Science.gov

Sample records for adapting stretch receptor

  1. Mechanics of the trachea and behaviour of its slowly adapting stretch receptors.

    PubMed Central

    Mortola, J P; Sant'Ambrogio, G

    1979-01-01

    1. The trachea is constructed by a series of U-shaped cartilaginous rings supporting a membranous posterior wall. We have studied separately the pressure-volume relationships of the two components. 2. The motion of the membranous posterior wall contributes most to the tracheal volume change caused by any given transmural pressure change; the cartilaginous rings provide a semi-rigid support to the posterior wall and have a far greater compliance with negative than positive transmural pressure. 3. The response of tracheal stretch receptors to transmural pressure can be explained by the mechanical coupling between cartilages and posterior wall. They respond both to positive and negative transmural pressure, they are active at zero transmural pressure and have a point of least activity with small negative transmural pressures. 4. The stress-strain relationship of the posterior wall has been studied in static and dynamic conditions in control situations and after removal of either the tunica fibrosa or the trachealis muscle. Each of these two components contributes to the stiffness of the posterior wall, with the trachealis muscle providing most of its viscosity. 5. The response of tracheal stretch receptors to transverse traction of the posterior membranous wall has been studied in both static and dynamic conditions before and after removal of the tunica fibrosa. The behaviour of these receptors reflects the visco-elastic properties of the trachealis muscle in which they have been localized. PMID:439039

  2. White noise analysis of pace-maker-response interactions and non-linearities in slowly adapting crayfish stretch receptor.

    PubMed Central

    Buño, W; Bustamante, J; Fuentes, J

    1984-01-01

    Input-output relations were investigated in the slowly adapting stretch receptor organ of crayfish using a Gaussian white noise length input with a 0.03-12.5 Hz band width and the resulting action potential output. The noise input was presented to the de-efferented receptor in situ, at three mean elongations and at four different amplitudes. The three mean elongations were set within the normal range in vivo, two at the extremes close to the minimum and maximum physiological lengths and the other in the mid-range. With white noise inputs there is a finite probability that the system will be tested in all possible conditions within the chosen band width because white noise has the advantage that it contains, with a finite probability, all possible stimulus wave forms at random. The analysis indicated similarities between the effects of the input variables, namely white noise amplitude and mean elongation. With low input variables the activity was periodic. With larger inputs, impulse rates were higher and irregular. The average length trajectories leading to a spike (i.e. the average stimulus) were either biphasic with high inputs or multiphasic and periodic with lower input variables. The frequency of periodicity increased with mean elongation. Although for a given length and noise amplitude a variety of individual length trajectories preceded spikes, the final biphasic shortening-lengthening average stimulus sequence before a spike was similar in all cases irrespective of the input variables. The number of possible trajectories decreased with increments in the input variables. The standard deviation of length values for each average stimulus was computed and displayed as a function of time relative to the spike. It was first constant, and decreased gradually to a minimum value at the spike reference. Standard deviation values were lower for higher white noise amplitudes and mean elongation. Simple, short-lasting stimulus wave forms in the white noise were isolated

  3. Long-latency component of the stretch reflex in human muscle is not mediated by intramuscular stretch receptors.

    PubMed

    Corden, D M; Lippold, O C; Buchanan, K; Norrington, C

    2000-07-01

    Reflex responses to mechanical stimulation of muscle (brief imposed movement) were investigated. Reflexes were elicited in the forefinger, recording from the first dorsal interosseous (FDI), and in the foot, recording from soleus. These responses typically consisted of a short-latency component (M1) and a long-latency component (M2) at 33 ms and 53 ms, respectively, after the stimulus in the case of FDI, and 37 ms and 68 ms, respectively, in soleus upon stimulation of the sole of the foot. Normally, when a muscle is stretched by a mechanical stimulus (either naturally or by an experimentally imposed movement), both skin receptors and muscle stretch receptors are activated. It is possible, however, to devise stimulation parameters where this is not the case. Fixating the finger with plasticine enables the effects of skin stimulation to be studied without stretching the FDI muscle. On the other hand, tapping a long tendon allows muscle stretch receptors to be activated without involving skin or subcutaneous structures. Component M1 was always abolished by finger fixation in 40 trials on 10 subjects, with M2 being essentially unchanged in latency, duration, or amplitude. Reflex responses were obtained in soleus muscle in nine experiments by prodding the sole of the foot (thereby stimulating both skin and muscle stretch receptors). Alternatively, the tendo achilles was prodded (which solely activates stretch receptors in the muscle). In the former, M1 and M2 were generated. In the latter, only M1 was produced. It is concluded that the long-latency component of the stretch reflex, M2, originates in skin and/or subcutaneous nerve terminals and that no part of M2 originates in muscle stretch receptors. PMID:10899195

  4. Crayfish stretch receptor: an investigation with voltage-clamp and ion-sensitive electrodes.

    PubMed Central

    Brown, H M; Ottoson, D; Rydqvist, B

    1978-01-01

    1. The membrane characteristics of the slowly adapting stretch receptor from the crayfish, Astacus fluviatilis, were examined with electrophysiological techniques consisting of membrane potential recording, voltage clamp and ion-sensitive microelectrodes. 2. The passive membrane current (Ip) following step changes of the membrane potential to levels above 0 mV required more than a minute to decay to a steady-state level. 3. The stretch-induced current (SIC, where SIC = Itotal--Ipassive) was not fully developed until the Ip had decayed to a steady state. 4. With Ip at the steady state and the stretch-induced current at the O-current potential, a slow stretch-induced inward current was isolated. The latter reaches a maximum after 1 sec of stretch and declines even more slowly after stretch. The I-V relation of the slow current had a negative slope and reversed sign near the resting potential. It is suggested that this current is due to a Cl- conductance change. 5. The stretch-induced current, consisting of a rapid transient phase and a steady component can be isolated from the slow stretch-induced current at a holding potential corresponding to the resting potential. 6. The SIC-Em relation is non-linear and reverses sign at about +15 mV. 7. In a given cell, the reversal potential of the stretch-induced potential change obtained with current clamp coincided with the 0-current potential of the stretch-induced current obtained by voltage clamp. The average value from twenty-six cells was +13 +/- 6.5 mV; cell to cell variability seemed to be correlated with dendrite length. 8. Tris (mol. wt. 121) or arginine (mol. wt. 174) susbstituted for Na+ reduces but does not abolish the stretch-induced current. 9. The permeability ratios of Tris:Na and arginine:Na were estimated from changes in the 0-current potential as these cations replaced Na+ in the external medium. The PTris:PNa was somewhat higher (0.31) than the Parginine:PNa ratio (0.25). 10. Changes in the external Ca2

  5. [Receptor adaptation of muscle spindles treated in different ways].

    PubMed

    Zalkind, V I; Rokotova, N A

    1978-11-01

    Comparison of the grades of 60 sensitive muscle spindle terminals on two actions: gradual stretch of the muscle and short intensive tetanization of the muscle nerve, showed that, irrespective of the mode of action, the character of adaptation remains the smae in majority of units. The speed of receptors adaptation depends not on the specific of testing precedures, but, apparently, on the means of connection of the sensitive terminals with different types of intrafusal muscle fibers with different elasticviscous properties. The possible reason for speedy adaptation of muscle receptors of elementary dynamic type, is discussed.

  6. Encoding properties of the wing hinge stretch receptor in the hawkmoth Manduca sexta.

    PubMed

    Frye, M A

    2001-11-01

    To characterize the in vivo responses of the wing hinge stretch receptor of Manduca sexta, I recorded its activity and simultaneously tracked the up-and-down motion of the wing while the hawkmoth flew tethered in a wind tunnel. The stretch receptor fires a high-frequency burst of spikes near each dorsal stroke reversal. The onset of the burst is tightly tuned to a set-point in wing elevation, and the number of spikes contained within the burst encodes the maximal degree of wing elevation during the stroke. In an effort to characterize its mechanical encoding properties, I constructed an actuator that delivered deformations to the wing hinge and simultaneously recorded the resultant stretch and tension and the activity of the stretch receptor. Stimuli included stepwise changes in length as well as more natural dynamic deformation that was measured in vivo. Step changes in length reveal that the stretch receptor encodes the static amplitude of stretch with both phasic and tonic firing dynamics. In vivo sinusoidal deformation revealed (i) that the timing of stretch receptor activity is tightly phase-locked within the oscillation cycle, (ii) that the number of spikes per burst is inversely related to oscillation frequency and (iii) that the instantaneous frequency of the burst increases with oscillation rate. At all oscillation rates tested, the instantaneous frequency of the burst increases with amplitude.

  7. Characterization of central axon terminals of putative stretch receptors in leeches.

    PubMed

    Fan, Ruey-Jane; Friesen, W Otto

    2006-01-10

    Sensory feedback from stretch receptors, neurons that detect position or tension, is crucial for generating normal, robust locomotion. Among the eight pairs of putative stretch receptors associated with longitudinal muscles in midbody segments of medicinal leeches, only the ventral stretch receptor has been characterized in detail. To achieve the identification of all such receptors, we penetrated large axons in the nerve roots of nerve cords from adult leeches with dye-filled (Alexa Fluor hydrazide) electrodes. We identified the terminal arborizations of two additional putative stretch receptors with axons in anterior nerve roots and four more such receptors with axons in posterior roots of midbody ganglia. The axons are nonspiking and are individually identifiable by their entry point into the CNS; their projections within the neuropile; the pattern, extent, and orientation of their terminal branches; and the characteristics of small "spike-like" events. At least two of these axons undergo membrane potential oscillations that are phase locked to the swimming rhythm expressed in nerve cord-body wall preparations and, at a different phase angle, also in isolated nerve cords. Thus the membrane potentials of at least two axons are phasically modulated by the periphery and hence could provide cycle-by-cycle sensory input to coordinate swimming activity. One of these neurons has a soma associated with the dorsal body wall and hence is a putative stretch receptor in dorsal longitudinal muscle. Thus the traveling body wave expressed by swimming leeches may be regulated by sensory feedback from both ventral and dorsal longitudinal muscles.

  8. Morphological and physiological development of anterior thoracic stretch receptors in two isopods, Armadillidium vulgare and Ligia exotica.

    PubMed

    Iwasaki, Masazumi; Ohata, Ayako; Niida, Akiyoshi

    2007-07-01

    Abdominal muscle receptor organs (MROs) monitor the position and movement of abdomen in crustaceans. Thoracic segments of decapods are fused and immovable. It is speculated that MROs had retrograded simple shape, N-cells that lost receptor muscles, a receptor cell and accessory nerves. We focused on the effect of segmental movement in respect to thoracic N-cells and MROs in isopods that have movable thoracic segments. Armadillidium vulgare rolled up its body segments. Ligia exotica swam by quick movement of the posterior thoracic segments. Both isopods possessed N-cells and MROs in the thorax. N-cells were a simple structure, but N-cells from the second and third thoracic segments of A. vulgare had a muscle strand. MROs(T3-T4) (from the third and fourth thoracic segments) of A. vulgare had two receptor muscles. MROs(T3-T4) of L. exotica had one long receptor muscle. N-cells of both species and MROs of A. vulgare showed slowly adapting stretch-activated discharges. MROs of L. exotica showed both slowly and rapidly adapting discharges. The stretch-activated responses of N-cells and MROs inhibited each other. N-cells or MROs in the thorax of isopods are not related to the segmental structure. The morphology and physiology of N-cells and MROs are specialized to species-specific behaviors. PMID:17473927

  9. Effects of stretch receptor ablation on the optomotor control of lift in the hawkmoth Manduca sexta.

    PubMed

    Frye, M A

    2001-11-01

    In insects, fast sensory feedback from specialized mechanoreceptors is integrated with guidance cues descending from the visual system to control flight behavior. A proprioceptive sensory organ found in both locusts and moths, the wing hinge stretch receptor, has been extensively studied in locusts for its powerful influence on the activity of flight muscle motoneurons and interneurons. The stretch receptor fires a high-frequency burst of action potentials near the top of each wingstroke and encodes kinematic variables such as amplitude and timing. Here, I describe the effects of stretch receptor ablation on the visual control of lift during flight in the hawkmoth Manduca sexta. Using a combination of extracellular muscle recordings, force and position measurements and high-speed video recording, I tracked power muscle activity, net vertical flight force (lift), abdomen deflection and wing kinematics in response to image motions of varying velocity during tethered flight in a wind tunnel. As a result of bilateral ablation of the wing hinge stretch receptors, visually evoked lift decreased to nearly one-third of that exhibited by intact animals. The phase and frequency of indirect power muscle action potentials and the patterns of abdominal deflection were unaffected; however, wingstroke amplitude was clearly reduced after ablation. Collectively, these results suggest that stretch receptor feedback is integrated with descending visual cues to control wing kinematics and the resultant aerodynamic force production during flight.

  10. Stretch sensitive reflexes as an adaptive mechanism for maintaining limb stability.

    PubMed

    Shemmell, Jonathan; Krutky, Matthew A; Perreault, Eric J

    2010-10-01

    The often studied stretch reflex is fundamental to the involuntary control of posture and movement. Nevertheless, there remains controversy regarding its functional role. Many studies have demonstrated that stretch reflexes can be modulated in a task appropriate manner. This review focuses on modulation of the long-latency stretch reflex, thought to be mediated, at least in part, by supraspinal pathways. For example, this component of the stretch reflex increases in magnitude during interactions with compliant environments, relative to its sensitivity during interactions with rigid environments. This suggests that reflex sensitivity increases to augment limb stability when that stability is not provided by the environment. However, not all results support the stabilizing role of stretch reflexes. Some studies have demonstrated that involuntary responses within the time period corresponding to the long-latency reflex can destabilize limb posture. We propose that this debate stems from the fact that multiple perturbation-sensitive pathways can contribute to the long-latency stretch reflex and that these pathways have separate functional roles. The presented studies suggest that neural activity occurring within the period normally ascribed to the long-latency stretch reflex is highly adaptable to current task demands and possibly should be considered more intelligent than "reflexive". PMID:20434396

  11. Mechanical stretch augments insulin-induced vascular smooth muscle cell proliferation by insulin-like growth factor-1 receptor

    SciTech Connect

    Liu, Gang; Hitomi, Hirofumi; Hosomi, Naohisa; Lei, Bai; Nakano, Daisuke; Deguchi, Kazushi; Mori, Hirohito; Masaki, Tsutomu; Ma, Hong; Griendling, Kathy K.; Nishiyama, Akira

    2011-10-15

    Insulin resistance and hypertension have been implicated in the pathogenesis of cardiovascular disease; however, little is known about the roles of insulin and mechanical force in vascular smooth muscle cell (VSMC) remodeling. We investigated the contribution of mechanical stretch to insulin-induced VSMC proliferation. Thymidine incorporation was stimulated by insulin in stretched VSMCs, but not in un-stretched VSMCs. Insulin increased 2-deoxy-glucose incorporation in both stretched and un-stretched VSMCs. Mechanical stretch augmented insulin-induced extracellular signal-regulated kinase (ERK) and Akt phosphorylation. Inhibitors of epidermal growth factor (EGF) receptor tyrosine kinase and Src attenuated insulin-induced ERK and Akt phosphorylation, as well as thymidine incorporation, whereas 2-deoxy-glucose incorporation was not affected by these inhibitors. Moreover, stretch augmented insulin-like growth factor (IGF)-1 receptor expression, although it did not alter the expression of insulin receptor and insulin receptor substrate-1. Insulin-induced ERK and Akt activation, and thymidine incorporation were inhibited by siRNA for the IGF-1 receptor. Mechanical stretch augments insulin-induced VSMC proliferation via upregulation of IGF-1 receptor, and downstream Src/EGF receptor-mediated ERK and Akt activation. Similar to in vitro experiment, IGF-1 receptor expression was also augmented in hypertensive rats. These results provide a basis for clarifying the molecular mechanisms of vascular remodeling in hypertensive patients with hyperinsulinemia. -- Highlights: {yields} Mechanical stretch augments insulin-induced VSMC proliferation via IGF-1 receptor. {yields} Src/EGFR-mediated ERK and Akt phosphorylation are augmented in stretched VSMCs. {yields} Similar to in vitro experiment, IGF-1 receptor is increased in hypertensive rats. {yields} Results provide possible mechanisms of vascular remodeling in hypertension with DM.

  12. Aortic Valve Cyclic Stretch Causes Increased Remodeling Activity and Enhanced Serotonin Receptor Responsiveness

    PubMed Central

    Balachandran, Kartik; Bakay, Marina A.; Connolly, Jeanne M.; Zhang, Xuemei; Yoganathan, Ajit P.; Levy, Robert J.

    2011-01-01

    Background Increased serotonin(5HT) receptor(5HTR) signaling has been associated with cardiac valvulopathy. Prior cell culture studies of 5HTR signaling in heart valve interstitial cells have provided mechanistic insights concerning only static conditions. We investigated the hypothesis that aortic valve biomechanics participate in the regulation of both 5HTR expression and inter-related extracellular matrix remodeling events. Methods The effects of cyclic-stretch on aortic valve 5HTR, expression, signaling and extracellular matrix remodeling were investigated using a tensile stretch bioreactor in studies which also compared the effects of adding 5HT and/or the 5HT-transporter inhibitor, Fluoxetine. Results Cyclic-stretch alone increased both proliferation and collagen in porcine aortic valve cusp samples. However, with cyclic-stretch, unlike static conditions, 5HT plus Fluoxetine caused the greatest increase in proliferation (p<0.0001), and also caused significant increases in collagen(p<0.0001) and glycosaminoglycans (p<0.0001). DNA microarray data demonstrated upregulation of 5HTR2A and 5HTR2B (>4.5 fold) for cyclic-stretch versus static (p<0.001), while expression of the 5HT transporter was not changed significantly. Extracellular matrix genes (eg. Collagen Types I,II,III, and proteoglycans) were also upregulated by cyclic-stretch. Conclusions Porcine aortic valve cusp samples subjected to cyclic stretch upregulate 5HTR2A and 2B, and also initiate remodeling activity characterized by increased proliferation and collagen production. Importantly, enhanced 5HTR responsiveness, due to increased 5HTR2A and 2B expression, results in a significantly greater response in remodeling endpoints (proliferation, collagen and GAG production) to 5HT in the presence of 5HT transporter blockade. PMID:21718840

  13. Egr3-Dependent Muscle Spindle Stretch Receptor Intrafusal Muscle Fiber Differentiation and Fusimotor Innervation Homeostasis

    PubMed Central

    Oliveira Fernandes, Michelle

    2015-01-01

    Muscle stretch proprioceptors (muscle spindles) are required for stretch reflexes and locomotor control. Proprioception abnormalities are observed in many human neuropathies, but the mechanisms involved in establishing and maintaining muscle spindle innervation and function are still poorly understood. During skeletal muscle development, sensory (Ia-afferent) innervation induces contacted myotubes to transform into intrafusal muscle fibers that form the stretch receptor core. The transcriptional regulator Egr3 is induced in Ia-afferent contacted myotubes by Neuregulin1 (Nrg1)/ErbB receptor signaling and it has an essential role in spindle morphogenesis and function. Because Egr3 is widely expressed during development and has a pleiotropic function, whether Egr3 functions primarily in skeletal muscle, Ia-afferent neurons, or in Schwann cells that myelinate Ia-afferent axons remains unresolved. In the present studies, cell-specific ablation of Egr3 in mice showed that it has a skeletal muscle autonomous function in stretch receptor development. Moreover, using genetic tracing, we found that Ia-afferent contacted Egr3-deficient myotubes were induced in normal numbers, but their development was blocked to generate one to two shortened fibers that failed to express some characteristic myosin heavy chain (MyHC) proteins. These “spindle remnants” persisted into adulthood, remained innervated by Ia-afferents, and expressed neurotrophin3 (NT3), which is required for Ia-afferent neuron survival. However, they were not innervated by fusimotor axons and they did not express glial derived neurotrophic factor (GDNF), which is essential for fusimotor neuron survival. These results demonstrate that Egr3 has an essential role in regulating gene expression that promotes normal intrafusal muscle fiber differentiation and fusimotor innervation homeostasis. PMID:25855173

  14. A common mechanism underlies stretch activation and receptor activation of TRPC6 channels

    PubMed Central

    Spassova, Maria A.; Hewavitharana, Thamara; Xu, Wen; Soboloff, Jonathan; Gill, Donald L.

    2006-01-01

    The TRP family of ion channels transduce an extensive range of chemical and physical signals. TRPC6 is a receptor-activated nonselective cation channel expressed widely in vascular smooth muscle and other cell types. We report here that TRPC6 is also a sensor of mechanically and osmotically induced membrane stretch. Pressure-induced activation of TRPC6 was independent of phospholipase C. The stretch responses were blocked by the tarantula peptide, GsMTx-4, known to specifically inhibit mechanosensitive channels by modifying the external lipid-channel boundary. The GsMTx-4 peptide also blocked the activation of TRPC6 channels by either receptor-induced PLC activation or by direct application of diacylglycerol. The effects of the peptide on both stretch- and diacylglycerol-mediated TRPC6 activation indicate that the mechanical and chemical lipid sensing by the channel has a common molecular mechanism that may involve lateral-lipid tension. The mechanosensing properties of TRPC6 channels highly expressed in smooth muscle cells are likely to play a key role in regulating myogenic tone in vascular tissue. PMID:17056714

  15. Reduction of skin stretch induced motion artifacts in electrocardiogram monitoring using adaptive filtering.

    PubMed

    Liu, Yan; Pecht, Michael G

    2006-01-01

    The effectiveness of electrocardiogram (ECG) monitors can be significantly impaired by motion artifacts which can cause misdiagnoses, lead to inappropriate treatment decisions, and trigger false alarms. Skin stretch associated with patient motion is a significant source of motion artifacts in current ECG monitoring. In this study, motion artifacts are adaptively filtered by using skin strain as the reference variable. Skin strain is measured non-invasively using a light emitting diode (LED) and an optical sensor incorporated in an ECG electrode. The results demonstrate that this device and method can significantly reduce skin strain induced ECG artifacts.

  16. Liposome reconstitution and modulation of recombinant N-methyl-d-aspartate receptor channels by membrane stretch

    PubMed Central

    Kloda, Anna; Lua, Linda; Hall, Rhonda; Adams, David J.; Martinac, Boris

    2007-01-01

    In this study, the heteromeric N-methyl-d-aspartate (NMDA) receptor channels composed of NR1a and NR2A subunits were expressed, purified, reconstituted into liposomes, and characterized by using the patch clamp technique. The protein exhibited the expected electrophysiological profile of activation by glutamate and glycine and internal Mg2+ blockade. We demonstrated that the mechanical energy transmitted to membrane-bound NMDA receptor channels can be exerted directly by tension developed in the lipid bilayer. Membrane stretch and application of arachidonic acid potentiated currents through NMDA receptor channels in the presence of intracellular Mg2+. The correlation of membrane tension induced by either mechanical or chemical stimuli with the physiological Mg2+ block of the channel suggests that the synaptic transmission can be altered if NMDA receptor complexes experience local changes in bilayer thickness caused by dynamic targeting to lipid microdomains, electrocompression, or chemical modification of the cell membranes. The ability to study gating properties of NMDA receptor channels in artificial bilayers should prove useful in further study of structure–function relationships and facilitate discoveries of new therapeutic agents for treatment of glutamate-mediated excitotoxicity or analgesic therapies. PMID:17242368

  17. Reliability and consistency of plantarflexor stretch-shortening cycle function using an adapted force sledge apparatus.

    PubMed

    Furlong, Laura-Anne M; Harrison, Andrew J

    2013-04-01

    There are various limitations to existing methods of studying plantarflexor stretch-shortening cycle (SSC) function and muscle-tendon unit (MTU) mechanics, predominantly related to measurement validity and reliability. This study utilizes an innovative adaptation to a force sledge which isolates the plantarflexors and ankle for analysis. The aim of this study was to determine the sledge loading protocol to be used, most appropriate method of data analysis and measurement reliability in a group of healthy, non-injured subjects. Twenty subjects (11 males, 9 females; age: 23.5 ±2.3 years; height: 1.73 ±0.08 m; mass: 74.2 ±11.3 kg) completed 11 impacts at five different loadings rated on a scale of perceived exertion from 1 to 5, where 5 is a loading that the subject could only complete the 11 impacts using the adapted sledge. Analysis of impacts 4-8 or 5-7 using loading 2 provided consistent results that were highly reliable (single intra-class correlation, ICC > 0.85, average ICC > 0.95) and replicated kinematics found in hopping and running. Results support use of an adapted force sledge apparatus as an ecologically valid, reliable method of investigating plantarflexor SSC function and MTU mechanics in a dynamic controlled environment.

  18. Would right atrial stretch inhibit sodium intake following GABAA receptor activation in the lateral parabrachial nucleus?

    PubMed

    Shimoura, Caroline Gusson; Barbosa, Silas Pereira; Menani, Jose Vanderlei; De Gobbi, Juliana Irani Fratucci

    2013-10-11

    The knowledge of the mechanisms underlying circulating volume control may be achieved by stretching a balloon placed at the junction of the superior vena cava-right atrial junction (SVC-RAJ). We investigated whether the inflation of a balloon at the SVC-RAJ inhibits the intake of 0.3M NaCl induced by GABAA receptor activation in the lateral parabrachial nucleus (LPBN) in euhydrated and satiated rats. Male Wistar rats (280-300 g) with bilateral stainless steel LPBN cannulae and balloons implanted at the SVC-RAJ were used. Bilateral injections of the GABAA receptor agonist muscimol (0.5 ηmol/0.2l) in the LPBN with deflated balloons increased intake of 0.3M NaCl (30.1 ± 3.9 vs. saline: 2.2 ± 0.7)ml/210 min, n=8) and water (17.7 ± 1.9 vs. saline: 2.9 ± 0.5 ml/210 min). Conversely, 0.3M NaCl (27.8 ± 2.1 ml/210 min) and water (22.8 ± 2.3 ml/210 min) intake were not affected in rats with inflated balloons at the SVC-RAJ. The results show that sodium and water intake induced by muscimol injected into the LPBN was not affected by balloon inflation at the SVC-RAJ. We suggest that the blockade of LPBN neuronal activity with muscimol injections impairs inhibitory mechanisms activated by signals from cardiopulmonary volume receptors determined by balloon inflation.

  19. An analysis of receptor potential and tension of isolated cat muscle spindles in response to sinusoidal stretch.

    PubMed Central

    Hunt, C C; Wilkinson, R S

    1980-01-01

    In isolated cat muscle spindles the receptor potential responses of primary and secondary endings as well as tension responses to sinusoidal length changes in the steady state have been analysed. 1. At a given stimulus frequency, receptor potential per unit length change (receptor potential gain) in both primary and secondary endings is constant when displacement is less than about 10 micrometer. With larger stretches, receptor potential gain decreases approximately as a power function of displacement, the gain of primary endings decreasing more rapidly with increasing displacement than that of secondary endings. Tension per unit length change (tension gain) shows a similar constant range above which it also decreases as a power function of displacement. 2. In spite of the large reduction in gain at high displacement amplitudes, response wave forms remained essentially sinusoidal. The gain reduction results principally from a displacement-dependent non-linearity which has a rapid onset and slow decay. 3. Receptor potential and tension responses to small amplitude sinusoidal stretch depend, in a parallel manner, on the initial length of the preparation. 4. Both receptor potential and tension responses are highly dependent on frequency of sinusoidal stretch. In primary endings receptor potential gain increased as a power function of frequency over the range 0 . 01 to about 40 Hz, above which frequency the gain decreased; phase advance remained relatively constant up to 10 Hz then decreased to become a phase lag at higher frequency. In secondary endings receptor potential gain remained fairly constant between 0 . 01 and 1 Hz then rose as a power function of frequency but less steeply than in primary endings. 3. The possible mechanisms underlying these findings are discussed. PMID:6447781

  20. Mechanical, hormonal, and hypertrophic adaptations to 10 weeks of eccentric and stretch-shortening cycle exercise training in old males.

    PubMed

    Váczi, Márk; Nagy, Szilvia A; Kőszegi, Tamás; Ambrus, Míra; Bogner, Péter; Perlaki, Gábor; Orsi, Gergely; Tóth, Katalin; Hortobágyi, Tibor

    2014-10-01

    The growth promoting effects of eccentric (ECC) contractions are well documented but it is unknown if the rate of stretch per se plays a role in such muscular responses in healthy aging human skeletal muscle. We tested the hypothesis that exercise training of the quadriceps muscle with low rate ECC and high rate ECC contractions in the form of stretch-shortening cycles (SSCs) but at equal total mechanical work would produce rate-specific adaptations in healthy old males age 60-70. Both training programs produced similar improvements in maximal voluntary isometric (6%) and ECC torque (23%) and stretch-shortening cycle function (reduced contraction duration [24%] and enhanced elastic energy storage [12%]) (p<0.05). The rate of torque development increased 30% only after SSC exercise (p<0.05). Resting testosterone and cortisol levels were unchanged but after each program the acute exercise-induced cortisol levels were 12-15% lower (p<0.05). Both programs increased quadriceps size 2.5% (p<0.05). It is concluded that both ECC and SSC exercise training produces favorable adaptations in healthy old males' quadriceps muscle. Although the rate of muscle tension during the SSC vs. ECC contractions was about 4-fold greater, the total mechanical work seems to regulate the hypetrophic, hormonal, and most of the mechanical adaptations. However, SSC exercise was uniquely effective in improving a key deficiency of aging muscle, i.e., its ability to produce force rapidly.

  1. Chronic high-magnitude cyclic stretch stimulates EC inflammatory response via VEGF receptor 2-dependent mechanism.

    PubMed

    Gawlak, Grzegorz; Son, Sophia; Tian, Yufeng; O'Donnell, James J; Birukov, Konstantin G; Birukova, Anna A

    2016-06-01

    Ventilator-induced lung injury (VILI) is associated with activated inflammatory signaling, such as cytokine production by endothelial and epithelial cells and macrophages, although the precise mechanisms of inflammatory activation induced by VILI-relevant cyclic stretch (CS) amplitude remain poorly understood. We show that exposure of human pulmonary endothelial cells (EC) to chronic CS at 18% linear distension (18% CS), but not at physiologically relevant 5% CS, induces "EC-activated phenotype," which is characterized by time-dependent increase in ICAM1 and VCAM1 expression. A preconditioning of 18% CS also increased in a time-dependent fashion the release of soluble ICAM1 (sICAM1) and IL-8. Investigation of potential signaling mechanisms of CS-induced EC inflammatory activation showed that 18% CS, but not 5% CS, induced time-dependent upregulation of VEGF receptor 2 (VEGFR2), as monitored by increased protein expression and VEGFR2 tyrosine phosphorylation. Both CS-induced VEGFR2 expression and tyrosine phosphorylation were abrogated by cotreatment with reactive oxygen species inhibitor, N-acetyl cysteine. Molecular inhibition of VEGFR2 expression by gene-specific siRNA or treatment with VEGFR2 pharmacological inhibitor SU-1498 attenuated CS-induced activation of ICAM1 and VCAM1 expression and sICAM1 release. Chronic EC preconditioning at 18% CS augmented EC inflammation and barrier-disruptive response induced by proinflammatory cytokine TNF-α. This effect of chronic 18% CS preconditioning was attenuated by siRNA-induced VEGFR2 knockdown. This study demonstrates for the first time a VEGFR2-dependent mechanism of EC inflammatory activation induced by pathological CS. We conclude that, despite the recognized role of VEGF as a prosurvival and angiogenic factor, excessive activation of VEGFR2 signaling by high-tidal-volume lung mechanical ventilation may contribute to ventilator-induced (biotrauma) lung inflammation and barrier dysfunction by augmenting cell response

  2. Expression of gastrin-releasing peptide is increased by prolonged stretch of human myometrium, and antagonists of its receptor inhibit contractility.

    PubMed

    Tattersall, Mark; Cordeaux, Yolande; Charnock-Jones, D Stephen; Smith, Gordon C S

    2012-05-01

    Increased uterine stretch appears to increase the risk of preterm labour, but the mechanism is unknown. The aim of this study was to identify factors that mediate the effect of stretch on human myometrium.Myometrial explants, prepared from biopsies obtained at elective caesarean delivery, were either studied acutely, or were maintained in prolonged culture (up to 65 h) under tension with either a 0.6 g or a 2.4 g mass, and compared using in vitro contractility, whole genome array, and qRT-PCR. Tissue held at tonic stretch with the 2.4 g mass for either 24 or 65 h showed increased potassium chloride (KCl)-induced and oxytocin-induced contractility compared with that held with the 0.6 g mass. Gene array identified 62 differentially expressed transcripts after 65 h exposure to increased stretch. Two probes for gastrin-releasing peptide (GRP), a known stimulatory agonist of smooth muscle, were among the top five up-regulated by stretch (3.4-fold and 2.0-fold). Up-regulation of GRP mRNA by stretch was confirmed in a separate series of 10 samples using quantitative RT-PCR (qRT-PCR) (2.8-fold, P =0.01). GRP stimulated contractions acutely when added to freshly obtained myometrial strips in 2 out of 9 cases, but Western blot demonstrated expression of the GRP receptor in 9 out of a further 9 cases. Prolonged incubation of stretched explants in the GRP antagonists PD-176252 or RC-3095 (65 and 24 h, respectively) significantly reduced KCl- and oxytocin-induced contractility.Tonic stretch of human myometrium increases contractility and stimulates the expression of a known smooth muscle stimulatory agonist, GRP. Incubation of myometrium with GRP receptor antagonists attenuates the effect of stretch. GRP may be a target for novel therapies to reduce the risk of preterm birth in multiple pregnancy.

  3. Quantifying the squeezing or stretching of fisheries as they adapt to displacement by marine reserves.

    PubMed

    Chollett, Iliana; Box, Stephen J; Mumby, Peter J

    2016-02-01

    The designation of no-take marine reserves involves social and economic concerns due to the resulting displacement of fishing effort, when fishing rights are removed from those who traditionally fished within an area. Displacement can influence the functioning of the fishery and success of the reserve, yet levels of displacement are seldom quantified after reserve implementation and very rarely before that. We devised a simple analytical framework based on set theory to facilitate reserve placement. Implementation of the framework requires maps of fishing grounds, fishing effort, or catch per unit effort for at least 2 years. The framework quantifies the level of conflict that a reserve designation might cause in the fishing sector due to displacement and the opportunities to offset the conflict through fisher spatial mobility (i.e., ability of fishers to fish elsewhere). We also considered how the outputs of the framework can be used to identify targeted management interventions for each fishery. We applied the method in Honduras, where the largest marine protected area in Central America is being placed, for which spatial data on fishing effort were available for 6 fisheries over 3 years. The proposed closure had a greater negative impact on the shrimp and lobster scuba fisheries, which concentrated respectively 28% and 18% of their effort inside the reserve. These fisheries could not accommodate the displacement within existing fishing grounds. Both would be forced to stretch into new fishing grounds, which are available but are of unknown quality. These stakeholders will likely require compensation to offset costly exploratory fishing or to travel to fishing grounds farther away from port.

  4. Quantifying the squeezing or stretching of fisheries as they adapt to displacement by marine reserves.

    PubMed

    Chollett, Iliana; Box, Stephen J; Mumby, Peter J

    2016-02-01

    The designation of no-take marine reserves involves social and economic concerns due to the resulting displacement of fishing effort, when fishing rights are removed from those who traditionally fished within an area. Displacement can influence the functioning of the fishery and success of the reserve, yet levels of displacement are seldom quantified after reserve implementation and very rarely before that. We devised a simple analytical framework based on set theory to facilitate reserve placement. Implementation of the framework requires maps of fishing grounds, fishing effort, or catch per unit effort for at least 2 years. The framework quantifies the level of conflict that a reserve designation might cause in the fishing sector due to displacement and the opportunities to offset the conflict through fisher spatial mobility (i.e., ability of fishers to fish elsewhere). We also considered how the outputs of the framework can be used to identify targeted management interventions for each fishery. We applied the method in Honduras, where the largest marine protected area in Central America is being placed, for which spatial data on fishing effort were available for 6 fisheries over 3 years. The proposed closure had a greater negative impact on the shrimp and lobster scuba fisheries, which concentrated respectively 28% and 18% of their effort inside the reserve. These fisheries could not accommodate the displacement within existing fishing grounds. Both would be forced to stretch into new fishing grounds, which are available but are of unknown quality. These stakeholders will likely require compensation to offset costly exploratory fishing or to travel to fishing grounds farther away from port. PMID:26096358

  5. Tracking global changes induced in the CD4 T-cell receptor repertoire by immunization with a complex antigen using short stretches of CDR3 protein sequence

    PubMed Central

    Thomas, Niclas; Best, Katharine; Cinelli, Mattia; Reich-Zeliger, Shlomit; Gal, Hilah; Shifrut, Eric; Madi, Asaf; Friedman, Nir; Shawe-Taylor, John; Chain, Benny

    2014-01-01

    Motivation: The clonal theory of adaptive immunity proposes that immunological responses are encoded by increases in the frequency of lymphocytes carrying antigen-specific receptors. In this study, we measure the frequency of different T-cell receptors (TcR) in CD4 + T cell populations of mice immunized with a complex antigen, killed Mycobacterium tuberculosis, using high throughput parallel sequencing of the TcRβ chain. Our initial hypothesis that immunization would induce repertoire convergence proved to be incorrect, and therefore an alternative approach was developed that allows accurate stratification of TcR repertoires and provides novel insights into the nature of CD4 + T-cell receptor recognition. Results: To track the changes induced by immunization within this heterogeneous repertoire, the sequence data were classified by counting the frequency of different clusters of short (3 or 4) continuous stretches of amino acids within the antigen binding complementarity determining region 3 (CDR3) repertoire of different mice. Both unsupervised (hierarchical clustering) and supervised (support vector machine) analyses of these different distributions of sequence clusters differentiated between immunized and unimmunized mice with 100% efficiency. The CD4 + TcR repertoires of mice 5 and 14 days postimmunization were clearly different from that of unimmunized mice but were not distinguishable from each other. However, the repertoires of mice 60 days postimmunization were distinct both from naive mice and the day 5/14 animals. Our results reinforce the remarkable diversity of the TcR repertoire, resulting in many diverse private TcRs contributing to the T-cell response even in genetically identical mice responding to the same antigen. However, specific motifs defined by short stretches of amino acids within the CDR3 region may determine TcR specificity and define a new approach to TcR sequence classification. Availability and implementation: The analysis was

  6. Direct detection of cellular adaptation to local cyclic stretching at the single cell level by atomic force microscopy.

    PubMed

    Watanabe-Nakayama, Takahiro; Machida, Shin-ichi; Harada, Ichiro; Sekiguchi, Hiroshi; Afrin, Rehana; Ikai, Atsushi

    2011-02-01

    The cellular response to external mechanical forces has important effects on numerous biological phenomena. The sequences of molecular events that underlie the observed changes in cellular properties have yet to be elucidated in detail. Here we have detected the responses of a cultured cell against locally applied cyclic stretching and compressive forces, after creating an artificial focal adhesion under a glass bead attached to the cantilever of an atomic force microscope. The cell tension initially increased in response to the tensile stress and then decreased within ∼1 min as a result of viscoelastic properties of the cell. This relaxation was followed by a gradual increase in tension extending over several minutes. The slow recovery of tension ceased after several cycles of force application. This tension-recovering activity was inhibited when cells were treated with cytochalasin D, an inhibitor of actin polymerization, or with (-)-blebbistatin, an inhibitor of myosin II ATPase activity, suggesting that the activity was driven by actin-myosin interaction. To our knowledge, this is the first quantitative analysis of cellular mechanical properties during the process of adaptation to locally applied cyclic external force. PMID:21281570

  7. The drop height determines neuromuscular adaptations and changes in jump performance in stretch-shortening cycle training.

    PubMed

    Taube, W; Leukel, C; Lauber, B; Gollhofer, A

    2012-10-01

    There is an ongoing discussion about how to improve jump performance most efficiently with plyometric training. It has been proposed that drop height influences the outcome, although longitudinal studies are missing. Based on cross-sectional drop jump studies showing height-dependent Hoffmann (H)-reflex activities, we hypothesized that the drop height should influence the neuromuscular activity and thus, the training result. Thirty-three subjects participated as a control or in one of two stretch-shortening cycle (SSC) interventions. Subjects either trained for 4 weeks doing drop jumps from 30, 50, and 75 cm drop heights (SSC1) or completed the same amount of jumps exclusively from 30 cm (SSC2). During training and testing (from 30, 50, and 75 cm), subjects were instructed to minimize the duration of ground contact and to maximize their rebound height. Rebound heights were significantly augmented after SSC1, but a trend was only observed after SSC2. In contrast, the duration of ground contact increased after SSC1 but decreased after SSC2. The performance index (rebound height/duration of ground contact) improved similarly after SSC1 (+14%) and SSC2 (+14%). Changes in performance were accompanied by neuromuscular adaptations: for SSC1, activity of the soleus increased toward take-off (between 120 and 170 ms after touchdown), whereas SSC2-trained subjects showed enhanced activity shortly after ground contact (20-70 ms after touch down). The present study demonstrates a strong link among drop height, neuromuscular adaptation, and performance in SSC training. As the improvement in the performance index was no different after SSC1 or SSC2, the decision whether to apply SSC1 or SSC2 should depend on the specific requirements of the sports discipline.

  8. Uterine stretch regulates temporal and spatial expression of fibronectin protein and its alpha 5 integrin receptor in myometrium of unilaterally pregnant rats.

    PubMed

    Shynlova, Oksana; Williams, S Joy; Draper, Haley; White, Bryan G; MacPhee, Daniel J; Lye, Stephen J

    2007-11-01

    The adaptive growth of the uterus during pregnancy is a critical event that involves increased synthesis of extracellular matrix (ECM) proteins and dynamic remodeling of smooth muscle cell (SMC)-ECM interactions. We have previously found a dramatic increase in the expression of the mRNAs that encode fibronectin (FN) and its alpha5-integrin receptor (ITGA5) in pregnant rat myometrium near to term. Since the myometrium at term is exposed to considerable mechanical stretching of the uterine wall by the growing fetus(es), the objective of the present study was to examine its role in the regulation of FN and ITGA5 expression at late gestation and during labor. Using myometrial tissues from unilaterally pregnant rats, we investigated the temporal changes in Itga5 gene expression in gravid and empty uterine horns by Northern blotting and real-time PCR, in combination with immunoblotting and immunofluorescence analyses of the temporal/spatial distributions of the FN and ITGA5 proteins. In addition, we studied the effects of early progesterone (P4) withdrawal on Itga5 mRNA levels and ITGA5 protein detection. At all time-points examined, the Itga5 mRNA levels were increased in the gravid uterine horn, compared to the empty horn (P < 0.05). Immunoblot analysis confirmed higher ITGA5 and FN protein levels in the myometrium, associated with gravidity (P < 0.05). Immunodetection of ITGA5 was consistently high in the longitudinal muscle layer, increased with gestational age in the circular muscle layer of the gravid horn, and remained low in the empty horn. ITGA5 and FN immunostaining in the gravid horn exhibited a continuous layer of variable thickness associated directly with the surfaces of individual SMCs. In contrast to the effects of stretch, P4 does not appear to regulate ITGA5 expression. We speculate that the reinforcement of the FN-ITGA5 interaction: 1) contributes to myometrial hypertrophy and remodeling during late pregnancy; and 2) facilitates force transduction

  9. Response of pulmonary rapidly adapting receptors during lung inflation.

    PubMed

    Pack, A I; DeLaney, R G

    1983-09-01

    Studies were conducted to establish the factors that determine the response of canine pulmonary rapidly adapting receptors (RAR) during lung inflation. Inflations of the lung were performed at several constant rates during which the activity of individual RAR was counted. At each rate of inflation tested multiple identical tests were performed. The volume of each test inflation was controlled. Data obtained in all tests at each flow rate were averaged to give the mean response of the receptor at that rate of inflation. These studies indicate the major response characteristics of RAR during lung inflation in conditions of relatively constant lung mechanics. First, at a constant rate of inflation, the activity of RAR augments increasingly as the lung is expanded. Second, their activity is influenced markedly by the rate of inflation. However, this sensitivity is nonlinear. Specifically, at low rates of inflation increases in flow rate produce more marked augmentation of RAR firing than do identical increases in flow at higher rates of inflation. The major difference between receptors is in their threshold; however, this too is a function of flow rate. With increasing flow rate the threshold, whether measured as the inflation volume or transpulmonary pressure at which receptors begin to fire, declines. The response of receptors, however, with thresholds over the entire range show the major features discussed above. The present results provide quantitative information which are necessary to begin to eludicate the transduction properties of this receptor type.

  10. Collagen regulates transforming growth factor-β receptors of HL-1 cardiomyocytes through activation of stretch and integrin signaling.

    PubMed

    Lu, Yen-Yu; Lin, Yung-Kuo; Kao, Yu-Hsun; Chung, Cheng-Chih; Yeh, Yung-Hsin; Chen, Shih-Ann; Chen, Yi-Jen

    2016-10-01

    The extracellular matrix (ECM) and transforming growth factor-β (TGF)-β are important in cardiac fibrosis, however, the effects of the ECM on TGF‑β signaling remain to be fully elucidated. The aims of the present study were to evaluate the role of collagen in TGF‑β signaling and examine the underlying mechanisms. In the present study, western blot analysis was used to examine TGF‑β signaling in HL‑1 cells treated with and without (control) type I collagen (10 µg/ml), which was co‑administered with either an anti‑β1 integrin antibody (10 µg/ml) or a stretch‑activated channel inhibitor (gadolinium; 50 µM). Cell proliferation and adhesion assays were used to investigate the roles of integrin, mechanical stretch and mitogen‑activated protein kinases (MAPKs) on cell proliferation and adhesion. The type I collagen (10 µg/ml)‑treated HL‑1 cells were incubated with or without anti‑β1 integrin antibody (10 µg/ml), gadolinium (50 µM) or inhibitors of p38 (SB203580; 3 µM), extracellular signal‑regulated kinase (ERK; PD98059; 50 µM) and c‑Jun N‑terminal kinase (JNK; SP600125; 50 µM). Compared with the control cells, the collagen‑treated HL‑1 cells had lower expression levels of type I and type II TGF‑β receptors (TGFβRI and TGFβRII), with an increase in phosphorylated focal adhesion kinase (FAK), p38 and ERK1/2, and a decrease in JNK. Incubation with the anti‑β1 integrin antibody reversed the collagen‑induced downregulation of the expression of TGFβRII and phosphorylated FAK. Gadolinium downregulated the expression levels of TGFβRI and small mothers against decapentaplegic (Smad)2/3, and decreased the levels of phosphorylated p38, ERK1/2 and JNK. In addition, gadolinium reversed the collagen‑induced activation of p38 and ERK1/2. In the presence of gadolinium and anti‑β1 integrin antibody, collagen regulated the expression levels of TGFβRI, TGFβRII and Smad2/3, but did not alter the phosphorylation

  11. Olfactory Receptor Subgenomes Linked with Broad Ecological Adaptations in Sauropsida.

    PubMed

    Khan, Imran; Yang, Zhikai; Maldonado, Emanuel; Li, Cai; Zhang, Guojie; Gilbert, M Thomas P; Jarvis, Erich D; O'Brien, Stephen J; Johnson, Warren E; Antunes, Agostinho

    2015-11-01

    Olfactory receptors (ORs) govern a prime sensory function. Extant birds have distinct olfactory abilities, but the molecular mechanisms underlining diversification and specialization remain mostly unknown. We explored OR diversity in 48 phylogenetic and ecologically diverse birds and 2 reptiles (alligator and green sea turtle). OR subgenomes showed species- and lineage-specific variation related with ecological requirements. Overall 1,953 OR genes were identified in reptiles and 16,503 in birds. The two reptiles had larger OR gene repertoires (989 and 964 genes, respectively) than birds (182-688 genes). Overall, birds had more pseudogenes (7,855) than intact genes (1,944). The alligator had significantly more functional genes than sea turtle, likely because of distinct foraging habits. We found rapid species-specific expansion and positive selection in OR14 (detects hydrophobic compounds) in birds and in OR51 and OR52 (detect hydrophilic compounds) in sea turtle, suggestive of terrestrial and aquatic adaptations, respectively. Ecological partitioning among birds of prey, water birds, land birds, and vocal learners showed that diverse ecological factors determined olfactory ability and influenced corresponding olfactory-receptor subgenome. OR5/8/9 was expanded in predatory birds and alligator, suggesting adaptive specialization for carnivory. OR families 2/13, 51, and 52 were correlated with aquatic adaptations (water birds), OR families 6 and 10 were more pronounced in vocal-learning birds, whereas most specialized land birds had an expanded OR family 14. Olfactory bulb ratio (OBR) and OR gene repertoire were correlated. Birds that forage for prey (carnivores/piscivores) had relatively complex OBR and OR gene repertoires compared with modern birds, including passerines, perhaps due to highly developed cognitive capacities facilitating foraging innovations. PMID:26219582

  12. Stretch Marks

    MedlinePlus

    ... changes that can go with bodybuilding. People who use steroid-containing skin creams or ointments (such as hydrocortisone) for more than a few weeks may also get stretch marks. So might people who have to ... surgeon. These doctors may use one of many types of treatments — from actual ...

  13. The influence of chronological age on periods of accelerated adaptation of stretch-shortening cycle performance in pre and postpubescent boys.

    PubMed

    Lloyd, Rhodri S; Oliver, Jon L; Hughes, Michael G; Williams, Craig A

    2011-07-01

    Although it is suggested that periods of naturally occurring accelerated adaptation may exist for various physical parameters, it would appear that no such evidence exists for stretch-shortening cycle (SSC) development. Two hundred and fifty male youths aged 7-17 years were tested for squat (SJ) and countermovement jump (CMJ) height, reactive strength index (RSI), and leg stiffness, with analyses of variance used to establish any significant between-group differences. Additionally, to ascertain the existence of periods of accelerated adaptation, inferences were made about the magnitudes of change between consecutive chronological age groups in relation to the smallest worthwhile change. The largest mean differences (±90% confidence limits) occurred between age groups 10 and 11 (G10-G11) for squat jump (SJ) height (21.61 ± 12.08-31.94%), CMJ height (20.80 ± 11.1-44.1%), and RSI (26.51 ± 11.07-44.10%); and between G12 and G13 for SJ (15.31 ± 7.47-23.73%) and CMJ (16.09 ± 7.50-25.38%) height. Negative mean differences occurred between G11 and G12 for SJ height (-1.32 ± -9.30 to 7.37%), CMJ jump height (-7.68 ± -15.15 to 0.45%) and RSI (-11.48 ± -22.21 to 0.74%); and between G10 and G11 for leg stiffness (-8.87 ± -18.85 to 2.34%). It would appear almost certain that windows of accelerated adaptation may exist for SJ and CMJ height and RSI in male youths; however, leg stiffness results would suggest that fast-SSC function may follow a different developmental trend.

  14. Constraint and Adaptation in newt Toll-Like Receptor Genes

    PubMed Central

    Babik, Wiesław; Dudek, Katarzyna; Fijarczyk, Anna; Pabijan, Maciej; Stuglik, Michał; Szkotak, Rafał; Zieliński, Piotr

    2015-01-01

    Acute die-offs of amphibian populations worldwide have been linked to the emergence of viral and fungal diseases. Inter and intraspecific immunogenetic differences may influence the outcome of infection. Toll-like receptors (TLRs) are an essential component of innate immunity and also prime acquired defenses. We report the first comprehensive assessment of TLR gene variation for urodele amphibians. The Lissotriton newt TLR repertoire includes representatives of 13 families and is compositionally most similar to that of the anuran Xenopus. Both ancient and recent gene duplications have occurred in urodeles, bringing the total number of TLR genes to at least 21. Purifying selection has predominated the evolution of newt TLRs in both long (∼70 Ma) and medium (∼18 Ma) timescales. However, we find evidence for both purifying and positive selection acting on TLRs in two recently diverged (2–5 Ma) allopatric evolutionary lineages (Lissotriton montandoni and L. vulgaris graecus). Overall, both forms of selection have been stronger in L. v. graecus, while constraint on most TLR genes in L. montandoni appears relaxed. The differences in selection regimes are unlikely to be biased by demographic effects because these were controlled by means of a historical demographic model derived from an independent data set of 62 loci. We infer that TLR genes undergo distinct trajectories of adaptive evolution in closely related amphibian lineages, highlight the potential of TLRs to capture the signatures of different assemblages of pathogenic microorganisms, and suggest differences between lineages in the relative roles of innate and acquired immunity. PMID:25480684

  15. Role of the transient receptor potential vanilloid type 1 receptor and stretch-activated ion channels in nitric oxide release from endothelial cells of the aorta and heart in rats

    PubMed Central

    Torres-Narváez, Juan Carlos; Mondragón, Leonardo del Valle; Varela López, Elvira; Pérez-Torres, Israel; Díaz Juárez, Julieta Anabell; Suárez, Jorge; Hernández, Gustavo Pastelín

    2012-01-01

    Shear stress stimulates nitric oxide (NO) release in endothelial cells. Stretch-activated ion channels (SACs) and the transient receptor potential vanilloid type 1 (TRPV1) receptor respond to mechanical stimulus and are permeable to Na+, Ca2+ and K+. The influence of SACs and the TRPV1 receptor on NO release on the heart and on the vascular reactivity of the thoracic aorta (TA) was studied. Experiments were performed in isolated perfused heart, cultured endothelial cells and TA rings from Wistar rats. Capsaicin (10 μM, 30 μM) was used as a NO release stimulator, capsazepine (6 μM, 10 μM) was used as a capsaicin antagonist and gadolinium (3 μM, 5 μM) was used as an inhibitor of SACs. NO was measured by the Kelm and Tenorio methods. Left ventricular pressure was recorded and coronary vascular resistance was calculated. Capsaicin increased NO release in the heart by 58% (395±8 pmol/mL to 627±23 pmol/mL). Capsazepine and gadolinium inhibited NO release by 74% and 82%, respectively. This tendency was similar in all experimental models. Capsaicin attenuated the effects of norepinephrine (10 M to 7 M) on TA and had no effect in the presence of Nω-nitro-L-arginine methyl ester. Therefore, the authors conclude that SACs and the TRPV1 receptor are both present in the coronary endothelium and that both participate in Ca2+-dependent NO release. PMID:23620694

  16. Role of the transient receptor potential vanilloid type 1 receptor and stretch-activated ion channels in nitric oxide release from endothelial cells of the aorta and heart in rats.

    PubMed

    Torres-Narváez, Juan Carlos; Mondragón, Leonardo Del Valle; Varela López, Elvira; Pérez-Torres, Israel; Díaz Juárez, Julieta Anabell; Suárez, Jorge; Hernández, Gustavo Pastelín

    2012-09-01

    Shear stress stimulates nitric oxide (NO) release in endothelial cells. Stretch-activated ion channels (SACs) and the transient receptor potential vanilloid type 1 (TRPV1) receptor respond to mechanical stimulus and are permeable to Na(+), Ca(2+) and K(+). The influence of SACs and the TRPV1 receptor on NO release on the heart and on the vascular reactivity of the thoracic aorta (TA) was studied. Experiments were performed in isolated perfused heart, cultured endothelial cells and TA rings from Wistar rats. Capsaicin (10 μM, 30 μM) was used as a NO release stimulator, capsazepine (6 μM, 10 μM) was used as a capsaicin antagonist and gadolinium (3 μM, 5 μM) was used as an inhibitor of SACs. NO was measured by the Kelm and Tenorio methods. Left ventricular pressure was recorded and coronary vascular resistance was calculated. Capsaicin increased NO release in the heart by 58% (395±8 pmol/mL to 627±23 pmol/mL). Capsazepine and gadolinium inhibited NO release by 74% and 82%, respectively. This tendency was similar in all experimental models. Capsaicin attenuated the effects of norepinephrine (10 M to 7 M) on TA and had no effect in the presence of N (ω)-nitro-L-arginine methyl ester. Therefore, the authors conclude that SACs and the TRPV1 receptor are both present in the coronary endothelium and that both participate in Ca(2+)-dependent NO release. PMID:23620694

  17. Stretching Fibroblasts Remodels Fibronectin and Alters Cancer Cell Migration

    NASA Astrophysics Data System (ADS)

    Ao, Mingfang; Brewer, Bryson M.; Yang, Lijie; Franco Coronel, Omar E.; Hayward, Simon W.; Webb, Donna J.; Li, Deyu

    2015-02-01

    Most investigations of cancer-stroma interactions have focused on biochemical signaling effects, with much less attention being paid to biophysical factors. In this study, we investigated the role of mechanical stimuli on human prostatic fibroblasts using a microfluidic platform that was adapted for our experiments and further developed for both repeatable performance among multiple assays and for compatibility with high-resolution confocal microscopy. Results show that mechanical stretching of normal tissue-associated fibroblasts (NAFs) alters the structure of secreted fibronectin. Specifically, unstretched NAFs deposit and assemble fibronectin in a random, mesh-like arrangement, while stretched NAFs produce matrix with a more organized, linearly aligned structure. Moreover, the stretched NAFs exhibited an enhanced capability for directing co-cultured cancer cell migration in a persistent manner. Furthermore, we show that stretching NAFs triggers complex biochemical signaling events through the observation of increased expression of platelet derived growth factor receptor α (PDGFRα). A comparison of these behaviors with those of cancer-associated fibroblasts (CAFs) indicates that the observed phenotypes of stretched NAFs are similar to those associated with CAFs, suggesting that mechanical stress is a critical factor in NAF activation and CAF genesis.

  18. Ionotropic glutamate receptors mediate OFF responses in light-adapted ON bipolar cells

    PubMed Central

    Pang, Ji-Jie; Gao, Fan; Wu, Samuel M.

    2013-01-01

    Previous studies have suggested that photoreceptor synaptic inputs to depolarizing bipolar cells (DBCs or ON bipolar cells) are mediated by mGluR6 receptors and those to hyperpolarizing bipolar cells (HBCs or OFF bipolar cells) are mediated by AMPA/kainate receptors. Here we show that in addition to mGluR6 receptors which mediate the sign-inverting, depolarizing light responses, subpopulations of cone-dominated and rod/cone mixed DBCs use GluR4 AMPA receptors to generate a transient sign-preserving OFF response under light adapted conditions. These AMPA receptors are located at the basal junctions postsynaptic to rods and they are silent under dark-adapted conditions, as tonic glutamate release in darkness desensitizes these receptors. Light adaptation enhances rod-cone coupling and thus allows cone photocurrents with an abrupt OFF depolarization to enter the rods. The abrupt rod depolarization triggers glutamate activation of unoccupied AMPA receptors, resulting in a transient OFF response in DBCs. It has been widely accepted that the DNQX-sensitive, OFF transient responses in retinal amacrine cells and ganglion cells are mediated exclusively by HBCs. Our results suggests that this view needs revision as AMPA receptors in subpopulations of DBCs are likely to significantly contribute to the DNQX-sensitive OFF transient responses in light-adapted third- and higher-order visual neurons. PMID:22842089

  19. Adaptation Mechanism of the Aspartate Receptor: Electrostatics of the Adaptation Subdomain Play a Key Role in Modulating Kinase Activity†

    PubMed Central

    Starrett, Diane J.; Falke, Joseph J.

    2010-01-01

    The aspartate receptor of the Escherichia coli and Salmonella typhimurium chemotaxis pathway generates a transmembrane signal that regulates the activity of the cytoplasmic kinase CheA. Previous studies have identified a region of the cytoplasmic domain that is critical to receptor adaptation and kinase regulation. This region, termed the adaptation subdomain, contains a high density of acidic residues, including specific glutamate residues that serve as receptor adaptation sites. However, the mechanism of signal propagation through this region remains poorly understood. This study uses site-directed mutagenesis to neutralize each acidic residue within the subdomain to probe the hypothesis that electrostatics in this region play a significant role in the mechanism of kinase activation and modulation. Each point mutant was tested for its ability to regulate chemotaxis in vivo and kinase activity in vitro. Four point mutants (D273N, E281Q, D288N, and E477Q) were found to superactivate the kinase relative to the wild-type receptor, and all four of these kinase-activating substitutions are located along the same intersubunit interface as the adaptation sites. These activating substitutions retained the wild-type ability of the attractant-occupied receptor to inhibit kinase activity. When combined in a quadruple mutant (D273N/E281Q/D288N/E477Q), the four charge-neutralizing substitutions locked the receptor in a kinase-superactivating state that could not be fully inactivated by the attractant. Similar lock-on character was observed for a charge reversal substitution, D273R. Together, these results implicate the electrostatic interactions at the intersubunit interface as a major player in signal transduction and kinase regulation. The negative charge in this region destabilizes the local structure in a way that enhances conformational dynamics, as detected by disulfide trapping, and this effect is reversed by charge neutralization of the adaptation sites. Finally, two

  20. NPY receptor subtype specification for behavioral adaptive strategies during limited food access.

    PubMed

    Pjetri, E; Adan, R A; Herzog, H; de Haas, R; Oppelaar, H; Spierenburg, H A; Olivier, B; Kas, M J

    2012-02-01

    The neuropeptide Y (NPY) system in the brain regulates a wide variety of behavioral, metabolic and hormonal homeostatic processes required for energy balance control. During times of limited food availability, NPY promotes behavioral hyperactivity necessary to explore and prepare for novel food resources. As NPY can act via 5 different receptor subtypes, we investigated the path through which NPY affects different behavioral components relevant for adaptation to such conditions. We tested NPY Y1 and Y2 receptor knockout mice and their wild-type littermate controls in a daily scheduled limited food access paradigm with unlimited access to running wheel. Here we show that NPY Y1 receptor deficient mice lack the expression of appetitive behavior and that NPY Y2 receptors control the level of hyperactive behavior under these conditions. Thus, receptor specificity determines the differential expression of NPY-mediated behavioral adaptations to overcome a negative energy status.

  1. Synaptic connections between the hindwing stretch receptor and flight motor neurones in the locust revealed by double cobalt labelling for electron microscopy

    SciTech Connect

    Peters, B.H.; Altman, J.S.; Tyrer, N.M.

    1985-03-08

    Synaptic interactions between sensory and motor neurones in the locust flight system have been investigated by using intracellular labelling with cobalt and nickel for electron microscopy. Simultaneous axonal filling of two neurones with different concentrations of metal ions produces differential labelling, so that contacts between them in the central nervous system can be recognized. We have investigated the connectivity of the hindwing stretch receptor neurone (SR) with a direct hindwing depressor motor neurone (MN 127) known from physiological experiments to receive monosynaptic input from the SR, and an indirect hindwing depressor motor neurone (MN 112/1), for which no monosynaptic connection with the SR has been reported. We have found no direct synapses between the SR and MN 112/1, although some of their branches lie close together in the neuropile. We have, however, found some evidence for polysynaptic connections between them. There are many synapses of conventional dyadic morphology from both the lateral and mediolateral branches of the SR to MN 127; the medial branch was not examined. Those from the lateral branch contact the motor neurone on branches close to the neuropilar segment, while those from the mediolateral branch contact long, thin distal twigs. We estimate that there are about 600 anatomical synapses between these two neurones. Our results suggest that a large number of widely distributed anatomical synapses constitute the physiological synaptic connection between the SR and MN 127. The dyadic arrangement of these synapses provides an anatomical correlate for the physiologically established divergence of SR outputs onto interneurones and motor neurones.

  2. Get up and Stretch

    ERIC Educational Resources Information Center

    Crupi, Jeffrey

    2004-01-01

    Daily stretching has many benefits for one's body. It can relieve stress and tension, it increases flexibility and it can help prevent injuries. There are many stretching exercises that a teacher can do with his or her students to help promote daily stretching routines. In this article, the author presents several stretching exercises and some…

  3. Stretching the imagination beyond muscle spindles - stretch-sensitive mechanisms in arthropods.

    PubMed

    Suslak, Thomas J; Jarman, Andrew P

    2015-08-01

    Much attention has been given to mammalian muscle spindles and their role in stretch-mediated muscle proprioception. Recent studies, particularly, have sought to determine the molecular mediators of stretch-evoked mechanotransduction, which these endings rely upon for functionality. Nonetheless, much about these endings remains unknown. Opportunities may be presented from consideration of extensive parallel research in stretch receptor mechanisms in arthropods. Such systems may provide a useful source of additional data and powerful tools for dissecting the complex systems of stretch transduction apparatus. At the least, such systems provide tractable exemplars of how organisms solve the problem of converting stretch stimuli to electrical output. Potentially, they may even provide molecular mechanisms and candidate molecular mediators of direct relevance to mammalian muscle spindles. Here we provide a brief overview of research on arthropod stretch receptors.

  4. Mechanism of HSV infection through soluble adapter-mediated virus bridging to the EGF receptor

    SciTech Connect

    Nakano, Kenji; Kobayashi, Masatoshi; Nakamura, Kei-ichiro; Nakanishi, Takeshi; Asano, Ryutaro; Kumagai, Izumi; Tahara, Hideaki; Kuwano, Michihiko; Cohen, Justus B.; Glorioso, Joseph C.

    2011-04-25

    Herpes simplex virus entry into cells requires the binding of envelope glycoprotein D (gD) to an entry receptor. Depending on the cell, entry occurs by different mechanisms, including fusion at the cell surface or endocytosis. Here we examined the entry mechanism through a non-HSV receptor mediated by a soluble bi-specific adapter protein composed of recognition elements for gD and the EGF receptor (EGFR). Virus entered into endosomes using either EGF or an EGFR-specific single chain antibody (scFv) for receptor recognition. Infection was less efficient with the EGF adapter which could be attributed to its weaker binding to a viral gD. Infection mediated by the scFv adapter was pH sensitive, indicating that gD-EGFR bridging alone was insufficient for capsid release from endosomes. We also show that the scFv adapter enhanced infection of EGFR-expressing tumor tissue in vivo. Our results indicate that adapters may retarget HSV infection without drastically changing the entry mechanism.

  5. Adaptation of the receptors of the cosmonauts during of space missions

    NASA Astrophysics Data System (ADS)

    Prisniakov, Volodymyr

    Perception and analysis of information characterizing outside environment and the inner state of the man's own systems define the efficiency of the astronauts to a great extent. This information is being perceived by a system of various receptors: visual, oral, tactile, gustatory, olfactory etc. The sensitivity of these receptors depend upon a number of factors. Usually the study of the receptors aimed at finding out the relations between their sensitivity through the time which defined the so-called adaptation process. The developed by authors the theory of the adaptation process enables to predict behaviour of individuals not only on the Earth, but also in conditions of space flight. Key parameters of the theory is time constant of information processing in memory and the amount of information retained by memory after sufficiently long period of time. Values of these sizes are received as a result of processing the numerous literary data. In paper the dependences of these sizes on overloads and microgravitation that enables to predict adaptation of all analyzers of cosmonauts during space flight are determined: light and darkness adaptation with consideration of the effect of the duration of pre-adaptation lighting, of the period of long adaptation to a certain colours, of the effect of brightness of preexposition lighting, of brightness of different colours, of the size of test objects, of the angular distance of the test object from the fixed point, of the areas of the test object, of the effect of adaptation to light on the subsequent darkness adaptation. Adaptation to gustatory stimuli, to tactile sensations for olfactory sensations are dealt too. The received results enable to take into account changes of sensitivity of analyzers of cosmonauts in flight and them to correct in case of need.

  6. The Role of Metabotropic Glutamate Receptors and Cortical Adaptation in Habituation of Odor-Guided Behavior

    ERIC Educational Resources Information Center

    Yadon, Carly A.; Wilson, Donald A.

    2005-01-01

    Decreases in behavioral investigation of novel stimuli over time may be mediated by a variety of factors including changes in attention, internal state, and motivation. Sensory cortical adaptation, a decrease in sensory cortical responsiveness over prolonged stimulation, may also play a role. In olfaction, metabotropic glutamate receptors on…

  7. Mechanisms of Host Receptor Adaptation by Severe Acute Respiratory Syndrome Coronavirus

    SciTech Connect

    Wu, Kailang; Peng, Guiqing; Wilken, Matthew; Geraghty, Robert J.; Li, Fang

    2012-12-10

    The severe acute respiratory syndrome coronavirus (SARS-CoV) from palm civets has twice evolved the capacity to infect humans by gaining binding affinity for human receptor angiotensin-converting enzyme 2 (ACE2). Numerous mutations have been identified in the receptor-binding domain (RBD) of different SARS-CoV strains isolated from humans or civets. Why these mutations were naturally selected or how SARS-CoV evolved to adapt to different host receptors has been poorly understood, presenting evolutionary and epidemic conundrums. In this study, we investigated the impact of these mutations on receptor recognition, an important determinant of SARS-CoV infection and pathogenesis. Using a combination of biochemical, functional, and crystallographic approaches, we elucidated the molecular and structural mechanisms of each of these naturally selected RBD mutations. These mutations either strengthen favorable interactions or reduce unfavorable interactions with two virus-binding hot spots on ACE2, and by doing so, they enhance viral interactions with either human (hACE2) or civet (cACE2) ACE2. Therefore, these mutations were viral adaptations to either hACE2 or cACE2. To corroborate the above analysis, we designed and characterized two optimized RBDs. The human-optimized RBD contains all of the hACE2-adapted residues (Phe-442, Phe-472, Asn-479, Asp-480, and Thr-487) and possesses exceptionally high affinity for hACE2 but relative low affinity for cACE2. The civet-optimized RBD contains all of the cACE2-adapted residues (Tyr-442, Pro-472, Arg-479, Gly-480, and Thr-487) and possesses exceptionally high affinity for cACE2 and also substantial affinity for hACE2. These results not only illustrate the detailed mechanisms of host receptor adaptation by SARS-CoV but also provide a molecular and structural basis for tracking future SARS-CoV evolution in animals.

  8. Low power laser irradiation does not affect the generation of signals in a sensory receptor

    SciTech Connect

    Lundeberg, T.; Zhou, J.

    1989-01-01

    The effect of low power Helium-Neon (He-Ne) and Gallium-Arsenide (Ga-As) laser on the slowly adapting crustacean stretch receptor was studied. The results showed that low power laser irradiation did not affect the membrane potential of the stretch receptor. These results are discussed in relation to the use of low power laser irradiation on the skin overlaying acupuncture points in treatment of pain syndrome.

  9. Involvement of the V2 Vasopressin Receptor in Adaptation to Limited Water Supply

    PubMed Central

    Böselt, Iris; Römpler, Holger; Hermsdorf, Thomas; Thor, Doreen; Busch, Wibke; Schulz, Angela; Schöneberg, Torsten

    2009-01-01

    Mammals adapted to a great variety of habitats with different accessibility to water. In addition to changes in kidney morphology, e.g. the length of the loops of Henle, several hormone systems are involved in adaptation to limited water supply, among them the renal-neurohypophysial vasopressin/vasopressin receptor system. Comparison of over 80 mammalian V2 vasopressin receptor (V2R) orthologs revealed high structural and functional conservation of this key component involved in renal water reabsorption. Although many mammalian species have unlimited access to water there is no evidence for complete loss of V2R function indicating an essential role of V2R activity for survival even of those species. In contrast, several marsupial V2R orthologs show a significant increase in basal receptor activity. An increased vasopressin-independent V2R activity can be interpreted as a shift in the set point of the renal-neurohypophysial hormone circuit to realize sufficient water reabsorption already at low hormone levels. As found in other desert mammals arid-adapted marsupials show high urine osmolalities. The gain of basal V2R function in several marsupials may contribute to the increased urine concentration abilities and, therefore, provide an advantage to maintain water and electrolyte homeostasis under limited water supply conditions. PMID:19440390

  10. Calcium-stores mediate adaptation in axon terminals of Olfactory Receptor Neurons in Drosophila

    PubMed Central

    2011-01-01

    Background In vertebrates and invertebrates, sensory neurons adapt to variable ambient conditions, such as the duration or repetition of a stimulus, a physiological mechanism considered as a simple form of non-associative learning and neuronal plasticity. Although various signaling pathways, as cAMP, cGMP, and the inositol 1,4,5-triphosphate receptor (InsP3R) play a role in adaptation, their precise mechanisms of action at the cellular level remain incompletely understood. Recently, in Drosophila, we reported that odor-induced Ca2+-response in axon terminals of olfactory receptor neurons (ORNs) is related to odor duration. In particular, a relatively long odor stimulus (such as 5 s) triggers the induction of a second component involving intracellular Ca2+-stores. Results We used a recently developed in-vivo bioluminescence imaging approach to quantify the odor-induced Ca2+-activity in the axon terminals of ORNs. Using either a genetic approach to target specific RNAs, or a pharmacological approach, we show that the second component, relying on the intracellular Ca2+-stores, is responsible for the adaptation to repetitive stimuli. In the antennal lobes (a region analogous to the vertebrate olfactory bulb) ORNs make synaptic contacts with second-order neurons, the projection neurons (PNs). These synapses are modulated by GABA, through either GABAergic local interneurons (LNs) and/or some GABAergic PNs. Application of GABAergic receptor antagonists, both GABAA or GABAB, abolishes the adaptation, while RNAi targeting the GABABR (a metabotropic receptor) within the ORNs, blocks the Ca2+-store dependent component, and consequently disrupts the adaptation. These results indicate that GABA exerts a feedback control. Finally, at the behavioral level, using an olfactory test, genetically impairing the GABABR or its signaling pathway specifically in the ORNs disrupts olfactory adapted behavior. Conclusion Taken together, our results indicate that a relatively long lasting

  11. Stretching: Does It Help?

    ERIC Educational Resources Information Center

    Vardiman, Phillip; Carrand, David; Gallagher, Philip M.

    2010-01-01

    Stretching prior to activity is universally accepted as an important way to improve performance and help prevent injury. Likewise, limited flexibility has been shown to decrease functional ability and predispose a person to injuries. Although this is commonly accepted, appropriate stretching for children and adolescents involved with sports and…

  12. Stretch Band Exercise Program

    ERIC Educational Resources Information Center

    Skirka, Nicholas; Hume, Donald

    2007-01-01

    This article discusses how to use stretch bands for improving total body fitness and quality of life. A stretch band exercise program offers a versatile and inexpensive option to motivate participants to exercise. The authors suggest practical exercises that can be used in physical education to improve or maintain muscular strength and endurance,…

  13. Cyclic tensile stretch load and oxidized low density lipoprotein synergistically induce lectin-like oxidized ldl receptor-1 in cultured bovine chondrocytes, resulting in decreased cell viability and proteoglycan synthesis.

    PubMed

    Akagi, Masao; Nishimura, Shunji; Yoshida, Kohji; Kakinuma, Takumi; Sawamura, Tatsuya; Munakata, Hiroshi; Hamanishi, Chiaki

    2006-08-01

    Mechanical stimulation is known to be an essential factor in the regulation of cartilage metabolism. We tested the hypothesis that expression of lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) can be modulated by cyclic tensile stretch load in chondrocytes. Cyclic loading of repeated stretch stress at 10 cycles per minute with 10 kPa of stress for 6 h induced expression of LOX-1 to 2.6 times control in cultured bovine articular chondrocytes, equivalent to the addition of 10 microg/mL oxidized low density lipoprotein (ox-LDL) (2.4 times control). Application of the cyclic load to the chondrocytes along with 10 microg/mL ox-LDL resulted in synergistically increased LOX-1 expression to 6.3 times control. Individual application of cyclic loading and 10 microg/mL ox-LDL significantly suppressed chondrocytes viability (84.6% +/- 3.4% and 80.9% +/- 3.2% of control at 24 h, respectively; n = 3; p < 0.05) and proteoglycan synthesis [81.0% +/- 7.1% and 85.7% +/- 5.2% of control at 24 h, respectively; p < 0.05 when compared with 94.6% +/- 4.6% for native-LDL (n = 3)]. Cyclic loading and 10 microg/mL ox-LDL synergistically affected cell viability and proteoglycan synthesis, which were significantly suppressed to 45.6% +/- 4.9% and 48.7% +/- 6.7% of control at 24 h, respectively (n = 3; p < 0.01 when compared with individual application of cyclic loading or 10 microg/mL ox-LDL). In this study, we demonstrated synergistic effects of cyclic tensile stretch load and ox-LDL on cell viability and proteoglycan synthesis in chondrocytes, which may be mediated through enhanced expression of LOX-1 and which has important implications in the progression of cartilage degeneration in osteoarthritis.

  14. Genetic variation in 5-hydroxytryptamine transporter expression causes adaptive changes in 5-HT₄ receptor levels.

    PubMed

    Jennings, Katie Ann; Licht, Cecilie Löe; Bruce, Aynsley; Lesch, Klaus-Peter; Knudsen, Gitte Moos; Sharp, Trevor

    2012-09-01

    Genetic variation in 5-HT transporter (5-HTT) expression is a key risk factor for psychiatric disorder and has been linked to changes in the expression of certain 5-HT receptor subtypes. This study investigated the effect of variation in 5-HTT expression on 5-HT₄ receptor levels in both 5-HTT knockout (KO) and overexpressing (OE) mice using autoradiography with the selective 5-HT₄ receptor radioligand, [³H]SB207145. Compared to wild-type (5-HTT⁺/⁺) controls, homozygous 5-HTT KO mice (5-HTT⁻/⁻) had reduced 5-HT₄ receptor binding site density in all brain regions examined (35-65% of 5-HTT⁺/⁺). In contrast, the density of 5-HT₄ receptor binding sites was not significantly different between heterozygous 5-HTT KO mice (5-HTT⁻/⁺) and 5-HTT⁺/⁺ mice. The 5-HT synthesis inhibitor p-chlorophenylalanine (250 mg/kg twice daily for 3 d) abolished the difference in 5-HT₄ binding between 5-HTT⁻/⁻ and 5-HTT⁺/⁺ mice in all brain regions. Compared to wild-type (WT) littermate controls, 5-HTT OE mice had increased 5-HT₄ binding density across all brain regions, except amygdala (118-164% of WT) and this difference between genotypes was reduced by the 5-HTT inhibitor, fluoxetine (20 mg/kg twice daily, 3 d). Together, these findings suggest that variation in 5-HTT expression causes adaptive changes in 5-HT₄ receptor levels which are directly linked to alterations in 5-HT availability.

  15. Adaptive responses of androgen receptor signaling in castration-resistant prostate cancer

    PubMed Central

    2015-01-01

    Prostate Cancer (PCa) is an important age-related disease being the most common cancer malignancy and the second leading cause of cancer mortality in men in Western countries. Initially, PCa progression is androgen receptor (AR)- and androgen-dependent. Eventually advanced PCa reaches the stage of Castration-Resistant Prostate Cancer (CRPC), but remains dependent on AR, which indicates the importance of AR activity also for CRPC. Here, we discuss various pathways that influence the AR activity in CRPC, which indicates an adaptation of the AR signaling in PCa to overcome the treatment of PCa. The adaptation pathways include interferences of the normal regulation of the AR protein level, the expression of AR variants, the crosstalk of the AR with cytokine tyrosine kinases, the Src-Akt-, the MAPK-signaling pathways and AR corepressors. Furthermore, we summarize the current treatment options with regard to the underlying molecular basis of the common adaptation processes of AR signaling that may arise after the treatment with AR antagonists, androgen deprivation therapy (ADT) as well as for CRPC, and point towards novel therapeutic strategies. The understanding of individualized adaptation processes in PCa will lead to individualized treatment options in the future. PMID:26325261

  16. Melanocortin 4 receptor mutations contribute to the adaptation of cavefish to nutrient-poor conditions

    PubMed Central

    Aspiras, Ariel C.; Rohner, Nicolas; Martineau, Brian; Borowsky, Richard L.; Tabin, Clifford J.

