (AA) ingestion in young adults. We gathered the literature regarding the translational response in human skeletal muscle to acute exposure to RE and protein/AA supplements and the literature describing the phenotypic skeletal muscle adaptation to RE and nutritional interventions. Supplementation of protein/AAs with RE exhibited clear protein dose–dependent effects on translational regulation (protein synthesis) through mammalian target of rapamycin complex 1 (mTORC1) signaling, which was most apparent through increases in p70 ribosomal protein S6 kinase 1 (S6K1) phosphorylation, compared with postexercise recovery in the fasted or carbohydrate-fed state. These acute findings were critically tested via long-term exposure to RE training (RET) and protein/AA supplementation, and it was determined that a diminishing protein/AA supplement effect occurs over a prolonged exposure stimulus after exercise training. Furthermore, we found that protein/AA supplements, combined with RET, produced a positive, albeit minor, effect on the promotion of lean mass growth (when assessed in >20 participants/treatment); a negligible effect on muscle mass; and a negligible to no additional effect on strength. A potential concern we discovered was that the majority of the exercise training studies were underpowered in their ability to discern effects of protein/AA supplementation. Regardless, even when using optimal methodology and large sample sizes, it is clear that the effect size for protein/AA supplementation is low and likely limited to a subset of individuals because the individual variability is high. With regard to nutritional intakes, total protein intake per day, rather than protein timing or quality, appears to be more of a factor

  3. A single R36Q mutation in the matrix protein of pigeon paramyxovirus type 1 reduces virus replication and shedding in pigeons.

    PubMed

    Xu, Haixu; Song, Qingqing; Zhu, Jie; Liu, Jiajia; Cheng, Xin; Hu, Shunlin; Wu, Shuang; Wang, Xiaoquan; Liu, Xiaowen; Liu, Xiufan

    2016-07-01

    Pigeon paramyxovirus type 1 (PPMV-1) is considered an antigenic and variant of avian paramyxovirus type 1 (APMV-1) that has adapted to pigeons as hosts. However, how this host-specific adaption of PPMV-1 is related to its biological characteristics is unknown. In this study, seven unique amino acids in PPMV-1 that are not present in other APMV-1 strains (n = 39 versus n = 106) were identified. R36 of the M protein was found to be not only a unique amino acid but also a positive-selection site. To investigate the role of R36 in host adaptation, a recombinant PPMV-1 with R36Q mutation was constructed. Our results indicated that the an R36Q mutation significantly attenuates pathogenicity in chickens, viral growth in both chicken embryo fibroblasts (CEFs) and pigeon embryo fibroblasts (PEFs), and virus replication and shedding in pigeons in comparison with the wild-type virus, suggesting that R36 is a key residue that evolved during the adaptation of PPMV-1 in pigeons.

  4. Light-stimulated Production of a Chloroplast-localized System for Protein Synthesis in Euglena gracilis1

    PubMed Central

    Reger, Bonnie J.; Smillie, R. M.; Fuller, R. C.

    1972-01-01

    Chloroplasts and proplastids isolated respectively from autotrophic and dark-adapted cells of Euglena gracilis strain Z incorporated 14C-l-leucine into protein. In each case the incorporation was inhibited by chloramphenicol (50% inhibition at about 5 μg/ml for chloroplasts and 30 μg/ml for proplastids), but not appreciably by cycloheximide at concentrations up to 200 μg/ml. Chloroplasts from autotrophic cells incorporated leucine into protein at rates of about 10 pg leucine per mg RNA in one minute, but isolated proplastids were only 5 to 10% as active. When dark-adapted cells were illuminated there was little increase in the activity of the chloroplast fraction during the first 12 hr. Between 12 and 24 hr, when there was a rapid increase in the rate of synthesis of chlorophyll, the capacity of the chloroplast fraction for protein synthesis increased markedly. Suppression of the formation of a chloroplast-localized system for protein synthesis by treating the cells with chloramphenicol and the lack of such an effect with cycloheximide suggests that certain of the proteins which form part of a functional chloroplast system for protein synthesis are themselves synthesized within the chloroplasts. PMID:16658126

  5. Improved crystallization and diffraction of caffeine-induced death suppressor protein 1 (Cid1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yates, Luke A., E-mail: luke@strubi.ox.ac.uk; Durrant, Benjamin P.; Barber, Michael

    The use of truncation and RNA-binding mutations of caffeine induced death suppressor protein 1 (Cid1) as a means to enhance crystallogenesis leading to an improvement of X-ray diffraction resolution by 1.5 Å is reported. The post-transcriptional addition of uridines to the 3′-end of RNAs is an important regulatory process that is critical for coding and noncoding RNA stability. In fission yeast and metazoans this untemplated 3′-uridylylation is catalysed by a single family of terminal uridylyltransferases (TUTs) whose members are adapted to specific RNA targets. In Schizosaccharomyces pombe the TUT Cid1 is responsible for the uridylylation of polyadenylated mRNAs, targeting themmore » for destruction. In metazoans, the Cid1 orthologues ZCCHC6 and ZCCHC11 uridylate histone mRNAs, targeting them for degradation, but also uridylate microRNAs, altering their maturation. Cid1 has been studied as a model TUT that has provided insights into the larger and more complex metazoan enzyme system. In this paper, two strategies are described that led to improvements both in the crystallogenesis of Cid1 and in the resolution of diffraction by ∼1.5 Å. These advances have allowed high-resolution crystallo@@graphic studies of this TUT system to be initiated.« less

  6. The deca-GX3 proteins Yae1-Lto1 function as adaptors recruiting the ABC protein Rli1 for iron-sulfur cluster insertion

    PubMed Central

    Paul, Viktoria Désirée; Mühlenhoff, Ulrich; Stümpfig, Martin; Seebacher, Jan; Kugler, Karl G; Renicke, Christian; Taxis, Christof; Gavin, Anne-Claude; Pierik, Antonio J; Lill, Roland

    2015-01-01

    Cytosolic and nuclear iron-sulfur (Fe-S) proteins are involved in many essential pathways including translation and DNA maintenance. Their maturation requires the cytosolic Fe-S protein assembly (CIA) machinery. To identify new CIA proteins we employed systematic protein interaction approaches and discovered the essential proteins Yae1 and Lto1 as binding partners of the CIA targeting complex. Depletion of Yae1 or Lto1 results in defective Fe-S maturation of the ribosome-associated ABC protein Rli1, but surprisingly no other tested targets. Yae1 and Lto1 facilitate Fe-S cluster assembly on Rli1 in a chain of binding events. Lto1 uses its conserved C-terminal tryptophan for binding the CIA targeting complex, the deca-GX3 motifs in both Yae1 and Lto1 facilitate their complex formation, and Yae1 recruits Rli1. Human YAE1D1 and the cancer-related ORAOV1 can replace their yeast counterparts demonstrating evolutionary conservation. Collectively, the Yae1-Lto1 complex functions as a target-specific adaptor that recruits apo-Rli1 to the generic CIA machinery. DOI: http://dx.doi.org/10.7554/eLife.08231.001 PMID:26182403

  7. Plant natriuretic peptides induce proteins diagnostic for an adaptive response to stress.

    PubMed

    Turek, Ilona; Marondedze, Claudius; Wheeler, Janet I; Gehring, Chris; Irving, Helen R

