Sample records for adapting stretch receptor

  1. Inhibitory input from slowly adapting lung stretch receptors to retrotrapezoid nucleus chemoreceptors

    PubMed Central

    Moreira, Thiago S; Takakura, Ana C; Colombari, Eduardo; West, Gavin H; Guyenet, Patrice G

    2007-01-01

    The retrotrapezoid nucleus (RTN) contains CO2-activated interneurons with properties consistent with central respiratory chemoreceptors. These neurons are glutamatergic and express the transcription factor Phox2b. Here we tested whether RTN neurons receive an input from slowly adapting pulmonary stretch receptors (SARs) in halothane-anaesthetized ventilated rats. In vagotomized rats, RTN neurons were inhibited to a variable extent by stimulating myelinated vagal afferents using the lowest intensity needed to inhibit the phrenic nerve discharge (PND). In rats with intact vagus nerves, RTN neurons were inhibited, also to a variable extent, by increasing positive end-expiratory pressure (PEEP; 2–6 cmH2O). The cells most sensitive to PEEP were inhibited during each lung inflation at rest and were instantly activated by stopping ventilation. Muscimol (GABA-A agonist) injection in or next to the solitary tract at area postrema level desynchronized PND from ventilation, eliminated the lung inflation-synchronous inhibition of RTN neurons and their steady inhibition by PEEP but did not change their CO2 sensitivity. Muscimol injection into the rostral ventral respiratory group eliminated PND but did not change RTN neuron response to either lung inflation, PEEP increases, vagal stimulation or CO2. Generalized glutamate receptor blockade with intracerebroventricular (i.c.v.) kynurenate eliminated PND and the response of RTN neurons to lung inflation but did not change their CO2 sensitivity. PEEP-sensitive RTN neurons expressed Phox2b. In conclusion, RTN chemoreceptors receive an inhibitory input from myelinated lung stretch receptors, presumably SARs. The lung input to RTN may be di-synaptic with inhibitory pump cells as sole interneurons. PMID:17255166

  2. Ion channels for mechanotransduction in the crayfish stretch receptor.

    PubMed

    Rydqvist, Bo

    2007-01-01

    Mechanosensitivity is found in almost every cell in all organisms from bacteria to vertebrates and covers a wide spectrum of function from osmosensing to mechanical sensing in the specialized receptors, such as the hair cells of the cochlea. The molecular substrate for such mechanosensitivity is thought to be mechanosensitive ion channels (MSCs). Because most development regarding the molecular aspects of the MSC has been made in nonsensory or sensory systems, which have not been accessible to recordings from ion channels, it is important to focus on the mechanosensitivity of sensory organs where their functional importance is undisputed. The stretch receptor organ (SRO) of the crustaceans is a suitable preparation for such studies. Each organ contains two receptors: one slowly and one rapidly adapting receptor neurons. The primary mechanosensitivity is generated by two types of MSC of hitherto unknown molecular type located in the neuronal dendrites, which are inserted into a receptor muscle fiber. In addition to the MSCs, the neurons contain voltage-gated Na(+) channels, which seem to be differently located in the slowly and rapidly adapting neurons. At least three types of voltage-gated K(+) channels are present in the sensory neurons, the location of which is not known. The spatial distribution of ion channels and the kinetics of the channels, together with the viscoelastic properties of the receptor muscles, determine the overall transducer properties and impulse firing of the two receptor neurons, including their typical adaptive characteristics. © 2007, Elsevier Inc. All right reserved.

  3. Different spatial distributions of sodium channels in the slowly and rapidly adapting stretch receptor neuron of the crayfish.

    PubMed

    Lin, J H; Rydqvist, B

    1999-06-05

    Inward Na+ currents were studied, using a two-microelectrode intracellular voltage-clamp technique, in the slowly adapting (SA) and rapidly adapting (RA) stretch receptor neurons of the crayfish after the axons were cut at different distances from the soma. In the SA neuron, inward Na+ currents were recorded in the soma even when the axon was cut as close as 100 microm from the center of the soma, indicating the presence of Na+ channels in these parts. Also, two populations of Na+ channels seem to exist in the SA neuron. In the RA neuron, only minute Na+ currents were observed if the axon was shorter than 250 microm. The results strongly indicate that the voltage-gated Na+ channels in the SA and RA neurons have different distributions and that the difference in the spatial distribution of Na+ channel types may be important for the difference in firing properties in the two types of neurons. Copyright 1999 Elsevier Science B.V.

  4. Lung reflexes in rabbits during pulmonary stretch receptor block by sulphur dioxide.

    PubMed

    Davies, A; Dixon, M; Callanan, D; Huszczuk, A; Widdicombe, J G; Wise, J C

    1978-07-01

    Anaesthetized rabbits were given 200 ppm sulphur dioxide to breathe for 10 min. This abolished activity in 23 of 26 pulmonary stretch receptors, while leaving that of lung irritant receptors unimpaired. The Breuer-Hering reflex was abolished and breathing became deeper and slower. Inspiratory time (tI) was increased and expiratory time (tE) decreased. Subsequent vagotomy increased tidal volume (VT), tI and tE. In animals with stretch receptors blocked, injections of phenyl diguanide and histamine still increased breathing frequency and decreased VT, indicating that reflexes from lung irritant and J-receptors were intact. Inhalation of 8% CO2 caused a bigger increase in frequency and tidal volume in rabbits with stretch receptor block compared with controls or those after vagotomy. Induction of pneumothorax with stretch receptor block transiently prolonged tI and shortened tE; removal of the pneumothorax also transiently shortened tE and usually also decreased tI. The results suggest that lung irritant receptors reflexly shorten tE in all our experimental conditions, but have various effects on tI which may depend on the timing of the irritant receptor discharge and refractoriness of the inspiratory response.

  5. Mechanical stretch augments insulin-induced vascular smooth muscle cell proliferation by insulin-like growth factor-1 receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Gang; Department of Anesthesiology, First Affiliated Hospital of China Medical University, Shenyang; Hitomi, Hirofumi, E-mail: hitomi@kms.ac.jp

    Insulin resistance and hypertension have been implicated in the pathogenesis of cardiovascular disease; however, little is known about the roles of insulin and mechanical force in vascular smooth muscle cell (VSMC) remodeling. We investigated the contribution of mechanical stretch to insulin-induced VSMC proliferation. Thymidine incorporation was stimulated by insulin in stretched VSMCs, but not in un-stretched VSMCs. Insulin increased 2-deoxy-glucose incorporation in both stretched and un-stretched VSMCs. Mechanical stretch augmented insulin-induced extracellular signal-regulated kinase (ERK) and Akt phosphorylation. Inhibitors of epidermal growth factor (EGF) receptor tyrosine kinase and Src attenuated insulin-induced ERK and Akt phosphorylation, as well as thymidine incorporation,more » whereas 2-deoxy-glucose incorporation was not affected by these inhibitors. Moreover, stretch augmented insulin-like growth factor (IGF)-1 receptor expression, although it did not alter the expression of insulin receptor and insulin receptor substrate-1. Insulin-induced ERK and Akt activation, and thymidine incorporation were inhibited by siRNA for the IGF-1 receptor. Mechanical stretch augments insulin-induced VSMC proliferation via upregulation of IGF-1 receptor, and downstream Src/EGF receptor-mediated ERK and Akt activation. Similar to in vitro experiment, IGF-1 receptor expression was also augmented in hypertensive rats. These results provide a basis for clarifying the molecular mechanisms of vascular remodeling in hypertensive patients with hyperinsulinemia. -- Highlights: {yields} Mechanical stretch augments insulin-induced VSMC proliferation via IGF-1 receptor. {yields} Src/EGFR-mediated ERK and Akt phosphorylation are augmented in stretched VSMCs. {yields} Similar to in vitro experiment, IGF-1 receptor is increased in hypertensive rats. {yields} Results provide possible mechanisms of vascular remodeling in hypertension with DM.« less

  6. Stretching Fibroblasts Remodels Fibronectin and Alters Cancer Cell Migration

    NASA Astrophysics Data System (ADS)

    Ao, Mingfang; Brewer, Bryson M.; Yang, Lijie; Franco Coronel, Omar E.; Hayward, Simon W.; Webb, Donna J.; Li, Deyu

    2015-02-01

    Most investigations of cancer-stroma interactions have focused on biochemical signaling effects, with much less attention being paid to biophysical factors. In this study, we investigated the role of mechanical stimuli on human prostatic fibroblasts using a microfluidic platform that was adapted for our experiments and further developed for both repeatable performance among multiple assays and for compatibility with high-resolution confocal microscopy. Results show that mechanical stretching of normal tissue-associated fibroblasts (NAFs) alters the structure of secreted fibronectin. Specifically, unstretched NAFs deposit and assemble fibronectin in a random, mesh-like arrangement, while stretched NAFs produce matrix with a more organized, linearly aligned structure. Moreover, the stretched NAFs exhibited an enhanced capability for directing co-cultured cancer cell migration in a persistent manner. Furthermore, we show that stretching NAFs triggers complex biochemical signaling events through the observation of increased expression of platelet derived growth factor receptor α (PDGFRα). A comparison of these behaviors with those of cancer-associated fibroblasts (CAFs) indicates that the observed phenotypes of stretched NAFs are similar to those associated with CAFs, suggesting that mechanical stress is a critical factor in NAF activation and CAF genesis.

  7. Stretch-activated ion channel blockade attenuates adaptations to eccentric exercise.

    PubMed

    Butterfield, Timothy A; Best, Thomas M

    2009-02-01

    The purpose of this study was to test the hypothesis that stretch-activated ion channel (SAC) function is essential for the repeated bout effect (RBE) in skeletal muscle. Specifically, we investigated if daily injections of streptomycin (a known SAC blocker) would abrogate the muscle's adaptive resistance to the damaging effects of eccentric exercise over a 4-wk period. Furthermore, we hypothesized that the lack of an RBE would be due to the lack of functional adaptations that typically result from repeated bouts of eccentric exercise, including increased peak isometric torque, muscle hypertrophy, and rightward shift of the torque-angle relationship. Twelve New Zealand white rabbits were each subjected to 12 bouts of eccentric exercise over a 4-wk period while receiving either daily injections of streptomycin or sham injections. Although blocking the SAC function completely eliminated the expected adaptive response in biomechanical parameters during the exercise regimen, there remained evidence of an acquired RBE, albeit with an attenuated response when compared with the muscles with intact SAC function. Blocking sarcolemmal SAC eliminates functional adaptations of muscle after eccentric exercise. In the absence of SAC function, muscles subjected to chronic eccentric exercise still exhibit some degree of the RBE. As such, it appears that the signaling cascade that results in functional, biomechanical adaptations associated with the RBE during eccentric exercise is dependent upon intact SAC function.

  8. Urothelial/lamina propria spontaneous activity and the role of M3 muscarinic receptors in mediating rate responses to stretch and carbachol.

    PubMed

    Moro, Christian; Uchiyama, Jumpei; Chess-Williams, Russ

    2011-12-01

    To investigate the effects of tissue stretch and muscarinic receptor stimulation on the spontaneous activity of the urothelium/lamina propria and identify the specific receptor subtype mediating these responses. Isolated strips of porcine urothelium with lamina propria were set up for in vitro recording of contractile activity. Muscarinic receptor subtype-selective antagonists were used to identify the receptors influencing the contractile rate responses to stretch and stimulation with carbachol. Isolated strips of urothelium with lamina propria developed spontaneous contractions (3.7 cycles/min) that were unaffected by tetrodotoxin, Nω-nitro-L-arginine, or indomethacin. Carbachol (1 μM) increased the spontaneous contractile rate of these tissue strips by 122% ± 27% (P < .001). These responses were significantly depressed in the presence of the M3-selective muscarinic antagonist 4-diphenylacetoxy-N-methylpiperidine methiodide (10-30 nM) but were not affected by the M1-selective antagonist pirenzepine (30-100 nM) or the M2-selective antagonist methoctramine (0.1-1 μM). Stretching of the tissue also caused an increase in the spontaneous contractile rate, and these responses were abolished by atropine (1 μM) and low concentrations of 4-diphenylacetoxy-N-methylpiperidine methiodide (10 nM). Darifenacin, oxybutynin, tolterodine, and solifenacin (1 μM) all significantly depressed the frequency responses to carbachol (1 μM). The urothelium with the lamina propria exhibits a spontaneous contractile activity that is increased during stretch. The mechanism appears to involve endogenous acetylcholine release acting on M3 muscarinic receptors. Anticholinergic drugs used clinically depress the responses of these tissues, and this mechanism might represent an additional site of action for these drugs in the treatment of bladder overactivity. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Prolonged stretching of the ankle plantarflexors elicits muscle-tendon adaptations relevant to ankle gait kinetics in children with spastic cerebral palsy.

    PubMed

    Martín Lorenzo, Teresa; Rocon, Eduardo; Martínez Caballero, Ignacio; Ramírez Barragán, Ana; Lerma Lara, Sergio

    2017-11-01

    Tissue related ankle hyper-resistance has been reported to contribute to equinus gait in children with spastic cerebral palsy. Hence, ankle plantarflexor stretching programs have been developed in order to restore passive ankle dorsiflexion. Despite high quality evidence on the limited effects of stretching on passive joint mobility, further muscle-tendon adaptations have been reported which may impact gait performance. As such, children with spastic cerebral palsy subject to long-term manual static stretching achieved dorsiflexion gains through the reduction of muscle and fascicle strain whilst preserving tendon strain, and prolonged use of ankle-foot orthoses achieved similar dorsiflexion gains through increased tendon strain whilst preserving muscle and fascicle strain. The latter concurred with normalization of early stance plantarflexor moment yet reductions in push-off plantarflexor moment given the increase in tendon compliance. Therefore, similar limited gains in passive ankle joint mobility in response to stretching may be achieved either by preserving/restoring optimal muscle-tendon function, or at the expense of muscle-tendon function and thus contributing gait impairments. The largest increase in ankle passive joint mobility in children with SCP has been obtained through prolonged plantarflexor stretching through ankle casting combined with botulinum neurotoxin type A. However, to our knowledge, there are no published studies on muscle-tendinous adaptations to ankle casting combined with botulinum toxin type A and its effect on ankle joint gait kinetics. Therefore, we hypothesized that ankle casting elicits muscle-tendon adaptations which concur with altered ankle joint kinetics during the stance phase of gait in children with SCP. More information is needed about the relationships between muscle structure and function, and the effect of specific interventions designed to alter muscle properties and associated functional outcomes in children with

  10. Angiotensin II Causes Neuronal Damage in Stretch-Injured Neurons: Protective Effects of Losartan, an Angiotensin T1 Receptor Blocker.

    PubMed

    Abdul-Muneer, P M; Bhowmick, Saurav; Briski, Nicholas

    2017-11-08

    Angiotensin II (Ang II) is a mediator of oxidative stress via activation/induction of reactive oxygen and nitrogen species-generating enzymes, NADPH oxidase (NOX) and inducible nitric oxide synthase (iNOS). We investigated the hypothesis that overproduction of Ang II during traumatic brain injury (TBI) induces the activation of the oxidative stress, which triggers neuroinflammation and cell apoptosis in a cell culture model of neuronal stretch injury. We first established that stretch injury causes a rapid increase in the level of Ang II, which causes the release of pro-inflammatory cytokines, IL-1β and TNF-α, via the induction of oxidative stress. Since angiotensin-converting enzyme (ACE) mediates the production of Ang II via the conversion of Ang I into Ang II, we analyzed the expression of ACE by western blotting. Further, we analyzed caspase-3-mediated apoptosis by TUNEL staining and annexin V western blotting. Angiotensin type I (AT 1 ) receptor antagonist losartan attenuated Ang II-induced oxidative stress and associated neuroinflammation and cell death in cultured neurons. Remarkably, we noticed that the expression of Ang II type 1 receptor (AngT 1 R) upregulated in neuronal stretch injury; losartan mitigates this upregulation. Findings from this study significantly extend our understanding of the pathophysiology of TBI and may have significant implications for developing therapeutic strategies for TBI-associated brain dysfunctions.

  11. Stretch-dependent slow force response in isolated rabbit myocardium is Na+ dependent.

    PubMed

    von Lewinski, Dirk; Stumme, Burkhard; Maier, Lars S; Luers, Claus; Bers, Donald M; Pieske, Burkert

    2003-03-15

    Stretch induces functional and trophic effects in mammalian myocardium via various signal transduction pathways. We tested stretch signal transduction on immediate and slow force response (SFR) in rabbit myocardium. Experiments were performed in isolated right ventricular muscles from adult rabbit hearts (37 degrees C, 1 Hz stimulation rate, bicarbonate-buffer). Muscles were rapidly stretched from 88% of optimal length (L88) to near optimal length (L98) for functional analysis. The resulting immediate and slow increases in twitch force (first phase and SFR, respectively) were assessed at reduced [Na+]o or without and with blockade of stretch activated ion channels (SACs), angiotensin-II (AT1) receptors, endothelin-A (ET(A)) receptors, Na+/H+-exchange (NHE1), reverse mode Na+/Ca2+-exchange (NCX), or Na+/K+-ATPase. The effects of stretch on sarcoplasmic reticulum Ca2+-load were characterized using rapid cooling contractures (RCCs). Intracellular pH was measured in BCECF-AM loaded muscles, and action potential duration (APD) was assessed using floating electrodes. On average, force increased to 216+/-8% of the pre-stretch value during the immediate phase, followed by a further increase to 273+/-10% during the SFR (n=81). RCCs significantly increased during SFR, whereas pH and APD did not change. Neither inhibition of SACs, AT1, or ET(A) receptors affected the stretch-dependent immediate phase nor SFR. In contrast, SFR was reduced by NHE inhibition and almost completely abolished by reduced [Na+]o or inhibition of reverse-mode NCX, whereas increased SFR was seen after raising [Na+]i by Na+/K+-ATPase inhibition. The data demonstrate the existence of a delayed, Na+- and Ca2+-dependent but pH and APD independent SFR to stretch in rabbit myocardium. This inotropic response appears to be independent of autocrine/paracrine AT1 or ET(A) receptor activation, but mediated through stretch-induced activation of NHE and reverse mode NCX.

  12. Stretch-activation of angiotensin II type 1a receptors contributes to the myogenic response of mouse mesenteric and renal arteries.

    PubMed

    Schleifenbaum, Johanna; Kassmann, Mario; Szijártó, István András; Hercule, Hantz C; Tano, Jean-Yves; Weinert, Stefanie; Heidenreich, Matthias; Pathan, Asif R; Anistan, Yoland-Marie; Alenina, Natalia; Rusch, Nancy J; Bader, Michael; Jentsch, Thomas J; Gollasch, Maik

    2014-07-07

    Vascular wall stretch is the major stimulus for the myogenic response of small arteries to pressure. The molecular mechanisms are elusive, but recent findings suggest that G protein-coupled receptors can elicit a stretch response. To determine whether angiotensin II type 1 receptors (AT1R) in vascular smooth muscle cells exert mechanosensitivity and identify the downstream ion channel mediators of myogenic vasoconstriction. We used mice deficient in AT1R signaling molecules and putative ion channel targets, namely AT1R, angiotensinogen, transient receptor potential channel 6 (TRPC6) channels, or several subtypes of the voltage-gated K+ (Kv7) gene family (KCNQ3, 4, or 5). We identified a mechanosensing mechanism in isolated mesenteric arteries and in the renal circulation that relies on coupling of the AT1R subtype a to a Gq/11 protein as a critical event to accomplish the myogenic response. Arterial mechanoactivation occurs after pharmacological block of AT1R and in the absence of angiotensinogen or TRPC6 channels. Activation of AT1R subtype a by osmotically induced membrane stretch suppresses an XE991-sensitive Kv channel current in patch-clamped vascular smooth muscle cells, and similar concentrations of XE991 enhance mesenteric and renal myogenic tone. Although XE991-sensitive KCNQ3, 4, and 5 channels are expressed in vascular smooth muscle cells, XE991-sensitive K+ current and myogenic contractions persist in arteries deficient in these channels. Our results provide definitive evidence that myogenic responses of mouse mesenteric and renal arteries rely on ligand-independent, mechanoactivation of AT1R subtype a. The AT1R subtype a signal relies on an ion channel distinct from TRPC6 or KCNQ3, 4, or 5 to enact vascular smooth muscle cell activation and elevated vascular resistance. © 2014 American Heart Association, Inc.

  13. Piezo Is Essential for Amiloride-Sensitive Stretch-Activated Mechanotransduction in Larval Drosophila Dorsal Bipolar Dendritic Sensory Neurons

    PubMed Central

    Suslak, Thomas J.; Watson, Sonia; Thompson, Karen J.; Shenton, Fiona C.; Bewick, Guy S.; Armstrong, J. Douglas; Jarman, Andrew P.

    2015-01-01

    Stretch-activated afferent neurons, such as those of mammalian muscle spindles, are essential for proprioception and motor co-ordination, but the underlying mechanisms of mechanotransduction are poorly understood. The dorsal bipolar dendritic (dbd) sensory neurons are putative stretch receptors in the Drosophila larval body wall. We have developed an in vivo protocol to obtain receptor potential recordings from intact dbd neurons in response to stretch. Receptor potential changes in dbd neurons in response to stretch showed a complex, dynamic profile with similar characteristics to those previously observed for mammalian muscle spindles. These profiles were reproduced by a general in silico model of stretch-activated neurons. This in silico model predicts an essential role for a mechanosensory cation channel (MSC) in all aspects of receptor potential generation. Using pharmacological and genetic techniques, we identified the mechanosensory channel, DmPiezo, in this functional role in dbd neurons, with TRPA1 playing a subsidiary role. We also show that rat muscle spindles exhibit a ruthenium red-sensitive current, but found no expression evidence to suggest that this corresponds to Piezo activity. In summary, we show that the dbd neuron is a stretch receptor and demonstrate that this neuron is a tractable model for investigating mechanisms of mechanotransduction. PMID:26186008

  14. Piezo Is Essential for Amiloride-Sensitive Stretch-Activated Mechanotransduction in Larval Drosophila Dorsal Bipolar Dendritic Sensory Neurons.

    PubMed

    Suslak, Thomas J; Watson, Sonia; Thompson, Karen J; Shenton, Fiona C; Bewick, Guy S; Armstrong, J Douglas; Jarman, Andrew P

    2015-01-01

    Stretch-activated afferent neurons, such as those of mammalian muscle spindles, are essential for proprioception and motor co-ordination, but the underlying mechanisms of mechanotransduction are poorly understood. The dorsal bipolar dendritic (dbd) sensory neurons are putative stretch receptors in the Drosophila larval body wall. We have developed an in vivo protocol to obtain receptor potential recordings from intact dbd neurons in response to stretch. Receptor potential changes in dbd neurons in response to stretch showed a complex, dynamic profile with similar characteristics to those previously observed for mammalian muscle spindles. These profiles were reproduced by a general in silico model of stretch-activated neurons. This in silico model predicts an essential role for a mechanosensory cation channel (MSC) in all aspects of receptor potential generation. Using pharmacological and genetic techniques, we identified the mechanosensory channel, DmPiezo, in this functional role in dbd neurons, with TRPA1 playing a subsidiary role. We also show that rat muscle spindles exhibit a ruthenium red-sensitive current, but found no expression evidence to suggest that this corresponds to Piezo activity. In summary, we show that the dbd neuron is a stretch receptor and demonstrate that this neuron is a tractable model for investigating mechanisms of mechanotransduction.

  15. Investigation on improved infrared image detail enhancement algorithm based on adaptive histogram statistical stretching and gradient filtering

    NASA Astrophysics Data System (ADS)

    Zeng, Bangze; Zhu, Youpan; Li, Zemin; Hu, Dechao; Luo, Lin; Zhao, Deli; Huang, Juan

    2014-11-01

    Duo to infrared image with low contrast, big noise and unclear visual effect, target is very difficult to observed and identified. This paper presents an improved infrared image detail enhancement algorithm based on adaptive histogram statistical stretching and gradient filtering (AHSS-GF). Based on the fact that the human eyes are very sensitive to the edges and lines, the author proposed to extract the details and textures by using the gradient filtering. New histogram could be acquired by calculating the sum of original histogram based on fixed window. With the minimum value for cut-off point, author carried on histogram statistical stretching. After the proper weights given to the details and background, the detail-enhanced results could be acquired finally. The results indicate image contrast could be improved and the details and textures could be enhanced effectively as well.

  16. Acute effects of constant torque and constant angle stretching on the muscle and tendon tissue properties.

    PubMed

    Konrad, Andreas; Budini, Francesco; Tilp, Markus

    2017-08-01

    Static stretching induces acute structural changes of the muscle-tendon unit (MTU) that are related to the intensity or duration of stretching. It has been reported that stretching with a constant torque (CT) leads to greater joint range of motion changes than stretching with a constant angle (CA). Whether or not this difference is due to different structural changes of the MTUs of the lower leg and ankle plantar flexors is not known. Therefore, the purpose of this study was to compare the acute effects of single CA and CT stretching on various muscle and tendon mechanical properties. Seventeen young, healthy volunteers were tested on two separate days using either CT or CA stretching (4 × 30 s each). Before and after stretching, dorsiflexion range of motion (RoM), passive resistive torque (PRT), and maximum voluntary contraction (MVC) were measured with a dynamometer. Ultrasonography of the medial gastrocnemius (GM) muscle-tendon junction (MTJ) displacement allowed us to determine the length changes in the tendon and muscle, respectively, and hence to calculate their stiffness. Maximum dorsiflexion increased while PRT, muscle-tendon stiffness, and muscle stiffness decreased following both CA and CT stretching. There was a greater increase in RoM following CT stretching compared to CA stretching. Moreover, the decline in PRT was greater during CT stretching compared to CA stretching. As expected, several functional adaptations (RoM, PRT) were different between CT and CA stretching due to the higher intensity of CT stretching. However, no structural differences in the adaptations to the stretching modalities could be detected. We suggest that the different functional adaptations between CA and CT stretching are the consequence of different adaptations in the perception of stretch and pain.

  17. Modular Activating Receptors in Innate and Adaptive Immunity.

    PubMed

    Berry, Richard; Call, Matthew E

    2017-03-14

    Triggering of cell-mediated immunity is largely dependent on the recognition of foreign or abnormal molecules by a myriad of cell surface-bound receptors. Many activating immune receptors do not possess any intrinsic signaling capacity but instead form noncovalent complexes with one or more dimeric signaling modules that communicate with a common set of kinases to initiate intracellular information-transfer pathways. This modular architecture, where the ligand binding and signaling functions are detached from one another, is a common theme that is widely employed throughout the innate and adaptive arms of immune systems. The evolutionary advantages of this highly adaptable platform for molecular recognition are visible in the variety of ligand-receptor interactions that can be linked to common signaling pathways, the diversification of receptor modules in response to pathogen challenges, and the amplification of cellular responses through incorporation of multiple signaling motifs. Here we provide an overview of the major classes of modular activating immune receptors and outline the current state of knowledge regarding how these receptors assemble, recognize their ligands, and ultimately trigger intracellular signal transduction pathways that activate immune cell effector functions.

  18. Tracking global changes induced in the CD4 T-cell receptor repertoire by immunization with a complex antigen using short stretches of CDR3 protein sequence.

    PubMed

    Thomas, Niclas; Best, Katharine; Cinelli, Mattia; Reich-Zeliger, Shlomit; Gal, Hilah; Shifrut, Eric; Madi, Asaf; Friedman, Nir; Shawe-Taylor, John; Chain, Benny

    2014-11-15

    The clonal theory of adaptive immunity proposes that immunological responses are encoded by increases in the frequency of lymphocytes carrying antigen-specific receptors. In this study, we measure the frequency of different T-cell receptors (TcR) in CD4 + T cell populations of mice immunized with a complex antigen, killed Mycobacterium tuberculosis, using high throughput parallel sequencing of the TcRβ chain. Our initial hypothesis that immunization would induce repertoire convergence proved to be incorrect, and therefore an alternative approach was developed that allows accurate stratification of TcR repertoires and provides novel insights into the nature of CD4 + T-cell receptor recognition. To track the changes induced by immunization within this heterogeneous repertoire, the sequence data were classified by counting the frequency of different clusters of short (3 or 4) continuous stretches of amino acids within the antigen binding complementarity determining region 3 (CDR3) repertoire of different mice. Both unsupervised (hierarchical clustering) and supervised (support vector machine) analyses of these different distributions of sequence clusters differentiated between immunized and unimmunized mice with 100% efficiency. The CD4 + TcR repertoires of mice 5 and 14 days postimmunization were clearly different from that of unimmunized mice but were not distinguishable from each other. However, the repertoires of mice 60 days postimmunization were distinct both from naive mice and the day 5/14 animals. Our results reinforce the remarkable diversity of the TcR repertoire, resulting in many diverse private TcRs contributing to the T-cell response even in genetically identical mice responding to the same antigen. However, specific motifs defined by short stretches of amino acids within the CDR3 region may determine TcR specificity and define a new approach to TcR sequence classification. The analysis was implemented in R and Python, and source code can be found in

  19. Ly49 Receptors: Innate and Adaptive Immune Paradigms

    PubMed Central

    Rahim, Mir Munir A.; Tu, Megan M.; Mahmoud, Ahmad Bakur; Wight, Andrew; Abou-Samra, Elias; Lima, Patricia D. A.; Makrigiannis, Andrew P.

    2014-01-01

    The Ly49 receptors are type II C-type lectin-like membrane glycoproteins encoded by a family of highly polymorphic and polygenic genes within the mouse natural killer (NK) gene complex. This gene family is designated Klra, and includes genes that encode both inhibitory and activating Ly49 receptors in mice. Ly49 receptors recognize class I major histocompatibility complex-I (MHC-I) and MHC-I-like proteins on normal as well as altered cells. Their functional homologs in humans are the killer cell immunoglobulin-like receptors, which recognize HLA class I molecules as ligands. Classically, Ly49 receptors are described as being expressed on both the developing and mature NK cells. The inhibitory Ly49 receptors are involved in NK cell education, a process in which NK cells acquire function and tolerance toward cells that express “self-MHC-I.” On the other hand, the activating Ly49 receptors recognize altered cells expressing activating ligands. New evidence shows a broader Ly49 expression pattern on both innate and adaptive immune cells. Ly49 receptors have been described on multiple NK cell subsets, such as uterine NK and memory NK cells, as well as NKT cells, dendritic cells, plasmacytoid dendritic cells, macrophages, neutrophils, and cells of the adaptive immune system, such as activated T cells and regulatory CD8+ T cells. In this review, we discuss the expression pattern and proposed functions of Ly49 receptors on various immune cells and their contribution to immunity. PMID:24765094

  20. Receptoral and postreceptoral visual processes in recovery from chromatic adaptation.

    PubMed Central

    Jameson, D; Hurvich, L M; Varner, F D

    1979-01-01

    The time course of recovery from chromatic adaptation in human vision was tracked by determining the wavelength of light that appears uniquely yellow (neither red nor green) both before and after exposure to yellowish green and yellowish red adapting lights. Recovery is complete within 5 min after steady light exposure. After exposure to the alternating repeated sequence 10-sec light/10-sec dark, the initial magnitude of the aftereffect is reduced but recovery is retarded. The results are interpreted in terms of two processes located at different levels in the hierarchical organization of the visual system. One is a change in the balance of cone receptor sensitivities; the second is a shift in the equilibrium baseline between opposite-signed responses of the red/green channel at the opponent-process neural level. The baseline-shift mechanism is effective in the condition in which repeated input signals originating at the receptors are of sufficient strength to activate the system effectively. Hence, this process is revealed in the alternating adaptation condition when the receptors undergo partial recovery after each light exposure, but receptor adaptation during continued steady light exposure effectively protects the subsequent neural systems from continued strong activation. PMID:288087

  1. In Vitro Stretch Injury Induces Time- and Severity-Dependent Alterations of STEP Phosphorylation and Proteolysis in Neurons

    PubMed Central

    Mesfin, Mahlet N.; von Reyn, Catherine R.; Mott, Rosalind E.; Putt, Mary E.