    2015-01-01

    Despite recent advances in the understanding of morphological evolution, the genetic underpinnings of behavioral and physiological evolution remain largely unknown. Here, we study the metabolic changes that evolved in independently derived populations of the Mexican cavefish, Astyanax mexicanus. A hallmark of cave environments is scarcity of food. Cavefish populations rely almost entirely on sporadic food input from outside of the caves. To survive under these conditions, cavefish have evolved a range of adaptations, including starvation resistance and binge eating when food becomes available. The use of these adaptive strategies differs among independently derived cave populations. Although all cavefish populations tested lose weight more slowly than their surface conspecifics during restricted rations, only a subset of cavefish populations consume more food than their surface counterparts. A candidate gene-based screen led to the identification of coding mutations in conserved residues of the melanocortin 4 receptor (MC4R) gene, contributing to the insatiable appetite found in some populations of cavefish. Intriguingly, one of the mutated residues has been shown to be linked to obesity in humans. We demonstrate that the allele results in both reduced maximal response and reduced basal activity of the receptor in vitro. We further validate in vivo that the mutated allele contributes to elevated appetite, growth, and starvation resistance. The allele appears to be fixed in cave populations in which the overeating phenotype is present. The presence of the same allele in multiple caves appears to be due to selection from standing genetic variation present in surface populations. PMID:26170297

  17. Melanocortin 4 receptor mutations contribute to the adaptation of cavefish to nutrient-poor conditions.

    PubMed

    Aspiras, Ariel C; Rohner, Nicolas; Martineau, Brian; Borowsky, Richard L; Tabin, Clifford J

    2015-08-01

    Despite recent advances in the understanding of morphological evolution, the genetic underpinnings of behavioral and physiological evolution remain largely unknown. Here, we study the metabolic changes that evolved in independently derived populations of the Mexican cavefish, Astyanax mexicanus. A hallmark of cave environments is scarcity of food. Cavefish populations rely almost entirely on sporadic food input from outside of the caves. To survive under these conditions, cavefish have evolved a range of adaptations, including starvation resistance and binge eating when food becomes available. The use of these adaptive strategies differs among independently derived cave populations. Although all cavefish populations tested lose weight more slowly than their surface conspecifics during restricted rations, only a subset of cavefish populations consume more food than their surface counterparts. A candidate gene-based screen led to the identification of coding mutations in conserved residues of the melanocortin 4 receptor (MC4R) gene, contributing to the insatiable appetite found in some populations of cavefish. Intriguingly, one of the mutated residues has been shown to be linked to obesity in humans. We demonstrate that the allele results in both reduced maximal response and reduced basal activity of the receptor in vitro. We further validate in vivo that the mutated allele contributes to elevated appetite, growth, and starvation resistance. The allele appears to be fixed in cave populations in which the overeating phenotype is present. The presence of the same allele in multiple caves appears to be due to selection from standing genetic variation present in surface populations. PMID:26170297

  18. Identification of interaction sites for dimerization and adapter recruitment in Toll/interleukin-1 receptor (TIR) domain of Toll-like receptor 4.

    PubMed

    Bovijn, Celia; Ulrichts, Peter; De Smet, Anne-Sophie; Catteeuw, Dominiek; Beyaert, Rudi; Tavernier, Jan; Peelman, Frank

    2012-02-01

    Toll-like receptor signaling requires interactions of the Toll/IL-1 receptor (TIR) domains of the receptor and adapter proteins. Using the mammalian protein-protein interaction trap strategy, homology modeling, and site-directed mutagenesis, we identify the interaction surfaces in the TLR4 TIR domain for the TLR4-TLR4, TLR4-MyD88 adapter-like (MAL), and TLR4-TRIF-related adapter molecule (TRAM) interaction. Two binding sites are equally important for TLR4 dimerization and adapter recruitment. In a model based on the crystal structure of the dimeric TLR10 TIR domain, the first binding site mediates TLR4-TLR4 TIR-TIR interaction. Upon dimerization, two identical second binding sites of the TLR4 TIR domain are juxtaposed and form an extended binding platform for both MAL and TRAM. In our mammalian protein-protein interaction trap assay, MAL and TRAM compete for binding to this platform. Our data suggest that adapter binding can stabilize the TLR4 TIR dimerization. PMID:22139835

  19. Identification of Interaction Sites for Dimerization and Adapter Recruitment in Toll/Interleukin-1 Receptor (TIR) Domain of Toll-like Receptor 4*

    PubMed Central

    Bovijn, Celia; Ulrichts, Peter; De Smet, Anne-Sophie; Catteeuw, Dominiek; Beyaert, Rudi; Tavernier, Jan; Peelman, Frank

    2012-01-01

    Toll-like receptor signaling requires interactions of the Toll/IL-1 receptor (TIR) domains of the receptor and adapter proteins. Using the mammalian protein-protein interaction trap strategy, homology modeling, and site-directed mutagenesis, we identify the interaction surfaces in the TLR4 TIR domain for the TLR4-TLR4, TLR4-MyD88 adapter-like (MAL), and TLR4-TRIF-related adapter molecule (TRAM) interaction. Two binding sites are equally important for TLR4 dimerization and adapter recruitment. In a model based on the crystal structure of the dimeric TLR10 TIR domain, the first binding site mediates TLR4-TLR4 TIR-TIR interaction. Upon dimerization, two identical second binding sites of the TLR4 TIR domain are juxtaposed and form an extended binding platform for both MAL and TRAM. In our mammalian protein-protein interaction trap assay, MAL and TRAM compete for binding to this platform. Our data suggest that adapter binding can stabilize the TLR4 TIR dimerization. PMID:22139835

  20. Evidence for adaptive evolution of olfactory receptor genes in 9 bird species.

    PubMed

    Steiger, Silke S; Fidler, Andrew E; Mueller, Jakob C; Kempenaers, Bart

    2010-01-01

    It has been suggested that positive selection, in particular selection favoring a change in the protein sequence, plays a role in the evolution of olfactory receptor (OR) gene repertoires in fish and mammals. ORs are 7-transmembrane domain (TM) proteins, members of the G-protein-coupled receptor superfamily in vertebrate genomes, and responsible for odorant binding and discrimination. OR gene repertoires in birds are surprisingly large and diverse, suggesting that birds have a keen olfactory sense. The aim of this study is to investigate signatures of positive selection in an expanded OR clade (group-gamma-c) that seems to be a characteristic of avian genomes. Using maximum-likelihood methods that estimate the d(N)/d(S) ratios and account for the effects of recombination, we show here that there is evidence for positive selection in group-gamma-c partial OR coding sequences of 9 bird species that are likely to have different olfactory abilities: the blue tit (Cyanistes caeruleus), the black coucal (Centropus grillii), the brown kiwi (Apteryx australis), the canary (Serinus canaria), the galah (Eolophus roseicapillus), the kakapo (Strigops habroptilus), the mallard (Anas platyrhynchos), the red jungle fowl (Gallus gallus), and the snow petrel (Pagodroma nivea). Positively selected codons were predominantly located in TMs, which in other vertebrates are involved in odorant binding. Our data suggest that 1) at least some avian OR genes have been subjected to adaptive evolution, 2) the extent of such adaptive evolution differs between bird species, and 3) positive selective pressures may have been stronger on the group-gamma-c OR genes of species that have well-developed olfactory abilities. PMID:19965911

  1. Computation identifies structural features that govern neuronal firing properties in slowly adapting touch receptors

    PubMed Central

    Lesniak, Daine R; Marshall, Kara L; Wellnitz, Scott A; Jenkins, Blair A; Baba, Yoshichika; Rasband, Matthew N; Gerling, Gregory J; Lumpkin, Ellen A

    2014-01-01

    Touch is encoded by cutaneous sensory neurons with diverse morphologies and physiological outputs. How neuronal architecture influences response properties is unknown. To elucidate the origin of firing patterns in branched mechanoreceptors, we combined neuroanatomy, electrophysiology and computation to analyze mouse slowly adapting type I (SAI) afferents. These vertebrate touch receptors, which innervate Merkel cells, encode shape and texture. SAI afferents displayed a high degree of variability in touch-evoked firing and peripheral anatomy. The functional consequence of differences in anatomical architecture was tested by constructing network models representing sequential steps of mechanosensory encoding: skin displacement at touch receptors, mechanotransduction and action-potential initiation. A systematic survey of arbor configurations predicted that the arrangement of mechanotransduction sites at heminodes is a key structural feature that accounts in part for an afferent’s firing properties. These findings identify an anatomical correlate and plausible mechanism to explain the driver effect first described by Adrian and Zotterman. DOI: http://dx.doi.org/10.7554/eLife.01488.001 PMID:24448409

  2. Stretching & Flexibility: An Interactive Encyclopedia of Stretching. [CD-ROM].

    ERIC Educational Resources Information Center

    2002

    This CD-ROM offers 140 different stretches in full-motion video sequences. It focuses on the proper techniques for overall physical fitness, injury prevention and rehabilitation, and 23 different sports (e.g., golf, running, soccer, skiing, climbing, football, and baseball). Topics include stretching for sports; stretching awareness and education…

  3. Capillary stretching of fibers

    NASA Astrophysics Data System (ADS)

    Duprat, C.; Protiere, S.

    2015-09-01

    We study the interaction of a finite volume of liquid with two parallel thin flexible fibers. A tension along the fibers is imposed and may be varied. We report two morphologies, i.e. two types of wet adhesion: a weak capillary adhesion, where a liquid drop bridges the fibers, and a strong elastocapillary adhesion where the liquid is spread between two collapsed fibers. We show that geometry, capillarity and stretching are the key parameters at play. We describe the collapse and detachment of the fibers as a function of two nondimensional parameters, arising from the geometry of the system and a balance between capillary and stretching energies. In addition, we show that the morphology, thus the capillary adhesion, can be controlled by changing the tension within the fibers.

  4. Stretch-Oriented Polyimide Films

    NASA Technical Reports Server (NTRS)

    Hinkley, Jeffrey A.; Klinedinst, D.; Feuz, L.

    2000-01-01

    Two thermoplastic polyimides - one amorphous, the other crystallizable -- were subjected to isothermal stretching just above their glass transition temperatures. Room-temperature strengths in the stretch direction were greatly improved and, moduli increased up to 3.6-fold. Optimum stretching conditions were determined.

  5. Stretched View Showing 'Victoria'

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Stretched View Showing 'Victoria'

    This pair of images from the panoramic camera on NASA's Mars Exploration Rover Opportunity served as initial confirmation that the two-year-old rover is within sight of 'Victoria Crater,' which it has been approaching for more than a year. Engineers on the rover team were unsure whether Opportunity would make it as far as Victoria, but scientists hoped for the chance to study such a large crater with their roving geologist. Victoria Crater is 800 meters (nearly half a mile) in diameter, about six times wider than 'Endurance Crater,' where Opportunity spent several months in 2004 examining rock layers affected by ancient water.

    When scientists using orbital data calculated that they should be able to detect Victoria's rim in rover images, they scrutinized frames taken in the direction of the crater by the panoramic camera. To positively characterize the subtle horizon profile of the crater and some of the features leading up to it, researchers created a vertically-stretched image (top) from a mosaic of regular frames from the panoramic camera (bottom), taken on Opportunity's 804th Martian day (April 29, 2006).

    The stretched image makes mild nearby dunes look like more threatening peaks, but that is only a result of the exaggerated vertical dimension. This vertical stretch technique was first applied to Viking Lander 2 panoramas by Philip Stooke, of the University of Western Ontario, Canada, to help locate the lander with respect to orbiter images. Vertically stretching the image allows features to be more readily identified by the Mars Exploration Rover science team.

    The bright white dot near the horizon to the right of center (barely visible without labeling or zoom-in) is thought to be a light-toned outcrop on the far wall of the crater, suggesting that the rover can see over the low rim of Victoria. In figure 1, the northeast and southeast rims are labeled

  6. Experimental Adaptation of Wild-Type Canine Distemper Virus (CDV) to the Human Entry Receptor CD150

    PubMed Central

    Bieringer, Maria; Han, Jung Woo; Kendl, Sabine; Khosravi, Mojtaba; Plattet, Philippe; Schneider-Schaulies, Jürgen

    2013-01-01

    Canine distemper virus (CDV), a close relative of measles virus (MV), is widespread and well known for its broad host range. When the goal of measles eradication may be achieved, and when measles vaccination will be stopped, CDV might eventually cross the species barrier to humans and emerge as a new human pathogen. In order to get an impression how fast such alterations may occur, we characterized required adaptive mutations to the human entry receptors CD150 (SLAM) and nectin-4 as first step to infect human target cells. Recombinant wild-type CDV-A75/17red adapted quickly to growth in human H358 epithelial cells expressing human nectin-4. Sequencing of the viral attachment proteins (hemagglutinin, H, and fusion protein, F) genes revealed that no adaptive alteration was required to utilize human nectin-4. In contrast, the virus replicated only to low titres (102 pfu/ml) in Vero cells expressing human CD150 (Vero-hSLAM). After three passages using these cells virus was adapted to human CD150 and replicated to high titres (105 pfu/ml). Sequence analyses revealed that only one amino acid exchange in the H-protein at position 540 Asp→Gly (D540G) was required for functional adaptation to human CD150. Structural modelling suggests that the adaptive mutation D540G in H reflects the sequence alteration from canine to human CD150 at position 70 and 71 from Pro to Leu (P70L) and Gly to Glu (G71E), and compensates for the gain of a negative charge in the human CD150 molecule. Using this model system our data indicate that only a minimal alteration, in this case one adaptive mutation, is required for adaptation of CDV to the human entry receptors, and help to understand the molecular basis why this adaptive mutation occurs. PMID:23554862

  7. Tensioning device for a stretched membrane collector

    DOEpatents

    Murphy, Lawrence M.

    1984-01-01

    Disclosed is a solar concentrating collector comprising an elastic membrane member for concentrating sunlight, a frame for holding the membrane member in plane and in tension, and a tensioning means for varying the tension of the membrane member. The tensioning means is disposed at the frame and is adapted to releasably attach the membrane member thereto. The tensioning means is also adapted to uniformly and symmetrically subject the membrane member to stretching forces such that membrane stresses produced thereby are distributed uniformly over a thickness of the membrane member and reciprocal twisting moments are substantially prevented from acting about said frame.

  8. Tensioning device for a stretched membrane collector

    DOEpatents

    Murphy, L.M.

    1984-01-01

    Disclosed is a solar concentrating collector comprising an elestic membrane member for concentrating sunlight, a frame for holding the membrane member in plane and in tension, and a tensioning means for varying the tension of the membrane member. The tensioning means is disposed at the frame and is adapted to releasably attach the membrane member thereto. The tensioning means is also adapted to uniformly and symmetrically subject the membrane member to stretching forces such that membrane stresses produced thereby are distributed uniformly over a thickness of the membrane member and reciprocal twisting moments are substantially prevented from acting about said frame.

  9. The Role of 5-HT1A Receptors in Long-Term Adaptation of Newborn Rats to Hypoxia.

    PubMed

    Mikhailenko, V A; Butkevich, I P

    2016-08-01

    We studied the effects of neonatal hypoxia on adaptive behavior of rats during prepubertal and pubertal periods in the control and after repeated injections of 5-HT1A receptor agonist buspirone. Hypoxia enhanced the inflammatory nociceptive response and exacerbated the depressive-like behavior. Repeated injections of buspirone starting from the neonatal period produced a long-term normalizing effect on the inflammatory nociceptive response and psychoemotional behavior disturbed by hypoxia. The protective effect of buspirone can result from strengthening of the adaptive potencies of the serotoninergic system via activation of 5-HT1A receptors that up-regulate secretion of trophic factor S100β under conditions of serotonin deficiency typical of rats exposed to neonatal hypoxia. Buspirone promotes recovery of the afferent and efferent connections of the raphe nuclei with the prefrontal cortex and spinal cord involved in integration of the anti-nociceptive and psychoemotional systems. PMID:27591870

  10. Stretching cells with DEAs

    NASA Astrophysics Data System (ADS)

    Akbari, S.; Rosset, S.; Shea, H. R.

    2012-04-01

    Biological cells regulate their biochemical behavior in response to mechanical stress present in their organism. Most of the available cell cultures designed to study the effect of mechanical stimuli on cells are cm2 area, far too large to monitor single cell response or have a very low throughput. We have developed two sets of high throughput single cell stretcher devices based on dielectric elastomer microactuators to stretch groups of individual cells with various strain levels in a single experiment. The first device consists of an array of 100 μm x 200 μm actuators on a non-stretched PDMS membrane bonded to a Pyrex chip, showing up to 4.7% strain at the electric field of 96 V/μm. The second device contains an array of 100 μm x 100 μm actuators on a 160% uniaxially prestretched PDMS membrane suspended over a frame. 37% strain is recorded at the nominal electric field of 114 V/μm. The performance of these devices as a cell stretcher is assessed by comparing their static and dynamic behavior.

  11. Stimulation of pulmonary rapidly adapting receptors by inhaled wood smoke in rats.

    PubMed

    Lai, C J; Kou, Y R

    1998-04-15

    1. The stimulation of pulmonary rapidly adapting receptors (RARs) by wood smoke was investigated. Impulses from seventy RARs were recorded in fifty-nine anaesthetized, open-chest and artificially ventilated rats; responses to delivery of 6 ml of wood smoke into the lungs were studied in sixty-one receptors whereas responses to histamine (10 or 100 microg kg-1, i.v.) were studied in the other nine. 2. Delivery of wood smoke stimulated fifty-two of the sixty-one RARs studied. When stimulated, an intense burst of discharge was evoked within 1 or 2 s of smoke delivery. This increased activity quickly peaked in 1-3 s (Delta = 15.8 +/- 1.6 impulses s-1; n = 61; mean +/- s.e.m.), then declined and yet remained at a level higher than the baseline activity. The mean duration of the stimulation was 25.1 +/- 2.7 s. In contrast, smoke delivery did not affect tracheal pressure. 3. Peak responses of RARs to wood smoke were partially reduced by removal of smoke particulates and were largely attenuated by pretreatment with dimethylthiourea (DMTU, a hydroxyl radical scavenger), indomethacin (Indo, a cyclo-oxygenase inhibitor), or both DMTU and Indo (DMTU + Indo). Conversely, the peak responses of RARs were not significantly affected by pretreatment with isoprenaline (a bronchodilator) or vehicle for these chemicals. Additionally, pretreatment with DMTU, Indo, or DMTU + Indo did not significantly alter the RAR sensitivity to mechanical stimulation (constant-pressure lung inflation; 20 cmH2O). 4. Of the nine RARs tested, six were stimulated by histamine and their sensitivity to this chemical irritant was not altered by pretreatment with DMTU + Indo. 5. The results suggest that both the particulates and gas phases are responsible for, and both the hydroxyl radical and cyclo-oxygenase products are involved in, the stimulation of RARs by wood smoke. Furthermore, changes in lung mechanics following smoke delivery are not the cause of this afferent stimulation. PMID:9508820

  12. Sexually dimorphic adaptation of cardiac function: roles of epoxyeicosatrienoic acid and peroxisome proliferator-activated receptors.

    PubMed

    Qin, Jun; Le, Yicong; Froogh, Ghezal; Kandhi, Sharath; Jiang, Houli; Luo, Meng; Sun, Dong; Huang, An

    2016-06-01

    Epoxyeicosatrienoic acids (EETs) are cardioprotective mediators metabolized by soluble epoxide hydrolase (sEH) to form corresponding diols (DHETs). As a sex-susceptible target, sEH is involved in the sexually dimorphic regulation of cardiovascular function. Thus, we hypothesized that the female sex favors EET-mediated potentiation of cardiac function via downregulation of sEH expression, followed by upregulation of peroxisome proliferator-activated receptors (PPARs). Hearts were isolated from male (M) and female (F) wild-type (WT) and sEH-KO mice, and perfused with constant flow at different preloads. Basal coronary flow required to maintain the perfusion pressure at 100 mmHg was significantly greater in females than males, and sEH-KO than WT mice. All hearts displayed a dose-dependent decrease in coronary resistance and increase in cardiac contractility, represented as developed tension in response to increases in preload. These responses were also significantly greater in females than males, and sEH-KO than WT 14,15-EEZE abolished the sex-induced (F vs. M) and transgenic model-dependent (KO vs. WT) differences in the cardiac contractility, confirming an EET-driven response. Compared with M-WT controls, F-WT hearts expressed downregulation of sEH, associated with increased EETs and reduced DHETs, a pattern comparable to that observed in sEH-KO hearts. Coincidentally, F-WT and sEH-KO hearts exhibited increased PPARα expression, but comparable expression of eNOS, PPARβ, and EET synthases. In conclusion, female-specific downregulation of sEH initiates an EET-dependent adaptation of cardiac function, characterized by increased coronary flow via reduction in vascular resistance, and promotion of cardiac contractility, a response that could be further intensified by PPARα.

  13. Adapt

    NASA Astrophysics Data System (ADS)

    Bargatze, L. F.

    2015-12-01

    Active Data Archive Product Tracking (ADAPT) is a collection of software routines that permits one to generate XML metadata files to describe and register data products in support of the NASA Heliophysics Virtual Observatory VxO effort. ADAPT is also a philosophy. The ADAPT concept is to use any and all available metadata associated with scientific data to produce XML metadata descriptions in a consistent, uniform, and organized fashion to provide blanket access to the full complement of data stored on a targeted data server. In this poster, we present an application of ADAPT to describe all of the data products that are stored by using the Common Data File (CDF) format served out by the CDAWEB and SPDF data servers hosted at the NASA Goddard Space Flight Center. These data servers are the primary repositories for NASA Heliophysics data. For this purpose, the ADAPT routines have been used to generate data resource descriptions by using an XML schema named Space Physics Archive, Search, and Extract (SPASE). SPASE is the designated standard for documenting Heliophysics data products, as adopted by the Heliophysics Data and Model Consortium. The set of SPASE XML resource descriptions produced by ADAPT includes high-level descriptions of numerical data products, display data products, or catalogs and also includes low-level "Granule" descriptions. A SPASE Granule is effectively a universal access metadata resource; a Granule associates an individual data file (e.g. a CDF file) with a "parent" high-level data resource description, assigns a resource identifier to the file, and lists the corresponding assess URL(s). The CDAWEB and SPDF file systems were queried to provide the input required by the ADAPT software to create an initial set of SPASE metadata resource descriptions. Then, the CDAWEB and SPDF data repositories were queried subsequently on a nightly basis and the CDF file lists were checked for any changes such as the occurrence of new, modified, or deleted

  14. Identification of neurons receiving input from pulmonary rapidly adapting receptors in the cat.

    PubMed Central

    Lipski, J; Ezure, K; Wong She, R B

    1991-01-01

    1. Extracellular and intracellular recordings were made in the caudal subdivisions of the nucleus tractus solitarii (NTS) to locate and characterize neurons excited by afferents from pulmonary rapidly adapting receptors (RARs) in Nembutal-anaesthetized cats. 2. Neurons identified as second-order cells activated by RARs (RAR-cells) were activated by electrical stimulation of myelinated afferents in the cervical portion of the vagus nerve(s) and by at least two of the following 'physiological' stimuli: (a) collapse of the lungs to atmospheric pressure; (b) hyperinflation of the lungs by either increasing tidal volume or maintained lung inflations; and (c) brief inhalation of ammonia vapour. 3. Of the ninety-nine RAR-cells identified and studied extracellularly, eighty-four were localized within the commissural nucleus of the NTS. Seventy-four cells responded monosynaptically to electrical stimulation of both ipsi- and contralateral vagal stimulation. The remaining ten RAR-cells located in the commissural nucleus and the fifteen located in the caudal portion of the medial subnucleus of the NTS rostral to the obex, responded to the ipsilateral vagus only. 4. Under control ventilatory conditions (bilateral pneumothorax, positive end-expiratory pressure of approx. 2 cmH2O), forty-eight of the ninety-nine RAR-cells showed spontaneous ventilator-related activity, occurring primarily during ventilator-induced deflations (thirty of forty-eight). 'Reversal' of this ventilator-related modulation, from firing predominantly during lung deflations to lung inflations, and vice versa, could be induced in eleven of the RAR-cells by changing the lung volume or by the inhalation of ammonia vapour. 5. Modulation of firing in synchrony with the central respiratory rhythm was observed in the activity of fourteen of the ninety-nine RAR-cells. 6. Intracellular recordings were made from twenty-two NTS neurons caudal to the obex that received monosynaptic excitatory postsynaptic potentials

  15. micro-Opioid receptor endocytosis prevents adaptations in ventral tegmental area GABA transmission induced during naloxone-precipitated morphine withdrawal.

    PubMed

    Madhavan, Anuradha; He, Li; Stuber, Garret D; Bonci, Antonello; Whistler, Jennifer L

    2010-03-01

    Chronic morphine drives adaptations in synaptic transmission thought to underlie opiate dependence. Here we examine the role of micro-opioid receptor (MOR) trafficking in one of these adaptations, specifically, changes in GABA transmission in the ventral tegmental area (VTA). To address this question, we used a knock-in mouse, RMOR (for recycling MOR), in which genetic change in the MOR promotes morphine-induced receptor desensitization and endocytosis in GABA interneurons of the VTA. In wild-type mice (postnatal days 23-28) chronic morphine (10 mg/kg, s.c., twice daily for 5 d), induced a cAMP-dependent increase in the probability of GABA release onto VTA dopamine neurons. The increased GABA release frequency correlated with physical dependence on morphine measured by counting somatic signs of morphine withdrawal, such as, tremors, jumps, rears, wet-dog shakes, and grooming behavior precipitated by subcutaneous administration of naloxone (NLX) (2 mg/kg). This adaptation in GABA release was prevented in RMOR mice given the same morphine treatment, implicating MOR trafficking in this morphine-induced change in plasticity. Importantly, treatment with the cAMP activity inhibitor rp-cAMPS [(R)-adenosine, cyclic 3',5'-(hydrogenphosphorothioate) triethylammonium] (50 ng/0.5 microl), directly to the VTA, attenuated somatic withdrawal signs to systemic morphine produced by intra-VTA NLX (500 ng/0.5 microl), directly tying enhanced cAMP-driven GABA release to naloxone-precipitated morphine withdrawal in the VTA.

  16. Comparative analysis of oxytocin receptor density in the nucleus accumbens: an adaptation for female and male alloparental care?

    PubMed

    Olazábal, Daniel E

    2014-01-01

    Parental behavior is commonly displayed by progenitors. However, other individuals, genetically related (e.g. siblings, aunts, uncles) or not with the newborns, also display parental behavior (commonly called alloparental, or adoptive behavior). I hypothesize that species that live in family or social groups where other non-reproductive members (males and females) take care of infants, have brain adaptations to promote or facilitate that behavioral response. The present work revises the evidence supporting the hypothesis that high density of oxytocin receptors (OXTR) in the nucleus accumbens (NA) is one of those adaptations. All species known to have high NA OXTR show not only female, but also male alloparental care. Therefore, I predict that high NA OXTR could be present in all species in which juvenile and adult male alloparental behavior have been observed. Strategies to test this and other alternative working hypothesis and its predictions are presented. PMID:25446893

  17. Effects of adapting lights on the time course of the receptor potential of the anuran retinal rod.

    PubMed

    Coles, J A; Yamane, S

    1975-05-01

    1. The intracellular receptor potential of the retinal rod cell was recorded in the unperfused, isolated retina of Rana catesbiana and in the perfused, isolated retina of Bufo marinus. Qualitatively, the responses from the two preparations were similar. 2. The rate at which the receptor potential returned to the dark level at the termination of a pulse of light (Voff) was measured at a fixed potential chosen to be about 0-6 of the way from the dark level to the peak of the response. 3. When the light intensity was such that less than about 10-minus 5 of the photopigment was bleached per second, Voff increased as the duration of the pulse was increased, reaching a maximum in 50-100 s. 4. When a brief test flash was presented at various intervals after an adapting pulse lasting about 50 s, Voff for the test flash was greater than the value in the dark adapted state for times up to about 80 s after the adapting pulse. 5. It has been hypothesized that in the vertebrate rod light causes release from the disk sacs of particles which block conducting channels in the surface membrane (Yoshikami & Hagins, 1971, 1973). A modification is proposed in which the blocking particles are converted to an inactive state can be increased by light adaptation. 6. This modified hypothesis will account qualitatively for the further observations that (a) during the response to illumination lasting several seconds the membrane potential recovers part of the way to the dark level and (b) if a second light pulse is superimposed on this background illumination then after the superimposed pulse the depolarization is increased. PMID:805837

  18. Nonaggressive and adapted social cognition is controlled by the interplay between noradrenergic and nicotinic receptor mechanisms in the prefrontal cortex

    PubMed Central

    Coura, Renata S.; Cressant, Arnaud; Xia, Jing; de Chaumont, Fabrice; Olivo-Marin, Jean Christophe; Pelloux, Yann; Dalley, Jeffrey W.; Granon, Sylvie

    2013-01-01

    Social animals establish flexible behaviors and integrated decision-making processes to adapt to social environments. Such behaviors are impaired in all major neuropsychiatric disorders and depend on the prefrontal cortex (PFC). We previously showed that nicotinic acetylcholine receptors (nAChRs) and norepinephrine (NE) in the PFC are necessary for mice to show adapted social cognition. Here, we investigated how the cholinergic and NE systems converge within the PFC to modulate social behavior. We used a social interaction task (SIT) in C57BL/6 mice and mice lacking β2*nAChRs (β2−/− mice), making use of dedicated software to analyze >20 social sequences and pinpoint social decisions. We performed specific PFC NE depletions before SIT and measured monoamines and acetylcholine (ACh) levels in limbic corticostriatal circuitry. After PFC-NE depletion, C57BL/6 mice exhibited impoverished and more rigid social behavior and were 6-fold more aggressive than sham-lesioned animals, whereas β2−/− mice showed unimpaired social behavior. Our biochemical measures suggest a critical involvement of DA in SIT. In addition, we show that the balance between basal levels of monoamines and of ACh modulates aggressiveness and this modulation requires functional β2*nAChRs. These findings demonstrate the critical interplay between prefrontal NE and nAChRs for the development of adapted and nonaggressive social cognition.—Coura, R. S., Cressant, A., Xia, J., de Chaumont, F., Olivo-Marin, J. C., Pelloux, Y., Dalley, J. W., Granon, S. Nonaggressive and adapted social cognition is controlled by the interplay between noradrenergic and nicotinic receptor mechanisms in the prefrontal cortex. PMID:23882123

  19. Berberine is a dopamine D1- and D2-like receptor antagonist and ameliorates experimentally induced colitis by suppressing innate and adaptive immune responses.

    PubMed

    Kawano, Masaaki; Takagi, Rie; Kaneko, Atsushi; Matsushita, Sho

    2015-12-15

    Berberine is an herbal alkaloid with various biological activities, including anti-inflammatory and antidepressant effects. Here, we examined the effects of berberine on dopamine receptors and the ensuing anti-inflammatory responses. Berberine was found to be an antagonist at both dopamine D1- and D2-like receptors and ameliorates the development of experimentally induced colitis in mice. In lipopolysaccharide-stimulated immune cells, berberine treatment modified cytokine levels, consistent with the effects of the dopamine receptor specific antagonists SCH23390 and L750667. Our findings indicate that dopamine receptor antagonists suppress innate and adaptive immune responses, providing a foundation for their use in combatting inflammatory diseases.

  20. Hydraulic fracture during epithelial stretching

    PubMed Central

    Casares, Laura; Vincent, Romaric; Zalvidea, Dobryna; Campillo, Noelia; Navajas, Daniel; Arroyo, Marino; Trepat, Xavier

    2015-01-01

    The origin of fracture in epithelial cell sheets subject to stretch is commonly attributed to excess tension in the cells’ cytoskeleton, in the plasma membrane, or in cell-cell contacts. Here we demonstrate that for a variety of synthetic and physiological hydrogel substrates the formation of epithelial cracks is caused by tissue stretching independently of epithelial tension. We show that the origin of the cracks is hydraulic; they result from a transient pressure build-up in the substrate during stretch and compression maneuvers. After pressure equilibration cracks heal readily through actomyosin-dependent mechanisms. The observed phenomenology is captured by the theory of poroelasticity, which predicts the size and healing dynamics of epithelial cracks as a function of the stiffness, geometry and composition of the hydrogel substrate. Our findings demonstrate that epithelial integrity is determined in a tension-independent manner by the coupling between tissue stretching and matrix hydraulics. PMID:25664452

  1. Ca{sup 2+} influx and ATP release mediated by mechanical stretch in human lung fibroblasts

    SciTech Connect

    Murata, Naohiko; Ito, Satoru; Furuya, Kishio; Takahara, Norihiro; Naruse, Keiji; Aso, Hiromichi; Kondo, Masashi; Sokabe, Masahiro; Hasegawa, Yoshinori

    2014-10-10

    Highlights: • Uniaxial stretching activates Ca{sup 2+} signaling in human lung fibroblasts. • Stretch-induced intracellular Ca{sup 2+} elevation is mainly via Ca{sup 2+} influx. • Mechanical strain enhances ATP release from fibroblasts. • Stretch-induced Ca{sup 2+} influx is not mediated by released ATP or actin cytoskeleton. - Abstract: One cause of progressive pulmonary fibrosis is dysregulated wound healing after lung inflammation or damage in patients with idiopathic pulmonary fibrosis and severe acute respiratory distress syndrome. The mechanical forces are considered to regulate pulmonary fibrosis via activation of lung fibroblasts. In this study, the effects of mechanical stretch on the intracellular Ca{sup 2+} concentration ([Ca{sup 2+}]{sub i}) and ATP release were investigated in primary human lung fibroblasts. Uniaxial stretch (10–30% in strain) was applied to fibroblasts cultured in a silicone chamber coated with type I collagen using a stretching apparatus. Following stretching and subsequent unloading, [Ca{sup 2+}]{sub i} transiently increased in a strain-dependent manner. Hypotonic stress, which causes plasma membrane stretching, also transiently increased the [Ca{sup 2+}]{sub i}. The stretch-induced [Ca{sup 2+}]{sub i} elevation was attenuated in Ca{sup 2+}-free solution. In contrast, the increase of [Ca{sup 2+}]{sub i} by a 20% stretch was not inhibited by the inhibitor of stretch-activated channels GsMTx-4, Gd{sup 3+}, ruthenium red, or cytochalasin D. Cyclic stretching induced significant ATP releases from fibroblasts. However, the stretch-induced [Ca{sup 2+}]{sub i} elevation was not inhibited by ATP diphosphohydrolase apyrase or a purinergic receptor antagonist suramin. Taken together, mechanical stretch induces Ca{sup 2+} influx independently of conventional stretch-sensitive ion channels, the actin cytoskeleton, and released ATP.

  2. Guinea pig-adapted foot-and-mouth disease virus with altered receptor recognition can productively infect a natural host.

    PubMed

    Núñez, José I; Molina, Nicolas; Baranowski, Eric; Domingo, Esteban; Clark, Stuart; Burman, Alison; Berryman, Stephen; Jackson, Terry; Sobrino, Francisco

    2007-08-01

    We report that adaptation to infect the guinea pig did not modify the capacity of foot-and-mouth disease virus (FMDV) to kill suckling mice and to cause an acute and transmissible disease in the pig, an important natural host for this pathogen. Adaptive amino acid replacements (I(248)-->T in 2C, Q(44)-->R in 3A, and L(147)-->P in VP1), selected upon serial passages of a type C FMDV isolated from swine (biological clone C-S8c1) in the guinea pig, were maintained after virus multiplication in swine and suckling mice. However, the adaptive replacement L(147)-->P, next to the integrin-binding RGD motif at the GH loop in VP1, abolished growth of the virus in different established cell lines and modified its antigenicity. In contrast, primary bovine thyroid cell cultures could be productively infected by viruses with replacement L(147)-->P, and this infection was inhibited by antibodies to alphavbeta6 and by an FMDV-derived RGD-containing peptide, suggesting that integrin alphavbeta6 may be used as a receptor for these mutants in the animal (porcine, guinea pig, and suckling mice) host. Substitution T(248)-->N in 2C was not detectable in C-S8c1 but was present in a low proportion of the guinea pig-adapted virus. This substitution became rapidly dominant in the viral population after the reintroduction of the guinea pig-adapted virus into pigs. These observations illustrate how the appearance of minority variant viruses in an unnatural host can result in the dominance of these viruses on reinfection of the original host species. PMID:17522230

  3. Introgression of Neandertal- and Denisovan-like Haplotypes Contributes to Adaptive Variation in Human Toll-like Receptors.

    PubMed

    Dannemann, Michael; Andrés, Aida M; Kelso, Janet

    2016-01-01

    Pathogens and the diseases they cause have been among the most important selective forces experienced by humans during their evolutionary history. Although adaptive alleles generally arise by mutation, introgression can also be a valuable source of beneficial alleles. Archaic humans, who lived in Europe and Western Asia for more than 200,000 years, were probably well adapted to this environment and its local pathogens. It is therefore conceivable that modern humans entering Europe and Western Asia who admixed with them obtained a substantial immune advantage from the introgression of archaic alleles. Here we document a cluster of three Toll-like receptors (TLR6-TLR1-TLR10) in modern humans that carries three distinct archaic haplotypes, indicating repeated introgression from archaic humans. Two of these haplotypes are most similar to the Neandertal genome, and the third haplotype is most similar to the Denisovan genome. The Toll-like receptors are key components of innate immunity and provide an important first line of immune defense against bacteria, fungi, and parasites. The unusually high allele frequencies and unexpected levels of population differentiation indicate that there has been local positive selection on multiple haplotypes at this locus. We show that the introgressed alleles have clear functional effects in modern humans; archaic-like alleles underlie differences in the expression of the TLR genes and are associated with increased [corrected] microbial resistance and increased allergic disease in large cohorts. This provides strong evidence for recurrent adaptive introgression at the TLR6-TLR1-TLR10 locus, resulting in differences in disease phenotypes in modern humans.

  4. Introgression of Neandertal- and Denisovan-like Haplotypes Contributes to Adaptive Variation in Human Toll-like Receptors

    PubMed Central

    Dannemann, Michael; Andrés, Aida M.; Kelso, Janet

    2016-01-01

    Pathogens and the diseases they cause have been among the most important selective forces experienced by humans during their evolutionary history. Although adaptive alleles generally arise by mutation, introgression can also be a valuable source of beneficial alleles. Archaic humans, who lived in Europe and Western Asia for more than 200,000 years, were probably well adapted to this environment and its local pathogens. It is therefore conceivable that modern humans entering Europe and Western Asia who admixed with them obtained a substantial immune advantage from the introgression of archaic alleles. Here we document a cluster of three Toll-like receptors (TLR6-TLR1-TLR10) in modern humans that carries three distinct archaic haplotypes, indicating repeated introgression from archaic humans. Two of these haplotypes are most similar to the Neandertal genome, and the third haplotype is most similar to the Denisovan genome. The Toll-like receptors are key components of innate immunity and provide an important first line of immune defense against bacteria, fungi, and parasites. The unusually high allele frequencies and unexpected levels of population differentiation indicate that there has been local positive selection on multiple haplotypes at this locus. We show that the introgressed alleles have clear functional effects in modern humans; archaic-like alleles underlie differences in the expression of the TLR genes and are associated with reduced microbial resistance and increased allergic disease in large cohorts. This provides strong evidence for recurrent adaptive introgression at the TLR6-TLR1-TLR10 locus, resulting in differences in disease phenotypes in modern humans. PMID:26748514

  5. Introgression of Neandertal- and Denisovan-like Haplotypes Contributes to Adaptive Variation in Human Toll-like Receptors.

    PubMed

    Dannemann, Michael; Andrés, Aida M; Kelso, Janet

    2016-01-01

    Pathogens and the diseases they cause have been among the most important selective forces experienced by humans during their evolutionary history. Although adaptive alleles generally arise by mutation, introgression can also be a valuable source of beneficial alleles. Archaic humans, who lived in Europe and Western Asia for more than 200,000 years, were probably well adapted to this environment and its local pathogens. It is therefore conceivable that modern humans entering Europe and Western Asia who admixed with them obtained a substantial immune advantage from the introgression of archaic alleles. Here we document a cluster of three Toll-like receptors (TLR6-TLR1-TLR10) in modern humans that carries three distinct archaic haplotypes, indicating repeated introgression from archaic humans. Two of these haplotypes are most similar to the Neandertal genome, and the third haplotype is most similar to the Denisovan genome. The Toll-like receptors are key components of innate immunity and provide an important first line of immune defense against bacteria, fungi, and parasites. The unusually high allele frequencies and unexpected levels of population differentiation indicate that there has been local positive selection on multiple haplotypes at this locus. We show that the introgressed alleles have clear functional effects in modern humans; archaic-like alleles underlie differences in the expression of the TLR genes and are associated with increased [corrected] microbial resistance and increased allergic disease in large cohorts. This provides strong evidence for recurrent adaptive introgression at the TLR6-TLR1-TLR10 locus, resulting in differences in disease phenotypes in modern humans. PMID:26748514

  6. Reptile Toll-like receptor 5 unveils adaptive evolution of bacterial flagellin recognition.

    PubMed

    Voogdt, Carlos G P; Bouwman, Lieneke I; Kik, Marja J L; Wagenaar, Jaap A; van Putten, Jos P M

    2016-01-01

    Toll-like receptors (TLR) are ancient innate immune receptors crucial for immune homeostasis and protection against infection. TLRs are present in mammals, birds, amphibians and fish but have not been functionally characterized in reptiles despite the central position of this animal class in vertebrate evolution. Here we report the cloning, characterization, and function of TLR5 of the reptile Anolis carolinensis (Green Anole lizard). The receptor (acTLR5) displays the typical TLR protein architecture with 22 extracellular leucine rich repeats flanked by a N- and C-terminal leucine rich repeat domain, a membrane-spanning region, and an intracellular TIR domain. The receptor is phylogenetically most similar to TLR5 of birds and most distant to fish TLR5. Transcript analysis revealed acTLR5 expression in multiple lizard tissues. Stimulation of acTLR5 with TLR ligands demonstrated unique responsiveness towards bacterial flagellin in both reptile and human cells. Comparison of acTLR5 and human TLR5 using purified flagellins revealed differential sensitivity to Pseudomonas but not Salmonella flagellin, indicating development of species-specific flagellin recognition during the divergent evolution of mammals and reptiles. Our discovery of reptile TLR5 fills the evolutionary gap regarding TLR conservation across vertebrates and provides novel insights in functional evolution of host-microbe interactions.

  7. Stress-induced sex differences: adaptations mediated by the glucocorticoid receptor.

    PubMed

    Bourke, Chase H; Harrell, Constance S; Neigh, Gretchen N

    2012-08-01

    Clinical evidence has indicated that women are more susceptible to stress-related and autoimmune disorders than men. Although females may be more susceptible to some disease states, males do not escape unscathed and are more susceptible to metabolic dysfunction. The hypothalamic-pituitary-axis plays a pivotal role in the sexually dimorphic effects of chronic stress through alterations in negative feedback. Recent evidence has implicated the glucocorticoid receptor and its co-chaperones in the etiology of psychiatric and somatic diseases. Gonadal hormones heavily interact with both glucocorticoid receptor expression and glucocorticoid receptor action either through direct or indirect effects on proteins in the chaperone and co-chaperone complex. Diverse systems including the hypothalamic-pituitary-axis, the immune system, and metabolism are affected differently in males and females, possibly through the glucocorticoid receptor system. New considerations of glucocorticoid regulation through the co-chaperone complex in the brain will be vital to the development of treatment strategies for men and women afflicted by neuropsychiatric and somatic disorders.

  8. Reptile Toll-like receptor 5 unveils adaptive evolution of bacterial flagellin recognition

    PubMed Central

    Voogdt, Carlos G. P.; Bouwman, Lieneke I.; Kik, Marja J. L.; Wagenaar, Jaap A.; van Putten, Jos P. M.

    2016-01-01

    Toll-like receptors (TLR) are ancient innate immune receptors crucial for immune homeostasis and protection against infection. TLRs are present in mammals, birds, amphibians and fish but have not been functionally characterized in reptiles despite the central position of this animal class in vertebrate evolution. Here we report the cloning, characterization, and function of TLR5 of the reptile Anolis carolinensis (Green Anole lizard). The receptor (acTLR5) displays the typical TLR protein architecture with 22 extracellular leucine rich repeats flanked by a N- and C-terminal leucine rich repeat domain, a membrane-spanning region, and an intracellular TIR domain. The receptor is phylogenetically most similar to TLR5 of birds and most distant to fish TLR5. Transcript analysis revealed acTLR5 expression in multiple lizard tissues. Stimulation of acTLR5 with TLR ligands demonstrated unique responsiveness towards bacterial flagellin in both reptile and human cells. Comparison of acTLR5 and human TLR5 using purified flagellins revealed differential sensitivity to Pseudomonas but not Salmonella flagellin, indicating development of species-specific flagellin recognition during the divergent evolution of mammals and reptiles. Our discovery of reptile TLR5 fills the evolutionary gap regarding TLR conservation across vertebrates and provides novel insights in functional evolution of host-microbe interactions. PMID:26738735

  9. Human stretch reflex pathways reexamined

    PubMed Central

    Yavuz, Ş. Utku; Mrachacz-Kersting, Natalie; Sebik, Oğuz; Berna Ünver, M.; Farina, Dario

    2013-01-01

    Reflex responses of tibialis anterior motor units to stretch stimuli were investigated in human subjects. Three types of stretch stimuli were applied (tap-like, ramp-and-hold, and half-sine stretch). Stimulus-induced responses in single motor units were analyzed using the classical technique, which involved building average surface electromyogram (SEMG) and peristimulus time histograms (PSTH) from the discharge times of motor units and peristimulus frequencygrams (PSF) from the instantaneous discharge rates of single motor units. With the use of SEMG and PSTH, the tap-like stretch stimulus induced five separate reflex responses, on average. With the same single motor unit data, the PSF technique indicated that the tap stimulus induced only three reflex responses. Similar to the finding using the tap-like stretch stimuli, ramp-and-hold stimuli induced several peaks and troughs in the SEMG and PSTH. The PSF analyses displayed genuine increases in discharge rates underlying the peaks but not underlying the troughs. Half-sine stretch stimuli induced a long-lasting excitation followed by a long-lasting silent period in SEMG and PSTH. The increase in the discharge rate, however, lasted for the entire duration of the stimulus and continued during the silent period. The results are discussed in the light of the fact that the discharge rate of a motoneuron has a strong positive linear association with the effective synaptic current it receives and hence represents changes in the membrane potential more directly and accurately than the other indirect measures. This study suggests that the neuronal pathway of the human stretch reflex does not include inhibitory pathways. PMID:24225537

  10. The Adapter Molecule Sin Regulates T-Cell-Receptor-Mediated Signal Transduction by Modulating Signaling Substrate Availability

    PubMed Central

    Xing, Luzhou; Donlin, Laura T.; Miller, Rebecca H.; Alexandropoulos, Konstantina

    2004-01-01

    Engagement of the T-cell receptor (TCR) results in the activation of a multitude of signaling events that regulate the function of T lymphocytes. These signaling events are in turn modulated by adapter molecules, which control the final functional output through the formation of multiprotein complexes. In this report, we identified the adapter molecule Sin as a new regulator of T-cell activation. We found that the expression of Sin in transgenic T lymphocytes and Jurkat T cells inhibited interleukin-2 expression and T-cell proliferation. This inhibitory effect was specific and was due to defective phospholipase C-γ (PLC-γ) phosphorylation and activation. In contrast to other adapters that become phosphorylated upon TCR stimulation, Sin was constitutively phosphorylated in resting cells by the Src kinase Fyn and bound to signaling intermediates, including PLC-γ. In stimulated cells, Sin was transiently dephosphorylated, which coincided with transient dissociation of Fyn and PLC-γ. Downregulation of Sin expression using Sin-specific short interfering RNA oligonucleotides inhibited transcriptional activation in response to TCR stimulation. Our results suggest that endogenous Sin influences T-lymphocyte signaling by sequestering signaling substrates and regulating their availability and/or activity in resting cells, while Sin is required for targeting these intermediates to the TCR for fast signal transmission during stimulation. PMID:15121874

  11. A highly pleiotropic amino acid polymorphism in the Drosophila insulin receptor contributes to life-history adaptation

    PubMed Central

    Paaby, Annalise B.; Bergland, Alan O.; Behrman, Emily L.; Schmidt, Paul S.

    2016-01-01

    Finding the specific nucleotides that underlie adaptive variation is a major goal in evolutionary biology, but polygenic traits pose a challenge because the complex genotype–phenotype relationship can obscure the effects of individual alleles. However, natural selection working in large wild populations can shift allele frequencies and indicate functional regions of the genome. Previously, we showed that the two most common alleles of a complex amino acid insertion–deletion polymorphism in the Drosophila insulin receptor show independent, parallel clines in frequency across the North American and Australian continents. Here, we report that the cline is stable over at least a five-year period and that the polymorphism also demonstrates temporal shifts in allele frequency concurrent with seasonal change. We tested the alleles for effects on levels of insulin signaling, fecundity, development time, body size, stress tolerance, and life span. We find that the alleles are associated with predictable differences in these traits, consistent with patterns of Drosophila life-history variation across geography that likely reflect adaptation to the heterogeneous climatic environment. These results implicate insulin signaling as a major mediator of life-history adaptation in Drosophila, and suggest that life-history trade-offs can be explained by extensive pleiotropy at a single locus. PMID:25319083

  12. TIM-4, a Receptor for Phosphatidylserine, Controls Adaptive Immunity by Regulating the Removal of Antigen-Specific T Cells

    PubMed Central

    Albacker, Lee A.; Karisola, Piia; Chang, Ya-Jen; Umetsu, Sarah E.; Zhou, Meixia; Akbari, Omid; Kobayashi, Norimoto; Baumgarth, Nicole; Freeman, Gordon J.; Umetsu, Dale T.; DeKruyff, Rosemarie H.

    2010-01-01

    Adaptive immunity is characterized by the expansion of an Ag-specific T cell population following Ag exposure. The precise mechanisms, however, that control the expansion and subsequent contraction in the number of Ag-specific T cells are not fully understood. We show that T cell/transmembrane, Ig, and mucin (TIM)-4, a receptor for phosphatidylserine, a marker of apoptotic cells, regulates adaptive immunity in part by mediating the removal of Ag-specific T cells during the contraction phase of the response. During Ag immunization or during infection with influenza A virus, blockade of TIM-4 on APCs increased the expansion of Ag-specific T cells, resulting in an increase in secondary immune responses. Conversely, overexpression of TIM-4 on APCs in transgenic mice reduced the number of Ag-specific T cells that remained after immunization, resulting in reduced secondary T cell responses. There was no change in the total number of cell divisions that T cells completed, no change in the per cell proliferative capacity of the remaining Ag-specific T cells, and no increase in the development of Ag-specific regulatory T cells in TIM-4 transgenic mice. Thus, TIM-4–expressing cells regulate adaptive immunity by mediating the removal of phosphatidylserine-expressing apoptotic, Ag-specific T cells, thereby controlling the number of Ag-specific T cells that remain after the clearance of Ag or infection. PMID:21037090

  13. Cyclic stretch-induced stress fiber dynamics - Dependence on strain rate, Rho-kinase and MLCK

    SciTech Connect

    Lee, Chin-Fu; Haase, Candice; Deguchi, Shinji; Kaunas, Roland

    2010-10-22

    Research highlights: {yields} Cyclic stretch induces stress fiber disassembly, reassembly and fusion perpendicular to the direction of stretch. {yields} Stress fiber disassembly and reorientation were not induced at low stretch frequency. {yields} Stretch caused actin fiber formation parallel to stretch in distinct locations in cells treated with Rho-kinase and MLCK inhibitors. -- Abstract: Stress fiber realignment is an important adaptive response to cyclic stretch for nonmuscle cells, but the mechanism by which such reorganization occurs is not known. By analyzing stress fiber dynamics using live cell microscopy, we revealed that stress fiber reorientation perpendicular to the direction of cyclic uniaxial stretching at 1 Hz did not involve disassembly of the stress fiber distal ends located at focal adhesion sites. Instead, these distal ends were often used to assemble new stress fibers oriented progressively further away from the direction of stretch. Stress fiber disassembly and reorientation were not induced when the frequency of stretch was decreased to 0.01 Hz, however. Treatment with the Rho-kinase inhibitor (Y27632) reduced stress fibers to thin fibers located in the cell periphery which bundled together to form thick fibers oriented parallel to the direction of stretching at 1 Hz. In contrast, these thin fibers remained diffuse in cells subjected to stretch at 0.01 Hz. Cyclic stretch at 1 Hz also induced actin fiber formation parallel to the direction of stretch in cells treated with the myosin light chain kinase (MLCK) inhibitor ML-7, but these fibers were located centrally rather than peripherally. These results shed new light on the mechanism by which stress fibers reorient in response to cyclic stretch in different regions of the actin cytoskeleton.

  14. Increased expression of estrogen-related receptor β during adaptation of adult cardiomyocytes to sustained hypoxia

    PubMed Central

    Cunningham, Kathryn F; Beeson, Gyda C; Beeson, Craig C; McDermott, Paul J

    2016-01-01

    Estrogen-related Receptors (ERR) are members of the steroid hormone receptor superfamily of transcription factors that regulate expression of genes required for energy metabolism including mitochondrial biogenesis, fatty acid oxidation and oxidative phosphorylation. While ERRα and EPPγ isoforms are known to share a wide array of target genes in the adult myocardium, the function of ERRβ has not been characterized in cardiomyocytes. The purpose of this study was to determine the role of ERRβ in regulating energy metabolism in adult cardiomyocytes in primary culture. Adult feline cardiomyocytes were electrically stimulated to contract in either hypoxia (0.5% O2) or normoxia (21% O2). As compared to baseline values measured in normoxia, ERRβ mRNA levels increased significantly after 8 hours of hypoxia and remained elevated over 24 h. Conversely, ERRβ mRNA decreased to normoxic levels after 4 hours of reoxygenation. Hypoxia increased expression of the α and β isoforms of Peroxisome Proliferator-Activated Receptor γ Coactivator-1 (PGC-1) mRNA by 6-fold and 3-fold, respectively. Knockdown of ERRβ expression via adenoviral-mediated delivery of ERRβ shRNA blocked hypoxia-induced increases in PGC-1β mRNA, but not PGC-1α mRNA. Loss of ERRβ had no effect on mtDNA content as measured after 24 h of hypoxia. To determine whether loss of ERRβ affected mitochondrial function, oxygen consumption rates (OCR) were measured in contracting versus quiescent cardiomyocytes in normoxia. OCR was significantly lower in contracting cardiomyocytes expressing ERRβ shRNA than scrambled shRNA controls. Maximal OCR also was reduced by ERRβ knockdown. In conclusion: 1) hypoxia increases in ERRβ mRNA expression in contracting cardiomyocytes; 2) ERRβ is required for induction of the PGC-1β isoform in response to hypoxia; 3) ERRβ expression is required to sustain OCR in normoxic conditions. PMID:27335690

  15. Alpha-1-adrenergic receptors in heart failure: the adaptive arm of the cardiac response to chronic catecholamine stimulation.

    PubMed

    Jensen, Brian C; OʼConnell, Timothy D; Simpson, Paul C

    2014-04-01

    Alpha-1-adrenergic receptors (ARs) are G protein-coupled receptors activated by catecholamines. The alpha-1A and alpha-1B subtypes are expressed in mouse and human myocardium, whereas the alpha-1D protein is found only in coronary arteries. There are far fewer alpha-1-ARs than beta-ARs in the nonfailing heart, but their abundance is maintained or increased in the setting of heart failure, which is characterized by pronounced chronic elevation of catecholamines and beta-AR dysfunction. Decades of evidence from gain and loss-of-function studies in isolated cardiac myocytes and numerous animal models demonstrate important adaptive functions for cardiac alpha-1-ARs to include physiological hypertrophy, positive inotropy, ischemic preconditioning, and protection from cell death. Clinical trial data indicate that blocking alpha-1-ARs is associated with incident heart failure in patients with hypertension. Collectively, these findings suggest that alpha-1-AR activation might mitigate the well-recognized toxic effects of beta-ARs in the hyperadrenergic setting of chronic heart failure. Thus, exogenous cardioselective activation of alpha-1-ARs might represent a novel and viable approach to the treatment of heart failure.

  16. Rapidly-adapting receptor activity and intratracheal pressure in guinea pigs. I. Action of leukotriene C4.

    PubMed

    Bergren, D R; Myers, D L

    1984-11-01

    Leukotriene C4 (LTC4) is a major component of slow-reacting substance of anaphylaxis (SRS-A) and is a potent bronchoconstrictor. In humans LTC4 results in bouts of coughing which suggests stimulation of pulmonary receptors involved in a reflex mechanism. Furthermore, atropine reduces the effect of both LTC4 and SRS-A. To test the hypothesis that LTC4 stimulates the rapidly-adapting or "irritant" receptor (RAR) of the airways, we administered LTC4 by both intravenous injection (10-1000 ng) and by aerosol delivery (1 microgram/ml) to the lungs of guinea pigs while recording arterial blood pressure, intratracheal pressure, and nerve activity from RARs. LTC4 (i.v.) concurrently increased both nerve activity and intratracheal pressure even at low doses in a dose-dependent manner. Therefore, a direct action of LTC4 (i.v.) upon the RAR is difficult to conclude. The separation of peak tracheal pressure and peak nerve activity was apparent with aerosol delivery of LTC4. The pattern of RAR activity during LTC4 aerosol challenge was unrelated to respiratory phase. FPL 55712 blocks the effects of SRS-A. We challenged the lung with 500 ng LTC4 intravenously before and after FPL 55712 injection (2.5 mg/kg). FPL 55712 blocked the increases of both tracheal pressure and RAR activity.

  17. Adaptability and selectivity of human peroxisome proliferator-activated receptor (PPAR) pan agonists revealed from crystal structures

    SciTech Connect

    Oyama, Takuji; Toyota, Kenji; Waku, Tsuyoshi; Hirakawa, Yuko; Nagasawa, Naoko; Kasuga, Jun-ichi; Hashimoto, Yuichi; Miyachi, Hiroyuki; Morikawa, Kosuke

    2009-08-01

    The structures of the ligand-binding domains (LBDs) of human peroxisome proliferator-activated receptors (PPARα, PPARγ and PPARδ) in complexes with a pan agonist, an α/δ dual agonist and a PPARδ-specific agonist were determined. The results explain how each ligand is recognized by the PPAR LBDs at an atomic level. Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear hormone receptor family, which is defined as transcriptional factors that are activated by the binding of ligands to their ligand-binding domains (LBDs). Although the three PPAR subtypes display different tissue distribution patterns and distinct pharmacological profiles, they all are essentially related to fatty-acid and glucose metabolism. Since the PPARs share similar three-dimensional structures within the LBDs, synthetic ligands which simultaneously activate two or all of the PPARs could be potent candidates in terms of drugs for the treatment of abnormal metabolic homeostasis. The structures of several PPAR LBDs were determined in complex with synthetic ligands, derivatives of 3-(4-alkoxyphenyl)propanoic acid, which exhibit unique agonistic activities. The PPARα and PPARγ LBDs were complexed with the same pan agonist, TIPP-703, which activates all three PPARs and their crystal structures were determined. The two LBD–ligand complex structures revealed how the pan agonist is adapted to the similar, but significantly different, ligand-binding pockets of the PPARs. The structures of the PPARδ LBD in complex with an α/δ-selective ligand, TIPP-401, and with a related δ-specific ligand, TIPP-204, were also determined. The comparison between the two PPARδ complexes revealed how each ligand exhibits either a ‘dual selective’ or ‘single specific’ binding mode.

  18. The soluble pattern recognition receptor PTX3 links humoral innate and adaptive immune responses by helping marginal zone B cells.

    PubMed

    Chorny, Alejo; Casas-Recasens, Sandra; Sintes, Jordi; Shan, Meimei; Polentarutti, Nadia; García-Escudero, Ramón; Walland, A Cooper; Yeiser, John R; Cassis, Linda; Carrillo, Jorge; Puga, Irene; Cunha, Cristina; Bastos, Hélder; Rodrigues, Fernando; Lacerda, João F; Morais, António; Dieguez-Gonzalez, Rebeca; Heeger, Peter S; Salvatori, Giovanni; Carvalho, Agostinho; Garcia-Sastre, Adolfo; Blander, J Magarian; Mantovani, Alberto; Garlanda, Cecilia; Cerutti, Andrea

    2016-09-19

    Pentraxin 3 (PTX3) is a fluid-phase pattern recognition receptor of the humoral innate immune system with ancestral antibody-like properties but unknown antibody-inducing function. In this study, we found binding of PTX3 to splenic marginal zone (MZ) B cells, an innate-like subset of antibody-producing lymphocytes strategically positioned at the interface between the circulation and the adaptive immune system. PTX3 was released by a subset of neutrophils that surrounded the splenic MZ and expressed an immune activation-related gene signature distinct from that of circulating neutrophils. Binding of PTX3 promoted homeostatic production of IgM and class-switched IgG antibodies to microbial capsular polysaccharides, which decreased in PTX3-deficient mice and humans. In addition, PTX3 increased IgM and IgG production after infection with blood-borne encapsulated bacteria or immunization with bacterial carbohydrates. This immunogenic effect stemmed from the activation of MZ B cells through a neutrophil-regulated pathway that elicited class switching and plasmablast expansion via a combination of T cell-independent and T cell-dependent signals. Thus, PTX3 may bridge the humoral arms of the innate and adaptive immune systems by serving as an endogenous adjuvant for MZ B cells. This property could be harnessed to develop more effective vaccines against encapsulated pathogens. PMID:27621420

  19. Adenovirus tumor targeting and hepatic untargeting by a coxsackie/adenovirus receptor ectodomain anti-carcinoembryonic antigen bispecific adapter.

    PubMed

    Li, Hua-Jung; Everts, Maaike; Pereboeva, Larisa; Komarova, Svetlana; Idan, Anat; Curiel, David T; Herschman, Harvey R

    2007-06-01

    Adenovirus vectors have a number of advantages for gene therapy. However, because of their lack of tumor tropism and their preference for liver infection following systemic administration, they cannot be used for systemic attack on metastatic disease. Many epithelial tumors (e.g., colon, lung, and breast) express carcinoembryonic antigen (CEA). To block the natural hepatic tropism of adenovirus and to "retarget" the virus to CEA-expressing tumors, we used a bispecific adapter protein (sCAR-MFE), which fuses the ectodomain of the coxsackie/adenovirus receptor (sCAR) with a single-chain anti-CEA antibody (MFE-23). sCAR-MFE untargets adenovirus-directed luciferase transgene expression in the liver by >90% following systemic vector administration. Moreover, sCAR-MFE can "retarget" adenovirus to CEA-positive epithelial tumor cells in cell culture, in s.c. tumor grafts, and in hepatic tumor grafts. The sCAR-MFE bispecific adapter should, therefore, be a powerful agent to retarget adenovirus vectors to epithelial tumor metastases.

  20. Biophysical adaptation of the theory of photo-induced phase transition: model of cooperative gating of cardiac ryanodine receptors

    NASA Astrophysics Data System (ADS)

    Moskvin, A. S.; Philipiev, M. P.; Solovyova, O. E.; Markhasin, V. S.

    2005-01-01

    Theory of photo-induced phase transitions has been adapted to describe the cooperative dynamics of the lattice of ryanodine receptors/channels (RyR) in cardiac muscle which regulate the release of the intracellular activator calcium from calcium stores in the sarcoplasmic reticulum (SR) by a process of Ca2+-induced Ca2+ release (CICR). We introduce two main degrees of freedom for RyR channel, fast electronic and slow conformational ones. The RyR lattice response to the L-type channel triggering evolves due to a nucleation process with a step-by-step domino-like opening of RyR channels. Typical mode of RyR lattice functioning in a CICR process implies the fractional release with a robust termination due to the depletion of SR with a respective change in effective conformational strain. The SR overload leads to an unconventional auto-oscillation regime with a spontaneous calcium release. The model is believed to consistently describe the main features of CICR, that is its gradedness, coupled gating, irreversibility, inactivation/adaptation, and spark termination.

  1. The olfactory receptor gene repertoires in secondary-adapted marine vertebrates: evidence for reduction of the functional proportions in cetaceans.

    PubMed

    Kishida, Takushi; Kubota, Shin; Shirayama, Yoshihisa; Fukami, Hironobu

    2007-08-22

    An olfactory receptor (OR) multigene family is responsible for the well-developed sense of smell possessed by terrestrial tetrapods. Mammalian OR genes had diverged greatly in the terrestrial environment after the fish-tetrapod split, indicating their importance to land habitation. In this study, we analysed OR genes of marine tetrapods (minke whale Balaenoptera acutorostrata, dwarf sperm whale Kogia sima, Dall's porpoise Phocoenoides dalli, Steller's sea lion Eumetopias jubatus and loggerhead sea turtle Caretta caretta) and revealed that the pseudogene proportions of OR gene repertoires in whales were significantly higher than those in their terrestrial relative cattle and also in sea lion and sea turtle. On the other hand, the pseudogene proportion of OR sequences in sea lion was not significantly higher compared with that in their terrestrial relative (dog). It indicates that secondary perfectly adapted marine vertebrates (cetaceans) have lost large amount of their OR genes, whereas secondary-semi-adapted marine vertebrates (sea lions and sea turtles) still have maintained their OR genes, reflecting the importance of terrestrial environment for these animals. PMID:17535789

  2. A Purposeful Dynamic Stretching Routine

    ERIC Educational Resources Information Center

    Leon, Craig; Oh, Hyun-Ju; Rana, Sharon

    2012-01-01

    Dynamic stretching, which involves moving parts of the body and gradually increases range of motion, speed of movement, or both through controlled, sport-specific movements, has become the popular choice of pre-exercise warm-up. This type of warm-up has evolved to encompass several variations, but at its core is the principle theme that preparing…

  3. Design of Warped Stretch Transform

    NASA Astrophysics Data System (ADS)

    Mahjoubfar, Ata; Chen, Claire Lifan; Jalali, Bahram

    2015-11-01

    Time stretch dispersive Fourier transform enables real-time spectroscopy at the repetition rate of million scans per second. High-speed real-time instruments ranging from analog-to-digital converters to cameras and single-shot rare-phenomena capture equipment with record performance have been empowered by it. Its warped stretch variant, realized with nonlinear group delay dispersion, offers variable-rate spectral domain sampling, as well as the ability to engineer the time-bandwidth product of the signal’s envelope to match that of the data acquisition systems. To be able to reconstruct the signal with low loss, the spectrotemporal distribution of the signal spectrum needs to be sparse. Here, for the first time, we show how to design the kernel of the transform and specifically, the nonlinear group delay profile dictated by the signal sparsity. Such a kernel leads to smart stretching with nonuniform spectral resolution, having direct utility in improvement of data acquisition rate, real-time data compression, and enhancement of ultrafast data capture accuracy. We also discuss the application of warped stretch transform in spectrotemporal analysis of continuous-time signals.

  4. Design of Warped Stretch Transform.

    PubMed

    Mahjoubfar, Ata; Chen, Claire Lifan; Jalali, Bahram

    2015-11-25

    Time stretch dispersive Fourier transform enables real-time spectroscopy at the repetition rate of million scans per second. High-speed real-time instruments ranging from analog-to-digital converters to cameras and single-shot rare-phenomena capture equipment with record performance have been empowered by it. Its warped stretch variant, realized with nonlinear group delay dispersion, offers variable-rate spectral domain sampling, as well as the ability to engineer the time-bandwidth product of the signal's envelope to match that of the data acquisition systems. To be able to reconstruct the signal with low loss, the spectrotemporal distribution of the signal spectrum needs to be sparse. Here, for the first time, we show how to design the kernel of the transform and specifically, the nonlinear group delay profile dictated by the signal sparsity. Such a kernel leads to smart stretching with nonuniform spectral resolution, having direct utility in improvement of data acquisition rate, real-time data compression, and enhancement of ultrafast data capture accuracy. We also discuss the application of warped stretch transform in spectrotemporal analysis of continuous-time signals.

  5. Three Fresh Exposures, Stretched Color

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This panoramic camera image from NASA's Mars Exploration Rover Opportunity has been processed using a technique known as a decorrelation stretch to exaggerate the colors. The area in the image includes three holes created inside 'Endurance Crater' by Opportunity's rock abrasion tool between sols 143 and 148 (June 18 and June 23, 2004). Because color variations are so subtle in the pictured area, stretched images are useful for discriminating color differences that can alert scientists to compositional and textural variations. For example, without the exaggeration, no color difference would be discernable among the tailings left behind after the grinding of these holes, but in this stretched image, the tailings around 'London' (top) appear more red than those of the other holes ('Virginia,' middle, and 'Cobble Hill,' bottom). Scientists believe that is because the rock abrasion tool sliced through two 'blueberries,' or spherules (visible on the upper left and upper right sides of the circle). When the blades break up these spherules, composed of mostly gray hematite, the result is a bright red powder. In this image, you can see the rock layers that made the team want to grind holes in each identified layer. The top layer is yellowish red, the middle is yellowish green and the lower layer is green. Another advantage to viewing this stretched image is the clear detail of the distribution of the rock abrasion tool tailings (heading down-slope) and the differences in rock texture. This image was created using the 753-, 535- and 432-nanometer filters.

  6. Iterated Stretching of Viscoelastic Jets

    NASA Technical Reports Server (NTRS)

    Chang, Hsueh-Chia; Demekhin, Evgeny A.; Kalaidin, Evgeny

    1999-01-01

    We examine, with asymptotic analysis and numerical simulation, the iterated stretching dynamics of FENE and Oldroyd-B jets of initial radius r(sub 0), shear viscosity nu, Weissenberg number We, retardation number S, and capillary number Ca. The usual Rayleigh instability stretches the local uniaxial extensional flow region near a minimum in jet radius into a primary filament of radius [Ca(1 - S)/ We](sup 1/2)r(sub 0) between two beads. The strain-rate within the filament remains constant while its radius (elastic stress) decreases (increases) exponentially in time with a long elastic relaxation time 3We(r(sup 2, sub 0)/nu). Instabilities convected from the bead relieve the tension at the necks during this slow elastic drainage and trigger a filament recoil. Secondary filaments then form at the necks from the resulting stretching. This iterated stretching is predicted to occur successively to generate high-generation filaments of radius r(sub n), (r(sub n)/r(sub 0)) = square root of 2[r(sub n-1)/r(sub 0)](sup 3/2) until finite-extensibility effects set in.

  7. Design of Warped Stretch Transform

    PubMed Central

    Mahjoubfar, Ata; Chen, Claire Lifan; Jalali, Bahram

    2015-01-01

    Time stretch dispersive Fourier transform enables real-time spectroscopy at the repetition rate of million scans per second. High-speed real-time instruments ranging from analog-to-digital converters to cameras and single-shot rare-phenomena capture equipment with record performance have been empowered by it. Its warped stretch variant, realized with nonlinear group delay dispersion, offers variable-rate spectral domain sampling, as well as the ability to engineer the time-bandwidth product of the signal’s envelope to match that of the data acquisition systems. To be able to reconstruct the signal with low loss, the spectrotemporal distribution of the signal spectrum needs to be sparse. Here, for the first time, we show how to design the kernel of the transform and specifically, the nonlinear group delay profile dictated by the signal sparsity. Such a kernel leads to smart stretching with nonuniform spectral resolution, having direct utility in improvement of data acquisition rate, real-time data compression, and enhancement of ultrafast data capture accuracy. We also discuss the application of warped stretch transform in spectrotemporal analysis of continuous-time signals. PMID:26602458

  8. Stretch induced endothelin-1 secretion by adult rat astrocytes involves calcium influx via stretch-activated ion channels (SACs)

    SciTech Connect

    Ostrow, Lyle W.; Suchyna, Thomas M.; Sachs, Frederick

    2011-06-24

    Highlights: {yields} Endothelin-1 expression by adult rat astrocytes correlates with cell proliferation. {yields} Stretch-induced ET-1 is inhibited by GsMtx-4, a specific inhibitor of Ca{sup 2+} permeant SACs. {yields} The less specific SAC inhibitor streptomycin also inhibits ET-1 secretion. {yields} Stretch-induced ET-1 production depends on a calcium influx. {yields} SAC pharmacology may provide a new class of therapeutic agents for CNS pathology. -- Abstract: The expression of endothelins (ETs) and ET-receptors is often upregulated in brain pathology. ET-1, a potent vasoconstrictor, also inhibits the expression of astrocyte glutamate transporters and is mitogenic for astrocytes, glioma cells, neurons, and brain capillary endothelia. We have previously shown that mechanical stress stimulates ET-1 production by adult rat astrocytes. We now show in adult astrocytes that ET-1 production is driven by calcium influx through stretch-activated ion channels (SACs) and the ET-1 production correlates with cell proliferation. Mechanical stimulation using biaxial stretch (<20%) of a rubber substrate increased ET-1 secretion, and 4 {mu}M GsMTx-4 (a specific inhibitor of SACs) inhibited secretion by 30%. GsMTx-4 did not alter basal ET-1 levels in the absence of stretch. Decreasing the calcium influx by lowering extracellular calcium also inhibited stretch-induced ET-1 secretion without effecting ET-1 secretion in unstretched controls. Furthermore, inhibiting SACs with the less specific inhibitor streptomycin also inhibited stretch-induced ET-1 secretion. The data can be explained with a simple model in which ET-1 secretion depends on an internal Ca{sup 2+} threshold. This coupling of mechanical stress to the astrocyte endothelin system through SACs has treatment implications, since all pathology deforms the surrounding parenchyma.

  9. Adaptation of the human aryl hydrocarbon receptor to sense microbiota-derived indoles

    PubMed Central

    Hubbard, Troy D.; Murray, Iain A.; Bisson, William H.; Lahoti, Tejas S.; Gowda, Krishne; Amin, Shantu G.; Patterson, Andrew D.; Perdew, Gary H.

    2015-01-01

    Ligand activation of the aryl hydrocarbon (AHR) has profound effects upon the immunological status of the gastrointestinal tract, establishing and maintaining signaling networks, which facilitate host-microbe homeostasis at the mucosal interface. However, the identity of the ligand(s) responsible for such AHR-mediated activation within the gut remains to be firmly established. Here, we combine in vitro ligand binding, quantitative gene expression, protein-DNA interaction and ligand structure activity analyses together with in silico modeling of the AHR ligand binding domain to identify indole, a microbial tryptophan metabolite, as a human-AHR selective agonist. Human AHR, acting as a host indole receptor may exhibit a unique bimolecular (2:1) binding stoichiometry not observed with typical AHR ligands. Such bimolecular indole-mediated activation of the human AHR within the gastrointestinal tract may provide a foundation for inter-kingdom signaling between the enteric microflora and the immune system to promote commensalism within the gut. PMID:26235394

  10. The Adaptation of the Moth Pheromone Receptor Neuron to its Natural Stimulus

    NASA Astrophysics Data System (ADS)

    Kostal, Lubomir; Lansky, Petr; Rospars, Jean-Pierre

    2008-07-01

    We analyze the first phase of information transduction in the model of the olfactory receptor neuron of the male moth Antheraea polyphemus. We predict such stimulus characteristics that enable the system to perform optimally, i.e., to transfer as much information as possible. Few a priori constraints on the nature of stimulus and stimulus-to-signal transduction are assumed. The results are given in terms of stimulus distributions and intermittency factors which makes direct comparison with experimental data possible. Optimal stimulus is approximatelly described by exponential or log-normal probability density function which is in agreement with experiment and the predicted intermittency factors fall within the lowest range of observed values. The results are discussed with respect to electroantennogram measurements and behavioral observations.

  11. Vascular endothelial cell membranes differentiate between stretch and shear stress through transitions in their lipid phases.

    PubMed

    Yamamoto, Kimiko; Ando, Joji

    2015-10-01

    Vascular endothelial cells (ECs) respond to the hemodynamic forces stretch and shear stress by altering their morphology, functions, and gene expression. However, how they sense and differentiate between these two forces has remained unknown. Here we report that the plasma membrane itself differentiates between stretch and shear stress by undergoing transitions in its lipid phases. Uniaxial stretching and hypotonic swelling increased the lipid order of human pulmonary artery EC plasma membranes, thereby causing a transition from the liquid-disordered phase to the liquid-ordered phase in some areas, along with a decrease in membrane fluidity. In contrast, shear stress decreased the membrane lipid order and increased membrane fluidity. A similar increase in lipid order occurred when the artificial lipid bilayer membranes of giant unilamellar vesicles were stretched by hypotonic swelling, indicating that this is a physical phenomenon. The cholesterol content of EC plasma membranes significantly increased in response to stretch but clearly decreased in response to shear stress. Blocking these changes in the membrane lipid order by depleting membrane cholesterol with methyl-β-cyclodextrin or by adding cholesterol resulted in a marked inhibition of the EC response specific to stretch and shear stress, i.e., phosphorylation of PDGF receptors and phosphorylation of VEGF receptors, respectively. These findings indicate that EC plasma membranes differently respond to stretch and shear stress by changing their lipid order, fluidity, and cholesterol content in opposite directions and that these changes in membrane physical properties are involved in the mechanotransduction that activates membrane receptors specific to each force.