    2014-01-01

    In plants, structural and physiological evidence has suggested the presence of biologically active natriuretic peptides (PNPs). PNPs are secreted into the apoplast, are systemically mobile and elicit a range of responses signaling via cGMP. The PNP-dependent responses include tissue specific modifications of cation transport and changes in stomatal conductance and the photosynthetic rate. PNP also has a critical role in host defense responses. Surprisingly, PNP-homologs are produced by several plant pathogens during host colonization suppressing host defense responses. Here we show that a synthetic peptide representing the biologically active fragment of the Arabidopsis thaliana PNP (AtPNP-A) induces the production of reactive oxygen species in suspension-cultured A. thaliana (Col-0) cells. To identify proteins whose expression changes in an AtPNP-A dependent manner, we undertook a quantitative proteomic approach, employing tandem mass tag (TMT) labeling, to reveal temporal responses of suspension-cultured cells to 1 nM and 10 pM PNP at two different time-points post-treatment. Both concentrations yield a distinct differential proteome signature. Since only the higher (1 nM) concentration induces a ROS response, we conclude that the proteome response at the lower concentration reflects a ROS independent response. Furthermore, treatment with 1 nM PNP results in an over-representation of the gene ontology (GO) terms "oxidation-reduction process," "translation" and "response to salt stress" and this is consistent with a role of AtPNP-A in the adaptation to environmental stress conditions.

  8. Protein promiscuity: drug resistance and native functions--HIV-1 case.

    PubMed

    Fernández, Ariel; Tawfik, Dan S; Berkhout, Ben; Sanders, Rogier; Kloczkowski, Andrzej; Sen, Taner; Jernigan, Bob

    2005-06-01

    The association of a drug with its target protein has the effect of blocking the protein activity and is termed a promiscuous function to distinguish from the protein's native function (Tawfik and associates, Nat. Genet. 37, 73-6, 2005). Obviously, a protein has not evolved naturally for drug association or drug resistance. Promiscuous protein functions exhibit unique traits of evolutionary adaptability, or evolvability, which is dependent on the induction of novel phenotypic traits by a small number of mutations. These mutations might have small effects on native functions, but large effects on promiscuous function; for example, an evolving protein could become increasingly drug resistant while maintaining its original function. Ariel Fernandez, in his opinion piece, notes that drug-binding "promiscuity" can hardly be dissociated from native functions; a dominant approach to drug discovery is the protein-native-substrate transition-state mimetic strategy. Thus, man-made ligands (e.g. drugs) have been successfully crafted to restrain enzymatic activity by focusing on the very same structural features that determine the native function. Using the successful inhibition of HIV-1 protease as an example, Fernandez illustrates how drug designers have employed naturally evolved features of the protein to suppress its activity. Based on these arguments, he dismisses the notion that drug binding is quintessentially promiscuous, even though in principle, proteins did not evolve to associate with man made ligands. In short, Fernandez argues that there may not be separate protein domains that one could term promiscuous domains. While acknowledging that drugs may bind promiscuously or in a native-like manner a la Fernandez, Tawfik maintains the role of evolutionary adaptation, even when a drug binds native-like. In the case of HIV-1 protease, drugs bind natively, and the initial onset of mutations results in drug resistance in addition to a dramatic decline in enzymatic

  9. Genomic adaptation of the ISA virus to Salmo salar codon usage

    PubMed Central

    2013-01-01

    Background The ISA virus (ISAV) is an Orthomyxovirus whose genome encodes for at least 10 proteins. Low protein identity and lack of genetic tools have hampered the study of the molecular mechanism behind its virulence. It has been shown that viral codon usage controls several processes such as translational efficiency, folding, tuning of protein expression, antigenicity and virulence. Despite this, the possible role that adaptation to host codon usage plays in virulence and viral evolution has not been studied in ISAV. Methods Intergenomic adaptation between viral and host genomes was calculated using the codon adaptation index score with EMBOSS software and the Kazusa database. Classification of host genes according to GeneOnthology was performed using Blast2go. A non parametric test was applied to determine the presence of significant correlations among CAI, mortality and time. Results Using the codon adaptation index (CAI) score, we found that the encoding genes for nucleoprotein, matrix protein M1 and antagonist of Interferon I signaling (NS1) are the ISAV genes that are more adapted to host codon usage, in agreement with their requirement for production of viral particles and inactivation of antiviral responses. Comparison to host genes showed that ISAV shares CAI values with less than 0.45% of Salmo salar genes. GeneOntology classification of host genes showed that ISAV genes share CAI values with genes from less than 3% of the host biological process, far from the 14% shown by Influenza A viruses and closer to the 5% shown by Influenza B and C. As well, we identified a positive correlation (p<0.05) between CAI values of a virus and the duration of the outbreak disease in given salmon farms, as well as a weak relationship between codon adaptation values of PB1 and the mortality rates of a set of ISA viruses. Conclusions Our analysis shows that ISAV is the least adapted viral Salmo salar pathogen and Orthomyxovirus family member less adapted to host codon

  10. Origins of Allostery and Evolvability in Proteins: A Case Study.

    PubMed

    Raman, Arjun S; White, K Ian; Ranganathan, Rama

    2016-07-14

    Proteins display the capacity for adaptation to new functions, a property critical for evolvability. But what structural principles underlie the capacity for adaptation? Here, we show that adaptation to a physiologically distinct class of ligand specificity in a PSD95, DLG1, ZO-1 (PDZ) domain preferentially occurs through class-bridging intermediate mutations located distant from the ligand-binding site. These mutations provide a functional link between ligand classes and demonstrate the principle of "conditional neutrality" in mediating evolutionary adaptation. Structures show that class-bridging mutations work allosterically to open up conformational plasticity at the active site, permitting novel functions while retaining existing function. More generally, the class-bridging phenotype arises from mutations in an evolutionarily conserved network of coevolving amino acids in the PDZ family (the sector) that connects the active site to distant surface sites. These findings introduce the concept that allostery in proteins could have its origins not in protein function but in the capacity to adapt. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. NAD+/NADH and skeletal muscle mitochondrial adaptations to exercise

    PubMed Central

    White, Amanda T.

    2012-01-01

    The pyridine nucleotides, NAD+ and NADH, are coenzymes that provide oxidoreductive power for the generation of ATP by mitochondria. In skeletal muscle, exercise perturbs the levels of NAD+, NADH, and consequently, the NAD+/NADH ratio, and initial research in this area focused on the contribution of redox control to ATP production. More recently, numerous signaling pathways that are sensitive to perturbations in NAD+(H) have come to the fore, as has an appreciation for the potential importance of compartmentation of NAD+(H) metabolism and its subsequent effects on various signaling pathways. These pathways, which include the sirtuin (SIRT) proteins SIRT1 and SIRT3, the poly(ADP-ribose) polymerase (PARP) proteins PARP1 and PARP2, and COOH-terminal binding protein (CtBP), are of particular interest because they potentially link changes in cellular redox state to both immediate, metabolic-related changes and transcriptional adaptations to exercise. In this review, we discuss what is known, and not known, about the contribution of NAD+(H) metabolism and these aforementioned proteins to mitochondrial adaptations to acute and chronic endurance exercise. PMID:22436696

  12. P300 as a measure of processing capacity in auditory and visual domains in Specific Language Impairment

    PubMed Central

    Evans, Julia L.; Pollak, Seth D.