    2012-01-01

    Abstract Striatal-enriched tyrosine phosphatase (STEP) has been identified as a component of physiological and pathophysiological signaling pathways mediated by N-methyl-d-aspartate (NMDA) receptor/calcineurin/calpain activation. Activation of these pathways produces a subsequent change in STEP isoform expression or activation via dephosphorylation. In this study, we evaluated changes in STEP phosphorylation and proteolysis in dissociated cortical neurons after sublethal and lethal mechanical injury using an in vitro stretch injury device. Sublethal stretch injury produces minimal changes in STEP phosphorylation at early time points, and increased STEP phosphorylation at 24 h that is blocked by the NMDA-receptor antagonist APV, the calcineurin-inhibitor FK506, and the sodium channel blocker tetrodotoxin. Lethal stretch injury produces rapid STEP dephosphorylation via NR2B-containing NMDA receptors, but not calcineurin, and a subsequent biphasic phosphorylation pattern. STEP61 expression progressively increases after sublethal stretch with no change in calpain-mediated STEP33 formation, while lethal stretch injury results in STEP33 formation via a NR2B-containing NMDA receptor pathway within 1 h of injury. Blocking calpain activation in the initial 30 min after stretch injury increases the ratio of active STEP in cells and blocks STEP33 formation, suggesting that STEP is an early substrate of calpain after mechanical injury. There is a strong correlation between the amount of STEP33 formed and the degree of cell death observed after lethal stretch injury. In summary, these data demonstrate that previously characterized pathways of STEP regulation via the NMDA receptor are generally conserved in mechanical injury, and suggest that calpain-mediated cleavage of STEP33 should be further examined as an early marker of neuronal fate after stretch injury. PMID:22435660

  2. Effects of Cyclic Mechanical Stretch on the Proliferation of L6 Myoblasts and Its Mechanisms: PI3K/Akt and MAPK Signal Pathways Regulated by IGF-1 Receptor.

    PubMed

    Fu, Shaoting; Yin, Lijun; Lin, Xiaojing; Lu, Jianqiang; Wang, Xiaohui

    2018-06-02

    Myoblast proliferation is crucial to skeletal muscle hypertrophy and regeneration. Our previous study indicated that mechanical stretch altered the proliferation of C2C12 myoblasts, associated with insulin growth factor 1 (IGF-1)-mediated phosphoinositide 3-kinase (PI3K)/Akt (also known as protein kinase B) and mitogen-activated protein kinase (MAPK) pathways through IGF-1 receptor (IGF-1R). The purpose of this study was to explore the same stretches on the proliferation of L6 myoblasts and its association with IGF-1-regulated PI3K/Akt and MAPK activations. L6 myoblasts were divided into three groups: control, 15% stretch, and 20% stretch. Stretches were achieved using FlexCell Strain Unit. Cell proliferation and IGF-1 concentration were detected by CCK8 and ELISA, respectively. IGF-1R expression, and expressions and activities of PI3K, Akt, and MAPKs (including extracellular signal-regulated kinases 1 and 2 (ERK1/2) and p38) were determined by Western blot. We found that 15% stretch promoted, while 20% stretch inhibited L6 myoblast proliferation. A 15% stretch increased IGF-1R level, although had no effect on IGF-1 secretion of L6 myoblasts, and PI3K/Akt and ERK1/2 (not p38) inhibitors attenuated 15% stretch-induced pro-proliferation. Exogenous IGF-1 reversed 20% stretch-induced anti-proliferation, accompanied with increases in IGF-1R level as well as PI3K/Akt and MAPK (ERK1/2 and p38) activations. In conclusion, stretch regulated L6 myoblasts proliferation, which may be mediated by the changes in PI3K/Akt and MAPK activations regulated by IGF-1R, despite no detectable IGF-1 from stretched L6 myoblasts.

  3. Stretch induced endothelin-1 secretion by adult rat astrocytes involves calcium influx via stretch-activated ion channels (SACs)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ostrow, Lyle W., E-mail: lostrow1@jhmi.edu; Suchyna, Thomas M.; Sachs, Frederick

    2011-06-24

    Highlights: {yields} Endothelin-1 expression by adult rat astrocytes correlates with cell proliferation. {yields} Stretch-induced ET-1 is inhibited by GsMtx-4, a specific inhibitor of Ca{sup 2+} permeant SACs. {yields} The less specific SAC inhibitor streptomycin also inhibits ET-1 secretion. {yields} Stretch-induced ET-1 production depends on a calcium influx. {yields} SAC pharmacology may provide a new class of therapeutic agents for CNS pathology. -- Abstract: The expression of endothelins (ETs) and ET-receptors is often upregulated in brain pathology. ET-1, a potent vasoconstrictor, also inhibits the expression of astrocyte glutamate transporters and is mitogenic for astrocytes, glioma cells, neurons, and brain capillary endothelia.more » We have previously shown that mechanical stress stimulates ET-1 production by adult rat astrocytes. We now show in adult astrocytes that ET-1 production is driven by calcium influx through stretch-activated ion channels (SACs) and the ET-1 production correlates with cell proliferation. Mechanical stimulation using biaxial stretch (<20%) of a rubber substrate increased ET-1 secretion, and 4 {mu}M GsMTx-4 (a specific inhibitor of SACs) inhibited secretion by 30%. GsMTx-4 did not alter basal ET-1 levels in the absence of stretch. Decreasing the calcium influx by lowering extracellular calcium also inhibited stretch-induced ET-1 secretion without effecting ET-1 secretion in unstretched controls. Furthermore, inhibiting SACs with the less specific inhibitor streptomycin also inhibited stretch-induced ET-1 secretion. The data can be explained with a simple model in which ET-1 secretion depends on an internal Ca{sup 2+} threshold. This coupling of mechanical stress to the astrocyte endothelin system through SACs has treatment implications, since all pathology deforms the surrounding parenchyma.« less

  4. Spontaneous bending of pre-stretched bilayers.

    PubMed

    DeSimone, Antonio

    2018-01-01

    We discuss spontaneously bent configurations of pre-stretched bilayer sheets that can be obtained by tuning the pre-stretches in the two layers. The two-dimensional nonlinear plate model we use for this purpose is an adaptation of the one recently obtained for thin sheets of nematic elastomers, by means of a rigorous dimensional reduction argument based on the theory of Gamma-convergence (Agostiniani and DeSimone in Meccanica. doi:10.1007/s11012-017-0630-4, 2017, Math Mech Solids. doi:10.1177/1081286517699991, arXiv:1509.07003, 2017). We argue that pre-stretched bilayer sheets provide us with an interesting model system to study shape programming and morphing of surfaces in other, more complex systems, where spontaneous deformations are induced by swelling due to the absorption of a liquid, phase transformations, thermal or electro-magnetic stimuli. These include bio-mimetic structures inspired by biological systems from both the plant and the animal kingdoms.

  5. Adaptation Mechanism of the Aspartate Receptor: Electrostatics of the Adaptation Subdomain Play a Key Role in Modulating Kinase Activity†

    PubMed Central

    Starrett, Diane J.; Falke, Joseph J.

    2010-01-01

    The aspartate receptor of the Escherichia coli and Salmonella typhimurium chemotaxis pathway generates a transmembrane signal that regulates the activity of the cytoplasmic kinase CheA. Previous studies have identified a region of the cytoplasmic domain that is critical to receptor adaptation and kinase regulation. This region, termed the adaptation subdomain, contains a high density of acidic residues, including specific glutamate residues that serve as receptor adaptation sites. However, the mechanism of signal propagation through this region remains poorly understood. This study uses site-directed mutagenesis to neutralize each acidic residue within the subdomain to probe the hypothesis that electrostatics in this region play a significant role in the mechanism of kinase activation and modulation. Each point mutant was tested for its ability to regulate chemotaxis in vivo and kinase activity in vitro. Four point mutants (D273N, E281Q, D288N, and E477Q) were found to superactivate the kinase relative to the wild-type receptor, and all four of these kinase-activating substitutions are located along the same intersubunit interface as the adaptation sites. These activating substitutions retained the wild-type ability of the attractant-occupied receptor to inhibit kinase activity. When combined in a quadruple mutant (D273N/E281Q/D288N/E477Q), the four charge-neutralizing substitutions locked the receptor in a kinase-superactivating state that could not be fully inactivated by the attractant. Similar lock-on character was observed for a charge reversal substitution, D273R. Together, these results implicate the electrostatic interactions at the intersubunit interface as a major player in signal transduction and kinase regulation. The negative charge in this region destabilizes the local structure in a way that enhances conformational dynamics, as detected by disulfide trapping, and this effect is reversed by charge neutralization of the adaptation sites. Finally, two

  6. Mechanism of HSV infection through soluble adapter-mediated virus bridging to the EGF receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakano, Kenji, E-mail: kenakano@med.kyushu-u.ac.j; Kobayashi, Masatoshi; Nakamura, Kei-ichiro

    2011-04-25

    Herpes simplex virus entry into cells requires the binding of envelope glycoprotein D (gD) to an entry receptor. Depending on the cell, entry occurs by different mechanisms, including fusion at the cell surface or endocytosis. Here we examined the entry mechanism through a non-HSV receptor mediated by a soluble bi-specific adapter protein composed of recognition elements for gD and the EGF receptor (EGFR). Virus entered into endosomes using either EGF or an EGFR-specific single chain antibody (scFv) for receptor recognition. Infection was less efficient with the EGF adapter which could be attributed to its weaker binding to a viral gD.more » Infection mediated by the scFv adapter was pH sensitive, indicating that gD-EGFR bridging alone was insufficient for capsid release from endosomes. We also show that the scFv adapter enhanced infection of EGFR-expressing tumor tissue in vivo. Our results indicate that adapters may retarget HSV infection without drastically changing the entry mechanism.« less

  7. Interset stretching does not influence the kinematic profile of consecutive bench-press sets.

    PubMed

    García-López, David; Izquierdo, Mikel; Rodríguez, Sergio; González-Calvo, Gustavo; Sainz, Nuria; Abadía, Olaia; Herrero, Azael J

    2010-05-01

    This study was undertaken to examine the role of interset stretching on the time course of acceleration portion AP and mean velocity profile during the concentric phase of 2 bench-press sets with a submaximal load (60% of the 1 repetition maximum). Twenty-five college students carried out, in 3 different days, 2 consecutive bench-press sets leading to failure, performing between sets static stretching, ballistic stretching, or no stretching. Acceleration portion and lifting velocity patterns of the concentric phase were not altered during the second set, regardless of the stretching treatment performed. However, when velocity was expressed in absolute terms, static stretching reduced significantly (p <0.05) the average lifting velocity during the second set compared to the first one. Therefore, if maintenance of a high absolute velocity over consecutive sets is important for training-related adaptations, static stretching should be avoided or replaced by ballistic stretching.

  8. STRETCH-DEPENDENT SENSITIZATION OF POST-JUNCTIONAL NEURAL EFFECTORS IN COLONIC MUSCLES

    PubMed Central

    Won, Kyung-Jong; Sanders, Kenton M.; Ward, Sean M.

    2012-01-01

    Background The colon undergoes distension-induced changes in motor activity as luminal contents or feces increases wall pressure. Input from enteric motor neurons regulates motility. Here we examined stretch-dependent responses in circular muscle strips of murine colon. Methods Length-ramps (6–31μm s−1) were applied in the axis of the circular muscle layer in a controlled manner until 5 mN isometric force was reached. Key Results Length-ramps produced transient membrane potential hyperpolarizations and attenuation of action potential (AP) complexes. Responses were reproducible when ramps were applied every 30s. Stretch-dependent hyperpolarization was blocked by TTX, suggesting AP-dependent release of inhibitory neurotransmitter(s). Atropine did not potentiate stretch-induced hyperpolarizations, but increased compliance of the circular layer. L-NNA inhibited stretch-dependent hyperpolarization and decreased muscle compliance, suggesting release of NO mediates stretch-dependent inhibition. Control membrane potential was restored by the NO donor SNP. Stretch-dependent hyperpolarizations were blocked by L-methionine, an inhibitor of stretch-dependent K+ (SDK) channels in colonic muscles. Loss of ICC, elicited by Kit neutralizing antibody, also inhibited responses to stretch. In presence of L-NNA and apamin, stretch responses became excitatory and were characterized by membrane depolarization and increased AP firing. A neurokinin-1 receptor antagonist inhibited this stretch-dependent increase in excitability. Conclusions & Inferences Our data show that stretch-dependent responses in colonic muscles require tonic firing of enteric inhibitory neurons, but reflex activation of neurons does not appear to be necessary. NO causes activation of SDK channels, and stretch of muscles further activates these channels, explaining the inhibitory response to stretch in colonic muscle strips. PMID:23279087

  9. Experimental Study of the Effects of EIPA, Losartan, and BQ-123 on Electrophysiological Changes Induced by Myocardial Stretch.

    PubMed

    Chorro, Francisco J; Canto, Irene Del; Brines, Laia; Such-Miquel, Luis; Calvo, Conrado; Soler, Carlos; Zarzoso, Manuel; Trapero, Isabel; Tormos, Álvaro; Such, Luis

    2015-12-01

    Mechanical response to myocardial stretch has been explained by various mechanisms, which include Na(+)/H(+) exchanger activation by autocrine-paracrine system activity. Drug-induced changes were analyzed to investigate the role of these mechanisms in the electrophysiological responses to acute myocardial stretch. Multiple epicardial electrodes and mapping techniques were used to analyze changes in ventricular fibrillation induced by acute myocardial stretch in isolated perfused rabbit hearts. Four series were studied: control (n = 9); during perfusion with the angiotensin receptor blocker losartan (1 μM, n = 8); during perfusion with the endothelin A receptor blocker BQ-123 (0.1 μM, n = 9), and during perfusion with the Na(+)/H(+) exchanger inhibitor EIPA (5-[N-ethyl-N-isopropyl]-amiloride) (1 μM, n = 9). EIPA attenuated the increase in the dominant frequency of stretch-induced fibrillation (control=40.4%; losartan=36% [not significant]; BQ-123=46% [not significant]; and EIPA=22% [P<.001]). During stretch, the activation maps were less complex (P<.0001) and the spectral concentration of the arrhythmia was greater (greater regularity) in the EIPA series: control=18 (3%); EIPA = 26 (9%) (P < .02); losartan=18 (5%) (not significant); and BQ-123=18 (4%) (not significant). The Na(+)/H(+) exchanger inhibitor EIPA attenuated the electrophysiological effects responsible for the acceleration and increased complexity of ventricular fibrillation induced by acute myocardial stretch. The angiotensin II receptor antagonist losartan and the endothelin A receptor blocker BQ-123 did not modify these effects. Copyright © 2014 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  10. Mechanisms of Host Receptor Adaptation by Severe Acute Respiratory Syndrome Coronavirus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Kailang; Peng, Guiqing; Wilken, Matthew

    The severe acute respiratory syndrome coronavirus (SARS-CoV) from palm civets has twice evolved the capacity to infect humans by gaining binding affinity for human receptor angiotensin-converting enzyme 2 (ACE2). Numerous mutations have been identified in the receptor-binding domain (RBD) of different SARS-CoV strains isolated from humans or civets. Why these mutations were naturally selected or how SARS-CoV evolved to adapt to different host receptors has been poorly understood, presenting evolutionary and epidemic conundrums. In this study, we investigated the impact of these mutations on receptor recognition, an important determinant of SARS-CoV infection and pathogenesis. Using a combination of biochemical, functional,more » and crystallographic approaches, we elucidated the molecular and structural mechanisms of each of these naturally selected RBD mutations. These mutations either strengthen favorable interactions or reduce unfavorable interactions with two virus-binding hot spots on ACE2, and by doing so, they enhance viral interactions with either human (hACE2) or civet (cACE2) ACE2. Therefore, these mutations were viral adaptations to either hACE2 or cACE2. To corroborate the above analysis, we designed and characterized two optimized RBDs. The human-optimized RBD contains all of the hACE2-adapted residues (Phe-442, Phe-472, Asn-479, Asp-480, and Thr-487) and possesses exceptionally high affinity for hACE2 but relative low affinity for cACE2. The civet-optimized RBD contains all of the cACE2-adapted residues (Tyr-442, Pro-472, Arg-479, Gly-480, and Thr-487) and possesses exceptionally high affinity for cACE2 and also substantial affinity for hACE2. These results not only illustrate the detailed mechanisms of host receptor adaptation by SARS-CoV but also provide a molecular and structural basis for tracking future SARS-CoV evolution in animals.« less

  11. Mechanisms of Host Receptor Adaptation by Severe Acute Respiratory Syndrome Coronavirus*

    PubMed Central

    Wu, Kailang; Peng, Guiqing; Wilken, Matthew; Geraghty, Robert J.; Li, Fang

    2012-01-01

    The severe acute respiratory syndrome coronavirus (SARS-CoV) from palm civets has twice evolved the capacity to infect humans by gaining binding affinity for human receptor angiotensin-converting enzyme 2 (ACE2). Numerous mutations have been identified in the receptor-binding domain (RBD) of different SARS-CoV strains isolated from humans or civets. Why these mutations were naturally selected or how SARS-CoV evolved to adapt to different host receptors has been poorly understood, presenting evolutionary and epidemic conundrums. In this study, we investigated the impact of these mutations on receptor recognition, an important determinant of SARS-CoV infection and pathogenesis. Using a combination of biochemical, functional, and crystallographic approaches, we elucidated the molecular and structural mechanisms of each of these naturally selected RBD mutations. These mutations either strengthen favorable interactions or reduce unfavorable interactions with two virus-binding hot spots on ACE2, and by doing so, they enhance viral interactions with either human (hACE2) or civet (cACE2) ACE2. Therefore, these mutations were viral adaptations to either hACE2 or cACE2. To corroborate the above analysis, we designed and characterized two optimized RBDs. The human-optimized RBD contains all of the hACE2-adapted residues (Phe-442, Phe-472, Asn-479, Asp-480, and Thr-487) and possesses exceptionally high affinity for hACE2 but relative low affinity for cACE2. The civet-optimized RBD contains all of the cACE2-adapted residues (Tyr-442, Pro-472, Arg-479, Gly-480, and Thr-487) and possesses exceptionally high affinity for cACE2 and also substantial affinity for hACE2. These results not only illustrate the detailed mechanisms of host receptor adaptation by SARS-CoV but also provide a molecular and structural basis for tracking future SARS-CoV evolution in animals. PMID:22291007

  12. Stretch marks

    MedlinePlus

    Stretch marks can appear when there is rapid stretching of the skin. The marks appear as parallel ... often disappear after the cause of the skin stretching is gone. Avoiding rapid weight gain helps reduce ...

  13. Intrapulmonary receptors in the Tegu lizard: I. Sensitivity to CO2.

    PubMed

    Feede, M R; Kuhlmann, W D; Scheid, P

    1977-02-01

    Single unit vagal recordings from intrapulmonary receptors were obtained in decerebrate, paralyzed lizards both during pump ventilation and during unidirectional ventilation on the cannulated, sack-shaped lung. Two types of receptors were identified: (1) CO2-receptors, which increased their discharge frequency as intrapulmonary CO2 concentration decreased but were not sensitive to stretch of the lung. (2) Mechanoreceptors, which rapidly increased discharge frequency when the lung was stretched. These receptors' CO2 sensitivity varied. Lungs of lizards thus appeared to possess both CO2 receptors, which have functional characteristics similar to those in birds, and mechanoreceptors with properties similar to stretch receptors in mammals.

  14. Caspase-12 is involved in stretch-induced apoptosis mediated endoplasmic reticulum stress.

    PubMed

    Zhang, Qiang; Liu, Jianing; Chen, Shulan; Liu, Jing; Liu, Lijuan; Liu, Guirong; Wang, Fang; Jiang, Wenxin; Zhang, Caixia; Wang, Shuangyu; Yuan, Xiao

    2016-04-01

    It is well recognized that mandibular growth, which is caused by a variety of functional appliances, is considered to be the result of both neuromuscular and skeletal adaptations. Accumulating evidence has demonstrated that apoptosis plays an important role in the adaptation of skeletal muscle function. However, the underlying mechanism of apoptosis that is induced by stretch continues to be incompletely understood. Endoplasmic reticulum stress (ERS), a newly defined signaling pathway, initiates apoptosis. This study seeks to determine if caspase-12 is involved in stretch-induced apoptosis mediated endoplasmic reticulum stress in myoblast and its underlying mechanism. Apoptosis was assessed by Hochest staining, DAPI staining and annexin V binding and PI staining. ER chaperones, such as GRP78, CHOP and caspase-12, were determined by reverse transcription polymerase chain reaction (RT-PCR) and Western blot. Furthermore, caspase-12 inhibitor was used to value the mechanism of the caspase-12 pathway. Apoptosis of myoblast, which is subjected to cyclic stretch, was observed in a time-dependent manner. We found that GRP78 mRNA and protein were significantly increased and CHOP and caspase-12 were activated in myoblast that was exposed to cyclic stretch. Caspase-12 inhibition reduced stretch-induced apoptosis, and caspase-12 activated caspase-3 to induce apoptosis. We concluded that caspase-12 played an important role in stretch-induced apoptosis that is associated by endoplasmic reticulum stress by activating caspase-3.

  15. Role of androgen receptor on cyclic mechanical stretch-regulated proliferation of C2C12 myoblasts and its upstream signals: IGF-1-mediated PI3K/Akt and MAPKs pathways.

    PubMed

    Ma, Yiming; Fu, Shaoting; Lu, Lin; Wang, Xiaohui

    2017-07-15

    To detect the effects of androgen receptor (AR) on cyclic mechanical stretch-modulated proliferation of C2C12 myoblasts and its pathways: roles of IGF-1, PI3K and MAPK. C2C12 were randomly divided into five groups: un-stretched control, six or 8 h of fifteen percent stretch, and six or 8 h of twenty percent stretch. Cyclic mechanical stretch of C2C12 were completed using a computer-controlled FlexCell Strain Unit. Cell proliferation and IGF-1 concentration in medium were detected by CCK8 and ELISA, respectively. Expressions of AR and IGF-1R, and expressions and activities of PI3K, p38 and ERK1/2 in stretched C2C12 cells were determined by Western blot. ①The proliferation of C2C12 cells, IGF-1 concentration in medium, expressions of AR and IGF-1R, and activities of PI3K, p38 and ERK1/2 were increased by 6 h of fifteen percent stretch, while decreased by twenty percent stretch for six or 8 h ②The fifteen percent stretch-increased proliferation of C2C12 cells was reversed by AR inhibitor, Flutamide. ③The increases of AR expression, activities of PI3K, p38 and ERK1/2 resulted from fifteen percent stretch were attenuated by IGF-1 neutralizing antibody, while twenty percent stretch-induced decreases of the above indicators were enhanced by recombinant IGF-1. ④Specific inhibitors of p38, ERK1/2 and PI3K all decreased the expression of AR in fifteen percent and twenty percent of stretched C2C12 cells. Cyclic mechanical stretch modulated the proliferation of C2C12 cells, which may be attributed to the alterations of AR via IGF-1-PI3K/Akt and IGF-1-MAPK (p38, ERK1/2) pathways in C2C12 cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Gab-family adapter proteins act downstream of cytokine and growth factor receptors and T- and B-cell antigen receptors.

    PubMed

    Nishida, K; Yoshida, Y; Itoh, M; Fukada, T; Ohtani, T; Shirogane, T; Atsumi, T; Takahashi-Tezuka, M; Ishihara, K; Hibi, M; Hirano, T

    1999-03-15

    We previously found that the adapter protein Gab1 (110 kD) is tyrosine-phosphorylated and forms a complex with SHP-2 and PI-3 kinase upon stimulation through either the interleukin-3 receptor (IL-3R) or gp130, the common receptor subunit of IL-6-family cytokines. In this report, we identified another adapter molecule (100 kD) interacting with SHP-2 and PI-3 kinase in response to various stimuli. The molecule displays striking homology to Gab1 at the amino acid level; thus, we named it Gab2. It contains a PH domain, proline-rich sequences, and tyrosine residues that bind to SH2 domains when they are phosphorylated. Gab1 is phosphorylated on tyrosine upon stimulation through the thrombopoietin receptor (TPOR), stem cell factor receptor (SCFR), and T-cell and B-cell antigen receptors (TCR and BCR, respectively), in addition to IL-3R and gp130. Tyrosine phosphorylation of Gab2 was induced by stimulation through gp130, IL-2R, IL-3R, TPOR, SCFR, and TCR. Gab1 and Gab2 were shown to be substrates for SHP-2 in vitro. Overexpression of Gab2 enhanced the gp130 or Src-related kinases-mediated ERK2 activation as that of Gab1 did. These data indicate that Gab-family molecules act as adapters for transmitting various signals.

  17. Pharmacological modifications of the stretch-induced effects on ventricular fibrillation in perfused rabbit hearts.

    PubMed

    Chorro, Francisco J; Trapero, Isabel; Such-Miquel, Luis; Pelechano, Francisca; Mainar, Luis; Cánoves, Joaquín; Tormos, Alvaro; Alberola, Antonio; Hove-Madsen, Leif; Cinca, Juan; Such, Luis

    2009-11-01

    Stretch induces modifications in myocardial electrical and mechanical activity. Besides the effects of substances that block the stretch-activated channels, other substances could modulate the effects of stretch through different mechanisms that affect Ca(2+) handling by myocytes. Thirty-six Langendorff-perfused rabbit hearts were used to analyze the effects of the Na(+)/Ca(2+) exchanger blocker KB-R7943, propranolol, and the adenosine A(2) receptor antagonist SCH-58261 on the acceleration of ventricular fibrillation (VF) produced by acute myocardial stretching. VF recordings were obtained with two epicardial multiple electrodes before, during, and after local stretching in four experimental series: control (n = 9), KB-R7943 (1 microM, n = 9), propranolol (1 microM, n = 9), and SCH-58261 (1 microM, n = 9). Both the Na(+)/Ca(2+) exchanger blocker KB-R7943 and propranolol induced a significant reduction (P < 0.001 and P < 0.05, respectively) in the dominant frequency increments produced by stretching with respect to the control and SCH-58261 series (control = 49.9%, SCH-58261 = 52.1%, KB-R7943 = 9.5%, and propranolol = 12.5%). The median of the activation intervals, the functional refractory period, and the wavelength of the activation process during VF decreased significantly under stretch in the control and SCH-58261 series, whereas no significant variations were observed in the propranolol and KB-R7943 series, with the exception of a slight but significant decrease in the median of the fibrillation intervals in the KB-R7943 series. KB-R7943 and propranolol induced a significant reduction in the activation maps complexity increment produced by stretch with respect to the control and SCH-58261 series. In conclusion, the electrophysiological effects responsible for stretch-induced VF acceleration in the rabbit heart are reduced by the Na(+)/Ca(2+) exchanger blocker KB-R7943 and by propranolol but not by the adenosine A(2) receptor antagonist SCH-58261.

  18. Stretching & Flexibility: An Interactive Encyclopedia of Stretching. [CD-ROM].

    ERIC Educational Resources Information Center

    2002

    This CD-ROM offers 140 different stretches in full-motion video sequences. It focuses on the proper techniques for overall physical fitness, injury prevention and rehabilitation, and 23 different sports (e.g., golf, running, soccer, skiing, climbing, football, and baseball). Topics include stretching for sports; stretching awareness and education…

  19. Stretch-induced ERK2 phosphorylation requires PLA2 activity in skeletal myotubes.

    PubMed

    Burkholder, Thomas J

    2009-08-14

    Mechanical stretch rapidly activates multiple signaling cascades, including phospholipases and kinases, to stimulate protein synthesis and growth. The purpose of this study was to determine whether PLA2 activation contributes to stretch-induced phosphorylation of ERK2 in skeletal muscle myotubes. Myotubes derived from neonatal C57 mice were cultured on silicone membranes and subjected to brief cyclic stretch. Inhibition of PLA2 prevented ERK2 phosphorylation, while inhibition of prostaglandin or leukotriene synthesis did not. ERK2 phosphorylation was also blocked by genistein and PD98059, implicating the canonical raf-MEK-ERK cassette. It appears that PLA2, but not further metabolism of arachidonic acid, is required for stretch-induced activation of ERK2. Exposure to exogenous arachidonic acid had no effect on ERK2 phosphorylation, but exposure to lysophosphatidylcholine, the other metabolite of PLA2, caused a dose-dependent increase in ERK2 phosphorylation. These results suggest that stretch-induced activation of ERK2 may result from an interaction between PLA2 derived lysophosphatidylcholine and membrane receptors.

  20. Stretch-induced ERK2 phosphorylation requires PLA2 activity in skeletal myotubes

    PubMed Central

    Burkholder, Thomas J.

    2009-01-01

    Mechanical stretch rapidly activates multiple signaling cascades, including phospholipases and kinases, to stimulate protein synthesis and growth. The purpose of this study was to determine whether PLA2 activation contributes to stretch-induced phosphorylation of ERK2 in skeletal muscle myotubes. Myotubes derived from neonatal C57 mice were cultured on silicone membranes and subjected to brief cyclic stretch. Inhibition of PLA2 prevented ERK2 phosphorylation, while inhibition of prostaglandin or leukotriene synthesis did not. ERK2 phosphorylation was also blocked by genistein and PD98059, implicating the canonical raf-MEK-ERK cassette. It appears that PLA2, but not further metabolism of arachidonic acid, is required for stretch-induced activation of ERK2. Exposure to exogenous arachidonic acid had no effect on ERK2 phosphorylation, but exposure to lysophosphatidylcholine, the other metabolite of PLA2, caused a dose-dependent increase in ERK2 phosphorylation. These results suggest that stretch-induced activation of ERK2 may result from an interaction between PLA2 derived lysophosphatidylcholine and membrane receptors. PMID:19524551

  1. Lung congestion augments the responses of cells in the rapidly adapting receptor pathway to cigarette smoke in rabbit.

    PubMed Central

    Zhang, Z; Bonham, A C

    1995-01-01

    1. We examined the effects of cigarette smoke, inhaled alone and during mild pulmonary venous congestion, on the activity of fifty-three neurones in the nucleus tractus solitarii (NTS) that were excited by input from pulmonary rapidly adapting receptors (RAR). Ten neurones excited by slowly adapting stretch receptors (SAR) were also studied. 2. Extracellular recordings of RAR-activated neurones were recorded in alpha-chloralose anaesthetized rabbits. Smoke from low- and high-nicotine cigarettes was delivered through a ventilator. Mild pulmonary venous congestion was produced by inflating a balloon in the left atrium. 3. Inhalation of three breaths of smoke from low-nicotine cigarettes increased the activity of fifty-one out of fifty-three RAR-activated neurones from 5.9 +/- 1.0 to 14.4 +/- 2.1 spikes breath-1 (P < 0.05). 4. The responses of fifteen neurones were compared with smoke inhaled alone or during mild pulmonary venous congestion. Smoke alone increased unit activity from 6.8 +/- 2.3 to 12.6 +/- 3.7 spikes breath-1 (P < 0.05). Small increases in left atrial pressure (2.0 +/- 0.5 mmHg) had no effect on baseline unit activity (7.6 +/- 2.11 vs. 7.7 +/- 2.3 spikes breath-1; P > 0.05), but enhanced the responses to smoke, increasing the activity from 7.6 +/- 2.1 to 17.1 +/- 4.8 spikes breath-1 (P < 0.05). The response was greater than to smoke alone (P < 0.05). 5. Of ten SAR-activated neurones, seven failed to respond to inhaled cigarette smoke, two were excited and one was inhibited. Pulmonary venous congestion had no effect on the unit activity before and after smoke (n = 4 neurones). 6. We conclude that smoke-evoked excitation of RAR lower-order neurones is augmented by pulmonary venous congestion. Images Figure 3 PMID:7602520

  2. Tensioning device for a stretched membrane collector

    DOEpatents

    Murphy, Lawrence M.

    1984-01-01

    Disclosed is a solar concentrating collector comprising an elastic membrane member for concentrating sunlight, a frame for holding the membrane member in plane and in tension, and a tensioning means for varying the tension of the membrane member. The tensioning means is disposed at the frame and is adapted to releasably attach the membrane member thereto. The tensioning means is also adapted to uniformly and symmetrically subject the membrane member to stretching forces such that membrane stresses produced thereby are distributed uniformly over a thickness of the membrane member and reciprocal twisting moments are substantially prevented from acting about said frame.

  3. Tensioning device for a stretched membrane collector

    DOEpatents

    Murphy, L.M.

    1984-01-01

    Disclosed is a solar concentrating collector comprising an elestic membrane member for concentrating sunlight, a frame for holding the membrane member in plane and in tension, and a tensioning means for varying the tension of the membrane member. The tensioning means is disposed at the frame and is adapted to releasably attach the membrane member thereto. The tensioning means is also adapted to uniformly and symmetrically subject the membrane member to stretching forces such that membrane stresses produced thereby are distributed uniformly over a thickness of the membrane member and reciprocal twisting moments are substantially prevented from acting about said frame.