  12. Adaptation of Sindbis virus to BHK cells selects for use of heparan sulfate as an attachment receptor.

    PubMed

    Klimstra, W B; Ryman, K D; Johnston, R E

    1998-09-01

    Attachment of Sindbis virus to the cell surface glycosaminoglycan heparan sulfate (HS) and the selection of this phenotype by cell culture adaptation were investigated. Virus (TR339) was derived from a cDNA clone representing the consensus sequence of strain AR339 (K. L. McKnight, D. A. Simpson, S. C. Lin, T. A. Knott, J. M. Polo, D. F. Pence, D. B. Johannsen, H. W. Heidner, N. L. Davis, and R. E. Johnston, J. Virol. 70:1981-1989, 1996) and from mutant clones containing either one or two dominant cell culture adaptations in the E2 structural glycoprotein (Arg instead of Ser at E2 position 1 [designated TRSB]) or this mutation plus Arg for Ser at E2 114 [designated TRSB-R114]). The consensus virus, TR339, bound to baby hamster kidney (BHK) cells very poorly. The mutation in TRSB increased binding 10- to 50-fold, and the additional mutation in TRSB-R114 increased binding 3- to 5-fold over TRSB. The magnitude of binding was positively correlated with the degree of cell culture adaptation and with attenuation of these viruses in neonatal mice. HS was identified as the attachment receptor for the mutant viruses by the following experimental results. (i) Low concentrations of soluble heparin inhibited plaque formation on and binding of mutant viruses to BHK cells by >95%. In contrast, TR339 showed minimal inhibition at high concentrations. (ii) Binding and infectivity of TRSB-R114 was sensitive to digestion of cell surface HS with heparinase III, and TRSB was sensitive to both heparinase I and heparinase III. TR339 infectivity was only slightly affected by either digestion. (iii) Radiolabeled TRSB and TRSB-R114 attached efficiently to heparin-agarose beads in binding assays, while TR339 showed virtually no binding. (iv) Binding and infectivity of TRSB and TRSB-R114, but not TR339, were greatly reduced on Chinese hamster ovary cells deficient in HS specifically or all glycosaminoglycans. (v) High-multiplicity-of-infection passage of TR339 on BHK cell cultures resulted in

  13. Stretching short DNAs in electrolytes.

    PubMed

    Wang, Jizeng; Fan, Xiaojun; Gao, Huajian

    2006-03-01

    This paper is aimed at a combined theoretical and numerical study of the force-extension relation of a short DNA molecule stretched in an electrolyte. A theoretical formula based on a recent discrete wormlike chain (WLC) model of Kierfeld et al. (Eur Phys. J. E, Vol. 14, pp.17-34, 2004) and the classical OSF mean-field theory on electrostatic stiffening of a charged polymer is numerically verified by a set of Brownian dynamics simulations based on a generalized bead-rod (GBR) model incorporating long-ranged electrostatic interactions via the Debye-Hueckel potential (DH). The analysis indicates that the stretching of a short DNA can be well described as a WLC with a constant effective persistent length. This contrasts the behavior of long DNA chains that are known to exhibit variable persistent lengths depending on the ion concentration levels and force magnitudes. PMID:16711068

  14. Stretching

    MedlinePlus

    ... Fitness Diseases & Conditions Infections Q&A School & Jobs Drugs & Alcohol Staying Safe Recipes En Español Making a Change – Your Personal Plan Hot Topics Meningitis Choosing Your Mood Prescription Drug Abuse Healthy School Lunch Planner How Can I ...

  15. Cortisol receptor blockade and seawater adaptation in the euryhaline teleost Fundulus heteroclitus

    USGS Publications Warehouse

    Marshall, W.S.; Cozzi, R.R.F.; Pelis, R.M.; McCormick, S.D.

    2005-01-01

    To examine the role of cortisol in seawater osmoregulation in a euryhaline teleost, adult killifish were acclimated to brackish water (10???) and RU486 or vehicle was administered orally in peanut oil daily for five days at low (40 mg.kg-1) or high dose (200 mg.kg-1). Fish were transferred to 1.5 x seawater (45???) or to brackish water (control) and sampled at 24 h and 48 h after transfer, when Cl- secretion is upregulated. At 24 h, opercular membrane Cl- secretion rate, as Isc, was increased only in the high dose RU486 group. Stimulation of membranes by 3-isobutyl-1-methylxanthine and cAMP increased Isc in vehicle treated controls but those from RU486-treated animals were unchanged and membranes from brackish water animals showed a decrease in Isc. At 48 h, Isc increased and transepithelial resistance decreased in vehicle and RU486 groups, compared to brackish water controls. Plasma cortisol increased in all groups transferred to high salinity, compared to brackish water controls. RU486 treated animals had higher cortisol levels compared to vehicle controls. Vehicle treated controls had lower cortisol levels than untreated or RU486 treated animals, higher stimulation of Isc, and lower hematocrit at 24 h, beneficial effects attributed to increased caloric intake from the peanut oil vehicle. Chloride cell density was significantly increased in the high dose RU486 group at 48 hours, yet Isc was unchanged, suggesting a decrease in Cl- secretion per cell. Thus cortisol enhances NaCl secretion capacity in chloride cells, likely via glucocorticoid type receptors. ?? 2005 Wiley-Liss, Inc.

  16. Leprosy and the Adaptation of Human Toll-Like Receptor 1

    PubMed Central

    Wong, Sunny H.; Gochhait, Sailesh; Malhotra, Dheeraj; Pettersson, Fredrik H.; Teo, Yik Y.; Khor, Chiea C.; Rautanen, Anna; Chapman, Stephen J.; Mills, Tara C.; Srivastava, Amit; Rudko, Aleksey; Freidin, Maxim B.; Puzyrev, Valery P.; Ali, Shafat; Aggarwal, Shweta; Chopra, Rupali; Reddy, Belum S. N.; Garg, Vijay K.; Roy, Suchismita; Meisner, Sarah; Hazra, Sunil K.; Saha, Bibhuti; Floyd, Sian; Keating, Brendan J.; Kim, Cecilia; Fairfax, Benjamin P.; Knight, Julian C.; Hill, Philip C.; Adegbola, Richard A.; Hakonarson, Hakon; Fine, Paul E. M.; Pitchappan, Ramasamy M.; Bamezai, Rameshwar N. K.; Hill, Adrian V. S.; Vannberg, Fredrik O.

    2010-01-01

    Leprosy is an infectious disease caused by the obligate intracellular pathogen Mycobacterium leprae and remains endemic in many parts of the world. Despite several major studies on susceptibility to leprosy, few genomic loci have been replicated independently. We have conducted an association analysis of more than 1,500 individuals from different case-control and family studies, and observed consistent associations between genetic variants in both TLR1 and the HLA-DRB1/DQA1 regions with susceptibility to leprosy (TLR1 I602S, case-control P = 5.7×10−8, OR = 0.31, 95% CI = 0.20–0.48, and HLA-DQA1 rs1071630, case-control P = 4.9×10−14, OR = 0.43, 95% CI = 0.35–0.54). The effect sizes of these associations suggest that TLR1 and HLA-DRB1/DQA1 are major susceptibility genes in susceptibility to leprosy. Further population differentiation analysis shows that the TLR1 locus is extremely differentiated. The protective dysfunctional 602S allele is rare in Africa but expands to become the dominant allele among individuals of European descent. This supports the hypothesis that this locus may be under selection from mycobacteria or other pathogens that are recognized by TLR1 and its co-receptors. These observations provide insight into the long standing host-pathogen relationship between human and mycobacteria and highlight the key role of the TLR pathway in infectious diseases. PMID:20617178

  17. BSDB: the Biomolecule Stretching Database

    NASA Astrophysics Data System (ADS)

    Cieplak, Marek; Sikora, Mateusz; Sulkowska, Joanna I.; Witkowski, Bartlomiej

    2011-03-01

    Despite more than a decade of experiments on single biomolecule manipulation, mechanical properties of only several scores of proteins have been measured. A characteristic scale of the force of resistance to stretching, Fmax , has been found to range between ~ 10 and 480 pN. The Biomolecule Stretching Data Base (BSDB) described here provides information about expected values of Fmax for, currently, 17 134 proteins. The values and other characteristics of the unfolding proces, including the nature of identified mechanical clamps, are available at www://info.ifpan.edu.pl/BSDB/. They have been obtained through simulations within a structure-based model which correlates satisfactorily with the available experimental data on stretching. BSDB also lists experimental data and results of the existing all-atom simulations. The database offers a Protein-Data-Bank-wide guide to mechano-stability of proteins. Its description is provided by a forthcoming Nucleic Acids Research paper. Supported by EC FUNMOL project FP7-NMP-2007-SMALL-1, and European Regional Development Fund: Innovative Economy (POIG.01.01.02-00-008/08).

  18. Biaxially Stretched Polycarbonate Film For Capacitors

    NASA Technical Reports Server (NTRS)

    Yen, Shaio-Ping S.; Lowry, Lynn E.; Bankston, Clyde P.

    1992-01-01

    Report describes experiments on effects of biaxial stretching on crystal structures, dielectric properties, and sellected thermal and mechanical properties of biaxially stretched polycarbonate films. Highest stretch ratios produce highest degree of crystallinity, with single crystalline phase and distribution of crystallites more nearly isotropic than uniaxially oriented film. Electrical properties at high temperatures improved.

  19. Intermittent stretch training of rabbit plantarflexor muscles increases soleus mass and serial sarcomere number.

    PubMed

    De Jaeger, Dominique; Joumaa, Venus; Herzog, Walter

    2015-06-15

    In humans, enhanced joint range of motion is observed after static stretch training and results either from an increased stretch tolerance or from a change in the biomechanical properties of the muscle-tendon unit. We investigated the effects of an intermittent stretch training on muscle biomechanical and structural variables. The left plantarflexors muscles of seven anesthetized New Zealand (NZ) White rabbits were passively and statically stretched three times a week for 4 wk, while the corresponding right muscles were used as nonstretched contralateral controls. Before and after the stretching protocol, passive torque produced by the left plantarflexor muscles as a function of the ankle angle was measured. The left and right plantarflexor muscles were harvested from dead rabbits and used to quantify possible changes in muscle structure. Significant mass and serial sarcomere number increases were observed in the stretched soleus but not in the plantaris or medial gastrocnemius. This difference in adaptation between the plantarflexors is thought to be the result of their different fiber type composition and pennation angles. Neither titin isoform nor collagen amount was modified in the stretched compared with the control soleus muscle. Passive torque developed during ankle dorsiflexion was not modified after the stretch training on average, but was decreased in five of the seven experimental rabbits. Thus, an intermittent stretching program similar to those used in humans can produce a change in the muscle structure of NZ White rabbits, which was associated in some rabbits with a change in the biomechanical properties of the muscle-tendon unit.

  20. Lack of acetylcholine nicotine alpha 7 receptor suppresses development of collagen-induced arthritis and adaptive immunity.

    PubMed

    Westman, M; Saha, S; Morshed, M; Lampa, J

    2010-10-01

    Activation of the alpha7 receptor (α7nAChR) has been shown to be important in inflammation and immune regulation, and is also essential in the neural cholinergic anti-inflammatory pathway. The aim of this study was to investigate the role of α7nAChR in the development of experimental arthritis and immune activation. Mice lacking the α7nAChR were immunized with collagen II and the development of arthritis was assessed. Another group of α7nAChR-deficient mice was immunized with ovalbumin, spleen and lymph node cells were isolated and the proliferative responses to restimulation with ovalbumin or concanavalin A were investigated. We could demonstrate significantly milder arthritis and less cartilage destruction, together with a decrease of T cell content in lymph nodes in mice lacking the α7nAChR compared to wild-type controls. In addition, mice lacking the α7nAChR had a deficient proliferative response to concanavalin A, whereas antigen presentation-dependent proliferation was not affected. These results indicate important roles for α7nAChR in arthritis development as well as in regulation of T cell-dependent immunological mechanisms. In addition, the data implicate α7nAChR as a therapeutic target for modulation of adaptive immune responses.

  1. Highly Dynamic Exon Shuffling in Candidate Pathogen Receptors … What if Brown Algae Were Capable of Adaptive Immunity?

    PubMed Central

    Zambounis, Antonios; Elias, Marek; Sterck, Lieven; Maumus, Florian; Gachon, Claire M.M.

    2012-01-01

    Pathogen recognition is the first step of immune reactions. In animals and plants, direct or indirect pathogen recognition is often mediated by a wealth of fast-evolving receptors, many of which contain ligand-binding and signal transduction domains, such as leucine-rich or tetratricopeptide repeat (LRR/TPR) and NB-ARC domains, respectively. In order to identify candidates potentially involved in algal defense, we mined the genome of the brown alga Ectocarpus siliculosus for homologues of these genes and assessed the evolutionary pressures acting upon them. We thus annotated all Ectocarpus LRR-containing genes, in particular an original group of LRR-containing GTPases of the ROCO family, and 24 NB-ARC–TPR proteins. They exhibit high birth and death rates, while a diversifying selection is acting on their LRR (respectively TPR) domain, probably affecting the ligand-binding specificities. Remarkably, each repeat is encoded by an exon, and the intense exon shuffling underpins the variability of LRR and TPR domains. We conclude that the Ectocarpus ROCO and NB-ARC–TPR families are excellent candidates for being involved in recognition/transduction events linked to immunity. We further hypothesize that brown algae may generate their immune repertoire via controlled somatic recombination, so far only known from the vertebrate adaptive immune systems. PMID:22144640

  2. Time stretch enhanced recording oscilloscope

    NASA Astrophysics Data System (ADS)

    Gupta, Shalabh; Jalali, Bahram

    2009-01-01

    Recording analog signals using photonic time-stretch technique in a mode which combines advantages of continuous signal capture, as in real-time analog-to-digital converters (ADCs), and very high bandwidth capability of (equivalent-time) sampling oscilloscopes, is proposed. It is shown that the eye diagrams of high speed serial data can be acquired at least 100 times faster than the fastest capture rates today. Unlike conventional sampling scopes, this technique can capture ultrafast dynamics of repetitive signals, nonrepetitive signals, and rare events. Experimentally, 45 Gbit/s data eye diagram measurement is demonstrated.

  3. Adaptation of avian influenza A (H6N1) virus from avian to human receptor-binding preference.

    PubMed

    Wang, Fei; Qi, Jianxun; Bi, Yuhai; Zhang, Wei; Wang, Min; Zhang, Baorong; Wang, Ming; Liu, Jinhua; Yan, Jinghua; Shi, Yi; Gao, George F

    2015-06-12

    The receptor-binding specificity of influenza A viruses is a major determinant for the host tropism of the virus, which enables interspecies transmission. In 2013, the first human case of infection with avian influenza A (H6N1) virus was reported in Taiwan. To gather evidence concerning the epidemic potential of H6 subtype viruses, we performed comprehensive analysis of receptor-binding properties of Taiwan-isolated H6 HAs from 1972 to 2013. We propose that the receptor-binding properties of Taiwan-isolated H6 HAs have undergone three major stages: initially avian receptor-binding preference, secondarily obtaining human receptor-binding capacity, and recently human receptor-binding preference, which has been confirmed by receptor-binding assessment of three representative virus isolates. Mutagenesis work revealed that E190V and G228S substitutions are important to acquire the human receptor-binding capacity, and the P186L substitution could reduce the binding to avian receptor. Further structural analysis revealed how the P186L substitution in the receptor-binding site of HA determines the receptor-binding preference change. We conclude that the human-infecting H6N1 evolved into a human receptor preference.

  4. Adaptive increases in expression and vasodilator activity of estrogen receptor subtypes in a blood vessel-specific pattern during pregnancy.

    PubMed

    Mata, Karina M; Li, Wei; Reslan, Ossama M; Siddiqui, Waleed T; Opsasnick, Lauren A; Khalil, Raouf A

    2015-11-15

    Normal pregnancy is associated with adaptive hemodynamic, hormonal, and vascular changes, and estrogen (E2) may promote vasodilation during pregnancy; however, the specific E2 receptor (ER) subtype, post-ER signaling mechanism, and vascular bed involved are unclear. We tested whether pregnancy-associated vascular adaptations involve changes in the expression/distribution/activity of distinct ER subtypes in a blood vessel-specific manner. Blood pressure (BP) and plasma E2 were measured in virgin and pregnant (day 19) rats, and the thoracic aorta, carotid artery, mesenteric artery, and renal artery were isolated for measurements of ERα, ERβ, and G protein-coupled receptor 30 [G protein-coupled ER (GPER)] expression and tissue distribution in parallel with relaxation responses to E2 (all ERs) and the specific ER agonist 4,4',4″-(4-propyl-[1H]-pyrazole-1,3,5-triyl)-tris-phenol (PPT; ERα), diarylpropionitrile (DPN; ERβ), and G1 (GPER). BP was slightly lower and plasma E2 was higher in pregnant versus virgin rats. Western blots revealed increased ERα and ERβ in the aorta and mesenteric artery and GPER in the aorta of pregnant versus virgin rats. Immunohistochemistry revealed that the increases in ERs were mainly in the intima and media. In phenylephrine-precontracted vessels, E2 and PPT caused relaxation that was greater in the aorta and mesenteric artery but similar in the carotid and renal artery of pregnant versus virgin rats. DPN- and G1-induced relaxation was greater in the mesenteric and renal artery than in the aorta and carotid artery, and aortic relaxation to G1 was greater in pregnant versus virgin rats. The nitric oxide synthase inhibitor N(ω)-nitro-l-arginine methyl ester with or without the cyclooxygenase inhibitor indomethacin with or without the EDHF blocker tetraethylammonium or endothelium removal reduced E2, PPT, and G1-induced relaxation in the aorta of pregnant rats, suggesting an endothelium-dependent mechanism, but did not affect E2-, PPT

  5. Adaptive increases in expression and vasodilator activity of estrogen receptor subtypes in a blood vessel-specific pattern during pregnancy.

    PubMed

    Mata, Karina M; Li, Wei; Reslan, Ossama M; Siddiqui, Waleed T; Opsasnick, Lauren A; Khalil, Raouf A

    2015-11-15

    Normal pregnancy is associated with adaptive hemodynamic, hormonal, and vascular changes, and estrogen (E2) may promote vasodilation during pregnancy; however, the specific E2 receptor (ER) subtype, post-ER signaling mechanism, and vascular bed involved are unclear. We tested whether pregnancy-associated vascular adaptations involve changes in the expression/distribution/activity of distinct ER subtypes in a blood vessel-specific manner. Blood pressure (BP) and plasma E2 were measured in virgin and pregnant (day 19) rats, and the thoracic aorta, carotid artery, mesenteric artery, and renal artery were isolated for measurements of ERα, ERβ, and G protein-coupled receptor 30 [G protein-coupled ER (GPER)] expression and tissue distribution in parallel with relaxation responses to E2 (all ERs) and the specific ER agonist 4,4',4″-(4-propyl-[1H]-pyrazole-1,3,5-triyl)-tris-phenol (PPT; ERα), diarylpropionitrile (DPN; ERβ), and G1 (GPER). BP was slightly lower and plasma E2 was higher in pregnant versus virgin rats. Western blots revealed increased ERα and ERβ in the aorta and mesenteric artery and GPER in the aorta of pregnant versus virgin rats. Immunohistochemistry revealed that the increases in ERs were mainly in the intima and media. In phenylephrine-precontracted vessels, E2 and PPT caused relaxation that was greater in the aorta and mesenteric artery but similar in the carotid and renal artery of pregnant versus virgin rats. DPN- and G1-induced relaxation was greater in the mesenteric and renal artery than in the aorta and carotid artery, and aortic relaxation to G1 was greater in pregnant versus virgin rats. The nitric oxide synthase inhibitor N(ω)-nitro-l-arginine methyl ester with or without the cyclooxygenase inhibitor indomethacin with or without the EDHF blocker tetraethylammonium or endothelium removal reduced E2, PPT, and G1-induced relaxation in the aorta of pregnant rats, suggesting an endothelium-dependent mechanism, but did not affect E2-, PPT

  6. Association between the oxytocin receptor (OXTR) gene and autism: relationship to Vineland Adaptive Behavior Scales and cognition.

    PubMed

    Lerer, E; Levi, S; Salomon, S; Darvasi, A; Yirmiya, N; Ebstein, R P

    2008-10-01

    Evidence both from animal and human studies suggests that common polymorphisms in the oxytocin receptor (OXTR) gene are likely candidates to confer risk for autism spectrum disorders (ASD). In lower mammals, oxytocin is important in a wide range of social behaviors, and recent human studies have shown that administration of oxytocin modulates behavior in both clinical and non-clinical groups. Additionally, two linkage studies and two recent association investigations also underscore a possible role for the OXTR gene in predisposing to ASD. We undertook a comprehensive study of all 18 tagged SNPs across the entire OXTR gene region identified using HapMap data and the Haploview algorithm. Altogether 152 subjects diagnosed with ASDs (that is, DSM IV autistic disorder or pervasive developmental disorder--NOS) from 133 families were genotyped (parents and affected siblings). Both individual SNPs and haplotypes were tested for association using family-based association tests as provided in the UNPHASED set of programs. Significant association with single SNPs and haplotypes (global P-values <0.05, following permutation test adjustment) were observed with ASD. Association was also observed with IQ and the Vineland Adaptive Behavior Scales (VABS). In particular, a five-locus haplotype block (rs237897-rs13316193-rs237889-rs2254298-rs2268494) was significantly associated with ASD (nominal global P=0.000019; adjusted global P=0.009) and a single haplotype (carried by 7% of the population) within that block showed highly significant association (P=0.00005). This is the third association study, in a third ethnic group, showing that SNPs and haplotypes in the OXTR gene confer risk for ASD. The current investigation also shows association with IQ and total VABS scores (as well as the communication, daily living skills and socialization subdomains), suggesting that this gene shapes both cognition and daily living skills that may cross diagnostic boundaries.

  7. Decorrelation Stretch Near Cerberus Fossae

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released July 25, 2004 On this image you can see two infrared frames of the same area on Mars. One of the images (in black and white) represents a single wavelength or band of the THEMIS IR instrument, while the other image (in false color) represents 3 different bands. The image with the various colors was created with a technique called Decorrelation Stretch (DCS). In this technique individual bands of the THEMIS IR instrument are stretched to better show compositional variations throughout the whole range. After the bands are stretched they are overlayed on one another and colors are assigned to each band. This makes up the colors in the image.

    As you can see, there is a difference in what is noticable in the single band IR image versus the false-colored one. On the color image the pink/magenta colors usually represent basaltic content, cyan often indicates the presence of water ice clouds, while green can represent dust.

    The bright purple and pink colors associated with the valley are due to basalt. There may be a thin veneer of dust present in the region (it was a dark colored region during the Viking mission in the 1970's) through which the basaltic material pokes out along the edges of the valley and the nearby knobby terrain.

    Image information: IR instrument. Latitude 10.7, Longitude 163 East (197 West). 100 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA

  8. Cell reorientation under cyclic stretching

    PubMed Central

    Livne, Ariel; Bouchbinder, Eran; Geiger, Benjamin

    2014-01-01

    Mechanical cues from the extracellular microenvironment play a central role in regulating the structure, function and fate of living cells. Nevertheless, the precise nature of the mechanisms and processes underlying this crucial cellular mechanosensitivity remains a fundamental open problem. Here we provide a novel framework for addressing cellular sensitivity and response to external forces by experimentally and theoretically studying one of its most striking manifestations – cell reorientation to a uniform angle in response to cyclic stretching of the underlying substrate. We first show that existing approaches are incompatible with our extensive measurements of cell reorientation. We then propose a fundamentally new theory that shows that dissipative relaxation of the cell’s passively-stored, two-dimensional, elastic energy to its minimum actively drives the reorientation process. Our theory is in excellent quantitative agreement with the complete temporal reorientation dynamics of individual cells, measured over a wide range of experimental conditions, thus elucidating a basic aspect of mechanosensitivity. PMID:24875391

  9. Convective Flow of Sisko Fluid over a Bidirectional Stretching Surface

    PubMed Central

    Munir, Asif; Shahzad, Azeem; Khan, Masood

    2015-01-01

    The present investigation focuses the flow and heat transfer characteristics of the steady three-dimensional Sisko fluid driven by a bidirectional stretching sheet. The modeled partial differential equations are reduced to coupled ordinary differential equations by a suitable transformation. The resulting equations are solved numerically by the shooting method using adaptive Runge Kutta algorithm in combination with Newton's method in the domain [0,∞). The numerical results for the velocity and temperature fields are graphically presented and effects of the relevant parameters are discussed in detail. Moreover, the skin-friction coefficient and local Nusselt number for different values of the power-law index and stretching ratio parameter are presented through tabulated data. The numerical results are also verified with the results obtained analytically by the homotopy analysis method (HAM). Additionally, the results are validated with previously published pertinent literature as a limiting case of the problem. PMID:26110873

  10. Ionic effects on spindle adaptation

    PubMed Central

    Husmark, I.; Ottoson, D.

    1971-01-01

    1. Effects of changes in ionic environment on the receptor potential were studied in isolated frog spindle. Particular attention was focused on the action of potassium removal on the early adaptive decline of the response. 2. Removal of potassium caused a reduction and final disappearance of the dynamic overshoot of the receptor potential. The static phase of the response was also reduced although to less extent. The repolarization phase of the response following release of phasic or maintained stretch was greatly prolonged. 3. Increased potassium concentration caused a reduction of the response, but did not change its general time course. The amount of reduction was related to the potassium concentration. 4. Removal of sodium caused a marked diminution of the response, the static phase being in general more affected than the dynamic phase. 5. It is suggested that the effects of potassium removal are caused by a delay in sodium inactivation and a partial depolarization of the endings. It is concluded that the greater part of the early adaptation of the spindle proper may be attributed to ionic mechanisms in the transducer membrane. PMID:4256546

  11. Piezo Is Essential for Amiloride-Sensitive Stretch-Activated Mechanotransduction in Larval Drosophila Dorsal Bipolar Dendritic Sensory Neurons.

    PubMed

    Suslak, Thomas J; Watson, Sonia; Thompson, Karen J; Shenton, Fiona C; Bewick, Guy S; Armstrong, J Douglas; Jarman, Andrew P

    2015-01-01

    Stretch-activated afferent neurons, such as those of mammalian muscle spindles, are essential for proprioception and motor co-ordination, but the underlying mechanisms of mechanotransduction are poorly understood. The dorsal bipolar dendritic (dbd) sensory neurons are putative stretch receptors in the Drosophila larval body wall. We have developed an in vivo protocol to obtain receptor potential recordings from intact dbd neurons in response to stretch. Receptor potential changes in dbd neurons in response to stretch showed a complex, dynamic profile with similar characteristics to those previously observed for mammalian muscle spindles. These profiles were reproduced by a general in silico model of stretch-activated neurons. This in silico model predicts an essential role for a mechanosensory cation channel (MSC) in all aspects of receptor potential generation. Using pharmacological and genetic techniques, we identified the mechanosensory channel, DmPiezo, in this functional role in dbd neurons, with TRPA1 playing a subsidiary role. We also show that rat muscle spindles exhibit a ruthenium red-sensitive current, but found no expression evidence to suggest that this corresponds to Piezo activity. In summary, we show that the dbd neuron is a stretch receptor and demonstrate that this neuron is a tractable model for investigating mechanisms of mechanotransduction.

  12. Kinematics analyses related to stretch-shortening cycle during soccer instep kicking after different acute stretching.

    PubMed

    Amiri-Khorasani, Mohammadtaghi; Mohammadkazemi, Reza; Sarafrazi, Soodeh; Riyahi-Malayeri, Shahin; Sotoodeh, Vahid

    2012-11-01

    The purpose of this study was to examine the effects of static and dynamic stretching within a preexercise warm-up on angular velocity of knee joint, deepest knee flexion (DKF), and duration of eccentric and concentric contractions, which are relative to the stretch-shortening cycle (SSC) during instep kicking in professional soccer players. The kicking motions of dominant legs were captured from 18 Olympic professional male soccer players (height: 180.38 ± 7.34 cm; weight: 69.77 ± 9.73 kg; age: 19.22 ± 1.83 years) using 4 digital video cameras at 50 Hz. There was a significant difference in the DKF after the dynamic stretching (-3.22 ± 3.10°) vs. static stretching (-0.18 ± 3.19°) relative to the no-stretching method with p < 0.001. Moreover, there was significant difference in eccentric duration after the dynamic stretching (0.006 ± 0.01 seconds) vs. static stretching (-0.003 ± 0.01 seconds) relative to the no-stretching method with p < 0.015. There was a significant difference in the concentric duration after the dynamic stretching (-0.007 ± 0.01 seconds) vs. static stretching (0.002 ± 0.01 seconds) relative to the no-stretching method with p < 0.001. There was also a significant difference in knee angular velocity after the dynamic stretching (4.08 ± 3.81 rad·s) vs. static stretching (-5.34 ± 4.40 rad·s) relative to the no-stretching method with p < 0.001. We concluded that dynamic stretching during warm-ups, as compared with static stretching, is probably the most effective way as preparation for the kinematics characteristics of soccer instep kick, which are relative to the SSC.

  13. Evidence against a critical role of CB1 receptors in adaptation of the hypothalamic-pituitary-adrenal axis and other consequences of daily repeated stress.

    PubMed

    Rabasa, Cristina; Pastor-Ciurana, Jordi; Delgado-Morales, Raúl; Gómez-Román, Almudena; Carrasco, Javier; Gagliano, Humberto; García-Gutiérrez, María S; Manzanares, Jorge; Armario, Antonio

    2015-08-01

    There is evidence that endogenous cannabinoids (eCBs) play a role in the control of the hypothalamic-pituitary-adrenal (HPA) axis, although they appear to have dual, stimulatory and inhibitory, effects. Recent data in rats suggest that eCBs, acting through CB1 receptors (CB1R), may be involved in adaptation of the HPA axis to daily repeated stress. In the present study we analyze this issue in male mice and rats. Using a knock-out mice for the CB1 receptor (CB1-/-) we showed that mutant mice presented similar adrenocorticotropic hormone (ACTH) response to the first IMO as wild-type mice. Daily repeated exposure to 1h of immobilization reduced the ACTH response to the stressor, regardless of the genotype, demonstrating that adaptation occurred to the same extent in absence of CB1R. Prototypical changes observed after repeated stress such as enhanced corticotropin releasing factor (CRH) gene expression in the paraventricular nucleus of the hypothalamus, impaired body weight gain and reduced thymus weight were similarly observed in both genotypes. The lack of effect of CB1R in the expression of HPA adaptation to another similar stressor (restraint) was confirmed in wild-type CD1 mice by the lack of effect of the CB1R antagonist AM251 just before the last exposure to stress. Finally, the latter drug did not blunt the HPA, glucose and behavioral adaptation to daily repeated forced swim in rats. Thus, the present results indicate that CB1R is not critical for overall effects of daily repeated stress or proper adaptation of the HPA axis in mice and rats.

  14. Stretching Impacts Inflammation Resolution in Connective Tissue.

    PubMed

    Berrueta, Lisbeth; Muskaj, Igla; Olenich, Sara; Butler, Taylor; Badger, Gary J; Colas, Romain A; Spite, Matthew; Serhan, Charles N; Langevin, Helene M

    2016-07-01

    Acute inflammation is accompanied from its outset by the release of specialized pro-resolving mediators (SPMs), including resolvins, that orchestrate the resolution of local inflammation. We showed earlier that, in rats with subcutaneous inflammation of the back induced by carrageenan, stretching for 10 min twice daily reduced inflammation and improved pain, 2 weeks after carrageenan injection. In this study, we hypothesized that stretching of connective tissue activates local pro-resolving mechanisms within the tissue in the acute phase of inflammation. In rats injected with carrageenan and randomized to stretch versus no stretch for 48 h, stretching reduced inflammatory lesion thickness and neutrophil count, and increased resolvin (RvD1) concentrations within lesions. Furthermore, subcutaneous resolvin injection mimicked the effect of stretching. In ex vivo experiments, stretching of connective tissue reduced the migration of neutrophils and increased tissue RvD1 concentration. These results demonstrate a direct mechanical impact of stretching on inflammation-regulation mechanisms within connective tissue.

  15. Stretching Impacts Inflammation Resolution in Connective Tissue.

    PubMed

    Berrueta, Lisbeth; Muskaj, Igla; Olenich, Sara; Butler, Taylor; Badger, Gary J; Colas, Romain A; Spite, Matthew; Serhan, Charles N; Langevin, Helene M

    2016-07-01

    Acute inflammation is accompanied from its outset by the release of specialized pro-resolving mediators (SPMs), including resolvins, that orchestrate the resolution of local inflammation. We showed earlier that, in rats with subcutaneous inflammation of the back induced by carrageenan, stretching for 10 min twice daily reduced inflammation and improved pain, 2 weeks after carrageenan injection. In this study, we hypothesized that stretching of connective tissue activates local pro-resolving mechanisms within the tissue in the acute phase of inflammation. In rats injected with carrageenan and randomized to stretch versus no stretch for 48 h, stretching reduced inflammatory lesion thickness and neutrophil count, and increased resolvin (RvD1) concentrations within lesions. Furthermore, subcutaneous resolvin injection mimicked the effect of stretching. In ex vivo experiments, stretching of connective tissue reduced the migration of neutrophils and increased tissue RvD1 concentration. These results demonstrate a direct mechanical impact of stretching on inflammation-regulation mechanisms within connective tissue. PMID:26588184

  16. Reinforcement for Stretch Formed Sheet Metal

    NASA Technical Reports Server (NTRS)

    Lea, J. B.; Baxter, C. R.

    1983-01-01

    Tearing of aluminum sheet metal durinng stretch forming prevented by flame spraying layer of aluminum on edges held in stretch-forming machine. Technique improves grip of machine on metal and reinforced sheet better able to with stand concentration of force in vicinity of grips.

  17. Hamstrings stretch reflex in human spasticity

    PubMed Central

    Burke, David; Gillies, J. D.; Lance, James W.

    1971-01-01

    In 16 patients with spastic paralysis the hamstrings stretch reflex was found to increase as the velocity of stretch increased, and generally to subside after movement ceased. These effects are attributable to the dynamic property of the primary spindle ending. The stretch reflex commonly appeared in only the last third of the stretching movement and was maximal as the knee became fully extended. This is consistent with the static properties of the primary and secondary spindle endings, and accounts for the absence of the clasp-knife phenomenon in the spastic hamstrings. The difference in the nature of the stretch reflex in spastic flexor and extensor muscles is best explained by the differential reflex effects of group II afferent fibres which facilitate flexor motoneurones and inhibit extensor motoneurones. PMID:4255176

  18. Human-specific evolution and adaptation led to major qualitative differences in the variable receptors of human and chimpanzee natural killer cells.

    PubMed

    Abi-Rached, Laurent; Moesta, Achim K; Rajalingam, Raja; Guethlein, Lisbeth A; Parham, Peter

    2010-11-04

    Natural killer (NK) cells serve essential functions in immunity and reproduction. Diversifying these functions within individuals and populations are rapidly-evolving interactions between highly polymorphic major histocompatibility complex (MHC) class I ligands and variable NK cell receptors. Specific to simian primates is the family of Killer cell Immunoglobulin-like Receptors (KIR), which recognize MHC class I and associate with a range of human diseases. Because KIR have considerable species-specificity and are lacking from common animal models, we performed extensive comparison of the systems of KIR and MHC class I interaction in humans and chimpanzees. Although of similar complexity, they differ in genomic organization, gene content, and diversification mechanisms, mainly because of human-specific specialization in the KIR that recognizes the C1 and C2 epitopes of MHC-B and -C. Humans uniquely focused KIR recognition on MHC-C, while losing C1-bearing MHC-B. Reversing this trend, C1-bearing HLA-B46 was recently driven to unprecedented high frequency in Southeast Asia. Chimpanzees have a variety of ancient, avid, and predominantly inhibitory receptors, whereas human receptors are fewer, recently evolved, and combine avid inhibitory receptors with attenuated activating receptors. These differences accompany human-specific evolution of the A and B haplotypes that are under balancing selection and differentially function in defense and reproduction. Our study shows how the qualitative differences that distinguish the human and chimpanzee systems of KIR and MHC class I predominantly derive from adaptations on the human line in response to selective pressures placed on human NK cells by the competing needs of defense and reproduction.

  19. Vascular endothelial cell membranes differentiate between stretch and shear stress through transitions in their lipid phases.

    PubMed

    Yamamoto, Kimiko; Ando, Joji

    2015-10-01

    Vascular endothelial cells (ECs) respond to the hemodynamic forces stretch and shear stress by altering their morphology, functions, and gene expression. However, how they sense and differentiate between these two forces has remained unknown. Here we report that the plasma membrane itself differentiates between stretch and shear stress by undergoing transitions in its lipid phases. Uniaxial stretching and hypotonic swelling increased the lipid order of human pulmonary artery EC plasma membranes, thereby causing a transition from the liquid-disordered phase to the liquid-ordered phase in some areas, along with a decrease in membrane fluidity. In contrast, shear stress decreased the membrane lipid order and increased membrane fluidity. A similar increase in lipid order occurred when the artificial lipid bilayer membranes of giant unilamellar vesicles were stretched by hypotonic swelling, indicating that this is a physical phenomenon. The cholesterol content of EC plasma membranes significantly increased in response to stretch but clearly decreased in response to shear stress. Blocking these changes in the membrane lipid order by depleting membrane cholesterol with methyl-β-cyclodextrin or by adding cholesterol resulted in a marked inhibition of the EC response specific to stretch and shear stress, i.e., phosphorylation of PDGF receptors and phosphorylation of VEGF receptors, respectively. These findings indicate that EC plasma membranes differently respond to stretch and shear stress by changing their lipid order, fluidity, and cholesterol content in opposite directions and that these changes in membrane physical properties are involved in the mechanotransduction that activates membrane receptors specific to each force. PMID:26297225

  20. Strategy as stretch and leverage.

    PubMed

    Hamel, G; Prahalad, C K

    1993-01-01

    Global competition is not just product versus product or company versus company. It is mind-set versus mind-set. Driven to understand the dynamics of competition, we have learned a lot about what makes one company more successful than another. But to find the root of competitiveness--to understand why some companies create new forms of competitive advantage while others watch and follow--we must look at strategic mind-sets. For many managers, "being strategic" means pursuing opportunities that fit the company's resources. This approach is not wrong, Gary Hamel and C.K. Prahalad contend, but it obscures an approach in which "stretch" supplements fit and being strategic means creating a chasm between ambition and resources. Toyota, CNN, British Airways, Sony, and others all displaced competitors with stronger reputations and deeper pockets. Their secret? In each case, the winner had greater ambition than its well-endowed rivals. Winners also find less resource-intensive ways of achieving their ambitious goals. This is where leverage complements the strategic allocation of resources. Managers at competitive companies can get a bigger bang for their buck in five basic ways: by concentrating resources around strategic goals; by accumulating resources more efficiently; by complementing one kind of resource with another; by conserving resources whenever they can; and by recovering resources from the market-place as quickly as possible. As recent competitive battles have demonstrated, abundant resources can't guarantee continued industry leadership.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:10124635

  1. Mars Under the Microscope (stretched)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This magnified look at the martian soil near the Mars Exploration Rover Opportunity's landing site, Meridiani Planum, shows coarse grains sprinkled over a fine layer of sand. The image was captured on the 10th day, or sol, of the rover's mission by its microscopic imager, located on the instrument deployment device, or 'arm.' Scientists are intrigued by the spherical rocks, which can be formed by a variety of geologic processes, including cooling of molten lava droplets and accretion of concentric layers of material around a particle or 'seed.'

    The examined patch of soil is 3 centimeters (1.2 inches) across. The circular grain in the lower left corner is approximately 3 millimeters (.12 inches) across, or about the size of a sunflower seed.

    This stretched color composite was obtained by merging images acquired with the orange-tinted dust cover open and closed. The varying hints of orange suggest differences in mineral composition. The blue tint at the lower right corner is a tag used by scientists to indicate that the dust cover is closed.

  2. Dependence of cyclic stretch-induced stress fiber reorientation on stretch waveform.

    PubMed

    Tondon, Abhishek; Hsu, Hui-Ju; Kaunas, Roland

    2012-03-15

    Cyclic uniaxial stretching of adherent nonmuscle cells induces the gradual reorientation of their actin stress fibers perpendicular to the stretch direction to an extent dependent on stretch frequency. By subjecting cells to various temporal waveforms of cyclic stretch, we revealed that stress fibers are much more sensitive to strain rate than strain frequency. By applying asymmetric waveforms, stress fibers were clearly much more responsive to the rate of lengthening than the rate of shortening during the stretch cycle. These observations were interpreted using a theoretical model of networks of stress fibers with sarcomeric structure. The model predicts that stretch waveforms with fast lengthening rates generate greater average stress fiber tension than that generated by fast shortening. This integrated approach of experiment and theory provides new insight into the mechanisms by which cells respond to matrix stretching to maintain tensional homeostasis.

  3. THUNDER Piezoelectric Actuators as a Method of Stretch-Tuning an Optical Fiber Grating

    NASA Technical Reports Server (NTRS)

    Allison, Sidney G.; Fox, Robert L.; Froggatt, Mark E.; Childers, Brooks A.

    2000-01-01

    A method of stretching optical fiber holds interest for measuring strain in smart structures where the physical displacement may be used to tune optical fiber lasers. A small, light weight, low power tunable fiber laser is ideal for demodulating strain in optical fiber Bragg gratings attached to smart structures such as the re-usable launch vehicle that is being developed by NASA. A method is presented for stretching optical fibers using the THUNDER piezoelectric actuators invented at NASA Langley Research Center. THUNDER actuators use a piezoelectric layer bonded to a metal backing to enable the actuators to produce displacements larger than the unbonded piezoelectric material. The shift in reflected optical wavelength resulting from stretching the fiber Bragg grating is presented. Means of adapting THUNDER actuators for stretching optical fibers is discussed, including ferrules, ferrule clamp blocks, and plastic hinges made with stereo lithography.

  4. THUNDER piezoelectric actuators as a method of stretch-tuning an optical fiber grating

    NASA Astrophysics Data System (ADS)

    Allison, Sidney G.; Fox, Robert L.; Froggatt, Mark E.; Childers, Brooks A.

    2000-06-01

    A method of stretching optical fiber holds interest for measuring strain in smart structures where the physical displacement may be used to tune optical fiber lasers. A small, lightweight, low power tunable fiber laser is ideal for demodulating strain in optical fiber Bragg gratings attached to smart structures such as the re-usable launch vehicle that is begin developed by NASA. A method is presented for stretching optical fibers using the THUNDER piezoelectric actuators invented at NASA Langley Research Center. THUNDER actuators use a piezoelectric layer bonded to a metal backing to enable the actuators to produce displacements larger than the unbonded piezoelectric material. The shift in reflected optical wavelength resulting from stretching the fiber Bragg grating is presented. Means of adapting THUNDER actuators for stretching optical fibers is discussed, including ferrules, ferrule clamp blocks, and plastic hinges made with stereo lithography.

  5. Stretch induced hyperexcitability of mice callosal pathway

    PubMed Central

    Fan, Anthony; Stebbings, Kevin A.; Llano, Daniel A.; Saif, Taher

    2015-01-01

    Memory and learning are thought to result from changes in synaptic strength. Previous studies on synaptic physiology in brain slices have traditionally been focused on biochemical processes. Here, we demonstrate with experiments on mouse brain slices that central nervous system plasticity is also sensitive to mechanical stretch. This is important, given the host of clinical conditions involving changes in mechanical tension on the brain, and the normal role that mechanical tension plays in brain development. A novel platform is developed to investigate neural responses to mechanical stretching. Flavoprotein autofluoresence (FA) imaging was employed for measuring neural activity. We observed that synaptic excitability substantially increases after a small (2.5%) stretch was held for 10 min and released. The increase is accumulative, i.e., multiple stretch cycles further increase the excitability. We also developed analytical tools to quantify the spatial spread and response strength. Results show that the spatial spread is less stable in slices undergoing the stretch-unstretch cycle. FA amplitude and activation rate decrease as excitability increases in stretch cases but not in electrically enhanced cases. These results collectively demonstrate that a small stretch in physiological range can modulate neural activities significantly, suggesting that mechanical events can be employed as a novel tool for the modulation of neural plasticity. PMID:26300729

  6. Glucocorticoid receptor haploinsufficiency causes hypertension and attenuates hypothalamic-pituitary-adrenal axis and blood pressure adaptions to high-fat diet.

    PubMed

    Michailidou, Z; Carter, R N; Marshall, E; Sutherland, H G; Brownstein, D G; Owen, E; Cockett, K; Kelly, V; Ramage, L; Al-Dujaili, E A S; Ross, M; Maraki, I; Newton, K; Holmes, M C; Seckl, J R; Morton, N M; Kenyon, C J; Chapman, K E

    2008-11-01

    Glucocorticoid hormones are critical to respond and adapt to stress. Genetic variations in the glucocorticoid receptor (GR) gene alter hypothalamic-pituitary-adrenal (HPA) axis activity and associate with hypertension and susceptibility to metabolic disease. Here we test the hypothesis that reduced GR density alters blood pressure and glucose and lipid homeostasis and limits adaption to obesogenic diet. Heterozygous GR(betageo/+) mice were generated from embryonic stem (ES) cells with a gene trap integration of a beta-galactosidase-neomycin phosphotransferase (betageo) cassette into the GR gene creating a transcriptionally inactive GR fusion protein. Although GR(betageo/+) mice have 50% less functional GR, they have normal lipid and glucose homeostasis due to compensatory HPA axis activation but are hypertensive due to activation of the renin-angiotensin-aldosterone system (RAAS). When challenged with a high-fat diet, weight gain, adiposity, and glucose intolerance were similarly increased in control and GR(betageo/+) mice, suggesting preserved control of intermediary metabolism and energy balance. However, whereas a high-fat diet caused HPA activation and increased blood pressure in control mice, these adaptions were attenuated or abolished in GR(betageo/+) mice. Thus, reduced GR density balanced by HPA activation leaves glucocorticoid functions unaffected but mineralocorticoid functions increased, causing hypertension. Importantly, reduced GR limits HPA and blood pressure adaptions to obesogenic diet. PMID:18697839

  7. Stretch due to Penile Prosthesis Reservoir Migration

    PubMed Central

    Baten, E.; Vandewalle, T.; van Renterghem, K.

    2016-01-01

    A 43-year old patient presented to the emergency department with stretch, due to impossible deflation of the penile prosthesis, 4 years after successful implant. A CT-scan showed migration of the reservoir to the left rectus abdominis muscle. Refilling of the reservoir was inhibited by muscular compression, causing stretch. Removal and replacement of the reservoir was performed, after which the prosthesis was well-functioning again. Migration of the penile prosthesis reservoir is extremely rare but can cause several complications, such as stretch. PMID:26793592

  8. Stretch due to Penile Prosthesis Reservoir Migration.

    PubMed

    Baten, E; Vandewalle, T; van Renterghem, K

    2016-03-01

    A 43-year old patient presented to the emergency department with stretch, due to impossible deflation of the penile prosthesis, 4 years after successful implant. A CT-scan showed migration of the reservoir to the left rectus abdominis muscle. Refilling of the reservoir was inhibited by muscular compression, causing stretch. Removal and replacement of the reservoir was performed, after which the prosthesis was well-functioning again. Migration of the penile prosthesis reservoir is extremely rare but can cause several complications, such as stretch.

  9. Springback prediction and optimization of variable stretch force trajectory in three-dimensional stretch bending process

    NASA Astrophysics Data System (ADS)

    Teng, Fei; Zhang, Wanxi; Liang, Jicai; Gao, Song

    2015-11-01

    Most of the existing studies use constant force to reduce springback while researching stretch force. However, variable stretch force can reduce springback more efficiently. The current research on springback prediction in stretch bending forming mainly focuses on artificial neural networks combined with the finite element simulation. There is a lack of springback prediction by support vector regression (SVR). In this paper, SVR is applied to predict springback in the three-dimensional stretch bending forming process, and variable stretch force trajectory is optimized. Six parameters of variable stretch force trajectory are chosen as the input parameters of the SVR model. Sixty experiments generated by design of experiments (DOE) are carried out to train and test the SVR model. The experimental results confirm that the accuracy of the SVR model is higher than that of artificial neural networks. Based on this model, an optimization algorithm of variable stretch force trajectory using particle swarm optimization (PSO) is proposed. The springback amount is used as the objective function. Changes of local thickness are applied as the criterion of forming constraints. The objection and constraints are formulated by response surface models. The precision of response surface models is examined. Six different stretch force trajectories are employed to certify springback reduction in the optimum stretch force trajectory, which can efficiently reduce springback. This research proposes a new method of springback prediction using SVR and optimizes variable stretch force trajectory to reduce springback.

  10. Effect of modified hold-relax stretching and static stretching on hamstring muscle flexibility.

    PubMed

    Ahmed, Hashim; Iqbal, Amir; Anwer, Shahnawaz; Alghadir, Ahmad

    2015-02-01

    [Purpose] The aim of present study was to compare the effectiveness of modified hold-relax stretching and static stretching in improving the hamstring muscle flexibility. [Subjects and Methods] Forty-five male subjects with hamstring tightness were included in this study. The subjects were randomly placed into three groups: the modified hold-relax stretching, static stretching and control groups. The modified hold-relax stretching group performed 7 seconds of isometric contraction and then relaxed for 5 seconds, and this was repeated five times daily for five consecutive days. The static stretching group received 10 minutes of static stretching with the help of a pulley and weight system for five consecutive days. The control group received only moist heat for 20 minutes for five consecutive days. A baseline reading of passive knee extension (PKE) was taken prior to the intervention; rest measurements were taken immediate post intervention on day 1, day 3, day 5, and after a 1 week follow-up, i.e., at the 12th day. [Results] On comparing the baseline readings of passive knee extension (PKE), there was no difference noted between the three groups. On comparing the posttest readings on day 5 between the 3 groups, a significant difference was noted. However, post hoc analysis revealed an insignificant difference between the modified hold-relax stretching and static stretching groups. There was a significant difference between the static stretching and control groups and between the modified hold-relax stretching and control groups. [Conclusion] The results of this study indicate that both the modified hold-relax stretching technique and static stretching are equally effective, as there was no significant difference in improving the hamstring muscle flexibility between the two groups.

  11. Effect of modified hold-relax stretching and static stretching on hamstring muscle flexibility

    PubMed Central

    Ahmed, Hashim; Iqbal, Amir; Anwer, Shahnawaz; Alghadir, Ahmad

    2015-01-01

    [Purpose] The aim of present study was to compare the effectiveness of modified hold-relax stretching and static stretching in improving the hamstring muscle flexibility. [Subjects and Methods] Forty-five male subjects with hamstring tightness were included in this study. The subjects were randomly placed into three groups: the modified hold-relax stretching, static stretching and control groups. The modified hold-relax stretching group performed 7 seconds of isometric contraction and then relaxed for 5 seconds, and this was repeated five times daily for five consecutive days. The static stretching group received 10 minutes of static stretching with the help of a pulley and weight system for five consecutive days. The control group received only moist heat for 20 minutes for five consecutive days. A baseline reading of passive knee extension (PKE) was taken prior to the intervention; rest measurements were taken immediate post intervention on day 1, day 3, day 5, and after a 1 week follow-up, i.e., at the 12th day. [Results] On comparing the baseline readings of passive knee extension (PKE), there was no difference noted between the three groups. On comparing the posttest readings on day 5 between the 3 groups, a significant difference was noted. However, post hoc analysis revealed an insignificant difference between the modified hold-relax stretching and static stretching groups. There was a significant difference between the static stretching and control groups and between the modified hold-relax stretching and control groups. [Conclusion] The results of this study indicate that both the modified hold-relax stretching technique and static stretching are equally effective, as there was no significant difference in improving the hamstring muscle flexibility between the two groups. PMID:25729210

  12. Functional cloning of Src-like adapter protein-2 (SLAP-2), a novel inhibitor of antigen receptor signaling.

    PubMed

    Holland, S J; Liao, X C; Mendenhall, M K; Zhou, X; Pardo, J; Chu, P; Spencer, C; Fu, A; Sheng, N; Yu, P; Pali, E; Nagin, A; Shen, M; Yu, S; Chan, E; Wu, X; Li, C; Woisetschlager, M; Aversa, G; Kolbinger, F; Bennett, M K; Molineaux, S; Luo, Y; Payan, D G; Mancebo, H S; Wu, J

    2001-11-01

    In an effort to identify novel therapeutic targets for autoimmunity and transplant rejection, we developed and performed a large-scale retroviral-based functional screen to select for proteins that inhibit antigen receptor-mediated activation of lymphocytes. In addition to known regulators of antigen receptor signaling, we identified a novel adaptor protein, SLAP-2 which shares 36% sequence similarity with the known Src-like adaptor protein, SLAP. Similar to SLAP, SLAP-2 is predominantly expressed in hematopoietic cells. Overexpression of SLAP-2 in B and T cell lines specifically impaired antigen receptor-mediated signaling events, including CD69 surface marker upregulation, nuclear factor of activated T cells (NFAT) promoter activation and calcium influx. Signaling induced by phorbol myristate acetate (PMA) and ionomycin was not significantly reduced, suggesting SLAP-2 functions proximally in the antigen receptor signaling cascade. The SLAP-2 protein contains an NH2-terminal myristoylation consensus sequence and SH3 and SH2 Src homology domains, but lacks a tyrosine kinase domain. In antigen receptor-stimulated cells, SLAP-2 associated with several tyrosine phosphorylated proteins, including the ubiquitin ligase Cbl. Deletion of the COOH terminus of SLAP-2 blocked function and abrogated its association with Cbl. Mutation of the putative myristoylation site of SLAP-2 compromised its inhibitory activity and impaired its localization to the membrane compartment. Our identification of the negative regulator SLAP-2 demonstrates that a retroviral-based screening strategy may be an efficient way to identify and characterize the function of key components of many signal transduction systems.

  13. Axial Stretch of Rat Single Ventricular Cardiomyocytes Causes an Acute and Transient Increase in Ca2+ Spark Rate

    PubMed Central

    Iribe, Gentaro; Ward, Christopher W.; Camelliti, Patrizia; Bollensdorff, Christian; Mason, Fleur; Burton, Rebecca A.B.; Garny, Alan; Morphew, Mary K.; Hoenger, Andreas; Lederer, W. Jonathan; Kohl, Peter

    2010-01-01

    We investigate acute effects of axial stretch, applied by carbon fibers (CFs), on diastolic Ca2± spark rate in rat isolated cardiomyocytes. CFs were attached either to both cell ends (to maximize the stretched region), or to the center and one end of the cell (to compare responses in stretched and nonstretched half-cells). Sarcomere length was increased by 8.01 ± 0.94% in the stretched cell fraction, and time series of XY confocal images were recorded to monitor diastolic Ca2± spark frequency and dynamics. Whole-cell stretch causes an acute increase of Ca2± spark rate (to 130.7 ± 6.4%) within 5 seconds, followed by a return to near background levels (to 104.4±5.1%) within 1 minute of sustained distension. Spark rate increased only in the stretched cell region, without significant differences in spark amplitude, time to peak, and decay time constants of sparks in stretched and nonstretched areas. Block of stretch-activated ion channels (2 gmol/L GsMTx-4), perfusion with Na±/Ca2±-free solution, and block of nitric oxide synthesis (1 mmol/L L-NAME) all had no effect on the stretch-induced acute increase in Ca2± spark rate. Conversely, interference with cytoskeletal integrity (2 hours of 10 gmol/L colchicine) abolished the response. Subsequent electron microscopic tomography confirmed the close approximation of microtubules with the T-tubular–sarcoplasmic reticulum complex (to within · 10−8m). In conclusion, axial stretch of rat cardiomyocytes acutely and transiently increases sarcoplasmic reticulum Ca2± spark rate via a mechanism that is independent of sarcolemmal stretch-activated ion channels, nitric oxide synthesis, or availability of extracellular calcium but that requires cytoskeletal integrity. The potential of microtubule-mediated modulation of ryanodine receptor function warrants further investigation. PMID:19197074

  14. Cell culture adaptation mutations in foot-and-mouth disease virus serotype A capsid proteins: implications for receptor interactions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study we describe the adaptive changes fixed on the capsid of several foot-and-mouth disease virus serotype A strains during propagation in cell monolayers. Viruses passaged extensively in three cell lines (BHK-21, LFBK and IB-RS-2), consistently gained several positively charged amino acids...

  15. Tolerance to LSD and DOB induced shaking behaviour: differential adaptations of frontocortical 5-HT(2A) and glutamate receptor binding sites.

    PubMed

    Buchborn, Tobias; Schröder, Helmut; Dieterich, Daniela C; Grecksch, Gisela; Höllt, Volker

    2015-03-15

    Serotonergic hallucinogens, such as lysergic acid diethylamide (LSD) and dimethoxy-bromoamphetamine (DOB), provoke stereotype-like shaking behaviour in rodents, which is hypothesised to engage frontocortical glutamate receptor activation secondary to serotonin2A (5-HT2A) related glutamate release. Challenging this hypothesis, we here investigate whether tolerance to LSD and DOB correlates with frontocortical adaptations of 5-HT2A and/or overall-glutamate binding sites. LSD and DOB (0.025 and 0.25 mg/kg, i.p.) induce a ketanserin-sensitive (0.5 mg/kg, i.p., 30-min pretreatment) increase in shaking behaviour (including head twitches and wet dog shakes), which with repeated application (7× in 4 ds) is undermined by tolerance. Tolerance to DOB, as indexed by DOB-sensitive [(3)H]spiroperidol and DOB induced [(35)S]GTP-gamma-S binding, is accompanied by a frontocortical decrease in 5-HT2A binding sites and 5-HT2 signalling, respectively; glutamate-sensitive [(3)H]glutamate binding sites, in contrast, remain unchanged. As to LSD, 5-HT2 signalling and 5-HT2A binding, respectively, are not or only marginally affected, yet [(3)H]glutamate binding is significantly decreased. Correlation analysis interrelates tolerance to DOB to the reduced 5-HT2A (r=.80) as well as the unchanged [(3)H]glutamate binding sites (r=.84); tolerance to LSD, as opposed, shares variance with the reduction in [(3)H]glutamate binding sites only (r=.86). Given that DOB and LSD both induce tolerance, one correlating with 5-HT2A, the other with glutamate receptor adaptations, it might be inferred that tolerance can arise at either level. That is, if a hallucinogen (like LSD in our study) fails to induce 5-HT2A (down-)regulation, glutamate receptors (activated postsynaptic to 5-HT2A related glutamate release) might instead adapt and thus prevent further overstimulation of the cortex. PMID:25513973

  16. Tolerance to LSD and DOB induced shaking behaviour: differential adaptations of frontocortical 5-HT(2A) and glutamate receptor binding sites.

    PubMed

    Buchborn, Tobias; Schröder, Helmut; Dieterich, Daniela C; Grecksch, Gisela; Höllt, Volker

    2015-03-15

    Serotonergic hallucinogens, such as lysergic acid diethylamide (LSD) and dimethoxy-bromoamphetamine (DOB), provoke stereotype-like shaking behaviour in rodents, which is hypothesised to engage frontocortical glutamate receptor activation secondary to serotonin2A (5-HT2A) related glutamate release. Challenging this hypothesis, we here investigate whether tolerance to LSD and DOB correlates with frontocortical adaptations of 5-HT2A and/or overall-glutamate binding sites. LSD and DOB (0.025 and 0.25 mg/kg, i.p.) induce a ketanserin-sensitive (0.5 mg/kg, i.p., 30-min pretreatment) increase in shaking behaviour (including head twitches and wet dog shakes), which with repeated application (7× in 4 ds) is undermined by tolerance. Tolerance to DOB, as indexed by DOB-sensitive [(3)H]spiroperidol and DOB induced [(35)S]GTP-gamma-S binding, is accompanied by a frontocortical decrease in 5-HT2A binding sites and 5-HT2 signalling, respectively; glutamate-sensitive [(3)H]glutamate binding sites, in contrast, remain unchanged. As to LSD, 5-HT2 signalling and 5-HT2A binding, respectively, are not or only marginally affected, yet [(3)H]glutamate binding is significantly decreased. Correlation analysis interrelates tolerance to DOB to the reduced 5-HT2A (r=.80) as well as the unchanged [(3)H]glutamate binding sites (r=.84); tolerance to LSD, as opposed, shares variance with the reduction in [(3)H]glutamate binding sites only (r=.86). Given that DOB and LSD both induce tolerance, one correlating with 5-HT2A, the other with glutamate receptor adaptations, it might be inferred that tolerance can arise at either level. That is, if a hallucinogen (like LSD in our study) fails to induce 5-HT2A (down-)regulation, glutamate receptors (activated postsynaptic to 5-HT2A related glutamate release) might instead adapt and thus prevent further overstimulation of the cortex.

  17. Functional Cloning of Src-like Adapter Protein-2 (SLAP-2), a Novel Inhibitor of Antigen Receptor Signaling

    PubMed Central

    Holland, Sacha J.; Liao, X. Charlene; Mendenhall, Marcy K.; Zhou, Xiulan; Pardo, Jorge; Chu, Peter; Spencer, Collin; Fu, Alan; Sheng, Ning; Yu, Peiwen; Pali, Erlina; Nagin, Anup; Shen, Mary; Yu, Simon; Chan, Eva; Wu, Xian; Li, Connie; Woisetschlager, Max; Aversa, Gregorio; Kolbinger, Frank; Bennett, Mark K.; Molineaux, Susan; Luo, Ying; Payan, Donald G.; Mancebo, Helena S.Y.; Wu, Jun

    2001-01-01

    In an effort to identify novel therapeutic targets for autoimmunity and transplant rejection, we developed and performed a large-scale retroviral-based functional screen to select for proteins that inhibit antigen receptor-mediated activation of lymphocytes. In addition to known regulators of antigen receptor signaling, we identified a novel adaptor protein, SLAP-2 which shares 36% sequence similarity with the known Src-like adaptor protein, SLAP. Similar to SLAP, SLAP-2 is predominantly expressed in hematopoietic cells. Overexpression of SLAP-2 in B and T cell lines specifically impaired antigen receptor-mediated signaling events, including CD69 surface marker upregulation, nuclear factor of activated T cells (NFAT) promoter activation and calcium influx. Signaling induced by phorbol myristate acetate (PMA) and ionomycin was not significantly reduced, suggesting SLAP-2 functions proximally in the antigen receptor signaling cascade. The SLAP-2 protein contains an NH2-terminal myristoylation consensus sequence and SH3 and SH2 Src homology domains, but lacks a tyrosine kinase domain. In antigen receptor–stimulated cells, SLAP-2 associated with several tyrosine phosphorylated proteins, including the ubiquitin ligase Cbl. Deletion of the COOH terminus of SLAP-2 blocked function and abrogated its association with Cbl. Mutation of the putative myristoylation site of SLAP-2 compromised its inhibitory activity and impaired its localization to the membrane compartment. Our identification of the negative regulator SLAP-2 demonstrates that a retroviral-based screening strategy may be an efficient way to identify and characterize the function of key components of many signal transduction systems. PMID:11696592

  18. Expression of the SLAM family of receptors adapter EAT-2 as a novel strategy for enhancing beneficial immune responses to vaccine antigens.

    PubMed

    Aldhamen, Yasser A; Appledorn, Daniel M; Seregin, Sergey S; Liu, Chyong-jy J; Schuldt, Nathaniel J; Godbehere, Sarah; Amalfitano, Andrea

    2011-01-15

    Recent studies have shown that activation of the signaling lymphocytic activation molecule (SLAM) family of receptors plays an important role in several aspects of immune regulation. However, translation of this knowledge into a useful clinical application has not been undertaken. One important area where SLAM-mediated immune regulation may have keen importance is in the field of vaccinology. Because SLAM signaling plays such a critical role in the innate and adaptive immunity, we endeavored to develop a strategy to improve the efficacy of vaccines by incorporation of proteins known to be important in SLAM-mediated signaling. In this study, we hypothesized that coexpression of the SLAM adapter EWS-FLI1-activated transcript 2 (EAT-2) along with a pathogen-derived Ag would facilitate induction of beneficial innate immune responses, resulting in improved induction of Ag-specific adaptive immune responses. To test this hypothesis, we used rAd5 vector-based vaccines expressing murine EAT-2, or the HIV-1-derived Ag Gag. Compared with appropriate controls, rAd5 vectors expressing EAT-2 facilitated bystander activation of NK, NKT, B, and T cells early after their administration into animals. EAT-2 overexpression also augments the expression of APC (macrophages and dendritic cells) surface markers. Indeed, this multitiered activation of the innate immune system by vaccine-mediated EAT-2 expression enhanced the induction of Ag-specific cellular immune responses. Because both mice and humans express highly conserved EAT-2 adapters, our results suggest that human vaccination strategies that specifically facilitate SLAM signaling may improve vaccine potency when targeting HIV Ags specifically, as well as numerous other vaccine targets in general.

  19. An Analysis of Individual Stretching Programs of Intercollegiate Athletes.

    ERIC Educational Resources Information Center

    Levine, Michael; And Others

    1987-01-01

    To evaluate individual stretching programs of intercollegiate athletes, 238 athletes (164 male, 74 female) in ten sports were surveyed about their stretching practices. Almost all of the athletes stretched, but to varying degrees. Muscle groups stretched by the fewest athletes were the adductors, plantar flexors, hips, and neck. (Author/MT)

  20. Does motor imagery enhance stretching and flexibility?

    PubMed

    Guillot, Aymeric; Tolleron, Coralie; Collet, Christian

    2010-02-01

    Although several studies have demonstrated that motor imagery can enhance learning processes and improve motor performance, little is known about its effect on stretching and flexibility. The increased active and passive range of motion reported in preliminary research has not been shown to be elicited by motor imagery training alone. We thus compared flexibility scores in 21 synchronized swimmers before and after a 5-week mental practice programme that included five stretching exercises in active and passive conditions. The imagery training programme resulted in selective increased flexibility, independently of the stretching method. Overall, the improvement in flexibility was greater in the imagery group than in the control group for the front split (F(1,18) = 4.9, P = 0.04), the hamstrings (F(1,18) = 5.2, P = 0.035), and the ankle stretching exercises (F(1,18) = 5.6, P = 0.03). There was no difference in shoulders and side-split flexibility (F(1,18) = 0.1, P = 0.73 and F(1,18) = 3.3, P = 0.08 respectively). Finally, there was no correlation between individual imagery ability and improvement in flexibility. Psychological and physiological effects of motor imagery could explain the increase in range of motion, suggesting that imagery enhances joint flexibility during both active and passive stretching.

  1. Effect of streptomycin on the active force of bioengineered heart muscle in response to controlled stretch.

    PubMed

    Birla, R K; Huang, Y C; Dennis, R G

    2008-01-01

    In this study, we describe a bioreactor system to deliver controlled stretch protocols to bioengineered heart muscle (BEHMs) and test the system when streptomycin (an aminoglycoside antibiotic, which blocks stretch-activated channels) is either added to or excluded from the culture medium. Streptomycin is a very commonly used component of cell culture antibiotic-antimycotic media additives, so its effects on muscle development and functional response to mechanical signals in vitro is worthy of investigation. Our hypothesis is that BEHMs will not adapt to the applied mechanical stretch protocol when streptomycin is present in the culture medium, but will do so when streptomycin is excluded. Bioengineered heart muscles were formed by culturing primary neonatal cardiac myocytes in a fibrin gel using a method previously developed in our laboratory. A custom bioreactor system was designed using SolidWorks and structural components manufactured using fusion deposition modeling. We utilized a stretch protocol of 1 Hz, 10% strain for 7 d. BEHMs were stretched in the presence and absence of streptomycin. As controls, BEHMs were maintained in a cell culture incubator with and without streptomycin. The contractile properties of all BEHMs were evaluated to determine the active force. We were able to demonstrate compatibility of the bioreactor system with BEHMs and were able to stretch 58 constructs with zero incidence of failure. When the BEHMs were stretched in the absence of streptomycin, the active force increased from a mean value of 51.7 +/- 5.6 (N = 10) to 102.4 +/- 16.3 microN (N = 10), with p < 0.05. However, BEHMs that were stretched in the presence of streptomycin did not show any significant increase in active force generation. The average active force of BEHMs increased from a mean value of 57.6 +/- 10.2 (N = 10) to 91.4 +/- 19.8 microN (N = 10) when stretched in the presence of streptomycin. In this study, we demonstrate compatibility of the a bioreactor system

  2. Xa21D encodes a receptor-like molecule with a leucine-rich repeat domain that determines race-specific recognition and is subject to adaptive evolution.

    PubMed Central

    Wang, G L; Ruan, D L; Song, W Y; Sideris, S; Chen, L; Pi, L Y; Zhang, S; Zhang, Z; Fauquet, C; Gaut, B S; Whalen, M C; Ronald, P C

    1998-01-01

    The rice Xa21 gene confers resistance to Xanthomonas oryzae pv oryzae in a race-specific manner. Analysis of the inheritance patterns and resistance spectra of transgenic plants carrying six Xa21 gene family members indicated that one member, designated Xa21D, displayed a resistance spectrum identical to that observed for Xa21 but conferred only partial resistance. Xa21D encodes a receptor-like protein carrying leucine-rich repeat (LRR) motifs in the presumed extracellular domain. The Xa21D transcript terminates shortly after the stop codon introduced by the retrotransposon Retrofit. Comparison of nucleotide substitutions in the LRR coding regions of Xa21 and Xa21D provided evidence of adaptive selection. Both functional and evolutionary evidence indicates that the Xa21D LRR domain controls race-specific pathogen recognition. PMID:9596635

  3. Stretched arc discharge in produced water.

    PubMed

    Cho, Y I; Wright, K C; Kim, H S; Cho, D J; Rabinovich, A; Fridman, A

    2015-01-01

    The objective of the present study was to investigate the feasibility of stretching an arc discharge in produced water to increase the volume of produced water treated by plasma. Produced water is the wastewater generated by hydraulic fracturing of shale during the production phase in shale-oil or shale-gas exploration. The electric conductivity of produced water is in the range of 50-200 mS/cm, which provides both a challenge and opportunity for the application of plasmas. Stretching of an arc discharge in produced water was accomplished using a ground electrode and two high-voltage electrodes: one positioned close to the ground electrode and the other positioned farther away from the ground. The benefit of stretching the arc is that the contact between the arc and water is significantly increased, resulting in more efficient plasma treatment in both performance and energy cost. PMID:25638080

  4. Unfolding of Isotactic Polypropylene under Uniaxial Stretching

    NASA Astrophysics Data System (ADS)

    Kang, Jia; Miyoshi, Toshikazu; Akihiro Kamimura, Akihiro Otsubo Collaboration

    Despite numerous investigations on polymer processing, understanding the deformation mechanisms of semicrystalline polymer under uniaxial stretching is still challenging. In this work, 13C-13C Double Quantum (DQ) NMR was applied to trace the structural evolution of 13C-labeled isotactic polypropylene (iPP) chains inside the crystallites stretched to engineering strain (e) of 21 at 100 °C. DQ NMR based on spatial proximity of 13C labeled nuclei proved conformational changes from the folded chains to the locally extended chains induced by stretching. By combining experimental findings with literature results on molecular dynamics, it was concluded that transportation of the crystalline chains plays a critical role to achieve large deformability of iPP.

  5. Stretching and folding in finite time.

    PubMed

    Ma, Tian; Ouellette, Nicholas T; Bollt, Erik M

    2016-02-01

    Complex flows mix efficiently, and this process can be understood by considering the stretching and folding of material volumes. Although many metrics have been devised to characterize stretching, fewer are able to capture folding in a quantitative way in spatiotemporally variable flows. Here, we extend our previous methods based on the finite-time curving of fluid-element trajectories to nonzero scales and show that this finite-scale finite-time curvature contains information about both stretching and folding. We compare this metric to the more commonly used finite-time Lyapunov exponent and illustrate our methods using experimental flow-field data from a quasi-two-dimensional laboratory flow. Our new analysis tools add to the growing set of Lagrangian methods for characterizing mixing in complex, aperiodic fluid flows.

  6. Stretched arc discharge in produced water

    NASA Astrophysics Data System (ADS)

    Cho, Y. I.; Wright, K. C.; Kim, H. S.; Cho, D. J.; Rabinovich, A.; Fridman, A.

    2015-01-01

    The objective of the present study was to investigate the feasibility of stretching an arc discharge in produced water to increase the volume of produced water treated by plasma. Produced water is the wastewater generated by hydraulic fracturing of shale during the production phase in shale-oil or shale-gas exploration. The electric conductivity of produced water is in the range of 50-200 mS/cm, which provides both a challenge and opportunity for the application of plasmas. Stretching of an arc discharge in produced water was accomplished using a ground electrode and two high-voltage electrodes: one positioned close to the ground electrode and the other positioned farther away from the ground. The benefit of stretching the arc is that the contact between the arc and water is significantly increased, resulting in more efficient plasma treatment in both performance and energy cost.

  7. Optical Data Compression in Time Stretch Imaging

    PubMed Central

    Chen, Claire Lifan; Mahjoubfar, Ata; Jalali, Bahram

    2015-01-01

    Time stretch imaging offers real-time image acquisition at millions of frames per second and subnanosecond shutter speed, and has enabled detection of rare cancer cells in blood with record throughput and specificity. An unintended consequence of high throughput image acquisition is the massive amount of digital data generated by the instrument. Here we report the first experimental demonstration of real-time optical image compression applied to time stretch imaging. By exploiting the sparsity of the image, we reduce the number of samples and the amount of data generated by the time stretch camera in our proof-of-concept experiments by about three times. Optical data compression addresses the big data predicament in such systems. PMID:25906244

  8. The Adapter Protein APPL1 Links FSH Receptor to Inositol 1,4,5-Trisphosphate Production and Is Implicated in Intracellular Ca2+ Mobilization

    PubMed Central

    Thomas, Richard M.; Nechamen, Cheryl A.; Mazurkiewicz, Joseph E.; Ulloa-Aguirre, Alfredo

    2011-01-01

    FSH binds to its receptor (FSHR) on target cells in the ovary and testis, to regulate oogenesis and spermatogenesis, respectively. The signaling cascades activated after ligand binding are extremely complex and have been shown to include protein kinase A, mitogen-activated protein kinase, phosphatidylinositol 3-kinase/protein kinase B, and inositol 1,4,5-trisphosphate–mediated calcium signaling pathways. The adapter protein APPL1 (Adapter protein containing Pleckstrin homology domain, Phosphotyrosine binding domain and Leucine zipper motif), which has been linked to an assortment of other signaling proteins, was previously identified as an interacting protein with FSHR. Thus, alanine substitution mutations in the first intracellular loop of FSHR were generated to determine which residues are essential for FSHR-APPL1 interaction. Three amino acids were essential; when any one of them was altered, APPL1 association with FSHR mutants was abrogated. Two of the mutants (L377A and F382A) that displayed poor cell-surface expression were not studied further. Substitution of FSHR-K376A did not affect FSH binding or agonist-stimulated cAMP production in either transiently transfected human embryonic kidney cells or virally transduced human granulosa cells (KGN). In the KGN line, as well as primary cultures of rat granulosa cells transduced with wild type or mutant receptor, FSH-mediated progesterone or estradiol production was not affected by the mutation. However, in human embryonic kidney cells inositol 1,4,5-trisphosphate production was curtailed and KGN cells transduced with FSHR-K376A evidenced reduced Ca2+ mobilization from intracellular stores after FSH treatment. PMID:21285318

  9. Altered surface character of stretched condom latex.

    PubMed

    Jay, G D; Drummond, E; Lane, B

    1992-02-01

    A new type of imperfection in condom latex, present during moderate stretching, was observed by low magnification scanning electron microscopy. The normally smooth surface of relaxed natural latex was transformed into an accordion-like arrangement of ripples in addition to tears. A corollary experiment with Alcian blue dye placed into both stretched and unstretched condoms leaked no dye. These surface features are consistent with latex acting as a molecular barrier. The tears may represent areas of lowered mechanical resistance and raise questions concerning quality control.

  10. Antigen Receptor-Intrinsic Non-Self: The Key to Understanding Regulatory Lymphocyte-Mediated Idiotypic Control of Adaptive Immune Responses.

    PubMed

    Lemke, Hilmar

    2016-01-01

    The clone-specific or idiotypic characters of B as well as T cell antigen receptors (BCRs/TCRs) are associated with (1) the third-complementarity-determining regions (CDR3s) that are created during V(D)J recombination (they scarcely occur in antibody light chains) and (2) BCR idiotopes created by somatic hypermutations (SHMs) during immune responses. Therefore, BCR/TCR idiotypic sites are antigen receptor-intrinsic Non-Self (AgR-iNS) portions that fulfill two tasks: serving as a crucial component of the epitope-binding paratope and serving as target sites for anti-idiotypic BCR/TCR paratopes of other anti-Non-Self clones that are contained in both normal repertoires. The antigen-induced immune response is thus directed not only toward the environmental stimulus but also against the AgR-iNS portions of the directly and further activated clones that form a subsiding idiotypic cascade. These idiotypic chain reactions form a completely integrated idiotypic control circuit among B and T cells which contains all regulatory T and B cells. However, this circuit cannot be viewed as a network of fixed interacting nodes but rather uses the genetic Self as reference. Hence, AgR-iNS offers a mechanistic understanding of regulatory lymphocyte-mediated idiotypic control of adaptive immune responses and reconciles clonal selection and idiotypic network theories hitherto believed to be incompatible. PMID:27480901

  11. Antigen Receptor-Intrinsic Non-Self: The Key to Understanding Regulatory Lymphocyte-Mediated Idiotypic Control of Adaptive Immune Responses.

    PubMed

    Lemke, Hilmar

    2016-01-01

    The clone-specific or idiotypic characters of B as well as T cell antigen receptors (BCRs/TCRs) are associated with (1) the third-complementarity-determining regions (CDR3s) that are created during V(D)J recombination (they scarcely occur in antibody light chains) and (2) BCR idiotopes created by somatic hypermutations (SHMs) during immune responses. Therefore, BCR/TCR idiotypic sites are antigen receptor-intrinsic Non-Self (AgR-iNS) portions that fulfill two tasks: serving as a crucial component of the epitope-binding paratope and serving as target sites for anti-idiotypic BCR/TCR paratopes of other anti-Non-Self clones that are contained in both normal repertoires. The antigen-induced immune response is thus directed not only toward the environmental stimulus but also against the AgR-iNS portions of the directly and further activated clones that form a subsiding idiotypic cascade. These idiotypic chain reactions form a completely integrated idiotypic control circuit among B and T cells which contains all regulatory T and B cells. However, this circuit cannot be viewed as a network of fixed interacting nodes but rather uses the genetic Self as reference. Hence, AgR-iNS offers a mechanistic understanding of regulatory lymphocyte-mediated idiotypic control of adaptive immune responses and reconciles clonal selection and idiotypic network theories hitherto believed to be incompatible.

  12. Role of the D2 dopamine receptor in molecular adaptation to chronic hypoxia in PC12 cells.

    PubMed

    Kobayashi, S; Conforti, L; Zhu, W H; Beitner-Johnson, D; Millhorn, D E

    1999-11-01

    We have previously shown that pheochromocytoma (PC12) cells rapidly depolarize and undergo Ca2+ influx through voltage-dependent Ca2+ channels in response to moderate hypoxia and that intracellular free Ca2+ is modulated by activation of dopamine D2 receptors in this cell type. The present study shows that D2 (quinpirole-mediated) inhibition of a voltage-dependent Ca2+ current (ICa) in PC12 cells is dramatically attenuated after chronic exposure to moderate hypoxia (24 h at 10% O2). Pretreatment of cells with pertussis toxin abolished D2-mediated inhibition of ICa. The D2-induced inhibition of ICa did not depend on protein kinase A (PKA), as it persisted both in the presence of a specific PKA inhibitor (PKI) and in PKA-deficient PC12 cells. Prolonged exposure to hypoxia (24 h) significantly reduced the level of Gi/o alpha immunoreactivity, but did not alter G beta levels. Furthermore, dialysis of recombinant G(o) alpha protein through the patch pipette restored the inhibitory effect of quinpirole in cells chronically exposed to hypoxia. We conclude that the attenuation of the D2-mediated inhibition of ICa by chronic hypoxia is caused by impaired receptor-G protein coupling, due to reduced levels of G(o) alpha protein. This attenuated feedback modulation of ICa by dopamine may allow for a more sustained Ca2+ influx and enhanced cellular excitation during prolonged hypoxia. PMID:10591061

  13. A variable-number-of-tandem-repeats polymorphism in the dopamine D4 receptor gene affects social adaptation of alcohol use: investigation of a gene-environment interaction.