    2011-01-01

    This study examined the electrophysiological correlates of auditory and visual working memory in children with Specific Language Impairments (SLI). Children with SLI and age-matched controls (11;9 – 14;10) completed visual and auditory working memory tasks while event-related potentials (ERPs) were recorded. In the auditory condition, children with SLI performed similarly to controls when the memory load was kept low (1-back memory load). As expected, when demands for auditory working memory were higher, children with SLI showed decreases in accuracy and attenuated P3b responses. However, children with SLI also evinced difficulties in the visual working memory tasks. In both the low (1-back) and high (2-back) memory load conditions, P3b amplitude was significantly lower for the SLI as compared to CA groups. These data suggest a domain-general working memory deficit in SLI that is manifested across auditory and visual modalities. PMID:21316354

  13. HIF-1–dependent regulation of lifespan in Caenorhabditis elegans by the acyl-CoA–binding protein MAA-1

    PubMed Central

    Shamalnasab, Mehrnaz; Dhaoui, Manel; Thondamal, Manjunatha; Harvald, Eva Bang; Færgeman, Nils J.; Aguilaniu, Hugo; Fabrizio, Paola

    2017-01-01

    In yeast, the broadly conserved acyl-CoA–binding protein (ACBP) is a negative regulator of stress resistance and longevity. Here, we have turned to the nematode C. elegans as a model organism in which to determine whether ACBPs play similar roles in multicellular organisms. We systematically inactivated each of the seven C. elegans ACBP paralogs and found that one of them, maa-1 (which encodes membrane-associated ACBP 1), is indeed involved in the regulation of longevity. In fact, loss of maa-1 promotes lifespan extension and resistance to different types of stress. Through genetic and gene expression studies we have demonstrated that HIF-1, a master transcriptional regulator of adaptation to hypoxia, plays a central role in orchestrating the anti-aging response induced by MAA-1 deficiency. This response relies on the activation of molecular chaperones known to contribute to maintenance of the proteome. Our work extends to C. elegans the role of ACBP in aging, implicates HIF-1 in the increase of lifespan of maa-1 –deficient worms, and sheds light on the anti-aging function of HIF-1. Given that both ACBP and HIF-1 are highly conserved, our results suggest the possible involvement of these proteins in the age-associated decline in proteostasis in mammals. PMID:28758895

  14. Sperm Lysozyme-Like Protein 1 (SLLP1), an intra-acrosomal oolemmal-binding sperm protein, reveals filamentous organization in protein crystal form

    PubMed Central

    Zheng, Heping; Mandal, Arabinda; Shumilin, Igor A.; Chordia, Mahendra D.; Panneerdoss, Subbarayalu; Herr, John C.; Minor, Wladek

    2016-01-01

    Sperm Lysozyme-Like Protein 1 (SLLP1) is one of the lysozyme-like proteins predominantly expressed in mammalian testes that lacks bacteriolytic activity, localizes in the sperm acrosome, and exhibits high affinity for an oolemmal receptor, SAS1B. The crystal structure of mouse SLLP1 (mSLLP1) was determined at 2.15Å resolution. mSLLP1 monomer adopts a structural fold similar to that of chicken/mouse lysozymes retaining all four canonical disulfide bonds. mSLLP1 is distinct from c-lysozyme by substituting two essential catalytic residues (E35T/D52N), exhibiting different surface charge distribution, and by forming helical filaments approximately 75Å in diameter with a 25Å central pore comprised of six monomers per helix turn repeating every 33Å. Cross-species alignment of all reported SLLP1 sequences revealed a set of invariant surface regions comprising a characteristic fingerprint uniquely identifying SLLP1 from other c-lysozyme family members. The fingerprint surface regions reside around the lips of the putative glycan binding groove including three polar residues (Y33/E46/H113). A flexible salt bridge (E46-R61) was observed covering the glycan binding groove. The conservation of these regions may be linked to their involvement in oolemmal protein binding. Interaction between SLLP1 monomer and its oolemmal receptor SAS1B was modeled using protein-protein docking algorithms, utilizing the SLLP1 fingerprint regions along with the SAS1B conserved surface regions. This computational model revealed complementarity between the conserved SLLP1/SAS1B interacting surfaces supporting the experimentally-observed SLLP1/SAS1B interaction involved in fertilization. PMID:26198801

  15. The Effect of Smoking on Muscle Adaptation to Exercise Stress

    DTIC Science & Technology

    2011-12-01

    adaptation in smokers: protein synthesis and degradation, regeneration, inflammation, and angiogenesis. We used a knee extension eccentric exercise...PDPK1 (PDK1) and PPP3CA, a subunit of calcineurin. PDPK1 is an upstream regulator of the AKT protein synthesis pathway that is activated during muscle...increasing muscle pain, cramping, and swelling of the leg. The subject reported no change in urine color. The subject was initially advised to attempt

  16. Flight Validation of a Metrics Driven L(sub 1) Adaptive Control

    NASA Technical Reports Server (NTRS)

    Dobrokhodov, Vladimir; Kitsios, Ioannis; Kaminer, Isaac; Jones, Kevin D.; Xargay, Enric; Hovakimyan, Naira; Cao, Chengyu; Lizarraga, Mariano I.; Gregory, Irene M.

    2008-01-01

    The paper addresses initial steps involved in the development and flight implementation of new metrics driven L1 adaptive flight control system. The work concentrates on (i) definition of appropriate control driven metrics that account for the control surface failures; (ii) tailoring recently developed L1 adaptive controller to the design of adaptive flight control systems that explicitly address these metrics in the presence of control surface failures and dynamic changes under adverse flight conditions; (iii) development of a flight control system for implementation of the resulting algorithms onboard of small UAV; and (iv) conducting a comprehensive flight test program that demonstrates performance of the developed adaptive control algorithms in the presence of failures. As the initial milestone the paper concentrates on the adaptive flight system setup and initial efforts addressing the ability of a commercial off-the-shelf AP with and without adaptive augmentation to recover from control surface failures.

  17. The heterotrimeric G protein1 interacts with the catalytic subunit of protein phosphatase 1 and modulates G protein-coupled receptor signaling in platelets.

    PubMed

    Pradhan, Subhashree; Khatlani, Tanvir; Nairn, Angus C; Vijayan, K Vinod

    2017-08-11

    Thrombosis is caused by the activation of platelets at the site of ruptured atherosclerotic plaques. This activation involves engagement of G protein-coupled receptors (GPCR) on platelets that promote their aggregation. Although it is known that protein kinases and phosphatases modulate GPCR signaling, how serine/threonine phosphatases integrate with G protein signaling pathways is less understood. Because the subcellular localization and substrate specificity of the catalytic subunit of protein phosphatase 1 (PP1c) is dictated by PP1c-interacting proteins, here we sought to identify new PP1c interactors. GPCRs signal via the canonical heterotrimeric Gα and Gβγ subunits. Using a yeast two-hybrid screen, we discovered an interaction between PP1cα and the heterotrimeric G protein1 subunit. Co-immunoprecipitation studies with epitope-tagged PP1c and Gβ 1 revealed that Gβ 1 interacts with the PP1c α, β, and γ1 isoforms. Purified PP1c bound to recombinant Gβ 1 -GST protein, and PP1c co-immunoprecipitated with Gβ 1 in unstimulated platelets. Thrombin stimulation of platelets induced the dissociation of the PP1c-Gβ 1 complex, which correlated with an association of PP1c with phospholipase C β3 (PLCβ3), along with a concomitant dephosphorylation of the inhibitory Ser 1105 residue in PLCβ3. siRNA-mediated depletion of GNB1 (encoding Gβ 1 ) in murine megakaryocytes reduced protease-activated receptor 4, activating peptide-induced soluble fibrinogen binding. Thrombin-induced aggregation was decreased in PP1cα -/- murine platelets and in human platelets treated with a small-molecule inhibitor of Gβγ. Finally, disruption of PP1c-Gβ 1 complexes with myristoylated Gβ 1 peptides containing the PP1c binding site moderately decreased thrombin-induced human platelet aggregation. These findings suggest that Gβ 1 protein enlists PP1c to modulate GPCR signaling in platelets.