  4. The DRF motif of CXCR6 as chemokine receptor adaptation to adhesion.

    PubMed

    Koenen, Andrea; Babendreyer, Aaron; Schumacher, Julian; Pasqualon, Tobias; Schwarz, Nicole; Seifert, Anke; Deupi, Xavier; Ludwig, Andreas; Dreymueller, Daniela

    2017-01-01

    The CXC-chemokine receptor 6 (CXCR6) is a class A GTP-binding protein-coupled receptor (GPCRs) that mediates adhesion of leukocytes by interacting with the transmembrane cell surface-expressed chemokine ligand 16 (CXCL16), and also regulates leukocyte migration by interacting with the soluble shed variant of CXCL16. In contrast to virtually all other chemokine receptors with chemotactic activity, CXCR6 carries a DRF motif instead of the typical DRY motif as a key element in receptor activation and G protein coupling. In this work, modeling analyses revealed that the phenylalanine F3.51 in CXCR6 might have impact on intramolecular interactions including hydrogen bonds by this possibly changing receptor function. Initial investigations with embryonic kidney HEK293 cells and further studies with monocytic THP-1 cells showed that mutation of DRF into DRY does not influence ligand binding, receptor internalization, receptor recycling, and protein kinase B (AKT) signaling. Adhesion was slightly decreased in a time-dependent manner. However, CXCL16-induced calcium signaling and migration were increased. Vice versa, when the DRY motif of the related receptor CX3CR1 was mutated into DRF the migratory response towards CX3CL1 was diminished, indicating that the presence of a DRF motif generally impairs chemotaxis in chemokine receptors. Transmembrane and soluble CXCL16 play divergent roles in homeostasis, inflammation, and cancer, which can be beneficial or detrimental. Therefore, the DRF motif of CXCR6 may display a receptor adaptation allowing adhesion and cell retention by transmembrane CXCL16 but reducing the chemotactic response to soluble CXCL16. This adaptation may avoid permanent or uncontrolled recruitment of inflammatory cells as well as cancer metastasis.

  5. Dopamine D1 receptor activation contributes to light-adapted changes in retinal inhibition to rod bipolar cells.

    PubMed

    Flood, Michael Daniel; Moore-Dotson, Johnnie M; Eggers, Erika D

    2018-05-30

    Dopamine modulation of retinal signaling has been shown to be an important part of retinal adaptation to increased background light levels but the role of dopamine modulation of retinal inhibition is not clear. We previously showed that light adaptation causes a large reduction in inhibition to rod bipolar cells, potentially to match the decrease in excitation after rod saturation. In this study we determined how dopamine D1 receptors in the inner retina contribute to this modulation. We found that D1 receptor activation significantly decreased the magnitude of inhibitory light responses from rod bipolar cells, while D1 receptor blockade during light adaptation partially prevented this decline. To determine what mechanisms were involved in the modulation of inhibitory light responses, we measured the effect of D1 receptor activation on spontaneous currents and currents evoked from electrically stimulating amacrine cell inputs to rod bipolar cells. D1 receptor activation decreased the frequency of spontaneous inhibition with no change in event amplitudes, suggesting a presynaptic change in amacrine cell activity in agreement with previous reports that rod bipolar cells lack D1 receptors. Additionally, we found that D1 receptor activation reduced the amplitude of electrically-evoked responses, showing that D1 receptors can modulate amacrine cells directly. Our results suggest that D1 receptor activation can replicate a large portion, but not all of the effects of light adaptation, likely by modulating release from amacrine cells onto rod bipolar cells.

  6. Stretching of Active Muscle Elicits Chronic Changes in Multiple Strain Risk Factors.

    PubMed

    Kay, Anthony David; Richmond, Dominic; Talbot, Chris; Mina, Minas; Baross, Anthony William; Blazevich, Anthony John

    2016-07-01

    The muscle stretch intensity imposed during "flexibility" training influences the magnitude of joint range of motion (ROM) adaptation. Thus, stretching while the muscle is voluntarily activated was hypothesized to provide a greater stimulus than passive stretching. The effect of a 6-wk program of stretch imposed on an isometrically contracting muscle (i.e., qualitatively similar to isokinetic eccentric training) on muscle-tendon mechanics was therefore studied in 13 healthy human volunteers. Before and after the training program, dorsiflexion ROM, passive joint moment, and maximal isometric plantarflexor moment were recorded on an isokinetic dynamometer. Simultaneous real-time motion analysis and ultrasound imaging recorded gastrocnemius medialis muscle and Achilles tendon elongation. Training was performed twice weekly and consisted of five sets of 12 maximal isokinetic eccentric contractions at 10°·s. Significant increases (P < 0.01) in ROM (92.7% [14.7°]), peak passive moment (i.e., stretch tolerance; 136.2%), area under the passive moment curve (i.e., energy storage; 302.6%), and maximal isometric plantarflexor moment (51.3%) were observed after training. Although no change in the slope of the passive moment curve (muscle-tendon stiffness) was detected (-1.5%, P > 0.05), a significant increase in tendon stiffness (31.2%, P < 0.01) and a decrease in passive muscle stiffness (-14.6%, P < 0.05) were observed. The substantial positive adaptation in multiple functional and physiological variables that are cited within the primary etiology of muscle strain injury, including strength, ROM, muscle stiffness, and maximal energy storage, indicate that the stretching of active muscle might influence injury risk in addition to muscle function. The lack of change in muscle-tendon stiffness simultaneous with significant increases in tendon stiffness and decreases in passive muscle stiffness indicates that tissue-specific effects were elicited.

  7. The DRF motif of CXCR6 as chemokine receptor adaptation to adhesion

    PubMed Central

    Koenen, Andrea; Babendreyer, Aaron; Schumacher, Julian; Pasqualon, Tobias; Schwarz, Nicole; Seifert, Anke; Deupi, Xavier

    2017-01-01

    The CXC-chemokine receptor 6 (CXCR6) is a class A GTP-binding protein-coupled receptor (GPCRs) that mediates adhesion of leukocytes by interacting with the transmembrane cell surface-expressed chemokine ligand 16 (CXCL16), and also regulates leukocyte migration by interacting with the soluble shed variant of CXCL16. In contrast to virtually all other chemokine receptors with chemotactic activity, CXCR6 carries a DRF motif instead of the typical DRY motif as a key element in receptor activation and G protein coupling. In this work, modeling analyses revealed that the phenylalanine F3.51 in CXCR6 might have impact on intramolecular interactions including hydrogen bonds by this possibly changing receptor function. Initial investigations with embryonic kidney HEK293 cells and further studies with monocytic THP-1 cells showed that mutation of DRF into DRY does not influence ligand binding, receptor internalization, receptor recycling, and protein kinase B (AKT) signaling. Adhesion was slightly decreased in a time-dependent manner. However, CXCL16-induced calcium signaling and migration were increased. Vice versa, when the DRY motif of the related receptor CX3CR1 was mutated into DRF the migratory response towards CX3CL1 was diminished, indicating that the presence of a DRF motif generally impairs chemotaxis in chemokine receptors. Transmembrane and soluble CXCL16 play divergent roles in homeostasis, inflammation, and cancer, which can be beneficial or detrimental. Therefore, the DRF motif of CXCR6 may display a receptor adaptation allowing adhesion and cell retention by transmembrane CXCL16 but reducing the chemotactic response to soluble CXCL16. This adaptation may avoid permanent or uncontrolled recruitment of inflammatory cells as well as cancer metastasis. PMID:28267793

  8. Stretch Marks

    MedlinePlus

    ... stretch marks. This isn't true with regular tanning or tanning beds , though: Stretch marks are less likely to ... up looking more obvious. Plus, the sun and tanning beds do more harm than good when it ...

  9. Probabilistic model of ligaments and tendons: quasistatic linear stretching.

    PubMed

    Bontempi, M

    2009-03-01

    Ligaments and tendons have a significant role in the musculoskeletal system and are frequently subjected to injury. This study presents a model of collagen fibers, based on the study of a statistical distribution of fibers when they are subjected to quasistatic linear stretching. With respect to other methodologies, this model is able to describe the behavior of the bundle using less ad hoc hypotheses and is able to describe all the quasistatic stretch-load responses of the bundle, including the yield and failure regions described in the literature. It has two other important results: the first is that it is able to correlate the mechanical behavior of the bundle with its internal structure, and it suggests a methodology to deduce the fibers population distribution directly from the tensile-test data. The second is that it can follow fibers' structure evolution during the stretching and it is possible to study the internal adaptation of fibers in physiological and pathological conditions.

  10. Probabilistic model of ligaments and tendons: Quasistatic linear stretching

    NASA Astrophysics Data System (ADS)

    Bontempi, M.

    2009-03-01

    Ligaments and tendons have a significant role in the musculoskeletal system and are frequently subjected to injury. This study presents a model of collagen fibers, based on the study of a statistical distribution of fibers when they are subjected to quasistatic linear stretching. With respect to other methodologies, this model is able to describe the behavior of the bundle using less ad hoc hypotheses and is able to describe all the quasistatic stretch-load responses of the bundle, including the yield and failure regions described in the literature. It has two other important results: the first is that it is able to correlate the mechanical behavior of the bundle with its internal structure, and it suggests a methodology to deduce the fibers population distribution directly from the tensile-test data. The second is that it can follow fibers’ structure evolution during the stretching and it is possible to study the internal adaptation of fibers in physiological and pathological conditions.

  11. Stretch Garment Dermatitis

    PubMed Central

    Mihan, Richard; Ayres, Samuel

    1968-01-01

    A disease of the skin, not hitherto described, is caused by pressure or tension on the skin from the wearing of tight-fitting stretch garments such as “stretch bras,” “stretch girdles” and “stretch socks.” The condition is not due to chemical sensitization of fabrics, dyes or other additives but is of mechanical origin. The eruption may assume various clinical forms and may be characterized by a nondescript erythematous and eczematous appearance or may consist of an exaggeration, in the areas covered by the stretch garment, of already existing dermatosis such as lichen planus, psoriasis, acne vulgaris, discoid lupus erythematosus or atopic dermatitis. ImagesFigure 1.Figure 2.Figure 3.Figure 4.Figure 5. PMID:5639939

  12. Can chronic stretching change the muscle-tendon mechanical properties? A review.

    PubMed

    Freitas, S R; Mendes, B; Le Sant, G; Andrade, R J; Nordez, A; Milanovic, Z

    2018-03-01

    It is recognized that stretching is an effective method to chronically increase the joint range of motion. However, the effects of stretching training on the muscle-tendon structural properties remain unclear. This systematic review with meta-analysis aimed to determine whether chronic stretching alter the muscle-tendon structural properties. Published papers regarding longitudinal stretching (static, dynamic and/or PNF) intervention (either randomized or not) in humans of any age and health status, with more than 2 weeks in duration and at least 2 sessions per week, were searched in PubMed, PEDro, ScienceDirect and ResearchGate databases. Structural or mechanical variables from joint (maximal tolerated passive torque or resistance to stretch) or muscle-tendon unit (muscle architecture, stiffness, extensibility, shear modulus, volume, thickness, cross-sectional area, and slack length) were extracted from those papers. A total of 26 studies were selected, with a duration ranging from 3 to 8 weeks, and an average total time under stretching of 1165 seconds per week. Small effects were seen for maximal tolerated passive torque, but trivial effects were seen for joint resistance to stretch, muscle architecture, muscle stiffness, and tendon stiffness. A large heterogeneity was seen for most of the variables. Stretching interventions with 3- to 8-week duration do not seem to change either the muscle or the tendon properties, although it increases the extensibility and tolerance to a greater tensile force. Adaptations to chronic stretching protocols shorter than 8 weeks seem to mostly occur at a sensory level. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Daily muscle stretching enhances blood flow, endothelial function, capillarity, vascular volume and connectivity in aged skeletal muscle.

    PubMed

    Hotta, Kazuki; Behnke, Bradley J; Arjmandi, Bahram; Ghosh, Payal; Chen, Bei; Brooks, Rachael; Maraj, Joshua J; Elam, Marcus L; Maher, Patrick; Kurien, Daniel; Churchill, Alexandra; Sepulveda, Jaime L; Kabolowsky, Max B; Christou, Demetra D; Muller-Delp, Judy M

    2018-05-15

    In aged rats, daily muscle stretching increases blood flow to skeletal muscle during exercise. Daily muscle stretching enhanced endothelium-dependent vasodilatation of skeletal muscle resistance arterioles of aged rats. Angiogenic markers and capillarity increased in response to daily stretching in muscles of aged rats. Muscle stretching performed with a splint could provide a feasible means of improving muscle blood flow and function in elderly patients who cannot perform regular aerobic exercise. Mechanical stretch stimuli alter the morphology and function of cultured endothelial cells; however, little is known about the effects of daily muscle stretching on adaptations of endothelial function and muscle blood flow. The present study aimed to determine the effects of daily muscle stretching on endothelium-dependent vasodilatation and muscle blood flow in aged rats. The lower hindlimb muscles of aged Fischer rats were passively stretched by placing an ankle dorsiflexion splint for 30 min day -1 , 5 days week -1 , for 4 weeks. Blood flow to the stretched limb and the non-stretched contralateral limb was determined at rest and during treadmill exercise. Endothelium-dependent/independent vasodilatation was evaluated in soleus muscle arterioles. Levels of hypoxia-induced factor-1α, vascular endothelial growth factor A and neuronal nitric oxide synthase were determined in soleus muscle fibres. Levels of endothelial nitric oxide synthase and superoxide dismutase were determined in soleus muscle arterioles, and microvascular volume and capillarity were evaluated by microcomputed tomography and lectin staining, respectively. During exercise, blood flow to plantar flexor muscles was significantly higher in the stretched limb. Endothelium-dependent vasodilatation was enhanced in arterioles from the soleus muscle from the stretched limb. Microvascular volume, number of capillaries per muscle fibre, and levels of hypoxia-induced factor-1α, vascular endothelial growth

  14. Get up and Stretch

    ERIC Educational Resources Information Center

    Crupi, Jeffrey

    2004-01-01

    Daily stretching has many benefits for one's body. It can relieve stress and tension, it increases flexibility and it can help prevent injuries. There are many stretching exercises that a teacher can do with his or her students to help promote daily stretching routines. In this article, the author presents several stretching exercises and some…

  15. Ca{sup 2+} influx and ATP release mediated by mechanical stretch in human lung fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murata, Naohiko; Ito, Satoru, E-mail: itori@med.nagoya-u.ac.jp; Furuya, Kishio

    Highlights: • Uniaxial stretching activates Ca{sup 2+} signaling in human lung fibroblasts. • Stretch-induced intracellular Ca{sup 2+} elevation is mainly via Ca{sup 2+} influx. • Mechanical strain enhances ATP release from fibroblasts. • Stretch-induced Ca{sup 2+} influx is not mediated by released ATP or actin cytoskeleton. - Abstract: One cause of progressive pulmonary fibrosis is dysregulated wound healing after lung inflammation or damage in patients with idiopathic pulmonary fibrosis and severe acute respiratory distress syndrome. The mechanical forces are considered to regulate pulmonary fibrosis via activation of lung fibroblasts. In this study, the effects of mechanical stretch on the intracellularmore » Ca{sup 2+} concentration ([Ca{sup 2+}]{sub i}) and ATP release were investigated in primary human lung fibroblasts. Uniaxial stretch (10–30% in strain) was applied to fibroblasts cultured in a silicone chamber coated with type I collagen using a stretching apparatus. Following stretching and subsequent unloading, [Ca{sup 2+}]{sub i} transiently increased in a strain-dependent manner. Hypotonic stress, which causes plasma membrane stretching, also transiently increased the [Ca{sup 2+}]{sub i}. The stretch-induced [Ca{sup 2+}]{sub i} elevation was attenuated in Ca{sup 2+}-free solution. In contrast, the increase of [Ca{sup 2+}]{sub i} by a 20% stretch was not inhibited by the inhibitor of stretch-activated channels GsMTx-4, Gd{sup 3+}, ruthenium red, or cytochalasin D. Cyclic stretching induced significant ATP releases from fibroblasts. However, the stretch-induced [Ca{sup 2+}]{sub i} elevation was not inhibited by ATP diphosphohydrolase apyrase or a purinergic receptor antagonist suramin. Taken together, mechanical stretch induces Ca{sup 2+} influx independently of conventional stretch-sensitive ion channels, the actin cytoskeleton, and released ATP.« less

  16. THUNDER Piezoelectric Actuators as a Method of Stretch-Tuning an Optical Fiber Grating

    NASA Technical Reports Server (NTRS)

    Allison, Sidney G.; Fox, Robert L.; Froggatt, Mark E.; Childers, Brooks A.

    2000-01-01

    A method of stretching optical fiber holds interest for measuring strain in smart structures where the physical displacement may be used to tune optical fiber lasers. A small, light weight, low power tunable fiber laser is ideal for demodulating strain in optical fiber Bragg gratings attached to smart structures such as the re-usable launch vehicle that is being developed by NASA. A method is presented for stretching optical fibers using the THUNDER piezoelectric actuators invented at NASA Langley Research Center. THUNDER actuators use a piezoelectric layer bonded to a metal backing to enable the actuators to produce displacements larger than the unbonded piezoelectric material. The shift in reflected optical wavelength resulting from stretching the fiber Bragg grating is presented. Means of adapting THUNDER actuators for stretching optical fibers is discussed, including ferrules, ferrule clamp blocks, and plastic hinges made with stereo lithography.

  17. An LRR/Malectin Receptor-Like Kinase Mediates Resistance to Non-adapted and Adapted Powdery Mildew Fungi in Barley and Wheat.

    PubMed

    Rajaraman, Jeyaraman; Douchkov, Dimitar; Hensel, Götz; Stefanato, Francesca L; Gordon, Anna; Ereful, Nelzo; Caldararu, Octav F; Petrescu, Andrei-Jose; Kumlehn, Jochen; Boyd, Lesley A; Schweizer, Patrick

    2016-01-01

    Pattern recognition receptors (PRRs) belonging to the multigene family of receptor-like kinases (RLKs) are the sensing devices of plants for microbe- or pathogen-associated molecular patterns released from microbial organisms. Here we describe Rnr8 (for Required for non-host resistance 8 ) encoding HvLEMK1, a LRR-malectin domain-containing transmembrane RLK that mediates non-host resistance of barley to the non-adapted wheat powdery mildew fungus Blumeria graminis f.sp. tritici . Transgenic barley lines with silenced HvLEMK1 allow entry and colony growth of the non-adapted pathogen, although sporulation was reduced and final colony size did not reach that of the adapted barley powdery mildew fungus B. graminis f.sp. hordei . Transient expression of the barley or wheat LEMK1 genes enhanced resistance in wheat to the adapted wheat powdery mildew fungus while expression of the same genes did not protect barley from attack by the barley powdery mildew fungus. The results suggest that HvLEMK1 is a factor mediating non-host resistance in barley and quantitative host resistance in wheat to the wheat powdery mildew fungus.

  18. mTOR-INDEPENDENT INDUCTION OF AUTOPHAGY IN TRABECULAR MESHWORK CELLS SUBJECTED TO BIAXIAL STRETCH

    PubMed Central

    Porter, Kristine M.; Jeyabalan, Nallathambi; Liton, Paloma B.

    2014-01-01

    The trabecular meshwork (TM) is part of a complex tissue that controls the exit of aqueous humor from the anterior chamber of the eye, and therefore helps maintaining intraocular pressure (IOP). Because of variations in IOP with changing pressure gradients and fluid movement, the TM and its contained cells undergo morphological deformations, resulting in distention and stretching. It is therefore essential for TM cells to continuously detect and respond to these mechanical forces and adapt their physiology to maintain proper cellular function and protect against mechanical injury. Here we demonstrate the activation of autophagy, a pro-survival pathway responsible for the degradation of long-lived proteins and organelles, in TM cells when subjected to biaxial static stretch (20 % elongation), as well as in high-pressure perfused eyes (30 mm Hg). Morphological and biochemical markers for autophagy found in the stretched cells include elevated LC3-II levels, increased autophagic flux, and the presence of autophagic figures in electron micrographs. Furthermore, our results indicate that the stretch-induced autophagy in TM cells occurs in an MTOR- and BAG3-independent manner. We hypothesize that activation of autophagy is part of the physiological response that allows TM cells to cope and adapt to mechanical forces. PMID:24583119

  19. Regulation of extracellular matrix elements and sarcomerogenesis in response to different periods of passive stretching in the soleus muscle of rats.

    PubMed

    Peviani, Sabrina M; Guzzoni, Vinicius; Pinheiro-Dardis, Clara M; Silva, Yara P da; Fioravante, Alisson C R; Sagawa, Adriana H; Delfino, Gabriel B; Durigan, João L Q; Salvini, Tania F

    2018-06-13

    Stretching is a common method used to prevent muscle shortening and improve limited mobility. However, the effect of different time periods on stretching-induced adaptation of the extracellular matrix and its regulatory elements have yet to be investigated. We aimed to evaluate the expression of fibrillar collagens, sarcomerogenesis, metalloproteinase (MMP) activity and gene expression of the extracellular matrix (ECM) regulators in the soleus (SOL) muscle of rats submitted to different stretching periods. The soleus muscles were submitted to 10 sets of passive stretching over 10 (St 10d) or 15 days (St 15d) (1 min per set, with 30 seconds' rest between sets). Sarcomerogenesis, muscle cross-sectional area (CSA), and MMP activity and mRNA levels in collagen (type I, III and IV), connective tissue growth factor (CTGF), growth factor-beta (TGF-β), and lysyl oxidase (LOX) were analyzed. Passive stretching over both time periods mitigated COL-I deposition in the SOL muscle of rats. Paradoxically, 10 days of passive stretching induced COL-I and COL-III synthesis, with concomitant upregulation of TGF-β1 and CTGF at a transcriptional level. These responses may be associated with lower LOX mRNA levels in SOL muscles submitted to 10 passive stretching sessions. Moreover, sarcomerogenesis was observed after 15 days of stretching, suggesting that stretching-induced muscle adaptations are time-dependent responses.

  20. Dynamic stretching and golf swing performance.

    PubMed

    Moran, K A; McGrath, T; Marshall, B M; Wallace, E S

    2009-02-01

    The aim of the present study was to examine the effect of dynamic stretching, static stretching and no stretching, as part of a general warm-up, on golf swing performance with a five-iron. Measures of performance were taken 0 min, 5 min, 15 min and 30 min after stretching. Dynamic stretching produced significantly greater club head speeds than both static stretching (Delta=1.9m.s (-1); p=0.000) and no stretching (Delta=1.7 m.s (-1); p=0.000), and greater ball speeds than both static stretching (Delta=3.5m.s (-1); p=0.003) and no stretching (Delta=3.3m.s (-1); p=0.001). Dynamic stretching produced significantly straighter swing-paths than both static stretching (Delta=-0.61 degrees , p=0.000) and no stretching (Delta=-0.72 degrees , p=0.01). Dynamic stretching also produced more central impact points than the static stretch (Delta=0.7 cm, p=0.001). For the club face angle, there was no effect of either stretch or time. For all of the variables measured, there was no significant difference between the static stretch and no stretch conditions. All of the results were unaffected by the time of measurement after stretching. The results indicate that dynamic stretching should be used as part of a general warm-up in golf.

  1. Stretching Safely and Effectively

    MedlinePlus

    ... shown that stretching immediately before an event weakens hamstring strength. Instead of static stretching, try performing a " ... If you play soccer, for instance, stretch your hamstrings as you're more vulnerable to hamstring strains. ...

  2. Yawning and Stretching Predict Brain Temperature Changes in Rats: Support for the Thermoregulatory Hypothesis

    PubMed Central

    Shoup-Knox, Melanie L.; Gallup, Andrew C.; Gallup, Gordon G.; McNay, Ewan C.

    2010-01-01

    Recent research suggests that yawning is an adaptive behavior that functions to promote brain thermoregulation among homeotherms. To explore the relationship between brain temperature and yawning we implanted thermocoupled probes in the frontal cortex of rats to measure brain temperature before, during and after yawning. Temperature recordings indicate that yawns and stretches occurred during increases in brain temperature, with brain temperatures being restored to baseline following the execution of each of these behaviors. The circulatory changes that accompany yawning and stretching may explain some of the thermal similarities surrounding these events. These results suggest that yawning and stretching may serve to maintain brain thermal homeostasis. PMID:21031034

  3. The Relation Between Stretching Typology and Stretching Duration: The Effects on Range of Motion.

    PubMed

    Thomas, Ewan; Bianco, Antonino; Paoli, Antonio; Palma, Antonio

    2018-04-01

    Different stretching strategies and protocols are widely used to improve flexibility or maintain health, acting on the muscle tendon-unit, in order to improve the range of motion (ROM) of the joints. This review aims to evaluate the current body of literature in order to understand the relation between stretching typology and ROM, and secondly to evaluate if a relation exists between stretching volume (either as a single training session, weekly training and weekly frequency) and ROM, after long-term stretching. Twenty-three articles were considered eligible and included in the quantitative synthesis. All stretching typologies showed ROM improvements over a long-term period, however the static protocols showed significant gains (p<0.05) when compared to the ballistic or PNF protocols. Time spent stretching per week seems fundamental to elicit range of movement improvements when stretches are applied for at least or more than 5 min, whereas the time spent stretching within a single session does not seem to have significant effects for ROM gains. Weekly frequency is positively associated to ROM. Evaluated data indicates that performing stretching at least 5 days a week for at least 5 min per week using static stretching may be beneficial to promote ROM improvements. © Georg Thieme Verlag KG Stuttgart · New York.

  4. Cyclic stretch-induced stress fiber dynamics - Dependence on strain rate, Rho-kinase and MLCK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Chin-Fu; Haase, Candice; Deguchi, Shinji

    2010-10-22

    Research highlights: {yields} Cyclic stretch induces stress fiber disassembly, reassembly and fusion perpendicular to the direction of stretch. {yields} Stress fiber disassembly and reorientation were not induced at low stretch frequency. {yields} Stretch caused actin fiber formation parallel to stretch in distinct locations in cells treated with Rho-kinase and MLCK inhibitors. -- Abstract: Stress fiber realignment is an important adaptive response to cyclic stretch for nonmuscle cells, but the mechanism by which such reorganization occurs is not known. By analyzing stress fiber dynamics using live cell microscopy, we revealed that stress fiber reorientation perpendicular to the direction of cyclic uniaxialmore » stretching at 1 Hz did not involve disassembly of the stress fiber distal ends located at focal adhesion sites. Instead, these distal ends were often used to assemble new stress fibers oriented progressively further away from the direction of stretch. Stress fiber disassembly and reorientation were not induced when the frequency of stretch was decreased to 0.01 Hz, however. Treatment with the Rho-kinase inhibitor (Y27632) reduced stress fibers to thin fibers located in the cell periphery which bundled together to form thick fibers oriented parallel to the direction of stretching at 1 Hz. In contrast, these thin fibers remained diffuse in cells subjected to stretch at 0.01 Hz. Cyclic stretch at 1 Hz also induced actin fiber formation parallel to the direction of stretch in cells treated with the myosin light chain kinase (MLCK) inhibitor ML-7, but these fibers were located centrally rather than peripherally. These results shed new light on the mechanism by which stress fibers reorient in response to cyclic stretch in different regions of the actin cytoskeleton.« less

  5. Stretch-Oriented Polyimide Films

    NASA Technical Reports Server (NTRS)

    Hinkley, Jeffrey A.; Klinedinst, D.; Feuz, L.

    2000-01-01

    Two thermoplastic polyimides - one amorphous, the other crystallizable -- were subjected to isothermal stretching just above their glass transition temperatures. Room-temperature strengths in the stretch direction were greatly improved and, moduli increased up to 3.6-fold. Optimum stretching conditions were determined.

  6. An LRR/Malectin Receptor-Like Kinase Mediates Resistance to Non-adapted and Adapted Powdery Mildew Fungi in Barley and Wheat

    PubMed Central

    Rajaraman, Jeyaraman; Douchkov, Dimitar; Hensel, Götz; Stefanato, Francesca L.; Gordon, Anna; Ereful, Nelzo; Caldararu, Octav F.; Petrescu, Andrei-Jose; Kumlehn, Jochen; Boyd, Lesley A.; Schweizer, Patrick

    2016-01-01

    Pattern recognition receptors (PRRs) belonging to the multigene family of receptor-like kinases (RLKs) are the sensing devices of plants for microbe- or pathogen-associated molecular patterns released from microbial organisms. Here we describe Rnr8 (for Required for non-host resistance 8) encoding HvLEMK1, a LRR-malectin domain-containing transmembrane RLK that mediates non-host resistance of barley to the non-adapted wheat powdery mildew fungus Blumeria graminis f.sp. tritici. Transgenic barley lines with silenced HvLEMK1 allow entry and colony growth of the non-adapted pathogen, although sporulation was reduced and final colony size did not reach that of the adapted barley powdery mildew fungus B. graminis f.sp. hordei. Transient expression of the barley or wheat LEMK1 genes enhanced resistance in wheat to the adapted wheat powdery mildew fungus while expression of the same genes did not protect barley from attack by the barley powdery mildew fungus. The results suggest that HvLEMK1 is a factor mediating non-host resistance in barley and quantitative host resistance in wheat to the wheat powdery mildew fungus. PMID:28018377

  7. Force encoding in muscle spindles during stretch of passive muscle

    PubMed Central

    Blum, Kyle P.; Zytnicki, Daniel

    2017-01-01

    Muscle spindle proprioceptive receptors play a primary role in encoding the effects of external mechanical perturbations to the body. During externally-imposed stretches of passive, i.e. electrically-quiescent, muscles, the instantaneous firing rates (IFRs) of muscle spindles are associated with characteristics of stretch such as length and velocity. However, even in passive muscle, there are history-dependent transients of muscle spindle firing that are not uniquely related to muscle length and velocity, nor reproduced by current muscle spindle models. These include acceleration-dependent initial bursts, increased dynamic response to stretch velocity if a muscle has been isometric, and rate relaxation, i.e., a decrease in tonic IFR when a muscle is held at a constant length after being stretched. We collected muscle spindle spike trains across a variety of muscle stretch kinematic conditions, including systematic changes in peak length, velocity, and acceleration. We demonstrate that muscle spindle primary afferents in passive muscle fire in direct relationship to muscle force-related variables, rather than length-related variables. Linear combinations of whole muscle-tendon force and the first time derivative of force (dF/dt) predict the entire time course of transient IFRs in muscle spindle Ia afferents during stretch (i.e., lengthening) of passive muscle, including the initial burst, the dynamic response to lengthening, and rate relaxation following lengthening. Similar to acceleration scaling found previously in postural responses to perturbations, initial burst amplitude scaled equally well to initial stretch acceleration or dF/dt, though later transients were only described by dF/dt. The transient increase in dF/dt at the onset of lengthening reflects muscle short-range stiffness due to cross-bridge dynamics. Our work demonstrates a critical role of muscle cross-bridge dynamics in history-dependent muscle spindle IFRs in passive muscle lengthening conditions

  8. Force encoding in muscle spindles during stretch of passive muscle.

    PubMed

    Blum, Kyle P; Lamotte D'Incamps, Boris; Zytnicki, Daniel; Ting, Lena H

    2017-09-01

    Muscle spindle proprioceptive receptors play a primary role in encoding the effects of external mechanical perturbations to the body. During externally-imposed stretches of passive, i.e. electrically-quiescent, muscles, the instantaneous firing rates (IFRs) of muscle spindles are associated with characteristics of stretch such as length and velocity. However, even in passive muscle, there are history-dependent transients of muscle spindle firing that are not uniquely related to muscle length and velocity, nor reproduced by current muscle spindle models. These include acceleration-dependent initial bursts, increased dynamic response to stretch velocity if a muscle has been isometric, and rate relaxation, i.e., a decrease in tonic IFR when a muscle is held at a constant length after being stretched. We collected muscle spindle spike trains across a variety of muscle stretch kinematic conditions, including systematic changes in peak length, velocity, and acceleration. We demonstrate that muscle spindle primary afferents in passive muscle fire in direct relationship to muscle force-related variables, rather than length-related variables. Linear combinations of whole muscle-tendon force and the first time derivative of force (dF/dt) predict the entire time course of transient IFRs in muscle spindle Ia afferents during stretch (i.e., lengthening) of passive muscle, including the initial burst, the dynamic response to lengthening, and rate relaxation following lengthening. Similar to acceleration scaling found previously in postural responses to perturbations, initial burst amplitude scaled equally well to initial stretch acceleration or dF/dt, though later transients were only described by dF/dt. The transient increase in dF/dt at the onset of lengthening reflects muscle short-range stiffness due to cross-bridge dynamics. Our work demonstrates a critical role of muscle cross-bridge dynamics in history-dependent muscle spindle IFRs in passive muscle lengthening conditions

  9. The effect of age on hamstring passive properties after a 10-week stretch training

    PubMed Central

    Haab, Thomas; Wydra, Georg

    2017-01-01

    [Purpose] Degenerative changes take place in the musculoskeletal system of elderly people, resulting in a reduced range of motion. For this reason, stretch training is recommended for elderly individuals. To date, there have been no studies of the adaptations of the passive properties of muscles following long-term stretch training. The aim of this study is to investigate the hamstring elasticity of elderly people following a 10-week stretch training and compare the results to a younger cohort. [Subjects and Methods] The experimental groups consisted of 15 younger (24.0 ± 4.0 years) and 14 older (65.1 ± 7.9 years) individuals. Both experimental groups undertook a standardised 10-week static passive hamstring stretch training. Passive properties of the hamstring were measured with an instrumented Straight Leg Raise Test. [Results] After a 10-week stretch training, there were increases in range of motion, passive resistive force and passive elastic energy in both age groups. Passive elastic stiffness decreased. Changes of hamstring passive properties did not differ significantly between age groups after a 10-week stretch training. [Conclusion] Increasing age has a negative effect on muscle passive properties, but older individuals benefit from regular stretch training, just as younger individuals do. PMID:28626322

  10. Influence of the stretch wrapping process on the mechanical behavior of a stretch film

    NASA Astrophysics Data System (ADS)

    Klein, Daniel; Stommel, Markus; Zimmer, Johannes

    2018-05-01

    Lightweight construction is an ongoing task in packaging development. Consequently, the stability of packages during transport is gaining importance. This study contributes to the optimization of lightweight packaging concepts regarding their stability. A very widespread packaging concept is the distribution of goods on a pallet whereas a Polyethylene (PE) stretch film stabilizes the lightweight structure during the shipment. Usually, a stretch wrapping machine applies this stretch film to the pallet. The objective of this study is to support packaging development with a method that predicts the result of the wrapping process, based on the mechanical characterization of the stretch film. This result is not only defined by the amount of stretch film, its spatial distribution on the pallet and its internal stresses that result in a containment force. More accurate, this contribution also considers the influence of the deformation history of the stretch film during the wrapping process. By focusing on similarities of stretch wrappers rather than on differences, the influence of generalized process parameters on stretch film mechanics and thereby on pallet stability can be determined experimentally. For a practical use, the predictive method is accumulated in an analytic model of the wrapping process that can be verified experimentally. This paves the way for experimental and numerical approaches regarding the optimization of pallet stability.