    PubMed

    Larsen, Helle; van der Zwaluw, Carmen S; Overbeek, Geertjan; Granic, Isabela; Franke, Barbara; Engels, Rutger C M E

    2010-08-01

    Research suggests that people adapt their own drinking behavior to that of other people. According to a genetic-differences approach, some individuals may be more inclined than others to adapt their alcohol consumption level to that of other people. Using a 3 (drinking condition) x 2 (genotype) experimental design (N = 113), we tested whether susceptibility to alcohol-related cues (i.e., seeing someone drink) was related to the variable number of tandem repeats in exon 3 of the D4 dopamine receptor gene. A strong gene-environment interaction showed that participants carrying at least one copy of the 7-repeat allele consumed substantially more alcohol in the presence of a heavy-drinking individual than did participants without this allele. This study highlights that individual variability in sensitivity to other people's drinking behavior may be attributable to genetic differences. Carrying the 7-repeat allele may increase the risk for heavy alcohol use or abuse in the company of heavy-drinking peers.

  14. Quantifying stretch and secretion in the embryonic lung: Implications for morphogenesis☆

    PubMed Central

    George, Uduak Z.; Bokka, Kishore K.; Warburton, David; Lubkin, Sharon R.

    2016-01-01

    Branching in the embryonic lung is controlled by a variety of morphogens. Mechanics is also believed to play a significant role in lung branching. The relative roles and interactions of these two broad factors are challenging to determine. We considered three hypotheses for explaining why tracheal occlusion triples branching with no overall increase in size. Both hypotheses are based on tracheal occlusion blocking the exit of secretions. (H1) Increased lumen pressure stretches tissues; stretch receptors at shoulders of growing tips increase local rate of branching. (H2) Blocking exit of secretions blocks advective transport of morphogens, leading to (H2a) increased overall concentration of morphogens or (H2b) increased flux of morphogens at specific locations. We constructed and analyzed computational models of tissue stretch and solute transport in a 3D lung geometry. Observed tissue stresses and stretches were predominantly in locations unrelated to subsequent branch locations, suggesting that tissue stretch (H1) is not the mechanism of enhancement of branching. Morphogen concentration in the mesenchyme (H2a) increased with tracheal occlusion, consistent with previously reported results. Morphogen flux at the epithelial surface (H2b) completely changed its distribution pattern when the trachea was occluded, tripling the number of locations at which it was elevated. Our results are consistent with the hypothesis that tracheal occlusion blocks outflow of secretions, leading to a higher number of high-flux locations at branching tips, in turn leading to a large increase in number of branching locations. PMID:26189687

  15. Cloud Network Helps Stretch IT Dollars

    ERIC Educational Resources Information Center

    Collins, Hilton

    2012-01-01

    No matter how many car washes or bake sales schools host to raise money, adding funds to their coffers is a recurring problem. This perpetual financial difficulty makes expansive technology purchases or changes seem like a pipe dream for school CIOs and has education technologists searching for ways to stretch money. In 2005, state K-12 school…

  16. Project Stretch Final Narrative Report. Year III.

    ERIC Educational Resources Information Center

    American Camping Association, Martinsville, IN.

    In June, 1979, the American Camping Association implemented Project STRETCH (Strategies to Try out Resources to Enhance the Training of Camp Directors serving the Handicapped), a nationwide in-service training program for personnel providing services to handicapped children and youth in regularly and specially designed camping and outdoor…

  17. Hypervariable region 1 deletion and required adaptive envelope mutations confer decreased dependency on scavenger receptor class B type I and low-density lipoprotein receptor for hepatitis C virus.

    PubMed

    Prentoe, Jannick; Serre, Stéphanie B N; Ramirez, Santseharay; Nicosia, Alfredo; Gottwein, Judith M; Bukh, Jens

    2014-02-01

    Hypervariable region 1 (HVR1) of envelope protein 2 (E2) of hepatitis C virus (HCV) serves important yet undefined roles in the viral life cycle. We previously showed that the viability of HVR1-deleted JFH1-based recombinants with Core-NS2 of H77 (H77(ΔHVR1), genotype 1a) and S52 (S52(ΔHVR1), genotype 3a) in Huh7.5 cells was rescued by E2 substitutions N476D/S733F and an E1 substitution, A369V, respectively; HVR1-deleted J6 (J6(ΔHVR1), genotype 2a) was fully viable. In single-cycle production assays, where HCV RNA was transfected into entry-deficient Huh7-derived S29 cells with low CD81 expression, we found no effect of HVR1 deletion on replication or particle release for H77 and S52. HCV pseudoparticle assays in Huh7.5 cells showed that HVR1 deletion decreased entry by 20- to 100-fold for H77, J6, and S52; N476D/S733F restored entry for H77(ΔHVR1), while A369V further impaired S52(ΔHVR1) entry. We investigated receptor usage by antibody blocking and receptor silencing in Huh7.5 cells, followed by inoculation of parental and HVR1-deleted HCV recombinants. Compared to parental viruses, scavenger receptor class B type I (SR-BI) dependency was decreased for H77(ΔHVR1/N476D/S733F), H77(N476D/S733F), S52(ΔHVR1/A369V), and S52(A369V), but not for J6(ΔHVR1). Low-density lipoprotein receptor (LDLr) dependency was decreased for HVR1-deleted viruses, but not for H77(N476D/S733F) and S52(A369V). Soluble LDLr neutralization revealed strong inhibition of parental HCV but limited effect against HVR1-deleted viruses. Apolipoprotein E (ApoE)-specific HCV neutralization was similar for H77, J6, and S52 viruses with and without HVR1. In conclusion, HVR1 and HVR1-related adaptive envelope mutations appeared to be involved in LDLr and SR-BI dependency, respectively. Also, LDLr served ApoE-independent but HVR1-dependent functions in HCV entry. PMID:24257605

  18. Parallel Anisotropic Tetrahedral Adaptation

    NASA Technical Reports Server (NTRS)

    Park, Michael A.; Darmofal, David L.

    2008-01-01

    An adaptive method that robustly produces high aspect ratio tetrahedra to a general 3D metric specification without introducing hybrid semi-structured regions is presented. The elemental operators and higher-level logic is described with their respective domain-decomposed parallelizations. An anisotropic tetrahedral grid adaptation scheme is demonstrated for 1000-1 stretching for a simple cube geometry. This form of adaptation is applicable to more complex domain boundaries via a cut-cell approach as demonstrated by a parallel 3D supersonic simulation of a complex fighter aircraft. To avoid the assumptions and approximations required to form a metric to specify adaptation, an approach is introduced that directly evaluates interpolation error. The grid is adapted to reduce and equidistribute this interpolation error calculation without the use of an intervening anisotropic metric. Direct interpolation error adaptation is illustrated for 1D and 3D domains.

  19. A computational model of the response of adherent cells to stretch and changes in substrate stiffness

    PubMed Central

    Lutchen, Kenneth R.; Suki, Béla

    2014-01-01

    Cells in the body exist in a dynamic mechanical environment where they are subject to mechanical stretch as well as changes in composition and stiffness of the underlying extracellular matrix (ECM). However, the underlying mechanisms by which cells sense and adapt to their dynamic mechanical environment, in particular to stretch, are not well understood. In this study, we hypothesized that emergent phenomena at the level of the actin network arising from active structural rearrangements driven by nonmuscle myosin II molecular motors play a major role in the cellular response to both stretch and changes in ECM stiffness. To test this hypothesis, we introduce a simple network model of actin-myosin interactions that links active self-organization of the actin network to the stiffness of the network and the traction forces generated by the network. We demonstrate that such a network replicates not only the effect of changes in substrate stiffness on cellular traction and stiffness and the dependence of rate of force development by a cell on the stiffness of its substrate, but also explains the physical response of adherent cells to transient and cyclic stretch. Our results provide strong indication that network phenomena governed by the active reorganization of the actin-myosin structure plays an important role in cellular mechanosensing and response to both changes in ECM stiffness and externally applied mechanical stretch. PMID:24408996

  20. G alpha(q)-mediated activation of GRK2 by mechanical stretch in cardiac myocytes: the role of protein kinase C.

    PubMed

    Malhotra, Ricky; D'Souza, Karen M; Staron, Michelle L; Birukov, Konstantin G; Bodi, Ilona; Akhter, Shahab A

    2010-04-30

    G protein-coupled receptor kinase-2 (GRK2) is a critical regulator of beta-adrenergic receptor (beta-AR) signaling and cardiac function. We studied the effects of mechanical stretch, a potent stimulus for cardiac myocyte hypertrophy, on GRK2 activity and beta-AR signaling. To eliminate neurohormonal influences, neonatal rat ventricular myocytes were subjected to cyclical equi-biaxial stretch. A hypertrophic response was confirmed by "fetal" gene up-regulation. GRK2 activity in cardiac myocytes was increased 4.2-fold at 48 h of stretch versus unstretched controls. Adenylyl cyclase activity was blunted in sarcolemmal membranes after stretch, demonstrating beta-AR desensitization. The hypertrophic response to mechanical stretch is mediated primarily through the G alpha(q)-coupled angiotensin II AT(1) receptor leading to activation of protein kinase C (PKC). PKC is known to phosphorylate GRK2 at the N-terminal serine 29 residue, leading to kinase activation. Overexpression of a mini-gene that inhibits receptor-G alpha(q) coupling blunted stretch-induced hypertrophy and GRK2 activation. Short hairpin RNA-mediated knockdown of PKC alpha also significantly attenuated stretch-induced GRK2 activation. Overexpression of a GRK2 mutant (S29A) in cardiac myocytes inhibited phosphorylation of GRK2 by PKC, abolished stretch-induced GRK2 activation, and restored adenylyl cyclase activity. Cardiac-specific activation of PKC alpha in transgenic mice led to impaired beta-agonist-stimulated ventricular function, blunted cyclase activity, and increased GRK2 phosphorylation and activity. Phosphorylation of GRK2 by PKC appears to be the primary mechanism of increased GRK2 activity and impaired beta-AR signaling after mechanical stretch. Cross-talk between hypertrophic signaling at the level of PKC and beta-AR signaling regulated by GRK2 may be an important mechanism in the transition from compensatory ventricular hypertrophy to heart failure.

  1. Structural adaptation to selective pressure for altered ligand specificity in the Pseudomonas aeruginosa amide receptor, amiC.

    PubMed

    O'Hara, B P; Wilson, S A; Lee, A W; Roe, S M; Siligardi, G; Drew, R E; Pearl, L H

    2000-02-01

    The AmiC protein in Pseudomonas aeruginosa is the negative regulator and ligand receptor for an amide-inducible aliphatic amidase operon. In the wild-type PAC1 strain, amidase expression is induced by acetamide or lactamide, but not by butyramide. A mutant strain of P. aeruginosa, PAC181, was selected for its sensitivity to induction by butyramide. The molecular basis for the butyramide inducible phenotype of P.aeruginosa PAC181 has now been determined, and results from a Thr-->Asn mutation at position 106 in PAC181-AmiC. In the wild-type PAC1-AmiC protein this residue forms part of the side wall of the amide-binding pocket but does not interact with the acetamide ligand directly. In the crystal structure of PAC181-AmiC complexed with butyramide, the Thr-->Asn mutation increases the size of the ligand binding site such that the mutant protein is able to close into its 'on' configuration even in the presence of butyramide. Although the mutation allows butyramide to be recognized as an inducer of amidase expression, the mutation is structurally sub-optimal, and produces a significant decrease in the stability of the mutant protein.

  2. Role of the D2 dopamine receptor in molecular adaptation to chronic hypoxia in PC12 cells

    PubMed Central

    Kobayashi, Shuichi; Conforti, Laura; Zhu Dana Beitner-Johnson, Wylie H.; Millhorn, David E.

    2006-01-01

    We have previously shown that pheochromocytoma (PC12) cells rapidly depolarize and undergo Ca2+ influx through voltage-dependent Ca2+ channels in response to moderate hypoxia and that intracellular free Ca2+ is modulated by activation of dopamine D2 receptors in this cell type. The present study shows that D2 (quinpirole-mediated) inhibition of a voltage-dependent Ca2+ current (ICa) in PC12 cells is dramatically attenuated after chronic exposure to moderate hypoxia (24 h at 10% O2). Pretreatment of cells with pertussis toxin abolished D2-mediated inhibition of ICa. The D2-induced inhibition of ICa did not depend on protein kinase A (PKA), as it persisted both in the presence of a specific PKA inhibitor (PKI) and in PKA-deficient PC12 cells. Prolonged exposure to hypoxia (24 h) significantly reduced the level of Gi/oα immunoreactivity, but did not alter Gβ levels. Furthermore, dialysis of recombinant Goα protein through the patch pipette restored the inhibitory effect of quinpirole in cells chronically exposed to hypoxia. We conclude that the attenuation of the D2-mediated inhibition of ICa by chronic hypoxia is caused by impaired receptor–G protein coupling, due to reduced levels of Goα protein. This attenuated feedback modulation of ICa by dopamine may allow for a more sustained Ca2+ influx and enhanced cellular excitation during prolonged hypoxia. PMID:10591061

  3. Evolution of an adaptive behavior and its sensory receptors promotes eye regression in blind cavefish: response to Borowsky (2013).

    PubMed

    Yoshizawa, Masato; O'Quin, Kelly E; Jeffery, William R

    2013-01-01

    Vibration attraction behavior (VAB) is the swimming of fish toward an oscillating object, a behavior that is likely adaptive because it increases foraging efficiency in darkness. VAB is seen in a small proportion of Astyanax surface-dwelling populations (surface fish) but is pronounced in cave-dwelling populations (cavefish). In a recent study, we identified two quantitative trait loci for VAB on Astyanax linkage groups 2 and 17. We also demonstrated that a small population of superficial neuromast sensors located within the eye orbit (EO SN) facilitate VAB, and two quantitative trait loci (QTL) were identified for EO SN that were congruent with those for VAB. Finally, we showed that both VAB and EO SN are negatively correlated with eye size, and that two (of several) QTL for eye size overlap VAB and EO SN QTLs. From these results, we concluded that the adaptive evolution of VAB and EO SN has contributed to the indirect loss of eyes in cavefish, either as a result of pleiotropy or tight physical linkage of the mutations underlying these traits. In a subsequent commentary, Borowsky argues that there is poor experimental support for our conclusions. Specifically, Borowsky states that: (1) linkage groups (LGs) 2 and 17 harbor QTL for many traits and, therefore, no evidence exists for an exclusive interaction among the overlapping VAB, EO SN and eye size QTL; (2) some of the QTL we identified are too broad (>20 cM) to support the hypothesis of correlated evolution due to pleiotropy or hitchhiking; and (3) VAB is unnecessary to explain the indirect evolution of eye-loss since the negative polarity of numerous eye QTL is consistent with direct selection against eyes. Borowsky further argues that (4) it is difficult to envision an evolutionary scenario whereby VAB and EO SN drive eye loss, since the eyes must first be reduced in order to increase the number of EO SN and, therefore, VAB. In this response, we explain why the evidence of one trait influencing eye reduction

  4. Eye regression in blind Astyanax cavefish may facilitate the evolution of an adaptive behavior and its sensory receptors.

    PubMed

    Borowsky, Richard

    2013-01-01

    The forces driving the evolutionary loss or simplification of traits such as vision and pigmentation in cave animals are still debated. Three alternative hypotheses are direct selection against the trait, genetic drift, and indirect selection due to antagonistic pleiotropy. Recent work establishes that Astyanax cavefish exhibit vibration attraction behavior (VAB), a presumed behavioral adaptation to finding food in the dark not exhibited by surface fish. Genetic analysis revealed two regions in the genome with quantitative trait loci (QTL) for both VAB and eye size. These observations were interpreted as genetic evidence that selection for VAB indirectly drove eye regression through antagonistic pleiotropy and, further, that this is a general mechanism to account for regressive evolution. These conclusions are unsupported by the data; the analysis fails to establish pleiotropy and ignores the numerous other QTL that map to, and potentially interact, in the same regions. It is likely that all three forces drive evolutionary change. We will be able to distinguish among them in individual cases only when we have identified the causative alleles and characterized their effects. PMID:23844714

  5. NORTHERLY STRETCH OF MILLBURY PORTION; GENERAL VIEW ACROSS CANAL PRISM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    NORTHERLY STRETCH OF MILLBURY PORTION; GENERAL VIEW ACROSS CANAL PRISM TO TOWPATH BERM (LATER FILL ENCROACHING LEFT) NEAR CENTER OF THIS STRETCH; VIEW TO SOUTHWEST - Blackstone Canal Worcester-Millbury Segment, Eastern bank of Blackstone River, Millbury, Worcester County, MA

  6. Modeling aftershocks as a stretched exponential relaxation

    NASA Astrophysics Data System (ADS)

    Mignan, A.

    2015-11-01

    The decay rate of aftershocks has been modeled as a power law since the pioneering work of Omori in the late nineteenth century. Although other expressions have been proposed in recent decades to describe the temporal behavior of aftershocks, the number of model comparisons remains limited. After reviewing the aftershock models published from the late nineteenth century until today, I solely compare the power law, pure exponential and stretched exponential expressions defined in their simplest forms. By applying statistical methods recommended recently in applied mathematics, I show that all aftershock sequences tested in three regional earthquake catalogs (Southern and Northern California, Taiwan) and with three declustering techniques (nearest-neighbor, second-order moment, window methods) follow a stretched exponential instead of a power law. These results infer that aftershocks are due to a simple relaxation process, in accordance with most other relaxation processes observed in Nature.

  7. Stretching cells and delivering drugs with bubbles

    NASA Astrophysics Data System (ADS)

    Ohl, Claus-Dieter; Li, Fenfang; Chon U, Chan; Gao, Yu; Xu, Chenjie

    2015-11-01

    In this talk we'll review our work on impulsive cell stretching using cavitation bubbles and magnetic microbubbles for drug delivery. For sufficient short times cells can sustain a much larger areal strain than the yield strain obtained from quasi-static stretching. Experiments with red blood cells show that even then the rupture of the cell is slow process; it is caused by diffusive swelling rather than mechanical violation of the plasma membrane. In the second part we'll discuss bubbles coated with magnetic and drug loaded particles. These bubbles offer an interesting vector for on demand delivery of drugs using mild ultrasound and magnetic fields. We report on basic experiments in microfluidic channels revealing the release of the agent during bubble oscillations and first in vivo validation with a mouse tumor model. Singapore National Research Foundations Competitive Research Program funding (NRF-CRP9-2011-04).

  8. Stretched cell cycle model for proliferating lymphocytes

    PubMed Central

    Dowling, Mark R.; Kan, Andrey; Heinzel, Susanne; Zhou, Jie H. S.; Marchingo, Julia M.; Wellard, Cameron J.; Markham, John F.; Hodgkin, Philip D.

    2014-01-01

    Stochastic variation in cell cycle time is a consistent feature of otherwise similar cells within a growing population. Classic studies concluded that the bulk of the variation occurs in the G1 phase, and many mathematical models assume a constant time for traversing the S/G2/M phases. By direct observation of transgenic fluorescent fusion proteins that report the onset of S phase, we establish that dividing B and T lymphocytes spend a near-fixed proportion of total division time in S/G2/M phases, and this proportion is correlated between sibling cells. This result is inconsistent with models that assume independent times for consecutive phases. Instead, we propose a stretching model for dividing lymphocytes where all parts of the cell cycle are proportional to total division time. Data fitting based on a stretched cell cycle model can significantly improve estimates of cell cycle parameters drawn from DNA labeling data used to monitor immune cell dynamics. PMID:24733943

  9. Striatal opioid receptor availability is related to acute and chronic pain perception in arthritis: does opioid adaptation increase resilience to chronic pain?

    PubMed

    Brown, Christopher A; Matthews, Julian; Fairclough, Michael; McMahon, Adam; Barnett, Elizabeth; Al-Kaysi, Ali; El-Deredy, Wael; Jones, Anthony K P

    2015-11-01

    The experience of pain in humans is modulated by endogenous opioids, but it is largely unknown how the opioid system adapts to chronic pain states. Animal models of chronic pain point to upregulation of opioid receptors (OpR) in the brain, with unknown functional significance. We sought evidence for a similar relationship between chronic pain and OpR availability in humans. Using positron emission tomography and the radiotracer (11)C-diprenorphine, patients with arthritis pain (n = 17) and healthy controls (n = 9) underwent whole-brain positron emission tomography scanning to calculate parametric maps of OpR availability. Consistent with the upregulation hypothesis, within the arthritis group, greater OpR availability was found in the striatum (including the caudate) of patients reporting higher levels of recent chronic pain, as well as regions of interest in the descending opioidergic pathway including the anterior cingulate cortex, thalamus, and periaqueductal gray. The functional significance of striatal changes were clarified with respect to acute pain thresholds: data across patients and controls revealed that striatal OpR availability was related to reduced pain perception. These findings are consistent with the view that chronic pain may upregulate OpR availability to dampen pain. Finally, patients with arthritis pain, compared with healthy controls, had overall less OpR availability within the striatum specifically, consistent with the greater endogenous opioid binding that would be expected in chronic pain states. Our observational evidence points to the need for further studies to establish the causal relationship between chronic pain states and OpR adaptation.

  10. Cytokine and cytokine receptor genes of the adaptive immune response are differentially associated with breast cancer risk in American women of African and European ancestry.

    PubMed

    Quan, Lei; Gong, Zhihong; Yao, Song; Bandera, Elisa V; Zirpoli, Gary; Hwang, Helena; Roberts, Michelle; Ciupak, Gregory; Davis, Warren; Sucheston, Lara; Pawlish, Karen; Bovbjerg, Dana H; Jandorf, Lina; Cabasag, Citadel; Coignet, Jean-Gabriel; Ambrosone, Christine B; Hong, Chi-Chen

    2014-03-15

    Disparities in breast cancer biology are evident between American women of African ancestry (AA) and European ancestry (EA) and may be due, in part, to differences in immune function. To assess the potential role of constitutional host immunity on breast carcinogenesis, we tested associations between breast cancer risk and 47 single nucleotide polymorphisms (SNPs) in 26 cytokine-related genes of the adaptive immune system using 650 EA (n = 335 cases) and 864 AA (n = 458 cases) women from the Women's Circle of Health Study (WCHS). With additional participant accrual to the WCHS, promising SNPs from the initial analysis were evaluated in a larger sample size (1,307 EAs and 1,365 AAs). Multivariate logistic regression found SNPs in genes important for T helper type 1 (Th1) immunity (IFNGR2 rs1059293, IL15RA rs2296135, LTA rs1041981), Th2 immunity (IL4R rs1801275), and T regulatory cell-mediated immunosuppression (TGFB1 rs1800469) associated with breast cancer risk, mainly among AAs. The combined effect of these five SNPs was highly significant among AAs (P-trend = 0.0005). When stratified by estrogen receptor (ER) status, LTA rs1041981 was associated with ER-positive breast cancers among EAs and marginally among AAs. Only among AA women, IL15 rs10833 and IL15RA rs2296135 were associated with ER-positive tumors, and IL12RB1 rs375947, IL15 rs10833 and TGFB1 rs1800469 were associated with ER-negative tumors. Our study systematically identified genetic variants in the adaptive immune response pathway associated with breast cancer risk, which appears to differ by ancestry groups, menopausal status and ER status.

  11. Stretching skin: The physiological limit and beyond

    PubMed Central

    Tepole, Adrián Buganza; Gosain, Arun K.; Kuhl, Ellen

    2011-01-01

    The goal of this manuscript is to establish a novel computational model for skin to characterize its constitutive behavior when stretched within and beyond its physiological limits. Within the physiological regime, skin displays a reversible, highly nonlinear, stretch locking, and anisotropic behavior. We model these characteristics using a transversely isotropic chain network model composed of eight wormlike chains. Beyond the physiological limit, skin undergoes an irreversible area growth triggered through mechanical stretch. We model skin growth as a transversely isotropic process characterized through a single internal variable, the scalar-valued growth multiplier. To discretize the evolution of growth in time, we apply an unconditionally stable, implicit Euler backward scheme. To discretize it in space, we utilize the finite element method. For maximum algorithmic efficiency and optimal convergence, we suggest an inner Newton iteration to locally update the growth multiplier at each integration point. This iteration is embedded within an outer Newton iteration to globally update the deformation at each finite element node. To illustrate the characteristic features of skin growth, we first compare the two simple model problems of displacement- and force-driven growth. Then, we model the process of stretch-induced skin growth during tissue expansion. In particular, we compare the spatio-temporal evolution of stress, strain, and area gain for four commonly available tissue expander geometries. We believe that the proposed model has the potential to open new avenues in reconstructive surgery and rationalize critical process parameters in tissue expansion, such as expander geometry, expander size, expander placement, and inflation timing. PMID:23459410

  12. NASA/MSFC Large Stretch Press Study

    NASA Technical Reports Server (NTRS)

    Choate, M. W.; Nealson, W. P.; Jay, G. C.; Buss, W. D.

    1985-01-01

    The purpose of this study was to: A. assess and document the advantages/disadvantages of a government agency investment in a large stretch form press on the order of 5000 tons capacity (per jaw); B. develop a procurement specification for the press; and C. provide trade study data that will permit an optimum site location. Tasks were separated into four major elements: cost study, user survey, site selection, and press design/procurement specification.

  13. Stretched polyethylene films probed by single molecules.

    PubMed

    Wirtz, Alexander C; Hofmann, Clemens; Groenen, Edgar J J

    2011-06-01

    Stretched films of low-density polyethylene (LDPE) doped with 2.3,8.9-dibenzanthanthrene (DBATT) were studied using polarization-selective single-molecule spectroscopy at 1.8 K. By measuring the in-plane component of the electronic transition-dipole moments of individual chromophores, the alignment of dopant molecules is determined without averaging. The distributions of chromophore orientations reveal the presence of two fractions of dopant molecules: those oriented along the stretching direction and randomly oriented molecules. With increasing drawing ratio of the polyethylene films, the ratio of oriented to randomly oriented guest molecules increases, whereas the extent of chromophore orientation, that is, the width of the orientation distribution, remains the same. The results are consistent with the interpretation that oriented chromophores reside on the surfaces of polyethylene crystals, instead of in the amorphous polyethylene regions. Guest molecules in stretched polyethylene are oriented due to the alignment of the crystallites on which they are adsorbed. As such, the shape and width of the distributions of chromophore orientations are determined by the interaction of guest molecules with the crystal surfaces.

  14. Dynamics and structure of stretched flames

    SciTech Connect

    Law, C.K.

    1993-12-01

    This program aims to gain fundamental understanding on the structure, geometry, and dynamics of laminar premixed flames, and relate these understanding to the practical issues of flame extinction and stabilization. The underlying fundamental interest here is the recent recognition that the response of premixed flames can be profoundly affected by flame stretch, as manifested by flow nonuniformity, flame curvature, and flame/flow unsteadiness. As such, many of the existing understanding on the behavior of premixed flames need to be qualitatively revised. The research program consists of three major thrusts: (1) detailed experimental and computational mapping of the structure of aerodynamically-strained planar flames, with emphasis on the effects of heat loss, nonequidiffusion, and finite residence time on the flame thickness, extent of incomplete reaction, and the state of extinction. (2) Analytical study of the geometry and dynamics of stretch-affected wrinkled flame sheets in simple configurations, as exemplified by the Bunsen flame and the spatially-periodic flame, with emphasis on the effects of nonlinear stretch, the phenomena of flame cusping, smoothing, and tip opening, and their implications on the structure and burning rate of turbulent flames. (3) Stabilization and blowoff of two-dimensional inverted premixed and stabilization and determining the criteria governing flame blowoff. The research is synergistically conducted through the use of laser-based diagnostics, computational simulation of the flame structure with detailed chemistry and transport, and mathematical analysis of the flame dynamics.

  15. Stretch Moduli of Ribonucleotide Embedded Short DNAs

    NASA Astrophysics Data System (ADS)

    Chiu, Hsiang-Chih; Koh, Kyung Duk; Riedo, Elisa; Storici, Francesca

    2013-03-01

    Understanding the mechanical properties of DNA is essential to comprehending the dynamics of many cellular functions. DNA deformations are involved in many mechanisms when genetic information needs to be stored and used. In addition, recent studies have found that Ribonucleotides (rNMPs) are among the most common non-standard nucleotides present in DNA. The presences of rNMPs in DNA might cause mutation, fragility or genotoxicity of chromosome but how they influence the structure and mechanical properties of DNA remains unclear. By means of Atomic Force Microscopy (AFM) based single molecule spectroscopy, we measure the stretch moduli of double stranded DNAs (dsDNA) with 30 base pairs and 5 equally embedded rNMPs. The dsDNAs are anchored on gold substrate via thiol chemistry, while the AFM tip is used to pick up and stretch the dsDNA from its free end through biotin-streptavidin bonding. Our preliminary results indicate that the inclusion of rNMPs in dsDNA might significantly change its stretch modulus, which might be important in some biological processes.

  16. Secondary structure of double-stranded DNA under stretching: Elucidation of the stretched form

    SciTech Connect

    Maaloum, M.; Muller, P.; Beker, A-F.

    2011-03-15

    Almost two decades ago, measurements of force versus extension on isolated double-stranded DNA molecules revealed a force plateau. This unusual stretching phenomenon in DNA suggests that the long molecules may be extended from the usual B form into a new conformation. Different models have been proposed to describe the nature of DNA in its stretched form, S-DNA. Using atomic force microscopy combined with a molecular combing method, we identified the structure of {lambda}-phage DNA for different stretching values. We provide strong evidence for the existence of a first-order transition between B form and S form. Beyond a certain extension of the natural length, DNA molecules adopt a new double-helix conformation characterized by a diameter of 1.2 nm and a helical pitch of18 nm.

  17. Mechanical stretch regulates hypertrophic phenotype of the myometrium during pregnancy.

    PubMed

    Shynlova, Oksana; Kwong, Ruth; Lye, Stephen J

    2010-01-01

    The adaptive growth of the uterus is a critical event that involves changes in cellular phenotypes throughout pregnancy. In early pregnancy, uterine growth is due to hyperplasia of uterine smooth muscle cells (SMCs) within the myometrium; however, the major component of myometrial growth occurs after mid-gestation. This study sought to test the hypothesis that increase in myometrial growth seen during late pregnancy is due to SMC hypertrophy caused by mechanical stretch of uterine tissue by a growing fetus(es) by providing direct measurements of individual SMC size. We employed a stereological approach to calculate the average cell volumes of uterine myocytes through diameter measurements using the Stereoinvestigator statistical software. Uterine tissues were collected from nonpregnant Wistar rats, as well as from gravid and nongravid horns of unilaterally pregnant animals on gestational days (d) 8 (early gestation), 14 (mid-gestation), 19 (late gestation), 22 (term), and 4 days post partum. Anti-caveolin-1 immunostaining was used to clearly delineate SMC boundaries. The stereological analysis revealed that the dramatic increase in myometrial growth seen during late gestation (d19-22) is due to a threefold increase in the size of uterine myocytes. A significant increase in SMC volumes was detected in the gravid uterine horn as compared with the corresponding empty horn of unilateral term pregnant animals (day 22, mean cell volume 1114 vs 361 microm(3), P<0.05), indicating the effect of uterine occupancy. The restriction of the hypertrophy to cells within the gravid horn suggests that it may be a response to the biological mechanical stretch of uterine walls by the growing fetus(es) and placenta(s).

  18. Effects of cervical self-stretching on slow vital capacity

    PubMed Central

    Han, Dongwook; Yoon, Nayoon; Jeong, Yeongran; Ha, Misook; Nam, Kunwoo

    2015-01-01

    [Purpose] This study investigated the effects of self-stretching of cervical muscles, because the accessory inspiratory muscle is considered to improve pulmonary function. [Subjects] The subjects were 30 healthy university students 19–21 years old who did not have any lung disease, respiratory dysfunction, cervical injury, or any problems upon cervical stretching. [Methods] Spirometry was used as a pulmonary function test to measure the slow vital capacity before and after stretching. The slow vital capacity of the experimental group was measured before and after cervical self-stretching. Meanwhile, the slow vital capacity of the control group, which did not perform stretching, was also measured before and after the intervention. [Results] The expiratory vital capacity, inspiratory reserve volume, and expiratory reserve volume of the experimental group increased significantly after the cervical self-stretching. [Conclusion] Self-stretching of the cervical muscle (i.e., the inspiratory accessory muscle) improves slow vital capacity. PMID:26311984

  19. Effects of cervical self-stretching on slow vital capacity.

    PubMed

    Han, Dongwook; Yoon, Nayoon; Jeong, Yeongran; Ha, Misook; Nam, Kunwoo

    2015-07-01

    [Purpose] This study investigated the effects of self-stretching of cervical muscles, because the accessory inspiratory muscle is considered to improve pulmonary function. [Subjects] The subjects were 30 healthy university students 19-21 years old who did not have any lung disease, respiratory dysfunction, cervical injury, or any problems upon cervical stretching. [Methods] Spirometry was used as a pulmonary function test to measure the slow vital capacity before and after stretching. The slow vital capacity of the experimental group was measured before and after cervical self-stretching. Meanwhile, the slow vital capacity of the control group, which did not perform stretching, was also measured before and after the intervention. [Results] The expiratory vital capacity, inspiratory reserve volume, and expiratory reserve volume of the experimental group increased significantly after the cervical self-stretching. [Conclusion] Self-stretching of the cervical muscle (i.e., the inspiratory accessory muscle) improves slow vital capacity.

  20. Acute effects of dynamic stretching, static stretching, and light aerobic activity on muscular performance in women.

    PubMed

    Curry, Brad S; Chengkalath, Devendra; Crouch, Gordon J; Romance, Michelle; Manns, Patricia J

    2009-09-01

    The purpose of this study was to compare three warm-up protocols--static stretching, dynamic stretching, and light aerobic activity--on selected measures of range of motion and power in untrained females and to investigate the sustained effects at 5 and 30 minutes after warm-up. A total of 24 healthy females (ages 23-29 years) attended one familiarization session and three test sessions on nonconsecutive days within 2 weeks. A within-subject design protocol with the testing investigators blinded to the subjects' warm-up was followed. Each session started with 5 minutes of light aerobic cycling followed by pretest baseline measures. Another 5 minutes of light aerobic cycling was completed and followed by one of the three randomly selected warm-up interventions (static stretching, dynamic stretching, or light aerobic activity). The following posttest outcome measures were collected 5 and 30 minutes following the intervention: modified Thomas test, countermovement jump, and isometric time to peak force knee extension measured by dynamometer. Analysis of the data revealed significant time effects on range of motion and countermovement jump changes. No significant differences (p > 0.05) were found between the warm-up conditions on any of the variables. The variation in responses to warm-up conditions emphasizes the unique nature of individual reactions to different warm-ups; however, there was a tendency for warm-ups with an active component to have beneficial effects. The data suggests dynamic stretching has greater applicability to enhance performance on power outcomes compared to static stretching. PMID:19675479

  1. Efficacy of static stretching and proprioceptive neuromuscular facilitation stretch on hamstrings length after a single session.

    PubMed

    O'Hora, John; Cartwright, Abigail; Wade, Clive D; Hough, Alan D; Shum, Gary L K

    2011-06-01

    A number of studies have investigated the efficacy of several repetitions of proprioceptive neuromuscular facilitation stretching (PNF) and static stretching (SS). However, there is limited research comparing the effects of a single bout of these stretching maneuvers. The aim of this study was to compare the effectiveness of a single bout of a therapist-applied 30-second SS vs. a single bout of therapist-applied 6-second hamstring (agonist) contract PNF. Forty-five healthy subjects between the ages of 21 and 35 were randomly allocated to 1 of the 2 stretching groups or a control group, in which no stretching was received. The flexibility of the hamstring was determined by a range of passive knee extension, measured using a universal goniometer, with the subject in the supine position and the hip at 90° flexion, before and after intervention. A significant increase in knee extension was found for both intervention groups after a single stretch (SS group = 7.53°, p < 0.01 and PNF group = 11.80°, p < 0.01). Both interventions resulted in a significantly greater increase in knee extension when compared to the control group (p < 0.01). The PNF group demonstrated significantly greater gains in knee extension compared to the SS group (mean difference 4.27°, p < 0.01). It can be concluded that a therapist applied SS or PNF results in a significant increase in hamstring flexibility. A hamstring (agonist) contract PNF is more effective than an SS in a single stretching session. These findings are important to physiotherapists or trainers working in clinical and sporting environments. Where in the past therapists may have spent time conducting multiple repetitions of a PNF and an SS, a single bout of either technique may be considered just as effective. A key component of the study methodology was the exclusion of a warm-up period before stretching. Therefore, the findings of efficacy of a single PNF are of particular relevance in sporting environments and busy clinical

  2. Unstructured mesh generation and adaptivity

    NASA Technical Reports Server (NTRS)

    Mavriplis, D. J.

    1995-01-01

    An overview of current unstructured mesh generation and adaptivity techniques is given. Basic building blocks taken from the field of computational geometry are first described. Various practical mesh generation techniques based on these algorithms are then constructed and illustrated with examples. Issues of adaptive meshing and stretched mesh generation for anisotropic problems are treated in subsequent sections. The presentation is organized in an education manner, for readers familiar with computational fluid dynamics, wishing to learn more about current unstructured mesh techniques.

  3. Uni-Directional Cell Stretching Device

    NASA Technical Reports Server (NTRS)

    Feeback, Daniel L. (Inventor); Clarke, Mark S. F. (Inventor)

    2000-01-01

    The present invention relates to an apparatus and method for applying various degrees of linear, mechanical loads on mammalian tissues, and in particular, for effecting linear stretching of tissue and simulating changes in hydrostatic pressures encountered during tissue contraction in vivo. The apparatus is useful for the study of mechanical loading in human tissue, and specifically, for permitting the evaluation of the effects of mechanical loading of skeletal or cardiac tissue and of the effects of removal of mechanical loading due to inactivity or the like, and the subsequent reapplication of load to these tissues.

  4. Finite stretching of an annular plate.

    NASA Technical Reports Server (NTRS)

    Biricikoglu, V.; Kalnins, A.

    1971-01-01

    The problem of the finite stretching of an annular plate which is bonded to a rigid inclusion at its inner edge is considered. The material is assumed to be isotropic and incompressible with a Mooney-type constitutive law. It is shown that the inclusion of the effect of the transverse normal strain leads to a rapid variation in thickness which is confined to a narrow edge zone. The explicit solutions to the boundary layer equations, which govern the behavior of the plate near the edges, are presented.

  5. Venus Chasmata: A Lithospheric Stretching Model

    NASA Technical Reports Server (NTRS)

    Solomon, S. C.; Head, J. W.

    1985-01-01

    An outstanding problem for Venus is the characterization of its style of global tectonics, an issue intimately related to the dominant mechanism of lithospheric heat loss. Among the most spectacular and extensive of the major tectonic features on Venus are the chasmata, deep linear valleys generally interpreted to be the products of lithospheric extension and rifting. Systems of chasmata and related features can be traced along several tectonic zones up to 20,000 km in linear extent. A lithospheric stretching model was developed to explain the topographic characteristics of Venus chasmata and to constrain the physical properties of the Venus crust and lithosphere.

  6. To Stretch and Search for Better Ways

    NASA Astrophysics Data System (ADS)

    Moore, John W.

    2000-06-01

    There's a lot to do to get each issue of this Journal ready for publication, and there's a lot that can go awry during that process. We the editorial staff do our utmost to make certain that each issue is the best it can possibly be, but, of necessity, a lot of our effort is focused on solving problems, correcting errors, and avoiding pitfalls. It is not surprising that we sometimes lose sight of the bigger picture--all of the things that came out as well as or better than we hoped they would. Therefore it gives us great pleasure when a reader applauds (and thereby rewards) our efforts. One such communication inspired this editorial.

    I have appreciated the extra effort put forward by the staff to make the Journal really come alive. The high quality of the Journal serves as an incentive to chemical educators to stretch and search for better ways to inspire our students.
    I fervently hope that we do encourage you "to stretch and search for better ways", not only to inspire students but in everything you do. Stretching and searching for better ways is what life, science, chemistry, and teaching are all about, and it is a wonderfully stimulating and exciting way to approach anything and everything. Sometimes, though, one's ability to stretch is akin to that of a rubber band exposed too long to sunlight. Change becomes a threat or a burden instead of an opportunity. This often happens in one area but not others, as in the case of someone doing original research but whose lecture notes are yellow with age, or someone who experiments with new teaching approaches but neglects the latest chemical discoveries. Whatever its manifestation, failure to stretch and search for better ways is a great loss, both for the individual directly involved and for others. Fortunately there are many who continually stretch and search, often in conjunction with JCE. For example, some time ago the Chair of the Board of Publication, Jerry Bell, challenged Journal

  7. Study on Stretching Methods of Biaxially Stretched Co-polyester Film with Has Uniaxially Heat Shrinkage Properties

    NASA Astrophysics Data System (ADS)

    Haruta, Masayuki; Mukouyama, Yukinobu; Tabota, Norimi; Ito, Katsuya; Nonomura, Chisato

    Heat shrinkable film made of stretched film is widely used for decorative labels by attaching on PET bottles with heat shrinkage by steam or dry heating. Trouble cancellation in the installation process of the PET bottle is necessary. The purpose of this study is development of uniaxially heat shrinkable co-polyester film that has strength both in the machine direction (MD) and transverse direction (TD). The film production was performed using sequential biaxial stretched process that combined roll stretching with TD stretching. Cast film was processed in the order of TD stretching-Anneal 1-MD stretching-Anneal 2. As a result, the heat shrinkable film that shrunk only in MD got high tensile strength both in MD and TD. The anneal 1 temperature over Tg (Glass transition temperature) of material resin was needed to obtain the heat shrinkable film shrunk in MD after TD stretching.

  8. Effects of the Q223R mutation in the hemagglutinin (HA) of egg-adapted pandemic 2009 (H1N1) influenza A virus on virus growth and binding of HA to human- and avian-type cell receptors.

    PubMed

    Suptawiwat, O; Jeamtua, W; Boonarkart, Ch; Kongchanagul, A; Puthawathana, P; Auewarakul, P

    2013-01-01

    The 2009 swine-origin influenza A virus (H1N1) and its initial reassortant vaccine strains did not grow well in embryonated eggs. The glutamine to arginine mutation at the amino acid position 223 (Q223R) of the hemagglutinin (HA) gene is the major mutation previously found in egg-adapted 2009 H1N1 strains and shown to enhance viral growth in embryonated eggs. However, the effect of this mutation on the receptor-binding preference had not been directly demonstrated. In this study, the Q223R mutation was shown to change the viral HA binding preference from the human-type receptor, α2,6-linked sialic acid, to the avian-type receptor, α2,3-linked sialic acid; and to enhance the viral growth in embryonated eggs but not in cell culture.

  9. Prolonged food deprivation increases mRNA expression of deiodinase 1 and 2, and thyroid hormone receptor β-1 in a fasting-adapted mammal

    PubMed Central

    Martinez, Bridget; Soñanez-Organis, José G.; Vázquez-Medina, José Pablo; Viscarra, Jose A.; MacKenzie, Duncan S.; Crocker, Daniel E.; Ortiz, Rudy M.

    2013-01-01

    SUMMARY Food deprivation in mammals is typically associated with reduced thyroid hormone (TH) concentrations and deiodinase content and activity to suppress metabolism. However, in prolonged-fasted, metabolically active elephant seal pups, TH levels are maintained, if not elevated. The functional relevance of this apparent paradox is unknown and demonstrates variability in the regulation of TH levels, metabolism and function in food-deprived mammals. To address our hypothesis that cellular TH-mediated activity is upregulated with fasting duration, we quantified the mRNA expression and protein content of adipose and muscle deiodinase type I (DI1) and type II (DI2), and TH receptor beta-1 (THrβ-1) after 1, 3 and 7 weeks of fasting in northern elephant seal pups (N=5–7 per week). Fasting did not decrease the concentrations of plasma thyroid stimulating hormone, total triiodothyronine (tT3), free T3, total thyroxine (tT4) or free T4, suggesting that the hypothalamic–pituitary–thyroid axis is not suppressed, but rather maintained during fasting. Mean mRNA expression of adipose DI1 and DI2 increased threefold and fourfold, respectively, and 20- and 30-fold, respectively, in muscle. With the exception of adipose DI1, protein expression of adipose DI2 and muscle DI1 and DI2 increased twofold to fourfold. Fasting also increased adipose (fivefold) and muscle (fourfold) THrβ-1 mRNA expression, suggesting that the mechanisms mediating cellular TH activity are upregulated with prolonged fasting. The data demonstrate a unique, atypical mechanism of TH activity and regulation in mammals adapted to prolonged food deprivation in which the potential responsiveness of peripheral tissues and cellular TH activity are increased, which may contribute to their lipid-based metabolism. PMID:24307712

  10. Prolonged food deprivation increases mRNA expression of deiodinase 1 and 2, and thyroid hormone receptor β-1 in a fasting-adapted mammal.

    PubMed

    Martinez, Bridget; Soñanez-Organis, José G; Vázquez-Medina, José Pablo; Viscarra, Jose A; MacKenzie, Duncan S; Crocker, Daniel E; Ortiz, Rudy M

    2013-12-15

    Food deprivation in mammals is typically associated with reduced thyroid hormone (TH) concentrations and deiodinase content and activity to suppress metabolism. However, in prolonged-fasted, metabolically active elephant seal pups, TH levels are maintained, if not elevated. The functional relevance of this apparent paradox is unknown and demonstrates variability in the regulation of TH levels, metabolism and function in food-deprived mammals. To address our hypothesis that cellular TH-mediated activity is upregulated with fasting duration, we quantified the mRNA expression and protein content of adipose and muscle deiodinase type I (DI1) and type II (DI2), and TH receptor beta-1 (THrβ-1) after 1, 3 and 7 weeks of fasting in northern elephant seal pups (N=5-7 per week). Fasting did not decrease the concentrations of plasma thyroid stimulating hormone, total triiodothyronine (tT3), free T3, total thyroxine (tT4) or free T4, suggesting that the hypothalamic-pituitary-thyroid axis is not suppressed, but rather maintained during fasting. Mean mRNA expression of adipose DI1 and DI2 increased threefold and fourfold, respectively, and 20- and 30-fold, respectively, in muscle. With the exception of adipose DI1, protein expression of adipose DI2 and muscle DI1 and DI2 increased twofold to fourfold. Fasting also increased adipose (fivefold) and muscle (fourfold) THrβ-1 mRNA expression, suggesting that the mechanisms mediating cellular TH activity are upregulated with prolonged fasting. The data demonstrate a unique, atypical mechanism of TH activity and regulation in mammals adapted to prolonged food deprivation in which the potential responsiveness of peripheral tissues and cellular TH activity are increased, which may contribute to their lipid-based metabolism.

  11. Prolonged food deprivation increases mRNA expression of deiodinase 1 and 2, and thyroid hormone receptor β-1 in a fasting-adapted mammal.

    PubMed

    Martinez, Bridget; Soñanez-Organis, José G; Vázquez-Medina, José Pablo; Viscarra, Jose A; MacKenzie, Duncan S; Crocker, Daniel E; Ortiz, Rudy M

    2013-12-15

    Food deprivation in mammals is typically associated with reduced thyroid hormone (TH) concentrations and deiodinase content and activity to suppress metabolism. However, in prolonged-fasted, metabolically active elephant seal pups, TH levels are maintained, if not elevated. The functional relevance of this apparent paradox is unknown and demonstrates variability in the regulation of TH levels, metabolism and function in food-deprived mammals. To address our hypothesis that cellular TH-mediated activity is upregulated with fasting duration, we quantified the mRNA expression and protein content of adipose and muscle deiodinase type I (DI1) and type II (DI2), and TH receptor beta-1 (THrβ-1) after 1, 3 and 7 weeks of fasting in northern elephant seal pups (N=5-7 per week). Fasting did not decrease the concentrations of plasma thyroid stimulating hormone, total triiodothyronine (tT3), free T3, total thyroxine (tT4) or free T4, suggesting that the hypothalamic-pituitary-thyroid axis is not suppressed, but rather maintained during fasting. Mean mRNA expression of adipose DI1 and DI2 increased threefold and fourfold, respectively, and 20- and 30-fold, respectively, in muscle. With the exception of adipose DI1, protein expression of adipose DI2 and muscle DI1 and DI2 increased twofold to fourfold. Fasting also increased adipose (fivefold) and muscle (fourfold) THrβ-1 mRNA expression, suggesting that the mechanisms mediating cellular TH activity are upregulated with prolonged fasting. The data demonstrate a unique, atypical mechanism of TH activity and regulation in mammals adapted to prolonged food deprivation in which the potential responsiveness of peripheral tissues and cellular TH activity are increased, which may contribute to their lipid-based metabolism. PMID:24307712

  12. Rounded stretched exponential for time relaxation functions.

    PubMed

    Powles, J G; Heyes, D M; Rickayzen, G; Evans, W A B

    2009-12-01

    A rounded stretched exponential function is introduced, C(t)=exp{(tau(0)/tau(E))(beta)[1-(1+(t/tau(0))(2))(beta/2)]}, where t is time, and tau(0) and tau(E) are two relaxation times. This expression can be used to represent the relaxation function of many real dynamical processes, as at long times, t>tau(0), the function converges to a stretched exponential with normalizing relaxation time, tau(E), yet its expansion is even or symmetric in time, which is a statistical mechanical requirement. This expression fits well the shear stress relaxation function for model soft soft-sphere fluids near coexistence, with tau(E)

  13. Stretched Exponential relaxation in pure Se glass

    NASA Astrophysics Data System (ADS)

    Dash, S.; Ravindren, S.; Boolchand, P.

    A universal feature of glasses is the stretched exponential relaxation, f (t) = exp[ - t / τ ] β . The model of diffusion of excitations to randomly distributed traps in a glass by Phillips1 yields the stretched exponent β = d[d +2] where d, the effective dimensionality. We have measured the enthalpy of relaxation ΔHnr (tw) at Tg of Se glass in modulated DSC experiments as glasses age at 300K and find β = 0.43(2) for tw in the 0

  14. Curved Piezoelectric Actuators for Stretching Optical Fibers

    NASA Technical Reports Server (NTRS)

    Allison, Sidney G.; Shams, Qamar A.; Fox, Robert L.

    2008-01-01

    Assemblies containing curved piezoceramic fiber composite actuators have been invented as means of stretching optical fibers by amounts that depend on applied drive voltages. Piezoceramic fiber composite actuators are conventionally manufactured as sheets or ribbons that are flat and flexible, but can be made curved to obtain load-carrying ability and displacement greater than those obtainable from the flat versions. In the primary embodiment of this invention, piezoceramic fibers are oriented parallel to the direction of longitudinal displacement of the actuators so that application of drive voltage causes the actuator to flatten, producing maximum motion. Actuator motion can be transmitted to the optical fiber by use of hinges and clamp blocks. In the original application of this invention, the optical fiber contains a Bragg grating and the purpose of the controlled stretching of the fiber is to tune the grating as part of a small, lightweight, mode-hop-free, rapidly tunable laser for demodulating strain in Bragg-grating strain-measurement optical fibers attached to structures. The invention could also be used to apply controllable tensile force or displacement to an object other than an optical fiber.

  15. Characteristic infrared intensities of carbonyl stretching vibrations.

    PubMed

    Richter, Wagner E; Silva, Arnaldo F; Vidal, Luciano N; Bruns, Roy E

    2016-07-14

    The experimental infrared fundamental intensities of gas phase carbonyl compounds obtained by the integration of spectral bands in the Pacific Northwest National Laboratory (PNNL) spectral database are in good agreement with the intensities reported by other laboratories having a root mean square error of 27 km mol(-1) or about 13% of the average intensity value. The Quantum Theory of Atoms in Molecules/Charge-Charge Transfer-Counterpolarization (QTAIM/CCTCP) model indicates that the large intensity variation from 61.7 to 415.4 km mol(-1) is largely due to static atomic charge contributions, whereas charge transfer and counterpolarization effects essentially cancel one another leaving only a small net effect. The Characteristic Substituent Shift Model estimates the atomic charge contributions to the carbonyl stretching intensities within 30 km mol(-1) or 10% of the average contribution. However, owing to the size of the 2 × C × CTCP interaction contribution, the total intensities cannot be estimated with this degree of accuracy. The dynamic intensity contributions of the carbon and oxygen atoms account for almost all of the total stretching intensities. These contributions vary over large ranges with the dynamic contributions of carbon being about twice the size of the oxygen ones for a large majority of carbonyls. Although the carbon monoxide molecule has an almost null dipole moment contrary to the very polar bond of the characteristic carbonyl group, its QTAIM/CCTCP model is very similar to those found for the carbonyl compounds. PMID:27306140

  16. Stretching the Spines of Gymnasts: A Review.

    PubMed

    Sands, William A; McNeal, Jeni R; Penitente, Gabriella; Murray, Steven Ross; Nassar, Lawrence; Jemni, Monèm; Mizuguchi, Satoshi; Stone, Michael H

    2016-03-01

    Gymnastics is noted for involving highly specialized strength, power, agility and flexibility. Flexibility is perhaps the single greatest discriminator of gymnastics from other sports. The extreme ranges of motion achieved by gymnasts require long periods of training, often occupying more than a decade. Gymnasts also start training at an early age (particularly female gymnasts), and the effect of gymnastics training on these young athletes is poorly understood. One of the concerns of many gymnastics professionals is the training of the spine in hyperextension-the ubiquitous 'arch' seen in many gymnastics positions and movements. Training in spine hyperextension usually begins in early childhood through performance of a skill known as a back-bend. Does practising a back-bend and other hyperextension exercises harm young gymnasts? Current information on spine stretching among gymnasts indicates that, within reason, spine stretching does not appear to be an unusual threat to gymnasts' health. However, the paucity of information demands that further study be undertaken. PMID:26581832

  17. Stretch sensors for human body motion

    NASA Astrophysics Data System (ADS)

    O'Brien, Ben; Gisby, Todd; Anderson, Iain A.

    2014-03-01

    Sensing motion of the human body is a difficult task. From an engineers' perspective people are soft highly mobile objects that move in and out of complex environments. As well as the technical challenge of sensing, concepts such as comfort, social intrusion, usability, and aesthetics are paramount in determining whether someone will adopt a sensing solution or not. At the same time the demands for human body motion sensing are growing fast. Athletes want feedback on posture and technique, consumers need new ways to interact with augmented reality devices, and healthcare providers wish to track recovery of a patient. Dielectric elastomer stretch sensors are ideal for bridging this gap. They are soft, flexible, and precise. They are low power, lightweight, and can be easily mounted on the body or embedded into clothing. From a commercialisation point of view stretch sensing is easier than actuation or generation - such sensors can be low voltage and integrated with conventional microelectronics. This paper takes a birds-eye view of the use of these sensors to measure human body motion. A holistic description of sensor operation and guidelines for sensor design will be presented to help technologists and developers in the space.

  18. Levator Ani Muscle Stretch Induced by Simulated Vaginal Birth

    PubMed Central

    Lien, Kuo-Cheng; Mooney, Brian; DeLancey, John O. L.; Ashton-Miller, James A.

    2005-01-01

    OBJECTIVE: To develop a three-dimensional computer model to predict levator ani muscle stretch during vaginal birth. METHODS: Serial magnetic resonance images from a healthy nulliparous 34-year-old woman, published anatomic data, and engineering graphics software were used to construct a structural model of the levator ani muscles along with related passive tissues. The model was used to quantify pelvic floor muscle stretch induced during the second stage of labor as a model fetal head progressively engaged and then stretched the iliococcygeus, pubococcygeus, and puborectalis muscles. RESULTS: The largest tissue strain reached a stretch ratio (tissue length under stretch/original tissue length) of 3.26 in medial pubococcygeus muscle, the shortest, most medial and ventral levator ani muscle. Regions of the ileococcygeus, pubococcygeus, and puborectalis muscles reached maximal stretch ratios of 2.73, 2.50, and 2.28, respectively. Tissue stretch ratios were proportional to fetal head size: For example, increasing fetal head diameter by 9% increased medial pubococcygeus stretch by the same amount. CONCLUSION: The medial pubococcygeus muscles undergo the largest stretch of any levator ani muscles during vaginal birth. They are therefore at the greatest risk for stretch-related injury. PMID:14704241

  19. Acute stretching increases postural stability in nonbalance trained individuals.

    PubMed

    Nelson, Arnold G; Kokkonen, Joke; Arnall, David A; Li, Li

    2012-11-01

    Studies into the relationship between acute stretching and maintenance of postural balance have been inconclusive. It was hypothesized that familiarization with the task and subsequent learning might be involved in the conflicting results. Therefore, this study was to designed determine if a regimen of static stretching exercises after a familiarization period would improve a person's ability to maintain a stabilometer in a neutral position and whether stretching had the same effect on individuals with extensive involvement with balancing tasks. Forty-two college students (21 male, 21 female) and 10 surfers (all male) performed tests on a stabilometer on 2 separate days after 3 days of familiarization. Testing followed either 30 minutes of quiet sitting (nonstretched) or 30 minutes of stretching activities (stretched). Stretching exercises consisted of various assisted and unassisted static stretches of the muscles around the hip, knee, and ankle joints. Improved flexibility after the stretching exercises was demonstrated by significant (p < 0.05) 6.5 ± 2.7 cm (mean ± SD) increase in the sit and reach. Balance time for the students improved significantly by 11.4% (2.0-second increase), but the surfers had no significant change. Thus, stretching improved maintenance of balance perhaps by helping the subjects to eliminate the gross muscle contractions that caused large stabilometer displacements and to replace them with fine muscle contractions that caused little or no stabilometer displacements. However, it appears that experience doing balance tasks supplants any stretching benefit.

  20. Effects of stretching the scalene muscles on slow vital capacity

    PubMed Central

    Lee, Juncheol; Hwang, Sehee; Han, Seungim; Han, Dongwook

    2016-01-01

    [Purpose] The purpose of this study was to examine whether stretching of the scalene muscles would improve slow vital capacity (SVC). [Subjects and Methods] The subjects of this study were 20 healthy female students to whom the study’s methods and purpose were explained and their agreement for participation was obtained. The SVC was measured using spirometry (Pony FX, COSMED Inc., Italy). The intervention used was stretching of the scalene muscles. Stretching was carried out for 15 min, 10 times at per each portion of scalene muscles: the anterior, middle, and posterior parts. [Results] Expiratory vital capacity (EVC) and tidal volume (Vt) noticeably increased after stretching. However, there were no changes in any of the SVC items in the control group. [Conclusion] This study demonstrated that stretching of the scalene muscles can effectively improve SVC. In particular, we confirmed that stretching of the scalene muscles was effective in increasing EVC and Vt, which are items of SVC. PMID:27390425

  1. Effects of stretching the scalene muscles on slow vital capacity.

    PubMed

    Lee, Juncheol; Hwang, Sehee; Han, Seungim; Han, Dongwook

    2016-06-01

    [Purpose] The purpose of this study was to examine whether stretching of the scalene muscles would improve slow vital capacity (SVC). [Subjects and Methods] The subjects of this study were 20 healthy female students to whom the study's methods and purpose were explained and their agreement for participation was obtained. The SVC was measured using spirometry (Pony FX, COSMED Inc., Italy). The intervention used was stretching of the scalene muscles. Stretching was carried out for 15 min, 10 times at per each portion of scalene muscles: the anterior, middle, and posterior parts. [Results] Expiratory vital capacity (EVC) and tidal volume (Vt) noticeably increased after stretching. However, there were no changes in any of the SVC items in the control group. [Conclusion] This study demonstrated that stretching of the scalene muscles can effectively improve SVC. In particular, we confirmed that stretching of the scalene muscles was effective in increasing EVC and Vt, which are items of SVC.

  2. Effects of three different stretching techniques on vertical jumping performance.

    PubMed

    Kirmizigil, Berkiye; Ozcaldiran, Bahtiyar; Colakoglu, Muzaffer

    2014-05-01

    The aim of this study was to evaluate 3 different flexibility techniques: (a) ballistic stretching (BS), (b) proprioceptive neuromuscular facilitation stretching (PNF) + BS, and (c) PNF + static stretching (SS) on vertical jump (VJ) performance and to determine the most appropriate stretching method during warm-up period before explosive force disciplines. One hundred voluntary male athletes participated in this study. All subjects performed aerobic warm-up (5-minute jog) followed by BS (5 seconds for each stretching exercise), PNF + BS (PNF performed followed by 5 seconds of BS), and PNF + SS (PNF performed followed by 30 seconds of SS) treatment protocol, respectively in the same day. Each stretching treatment was applied for 4 sets bilaterally. In all stretching treatments, lumbar extensor, gluteus maximus, and hamstring muscles were stretched with a single stretching exercise. After a 2-minute brief rest period, participants performed 3 trials of VJ test followed by one of the treatment protocols. Vertical jump performance was evaluated by countermovement jump (CMJ). Participants were divided into 3 groups according to their flexibility and prejump performances after warm-up. For each individual group and the whole group, after all treatments, differences in CMJ values were obtained (p ≤ 0.05). Ballistic stretching increased the VJ performance in the groups with low and average flexibility, poor prejumping performance, and also in the whole group (p ≤ 0.05). Proprioceptive neuromuscular facilitation stretching + BS affected VJ performance in the group of participants with high flexibility (p ≤ 0.05). Proprioceptive neuromuscular facilitation + SS decreased VJ performance in groups of participants with high flexibility, moderate, and high prejumping performance and in whole group (p ≤ 0.05). Ballistic stretching method increased VJ height, therefore seems to be more suitable than PNF + SS and PNF + BS before events that rely on explosive power as a part

  3. A toy model of polymer stretching

    NASA Astrophysics Data System (ADS)

    Guardiani, Carlo; Bagnoli, Franco

    2006-08-01

    We present an extremely simplified model of multiple-domain polymer stretching in an atomic force microscopy experiment. We portray each module as a binary set of contacts and decompose the system energy into a harmonic term (the cantilever) and long-range interaction terms inside each domain. Exact equilibrium computations and Monte Carlo simulations qualitatively reproduce the experimental sawtooth pattern of force-extension profiles, corresponding (in our model) to first-order phase transitions. We study the influence of the coupling induced by the cantilever and the pulling speed on the relative heights of the force peaks. The results suggest that the increasing height of the critical force for subsequent unfolding events is an out-of-equilibrium effect due to a finite pulling speed. The dependence of the average unfolding force on the pulling speed is shown to reproduce the experimental logarithmic law.

  4. Universal stretched exponential relaxation in nanoconfined water

    NASA Astrophysics Data System (ADS)

    Shekhar, Adarsh; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya; Alm, Camilla K.; Malthe-Sørenssen, Anders

    2014-10-01

    Understanding the behavior of water confined at the nanometer scale is a fundamental problem not only in physics but also in life sciences, geosciences, and atmospheric sciences. Here, we examine spatial and dynamic heterogeneities in water confined in nanoporous silica using molecular dynamics (MD) simulations. The simulations reveal intermixed low-density water and high-density water with distinct local structures in nanopores of silica. The MD simulations also show dynamic heterogeneities in nanoconfined water. The temporal decay of cage correlation functions for room temperature and supercooled, nanoconfined water is very well described by stretched exponential relaxation, exp(-(t/τ)β). The exponent β has a unique value, d/(d + 2), which agrees with an exact result for diffusion in systems with static, random traps in d = 3 dimensions.

  5. Knots "Choke Off" Polymers upon Stretching.

    PubMed

    Stauch, Tim; Dreuw, Andreas

    2016-01-11

    Long polymer chains inevitably get tangled into knots. Like macroscopic ropes, polymer chains are substantially weakened by knots and the rupture point is always located at the "entry" or "exit" of the knot. However, these phenomena are only poorly understood at a molecular level. Here we show that when a knotted polyethylene chain is tightened, most of the stress energy is stored in torsions around the curved part of the chain. The torsions act as "work funnels" that effectively localize mechanical stress in the immediate vicinity of the knot. As a result, the knot "chokes" the chain at its entry or exit, thus leading to bond rupture at much lower forces than those needed to break a linear, unknotted chain. Our work not only explains the weakening of the polymer chain and the position of the rupture point, but more generally demonstrates that chemical bonds do not have to be extensively stretched to be broken. PMID:26629964

  6. Force fluctuations in stretching a tethered polymer

    NASA Astrophysics Data System (ADS)

    Varghese, Anoop; Vemparala, Satyavani; Rajesh, R.

    2013-08-01

    The recently proposed fluctuation relation in unfolding forces [Phys. Rev. E1539-375510.1103/PhysRevE.84.060101 84, 060101(R) (2011)] is reexamined taking into account the explicit time dependence of the force distribution. The stretching of a tethered Rouse polymer is exactly solved and the ratio of the probabilities of positive to negative forces is shown to be an exponential in force. Extensive steered molecular dynamics simulations of unfolding of deca alanine peptide confirm the form of fluctuation relation proposed earlier, but with explicit correct time dependence of unfolding forces taken into account. From exact calculations and simulations, a linear dependence of the constant in the exponential of the fluctuation relation on average unfolding forces and inverse temperature is proposed.

  7. Constellation Stretch Goals: Review of Industry Inputs

    NASA Technical Reports Server (NTRS)

    Lang, John

    2006-01-01

    Many good ideas received based on industry experience: a) Shuttle operations; b) Commercial aircraft production; c) NASA's historical way of doing business; d) Military and commercial programs. Aerospace performed preliminary analysis: a) Potential savings; b) Cost of implementation; c) Performance or other impact/penalties; d) Roadblocks; e) Unintended consequences; f) Bottom line. Significant work ahead for a "Stretch Goal"to become a good, documented requirement: 1) As a group, the relative "value" of goals are uneven; 2) Focused analysis on each goal is required: a) Need to ensure that a new requirement produces the desired consequence; b) It is not certain that some goals will not create problems elsewhere. 3) Individual implementation path needs to be studied: a) Best place to insert requirement (what level, which document); b) Appropriate wording for the requirement. Many goals reflect "best practices" based on lessons learned and may have value beyond near-term CxP requirements process.

  8. Aerothermodynamic properties of stretched flames in enclosures

    NASA Astrophysics Data System (ADS)

    Rotman, D. A.; Oppenheim, A. K.

    Flames are stretched by being pulled along their frontal surface by the flow field in which they reside. Their trajectories tend to approach particle paths, acquiring eventually the role of contact boundaries, -interfaces between the burnt and unburnt medium that may broaden solely as a consequence of diffusion. Fundamental properties of flow fields governing such flames are determined here on the basis of the zero Mach number model, providng a rational method of approach to the computational analysis of combustion fields in enclosures where, besides the aerodynamic properties flow, the thermodynamic process of compression must be taken into account. To illustrate its application, the method is used to reveal the mechanism of formation of a tulip-shape flame in a rectangular enclosure under nonturbulent flow conditions.

  9. Stretched Lens Array Photovoltaic Concentrator Technology Developed

    NASA Technical Reports Server (NTRS)

    Piszczor, Michael F., Jr.; O'Neill, Mark J.

    2004-01-01

    Solar arrays have been and continue to be the mainstay in providing power to nearly all commercial and government spacecraft. Light from the Sun is directly converted into electrical energy using solar cells. One way to reduce the cost of future space power systems is by minimizing the size and number of expensive solar cells by focusing the sunlight onto smaller cells using concentrator optics. The stretched lens array (SLA) is a unique concept that uses arched Fresnel lens concentrators to focus sunlight onto a line of high-efficiency solar cells located directly beneath. The SLA concept is based on the Solar Concentrator Array with Refractive Linear Element Technology (SCARLET) design that was used on NASA's New Millennium Deep Space 1 mission. The highly successful asteroid/comet rendezvous mission (1998 to 2001) demonstrated the performance and long-term durability of the SCARLET/SLA solar array design and set the foundation for further improvements to optimize its performance.

  10. Sh-Stretching Intensities and Intramolecular Hydrogen Bonding in Alkanethiols

    NASA Astrophysics Data System (ADS)

    Miller, B. J.; Lane, J. R.; Sodergren, A. H.; Kjaergaard, H. G.; Dunn, M. E.; Vaida, V.

    2009-06-01

    The SH-stretching overtone transitions of tert-butylthiol and ethanethiol are observed using FT-IR, NIR and photoacoustic spectroscopies. The intensities of these are compared with OH-stretching overtones from the corresponding alcohols. We explain the paucity of SH-stretching intensity using an anharmonic oscillator local mode model. SH- and OH-stretching overtone spectra of 1,2-ethanedithiol and 2-mercaptoethanol are recorded to observe the different effects that hydrogen bonding involving SH - - - S, SH - - - O and OH - - - S have on the spectra. We discuss these effects with the help of high level ab initio calculations.

  11. Do Stretch Durations Affect Muscle Mechanical and Neurophysiological Properties?

    PubMed

    Opplert, J; Genty, J-B; Babault, N

    2016-08-01

    The aim of the study was to determine whether stretching durations influence acute changes of mechanical and neurophysiological properties of plantar flexor muscles. Plantar flexors of 10 active males were stretched in passive conditions on an isokinetic dynamometer. Different durations of static stretching were tested in 5 randomly ordered experimental trials (1, 2, 3, 4 and 10×30-s). Fascicle stiffness index, evoked contractile properties and spinal excitability (Hmax/Mmax) were examined before (PRE), immediately after (POST0) and 5 min after (POST5) stretching. No stretch duration effect was recorded for any variable. Moreover, whatever the stretching duration, stiffness index, peak twitch torque and rate of force development were significantly lower at POST0 and POST5 as compared to PRE (P<0.05). Electromechanical delay was longer at POST0 and POST5 as compared to PRE (P<0.05). Whatever the stretch duration, no significant changes of Hmax/Mmax ratio were recorded. In conclusion, 30 s of static stretching to maximum tolerated discomfort is sufficient enough to alter mechanical properties of plantar flexor muscles, but 10×30 s does not significantly affect these properties further. Stretching does not impair spinal excitability. PMID:27191211

  12. Large Deviation Statistics of Vorticity Stretching in Isotropic Turbulence

    NASA Astrophysics Data System (ADS)

    Johnson, Perry; Meneveau, Charles

    2015-11-01

    A key feature of 3D fluid turbulence is the stretching/re-alignment of vorticity by the action of the strain-rate. It is shown using the cumulant-generating function that cumulative vorticity stretching along a Lagrangian path in isotropic turbulence behaves statistically like a sum of i.i.d. variables. The Cramer function for vorticity stretching is computed from the JHTDB isotropic DNS (Reλ = 430) and compared to those of the finite-time Lyapunov exponents (FTLE) for material deformation. As expected the mean cumulative vorticity stretching is slightly less than that of the most-stretched material line (largest FTLE), due to the vorticity's preferential alignment with the second-largest eigenvalue of strain-rate and the material line's preferential alignment with the largest eigenvalue. However, the vorticity stretching tends to be significantly larger than the second-largest FTLE, and the Cramer functions reveal that the statistics of vorticity stretching fluctuations are more similar to those of largest FTLE. A model Fokker-Planck equation is constructed by approximating the viscous destruction of vorticity with a deterministic non-linear relaxation law matching conditional statistics, while the fluctuations in vorticity stretching are modelled by stochastic noise matching the statistics encoded in the Cramer function. The model predicts a stretched-exponential tail for the vorticity magnitude PDF, with good agreement for the exponent but significant error (30-40%) in the pre-factor. Supported by NSF Graduate Fellowship (DGE-1232825) and NSF Grant CMMI-0941530.

  13. Enhancement of multispectral thermal infrared images - Decorrelation contrast stretching

    NASA Technical Reports Server (NTRS)

    Gillespie, Alan R.

    1992-01-01

    Decorrelation contrast stretching is an effective method for displaying information from multispectral thermal infrared (TIR) images. The technique involves transformation of the data to principle components ('decorrelation'), independent contrast 'stretching' of data from the new 'decorrelated' image bands, and retransformation of the stretched data back to the approximate original axes, based on the inverse of the principle component rotation. The enhancement is robust in that colors of the same scene components are similar in enhanced images of similar scenes, or the same scene imaged at different times. Decorrelation contrast stretching is reviewed in the context of other enhancements applied to TIR images.

  14. Reduced stretch-reflex sensitivity after exhausting stretch-shortening cycle exercise.

    PubMed

    Nicol, C; Komi, P V; Horita, T; Kyröläinen, H; Takala, T E

    1996-01-01

    The stretch-shortening cycle (SSC) is an effective and natural form of muscle function but, when repeated with sufficient intensity or duration, it may lead to muscle damage and functional defects. A reduced tolerance to impact has been reported, which may be partly attributed to a reduced stretch-reflex potentiation. The aim of the present study was to examine the influence of SSC-induced metabolic fatigue and muscle damage on the efficacy of stretch reflexes, as judged by the electromyograph (EMG) response of two shank muscles (lateral gastrocnemius LG, soleus SOL) to controlled ramp stretches. These EMG responses were recorded before and immediately after exhausting SSC-type leg exercise and 2 h, 2 days and 4 days later. Serum concentrations of creatine kinase ([CK]), myoglobin and lactate were measured repetitively along the protocol. Two maximal vertical drop jumps and counter-movement jumps were performed after each reflex test. The exhausting SSC-type exercise induced an immediate reduction (P < 0.05) with a delayed short-term recovery of the LG peak-to-peak reflex amplitude. This was not accompanied by significant changes in the reflex latency. The drop jump performance remained slightly but significantly reduced (P < 0.05) until the 2nd day postexercise. Peak [CK] appeared for all the subjects on the 2nd day, suggesting the presence of muscle damage. The increase in [CK] between the 2nd h and the 2nd day postexercise was found to be negatively related (P < 0.001) to the relative changes in the drop jump height. Furthermore, a significant relationship (P < 0.05) was found between recovery of the stretch reflex in LG and the decrease of [CK] between the 2nd and the 4th day. These findings support the hypothesis of a reduced stretch-reflex sensitivity. While the exact mechanisms of the reflex inhibition remain unclear, it is emphasized that the delayed recovery of the reflex sensitivity could have resulted from the progressive inflammation that develops in

  15. Quantifying stretching and rearrangement in epithelial sheet migration

    NASA Astrophysics Data System (ADS)

    Lee, Rachel M.; Kelley, Douglas H.; Nordstrom, Kerstin N.; Ouellette, Nicholas T.; Losert, Wolfgang

    2013-02-01

    Although understanding the collective migration of cells, such as that seen in epithelial sheets, is essential for understanding diseases such as metastatic cancer, this motion is not yet as well characterized as individual cell migration. Here we adapt quantitative metrics used to characterize the flow and deformation of soft matter to contrast different types of motion within a migrating sheet of cells. Using a finite-time Lyapunov exponent (FTLE) analysis, we find that—in spite of large fluctuations—the flow field of an epithelial cell sheet is not chaotic. Stretching of a sheet of cells (i.e. positive FTLE) is localized at the leading edge of migration and increases when the cells are more highly stimulated. By decomposing the motion of the cells into affine and non-affine components using the metric D_{\\min }^2 , we quantify local plastic rearrangements and describe the motion of a group of cells in a novel way. We find an increase in plastic rearrangements with increasing cell densities, whereas inanimate systems tend to exhibit less non-affine rearrangements with increasing density.

  16. Quantifying stretching and rearrangement in epithelial sheet migration

    NASA Astrophysics Data System (ADS)

    Lee, Rachel; Kelley, Douglas; Nordstrom, Kerstin; Ouellette, Nicholas; Losert, Wolfgang

    2013-03-01

    Although understanding the collective migration of cells, such as that seen in epithelial sheets, is essential for understanding diseases such as metastatic cancer, this motion is not yet as well characterized as individual cell migration. Here we adapt quantitative metrics used to characterize the flow and deformation of soft matter to contrast different types of motion within a migrating sheet of cells. Using a Finite-Time Lyapunov Exponent (FTLE) analysis, we find that - in spite of large fluctuations - the flow field of an epithelial cell sheet is not chaotic. Stretching of a sheet of cells (i.e., positive FTLE) is localized at the leading edge of migration. By decomposing the motion of the cells into affine and non-affine components using the metric Dmin2,we quantify local plastic rearrangements and describe the motion of a group of cells in a novel way. We find an increase in plastic rearrangements with increasing cell densities, whereas inanimate systems tend to exhibit less non-affine rearrangements with increasing density.

  17. Quantifying stretching and rearrangement in epithelial sheet migration.

    PubMed

    Lee, Rachel M; Kelley, Douglas H; Nordstrom, Kerstin N; Ouellette, Nicholas T; Losert, Wolfgang

    2013-02-25

    Although understanding the collective migration of cells, such as that seen in epithelial sheets, is essential for understanding diseases such as metastatic cancer, this motion is not yet as well characterized as individual cell migration. Here we adapt quantitative metrics used to characterize the flow and deformation of soft matter to contrast different types of motion within a migrating sheet of cells. Using a Finite-Time Lyapunov Exponent (FTLE) analysis, we find that - in spite of large fluctuations - the flow field of an epithelial cell sheet is not chaotic. Stretching of a sheet of cells (i.e., positive FTLE) is localized at the leading edge of migration and increases when the cells are more highly stimulated. By decomposing the motion of the cells into affine and non-affine components using the metric D(2)min , we quantify local plastic rearrangements and describe the motion of a group of cells in a novel way. We find an increase in plastic rearrangements with increasing cell densities, whereas inanimate systems tend to exhibit less non-affine rearrangements with increasing density.

  18. Quantifying stretching and rearrangement in epithelial sheet migration

    PubMed Central

    Lee, Rachel M.; Kelley, Douglas H.; Nordstrom, Kerstin N.; Ouellette, Nicholas T.; Losert, Wolfgang

    2013-01-01

    Although understanding the collective migration of cells, such as that seen in epithelial sheets, is essential for understanding diseases such as metastatic cancer, this motion is not yet as well characterized as individual cell migration. Here we adapt quantitative metrics used to characterize the flow and deformation of soft matter to contrast different types of motion within a migrating sheet of cells. Using a Finite-Time Lyapunov Exponent (FTLE) analysis, we find that - in spite of large fluctuations - the flow field of an epithelial cell sheet is not chaotic. Stretching of a sheet of cells (i.e., positive FTLE) is localized at the leading edge of migration and increases when the cells are more highly stimulated. By decomposing the motion of the cells into affine and non-affine components using the metric D2min, we quantify local plastic rearrangements and describe the motion of a group of cells in a novel way. We find an increase in plastic rearrangements with increasing cell densities, whereas inanimate systems tend to exhibit less non-affine rearrangements with increasing density. PMID:23599682

  19. Griffiths phases and the stretching of criticality in brain networks

    NASA Astrophysics Data System (ADS)

    Moretti, Paolo; Muñoz, Miguel A.