  18. DEAR1, a transcriptional repressor of DREB protein that mediates plant defense and freezing stress responses in Arabidopsis.

    PubMed

    Tsutsui, Tomokazu; Kato, Wataru; Asada, Yutaka; Sako, Kaori; Sato, Takeo; Sonoda, Yutaka; Kidokoro, Satoshi; Yamaguchi-Shinozaki, Kazuko; Tamaoki, Masanori; Arakawa, Keita; Ichikawa, Takanari; Nakazawa, Miki; Seki, Motoaki; Shinozaki, Kazuo; Matsui, Minami; Ikeda, Akira; Yamaguchi, Junji

    2009-11-01

    Plants have evolved intricate mechanisms to respond and adapt to a wide variety of biotic and abiotic stresses in their environment. The Arabidopsis DEAR1 (DREB and EAR motif protein 1; At3g50260) gene encodes a protein containing significant homology to the DREB1/CBF (dehydration-responsive element binding protein 1/C-repeat binding factor) domain and the EAR (ethylene response factor-associated amphiphilic repression) motif. We show here that DEAR1 mRNA accumulates in response to both pathogen infection and cold treatment. Transgenic Arabidopsis overexpressing DEAR1 (DEAR1ox) showed a dwarf phenotype and lesion-like cell death, together with constitutive expression of PR genes and accumulation of salicylic acid. DEAR1ox also showed more limited P. syringae pathogen growth compared to wild-type, consistent with an activated defense phenotype. In addition, transient expression experiments revealed that the DEAR1 protein represses DRE/CRT (dehydration-responsive element/C-repeat)-dependent transcription, which is regulated by low temperature. Furthermore, the induction of DREB1/CBF family genes by cold treatment was suppressed in DEAR1ox, leading to a reduction in freezing tolerance. These results suggest that DEAR1 has an upstream regulatory role in mediating crosstalk between signaling pathways for biotic and abiotic stress responses.

  19. A model-based study delineating the roles of the two signaling branches of Saccharomyces cerevisiae, Sho1 and Sln1, during adaptation to osmotic stress

    NASA Astrophysics Data System (ADS)

    Parmar, J. H.; Bhartiya, Sharad; Venkatesh, K. V.

    2009-09-01

    Adaptation to osmotic shock in Saccharomyces cerevisiae is brought about by the activation of two independent signaling pathways, Sho1 and Sln1, which in turn trigger the high osmolarity glycerol (HOG) pathway. The HOG pathway thereby activates the transcription of Gpd1p, an enzyme necessary to synthesize glycerol. The production of glycerol brings about a change in the intracellular osmolarity leading to adaptation. We present a detailed mechanistic model for the response of the yeast to hyperosmotic shock. The model integrates the two branches, Sho1 and Sln1, of the HOG pathway and also includes the mitogen-activated protein kinase cascade, gene regulation and metabolism. Model simulations are consistent with known experimental results for wild-type strain, and Ste11Δ and Ssk1Δ mutant strains subjected to osmotic stress. Simulation results predict that both the branches contribute to the overall wild-type response for moderate osmotic shock, while under severe osmotic shock, the cell responds mainly through the Sln1 branch. The analysis shows that the Sln1 branch helps the cell in preventing cross-talk to other signaling pathways by inhibiting ste11ste50 activation and also by increasing the phosphorylation of Ste50. We show that the negative feedbacks to the Sho1 branch must be faster than those to the Sln1 branch to simultaneously achieve pathway specificity and adaptation during hyperosmotic shock. Sensitivity analysis revealed that the presence of both branches imparts robust behavior to the cell under osmoadaptation to perturbations.

  20. Sphingosine-1-Phosphate Lyase Deficient Cells as a Tool to Study Protein Lipid Interactions

    PubMed Central

    Gerl, Mathias J.; Bittl, Verena; Kirchner, Susanne; Sachsenheimer, Timo; Brunner, Hanna L.; Lüchtenborg, Christian; Özbalci, Cagakan; Wiedemann, Hannah; Wegehingel, Sabine; Nickel, Walter; Haberkant, Per; Schultz, Carsten; Krüger, Marcus; Brügger, Britta

    2016-01-01

    Cell membranes contain hundreds to thousands of individual lipid species that are of structural importance but also specifically interact with proteins. Due to their highly controlled synthesis and role in signaling events sphingolipids are an intensely studied class of lipids. In order to investigate their metabolism and to study proteins interacting with sphingolipids, metabolic labeling based on photoactivatable sphingoid bases is the most straightforward approach. In order to monitor protein-lipid-crosslink products, sphingosine derivatives containing a reporter moiety, such as a radiolabel or a clickable group, are used. In normal cells, degradation of sphingoid bases via action of the checkpoint enzyme sphingosine-1-phosphate lyase occurs at position C2-C3 of the sphingoid base and channels the resulting hexadecenal into the glycerolipid biosynthesis pathway. In case the functionalized sphingosine looses the reporter moiety during its degradation, specificity towards sphingolipid labeling is maintained. In case degradation of a sphingosine derivative does not remove either the photoactivatable or reporter group from the resulting hexadecenal, specificity towards sphingolipid labeling can be achieved by blocking sphingosine-1-phosphate lyase activity and thus preventing sphingosine derivatives to be channeled into the sphingolipid-to-glycerolipid metabolic pathway. Here we report an approach using clustered, regularly interspaced, short palindromic repeats (CRISPR)-associated nuclease Cas9 to create a sphingosine-1-phosphate lyase (SGPL1) HeLa knockout cell line to disrupt the sphingolipid-to-glycerolipid metabolic pathway. We found that the lipid and protein compositions as well as sphingolipid metabolism of SGPL1 knock-out HeLa cells only show little adaptations, which validates these cells as model systems to study transient protein-sphingolipid interactions. PMID:27100999

  1. Abscisic acid-dependent regulation of small rubber particle protein gene expression in Taraxacum brevicorniculatum is mediated by TbbZIP1.