  11. Stretch-induced contraction in pulmonary arteries.

    PubMed

    Kulik, T J; Evans, J N; Gamble, W J

    1988-12-01

    Stretch stimulates contraction of systemic blood vessels, but the response has not been described in pulmonary vessels. To determine whether pulmonary arteries contract when stretched, isolated cylindrical segments of pulmonary arteries were suspended between two parallel wires, stretched, and the active force was generated in response to stretch measured. Eighty-nine percent of segments from small (in situ diameter less than 1,000 microns) feline pulmonary arteries contracted when stretched, and in 65% of these the magnitude of stretch was related to the magnitude of contraction. Large (in situ diameter greater than or equal to 1,000 microns) feline pulmonary arteries did not contract with stretch. Multiple, rapidly repeated stretches resulted in a diminution of active force development. Stretch-induced contraction required external Ca2+ and was abolished by diltiazem (10 microns), but it was not affected by phenoxybenzamine, phentolamine, diethylcarbamazine, or mechanical removal of endothelium. Indomethacin blunted but did not abolish stretch-induced contraction, an effect that may have been nonspecific. This study suggests that stretch can act, probably directly, on smooth muscle in small feline pulmonary arteries to elicit contraction and that it may be a determinant of pulmonary vascular tone. In addition, feline pulmonary arteries are suitable for the in vitro study of stretch-induced contraction.

  12. Short Durations of Static Stretching when Combined with Dynamic Stretching do not Impair Repeated Sprints and Agility

    PubMed Central

    Wong, Del P.; Chaouachi, Anis; Lau, Patrick W.C.; Behm, David G.

    2011-01-01

    This study aimed to compare the effect of different static stretching durations followed by dynamic stretching on repeated sprint ability (RSA) and change of direction (COD). Twenty-five participants performed the RSA and COD tests in a randomized order. After a 5 min aerobic warm up, participants performed one of the three static stretching protocols of 30 s, 60 s or 90 s total duration (3 stretches x 10 s, 20 s or 30 s). Three dynamic stretching exercises of 30 s duration were then performed (90 s total). Sit-and-reach flexibility tests were conducted before the aerobic warm up, after the combined static and dynamic stretching, and post- RSA/COD test. The duration of static stretching had a positive effect on flexibility with 36.3% and 85.6% greater sit-and-reach scores with the 60 s and 90 s static stretching conditions respectively than with the 30 s condition (p ≤ 0.001). However there were no significant differences in RSA and COD performance between the 3 stretching conditions. The lack of change in RSA and COD might be attributed to a counterbalancing of static and dynamic stretching effects. Furthermore, the short duration (≤ 90 s) static stretching may not have provided sufficient stimulus to elicit performance impairments. Key points The duration of combined static and dynamic stretching had a positive effect on flexibility with 36.3% and 85.6% greater sit and reach scores with the 60 s and 90 s static stretching conditions respectively than with the 30 s condition (p ≤ 0.001). No significant differences in RSA and COD between the 3 stretching conditions. The lack of change in RSA and COD might be attributed to a counterbalancing of static and dynamic stretching effects. The short duration (≤ 90 s) static stretching may not have provided sufficient stimulus to elicit performance impairments. PMID:24149890

  13. Short Durations of Static Stretching when Combined with Dynamic Stretching do not Impair Repeated Sprints and Agility.

    PubMed

    Wong, Del P; Chaouachi, Anis; Lau, Patrick W C; Behm, David G

    2011-01-01

    This study aimed to compare the effect of different static stretching durations followed by dynamic stretching on repeated sprint ability (RSA) and change of direction (COD). Twenty-five participants performed the RSA and COD tests in a randomized order. After a 5 min aerobic warm up, participants performed one of the three static stretching protocols of 30 s, 60 s or 90 s total duration (3 stretches x 10 s, 20 s or 30 s). Three dynamic stretching exercises of 30 s duration were then performed (90 s total). Sit-and-reach flexibility tests were conducted before the aerobic warm up, after the combined static and dynamic stretching, and post- RSA/COD test. The duration of static stretching had a positive effect on flexibility with 36.3% and 85.6% greater sit-and-reach scores with the 60 s and 90 s static stretching conditions respectively than with the 30 s condition (p ≤ 0.001). However there were no significant differences in RSA and COD performance between the 3 stretching conditions. The lack of change in RSA and COD might be attributed to a counterbalancing of static and dynamic stretching effects. Furthermore, the short duration (≤ 90 s) static stretching may not have provided sufficient stimulus to elicit performance impairments. Key pointsThe duration of combined static and dynamic stretching had a positive effect on flexibility with 36.3% and 85.6% greater sit and reach scores with the 60 s and 90 s static stretching conditions respectively than with the 30 s condition (p ≤ 0.001).No significant differences in RSA and COD between the 3 stretching conditions.The lack of change in RSA and COD might be attributed to a counterbalancing of static and dynamic stretching effects.The short duration (≤ 90 s) static stretching may not have provided sufficient stimulus to elicit performance impairments.

  14. Retosiban Prevents Stretch-Induced Human Myometrial Contractility and Delays Labor in Cynomolgus Monkeys.

    PubMed

    Aye, Irving L M H; Moraitis, Alexandros A; Stanislaus, Dinesh; Charnock-Jones, D Stephen; Smith, Gordon C S

    2018-03-01

    Stretch of the myometrium promotes its contractility and is believed to contribute to the control of parturition at term and to the increased risk of preterm birth in multiple pregnancies. To determine the effects of the putative oxytocin receptor (OTR) inverse agonist retosiban on (1) the contractility of human myometrial explants and (2) labor in nonhuman primates. Human myometrial biopsies were obtained at planned term cesarean, and explants were exposed to stretch in the presence and absence of a range of drugs, including retosiban. The in vivo effects of retosiban were determined in cynomolgus monkeys. Prolonged mechanical stretch promoted myometrial extracellular signal-regulated kinase (ERK)1/2 phosphorylation. Moreover, stretch-induced stimulation of myometrial contractility was prevented by ERK1/2 inhibitors. Retosiban (10 nM) prevented stretch-induced stimulation of myometrial contractility and phosphorylation of ERK1/2. Moreover, the inhibitory effect of retosiban on stretch-induced ERK1/2 phosphorylation was prevented by coincubation with a 100-fold excess of a peptide OTR antagonist, atosiban. Compared with vehicle-treated cynomolgus monkeys, treatment with oral retosiban (100 to 150 days of gestational age) reduced the risk of spontaneous delivery (hazard ratio = 0.07, 95% confidence interval 0.01 to 0.60, P = 0.015). The OTR acts as a uterine mechanosensor, whereby stretch increases myometrial contractility through agonist-free activation of the OTR. Retosiban prevents this through inverse agonism of the OTR and, in vivo, reduced the likelihood of spontaneous labor in nonhuman primates. We hypothesize that retosiban may be an effective preventative treatment of preterm birth in high-risk multiple pregnancies, an area of unmet clinical need.

  15. Innate scavenger receptor-A regulates adaptive T helper cell responses to pathogen infection

    PubMed Central

    Xu, Zhipeng; Xu, Lei; Li, Wei; Jin, Xin; Song, Xian; Chen, Xiaojun; Zhu, Jifeng; Zhou, Sha; Li, Yong; Zhang, Weiwei; Dong, Xiaoxiao; Yang, Xiaowei; Liu, Feng; Bai, Hui; Chen, Qi; Su, Chuan

    2017-01-01

    The pattern recognition receptor (PRR) scavenger receptor class A (SR-A) has an important function in the pathogenesis of non-infectious diseases and in innate immune responses to pathogen infections. However, little is known about the role of SR-A in the host adaptive immune responses to pathogen infection. Here we show with mouse models of helminth Schistosoma japonicum infection and heat-inactivated Mycobacterium tuberculosis stimulation that SR-A is regulated by pathogens and suppresses IRF5 nuclear translocation by direct interaction. Reduced abundance of nuclear IRF5 shifts macrophage polarization from M1 towards M2, which subsequently switches T-helper responses from type 1 to type 2. Our study identifies a role for SR-A as an innate PRR in regulating adaptive immune responses. PMID:28695899

  16. Reduced IL-10 production in fetal type II epithelial cells exposed to mechanical stretch is mediated via activation of IL-6-SOCS3 signaling pathway.

    PubMed

    Hokenson, Michael A; Wang, Yulian; Hawwa, Renda L; Huang, Zheping; Sharma, Surendra; Sanchez-Esteban, Juan

    2013-01-01

    An imbalance between pro-inflammatory and anti-inflammatory cytokines is a key factor in the lung injury of premature infants exposed to mechanical ventilation. Previous studies have shown that lung cells exposed to stretch produces reduced amounts of the anti-inflammatory cytokine IL-10. The objective of these studies was to analyze the signaling mechanisms responsible for the decreased IL-10 production in fetal type II cells exposed to mechanical stretch. Fetal mouse type II epithelial cells isolated at embryonic day 18 were exposed to 20% stretch to simulate lung injury. We show that IL-10 receptor gene expression increased with gestational age. Mechanical stretch decreased not only IL-10 receptor gene expression but also IL-10 secretion. In contrast, mechanical stretch increased release of IL-6. We then investigated IL-10 signaling pathway-associated proteins and found that in wild-type cells, mechanical stretch decreased activation of JAK1 and TYK2 and increased STAT3 and SOCS3 activation. However, opposite effects were found in cells isolated from IL-10 knockout mice. Reduction in IL-6 secretion by stretch was observed in cells isolated from IL-10 null mice. To support the idea that stretch-induced SOCS3 expression via IL-6 leads to reduced IL-10 expression, siRNA-mediated inhibition of SOCS3 restored IL-10 secretion in cells exposed to stretch and decreased IL-6 secretion. Taken together, these studies suggest that the inhibitory effect of mechanical stretch on IL-10 secretion is mediated via activation of IL-6-STAT3-SOCS3 signaling pathway. SOCS3 could be a therapeutic target to increase IL-10 production in lung cells exposed to mechanical injury.

  17. The Regularity of Sustained Firing Reveals Two Populations of Slowly Adapting Touch Receptors in Mouse Hairy Skin

    PubMed Central

    Wellnitz, Scott A.; Lesniak, Daine R.; Gerling, Gregory J.

    2010-01-01

    Touch is initiated by diverse somatosensory afferents that innervate the skin. The ability to manipulate and classify receptor subtypes is prerequisite for elucidating sensory mechanisms. Merkel cell–neurite complexes, which distinguish shapes and textures, are experimentally tractable mammalian touch receptors that mediate slowly adapting type I (SAI) responses. The assessment of SAI function in mutant mice has been hindered because previous studies did not distinguish SAI responses from slowly adapting type II (SAII) responses, which are thought to arise from different end organs, such as Ruffini endings. Thus we sought methods to discriminate these afferent types. We developed an epidermis-up ex vivo skin–nerve chamber to record action potentials from afferents while imaging Merkel cells in intact receptive fields. Using model-based cluster analysis, we found that two types of slowly adapting receptors were readily distinguished based on the regularity of touch-evoked firing patterns. We identified these clusters as SAI (coefficient of variation = 0.78 ± 0.09) and SAII responses (0.21 ± 0.09). The identity of SAI afferents was confirmed by recording from transgenic mice with green fluorescent protein–expressing Merkel cells. SAI receptive fields always contained fluorescent Merkel cells (n = 10), whereas SAII receptive fields lacked these cells (n = 5). Consistent with reports from other vertebrates, mouse SAI and SAII responses arise from afferents exhibiting similar conduction velocities, receptive field sizes, mechanical thresholds, and firing rates. These results demonstrate that mice, like other vertebrates, have two classes of slowly adapting light-touch receptors, identify a simple method to distinguish these populations, and extend the utility of skin–nerve recordings for genetic dissection of touch receptor mechanisms. PMID:20393068

  18. Reduced IL-10 Production in Fetal Type II Epithelial Cells Exposed to Mechanical Stretch Is Mediated via Activation of IL-6-SOCS3 Signaling Pathway

    PubMed Central

    Hawwa, Renda L.; Huang, Zheping; Sharma, Surendra; Sanchez-Esteban, Juan

    2013-01-01

    An imbalance between pro-inflammatory and anti-inflammatory cytokines is a key factor in the lung injury of premature infants exposed to mechanical ventilation. Previous studies have shown that lung cells exposed to stretch produces reduced amounts of the anti-inflammatory cytokine IL-10. The objective of these studies was to analyze the signaling mechanisms responsible for the decreased IL-10 production in fetal type II cells exposed to mechanical stretch. Fetal mouse type II epithelial cells isolated at embryonic day 18 were exposed to 20% stretch to simulate lung injury. We show that IL-10 receptor gene expression increased with gestational age. Mechanical stretch decreased not only IL-10 receptor gene expression but also IL-10 secretion. In contrast, mechanical stretch increased release of IL-6. We then investigated IL-10 signaling pathway-associated proteins and found that in wild-type cells, mechanical stretch decreased activation of JAK1 and TYK2 and increased STAT3 and SOCS3 activation. However, opposite effects were found in cells isolated from IL-10 knockout mice. Reduction in IL-6 secretion by stretch was observed in cells isolated from IL-10 null mice. To support the idea that stretch-induced SOCS3 expression via IL-6 leads to reduced IL-10 expression, siRNA-mediated inhibition of SOCS3 restored IL-10 secretion in cells exposed to stretch and decreased IL-6 secretion. Taken together, these studies suggest that the inhibitory effect of mechanical stretch on IL-10 secretion is mediated via activation of IL-6-STAT3-SOCS3 signaling pathway. SOCS3 could be a therapeutic target to increase IL-10 production in lung cells exposed to mechanical injury. PMID:23527226

  19. Hamstring Stiffness Returns More Rapidly After Static Stretching Than Range of Motion, Stretch Tolerance, and Isometric Peak Torque.

    PubMed

    Hatano, Genki; Suzuki, Shigeyuki; Matsuo, Shingo; Kataura, Satoshi; Yokoi, Kazuaki; Fukaya, Taizan; Fujiwara, Mitsuhiro; Asai, Yuji; Iwata, Masahiro

    2017-12-18

    Hamstring injuries are common, and lack of hamstring flexibility may predispose to injury. Static stretching increases range of motion (ROM) but also results in reduced muscle strength after stretching. The effects of stretching on the hamstring muscles and the duration of these effects remain unclear. To determine the effects of static stretching on the hamstrings and the duration of these effects. Randomized crossover study. University laboratory. Twenty-four healthy volunteers. We measured the torque-angle relationship (ROM, passive torque (PT) at the onset of pain, and passive stiffness) and isometric muscle force using an isokinetic dynamometer. After a 60-minute rest, the ROM of the dynamometer was set at maximum tolerable intensity; this position was maintained for 300 seconds while static passive torque (SPT) was measured continuously. We remeasured the torque-angle relationship and isometric muscle force after rest periods of 10, 20, and 30 minutes. Change in SPT during stretching; changes in ROM, PT at the onset of pain, passive stiffness, and isometric muscle force before stretching compared with 10, 20, and 30 minutes after stretching. SPT decreased significantly during stretching. Passive stiffness decreased significantly 10 and 20 minutes after stretching, but there was no significant pre- vs. post-stretching difference after 30 minutes. PT at the onset of pain and ROM increased significantly after stretching at all rest intervals, while isometric muscle force decreased significantly after all rest intervals. The effect of static stretching on passive stiffness of the hamstrings was not maintained as long as the changes in ROM, stretch tolerance, and isometric muscle force. Therefore, frequent stretching is necessary to improve the viscoelasticity of the muscle-tendon unit. Muscle force was decreased for 30 minutes after stretching; this should be considered prior to activities requiring maximal muscle strength.

  20. Acute effects of stretching exercise on the soleus muscle of female aged rats.

    PubMed

    Zotz, Talita Gnoato; Capriglione, Luiz Guilherme A; Zotz, Rafael; Noronha, Lucia; Viola De Azevedo, Marina Louise; Fiuza Martins, Hilana Rickli; Silveira Gomes, Anna Raquel

    2016-01-01

    It has been shown that stretching exercises can improve the flexibility and independence of the elderly. However, although these exercises commonly constitute training programs, the morphological adaptations induced by stretching exercises in aged skeletal muscle are still unclear. To assess the acute effects of passive mechanical static stretching on the morphology, sarcomerogenesis and modulation of important components of the extracellular matrix of the soleus muscle of aged female rats. Fifteen old female rats with 26 months were divided into two groups: stretching (n=8, SG) and control (n=7, CG): The stretching protocol consisted of 4 repetitions each of 1 min with 30s interval between sets. Stretching was performed on the left soleus muscle, 3 times a week for 1 week. After three sessions, the rats were anesthetized to remove the left soleus muscle, and then euthanized. The following analyses were carried out: muscle fiber cross-sectional area and serial sarcomere number; immunohistochemistry for the quantification of collagen I, III and TGFβ-1. a decrease in muscle fiber cross-sectional area of the SG was observed when compared to the CG (p=0.0001, Kruskal-Wallis); the percentage of type I collagen was significantly lower in the SG when compared to the CG (p=0.01, Kruskal-Wallis), as well as the percentage of TGFβ-1 (p=0.04, Kruskal-Wallis); collagen III was significantly higher in the SG than in the CG (7.06±6.88% vs 4.92±5.30%, p=0.01, Kruskal-Wallis). Although the acute stretching induced muscle hypotrophy, an antifibrotic action was detected. Copyright © 2015 Elsevier GmbH. All rights reserved.

  1. The differential role of motor cortex in stretch reflex modulation induced by changes in environmental mechanics and verbal instruction.

    PubMed

    Shemmell, Jonathan; An, Je Hi; Perreault, Eric J

    2009-10-21

    The motor cortex assumes an increasingly important role in higher mammals relative to that in lower mammals. This is true to such an extent that the human motor cortex is deeply involved in reflex regulation and it is common to speak of "transcortical reflex loops." Such loops appear to add flexibility to the human stretch reflex, once considered to be immutable, allowing it to adapt across a range of functional tasks. However, the purpose of this adaptation remains unclear. A common proposal is that stretch reflexes contribute to the regulation of limb stability; increased reflex sensitivity during tasks performed in unstable environments supports this hypothesis. Alternatively, before movement onset, stretch reflexes can assist an imposed stretch, opposite to what would be expected from a stabilizing response. Here we show that stretch reflex modulation in tasks that require changes in limb stability is mediated by motor cortical pathways, and that these differ from pathways contributing to reflex modulation that depend on how the subject is instructed to react to an imposed perturbation. By timing muscle stretches such that the modulated portion of the reflex occurred within a cortical silent period induced by transcranial magnetic stimulation, we abolished the increase in reflex sensitivity observed when individuals stabilized arm posture within a compliant environment. Conversely, reflex modulation caused by altered task instruction was unaffected by cortical silence. These results demonstrate that task-dependent changes in reflex function can be mediated through multiple neural pathways and that these pathways have task-specific roles.

  2. Stretch-activated TRPV2 channels: Role in mediating cardiopathies.

    PubMed

    Aguettaz, Elizabeth; Bois, Patrick; Cognard, Christian; Sebille, Stéphane

    2017-11-01

    Transient receptor potential vanilloid type 2, TRPV2, is a calcium-permeable cation channel belonging to the TRPV channel family. Although this channel has been first characterized as a noxious heat sensor, its mechanosensor property recently gained importance in various physiological functions. TRPV2 has been described as a stretch-mediated channel and a regulator of calcium homeostasis in several cell types and has been shown to be involved in the stretch-dependent responses in cardiomyocytes. Hence, several studies in the last years support the idea that TRPV2 play a key role in the function and structure of the heart, being involved in the cardiac compensatory mechanisms in response to pathologic or exercise-induced stress. We present here an overview of the current literature and concepts of TRPV2 channels involvement (i) in the mechanical coupling mechanisms in heart and (ii) in the mechanisms that lead to cardiomyopathies. All these studies lead us to think that TRPV2 may also be an important cardiac drug target based on its major physiological roles in heart. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Peroneus longus stretch reflex amplitude increases after ankle brace application

    PubMed Central

    Cordova, M; Ingersoll, C

    2003-01-01

    Background: The use of external ankle support is widespread throughout sports medicine. However, the application of ankle bracing to a healthy ankle over a long period has been scrutinised because of possible neuromuscular adaptations resulting in diminished dynamic support offered by the peroneus longus. Objective: To investigate the immediate and chronic effects of ankle brace application on the amplitude of peroneus longus stretch reflex. Methods: Twenty physically active college students (mean (SD) age 23.6 (1.7) years, height 168.7 (8.4) cm, and mass 69.9 (12.0) kg) who had been free from lower extremity pathology for the 12 months preceding the study served as subjects. None had been involved in a strength training or conditioning programme in the six months preceding the study. A 3 x 3 x 2 (test condition x treatment condition x time) design with repeated measures on the first and third factor was used. The peroneus longus stretch reflex (% of maximum amplitude) during sudden foot inversion was evaluated under three ankle brace conditions (control, lace up, and semi-rigid) before and after eight weeks of ankle brace use. Results: A 3 x 3 x 2 repeated measures analysis of variance showed that peroneus longus stretch reflex amplitude increased immediately after application of a lace up brace (67.1 (4.4)) compared with the semi-rigid (57.9 (4.3)) and control (59.0 (5.2)) conditions (p<0.05). Peroneus longus stretch reflex also increased after eight weeks of use of the semi-rigid brace compared with the lace up and control conditions (p<0.05). Conclusions: Initial application of a lace up style ankle brace and chronic use of a semi-rigid brace facilitates the amplitude of the peroneus longus stretch reflex. It appears that initial and long term ankle brace use does not diminish the magnitude of this stretch reflex in the healthy ankle. PMID:12782553

  4. High-Pressure Balloon-Assisted Stretching of the Coracohumeral Ligament to Determine the Optimal Stretching Positions: A Cadaveric Study.

    PubMed

    Baek, Sora; Lee, Kyu Jin; Kim, Keewon; Han, Seung-Ho; Lee, U-Young; Lee, Kun-Jai; Chung, Sun Gun

    2016-10-01

    The coracohumeral ligament (CHL) is a thick capsular structure and markedly thickened when affected by adhesive capsulitis. Therapeutic stretching is the most commonly applied treatment for adhesive capsulitis, but optimal stretching postures for maximal therapeutic effects on the CHL have not been fully investigated. To investigate the most effective stretching direction for the CHL by measuring the stretching intensity in 5 different directions and to determine whether the stretching intervention resulted in loosening of the ligament by comparing the changes of CHL tightness before and after stretching. Biomechanical cadaver study. Academic institution cadaver laboratory. Nine fresh frozen cadaveric shoulders. A high-pressure balloon catheter inserted under the CHL and intraballoon pressure was measured, to evaluate CHL tightness without ligament damage as well as to augment and monitor stretching intensity. To find the optimal stretching direction, the glenohumeral joint was stretched from the neutral position into 5 directions sequentially under pressure-monitoring: flexion, extension [EX], external rotation [ER], EX+ER, and EX+ER+adduction [AD] directions. CHL tightness was determined by a surrogate parameter, the additional pressure created by the overlying CHL. The pressure increase (ΔP str ) by a specific directional stretch was considered as the stretching intensity. ΔP str by the 5 directions were mean (standard deviation) values of 0.03 ± 0.07 atm, 0.87 ± 1.31 atm, 1.13 ± 1.36 atm, 1.49 ± 1.32 atm, and 2.10 ± 1.70 atm, respectively, revealing the highest ΔP str by the EX+ER+AD stretch (P < .05). The balloon pressure by the overlying CHL was decreased from 0.45 ± 0.35 atm to 0.18 ± 0.14 atm (P = .012) before and after the stretching manipulation. EX+ER+AD of the glenohumeral joint resulted in the greatest increase in balloon pressure, implying that it could be the most effective stretching direction. A series of stretching manipulations

  5. Prophylactic stretching does not reduce cramp susceptibility.

    PubMed

    Miller, Kevin C; Harsen, James D; Long, Blaine C

    2018-03-01

    Some clinicians advocate stretching to prevent muscle cramps. It is unknown whether static or proprioceptive neuromuscular facilitation (PNF) stretching increases cramp threshold frequency (TF c ), a quantitative measure of cramp susceptibility. Fifteen individuals completed this randomized, counterbalanced, cross-over study. We measured passive hallux range of motion (ROM) and then performed 3 minutes of either static stretching, PNF stretching (hold-relax-with agonist contraction), or no stretching. ROM was reassessed and TF c was measured. PNF stretching increased hallux extension (pre-PNF 81 ± 11°, post-PNF 90 ± 10°; P < 0.05) but not hallux flexion (pre-PNF 40 ± 7°, post-PNF 40 ± 7°; P > 0.05). Static stretching increased hallux extension (pre-static 80 ± 11°, post-static 88 ± 9°; P < 0.05) but not hallux flexion (pre-static 38 ± 9°, post-static 39 ± 8°; P > 0.05). No ROM changes occurred with no stretching (P > 0.05). TF c was unaffected by stretching (no stretching 18 ± 7 Hz, PNF 16 ± 4 Hz, static 16 ± 5 Hz; P = 0.37). Static and PNF stretching increased hallux extension, but neither increased TF c . Acute stretching may not prevent muscle cramping. Muscle Nerve 57: 473-477, 2018. © 2017 Wiley Periodicals, Inc.

  6. Effects of egg-adaptation on receptor-binding and antigenic properties of recent influenza A (H3N2) vaccine viruses.

    PubMed

    Parker, Lauren; Wharton, Stephen A; Martin, Stephen R; Cross, Karen; Lin, Yipu; Liu, Yan; Feizi, Ten; Daniels, Rodney S; McCauley, John W

    2016-06-01

    Influenza A virus (subtype H3N2) causes seasonal human influenza and is included as a component of influenza vaccines. The majority of vaccine viruses are isolated and propagated in eggs, which commonly results in amino acid substitutions in the haemagglutinin (HA) glycoprotein. These substitutions can affect virus receptor-binding and alter virus antigenicity, thereby, obfuscating the choice of egg-propagated viruses for development into candidate vaccine viruses. To evaluate the effects of egg-adaptive substitutions seen in H3N2 vaccine viruses on sialic acid receptor-binding, we carried out quantitative measurement of virus receptor-binding using surface biolayer interferometry with haemagglutination inhibition (HI) assays to correlate changes in receptor avidity with antigenic properties. Included in these studies was a panel of H3N2 viruses generated by reverse genetics containing substitutions seen in recent egg-propagated vaccine viruses and corresponding cell culture-propagated wild-type viruses. These assays provide a quantitative approach to investigating the importance of individual amino acid substitutions in influenza receptor-binding. Results show that viruses with egg-adaptive HA substitutions R156Q, S219Y, and I226N, have increased binding avidity to α2,3-linked receptor-analogues and decreased binding avidity to α2,6-linked receptor-analogues. No measurable binding was detected for the viruses with amino acid substitution combination 156Q+219Y and receptor-binding increased in viruses where egg-adaptation mutations were introduced into cell culture-propagated virus. Substitutions at positions 156 and 190 appeared to be primarily responsible for low reactivity in HI assays with post-infection ferret antisera raised against 2012-2013 season H3N2 viruses. Egg-adaptive substitutions at position 186 caused substantial differences in binding avidity with an insignificant effect on antigenicity.

  7. Gab-family adapter molecules in signal transduction of cytokine and growth factor receptors, and T and B cell antigen receptors.

    PubMed

    Hibi, M; Hirano, T

    2000-04-01

    Gab1 and Gab2 (Grb2 associated binder 1 and 2) are scaffolding adapter molecules that display sequence similarity with Drosophila DOS (daughter of sevenless), which is a potential substrate for the protein tyrosine phosphatase, Corkscrew, Both Gab1 and Gab2, like DOS, have a pleckstrin homology domain and potential binding sites for SH2 and SH3 domains. Gab1 and Gab2 are phosphorylated on tyrosine upon the stimulation of various cytokines, growth factors, and antigen receptors, and interact with signaling molecules, such as Grb2, SHP-2, and PI-3 kinase. Overexpression of Gab1 or Gab2 mimics or enhances growth factor or cytokine-mediated biological processes and activates ERK MAP kinase. These data imply that Gab1 and Gab2 act downstream of a broad range of cytokine and growth factor receptors, as well as T and B antigen receptors, and link these receptors to ERK MAP kinase and biological actions.

  8. In situ longitudinal pre-stretch in the human femoropopliteal artery.

    PubMed

    Kamenskiy, Alexey; Seas, Andreas; Bowen, Grant; Deegan, Paul; Desyatova, Anastasia; Bohlim, Nick; Poulson, William; MacTaggart, Jason

    2016-03-01

    In situ longitudinal (axial) pre-stretch (LPS) plays a fundamental role in the mechanics of the femoropopliteal artery (FPA). It conserves energy during pulsation and prevents buckling of the artery during limb movement. We investigated how LPS is affected by demographics and risk factors, and how these patient characteristics associate with the structural and physiologic features of the FPA. LPS was measured in n=148 fresh human FPAs (14-80 years old). Mechanical properties were characterized with biaxial extension and histopathological characteristics were quantified with Verhoeff-Van Gieson Staining. Constitutive modeling was used to calculate physiological stresses and stretches which were then analyzed in the context of demographics, risk factors and structural characteristics. Age had the strongest negative effect (r=-0.812, p<0.01) on LPS and could alone explain 66% of LPS variability. Male gender, higher body mass index, hypertension, diabetes, coronary artery disease, dyslipidemia and tobacco use had negative effects on LPS, but only the effect of tobacco was not associated with aging. FPAs with less pre-stretch had thicker medial layers, but thinner intramural elastic fibers with less dense and more fragmented external elastic laminae. Elastin degradation was associated with decreased physiological tethering force and longitudinal stress, while circumferential stress remained constant. FPA wall pathology was negatively associated with LPS (r=-0.553, p<0.01), but the effect was due primarily to aging. LPS in the FPA may serve as an energy reserve for adaptive remodeling. Reduction of LPS due to degradation and fragmentation of intramural longitudinal elastin during aging can be accelerated in tobacco users. This work studies in situ longitudinal pre-stretch (LPS) in the human femoropopliteal artery. LPS has a fundamental role in arterial mechanics, but is rather poorly studied due to lack of direct in vivo measurement method. We have investigated LPS in

  9. Olfactory Receptor Subgenomes Linked with Broad Ecological Adaptations in Sauropsida.

    PubMed

    Khan, Imran; Yang, Zhikai; Maldonado, Emanuel; Li, Cai; Zhang, Guojie; Gilbert, M Thomas P; Jarvis, Erich D; O'Brien, Stephen J; Johnson, Warren E; Antunes, Agostinho

    2015-11-01

    Olfactory receptors (ORs) govern a prime sensory function. Extant birds have distinct olfactory abilities, but the molecular mechanisms underlining diversification and specialization remain mostly unknown. We explored OR diversity in 48 phylogenetic and ecologically diverse birds and 2 reptiles (alligator and green sea turtle). OR subgenomes showed species- and lineage-specific variation related with ecological requirements. Overall 1,953 OR genes were identified in reptiles and 16,503 in birds. The two reptiles had larger OR gene repertoires (989 and 964 genes, respectively) than birds (182-688 genes). Overall, birds had more pseudogenes (7,855) than intact genes (1,944). The alligator had significantly more functional genes than sea turtle, likely because of distinct foraging habits. We found rapid species-specific expansion and positive selection in OR14 (detects hydrophobic compounds) in birds and in OR51 and OR52 (detect hydrophilic compounds) in sea turtle, suggestive of terrestrial and aquatic adaptations, respectively. Ecological partitioning among birds of prey, water birds, land birds, and vocal learners showed that diverse ecological factors determined olfactory ability and influenced corresponding olfactory-receptor subgenome. OR5/8/9 was expanded in predatory birds and alligator, suggesting adaptive specialization for carnivory. OR families 2/13, 51, and 52 were correlated with aquatic adaptations (water birds), OR families 6 and 10 were more pronounced in vocal-learning birds, whereas most specialized land birds had an expanded OR family 14. Olfactory bulb ratio (OBR) and OR gene repertoire were correlated. Birds that forage for prey (carnivores/piscivores) had relatively complex OBR and OR gene repertoires compared with modern birds, including passerines, perhaps due to highly developed cognitive capacities facilitating foraging innovations. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and

  10. The differential role of motor cortex in the stretch reflex modulation induced by changes in environmental mechanics and verbal instruction

    PubMed Central

    Shemmell, Jonathan; An, Je Hi; Perreault, Eric J.