    2013-10-01

    Hallmarks of criticality, such as power-laws and scale invariance, have been empirically found in cortical-network dynamics and it has been conjectured that operating at criticality entails functional advantages, such as optimal computational capabilities, memory and large dynamical ranges. As critical behaviour requires a high degree of fine tuning to emerge, some type of self-tuning mechanism needs to be invoked. Here we show that, taking into account the complex hierarchical-modular architecture of cortical networks, the singular critical point is replaced by an extended critical-like region that corresponds—in the jargon of statistical mechanics—to a Griffiths phase. Using computational and analytical approaches, we find Griffiths phases in synthetic hierarchical networks and also in empirical brain networks such as the human connectome and that of Caenorhabditis elegans. Stretched critical regions, stemming from structural disorder, yield enhanced functionality in a generic way, facilitating the task of self-organizing, adaptive and evolutionary mechanisms selecting for criticality.

  20. Septal flash and septal rebound stretch have different underlying mechanisms.

    PubMed

    Walmsley, John; Huntjens, Peter R; Prinzen, Frits W; Delhaas, Tammo; Lumens, Joost

    2016-02-01

    Abnormal left-right motion of the interventricular septum in early systole, known as septal flash (SF), is frequently observed in patients with left bundle branch block (LBBB). Transseptal pressure gradient and early active septal contraction have been proposed as explanations for SF. Similarities in timing (early systole) and location (septum) suggest that SF may be related to septal systolic rebound stretch (SRSsept). We aimed to clarify the mechanisms generating SF and SRSsept. The CircAdapt computer model was used to isolate the effects of timing of activation of the left ventricular free wall (LVFW), right ventricular free wall (RVFW), and septum on SF and SRSsept. LVFW and septal activation times were varied by ±80 ms relative to RVFW activation time. M-mode-derived wall motions and septal strains were computed and used to quantify SF and SRSsept, respectively. SF depended on early activation of the RVFW relative to the LVFW. SF and SRSsept occurred in LBBB-like simulations and against a rising transseptal pressure gradient. When the septum was activated before both LVFW and RVFW, no SF occurred despite the presence of SRSsept. Computer simulations therefore indicate that SF and SRSsept have different underlying mechanisms, even though both can occur in LBBB. The mechanism of leftward motion during SF is early RVFW contraction pulling on and straightening the septum when unopposed by the LVFW. SRSsept is caused by late LVFW contraction following early contraction of the septum. Changes in transseptal pressure gradient are not the main cause of SF in LBBB.

  1. Griffiths phases and the stretching of criticality in brain networks.

    PubMed

    Moretti, Paolo; Muñoz, Miguel A

    2013-01-01

    Hallmarks of criticality, such as power-laws and scale invariance, have been empirically found in cortical-network dynamics and it has been conjectured that operating at criticality entails functional advantages, such as optimal computational capabilities, memory and large dynamical ranges. As critical behaviour requires a high degree of fine tuning to emerge, some type of self-tuning mechanism needs to be invoked. Here we show that, taking into account the complex hierarchical-modular architecture of cortical networks, the singular critical point is replaced by an extended critical-like region that corresponds--in the jargon of statistical mechanics--to a Griffiths phase. Using computational and analytical approaches, we find Griffiths phases in synthetic hierarchical networks and also in empirical brain networks such as the human connectome and that of Caenorhabditis elegans. Stretched critical regions, stemming from structural disorder, yield enhanced functionality in a generic way, facilitating the task of self-organizing, adaptive and evolutionary mechanisms selecting for criticality.

  2. Dysregulation of Toll-Like Receptor 7 Compromises Innate and Adaptive T Cell Responses and Host Resistance to an Attenuated West Nile Virus Infection in Old Mice

    PubMed Central

    Xie, Guorui; Luo, Huanle; Pang, Lan; Peng, Bi-hung; Winkelmann, Evandro; McGruder, Brenna; Hesse, Joseph; Whiteman, Melissa; Campbell, Gerald; Milligan, Gregg N.; Cong, Yingzi; Barrett, Alan D.

    2015-01-01

    ABSTRACT The elderly are known to have enhanced susceptibility to infections and an impaired capacity to respond to vaccination. West Nile virus (WNV), a mosquito-borne flavivirus, has induced severe neurological symptoms, mostly in the elderly population. No vaccines are available for human use. Recent work showed that an attenuated WNV, a nonstructural (NS) 4B-P38G mutant, induced no lethality but strong immune responses in young (6- to 10-week-old) mice. While studying protective efficacy, we found unexpectedly that old (21- to 22-month) mice were susceptible to WNV NS4B-P38G mutant infection but were protected from subsequent lethal wild-type WNV challenge. Compared to responses in young mice, the NS4B-P38G mutant triggered higher inflammatory cytokine and interleukin-10 (IL-10) production, a delayed γδ T cell expansion, and lower antibody and WNV-specific T cell responses in old mice. Toll-like receptor 7 (TLR7) is expressed on multiple types of cells. Impaired TLR7 signaling in old mice led to dendritic cell (DC) antigen-presenting function compromise and a reduced γδ T cell and regulatory T cell (Treg) expansion during NS4B-P38G mutant infection. R848, a TLR7 agonist, decreased host vulnerability in NS4B-P38G-infected old mice by enhancing γδ T cell and Treg expansion and the antigen-presenting capacity of DCs, thereby promoting T cell responses. In summary, our results suggest that dysregulation of TLR7 partially contributes to impaired innate and adaptive T cell responses and an enhanced vulnerability in old mice during WNV NS4B-P38G mutant infection. R848 increases the safety and efficacy during immunization of old mice with the WNV NS4B-P38G mutant. IMPORTANCE The elderly are known to have enhanced susceptibility to infections and an impaired capacity to respond to vaccination. West Nile virus (WNV), an emerging mosquito-borne flavivirus, has induced severe neurological symptoms more frequently in the elderly population. No vaccines are available

  3. Cyclic mechanical stretch down-regulates cathelicidin antimicrobial peptide expression and activates a pro-inflammatory response in human bronchial epithelial cells.

    PubMed

    Karadottir, Harpa; Kulkarni, Nikhil Nitin; Gudjonsson, Thorarinn; Karason, Sigurbergur; Gudmundsson, Gudmundur Hrafn

    2015-01-01

    Mechanical ventilation (MV) of patients can cause damage to bronchoalveolar epithelium, leading to a sterile inflammatory response, infection and in severe cases sepsis. Limited knowledge is available on the effects of MV on the innate immune defense system in the human lung. In this study, we demonstrate that cyclic stretch of the human bronchial epithelial cell lines VA10 and BCi NS 1.1 leads to down-regulation of cathelicidin antimicrobial peptide (CAMP) gene expression. We show that treatment of VA10 cells with vitamin D3 and/or 4-phenyl butyric acid counteracted cyclic stretch mediated down-regulation of CAMP mRNA and protein expression (LL-37). Further, we observed an increase in pro-inflammatory responses in the VA10 cell line subjected to cyclic stretch. The mRNA expression of the genes encoding pro-inflammatory cytokines IL-8 and IL-1β was increased after cyclic stretching, where as a decrease in gene expression of chemokines IP-10 and RANTES was observed. Cyclic stretch enhanced oxidative stress in the VA10 cells. The mRNA expression of toll-like receptor (TLR) 3, TLR5 and TLR8 was reduced, while the gene expression of TLR2 was increased in VA10 cells after cyclic stretch. In conclusion, our in vitro results indicate that cyclic stretch may differentially modulate innate immunity by down-regulation of antimicrobial peptide expression and increase in pro-inflammatory responses. PMID:26664810

  4. Role of lateral parabrachial nucleus in the inhibition of water intake produced by right atrial stretch

    NASA Technical Reports Server (NTRS)

    Ohman, Lynne E.

    1995-01-01

    Rats with either bilateral electrolytic or sham lesions of the ventrolateral portion of the lateral parabrachial nucleus (VLLPBN) were implanted with latex balloons that lay at the right superior vena cava/atrial junction (RSVC/AJ). Water intake in response to isoproterenol was measured both with and without inflation of the balloon. Water intake of the sham-lesioned rats was significantly depressed by balloon inflation during the first hour of the experiment. In contrast, water intake in the VLLPBN-lesioned rats was unaffected by balloon inflation. These results suggest that the VLLPBN is involved in the processing of afferent input from stretch-activated RSVC/AJ receptors.

  5. Spicing up the sensation of stretch: TRPV1 controls mechanosensitive Piezo channels.

    PubMed

    Altier, Christophe

    2015-02-10

    Piezo proteins--a family of mammalian cation-selective ion channels that respond to mechanical stretch--are molecular mediators of biological processes, including vascular tone, hearing, touch, and pain. In this issue of Science Signaling, Rohacs and colleagues demonstrate that activation of the heat-sensitive transient receptor potential vanilloid 1 (TRPV1), another cation channel, inhibits Piezo channels through a calcium-induced depletion of phosphoinositides. This regulation could contribute to the cellular mechanisms by which the TRPV1 activator capsaicin mitigates mechanical hypersensitivity.

  6. Embossed metal diaphragm has two-way stretch

    NASA Technical Reports Server (NTRS)

    Macglashan, W. F., Jr.

    1973-01-01

    Diaphragm with embossed pattern has greater structural rigidity than one with smooth surfaces, but under severe stress, tensile loads will flatten embossing. This provides necessary additional panel stretch needed to prevent rupture of diaphragm material. Hexagonal embossing-configuration allows panel stretch in any direction or in all directions simultaneously.

  7. Does Postexercise Static Stretching Alleviate Delayed Muscle Soreness?

    ERIC Educational Resources Information Center

    Buroker, Katherine C.; Schwane, James A.

    1989-01-01

    Because many experts recommend stretching after exercise to relieve muscle soreness, 23 subjects performed a 30-minute step test to induce delayed muscle soreness. There was neither temporary relief of pain immediately after stretching nor a reduction in pain during the 3-day postexercise period. (Author/SM)

  8. Hypoosmotic- and pressure-induced membrane stretch activate TRPC5 channels

    PubMed Central

    Gomis, Ana; Soriano, Sergio; Belmonte, Carlos; Viana, Félix

    2008-01-01

    Transient receptor potential (TRP) channels mediate a wide array of sensory functions. We investigated the role of TRPC5, a poorly characterized channel widely expressed in the central and peripheral nervous system, as a potential osmosensory protein. Here we show that hypoosmotic stimulation activates TRPC5 channels resulting in a large calcium influx. The response to osmotically induced membrane stretch is blocked by GsMTx-4, an inhibitor of stretch activated ion channels. Direct hypoosmotic activation of TRPC5 is independent of phospholipase C function. However, the osmotic response is inhibited in a cell line in which PIP2 levels are reduced by regulated overexpression of a lipid phosphatase. The response was restored by increasing intracellular PIP2 levels through the patch pipette. The mechano-sensitivity of the channel was probed in the whole-cell configuration by application of steps of positive pressure through the patch pipette. Pressure-induced membrane stretch also activated TRPC5 channels, suggesting its role as a transducer of osmo-mechanical stimuli. We also demonstrated the expression of TRPC5 in sensory neurones which together with the osmo-mechanical characteristics of TRPC5 channels suggest its putative role in mechanosensory transduction events. PMID:18832422

  9. Stretched Lens Array Squarerigger (SLASR) Technology Maturation

    NASA Technical Reports Server (NTRS)

    O'Neill, Mark; McDanal, A.J.; Howell, Joe; Lollar, Louis; Carrington, Connie; Hoppe, David; Piszczor, Michael; Suszuki, Nantel; Eskenazi, Michael; Aiken, Dan; Fulton, Michael; Brandhorst, Henry; Schuller, Michael

    2007-01-01

    Since April 2005, our team has been underway on a competitively awarded program sponsored by NASA s Exploration Systems Mission Directorate to develop, refine, and mature the unique solar array technology known as Stretched Lens Array SquareRigger (SLASR). SLASR offers an unprecedented portfolio of performance metrics, SLASR offers an unprecedented portfolio of performance metrics, including the following: Areal Power Density = 300 W/m2 (2005) - 400 W/m2 (2008 Target) Specific Power = 300 W/kg (2005) - 500 W/kg (2008 Target) for a Full 100 kW Solar Array Stowed Power = 80 kW/cu m (2005) - 120 kW/m3 (2008 Target) for a Full 100 kW Solar Array Scalable Array Capacity = 100 s of W s to 100 s of kW s Super-Insulated Small Cell Circuit = High-Voltage (300-600 V) Operation at Low Mass Penalty Super-Shielded Small Cell Circuit = Excellent Radiation Hardness at Low Mass Penalty 85% Cell Area Savings = 75% Lower Array Cost per Watt than One-Sun Array Modular, Scalable, & Mass-Producible at MW s per Year Using Existing Processes and Capacities

  10. Global stability of gravitationally stretched capillary jets

    NASA Astrophysics Data System (ADS)

    Rubio-Rubio, Mariano; Sevilla, Alejandro; Gordillo, José Manuel

    2013-11-01

    We analyze the global linear stability of capillary jets stretched by gravity both experimentally and theoretically, extending the work by Sauter & Buggisch (J. Fluid Mech. vol. 533, 2005, pp. 237-257). Our results reveal the essential stabilizing role played by the axial curvature of the jet, the latter effect being especially relevant for injectors with a large diameter. The theoretical description, based on the one-dimensional mass and momentum equations retaining the exact expression for the interfacial curvature, accurately predicts the onset of jet self-excited oscillations experimentally observed for wide ranges of liquid viscosity and injector diameter. The marginal self-sustained oscillations observed in the experiments are shown to correspond to the excitation of the leading global mode of the jet. The model developed in the present work shows better agreement with the experimental jetting-dripping transition events than those available in the literature, thus allowing us to conclude that, surprisingly, the size of the steady threads produced at a given distance from the exit can be reduced by increasing the nozzle diameter. The proposed formulation allows to describe the inviscid limit, and experiments are being performed to study this distinguished case. Supported by Spanish MINECO under projects DPI 2011-28356-C03-01 and DPI 2011-28356-C03-02.

  11. Single, stretched membrane, structural module experiments

    SciTech Connect

    Wood, R.L.

    1986-02-01

    This report describes tests done on stretched-membrane heliostats used to reflect solar radiation onto a central receiver. The tests were used to validate prior analysis and mathematical models developed to describe module performance. The modules tested were three meters in diameter and had reflective polymer film laminated to the membrane. The frames were supported at three points equally spaced around the ring. Three modules were pneumatically attached with their weight suspended at the bottom support, two were pneumatically attached with their weight suspended from the upper mounts, and one was rigidly attached with its weight suspended at the bottom mount. By varying the membrane tension we could simulate a uniform wind loading normal to the mirror's surface. A video camera 15+ meters away from the mirror recorded the virtual image of a target grid as reflected by the mirrors' surface. The image was digitized and stored on a microcomputer. Using the law of reflection and analytic geometry, we computed the surface slopes of a sampling of points on the surface. The dominant module response was consistent with prior SERI analyses. The simple analytical model is quite adequate for designing and sizing single-membrane modules if the initial imperfections and their amplification are appropriately controlled. To avoid potential problems resulting from the fundamentally n = 2 deformation phenomena, we advise using either relatively stiffer ring frames or more than three support points.

  12. Rho kinase signaling pathways during stretch in primary alveolar epithelia.

    PubMed

    DiPaolo, Brian C; Margulies, Susan S

    2012-05-15

    Alveolar epithelial cells (AECs) maintain integrity of the blood-gas barrier with actin-anchored intercellular tight junctions. Stretched type I-like AECs undergo magnitude- and frequency-dependent actin cytoskeletal remodeling into perijunctional actin rings. On the basis of published studies in human pulmonary artery endothelial cells (HPAECs), we hypothesize that RhoA activity, Rho kinase (ROCK) activity, and phosphorylation of myosin light chain II (MLC2) increase in stretched type I-like AECs in a manner that is dependent on stretch magnitude, and that RhoA, ROCK, or MLC2 activity inhibition will attenuate stretch-induced actin remodeling and preserve barrier properties. Primary type I-like AEC monolayers were stretched biaxially to create a change in surface area (ΔSA) of 12%, 25%, or 37% in a cyclic manner at 0.25 Hz for up to 60 min or left unstretched. Type I-like AECs were also treated with Rho pathway inhibitors (ML-7, Y-27632, or blebbistatin) and stained for F-actin or treated with the myosin phosphatase inhibitor calyculin-A and quantified for monolayer permeability. Counter to our hypothesis, ROCK activity and MLC2 phosphorylation decreased in type I-like AECs stretched to 25% and 37% ΔSA and did not change in monolayers stretched to 12% ΔSA. Furthermore, RhoA activity decreased in type I-like AECs stretched to 37% ΔSA. In contrast, MLC2 phosphorylation in HPAECs increased when HPAECs were stretched to 12% ΔSA but then decreased when they were stretched to 37% ΔSA, similar to type I-like AECs. Perijunctional actin rings were observed in unstretched type I-like AECs treated with the Rho pathway inhibitor blebbistatin. Myosin phosphatase inhibition increased MLC2 phosphorylation in stretched type I-like AECs but had no effect on monolayer permeability. In summary, stretch alters RhoA activity, ROCK activity, and MLC2 phosphorylation in a manner dependent on stretch magnitude and cell type. PMID:22287611

  13. Adaptive Natural Killer Cell and Killer Cell Immunoglobulin-Like Receptor-Expressing T Cell Responses are Induced by Cytomegalovirus and Are Associated with Protection against Cytomegalovirus Reactivation after Allogeneic Donor Hematopoietic Cell Transplantation.

    PubMed

    Davis, Zachary B; Cooley, Sarah A; Cichocki, Frank; Felices, Martin; Wangen, Rose; Luo, Xianghua; DeFor, Todd E; Bryceson, Yenan T; Diamond, Don J; Brunstein, Claudio; Blazar, Bruce R; Wagner, John E; Weisdorf, Daniel J; Horowitz, Amir; Guethlein, Lisbeth A; Parham, Peter; Verneris, Michael R; Miller, Jeffrey S

    2015-09-01

    Cytomegalovirus (CMV) reactivates in >30% of CMV-seropositive patients after allogeneic hematopoietic cell transplantation (HCT). Previously, we reported an increase of natural killer (NK) cells expressing NKG2C, CD57, and inhibitory killer cell immunoglobulin-like receptors (KIRs) in response to CMV reactivation after HCT. These NK cells persist after the resolution of infection and display "adaptive" or memory properties. Despite these findings, the differential impact of persistent/inactive versus reactivated CMV on NK versus T cell maturation after HCT from different graft sources has not been defined. We compared the phenotype of NK and T cells from 292 recipients of allogeneic sibling (n = 118) or umbilical cord blood (UCB; n = 174) grafts based on recipient pretransplantation CMV serostatus and post-HCT CMV reactivation. This cohort was utilized to evaluate CMV-dependent increases in KIR-expressing NK cells exhibiting an adaptive phenotype (NKG2C(+)CD57(+)). Compared with CMV-seronegative recipients, those who reactivated CMV had the highest adaptive cell frequencies, whereas intermediate frequencies were observed in CMV-seropositive recipients harboring persistent/nonreplicating CMV. The same effect was observed in T cells and CD56(+) T cells. These adaptive lymphocyte subsets were increased in CMV-seropositive recipients of sibling but not UCB grafts and were correlated with lower rates of CMV reactivation (sibling 33% versus UCB 51%; P < .01). These data suggest that persistent/nonreplicating recipient CMV induces rapid production of adaptive NK and T cells from mature cells from sibling but not UCB grafts. These adaptive lymphocytes are associated with protection from CMV reactivation. PMID:26055301

  14. Adaptive Natural Killer Cell and Killer Cell Immunoglobulin-Like Receptor-Expressing T Cell Responses are Induced by Cytomegalovirus and Are Associated with Protection against Cytomegalovirus Reactivation after Allogeneic Donor Hematopoietic Cell Transplantation.

    PubMed

    Davis, Zachary B; Cooley, Sarah A; Cichocki, Frank; Felices, Martin; Wangen, Rose; Luo, Xianghua; DeFor, Todd E; Bryceson, Yenan T; Diamond, Don J; Brunstein, Claudio; Blazar, Bruce R; Wagner, John E; Weisdorf, Daniel J; Horowitz, Amir; Guethlein, Lisbeth A; Parham, Peter; Verneris, Michael R; Miller, Jeffrey S

    2015-09-01

    Cytomegalovirus (CMV) reactivates in >30% of CMV-seropositive patients after allogeneic hematopoietic cell transplantation (HCT). Previously, we reported an increase of natural killer (NK) cells expressing NKG2C, CD57, and inhibitory killer cell immunoglobulin-like receptors (KIRs) in response to CMV reactivation after HCT. These NK cells persist after the resolution of infection and display "adaptive" or memory properties. Despite these findings, the differential impact of persistent/inactive versus reactivated CMV on NK versus T cell maturation after HCT from different graft sources has not been defined. We compared the phenotype of NK and T cells from 292 recipients of allogeneic sibling (n = 118) or umbilical cord blood (UCB; n = 174) grafts based on recipient pretransplantation CMV serostatus and post-HCT CMV reactivation. This cohort was utilized to evaluate CMV-dependent increases in KIR-expressing NK cells exhibiting an adaptive phenotype (NKG2C(+)CD57(+)). Compared with CMV-seronegative recipients, those who reactivated CMV had the highest adaptive cell frequencies, whereas intermediate frequencies were observed in CMV-seropositive recipients harboring persistent/nonreplicating CMV. The same effect was observed in T cells and CD56(+) T cells. These adaptive lymphocyte subsets were increased in CMV-seropositive recipients of sibling but not UCB grafts and were correlated with lower rates of CMV reactivation (sibling 33% versus UCB 51%; P < .01). These data suggest that persistent/nonreplicating recipient CMV induces rapid production of adaptive NK and T cells from mature cells from sibling but not UCB grafts. These adaptive lymphocytes are associated with protection from CMV reactivation.

  15. Membrane stretching triggers mechanosensitive Ca2+ channel activation in Chara.

    PubMed

    Kaneko, Toshiyuki; Takahashi, Naoya; Kikuyama, Munehiro

    2009-03-01

    In order to confirm that mechanosensitive Ca(2+) channels are activated by membrane stretching, we stretched or compressed the plasma membrane of Chara by applying osmotic shrinkage or swelling of the cell by varying the osmotic potential of the bathing medium. Aequorin studies revealed that treatments causing membrane stretching induced a transient but large increase in cytoplasmic concentration of Ca(2+) (Delta[Ca(2+)](c)). However, the observed Delta[Ca(2+)](c) decreased during the treatments, resulting in membrane compression. A second experiment was carried out to study the relationship between changes in membrane potential (DeltaE(m)) and stretching or compression of the plasma membrane. Significant DeltaE(m) values, often accompanied by an action potential, were observed during the initial exchange of the bathing medium from a hypotonic medium to a hypertonic one (plasmolysis). DeltaE(m) appears to be triggered by a partial stretching of the membrane as it was peeled from the cell wall. After plasmolysis, other exchanges from hypertonic to hypotonic media, with their accompanying membrane stretching, always induced large DeltaE(m) values and were often accompanied by an action potential. By contrast, action potentials were scarcely observed during other exchanges from hypotonic to hypertonic solutions (=membrane compression). Thus, we concluded that activation of the mechanosensitive channels is triggered by membrane stretching in Chara.

  16. The role of stretching in slow axonal transport.

    PubMed

    O'Toole, Matthew; Miller, Kyle E

    2011-01-19

    Axonal stretching is linked to rapid rates of axonal elongation. Yet the impact of stretching on elongation and slow axonal transport is unclear. Here, we develop a mathematical model of slow axonal transport that incorporates the rate of axonal elongation, protein half-life, protein density, adhesion strength, and axonal viscosity to quantify the effects of axonal stretching. We find that under conditions where the axon (or nerve) is free of a substrate and lengthens at rapid rates (>4 mm day⁻¹), stretching can account for almost 50% of total anterograde axonal transport. These results suggest that it is possible to accelerate elongation and transport simultaneously by increasing either the axon's susceptibility to stretching or the forces that induce stretching. To our knowledge, this work is the first to incorporate the effects of stretching in a model of slow axonal transport. It has relevance to our understanding of neurite outgrowth during development and peripheral nerve regeneration after trauma, and hence to the development of treatments for spinal cord injury.

  17. Membrane stretching triggers mechanosensitive Ca2+ channel activation in Chara.

    PubMed

    Kaneko, Toshiyuki; Takahashi, Naoya; Kikuyama, Munehiro

    2009-03-01

    In order to confirm that mechanosensitive Ca(2+) channels are activated by membrane stretching, we stretched or compressed the plasma membrane of Chara by applying osmotic shrinkage or swelling of the cell by varying the osmotic potential of the bathing medium. Aequorin studies revealed that treatments causing membrane stretching induced a transient but large increase in cytoplasmic concentration of Ca(2+) (Delta[Ca(2+)](c)). However, the observed Delta[Ca(2+)](c) decreased during the treatments, resulting in membrane compression. A second experiment was carried out to study the relationship between changes in membrane potential (DeltaE(m)) and stretching or compression of the plasma membrane. Significant DeltaE(m) values, often accompanied by an action potential, were observed during the initial exchange of the bathing medium from a hypotonic medium to a hypertonic one (plasmolysis). DeltaE(m) appears to be triggered by a partial stretching of the membrane as it was peeled from the cell wall. After plasmolysis, other exchanges from hypertonic to hypotonic media, with their accompanying membrane stretching, always induced large DeltaE(m) values and were often accompanied by an action potential. By contrast, action potentials were scarcely observed during other exchanges from hypotonic to hypertonic solutions (=membrane compression). Thus, we concluded that activation of the mechanosensitive channels is triggered by membrane stretching in Chara. PMID:19234734

  18. No difference in pre- and postexercise stretching on flexibility.

    PubMed

    Beedle, Barry B; Leydig, Summer N; Carnucci, Jennifer M

    2007-08-01

    According to the American College of Sports Medicine (1), there is limited information about when to stretch during an exercise session. The purpose of this study was to determine if the placement of static stretching, either before or after a workout, would affect flexibility in the hip, knee, and ankle. Thirty college-age men (n = 12) and women (n = 18) volunteered to participate. Nine were highly trained, 13 were moderately trained, and 8 were sedentary. Subjects participated in both treatments, which were randomly assigned and were 48-72 hours apart. In one treatment, subjects warmed-up first by walking on a treadmill for 5 minutes at approximately 50% of their age-predicted maximum heart rate, and then performed 3 static stretches: quadriceps, hamstrings, and calf muscles. Each stretch was held 3 times, 15 seconds each. Next, flexibility measurements were determined for the hip, hamstrings, and ankle using a goniometer. The other treatment consisted of performing 20 minutes of walking or jogging at a moderate intensity, then the same stretching exercises were performed and the same flexibility measurements were taken. Reliability coefficients ranged from 0.90-0.96. There were no significant differences in any of the flexibility measurements except for hip flexibility, which approached significance (p = 0.06) and therefore favored stretching after the workout. The placement of stretching, before or after a workout, does not make a difference in its effect on flexibility.

  19. Large-deviation statistics of vorticity stretching in isotropic turbulence.

    PubMed

    Johnson, Perry L; Meneveau, Charles

    2016-03-01

    A key feature of three-dimensional fluid turbulence is the stretching and realignment of vorticity by the action of the strain rate. It is shown in this paper, using the cumulant-generating function, that the cumulative vorticity stretching along a Lagrangian path in isotropic turbulence obeys a large deviation principle. As a result, the relevant statistics can be described by the vorticity stretching Cramér function. This function is computed from a direct numerical simulation data set at a Taylor-scale Reynolds number of Re(λ)=433 and compared to those of the finite-time Lyapunov exponents (FTLE) for material deformation. As expected, the mean cumulative vorticity stretching is slightly less than that of the most-stretched material line (largest FTLE), due to the vorticity's preferential alignment with the second-largest eigenvalue of strain rate and the material line's preferential alignment with the largest eigenvalue. However, the vorticity stretching tends to be significantly larger than the second-largest FTLE, and the Cramér functions reveal that the statistics of vorticity stretching fluctuations are more similar to those of the largest FTLE. In an attempt to relate the vorticity stretching statistics to the vorticity magnitude probability density function in statistically stationary conditions, a model Kramers-Moyal equation is constructed using the statistics encoded in the Cramér function. The model predicts a stretched-exponential tail for the vorticity magnitude probability density function, with good agreement for the exponent but significant difference (35%) in the prefactor.

  20. Large-deviation statistics of vorticity stretching in isotropic turbulence

    NASA Astrophysics Data System (ADS)

    Johnson, Perry L.; Meneveau, Charles

    2016-03-01

    A key feature of three-dimensional fluid turbulence is the stretching and realignment of vorticity by the action of the strain rate. It is shown in this paper, using the cumulant-generating function, that the cumulative vorticity stretching along a Lagrangian path in isotropic turbulence obeys a large deviation principle. As a result, the relevant statistics can be described by the vorticity stretching Cramér function. This function is computed from a direct numerical simulation data set at a Taylor-scale Reynolds number of Reλ=433 and compared to those of the finite-time Lyapunov exponents (FTLE) for material deformation. As expected, the mean cumulative vorticity stretching is slightly less than that of the most-stretched material line (largest FTLE), due to the vorticity's preferential alignment with the second-largest eigenvalue of strain rate and the material line's preferential alignment with the largest eigenvalue. However, the vorticity stretching tends to be significantly larger than the second-largest FTLE, and the Cramér functions reveal that the statistics of vorticity stretching fluctuations are more similar to those of the largest FTLE. In an attempt to relate the vorticity stretching statistics to the vorticity magnitude probability density function in statistically stationary conditions, a model Kramers-Moyal equation is constructed using the statistics encoded in the Cramér function. The model predicts a stretched-exponential tail for the vorticity magnitude probability density function, with good agreement for the exponent but significant difference (35%) in the prefactor.

  1. The acute effects of different stretching exercises on jump performance.

    PubMed

    Pacheco, Laura; Balius, Ramon; Aliste, Luisa; Pujol, Montse; Pedret, Carles

    2011-11-01

    The purpose of this study was to demonstrate the short-term effects of different stretching exercises during the warm-up period on the lower limbs. A controlled, crossover clinical study involving 49 volunteers (14 women and 35 men; mean age: 20.4 years) enrolled in a "physical and sporting activities monitor" program. The explosive force was assessed using the Bosco test. The protocol was as follows: The test involved a (pre) jump test, general warm-up, intervention and (post) jump test. Each volunteer was subjected to each of the 5 interventions (no stretching [NS] and stretching: static passive stretching [P]; proprioceptive neuromuscular facilitation [PNF] techniques; static active stretching in passive tension [PT]; static active stretching in active tension [AT]) in a random order. The jump test was used to assess the squat jump, countermovement jump (CMJ), elasticity index (EI), and drop jump. An intragroup statistical analysis was performed before and after each intervention to compare the differences between the different stretching exercises. An intergroup analysis was also performed. Significant differences (p < 0.05) were found between all variables for the interventions "P," "PNF," and "TA" in the intragroup analysis, with each value being higher in the postjump test. Only the "P" intervention showed a significant difference (p = 0.046) for "EI," with the postvalue being lower. Likewise, significant differences (p < 0.05) were observed for the "CMJ" measurements during the intergroup analysis, especially between "NS" and the interventions "P," "PNF," "AT," and "PT," with each value, particularly that for "AT," being higher after stretching. The results of this study suggest that static active stretching in AT can be recommended during the warm-up for explosive force disciplines. PMID:21993032

  2. Large-deviation statistics of vorticity stretching in isotropic turbulence.

    PubMed

    Johnson, Perry L; Meneveau, Charles

    2016-03-01

    A key feature of three-dimensional fluid turbulence is the stretching and realignment of vorticity by the action of the strain rate. It is shown in this paper, using the cumulant-generating function, that the cumulative vorticity stretching along a Lagrangian path in isotropic turbulence obeys a large deviation principle. As a result, the relevant statistics can be described by the vorticity stretching Cramér function. This function is computed from a direct numerical simulation data set at a Taylor-scale Reynolds number of Re(λ)=433 and compared to those of the finite-time Lyapunov exponents (FTLE) for material deformation. As expected, the mean cumulative vorticity stretching is slightly less than that of the most-stretched material line (largest FTLE), due to the vorticity's preferential alignment with the second-largest eigenvalue of strain rate and the material line's preferential alignment with the largest eigenvalue. However, the vorticity stretching tends to be significantly larger than the second-largest FTLE, and the Cramér functions reveal that the statistics of vorticity stretching fluctuations are more similar to those of the largest FTLE. In an attempt to relate the vorticity stretching statistics to the vorticity magnitude probability density function in statistically stationary conditions, a model Kramers-Moyal equation is constructed using the statistics encoded in the Cramér function. The model predicts a stretched-exponential tail for the vorticity magnitude probability density function, with good agreement for the exponent but significant difference (35%) in the prefactor. PMID:27078458

  3. Characterizing the stretch-flangeability of hot rolled multiphase steels

    SciTech Connect

    Pathak, N.; Butcher, C.; Worswick, M.; Gao, J.

    2013-12-16

    Hole expansion tests are commonly used to characterize the edge stretching limit of a material. Traditionally, a conical punch is used to expand a punched hole until a through-thickness crack appears. However, many automotive stretch flanging operations involve in-plane edge stretching that is best captured with a flat punch. In this paper, hole expansion tests were carried out on two different hot-rolled multiphase steels using both flat and conical punches. The fracture mechanisms for both punch types were investigated using scanning electron microscopy (SEM)

  4. Anti-de Sitter space, squashed and stretched

    NASA Astrophysics Data System (ADS)

    Bengtsson, Ingemar; Sandin, Patrik

    2006-02-01

    We study the Lorentzian analogues of the squashed 3-sphere, namely, (2+1)-dimensional anti-de Sitter space squashed or stretched along fibres that are either spacelike or timelike. The causal structure and the property of being an Einstein Weyl space depend critically on whether we squash or stretch. We argue that squashing and stretching completely destroy the conformal boundary of the unsquashed spacetime. As a physical application we observe that the near horizon geometry of the extremal Kerr black hole, at constant Boyer Lindquist latitude, is anti-de Sitter space squashed along compactified spacelike fibres.

  5. Acute effects of muscle stretching on physical performance, range of motion, and injury incidence in healthy active individuals: a systematic review.

    PubMed

    Behm, David G; Blazevich, Anthony J; Kay, Anthony D; McHugh, Malachy

    2016-01-01

    Recently, there has been a shift from static stretching (SS) or proprioceptive neuromuscular facilitation (PNF) stretching within a warm-up to a greater emphasis on dynamic stretching (DS). The objective of this review was to compare the effects of SS, DS, and PNF on performance, range of motion (ROM), and injury prevention. The data indicated that SS- (-3.7%), DS- (+1.3%), and PNF- (-4.4%) induced performance changes were small to moderate with testing performed immediately after stretching, possibly because of reduced muscle activation after SS and PNF. A dose-response relationship illustrated greater performance deficits with ≥60 s (-4.6%) than with <60 s (-1.1%) SS per muscle group. Conversely, SS demonstrated a moderate (2.2%) performance benefit at longer muscle lengths. Testing was performed on average 3-5 min after stretching, and most studies did not include poststretching dynamic activities; when these activities were included, no clear performance effect was observed. DS produced small-to-moderate performance improvements when completed within minutes of physical activity. SS and PNF stretching had no clear effect on all-cause or overuse injuries; no data are available for DS. All forms of training induced ROM improvements, typically lasting <30 min. Changes may result from acute reductions in muscle and tendon stiffness or from neural adaptations causing an improved stretch tolerance. Considering the small-to-moderate changes immediately after stretching and the study limitations, stretching within a warm-up that includes additional poststretching dynamic activity is recommended for reducing muscle injuries and increasing joint ROM with inconsequential effects on subsequent athletic performance. PMID:26642915

  6. Acute effects of muscle stretching on physical performance, range of motion, and injury incidence in healthy active individuals: a systematic review.

    PubMed

    Behm, David G; Blazevich, Anthony J; Kay, Anthony D; McHugh, Malachy

    2016-01-01

    Recently, there has been a shift from static stretching (SS) or proprioceptive neuromuscular facilitation (PNF) stretching within a warm-up to a greater emphasis on dynamic stretching (DS). The objective of this review was to compare the effects of SS, DS, and PNF on performance, range of motion (ROM), and injury prevention. The data indicated that SS- (-3.7%), DS- (+1.3%), and PNF- (-4.4%) induced performance changes were small to moderate with testing performed immediately after stretching, possibly because of reduced muscle activation after SS and PNF. A dose-response relationship illustrated greater performance deficits with ≥60 s (-4.6%) than with <60 s (-1.1%) SS per muscle group. Conversely, SS demonstrated a moderate (2.2%) performance benefit at longer muscle lengths. Testing was performed on average 3-5 min after stretching, and most studies did not include poststretching dynamic activities; when these activities were included, no clear performance effect was observed. DS produced small-to-moderate performance improvements when completed within minutes of physical activity. SS and PNF stretching had no clear effect on all-cause or overuse injuries; no data are available for DS. All forms of training induced ROM improvements, typically lasting <30 min. Changes may result from acute reductions in muscle and tendon stiffness or from neural adaptations causing an improved stretch tolerance. Considering the small-to-moderate changes immediately after stretching and the study limitations, stretching within a warm-up that includes additional poststretching dynamic activity is recommended for reducing muscle injuries and increasing joint ROM with inconsequential effects on subsequent athletic performance.

  7. [Sciatica. From stretch rack to microdiscectomy].

    PubMed

    Gruber, P; Böni, T

    2015-12-01

    In ancient times as well as in the Middle Ages treatment options for discogenic nerve compression syndrome were limited and usually not very specific because of low anatomical and pathophysiological knowledge. The stretch rack (scamnum Hippocratis) was particularly prominent but was widely used as a therapeutic device for very different spinal disorders. Since the beginning of the nineteenth century anatomical knowledge increased and the advances in the fields of asepsis, anesthesia and surgery resulted in an increase in surgical interventions on the spine. In 1908 the first successful lumbar discectomy was initiated and performed by the German neurologist Heinrich O. Oppenheim (1858-1919) and the surgeon Fedor Krause (1857-1937); however, neither recognized the true pathological condition of discogenic nerve compression syndrome. With the landmark report in the New England Journal of Medicine in 1934, the two American surgeons William Jason Mixter (1880-1958) and Joseph Seaton Barr (1901-1963) finally clarified the pathomechanism of lumbar disc herniation and furthermore, propagated discectomy as the standard therapy. Since then interventions on intervertebral discs rapidly increased and the treatment options for lumbar disc surgery quickly evolved. The surgical procedures changed over time and were continuously being refined. In the late 1960s the surgical microscope was introduced for spinal surgery by the work of the famous neurosurgeon Mahmut Gazi Yasargil and his colleague Wolfhard Caspar and so-called microdiscectomy was introduced. Besides open discectomy other interventional techniques were developed to overcome the side effects of surgical procedures. In 1964 the American orthopedic surgeon Lyman Smith (1912-1991) introduced chemonucleolysis, a minimally invasive technique consisting only of a cannula and the proteolytic enzyme chymopapain, which is injected into the disc compartment to dissolve the displaced disc material. In 1975 the Japanese orthopedic

  8. Guidelines for Stretch Flanging Advanced High Strength Steels

    NASA Astrophysics Data System (ADS)

    Sriram, S.; Chintamani, J.

    2005-08-01

    Advanced High Strength Steels (AHSS) are currently being considered for use in closure and structural panels in the automotive industry because of their high potential for affordable weight reduction and improved performance. AHSS such as dual phase steels are currently being used in some vehicle platforms. From a manufacturing perspective, stretch flanging during stamping is an important deformation mode requiring careful consideration of geometry and the die process. This paper presents some geometric and process guidelines for stretch flanging AHSS. Hole expansion experiments were conducted to determine the failure limit for a sheared edge condition. Effects of punching clearance, prestrain and prior strain path on hole expansion were explored in these experiments. In addition, dynamic explicit FE calculations using LS-DYNA were also conducted for a typical stretch flange by varying some key geometric parameters. The experimental and FEA results were then analyzed to yield process and geometric guidelines to enable successful stretch flanging of AHSS.

  9. Cell stretching devices as research tools: engineering and biological considerations.

    PubMed

    Kamble, Harshad; Barton, Matthew J; Jun, Myeongjun; Park, Sungsu; Nguyen, Nam-Trung

    2016-08-16

    Cells within the human body are subjected to continuous, cyclic mechanical strain caused by various organ functions, movement, and growth. Cells are well known to have the ability to sense and respond to mechanical stimuli. This process is referred to as mechanotransduction. A better understanding of mechanotransduction is of great interest to clinicians and scientists alike to improve clinical diagnosis and understanding of medical pathology. However, the complexity involved in in vivo biological systems creates a need for better in vitro technologies, which can closely mimic the cells' microenvironment using induced mechanical strain. This technology gap motivates the development of cell stretching devices for better understanding of the cell response to mechanical stimuli. This review focuses on the engineering and biological considerations for the development of such cell stretching devices. The paper discusses different types of stretching concepts, major design consideration and biological aspects of cell stretching and provides a perspective for future development in this research area. PMID:27440436

  10. Development of Internal Fine Structure in Stretched Rubber Vulcanizates

    SciTech Connect

    M Tosaka; S Toki; J Che; L Rong; B Hsiao

    2011-12-31

    Small-angle X-ray scattering (SAXS) pattern and tensile stress during relaxation of stretched rubber vulcanizates (synthetic polyisoprene) were measured simultaneously at room temperature and at 0 C. The samples were quickly stretched to the prefixed strain and then allowed to relax for 1 h. In every SAXS pattern, the intensity distribution was elongated along the equator, indicating the formation of structures elongated in the stretching direction. The so-called two-spots pattern corresponding to the long period of stacked lamellar crystals did not appear even when the critical strain to induce crystallization was exceeded. On the other hand, even below the critical strain, additional development of equatorial streaks was detected in the differential SAXS patterns. This result suggests the growth of the density fluctuation elongated in the stretching direction, which is not directly related to strain-induced crystallization.

  11. Damage percolation during stretch flange forming of aluminum alloy sheet

    NASA Astrophysics Data System (ADS)

    Chen, Zengtao; Worswick, Michael J.; Keith Pilkey, A.; Lloyd, David J.

    2005-12-01

    A multi-scale finite element (FE)-damage percolation model was employed to simulate stretch flange forming of aluminum alloys AA5182 and AA5754. Material softening and strain gradients were captured using a Gurson-based FE model. FE results were then fed into the so-called damage percolation code, from which the damage development was modelled within measured microstructures. The formability of the stretch flange samples was predicted based upon the onset of catastrophic failure triggered by profuse void coalescence within the measured second-phase particle field. Damage development is quantified in terms of crack and void areal fractions, and compared to metallographic results obtained from interrupted stretch flange specimens. Parametric study is conducted on the effect of void nucleation strain in the prediction of formability of stretch flanges to "calibrate" proper nucleation strains for both alloys.

  12. Extinction of low-stretched diffusion flame in microgravity

    SciTech Connect

    Maruta, Kaoru; Yoshida, Masaharu; Guo, Hongsheng; Ju, Yiguang; Niioka, Takashi

    1998-01-01

    Extinction of counterflow diffusion flames of air and methane diluted with nitrogen is studied by drop tower experiments and numerical calculation using detailed chemistry and transport properties. Radiative heat loss from the flame zone is taken into consideration. Experimental results identified two kinds of extinction at the same fuel concentration, that is, in addition to the widely known stretch extinction, another type of extinction is observed when the stretch rate is sufficiently low. Consequently, plots of stretch rates versus fuel concentration limits exhibit a C-shaped extinction curve. Numerical calculation including radiative heat loss from the flame zone qualitatively agreed with the experimental results and indicated that the mechanism of counterflow diffusion flame extinction at low stretch rates was radiative heat loss.

  13. VIEW OF INTERIOR SPACE WITH RECTANGULAR SHAPE STRETCH PRESS CONTAINMENT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF INTERIOR SPACE WITH RECTANGULAR SHAPE STRETCH PRESS CONTAINMENT PIT IN BACKGROUND, FACING NORTH. - Douglas Aircraft Company Long Beach Plant, Aircraft Parts Shipping & Receiving Building, 3855 Lakewood Boulevard, Long Beach, Los Angeles County, CA

  14. VIEW OF INTERIOR SPACE WITH SQUARE SHAPE STRETCH PRESS CONTAINMENT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF INTERIOR SPACE WITH SQUARE SHAPE STRETCH PRESS CONTAINMENT PITS CENTER, FACING NORTH. - Douglas Aircraft Company Long Beach Plant, Aircraft Parts Shipping & Receiving Building, 3855 Lakewood Boulevard, Long Beach, Los Angeles County, CA

  15. Stiffness Corrections for the Vibration Frequency of a Stretched Wire

    ERIC Educational Resources Information Center

    Hornung, H. G.; Durie, M. J.

    1977-01-01

    Discusses the need of introducing corrections due to wire stiffness arising from end constraints and wire axis distribution curvature in the measurement of ac electrical frequency by exciting transverse standing waves in a stretched steel wire. (SL)

  16. Stretching Response of Knotted and Unknotted Polymer Chains

    NASA Astrophysics Data System (ADS)

    Caraglio, Michele; Micheletti, Cristian; Orlandini, Enzo

    2015-10-01

    Recent theoretical and experimental advances have clarified the major effects of knotting on the properties of stretched chains. Yet, how knotted chains respond to weak mechanical stretching and how this behavior differs from the unknotted case are still open questions and we address them here by profiling the complete stretching response of chains of hundreds of monomers and different topology. We find that the ratio of the knotted and unknotted chain extensions varies nonmonotonically with the applied force. This surprising feature is shown to be a signature of the crossover between the well-known high-force stretching regime and the previously uncharacterized low-force one. The observed differences of knotted and unknotted chain response increases with knot complexity and are sufficiently marked that they could be harnessed in single-molecule contexts to infer the presence and complexity of physical knots in micron-long biomolecules.

  17. STATIC STRETCHING DOES NOT REDUCE VARIABILITY, JUMP AND SPEED PERFORMANCE

    PubMed Central

    Rama, Luís Manuel Pinto Lopes

    2016-01-01

    Background Stretching is often part of the warm-up routine prior to athletic participation; however, controversial evidence exists on the effects of stretching on countermovement jump (CMJ) and sprint performance. Additionally, analysis of variability between repeated tasks is useful for monitoring players, to analyze factors that could affect the performance, and to guide clinical decisions for training strategies. Purpose The purpose of this study was to examine whether static stretching (SS) prior to CMJ and 20-meter (20-m) sprint would affect performance, and to investigate whether SS affects an athlete's ability to perform these tasks consistently. Methods Twenty-two trained healthy athletes (23.2 ± 5.0 years) attended, randomly, two testing sessions, separated by 48 hours. At session one, all participants underwent 10 minutes of dynamic running warm-up followed by the experimental tasks (three CMJ and three 20-m sprint), whereas five minutes of stretching was added after the warm-up routine at session two. All participants performed the same experimental tasks in both sessions. The stretching protocol consisted of five stretching exercises for each lower limb. Results The paired-samples t-test revealed no significant differences between the stretching protocol condition and no stretching condition for the 20-m sprint (t(21)=.920; p=.368) and CMJ (t(21)=.709; p=.486). There were no significant differences in trial-by-trial variability on 20-m sprint (t(21)=1.934; p=.067) and CMJ scores (t(21)=.793; p=.437) as result of SS. Conclusion The SS protocol did not modify jumping and running ability in trained healthy athletes. The SS prior to training or competition may not cause detrimental effects to athletic performance. Level of evidence Level III, Nonrandomized controlled trial. PMID:27104057

  18. Image stretching on a curved surface to improve satellite gridding

    NASA Technical Reports Server (NTRS)

    Ormsby, J. P.

    1975-01-01

    A method for substantially reducing gridding errors due to satellite roll, pitch and yaw is given. A gimbal-mounted curved screen, scaled to 1:7,500,000, is used to stretch the satellite image whereby visible landmarks coincide with a projected map outline. The resulting rms position errors averaged 10.7 km as compared with 25.6 and 34.9 km for two samples of satellite imagery upon which image stretching was not performed.

  19. Unconsciously triggered conflict adaptation.

    PubMed

    van Gaal, Simon; Lamme, Victor A F; Ridderinkhof, K Richard

    2010-01-01

    In conflict tasks such as the Stroop, the Eriksen flanker or the Simon task, it is generally observed that the detection of conflict in the current trial reduces the impact of conflicting information in the subsequent trial; a phenomenon termed conflict adaptation. This higher-order cognitive control function has been assumed to be restricted to cases where conflict is experienced consciously. In the present experiment we manipulated the awareness of conflict-inducing stimuli in a metacontrast masking paradigm to directly test this assumption. Conflicting response tendencies were elicited either consciously (through primes that were weakly masked) or unconsciously (strongly masked primes). We demonstrate trial-by-trial conflict adaptation effects after conscious as well as unconscious conflict, which could not be explained by direct stimulus/response repetitions. These findings show that unconscious information can have a longer-lasting influence on our behavior than previously thought and further stretch the functional boundaries of unconscious cognition. PMID:20634898

  20. Intelligent stretching of ankle joints with contracture/spasticity.

    PubMed

    Zhang, Li-Qun; Chung, Sun G; Bai, Zhiqiang; Xu, Dali; van Rey, Elton M T; Rogers, Mark W; Johnson, Marjorie E; Roth, Elliot J

    2002-09-01

    An intelligent stretching device was developed to treat the spastic/contractured ankle of neurologically impaired patients. The device stretched the ankle safely throughout the range of motion (ROM) to extreme dorsiflexion and plantarflexion until a specified peak resistance torque was reached with the stretching velocity controlled based on the resistance torque. The ankle was held at the extreme position for a period of time to let stress relaxation occur before it was rotated back to the other extreme position. Stretching was slow at the joint extreme positions, making it possible to reach a larger ROM safely and it was fast in the middle ROM so the majority of the treatment was spent in stretching the problematic extreme ROM. Furthermore, the device evaluated treatment outcome quantitatively in multiple aspects, including active and passive ROM, joint stiffness and viscous damping and reflex excitability. The stretching resulted in considerable changes in joint passive ROM, stiffness, viscous damping and reflex gain. The intelligent control and yet simple design of the device suggest that with appropriate simplification, the device can be made portable and low cost, making it available to patients and therapists for frequent use in clinics/home and allowing more effective treatment and long-term improvement. PMID:12503779

  1. The effect of warm-up, static stretching and dynamic stretching on hamstring flexibility in previously injured subjects

    PubMed Central

    O'Sullivan, Kieran; Murray, Elaine; Sainsbury, David

    2009-01-01

    Background Warm-up and stretching are suggested to increase hamstring flexibility and reduce the risk of injury. This study examined the short-term effects of warm-up, static stretching and dynamic stretching on hamstring flexibility in individuals with previous hamstring injury and uninjured controls. Methods A randomised crossover study design, over 2 separate days. Hamstring flexibility was assessed using passive knee extension range of motion (PKE ROM). 18 previously injured individuals and 18 uninjured controls participated. On both days, four measurements of PKE ROM were recorded: (1) at baseline; (2) after warm-up; (3) after stretch (static or dynamic) and (4) after a 15-minute rest. Participants carried out both static and dynamic stretches, but on different days. Data were analysed using Anova. Results Across both groups, there was a significant main effect for time (p < 0.001). PKE ROM significantly increased with warm-up (p < 0.001). From warm-up, PKE ROM further increased with static stretching (p = 0.04) but significantly decreased after dynamic stretching (p = 0.013). The increased flexibility after warm-up and static stretching reduced significantly (p < 0.001) after 15 minutes of rest, but remained significantly greater than at baseline (p < 0.001). Between groups, there was no main effect for group (p = 0.462), with no difference in mean PKE ROM values at any individual stage of the protocol (p > 0.05). Using ANCOVA to adjust for the non-significant (p = 0.141) baseline difference between groups, the previously injured group demonstrated a greater response to warm-up and static stretching, however this was not statistically significant (p = 0.05). Conclusion Warm-up significantly increased hamstring flexibility. Static stretching also increased hamstring flexibility, whereas dynamic did not, in agreement with previous findings on uninjured controls. The effect of warm-up and static stretching on flexibility was greater in those with reduced

  2. The effect of acute stretching on agility performance.

    PubMed

    Van Gelder, Leonard H; Bartz, Shari D

    2011-11-01

    Static stretching (SS) has shown decreases in many areas including strength, anaerobic power, and sprinting time. Dynamic stretching (DS) has shown increases in anaerobic power and decreases in sprinting time. Research on the effects of stretching on agility performance is limited. The purpose of this study was to determine the effect of SS and DS on performance time of a sport agility test. Sixty male subjects consisting of collegiate (n = 18) and recreational (n = 42) basketball athletes volunteered for the study. Subjects were randomly assigned to 1 of 3 intervention groups: SS, DS, or no stretching (NS). All groups completed a 10-minute warm-up jog followed by a 3-minute rest. The SS and DS groups then completed an 8.5-minute stretching intervention. Next, all subjects completed 3 trials of the 505 agility test with 2-5 minutes of rest between trials. A 2-way repeated-measure analysis of variance (Stretch group, athlete category, group × athlete interaction) was used to determine statistical significance (p < 0.05). A Tukey post hoc test was performed to determine differences between groups. For all athletes, the DS group produced significantly faster times on the agility test (2.22 ± 0.12 seconds, mean ± SD) in comparison to both the SS group (2.33 ± 0.15 seconds, p = 0.013) and NS group (2.32 ± 0.12 seconds, p = 0.026). Differences between the SS and NS groups revealed no significance (p = 0.962). There was a significant difference in mean times for the type of athlete (p = 0.002); however, interaction between the type of athlete and stretching group was not significant (p = 0.520). These results indicate that in comparison to SS or NS, DS significantly improves performance on closed agility skills involving a 180° change of direction.

  3. Adaptive Perfectly Matched Layer for Wood's anomalies in diffraction gratings.

    PubMed

    Vial, Benjamin; Zolla, Frédéric; Nicolet, André; Commandré, Mireille; Tisserand, Stéphane

    2012-12-17

    We propose an Adaptive Perfectly Matched Layer (APML) to be used in diffraction grating modeling. With a properly tailored co-ordinate stretching depending both on the incident field and on grating parameters, the APML may efficiently absorb diffracted orders near grazing angles (the so-called Wood's anomalies). The new design is implemented in a finite element method (FEM) scheme and applied on a numerical example of a dielectric slit grating. Its performances are compared with classical PML with constant stretching coefficient.

  4. Stretch-regulated Exocytosis/Endocytosis in Bladder Umbrella Cells

    PubMed Central

    Truschel, Steven T.; Wang, Edward; Ruiz, Wily G.; Leung, Som-Ming; Rojas, Raul; Lavelle, John; Zeidel, Mark; Stoffer, David; Apodaca, Gerard

    2002-01-01

    The epithelium of the urinary bladder must maintain a highly impermeable barrier despite large variations in urine volume during bladder filling and voiding. To study how the epithelium accommodates these volume changes, we mounted bladder tissue in modified Ussing chambers and subjected the tissue to mechanical stretch. Stretching the tissue for 5 h resulted in a 50% increase in lumenal surface area (from ∼2900 to 4300 μm2), exocytosis of a population of discoidal vesicles located in the apical cytoplasm of the superficial umbrella cells, and release of secretory proteins. Surprisingly, stretch also induced endocytosis of apical membrane and 100% of biotin-labeled membrane was internalized within 5 min after stretch. The endocytosed membrane was delivered to lysosomes and degraded by a leupeptin-sensitive pathway. Last, we show that the exocytic events were mediated, in part, by a cyclic adenosine monophosphate, protein kinase A-dependent process. Our results indicate that stretch modulates mucosal surface area by coordinating both exocytosis and endocytosis at the apical membrane of umbrella cells and provide insight into the mechanism of how mechanical forces regulate membrane traffic in nonexcitable cells. PMID:11907265

  5. Controlled cyclic stretch bioreactor for tissue-engineered heart valves.

    PubMed

    Syedain, Zeeshan H; Tranquillo, Robert T

    2009-09-01

    A tissue-engineered heart valve (TEHV) represents the ultimate valve replacement, especially for juvenile patients given its growth potential. To date, most TEHV bioreactors have been developed based on pulsed flow of culture medium through the valve lumen to induce strain in the leaflets. Using a strategy for controlled cyclic stretching of tubular constructs reported previously, we developed a controlled cyclic stretch bioreactor for TEHVs that leads to improved tensile and compositional properties. The TEHV is mounted inside a latex tube, which is then cyclically pressurized with culture medium. The root and leaflets stretch commensurately with the latex, the stretching being dictated by the stiffer latex and thus controllable. Medium is also perfused through the lumen at a slow rate in a flow loop to provide nutrient delivery. Fibrin-based TEHVs prepared with human dermal fibroblasts were subjected to three weeks of cyclic stretching with incrementally increasing strain amplitude. The TEHV possessed the tensile stiffness and stiffness anisotropy of leaflets from sheep pulmonary valves and could withstand cyclic pulmonary pressures with similar distension as for a sheep pulmonary artery. PMID:19473698

  6. Mechanical fatigue in repetitively stretched single molecules of titin.

    PubMed Central

    Kellermayer, M S; Smith, S B; Bustamante, C; Granzier, H L

    2001-01-01

    Relaxed striated muscle cells exhibit mechanical fatigue when exposed to repeated stretch and release cycles. To understand the molecular basis of such mechanical fatigue, single molecules of the giant filamentous protein titin, which is the main determinant of sarcomeric elasticity, were repetitively stretched and released while their force response was characterized with optical tweezers. During repeated stretch-release cycles titin becomes mechanically worn out in a process we call molecular fatigue. The process is characterized by a progressive shift of the stretch-force curve toward increasing end-to-end lengths, indicating that repeated mechanical cycles increase titin's effective contour length. Molecular fatigue occurs only in a restricted force range (0-25 pN) during the initial part of the stretch half-cycle, whereas the rest of the force response is repeated from one mechanical cycle to the other. Protein-folding models fail to explain molecular fatigue on the basis of an incomplete refolding of titin's globular domains. Rather, the process apparently derives from the formation of labile nonspecific bonds cross-linking various sites along a pre-unfolded titin segment. Because titin's molecular fatigue occurs in a physiologically relevant force range, the process may play an important role in dynamically adjusting muscle's response to the recent history of mechanical perturbations. PMID:11159452

  7. Stretching and quenching of flamelets in premixed turbulent combustion

    SciTech Connect

    Meneveau, C. ); Poinsot, T. )

    1991-09-01

    This paper reports on the stretch rate of flamelets in premixed turbulent combustion which is computed using detailed numerical simulations of vortex-flame interactions and a model for intermittent turbulence taking into account all possible turbulence scales acting on the flame front. Simulations of interactions between isolated vortices and a laminar flame front are used to obtain a relation between the characteristics of a given vortex and the actual flame stretch generated by this structure. Quenching conditions and quenching times are also given by these simulations. A net rate of stretch is then defined in the case of a complete turbulent flow field as the difference between the total rate of flame stretch and the quenching rate due to scales that have a high enough energy and a long enough lifetime to quench locally the flame front. The net rate of stretch is computed for a variety of parameters of interest in practical applications. It is a function of the large-scale turbulence parameters and the laminar flame speed and flame thickness and may be used as an input in most flamelet models for premixed turbulent combustion.

  8. Buoyant Low Stretch Diffusion Flames Beneath Cylindrical PMMA Samples

    NASA Technical Reports Server (NTRS)

    Olson, S. L.; Tien, J. S.

    1999-01-01

    A unique new way to study low gravity flames in normal gravity has been developed. To study flame structure and extinction characteristics in low stretch environments, a normal gravity low-stretch diffusion flame is generated using a cylindrical PMMA sample of varying large radii. Burning rates, visible flame thickness, visible flame standoff distance, temperature profiles in the solid and gas, and radiative loss from the system were measured. A transition from the blowoff side of the flammability map to the quenching side of the flammability map is observed at approximately 6-7/ sec, as determined by curvefits to the non-monotonic trends in peak temperatures, solid and gas-phase temperature gradients, and non-dimensional standoff distances. A surface energy balance reveals that the fraction of heat transfer from the flame that is lost to in-depth conduction and surface radiation increases with decreasing stretch until quenching extinction is observed. This is primarily due to decreased heat transfer from the flame, while the magnitude of the losses remains the same. A unique local extinction flamelet phenomena and associated pre-extinction oscillations are observed at very low stretch. An ultimate quenching extinction limit is found at low stretch with sufficiently high induced heat losses.

  9. Data on calcium increases depending on stretch in dystrophic cardiomyocytes.

    PubMed

    Aguettaz, E; Lopez, J J; Krzesiak, A; Constantin, B; Cognard, C; Sebille, S

    2016-09-01

    In this data article, intracellular Ca(2+) concentration ([Ca(2+)]i) was measured in isolated ventricular Wild Type (WT) and mdx cardiomyocytes in two different conditions: at rest and during the application of an axial stretch. Using a carbon microfibers technique, axial stretch was applied to mimic effects of physiological conditions of ventricular filling. A study of cation entry with the same experimental model and the manganese quenching method reported (i) a constitutive cation entry in mdx cardiomyocytes and (ii) the involvement of TRPV2 channels in axial-stretch dependant cation entry, "Axial stretch-dependent cation entry in dystrophic cardiomyopathy: involvement of several TRPs channels" (Aguettaz et al., 2016) [1]. Here, the Ca(2+) dye fluo-8 was used for [Ca(2+)]i measurement, in both resting and stretching conditions, using a perfusion protocol starting initially with a calcium free Tyrode solution followed by the perfusion of 1.8 mM Ca(2+) Tyrode solution. The variation of [Ca(2+)]i was found higher in mdx cardiomyocytes. PMID:27617280

  10. Numerical study of stretched smectic-A elastomer sheets.

    PubMed

    Brown, A W; Adams, J M

    2013-07-01

    We present a numerical study of stretching monodomain smectic-A elastomer sheets, computed using the finite element method. When stretched parallel to their smectic layer normal the smectic layers are unstable to a transition to a buckled state. We model macroscopic deformations by replacing the microscopic energy with a coarse grained effective free energy that accounts for the fine-scale layer buckling. We augment this model with a term to describe the energy of deforming buckled layers, which is necessary to reproduce the experimentally observed Poisson ratios postbuckling. We examine the spatial distribution of the microstructure phases for various stretching angles relative to the layer normal and for different length-to-width aspect ratios. When stretching parallel to the layer normal the majority of the sample forms a bidirectionally buckled microstructure, except at the clamps where a unidirectionally buckled microstructure is predicted. When stretching at small inclinations to the layer normal the phase of the sample is sensitive to the aspect ratio of the sample, with the bidirectionally buckled phase persistent to large angles only for small aspect ratios. We relate these theoretical results to experiments on smectic-A elastomers.

  11. Printable low-cost, sustained and dynamic cell stretching apparatus.

    PubMed

    Toume, Samer; Gefen, Amit; Weihs, Daphne

    2016-05-24

    Deformations that are applied on body tissues during daily activities, as a result of morbid conditions, or during various medical treatments, affect cell viability and biological function. Such mechanobiological phenomena are often studied in vitro, in monolayer cultures. To facilitate such studies cost effectively, we have developed a novel, printable cell stretching apparatus. The apparatus is used to apply tensile strains on cells cultured on elastic, stretchable substrata, either by sustained or by dynamic-cyclic application. Most of the apparatus parts are three-dimensionally printed (excluding motors), and stretching is automatically performed by two direct current geared motors that are controlled by a programmable microcontroller platform. To demonstrate functionality of this novel printable device, which can be produced in multiple copies in research labs at a cost of under 100 US$ per unit, including motors and controller, we performed cell culture studies monitored by fluorescence microscopy. Specifically, we have applied sustained and cyclic, radial stretching at large strains to NIH3T3 mouse fibroblasts, and have demonstrated that cell viability, adhesion and morphology were maintained following stretching. Our apparatus is designed to be low-cost, rapidly manufactured at a university or small-company setting, and simple to use and control, where its flexible, versatile design allows users to experimentally induce different stretching regimes with varying amplitudes and frequencies. PMID:27038541

  12. Central Adaptation to Repeated Galvanic Vestibular Stimulation: Implications for Pre-Flight Astronaut Training

    PubMed Central

    Dilda, Valentina; Morris, Tiffany R.; Yungher, Don A.; MacDougall, Hamish G.; Moore, Steven T.

    2014-01-01

    Healthy subjects (N = 10) were exposed to 10-min cumulative pseudorandom bilateral bipolar Galvanic vestibular stimulation (GVS) on a weekly basis for 12 weeks (120 min total exposure). During each trial subjects performed computerized dynamic posturography and eye movements were measured using digital video-oculography. Follow up tests were conducted 6 weeks and 6 months after the 12-week adaptation period. Postural performance was significantly impaired during GVS at first exposure, but recovered to baseline over a period of 7–8 weeks (70–80 min GVS exposure). This postural recovery was maintained 6 months after adaptation. In contrast, the roll vestibulo-ocular reflex response to GVS was not attenuated by repeated exposure. This suggests that GVS adaptation did not occur at the vestibular end-organs or involve changes in low-level (brainstem-mediated) vestibulo-ocular or vestibulo-spinal reflexes. Faced with unreliable vestibular input, the cerebellum reweighted sensory input to emphasize veridical extra-vestibular information, such as somatosensation, vision and visceral stretch receptors, to regain postural function. After a period of recovery subjects exhibited dual adaption and the ability to rapidly switch between the perturbed (GVS) and natural vestibular state for up to 6 months. PMID:25409443

  13. Central adaptation to repeated galvanic vestibular stimulation: implications for pre-flight astronaut training.

    PubMed

    Dilda, Valentina; Morris, Tiffany R; Yungher, Don A; MacDougall, Hamish G; Moore, Steven T

    2014-01-01

    Healthy subjects (N = 10) were exposed to 10-min cumulative pseudorandom bilateral bipolar Galvanic vestibular stimulation (GVS) on a weekly basis for 12 weeks (120 min total exposure). During each trial subjects performed computerized dynamic posturography and eye movements were measured using digital video-oculography. Follow up tests were conducted 6 weeks and 6 months after the 12-week adaptation period. Postural performance was significantly impaired during GVS at first exposure, but recovered to baseline over a period of 7-8 weeks (70-80 min GVS exposure). This postural recovery was maintained 6 months after adaptation. In contrast, the roll vestibulo-ocular reflex response to GVS was not attenuated by repeated exposure. This suggests that GVS adaptation did not occur at the vestibular end-organs or involve changes in low-level (brainstem-mediated) vestibulo-ocular or vestibulo-spinal reflexes. Faced with unreliable vestibular input, the cerebellum reweighted sensory input to emphasize veridical extra-vestibular information, such as somatosensation, vision and visceral stretch receptors, to regain postural function. After a period of recovery subjects exhibited dual adaption and the ability to rapidly switch between the perturbed (GVS) and natural vestibular state for up to 6 months.

  14. Acute effect of constant torque and angle stretching on range of motion, muscle passive properties, and stretch discomfort perception.

    PubMed

    Cabido, Christian E T; Bergamini, Juliana C; Andrade, André G P; Lima, Fernando V; Menzel, Hans J; Chagas, Mauro H

    2014-04-01

    The aim of the present study was to compare the acute effects of constant torque (CT) and constant angle (CA) stretching exercises on the maximum range of motion (ROMmax), passive stiffness (PS), and ROM corresponding to the first sensation of tightness in the posterior thigh (FSTROM). Twenty-three sedentary men (age, 19-33 years) went through 1 familiarization session and afterward proceeded randomly to both CA and CT treatment stretching conditions, on separate days. An isokinetic dynamometer was used to analyze hamstring muscles during passive knee extension. The subjects performed 4 stretches of 30 seconds each with a 15-second interval between them. In the CA stretching, the subject reached a certain ROM (95% of ROMmax), and the angle was kept constant. However, in the CT stretching exercise, the volunteer reached a certain resistance torque (corresponding to 95% of ROMmax) and it was kept constant. The results showed an increase in ROMmax for both CA and CT (p < 0.001), but the increase was greater for CT than for CA (CA vs. CT in poststretching, p = 0.002). Although the PS decreased for both CA and CT (p < 0.001), the decrease was greater for CT than for CA (CA vs. CT in poststretching, p = 0.002). The FSTROM increased for both CA and CT, but the increase for CT was greater than that for CA (CA vs. CT in poststretching, p = 0.003). The greater increase in ROMmax for the CT stretch may be explained by greater changes in the biomechanical properties of the muscle-tendon unit and stretch tolerance, as indicated by the results of PS and FSTROM.

  15. Expression and purification of soluble and stable ectodomain of natural killer cell receptor LLT1 through high-density transfection of suspension adapted HEK293S GnTI(-) cells.

    PubMed

    Bláha, Jan; Pachl, Petr; Novák, Petr; Vaněk, Ondřej

    2015-05-01

    Lectin-like transcript 1 (LLT1, gene clec2d) was identified to be a ligand for the single human NKR-P1 receptor present on NK and NK-T lymphocytes. Naturally, LLT1 is expressed on the surface of NK cells, stimulating IFN-γ production, and is up-regulated upon activation of other immune cells, e.g. TLR-stimulated dendritic cells and B cells or T cell receptor-activated T cells. While in normal tissues LLT1:NKR-P1 interaction (representing an alternative "missing-self" recognition system) play an immunomodulatory role in regulation of crosstalk between NK and antigen presenting cells, LLT1 is upregulated in glioblastoma cells, one of the most lethal tumors, where it acts as a mediator of immune escape of glioma cells. Here we report transient expression and characterization of soluble His176Cys mutant of LLT1 ectodomain in an eukaryotic expression system of human suspension-adapted HEK293S GnTI(-) cell line with uniform N-glycans. The His176Cys mutation is critical for C-type lectin-like domain stability, leading to the reconstruction of third canonical disulfide bridge in LLT1, as shown by mass spectrometry. Purified soluble LLT1 is homogeneous, deglycosylatable and forms a non-covalent homodimer whose dimerization is not dependent on presence of its N-glycans. As a part of production of soluble LLT1, we have adapted HEK293S GnTI(-) cell line to growth in suspension in media facilitating transient transfection and optimized novel high cell density transfection protocol, greatly enhancing protein yields. This transfection protocol is generally applicable for protein production within this cell line, especially for protein crystallography. PMID:25623399

  16. Determination of the stretch tensor for structural transformations

    NASA Astrophysics Data System (ADS)

    Chen, Xian; Song, Yintao; Tamura, Nobumichi; James, Richard D.

    2016-08-01

    Structural transformations in crystalline solids are increasingly the basis of the functional behavior of materials. Recently, in diverse alloy systems, both low hysteresis and reversibility of phase transformations have been linked to the satisfaction of the nongeneric conditions of compatibility between phases. According to the Cauchy-Born rule, these conditions are expressed as properties of transformation stretch tensor. The transformation stretch tensor is difficult to measure directly due to the lack of knowledge about the exact transforming pathway during the structural change, and the complicating effects of microstructure. In this paper we give a rigorous algorithmic approach for determining the transformation stretch tensor from X-ray measurements of structure and lattice parameters. For some traditional and emerging phase transformations, the results given by the algorithm suggest unexpected transformation mechanisms.

  17. Sketch-n-Stretch: sketching animations using cutouts.

    PubMed

    Sohn, Eisung; Choy, Yoon-Chul

    2012-01-01

    Sketch-n-Stretch lets novices quickly and easily create 2D animations. The system has a seamless two-layer drawing interface that supports cutouts using a whiteboard metaphor. Cutout animations serve as building blocks to help users construct sophisticated animations. While manipulating cutout animations, users can draw and write text to create effects-such as articulated figures, multiple motions, and image objects-that have been difficult with previous sketching approaches. An intuitive timeline interface employs visually integrated motion cues and supports several traditional animation effects. Novices positively evaluated Sketch-n-Stretch's effectiveness in creating object motions, compared to an existing sketching tool. They also used its advanced features to animate complete stories. This video demonstrates the Sketch-n-Stretch tool for making sketch-based animations. PMID:24806002

  18. Single particle measurements of material line stretching in turbulence: Experiments

    NASA Astrophysics Data System (ADS)

    Kramel, Stefan; Tympel, Saskia; Toschi, Federico; Voth, Greg

    2015-11-01

    We find that particles in the shape of chiral dipoles display a preferential rotation direction in three dimensional isotropic turbulence. The particles consist of two helical ends with opposite chirality that are connected by a straight rod. They are fabricated using 3D printing and have an aspect ratio of 10 and a length in the inertial range of our flow between oscillating grids. Due to their high aspect ratio, they move like material lines. Because material lines align with the extentional eigenvectors of the velocity gradient tensor they experience a mean stretching in turbulence. The stretching of a chiral dipole produces a rotation about the dipole axis and so chiral dipoles experience a non-zero mean spinning rate in turbulence. These results provide a first direct experimental measurement of the rate of material line stretching in turbulence.

  19. Residues Essential for Panton-Valentine Leukocidin S Component Binding to Its Cell Receptor Suggest Both Plasticity and Adaptability in Its Interaction Surface

    PubMed Central

    Laventie, Benoit-Joseph; Guérin, Frédéric; Mourey, Lionel; Tawk, Mira Y.; Jover, Emmanuel; Maveyraud, Laurent; Prévost, Gilles

    2014-01-01

    Panton-Valentine leukocidin (PVL), a bicomponent staphylococcal leukotoxin, is involved in the poor prognosis of necrotizing pneumonia. The present study aimed to elucidate the binding mechanism of PVL and in particular its cell-binding domain. The class S component of PVL, LukS-PV, is known to ensure cell targeting and exhibits the highest affinity for the neutrophil membrane (Kd∼10−10 M) compared to the class F component of PVL, LukF-PV (Kd∼10−9 M). Alanine scanning mutagenesis was used to identify the residues involved in LukS-PV binding to the neutrophil surface. Nineteen single alanine mutations were performed in the rim domain previously described as implicated in cell membrane interactions. Positions were chosen in order to replace polar or exposed charged residues and according to conservation between leukotoxin class S components. Characterization studies enabled to identify a cluster of residues essential for LukS-PV binding, localized on two loops of the rim domain. The mutations R73A, Y184A, T244A, H245A and Y250A led to dramatically reduced binding affinities for both human leukocytes and undifferentiated U937 cells expressing the C5a receptor. The three-dimensional structure of five of the mutants was determined using X-ray crystallography. Structure analysis identified residues Y184 and Y250 as crucial in providing structural flexibility in the receptor-binding domain of LukS-PV. PMID:24643034

  20. Can Treadmill Perturbations Evoke Stretch Reflexes in the Calf Muscles?

    PubMed Central

    Sloot, Lizeth H.; van den Noort, Josien C.; van der Krogt, Marjolein M.; Bruijn, Sjoerd M.; Harlaar, Jaap

    2015-01-01

    Disinhibition of reflexes is a problem amongst spastic patients, for it limits a smooth and efficient execution of motor functions during gait. Treadmill belt accelerations may potentially be used to measure reflexes during walking, i.e. by dorsal flexing the ankle and stretching the calf muscles, while decelerations show the modulation of reflexes during a reduction of sensory feedback. The aim of the current study was to examine if belt accelerations and decelerations of different intensities applied during the stance phase of treadmill walking can evoke reflexes in the gastrocnemius, soleus and tibialis anterior in healthy subjects. Muscle electromyography and joint kinematics were measured in 10 subjects. To determine whether stretch reflexes occurred, we assessed modelled musculo-tendon length and stretch velocity, the amount of muscle activity, as well as the incidence of bursts or depressions in muscle activity with their time delays, and co-contraction between agonist and antagonist muscle. Although the effect on the ankle angle was small with 2.8±1.0°, the perturbations caused clear changes in muscle length and stretch velocity relative to unperturbed walking. Stretched muscles showed an increasing incidence of bursts in muscle activity, which occurred after a reasonable electrophysiological time delay (163–191 ms). Their amplitude was related to the muscle stretch velocity and not related to co-contraction of the antagonist muscle. These effects increased with perturbation intensity. Shortened muscles showed opposite effects, with a depression in muscle activity of the calf muscles. The perturbations only slightly affected the spatio-temporal parameters, indicating that normal walking was retained. Thus, our findings showed that treadmill perturbations can evoke reflexes in the calf muscles and tibialis anterior. This comprehensive study could form the basis for clinical implementation of treadmill perturbations to functionally measure reflexes during

  1. Can Treadmill Perturbations Evoke Stretch Reflexes in the Calf Muscles?

    PubMed

    Sloot, Lizeth H; van den Noort, Josien C; van der Krogt, Marjolein M; Bruijn, Sjoerd M; Harlaar, Jaap

    2015-01-01

    Disinhibition of reflexes is a problem amongst spastic patients, for it limits a smooth and efficient execution of motor functions during gait. Treadmill belt accelerations may potentially be used to measure reflexes during walking, i.e. by dorsal flexing the ankle and stretching the calf muscles, while decelerations show the modulation of reflexes during a reduction of sensory feedback. The aim of the current study was to examine if belt accelerations and decelerations of different intensities applied during the stance phase of treadmill walking can evoke reflexes in the gastrocnemius, soleus and tibialis anterior in healthy subjects. Muscle electromyography and joint kinematics were measured in 10 subjects. To determine whether stretch reflexes occurred, we assessed modelled musculo-tendon length and stretch velocity, the amount of muscle activity, as well as the incidence of bursts or depressions in muscle activity with their time delays, and co-contraction between agonist and antagonist muscle. Although the effect on the ankle angle was small with 2.8±1.0°, the perturbations caused clear changes in muscle length and stretch velocity relative to unperturbed walking. Stretched muscles showed an increasing incidence of bursts in muscle activity, which occurred after a reasonable electrophysiological time delay (163-191 ms). Their amplitude was related to the muscle stretch velocity and not related to co-contraction of the antagonist muscle. These effects increased with perturbation intensity. Shortened muscles showed opposite effects, with a depression in muscle activity of the calf muscles. The perturbations only slightly affected the spatio-temporal parameters, indicating that normal walking was retained. Thus, our findings showed that treadmill perturbations can evoke reflexes in the calf muscles and tibialis anterior. This comprehensive study could form the basis for clinical implementation of treadmill perturbations to functionally measure reflexes during

  2. The acute effects of dynamic and ballistic stretching on vertical jump height, force, and power.

    PubMed

    Jaggers, Jason R; Swank, Ann M; Frost, Karen L; Lee, Chong D

    2008-11-01

    Stretching before performance is a common practice among athletes in hopes of increasing performance and reducing the risk of injury. However, cumulative results indicate a negative impact of static stretching and proprioceptive neuromuscular facilitation (PNF) on performance; thus, there is a need for evaluating other stretching strategies for effective warm-up. The purpose of this study was to compare the differences between two sets of ballistic stretching and two sets of a dynamic stretching routine on vertical jump performance. Twenty healthy male and female college students between the ages of 22 and 34 (24.8 +/- 3 years) volunteered to participate in this study. All subjects completed three individual testing sessions on three nonconsecutive days. On each day, the subjects completed one of three treatments (no stretch, ballistic stretch, and dynamic stretch). Intraclass reliability was determined using the data obtained from each subject. A paired samples t-test revealed no significant difference in jump height, force, or power when comparing no stretch with ballistic stretch. A significant difference was found on jump power when comparing no stretch with dynamic stretch, but no significant difference was found for jump height or force. Statistics showed a very high reliability when measuring jump height, force, and power using the Kistler Quattro Jump force plate. It seems that neither dynamic stretching nor ballistic stretching will result in an increase in vertical jump height or force. However, dynamic stretching elicited gains in jump power poststretch.