    PubMed

    Fricke, Julia; Hillebrand, Andrea; Twyman, Richard M; Prüfer, Dirk; Schulze Gronover, Christian

    2013-04-01

    Natural rubber is a high-molecular-mass biopolymer found in the latex of >2,500 plant species, including Hevea brasiliensis, Parthenium argentatum and Taraxacum spp. The active sites of rubber biosynthesis are rubber particles, which comprise a hydrophobic rubber core surrounded by a phospholipid monolayer membrane containing species-dependent lipids and associated proteins. Small rubber particle proteins are the most abundant rubber particle-associated proteins in Taraxacum brevicorniculatum (TbSRPPs) and may promote rubber biosynthesis by stabilizing the rubber particle architecture. We investigated the transcriptional regulation of genes encoding SRPPs and identified a bZIP transcription factor (TbbZIP.1) similar to the Arabidopsis thaliana ABI5-ABF-AREB subfamily, which is thought to include downstream targets of ABA and/or abiotic stress-inducible protein kinases. The TbbZIP.1 gene was predominantly expressed in laticifers and regulates the expression of TbSRPP genes in an ABA-dependent manner. The individual TbSRPP genes showed distinct induction profiles, suggesting diverse roles in rubber biosynthesis and stress adaptation. The potential involvement of TbSRPPs in the adaptation of T. brevicorniculatum plants to environmental stress is discussed based on our current knowledge of the stress-response roles of SRPPs and their homologs, and the protective function of latex and rubber against pathogens. Our data suggest that TbSRPPs contribute to stress tolerance in T. brevicorniculatum and that their effects are mediated by TbbZIP.1.

  2. CRISPR-Cas: Adapting to change.

    PubMed

    Jackson, Simon A; McKenzie, Rebecca E; Fagerlund, Robert D; Kieper, Sebastian N; Fineran, Peter C; Brouns, Stan J J

    2017-04-07

    Bacteria and archaea are engaged in a constant arms race to defend against the ever-present threats of viruses and invasion by mobile genetic elements. The most flexible weapons in the prokaryotic defense arsenal are the CRISPR-Cas adaptive immune systems. These systems are capable of selective identification and neutralization of foreign DNA and/or RNA. CRISPR-Cas systems rely on stored genetic memories to facilitate target recognition. Thus, to keep pace with a changing pool of hostile invaders, the CRISPR memory banks must be regularly updated with new information through a process termed CRISPR adaptation. In this Review, we outline the recent advances in our understanding of the molecular mechanisms governing CRISPR adaptation. Specifically, the conserved protein machinery Cas1-Cas2 is the cornerstone of adaptive immunity in a range of diverse CRISPR-Cas systems. Copyright © 2017, American Association for the Advancement of Science.

  3. Oligomerization as a strategy for cold adaptation: Structure and dynamics of the GH1 β-glucosidase from Exiguobacterium antarcticum B7

    NASA Astrophysics Data System (ADS)

    Zanphorlin, Leticia Maria; de Giuseppe, Priscila Oliveira; Honorato, Rodrigo Vargas; Tonoli, Celisa Caldana Costa; Fattori, Juliana; Crespim, Elaine; de Oliveira, Paulo Sergio Lopes; Ruller, Roberto; Murakami, Mario Tyago

    2016-03-01

    Psychrophilic enzymes evolved from a plethora of structural scaffolds via multiple molecular pathways. Elucidating their adaptive strategies is instrumental to understand how life can thrive in cold ecosystems and to tailor enzymes for biotechnological applications at low temperatures. In this work, we used X-ray crystallography, in solution studies and molecular dynamics simulations to reveal the structural basis for cold adaptation of the GH1 β-glucosidase from Exiguobacterium antarcticum B7. We discovered that the selective pressure of low temperatures favored mutations that redesigned the protein surface, reduced the number of salt bridges, exposed more hydrophobic regions to the solvent and gave rise to a tetrameric arrangement not found in mesophilic and thermophilic homologues. As a result, some solvent-exposed regions became more flexible in the cold-adapted tetramer, likely contributing to enhance enzymatic activity at cold environments. The tetramer stabilizes the native conformation of the enzyme, leading to a 10-fold higher activity compared to the disassembled monomers. According to phylogenetic analysis, diverse adaptive strategies to cold environments emerged in the GH1 family, being tetramerization an alternative, not a rule. These findings reveal a novel strategy for enzyme cold adaptation and provide a framework for the semi-rational engineering of β-glucosidases aiming at cold industrial processes.

  4. HIV-1 adaptation to antigen processing results in population-level immune evasion and affects subtype diversification.

    PubMed

    Tenzer, Stefan; Crawford, Hayley; Pymm, Phillip; Gifford, Robert; Sreenu, Vattipally B; Weimershaus, Mirjana; de Oliveira, Tulio; Burgevin, Anne; Gerstoft, Jan; Akkad, Nadja; Lunn, Daniel; Fugger, Lars; Bell, John; Schild, Hansjörg; van Endert, Peter; Iversen, Astrid K N

    2014-04-24

    The recent HIV-1 vaccine failures highlight the need to better understand virus-host interactions. One key question is why CD8(+) T cell responses to two HIV-Gag regions are uniquely associated with delayed disease progression only in patients expressing a few rare HLA class I variants when these regions encode epitopes presented by ~30 more common HLA variants. By combining epitope processing and computational analyses of the two HIV subtypes responsible for ~60% of worldwide infections, we identified a hitherto unrecognized adaptation to the antigen-processing machinery through substitutions at subtype-specific motifs. Multiple HLA variants presenting epitopes situated next to a given subtype-specific motif drive selection at this subtype-specific position, and epitope abundances correlate inversely with the HLA frequency distribution in affected populations. This adaptation reflects the sum of intrapatient adaptations, is predictable, facilitates viral subtype diversification, and increases global HIV diversity. Because low epitope abundance is associated with infrequent and weak T cell responses, this most likely results in both population-level immune evasion and inadequate responses in most people vaccinated with natural HIV-1 sequence constructs. Our results suggest that artificial sequence modifications at subtype-specific positions in vitro could refocus and reverse the poor immunogenicity of HIV proteins. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Enhanced accumulation of Kir4.1 protein, but not mRNA, in a murine model of cuprizone-induced demyelination.

    PubMed

    Nakajima, Mitsunari; Kawamura, Takuya; Tokui, Ryuji; Furuta, Kohei; Sugino, Mami; Nakanishi, Masayuki; Okuyama, Satoshi; Furukawa, Yoshiko

    2013-11-06

    Two channel proteins, inwardly rectifying potassium channel 4.1 (Kir4.1) and water channel aquaporin-4 (AQP4), were recently identified as targets of an autoantibody response in patients with multiple sclerosis and neuromyelitis optica, respectively. In the present study, we examined the expression patterns of Kir4.1 and AQP4 in a mouse model of demyelination induced by cuprizone, a copper chelator. Demyelination was confirmed by immunohistochemistry using an anti-proteolipid protein antibody in various brain regions, including the corpus callosum, of cuprizone-fed mice. Activation of microglial and astroglial cells was also confirmed by immunohistochemistry, using an anti-ionized calcium binding adapter molecule and a glial fibrillary acidic protein antibody. Western blot analysis revealed the induction of Kir4.1 protein, but not AQP4, in the cortex of cuprizone-fed mice. Immunohistochemical analysis confirmed the Kir4.1 protein induction in microvessels of the cerebral cortex. Real-time polymerase chain reaction analysis revealed that mRNA levels of Kir4.1 and AQP4 in the cortex did not change during cuprizone administration. These findings suggest that enhanced accumulation of Kir4.1 protein in the brain with an inflammatory condition facilitates the autoantibody formation against Kir4.1 in patients with multiple sclerosis. © 2013 Published by Elsevier B.V.