    2009-01-01

    The motor cortex assumes an increasingly important role in higher mammals relative to that in lower mammals. This is true to such an extent that the human motor cortex is deeply involved in reflex regulation and it is common to speak of “transcortical reflex loops”. Such loops appear to add flexibility to the human stretch reflex, once considered to be immutable, allowing it to adapt across a range of functional tasks. However, the purpose of this adaptation remains unclear. A common proposal is that stretch reflexes contribute to the regulation of limb stability; increased reflex sensitivity during tasks performed in unstable environments supports this hypothesis. Alternatively, prior to movement onset, stretch reflexes can assist an imposed stretch, opposite to what would be expected from a stabilizing response. Here we show that stretch reflex modulation in tasks that require changes in limb stability is mediated by motor cortical pathways, and that these differ from pathways contributing to reflex modulation that depends on how the subject is instructed to react to an imposed perturbation. By timing muscle stretches such that the modulated portion of the reflex occurred within a cortical silent period induced by transcranial magnetic stimulation, we abolished the increase in reflex sensitivity observed when individuals stabilized arm posture within a compliant environment. Conversely, reflex modulation caused by altered task instruction was unaffected by cortical silence. These results demonstrate that task-dependent changes in reflex function can be mediated through multiple neural pathways and that these pathways have task specific roles. PMID:19846713

  11. M1/70 attenuates blood-borne neutrophil oxidants, activation, and myofiber damage following stretch injury.

    PubMed

    Brickson, S; Ji, L L; Schell, K; Olabisi, R; St Pierre Schneider, B; Best, T M

    2003-09-01

    The purpose of this study was to determine the role of the CD11b-dependent respiratory burst in neutrophil oxidant generation and activation, interleukin-8 (IL-8) production, and myofiber damage after muscle stretch injury by using the monoclonal antibody M1/70 to block this pathway. Twelve male New Zealand White rabbits were randomly assigned to a treatment group: M1/70 (n = 6), IgG isotype control (n = 3), or saline control (n = 3). After intravenous injection of the assigned agent under gas anesthesia, a standardized single-stretch injury was created in the right tibialis anterior, whereas the left tibialis anterior underwent a sham surgery. Blood-borne neutrophil oxidant generation and CD11b receptor density and plasma IL-8 levels were measured pre- and 24 h postinjury. Damage was assessed histologically at the hematoma site by counting torn myofibers. M1/70 group demonstrated decreased blood-borne neutrophil oxidant generation (P < 0.05) and CD11b receptor density (P < 0.05), an increase in plasma IL-8 concentration (P < 0.01), and less torn myofibers (P < 0.01) compared with IgG isotype or saline control groups. These data indicate that 1). CD11b-dependent respiratory burst is a major source of oxidants produced by the neutrophil, and that treatment with M1/70 2). attenuates neutrophil activation status, 3). increases plasma IL-8 concentration, and 4). minimizes myofiber damage 24 h postmuscle stretch injury.

  12. Stretching: Does It Help?

    ERIC Educational Resources Information Center

    Vardiman, Phillip; Carrand, David; Gallagher, Philip M.

    2010-01-01

    Stretching prior to activity is universally accepted as an important way to improve performance and help prevent injury. Likewise, limited flexibility has been shown to decrease functional ability and predispose a person to injuries. Although this is commonly accepted, appropriate stretching for children and adolescents involved with sports and…

  13. Status of stretched-membrane heliostats

    NASA Astrophysics Data System (ADS)

    Alpert, D. J.; Houser, R. M.; Heckes, A. A.

    1990-01-01

    Since the early 1980s, Sandia National Laboratories has been developing stretched-membrane heliostats for solar central receiver power plants. They differ from conventional glass-mirror heliostats in that the optical surface is a stretched membrane -- a thin metal foil stretched over both sides of a large diameter ring. The reflective surface is provided by either a silvered-acrylic film or thin glass mirrors attached to the front membrane. Heliostats with single 14 m diameter (150 sq meter) stretched-membrane reflectors have been designed. Because of their simplicity and light weight, stretched-membrane heliostats are expected to cost up to one-third less than conventional glass-mirror designs. Two generations of 50 sq meter prototype stretched-membrane mirror modules have been built and evaluated at Sandia's Central Receiver Test Facility in Albuquerque, NM. They demonstrated that the optical performance of membrane heliostats rivals that of glass-mirror heliostats. The durability of the silvered-acrylic reflective film has improved so that a lifetime of at least 5 years is likely; methods of replacing the film in the field are being investigated. Sandia recently initiated the final phase of development: the design of fully integrated, market-ready heliostats. Field tests of these heliostats are planned to begin in FY90.

  14. STRETCHING IMPACTS INFLAMMATION RESOLUTION IN CONNECTIVE TISSUE

    PubMed Central

    Berrueta, Lisbeth; Muskaj, Igla; Olenich, Sara; Butler, Taylor; Badger, Gary J.; Colas, Romain A.; Spite, Matthew; Serhan, Charles N.; Langevin, Helene M.

    2016-01-01

    Acute inflammation is accompanied from its outset by the release of specialized pro-resolving mediators (SPMs), including resolvins, that orchestrate the resolution of local inflammation. We showed earlier that, in rats with subcutaneous inflammation of the back induced by carrageenan, stretching for 10 minutes twice daily reduced inflammation and improved pain, two weeks after carrageenan injection. In this study, we hypothesized that stretching of connective tissue activates local pro-resolving mechanisms within the tissue in the acute phase of inflammation. In rats injected with carrageenan and randomized to stretch vs. no stretch for 48 hours, stretching reduced inflammatory lesion thickness and neutrophil count, and increased resolvin (RvD1) concentrations within lesions. Furthermore, subcutaneous resolvin injection mimicked the effect of stretching. In ex vivo experiments, stretching of connective tissue reduced the migration of neutrophils and increased tissue RvD1 concentration. These results demonstrate a direct mechanical impact of stretching on inflammation-regulation mechanisms within connective tissue. PMID:26588184

  15. Regulated endocytosis of opioid receptors: cellular mechanisms and proposed roles in physiological adaptation to opiate drugs.

    PubMed

    von Zastrow, Mark; Svingos, Adena; Haberstock-Debic, Helena; Evans, Chris

    2003-06-01

    Opiate drugs such as morphine and heroin are among the most effective analgesics known. Prolonged or repeated administration of opiates produces adaptive changes in the nervous system that lead to reduced drug potency or efficacy (tolerance), as well as physiological withdrawal symptoms and behavioral manifestations such as craving when drug use is terminated (dependence). These adaptations limit the therapeutic utility of opiate drugs, particularly in the treatment of chronically painful conditions, and are thought to contribute to the highly addictive nature of opiates. For many years it has been proposed that physiological tolerance to opiate drugs is associated with a modification of the number or functional activity of opioid receptors in specific neurons. We now understand certain mechanisms of opioid receptor desensitization and endocytosis in considerable detail. However, the functional roles that these mechanisms play in the complex physiological adaptation of the intact nervous system to opiates are only beginning to be explored.

  16. Immediate Effects of Proprioceptive Neuromuscular Facilitation Stretching Programs Compared With Passive Stretching Programs for Hamstring Flexibility: A Critically Appraised Topic.

    PubMed

    Hill, Kristian J; Robinson, Kendall P; Cuchna, Jennifer W; Hoch, Matthew C

    2017-11-01

    Clinical Scenario: Increasing hamstring flexibility through clinical stretching interventions may be an effective means to prevent hamstring injuries. However the most effective method to increase hamstring flexibility has yet to be determined. For a healthy individual, are proprioceptive neuromuscular facilitation (PNF) stretching programs more effective in immediately improving hamstring flexibility when compared with static stretching programs? Summary of Key Findings: A thorough literature search returned 195 possible studies; 5 studies met the inclusion criteria and were included. Current evidence supports the use of PNF stretching or static stretching programs for increasing hamstring flexibility. However, neither program demonstrated superior effectiveness when examining immediate increases in hamstring flexibility. Clinical Bottom Line: There were consistent findings from multiple low-quality studies that indicate there is no difference in the immediate improvements in hamstring flexibility when comparing PNF stretching programs to static stretching programs in physically active adults. Strength of Recommendation: Grade B evidence exists that PNF and static stretching programs equally increase hamstring flexibility immediately following the stretching program.

  17. Stretch Band Exercise Program

    ERIC Educational Resources Information Center

    Skirka, Nicholas; Hume, Donald

    2007-01-01

    This article discusses how to use stretch bands for improving total body fitness and quality of life. A stretch band exercise program offers a versatile and inexpensive option to motivate participants to exercise. The authors suggest practical exercises that can be used in physical education to improve or maintain muscular strength and endurance,…

  18. Measurement of the residual stress distribution in a thick pre-stretched aluminum plate

    NASA Astrophysics Data System (ADS)

    Yuan, S. X.; Li, X. Q.; M, S.; Zhang, Y. C.; Gong, Y. D.

    2008-12-01

    Thick pre-stretched aluminum alloy plates are widely used in aircraft, while machining distortion caused by initial residual stress release in thick plates is a common and serious problem. To reduce the distortion, the residual stress distribution in thick plate must be measured. According to the characteristics of the thick pre-stretched aluminum alloy plate, based the elastic mechanical theory, this article deduces the modified layer-removal strain method adapting two different strain situations, which are caused by tensile and compressive stress. To validate this method, the residual stresses distribution along the thick direction of plate 2D70T351 is measured by this method, it is shown that the new method deduced in this paper is simple and accurate, and is very useful in engineering.

  19. Endovascular rescue method for undesirably stretched coil.

    PubMed

    Cho, Jae Hoon

    2014-10-01

    Undesirable detachment or stretching of coils within the parent artery during aneurysm embolization can be related with thrombus formation, which can be caused occlusion of parent artery or embolic event(s). To escape from this situation, several rescue methods have been reported. A case with undesirably stretched coil in which another rescue method was used, is presented. When the stretched coil is still located in the coil delivery microcatheter, the stretched coil can be removed safely using a snare and a handmade monorail microcatheter. After a snare is lodged in the handmade monorail microcatheter, the snare is introduced over the coil delivery micorcatheter and located in the distal part of the stretched coil. After then, the handmade monorail microcatheter captures the stretched coil and the snare as one unit. This technique using a handmade monorail microcatheter and a snare can be a good rescue modality for the undesirably stretched coil, still remained within the coil delivery microcatheter.

  20. Endovascular Rescue Method for Undesirably Stretched Coil

    PubMed Central

    2014-01-01

    Undesirable detachment or stretching of coils within the parent artery during aneurysm embolization can be related with thrombus formation, which can be caused occlusion of parent artery or embolic event(s). To escape from this situation, several rescue methods have been reported. A case with undesirably stretched coil in which another rescue method was used, is presented. When the stretched coil is still located in the coil delivery microcatheter, the stretched coil can be removed safely using a snare and a handmade monorail microcatheter. After a snare is lodged in the handmade monorail microcatheter, the snare is introduced over the coil delivery micorcatheter and located in the distal part of the stretched coil. After then, the handmade monorail microcatheter captures the stretched coil and the snare as one unit. This technique using a handmade monorail microcatheter and a snare can be a good rescue modality for the undesirably stretched coil, still remained within the coil delivery microcatheter. PMID:25371791

  1. A randomized controlled trial for the effect of passive stretching on measures of hamstring extensibility, passive stiffness, strength, and stretch tolerance.

    PubMed

    Marshall, Paul W M; Cashman, Anthony; Cheema, Birinder S

    2011-11-01

    To measure hamstring extensibility, stiffness, stretch tolerance, and strength following a 4-week passive stretching program. Randomized controlled trial. Twenty-two healthy participants were randomly assigned to either a 4-week stretching program consisting of 4 hamstring and hip stretches performed 5 times per week, or a non-stretching control group. Hamstring extensibility and stiffness were measured before and after training using the instrumented straight leg raise test (iSLR). Stretch tolerance was measured as the pain intensity (visual analog scale; VAS) elicited during the maximal stretch. Hamstring strength was measured using isokinetic dynamometry at 30 and 120° s(-1). Hamstring extensibility increased by 20.9% in the intervention group following 4 weeks of training (p<0.001; d=0.86). Passive stiffness was reduced by 31% in the intervention group (p<0.05; d=-0.89). Stretch tolerance VAS scores were not different between groups at either time point, and no changes were observed following training. There were no changes in hamstring concentric strength measured at 30 and 120° s(-1). Passive stretching increases hamstring extensibility and decreases passive stiffness, with no change in stretch tolerance defined by pain intensity during the stretch. Compared to previous research, the volume of stretching was higher in this study. The volume of prescribed stretching is important for eliciting the strong clinical effect observed in this study. Copyright © 2011 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  2. Anisotropic instability of a stretching film

    NASA Astrophysics Data System (ADS)

    Xu, Bingrui; Li, Minhao; Deng, Daosheng

    2017-11-01

    Instability of a thin liquid film, such as dewetting arising from Van der Waals force, has been well studied, and is typically characterized by formation of many droplets. Interestingly, a thin liquid film subjected to an applied stretching during a process of thermal drawing is evolved into an array of filaments, i.e., continuity is preserved along the direction of stretching while breakup occurs exclusively in the plane of cross section. Here, to understand this anisotropic instability, we build a physical model by considering both Van der Waals force and the effect of stretching. By using the linear instability analysis method and then performing a numerical calculation, we find that the growth rate of perturbations at the cross section is larger than that along the direction of stretching, resulting in the anisotropic instability of the stretching film. These results may provide theoretical guidance to achieve more diverse structures for nanotechnology.

  3. Manipulation of sensory input can improve stretching outcomes.

    PubMed

    Capobianco, Robyn A; Almuklass, Awad M; Enoka, Roger M

    2018-02-01

    The primary purpose of our study was to assess the influence of modulating sensory input with either transcutaneous electrical nerve stimulation (TENS) or self-massage with therapy balls on the maximal range of motion (ROM) about the ankle joint when stretching the calf muscles. We also investigated the influence of these two conditions on the force capacity and force control of plantar flexor muscles. Twenty healthy adults (25 ± 3 yr) performed three sessions of ankle plantar flexor stretching (three stretches of 30 s each): stretching alone (SS), stretching with concurrent TENS (TENS), and stretching after self-massage using therapy balls (SM). TENS was applied for 60 s prior to and during each stretch, and SM was performed for 60 s prior to each of the three stretches. Maximal voluntary contraction (MVC) torque and force steadiness at 20% MVC were recorded before and at 15 min after the final stretch. Ankle dorsiflexion ROM was assessed before, after, and at 5, 10, and 15 min after the last stretch. The increase in ROM was greater after SM (24%) than after SS (13%) and TENS (9%; p < .001). Maximal discomfort level (0-10 VAS) during stretching was similar for all conditions. MVC torque increased after SM only (p < .001, Cohen's D = 1.5): SM, 16%; SS, -1%; TENS, -3%. Force steadiness did not change. The sensory fibres that contribute to stretch tolerance were engaged by self-massage but not by TENS, resulting in greater increases in flexibility and MVC torque after self-massage.

  4. Hydraulic fracture during epithelial stretching

    NASA Astrophysics Data System (ADS)

    Casares, Laura; Vincent, Romaric; Zalvidea, Dobryna; Campillo, Noelia; Navajas, Daniel; Arroyo, Marino; Trepat, Xavier

    2015-03-01

    The origin of fracture in epithelial cell sheets subject to stretch is commonly attributed to excess tension in the cells’ cytoskeleton, in the plasma membrane, or in cell-cell contacts. Here, we demonstrate that for a variety of synthetic and physiological hydrogel substrates the formation of epithelial cracks is caused by tissue stretching independently of epithelial tension. We show that the origin of the cracks is hydraulic; they result from a transient pressure build-up in the substrate during stretch and compression manoeuvres. After pressure equilibration, cracks heal readily through actomyosin-dependent mechanisms. The observed phenomenology is captured by the theory of poroelasticity, which predicts the size and healing dynamics of epithelial cracks as a function of the stiffness, geometry and composition of the hydrogel substrate. Our findings demonstrate that epithelial integrity is determined in a tension-independent manner by the coupling between tissue stretching and matrix hydraulics.

  5. Hydraulic fracture during epithelial stretching

    PubMed Central

    Casares, Laura; Vincent, Romaric; Zalvidea, Dobryna; Campillo, Noelia; Navajas, Daniel; Arroyo, Marino; Trepat, Xavier

    2015-01-01

    The origin of fracture in epithelial cell sheets subject to stretch is commonly attributed to excess tension in the cells’ cytoskeleton, in the plasma membrane, or in cell-cell contacts. Here we demonstrate that for a variety of synthetic and physiological hydrogel substrates the formation of epithelial cracks is caused by tissue stretching independently of epithelial tension. We show that the origin of the cracks is hydraulic; they result from a transient pressure build-up in the substrate during stretch and compression maneuvers. After pressure equilibration cracks heal readily through actomyosin-dependent mechanisms. The observed phenomenology is captured by the theory of poroelasticity, which predicts the size and healing dynamics of epithelial cracks as a function of the stiffness, geometry and composition of the hydrogel substrate. Our findings demonstrate that epithelial integrity is determined in a tension-independent manner by the coupling between tissue stretching and matrix hydraulics. PMID:25664452

  6. Cardiovascular Responses to Skeletal Muscle Stretching: "Stretching" the Truth or a New Exercise Paradigm for Cardiovascular Medicine?

    PubMed

    Kruse, Nicholas T; Scheuermann, Barry W

    2017-12-01

    Stretching is commonly prescribed with the intended purpose of increasing range of motion, enhancing muscular coordination, and preventing prolonged immobilization induced by aging or a sedentary lifestyle. Emerging evidence suggests that acute or long-term stretching exercise may modulate a variety of cardiovascular responses. Specifically, at the onset of stretch, the mechanical deformation of the vascular bed coupled with stimulation of group III muscle afferent fibers initiates a cascade of events resulting in both peripheral vasodilation and a heart rate-driven increase in cardiac output, blood pressure, and muscle blood flow. This potential to increase shear stress and blood flow without the use of excessive muscle energy expenditure may hold important implications for future therapeutic vascular medicine and cardiac health. However, the idea that a cardiovascular component may be involved in human skeletal muscle stretching is relatively new. Therefore, the primary intent of this review is to highlight topics related to skeletal muscle stretching and cardiovascular regulation and function. The current evidence suggests that acute stretching causes a significant macro- and microcirculatory event that alters blood flow and the relationship between oxygen availability and oxygen utilization. These acute vascular changes if performed chronically may result in improved endothelial function, improved arterial blood vessel stiffness, and/or reduced blood pressure. Although several mechanisms have been postulated, an increased nitric oxide bioavailability has been highlighted as one promising candidate for the improvement in vessel function with stretching. Collectively, the evidence provided in this review suggests that stretching acutely or long term may serve as a novel and alternative low intensity therapeutic intervention capable of improving several parameters of vascular function.

  7. Incorporating spike-rate adaptation into a rate code in mathematical and biological neurons

    PubMed Central

    Ralston, Bridget N.; Flagg, Lucas Q.; Faggin, Eric

    2016-01-01

    For a slowly varying stimulus, the simplest relationship between a neuron's input and output is a rate code, in which the spike rate is a unique function of the stimulus at that instant. In the case of spike-rate adaptation, there is no unique relationship between input and output, because the spike rate at any time depends both on the instantaneous stimulus and on prior spiking (the “history”). To improve the decoding of spike trains produced by neurons that show spike-rate adaptation, we developed a simple scheme that incorporates “history” into a rate code. We utilized this rate-history code successfully to decode spike trains produced by 1) mathematical models of a neuron in which the mechanism for adaptation (IAHP) is specified, and 2) the gastropyloric receptor (GPR2), a stretch-sensitive neuron in the stomatogastric nervous system of the crab Cancer borealis, that exhibits long-lasting adaptation of unknown origin. Moreover, when we modified the spike rate either mathematically in a model system or by applying neuromodulatory agents to the experimental system, we found that changes in the rate-history code could be related to the biophysical mechanisms responsible for altering the spiking. PMID:26888106

  8. Central adaptation to repeated galvanic vestibular stimulation: implications for pre-flight astronaut training.

    PubMed

    Dilda, Valentina; Morris, Tiffany R; Yungher, Don A; MacDougall, Hamish G; Moore, Steven T

    2014-01-01

    Healthy subjects (N = 10) were exposed to 10-min cumulative pseudorandom bilateral bipolar Galvanic vestibular stimulation (GVS) on a weekly basis for 12 weeks (120 min total exposure). During each trial subjects performed computerized dynamic posturography and eye movements were measured using digital video-oculography. Follow up tests were conducted 6 weeks and 6 months after the 12-week adaptation period. Postural performance was significantly impaired during GVS at first exposure, but recovered to baseline over a period of 7-8 weeks (70-80 min GVS exposure). This postural recovery was maintained 6 months after adaptation. In contrast, the roll vestibulo-ocular reflex response to GVS was not attenuated by repeated exposure. This suggests that GVS adaptation did not occur at the vestibular end-organs or involve changes in low-level (brainstem-mediated) vestibulo-ocular or vestibulo-spinal reflexes. Faced with unreliable vestibular input, the cerebellum reweighted sensory input to emphasize veridical extra-vestibular information, such as somatosensation, vision and visceral stretch receptors, to regain postural function. After a period of recovery subjects exhibited dual adaption and the ability to rapidly switch between the perturbed (GVS) and natural vestibular state for up to 6 months.

  9. Iterated Stretching of Viscoelastic Jets

    NASA Technical Reports Server (NTRS)

    Chang, Hsueh-Chia; Demekhin, Evgeny A.; Kalaidin, Evgeny

    1999-01-01

    We examine, with asymptotic analysis and numerical simulation, the iterated stretching dynamics of FENE and Oldroyd-B jets of initial radius r(sub 0), shear viscosity nu, Weissenberg number We, retardation number S, and capillary number Ca. The usual Rayleigh instability stretches the local uniaxial extensional flow region near a minimum in jet radius into a primary filament of radius [Ca(1 - S)/ We](sup 1/2)r(sub 0) between two beads. The strain-rate within the filament remains constant while its radius (elastic stress) decreases (increases) exponentially in time with a long elastic relaxation time 3We(r(sup 2, sub 0)/nu). Instabilities convected from the bead relieve the tension at the necks during this slow elastic drainage and trigger a filament recoil. Secondary filaments then form at the necks from the resulting stretching. This iterated stretching is predicted to occur successively to generate high-generation filaments of radius r(sub n), (r(sub n)/r(sub 0)) = square root of 2[r(sub n-1)/r(sub 0)](sup 3/2) until finite-extensibility effects set in.

  10. Design of Warped Stretch Transform

    PubMed Central

    Mahjoubfar, Ata; Chen, Claire Lifan; Jalali, Bahram

    2015-01-01

    Time stretch dispersive Fourier transform enables real-time spectroscopy at the repetition rate of million scans per second. High-speed real-time instruments ranging from analog-to-digital converters to cameras and single-shot rare-phenomena capture equipment with record performance have been empowered by it. Its warped stretch variant, realized with nonlinear group delay dispersion, offers variable-rate spectral domain sampling, as well as the ability to engineer the time-bandwidth product of the signal’s envelope to match that of the data acquisition systems. To be able to reconstruct the signal with low loss, the spectrotemporal distribution of the signal spectrum needs to be sparse. Here, for the first time, we show how to design the kernel of the transform and specifically, the nonlinear group delay profile dictated by the signal sparsity. Such a kernel leads to smart stretching with nonuniform spectral resolution, having direct utility in improvement of data acquisition rate, real-time data compression, and enhancement of ultrafast data capture accuracy. We also discuss the application of warped stretch transform in spectrotemporal analysis of continuous-time signals. PMID:26602458

  11. Levator Ani Muscle Stretch Induced by Simulated Vaginal Birth

    PubMed Central

    Lien, Kuo-Cheng; Mooney, Brian; DeLancey, John O. L.; Ashton-Miller, James A.

    2005-01-01

    OBJECTIVE: To develop a three-dimensional computer model to predict levator ani muscle stretch during vaginal birth. METHODS: Serial magnetic resonance images from a healthy nulliparous 34-year-old woman, published anatomic data, and engineering graphics software were used to construct a structural model of the levator ani muscles along with related passive tissues. The model was used to quantify pelvic floor muscle stretch induced during the second stage of labor as a model fetal head progressively engaged and then stretched the iliococcygeus, pubococcygeus, and puborectalis muscles. RESULTS: The largest tissue strain reached a stretch ratio (tissue length under stretch/original tissue length) of 3.26 in medial pubococcygeus muscle, the shortest, most medial and ventral levator ani muscle. Regions of the ileococcygeus, pubococcygeus, and puborectalis muscles reached maximal stretch ratios of 2.73, 2.50, and 2.28, respectively. Tissue stretch ratios were proportional to fetal head size: For example, increasing fetal head diameter by 9% increased medial pubococcygeus stretch by the same amount. CONCLUSION: The medial pubococcygeus muscles undergo the largest stretch of any levator ani muscles during vaginal birth. They are therefore at the greatest risk for stretch-related injury. PMID:14704241

  12. Stretching Micropatterned Cells on a PDMS Membrane

    PubMed Central

    Carpi, Nicolas; Piel, Matthieu

    2014-01-01

    Mechanical forces exerted on cells and/or tissues play a major role in numerous processes. We have developed a device to stretch cells plated on a PolyDiMethylSiloxane (PDMS) membrane, compatible with imaging. This technique is reproducible and versatile. The PDMS membrane can be micropatterned in order to confine cells or tissues to a specific geometry. The first step is to print micropatterns onto the PDMS membrane with a deep UV technique. The PDMS membrane is then mounted on a mechanical stretcher. A chamber is bound on top of the membrane with biocompatible grease to allow gliding during the stretch. The cells are seeded and allowed to spread for several hours on the micropatterns. The sample can be stretched and unstretched multiple times with the use of a micrometric screw. It takes less than a minute to apply the stretch to its full extent (around 30%). The technique presented here does not include a motorized device, which is necessary for applying repeated stretch cycles quickly and/or computer controlled stretching, but this can be implemented. Stretching of cells or tissue can be of interest for questions related to cell forces, cell response to mechanical stress or tissue morphogenesis. This video presentation will show how to avoid typical problems that might arise when doing this type of seemingly simple experiment. PMID:24514571

  13. Unstructured and adaptive mesh generation for high Reynolds number viscous flows

    NASA Technical Reports Server (NTRS)

    Mavriplis, Dimitri J.

    1991-01-01

    A method for generating and adaptively refining a highly stretched unstructured mesh suitable for the computation of high-Reynolds-number viscous flows about arbitrary two-dimensional geometries was developed. The method is based on the Delaunay triangulation of a predetermined set of points and employs a local mapping in order to achieve the high stretching rates required in the boundary-layer and wake regions. The initial mesh-point distribution is determined in a geometry-adaptive manner which clusters points in regions of high curvature and sharp corners. Adaptive mesh refinement is achieved by adding new points in regions of large flow gradients, and locally retriangulating; thus, obviating the need for global mesh regeneration. Initial and adapted meshes about complex multi-element airfoil geometries are shown and compressible flow solutions are computed on these meshes.

  14. Positively Charged Residues at the Five-Fold Symmetry Axis of Cell Culture-Adapted Foot-and-Mouth Disease Virus Permit Novel Receptor Interactions

    PubMed Central

    Berryman, Stephen; Clark, Stuart; Kakker, Naresh K.; Silk, Rhiannon; Seago, Julian; Wadsworth, Jemma; Chamberlain, Kyle; Knowles, Nick J.

    2013-01-01

    Field isolates of foot-and-mouth disease virus (FMDV) have a restricted cell tropism which is limited by the need for certain RGD-dependent integrin receptors. In contrast, cell culture-adapted viruses use heparan sulfate (HS) or other unidentified molecules as receptors to initiate infection. Here, we report several novel findings resulting from cell culture adaptation of FMDV. In cell culture, a virus with the capsid of the A/Turkey/2/2006 field isolate gained the ability to infect CHO and HS-deficient CHO cells as a result of a single glutamine (Q)-to-lysine (K) substitution at VP1-110 (VP1-Q110K). Using site-directed mutagenesis, the introduction of lysine at this same site also resulted in an acquired ability to infect CHO cells by type O and Asia-1 FMDV. However, this ability appeared to require a second positively charged residue at VP1-109. CHO cells express two RGD-binding integrins (α5β1 and αvβ5) that, although not used by FMDV, have the potential to be used as receptors; however, viruses with the VP1-Q110K substitution did not use these integrins. In contrast, the VP1-Q110K substitution appeared to result in enhanced interactions with αvβ6, which allowed a virus with KGE in place of the normal RGD integrin-binding motif to use αvβ6 as a receptor. Thus, our results confirmed the existence of nonintegrin, non-HS receptors for FMDV on CHO cells and revealed a novel, non-RGD-dependent use of αvβ6 as a receptor. The introduction of lysine at VP1-110 may allow for cell culture adaptation of FMDV by design, which may prove useful for vaccine manufacture when cell culture adaptation proves intractable. PMID:23740982

  15. Frequency and peak stretch magnitude affect alveolar epithelial permeability.

    PubMed

    Cohen, T S; Cavanaugh, K J; Margulies, S S

    2008-10-01

    The present study measured stretch-induced changes in transepithelial permeability to uncharged tracers (1.5-5.5 A) using cultured monolayers of alveolar epithelial type-I like cells. Cultured alveolar epithelial cells were subjected to uniform cyclic (0, 0.25 and 1.0 Hz) biaxial stretch from 0% to 12, 25 or 37% change in surface area (DeltaSA) for 1 h. Significant changes in permeability of cell monolayers were observed when stretched from 0% to 37% DeltaSA at all frequencies, and from 0% to 25% DeltaSA only at high frequency (1 Hz), but not at all when stretched from 0% to 12% DeltaSA compared with unstretched controls. At stretch oscillation amplitudes of 25 and 37% DeltaSA, imposed at 1 Hz, tracer permeability increased compared with that at 0.25 Hz. Cells subjected to a single stretch cycle at 37% DeltaSA (0.25 Hz), to simulate a deep sigh, were not distinguishable from unstretched controls. Reducing stretch oscillation amplitude while maintaining a peak stretch of 37% DeltaSA (0.25 Hz) via the application of a simulated post-end-expiratory pressure did not protect barrier properties. In conclusion, peak stretch magnitude and stretch frequency were the primary determining factors for epithelial barrier dysfunction, as opposed to oscillation amplitude.

  16. CURRENT CONCEPTS IN MUSCLE STRETCHING FOR EXERCISE AND REHABILITATION

    PubMed Central

    2012-01-01

    Stretching is a common activity used by athletes, older adults, rehabilitation patients, and anyone participating in a fitness program. While the benefits of stretching are known, controversy remains about the best type of stretching for a particular goal or outcome. The purpose of this clinical commentary is to discuss the current concepts of muscle stretching interventions and summarize the evidence related to stretching as used in both exercise and rehabilitation. PMID:22319684

  17. Randomized Controlled Trial Comparing Orthosis Augmented by Either Stretching or Stretching and Strengthening for Stage II Tibialis Posterior Tendon Dysfunction.