  3. Lidar equations for turbid media with pulse stretching.

    PubMed

    Walker, R E; McLean, J W

    1999-04-20

    Lidar equations for a system with multiple-scattering beam spreading and pulse stretching are developed from an analytical model for the beam spread function. The resulting lidar equations are transparent to the physics and with some simple approximations for system transfer functions become mathematically simple engineering models for system studies. Application to and comparison with a variety of lidar applications in ocean environments (turbidity and bathymetry) and clouds (aerosol scattering) are presented. These examples provide model validation. The lidar model developed represents a significant extension beyond historical lidar models that exclude pulse stretching. Their mathematical simplicity should foster use in a broader class of problems involving light propagation in turbid media.

  4. Stretched Exponential Relaxation of Glasses at Low Temperature

    NASA Astrophysics Data System (ADS)

    Yu, Yingtian; Wang, Mengyi; Zhang, Dawei; Wang, Bu; Sant, Gaurav; Bauchy, Mathieu

    2015-10-01

    The question of whether glass continues to relax at low temperature is of fundamental and practical interest. Here, we report a novel atomistic simulation method allowing us to directly access the long-term dynamics of glass relaxation at room temperature. We find that the potential energy relaxation follows a stretched exponential decay, with a stretching exponent β =3 /5 , as predicted by Phillips's diffusion-trap model. Interestingly, volume relaxation is also found. However, it is not correlated to the energy relaxation, but it is rather a manifestation of the mixed alkali effect.

  5. Stretched-exponential Doppler spectra in underwater acoustic communication channels.

    PubMed

    van Walree, P A; Jenserud, T; Otnes, R

    2010-11-01

    The theory of underwater sound interacting with the sea surface predicts a Gaussian-spread frequency spectrum in the case of a large Rayleigh parameter. However, recent channel soundings reveal more sharply peaked spectra with heavier tails. The measured Doppler spread increases with the frequency and differs between multipath arrivals. The overall Doppler spectrum of a broadband waveform is the sum of the spectra of all constituent paths and frequencies, and is phenomenologically described by a stretched or compressed exponential. The stretched exponential also fits well to the broadband spectrum of a single propagation path, and narrowband spectra summed over all paths.

  6. Stretched Exponential Relaxation of Glasses at Low Temperature.

    PubMed

    Yu, Yingtian; Wang, Mengyi; Zhang, Dawei; Wang, Bu; Sant, Gaurav; Bauchy, Mathieu

    2015-10-16

    The question of whether glass continues to relax at low temperature is of fundamental and practical interest. Here, we report a novel atomistic simulation method allowing us to directly access the long-term dynamics of glass relaxation at room temperature. We find that the potential energy relaxation follows a stretched exponential decay, with a stretching exponent β=3/5, as predicted by Phillips's diffusion-trap model. Interestingly, volume relaxation is also found. However, it is not correlated to the energy relaxation, but it is rather a manifestation of the mixed alkali effect.

  7. In situ longitudinal pre-stretch in the human femoropopliteal artery

    PubMed Central

    Kamenskiy, Alexey; Seas, Andreas; Bowen, Grant; Deegan, Paul; Desyatova, Anastasia; Bohlim, Nick; Poulson, William; MacTaggart, Jason

    2016-01-01

    In situ longitudinal (axial) pre-stretch (LPS) plays a fundamental role in the mechanics of the femoropopliteal artery (FPA). It conserves energy during pulsation and prevents buckling of the artery during limb movement. We investigated how LPS is affected by demographics and risk factors, and how these patient characteristics associate with the structural and physiologic features of the FPA. LPS was measured in n = 148 fresh human FPAs (14–80 years old). Mechanical properties were characterized with biaxial extension and histopathological characteristics were quantified with Verhoeff–Van Gieson Staining. Constitutive modeling was used to calculate physiological stresses and stretches which were then analyzed in the context of demographics, risk factors and structural characteristics. Age had the strongest negative effect (r = −0.812, p < 0.01) on LPS and could alone explain 66% of LPS variability. Male gender, higher body mass index, hypertension, diabetes, coronary artery disease, dyslipidemia and tobacco use had negative effects on LPS, but only the effect of tobacco was not associated with aging. FPAs with less pre-stretch had thicker medial layers, but thinner intramural elastic fibers with less dense and more fragmented external elastic laminae. Elastin degradation was associated with decreased physiological tethering force and longitudinal stress, while circumferential stress remained constant. FPA wall pathology was negatively associated with LPS (r = −0.553, p < 0.01), but the effect was due primarily to aging. LPS in the FPA may serve as an energy reserve for adaptive remodeling. Reduction of LPS due to degradation and fragmentation of intramural longitudinal elastin during aging can be accelerated in tobacco users. PMID:26766633

  8. Eccentric Muscle Contraction and Stretching Evoke Mechanical Hyperalgesia and Modulate CGRP and P2X3 Expression in a Functionally Relevant Manner

    PubMed Central

    Dessem, Dean; Ambalavanar, Ranjinidevi; Evancho, Melena; Moutanni, Aicha; Yallampalli, Chandrasekhar; Bai, Guang

    2010-01-01

    Non-invasive, movement-based models were used to investigate muscle pain. In rats, the masseter muscle was rapidly stretched or electrically stimulated during forced lengthening to produce eccentric muscle contractions (EC). Both EC and stretching disrupted scattered myofibers and produced intramuscular plasma extravasation. Pro-inflammatory cytokines (IL-1β, TNF-α, IL-6) and vascular endothelial growth factor (VEGF) were elevated in the masseter 24h following EC. At 48h, neutrophils increased and ED1 macrophages infiltrated myofibers while ED2 macrophages were abundant at 4d. Mechanical hyperalgesia was evident in the ipsilateral head 4h-4d after a single bout of EC and for 7d following multiple bouts (1 bout/d for 4d). Calcitonin gene-related peptide (CGRP) mRNA increased in the trigeminal ganglion 24h following EC while immunoreactive CGRP decreased. By 2d, CGRP-muscle afferent numbers equaled naive numbers implying that CGRP is released following EC and replenished within 2d. EC elevated P2X3 mRNA and increased P2X3-muscle afferent neuron number for 12d while electrical stimulation without muscle contraction altered neither CGRP nor P2X3 mRNA levels. Muscle stretching produced hyperalgesia for 2d whereas contraction alone produced no hyperalgesia. Stretching increased CGRP mRNA at 24h but not CGRP-muscle afferent number at 2–12d. In contrast, stretching significantly increased the number of P2X3-muscle afferent neurons for 12d. The sustained, elevated P2X3 expression evoked by EC and stretching may enhance nociceptor responsiveness to ATP released during subsequent myofiber damage. Movement-based actions such as EC and muscle stretching produce unique tissue responses and modulate neuropeptide and nociceptive receptor expression in a manner particularly relevant to repeated muscle damage. PMID:20207080

  9. Forced convective heat transfer in boundary layer flow of Sisko fluid over a nonlinear stretching sheet.

    PubMed

    Munir, Asif; Shahzad, Azeem; Khan, Masood

    2014-01-01

    The major focus of this article is to analyze the forced convective heat transfer in a steady boundary layer flow of Sisko fluid over a nonlinear stretching sheet. Two cases are studied, namely (i) the sheet with variable temperature (PST case) and (ii) the sheet with variable heat flux (PHF case). The heat transfer aspects are investigated for both integer and non-integer values of the power-law index. The governing partial differential equations are reduced to a system of nonlinear ordinary differential equations using appropriate similarity variables and solved numerically. The numerical results are obtained by the shooting method using adaptive Runge Kutta method with Broyden's method in the domain[Formula: see text]. The numerical results for the temperature field are found to be strongly dependent upon the power-law index, stretching parameter, wall temperature parameter, material parameter of the Sisko fluid and Prandtl number. In addition, the local Nusselt number versus wall temperature parameter is also graphed and tabulated for different values of pertaining parameters. Further, numerical results are validated by comparison with exact solutions as well as previously published results in the literature.

  10. Non-destructive quantification of alignment of nanorods embedded in uniaxially stretched polymer films

    SciTech Connect

    Stoenescu, Stefan Packirisamy, Muthukumaran; Truong, Vo-Van

    2014-03-21

    Among several methods developed for uniaxial alignment of metallic nanorods for optical applications, alignment by film stretching consists in embedding the rods in a transparent thin film of thermoplastic polymer, followed by simultaneous heating and uniaxial stretching of the composite film. As to the quantification of the resulting alignment, it has been limited to statistical calculations based on microscopic examination, which is incomplete, subject to errors due to geometric distortions of the scanning electron microscope images and destructive, since it involves cutting of samples. In contrast, we present in this paper a non-destructive quantification of the average orientation of the rods, based on a probabilistic approach combined with numerical simulations of absorbance spectra and spectrometric characterization of the composite film. Assuming electromagnetically non-interacting rods, we consider the longitudinal absorbance peak of their ensemble to consist of the superposition of their individual spectra that we obtain by numerical simulation using the size and shape adapted dielectric function of the metal and the finite difference time domain method. The accuracy of the solution depends on the number of discretization intervals, the accuracy of the numerical simulations, and the accurate knowledge of the polydispersity of the rods. For the sake of concreteness, we used nanorods to describe the quantification steps but the method is equally valid for any dichroic particles.

  11. Forced Convective Heat Transfer in Boundary Layer Flow of Sisko Fluid over a Nonlinear Stretching Sheet

    PubMed Central

    Munir, Asif; Shahzad, Azeem; Khan, Masood

    2014-01-01

    The major focus of this article is to analyze the forced convective heat transfer in a steady boundary layer flow of Sisko fluid over a nonlinear stretching sheet. Two cases are studied, namely (i) the sheet with variable temperature (PST case) and (ii) the sheet with variable heat flux (PHF case). The heat transfer aspects are investigated for both integer and non-integer values of the power-law index. The governing partial differential equations are reduced to a system of nonlinear ordinary differential equations using appropriate similarity variables and solved numerically. The numerical results are obtained by the shooting method using adaptive Runge Kutta method with Broyden’s method in the domain. The numerical results for the temperature field are found to be strongly dependent upon the power-law index, stretching parameter, wall temperature parameter, material parameter of the Sisko fluid and Prandtl number. In addition, the local Nusselt number versus wall temperature parameter is also graphed and tabulated for different values of pertaining parameters. Further, numerical results are validated by comparison with exact solutions as well as previously published results in the literature. PMID:24949738

  12. Our Enrichment Program was a Mind-Stretching Experience

    ERIC Educational Resources Information Center

    Scribner, Barbara Colvin

    1976-01-01

    For three years Hollow Tree School, in Darien, Connecticut, has had a related arts program. The aim of the program was to acquaint children in grades four through six with a variety of crafts and skills. It also provided a two-way mind-stretching experience in which classroom knowledge could be used at home. (Author/RK)

  13. Stretching of DNA confined in nanochannels with charged walls

    PubMed Central

    Manneschi, Chiara; Fanzio, Paola; Angeli, Elena; Repetto, Luca; Valbusa, Ugo

    2014-01-01

    There is currently a growing interest in control of stretching of DNA inside nanoconfined regions due to the possibility to analyze and manipulate single biomolecules for applications such as DNA mapping and barcoding, which are based on stretching the DNA in a linear fashion. In the present work, we couple Finite Element Methods and Monte Carlo simulations in order to study the conformation of DNA molecules confined in nanofluidic channels with neutral and charged walls. We find that the electrostatic forces become more and more important when lowering the ionic strength of the solution. The influence of the nanochannel cross section geometry is also studied by evaluating the DNA elongation in square, rectangular, and triangular channels. We demonstrate that coupling electrostatically interacting walls with a triangular geometry is an efficient way to stretch DNA molecules at the scale of hundreds of nanometers. The paper reports experimental observations of λ-DNA molecules in poly(dimethylsiloxane) nanochannels filled with solutions of different ionic strength. The results are in good agreement with the theoretical predictions, confirming the crucial role of the electrostatic repulsion of the constraining walls on the molecule stretching. PMID:25553196

  14. Crystallization of Stretched Polyimides: A Structure-Property Study

    NASA Technical Reports Server (NTRS)

    Hinkley, Jeffrey A.; Dezern, James F.

    2002-01-01

    A simple rotational isomeric state model was used to detect the degree to which polyimide repeat units might align to give an extended crystal. It was found experimentally that the hallmarks of stretch-crystallization were more likely to occur in materials whose molecules could readily give extended, aligned conformations. A proposed screening criterion was 84% accurate in selecting crystallizing molecules.

  15. Perspective view of the Fifteenth Street facade; this facade stretches ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Perspective view of the Fifteenth Street facade; this facade stretches almost three city blocks but is partially masked by trees and relieved by four pedimented pavilions. At the time of its construction, this was the largest office building in the world. - United States Department of Commerce, Bounded by Fourteenth, Fifteenth, and E streets and Constitution Avenue, Washington, District of Columbia, DC

  16. Cooperativity among Short Amyloid Stretches in Long Amyloidogenic Sequences

    PubMed Central

    He, Zhisong; Shi, Xiaohe; Feng, Kaiyan; Ma, Buyong; Cai, Yu-Dong

    2012-01-01

    Amyloid fibrillar aggregates of polypeptides are associated with many neurodegenerative diseases. Short peptide segments in protein sequences may trigger aggregation. Identifying these stretches and examining their behavior in longer protein segments is critical for understanding these diseases and obtaining potential therapies. In this study, we combined machine learning and structure-based energy evaluation to examine and predict amyloidogenic segments. Our feature selection method discovered that windows consisting of long amino acid segments of ∼30 residues, instead of the commonly used short hexapeptides, provided the highest accuracy. Weighted contributions of an amino acid at each position in a 27 residue window revealed three cooperative regions of short stretch, resemble the β-strand-turn-β-strand motif in A-βpeptide amyloid and β-solenoid structure of HET-s(218–289) prion (C). Using an in-house energy evaluation algorithm, the interaction energy between two short stretches in long segment is computed and incorporated as an additional feature. The algorithm successfully predicted and classified amyloid segments with an overall accuracy of 75%. Our study revealed that genome-wide amyloid segments are not only dependent on short high propensity stretches, but also on nearby residues. PMID:22761773

  17. Effects of stretching on maintaining the Kuroshio meander

    NASA Astrophysics Data System (ADS)

    Kurogi, Masao; Hasumi, Hiroyasu; Tanaka, Yukio

    2013-03-01

    Using a two-way nested-grid ocean general circulation model driven by a repeat annual cycle forcing, the Kuroshio path variation is examined by varying the strength of wind forcing. For climatological or 10% weaker wind forcing, both large-meander (LM) and non-large-meander (NLM) paths alternately appear, with each type of path continuing for a few years to a decade. This timescale and path transition processes are generally consistent with observations. For the LM path, the main balance in the depth-integrated vorticity equation for the upper ocean is shown to be between the beta, advection, and stretching terms. The stretching term is comparable to and has the same sign as the beta term at the western side of the meandering part, indicating that the stretching term has the effects of shortening the wavelength and stabilizing the LM path. The stretching term is mainly determined by downwelling caused by crossing of the upper and deep flows. Contrary to the above two cases, only the NLM path appears for 10% stronger wind forcing. It is suggested that the strength of climatological wind forcing is near the upper limit that allows the LM path to occur. In this study, the control experiment is carried out by choosing parameterizations and parameter values to reproduce the Kuroshio path variation as realistic as possible. Therefore, the results from the two sensitivity experiments are expected to represent a realistic response of the Kuroshio path variation.

  18. Amplified stretch of bottlebrush-coated DNA in nanofluidic channels

    PubMed Central

    Zhang, Ce; Hernandez-Garcia, Armando; Jiang, Kai; Gong, Zongying; Guttula, Durgarao; Ng, Siow Yee; Malar, Piravi P.; van Kan, Jeroen A.; Dai, Liang; Doyle, Patrick S.; de Vries, Renko; van der Maarel, Johan R. C.

    2013-01-01

    The effect of a cationic-neutral diblock polypeptide on the conformation of single DNA molecules confined in rectangular nanochannels is investigated with fluorescence microscopy. An enhanced stretch along the channel is observed with increased binding of the cationic block of the polypeptide to DNA. A maximum stretch of 85% of the contour length can be achieved inside a channel with a cross-sectional diameter of 200 nm and at a 2-fold excess of polypeptide with respect to DNA charge. With site-specific fluorescence labelling, it is demonstrated that this maximum stretch is sufficient to map large-scale genomic organization. Monte Carlo computer simulation shows that the amplification of the stretch inside the nanochannels is owing to an increase in bending rigidity and thickness of bottlebrush-coated DNA. The persistence lengths and widths deduced from the nanochannel data agree with what has been estimated from the analysis of atomic force microscopy images of dried complexes on silica. PMID:24003032

  19. SOUTHERLY STRETCH OF MILLBURY PORTION; GENERAL VIEW OF TOWPATH BERM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SOUTHERLY STRETCH OF MILLBURY PORTION; GENERAL VIEW OF TOWPATH BERM (LEFT) AND CANAL PRISM (CENTER) WITH LATER EMBANKMENT OF U.S. ROUTE 20 RAMP ENCROACHING RIGHT; VIEW TO NORTH - Blackstone Canal Worcester-Millbury Segment, Eastern bank of Blackstone River, Millbury, Worcester County, MA

  20. SOUTHERLY STRETCH OF MILLBURY PORTION; CLOSER VIEW OF TRUNCATED NORTHERLY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SOUTHERLY STRETCH OF MILLBURY PORTION; CLOSER VIEW OF TRUNCATED NORTHERLY END OF TOWPATH BERM (RIGHT) AND CANAL PRISM (LEFT); VIEW TO SOUTH FROM LATER BORROW PIT - Blackstone Canal Worcester-Millbury Segment, Eastern bank of Blackstone River, Millbury, Worcester County, MA

  1. NORTHERLY STRETCH OF MILLBURY PORTION, GENERAL VIEW SHOWING TOWPATH BERM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    NORTHERLY STRETCH OF MILLBURY PORTION, GENERAL VIEW SHOWING TOWPATH BERM (CENTER/RIGHT) AND CANAL PRISM (LEFT); VIEW TO SOUTH FROM FOOT OF THE "TOWN-LINE DUMP" - Blackstone Canal Worcester-Millbury Segment, Eastern bank of Blackstone River, Millbury, Worcester County, MA

  2. Effects of Warm-Up Stretching Exercises on Sprint Performance

    ERIC Educational Resources Information Center

    Makaruk, Hubert; Makaruk, Beata; Kedra, Stanislaw

    2008-01-01

    Study aim: To assess direct effects of warm-up consisting of static and dynamic stretching exercises on sprint results attained by students differing in sprint performance. Material and methods: A group of 24 male and 19 female physical education students, including 12 and 9 sprinters, respectively. They performed warm-ups consisting of dynamic…

  3. Laser-induced structure formation on stretched polymer foils

    SciTech Connect

    Bityurin, Nikita; Arnold, Nikita; Baeuerle, Dieter; Arenholz, Enno

    2007-04-15

    Noncoherent structures that develop during UV laser ablation of stretched semicrystalline polymer foils are a very general phenomenon. A thermodynamic model based on stress relaxation within the modified layer of the polymer surface describes the main features of the observed phenomena, and, in particular, the dependence of the period of structures on laser wavelength, fluence, and number of laser pulses.

  4. Role of stretch reflex in voluntary movements. [of human foot

    NASA Technical Reports Server (NTRS)

    Gottlieb, G. L.; Agarwal, G. C.

    1975-01-01

    The stretch reflex is often described as a spinal servomechanism, a device for assisting in the regulation of muscle length. Observation of the EMG response to mechanical interruption of voluntary movements fails to demonstrate a significant role for spinal reflexes at 40 msec latency. Two functional responses with latencies of 120 msec and 200 msec, implying supraspinal mediation, are observed.

  5. Mediators of yoga and stretching for chronic low back pain.

    PubMed

    Sherman, Karen J; Wellman, Robert D; Cook, Andrea J; Cherkin, Daniel C; Ceballos, Rachel M

    2013-01-01

    Although yoga is an effective treatment for chronic low back pain, little is known about the mechanisms responsible for its benefits. In a trial comparing yoga to intensive stretching and self-care, we explored whether physical (hours of back exercise/week), cognitive (fear avoidance, body awareness, and self-efficacy), affective (psychological distress, perceived stress, positive states of mind, and sleep), and physiological factors (cortisol, DHEA) mediated the effects of yoga or stretching on back-related dysfunction (Roland-Morris Disability Scale (RDQ)). For yoga, 36% of the effect on 12-week RDQ was mediated by increased self-efficacy, 18% by sleep disturbance, 9% by hours of back exercise, and 61% by the best combination of all possible mediators (6 mediators). For stretching, 23% of the effect was mediated by increased self-efficacy, 14% by days of back exercise, and 50% by the best combination of all possible mediators (7 mediators). In open-ended questions, ≥20% of participants noted the following treatment benefits: learning new exercises (both groups), relaxation, increased awareness, and the benefits of breathing (yoga), benefits of regular practice (stretching). Although both self-efficacy and hours of back exercise were the strongest mediators for each intervention, compared to self-care, qualitative data suggest that they may exert their benefits through partially distinct mechanisms. PMID:23690832

  6. Stretched versus compressed exponential kinetics in α-helix folding

    NASA Astrophysics Data System (ADS)

    Hamm, Peter; Helbing, Jan; Bredenbeck, Jens

    2006-03-01

    In a recent paper (J. Bredenbeck, J. Helbing, J.R. Kumita, G.A. Woolley, P. Hamm, α-helix formation in a photoswitchable peptide tracked from picoseconds to microseconds by time resolved IR spectroscopy, Proc. Natl. Acad. Sci USA 102 (2005) 2379), we have investigated the folding of a photo-switchable α-helix with a kinetics that could be fit by a stretched exponential function exp(-( t/ τ) β). The stretching factor β became smaller as the temperature was lowered, a result which has been interpreted in terms of activated diffusion on a rugged energy surface. In the present paper, we discuss under which conditions diffusion problems occur with stretched exponential kinetics ( β < 1) and under which compressed exponential kinetics is obtained ( β > 1). We show that diffusion problems do have a strong tendency to yield stretched exponential kinetics, yet, that there are conditions (strong perturbation from equilibrium, performing the experiment in the folding direction) under which compressed exponential kinetics would be expected instead. We discuss the kinetics on free energy surfaces predicted by simple initiation-propagation models (zipper models) of α-helix folding, as well as by folding funnel models. We show that our recent experiment has been performed under condition for which models with strong downhill driving force, such as the zipper model, would predict compressed, rather than stretched exponential kinetics, in disagreement with the experimental observation. We therefore propose that the free energy surface along a reaction coordinate that governs the folding kinetics must be relatively flat and has a shape similar to a 1D golf course. We discuss how this conclusion can be unified with the thermodynamically well established zipper model by introducing an additional kinetic reaction coordinate.

  7. Stretch-sensitive paresis and effort perception in hemiparesis.

    PubMed

    Vinti, Maria; Bayle, Nicolas; Hutin, Emilie; Burke, David; Gracies, Jean-Michel

    2015-08-01

    In spastic paresis, stretch applied to the antagonist increases its inappropriate recruitment during agonist command (spastic co-contraction). It is unknown whether antagonist stretch: (1) also affects agonist recruitment; (2) alters effort perception. We quantified voluntary activation of ankle dorsiflexors, effort perception, and plantar flexor co-contraction during graded dorsiflexion efforts at two gastrocnemius lengths. Eighteen healthy (age 41 ± 13) and 18 hemiparetic (age 54 ± 12) subjects performed light, medium and maximal isometric dorsiflexion efforts with the knee flexed or extended. We determined dorsiflexor torque, Root Mean Square EMG and Agonist Recruitment/Co-contraction Indices (ARI/CCI) from the 500 ms peak voluntary agonist recruitment in a 5-s maximal isometric effort in tibialis anterior, soleus and medial gastrocnemius. Subjects retrospectively reported effort perception on a 10-point visual analog scale. During gastrocnemius stretch in hemiparetic subjects, we observed: (1) a 25 ± 7 % reduction of tibialis anterior voluntary activation (maximum reduction 98 %; knee extended vs knee flexed; p = 0.007, ANOVA); (2) an increase in dorsiflexion effort perception (p = 0.03, ANCOVA). Such changes did not occur in healthy subjects. Effort perception depended on tibialis anterior recruitment only (βARI(TA) = 0.61, p < 0.01) in healthy subjects (not on gastrocnemius medialis co-contraction) while it depended on both tibialis anterior agonist recruitment (βARI(TA) = 0.41, p < 0.001) and gastrocnemius medialis co-contraction (βCCI(MG) = 0.43, p < 0.001) in hemiparetic subjects. In hemiparesis, voluntary ability to recruit agonist motoneurones is impaired--sometimes abolished--by antagonist stretch, a phenomenon defined here as stretch-sensitive paresis. In addition, spastic co-contraction increases effort perception, an additional incentive to evaluate and treat this phenomenon.

  8. Pea lectin receptor-like kinase functions in salinity adaptation without yield penalty, by alleviating osmotic and ionic stresses and upregulating stress-responsive genes.

    PubMed

    Vaid, Neha; Pandey, Prashant; Srivastava, Vineet Kumar; Tuteja, Narendra

    2015-05-01

    Lectin receptor-like kinases (LecRLKs) are members of RLK family composed of lectin-like extracellular recognition domain, transmembrane domain and cytoplasmic kinase domain. LecRLKs are plasma membrane proteins believed to be involved in signal transduction. However, most of the members of the protein family even in plants have not been functionally well characterized. Herein, we show that Pisum sativum LecRLK (PsLecRLK) localized in plasma membrane systems and/or other regions of the cell and its transcript upregulated under salinity stress. Overexpression of PsLecRLK in transgenic tobacco plants confers salinity stress tolerance by alleviating both the ionic as well the osmotic component of salinity stress. The transgenic plants show better tissue compartmentalization of Na(+) and higher ROS scavenging activity which probably results in lower membrane damage, improved growth and yield maintenance even under salinity stress. Also, expression of several genes involved in cellular homeostasis is perturbed by PsLecRLK overexpression. Alleviation of osmotic and ionic components of salinity stress along with reduced oxidative damage and upregulation of stress-responsive genes in transgenic plants under salinity stress conditions could be possible mechanism facilitating enhanced stress tolerance. This study presents PsLecRLK as a promising candidate for crop improvement and also opens up new avenue to investigate its signalling pathway.

  9. Stretch calculated from grip distance accurately approximates mid-specimen stretch in large elastic arteries in uniaxial tensile tests.

    PubMed

    Tian, Lian; Henningsen, Joseph; Salick, Max R; Crone, Wendy C; Gunderson, McLean; Dailey, Seth H; Chesler, Naomi C

    2015-07-01

    The mechanical properties of vascular tissues affect hemodynamics and can alter disease progression. The uniaxial tensile test is a simple and effective method for determining the stress-strain relationship in arterial tissue ex vivo. To enable calculation of strain, stretch can be measured directly with image tracking of markers on the tissue or indirectly from the distance between the grips used to hold the specimen. While the imaging technique is generally considered more accurate, it also requires more analysis, and the grip distance method is more widely used. The purpose of this study is to compare the stretch of the testing specimen calculated from the grip distance method to that obtained from the imaging method for canine descending aortas and large proximal pulmonary arteries. Our results showed a significant difference in stretch between the two methods; however, this difference was consistently less than 2%. Therefore, the grip distance method is an accurate approximation of the stretch in large elastic arteries in the uniaxial tensile test. PMID:25881308

  10. Effects of Bed Rest on Conduction Velocity of the Triceps Surae Stretch Reflex and Postural Control

    NASA Technical Reports Server (NTRS)

    Reschke, M. F.; Wood, S. J.; Cerisano, J. M.; Kofman, I. S.; Fisher, E. A.; Esteves, J. T.; Taylor, L. C.; DeDios, Y. E.; Harm, D. L.

    2011-01-01

    Despite rigorous exercise and nutritional management during space missions, astronauts returning from microgravity exhibit neuromuscular deficits and a significant loss in muscle mass in the postural muscles of the lower leg. Similar changes in the postural muscles occur in subjects participating in long-duration bed rest studies. These adaptive muscle changes manifest as a reduction in reflex conduction velocity during head-down bed rest. Because the stretch reflex encompasses both the peripheral (muscle spindle and nerve axon) and central (spinal synapse) components involved in adaptation to calf muscle unloading, it may be used to provide feedback on the general condition of neuromuscular function, and might be used to evaluate the effectiveness of countermeasures aimed at preserving muscle mass and function during periods of unloading. Stretch reflexes were measured on 18 control subjects who spent 60 to 90 days in continuous 6 deg head-down bed rest. Using a motorized system capable of rotating the foot around the ankle joint (dorsiflexion) through an angle of 10 degrees at a peak velocity of about 250 deg/sec, a stretch reflex was recorded from the subject's left triceps surae muscle group. Using surface electromyography, about 300 reflex responses were obtained and ensemble-averaged on 3 separate days before bed rest, 3 to 4 times in bed, and 3 times after bed rest. The averaged responses for each test day were examined for reflex latency and conduction velocity (CV) across gender. Computerized posturography was also conducted on these same subjects before and after bed rest as part of the standard measures. Peak-to-peak sway was measured during Sensory Organization Tests (SOTs) to evaluate changes in the ability to effectively use or suppress visual, vestibular, and proprioceptive information for postural control. Although no gender differences were found, a significant increase in reflex latency and a significant decrease in CV were observed during the bed

  11. Precise adaptation in chemotaxis through ``assistance neighborhoods"

    NASA Astrophysics Data System (ADS)

    Endres, Robert; Wingreen, Ned

    2006-03-01

    The chemotaxis network in Escherichia coli is remarkable for its sensitivity to small relative changes in the concentrations of multiple chemical signals over a broad range of ambient concentrations. Key to this sensitivity is an adaptation system that relies on methylation and demethylation/deamidation of specific modification sites of the chemoreceptors by the enzymes CheR and CheB, respectively. These enzymes can access 5-7 receptors once tethered to a particular receptor. Based on these ``assistance neighborhoods'', we present a model for precise adaptation of mixed clusters of two-state chemoreceptors. In agreement with experiment the response of adapted cells to addition/removal of attractant scales with the free-energy change at fixed ligand affinity. Our model further predicts two possible limits of precise adaptation: either the response to further addition of attractant stops through saturation of the receptors, or receptors fully methylate before they saturate and therefore stop adapting.

  12. Impaired recovery of brain muscarinic receptor sites following an adaptive down-regulation induced by repeated administration of diisopropyl fluorophosphate in aged rats

    SciTech Connect

    Pintor, A.; Fortuna, S.; De Angelis, S.; Michalek, H. )

    1990-01-01

    Potential age-related differences in the recovery rate of brain cholinesterase activity (ChE) and muscarinic acetylcholine receptor binding sites (mAChRs) following reduction induced by repeated treatment with diisopropyl fluorophosphate (DFP) were evaluated in Sprague-Dawley rats. Male 3- and 24-month old rats were s.c. injected with DFP on alternate days for 2 weeks and killed 48 hr and 7, 14, 21, 28 and 35 days after the last treatment. In the hippocampus and striatum, but not in the cerebral cortex, of control rats there as a significant age-related decline of ChE activity and maximal density of 3H-QNB binding sites (Bmax). The repeated administration of DFP during the first week caused a syndrome of cholinergic stimulation both in aged and young rats. The syndrome was more pronounced, in terms of intensity and duration in aged than in young animals resulting in 40 and 12% mortality, respectively; during the second week the syndrome attenuated in the two age-groups. The percentage inhibition of brain ChE at the end of DFP treatment did not differ between young and surviving aged rats. The down-regulation of mACRs was present in the three brain regions of both young and age rats (from 20 to 40%). Factorial analysis of variance showed significant differences for age, recovery rate, and significant interaction between age and recovery rate, both for ChE and mAChRs in young rats the three brain areas.

  13. The effectiveness of manual stretching in the treatment of plantar heel pain: a systematic review

    PubMed Central

    2011-01-01

    Background Plantar heel pain is a commonly occurring foot complaint. Stretching is frequently utilised as a treatment, yet a systematic review focusing only on its effectiveness has not been published. This review aimed to assess the effectiveness of stretching on pain and function in people with plantar heel pain. Methods Medline, EMBASE, CINAHL, AMED, and The Cochrane Library were searched from inception to July 2010. Studies fulfilling the inclusion criteria were independently assessed, and their quality evaluated using the modified PEDro scale. Results Six studies including 365 symptomatic participants were included. Two compared stretching with a control, one study compared stretching to an alternative intervention, one study compared stretching to both alternative and control interventions, and two compared different stretching techniques and durations. Quality rating on the modified Pedro scale varied from two to eight out of a maximum of ten points. The methodologies and interventions varied significantly between studies, making meta-analysis inappropriate. Most participants improved over the course of the studies, but when stretching was compared to alternative or control interventions, the changes only reached statistical significance in one study that used a combination of calf muscle stretches and plantar fascia stretches in their stretching programme. Another study comparing different stretching techniques, showed a statistically significant reduction in some aspects of pain in favour of plantar fascia stretching over calf stretches in the short term. Conclusions There were too few studies to assess whether stretching is effective compared to control or other interventions, for either pain or function. However, there is some evidence that plantar fascia stretching may be more effective than Achilles tendon stretching alone in the short-term. Appropriately powered randomised controlled trials, utilizing validated outcome measures, blinded assessors and

  14. Acute effect of different stretching methods on Illinois agility test in soccer players.

    PubMed

    Amiri-Khorasani, Mohammadtaghi; Sahebozamani, Mansour; Tabrizi, Kourosh G; Yusof, Ashril B

    2010-10-01

    The purpose of this study was to examine the effects of static, dynamic, and the combination of static and dynamic stretching within a pre-exercise warm-up on the Illinois agility test (IAT) in soccer players. Nineteen professional soccer players (age = 22.5 ± 2.5 years, height = 1.79 ± 0.003 m, body mass = 74.8 ± 10.9 kg) were tested for agility performance using the IAT after different warm-up protocols consisting of static, dynamic, combined stretching, and no stretching. The players were subgrouped into less and more experienced players (5.12 ± 0.83 and 8.18 ± 1.16 years, respectively). There were significant decreases in agility time after no stretching, among no stretching vs. static stretching; after dynamic stretching, among static vs. dynamic stretching; and after dynamic stretching, among dynamic vs. combined stretching during warm-ups for the agility: mean ± SD data were 14.18 ± 0.66 seconds (no stretch), 14.90 ± 0.38 seconds (static), 13.95 ± 0.32 seconds (dynamic), and 14.50 ± 0.35 seconds (combined). There was significant difference between less and more experienced players after no stretching and dynamic stretching. There was significant decrease in agility time following dynamic stretching vs. static stretching in both less and more experienced players. Static stretching does not appear to be detrimental to agility performance when combined with dynamic warm-up for professional soccer players. However, dynamic stretching during the warm-up was most effective as preparation for agility performance. The data from this study suggest that more experienced players demonstrate better agility skills due to years of training and playing soccer.

  15. A vorticity stretching diagnostic for turbulent and transitional flows

    NASA Astrophysics Data System (ADS)

    Malm, Johan; Schlatter, Philipp; Sandham, Neil D.

    2012-12-01

    Vorticity stretching in wall-bounded turbulent and transitional flows has been investigated by means of a new diagnostic measure, denoted by Γ, designed to pick up regions with large amounts of vorticity stretching. It is based on the maximum vorticity stretching component in every spatial point, thus yielding a three-dimensional scalar field. The measure was applied in four different flows with increasing complexity: (a) the near-wall cycle in an asymptotic suction boundary layer (ASBL), (b) K-type transition in a plane channel flow, (c) fully turbulent channel flow at Re τ = 180 and (d) a complex turbulent three-dimensional separated flow. Instantaneous data show that the coherent structures associated with intense vorticity stretching in all four cases have the shape of flat `pancake' structures in the vicinity of high-speed streaks, here denoted `h-type' events. The other event found is of `l-type', present on top of an unstable low-speed streak. These events (l-type) are further thought to be associated with the exponential growth of streamwise vorticity in the turbulent near-wall cycle. It was found that the largest occurrence of vorticity stretching in the fully turbulent wall-bounded flows is present at a wall-normal distance of y + = 6.5, i.e. in the transition between the viscous sublayer and buffer layer. The associated structures have a streamwise length of ~200-300 wall units. In K-type transition, the Γ-measure accurately locates the regions of interest, in particular the formation of high-speed streaks near the wall (h-type) and the appearance of the hairpin vortex (l-type). In the turbulent separated flow, the structures containing large amounts of vorticity stretching increase in size and magnitude in the shear layer upstream of the separation bubble but vanish in the backflow region itself. Overall, the measure proved to be useful in showing growing instabilities before they develop into structures, highlighting the mechanisms creating high

  16. Changes in muscle fibre type, muscle mass and IGF-I gene expression in rabbit skeletal muscle subjected to stretch

    PubMed Central

    YANG, SHIYU; ALNAQEEB, MAJED; SIMPSON, HAMISH; GOLDSPINK, GEOFFREY

    1997-01-01

    The relationship between IGF-I and changes in muscle fibre phenotype in response to 6 d of stretch or disuse of the lower limb muscles of the rabbit was studied by combining in situ hybridisation and immunohistochemistry procedures. Passive stretch by plaster cast immobilisation of the muscle in its lengthened position not only induced an increase in IGF-I mRNA expression within the individual muscle fibres but also an increase in the percentage of fibres expressing neonatal and slow myosin. This change in phenotype was also found to be accompanied by a rapid and marked increase of muscle mass, total RNA content as well as IGF-I gene expression. In contrast, IGF-I appears not to be involved in muscle atrophy induced by immobilisation in the shortened position and the inactivity which results from this procedure. The level of increase in expression of IGF-I mRNA varied from fibre to fibre. By using adjacent serial sections, the fibres which expressed IGF-I mRNA at the highest levels were identified as expressing neonatal and the slow type 1 myosin. These data suggest that the expression of IGF-I within individual muscle fibres is correlated not only with hypertrophy but also with the muscle phenotypic adaptation that results from stretch and overload. PMID:9183683

  17. Post-immobilization eccentric training promotes greater hypertrophic and angiogenic responses than passive stretching in muscles of weanling rats.

    PubMed

    Benedini-Elias, Priscila Cação Oliveira; Morgan, Mariana Calvente; Cornachione, Anabelle Silva; Martinez, Edson Z; Mattiello-Sverzut, Ana Claudia

    2014-04-01

    This study investigated how different types of remobilization after hind limb immobilization, eccentric exercise and passive static stretching, influenced the adaptive responses of muscles with similar function and fascicle size, but differing in their contractile characteristics. Female Wistar weanling rats (21 days old) were divided into 8 groups: immobilized for 10 days, maintaining the ankle in maximum plantar flexion; immobilized and submitted to eccentric training for 10 or 21 days on a declining treadmill for 40min; immobilized and submitted to passive stretching for 10 or 21 days for 40min by maintaining the ankle in maximum dorsiflexion; control of immobilized; and control of 10 or 21 days. The soleus and plantaris muscles were analyzed using fiber distribution, lesser diameter, capillary/fiber ratio, and morphology. Results showed that the immobilization reduced the diameter of all fiber types, caused changes in fiber distribution and decreased the number of transverse capillaries in both muscles. The recovery period of the soleus muscle is longer than that of the plantaris after detraining. Moreover, eccentric training induced greater hypertrophic and angiogenic responses than passive stretching, especially after 21 days of rehabilitation. Both techniques demonstrated positive effects for muscle rehabilitation with the eccentric exercise being more effective.

  18. β-Arrestin-2 knockout prevents development of cellular μ-opioid receptor tolerance but does not affect opioid-withdrawal-related adaptations in single PAG neurons

    PubMed Central

    Connor, M; Bagley, E E; Chieng, B C; Christie, M J

    2015-01-01

    BACKGROUND AND PURPOSE Tolerance to the behavioural effects of morphine is blunted in β-arrestin-2 knockout mice, but opioid withdrawal is largely unaffected. The cellular mechanisms of tolerance have been studied in some neurons from β-arrestin-2 knockouts, but tolerance and withdrawal mechanisms have not been examined at the cellular level in periaqueductal grey (PAG) neurons, which are crucial for central tolerance and withdrawal phenomena. EXPERIMENTAL APPROACH μ-Opioid receptor (MOPr) inhibition of voltage-gated calcium channel currents (ICa) was examined by patch-clamp recordings from acutely dissociated PAG neurons from wild-type and β-arrestin-2 knockout mice treated chronically with morphine (CMT) or vehicle. Opioid withdrawal-induced activation of GABA transporter type 1 (GAT-1) currents was determined using perforated patch recordings from PAG neurons in brain slices. KEY RESULTS MOPr inhibition of ICa in PAG neurons was unaffected by β-arrestin-2 deletion. CMT impaired coupling of MOPrs to ICa in PAG neurons from wild-type mice, but this cellular tolerance was not observed in neurons from CMT β-arrestin-2 knockouts. However, β-arrestin-2 knockouts displayed similar opioid-withdrawal-induced activation of GAT-1 currents as wild-type PAG neurons. CONCLUSIONS AND IMPLICATIONS In β-arrestin-2 knockout mice, the central neurons involved in the anti-nociceptive actions of opioids also fail to develop cellular tolerance to opioids following chronic morphine. The results also provide the first cellular physiological evidence that opioid withdrawal is not disrupted by β-arrestin-2 deletion. However, the unaffected basal sensitivity to opioids in PAG neurons provides further evidence that changes in basal MOPr sensitivity cannot account for the enhanced acute nociceptive response to morphine reported in β-arrestin-2 knockouts. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other

  19. Force responses to controlled stretches of electrically stimulated human muscle-tendon complex.

    PubMed

    Cook, C S; McDonagh, M J

    1995-05-01

    Human first dorsal interosseus muscle was tetanized using percutaneous electrical stimulation. During the tetanus the muscle was subjected to constant velocity stretches. The stretch produced an enhancement of muscular force of up to 80% during the stretch. The size of the enhancement was dependent on both the amplitude and the velocity of the stretch. During an isometric hold phase after the stretch, the force decayed quickly for the first 100 ms and thereafter much more slowly, reaching a level 30% higher than the isometric force without pre-stretch. The force during this hold phase was dependent on amplitude of stretch but was independent of stretch velocity. The interaction of tendon elasticity and muscle fibre mechanics in producing these responses is discussed. Implications for normal human movements are also explored. PMID:7640012

  20. Color enhancement of highly correlated images. I - Decorrelation and HSI contrast stretches. [hue saturation intensity

    NASA Technical Reports Server (NTRS)

    Gillespie, Alan R.; Kahle, Anne B.; Walker, Richard E.

    1986-01-01

    Conventional enhancements for the color display of multispectral images are based on independent contrast modifications or 'stretches' of three input images. This approach is not effective if the image channels are highly correlated or if the image histograms are strongly bimodal or more complex. Any of several procedures that tend to 'stretch' color saturation while leaving hue unchanged may better utilize the full range of colors for the display of image information. Two conceptually different enhancements are discussed: the 'decorrelation stretch', based on principal-component (PC) analysis, and the 'stretch' of 'hue' - 'saturation' - intensity (HSI) transformed data. The PC transformation in scene-dependent, but the HSI transformation is invariant. Examples of images enhanced by conventional linear stretches, decorrelation stretch, and by stretches of HSI transformed data are compared. Schematic variation diagrams or two- and three-dimensional histograms are used to illustrate the 'decorrelation stretch' method and the effect of the different enhancements.

  1. Quantized Evolution of the Plasmonic Response in a Stretched Nanorod

    NASA Astrophysics Data System (ADS)

    Rossi, Tuomas P.; Zugarramurdi, Asier; Puska, Martti J.; Nieminen, Risto M.

    2015-12-01

    Quantum aspects, such as electron tunneling between closely separated metallic nanoparticles, are crucial for understanding the plasmonic response of nanoscale systems. We explore quantum effects on the response of the conductively coupled metallic nanoparticle dimer. This is realized by stretching a nanorod, which leads to the formation of a narrowing atomic contact between the two nanorod ends. Based on first-principles time-dependent density-functional-theory calculations, we find a discontinuous evolution of the plasmonic response as the nanorod is stretched. This is especially pronounced for the intensity of the main charge-transfer plasmon mode. We show the correlation between the observed discontinuities and the discrete nature of the conduction channels supported by the formed atomic-sized junction.

  2. Progressive muscle relaxation, yoga stretching, and ABC relaxation theory.

    PubMed

    Ghoncheh, Shahyad; Smith, Jonathan C

    2004-01-01

    This study compared the psychological effects of progressive muscle relaxation (PMR) and yoga stretching (hatha) exercises. Forty participants were randomly divided into two groups and taught PMR or yoga stretching exercises. Both groups practiced once a week for five weeks and were given the Smith Relaxation States Inventory before and after each session. As hypothesized, practitioners of PMR displayed higher levels of relaxation states (R-States) Physical Relaxation and Disengagement at Week 4 and higher levels of Mental Quiet and Joy as a posttraining aftereffect at Week 5. Contrary to what was hypothesized, groups did not display different levels of R-States Energized or Aware. Results suggest the value of supplementing traditional somatic conceptualizations of relaxation with the psychological approach embodied in ABC relaxation theory. Clinical and research implications are discussed.

  3. Effect of hydrodynamic interaction on partially stretched polymers.

    PubMed

    Sain, Anirban

    2008-06-01

    We compute the effect of hydrodynamic interaction and stretching on the fluctuation properties of a polymer, with its end points held fixed. Computing the preaveraged hydrodynamic tensor exactly for this geometry, we study both flexible and semiflexible polymer chains, such as Zimm, freely jointed chain, and wormlike chain (WLC) models. We compare the spectra of relaxation-time scales for the effective normal modes of these models. The spectra differ across models with respect to the degree of stretch, but their power-law scaling with low mode numbers turns out to be the same. The characteristics of the transverse modes of WLC agree very well with the experimental data on DNA. The crossover scaling function for (1/r), the inverse of the distance along the polymer contour, yields a modified formula for the size of a "Pincus blob," appropriate for the fixed-end boundary condition.

  4. Effect of passive muscle stretching in osteoarthritis of the hip.

    PubMed

    Leivseth, G; Torstensson, J; Reikerås, O

    1989-01-01

    1. Twenty-five minute daily muscle stretching, perpendicular to the fibre direction of the adductor muscles without movement of the hip, was performed in patients with osteoarthritis of the hip. 2. Before and after treatment hip abduction was measured and muscle biopsies were taken for analysis of fibre cross-sectional areas of type 1 and type 2 fibres as well as adenosine 5'-triphosphate, creatine phosphate and glycogen contents. 3. From the results it is concluded that passive muscle stretching leads to a significant increase in hip abduction of 8.3 degrees (P less than 0.05). There was also a significant increase of type 1 and type 2 fibre cross-sectional area and of glycogen content after the treatment period (P less than 0.05), but the concentrations of adenosine 5'-triphosphate and creatine phosphate did not change significantly.

  5. "Stretch Your Body and Your Mind" (Tai Chi as an Adaptive Activity).

    ERIC Educational Resources Information Center

    Crider, Duane A.; Klinger, William

    Tai Chi may be an ideal activity for accommodating a wide variety of individuals with varying interests and physical skills while providing substantial health benefits. Theory suggests that children, adolescents, and healthy adults, as well as senior citizens and people debilitated by illness or injury, may benefit from the practice of Tai Chi…

  6. The effects of strain heating in lithospheric stretching models

    NASA Technical Reports Server (NTRS)

    Stanton, M.; Hodge, D.; Cozzarelli, F.

    1985-01-01

    The deformation by stretching of a continental type lithosphere has been formulated so that the problem can be solved by a continuum mechanical approach. The deformation, stress state, and temperature distribution are constrained to satisfy the physical laws of conservation of mass, energy, momentum, and an experimentally defined rheological response. The conservation of energy equation including a term of strain energy dissipation is given. The continental lithosphere is assumed to have the rheology of an isotropic, incompressible, nonlinear viscous, two layered solid.

  7. Reflex facilitation during the stretch-shortening cycle.

    PubMed

    Trimble, M H; Kukulka, C G; Thomas, R S

    2000-06-01

    Maximal torque during the concentric phase of a movement has been shown to be enhanced by prior eccentric muscle actions, a movement strategy referred to as the stretch-shortening cycle. Although the mechanical basis for this enhancement is well established, the neural component is not. We hypothesized that brief high-frequency bursts of spindle afferent discharge during the eccentric phase of the stretch-shortening cycle could be one mechanism for facilitating the volitional drive. To test this hypothesis, three sets of experiments were done. In the first (N=15), we demonstrated that both the peak and mean EMG of the soleus (S) and lateral gastrocnemius (LG) muscles were considerably greater during a reciprocal hopping (RHOP) task than for maximum isometric contractions (MIVCs). In the second experiment, we tested whether the dynamic nature of the RHOP or the eccentric phase of the RHOP contributed to the EMG potentiation. Peak and mean EMG produced with a concentric hop (CHOP), in which the lengthening phase of the hop was eliminated, were compared with that produced with the RHOP and MIVCs conditions (N=7). The RHOP produced greater peak EMG than either the CHOP or the MIVCs while the mean EMG for both hopping conditions was considerably more than the MIVCs. In the final experiment, we attempted to mimic the brief high-frequency burst of spindle afferent activity during the lengthening phase of the stretch-shortening cycle in the absence of muscle length changes. High-frequency (100 Hz) afferent stimulation (HFS) was delivered during MIVCs. At rest, the HFS produced negligible EMG activity but when superimposed over MIVCs produced a marked potentiation of the S EMG over values obtained during MIVCs alone. Evidence that HFS synchronizes the EMG associated with volitional activation is also provided. We conclude that a substantial but brief facilitation and possible synchronization of the neural drive is provided by the spindle afferents during the eccentric phase

  8. Positioning and stretching of actin filaments by electric fields

    NASA Astrophysics Data System (ADS)

    Wigge, Christoph; Hinssen, Horst; Reiss, Günter; Herth, Simone

    2010-06-01

    The alignment of biological filaments on surfaces offers a high potential for controllable geometries in lab-on-a-chip-structures and micrototal analysis systems. Actin is a polar filamentous protein with a diameter of 7-8 nm that can be manipulated with strong electric fields. It is demonstrated that with the use of microelectrodes or nanoelectrodes and electric fields of 20 kV/m single actin filaments can be manipulated, stretched, and positioned between gold electrodes.

  9. Growth on demand: reviewing the mechanobiology of stretched skin.

    PubMed

    Zöllner, Alexander M; Holland, Maria A; Honda, Kord S; Gosain, Arun K; Kuhl, Ellen

    2013-12-01

    Skin is a highly dynamic, autoregulated, living system that responds to mechanical stretch through a net gain in skin surface area. Tissue expansion uses the concept of controlled overstretch to grow extra skin for defect repair in situ. While the short-term mechanics of stretched skin have been studied intensely by testing explanted tissue samples ex vivo, we know very little about the long-term biomechanics and mechanobiology of living skin in vivo. Here we explore the long-term effects of mechanical stretch on the characteristics of living skin using a mathematical model for skin growth. We review the molecular mechanisms by which skin responds to mechanical loading and model their effects collectively in a single scalar-valued internal variable, the surface area growth. This allows us to adopt a continuum model for growing skin based on the multiplicative decomposition of the deformation gradient into a reversible elastic and an irreversible growth part. To demonstrate the inherent modularity of this approach, we implement growth as a user-defined constitutive subroutine into the general purpose implicit finite element program Abaqus/Standard. To illustrate the features of the model, we simulate the controlled area growth of skin in response to tissue expansion with multiple filling points in time. Our results demonstrate that the field theories of continuum mechanics can reliably predict the manipulation of thin biological membranes through mechanical overstretch. Our model could serve as a valuable tool to rationalize clinical process parameters such as expander geometry, expander size, filling volume, filling pressure, and inflation timing to minimize tissue necrosis and maximize patient comfort in plastic and reconstructive surgery. While initially developed for growing skin, our model can easily be generalized to arbitrary biological structures to explore the physiology and pathology of stretch-induced growth of other living systems such as hearts

  10. The Acute Effects of Static Stretching on Speed and Agility Performance Depend on Stretch Duration and Conditioning Level.

    PubMed

    Avloniti, Alexandra; Chatzinikolaou, Athanasios; Fatouros, Ioannis G; Avloniti, Christina; Protopapa, Maria; Draganidis, Dimitrios; Stampoulis, Theodoros; Leontsini, Diamanda; Mavropalias, George; Gounelas, George; Kambas, Antonios

    2016-10-01

    Avloniti, A, Chatzinikolaou, A, Fatouros, IG, Avloniti, C, Protopapa, M, Draganidis, D, Stampoulis, T, Leontsini, D, Mavropalias, G, Gounelas, G, and Kambas, A. The acute effects of static stretching on speed and agility performance depend on stretch duration and conditioning level. J Strength Cond Res 30(10): 2767-2773, 2016-Although static stretching (SS) is an integral part of physical preparation before training and competition, its usefulness in regards to power performance improvement has been questioned. The aim of this study was to investigate the effect of 6 SS durations on speed and agility performance. According to a cross-over design, 34 trained men (age, 20.5 ± 1.4 years; height, 1.81 ± 0.2 m; weight, 77.2 ± 2.6 kg; body fat, 8.2 ± 2.6%) participated in a control session (no stretch) and 6 experimental conditions (10, 15, 20, 30, 40, and 60 seconds) performed in a randomized order. Performance in speed (10 and 20 m) and agility (T-test) was measured after the control and experimental conditions. Static stretching, consisting of stretches for hip extensors, hip adductors, knee extensors, knee flexors, and ankle sole flexors, was performed after light cardiovascular exercise (8 minutes). A 1-way repeated-measures analysis of variance showed that speed was improved only by SS of short duration (15/20 seconds), whereas agility remained unaffected by all SS trials. When participants' speed and agility level was taken into account, it was revealed that only those of moderate performance demonstrated an improved speed (in 15- and 20-second trials) and agility (in 10- and 15-second trials) performance. These results suggest that short-duration SS protocols induce an acute improvement of speed and agility performance, whereas longer-duration SS protocols have neither positive nor negative effect. Furthermore, it seems that individuals of lower speed and agility performance level are more likely to benefit by a short-duration SS protocol.

  11. Stretching Diagnostics and Mixing Properties In The Stratosphere

    NASA Astrophysics Data System (ADS)

    Legras, B.; Shuckburgh, E.

    The "finite size Lyapunov exponent" and the "effective diffusivity" are two diagnos- tics of mixing which have been recently introduced to investigate atmospheric flows. Both have been used to successfully identify the barriers to transport, for instance at the edge of the stratospheric polar vortex. Here we compare the two diagnostics in detail. The equivalent length has the advantage of arising as a mixing quantification from a rigid theoretical framework, however it has the disadvantage of being an aver- age quantity (the average around a tracer contour). The finite size Lyapunov exponent may be defined at any point in the flow, and quantifies the stretching properties expe- rienced by a fluid parcel both in its past and future evolution. In particular, the lines of maximum stretching at any time delineate the building blocks of the chaotic stirring. However the interpretation of the finite size Lyapunov exponent as a mixing time is less direct and depends on the alignment of tracer contours with the stretching lines.

  12. Fibril orientation redistribution induced by stretching of cellulose nanofibril hydrogels

    SciTech Connect

    Josefsson, Gabriella; Gamstedt, E. Kristofer; Ahvenainen, Patrik; Mushi, Ngesa Ezekiel

    2015-06-07

    The mechanical performance of materials reinforced by cellulose nanofibrils is highly affected by the orientation of these fibrils. This paper investigates the nanofibril orientation distribution of films of partly oriented cellulose nanofibrils. Stripes of hydrogel films were subjected to different amount of strain and, after drying, examined with X-ray diffraction to obtain the orientation of the nanofibrils in the films, caused by the stretching. The cellulose nanofibrils had initially a random in-plane orientation in the hydrogel films and the strain was applied to the films before the nanofibrils bond tightly together, which occurs during drying. The stretching resulted in a reorientation of the nanofibrils in the films, with monotonically increasing orientation towards the load direction with increasing strain. Estimation of nanofibril reorientation by X-ray diffraction enables quantitative comparison of the stretch-induced orientation ability of different cellulose nanofibril systems. The reorientation of nanofibrils as a consequence of an applied strain is also predicted by a geometrical model of deformation of nanofibril hydrogels. Conversely, in high-strain cold-drawing of wet cellulose nanofibril materials, the enhanced orientation is promoted by slipping of the effectively stiff fibrils.

  13. The different muscle-energetics during shortening and stretch.

    PubMed

    Jarosch, Robert

    2011-01-01

    The helical shape of the thin filaments causes their passive counterclockwise rotation during muscle stretch that increases tensile stress and torque at first by unwinding and then by winding up the four anchoring Z-filaments. This means storage of energy in the series elastic Z-filaments and a considerable decrease of the liberated energy of heat and work to (h-w(ap)), where h is the heat energy and w(ap) the stretch energy induced from outside by an apparatus. The steep thin filament helix with an inclination angle of 70° promotes the passive rotation during stretch, but impedes the smooth sliding of shortening by increased friction and production of frictional heat. The frictional heat may be produced by the contact with the myosin cross-bridges: (1) when they passively snap on drilling thin filaments from cleft to cleft over a distance 2 × 2.7 nm = 5.4 nm between the globular actin monomers in one groove, causing stepwise motion; or (2) when they passively cycle from one helical groove to the next (distance 36 nm). The latter causes more heat and may take place on rotating thin filaments without an effective forward drilling ("idle rotation"), e.g., when they produce "unexplained heat" at the beginning of an isometric tetanus. In an Appendix to this paper the different states of muscle are defined. The function of its most important components is described and rotation model and power-stroke model of muscular contraction is compared.

  14. Stretch fast dynamo mechanism via conformal mapping in Riemannian manifolds

    SciTech Connect

    Garcia de Andrade, L. C.

    2007-10-15

    Two new analytical solutions of the self-induction equation in Riemannian manifolds are presented. The first represents a twisted magnetic flux tube or flux rope in plasma astrophysics, where the rotation of the flow implies that the poloidal field is amplified from toroidal field, in the spirit of dynamo theory. The value of the amplification depends on the Frenet torsion of the magnetic axis of the tube. Actually this result illustrates the Zeldovich stretch, twist, and fold method to generate dynamos from straight and untwisted ropes. Based on the fact that this problem was previously handled, using a Riemannian geometry of twisted magnetic flux ropes [Phys Plasmas 13, 022309 (2006)], investigation of a second dynamo solution, conformally related to the Arnold kinematic fast dynamo, is obtained. In this solution, it is shown that the conformal effect on the fast dynamo metric enhances the Zeldovich stretch, and therefore a new dynamo solution is obtained. When a conformal mapping is performed in an Arnold fast dynamo line element, a uniform stretch is obtained in the original line element.

  15. Platelet activation via the collagen receptor GPVI is not altered in platelets from chronic myeloid leukaemia patients despite the presence of the constitutively phosphorylated adapter protein CrkL.

    PubMed

    Best, D; Pasquet, S; Littlewood, T J; Brunskill, S J; Pallister, C J; Watson, S P

    2001-03-01

    In this study, we show that the adapter proteins CrkL and Cbl undergo increases in tyrosine phosphorylation and form an intracellular complex in platelets stimulated with the snake venom toxin convulxin, a selective agonist at the collagen receptor glycoprotein VI (GPVI). Constitutive tyrosine phosphorylation of CrkL has previously been reported in platelets from chronic myeloid leukaemia (CML) patients. This was confirmed in the present study, and shown to result in a weak constitutive association of CrkL with Cbl and a number of other unidentified tyrosine-phosphorylated proteins. There was no further increase in phosphorylation of CrkL in CML platelets in response to GPVI activation, whereas phosphorylation of Cbl and its association with CrkL were potentiated. In addition, this was accompanied by a small increase in p42/ 44 mapkinase (MAPK) activity in CML platelets. The functional consequence of the presence of constitutively phosphorylated proteins in CML platelets was investigated by measurement of aminophospholipid exposure and alpha-granule secretion. This revealed little alteration in the concentration-response curves for either in CML platelets stimulated via GPVI, although maximal levels of P-selectin were depressed. Despite the minimal effect on platelet activation in CML patients, we cannot exclude a role for CrkL or Cbl in signal transduction pathways stimulated via GPVI. PMID:11260061

  16. Adaptive Management

    EPA Science Inventory

    Adaptive management is an approach to natural resource management that emphasizes learning through management where knowledge is incomplete, and when, despite inherent uncertainty, managers and policymakers must act. Unlike a traditional trial and error approach, adaptive managem...

  17. A Single 30-s Stretch Is Sufficient to Inhibit Maximal Voluntary Strength

    ERIC Educational Resources Information Center

    Winchester, Jason B.; Nelson, Arnold G.; Kokkonen, Joke

    2009-01-01

    While it has been well established that an acute stretching program can inhibit maximal muscle performance, the amount of stretching needed to produce the deleterious response is unknown. Therefore this study examined the dose-response relationship between acute stretching and strength inhibition. Eighteen college students performed a one…

  18. Can Stretching Prior to Exercise and Sports Improve Performance and Prevent Injury?

    ERIC Educational Resources Information Center

    Bracko, Michael R.

    2002-01-01

    Examines data from research on stretching as it relates to enhanced performance and injury prevention so that fitness, exercise, and sports performance professionals can make informed decisions about stretching programs for clients. The paper notes that stretching is a misunderstood component of fitness and sports training. Few studies show…

  19. Effects of two amino acid substitutions in the capsid proteins on the interaction of two cell-adapted PanAsia-1 strains of foot-and-mouth disease virus serotype O with heparan sulfate receptor

    PubMed Central

    2014-01-01

    Background Some cell-adapted strains of foot-and-mouth disease virus (FMDV) can utilize heparan sulfate (HS) as a receptor to facilitate viral infection in cultured cells. A number of independent sites on the capsid that might be involved in FMDV-HS interaction have been studied. However, the previously reported residues do not adequately explain HS-dependent infection of two cell-adapted PanAsia-1 strains (O/Tibet/CHA/6/99tc and O/Fujian/CHA/9/99tc) of FMDV serotype O. To identify the molecular determinant(s) for the interaction of O/Tibet/CHA/6/99tc and O/Fujian/CHA/9/99tc with HS receptor, several chimeric viruses and site-directed mutants were generated by using an infectious cDNA of a non-HS-utilizing rescued virus (Cathay topotype) as the genomic backbone. Phenotypic properties of these viruses were determined by plaque assays and virus adsorption and penetration assays in cultured cells. Results Only two of the rescued viruses encoding VP0 of O/Tibet/CHA/6/99tc or VP1 of O/Fujian/CHA/9/99tc formed plaques on wild-type Chinese hamster ovary (WT-CHO; HS+) cells, but not on HS-negative pgsD-677 cells. The formation of plaques by these two chimeric viruses on WT-CHO cells could be abolished by the introduction of single amino acid mutations Gln-2080 → Leu in VP2 of O/Tibet/CHA/6/99tc and Lys-1083 → Glu in VP1 of O/Fujian/CHA/9/99tc, respectively. Nonetheless, the introduced mutation Leu-2080 → Gln in VP2 of O/Fujian/CHA/9/99tc for the construction of expectant recombinant plasmid led to non-infectious progeny virus in baby hamster kidney 21 (BHK-21) cells, and the site-directed mutant encoding Glu-1083 → Lys in VP1 of O/Tibet/CHA/6/99tc did not acquire the ability to produce plaques on WT-CHO cells. Significant differences in the inhibition of the infectivity of four HS-utilizing viruses by heparin and RGD-containing peptide were observed in BHK-21 cells. Interestingly, the chimeric virus encoding VP0 of O/Fujian/CHA/9/99tc, and the site

  20. Acute Lower Extremity Running Kinematics After a Hamstring Stretch

    PubMed Central

    Davis Hammonds, Autumn L.; Laudner, Kevin G.; McCaw, Steve; McLoda, Todd A.

    2012-01-01

    Context: Limited passive hamstring flexibility might affect kinematics, performance, and injury risk during running. Pre-activity static straight-leg raise stretching often is used to gain passive hamstring flexibility. Objective: To investigate the acute effects of a single session of passive hamstring stretching on pelvic, hip, and knee kinematics during the swing phase of running. Design: Randomized controlled clinical trial. Setting: Biomechanics research laboratory. Patients or Other Participants: Thirty-four male (age = 21.2 ± 1.4 years) and female (age = 21.3±2.0 years) recreational athletes. Intervention(s): Participants performed treadmill running pretests and posttests at 70% of their age-predicted maximum heart rate. Pelvis, hip, and knee joint angles during the swing phase of 5 consecutive gait cycles were collected using a motion analysis system. Right and left hamstrings of the intervention group participants were passively stretched 3 times for 30 seconds in random order immediately after the pretest. Control group participants performed no stretching or movement between running sessions. Main Outcome Measure(s): Six 2-way analyses of variance to determine joint angle differences between groups at maximum hip flexion and maximum knee extension with an α level of .008. Results: Flexibility increased between pretest and post-test in all participants (F1,30 = 80.61, P<.001). Anterior pelvic tilt (F1,30 = 0.73, P=.40), hip flexion (F1,30 = 2.44, P=.13), and knee extension (F1,30 = 0.06, P=.80) at maximum hip flexion were similar between groups throughout testing. Anterior pelvic tilt (F1,30 = 0.69, P=.41), hip flexion (F1,30 = 0.23, P=.64), and knee extension (F1,30 = 3.38, P=.62) at maximum knee extension were similar between groups throughout testing. Men demonstrated greater anterior pelvic tilt than women at maximum knee extension (F1,30 = 13.62, P=.001). Conclusions: A single session of 3 straight-leg raise hamstring stretches did not change

  1. A comparison of assisted and unassisted proprioceptive neuromuscular facilitation techniques and static stretching.

    PubMed

    Maddigan, Meaghan E; Peach, Ashley A; Behm, David G

    2012-05-01

    A comparison of assisted and unassisted proprioceptive neuromuscular facilitation techniques and static stretching. J Strength Cond Res 26(5): 1238-1244, 2012-Proprioceptive neuromuscular facilitation (PNF) stretching often requires a partner. Straps are available allowing an individual to perform PNF stretching alone. It is not known if a strap provides similar improvements in the range of motion (ROM) as partner-assisted PNF or static stretching. The purpose of this study was to compare assisted and unassisted (with a strap) PNF stretching and static stretching. Hip joint ROM, reaction time (RT), and movement time (MT) were measured prestretching and poststretching. Thirteen recreationally active adults participated in this study. The participants were subjected to 5 different stretch interventions in a random order on separate days. Stretch conditions included unassisted PNF stretching using (a) isometric, (b) concentric, and (c) eccentric contractions with a stretch strap, (d) partner-assisted isometric PNF, and (e) static stretching. The RT, MT, dynamic, active, passive hip flexion angle, and angular velocity with dynamic hip flexion were measured before and after the intervention. The ROM improved (p < 0.05) 2.6, 2.7, and 5.4%, respectively, with dynamic, active static, and passive static ROM, but there was no significant difference between the stretching protocols. There was a main effect for time (p < 0.05) with all stretching conditions negatively impacting dynamic angular velocity (9.2%). Although there was no significant effect on RT, MT showed a negative main effect for time (p < 0.05) slowing 3.4%. In conclusion, it was found that all 3 forms of active stretching provided similar improvements in the ROM and poststretching performance decrements in MT and angular velocity. Thus, individuals can implement PNF stretching techniques with a partner or alone with a strap to improve ROM, but athletes should not use these techniques before important

  2. Chronic flexibility improvement after 12 week of stretching program utilizing the ACSM recommendations: hamstring flexibility.

    PubMed

    Sainz de Baranda, P; Ayala, F

    2010-06-01

    The ACSM flexibility training recommendations emphasize proper stretching of muscles supporting the major joints, but there is a little evidence to support this recommendation in terms of effectiveness, and which stretching parameters (technique and single stretch duration) are more adequate. A randomized controlled clinical trial design was use to investigate whether the ACSM flexibility training recommendation parameters improve hip flexion range of motion. A total of 173 subjects, 122 men (21.3+/-2.5 years; 176.33+/-8.35 cm; 74.42+/-10.80 kg) and 51 women (20.7+/-1.6 years; 163.43+/-6.57 cm; 60.12+/-7.88 kg), classified as recreationally active young adult university students were randomly assigned to 1 of 7 groups: 1 control group (no stretching) or 1 of 6 stretching groups. All stretching groups performed 12 weeks of flexibility training with a consistent stretch daily dose (180 s) and frequency (3 days per week) parameters and different stretch technique (passive or active) and single stretch duration (15, 30, or 45 s). Hip flexion passive range of motion (PROM) was determined through the bilateral straight-leg raise test before, during (at 4 and 8 weeks), and after the program (12 weeks). All stretching groups performed hip flexion PROM after flexibility training. A significant improvement was identified in mean PROM for each stretching group, but no significant differences were found between stretch technique and single stretch duration (p>0.05). The control group's mean PROM decreased (Delta PROM: -0.08 degrees, 95% confidence interval [CI]=-2.3 to 5.3), whereas all stretching groups increased PROM (Delta PROM: 15.14 degrees, 95% CI=10.19 to 23.56) in hip flexion after 12 weeks of stretching (p<0.05). The present study suggests that the current ACSM flexibility training recommendations are effective for improving hip flexion ROM in recreationally active young adults.

  3. Fireplace adapters

    SciTech Connect

    Hunt, R.L.

    1983-12-27

    An adapter is disclosed for use with a fireplace. The stove pipe of a stove standing in a room to be heated may be connected to the flue of the chimney so that products of combustion from the stove may be safely exhausted through the flue and outwardly of the chimney. The adapter may be easily installed within the fireplace by removing the damper plate and fitting the adapter to the damper frame. Each of a pair of bolts has a portion which hooks over a portion of the damper frame and a threaded end depending from the hook portion and extending through a hole in the adapter. Nuts are threaded on the bolts and are adapted to force the adapter into a tight fit with the adapter frame.

  4. Ultrafast redistribution of vibrational energy after excitation of NH stretching modes in DNA oligomers

    NASA Astrophysics Data System (ADS)

    Kozich, V.; Szyc, Ł.; Nibbering, E. T. J.; Werncke, W.; Elsaesser, T.

    2009-04-01

    Vibrational relaxation after spectrally selective excitation within the NH stretching band of adenine-thymine base pairs in DNA oligomers was studied by subpicosecond infrared-pump/anti-Stokes Raman-probe spectroscopy. The decay of the different NH stretching vibrations populates distinct accepting modes in the NH bending range with a rise time of 0.6 ps that is close to the NH stretching decay times. The population of thymine fingerprint modes after excitation of the adenine antisymmetric NH 2 stretching mode points to an ultrafast excitation transfer to the thymine NH stretching vibration before relaxation. The nonequilibrium fingerprint populations decay on a time scale of several picoseconds.

  5. A simple constrained uniaxial tensile apparatus for in situ investigation of film stretching processing

    NASA Astrophysics Data System (ADS)

    Meng, Lingpu; Li, Jing; Cui, Kunpeng; Chen, Xiaowei; Lin, Yuanfei; Xu, Jiali; Li, Liangbin

    2013-11-01

    A simple constrained uniaxial tensile apparatus was designed and constructed to obtain stress-strain curve during stretching and subsequent structural evolution of polymeric films. Stretch is carried out through two motor driven clamps in the machine direction and scissor-like clamps in the transverse direction keeping the sample width constant. The force information during film stretching process is recorded by a tension sensor and structural evolution can be obtained by in situ X-ray scattering technique. All parameters related to film stretching manufacturing, such as temperature, draw ratio, and stretching speed can be set independently, making the apparatus an effective method to explore the relationship between processing parameters and structure.

  6. Differences in plantarflexor function during a stretch-shortening cycle task due to limb preference.

    PubMed

    Furlong, Laura-Anne M; Harrison, Andrew J

    2015-01-01

    Most healthy humans move symmetrically at gross limb level but large kinetic and kinematic asymmetries have been observed at joint level during locomotion. The aim of this study was to assess muscle function asymmetries in healthy, active adults using an adapted force sledge apparatus which isolates the plantarflexors during a stretch-shortening cycle (SSC) task. Peak force, rate of force development and SSC function of preferred and non-preferred limbs were assessed in 21 healthy, active individuals using the adapted sledge and three-dimensional motion analysis. Between-limb differences and relationships were determined using paired t-tests/Wilcoxon Signed-rank test, Cohen's dz, absolute symmetry index and Pearson's r/Spearman's rho. Significant differences with moderate effect size (ES) were observed in peak force (ES: 0.66), rate of peak force development (ES: 0.78), rate of force development in the first 50 ms (ES: 0.76), flight time (ES: 0.64) and SSC function (0.68), with no difference in contact time or duration of eccentric loading. A small ES (0.56) was observed in rate of force development in the first 30 ms. The upper range of asymmetry observed (up to 44.6%) was larger than previously reported for healthy individuals, indicating compensations occur at proximal joints during locomotion to ensure symmetrical movement.

  7. The effect of static, ballistic, and proprioceptive neuromuscular facilitation stretching on vertical jump performance.

    PubMed

    Bradley, Paul S; Olsen, Peter D; Portas, Matthew D

    2007-02-01

    The purpose of this study was to compare the acute effects of different modes of stretching on vertical jump performance. Eighteen male university students (age, 24.3 +/- 3.2 years; height, 181.5 +/- 11.4 cm; body mass, 78.1 +/- 6.4 kg; mean +/- SD) completed 4 different conditions in a randomized order, on different days, interspersed by a minimum of 72 hours of rest. Each session consisted of a standard 5-minute cycle warm-up, accompanied by one of the subsequent conditions: (a) control, (b) 10-minute static stretching, (c) 10-minute ballistic stretching, or (d) 10-minute proprioceptive neuromuscular facilitation (PNF) stretching. The subjects performed 3 trials of static and countermovement jumps prior to stretching and poststretching at 5, 15, 30, 45, and 60 minutes. Vertical jump height decreased after static and PNF stretching (4.0% and 5.1%, p < 0.05) and there was a smaller decrease after ballistic stretching (2.7%, p > 0.05). However, jumping performance had fully recovered 15 minutes after all stretching conditions. In conclusion, vertical jump performance is diminished for 15 minutes if performed after static or PNF stretching, whereas ballistic stretching has little effect on jumping performance. Consequently, PNF or static stretching should not be performed immediately prior to an explosive athletic movement.

  8. The relevance of stretch intensity and position—a systematic review

    PubMed Central

    Apostolopoulos, Nikos; Metsios, George S.; Flouris, Andreas D.; Koutedakis, Yiannis; Wyon, Matthew A.

    2015-01-01

    Stretching exercises to increase the range of motion (ROM) of joints have been used by sports coaches and medical professionals for improving performance and rehabilitation. The ability of connective and muscular tissues to change their architecture in response to stretching is important for their proper function, repair, and performance. Given the dearth of relevant data in the literature, this review examined two key elements of stretching: stretch intensity and stretch position; and their significance to ROM, delayed onset muscle soreness (DOMS), and inflammation in different populations. A search of three databases, Pub-Med, Google Scholar, and Cochrane Reviews, identified 152 articles, which were subsequently categorized into four groups: athletes (24), clinical (29), elderly (12), and general population (87). The use of different populations facilitated a wider examination of the stretching components and their effects. All 152 articles incorporated information regarding duration, frequency and stretch position, whereas only 79 referred to the intensity of stretching and 22 of these 79 studies were deemed high quality. It appears that the intensity of stretching is relatively under-researched, and the importance of body position and its influence on stretch intensity, is largely unknown. In conclusion, this review has highlighted areas for future research, including stretch intensity and position and their effect on musculo-tendinous tissue, in relation to the sensation of pain, delayed onset muscle soreness, inflammation, as well as muscle health and performance. PMID:26347668

  9. Mechanical stretching for tissue engineering: two-dimensional and three-dimensional constructs.

    PubMed

    Riehl, Brandon D; Park, Jae-Hong; Kwon, Il Keun; Lim, Jung Yul

    2012-08-01

    Mechanical cell stretching may be an attractive strategy for the tissue engineering of mechanically functional tissues. It has been demonstrated that cell growth and differentiation can be guided by cell stretch with minimal help from soluble factors and engineered tissues that are mechanically stretched in bioreactors may have superior organization, functionality, and strength compared with unstretched counterparts. This review explores recent studies on cell stretching in both two-dimensional (2D) and three-dimensional (3D) setups focusing on the applications of stretch stimulation as a tool for controlling cell orientation, growth, gene expression, lineage commitment, and differentiation and for achieving successful tissue engineering of mechanically functional tissues, including cardiac, muscle, vasculature, ligament, tendon, bone, and so on. Custom stretching devices and lab-specific mechanical bioreactors are described with a discussion on capabilities and limitations. While stretch mechanotransduction pathways have been examined using 2D stretch, studying such pathways in physiologically relevant 3D environments may be required to understand how cells direct tissue development under stretch. Cell stretch study using 3D milieus may also help to develop tissue-specific stretch regimens optimized with biochemical feedback, which once developed will provide optimal tissue engineering protocols.