  6. Sperm Lysozyme-Like Protein 1 (SLLP1), an intra-acrosomal oolemmal-binding sperm protein, reveals filamentous organization in protein crystal form.

    PubMed

    Zheng, H; Mandal, A; Shumilin, I A; Chordia, M D; Panneerdoss, S; Herr, J C; Minor, W

    2015-07-01

    Sperm lysozyme-like protein 1 (SLLP1) is one of the lysozyme-like proteins predominantly expressed in mammalian testes that lacks bacteriolytic activity, localizes in the sperm acrosome, and exhibits high affinity for an oolemmal receptor, SAS1B. The crystal structure of mouse SLLP1 (mSLLP1) was determined at 2.15 Å resolution. mSLLP1 monomer adopts a structural fold similar to that of chicken/mouse lysozymes retaining all four canonical disulfide bonds. mSLLP1 is distinct from c-lysozyme by substituting two essential catalytic residues (E35T/D52N), exhibiting different surface charge distribution, and by forming helical filaments approximately 75 Å in diameter with a 25 Å central pore comprised of six monomers per helix turn repeating every 33 Å. Cross-species alignment of all reported SLLP1 sequences revealed a set of invariant surface regions comprising a characteristic fingerprint uniquely identifying SLLP1 from other c-lysozyme family members. The fingerprint surface regions reside around the lips of the putative glycan-binding groove including three polar residues (Y33/E46/H113). A flexible salt bridge (E46-R61) was observed covering the glycan-binding groove. The conservation of these regions may be linked to their involvement in oolemmal protein binding. Interaction between SLLP1 monomer and its oolemmal receptor SAS1B was modeled using protein-protein docking algorithms, utilizing the SLLP1 fingerprint regions along with the SAS1B conserved surface regions. This computational model revealed complementarity between the conserved SLLP1/SAS1B interacting surfaces supporting the experimentally observed SLLP1/SAS1B interaction involved in fertilization. © 2015 American Society of Andrology and European Academy of Andrology.

  7. TPPII, MYBBP1A and CDK2 form a protein-protein interaction network.

    PubMed

    Nahálková, Jarmila; Tomkinson, Birgitta

    2014-12-15

    Tripeptidyl-peptidase II (TPPII) is an aminopeptidase with suggested regulatory effects on cell cycle, apoptosis and senescence. A protein-protein interaction study revealed that TPPII physically interacts with the tumor suppressor MYBBP1A and the cell cycle regulator protein CDK2. Mutual protein-protein interaction was detected between MYBBP1A and CDK2 as well. In situ Proximity Ligation Assay (PLA) using HEK293 cells overexpressing TPPII forming highly enzymatically active oligomeric complexes showed that the cytoplasmic interaction frequency of TPPII with MYBBP1A increased with the protein expression of TPPII and using serum-free cell growth conditions. A specific reversible inhibitor of TPPII, butabindide, suppressed the cytoplasmic interactions of TPPII and MYBBP1A both in control HEK293 and the cells overexpressing murine TPPII. The interaction of MYBBP1A with CDK2 was confirmed by in situ PLA in two different mammalian cell lines. Functional link between TPPII and MYBBP1A has been verified by gene expression study during anoikis, where overexpression of TPP II decreased mRNA expression level of MYBBP1A at the cell detachment conditions. All three interacting proteins TPPII, MYBBP1A and CDK2 have been previously implicated in the research for development of tumor-suppressing agents. This is the first report presenting mutual protein-protein interaction network of these proteins. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. X-ray crystal structures of native HIV-1 capsid protein reveal conformational variability

    DOE PAGES

    Gres, Anna T.; Kirby, Karen A.; KewalRamani, Vineet N.; ...

    2015-06-04

    The detailed molecular interactions between native HIV-1 capsid protein (CA) hexamers that shield the viral genome and proteins have been elusive. In this paper, we report crystal structures describing interactions between CA monomers related by sixfold symmetry within hexamers (intrahexamer) and threefold and twofold symmetry between neighboring hexamers (interhexamer). The structures describe how CA builds hexagonal lattices, the foundation of mature capsids. Lattice structure depends on an adaptable hydration layer modulating interactions among CA molecules. Disruption of this layer alters interhexamer interfaces, highlighting an inherent structural variability. A CA-targeting antiviral affects capsid stability by binding across CA molecules and subtlymore » altering interhexamer interfaces remote to the ligand-binding site. Finally, inherent structural plasticity, hydration layer rearrangement, and effector binding affect capsid stability and have functional implications for the retroviral life cycle.« less

  9. The Lysozyme from Insect (Manduca sexta) is a Cold-Adapted Enzyme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sotelo-Mundo,R.; Lopez-Zavala, A.; Garcia-Orozco, K.

    Enzymatic activity is dependent on temperature, although some proteins have evolved to retain activity at low temperatures at the expense of stability. Cold adapted enzymes are present in a variety of organisms and there is ample interest in their structure-function relationships. Lysozyme (E.C. 3.2.1.17) is one of the most studied enzymes due to its antibacterial activity against Gram positive bacteria and is also a cold adapted protein. In this work the characterization of lysozyme from the insect Manduca sexta and its activity at low temperatures is presented. Both M. sexta lysozymes natural and recombinant showed a higher content of {alpha}-helixmore » secondary structure compared to that of hen egg white lysozyme and a higher specific enzymatic activity in the range of 5-30 {sup o}C. These results together with measured thermodynamic activation parameters support the designation of M. sexta lysozyme as a cold adapted enzyme. Therefore, the insect recombinant lysozyme is feasible as a model for structure-function studies for cold-adapted proteins.« less

  10. Rapid acquisition adaptive amino acid substitutions involved in the virulence enhancement of an H1N2 avian influenza virus in mice.

    PubMed

    Yu, Zhijun; Sun, Weiyang; Zhang, Xinghai; Cheng, Kaihui; Zhao, Chuqi; Xia, Xianzhu; Gao, Yuwei

    2017-08-01

    Although H1N2 avian influenza virus (AIV) only infect birds, documented cases of swine infection with H1N2 influenza viruses suggest this subtype AIV may pose a potential threat to mammals. Here, we generated mouse-adapted variants of a H1N2 AIV to identify adaptive changes that increased virulence in mammals. MLD 50 of the variants were reduced >1000-fold compared to the parental virus. Variants displayed enhanced replication in vitro and in vivo, and replicate in extrapulmonary organs. These data show that enhanced replication capacity and expanded tissue tropism may increase the virulence of H1N2 AIV in mice. Sequence analysis revealed multiple amino acid substitutions in the PB2 (L134H, I647L, and D701N), HA (G228S), and M1 (D231N) proteins. These results indicate that H1N2 AIV can rapidly acquire adaptive amino acid substitutions in mammalian hosts, and these amino acid substitutions collaboratively enhance the ability of H1N2 AIV to replicate and cause severe disease in mammals. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Identification of Open Stomata1-Interacting Proteins Reveals Interactions with Sucrose Non-fermenting1-Related Protein Kinases2 and with Type 2A Protein Phosphatases That Function in Abscisic Acid Responses1[OPEN

    PubMed Central

    Waadt, Rainer; Manalansan, Bianca; Rauniyar, Navin; Munemasa, Shintaro; Booker, Matthew A.; Brandt, Benjamin; Waadt, Christian; Nusinow, Dmitri A.; Kay, Steve A.; Kunz, Hans-Henning; Schumacher, Karin; DeLong, Alison; Yates, John R.; Schroeder, Julian I.