    PubMed

    Houck, Jeff; Neville, Christopher; Tome, Josh; Flemister, Adolph

    2015-09-01

    The value of strengthening and stretching exercises combined with orthosis treatment in a home-based program has not been evaluated. The purpose of this study was to compare the effects of augmenting orthosis treatment with either stretching or a combination of stretching and strengthening in participants with stage II tibialis posterior tendon dysfunction (TPTD). Participants included 39 patients with stage II TPTD who were recruited from a medical center and then randomly assigned to a strengthening or stretching treatment group. Excluding 3 dropouts, there were 19 participants in the strengthening group and 17 in the stretching group. The stretching treatment consisted of a prefabricated orthosis used in conjunction with stretching exercises. The strengthening treatment consisted of a prefabricated orthosis used in conjunction with the stretching and strengthening exercises. The main outcome measures were self-report (ie, Foot Function Index and Short Musculoskeletal Function Assessment) and isometric deep posterior compartment strength. Two-way analysis of variance was used to test for differences between groups at 6 and 12 weeks after starting the exercise programs. Both groups significantly improved in pain and function over the 12-week trial period. The self-report measures showed minimal differences between the treatment groups. There were no differences in isometric deep posterior compartment strength. A moderate-intensity, home-based exercise program was minimally effective in augmenting orthosis wear alone in participants with stage II TPTD. Level I, prospective randomized study. © The Author(s) 2015.

  18. Stretching-induced wrinkling in plastic-rubber composites.

    PubMed

    Yang, Junyu; Damle, Sameer; Maiti, Spandan; Velankar, Sachin S

    2017-01-25

    We examine the mechanics of three-layer composite films composed of an elastomeric layer sandwiched between two thin surface layers of plastic. Upon stretching and releasing such composite films, they develop a highly wrinkled surface texture. The mechanism for this texturing is that during stretching, the plastic layers yield and stretch irreversibly whereas the elastomer stretches reversibly. Thus upon releasing, the plastic layers buckle due to compressive stress imposed by the elastomer. Experiments are conducted using SEPS elastomer and 50 micron thick LLDPE plastic films. Stretching and releasing the composites to 2-5 times their original length induces buckles with wavelength on the order of 200 microns, and the wavelength decreases as the stretching increases. FEM simulations reveal that plastic deformation is involved at all stages during this process: (1) during stretching, the plastic layer yields in tension; (2) during recovery, the plastic layer first yields in-plane in compression and then buckles; (3) post-buckling, plastic hinges are formed at high-curvature regions. Homogeneous wrinkles are predicted only within a finite window of material properties: if the yield stress is too low, the plastic layers yield in-plane, without wrinkling, whereas if the yield stress is too high, non-homogeneous wrinkles are predicted. This approach to realizing highly wrinkled textures offers several advantages, most importantly the fact that high aspect ratio wrinkles (amplitude to wavelength ratios exceeding 0.4) can be realized.

  19. A Discrete Electromechanical Model for Human Cardiac Tissue: Effects of Stretch-Activated Currents and Stretch Conditions on Restitution Properties and Spiral Wave Dynamics

    PubMed Central

    Weise, Louis D.; Panfilov, Alexander V.

    2013-01-01

    We introduce an electromechanical model for human cardiac tissue which couples a biophysical model of cardiac excitation (Tusscher, Noble, Noble, Panfilov, 2006) and tension development (adjusted Niederer, Hunter, Smith, 2006 model) with a discrete elastic mass-lattice model. The equations for the excitation processes are solved with a finite difference approach, and the equations of the mass-lattice model are solved using Verlet integration. This allows the coupled problem to be solved with high numerical resolution. Passive mechanical properties of the mass-lattice model are described by a generalized Hooke's law for finite deformations (Seth material). Active mechanical contraction is initiated by changes of the intracellular calcium concentration, which is a variable of the electrical model. Mechanical deformation feeds back on the electrophysiology via stretch-activated ion channels whose conductivity is controlled by the local stretch of the medium. We apply the model to study how stretch-activated currents affect the action potential shape, restitution properties, and dynamics of spiral waves, under constant stretch, and dynamic stretch caused by active mechanical contraction. We find that stretch conditions substantially affect these properties via stretch-activated currents. In constantly stretched medium, we observe a substantial decrease in conduction velocity, and an increase of action potential duration; whereas, with dynamic stretch, action potential duration is increased only slightly, and the conduction velocity restitution curve becomes biphasic. Moreover, in constantly stretched medium, we find an increase of the core size and period of a spiral wave, but no change in rotation dynamics; in contrast, in the dynamically stretching medium, we observe spiral drift. Our results may be important to understand how altered stretch conditions affect the heart's functioning. PMID:23527160

  20. A discrete electromechanical model for human cardiac tissue: effects of stretch-activated currents and stretch conditions on restitution properties and spiral wave dynamics.

    PubMed

    Weise, Louis D; Panfilov, Alexander V

    2013-01-01

    We introduce an electromechanical model for human cardiac tissue which couples a biophysical model of cardiac excitation (Tusscher, Noble, Noble, Panfilov, 2006) and tension development (adjusted Niederer, Hunter, Smith, 2006 model) with a discrete elastic mass-lattice model. The equations for the excitation processes are solved with a finite difference approach, and the equations of the mass-lattice model are solved using Verlet integration. This allows the coupled problem to be solved with high numerical resolution. Passive mechanical properties of the mass-lattice model are described by a generalized Hooke's law for finite deformations (Seth material). Active mechanical contraction is initiated by changes of the intracellular calcium concentration, which is a variable of the electrical model. Mechanical deformation feeds back on the electrophysiology via stretch-activated ion channels whose conductivity is controlled by the local stretch of the medium. We apply the model to study how stretch-activated currents affect the action potential shape, restitution properties, and dynamics of spiral waves, under constant stretch, and dynamic stretch caused by active mechanical contraction. We find that stretch conditions substantially affect these properties via stretch-activated currents. In constantly stretched medium, we observe a substantial decrease in conduction velocity, and an increase of action potential duration; whereas, with dynamic stretch, action potential duration is increased only slightly, and the conduction velocity restitution curve becomes biphasic. Moreover, in constantly stretched medium, we find an increase of the core size and period of a spiral wave, but no change in rotation dynamics; in contrast, in the dynamically stretching medium, we observe spiral drift. Our results may be important to understand how altered stretch conditions affect the heart's functioning.

  1. Interaction with Phosphoinositides Confers Adaptation onto the TRPV1 Pain Receptor

    PubMed Central

    Yao, Jing; Qin, Feng

    2009-01-01

    Adaptation is a common feature of many sensory systems. But its occurrence to pain sensation has remained elusive. Here we address the problem at the receptor level and show that the capsaicin ion channel TRPV1, which mediates nociception at the peripheral nerve terminals, possesses properties essential to the adaptation of sensory responses. Ca2+ influx following the channel opening caused a profound shift (∼14-fold) of the agonist sensitivity, but did not alter the maximum attainable current. The shift was adequate to render the channel irresponsive to normally saturating concentrations, leaving the notion that the channel became no longer functional after desensitization. By simultaneous patch-clamp recording and total internal reflection fluorescence (TIRF) imaging, it was shown that the depletion of phosphatidylinositol 4,5-bisphosphate (PIP2) induced by Ca2+ influx had a rapid time course synchronous to the desensitization of the current. The extent of the depletion was comparable to that by rapamycin-induced activation of a PIP2 5-phosphatase, which also caused a significant reduction of the agonist sensitivity without affecting the maximum response. These results support a prominent contribution of PIP2 depletion to the desensitization of TRPV1 and suggest the adaptation as a possible physiological function for the Ca2+ influx through the channel. PMID:19243225

  2. Reinforcement for Stretch Formed Sheet Metal

    NASA Technical Reports Server (NTRS)

    Lea, J. B.; Baxter, C. R.

    1983-01-01

    Tearing of aluminum sheet metal durinng stretch forming prevented by flame spraying layer of aluminum on edges held in stretch-forming machine. Technique improves grip of machine on metal and reinforced sheet better able to with stand concentration of force in vicinity of grips.

  3. On the Prony series representation of stretched exponential relaxation

    NASA Astrophysics Data System (ADS)

    Mauro, John C.; Mauro, Yihong Z.

    2018-09-01

    Stretched exponential relaxation is a ubiquitous feature of homogeneous glasses. The stretched exponential decay function can be derived from the diffusion-trap model, which predicts certain critical values of the fractional stretching exponent, β. In practical implementations of glass relaxation models, it is computationally convenient to represent the stretched exponential function as a Prony series of simple exponentials. Here, we perform a comprehensive mathematical analysis of the Prony series approximation of the stretched exponential relaxation, including optimized coefficients for certain critical values of β. The fitting quality of the Prony series is analyzed as a function of the number of terms in the series. With a sufficient number of terms, the Prony series can accurately capture the time evolution of the stretched exponential function, including its "fat tail" at long times. However, it is unable to capture the divergence of the first-derivative of the stretched exponential function in the limit of zero time. We also present a frequency-domain analysis of the Prony series representation of the stretched exponential function and discuss its physical implications for the modeling of glass relaxation behavior.

  4. DYNAMIC OSCILLATORY STRETCHING EFFICACY ON HAMSTRING EXTENSIBILITY AND STRETCH TOLERANCE: A RANDOMIZED CONTROLLED TRIAL

    PubMed Central

    Tee, Jason Cameron; Stewart, Aimee

    2017-01-01

    Background While static stretch (SS), proprioceptive neuromuscular facilitation (PNF) and oscillatory physiological mobilization techniques are documented to have positive effects on a range of motion (ROM), there are no reports on the effect of dynamic oscillatory stretching (DOS), a technique that combines these three techniques, on hamstring extensibility. Purpose To determine whether DOS improves hamstring extensibility and stretch tolerance to a greater degree than SS in asymptomatic young participants. Study Design Randomized Controlled Trial. Methods Sixty participants (47 females, 13 males, mean age 22 ± 1 years, height 166 ± 6 centimeters, body mass 67.6 ± 9.7 kg) completed a passive straight leg (SLR) to establish hamstring extensibility and stretch tolerance as perceived by participants, using a visual analogue scale (VAS). Participants were randomly assigned to one of two treatment groups (SS or DOS) or a placebo control (20 per group). Tests were repeated immediately following and one hour after each intervention. Data were assessed using a two-way repeated measure analysis of variance (ANOVA) and Tukey's post hoc test. Results Immediately post-intervention, there was a significant improvement in the hamstring extensibility as measured by the SLR in both the SS and DOS groups, with the DOS group exhibiting a significantly greater increase than the SS group (Control 73 ± 12°, SS 86 ± 8°, DOS 94 ± 11°, p < 0.001). One hour post-intervention, hamstring extensibility in the DOS group remained elevated, while the SS group no longer differed from the control group (Control 73 ± 12°, SS 80 ± 8°, DOS 89 ± 12°, p = 0.001). Furthermore, the stretch tolerance remained significantly elevated for the SS group, but there was no difference between the control and DOS groups, (Control 4.6 ± 1.3, SS 5.9 ± 0.8, DOS 4.3 ± 1.0 AU, p < 0.001). Conclusion DOS was more effective than SS at achieving

  5. Computational tool for immunotoxic assessment of pyrethroids toward adaptive immune cell receptors.

    PubMed

    Kumar, Anoop; Behera, Padma Charan; Rangra, Naresh Kumar; Dey, Suddhasattya; Kant, Kamal

    2018-01-01

    Pyrethroids have prominently known for their insecticidal actions worldwide, but recent reports as anticancer and antiviral applications gained a lot of interest to further understand their safety and immunotoxicity. This encouraged us to carry out our present study to evaluate the interactions of pyrethroids toward adaptive immune cell receptors. Type 1 and Type 2 pyrethroids were tested on T (CD4 and CD8) and B (CD28 and CD45) immune cell receptors using Maestro 9.3 (Schrödinger, LLC, Cambridge, USA). In addition, top-ranked tested ligands were too explored for toxicity prediction in rodents using ProTOX tool. Pyrethroids (specifically type 2) such as fenvalerate (-5.534 kcal/mol: CD8), fluvalinate (-4.644 and - 4.431 kcal/mol: CD4 and CD45), and cypermethrin (-3.535 kcal/mol: CD28) have outcome in less energy or more affinity for B-cell and T-cell immune receptors which may later result in the immunosuppressive and hypersensitivity reactions. The current findings have uncovered that there is a further need to assess the Type 2 pyrethroids with wet laboratory experiments to understand the chemical nature of pyrethroid-induced immunotoxicity. Fenvalerate showed apex glide score toward CD8 immune receptor, while fluvalinate confirmed top-ranked binding with CD4 and CD45 immune proteinsIn addition, cypermethrin outcame in top glide score against CD28 immune receptorTop dock hits (Type 2) pyrethroids have shown probable toxicity targets toward AOFA: Amine oxidase (flavin-containing) A and PGH1: Prostaglandin G/H synthase 1, respectively. Abbreviations used: PDB: Protein Data Bank; AOFA: Amine oxidase (flavin-containing) A; PGH 1: Prostaglandin G/H synthase 1.

  6. Effects of cervical self-stretching on slow vital capacity.

    PubMed

    Han, Dongwook; Yoon, Nayoon; Jeong, Yeongran; Ha, Misook; Nam, Kunwoo

    2015-07-01

    [Purpose] This study investigated the effects of self-stretching of cervical muscles, because the accessory inspiratory muscle is considered to improve pulmonary function. [Subjects] The subjects were 30 healthy university students 19-21 years old who did not have any lung disease, respiratory dysfunction, cervical injury, or any problems upon cervical stretching. [Methods] Spirometry was used as a pulmonary function test to measure the slow vital capacity before and after stretching. The slow vital capacity of the experimental group was measured before and after cervical self-stretching. Meanwhile, the slow vital capacity of the control group, which did not perform stretching, was also measured before and after the intervention. [Results] The expiratory vital capacity, inspiratory reserve volume, and expiratory reserve volume of the experimental group increased significantly after the cervical self-stretching. [Conclusion] Self-stretching of the cervical muscle (i.e., the inspiratory accessory muscle) improves slow vital capacity.

  7. Parallel Anisotropic Tetrahedral Adaptation

    NASA Technical Reports Server (NTRS)

    Park, Michael A.; Darmofal, David L.

    2008-01-01

    An adaptive method that robustly produces high aspect ratio tetrahedra to a general 3D metric specification without introducing hybrid semi-structured regions is presented. The elemental operators and higher-level logic is described with their respective domain-decomposed parallelizations. An anisotropic tetrahedral grid adaptation scheme is demonstrated for 1000-1 stretching for a simple cube geometry. This form of adaptation is applicable to more complex domain boundaries via a cut-cell approach as demonstrated by a parallel 3D supersonic simulation of a complex fighter aircraft. To avoid the assumptions and approximations required to form a metric to specify adaptation, an approach is introduced that directly evaluates interpolation error. The grid is adapted to reduce and equidistribute this interpolation error calculation without the use of an intervening anisotropic metric. Direct interpolation error adaptation is illustrated for 1D and 3D domains.

  8. Cyclic stretching of soft substrates induces spreading and growth

    PubMed Central

    Cui, Yidan; Hameed, Feroz M.; Yang, Bo; Lee, Kyunghee; Pan, Catherine Qiurong; Park, Sungsu; Sheetz, Michael

    2015-01-01

    In the body, soft tissues often undergo cycles of stretching and relaxation that may affect cell behaviour without changing matrix rigidity. To determine whether transient forces can substitute for a rigid matrix, we stretched soft pillar arrays. Surprisingly, 1–5% cyclic stretching over a frequency range of 0.01–10 Hz caused spreading and stress fibre formation (optimum 0.1 Hz) that persisted after 4 h of stretching. Similarly, stretching increased cell growth rates on soft pillars comparative to rigid substrates. Of possible factors linked to fibroblast growth, MRTF-A (myocardin-related transcription factor-A) moved to the nucleus in 2 h of cyclic stretching and reversed on cessation; but YAP (Yes-associated protein) moved much later. Knockdown of either MRTF-A or YAP blocked stretch-dependent growth. Thus, we suggest that the repeated pulling from a soft matrix can substitute for a stiff matrix in stimulating spreading, stress fibre formation and growth. PMID:25704457

  9. Triceps stretch (image)

    MedlinePlus

    ... shoulder. Hold for 10 to 20 seconds, then switch sides. Alternate method: raise your arm over your ... elbow. Hold for 10 to 20 seconds, then switch sides. You should feel either of these stretches ...

  10. Pulmonary stretch receptor afferents activate excitatory amino acid receptors in the nucleus tractus solitarii in rats.

    PubMed

    Bonham, A C; Coles, S K; McCrimmon, D R

    1993-05-01

    1. The goal of the present study was to identify potential neurotransmitter candidates in the Breuer-Hering (BH) reflex pathway, specifically at synapses between the primary afferents and probable second-order neurones (pump cells) within the nucleus tractus solitarii (NTS). We hypothesized that if activation of specific receptors in the NTS is required for production of the BH reflex, then (1) injection of the receptor agonist(s) would mimic the reflex response (apnoea), (2) injection of appropriate antagonists would impair the apnoea produced by either lung inflation or agonist injection, and (3) second-order neurones in the pathway would be excited by either lung inflation or agonists while antagonists would prevent the response to either. 2. Studies were carried out either in spontaneously breathing or in paralysed, thoracotomized and ventilated rats in which either diaphragm EMG or phrenic nerve activity, expired CO2 concentration and arterial pressure were continuously monitored. The BH reflex was physiologically activated by inflating the lungs. 3. Pressure injections (0.03-15 pmol) of selective excitatory amino acid (EAA) receptor agonists, quisqualic acid (Quis) and N-methyl-D-aspartic acid (NMDA) into an area of the NTS shown previously to contain neurones required for production of the BH reflex produced dose-dependent apnoeas that mimicked the response to lung inflation. Injection of substance P (0.03-4 pmol) did not alter baseline respiratory pattern. 4. Injections of the EAA antagonists, kynurenic acid (Kyn; 0.6-240 pmol), 6-cyano-7-nitro-quinoxaline-2,3-dione (CNQX) or 6,7-dinitroquinoxaline-2,3-dione (DNQX) into the BH region of the NTS reversibly impaired the apnoea produced by lung inflation. All three antagonists reduced or abolished the apnoeas resulting from injection of Quis or NMDA, and slowed baseline respiratory frequency. In contrast, injections of the highly selective NMDA receptor antagonist, D-2-amino-5-phosphonovaleric acids (AP5), in

  11. Importance of Stretching

    MedlinePlus

    ... Kids and Teens Pregnancy and Childbirth Women Men Seniors Your Health Resources Healthcare Management End-of-Life ... pain. Always listen to your body. Stretching for seniors It’s all about maintaining that flexibility when it ...

  12. Adaptive responses induced by 24S-hydroxycholesterol through liver X receptor pathway reduce 7-ketocholesterol-caused neuronal cell death☆

    PubMed Central

    Okabe, Akishi; Urano, Yasuomi; Itoh, Sayoko; Suda, Naoto; Kotani, Rina; Nishimura, Yuki; Saito, Yoshiro; Noguchi, Noriko

    2013-01-01

    Lipid peroxidation products have been known to induce cellular adaptive responses and enhance tolerance against subsequent oxidative stress through up-regulation of antioxidant compounds and enzymes. 24S-hydroxycholesterol (24SOHC) which is endogenously produced oxysterol in the brain plays an important role in maintaining brain cholesterol homeostasis. In this study, we evaluated adaptive responses induced by brain-specific oxysterol 24SOHC in human neuroblastoma SH-SY5Y cells. Cells treated with 24SOHC at sub-lethal concentrations showed significant reduction in cell death induced by subsequent treatment with 7-ketocholesterol (7KC) in both undifferentiated and retinoic acid-differentiated SH-SY5Y cells. These adaptive responses were also induced by other oxysterols such as 25-hydroxycholesterol and 27-hydroxycholesterol which are known to be ligands of liver X receptor (LXR). Co-treatment of 24SOHC with 9-cis retinoic acid, a retinoid X receptor ligand, enhanced the adaptive responses. Knockdown of LXRβ by siRNA diminished the adaptive responses induced by 24SOHC almost completely. The treatment with 24SOHC induced the expression of LXR target genes, such as ATP-binding cassette transporter A1 (ABCA1) and G1 (ABCG1). The 24SOHC-induced adaptive responses were significantly attenuated by siRNA for ABCG1 but not by siRNA for ABCA1. Taken together, these results strongly suggest that 24SOHC at sub-lethal concentrations induces adaptive responses via transcriptional activation of LXR signaling pathway, thereby protecting neuronal cells from subsequent 7KC-induced cytotoxicity. PMID:24371802

  13. Computational tool for immunotoxic assessment of pyrethroids toward adaptive immune cell receptors

    PubMed Central

    Kumar, Anoop; Behera, Padma Charan; Rangra, Naresh Kumar; Dey, Suddhasattya; Kant, Kamal

    2018-01-01

    Background: Pyrethroids have prominently known for their insecticidal actions worldwide, but recent reports as anticancer and antiviral applications gained a lot of interest to further understand their safety and immunotoxicity. Objective: This encouraged us to carry out our present study to evaluate the interactions of pyrethroids toward adaptive immune cell receptors. Materials and Methods: Type 1 and Type 2 pyrethroids were tested on T (CD4 and CD8) and B (CD28 and CD45) immune cell receptors using Maestro 9.3 (Schrödinger, LLC, Cambridge, USA). In addition, top-ranked tested ligands were too explored for toxicity prediction in rodents using ProTOX tool. Results: Pyrethroids (specifically type 2) such as fenvalerate (−5.534 kcal/mol: CD8), fluvalinate (−4.644 and − 4.431 kcal/mol: CD4 and CD45), and cypermethrin (−3.535 kcal/mol: CD28) have outcome in less energy or more affinity for B-cell and T-cell immune receptors which may later result in the immunosuppressive and hypersensitivity reactions. Conclusion: The current findings have uncovered that there is a further need to assess the Type 2 pyrethroids with wet laboratory experiments to understand the chemical nature of pyrethroid-induced immunotoxicity. SUMMARY Fenvalerate showed apex glide score toward CD8 immune receptor, while fluvalinate confirmed top-ranked binding with CD4 and CD45 immune proteinsIn addition, cypermethrin outcame in top glide score against CD28 immune receptorTop dock hits (Type 2) pyrethroids have shown probable toxicity targets toward AOFA: Amine oxidase (flavin-containing) A and PGH1: Prostaglandin G/H synthase 1, respectively. Abbreviations used: PDB: Protein Data Bank; AOFA: Amine oxidase (flavin-containing) A; PGH 1: Prostaglandin G/H synthase 1. PMID:29576712

  14. Acute effect of constant torque and angle stretching on range of motion, muscle passive properties, and stretch discomfort perception.

    PubMed

    Cabido, Christian E T; Bergamini, Juliana C; Andrade, André G P; Lima, Fernando V; Menzel, Hans J; Chagas, Mauro H

    2014-04-01

    The aim of the present study was to compare the acute effects of constant torque (CT) and constant angle (CA) stretching exercises on the maximum range of motion (ROMmax), passive stiffness (PS), and ROM corresponding to the first sensation of tightness in the posterior thigh (FSTROM). Twenty-three sedentary men (age, 19-33 years) went through 1 familiarization session and afterward proceeded randomly to both CA and CT treatment stretching conditions, on separate days. An isokinetic dynamometer was used to analyze hamstring muscles during passive knee extension. The subjects performed 4 stretches of 30 seconds each with a 15-second interval between them. In the CA stretching, the subject reached a certain ROM (95% of ROMmax), and the angle was kept constant. However, in the CT stretching exercise, the volunteer reached a certain resistance torque (corresponding to 95% of ROMmax) and it was kept constant. The results showed an increase in ROMmax for both CA and CT (p < 0.001), but the increase was greater for CT than for CA (CA vs. CT in poststretching, p = 0.002). Although the PS decreased for both CA and CT (p < 0.001), the decrease was greater for CT than for CA (CA vs. CT in poststretching, p = 0.002). The FSTROM increased for both CA and CT, but the increase for CT was greater than that for CA (CA vs. CT in poststretching, p = 0.003). The greater increase in ROMmax for the CT stretch may be explained by greater changes in the biomechanical properties of the muscle-tendon unit and stretch tolerance, as indicated by the results of PS and FSTROM.

  15. Optofluidic time-stretch microscopy: recent advances

    NASA Astrophysics Data System (ADS)

    Lei, Cheng; Nitta, Nao; Ozeki, Yasuyuki; Goda, Keisuke

    2018-06-01

    Flow cytometry is an indispensable method for valuable applications in numerous fields such as immunology, pathology, pharmacology, molecular biology, and marine biology. Optofluidic time-stretch microscopy is superior to conventional flow cytometry methods for its capability to acquire high-quality images of single cells at a high-throughput exceeding 10,000 cells per second. This makes it possible to extract copious information from cellular images for accurate cell detection and analysis with the assistance of machine learning. Optofluidic time-stretch microscopy has proven its effectivity in various applications, including microalga-based biofuel production, evaluation of thrombotic disorders, as well as drug screening and discovery. In this review, we discuss the principles and recent advances of optofluidic time-stretch microscopy.

  16. Optofluidic time-stretch microscopy: recent advances

    NASA Astrophysics Data System (ADS)

    Lei, Cheng; Nitta, Nao; Ozeki, Yasuyuki; Goda, Keisuke

    2018-04-01

    Flow cytometry is an indispensable method for valuable applications in numerous fields such as immunology, pathology, pharmacology, molecular biology, and marine biology. Optofluidic time-stretch microscopy is superior to conventional flow cytometry methods for its capability to acquire high-quality images of single cells at a high-throughput exceeding 10,000 cells per second. This makes it possible to extract copious information from cellular images for accurate cell detection and analysis with the assistance of machine learning. Optofluidic time-stretch microscopy has proven its effectivity in various applications, including microalga-based biofuel production, evaluation of thrombotic disorders, as well as drug screening and discovery. In this review, we discuss the principles and recent advances of optofluidic time-stretch microscopy.

  17. A randomized controlled comparison of stretching procedures for posterior shoulder tightness.

    PubMed

    McClure, Philip; Balaicuis, Jenna; Heiland, David; Broersma, Mary Ellen; Thorndike, Cheryl K; Wood, April

    2007-03-01

    Randomized controlled trial, To compare changes in shoulder internal rotation range of motion (ROM), for 2 stretching exercises, the "cross-body stretch" and the "sleeper stretch," in individuals with posterior shoulder tightness. Recently, some authors have expressed the belief that the sleeper stretch is better than the cross-body stretch to address glenohumeral posterior tightness because the scapula is stabilized. Fifty-four asymptomatic subjects (20 males, 34 females) participated in the study. The control group (n=24) consisted of subjects with a between-shoulder difference in internal rotation ROM of less than 10 degrees, whereas those subjects with more than a 10 degrees difference were randomly assigned to 1 of 2 intervention groups, the sleeper stretch group (n=15) or the cross-body stretch group (n=15). Shoulder internal rotation ROM, with the arm abducted to 90 degrees and scapula motion prevented, was measured before and after a 4-week intervention period. Subjects in the control group were asked not to engage in any new stretching activities, while subjects in the 2 stretching groups were asked to perform stretching exercises on the more limited side only, once daily for 5 repetitions, holding each stretch for 30 seconds. The improvements in internal rotation ROM for the subjects in the cross-body stretch group (mean +/- SD, 20.0 degrees +/- 12.9 degrees) were significantly greater than for the subjects in the control group (5.9 degrees +/- 9.4 degrees, P = .009). The gains in the sleeper stretch group (12.4 degrees +/- 10.4 degrees) were not significant compared to those of the control group (P = .586) and those of the cross-body stretch group (P = .148). The cross-body stretch in individuals with limited shoulder internal rotation ROM appears to be more effective than no stretching in controls without internal rotation asymmetry to improve shoulder internal rotation ROM. While the improvement in internal rotation from the cross-body stretch was

  18. Unstructured mesh generation and adaptivity

    NASA Technical Reports Server (NTRS)

    Mavriplis, D. J.

    1995-01-01

    An overview of current unstructured mesh generation and adaptivity techniques is given. Basic building blocks taken from the field of computational geometry are first described. Various practical mesh generation techniques based on these algorithms are then constructed and illustrated with examples. Issues of adaptive meshing and stretched mesh generation for anisotropic problems are treated in subsequent sections. The presentation is organized in an education manner, for readers familiar with computational fluid dynamics, wishing to learn more about current unstructured mesh techniques.

  19. The effect of calf muscle stretching exercises on ankle joint dorsiflexion and dynamic foot pressures, force and related temporal parameters.

    PubMed

    Macklin, K; Healy, A; Chockalingam, N

    2012-03-01

    Previous research has found that ankle joint equinus can lead to foot pathologies. Calf stretching exercises are a common treatment prescription; however, no dynamic quantitative data on its effectiveness is available. To investigate the effect of calf muscle stretching on ankle joint dorsiflexion and subsequent changes within dynamic forefoot peak plantar pressures (PPP), force and temporal parameters. Thirteen runners with ankle joint equinus were required to perform calf muscle stretching twice a day (morning and evening) on a Flexeramp. Measurements were collected on day 1, week 4 and week 8. A repeated measures ANOVA with Bonferroni-adjusted post hoc comparisons was used to assess differences across the three data collection sessions. Findings indicated that the calf stretching program increased ankle joint dorsiflexion significantly (from 5° to 16°, p≤0.05). The adaptive kinetics brought about by the increased ankle joint range of motion included significantly increased forefoot PPP and maximum force during stance phase but decreased time between heel contact and heel lift and total stance phase time. The calf stretching programme used in this study was found to increase ankle joint dorsiflexion and hence can be used for first line conservative management of ankle equinus. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. The relevance of stretch intensity and position—a systematic review

    PubMed Central

    Apostolopoulos, Nikos; Metsios, George S.; Flouris, Andreas D.; Koutedakis, Yiannis; Wyon, Matthew A.

    2015-01-01

    Stretching exercises to increase the range of motion (ROM) of joints have been used by sports coaches and medical professionals for improving performance and rehabilitation. The ability of connective and muscular tissues to change their architecture in response to stretching is important for their proper function, repair, and performance. Given the dearth of relevant data in the literature, this review examined two key elements of stretching: stretch intensity and stretch position; and their significance to ROM, delayed onset muscle soreness (DOMS), and inflammation in different populations. A search of three databases, Pub-Med, Google Scholar, and Cochrane Reviews, identified 152 articles, which were subsequently categorized into four groups: athletes (24), clinical (29), elderly (12), and general population (87). The use of different populations facilitated a wider examination of the stretching components and their effects. All 152 articles incorporated information regarding duration, frequency and stretch position, whereas only 79 referred to the intensity of stretching and 22 of these 79 studies were deemed high quality. It appears that the intensity of stretching is relatively under-researched, and the importance of body position and its influence on stretch intensity, is largely unknown. In conclusion, this review has highlighted areas for future research, including stretch intensity and position and their effect on musculo-tendinous tissue, in relation to the sensation of pain, delayed onset muscle soreness, inflammation, as well as muscle health and performance. PMID:26347668

  1. Stretched Inertial Jets

    NASA Astrophysics Data System (ADS)

    Ghabache, Elisabeth; Antkowiak, Arnaud; Seon, Thomas; Villermaux, Emmanuel

    2015-11-01

    Liquid jets often arise as short-lived bursting liquid flows. Cavitation or impact-driven jets, bursting champagne bubbles, shaped-charge jets, ballistospores or drop-on-demand inkjet printing are a few examples where liquid jets are suddenly released. The trademark of all these discharge jets is the property of being stretched, due to the quenching injection. the present theoretical and experimental investigation, the structure of the jet flow field will be unraveled experimentally for a few emblematic occurrences of discharge jets. Though the injection markedly depends on each flow configuration, the jet velocity field will be shown to be systematically and rapidly attracted to the universal stretching flow z/t. The emergence of this inertial attractor actually only relies on simple kinematic ingredients, and as such is fairly generic. The universality of the jet velocity structure will be discussed.