  10. Stretch-induced myoblast proliferation is dependent on the COX2 pathway

    SciTech Connect

    Otis, Jeffrey S.; Burkholder, Thomas J.; Pavlath, Grace K. . E-mail: gpavlat@emory.edu

    2005-11-01

    Skeletal muscle increases in size due to weight bearing loads or passive stretch. This growth response is dependent in part upon myoblast proliferation. Although skeletal muscles are responsive to mechanical forces, the effect on myoblast proliferation remains unknown. To investigate the effects of mechanical stretch on myoblast proliferation, primary myoblasts isolated from Balb/c mice were subjected to 25% cyclical uniaxial stretch for 5 h at 0.5 Hz. Stretch stimulated myoblast proliferation by 32% and increased cell number by 41% 24 and 48 h after stretch, respectively. COX2 mRNA increased 3.5-fold immediately poststretch. Prostaglandin E2 and F{sub 2{alpha}} increased 2.4- and 1.6-fold 6 h after stretch, respectively. Because COX2 has been implicated in regulating muscle growth and regeneration, we hypothesized that stretched myoblasts may proliferate via a COX2-dependent mechanism. We employed two different models to disrupt COX2 activity: (1) treatment with a COX2-selective drug, and (2) transgenic mice null for COX2. Treating myoblasts with a COX2-specific inhibitor blocked stretch-induced proliferation. Likewise, stretched COX2{sup -/-} myoblasts failed to proliferate compared to controls. However, supplementing stretched, COX2{sup -/-} myoblasts with prostaglandin E2 or fluprostenol increased proliferation. These data suggest that the COX2 pathway is critical for myoblast proliferation in response to stretch.

  11. Voltage, calcium, and stretch activated ionic channels and intracellular calcium in bone cells.

    PubMed

    Ypey, D L; Weidema, A F; Höld, K M; Van der Laarse, A; Ravesloot, J H; Van Der Plas, A; Nijweide, P J

    1992-12-01

    Embryonic chick bone cells express various types of ionic channels in their plasma membranes for as yet unresolved functions. Chick osteoclasts (OCL) have the richest spectrum of channel types. Specific for OCL is a K+ channel, which activates (opens) when the inside negative membrane potential (Vm) becomes more negative (hyperpolarization). This is consistent with findings of others on rat OCL. The membrane conductance constituted by these channels is called the inward rectifying K+ conductance (GKi), or inward rectifier, because the hyperpolarization-activated channels cause cell-inward K+ current to pass more easily through the membrane than outward K+ current. Besides GKi channels, OCL may express two other types of voltage-activated K+ channels. One constitutes the transient outward rectifying K+ conductance (GKto), which is activated upon making the membrane potential less negative (depolarization) but has a transient nature. This conductance favors transient K+ conduction in the cell-outward direction. The GKto also occurs in a small percentage of cells in osteoblast (OBL) and periosteal fibroblast (PFB) cultures. The other OCL K+ conductance, the GKCa, is activated by both membrane depolarization and a rise in [Ca2+]i. GKCa channels are also present in the other chick bone cell types, that is, OBL, osteocytes (OCY), and PFB. Furthermore, in excised patches of all bone cell types, channels have been found that conduct anions, including Cl- and phosphate ions. These channels are only active around Vm = 0 mV. While searching for a membrane mechanism for adaptation of bone to mechanical loading, we found stretch-activated channels in chick osteoclasts; other investigators have found stretch-activated cation channels (K+ or aselective) in rat and human osteogenic cell lines. In contrast to other studies on cell lines or OBL from other species, we have not found any of the classic macroscopic voltage-activated calcium conductances (GCa) in any of the chick bone

  12. On the Fabrication, Characterization and Mechanical Properties of Melt-Stretched Stochastic Honeycombs

    NASA Astrophysics Data System (ADS)

    Hostetter, Megan

    This thesis presents a new type of polypropylene (PP) cellular material fabricated through a simple melt-stretching process. Stochastic honeycombs have an open cell, random honeycomb structure, with webs oriented perpendicular to built-in skins. This process has the advantage that, for example, PP pellets can be turned into a sandwich panel in one step. It was demonstrated that despite the randomness in the web structure, the out-of-plane compressive strength of stochastic honeycombs was repeatable, and exceeded that of commercial PP foams and was comparable to commercial PP honeycombs. The key material properties required to produce an this architecture were shown to be a high melt strength and a high viscosity, branched polymer. The viscosity was shown to affect the total length of the webs in cross-section and the relative partitioning of material through the skin, transition region and webs. Web thickness was affected by the areal density of the polymer during fabrication. Mechanical testing methods were adapted from ASTM standards for honeycombs, and the fabrication method was advanced from a manual to a machine controlled process. Stochastic honeycombs were shown to buckle elastically, plastically, and fracture after the peak strength. Elastic and plastic buckling were dominant at lower densities, and plastic buckling and fracture at higher densities. A thin-plate buckling model for the strength of stochastic honeycombs was developed and verified experimentally. The crystallinity of the polymer affected the tensile strength and stiffness, having a linear effect on the buckling strength. The architecture was composed of webs bound on both sides and webs bound on one side and free on the other. A greater fraction of bound webs increased the strength of the structure in the buckling model. A fabrication study showed that melt-stretching the polymer at higher strain rates increased the connectivity and fraction of bound webs. Additionally, higher density led to a

  13. Ultrafast quantitative time-stretch imaging flow cytometry of phytoplankton

    NASA Astrophysics Data System (ADS)

    Lai, Queenie T. K.; Lau, Andy K. S.; Tang, Anson H. L.; Wong, Kenneth K. Y.; Tsia, Kevin K.

    2016-03-01

    Comprehensive quantification of phytoplankton abundance, sizes and other parameters, e.g. biomasses, has been an important, yet daunting task in aquatic sciences and biofuel research. It is primarily because of the lack of effective tool to image and thus accurately profile individual microalgae in a large population. The phytoplankton species are highly diversified and heterogeneous in terms of their sizes and the richness in morphological complexity. This fact makes time-stretch imaging, a new ultrafast real-time optical imaging technology, particularly suitable for ultralarge-scale taxonomic classification of phytoplankton together with quantitative image recognition and analysis. We here demonstrate quantitative imaging flow cytometry of single phytoplankton based on quantitative asymmetric-detection time-stretch optical microscopy (Q-ATOM) - a new time-stretch imaging modality for label-free quantitative phase imaging without interferometric implementations. Sharing the similar concept of Schlieren imaging, Q-ATOM accesses multiple phase-gradient contrasts of each single phytoplankton, from which the quantitative phase profile is computed. We employ such system to capture, at an imaging line-scan rate of 11.6 MHz, high-resolution images of two phytoplankton populations (scenedesmus and chlamydomonas) in ultrafast microfluidic flow (3 m/s). We further perform quantitative taxonomic screening analysis enabled by this technique. More importantly, the system can also generate quantitative phase images of single phytoplankton. This is especially useful for label-free quantification of biomasses (e.g. lipid droplets) of the particular species of interest - an important task adopted in biofuel applications. Combining machine learning for automated classification, Q-ATOM could be an attractive platform for continuous and real-time ultralarge-scale single-phytoplankton analysis.

  14. The Different Muscle-Energetics during Shortening and Stretch

    PubMed Central

    Jarosch, Robert

    2011-01-01

    The helical shape of the thin filaments causes their passive counterclockwise rotation during muscle stretch that increases tensile stress and torque at first by unwinding and then by winding up the four anchoring Z-filaments. This means storage of energy in the series elastic Z-filaments and a considerable decrease of the liberated energy of heat and work to (h—wap), where h is the heat energy and wap the stretch energy induced from outside by an apparatus. The steep thin filament helix with an inclination angle of 70° promotes the passive rotation during stretch, but impedes the smooth sliding of shortening by increased friction and production of frictional heat. The frictional heat may be produced by the contact with the myosin cross-bridges: (1) when they passively snap on drilling thin filaments from cleft to cleft over a distance 2 × 2.7 nm = 5.4 nm between the globular actin monomers in one groove, causing stepwise motion; or (2) when they passively cycle from one helical groove to the next (distance 36 nm). The latter causes more heat and may take place on rotating thin filaments without an effective forward drilling (“idle rotation”), e.g., when they produce “unexplained heat” at the beginning of an isometric tetanus. In an Appendix to this paper the different states of muscle are defined. The function of its most important components is described and rotation model and power-stroke model of muscular contraction is compared. PMID:21686156

  15. Elastography Study of Hamstring Behaviors during Passive Stretching

    PubMed Central

    Le Sant, Guillaume; Ates, Filiz; Brasseur, Jean-Louis; Nordez, Antoine

    2015-01-01

    Introduction The mechanical properties of hamstring muscles are usually inferred from global passive torque/angle relationships, in combination with adjoining tissues crossing the joint investigated. Shear modulus measurement provides an estimate of changes in muscle-tendon stiffness and passive tension. This study aimed to assess the passive individual behavior of each hamstring muscle in different stretching positions using shear wave elastography. Methods/Results The muscle shear modulus of each hamstring muscle was measured during a standardized slow passive knee extension (PKE, 80% of maximal range of motion) on eighteen healthy male volunteers. Firstly, we assessed the reliability of the measurements. Results were good for semitendinosus (ST, CV: 8.9%-13.4%), semimembranosus (SM, CV: 10.3%-11.2%) and biceps femoris long-head (BF-lh, CV: 8.6%-13.3%), but not for biceps femoris short-head (BF-sh, CV: 20.3%-44.9%). Secondly, we investigated each reliable muscle in three stretch positions: 70°, 90° and 110° of hip flexion. The results showed different values of shear modulus for the same amount of perceived stretch, with the highest measurements in the high-flexed hip situation. Moreover, individual muscles displayed different values, with values increasing or BF-lh, SM and ST, respectively. The inter-subject variability was 35.3% for ST, 27.4% for SM and 30.2% for BF-lh. Conclusion This study showed that the hip needs to be high-flexed to efficiently tension the hamstrings, and reports a higher muscle-tendon stress tolerance at 110° of hip angle. In addition muscles have different passive behaviors, and future works will clarify if it can be linked with rate of injury. PMID:26418862

  16. Perturbation Predictability Can Influence the Long-Latency Stretch Response

    PubMed Central

    Forgaard, Christopher J.; Franks, Ian M.; Maslovat, Dana; Chua, Romeo

    2016-01-01

    Perturbations applied to the upper limbs elicit short (M1: 25–50 ms) and long-latency (M2: 50–100 ms) responses in the stretched muscle. M1 is produced by a spinal reflex loop, and M2 receives contribution from multiple spinal and supra-spinal pathways. While M1 is relatively immutable to voluntary intention, the remarkable feature of M2 is that its size can change based on intention or goal of the participant (e.g., increasing when resisting the perturbation and decreasing when asked to let-go or relax following the perturbation). While many studies have examined modulation of M2 between passive and various active conditions, through the use of constant foreperiods (interval between warning signal and a perturbation), it has also been shown that the magnitude of the M2 response in a passive condition can change based on factors such as habituation and anticipation of perturbation delivery. To prevent anticipation of a perturbation, most studies have used variable foreperiods; however, the range of possible foreperiod duration differs between experiments. The present study examined the influence of different variable foreperiods on modulation of the M2 response. Fifteen participants performed active and passive responses to a perturbation that stretched wrist flexors. Each block of trials had either a short (2.5–3.5 seconds; high predictability) or long (2.5–10.5 seconds; low predictability) variable foreperiod. As expected, no differences were found between any conditions for M1, while M2 was larger in the active rather than passive conditions. Interestingly, within the two passive conditions, the long variable foreperiods resulted in greater activity at the end of the M2 response than the trials with short foreperiods. These results suggest that perturbation predictability, even when using a variable foreperiod, can influence circuitry contributing to the long-latency stretch response. PMID:27727293

  17. An energetic model for macromolecules unfolding in stretching experiments.

    PubMed

    De Tommasi, D; Millardi, N; Puglisi, G; Saccomandi, G

    2013-11-01

    We propose a simple approach, based on the minimization of the total (entropic plus unfolding) energy of a two-state system, to describe the unfolding of multi-domain macromolecules (proteins, silks, polysaccharides, nanopolymers). The model is fully analytical and enlightens the role of the different energetic components regulating the unfolding evolution. As an explicit example, we compare the analytical results with a titin atomic force microscopy stretch-induced unfolding experiment showing the ability of the model to quantitatively reproduce the experimental behaviour. In the thermodynamic limit, the sawtooth force-elongation unfolding curve degenerates to a constant force unfolding plateau.

  18. Spectroscopic manifestation of stretching vibrations of glycosidic linkage in polysaccharides

    NASA Astrophysics Data System (ADS)

    Nikonenko, N. A.; Buslov, D. K.; Sushko, N. I.; Zhbankov, R. G.

    2005-10-01

    Manifestation of stretching vibrations of glycosidic linkage in the infrared spectra of polysaccharides (native, microcrystalline, mercerized celluloses, amylose, starches) has been studied using the regularized method of deconvolution. It has been shown that the glycosidic linkage formation in the polysaccharides is characterized by the appearance of new absorption bands in the 1175-1140 cm -1 range as compared to their corresponding monomers. In the 1000-920 cm -1 region differences between the infrared spectra of polysaccharides due to the changes in the glycosidic linkage configuration have been found.

  19. Stretching helical nano-springs at finite temperature

    NASA Astrophysics Data System (ADS)

    Wada, H.; Netz, R. R.

    2007-03-01

    Using dynamic simulations and analytic methods, we study the elastic response of a helical filament subject to uniaxial tension over a wide range of bend and twist persistence length. A low-pitch helix at low temperatures exhibits a stretching instability and the force-extension curve consists of a sequence of spikes. At elevated temperature (i.e. small persistence lengths) the helix melts and a pronounced force plateau is obtained in the fixed-extension ensemble. The torque boundary condition significantly affects the resulting elastic properties.

  20. Stretched Lens Array (SLA) Photovoltaic Concentrator Hardware Development and Testing

    NASA Technical Reports Server (NTRS)

    Piszczor, Michael; O'Neill, Mark J.; Eskenazi, Michael

    2003-01-01

    Over the past two years, the Stretched Lens Array (SLA) photovoltaic concentrator has evolved, under a NASA contract, from a concept with small component demonstrators to operational array hardware that is ready for space validation testing. A fully-functional four panel SLA solar array has been designed, built and tested. This paper will summarize the focus of the hardware development effort, discuss the results of recent testing conducted under this program and present the expected performance of a full size 7kW array designed to meet the requirements of future space missions.

  1. Adaptive SPECT

    PubMed Central

    Barrett, Harrison H.; Furenlid, Lars R.; Freed, Melanie; Hesterman, Jacob Y.; Kupinski, Matthew A.; Clarkson, Eric; Whitaker, Meredith K.

    2008-01-01

    Adaptive imaging systems alter their data-acquisition configuration or protocol in response to the image information received. An adaptive pinhole single-photon emission computed tomography (SPECT) system might acquire an initial scout image to obtain preliminary information about the radiotracer distribution and then adjust the configuration or sizes of the pinholes, the magnifications, or the projection angles in order to improve performance. This paper briefly describes two small-animal SPECT systems that allow this flexibility and then presents a framework for evaluating adaptive systems in general, and adaptive SPECT systems in particular. The evaluation is in terms of the performance of linear observers on detection or estimation tasks. Expressions are derived for the ideal linear (Hotelling) observer and the ideal linear (Wiener) estimator with adaptive imaging. Detailed expressions for the performance figures of merit are given, and possible adaptation rules are discussed. PMID:18541485

  2. Adaptive Computing.

    ERIC Educational Resources Information Center

    Harrell, William

    1999-01-01

    Provides information on various adaptive technology resources available to people with disabilities. (Contains 19 references, an annotated list of 129 websites, and 12 additional print resources.) (JOW)

  3. Contour adaptation.

    PubMed

    Anstis, Stuart

    2013-01-01

    It is known that adaptation to a disk that flickers between black and white at 3-8 Hz on a gray surround renders invisible a congruent gray test disk viewed afterwards. This is contrast adaptation. We now report that adapting simply to the flickering circular outline of the disk can have the same effect. We call this "contour adaptation." This adaptation does not transfer interocularly, and apparently applies only to luminance, not color. One can adapt selectively to only some of the contours in a display, making only these contours temporarily invisible. For instance, a plaid comprises a vertical grating superimposed on a horizontal grating. If one first adapts to appropriate flickering vertical lines, the vertical components of the plaid disappears and it looks like a horizontal grating. Also, we simulated a Cornsweet (1970) edge, and we selectively adapted out the subjective and objective contours of a Kanisza (1976) subjective square. By temporarily removing edges, contour adaptation offers a new technique to study the role of visual edges, and it demonstrates how brightness information is concentrated in edges and propagates from them as it fills in surfaces.

  4. Stretch-induced increase in cardiac contractility is independent of myocyte Ca2+ while block of stretch channels by streptomycin improves contractility after ischemic stunning

    PubMed Central

    Rhodes, Samhita S; Camara, Amadou K S; Aldakkak, Mohammed; Heisner, James S; Stowe, David F

    2015-01-01

    Stretching the cardiac left ventricle (LV) enhances contractility but its effect on myoplasmic [Ca2+] is controversial. We measured LV pressure (LVP) and [Ca2+] as a function of intra-LV stretch in guinea pig intact hearts before and after 15 min global stunning ± perfusion with streptomycin (STM), a stretch-activated channel blocker. LV wall [Ca2+] was measured by indo-1 fluorescence and LVP by a saline-filled latex balloon inflated in 50 μL steps to stretch the LV. We implemented a mathematical model to interpret cross-bridge dynamics and myofilament Ca2+ responsiveness from the instantaneous relationship between [Ca2+] and LVP ± stretching. We found that: (1) stretch enhanced LVP but not [Ca2+] before and after stunning in either control (CON) and STM groups, (2) after stunning [Ca2+] increased in both groups although higher in STM versus CON (56% vs. 39%), (3) STM-enhanced LVP after stunning compared to CON (98% vs. 76% of prestunning values), and (4) stretch-induced effects on LVP were independent of [Ca2+] before or after stunning in both groups. Mathematical modeling suggested: (1) cooperativity in cross-bridge kinetics and myofilament Ca2+ handling is reduced after stunning in the unstretched heart, (2) stunning results in depressed myofilament Ca2+ sensitivity in the presence of attached cross-bridges regardless of stretch, and (3) the initial mechanism responsible for increased contractility during stretch may be enhanced formation of cross-bridges. Thus stretch-induced enhancement of contractility is not due to increased [Ca2+], whereas enhanced contractility after stunning in STM versus CON hearts results from improved Ca2+ handling and/or enhanced actinomyosin cross-bridge cycling. PMID:26290532

  5. First Measurements and Results With a Stretched Wire Test Setup

    SciTech Connect

    Peters, Franz

    2010-12-13

    The LINAC Coherent Light Source [LCLS] is a free electron laser, designed to produce high brilliant X-ray beams using Self Amplified Spontaneous Emission [SASE]. Due to the physics of SASE, the electron beam has to be held very precisely on the same trajectory as the X-ray light beam generated by the undulator magnets. To optimize the SASE output, trajectory deviations between both beams have to be minimized to a few micrometers along the entire undulator section and held stable over the time period between beam-based-alignment processes. Consequently, extremely high position stability of all magnets in the undulator section is required to operate the LCLS successfully. The knowledge of any magnet movement exceeding few micrometers during periods of several weeks is essential for efficient X-ray generation. A well known principle of monitoring transverse component positions along beam lines is the application of stretched wires, associated with suitable wire position sensors and electronics. The particular challenge at LCLS is the required wire system performance in conjunction with the length of the undulator section and the large number of monitors. Verification of system stability and resolution under real conditions is the primary goal of this test setup. A stretched wire test setup has been implemented to gain experience for the final design of a wire system, which will meet the position monitoring requirements in the LCLS undulator section. The report briefly introduces the system's architecture and describes first measurements and results.

  6. Alkyl CH Stretch Vibrations as a Probe of Conformational Preferences

    NASA Astrophysics Data System (ADS)

    Sibert, Edwin L. Sibert, Iii; Buchanan, Evan G.; Zwier, Timothy S.

    2013-06-01

    Theoretical IR spectra of 1,2-diphenoxyethane (C_6H_5-O-CH_2-CH_2-O-C_6H_5 DPOE) and 1,2-diphenylethane (C_6H_5-CH_2-CH_2-C_6H_5 DPE) are presented and compared to results of single-conformation spectroscopy of jet cooled molecules. The theoretical transition energies and intensites are obtained from a model based on a local mode Hamiltonian that includes all local cubic stretch-bend couplings that are then projected onto the normal modes. The model parameters are obtained from density functional theory methods. Full dimensional calculations are compared to those of reduced dimensions that include anharmonic CH streches Fermi coupled to scissor modes. Excellent agreement is found. Scale factors of select terms in the reduced dimensional Hamiltonian are determined by fitting the theoretical Hamiltonian to the anti DPE spectrum. Using the same scaling, Hamiltonians for other conformers of the above molecules are generated and used to predict structures by comparing to experimentally determined spectra in the alkyl CH stretch region. The level patterns in the resulting spectra are elucidated in terms of the model parameters. The model results are extended to interpret the spectra of more complicated macrocycles containing multiple -CH_2CH_2- ethano bridges such as the dibenzo-15-crown-5 ether and 2,2,2-paracyclophane.

  7. Harmonics analysis of the photonic time stretch system.

    PubMed

    Mei, Yuan; Xu, Boyu; Chi, Hao; Jin, Tao; Zheng, Shilie; Jin, Xiaofeng; Zhang, Xianmin

    2016-09-10

    Photonic time stretch (PTS) has been intensively investigated in recent decades due to its potential application to ultra-wideband analog-to-digital conversion. A high-speed analog signal can be captured by an electronic analog-to-digital converter (ADC) with the help of the PTS technique, which slows down the speed of signal in the photonic domain. Unfortunately, the process of the time stretch is not linear due to the nonlinear modulation of the electro-optic intensity modulator in the PTS system, which means the undesired harmonics distortion. In this paper, we present an exact analytical model to fully characterize the harmonics generation in the PTS systems for the first time, to the best of our knowledge. We obtain concise and closed-form expressions for all harmonics of the PTS system with either a single-arm Mach-Zehnder modulator (MZM) or a push-pull MZM. The presented model can largely simplify the PTS system design and the system parameters estimation, such as system bandwidth, harmonics power, time-bandwidth product, and dynamic range. The correctness of the mathematic model is verified by the numerical and experimental results.

  8. Hacking the code of amyloid formation: the amyloid stretch hypothesis.

    PubMed

    Pastor, M Teresa; Esteras-Chopo, Alexandra; Serrano, Luis

    2007-01-01

    Many research efforts in the last years have been directed towards understanding the factors determining protein misfolding and amyloid formation. Protein stability and amino acid composition have been identified as the two major factors in vitro. The research of our group has been focused on understanding the relationship between amino acid sequence and amyloid formation. Our approach has been the design of simple model systems that reproduce the biophysical properties of natural amyloids. An amyloid sequence pattern was extracted that can be used to detect amyloidogenic hexapeptide stretches in proteins. We have added evidence supporting that these amyloidogenic stretches can trigger amyloid formation by nonamyloidogenic proteins. Some experimental results in other amyloid proteins will be analyzed under the conclusions obtained in these studies. Our conclusions together with evidences from other groups suggest that amyloid formation is the result of the interplay between a decrease of protein stability, and the presence of highly amyloidogenic regions in proteins. As many of these results have been obtained in vitro, the challenge for the next years will be to demonstrate their validity in in vivo systems.

  9. Snapping during manual stretching in congenital muscular torticollis.

    PubMed

    Cheng, J C; Chen, T M; Tang, S P; Shum, S L; Wong, M W; Metreweli, C

    2001-03-01

    Manual stretching frequently is used in the treatment of congenital muscular torticollis in infants. During manipulation, it is not uncommon for the sternocleidomastoid muscle to snap or suddenly give way. The main objective of this study was to evaluate the predisposing causes and clinical significance of such snapping. Four hundred fifty-five patients younger than 1 year of age with congenital muscular torticollis treated with a standardized gentle manual stretching program during a 13-year period were studied. Using prospective standardized assessment parameters, the pretreatment, treatment, and followup results of a group of 41 patients with snapping detected during treatment were compared with the results of a group of 404 patients without snapping during treatment. The group with snapping was associated with a more severe sternomastoid tumor, higher incidence of hip dysplasia, earlier clinical presentation, and shorter duration of treatment. With a mean followup of 3.5 years, the group with snapping was not different from the group that had no snapping in the final assessment score and percentage requiring surgery. From this study, unintentional snapping during the gentle manipulation treatment of congenital muscular torticollis has clinical and ultrasonographic evidence of partial or complete rupture of the sternocleidomastoid muscle. No long-term deleterious effect on the outcome was observed after the snapping.

  10. Harmonics analysis of the photonic time stretch system.

    PubMed

    Mei, Yuan; Xu, Boyu; Chi, Hao; Jin, Tao; Zheng, Shilie; Jin, Xiaofeng; Zhang, Xianmin

    2016-09-10

    Photonic time stretch (PTS) has been intensively investigated in recent decades due to its potential application to ultra-wideband analog-to-digital conversion. A high-speed analog signal can be captured by an electronic analog-to-digital converter (ADC) with the help of the PTS technique, which slows down the speed of signal in the photonic domain. Unfortunately, the process of the time stretch is not linear due to the nonlinear modulation of the electro-optic intensity modulator in the PTS system, which means the undesired harmonics distortion. In this paper, we present an exact analytical model to fully characterize the harmonics generation in the PTS systems for the first time, to the best of our knowledge. We obtain concise and closed-form expressions for all harmonics of the PTS system with either a single-arm Mach-Zehnder modulator (MZM) or a push-pull MZM. The presented model can largely simplify the PTS system design and the system parameters estimation, such as system bandwidth, harmonics power, time-bandwidth product, and dynamic range. The correctness of the mathematic model is verified by the numerical and experimental results. PMID:27661356

  11. Nonlinear effects of stretch on the flame front propagation

    SciTech Connect

    Halter, F.; Tahtouh, T.; Mounaim-Rousselle, C.

    2010-10-15

    In all experimental configurations, the flames are affected by stretch (curvature and/or strain rate). To obtain the unstretched flame speed, independent of the experimental configuration, the measured flame speed needs to be corrected. Usually, a linear relationship linking the flame speed to stretch is used. However, this linear relation is the result of several assumptions, which may be incorrected. The present study aims at evaluating the error in the laminar burning speed evaluation induced by using the traditional linear methodology. Experiments were performed in a closed vessel at atmospheric pressure for two different mixtures: methane/air and iso-octane/air. The initial temperatures were respectively 300 K and 400 K for methane and iso-octane. Both methodologies (linear and nonlinear) are applied and results in terms of laminar speed and burned gas Markstein length are compared. Methane and iso-octane were chosen because they present opposite evolutions in their Markstein length when the equivalence ratio is increased. The error induced by the linear methodology is evaluated, taking the nonlinear methodology as the reference. It is observed that the use of the linear methodology starts to induce substantial errors after an equivalence ratio of 1.1 for methane/air mixtures and before an equivalence ratio of 1 for iso-octane/air mixtures. One solution to increase the accuracy of the linear methodology for these critical cases consists in reducing the number of points used in the linear methodology by increasing the initial flame radius used. (author)

  12. The southwestern Nansen Basin: Crustal stretching and sea floor spreading

    NASA Astrophysics Data System (ADS)

    Berglar, Kai; Ehrhardt, Axel; Damm, Volkmar; Heyde, Ingo; Schreckenberger, Bernd; Barckhausen, Udo

    2014-05-01

    New geophysical data were collected in August/September 2013 north of Svalbard in the zone from the North Barents shelf towards the oceanic Nansen Basin. We acquired 1056 km of multi-channel seismic data, 2658 km of magnetic data and more than 5000 km of gravity, bathymetric and sediment echosounder data. In the east of the working area, the transition from the Yermak Plateau to the Nansen Basin is characterized by block faulting and well developed syn-rift basins. A large crustal block located about 80 km east of the Yermak Plateau and 120 km north of the slope of the Barents shelf indicates extensive rifting and east-west directed crustal stretching and the absence of oceanic crust in that area. A different picture is found north of Kvitoya Island, in the western part of the working area. There, the slope of the Barents shelf is very steep and a distinct continent-ocean-boundary seems to be located directly at the foot of the slope where we interpret oceanic crust characterized by irregular topography based on the multi-channel seismic data. This will be tested by an analysis of the gravity and magnetic data which is currently work in progress. The combination of east-west-directed continental stretching east of the Yermak Plateau and adjacent oceanic crust to the west points to an opening of the southwesternmost part of the Nansen Basin prior to the spreading of the Gakkel Ridge, possibly related to the opening of the Amerasian Basin.

  13. The acoustic emissions of cavitation bubbles in stretched vortices.

    PubMed

    Chang, Natasha A; Ceccio, Steven L

    2011-11-01

    Pairs of unequal strength, counter-rotating vortices were produced in order to examine the inception, dynamics, and acoustic emission of cavitation bubbles in rapidly stretching vortices. The acoustic signatures of these cavitation bubbles were characterized during their inception, growth, and collapse. Growing and collapsing bubbles often produced a sharp, broadband, pop sound. The spectrum of these bubbles, and the peak resonant frequency can generally be related to quiescent flow bubble dynamics and corresponding resonant frequencies. However, some elongated cavitation bubbles produced a short tonal burst, or chirp, with frequencies on the order of a few kilohertz. Theses frequencies are too low to be related to resonant frequencies of a bubble in a quiescent flow. Instead, the frequency content of the acoustic signal during bubble inception and growth is related to the volumetric oscillations of the bubble while it interacted with vortical flow that surrounds the bubble (i.e., the resonant frequency of the vortex-bubble system). A relationship was determined between the observed peak frequency of the oscillations, the highly stretched vortex properties, and the water nuclei content. It was found that different cavitation spectra could relate to different flow and fluid properties and therefore would not scale in the same manner.

  14. Stretching of Single Polymer Chains Using the Atomic Force Microscope

    NASA Astrophysics Data System (ADS)

    Ortiz, C.; van der Vegte, E. W.; van Swieten, E.; Robillard, G. T.; Hadziioannou, G.

    1998-03-01

    A variety of macroscopic phenomenon involve "nanoscale" polymer deformation including rubber elasticity, shear yielding, strain hardening, stress relaxation, fracture, and flow. With the advent of new and improved experimental techniques, such as the atomic force microscope (AFM), the probing of physical properties of polymers has reached finer and finer scales. The development of mixed self-assembling monolayer techniques and the chemical functionalization of AFM probe tips has allowed for mechanical experiments on single polymer chains of molecular dimensions. In our experiments, mixed monolayers are prepared in which end-functionalized, flexible polymer chains of thiol-terminated poly(methacrylic acid) are covalently bonded, isolated, and randomly distributed on gold substrates. The coils are then imaged, tethered to a gold-coated AFM tip, and stretched between the tip and the substrate in a conventional force / distance experiment. An increase in the attractive force due to entropic, elastic resistance to stretching, as well as fracture of the polymer chain is observed. The effect of chain stiffness, topological constraints, strain rate, mechanical hysteresis, and stress relaxation were investigated. Force modulation techniques were also employed in order to image the viscoelastic character of the polymer chains. Parallel work includes similar studies of biological systems such as wheat gluten proteins and polypeptides.

  15. The carpal stretch test at the rheumatoid wrist.

    PubMed

    Shimizu, Hiroyuki; Beppu, Moroe; Matsusita, Kazuhiko; Arai, Takeshi; Yoshida, Noriyuki

    2012-01-01

    The purpose of this study was to evaluate the radiographic changes of the carpus for rheumatoid wrists in patients who underwent the Sauvé-Kapandji procedure by examining the clinical results and comparing pre- and postoperative radiographic measurements. We studied 43 wrists in 37 patients who showed vertical laxity in the radiocarpal and midcarpal joint on preoperative carpal stretch test. Pain was improved in all patients and the forearm rotation angles of the wrist were significantly improved after the operation. The carpal collapse ratio was significantly reduced after the operation. The carpal collapse reduction rate was significantly greater in the group with than that in the group without midcarpal joint vertical laxity on the carpal stretch test. Although the Sauvé-Kapandji procedure was not sufficiently effective in preventing carpal collapse, it did have a protective effect against ulnar carpal shift. The results of our study showed that vertical laxity of the midcarpal joint was the risk factor of the carpal collapse after Sauvé-Kapandji procedure.

  16. Analysis of a Stretched Derivative Aircraft with Open Rotor Propulsion

    NASA Technical Reports Server (NTRS)

    Berton, Jeffrey J.; Hendricks, Eric S.; Haller, William J.; Guynn, Mark D.

    2015-01-01

    Research into advanced, high-speed civil turboprops received significant attention during the 1970s and 1980s when fuel efficiency was the driving focus of U.S. aeronautical research. But when fuel prices declined sharply there was no longer sufficient motivation to continue maturing the technology. Recent volatility in fuel prices and increasing concern for aviation's environmental impact, however, have renewed interest in unducted, open rotor propulsion and revived research by NASA and a number of engine manufacturers. Recently, NASA and General Electric have teamed to conduct several investigations into the performance and noise of an advanced, single-aisle transport with open rotor propulsion. The results of these initial studies indicate open rotor engines have the potential to provide significant reduction in fuel consumption compared to aircraft using turbofan engines with equivalent core technology. In addition, noise analysis of the concept indicates that an open rotor aircraft in the single-aisle transport class would be able to meet current noise regulations with margin. The behavior of derivative open rotor transports is of interest. Heavier, "stretched" derivative aircraft tend to be noisier than their lighter relatives. Of particular importance to the business case for the concept is how the noise margin changes relative to regulatory limits within a family of similar open rotor aircraft. The subject of this report is a performance and noise assessment of a notional, heavier, stretched derivative airplane equipped with throttle-push variants of NASA's initial open rotor engine design.

  17. Caveolae in Ventricular Myocytes are Required for Stretch-Dependent Conduction Slowing

    PubMed Central

    Pfeiffer, E.R.; Wright, A.T.; Edwards, A.G.; Stowe, J.C.; McNall, K.; Tan, J.; Niesman, I.; Patel, H.H.; Roth, D.M.; Omens, J.H.; McCulloch, A.D.

    2014-01-01

    Mechanical stretch of cardiac muscle modulates action potential propagation velocity, causing potentially arrhythmogenic conduction slowing. The mechanisms by which stretch alters cardiac conduction remain unknown, but previous studies suggest that stretch can affect the conformation of caveolae in myocytes and other cell types. We tested the hypothesis that slowing of action potential conduction due to cardiac myocyte stretch is dependent on caveolae. Cardiac action potential propagation velocities, measured by optical mapping in isolated mouse hearts and in micropatterned mouse cardiomyocyte cultures, decreased reversibly with volume loading or stretch, respectively (by 19±5% and 26±4%). Stretch-dependent conduction slowing was not altered by stretch-activated channel blockade with gadolinium or by GsMTx-4 peptide, but was inhibited when caveolae were disrupted via genetic deletion of caveolin-3 (Cav3 KO) or membrane cholesterol depletion by methyl-β-cyclodextrin. In wild-type mouse hearts, stretch coincided with recruitment of caveolae to the sarcolemma, as observed by electron microscopy. In myocytes from wild-type but not Cav3 KO mice, stretch significantly increased cell membrane capacitance (by 98±64%), electrical time constant (by 285±149%), and lipid recruitment to the bilayer (by 84±39%). Recruitment of caveolae to the sarcolemma during physiologic cardiomyocyte stretch slows ventricular action potential propagation by increasing cell membrane capacitance. PMID:25257915

  18. Acute effect of a ballistic and a static stretching exercise bout on flexibility and maximal strength.

    PubMed

    Bacurau, Reury Frank Pereira; Monteiro, Gizele Assis; Ugrinowitsch, Carlos; Tricoli, Valmor; Cabral, Leonardo Ferreira; Aoki, Marcelo Saldanha

    2009-01-01

    Different stretching techniques have been used during warm-up routines. However, these routines may decrease force production. The purpose of this study was to compare the acute effect of a ballistic and a static stretching protocol on lower-limb maximal strength. Fourteen physically active women (169.3 +/- 8.2 cm; 64.9 +/- 5.9 kg; 23.1 +/- 3.6 years) performed three experimental sessions: a control session (estimation of 45 degrees leg press one-repetition maximum [1RM]), a ballistic session (20 minutes of ballistic stretch and 45 degrees leg press 1RM), and a static session (20 minutes of static stretch and 45 degrees leg press 1RM). Maximal strength decreased after static stretching (213.2 +/- 36.1 to 184.6 +/- 28.9 kg), but it was unaffected by ballistic stretching (208.4 +/- 34.8 kg). In addition, static stretching exercises produce a greater acute improvement in flexibility compared with ballistic stretching exercises. Consequently, static stretching may not be recommended before athletic events or physical activities that require high levels of force. On the other hand, ballistic stretching could be more appropriate because it seems less likely to decrease maximal strength.

  19. Uniaxial cell stretching device for live-cell imaging of mechanosensitive cellular functions

    NASA Astrophysics Data System (ADS)

    Shao, Yue; Tan, Xinyu; Novitski, Roman; Muqaddam, Mishaal; List, Paul; Williamson, Laura; Fu, Jianping; Liu, Allen P.

    2013-11-01

    External mechanical stretch plays an important role in regulating cellular behaviors through intracellular mechanosensitive and mechanotransductive machineries such as the F-actin cytoskeleton (CSK) structures and focal adhesions (FAs) anchoring the F-actin CSK to the extracellular environment. Studying the mechanoresponsive behaviors of the F-actin CSK and FAs in response to cell stretch has great importance for further understanding mechanotransduction and mechanobiology. In this work, we developed a novel cell stretching device combining dynamic directional cell stretch with in situ subcellular live-cell imaging. Using a cam and follower mechanism and applying a standard mathematical model for cam design, we generated different dynamic stretch outputs. By examining stretch-mediated FA dynamics under step-function static stretch and the realignment of cell morphology and the F-actin CSK under cyclic stretch, we demonstrated successful applications of our cell stretching device for mechanobiology studies where external stretch plays an important role in regulating subcellular molecular dynamics and cellular phenotypes.

  20. Acute Effects of Different Agonist and Antagonist Stretching Arrangements on Static and Dynamic Range of Motion

    PubMed Central

    Amiri-Khorasani, Mohammadtaghi; Kellis, Eleftherios

    2015-01-01

    Background: Traditionally, stretching exercises are considered as basic components of warm up aiming to prepare the musculoskeletal system for performance and to prevent injuries. Objectives: The purpose of this study was to examine the effects of different agonist and antagonist stretching arrangements within a pre-exercise warm-up on hip static (SROM) and dynamic range of motion (DROM). Materials and Methods: Sixty trained male subjects (Mean ± SD: height, 177.38 ± 6.92 cm; body mass, 68.4 ± 10.22 kg; age, 21.52 ± 1.17 years) volunteered to participate in this study. SROM was measured by V-sit test and DROM captured by a motion analysis system before and after (i) static stretching for both hip flexor and extensor muscles (SFSE), (ii) dynamic stretching for both hip flexor and extensor muscles (DFDE), (iii) static stretching for the hip flexors and dynamic stretching for hip extensors (SFDE), and (iv) dynamic stretching for the hip flexors and static stretching for hip extensors (DFSE). Results: DFSE showed a significantly higher increase in DROM and SROM than the remainder of the stretching protocols (P < 0.05). There were significant differences between DFDE with SFSE and SFDE (P < 0.05) and SFSE showed significant increase as compared to SFDE (P < 0.05). Conclusions: In conclusion, DFSE is probably the best stretching arrangement due to producing more post activation potentiation on agonist muscles and less muscle stiffness in antagonist muscles. PMID:26715975

  1. THE ACUTE EFFECTS OF VARIOUS TYPES OF STRETCHING STATIC, DYNAMIC, BALLISTIC, AND NO STRETCH OF THE ILIOPSOAS ON 40‐YARD SPRINT TIMES IN RECREATIONAL RUNNERS

    PubMed Central

    Christensen, Scott D.; Perry, Craig; Hoover, Donald L.

    2012-01-01

    Background and Purpose: The potential adverse effects of static stretching on athletic performance are well documented, but still appears to be controversial, especially as they relates to sprinting. The prevalence of this practice is demonstrated by the number of competitive and recreational athletes who regularly engage in stretching immediately prior to sprinting with the mindset of optimizing their performance. The purpose of this study was to examine the effects of acute static, dynamic, and ballistic stretching, and no stretching of the iliopsoas muscle on 40‐yard sprint times in 18‐37 year‐old non‐competitive, recreational runners. Methods: Twenty‐five healthy recreational runners (16 male and 9 female) between the ages of 24 and 35 (Mean = 26.76 yrs., SD = 2.42 yrs.) completed this study. A repeated measures design was used, which consisted of running a 40‐yard sprint trial immediately following each of 4 different stretching conditions aimed at the iliopsoas muscle and lasting 1 minute each. The 4 conditions were completed in a randomized order within a 2‐week time period, allowing 48‐72 hours between each condition. Prior to each 40‐yard sprint trial, a 5‐minute walking warm‐up was performed at 3.5 mph on a treadmill. The subject then ran a baseline 40‐yard sprint. After a 10‐minute self‐paced walk, each subject performed one of the 4 stretching conditions (ballistic, dynamic, static, and no stretch) and then immediately ran a timed 40‐yard sprint. Results: There was a significant interaction between stretching conditions and their effects on sprint times, F(3,72) = 9.422, p<.0005. To break down this interaction, simple main effects were performed with 2 repeated measures ANOVAs and 4 paired t‐tests using a Bonferroni corrected alpha (α = .0083). There were no significant differences between the 4 pre‐condition times, p = 0.103 (Greenhouse‐Geisser) or the post‐condition times, p = 0.029. In the no stretch condition

  2. Climate adaptation

    NASA Astrophysics Data System (ADS)

    Kinzig, Ann P.

    2015-03-01

    This paper is intended as a brief introduction to climate adaptation in a conference devoted otherwise to the physics of sustainable energy. Whereas mitigation involves measures to reduce the probability of a potential event, such as climate change, adaptation refers to actions that lessen the impact of climate change. Mitigation and adaptation differ in other ways as well. Adaptation does not necessarily have to be implemented immediately to be effective; it only needs to be in place before the threat arrives. Also, adaptation does not necessarily require global, coordinated action; many effective adaptation actions can be local. Some urban communities, because of land-use change and the urban heat-island effect, currently face changes similar to some expected under climate change, such as changes in water availability, heat-related morbidity, or changes in disease patterns. Concern over those impacts might motivate the implementation of measures that would also help in climate adaptation, despite skepticism among some policy makers about anthropogenic global warming. Studies of ancient civilizations in the southwestern US lends some insight into factors that may or may not be important to successful adaptation.

  3. Adaptation of rat soleus muscles to 4 wk of intermittent strain

    NASA Technical Reports Server (NTRS)

    Stauber, W. T.; Miller, G. R.; Grimmett, J. G.; Knack, K. K.

    1994-01-01

    The effect of repeated strains on rat soleus muscles was investigated by stretching active muscles 3 times/wk for 4 wk with two different methods of stretching. The adaptation of myofibers and noncontractile tissue was followed by histochemical techniques and computer-assisted image analysis. Muscle hypertrophy was seen in the slow-stretched muscles, which increased in mass by 13% and increased in myofiber cross-sectional area by 30%. In the fast-stretched muscle, mass increased by 10% but myofiber cross-sectional area actually decreased. This decrease in mean fiber area was the result of a population of very small fibers (population A) that coexisted with slightly smaller normal-sized fibers (population B). Fibers in population A did not have the distribution expected from atrophy compared with atrophic fibers from unloaded muscles; they were much smaller. In addition, there was a 44% increase in noncontractile tissue in the fast-stretched muscles. Thus, soleus muscles subjected to repeated strains respond differently to slow and fast stretching. Slow stretching results in typical muscle hypertrophy, whereas fast stretching produces somewhat larger muscles but with a mixture of small and normal-sized myofibers accompanied by a marked proliferation of noncontractile tissue.

  4. TRPM7 is a stretch- and swelling-activated cation channel involved in volume regulation in human epithelial cells.

    PubMed

    Numata, Tomohiro; Shimizu, Takahiro; Okada, Yasunobu

    2007-01-01

    Stretch- and swelling-activated cation (SSAC) channels play essential roles not only in sensing and transducing external mechanical stresses but also in regulating cell volume in living cells. However, the molecular nature of the SSAC channel has not been clarified. In human epithelial HeLa cells, single-channel recordings in cell-attached and inside-out patches revealed expression of a Mg(2+)- and Gd(3+)-sensitive nonselective cation channel that is exquisitely sensitive to membrane stretch. Whole cell recordings revealed that the macroscopic cationic currents exhibit transient receptor potential (TRP) melastatin (TRPM)7-like properties such as outward rectification and sensitivity to Mg(2+) and Gd(3+). The whole cell cation current was augmented by osmotic cell swelling. RT-PCR and Western blotting demonstrated molecular expression of TRPM7 in HeLa cells. Treatment with small interfering RNA (siRNA) targeted against TRPM7 led to abolition of single stretch-activated cation channel currents and of swelling-activated, whole cell cation currents in HeLa cells. The silencing of TRPM7 by siRNA reduced the rate of cell volume recovery after osmotic swelling. A similar inhibition of regulatory volume decrease was also observed when extracellular Ca(2+) was removed or Gd(3+) was applied. It is thus concluded that TRPM7 represents the SSAC channel endogenously expressed in HeLa cells and that, by serving as a swelling-induced Ca(2+) influx pathway, it plays an important role in cell volume regulation. PMID:16943238

  5. Genetics of Taste Receptors

    PubMed Central

    Bachmanov, Alexander A.; Bosak, Natalia P.; Lin, Cailu; Matsumoto, Ichiro; Ohmoto, Makoto; Reed, Danielle R.; Nelson, Theodore M.

    2016-01-01

    Taste receptors function as one of the interfaces between internal and external milieus. Taste receptors for sweet and umami (T1R [taste receptor, type 1]), bitter (T2R [taste receptor, type 2]), and salty (ENaC [epithelial sodium channel]) have been discovered in the recent years, but transduction mechanisms of sour taste and ENaC-independent salt taste are still poorly understood. In addition to these five main taste qualities, the taste system detects such noncanonical “tastes” as water, fat, and complex carbohydrates, but their reception mechanisms require further research. Variations in taste receptor genes between and within vertebrate species contribute to individual and species differences in taste-related behaviors. These variations are shaped by evolutionary forces and reflect species adaptations to their chemical environments and feeding ecology. Principles of drug discovery can be applied to taste receptors as targets in order to develop novel taste compounds to satisfy demand in better artificial sweeteners, enhancers of sugar and sodium taste, and blockers of bitterness of food ingredients and oral medications. PMID:23886383

  6. Genetics of taste receptors.

    PubMed

    Bachmanov, Alexander A; Bosak, Natalia P; Lin, Cailu; Matsumoto, Ichiro; Ohmoto, Makoto; Reed, Danielle R; Nelson, Theodore M

    2014-01-01

    Taste receptors function as one of the interfaces between internal and external milieus. Taste receptors for sweet and umami (T1R [taste receptor, type 1]), bitter (T2R [taste receptor, type 2]), and salty (ENaC [epithelial sodium channel]) have been discovered in the recent years, but transduction mechanisms of sour taste and ENaC-independent salt taste are still poorly understood. In addition to these five main taste qualities, the taste system detects such noncanonical "tastes" as water, fat, and complex carbohydrates, but their reception mechanisms require further research. Variations in taste receptor genes between and within vertebrate species contribute to individual and species differences in taste-related behaviors. These variations are shaped by evolutionary forces and reflect species adaptations to their chemical environments and feeding ecology. Principles of drug discovery can be applied to taste receptors as targets in order to develop novel taste compounds to satisfy demand in better artificial sweeteners, enhancers of sugar and sodium taste, and blockers of bitterness of food ingredients and oral medications. PMID:23886383

  7. Magnitude-dependent regulation of pulmonary endothelial cell barrier function by cyclic stretch.

    PubMed

    Birukov, Konstantin G; Jacobson, Jeffrey R; Flores, Alejandro A; Ye, Shui Q; Birukova, Anna A; Verin, Alexander D; Garcia, Joe G N

    2003-10-01

    Ventilator-induced lung injury syndromes are characterized by profound increases in vascular leakiness and activation of inflammatory processes. To explore whether excessive cyclic stretch (CS) directly causes vascular barrier disruption or enhances endothelial cell sensitivity to edemagenic agents, human pulmonary artery endothelial cells (HPAEC) were exposed to physiologically (5% elongation) or pathologically (18% elongation) relevant levels of strain. CS produced rapid (10 min) increases in myosin light chain (MLC) phosphorylation, activation of p38 and extracellular signal-related kinase 1/2 MAP kinases, and actomyosin remodeling. Acute (15 min) and chronic (48 h) CS markedly enhanced thrombin-induced MLC phosphorylation (2.1-fold and 3.2-fold for 15-min CS at 5 and 18% elongation and 2.1-fold and 3.1-fold for 48-h CS at 5 and 18% elongation, respectively). HPAEC preconditioned at 18% CS, but not at 5% CS, exhibited significantly enhanced thrombin-induced reduction in transendothelial electrical resistance but did not affect barrier protective effect of sphingosine-1-phosphate (0.5 microM). Finally, expression profiling analysis revealed a number of genes, including small GTPase rho, apoptosis mediator ZIP kinase, and proteinase activated receptor-2, to be regulated by CS in an amplitude-dependent manner. Thus our study demonstrates a critical role for the magnitude of CS in regulation of agonist-mediated pulmonary endothelial cell permeability and strongly suggests phenotypic regulation of HPAEC barrier properties by CS. PMID:12639843

  8. Effect of Biaxial Stretching at Temperatures and Strain Histories Comparable to Injection Stretch Blow Moulding on Tensile Modulus for Polyethylene Terephthalate (PET)

    NASA Astrophysics Data System (ADS)

    Tan, C. W.; Menary, G. H.; Harkin-Jones, E. M. A.; Armstrong, C. G.; Martin, P. J.

    2007-04-01

    This study is particularly relevant to the injection stretch blow moulding (ISBM) process where PET material is typically biaxially stretched to form bottles for the water and carbonated soft drinks industry. The aim of this paper is to investigate the effect of biaxial stretching on the mechanical properties of Polyethylene Terephthalate (PET) using a custom built biaxial testing machine. An initially amorphous PET sample was prepared via injection moulding to form a square sample (76mm × 76mm) suitable for stretching on the machine. This sample was then subjected to a series of biaxial tests (simultaneous and sequential) within a temperature range between 85°C and 110 °C, strain rates in the range of 1s-1 to 32s-1 and stretch ratios in the range of 1.5 to 3. Specimens were subsequently cut from the biaxial stretched sheets and used to measure the tensile modulus. Results showed that there is almost no effect found for strain rate and temperature on modulus development whilst stretch ratio and mode of deformation played the most important role on modulus development on PET under biaxial deformation.

  9. Anisotropic optical properties of oriented silver nanorice and nanocarrots in stretched polymer films

    NASA Astrophysics Data System (ADS)

    Tong, Xia; Liang, Hongyan; Liu, Yanlong; Tan, Long; Ma, Dongling; Zhao, Yue

    2015-05-01

    Stretching-induced orientation of both silver nanorice and silver nanocarrots dispersed in or deposited on the surface of poly(vinyl alcohol) (PVA) films was investigated using polarized UV-visible-near-infrared (NIR) spectroscopy and atomic force microscopy (AFM). The results show that the film stretching not only aligns the long axis of individual nanorice or nanocarrots preferentially along the stretching direction, but also induces assembly of these nanostructures into oriented arrays of random lengths in the deformation process. Consequently, the longitudinal surface plasmon resonance peaked at 820 nm for nanorice and 1050 nm for nanocarrots before stretching can be replaced by continuous extinction over the entire 800-1800 nm NIR spectral range after stretching. Stretched PVA films containing either silver nanorice or nanocarrots thus display polarization-dependent transmission of NIR light.

  10. The acute effects of static and ballistic stretching on vertical jump performance in trained women.

    PubMed

    Unick, Jessica; Kieffer, H Scott; Cheesman, Wendy; Feeney, Anna

    2005-02-01

    Traditionally stretching has been included as part of a warm-up that precedes athletic participation. However, there is mixed evidence as to whether stretching actually enhances or hinders athletic performance. Therefore, the purpose of this study was to examine the acute effects of static (SS) and ballistic stretching (BS) on vertical jump (VJ) performance and to investigate whether power was altered at 15 and 30 minutes after stretching. Sixteen actively trained women performed a series of vertical jumps (countermovement and drop jumps) after an initial nonstretching (NS) session and after participating in BS and SS sessions that were conducted in a balanced and randomized order. The results indicated that there was no significant difference (p < 0.05) in VJ scores as a result of static or ballistic stretching, elapsed time, or initial flexibility scores. This suggests that stretching prior to competition may not negatively affect the performance of trained women.

  11. Effect of Lower Extremity Stretching Exercises on Balance in Geriatric Population

    PubMed Central

    Reddy, Ravi Shankar; Alahmari, Khalid A

    2016-01-01

    Background and Objective The purpose of this study was to find “Effect of lower extremity stretching exercises on balance in the geriatric population. Method 60 subjects (30 male and 30 female) participated in the study. The subjects underwent 10 weeks of lower limb stretching exercise program. Pre and post 10 weeks stretching exercise program, the subjects were assessed for balance, using single limb stance time in seconds and berg balance score. These outcome measures were analyzed. Results Pre and post lower extremity stretching on balance was analyzed using paired t test. Of 60 subjects 50 subjects completed the stretching exercise program. Paired sample t test analysis showed a significant improvement in single limb stance time (eyes open and eyes closed) (p<0.001) and berg balance score (p<0.001). Conclusion Lower extremity stretching exercises enhances balance in the geriatric population and thereby reduction in the number of falls.

  12. An evaluation of different contributions to flame stretch for stationary premixed flames

    SciTech Connect

    Goey, L.P.H. de; Mallens, R.M.M.; Thije Boonkkamp, J.H.M. ten

    1997-07-01

    The concept of flame stretch is extended to study stationary premixed flames with a finite thickness. It is shown that the analysis results in additional contributions to the stretch rate due to changes in the flame thickness and due to density variations along the flame. Extended expressions are derived that describe the effect of stretch on variations in scalar quantities, such as the enthalpy. These expressions are used to determine local variations in the flame temperature, and it is shown that known results are recovered when a number of approximations are introduced. The extended stretch formalism might be useful to analyze and quantify the different flame stretch contributions and their effects in numerical flame studies. Finally, the different contributions to the total stretch rate and the effects thereof on the flame stabilization are numerically computed for the flame tip of a two-dimensional Bunsen flame as illustration.

  13. Effect of Lower Extremity Stretching Exercises on Balance in Geriatric Population

    PubMed Central

    Reddy, Ravi Shankar; Alahmari, Khalid A

    2016-01-01

    Background and Objective The purpose of this study was to find “Effect of lower extremity stretching exercises on balance in the geriatric population. Method 60 subjects (30 male and 30 female) participated in the study. The subjects underwent 10 weeks of lower limb stretching exercise program. Pre and post 10 weeks stretching exercise program, the subjects were assessed for balance, using single limb stance time in seconds and berg balance score. These outcome measures were analyzed. Results Pre and post lower extremity stretching on balance was analyzed using paired t test. Of 60 subjects 50 subjects completed the stretching exercise program. Paired sample t test analysis showed a significant improvement in single limb stance time (eyes open and eyes closed) (p<0.001) and berg balance score (p<0.001). Conclusion Lower extremity stretching exercises enhances balance in the geriatric population and thereby reduction in the number of falls. PMID:27610062

  14. Tuning the period of nanogratings using mechanical stretching and nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Qian, Mingcheng; Zhang, Weichao; Trefilov, Denis; Ji, Min; Cui, Yushuang; Yuan, Changsheng; Li, Wendi; Ge, Haixiong; Chen, Yanfeng

    2016-06-01

    We report a method to tune the nanogratings' period using mechanical stretching and transfer the tuned gratings using a UV-curing nanoimprint process. A hybrid mold with nanogratings was stretched perpendicularly or parallel to the grating lines. The perpendicular stretching caused a continuous enlargement of the grating period, and the parallel stretching led to a continuous shrinkage of the period. As a demonstration, we tuned a grating pattern with a period of 550 nm to a wide range of periods from 450 to 750 nm. The stretched hybrid mold was used to perform a UV-curing imprint process and to transfer the tuned grating structures onto a substrate in combination with a reactive ion etching process. A larger tuning range was achieved by repeating the grating stretching and pattern transfer steps. A grating pattern with a smaller period of 140 nm was also successfully shrunk to 125 nm using this method.

  15. Infusing Stretch Goal Requirements into the Constellation Program

    NASA Technical Reports Server (NTRS)

    Lee, Young H.; Galpin, Roger A.; Ingoldsby, Kevin

    2008-01-01

    established to identify operability requirements to influence flight vehicle and ground infrastructure design in order to impact the life cycle operations costs, and stretch goal requirements were introduced to the Program. This paper will describe how these stretch goal requirements were identified, developed, refined, matured, approved, and infused into the CARD. The paper will also document several challenges encountered when infusing the stretch goal requirements into the Constellation Program.

  16. Transient reversal of the stretch reflex in human arm muscles.

    PubMed

    Lacquaniti, F; Borghese, N A; Carrozzo, M

    1991-09-01

    1. Load perturbation responses can violate the law of reciprocal innervation between antagonist muscles under particular conditions. Thus flexor and extensor muscles of wrist and elbow joints are reflexly coactivated by the impact of a ball on the hand during a catching task. The aim of this study was to determine whether reflex coactivation can be preset within the central nervous system (CNS) or whether it is entirely due to the peripheral stimulus. To this end, we studied the behavior of stretch reflex responses of arm muscles evoked by torque motor perturbations applied before and during the catching task. 2. Subjects were instructed to catch a ball dropped from 1.6 m. A torque motor delivered perturbations to the elbow joint, resulting in angular motion at both elbow and wrist joints because of their dynamic mechanical coupling. Two series of experiments were performed that differed in the perturbation waveform. In the first series, a single torque pulse could be randomly applied at different times during the task. The corresponding responses were recovered by subtracting the average of the unperturbed trials from the averages of perturbed trials. In the second series of experiments, a train of pseudorandom pulses was applied continuously during each trial. The time-varying impulse responses were computed at 20-ms intervals by cross-correlation methods. 3. The pattern of the short-latency electromyographic responses evoked by either single pulses or pseudorandom perturbations obeyed the law of reciprocal innervation of antagonist muscles under basal conditions. However, the pattern of the responses evoked by the same perturbations around the time of ball impact on the hand consisted of a substantial coactivation of both stretched and shortening muscles. Reflex coactivation resulted from response patterns that differed at different joints. At the elbow, reflex coactivation resulted from a transient reversal of the direction of the short-latency responses of

  17. The effects of passive stretching plus vibration on strength and activation of the plantar flexors.

    PubMed

    Miller, Jonathan D; Herda, Trent J; Trevino, Michael A; Mosier, Eric M

    2016-09-01

    This study examined the effects of passive stretching only (PS+CON) and passive stretching with the addition of continuous vibration (VIB) during post-passive stretching tests (PS+VIB) on peak torque (PT), percent voluntary inactivation (%VI), single stimulus twitch torque (TTSINGLE), and doublet stimuli twitch torque (TTDOUBLET) of the plantar flexors at a short (20° plantar flexion (PF)) and long muscle length (15° dorsiflexion (DF)). Fourteen healthy men (age = 22 ± 3 years) performed isometric maximal voluntary contractions at PF and DF, and passive range of motion (PROM) assessments before and after 8 × 30-s passive stretches without (PS+CON) or with VIB (PS+VIB) administered continuously throughout post-passive stretching tests. The passive properties of the muscle tendon unit were assessed pre- and post-passive stretching via PROM, passive torque (PASSTQ), and musculotendinous stiffness (MTS) measurements. PT, TTSINGLE, and TTDOUBLET decreased, whereas, %VI increased following passive stretching at PF and DF (P < 0.05) with no significant differences between PS+CON and PS+VIB. PASSTQ and MTS decreased while PROM increased post-passive stretching during both trials (P < 0.05). The stretching-induced force/torque deficit and increases in %VI were evident following passive stretching at short and long muscle lengths. Although not statistically significant, effect size calculations suggested large and moderate differences in the absolute changes in PT (Cohen's d = 1.14) and %VI (Cohen's d = 0.54) from pre- to post-passive stretching between treatments, with PS+VIB having greater decreases of PT and higher %VI than PS+CON. The decrement in PT following passive stretching may be primarily neural in origin. PMID:27512816

  18. Force enhancement during and following muscle stretch of maximal voluntarily activated human quadriceps femoris.

    PubMed

    Hahn, Daniel; Seiberl, Wolfgang; Schwirtz, Ansgar

    2007-08-01

    Force enhancement during and following muscle stretch has been observed for electrically and voluntarily activated human muscle. However, especially for voluntary contractions, the latter observation has only been made for adductor pollicis and the ankle joint muscles, but not for large muscles like quadriceps femoris. Therefore, the aim of this study was to investigate the effects of active muscle stretch on force production for maximal voluntary contractions of in vivo human quadriceps femoris (n = 15). Peak torques during and torques at the end of stretch, torques following stretch, and passive torques following muscle deactivation were compared to the isometric torques at corresponding muscle length. In addition, muscle activation of rectus femoris, vastus medialis and vastus lateralis was obtained using surface EMG. Stretches with different amplitudes (15, 25 and 35 degrees at a velocity of 60 degrees s(-1)) were performed on the plateau region and the descending limb of the force-length relation in a random order. Data analysis showed four main results: (1) peak torques did not occur at the end of the stretch, but torques at the end of the stretch exceeded the corresponding isometric torque; (2) there was no significant force enhancement following muscle stretch, but a small significant passive force enhancement persisted for all stretch conditions; (3) forces during and following stretch were independent of stretch amplitude; (4) muscle activation during and following muscle stretch was significantly reduced. In conclusion, although our results showed passive force enhancement, we could not provide direct evidence that there is active force enhancement in voluntarily activated human quadriceps femoris.

  19. Lewis lung carcinoma regulation of mechanical stretch-induced protein synthesis in cultured myotubes.

    PubMed

    Gao, Song; Carson, James A

    2016-01-01

    Mechanical stretch can activate muscle and myotube protein synthesis through mammalian target of rapamycin complex 1 (mTORC1) signaling. While it has been established that tumor-derived cachectic factors can induce myotube wasting, the effect of this catabolic environment on myotube mechanical signaling has not been determined. We investigated whether media containing cachectic factors derived from Lewis lung carcinoma (LLC) can regulate the stretch induction of myotube protein synthesis. C2C12 myotubes preincubated in control or LLC-derived media were chronically stretched. Protein synthesis regulation by anabolic and catabolic signaling was then examined. In the control condition, stretch increased mTORC1 activity and protein synthesis. The LLC treatment decreased basal mTORC1 activity and protein synthesis and attenuated the stretch induction of protein synthesis. LLC media increased STAT3 and AMP-activated protein kinase phosphorylation in myotubes, independent of stretch. Both stretch and LLC independently increased ERK1/2, p38, and NF-κB phosphorylation. In LLC-treated myotubes, the inhibition of ERK1/2 and p38 rescued the stretch induction of protein synthesis. Interestingly, either leukemia inhibitory factor or glycoprotein 130 antibody administration caused further inhibition of mTORC1 signaling and protein synthesis in stretched myotubes. AMP-activated protein kinase inhibition increased basal mTORC1 signaling activity and protein synthesis in LLC-treated myotubes, but did not restore the stretch induction of protein synthesis. These results demonstrate that LLC-derived cachectic factors can dissociate stretch-induced signaling from protein synthesis through ERK1/2 and p38 signaling, and that glycoprotein 130 signaling is associated with the basal stretch response in myotubes.

  20. Automation of a single-DNA molecule stretching device.

    PubMed

    Sørensen, Kristian Tølbøl; Lopacinska, Joanna M; Tommerup, Niels; Silahtaroglu, Asli; Kristensen, Anders; Marie, Rodolphe

    2015-06-01

    We automate the manipulation of genomic-length DNA in a nanofluidic device based on real-time analysis of fluorescence images. In our protocol, individual molecules are picked from a microchannel and stretched with pN forces using pressure driven flows. The millimeter-long DNA fragments free flowing in micro- and nanofluidics emit low fluorescence and change shape, thus challenging the image analysis for machine vision. We demonstrate a set of image processing steps that increase the intrinsically low signal-to-noise ratio associated with single-molecule fluorescence microscopy. Furthermore, we demonstrate how to estimate the length of molecules by continuous real-time image stitching and how to increase the effective resolution of a pressure controller by pulse width modulation. The sequence of image-processing steps addresses the challenges of genomic-length DNA visualization; however, they should also be general to other applications of fluorescence-based microfluidics.

  1. High thermopower of mechanically stretched single-molecule junctions.

    PubMed

    Tsutsui, Makusu; Morikawa, Takanori; He, Yuhui; Arima, Akihide; Taniguchi, Masateru

    2015-01-01

    Metal-molecule-metal junction is a promising candidate for thermoelectric applications that utilizes quantum confinement effects in the chemically defined zero-dimensional atomic structure to achieve enhanced dimensionless figure of merit ZT. A key issue in this new class of thermoelectric nanomaterials is to clarify the sensitivity of thermoelectricity on the molecular junction configurations. Here we report simultaneous measurements of the thermoelectric voltage and conductance on Au-1,4-benzenedithiol (BDT)-Au junctions mechanically-stretched in-situ at sub-nanoscale. We obtained the average single-molecule conductance and thermopower of 0.01 G0 and 15 μV/K, respectively, suggesting charge transport through the highest occupied molecular orbital. Meanwhile, we found the single-molecule thermoelectric transport properties extremely-sensitive to the BDT bridge configurations, whereby manifesting the importance to design the electrode-molecule contact motifs for optimizing the thermoelectric performance of molecular junctions. PMID:26112999

  2. Development of the Ultra-Light Stretched Lens Array

    NASA Technical Reports Server (NTRS)

    O'Neill, M. J.; McDanal, A. J.; George, P. J.; Piszczor, M. F.; Edwards, D. L.; Botke, M. M.; Jaster, P. A.; Brandhorst, H. W.; Eskenazi, M.I.; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    At the last IEEE (Institute of Electrical and Electronics Engineers) PVSC (Photovoltaic Specialists Conference), the new stretched lens array (SLA) concept was introduced. Since that conference, the SLA team has made significant advances in the SLA technology, including component level improvements, array level optimization, space environment exposure testing, and prototype hardware fabrication and evaluation. This paper will describe the evolved version of the SLA, highlighting the improvements in the lens, solar cell, rigid panel structure, and complete solar array wing. The near term SLA will provide outstanding wing level performance: greater than 180 W/kg specific power, greater than 300 W/sq m power density, greater than 300 V operational voltage, and excellent durability in the space environment.

  3. Physical modalities other than stretch in spastic hypertonia.

    PubMed

    Gracies, J M

    2001-11-01

    This article reviews various physical modalities that have been used in spastic hypertonia, particularly superficial heat and cold, diathermies (ultrasound, microwave, and short-wave irradiation), electrical stimulation (transcutaneous electrical nerve stimulation), implanted spinal stimulation (rectal stimulation), and massage (deep friction, superficial contact). The duration of the effects of most physical therapies is relatively short (e.g., cooling, heating, and massage), which often may limit their application to immediate prestretch or pre-exercise periods. The potential capacity of ultrasound therapy to improve the efficacy of chronic stretch in lengthening muscle may be a promising option. The neurodestructive potential of high intensity microwave for the personnel involved and controlled evidence of its value is required before this modality can be recommended in spasticity. Overall, controlled, double-blind studies are mandated to evaluate the long-term impact of repeated use of these short-term modalities on function and recovery in patients with spasticity.

  4. Recent Progress on the Stretched Lens Array (SLA)

    NASA Technical Reports Server (NTRS)

    O'Neill, Markl; McDanal, A. J.; Piszczor, Michael; George, Patrick; Eskenazi, Michael; Botke, Matthew; Edwards, David; Hoppe, David; Brandhorst, Henry

    2005-01-01

    At the last Space Photovoltaic Research and Technology Conference, SPRAT XVII, held during the fateful week of 9/11/01, our team presented a paper on the early developments related to the new Stretched Lens Array (SLA), including its evolution from the successful SCARLET array on the NASA/JPL Deep Space 1 spacecraft. Within the past two years, the SLA team has made significant progress in the SLA technology, including the successful fabrication and testing of a complete four-panel prototype solar array wing (Fig. 1). The prototype wing verified the mechanical and structural design of the rigid-panel SLA approach, including multiple successful demonstrations of automatic wing deployment. One panel in the prototype wing included four fully functional photovoltaic receivers, employing triple-junction solar cells.

  5. Small bending and stretching of sandwich-type shells

    NASA Technical Reports Server (NTRS)

    Reissner, Eric

    1950-01-01

    A theory has been developed for small bending and stretching of sandwich-type shells. This theory is an extension of the known theory of homogeneous thin elastic shells. It was found that two effects are important in the present problem, which are not normally of importance in the theory of curved shells: (1) the effect of transverse shear deformation and (2) the effect of transverse normal stress deformation. The first of these two effects has been known to be of importance in the theory of plates and beams. The second effect was found to occur in a manner which is typical for shells and has no counterpart in flat-plate theory. The general results of this report have been applied to the solution of problems concerning flat plates, circular rings, circular cylindrical shells, and spherical shells. In each case numerical examples have been given, illustrating the magnitude of the effects of transverse shear and normal stress deformation.

  6. Laser Pulse-Stretching Using Multiple Optical Ring-Cavities

    NASA Technical Reports Server (NTRS)

    Kojima, Jun; Nguyen, Quang-Viet; Lee, Chi-Ming (Technical Monitor)

    2002-01-01

    We describe a simple and passive nanosecond-long (ns-long) laser 'pulse-stretcher' using multiple optical ring-cavities. We present a model of the pulse-stretching process for an arbitrary number of optical ring-cavities. Using the model, we optimize the design of a pulse-stretcher for use in a spontaneous Raman scattering excitation system that avoids laser-induced plasma spark problems. From the optimized design, we then experimentally demonstrate and verify the model with a 3-cavity pulse-stretcher system that converts a 1000 mJ, 8.4 ns-long input laser pulse into an approximately 75 ns-long (FWHM) output laser pulse with a peak power reduction of 0.10X, and an 83% efficiency.

  7. Automation of a single-DNA molecule stretching device.

    PubMed

    Sørensen, Kristian Tølbøl; Lopacinska, Joanna M; Tommerup, Niels; Silahtaroglu, Asli; Kristensen, Anders; Marie, Rodolphe

    2015-06-01

    We automate the manipulation of genomic-length DNA in a nanofluidic device based on real-time analysis of fluorescence images. In our protocol, individual molecules are picked from a microchannel and stretched with pN forces using pressure driven flows. The millimeter-long DNA fragments free flowing in micro- and nanofluidics emit low fluorescence and change shape, thus challenging the image analysis for machine vision. We demonstrate a set of image processing steps that increase the intrinsically low signal-to-noise ratio associated with single-molecule fluorescence microscopy. Furthermore, we demonstrate how to estimate the length of molecules by continuous real-time image stitching and how to increase the effective resolution of a pressure controller by pulse width modulation. The sequence of image-processing steps addresses the challenges of genomic-length DNA visualization; however, they should also be general to other applications of fluorescence-based microfluidics. PMID:26133839

  8. Programmable Extreme Pseudomagnetic Fields in Graphene by a Uniaxial Stretch.

    PubMed

    Zhu, Shuze; Stroscio, Joseph A; Li, Teng

    2015-12-11

    Many of the properties of graphene are tied to its lattice structure, allowing for tuning of charge carrier dynamics through mechanical strain. The graphene electromechanical coupling yields very large pseudomagnetic fields for small strain fields, up to hundreds of Tesla, which offer new scientific opportunities unattainable with ordinary laboratory magnets. Significant challenges exist in investigation of pseudomagnetic fields, limited by the nonplanar graphene geometries in existing demonstrations and the lack of a viable approach to controlling the distribution and intensity of the pseudomagnetic field. Here we reveal a facile and effective mechanism to achieve programmable extreme pseudomagnetic fields with uniform distributions in a planar graphene sheet over a large area by a simple uniaxial stretch. We achieve this by patterning the planar graphene geometry and graphene-based heterostructures with a shape function to engineer a desired strain gradient. Our method is geometrical, opening up new fertile opportunities of strain engineering of electronic properties of 2D materials in general.

  9. High thermopower of mechanically stretched single-molecule junctions

    PubMed Central

    Tsutsui, Makusu; Morikawa, Takanori; He, Yuhui; Arima, Akihide

    2015-01-01

    Metal-molecule-metal junction is a promising candidate for thermoelectric applications that utilizes quantum confinement effects in the chemically defined zero-dimensional atomic structure to achieve enhanced dimensionless figure of merit ZT. A key issue in this new class of thermoelectric nanomaterials is to clarify the sensitivity of thermoelectricity on the molecular junction configurations. Here we report simultaneous measurements of the thermoelectric voltage and conductance on Au-1,4-benzenedithiol (BDT)-Au junctions mechanically-stretched in-situ at sub-nanoscale. We obtained the average single-molecule conductance and thermopower of 0.01 G0 and 15 μV/K, respectively, suggesting charge transport through the highest occupied molecular orbital. Meanwhile, we found the single-molecule thermoelectric transport properties extremely-sensitive to the BDT bridge configurations, whereby manifesting the importance to design the electrode-molecule contact motifs for optimizing the thermoelectric performance of molecular junctions. PMID:26112999

  10. Driven anomalous diffusion: An example from polymer stretching.

    PubMed

    Saito, Takuya; Sakaue, Takahiro

    2015-07-01

    The way tension propagates along a chain is a key to govern many anomalous dynamics in macromolecular systems. After introducing the weak and the strong force regimes of the tension propagation, we focus on the latter, in which the dynamical fluctuations of a segment in a long polymer during its stretching process is investigated. We show that the response, i.e., average drift, is anomalous, which is characterized by the nonlinear memory kernel, and its relation to the fluctuation is nontrivial. These features are discussed on the basis of the generalized Langevin equation, in which the role of the temporal change in spring constant due to the stress hardening is pinpointed. We carried out the molecular dynamics simulation, which supports our theory. PMID:26274194

  11. Acute decrease in the stiffness of resting muscle belly due to static stretching.

    PubMed

    Taniguchi, K; Shinohara, M; Nozaki, S; Katayose, M

    2015-02-01

    The purpose of the study was to examine the acute effect of static stretching exercise on the resting stiffness of gastrocnemius muscle belly. Ten healthy young adults performed standing wall stretching in dorsiflexion for 1 min at a time and repeated five times. Before and after stretching, the shear modulus was measured in medial and lateral heads of the resting gastrocnemius muscle with ultrasound shear-wave elastography. After the stretching, dorsiflexion range of motion (ROM) of the ankle joint increased (P < 0.01) by 3.9° and returned in 20 min. Immediately after stretching, shear modulus decreased (P < 0.01) by 14%, compared with before stretching across muscle heads. The decrease in shear modulus returned in 20 min after stretching. In the comparison group of 10 additional subjects, the standing intervention without stretching had no influence on these measures. There was a negative correlation between dorsiflexion ROM and shear modulus in either head before and after stretching. The results demonstrate the transient decreases in the stiffness of the resting gastrocnemius muscle belly and indicate that joint flexibility is greater in individuals with lower resting stiffness of the muscle belly.

  12. Effects of passive static stretching on blood glucose levels in patients with type 2 diabetes mellitus

    PubMed Central

    Park, Seong Hoon

    2015-01-01

    [Purpose] This study determined the effects of passive static stretching on blood glucose levels in patients with type 2 diabetes. [Subjects] Fifteen patients (8 males and 7 females) with type 2 diabetes were recruited and randomly assigned to the control group or passive static stretching group. [Methods] Glycated hemoglobin was measured before and after the 8-week training period. [Results] Glycated hemoglobin levels decreased significantly in the passive static stretching group, and there were significant differences in blood glucose levels between the 2 groups. [Conclusion] Passive static stretching of the skeletal muscles may be an alternative to exercise to help regulate blood glucose levels in diabetes patients. PMID:26157241

  13. DNA stretch during electrophoresis due to a step change in mobility.

    PubMed

    Underhill, Patrick T; Doyle, Patrick S

    2007-07-01

    We investigate DNA stretching during electrophoresis when the mobility abruptly changes. This is a simplified geometry that produces a nonhomogeneous strain rate over the scale of a single molecule. An effective Weissenberg number (Wi) and Deborah number were identified, and the degree of stretching was examined as a function of these two parameters. The system does not undergo a coil-stretch transition. The finite extensibility of the chains only affects the response if the chain is stretched to a significant fraction of the contour length. The wormlike chain shows a characteristic approach to full extension of Wi(-1/2).

  14. Printing of CNT/silicone rubber for a wearable flexible stretch sensor

    NASA Astrophysics Data System (ADS)

    Kurian, Agee S.; Giffney, Tim; Lee, Jim; Travas-Sejdic, Jadranka; Aw, Kean C.

    2016-04-01

    In this paper, we present a simple printing method for a highly resilient stretch sensor. The stretch sensors, based on multi-walled carbon nanotubes (MWCNT)/silicon rubber (Ecoflex® 00-30) polymer nanocomposites, were printed on silicon rubber (SR) substrate. The sensors exhibit good hysteresis with high linearity and small drift. Due to the biocompatibility of SR and is very soft, strong and able to be stretched many times its original size without tearing and will rebound to its original form without distortion, the proposed stretch sensor is suitable for many biomedical and wearable sensors application.

  15. Effects of special composite stretching on the swing of amateur golf players.

    PubMed

    Lee, Joong-Chul; Lee, Sung-Wan; Yeo, Yun-Ghi; Park, Gi Duck

    2015-04-01

    [Purpose] The study investigated stretching for safer a golf swing compared to present stretching methods for proper swings in order to examine the effects of stretching exercises on golf swings. [Subjects] The subjects were 20 amateur golf club members who were divided into two groups: an experimental group which performed stretching, and a control group which did not. The subjects had no bone deformity, muscle weakness, muscle soreness, or neurological problems. [Methods] A swing analyzer and a ROM measuring instrument were used as the measuring tools. The swing analyzer was a GS400-golf hit ball analyzer (Korea) and the ROM measuring instrument was a goniometer (Korea). [Results] The experimental group showed a statistically significant improvement in driving distance. After the special stretching training for golf, a statistically significant difference in hit-ball direction deviation after swings were found between the groups. The experimental group showed statistically significant decreases in hit ball direction deviation. After the special stretching training for golf, statistically significant differences in hit-ball speed were found between the groups. The experimental group showed significant increases in hit-ball speed. [Conclusion] To examine the effects of a special stretching program for golf on golf swing-related factors, 20 male amateur golf club members performed a 12-week stretching training program. After the golf stretching training, statistically significant differences were found between the groups in hit-ball driving distance, direction deviation, deflection distance, and speed.