    2015-01-01

    The plant hormone abscisic acid (ABA) controls growth and development and regulates plant water status through an established signaling pathway. In the presence of ABA, pyrabactin resistance/regulatory component of ABA receptor proteins inhibit type 2C protein phosphatases (PP2Cs). This, in turn, enables the activation of Sucrose Nonfermenting1-Related Protein Kinases2 (SnRK2). Open Stomata1 (OST1)/SnRK2.6/SRK2E is a major SnRK2-type protein kinase responsible for mediating ABA responses. Arabidopsis (Arabidopsis thaliana) expressing an epitope-tagged OST1 in the recessive ost1-3 mutant background was used for the copurification and identification of OST1-interacting proteins after osmotic stress and ABA treatments. These analyses, which were confirmed using bimolecular fluorescence complementation and coimmunoprecipitation, unexpectedly revealed homo- and heteromerization of OST1 with SnRK2.2, SnRK2.3, OST1, and SnRK2.8. Furthermore, several OST1-complexed proteins were identified as type 2A protein phosphatase (PP2A) subunits and as proteins involved in lipid and galactolipid metabolism. More detailed analyses suggested an interaction network between ABA-activated SnRK2-type protein kinases and several PP2A-type protein phosphatase regulatory subunits. pp2a double mutants exhibited a reduced sensitivity to ABA during seed germination and stomatal closure and an enhanced ABA sensitivity in root growth regulation. These analyses add PP2A-type protein phosphatases as another class of protein phosphatases to the interaction network of SnRK2-type protein kinases. PMID:26175513

  12. Identification of structural protein-protein interactions of herpes simplex virus type 1.

    PubMed

    Lee, Jin H; Vittone, Valerio; Diefenbach, Eve; Cunningham, Anthony L; Diefenbach, Russell J

    2008-09-01

    In this study we have defined protein-protein interactions between the structural proteins of herpes simplex virus type 1 (HSV-1) using a LexA yeast two-hybrid system. The majority of the capsid, tegument and envelope proteins of HSV-1 were screened in a matrix approach. A total of 40 binary interactions were detected including 9 out of 10 previously identified tegument-tegument interactions (Vittone, V., Diefenbach, E., Triffett, D., Douglas, M.W., Cunningham, A.L., and Diefenbach, R.J., 2005. Determination of interactions between tegument proteins of herpes simplex virus type 1. J. Virol. 79, 9566-9571). A total of 12 interactions involving the capsid protein pUL35 (VP26) and 11 interactions involving the tegument protein pUL46 (VP11/12) were identified. The most significant novel interactions detected in this study, which are likely to play a role in viral assembly, include pUL35-pUL37 (capsid-tegument), pUL46-pUL37 (tegument-tegument) and pUL49 (VP22)-pUS9 (tegument-envelope). This information will provide further insights into the pathways of HSV-1 assembly and the identified interactions are potential targets for new antiviral drugs.

  13. Regulation of RE1 Protein Silencing Transcription Factor (REST) Expression by HIP1 Protein Interactor (HIPPI)*

    PubMed Central

    Datta, Moumita; Bhattacharyya, Nitai P.

    2011-01-01

    Earlier we have shown that the proapoptotic protein HIPPI (huntingtin interacting protein 1 (HIP1) protein interactor) along with its molecular partner HIP1 could regulate transcription of the caspase-1 gene. Here we report that RE1-silencing transcription factor/neuron-restrictive silencer factor (REST/NRSF) is a new transcriptional target of HIPPI. HIPPI could bind to the promoter of REST and increased its expression in neuronal as well as non-neuronal cells. Such activation of REST down-regulated expression of REST target genes, such as brain-derived neurotrophic factor (BDNF) or proenkephalin (PENK). The ability of HIPPI to activate REST gene transcription was dependent on HIP1, the nuclear transporter of HIPPI. Using a Huntington disease cell model, we have demonstrated that feeble interaction of HIP1 with mutant huntingtin protein resulted in increased nuclear accumulation of HIPPI and HIP1, leading to higher occupancy of HIPPI at the REST promoter, triggering its transcriptional activation and consequent repression of REST target genes. This novel transcription regulatory mechanism of REST by HIPPI may contribute to the deregulation of transcription observed in the cell model of Huntington disease. PMID:21832040

  14. Regulation of RE1 protein silencing transcription factor (REST) expression by HIP1 protein interactor (HIPPI).

    PubMed

    Datta, Moumita; Bhattacharyya, Nitai P

    2011-09-30

    Earlier we have shown that the proapoptotic protein HIPPI (huntingtin interacting protein 1 (HIP1) protein interactor) along with its molecular partner HIP1 could regulate transcription of the caspase-1 gene. Here we report that RE1-silencing transcription factor/neuron-restrictive silencer factor (REST/NRSF) is a new transcriptional target of HIPPI. HIPPI could bind to the promoter of REST and increased its expression in neuronal as well as non-neuronal cells. Such activation of REST down-regulated expression of REST target genes, such as brain-derived neurotrophic factor (BDNF) or proenkephalin (PENK). The ability of HIPPI to activate REST gene transcription was dependent on HIP1, the nuclear transporter of HIPPI. Using a Huntington disease cell model, we have demonstrated that feeble interaction of HIP1 with mutant huntingtin protein resulted in increased nuclear accumulation of HIPPI and HIP1, leading to higher occupancy of HIPPI at the REST promoter, triggering its transcriptional activation and consequent repression of REST target genes. This novel transcription regulatory mechanism of REST by HIPPI may contribute to the deregulation of transcription observed in the cell model of Huntington disease.

  15. Adaptive management: Chapter 1

    USGS Publications Warehouse

    Allen, Craig R.; Garmestani, Ahjond S.; Allen, Craig R.; Garmestani, Ahjond S.

    2015-01-01

    Adaptive management is an approach to natural resource management that emphasizes learning through management where knowledge is incomplete, and when, despite inherent uncertainty, managers and policymakers must act. Unlike a traditional trial and error approach, adaptive management has explicit structure, including a careful elucidation of goals, identification of alternative management objectives and hypotheses of causation, and procedures for the collection of data followed by evaluation and reiteration. The process is iterative, and serves to reduce uncertainty, build knowledge and improve management over time in a goal-oriented and structured process.

  16. Phospholipids and protein adaptation of Pseudomonas sp. to the xenoestrogen tributyltin chloride (TBT).

    PubMed

    Bernat, Przemysław; Siewiera, Paulina; Soboń, Adrian; Długoński, Jerzy

    2014-09-01

    A tributyltin (TBT)-resistant strain of Pseudomonas sp. isolated from an overworked car filter was tested for its adaptation to TBT. The isolate was checked for organotin degradation ability, as well as membrane lipid and cellular protein composition in the presence of TBT. The phospholipid profiles of bacteria, grown with and without increased amounts of TBT, were characterized using liquid chromatography/electrospray ionization/mass spectrometry. The strain reacted to the biocide by changing the composition of its phospholipids. TBT induced a twofold decline in the amounts of many molecular species of phosphatidylglycerol and an increase in the levels of phosphatidic acid (by 58%) and phosphatidylethanolamine (by 70%). An increase in the degree of saturation of phospholipid fatty acids of TBT exposed Pseudomonas sp. was observed. These changes in the phospholipid composition and concentration reflect the mechanisms which support optimal lipid ordering in the presence of toxic xenobiotic. In the presence of TBT the abundances of 16 proteins, including TonB-dependent receptors, porins and peroxidases were modified, which could indicate a contribution of some enzymes to TBT resistance.