  2. Design of a new membrane stretching device

    NASA Astrophysics Data System (ADS)

    Shao, Yiran

    Cell stretching device has been applied into the lab use for many years to help researchers study about the behavior of cells during the stretching process. Because the cell responses to the different mechanical stimuli, especially in the case of disease, the cell stretching device is a necessary tool to study the cell behavior in a controlled environment. However existing devices have limitations, such as too big to fit the culture chamber, unable to be observed during the stretching process and too expensive to fabricate. In this thesis, a new cell stretcher is designed to resolve these limitations. Many typical cell stretching devices only work under simple conditions. For instance they can only apply the strain on the cell in uniaxial or equibiaxial directions. On the other hand the environment of cells' survival is varying. Many new cell stretchers have been developed, which have the same property that cells can be stretched via the radical deformation of the elastomeric membrane. The aim of this new design is to create a cell stretching device that fits in general lab conditions. This device is designed to fit on a microscope to observe, as well as in the incubator. In addition, two small step motors are used to control the strain, adjust the frequency, and maintain the stability precisely. Problems such as the culture media leakage and the membrane breakage are solved by the usage of multiple materials for both the cell stretcher and the membrane. Based on the experimental results, this device can satisfy the requirements of target users with a reduced manufacturing cost. In the future, an auto-focus tracking function will be developed to allow real time observation of the cells' behavior.

  3. Adaptation of rat soleus muscles to 4 wk of intermittent strain

    NASA Technical Reports Server (NTRS)

    Stauber, W. T.; Miller, G. R.; Grimmett, J. G.; Knack, K. K.

    1994-01-01

    The effect of repeated strains on rat soleus muscles was investigated by stretching active muscles 3 times/wk for 4 wk with two different methods of stretching. The adaptation of myofibers and noncontractile tissue was followed by histochemical techniques and computer-assisted image analysis. Muscle hypertrophy was seen in the slow-stretched muscles, which increased in mass by 13% and increased in myofiber cross-sectional area by 30%. In the fast-stretched muscle, mass increased by 10% but myofiber cross-sectional area actually decreased. This decrease in mean fiber area was the result of a population of very small fibers (population A) that coexisted with slightly smaller normal-sized fibers (population B). Fibers in population A did not have the distribution expected from atrophy compared with atrophic fibers from unloaded muscles; they were much smaller. In addition, there was a 44% increase in noncontractile tissue in the fast-stretched muscles. Thus, soleus muscles subjected to repeated strains respond differently to slow and fast stretching. Slow stretching results in typical muscle hypertrophy, whereas fast stretching produces somewhat larger muscles but with a mixture of small and normal-sized myofibers accompanied by a marked proliferation of noncontractile tissue.

  4. Immediate effects of different types of stretching exercises on badminton jump smash.

    PubMed

    Jang, Hwi S; Kim, Daeho; Park, Jihong

    2018-01-01

    Since different types of stretching exercises may alter athletic performance, we compared the effects of three types of stretching exercises on badminton jump smash. Sixteen male collegiate badminton players performed one of three different stretching exercises in a counterbalanced order on different days. Static stretching had seven typical stretches, while dynamic stretching involved nine dynamic movements, and resistance dynamic stretching was performed with weighted vests and dumbbells. Before and after each stretching exercise, subjects performed 20 trials of jump smashes. Dependent measurements were the jump heights during jump smashes, velocities of jump-smashed shuttlecocks, and drop point of jump-smashed shuttlecocks. To test the effects of each stretching exercise, we performed mixed model ANOVAs and calculated between-time effect sizes (ES). Each stretching exercise improved the jump heights during jump smashes (type main effect: F(2,75)=1.19, P=0.31; static stretching: 22.1%, P<0.01, ES=0.98; dynamic stretching: 30.1%, P<0.01, ES=1.49; resistance dynamic stretching: 17.7%, P=0.03, ES=0.98) and velocities of jump-smashed shuttlecocks (type main effect: F(2,75)=2.18, P=0.12; static stretching: 5.7%, P=0.61, ES=0.39; dynamic stretching: 3.4%, P=0.94, ES=0.28; resistance dynamic stretching: 6%, P=0.50, ES=0.66). However, there were no differences among the stretching exercises for any measurement. The drop point of jump-smashed shuttlecocks did not change (interaction: F(2,75)=0.88, P=0.42). All stretching exercises improved badminton jump smash performance, but we could not determine the best protocol. Since badminton requires high-speed movement and explosive force, we suggest performing dynamic stretching or resistance dynamic stretching.

  5. Mechanical stretching for tissue engineering: two-dimensional and three-dimensional constructs.

    PubMed

    Riehl, Brandon D; Park, Jae-Hong; Kwon, Il Keun; Lim, Jung Yul

    2012-08-01

    Mechanical cell stretching may be an attractive strategy for the tissue engineering of mechanically functional tissues. It has been demonstrated that cell growth and differentiation can be guided by cell stretch with minimal help from soluble factors and engineered tissues that are mechanically stretched in bioreactors may have superior organization, functionality, and strength compared with unstretched counterparts. This review explores recent studies on cell stretching in both two-dimensional (2D) and three-dimensional (3D) setups focusing on the applications of stretch stimulation as a tool for controlling cell orientation, growth, gene expression, lineage commitment, and differentiation and for achieving successful tissue engineering of mechanically functional tissues, including cardiac, muscle, vasculature, ligament, tendon, bone, and so on. Custom stretching devices and lab-specific mechanical bioreactors are described with a discussion on capabilities and limitations. While stretch mechanotransduction pathways have been examined using 2D stretch, studying such pathways in physiologically relevant 3D environments may be required to understand how cells direct tissue development under stretch. Cell stretch study using 3D milieus may also help to develop tissue-specific stretch regimens optimized with biochemical feedback, which once developed will provide optimal tissue engineering protocols.

  6. Mechanical Stretching for Tissue Engineering: Two-Dimensional and Three-Dimensional Constructs

    PubMed Central

    Riehl, Brandon D.; Park, Jae-Hong; Kwon, Il Keun

    2012-01-01

    Mechanical cell stretching may be an attractive strategy for the tissue engineering of mechanically functional tissues. It has been demonstrated that cell growth and differentiation can be guided by cell stretch with minimal help from soluble factors and engineered tissues that are mechanically stretched in bioreactors may have superior organization, functionality, and strength compared with unstretched counterparts. This review explores recent studies on cell stretching in both two-dimensional (2D) and three-dimensional (3D) setups focusing on the applications of stretch stimulation as a tool for controlling cell orientation, growth, gene expression, lineage commitment, and differentiation and for achieving successful tissue engineering of mechanically functional tissues, including cardiac, muscle, vasculature, ligament, tendon, bone, and so on. Custom stretching devices and lab-specific mechanical bioreactors are described with a discussion on capabilities and limitations. While stretch mechanotransduction pathways have been examined using 2D stretch, studying such pathways in physiologically relevant 3D environments may be required to understand how cells direct tissue development under stretch. Cell stretch study using 3D milieus may also help to develop tissue-specific stretch regimens optimized with biochemical feedback, which once developed will provide optimal tissue engineering protocols. PMID:22335794

  7. Statistics of Advective Stretching in Three-dimensional Incompressible Flows

    NASA Astrophysics Data System (ADS)

    Subramanian, Natarajan; Kellogg, Louise H.; Turcotte, Donald L.

    2009-09-01

    We present a method to quantify kinematic stretching in incompressible, unsteady, isoviscous, three-dimensional flows. We extend the method of Kellogg and Turcotte (J. Geophys. Res. 95:421-432, 1990) to compute the axial stretching/thinning experienced by infinitesimal ellipsoidal strain markers in arbitrary three-dimensional incompressible flows and discuss the differences between our method and the computation of Finite Time Lyapunov Exponent (FTLE). We use the cellular flow model developed in Solomon and Mezic (Nature 425:376-380, 2003) to study the statistics of stretching in a three-dimensional unsteady cellular flow. We find that the probability density function of the logarithm of normalised cumulative stretching (log S) for a globally chaotic flow, with spatially heterogeneous stretching behavior, is not Gaussian and that the coefficient of variation of the Gaussian distribution does not decrease with time as t^{-1/2} . However, it is observed that stretching becomes exponential log S˜ t and the probability density function of log S becomes Gaussian when the time dependence of the flow and its three-dimensionality are increased to make the stretching behaviour of the flow more spatially uniform. We term these behaviors weak and strong chaotic mixing respectively. We find that for strongly chaotic mixing, the coefficient of variation of the Gaussian distribution decreases with time as t^{-1/2} . This behavior is consistent with a random multiplicative stretching process.

  8. Ligand-Induced Modulation of the Free-Energy Landscape of G Protein-Coupled Receptors Explored by Adaptive Biasing Techniques

    PubMed Central

    Provasi, Davide; Artacho, Marta Camacho; Negri, Ana; Mobarec, Juan Carlos; Filizola, Marta

    2011-01-01

    Extensive experimental information supports the formation of ligand-specific conformations of G protein-coupled receptors (GPCRs) as a possible molecular basis for their functional selectivity for signaling pathways. Taking advantage of the recently published inactive and active crystal structures of GPCRs, we have implemented an all-atom computational strategy that combines different adaptive biasing techniques to identify ligand-specific conformations along pre-determined activation pathways. Using the prototypic GPCR β2-adrenergic receptor as a suitable test case for validation, we show that ligands with different efficacies (either inverse agonists, neutral antagonists, or agonists) modulate the free-energy landscape of the receptor by shifting the conformational equilibrium towards active or inactive conformations depending on their elicited physiological response. Notably, we provide for the first time a quantitative description of the thermodynamics of the receptor in an explicit atomistic environment, which accounts for the receptor basal activity and the stabilization of different active-like states by differently potent agonists. Structural inspection of these metastable states reveals unique conformations of the receptor that may have been difficult to retrieve experimentally. PMID:22022248

  9. Sweating response to passive stretch of the calf muscle during activation of forearm muscle metaboreceptors in heated humans.

    PubMed

    Amano, Tatsuro; Ichinose, Masashi; Nishiyasu, Takeshi; Inoue, Yoshimitsu; Koga, Shunsaku; Miwa, Mikio; Kondo, Narihiko

    2014-05-15

    Activation of muscle metaboreceptors and mechanoreceptors has been shown to independently influence the sweating response, while their integrative control effects remain unclear. We examined the sweating response when the two muscle receptors are concurrently activated in different limbs, as well as the blood pressure response. In total, 27 young males performed passive calf muscle stretches (muscle mechanoreceptor activation) for 30 s in a semisupine position with and without postisometric handgrip exercise muscle ischemia (PEMI, muscle metaboreceptor activation) at exercise intensities of 35 and 50% of maximum voluntary contraction (MVC) under hot conditions (ambient temperature, 35°C, relative humidity, 50%). Passive calf muscle stretching alone increased the mean sweating rate significantly on the forehead, chest, and thigh (SRmean) and mean arterial blood pressure (MAP), but not the heart rate (HR), from prestretching levels by 0.04 ± 0.01 mg·cm(2)·min(-1), 4.0 ± 1.3 mmHg (P < 0.05), and -1.0 ± 0.5 beats/min (P > 0.05), respectively. The SRmean and MAP during PEMI were significantly higher than those at rest. The passive calf muscle stretch during PEMI increased MAP significantly by 3.4 ± 1.0 and 2.0 ± 0.7 mmHg for 35 and 50% of MVC, respectively (P < 0.05), but not that of SRmean or HR at either exercise intensity. These results suggest that sweating and blood pressure responses to concurrent activation of the two muscle receptors in different limbs differ and that the influence of calf muscle mechanoreceptor activation alone on the sweating response disappears during forearm muscle metaboreceptor activation. Copyright © 2014 the American Physiological Society.

  10. A rhythmic motor pattern activated by circumferential stretch in guinea-pig distal colon.

    PubMed

    Spencer, Nick J; Hennig, Grant W; Smith, Terence K

    2002-12-01

    Simultaneous intracellular recordings were made from pairs of circular muscle (CM) cells, at the oral and anal ends of a segment of guinea-pig distal colon, to investigate the neuronal mechanisms underlying faecal pellet propulsion. When a minimum degree of circumferential stretch was applied to sheet preparations of colon, recordings from CM cells revealed either no ongoing junction potentials, or alternatively, small potentials usually < 5 mV in amplitude. Maintained circumferential stretch applied to these preparations evoked an ongoing discharge of excitatory junction potentials (EJPs) at the oral recording site (range: 1-25 mV), which lasted for up to 6 h. The onset of each large oral EJP was time-locked with the onset of an inhibitory junction potential (IJP) at an anal recording electrode, located 2 cm from the oral recording. Similar results were obtained in isolated intact tube preparations of colon, when recordings were made immediately oral and anal of an artificial faecal pellet. The amplitudes of many large (> 5 mV) oral EJPs were linearly related to the amplitudes of anal IJPs occurring 20 mm apart. In the absence of an L-type Ca(2+) channel blocker, action potentials occurred on each large oral EJP. Synchronized discharges of stretch-activated EJPs and IJPs were preserved following pretreatment with capsaicin (10 microM), were unaffected by nifedipine (1 microM) and did not require the mucosa or submucous plexus. EJPs and IJPs were abolished by hexamethonium (300 microM) or tetrodotoxin (1 microM), but persisted in the presence of pyridoxal phosphate-6-azophenyl-2',4'-disulphonic acid (PPADS; 10 microM) or an NK(3) tachykinin receptor antagonist (Neurokinin A 4-10; 100 nM to 5 microM). In summary, maintained circumferential stretch of the distal colon activates a population of intrinsic mechanosensory neurons that generate repetitive firing of ascending excitatory and descending inhibitory pathways to CM. These mechanosensory neurons, which may be

  11. A rhythmic motor pattern activated by circumferential stretch in guinea-pig distal colon

    PubMed Central

    Spencer, Nick J; Hennig, Grant W; Smith, Terence K

    2002-01-01

    Simultaneous intracellular recordings were made from pairs of circular muscle (CM) cells, at the oral and anal ends of a segment of guinea-pig distal colon, to investigate the neuronal mechanisms underlying faecal pellet propulsion. When a minimum degree of circumferential stretch was applied to sheet preparations of colon, recordings from CM cells revealed either no ongoing junction potentials, or alternatively, small potentials usually < 5 mV in amplitude. Maintained circumferential stretch applied to these preparations evoked an ongoing discharge of excitatory junction potentials (EJPs) at the oral recording site (range: 1-25 mV), which lasted for up to 6 h. The onset of each large oral EJP was time-locked with the onset of an inhibitory junction potential (IJP) at an anal recording electrode, located 2 cm from the oral recording. Similar results were obtained in isolated intact tube preparations of colon, when recordings were made immediately oral and anal of an artificial faecal pellet. The amplitudes of many large (> 5 mV) oral EJPs were linearly related to the amplitudes of anal IJPs occurring 20 mm apart. In the absence of an L-type Ca2+ channel blocker, action potentials occurred on each large oral EJP. Synchronized discharges of stretch-activated EJPs and IJPs were preserved following pretreatment with capsaicin (10 μm), were unaffected by nifedipine (1 μm) and did not require the mucosa or submucous plexus. EJPs and IJPs were abolished by hexamethonium (300 μm) or tetrodotoxin (1 μm), but persisted in the presence of pyridoxal phosphate-6-azophenyl-2′,4′-disulphonic acid (PPADS; 10 μm) or an NK3 tachykinin receptor antagonist (Neurokinin A 4-10; 100 nm to 5 μm). In summary, maintained circumferential stretch of the distal colon activates a population of intrinsic mechanosensory neurons that generate repetitive firing of ascending excitatory and descending inhibitory pathways to CM. These mechanosensory neurons, which may be interneurons, are

  12. Bruxism: Is There an Indication for Muscle-Stretching Exercises?

    PubMed

    Gouw, Simone; de Wijer, Anton; Creugers, Nico Hj; Kalaykova, Stanimira I

    Bruxism is a common phenomenon involving repetitive activation of the masticatory muscles. Muscle-stretching exercises are a recommended part of several international guidelines for musculoskeletal disorders and may be effective in management of the jaw muscle activity that gives rise to bruxism. However, most studies of muscle-stretching exercises have mainly focused on their influence on performance (eg, range of motion, coordination, and muscle strength) of the limb or trunk muscles of healthy individuals or individuals with sports-related injuries. Very few have investigated stretching of the human masticatory muscles and none muscle-stretching exercises in the management of (sleep) bruxism. This article reviews the literature on muscle-stretching exercises and their potential role in the management of sleep bruxism or its consequences in the musculoskeletal system.

  13. A cephalometric study of velar stretch in adolescent subjects.

    PubMed

    Simpson, R K; Colton, J

    1980-01-01

    Cephalometric x-rays were used to evaluate velar stretch in 20 normal adolescents during the production of /s/. Radiopaque markers were used so that the behaviors of both the anterior and posterior portions and the total velum cound be evaluated. Velar stretch was found in each of the subjects with the average stretch (15.19%) greater than the amount reported for 10-year-old subjects but less than the average stretch for adults. The correlation between amount of velar stretch and need ratio was not significant. The different stages of involution of adenoid tissue, which is characteristic of this age group, resulted in varying configurations of the naso-pharynx were postulated as one possible explanation for this unexpected finding. Normative data and clinical implications are presented.

  14. Superelastic supercapacitors with high performances during stretching.

    PubMed

    Zhang, Zhitao; Deng, Jue; Li, Xueyi; Yang, Zhibin; He, Sisi; Chen, Xuli; Guan, Guozhen; Ren, Jing; Peng, Huisheng

    2015-01-14

    A fiber-shaped supercapacitor that can be stretched over 400% is developed by using two aligned carbon nanotube/polyaniline composite sheets as electrodes. A high specific capacitance of approximately 79.4 F g(-1) is well maintained after stretching at a strain of 300% for 5000 cycles or 100.8 F g(-1) after bending for 5000 cycles at a current density of 1 A g(-1). In particular, the high specific capacitance is maintained by 95.8% at a stretching speed as high as 30 mm s(-1). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Mitochondrial reactive oxygen species activate the slow force response to stretch in feline myocardium

    PubMed Central

    Caldiz, Claudia I; Garciarena, Carolina D; Dulce, Raúl A; Novaretto, Leonardo P; Yeves, Alejandra M; Ennis, Irene L; Cingolani, Horacio E; Chiappe de Cingolani, Gladys; Pérez, Néstor G

    2007-01-01

    When the length of the myocardium is increased, a biphasic response to stretch occurs involving an initial rapid increase in force followed by a delayed slow increase called the slow force response (SFR). Confirming previous findings involving angiotensin II in the SFR, it was blunted by AT1 receptor blockade (losartan). The SFR was accompanied by an increase in reactive oxygen species (ROS) of ∼30% and in intracellular Na+ concentration ([Na+]i) of ∼2.5 mmol l−1 over basal detected by H2DCFDA and SBFI fluorescence, respectively. Abolition of ROS by 2-mercapto-propionyl-glycine (MPG) and EUK8 suppressed the increase in [Na+]i and the SFR, which were also blunted by Na+/H+ exchanger (NHE-1) inhibition (HOE642). NADPH oxidase inhibition (apocynin or DPI) or blockade of the ATP-sensitive mitochondrial potassium channels (5HD or glybenclamide) suppressed both the SFR and the increase in [Na+]i after stretch, suggesting that endogenous angiotensin II activated NADPH oxidase leading to ROS release by the ATP-sensitive mitochondrial potassium channels, which promoted NHE-1 activation. Supporting the notion of ROS-mediated NHE-1 activation, stretch increased the ERK1/2 and p90rsk kinases phosphorylation, effect that was cancelled by losartan. In agreement, the SFR was cancelled by inhibiting the ERK1/2 signalling pathway with PD98059. Angiotensin II at a dose that mimics the SFR (1 nmol l−1) induced an increase in ·O2− production of ∼30–40% detected by lucigenin in cardiac slices, an effect that was blunted by losartan, MPG, apocynin, 5HD and glybenclamide. Taken together the data suggest a pivotal role of mitochondrial ROS in the genesis of the SFR to stretch. PMID:17823205

  16. Acute Effects of Three Different Stretching Protocols on the Wingate Test Performance

    PubMed Central

    Franco, Bruno L.; Signorelli, Gabriel R.; Trajano, Gabriel S.; Costa, Pablo B.; de Oliveira, Carlos G.

    2012-01-01

    The purpose of this study was to examine the acute effects of different stretching exercises on the performance of the traditional Wingate test (WT). Fifteen male participants performed five WT; one for familiarization (FT), and the remaining four after no stretching (NS), static stretching (SS), dynamic stretching (DS), and proprioceptive neuromuscular facilitation (PNF). Stretches were targeted for the hamstrings, quadriceps, and calf muscles. Peak power (PP), mean power (MP), and the time to reach PP (TP) were calculated. The MP was significantly lower when comparing the DS (7.7 ± 0.9 W/kg) to the PNF (7.3 ± 0.9 W/kg) condition (p < 0.05). For PP, significant differences were observed between more comparisons, with PNF stretching providing the lowest result. A consistent increase of TP was observed after all stretching exercises when compared to NS. The results suggest the type of stretching, or no stretching, should be considered by those who seek higher performance and practice sports that use maximal anaerobic power. Key points The mean power was significantly lower when comparing dynamic stretching.to proprioceptive neuromuscular facilitation. For peak power, significant differences were observed between more comparisons, with proprioceptive neuromuscular facilitation stretching providing the lowest result. A consistent increase of time to reach the peak was observed after all stretching exercises when compared to non-stretching. The type of stretching, or no stretching, should be considered by those who seek higher performance and practice sports that use maximal anaerobic power. PMID:24149116

  17. Cessation of cyclic stretch induces atrophy of C2C12 myotubes.

    PubMed

    Soltow, Quinlyn A; Zeanah, Elizabeth H; Lira, Vitor A; Criswell, David S

    2013-05-03

    Cyclic stretch of differentiated myotubes mimics the loading pattern of mature skeletal muscle. We tested a cell culture model of disuse atrophy by the cessation of repetitive bouts of cyclic stretch in differentiated C2C12 myotubes. Myotubes were subjected to cyclic strain (12%, 0.7 Hz, 1 h/d) on collagen-I-coated Bioflex plates using a computer-controlled vacuum stretch apparatus (Flexcell Int.) for 2 (2dSTR) or 5 (5dSTR) consecutive days. Control cultures were maintained in the Bioflex plates without cyclic stretch for 2d or 5d. Additionally, some cultures were stretched for 2 d followed by cessation of stretch for 3d (2dSTR3dCES). Cyclic stretching (5dSTR) increased myotube diameter and overall myotube area by ~2-fold (P<0.05) compared to non-stretched controls, while cessation of stretch (2dSTR3dCES) resulted in ~80% smaller myotubes than 5dSTR cells, and 40-50% smaller than non-stretched controls (P<0.05). Further, the calpain-dependent cleavage products of αII-spectrin (150 kDa) and talin increased (3.5-fold and 2.2-fold, respectively; P<0.05) in 2dSTR3dCES myotubes, compared to non-stretched controls. The 1h cyclic stretching protocol acutely increased the phosphorylation of Akt (+4.5-fold; P<0.05) and its downstream targets, FOXO3a (+4.2-fold; P<0.05) and GSK-3β (+1.8-fold; P<0.05), which returned to baseline by 48 h after cessation of stretch. Additionally, nitric oxide production increased during stretch and co-treatment with the NOS inhibitor, l-NAME, inhibited the effects of stretch and cessation of stretch. We conclude that cessation of cyclic stretching causes myotube atrophy by activating calpains and decreasing activation of Akt. Stretch-induced myotube growth, as well as activation of atrophy signaling with cessation of stretch, are dependent on NOS activity. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. EMG and peak force responses to PNF stretching and the relationship between stretching-induced force deficits and bilateral deficits

    PubMed Central

    Cengiz, Asim

    2015-01-01

    [Purpose] The aim of the present study was to investigate the possibility of an interaction between stretching induced deficit (SFD) and bilateral deficits (BLD) during maximal voluntary isometric hand flexion under PNF stretch and no-stretch conditions through measurement of EMG and force production. [Subjects and Methods] Ten physically active male Caucasian students (age, 24.1±2.38 years; body mass, 79.48±11.40 kg; height, 174.15±0.8 cm) volunteered to participate in this study. EMG and force measurements of the subjects were recorded during either unilateral or bilateral 3-second maximal voluntary isometric hand flexion (MVC) against a force transducer. The paired sample t-test was used to examine the significance of differences among several conditions. Pearson product-moment correlation was used to evaluate the associations between different parameters. [Results] Stretching-induced deficits correlated with bilateral deficits in both force (r=0.85) and iEMG (r=0.89). PNF stretching caused significant decrements in the bilateral and unilateral conditions for both the right and left sides. [Conclusion] Since both force and iEMG decreases were observed in most measurements; it suggests there is a neural mechanism behinnd both the BLD and the SFD. PMID:25931696

  19. Enhancement of multispectral thermal infrared images - Decorrelation contrast stretching

    NASA Technical Reports Server (NTRS)

    Gillespie, Alan R.

    1992-01-01

    Decorrelation contrast stretching is an effective method for displaying information from multispectral thermal infrared (TIR) images. The technique involves transformation of the data to principle components ('decorrelation'), independent contrast 'stretching' of data from the new 'decorrelated' image bands, and retransformation of the stretched data back to the approximate original axes, based on the inverse of the principle component rotation. The enhancement is robust in that colors of the same scene components are similar in enhanced images of similar scenes, or the same scene imaged at different times. Decorrelation contrast stretching is reviewed in the context of other enhancements applied to TIR images.

  20. Three Fresh Exposures, Stretched Color

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This panoramic camera image from NASA's Mars Exploration Rover Opportunity has been processed using a technique known as a decorrelation stretch to exaggerate the colors. The area in the image includes three holes created inside 'Endurance Crater' by Opportunity's rock abrasion tool between sols 143 and 148 (June 18 and June 23, 2004). Because color variations are so subtle in the pictured area, stretched images are useful for discriminating color differences that can alert scientists to compositional and textural variations. For example, without the exaggeration, no color difference would be discernable among the tailings left behind after the grinding of these holes, but in this stretched image, the tailings around 'London' (top) appear more red than those of the other holes ('Virginia,' middle, and 'Cobble Hill,' bottom). Scientists believe that is because the rock abrasion tool sliced through two 'blueberries,' or spherules (visible on the upper left and upper right sides of the circle). When the blades break up these spherules, composed of mostly gray hematite, the result is a bright red powder. In this image, you can see the rock layers that made the team want to grind holes in each identified layer. The top layer is yellowish red, the middle is yellowish green and the lower layer is green. Another advantage to viewing this stretched image is the clear detail of the distribution of the rock abrasion tool tailings (heading down-slope) and the differences in rock texture. This image was created using the 753-, 535- and 432-nanometer filters.

  1. On One-Dimensional Stretching Functions for Finite-Difference Calculations

    NASA Technical Reports Server (NTRS)

    Vinokur, M.

    1980-01-01

    The class of one dimensional stretching function used in finite difference calculations is studied. For solutions containing a highly localized region of rapid variation, simple criteria for a stretching function are derived using a truncation error analysis. These criteria are used to investigate two types of stretching functions. One is an interior stretching function, for which the location and slope of an interior clustering region are specified. The simplest such function satisfying the criteria is found to be one based on the inverse hyperbolic sine. The other type of function is a two sided stretching function, for which the arbitrary slopes at the two ends of the one dimensional interval are specified. The simplest such general function is found to be one based on the inverse tangent. The general two sided function has many applications in the construction of finite difference grids.

  2. Lamellar Thickness and Stretching Temperature Dependency of Cavitation in Semicrystalline Polymers

    PubMed Central

    Wang, Yaotao; Jiang, Zhiyong; Fu, Lianlian; Lu, Ying; Men, Yongfeng

    2014-01-01

    Polybutene-1 (PB-1), a typical semicrystalline polymer, in its stable form I shows a peculiar temperature dependent strain-whitening behavior when being stretched at temperatures in between room temperature and melting temperature of the crystallites where the extent of strain-whitening weakens with the increasing of stretching temperature reaching a minima value followed by an increase at higher stretching temperatures. Correspondingly, a stronger strain-hardening phenomenon was observed at higher temperatures. The strain-whitening phenomenon in semicrystalline polymers has its origin of cavitation process during stretching. In this work, the effect of crystalline lamellar thickness and stretching temperature on the cavitation process in PB-1 has been investigated by means of combined synchrotron ultrasmall-angle and wide-angle X-ray scattering techniques. Three modes of cavitation during the stretching process can be identified, namely “no cavitation” for the quenched sample with the thinnest lamellae where only shear yielding occurred, “cavitation with reorientation” for the samples stretched at lower temperatures and samples with thicker lamellae, and “cavitation without reorientation” for samples with thinner lamellae stretched at higher temperatures. The mode “cavitation with reorientation” occurs before yield point where the plate-like cavities start to be generated within the lamellar stacks with normal perpendicular to the stretching direction due to the blocky substructure of the crystalline lamellae and reorient gradually to the stretching direction after strain-hardening. The mode of “cavitation without reorientation” appears after yield point where ellipsoidal shaped cavities are generated in those lamellae stacks with normal parallel to the stretching direction followed by an improvement of their orientation at larger strains. X-ray diffraction results reveal a much improved crystalline orientation for samples with thinner lamellae

  3. Adaptive increase in D3 dopamine receptors in the brain reward circuits of human cocaine fatalities.

    PubMed

    Staley, J K; Mash, D C

    1996-10-01

    The mesolimbic dopaminergic system plays a primary role in mediating the euphoric and rewarding effects of most abused drugs. Chronic cocaine use is associated with an increase in dopamine neurotransmission resulting from the blockade of dopamine uptake and is mediated by the activation of dopamine receptors. Recent studies have suggested that the D3 receptor subtype plays a pivotal role in the reinforcing effects of cocaine. The D3 receptor-preferring agonist 7-hydroxy-N,N-di-n-propyl-2-aminotetralin (7-OH-DPAT) is a reinforcer in rhesus monkeys trained to self-administer cocaine, but not in cocainenaive monkeys. In vitro autoradiographic localization of [3H]-(+)-7-OH-DPAT binding in the human brain demonstrated that D3 receptors were prevalent and highly localized over the ventromedial sectors of the striatum. Pharmacological characterization of [3H]-(+)-7-OH-DPAT binding to the human nucleus accumbens demonstrated a rank order of potency similar to that observed for binding to the cloned D3 receptor expressed in transfected cell lines. Region-of-interest analysis of [3H]-(+)-7-OH-DPAT binding to the D3 receptor demonstrated a one- to threefold elevation in the number of binding sites over particular sectors of the striatum and substantia nigra in cocaine overdose victims as compared with age-matched and drug-free control subjects. The elevated number of [3H]-(+)-7-OH-DPAT binding sites demonstrates that adaptive changes in the D3 receptor in the reward circuitry of the brain are associated with chronic cocaine abuse. These results suggest that the D3 receptor may be a useful target for drug development of anticocaine medications.

  4. Stretch That Budget!

    ERIC Educational Resources Information Center

    Walker, John R.

    1976-01-01

    Discusses ways in which industrial education teachers can stretch their budgets, which include reducing waste to a minimum, keeping an accurate and up-to-date inventory, trading surplus or excess materials with neighboring schools, and planning programs more carefully. Money-saving tips concerned with metals, plastics, woods, and printing are also…

  5. Molecular adaptation and resilience of the insect’s nuclear receptor USP

    PubMed Central

    2012-01-01

    propose a model in which the molecular adaptation of this protein is seen as a process of resilience for the maintenance of the ecdysone receptor functionality. PMID:23039844

  6. Rosidal K: a short-stretch compression bandage system.

    PubMed

    Williams, C

    Management of venous leg ulcers account for a large proportion of the work of healthcare professionals, especially for those who are community based. Multilayer and long-stretch bandage systems have been used successfully for many years in venous leg ulcer management. Rosidal K, a short-stretch bandage, is now also becoming more widely accepted in this country as an effective and cost-effective bandage system. This product focus looks at bandage systems and examines the research supporting the use of short-stretch bandages and Rosidal K.

  7. Background odour induces adaptation and sensitization of olfactory receptors in the antennae of houseflies.

    PubMed

    Kelling, F J; Ialenti, F; Den Otter, C J

    2002-06-01

    The presence of background odour was found to have a small but significant effect on the sensitivity of the antennal olfactory system of houseflies, Musca domestica Linnaeus (Diptera: Muscidae), to new pulses of odour. We show that cross-adaptation and cross-sensitization between a background odour of (+/-)-1-octen-3-ol and pulses of (+/-)-1-octen-3-ol, 2-pentanone and R-(+)-limonene can occur, confirming that olfactory receptor cells are sensitive to different odours. Background odour can increase the responses to low concentration odour pulses and decrease the responses to higher concentration odour pulses. It is suggested that background odour has a larger effect on olfactory receptor cells that respond with a tonic increase of spike frequency, giving information about the level of odour concentration, i.e. the 'static' environment. Cells that respond in a phasic way only provide information on the dynamics of the olfactory environment.