  16. Stretching-induced nanostructures on shape memory polyurethane films and their regulation to osteoblasts morphology.

    PubMed

    Xing, Juan; Ma, Yufei; Lin, Manping; Wang, Yuanliang; Pan, Haobo; Ruan, Changshun; Luo, Yanfeng

    2016-10-01

    Programming such as stretching, compression and bending is indispensible to endow polyurethanes with shape memory effects. Despite extensive investigations on the contributions of programming processes to the shape memory effects of polyurethane, less attention has been paid to the nanostructures of shape memory polyurethanes surface during the programming process. Here we found that stretching could induce the reassembly of hard domains and thereby change the nanostructures on the film surfaces with dependence on the stretching ratios (0%, 50%, 100%, and 200%). In as-cast polyurethane films, hard segments sequentially assembled into nano-scale hard domains, round or fibrillar islands, and fibrillar apophyses. Upon stretching, the islands packed along the stretching axis to form reoriented fibrillar apophyses along the stretching direction. Stretching only changed the chemical patterns on polyurethane films without significantly altering surface roughness, with the primary composition of fibrillar apophyses being hydrophilic hard domains. Further analysis of osteoblasts morphology revealed that the focal adhesion formation and osteoblasts orientation were in accordance with the chemical patterns of the underlying stretched films, which corroborates the vital roles of stretching-induced nanostructures in regulating osteoblasts morphology. These novel findings suggest that programming might hold great potential for patterning polyurethane surfaces so as to direct cellular behavior. In addition, this work lays groundwork for guiding the programming of shape memory polyurethanes to produce appropriate nanostructures for predetermined medical applications.

  17. Mechanical stretch inhibits mesenchymal stem cell adipogenic differentiation through TGFβ1/Smad2 signaling.

    PubMed

    Li, Runguang; Liang, Liang; Dou, Yonggang; Huang, Zeping; Mo, Huiting; Wang, Yaning; Yu, Bin

    2015-10-15

    Mesenchymal stem cells (MSCs) are the common precursors of several functionally disparate cell lineages. A plethora of chemical and physical stimuli contribute to lineage decisions and guidance, including mechanical stretch concomitant with physical movement. Here, we examined how stretch regulates MSC differentiation into adipocytes and the intracellular signaling pathways involved. MSCs were cultured under adipogenic conditions and divided into a control and an experimental group. Cultures in the experimental group were subjected to a sinusoidal stretch regimen delivered via flexible culture bottoms (5% magnitude, 10 times per min, 6h/day, 3 or 5 days). Expression levels of the adipocyte markers PPARγ-2, adiponectin, and C/EBPα were measured as indices of differentiation. Compared to controls, MSCs exposed to mechanical stretch exhibited downregulated PPARγ-2, adiponectin, and C/EBPα mRNA expression. Alternatively, stretch upregulated phosphorylation of Smad2. This stretch-induced increase in Smad2 phosphorylation was suppressed by pretreatment with the TGFβ1/Smad2 pathway antagonist SB-431542. Pretreatment with the TGFβ1/Smad2 signaling agonist TGFβ1 facilitated the inhibitory effect of stretch on the expression levels of PPARγ-2, adiponectin, and C/EBPα proteins, while pretreatment with SB-431542 reversed the inhibitory effects of subsequent stretch on the expression levels of these markers. These results strongly suggest that the anti-adipogenic effects of mechanical stretch on MSCs are mediated, at least in part, by activation of the TGFβ1/Smad2 signaling pathway.

  18. Effects of special composite stretching on the swing of amateur golf players.

    PubMed

    Lee, Joong-Chul; Lee, Sung-Wan; Yeo, Yun-Ghi; Park, Gi Duck

    2015-04-01

    [Purpose] The study investigated stretching for safer a golf swing compared to present stretching methods for proper swings in order to examine the effects of stretching exercises on golf swings. [Subjects] The subjects were 20 amateur golf club members who were divided into two groups: an experimental group which performed stretching, and a control group which did not. The subjects had no bone deformity, muscle weakness, muscle soreness, or neurological problems. [Methods] A swing analyzer and a ROM measuring instrument were used as the measuring tools. The swing analyzer was a GS400-golf hit ball analyzer (Korea) and the ROM measuring instrument was a goniometer (Korea). [Results] The experimental group showed a statistically significant improvement in driving distance. After the special stretching training for golf, a statistically significant difference in hit-ball direction deviation after swings were found between the groups. The experimental group showed statistically significant decreases in hit ball direction deviation. After the special stretching training for golf, statistically significant differences in hit-ball speed were found between the groups. The experimental group showed significant increases in hit-ball speed. [Conclusion] To examine the effects of a special stretching program for golf on golf swing-related factors, 20 male amateur golf club members performed a 12-week stretching training program. After the golf stretching training, statistically significant differences were found between the groups in hit-ball driving distance, direction deviation, deflection distance, and speed. PMID:25995553

  19. Effects of special composite stretching on the swing of amateur golf players

    PubMed Central

    Lee, Joong-chul; Lee, Sung-wan; Yeo, Yun-ghi; Park, Gi Duck

    2015-01-01

    [Purpose] The study investigated stretching for safer a golf swing compared to present stretching methods for proper swings in order to examine the effects of stretching exercises on golf swings. [Subjects] The subjects were 20 amateur golf club members who were divided into two groups: an experimental group which performed stretching, and a control group which did not. The subjects had no bone deformity, muscle weakness, muscle soreness, or neurological problems. [Methods] A swing analyzer and a ROM measuring instrument were used as the measuring tools. The swing analyzer was a GS400-golf hit ball analyzer (Korea) and the ROM measuring instrument was a goniometer (Korea). [Results] The experimental group showed a statistically significant improvement in driving distance. After the special stretching training for golf, a statistically significant difference in hit-ball direction deviation after swings were found between the groups. The experimental group showed statistically significant decreases in hit ball direction deviation. After the special stretching training for golf, statistically significant differences in hit-ball speed were found between the groups. The experimental group showed significant increases in hit-ball speed. [Conclusion] To examine the effects of a special stretching program for golf on golf swing-related factors, 20 male amateur golf club members performed a 12-week stretching training program. After the golf stretching training, statistically significant differences were found between the groups in hit-ball driving distance, direction deviation, deflection distance, and speed. PMID:25995553

  20. Adaptation of active tone in the mouse descending thoracic aorta under acute changes in loading.

    PubMed

    Murtada, S-I; Lewin, S; Arner, A; Humphrey, J D

    2016-06-01

    Arteries can adapt to sustained changes in blood pressure and flow, and it is thought that these adaptive processes often begin with an altered smooth muscle cell activity that precedes any detectable changes in the passive wall components. Yet, due to the intrinsic coupling between the active and passive properties of the arterial wall, it has been difficult to delineate the adaptive contributions of active smooth muscle. To address this need, we used a novel experimental-computational approach to quantify adaptive functions of active smooth muscle in arterial rings excised from the proximal descending thoracic aorta of mice and subjected to short-term sustained circumferential stretches while stimulated with various agonists. A new mathematical model of the adaptive processes was derived and fit to data to describe and predict the effects of active tone adaptation. It was found that active tone was maintained when the artery was adapted close to the optimal stretch for maximal active force production, but it was reduced when adapted below the optimal stretch; there was no significant change in passive behavior in either case. Such active adaptations occurred only upon smooth muscle stimulation with phenylephrine, however, not stimulation with KCl or angiotensin II. Numerical simulations using the proposed model suggested further that active tone adaptation in vascular smooth muscle could play a stabilizing role for wall stress in large elastic arteries.

  1. Factors that influence muscle shear modulus during passive stretch.

    PubMed

    Koo, Terry K; Hug, François

    2015-09-18

    Although elastography has been increasingly used for evaluating muscle shear modulus associated with age, sex, musculoskeletal, and neurological conditions, its physiological meaning is largely unknown. This knowledge gap may hinder data interpretation, limiting the potential of using elastography to gain insights into muscle biomechanics in health and disease. We derived a mathematical model from a widely-accepted Hill-type passive force-length relationship to gain insight about the physiological meaning of resting shear modulus of skeletal muscles under passive stretching, and validated the model by comparing against the ex-vivo animal data reported in our recent work (Koo et al. 2013). The model suggested that resting shear modulus of a slack muscle is a function of specific tension and parameters that govern the normalized passive muscle force-length relationship as well as the degree of muscle anisotropy. The model also suggested that although the slope of the linear shear modulus-passive force relationship is primarily related to muscle anatomical cross-sectional area (i.e. the smaller the muscle cross-sectional area, the more the increase in shear modulus to result in the same passive muscle force), it is also governed by the normalized passive muscle force-length relationship and the degree of muscle anisotropy. Taken together, although muscle shear modulus under passive stretching has a strong linear relationship with passive muscle force, its actual value appears to be affected by muscle's mechanical, material, and architectural properties. This should be taken into consideration when interpreting the muscle shear modulus values. PMID:26113291

  2. Cyclic mechanical stretch reduces myofibroblast differentiation of primary lung fibroblasts.

    PubMed

    Blaauboer, Marjolein E; Smit, Theo H; Hanemaaijer, Roeland; Stoop, Reinout; Everts, Vincent

    2011-01-01

    In lung fibrosis tissue architecture and function is severely hampered by myofibroblasts due to excessive deposition of extracellular matrix and tissue contraction. Myofibroblasts differentiate from fibroblasts under the influence of transforming growth factor (TGF) β(1) but this process is also controlled mechanically by cytoskeletal tension. In healthy lungs, the cytoskeleton of fibroblasts is mechanically strained during breathing. In stiffer fibrotic lung tissue, this mechanical stimulus is reduced, which may influence fibroblast-to-myofibroblast differentiation. Therefore, we investigated the effect of cyclic mechanical stretch on fibroblast-to-myofibroblast differentiation. Primary normal human lung fibroblasts were grown on BioFlex culture plates and stimulated to undergo myofibroblast differentiation by 10 ng/ml TGFβ(1). Cells were either or not subjected to cyclic mechanical stretch (sinusoidal pattern, maximum elongation 10%, 0.2 Hz) for a period of 48 h on a Flexercell apparatus. mRNA expression was analyzed by real-time PCR. Cyclic mechanical loading reduced the mRNA expression of the myofibroblast marker α-smooth muscle actin and the extracellular matrix proteins type-I, type-III, and type-V collagen, and tenascin C. These outcomes indicate that fibroblast-to-myofibroblast differentiation is reduced. Cyclic mechanical loading did not change the expression of the fibronectin ED-A splice variant, but did decrease the paracrine expression of TGFβ(1), thereby suggesting a possible regulation mechanism for the observed effects. The data suggest that cyclic loading experienced by healthy lung cells during breathing may prevent fibroblasts from differentiating towards myofibroblasts. PMID:21094632

  3. New Modelling of Localized Necking in Sheet Metal Stretching

    NASA Astrophysics Data System (ADS)

    Bressan, José Divo

    2011-01-01

    Present work examines a new mathematical model to predict the onset of localized necking in the industrial processes of sheet metal forming such as biaxial stretching. Sheet metal formability is usually assessed experimentally by testing such as the Nakajima test to obtain the Forming Limit Curve, FLC, which is an essential material parameter necessary to numerical simulations by FEM. The Forming Limit Diagram or "Forming Principal Strain Map" shows the experimental FLC which is the plot of principal true strains in the sheet metal surface, ɛ1 and ɛ2, occurring at critical points obtained in laboratory formability tests or in the fabrication process. Two types of undesirable rupture mechanisms can occur in sheet metal forming products: localized necking and shear induced fracture. Therefore, two kinds of limit strain curves can be plotted: the local necking limit curve FLC-N and the shear fracture limit curve FLC-S. Localized necking is theoretically anticipated to initiate at a thickness defect ƒin = hib/hia inside the grooved sheet thickness hia, but only at the instability point of maximum load. The inception of grooving on the sheet surface evolves from instability point to localized necking and final rupture, during further sheet metal straining. Work hardening law is defined for a strain and strain rate material by the effective stress σ¯ = σo(1+βɛ¯)n???ɛM. The average experimental hardening law curve for tensile tests at 0°, 45° and 90°, assuming isotropic plasticity, was used to analyze the plasticity behavior during the biaxial stretching of sheet metals. Theoretical predicted curves of local necking limits are plotted in the positive quadrant of FPSM for different defect values ƒin and plasticity parameters. Limit strains are obtained from a software developed by the author. Some experimental results of forming limit curve obtained from experiments for IF steel sheets are compared with the theoretical predicted curves: the correlation is

  4. Molecular candidates for cardiac stretch-activated ion channels

    PubMed Central

    Reed, Alistair; Kohl, Peter; Peyronnet, Rémi

    2014-01-01

    The heart is a mechanically-active organ that dynamically senses its own mechanical environment. This environment is constantly changing, on a beat-by-beat basis, with additional modulation by respiratory activity and changes in posture or physical activity, and further overlaid with more slowly occurring physiological (e.g. pregnancy, endurance training) or pathological challenges (e.g. pressure or volume overload). Far from being a simple pump, the heart detects changes in mechanical demand and adjusts its performance accordingly, both via heart rate and stroke volume alteration. Many of the underlying regulatory processes are encoded intracardially, and are thus maintained even in heart transplant recipients. Over the last three decades, molecular substrates of cardiac mechanosensitivity have gained increasing recognition in the scientific and clinical communities. Nonetheless, the processes underlying this phenomenon are still poorly understood. Stretch-activated ion channels (SAC) have been identified as one contributor to mechanosensitive autoregulation of the heartbeat. They also appear to play important roles in the development of cardiac pathologies – most notably stretch-induced arrhythmias. As recently discovered, some established cardiac drugs act, in part at least, via mechanotransduction pathways suggesting SAC as potential therapeutic targets. Clearly, identification of the molecular substrate of cardiac SAC is of clinical importance and a number of candidate proteins have been identified. At the same time, experimental studies have revealed variable–and at times contrasting–results regarding their function. Further complication arises from the fact that many ion channels that are not classically defined as SAC, including voltage and ligand-gated ion channels, can respond to mechanical stimulation. Here, we summarise what is known about the molecular substrate of the main candidates for cardiac SAC, before identifying potential further

  5. Factors that influence muscle shear modulus during passive stretch.

    PubMed

    Koo, Terry K; Hug, François

    2015-09-18

    Although elastography has been increasingly used for evaluating muscle shear modulus associated with age, sex, musculoskeletal, and neurological conditions, its physiological meaning is largely unknown. This knowledge gap may hinder data interpretation, limiting the potential of using elastography to gain insights into muscle biomechanics in health and disease. We derived a mathematical model from a widely-accepted Hill-type passive force-length relationship to gain insight about the physiological meaning of resting shear modulus of skeletal muscles under passive stretching, and validated the model by comparing against the ex-vivo animal data reported in our recent work (Koo et al. 2013). The model suggested that resting shear modulus of a slack muscle is a function of specific tension and parameters that govern the normalized passive muscle force-length relationship as well as the degree of muscle anisotropy. The model also suggested that although the slope of the linear shear modulus-passive force relationship is primarily related to muscle anatomical cross-sectional area (i.e. the smaller the muscle cross-sectional area, the more the increase in shear modulus to result in the same passive muscle force), it is also governed by the normalized passive muscle force-length relationship and the degree of muscle anisotropy. Taken together, although muscle shear modulus under passive stretching has a strong linear relationship with passive muscle force, its actual value appears to be affected by muscle's mechanical, material, and architectural properties. This should be taken into consideration when interpreting the muscle shear modulus values.

  6. Refolding dynamics of stretched biopolymers upon force quench

    PubMed Central

    Hyeon, Changbong; Morrison, Greg; Pincus, David L.; Thirumalai, D.

    2009-01-01

    Single-molecule force spectroscopy methods can be used to generate folding trajectories of biopolymers from arbitrary regions of the folding landscape. We illustrate the complexity of the folding kinetics and generic aspects of the collapse of RNA and proteins upon force quench by using simulations of an RNA hairpin and theory based on the de Gennes model for homopolymer collapse. The folding time, τF, depends asymmetrically on δfS = f S − f m and δf Q = f m − f Q where f S (f Q) is the stretch (quench) force and f m is the transition midforce of the RNA hairpin. In accord with experiments, the relaxation kinetics of the molecular extension, R(t), occurs in three stages: A rapid initial decrease in the extension is followed by a plateau and finally, an abrupt reduction in R(t) occurs as the native state is approached. The duration of the plateau increases as λ = τ Q/τ F decreases (where τ Q is the time in which the force is reduced from f S to f Q). Variations in the mechanisms of force-quench relaxation as λ is altered are reflected in the experimentally measurable time-dependent entropy, which is computed directly from the folding trajectories. An analytical solution of the de Gennes model under tension reproduces the multistage stage kinetics in R(t). The prediction that the initial stages of collapse should also be a generic feature of polymers is validated by simulation of the kinetics of toroid (globule) formation in semiflexible (flexible) homopolymers in poor solvents upon quenching the force from a fully stretched state. Our findings give a unified explanation for multiple disparate experimental observations of protein folding. PMID:19915145

  7. Toll-Like Receptor 2-Mediated Innate Immune Responses against Junín Virus in Mice Lead to Antiviral Adaptive Immune Responses during Systemic Infection and Do Not Affect Viral Replication in the Brain

    PubMed Central

    Cuevas, Christian D.

    2014-01-01

    ABSTRACT Successful adaptive immunity to virus infection often depends on the initial innate response. Previously, we demonstrated that Junín virus, the etiological agent responsible for Argentine hemorrhagic fever (AHF), activates an early innate immune response via an interaction between the viral glycoprotein and Toll-like receptor 2 (TLR2). Here we show that TLR2/6 but not TLR1/2 heterodimers sense Junín virus glycoprotein and induce a cytokine response, which in turn upregulates the expression of the RNA helicases RIG-I and MDA5. NF-κB and Erk1/2 were important in the cytokine response, since both proteins were phosphorylated as a result of the interaction of virus with TLR2, and treatment with an Erk1/2-specific inhibitor blocked cytokine production. We show that the Junín virus glycoprotein activates cytokine production in a human macrophage cell line as well. Moreover, we show that TLR2-mediated immune response plays a role in viral clearance because wild-type mice cleared Candid 1 (JUNV C1), the vaccine strain of Junín virus, more rapidly than did TLR2 knockout mice. This clearance correlated with the generation of Junín virus-specific CD8+ T cells. However, infected wild-type and TLR2 knockout mice developed TLR2-independent blocking antibody responses with similar kinetics. We also show that microglia and astrocytes but not neurons are susceptible to infection with JUNV C1. Although JUNV C1 infection of the brain also triggered a TLR2-dependent cytokine response, virus levels were equivalent in wild-type and TLR2 knockout mice. IMPORTANCE Junín virus is transmitted by rodents native to Argentina and is associated with both systemic disease and, in some patients, neurological symptoms. Humans become infected when they inhale aerosolized Junín virus. AHF has a 15 to 30% mortality rate, and patients who clear the infection develop a strong antibody response to Junín virus. Here we investigated what factors determine the immune response to Jun

  8. Toothbrush Adaptations.

    ERIC Educational Resources Information Center

    Exceptional Parent, 1987

    1987-01-01

    Suggestions are presented for helping disabled individuals learn to use or adapt toothbrushes for proper dental care. A directory lists dental health instructional materials available from various organizations. (CB)

  9. Brownian dynamic simulations of electrophoresis and electro-stretching of DNA molecules in polymer gels.

    NASA Astrophysics Data System (ADS)

    Larson, Ronald; Graham, Richard

    2006-03-01

    We derive a model for the motion of long DNA chains entangled in a concentrated gel matrix in the presence of a strong electric field. The model is adapted from a tube-based slip-link approach, which was originally intended to model the rheology of entangled polymer fluids, and is suitable for solution by Brownian dynamic simulation. We account for the constraining effect of the surrounding matrix, motion due to the electric field and finite extensibility of the DNA chain. We are able investigate the effect of molecular weight and field strength on the DNA drift velocity in a constant electric field, along with molecular stretching in an oscillating field. Both examples have applications in DNA separation and sequencing. Our approach includes a detailed treatment of the chain end motion through the matrix, which our simulations demonstrate has a significant role in the DNA dynamics, particularly in oscillating fields. The model provides a convenient formalism for further refinements. For example, large fields may tend to cause hernia-like chain loops to protrude from the main tube. Furthermore, to model matrices comprised of linear polymers we can include the effect of constraint release, in which the confinement experienced by the DNA is diminished by the motion of the matrix chains.

  10. Stretch-induced network reconfiguration of collagen fibres in the human facet capsular ligament.

    PubMed

    Zhang, Sijia; Bassett, Danielle S; Winkelstein, Beth A

    2016-01-01

    Biomaterials can display complex spatial patterns of cellular responses to external forces. Revealing and predicting the role of these patterns in material failure require an understanding of the statistical dependencies between spatially distributed changes in a cell's local biomechanical environment, including altered collagen fibre kinematics in the extracellular matrix. Here, we develop and apply a novel extension of network science methods to investigate how excessive tensile stretch of the human cervical facet capsular ligament (FCL), a common source of chronic neck pain, affects the local reorganization of collagen fibres. We define collagen alignment networks based on similarity in fibre alignment angles measured by quantitative polarized light imaging. We quantify the reorganization of these networks following macroscopic loading by describing the dynamic reconfiguration of network communities, regions of the material that display similar fibre alignment angles. Alterations in community structure occur smoothly over time, indicating coordinated adaptation of fibres to loading. Moreover, flexibility, a measure of network reconfiguration, tracks the loss of FCL's mechanical integrity at the onset of anomalous realignment (AR) and regions of AR display altered community structure. These findings use novel network-based techniques to explain abnormal collagen fibre reorganization, a dynamic and coordinated multivariate process underlying tissue failure. PMID:26819333

  11. Stretch-induced network reconfiguration of collagen fibres in the human facet capsular ligament.

    PubMed

    Zhang, Sijia; Bassett, Danielle S; Winkelstein, Beth A

    2016-01-01

    Biomaterials can display complex spatial patterns of cellular responses to external forces. Revealing and predicting the role of these patterns in material failure require an understanding of the statistical dependencies between spatially distributed changes in a cell's local biomechanical environment, including altered collagen fibre kinematics in the extracellular matrix. Here, we develop and apply a novel extension of network science methods to investigate how excessive tensile stretch of the human cervical facet capsular ligament (FCL), a common source of chronic neck pain, affects the local reorganization of collagen fibres. We define collagen alignment networks based on similarity in fibre alignment angles measured by quantitative polarized light imaging. We quantify the reorganization of these networks following macroscopic loading by describing the dynamic reconfiguration of network communities, regions of the material that display similar fibre alignment angles. Alterations in community structure occur smoothly over time, indicating coordinated adaptation of fibres to loading. Moreover, flexibility, a measure of network reconfiguration, tracks the loss of FCL's mechanical integrity at the onset of anomalous realignment (AR) and regions of AR display altered community structure. These findings use novel network-based techniques to explain abnormal collagen fibre reorganization, a dynamic and coordinated multivariate process underlying tissue failure.

  12. Muscle afferent potential (`A-wave') in the surface electromyogram of a phasic stretch reflex in normal humans

    PubMed Central

    Clarke, Alex. M.; Michie, Patricia T.; Glue, Leonard C. T.

    1972-01-01

    The experiments reported in this paper tested the hypothesis that the afferent potential elicited by a tendon tap in an isometrically recorded phasic stretch reflex can be detected in the surface EMG of normal humans when appropriate techniques are used. These techniques involved (1) training the subjects to relax mentally and physically so that the EMG was silent before and immediately after the diphasic MAP which reflects a highly synchronous discharge of afferent impulses from low threshold muscle stretch receptors after a tendon tap, and (2) using a data retrieval computer to summate stimulus-locked potentials in the EMG over a series of 16 samples using taps of uniform peak force and duration on the Achilles tendon to elicit the tendon jerk in the calf muscles. A discrete, diphasic potential (`A-wave') was recorded from EMG electrodes placed on the surface of the skin over the medial gastrocnemius muscle. The `A-wave' afferent potential had the opposite polarity to the corresponding efferent MAP. Under control conditions of relaxation the `A-wave' had a latency after the onset of the tap of 2 msec, the peak to peak amplitude was of the order of 5 μV and the duration was in the range of 6 to 10 msec. Further experiments were conducted to show that the `A-wave' (1) was not an artefact of the instrumentation used, (2) had a threshold at low intensities of stimulation, and (3) could be reliably augmented by using a Jendrassik manoeuvre compared with the potential observed during control (relaxation) conditions. The results support the conclusion that the `A-wave' emanates from the pool of muscle spindles which discharges impulses along group Ia nerve fibres in response to the phasic stretch stimulus because the primary ending of the spindles is known to initiate the stretch reflex and the spindles can be sensitized by fusimotor impulses so that their threshold is lowered as a result of a Jendrassik manoeuvre. The finding has important implications for the

  13. Rapid contrast gain reduction following motion adaptation.

    PubMed

    Nordström, Karin; Moyer de Miguel, Irene; O'Carroll, David C

    2011-12-01

    Neural and sensory systems adapt to prolonged stimulation to allow signaling across broader input ranges than otherwise possible with the limited bandwidth of single neurons and receptors. In the visual system, adaptation takes place at every stage of processing, from the photoreceptors that adapt to prevailing luminance conditions, to higher-order motion-sensitive neurons that adapt to prolonged exposure to motion. Recent experiments using dynamic, fluctuating visual stimuli indicate that adaptation operates on a time scale similar to that of the response itself. Further work from our own laboratory has highlighted the role for rapid motion adaptation in reliable encoding of natural image motion. Physiologically, motion adaptation can be broken down into four separate components. It is not clear from the previous studies which of these motion adaptation components are involved in the fast and dynamic response changes. To investigate the adapted response in more detail, we therefore analyzed the effect of motion adaptation using a test-adapt-test protocol with adapting durations ranging from 20 ms to 20 s. Our results underscore the very rapid rate of motion adaptation, suggesting that under free flight, visual motion-sensitive neurons continuously adapt to the changing scenery. This might help explain recent observations of strong invariance in the response to natural scenes with highly variable contrast and image structure.

  14. Magnetic field stretching at the top of the shell of numerical dynamos

    NASA Astrophysics Data System (ADS)

    Peña, Diego; Amit, Hagay; Pinheiro, Katia J.

    2016-05-01

    The process of magnetic field stretching transfers kinetic energy to magnetic energy and by that maintains dynamos against Ohmic dissipation. Stretching at the top of the outer core may play an important role at specific regions. High-latitude intense magnetic flux patches may be concentrated by flow convergence. Reversed flux patches may emerge due to expulsion of toroidal field advected to the core-mantle boundary by fluid upwelling. Here we analyze snapshots from self-consistent 3D numerical dynamos to unravel the nature of field-flow interactions that induces stretching secular variation at the top of the core. We find that stretching at the top of the shell has a significant influence on the secular variation despite the relatively weak poloidal flow. In addition, locally stretching is often more effective than advection in particular at regions of significant field-aligned flow. Magnetic flux patches are concentrated by fluid downwelling and dispersed by fluid upwelling. Stretching is more efficient than advection in intensifying magnetic flux patches. Both stretching and the poloidal flow mostly depend on the magnetic Prandtl number Pm. Decreasing Pm gives smaller poloidal flow but stronger stretching. Accounting for field-flow interactions in both the advection and stretching terms suggests that the magnetic Reynolds number overestimates the actual ratio of magnetic advection to diffusion by ˜50 %. Morphological resemblance between local stretching in our dynamo models and local observed geomagnetic secular variation may suggest the presence of stretching at the top of the Earth's core. Our results shed light on the kinematic origin of intense geomagnetic flux patches and may have implications to the convective state of the upper outer core.

  15. A Critical View of Static Stretching and Its Relevance in Physical Education

    ERIC Educational Resources Information Center

    Parrott, James Allen; Zhu, Xihe

    2013-01-01

    Stretching before activity has been a customary part of most physical education classes (PE), with static stretching typically the preferred method due to its ease of implementation. Historical and implicit support for its continued use is due in part to the sit-and-reach test and flexibility as one of the components of health-related fitness.…

  16. Evidence for contagious behaviors in budgerigars (Melopsittacus undulatus): an observational study of yawning and stretching.

    PubMed

    Miller, Michael L; Gallup, Andrew C; Vogel, Andrea R; Vicario, Shannon M; Clark, Anne B

    2012-03-01

    Yawning is contagious in humans and some non-human primates. If there are social functions to contagious behaviors, such as yawning, they might occur in other highly social vertebrates. To investigate this possibility, we conducted an observational study of yawning and an associated behavior, stretching, in budgerigars (Melopsittacus undulatus), a social, flock-living parrot. Flock-housed budgerigars were videotaped for 1.5h at three time-blocks during the day (early morning, afternoon and early evening), and the times of all yawns and stretches for each bird were recorded. Both yawning and stretching were temporally clumped within sessions, but were uniformly distributed across the trials of a particular time-block. This suggests that clumping was not a result of circadian patterning and that both behaviors could be contagious. There was additional evidence of contagion in stretching, which occurred in two forms - a posterior-dorsal extension of either one foot or both feet. Birds that could have observed a conspecific stretch, and that then stretched themselves within 20s, replicated the form of the earlier stretch significantly more often than expected by chance. This study provides the first detailed description of temporal patterns of yawning under social conditions in a flock-living species as well as the first support for contagious yawning and stretching in a non-primate species in a natural context. Experimental evidence will be necessary to confirm the extent of contagion in either behavior. PMID:22209955

  17. The Acute Effects of Upper Extremity Stretching on Throwing Velocity in Baseball Throwers

    PubMed Central

    Williams, Michael; Harveson, Lanisa; Melton, Jason; Delobel, Ashley; Puentedura, Emilio J.

    2013-01-01

    Purpose. To examine the effects of static and proprioceptive neuromuscular facilitation (PNF) stretching of the shoulder internal rotators on throwing velocity. Subjects. 27 male throwers (mean age = 25.1 years old, SD = 2.4) with adequate knowledge of demonstrable throwing mechanics. Study Design. Randomized crossover trial with repeated measures. Methods. Subjects warmed up, threw 10 pitches at their maximum velocity, were randomly assigned to 1 of 3 stretching protocols (static, PNF, or no stretch), and then repeated their 10 pitches. Velocities were recorded after each pitch and average and peak velocities were recorded after each session. Results. Data were analyzed using a 3 × 2 repeated measures ANOVA. No significant interaction between stretching and throwing velocity was observed. Main effects for time were not statistically significant. Main effects for the stretching groups were statistically significant. Discussion. Results suggest that stretching of the shoulder internal rotators did not significantly affect throwing velocity immediately after stretching. This may be due to the complexity of the throwing task. Conclusions. Stretching may be included in a thrower's warm-up without any effects on throwing velocity. Further research should be performed using a population with more throwing experience and skill. PMID:26464880

  18. From Static Stretching to Dynamic Exercises: Changing the Warm-Up Paradigm

    ERIC Educational Resources Information Center

    Young, Shawna

    2010-01-01

    In the United States, pre-exercise static stretching seems to have become common practice and routine. However, research suggests that it is time for a paradigm shift--that pre-exercise static stretching be replaced with dynamic warm-up exercises. Research indicates that a dynamic warm-up elevates body temperature, decreases muscle and joint…

  19. The Acute Effects of Upper Extremity Stretching on Throwing Velocity in Baseball Throwers.

    PubMed

    Williams, Michael; Harveson, Lanisa; Melton, Jason; Delobel, Ashley; Puentedura, Emilio J

    2013-01-01

    Purpose. To examine the effects of static and proprioceptive neuromuscular facilitation (PNF) stretching of the shoulder internal rotators on throwing velocity. Subjects. 27 male throwers (mean age = 25.1 years old, SD = 2.4) with adequate knowledge of demonstrable throwing mechanics. Study Design. Randomized crossover trial with repeated measures. Methods. Subjects warmed up, threw 10 pitches at their maximum velocity, were randomly assigned to 1 of 3 stretching protocols (static, PNF, or no stretch), and then repeated their 10 pitches. Velocities were recorded after each pitch and average and peak velocities were recorded after each session. Results. Data were analyzed using a 3 × 2 repeated measures ANOVA. No significant interaction between stretching and throwing velocity was observed. Main effects for time were not statistically significant. Main effects for the stretching groups were statistically significant. Discussion. Results suggest that stretching of the shoulder internal rotators did not significantly affect throwing velocity immediately after stretching. This may be due to the complexity of the throwing task. Conclusions. Stretching may be included in a thrower's warm-up without any effects on throwing velocity. Further research should be performed using a population with more throwing experience and skill. PMID:26464880

  20. Cyclic Stretch Affects Pulmonary Endothelial Cell Control of Pulmonary Smooth Muscle Cell Growth

    PubMed Central

    Ochoa, Cristhiaan D.; Baker, Haven; Hasak, Stephen; Matyal, Robina; Salam, Aleya; Hales, Charles A.; Hancock, William; Quinn, Deborah A.

    2008-01-01

    Endothelial cells are subjected to mechanical forces in the form of cyclic stretch resulting from blood pulsatility. Pulmonary artery endothelial cells (PAECs) produce factors that stimulate and inhibit pulmonary artery smooth muscle cell (PASMC) growth. We hypothesized that PAECs exposed to cyclic stretch secrete proteins that inhibit PASMC growth. Media from PAECs exposed to cyclic stretch significantly inhibited PASMC growth in a time-dependent manner. Lyophilized material isolated from stretched PAEC-conditioned media significantly inhibited PASMC growth in a dose-dependent manner. This inhibition was reversed by trypsin inactivation, which is consistent with the relevant factor being a protein(s). To identify proteins that inhibited cell growth in conditioned media from stretched PAECs, we used proteomic techniques and found that thrombospondin (TSP)-1, a natural antiangiogenic factor, was up-regulated by stretch. In vitro, exogenous TSP-1 inhibited PASMC growth. TSP-1–blocking antibodies reversed conditioned media–induced inhibition of PASMC growth. Cyclic stretched PAECs secrete protein(s) that inhibit PASMC proliferation. TSP-1 may be, at least in part, responsible for this inhibition. The complete identification and understanding of the secreted proteome of stretched PAECs may lead to new insights into the pathophysiology of pulmonary vascular remodeling. PMID:18314539

  1. Stretching and Young Children: Should We or Shouldn't We?

    ERIC Educational Resources Information Center

    Mally, Kristi K.

    2006-01-01

    The purpose of this article is to continue the discussion of "should we or shouldn't we?" Specifically, this article addresses whether or not young children need to spend time participating in static stretching activities during physical education class. Is it a worthwhile use of already limited time to ask young children to stretch? Do they need…

  2. Using Atomic Orbitals and Kinesthetic Learning to Authentically Derive Molecular Stretching Vibrations

    ERIC Educational Resources Information Center

    Bridgeman, Adam J.; Schmidt, Timothy W.; Young, Nigel A.

    2013-01-01

    The stretching modes of ML[subscript "x"] complexes have the same symmetry as the atomic orbitals on M that are used to form its s bonds. In the exercise suggested here, the atomic orbitals are used to derive the form of the stretching modes without the need for formal group theory. The analogy allows students to help understand many…

  3. Orientation and length of mammalian skeletal myocytes in response to a unidirectional stretch

    NASA Technical Reports Server (NTRS)

    Collinsworth, A. M.; Torgan, C. E.; Nagda, S. N.; Rajalingam, R. J.; Kraus, W. E.; Truskey, G. A.

    2000-01-01

    Effects of mechanical forces exerted on mammalian skeletal muscle cells during development were studied using an in vitro model to unidirectionally stretch cultured C2C12 cells grown on silastic membrane. Previous models to date have not studied these responses of the mammalian system specifically. The silastic membrane upon which these cells were grown exhibited linear strain behavior over the range of 3.6-14.6% strain, with a Poisson's ratio of approximately 0.5. To mimic murine in utero long bone growth, cell substrates were stretched at an average strain rate of 2.36%/day for 4 days or 1.77%/day for 6 days with an overall membrane strain of 9.5% and 10.6%, respectively. Both control and stretched fibers stained positively for the contractile protein, alpha-actinin, demonstrating muscle fiber development. An effect of stretch on orientation and length of myofibers was observed. At both strain rates, stretched fibers aligned at a smaller angle relative to the direction of stretch and were significantly longer compared to randomly oriented control fibers. There was no effect of duration of stretch on orientation or length, suggesting the cellular responses are independent of strain rate for the range tested. These results demonstrate that, under conditions simulating mammalian long bone growth, cultured myocytes respond to mechanical forces by lengthening and orienting along the direction of stretch.

  4. Reliability of a Unilateral Horizontal Leg Power Test to Assess Stretch Load Tolerance

    ERIC Educational Resources Information Center

    Simpson, Rhianna Parker; Cronin, John

    2006-01-01

    Drop jumping has previously been used to measure fast stretch shorten cycle (SSC) ability and stretch load tolerance. To the knowledge of these authors a test does not exist to achieve this in the horizontal direction. The purpose of this study therefore was to estimate the reliability of a new unilateral horizontal leg power test to assess these…

  5. The Acute Effects of Upper Extremity Stretching on Throwing Velocity in Baseball Throwers.

    PubMed

    Williams, Michael; Harveson, Lanisa; Melton, Jason; Delobel, Ashley; Puentedura, Emilio J

    2013-01-01

    Purpose. To examine the effects of static and proprioceptive neuromuscular facilitation (PNF) stretching of the shoulder internal rotators on throwing velocity. Subjects. 27 male throwers (mean age = 25.1 years old, SD = 2.4) with adequate knowledge of demonstrable throwing mechanics. Study Design. Randomized crossover trial with repeated measures. Methods. Subjects warmed up, threw 10 pitches at their maximum velocity, were randomly assigned to 1 of 3 stretching protocols (static, PNF, or no stretch), and then repeated their 10 pitches. Velocities were recorded after each pitch and average and peak velocities were recorded after each session. Results. Data were analyzed using a 3 × 2 repeated measures ANOVA. No significant interaction between stretching and throwing velocity was observed. Main effects for time were not statistically significant. Main effects for the stretching groups were statistically significant. Discussion. Results suggest that stretching of the shoulder internal rotators did not significantly affect throwing velocity immediately after stretching. This may be due to the complexity of the throwing task. Conclusions. Stretching may be included in a thrower's warm-up without any effects on throwing velocity. Further research should be performed using a population with more throwing experience and skill.

  6. Stretched exponential relaxation in molecular and electronic glasses

    NASA Astrophysics Data System (ADS)

    Phillips, J. C.

    1996-09-01

    Stretched exponential relaxation, 0034-4885/59/9/003/img1, fits many relaxation processes in disordered and quenched electronic and molecular systems, but it is widely believed that this function has no microscopic basis, especially in the case of molecular relaxation. For electronic relaxation the appearance of the stretched exponential is often described in the context of dispersive transport, where 0034-4885/59/9/003/img2 is treated as an adjustable parameter, but in almost all cases it is generally assumed that no microscopic meaning can be assigned to 0034-4885/59/9/003/img3 even at 0034-4885/59/9/003/img4, a glass transition temperature. We show that for molecular relaxation 0034-4885/59/9/003/img5 can be understood, providing that one separates extrinsic and intrinsic effects, and that the intrinsic effects are dominated by two magic numbers, 0034-4885/59/9/003/img6 for short-range forces, and 0034-4885/59/9/003/img7 for long-range Coulomb forces, as originally observed by Kohlrausch for the decay of residual charge on a Leyden jar. Our mathematical model treats relaxation kinetics using the Lifshitz - Kac - Luttinger diffusion to traps depletion model in a configuration space of effective dimensionality, the latter being determined using axiomatic set theory and Phillips - Thorpe constraint theory. The experiments discussed include ns neutron scattering experiments, particularly those based on neutron spin echoes which measure S( Q,t) directly, and the traditional linear response measurements which span the range from 0034-4885/59/9/003/img8 to s, as collected and analysed phenomenologically by Angell, Ngai, Böhmer and others. The electronic materials discussed include a-Si:H, granular 0034-4885/59/9/003/img9, semiconductor nanocrystallites, charge density waves in 0034-4885/59/9/003/img10, spin glasses, and vortex glasses in high-temperature semiconductors. The molecular materials discussed include polymers, network glasses, electrolytes and alcohols, Van

  7. Ultrafast Microfluidic Cellular Imaging by Optical Time-Stretch.

    PubMed

    Lau, Andy K S; Wong, Terence T W; Shum, Ho Cheung; Wong, Kenneth K Y; Tsia, Kevin K

    2016-01-01

    There is an unmet need in biomedicine for measuring a multitude of parameters of individual cells (i.e., high content) in a large population efficiently (i.e., high throughput). This is particularly driven by the emerging interest in bringing Big-Data analysis into this arena, encompassing pathology, drug discovery, rare cancer cell detection, emulsion microdroplet assays, to name a few. This momentum is particularly evident in recent advancements in flow cytometry. They include scaling of the number of measurable colors from the labeled cells and incorporation of imaging capability to access the morphological information of the cells. However, an unspoken predicament appears in the current technologies: higher content comes at the expense of lower throughput, and vice versa. For example, accessing additional spatial information of individual cells, imaging flow cytometers only achieve an imaging throughput ~1000 cells/s, orders of magnitude slower than the non-imaging flow cytometers. In this chapter, we introduce an entirely new imaging platform, namely optical time-stretch microscopy, for ultrahigh speed and high contrast label-free single-cell (in a ultrafast microfluidic flow up to 10 m/s) imaging and analysis with an ultra-fast imaging line-scan rate as high as tens of MHz. Based on this technique, not only morphological information of the individual cells can be obtained in an ultrafast manner, quantitative evaluation of cellular information (e.g., cell volume, mass, refractive index, stiffness, membrane tension) at nanometer scale based on the optical phase is also possible. The technology can also be integrated with conventional fluorescence measurements widely adopted in the non-imaging flow cytometers. Therefore, these two combinatorial and complementary measurement capabilities in long run is an attractive platform for addressing the pressing need for expanding the "parameter space" in high-throughput single-cell analysis. This chapter provides the

  8. Adaptive Development

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The goal of this research is to develop and demonstrate innovative adaptive seal technologies that can lead to dramatic improvements in engine performance, life, range, and emissions, and enhance operability for next generation gas turbine engines. This work is concentrated on the development of self-adaptive clearance control systems for gas turbine engines. Researchers have targeted the high-pressure turbine (HPT) blade tip seal location for following reasons: Current active clearance control (ACC) systems (e.g., thermal case-cooling schemes) cannot respond to blade tip clearance changes due to mechanical, thermal, and aerodynamic loads. As such they are prone to wear due to the required tight running clearances during operation. Blade tip seal wear (increased clearances) reduces engine efficiency, performance, and service life. Adaptive sealing technology research has inherent impact on all envisioned 21st century propulsion systems (e.g. distributed vectored, hybrid and electric drive propulsion concepts).

  9. Lamellar Thickness and Stretching Temperature Dependency of Cavitation in Semicrystalline Polymers

    PubMed Central

    Wang, Yaotao; Jiang, Zhiyong; Fu, Lianlian; Lu, Ying; Men, Yongfeng

    2014-01-01

    Polybutene-1 (PB-1), a typical semicrystalline polymer, in its stable form I shows a peculiar temperature dependent strain-whitening behavior when being stretched at temperatures in between room temperature and melting temperature of the crystallites where the extent of strain-whitening weakens with the increasing of stretching temperature reaching a minima value followed by an increase at higher stretching temperatures. Correspondingly, a stronger strain-hardening phenomenon was observed at higher temperatures. The strain-whitening phenomenon in semicrystalline polymers has its origin of cavitation process during stretching. In this work, the effect of crystalline lamellar thickness and stretching temperature on the cavitation process in PB-1 has been investigated by means of combined synchrotron ultrasmall-angle and wide-angle X-ray scattering techniques. Three modes of cavitation during the stretching process can be identified, namely “no cavitation” for the quenched sample with the thinnest lamellae where only shear yielding occurred, “cavitation with reorientation” for the samples stretched at lower temperatures and samples with thicker lamellae, and “cavitation without reorientation” for samples with thinner lamellae stretched at higher temperatures. The mode “cavitation with reorientation” occurs before yield point where the plate-like cavities start to be generated within the lamellar stacks with normal perpendicular to the stretching direction due to the blocky substructure of the crystalline lamellae and reorient gradually to the stretching direction after strain-hardening. The mode of “cavitation without reorientation” appears after yield point where ellipsoidal shaped cavities are generated in those lamellae stacks with normal parallel to the stretching direction followed by an improvement of their orientation at larger strains. X-ray diffraction results reveal a much improved crystalline orientation for samples with thinner lamellae

  10. MATSAP: An automated analysis of stretch-attend posture in rodent behavioral experiments.

    PubMed

    Holly, Kevin S; Orndorff, Casey O; Murray, Teresa A

    2016-01-01

    Stretch-attend posture (SAP) occurs during risk assessment and is prevalent in common rodent behavioral tests. Measuring this behavior can enhance behavioral tests. For example, stretch-attend posture is a more sensitive measure of the effects of anxiolytics than traditional spatiotemporal indices. However, quantifying stretch-attend posture using human observers is time consuming, somewhat subjective, and prone to errors. We have developed MATLAB-based software, MATSAP, which is a quick, consistent, and open source program that provides objective automated analysis of stretch-attend posture in rodent behavioral experiments. Unlike human observers, MATSAP is not susceptible to fatigue or subjectivity. We assessed MATSAP performance with videos of male Swiss mice moving in an open field box and in an elevated plus maze. MATSAP reliably detected stretch-attend posture on par with human observers. This freely-available program can be broadly used by biologists and psychologists to accelerate neurological, pharmacological, and behavioral studies. PMID:27503239

  11. Combinatorial Broadening Mechanism of O-H Stretching Bands in H-Bonded Molecular Clusters

    NASA Astrophysics Data System (ADS)

    Pitsevich, G. A.; Doroshenko, I. Yu.; Pogorelov, V. E.; Pettersson, L. G. M.; Sablinskas, V.; Sapeshko, V. V.; Balevicius, V.

    2016-07-01

    A new mechanism for combinatorial broadening of donor-OH stretching-vibration absorption bands in molecular clusters with H-bonds is proposed. It enables the experimentally observed increase of the O-H stretching-vibration bandwidth with increasing number of molecules in H-bonded clusters to be explained. Knowledge of the half-width of the OH stretching-vibration absorption band in the dimer and the number of H-bonds in the analyzed cluster is suffi cient in the zeroth-order approximation to estimate the O-H stretching-absorption bands in clusters containing several molecules. Good agreement between the calculated and published experimental half-widths of the OH stretching-vibration absorption bands in MeOH and PrOH clusters was obtained using this approach.

  12. MATSAP: An automated analysis of stretch-attend posture in rodent behavioral experiments

    PubMed Central

    Holly, Kevin S.; Orndorff, Casey O.; Murray, Teresa A.

    2016-01-01

    Stretch-attend posture (SAP) occurs during risk assessment and is prevalent in common rodent behavioral tests. Measuring this behavior can enhance behavioral tests. For example, stretch-attend posture is a more sensitive measure of the effects of anxiolytics than traditional spatiotemporal indices. However, quantifying stretch-attend posture using human observers is time consuming, somewhat subjective, and prone to errors. We have developed MATLAB-based software, MATSAP, which is a quick, consistent, and open source program that provides objective automated analysis of stretch-attend posture in rodent behavioral experiments. Unlike human observers, MATSAP is not susceptible to fatigue or subjectivity. We assessed MATSAP performance with videos of male Swiss mice moving in an open field box and in an elevated plus maze. MATSAP reliably detected stretch-attend posture on par with human observers. This freely-available program can be broadly used by biologists and psychologists to accelerate neurological, pharmacological, and behavioral studies. PMID:27503239

  13. On one-dimensional stretching functions for finite-difference calculations. [computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Vinokur, M.

    1983-01-01

    The class of one-dimensional stretching functions used in finite-difference calculations is studied. For solutions containing a highly localized region of rapid variation, simple criteria for a stretching function are derived using a truncation error analysis. These criteria are used to investigate two types of stretching functions. One an interior stretching function, for which the location and slope of an interior clustering region are specified. The simplest such function satisfying the criteria is found to be one based on the inverse hyperbolic sine. The other type of function is a two-sided stretching function, for which the arbitrary slopes at the two ends of the one-dimensional interval are specified. The simplest such general function is found to be one based on the inverse tangent. Previously announced in STAR as N80-25055

  14. On one-dimensional stretching functions for finite-difference calculations. [computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Vinokur, M.

    1979-01-01

    The class of one-dimensional stretching functions used in finite-difference calculations is studied. For solutions containing a highly localized region of rapid variation, simple criteria for a stretching function are derived using a truncation error analysis. These criteria are used to investigate two types of stretching functions. One is an interior stretching function, for which the location and slope of an interior clustering region are specified. The simplest such function satisfying the criteria is found to be one based on the inverse hyperbolic sine. The other type of function is a two-sided stretching function, for which the arbitrary slopes at the two ends of the one-dimensional interval are specified. The simplest such general function is found to be one based on the inverse tangent.

  15. The compliance of vascular endothelial cells (VECs) change after exposure to cyclic, uniaxial stretch

    NASA Astrophysics Data System (ADS)

    Osterday, Kathryn; Chew, Thomas; Phillip, Loury; Haga, Jason; Gomez-Gonzalez, Manuel; Del Alamo, Juan Carlos; Chien, Shu

    2012-11-01

    In vivo, VECs are exposed to both shear stress and cyclic, uniaxial stretch. It is known that VECs remodel their cytoskeleton perpendicular to stretch and parallel to shear and that cytoskeletal structure is critical to vessel function. Cytoskeletal structure must affect the magnitude and direction of the maximum and minimum shear compliance of the cytoplasm. This may provide the cell with a mechanism to tune their sensitivity to external mechanical stimuli differently along different directions, providing the flow-sensing mechanism needed for mechanotransduction. To study how cytoskeletal remodeling is correlated to changes in subcellular microrheology, we used directional particle tracking microrheology (DPTM) to calculate the shear compliance of the cytoplasm before and after exposure to cyclic, uniaxial stretch. When stretched, we find, VECs align their direction of maximum shear compliance perpendicular to stretch, their cytoplasm becomes less liquid, and the magnitude of the shear compliance along both directions of mechanical polarization decrease.

  16. On One-Dimensional Stretching Functions for Finite-Difference Calculations

    NASA Technical Reports Server (NTRS)

    Vinokur, M.

    1980-01-01

    The class of one dimensional stretching function used in finite difference calculations is studied. For solutions containing a highly localized region of rapid variation, simple criteria for a stretching function are derived using a truncation error analysis. These criteria are used to investigate two types of stretching functions. One is an interior stretching function, for which the location and slope of an interior clustering region are specified. The simplest such function satisfying the criteria is found to be one based on the inverse hyperbolic sine. The other type of function is a two sided stretching function, for which the arbitrary slopes at the two ends of the one dimensional interval are specified. The simplest such general function is found to be one based on the inverse tangent. The general two sided function has many applications in the construction of finite difference grids.

  17. Cyclical cell stretching of skin-derived fibroblasts downregulates connective tissue growth factor (CTGF) production.

    PubMed

    Kanazawa, Yuichiro; Nomura, Jun; Yoshimoto, Shinya; Suzuki, Toshikazu; Kita, Kazuko; Suzuki, Nobuo; Ichinose, Masaharu

    2009-01-01

    Delayed healing of skin wounds can be caused by wound instability, whereas appropriate massage or exercise prevents sclerosis and scar contracture. However, the mechanism by which wound healing is related to mechanical stress has not been fully elucidated. The present study aimed to identify whether mechanical stretching of fibroblasts reduces their production of extracellular matrix. We transferred skin fibroblasts into collagen-coated elastic silicone chambers, cultured them on a stretching apparatus, and used RT-PCR to examine the effects of mechanical stretching on the expression levels of 17 genes related to extracellular matrix production and growth factor secretion. We found that connective tissue growth factor (CTGF) was downregulated after 24 hr of cell stretching. Specifically, the CTGF mRNA and protein levels were 50% and 48% of the control levels, respectively. These findings suggest that cyclic stretching of fibroblasts contributes to anti-fibrotic processes by reducing CTGF production.

  18. Adaptation dynamics in densely clustered chemoreceptors.

    PubMed

    Pontius, William; Sneddon, Michael W; Emonet, Thierry

    2013-01-01

    In many sensory systems, transmembrane receptors are spatially organized in large clusters. Such arrangement may facilitate signal amplification and the integration of multiple stimuli. However, this organization likely also affects the kinetics of signaling since the cytoplasmic enzymes that modulate the activity of the receptors must localize to the cluster prior to receptor modification. Here we examine how these spatial considerations shape signaling dynamics at rest and in response to stimuli. As a model system, we use the chemotaxis pathway of Escherichia coli, a canonical system for the study of how organisms sense, respond, and adapt to environmental stimuli. In bacterial chemotaxis, adaptation is mediated by two enzymes that localize to the clustered receptors and modulate their activity through methylation-demethylation. Using a novel stochastic simulation, we show that distributive receptor methylation is necessary for successful adaptation to stimulus and also leads to large fluctuations in receptor activity in the steady state. These fluctuations arise from noise in the number of localized enzymes combined with saturated modification kinetics between the localized enzymes and the receptor substrate. An analytical model explains how saturated enzyme kinetics and large fluctuations can coexist with an adapted state robust to variation in the expression levels of the pathway constituents, a key requirement to ensure the functionality of individual cells within a population. This contrasts with the well-mixed covalent modification system studied by Goldbeter and Koshland in which mean activity becomes ultrasensitive to protein abundances when the enzymes operate at saturation. Large fluctuations in receptor activity have been quantified experimentally and may benefit the cell by enhancing its ability to explore empty environments and track shallow nutrient gradients. Here we clarify the mechanistic relationship of these large fluctuations to well

  19. Adaptive management

    USGS Publications Warehouse

    Allen, Craig R.; Garmestani, Ahjond S.

    2015-01-01

    Adaptive management is an approach to natural resource management that emphasizes learning through management where knowledge is incomplete, and when, despite inherent uncertainty, managers and policymakers must act. Unlike a traditional trial and error approach, adaptive management has explicit structure, including a careful elucidation of goals, identification of alternative management objectives and hypotheses of causation, and procedures for the collection of data followed by evaluation and reiteration. The process is iterative, and serves to reduce uncertainty, build knowledge and improve management over time in a goal-oriented and structured process.

  20. Precise Adaptation in Bacterial Chemotaxis through ``Assistance Neighborhoods''

    NASA Astrophysics Data System (ADS)

    Endres, Robert

    2007-03-01

    The chemotaxis network in Escherichia coli is remarkable for its sensitivity to small relative changes in the concentrations of multiple chemical signals over a broad range of ambient concentrations. Key to this sensitivity is an adaptation system that relies on methylation and demethylation (or deamidation) of specific modification sites of the chemoreceptors by the enzymes CheR and CheB, respectively. It was recently discovered that these enzymes can access five to seven receptors when tethered to a particular receptor. We show that these ``assistance neighborhoods'' (ANs) are necessary for precise and robust adaptation in a model for signaling by clusters of chemoreceptors: (1) ANs suppress fluctuations of the receptor methylation level; (2) ANs lead to robustness with respect to biochemical parameters. We predict two limits of precise adaptation at large attractant concentrations: either receptors reach full methylation and turn off, or receptors become saturated and cease to respond to attractant but retain their adapted activity.

  1. A global study of enhanced stretching and diffusion in chaotic tangles

    NASA Astrophysics Data System (ADS)

    Beigie, Darin; Leonard, Anthony; Wiggins, Stephen

    1991-05-01

    A global, finite-time study is made of stretching and diffusion in a class of chaotic tangles associated with fluids described by periodically forced two-dimensional dynamical systems. Invariant lobe structures formed by intersecting global stable and unstable manifolds of persisting invariant hyperbolic sets provide the geometrical framework for studying stretching of interfaces and diffusion of passive scalars across these interfaces. In particular, the present study focuses on the material curve that initially lies on the unstable manifold segment of the boundary of the entraining turnstile lobe. A knowledge of the stretch profile of a corresponding curve that evolves according to the unperturbed flow, coupled with an appreciation of a symbolic dynamics that applies to the entire original material curve in the perturbed flow, provides the framework for understanding the mechanism for, and topology of, enhanced stretching in chaotic tangles. Secondary intersection points (SIP's) of the stable and unstable manifolds are particularly relevant to the topology, and the perturbed stretch profile is understood in terms of the unperturbed stretch profile approximately repeating itself on smaller and smaller scales. For sufficiently thin diffusion zones, diffusion of passive scalars across interfaces can be treated as a one-dimensional process, and diffusion rates across interfaces are directly related to the stretch history of the interface. An understanding of interface stretching thus directly translates to an understanding of diffusion across interfaces. However, a notable exception to the thin diffusion zone approximation occurs when an interface folds on top of itself so that neighboring diffusion zones overlap. An analysis which takes into account the overlap of nearest neighbor diffusion zones is presented, which is sufficient to capture new phenomena relevant to efficiency of mixing. The analysis adds to the concentration profile a saturation term that depends

  2. Effects of stretching on peak torque and the H:Q ratio.

    PubMed

    Costa, P B; Ryan, E D; Herda, T J; DeFreitas, J M; Beck, T W; Cramer, J T

    2009-01-01

    The purpose of the present study was to examine the acute effects of hamstring and calf stretching on leg extension and flexion peak torque (PT) and the hamstrings-to-quadriceps (H : Q) ratio during maximal, concentric isokinetic muscle actions at 60, 180, and 300 degrees . s (-1) in women. Thirteen women (mean age +/- SD = 20.8 +/- 1.8 yrs; height = 163.0 +/- 5.7 cm; mass = 64.0 +/- 8.3 kg) performed 3 maximal concentric isokinetic leg extension and flexion muscle actions at 3 randomly ordered angular velocities (60, 180, and 300 degrees . s (-1)) before and after a bout of static stretching. The stretching protocol consisted of 1 unassisted and 3 assisted static stretching exercises designed to stretch the posterior muscles of the thigh and leg. Four repetitions of each stretch were held for 30 s with 20 s rest between repetitions. The results indicated that leg flexion PT decreased from pre- to post-stretching (34.9 +/- 3.5 and 32.4 +/- 3.2 Nm, respectively) collapsed across velocity. However, no other changes were observed from pre- to post-stretching for leg extension PT (78.5 +/- 5.9 and 77.8 +/- 5.5 Nm, respectively) and the H : Q ratio (0.47 +/- 0.04 and 0.44 +/- 0.03, respectively). Our findings suggested that despite the stretching-induced decreases in leg flexion PT, leg extension PT and the H : Q ratios were unaltered by the stretching.

  3. Cell stretching in extensional flows for assaying cell mechanics

    NASA Astrophysics Data System (ADS)

    Gossett, Daniel; Tse, Henry; Adeyiga, Oladunni; Yang, Otto; Rao, Jianyu; di Carlo, Dino

    2013-03-01

    There is growing evidence that cell deformability is a useful indicator of cell state and may be a label-free biomarker of metastatic potential, degree of differentiation, and leukocyte activation. In order for deformability measurements to be clinically valuable given the heterogeneity of biological samples, there exists a need for a high-throughput assay of this biophysical property. We developed a robust method for obtaining high-throughput (>1,000 cells/sec) single-cell mechanical measurements which employs coupled hydrodynamic lift forces and curvature-induced secondary flows to uniformly position cells in flow, extensional flow stretching, high-speed imaging, and automated image analysis to extract diameter and deformability parameters. Using this method we have assayed numerous in vitro models of cellular transformations and clinical fluids where malignant cells manifest. We found transformations associated with increased motility or invasiveness increased deformability and the presence of large and deformable cells within clinical pleural fluids correlated well with cytological diagnoses of malignancy. This agrees with the hypothesis that cancerous cells are deformable by necessity-to be able to transverse tight endothelial gaps and invade tissues.

  4. Planar hand motion guidance using fingertip skin-stretch feedback.

    PubMed

    Norman, Sumner L; Doxon, Andrew J; Gleeson, Brian T; Provancher, William R

    2014-01-01

    In this paper, we show that a simple haptic device can accurately guide users through planar hand movements. The device guides the user through skin stretch feedback on the fingerpad of the user's index finger. In an angle matching test evaluating two types of stimuli, users are able to discriminate between eight stimulus directions and match the motion of their hand to the stimulus direction with 10 degree accuracy. In two motion guidance tests, haptic cues effectively guide users' arm motions through the full extent of their reachable workspace. Real-time corrective feedback greatly improves user performance, keeping average user hand motions within 12 mm of the prescribed path and within 4 degree of the indicated directions. Additionally, the paper shows that participants exhibit distorted haptic perceptual responses, finding that the distortion causes a response direction bias, but that appropriate haptic feedback can correct for the effect. Such motion guidance has applications in human-machine interaction, such as upper-extremity rehabilitation. PMID:24968376

  5. Planar hand motion guidance using fingertip skin-stretch feedback.

    PubMed

    Norman, Sumner L; Doxon, Andrew J; Gleeson, Brian T; Provancher, William R

    2014-01-01

    In this paper, we show that a simple haptic device can accurately guide users through planar hand movements. The device guides the user through skin stretch feedback on the fingerpad of the user's index finger. In an angle matching test evaluating two types of stimuli, users are able to discriminate between eight stimulus directions and match the motion of their hand to the stimulus direction with 10 degree accuracy. In two motion guidance tests, haptic cues effectively guide users' arm motions through the full extent of their reachable workspace. Real-time corrective feedback greatly improves user performance, keeping average user hand motions within 12 mm of the prescribed path and within 4 degree of the indicated directions. Additionally, the paper shows that participants exhibit distorted haptic perceptual responses, finding that the distortion causes a response direction bias, but that appropriate haptic feedback can correct for the effect. Such motion guidance has applications in human-machine interaction, such as upper-extremity rehabilitation.

  6. GRAVITATIONALLY UNSTABLE FLAMES: RAYLEIGH-TAYLOR STRETCHING VERSUS TURBULENT WRINKLING

    SciTech Connect

    Hicks, E. P.; Rosner, R.

    2013-07-10

    In this paper, we provide support for the Rayleigh-Taylor-(RT)-based subgrid model used in full-star simulations of deflagrations in Type Ia supernovae explosions. We use the results of a parameter study of two-dimensional direct numerical simulations of an RT unstable model flame to distinguish between the two main types of subgrid models (RT or turbulence dominated) in the flamelet regime. First, we give scalings for the turbulent flame speed, the Reynolds number, the viscous scale, and the size of the burning region as the non-dimensional gravity (G) is varied. The flame speed is well predicted by an RT-based flame speed model. Next, the above scalings are used to calculate the Karlovitz number (Ka) and to discuss appropriate combustion regimes. No transition to thin reaction zones is seen at Ka = 1, although such a transition is expected by turbulence-dominated subgrid models. Finally, we confirm a basic physical premise of the RT subgrid model, namely, that the flame is fractal, and thus self-similar. By modeling the turbulent flame speed, we demonstrate that it is affected more by large-scale RT stretching than by small-scale turbulent wrinkling. In this way, the RT instability controls the flame directly from the large scales. Overall, these results support the RT subgrid model.

  7. Injury mechanisms in supraclavicular stretch injuries of the brachial plexus.

    PubMed

    Soldado, Francisco; Ghizoni, Marcos F; Bertelli, Jayme

    2016-02-01

    The aim of this study was to describe the mechanisms involved in stretch injuries of the brachial plexus. One hundred and fifty consecutive patients with supraclavicular brachial plexus injuries (BPI) were asked about the mechanism of injury during the actual injury event, particularly about the type of trauma to their shoulder, shoulder girdle and head. Fifty-seven of the patients provided enough information about their accident to allow for analysis of the shoulder trauma. The injury mechanism for all patients having upper root or total palsy (n=46) was described as a direct vertical impact to the shoulder. In 44 of these patients, the trauma followed a motorcycle accident and, in most of them, the patient hit a fixed vertical structure before falling to the ground. The injury mechanism for the lower root palsy cases (n=11) was variable. The most frequent mechanism was forceful anterior shoulder compression by a car seat belt. We found that injury mechanisms differed significantly from the ones commonly discussed in published studies. PMID:27117025

  8. Manipulation and stretching of bacteria and liposomes by Microfluidics

    NASA Astrophysics Data System (ADS)

    Zussman, Eyal; Salalha, Wael

    2006-03-01

    Microfluidic technology can be useful in lab-on-a-chip applications of biological assays, environmental monitoring, detection of toxic materials, as well as for assembly of nano- and micro-scale objects into more complex systems. In this work we focused on the orientation of rod-shaped bacteria (Bacillus) by employing shear flow and a high rate elongation flow, and stretching of giant liposomes with diameter size of tens of microns, which can be used as a simplified model for cell behavior. This was achieved by flows of dilute rod-like bacteria and liposome suspensions within a micro-channel by means of a capillary-driven motion. Fluidic alignment situations were tested, firstly by Venturi-like flow which produces a sufficiently converging and diverging flow, and secondly by sink-like flow in a converging microchannel. In the first method we found that the converging part of the flow aligns rod-like bacteria, whereas the diverging part disaligns them, while in the second method the rod-like bacteria can perfectly align along the streamlines. In addition we used the same technology to test liposome deformation while they are flowing through a Venturi-like microchannel. The microfluidics devices were fabricated from poly(dimethylsiloxane) (PDMS) by soft lithographic techniques.

  9. Global solutions for higher-dimensional stretched small black holes

    SciTech Connect

    Chen, C.-M.; Gal'tsov, Dmitri V.; Ohta, Nobuyoshi; Orlov, Dmitry G.

    2010-01-15

    Small black holes in heterotic string theory have a vanishing horizon area at the supergravity level, but the horizon is stretched to the finite radius AdS{sub 2}xS{sup D-2} geometry once higher curvature corrections are turned on. This has been demonstrated to give good agreement with microscopic entropy counting. Previous considerations, however, were based on the classical local solutions valid only in the vicinity of the event horizon. Here we address the question of global existence of extremal black holes in the D-dimensional Einstein-Maxwell-Dilaton theory with the Gauss-Bonnet term introducing a variable dilaton coupling a as a parameter. We show that asymptotically flat black holes exist only in a bounded region of the dilaton couplings 0=}5 (but not for D=4) the allowed range of a includes the heterotic string values. For a>a{sub cr} numerical solutions meet weak naked singularities at finite radii r=r{sub cusp} (spherical cusps), where the scalar curvature diverges as |r-r{sub cusp}|{sup -1/2}. For D{>=}7 cusps are met in pairs, so that solutions can be formally extended to asymptotically flat infinity choosing a suitable integration variable. We show, however, that radial geodesics cannot be continued through the cusp singularities, so such a continuation is unphysical.

  10. Coordination effects on the stretching vibration of the OH - ion

    NASA Astrophysics Data System (ADS)

    Hermansson, Kersti

    1993-03-01

    IR and Raman measurements on crystalline hydroxides reported in the literature have shown that both frequency upshifts and downshifts with respect to the free-ion frequency occur. Here the fundamental stretching vibrational frequency of a bound OH - ion in different point charge environments has been examined by ab initio calculations at the MP2 level. For a given geometry of a q+ · OH - · q- complex, the ab initio frequency is found to vary in a systematic way as the electric field is increased: the frequency increases, passes through a maximum and then decreases. Both the value of the maximum frequency and the field strength at which it occurs are highly dependent on the geometry of the complex. Only the field component parallel to the OH - axis is effective in changing the OH frequency. The arc-like shape of the frequency versus field correlation curves "explains" the large degree of non-additivity found for the environment-induced frequency shifts. H-bonds donated by the OH - ion may, or may not, lead to a frequency downshift, depending on the other neighbours present. It is also shown that a model which explicitly takes the field inhomogeneity into account (by a simple polynomial in E|, ( E|) 2, E' |, ( E' |) 2 and cross-terms, evaluated at two different "probing sites" in the ion), manages to represent the OH - frequency shift for an "arbitrary" point-charge environment.

  11. Toward Understanding the Molecular Bases of Stretch Activation

    PubMed Central

    Sanfelice, Domenico; Sanz-Hernández, Máximo; de Simone, Alfonso; Bullard, Belinda; Pastore, Annalisa

    2016-01-01

    Muscles are usually activated by calcium binding to the calcium sensory protein troponin-C, which is one of the three components of the troponin complex. However, in cardiac and insect flight muscle activation is also produced by mechanical stress. Little is known about the molecular bases of this calcium-independent activation. In Lethocerus, a giant water bug often used as a model system because of its large muscle fibers, there are two troponin-C isoforms, called F1 and F2, that have distinct roles in activating the muscle. It has been suggested that this can be explained either by differences in structural features or by differences in the interactions with other proteins. Here we have compared the structural and dynamic properties of the two proteins and shown how they differ. We have also mapped the interactions of the F2 isoform with peptides spanning the sequence of its natural partner, troponin-I. Our data have allowed us to build a model of the troponin complex and may eventually help in understanding the specialized function of the F1 and F2 isoforms and the molecular mechanism of stretch activation. PMID:27226601

  12. Dynamic Myofibrillar Remodeling in Live Cardiomyocytes under Static Stretch

    PubMed Central

    Yang, Huaxiao; Schmidt, Lucas P.; Wang, Zhonghai; Yang, Xiaoqi; Shao, Yonghong; Borg, Thomas K.; Markwald, Roger; Runyan, Raymond; Gao, Bruce Z.

    2016-01-01

    An increase in mechanical load in the heart causes cardiac hypertrophy, either physiologically (heart development, exercise and pregnancy) or pathologically (high blood pressure and heart-valve regurgitation). Understanding cardiac hypertrophy is critical to comprehending the mechanisms of heart development and treatment of heart disease. However, the major molecular event that occurs during physiological or pathological hypertrophy is the dynamic process of sarcomeric addition, and it has not been observed. In this study, a custom-built second harmonic generation (SHG) confocal microscope was used to study dynamic sarcomeric addition in single neonatal CMs in a 3D culture system under acute, uniaxial, static, sustained stretch. Here we report, for the first time, live-cell observations of various modes of dynamic sarcomeric addition (and how these real-time images compare to static images from hypertrophic hearts reported in the literature): 1) Insertion in the mid-region or addition at the end of a myofibril; 2) Sequential addition with an existing myofibril as a template; and 3) Longitudinal splitting of an existing myofibril. The 3D cell culture system developed on a deformable substrate affixed to a stretcher and the SHG live-cell imaging technique are unique tools for real-time analysis of cultured models of hypertrophy. PMID:26861590

  13. Shape instability on swelling of a stretched nematic elastomer filament.

    PubMed

    Cheewaruangroj, N; Terentjev, E M

    2015-10-01

    Liquid crystalline elastomers combine the ordering properties of liquid crystals with elasticity of crosslinked polymer networks. In monodomain (permanently aligned) elastomers, altering the orientational (nematic) order causes changes in the equilibrium sample length, which is the basis of the famous effect of large-amplitude reversible mechanical actuation. The stimulus for this effect could be a change in temperature, or illumination by light in photosensitized elastomers, but equally the nematic order changes by mixing with a solvent. This work theoretically investigates a competition between the spontaneous contraction on swelling of a monodomain nematic elastomer and the externally imposed stretching. We find that this competition leads to bistability in the system and allows a two-phase separation between a nematic state with lower swelling and an isotropic state with higher solvent concentration. We calculated the conditions in which the instability occurs as well as the mechanical and geometric parameters of equilibrium states. Being able to predict how this instability arises will provide opportunities for exploiting nematic elastomer filaments.

  14. Dynamic Myofibrillar Remodeling in Live Cardiomyocytes under Static Stretch.

    PubMed

    Yang, Huaxiao; Schmidt, Lucas P; Wang, Zhonghai; Yang, Xiaoqi; Shao, Yonghong; Borg, Thomas K; Markwald, Roger; Runyan, Raymond; Gao, Bruce Z

    2016-01-01

    An increase in mechanical load in the heart causes cardiac hypertrophy, either physiologically (heart development, exercise and pregnancy) or pathologically (high blood pressure and heart-valve regurgitation). Understanding cardiac hypertrophy is critical to comprehending the mechanisms of heart development and treatment of heart disease. However, the major molecular event that occurs during physiological or pathological hypertrophy is the dynamic process of sarcomeric addition, and it has not been observed. In this study, a custom-built second harmonic generation (SHG) confocal microscope was used to study dynamic sarcomeric addition in single neonatal CMs in a 3D culture system under acute, uniaxial, static, sustained stretch. Here we report, for the first time, live-cell observations of various modes of dynamic sarcomeric addition (and how these real-time images compare to static images from hypertrophic hearts reported in the literature): 1) Insertion in the mid-region or addition at the end of a myofibril; 2) Sequential addition with an existing myofibril as a template; and 3) Longitudinal splitting of an existing myofibril. The 3D cell culture system developed on a deformable substrate affixed to a stretcher and the SHG live-cell imaging technique are unique tools for real-time analysis of cultured models of hypertrophy. PMID:26861590

  15. Modulation of TRESK Background K+ Channel by Membrane Stretch

    PubMed Central

    Callejo, Gerard; Giblin, Jonathan P.; Gasull, Xavier

    2013-01-01

    The two-pore domain K+ channel TRESK is expressed in dorsal root ganglion and trigeminal sensory neurons where it is a major contributor to background K+ current. TRESK acts as a break to prevent excessive sensory neuron activation and decreases in its expression or function have been involved in neuronal hyperexcitability after injury/inflammation, migraine or altered sensory perception (tingling, cooling and pungent burning sensations). All these effects have implicated this channel in nociception and mechanotransduction. To determine the role of TRESK in sensory transduction, we studied its sensitivity to changes in membrane tension (stretch) in heterologous systems, F-11 cells and trigeminal neurons. Laminar shear stress increased TRESK currents by 22–30%. An increase in membrane tension induced by cell swelling (hypotonic medium) produced a reversible elevation of TRESK currents (39.9%). In contrast, cell shrinkage (hypertonic solution) produced the opposite effect. Membrane crenators or cup-formers produced equivalent effects. In trigeminal sensory neurons, TRESK channels were mechanically stimulated by negative pressure, which led to a 1.51-fold increase in channel open probability. TRESK-like currents in trigeminal neurons were additively inhibited by arachidonic acid, acidic pH and hypertonic stimulation, conditions usually found after tissue inflammation. Our results show that TRESK is modulated by changes in cell membrane tension and/or cell volume. Several key players released during inflammation or tissue injury could modulate sensory neuron activation through small changes in membrane tension. PMID:23691227

  16. Stretched exponential relaxation of piezovoltages in wet bovine bone.

    PubMed

    Xu, Lianyun; Hou, Zhende; Fu, Donghui; Qin, Qing-Hua; Wang, Yihan

    2015-01-01

    It is important to determine the amplitude and variation characteristics of piezovoltage in wet bone, which can, in turn, be taken as a basis for studying whether electrical signals induced by external forces can affect the growth of bone cells. This work measured the characteristics of piezoelectric effects under dynamic and static loading. The results show that the variations of piezovoltage in wet bone in both loading and load holding periods follow a stretched exponential relaxation law, and the relaxation time constants of the piezovoltages are much larger than those of dry bone. This finding means that the active time of piezovoltage in wet bone is much longer than that of dry bone. Regardless of the loading and load holding processes, continuously increasing deformation in wet bone caused piezoelectric charges to be continuously induced and increased the dielectric constant of wet bone along with the deformation process. In general, compared with piezovoltage in dry bone, that in wet bone had lower amplitude and could exist for a longer duration. It can be inferred, therefore, that piezoelectricity might create coupling with the streaming potential in bone by changing the thickness of the double electrode layer.

  17. Development of parallel incompressible NS solver on stretched grids

    NASA Astrophysics Data System (ADS)

    Jothiprasad, G.; Caughey, D.; Pope, S. B.

    2003-11-01

    Development of a parallel NS solver for studying DNS and LES of temporal mixing layers is discussed. The equations are cast in strong conservation form on a uniform computational mesh, transformed from a stretched mesh in the physical domain. Variables are defined on a collocated grid, and the transformed equations are solved using a fractional step method. Convective and dissipative terms are treated using explicit Adams-Bashforth and implicit Crank-Nicolson, respectively. Fourth order spatial accuracy is maintained except for hyperviscous subgrid model terms, which are only 2nd order accurate. The block LU analysis of J. B. Perot, extended to fractional step methods on collocated grids, shows that an O(Δ t^2) term involving the pressure gradient must be added to the momentum equations to maintain 2nd order accuracy in time. Using a smaller stencil for the pressure gradients largely simplifies the pressure Poisson equation while still ensuring that discrete continuity is satisfied to appropriate order. Implementation on distributed-memory multiprocessors is achieved using MPI, with care taken to minimize communication overhead.

  18. Programmable Extreme Pseudomagnetic Fields in Graphene by a Uniaxial Stretch

    PubMed Central

    Zhu, Shuze; Stroscio, Joseph A.; Li, Teng

    2016-01-01

    Many of the properties of graphene are tied to its lattice structure, allowing for tuning of charge carrier dynamics through mechanical strain. The graphene electro-mechanical coupling yields very large pseudomagnetic fields for small strain fields, up to hundreds of Tesla, which offer new scientific opportunities unattainable with ordinary laboratory magnets. Significant challenges exist in investigation of pseudomagnetic fields, limited by the non-planar graphene geometries in existing demonstrations and the lack of a viable approach to controlling the distribution and intensity of the pseudomagnetic field. Here we reveal a facile and effective mechanism to achieve programmable extreme pseudomagnetic fields with uniform distributions in a planar graphene sheet over a large area by a simple uniaxial stretch. We achieve this by patterning the planar graphene geometry and graphene-based hetero-structures with a shape function to engineer a desired strain gradient. Our method is geometrical, opening up new fertile opportunities of strain engineering of electronic properties of 2D materials in general. PMID:26705640

  19. Global frequency response analysis of gravitationally stretched liquid jets

    NASA Astrophysics Data System (ADS)

    Consoli-Lizzi, Paula; Coenen, Wilfried; Sevilla, Alejandro

    2013-11-01

    The convective capillary break-up of freely falling axisymmetric jets of Newtonian liquid is theoretically studied with a one-dimensional description of the mass and momentum conservation equations. Instead of using the classical quasi-parallel assumption in the stability analysis, here we compute the global linear response of the flow to harmonic inputs at the exit of the jet, allowing us to predict its break-up length in cases where the base flow is not slender. Our theory compares favourably with recent experiments by Javadi et al. (PRL 110, 144501, 2013), who measured the break-up length of unforced liquid jets of several viscosities. From the physical point of view, our main finding is that the meniscus region near the injector outlet, where the jet experiences the strongest axial stretching, delays the growth of capillary disturbances due to a spatial counterpart of the kinematic stabilizing mechanism firstly described by Tomotika (Proc. Roy. Soc. 153, 1936) in a temporal setting. Supported by Spanish MINECO under project DPI 2011-28356-C03-02.