  17. Object-adapted trapping and shape-tracking to probe a bacterial protein chain motor

    NASA Astrophysics Data System (ADS)

    Roth, Julian; Koch, Matthias; Rohrbach, Alexander

    2015-03-01

    The helical bacterium Spiroplasma is a motile plant and anthropod pathogen which swims by propagating pairs of kinks along its cell body. As a well suited model system for bacterial locomotion, understanding the cell's molecular motor is of vital interest also regarding the combat of bacterial diseases. The extensive deformations related to these kinks are caused by a contractile cytoskeletal protein ribbon representing a linear motor in contrast to common rotary motors as, e.g., flagella. We present new insights into the working of this motor through experiments with object-adapted optical traps and shape-tracking techniques. We use the given laser irradiation from the optical trap to hinder bacterial energy (ATP) production through the production of O2 radicals. The results are compared with experiments performed under the influence of an O2-Scavenger and ATP inhibitors, respectively. Our results show clear dependences of the kinking properties on the ATP concentration inside the bacterium. The experiments are supported by a theoretical model which we developed to describe the switching of the ribbon's protein subunits.

  18. Adaptive Activation of a Stress Response Pathway Improves Learning and Memory Through Gs and β-Arrestin-1-Regulated Lactate Metabolism.

    PubMed

    Dong, Jun-Hong; Wang, Yi-Jing; Cui, Min; Wang, Xiao-Jing; Zheng, Wen-Shuai; Ma, Ming-Liang; Yang, Fan; He, Dong-Fang; Hu, Qiao-Xia; Zhang, Dao-Lai; Ning, Shang-Lei; Liu, Chun-Hua; Wang, Chuan; Wang, Yue; Li, Xiang-Yao; Yi, Fan; Lin, Amy; Kahsai, Alem W; Cahill, Thomas Joseph; Chen, Zhe-Yu; Yu, Xiao; Sun, Jin-Peng

    2017-04-15

    Stress is a conserved physiological response in mammals. Whereas moderate stress strengthens memory to improve reactions to previously experienced difficult situations, too much stress is harmful. We used specific β-adrenergic agonists, as well as β 2 -adrenergic receptor (β2AR) and arrestin knockout models, to study the effects of adaptive β2AR activation on cognitive function using Morris water maze and object recognition experiments. We used molecular and cell biological approaches to elucidate the signaling subnetworks. We observed that the duration of the adaptive β2AR activation determines its consequences on learning and memory. Short-term formoterol treatment, for 3 to 5 days, improved cognitive function; however, prolonged β2AR activation, for more than 6 days, produced harmful effects. We identified the activation of several signaling networks downstream of β2AR, as well as an essential role for arrestin and lactate metabolism in promoting cognitive ability. Whereas Gs-protein kinase A-cyclic adenosine monophosphate response element binding protein signaling modulated monocarboxylate transporter 1 expression, β-arrestin-1 controlled expression levels of monocarboxylate transporter 4 and lactate dehydrogenase A through the formation of a β-arrestin-1/phospho-mitogen-activated protein kinase/hypoxia-inducible factor-1α ternary complex to upregulate lactate metabolism in astrocyte-derived U251 cells. Conversely, long-term treatment with formoterol led to the desensitization of β2ARs, which was responsible for its decreased beneficial effects. Our results not only revealed that β-arrestin-1 regulated lactate metabolism to contribute to β2AR functions in improved memory formation, but also indicated that the appropriate management of one specific stress pathway, such as through the clinical drug formoterol, may exert beneficial effects on cognitive abilities. Copyright © 2016 Society of Biological Psychiatry. All rights reserved.

  19. The shoot meristem identity gene TFL1 is involved in flower development and trafficking to the protein storage vacuole

    PubMed Central

    Sohn, Eun Ju; Rojas-Pierce, Marcela; Pan, Songqin; Carter, Clay; Serrano-Mislata, Antonio; Madueño, Francisco; Rojo, Enrique; Surpin, Marci; Raikhel, Natasha V.

    2007-01-01

    Plants are unique in their ability to store proteins in specialized protein storage vacuoles (PSVs) within seeds and vegetative tissues. Although plants use PSV proteins during germination, before photosynthesis is fully functional, the roles of PSVs in adult vegetative tissues are not understood. Trafficking pathways to PSVs and lytic vacuoles appear to be distinct. Lytic vacuoles are analogous evolutionarily to yeast and mammalian lysosomes. However, it is unclear whether trafficking to PSVs has any analogy to pathways in yeast or mammals, nor is PSV ultrastructure known in Arabidopsis vegetative tissue. Therefore, alternative approaches are required to identify components of this pathway. Here, we show that an Arabidopsis thaliana mutant that disrupts PSV trafficking identified TERMINAL FLOWER 1 (TFL1), a shoot meristem identity gene. The tfl1-19/mtv5 (for “modified traffic to the vacuole”) mutant is specifically defective in trafficking of proteins to the PSV. TFL1 localizes to endomembrane compartments and colocalizes with the putative δ-subunit of the AP-3 adapter complex. Our results suggest a developmental role for the PSV in vegetative tissues. PMID:18003908

  20. Mitogen activated protein kinase (MAPK) pathway regulates heme oxygenase-1 gene expression by hypoxia in vascular cells.

    PubMed

    Ryter, Stefan W; Xi, Sichuan; Hartsfield, Cynthia L; Choi, Augustine M K

    2002-08-01

    Hypoxia induces the stress protein heme oxygenase-1 (HO-1), which participates in cellular adaptation. The molecular pathways that regulate ho-1 gene expression under hypoxia may involve mitogen activated protein kinase (MAPK) signaling and reactive oxygen. Hypoxia (8 h) increased HO-1 mRNA in rat pulmonary aortic endothelial cells (PAEC), and also activated both extracellular signal-regulated kinase 1 (ERK1)/ERK2 and p38 MAPK pathways. The role of these kinases in hypoxia-induced ho-1 gene expression was examined using chemical inhibitors of these pathways. Surprisingly, SB203580, an inhibitor of p38 MAPK, and PD98059, an inhibitor of mitogen-activated protein kinase kinase (MEK1), strongly enhanced hypoxia-induced HO-1 mRNA expression in PAEC. UO126, a MEK1/2 inhibitor, enhanced HO-1 expression in PAEC under normoxia, but not hypoxia. Diphenylene iodonium, an inhibitor of NADPH oxidase, also induced the expression of HO-1 in PAEC under both normoxia and hypoxia. Similar results were observed in aortic vascular smooth muscle cells. Furthermore, hypoxia induced activator protein (AP-1) DNA-binding activity in PAEC. Pretreatment with SB203580 and PD98059 enhanced AP-1 binding activity under hypoxia in PAEC; UO126 stimulated AP-1 binding under normoxia, whereas diphenylene iodonium stimulated AP-1 binding under normoxia and hypoxia. These results suggest a relationship between MAPK and hypoxic regulation of ho-1 in vascular cells, involving AP-1.