  8. Stretch and interleukin 1 beta: pro-labour factors with similar mitogen-activated protein kinase effects but differential patterns of transcription factor activation and gene expression.

    PubMed

    Sooranna, S R; Engineer, N; Liang, Z; Bennett, P R; Johnson, M R

    2007-07-01

    IL-1beta and stretch increase uterine smooth muscle cell (USMC) prostaglandin H synthase 2 (PGHS-2) and interleukin (IL)-8 mRNA expression in a mitogen-activated protein kinase (MAPK) dependent mechanism. We have tested our hypothesis that stretch and IL-1beta activate different components of the MAPK cascade in USMC and investigated the effects of specific MAPK inhibitors on these components. Further, we have used a Jun N-terminal kinase (JNK) and p38 activator, anisomycin, to compare the effect of differential MAPK activation on the expression of PGHS-2, IL-8 and oxytocin receptor (OTR) mRNA with that seen in response to stretch and IL-1beta. Stretch, IL-1beta and anisomycin activated similar components of the MAPK cascade and specific inhibitors of MAPK altered phosphorylation of MAPK and downstream cascade components as expected. Expression of OTR mRNA was increased by stretch and anisomycin in a MAPK-independent manner. All three stimuli increased PGHS-2 and IL-8 mRNA expression in a MAPK-dependent manner, but while the MAPK inhibitors reduced the IL-1beta-induced activation of activating transcription factor (ATF)-2, liver activating protein (LAP) and c-jun, the stretch-induced increase in LAP was unaffected by MAPK-inhibition and only JNK inhibition appeared to reduce c-jun activation. These observations show that stretch, IL-1beta and anisomycin activate the same components of the MAPK cascade, but differentially activate LAP and liver inhibitory protein (LIP) perhaps accounting for the increase in OTR by stretch and anisomycin but not IL-1beta observed in this study.

  9. Effects of the noncompetitive N-methyl-d-aspartate receptor antagonists ketamine and MK-801 on pain-stimulated and pain-depressed behaviour in rats.

    PubMed

    Hillhouse, T M; Negus, S S

    2016-09-01

    Pain is a significant public health concern, and current pharmacological treatments have problematic side effects and limited effectiveness. N-methyl-d-aspartate (NMDA) glutamate receptor antagonists have emerged as one class of candidate treatments for pain because of the significant contribution of glutamate signalling in nociceptive processing. This study compared effects of the NMDA receptor antagonists ketamine and MK-801 in assays of pain-stimulated and pain-depressed behaviour in rats. The nonsteroidal anti-inflammatory drug ketoprofen was examined for comparison as a positive control. Intraperitoneal injection of dilute acid served as an acute visceral noxious stimulus to stimulate a stretching response or depress intracranial self-stimulation (ICSS) in male Sprague-Dawley rats. Ketamine (1.0-10.0 mg/kg) blocked acid-stimulated stretching but failed to block acid-induced depression of ICSS, whereas MK-801 (0.01-0.1 mg/kg) blocked both acid-stimulated stretching and acid-induced depression of ICSS. These doses of ketamine and MK-801 did not alter control ICSS in the absence of the noxious stimulus; however, higher doses of ketamine (10 mg/kg) and MK-801 (0.32 mg/kg) depressed all behaviour. Ketoprofen (1.0 mg/kg) blocked both acid-induced stimulation of stretching and depression of ICSS without altering control ICSS. These results support further consideration of NMDA receptor antagonists as analgesics; however, some NMDA receptor antagonists are more efficacious at attenuating pain-depressed behaviours. NMDA receptor antagonists produce dissociable effects on pain-depressed behaviour. Provides evidence that pain-depressed behaviours should be considered and evaluated when determining the antinociceptive effects of NMDA receptor antagonists. © 2016 European Pain Federation - EFIC®

  10. Effects of the noncompetitive N-methyl-D-aspartate receptor antagonists ketamine and MK-801 on pain-stimulated and pain-depressed behaviour in rats

    PubMed Central

    Hillhouse, T.M.; Negus, S.S.

    2017-01-01

    Background Pain is a significant public health concern, and current pharmacological treatments have problematic side effects and limited effectiveness. N-methyl-D-aspartate (NMDA) glutamate receptor antagonists have emerged as one class of candidate treatments for pain because of the significant contribution of glutamate signalling in nociceptive processing. Methods This study compared effects of the NMDA receptor antagonists ketamine and MK-801 in assays of pain-stimulated and pain-depressed behaviour in rats. The nonsteroidal anti-inflammatory drug ketoprofen was examined for comparison as a positive control. Intraperitoneal injection of dilute acid served as an acute visceral noxious stimulus to stimulate a stretching response or depress intracranial self-stimulation (ICSS) in male Sprague–Dawley rats. Results Ketamine (1.0–10.0 mg/kg) blocked acid-stimulated stretching but failed to block acid-induced depression of ICSS, whereas MK-801 (0.01–0.1 mg/kg) blocked both acid-stimulated stretching and acid-induced depression of ICSS. These doses of ketamine and MK-801 did not alter control ICSS in the absence of the noxious stimulus; however, higher doses of ketamine (10 mg/kg) and MK-801 (0.32 mg/kg) depressed all behaviour. Ketoprofen (1.0 mg/kg) blocked both acid-induced stimulation of stretching and depression of ICSS without altering control ICSS. Conclusion These results support further consideration of NMDA receptor antagonists as analgesics; however, some NMDA receptor antagonists are more efficacious at attenuating pain-depressed behaviours. What does this study add? NMDA receptor antagonists produce dissociable effects on pain-depressed behaviour. Provides evidence that pain-depressed behaviours should be considered and evaluated when determining the antinociceptive effects of NMDA receptor antagonists. PMID:26914635

  11. Molecular evolution of the odorant and gustatory receptor genes in lepidopteran insects: implications for their adaptation and speciation.

    PubMed

    Engsontia, Patamarerk; Sangket, Unitsa; Chotigeat, Wilaiwan; Satasook, Chutamas

    2014-08-01

    Lepidoptera (comprised of butterflies and moths) is one of the largest groups of insects, including more than 160,000 described species. Chemoreception plays important roles in the adaptation of these species to a wide range of niches, e.g., plant hosts, egg-laying sites, and mates. This study investigated the molecular evolution of the lepidopteran odorant (Or) and gustatory receptor (Gr) genes using recently identified genes from Bombyx mori, Danaus plexippus, Heliconius melpomene, Plutella xylostella, Heliothis virescens, Manduca sexta, Cydia pomonella, and Spodoptera littoralis. A limited number of cases of large lineage-specific gene expansion are observed (except in the P. xylostella lineage), possibly due to selection against tandem gene duplication. There has been strong purifying selection during the evolution of both lepidopteran odorant and gustatory genes, as shown by the low ω values estimated through CodeML analysis, ranging from 0.0093 to 0.3926. However, purifying selection has been relaxed on some amino acid sites in these receptors, leading to sequence divergence, which is a precursor of positive selection on these sequences. Signatures of positive selection were detected only in a few loci from the lineage-specific analysis. Estimation of gene gains and losses suggests that the common ancestor of the Lepidoptera had fewer Or genes compared to extant species and an even more reduced number of Gr genes, particularly within the bitter receptor clade. Multiple gene gains and a few gene losses occurred during the evolution of Lepidoptera. Gene family expansion may be associated with the adaptation of lepidopteran species to plant hosts, especially after angiosperm radiation. Phylogenetic analysis of the moth sex pheromone receptor genes suggested that chromosomal translocations have occurred several times. New sex pheromone receptors have arisen through tandem gene duplication. Positive selection was detected at some amino acid sites predicted to be

  12. Regulation of inward rectifier potassium current ionic channel remodeling by AT1 -Calcineurin-NFAT signaling pathway in stretch-induced hypertrophic atrial myocytes.

    PubMed

    He, Jionghong; Xu, Yanan; Yang, Long; Xia, Guiling; Deng, Na; Yang, Yongyao; Tian, Ye; Fu, Zenan; Huang, Yongqi

    2018-05-02

    Previous studies have shown that the activation of angiotensin II receptor type I (AT 1 ) is attributed to cardiac remodeling stimulated by increased heart load, and that it is followed by the activation of the calcineurin-nuclear factor of activated T-cells (NFAT) signaling pathway. Additionally, AT 1 has been found to be a regulator of cardiocyte ionic channel remodeling, and calcineurin-NFAT signals participate in the regulation of cardiocyte ionic channel expression. A hypothesis therefore follows that stretch stimulation may regulate cardiocyte ionic channel remodeling by activating the AT 1 -calcineurin-NFAT pathway. Here, we investigated the role of the AT 1 -calcineurin-NFAT pathway in the remodeling of inward rectifier potassium (I k1 ) channel, in addition to its role in changing action potential, in stretch-induced hypertrophic atrial myocytes of neonatal rats. Our results showed that increased stretch significantly led to atrial myocytes hypertrophy; it also increased the activity of calcineurin enzymatic activity, which was subsequently attenuated by telmisartan or cyclosporine-A. The level of NFAT 3 protein in nuclear extracts, the mRNA and protein expression of Kir2.1 in whole cell extracts, and the density of I k1 were noticeably increased in stretched samples. Stretch stimulation significantly shortened the action potential duration (APD) of repolarization at the 50% and 90% level. Telmisartan, cyclosporine-A, and 11R-VIVIT attenuated stretch-induced alterations in the levels of NFAT 3 , mRNA and protein expression of Kir2.1, the density of I k1 , and the APD. Our findings suggest that the AT 1 -calcineurin-NFAT signaling pathway played an important role in regulating I k1 channel remodeling and APD change in stretch-induced hypertrophic atrial myocytes of neonatal rats. This article is protected by copyright. All rights reserved.

  13. Evolution of an adaptive behavior and its sensory receptors promotes eye regression in blind cavefish.

    PubMed

    Yoshizawa, Masato; Yamamoto, Yoshiyuki; O'Quin, Kelly E; Jeffery, William R

    2012-12-27

    How and why animals lose eyesight during adaptation to the dark and food-limited cave environment has puzzled biologists since the time of Darwin. More recently, several different adaptive hypotheses have been proposed to explain eye degeneration based on studies in the teleost Astyanax mexicanus, which consists of blind cave-dwelling (cavefish) and sighted surface-dwelling (surface fish) forms. One of these hypotheses is that eye regression is the result of indirect selection for constructive characters that are negatively linked to eye development through the pleiotropic effects of Sonic Hedgehog (SHH) signaling. However, subsequent genetic analyses suggested that other mechanisms also contribute to eye regression in Astyanax cavefish. Here, we introduce a new approach to this problem by investigating the phenotypic and genetic relationships between a suite of non-visual constructive traits and eye regression. Using quantitative genetic analysis of crosses between surface fish, the Pachón cavefish population and their hybrid progeny, we show that the adaptive vibration attraction behavior (VAB) and its sensory receptors, superficial neuromasts (SN) specifically found within the cavefish eye orbit (EO), are genetically correlated with reduced eye size. The quantitative trait loci (QTL) for these three traits form two clusters of congruent or overlapping QTL on Astyanax linkage groups (LG) 2 and 17, but not at the shh locus on LG 13. Ablation of EO SN in cavefish demonstrated a major role for these sensory receptors in VAB expression. Furthermore, experimental induction of eye regression in surface fish via shh overexpression showed that the absence of eyes was insufficient to promote the appearance of VAB or EO SN. We conclude that natural selection for the enhancement of VAB and EO SN indirectly promotes eye regression in the Pachón cavefish population through an antagonistic relationship involving genetic linkage or pleiotropy among the genetic factors

  14. A Japanese Stretching Intervention Can Modify Lumbar Lordosis Curvature.

    PubMed

    Kadono, Norio; Tsuchiya, Kazushi; Uematsu, Azusa; Kamoshita, Hiroshi; Kiryu, Kazunori; Hortobágyi, Tibor; Suzuki, Shuji

    2017-08-01

    Eighteen healthy male adults were assigned to either an intervention or control group. Isogai dynamic therapy (IDT) is one of Japanese stretching interventions and has been practiced for over 70 years. However, its scientific quantitative evidence remains unestablished. The objective of this study was to determine whether IDT could modify lumbar curvature in healthy young adults compared with stretching exercises used currently in clinical practice. None of previous studies have provided data that conventional stretching interventions could modify spinal curvatures. However, this study provides the first evidence that a specific form of a Japanese stretching intervention can acutely modify the spinal curvatures. We compared the effects of IDT, a Japanese stretching intervention (n=9 males), with a conventional stretching routine (n=9 males) used widely in clinics to modify pelvic tilt and lumbar lordosis (LL) angle. We measured thoracic kyphosis (TK) and LL angles 3 times during erect standing using the Spinal Mouse before and after each intervention. IDT consisted of: (1) hip joint correction, (2) pelvic tilt correction, (3) lumbar alignment correction, and (4) squat exercise stretch. The control group performed hamstring stretches while (1) standing and (2) sitting. IDT increased LL angle to 25.1 degrees (±5.9) from 21.2 degrees (±6.9) (P=0.047) without changing TK angle (pretest: 36.8 degrees [±6.9]; posttest: 36.1 degrees [±6.5]) (P=0.572). The control group showed no changes in TK (P=0.819) and LL angles (P=0.744). IDT can thus be effective for increasing LL angle, hence anterior pelvic tilt. Such modifications could ameliorate low back pain and improve mobility in old adults with an unfavorable pelvic position.

  15. Stretched size of atrial septal defect predicted by intracardiac echocardiography.

    PubMed

    Lin, Ming-Chih; Fu, Yun-Ching; Jan, Sheng-Ling; Ho, Chi-Lin; Hwang, Betau

    2010-01-01

    The stretched size of an atrial septal defect (ASD) is important for device selection during transcatheter closure. However, balloon sizing carries potential risks such as hypotension, bradycardia, or laceration of the atrial septum. The aim of the present study was to investigate the accuracy of the predicted stretched size of ASD by intracardiac echocardiography (ICE). From December 2004 to November 2007, 136 consecutive patients with single secundum type ASD undergoing transcatheter closure of their defect using the Amplatzer septal occluder under ICE guidance were enrolled for analysis. There were 43 males and 93 females. The age ranged from 2.2 to 79.1 years with a median age of 13.4 years. The body weight ranged from 12.1 to 93.2 kg with a median body weight of 45.8 kg. The stretched size of ASD measured by a sizing plate was considered as the standard. ASD sizes measured by ICE in bicaval and short-axis views predicted the stretched size by formulae derived from linear regressions. The predicted stretched sizes obtained using 2 formulae, 1.34 x radicalbicaval xshort axis (formula 1) and 1.22 x larger diameter (formula 2), exhibited good agreement with the standard stretched size with Kappa values of 0.91 and 0.90, respectively. The accuracy rate of predicted stretched sizes within 2 mm, 3 mm, and 4 mm range of the standard size were 32.8%, 45.4%, and 57.7% (formula 1) and 33.1%, 50%, and 63.2% (formula 2). The stretched size of ASD predicted by ICE exhibited good agreement with the standard stretched size. This prediction provides helpful information, especially if balloon sizing cannot be adequately performed.

  16. Interactive effects of mechano- and chemo-receptor inputs on cardiorespiratory outputs in the toad.

    PubMed

    Wang, T; Taylor, E W; Reid, S G; Milsom, W K

    2004-04-20

    Arterial blood pressure (P(b)), pulmocutaneous blood flow (Q(pc)), heart rate (f(H)), and fictive ventilation (motor activity in the Vth cranial nerve, V(int)), were recorded from decerebrated, paralysed toads receiving unidirectional ventilation with experimental gas mixtures over a range of lung inflation. At the onset of spontaneous bouts of fictive ventilation, (Q(pc)) and P(b) increased immediately, often with changes in heart rate, implying central cardiorespiratory interactions. Inflation of the lungs with different gas mixtures revealed that the effect of hypercarbia on V(int) was reduced by lung inflation and that feedback from pulmonary stretch receptors may summate with central feedforward control of f(H) and (Q(pc)) in an interactive fashion. The results of bolus injections of cyanide into the carotid or the pulmonary circulations suggest there are oxygen sensitive receptors in both circuits that affect the cardiovascular system directly and respiratory activity by complex central interactions with inputs from central chemoreceptors and pulmonary stretch receptors.

  17. Introgression of Neandertal- and Denisovan-like Haplotypes Contributes to Adaptive Variation in Human Toll-like Receptors

    PubMed Central

    Dannemann, Michael; Andrés, Aida M.; Kelso, Janet

    2016-01-01

    Pathogens and the diseases they cause have been among the most important selective forces experienced by humans during their evolutionary history. Although adaptive alleles generally arise by mutation, introgression can also be a valuable source of beneficial alleles. Archaic humans, who lived in Europe and Western Asia for more than 200,000 years, were probably well adapted to this environment and its local pathogens. It is therefore conceivable that modern humans entering Europe and Western Asia who admixed with them obtained a substantial immune advantage from the introgression of archaic alleles. Here we document a cluster of three Toll-like receptors (TLR6-TLR1-TLR10) in modern humans that carries three distinct archaic haplotypes, indicating repeated introgression from archaic humans. Two of these haplotypes are most similar to the Neandertal genome, and the third haplotype is most similar to the Denisovan genome. The Toll-like receptors are key components of innate immunity and provide an important first line of immune defense against bacteria, fungi, and parasites. The unusually high allele frequencies and unexpected levels of population differentiation indicate that there has been local positive selection on multiple haplotypes at this locus. We show that the introgressed alleles have clear functional effects in modern humans; archaic-like alleles underlie differences in the expression of the TLR genes and are associated with reduced microbial resistance and increased allergic disease in large cohorts. This provides strong evidence for recurrent adaptive introgression at the TLR6-TLR1-TLR10 locus, resulting in differences in disease phenotypes in modern humans. PMID:26748514

  18. Optofluidic time-stretch quantitative phase microscopy.

    PubMed

    Guo, Baoshan; Lei, Cheng; Wu, Yi; Kobayashi, Hirofumi; Ito, Takuro; Yalikun, Yaxiaer; Lee, Sangwook; Isozaki, Akihiro; Li, Ming; Jiang, Yiyue; Yasumoto, Atsushi; Di Carlo, Dino; Tanaka, Yo; Yatomi, Yutaka; Ozeki, Yasuyuki; Goda, Keisuke

    2018-03-01

    Innovations in optical microscopy have opened new windows onto scientific research, industrial quality control, and medical practice over the last few decades. One of such innovations is optofluidic time-stretch quantitative phase microscopy - an emerging method for high-throughput quantitative phase imaging that builds on the interference between temporally stretched signal and reference pulses by using dispersive properties of light in both spatial and temporal domains in an interferometric configuration on a microfluidic platform. It achieves the continuous acquisition of both intensity and phase images with a high throughput of more than 10,000 particles or cells per second by overcoming speed limitations that exist in conventional quantitative phase imaging methods. Applications enabled by such capabilities are versatile and include characterization of cancer cells and microalgal cultures. In this paper, we review the principles and applications of optofluidic time-stretch quantitative phase microscopy and discuss its future perspective. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Tunable nanoblock lasers and stretching sensors.

    PubMed

    Lu, T W; Wang, C; Hsiao, C F; Lee, P T

    2016-09-22

    Reconfigurable, reliable, and robust nanolasers with wavelengths tunable in the telecommunication bands are currently being sought after for use as flexible light sources in photonic integrated circuits. Here, we propose and demonstrate tunable nanolasers based on 1D nanoblocks embedded within stretchable polydimethylsiloxane. Our lasers show a large wavelength tunability of 7.65 nm per 1% elongation. Moreover, this tunability is reconfigurable and reliable under repeated stretching/relaxation tests. By applying excessive stretching, wide wavelength tuning over a range of 80 nm (spanning the S, C, and L telecommunication bands) is successfully demonstrated. Furthermore, as a stretching sensor, an enhanced wavelength response to elongation of 9.9 nm per % is obtained via the signal differential from two nanoblock lasers positioned perpendicular to each other. The minimum detectable elongation is as small as 0.056%. Nanoblock lasers can function as reliable tunable light sources in telecommunications and highly sensitive on-chip structural deformation sensors.

  20. Low-level stretching accelerates cell migration into a gap.

    PubMed

    Toume, Samer; Gefen, Amit; Weihs, Daphne

    2017-08-01

    We observed that radially stretching cell monolayers at a low level (3%) increases the rate at which they migrate to close a gap formed by in vitro injury. Wound healing has been shown to accelerate in vivo when deformations are topically applied, for example, by negative pressure wound therapy. However, the direct effect of deformations on cell migration during gap closure is still unknown. Thus, we have evaluated the effect of radially applied, sustained (static) tensile strain on the kinematics of en mass cell migration. Monolayers of murine fibroblasts were cultured on stretchable, linear-elastic substrates that were subjected to different tensile strains, using a custom-designed three-dimensionally printed stretching apparatus. Immediately following stretching, the monolayer was 'wounded' at its centre, and cell migration during gap closure was monitored and quantitatively evaluated. We observed a significant increase in normalised migration rates and a reduction of gap closure time with 3% stretching, relative to unstretched controls or 6% stretch. Interestingly, the initial gap area was linearly correlated with the maximum migration rate, especially when stretching was applied. Therefore, small deformations applied to cell monolayers during gap closure enhance en mass cell migration associated with wound healing and can be used to fine-tune treatment protocols. © 2016 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  1. Biocatalysis: Unmasked by stretching

    NASA Astrophysics Data System (ADS)

    Kharlampieva, Eugenia; Tsukruk, Vladimir V.

    2009-09-01

    The biocatalytic activity of enzyme-loaded responsive layer-by-layer films can be switched on and off by simple mechanical stretching. Soft materials could thus be used to trigger biochemical reactions under mechanical action, with potential therapeutic applications.

  2. The acute effect of different stretching methods on sprint performance in taekwondo practitioners.

    PubMed

    Alemdaroğlu, Utku; Köklü, Yusuf; Koz, Mitat

    2017-09-01

    The purpose of this study was to compare the acute effects of different stretching types on sprint performance in taekwondo practitioners. Twelve male taekwondo practitioners performed stretching exercises using different types (ballistic, proprioceptive neuromuscular facilitation [PNF], static stretching) in a random order at three-day intervals; there was also a control condition involving no stretching exercises. The subjects performed 2 maximal 20-m sprints (with 10-m split times also recorded) with a recovery period of 1 minute immediately post stretching and at 5, 10, 15 and 20 minutes after stretching. They also performed these sprints before doing the stretching exercises. The study results showed that sprint times significantly increased after static stretching (10-m pre =1.84±0.07 s, 10-m post =1.89±0.08 s; 20-m pre =3.33±0.19 s, 20-m post= 3.38±0.2 s), PNF stretching (10-m pre =1.84±0.07 s, 10-m post =1.89±0.08 s; 20-m pre =3.33±0.19 s, 20-m post =3.38±0.20 s) and ballistic stretching (pre =1.84±0.08 s, post =1.86±0.07 s; 20-m pre =3.33±0.20 s, 20-m post =3.35±0.21 s) (P<0.05). In the static stretching condition, 10-m and 20-m sprint performance had fully returned to normal at 15 minutes after stretching. In the PNF stretching condition, 20-m sprint performance returned to normal levels at 15 minutes after stretching, while 10-m performance took 20 minutes to recover fully. In the ballistic stretching method, both 10-m and 20-m sprint performances had fully recovered at 5 minutes after stretching. It is therefore concluded that the acute effects of static, PNF and ballistic stretching may negatively affect sprint performance, although sprint performance is less affected after ballistic stretching than after the other stretching types. Therefore, it is not advisable to perform PNF or static stretching immediately before sprint performance.

  3. Lung vagal afferent activity in rats with bleomycin-induced lung fibrosis.

    PubMed

    Schelegle, E S; Walby, W F; Mansoor, J K; Chen, A T

    2001-05-01

    Bleomycin treatment in rats results in pulmonary fibrosis that is characterized by a rapid shallow breathing pattern, a decrease in quasi-static lung compliance and a blunting of the Hering-Breuer Inflation Reflex. We examined the impulse activity of pulmonary vagal afferents in anesthetized, mechanically ventilated rats with bleomycin-induced lung fibrosis during the ventilator cycle and static lung inflations/deflations and following the injection of capsaicin into the right atrium. Bleomycin enhanced volume sensitivity of slowly adapting stretch receptors (SARs), while it blunted the sensitivity of these receptors to increasing transpulmonary pressure. Bleomycin treatment increased the inspiratory activity, while it decreased the expiratory activity of rapidly adapting stretch receptors (RARs). Pulmonary C-fiber impulse activity did not appear to be affected by bleomycin treatment. We conclude that the fibrosis-related shift in discharge profile and enhanced volume sensitivity of SARs combined with the increased inspiratory activity of RARs contributes to the observed rapid shallow breathing of bleomycin-induced lung fibrosis.

  4. Eliminating electromechanical instability in dielectric elastomers by employing pre-stretch

    NASA Astrophysics Data System (ADS)

    Jiang, Liang; Betts, Anthony; Kennedy, David; Jerrams, Stephen

    2016-07-01

    Electromechanical instability (EMI) is one of most common failure modes for dielectric elastomers (DEs). It has been reported that pre-stretching a DE sample can suppress EMI due to strain stiffening taking place for larger strains and a higher elastic modulus are achieved at high stretch ratios when a voltage is applied to the material. In this work, the influence of equi-biaxial stretch on DE secant modulus was studied using VHB 4910 and silicone rubber (SR) composites containing barium titanate (BaTiO3, BT) particles and also dopamine coated BT (DP-BT) particles. The investigation of equi-biaxial deformation and EMI failure for VHB 4910 was undertaken by introducing a voltage-stretch function. The results showed that EMI was suppressed by equi-biaxial pre-stretch for all the DEs fabricated and tested. The stiffening properties of the DE materials were also studied with respect to the secant modulus. Furthermore, a voltage-induced strain of above 200% was achieved for the polyacrylate film by applying a pre-stretch ratio of 2.0 without EMI occurring. However, a maximum voltage-induced strain in the polyacrylate film of 78% was obtained by the SR/20 wt% DP-BT composite for a lower applied pre-stretch ratio of 1.6 and again EMI was eliminated.

  5. Effects of Static Stretching and Playing Soccer on Knee Laxity.

    PubMed

    Baumgart, Christian; Gokeler, Alli; Donath, Lars; Hoppe, Matthias W; Freiwald, Jürgen

    2015-11-01

    This study investigated exercise-induced effects of static stretching and playing soccer on anterior tibial translation (ATT) of the knee joint. Randomized controlled trial. University biomechanics laboratory. Thirty-one athletes were randomly assigned into a stretching (26.9 ± 6.2 years, 1.77 ± 0.09 m, 67.9 ± 10.7 kg) and a control group (27.9 ± 7.4 years, 1.75 ± 0.08 m, 72.0 ± 14.9 kg). Thirty-one amateur soccer players in an additional soccer group (25.1 ± 5.6 years, 1.74 ± 0.10 m, 71.8 ± 14.8 kg). All participants had no history of knee injury requiring surgery and any previous knee ligament or cartilage injury. The stretching group performed 4 different static stretching exercises with a duration of 2 × 20 seconds interspersed with breaks of 10 seconds. The soccer group completed a 90-minute soccer-specific training program. The control group did not perform any physical activity for approximately 30 minutes. Anterior tibial translation was measured with the KT-1000 knee arthrometer at forces of 67 N, 89 N, and maximal manual force (Max) before and after the intervention. There was a significant increase in ATT after static stretching and playing soccer at all applied forces. Maximal manual testing revealed a mean increase of ATT after static stretching of 2.1 ± 1.6 mm (P < 0.0005) and after playing soccer of 1.0 ± 1.5 mm (P = 0.001). The ATT increase after static stretching at 67 and 89 N is significantly higher than in controls. At maximum manual testing, significant differences were evident between all groups. Static stretching and playing soccer increase ATT and may consequently influence mechanical factors of the anterior cruciate ligament. The ATT increase after static stretching was greater than after playing soccer. The observed increase in ATT after static stretching and playing soccer may be associated with changes in kinesthetic perception and sensorimotor control, activation of muscles, joint stability, overall performance, and higher

  6. Acute Effects of Foam Rolling, Static Stretching, and Dynamic Stretching During Warm-ups on Muscular Flexibility and Strength in Young Adults.

    PubMed

    Su, Hsuan; Chang, Nai-Jen; Wu, Wen-Lan; Guo, Lan-Yuen; Chu, I-Hua

    2017-11-01

    Foam rolling has been proposed to improve muscle function, performance, and joint range of motion (ROM). However, whether a foam rolling protocol can be adopted as a warm-up to improve flexibility and muscle strength is unclear. To examine and compare the acute effects of foam rolling, static stretching, and dynamic stretching used as part of a warm-up on flexibility and muscle strength of knee flexion and extension. Crossover study. University research laboratory. 15 male and 15 female college students (age 21.43 ± 1.48 y, weight 65.13 ± 12.29 kg, height 166.90 ± 6.99 cm). Isokinetic peak torque was measured during knee extension and flexion at an angular velocity of 60°/second. Flexibility of the quadriceps was assessed by the modified Thomas test, while flexibility of the hamstrings was assessed using the sit-and-reach test. The 3 interventions were performed by all participants in random order on 3 days separated by 48-72 hours. The flexibility test scores improved significantly more after foam rolling as compared with static and dynamic stretching. With regard to muscle strength, only knee extension peak torque (pre vs. postintervention) improved significantly after the dynamic stretching and foam rolling, but not after static stretching. Knee flexion peak torque remained unchanged. Foam rolling is more effective than static and dynamic stretching in acutely increasing flexibility of the quadriceps and hamstrings without hampering muscle strength, and may be recommended as part of a warm-up in healthy young adults.

  7. Modification of the coil-stretch transition by confinement

    NASA Astrophysics Data System (ADS)

    Doyle, Patick; Tang, Jing; Jones, Jeremy

    2010-03-01

    Large double stranded DNA are both a powerful system to study polymer dynamics at the single molecule level and also important molecules for genomic applications. While homogenous electric fields are routinely used to separate DNA in gels, DNA deformation in more complex fields has been less widely studied. We will demonstrate how micro/nanofluidic devices allow for the generation of electric fields with well-defined kinematics for trapping, stretching and then watching DNA relax back to equilibrium. The dimensions of the devices highly confine DNA and subsequently change both their conformation and dynamics. We will show how these confinements effects change the coil-stretch transition of a DNA being electrophoretically stretched in a purely elongational electrical field. We experimentally show that a two-stage coil stretch transition occurs and develop a simple dumbbell model which captures most of the relevant physics. We trace the origin of this phenomena to the modification of the effective spring law due to confinement.

  8. Multispectral images of flowers reveal the adaptive significance of using long-wavelength-sensitive receptors for edge detection in bees.

    PubMed

    Vasas, Vera; Hanley, Daniel; Kevan, Peter G; Chittka, Lars

    2017-04-01

    Many pollinating insects acquire their entire nutrition from visiting flowers, and they must therefore be efficient both at detecting flowers and at recognizing familiar rewarding flower types. A crucial first step in recognition is the identification of edges and the segmentation of the visual field into areas that belong together. Honeybees and bumblebees acquire visual information through three types of photoreceptors; however, they only use a single receptor type-the one sensitive to longer wavelengths-for edge detection and movement detection. Here, we show that these long-wavelength receptors (peak sensitivity at ~544 nm, i.e., green) provide the most consistent signals in response to natural objects. Using our multispectral image database of flowering plants, we found that long-wavelength receptor responses had, depending on the specific scenario, up to four times higher signal-to-noise ratios than the short- and medium-wavelength receptors. The reliability of the long-wavelength receptors emerges from an intricate interaction between flower coloration and the bee's visual system. This finding highlights the adaptive significance of bees using only long-wavelength receptors to locate flowers among leaves, before using information provided by all three receptors to distinguish the rewarding flower species through trichromatic color vision.

  9. High-resolution FISH on super-stretched flow-sorted plant chromosomes.

    PubMed

    Valárik, M; Bartos, J; Kovárová, P; Kubaláková, M; de Jong, J H; Dolezel, J

    2004-03-01

    A novel high-resolution fluorescence in situ hybridisation (FISH) strategy, using super-stretched flow-sorted plant chromosomes as targets, is described. The technique that allows longitudinal extension of chromosomes of more than 100 times their original metaphase size is especially attractive for plant species with large chromosomes, whose pachytene chromosomes are generally too long and heterochromatin patterns too complex for FISH analysis. The protocol involves flow cytometric sorting of metaphase chromosomes, mild proteinase-K digestion of air-dried chromosomes on microscopic slides, followed by stretching with ethanol:acetic acid (3 : 1). Stretching ratios were assessed in a number of FISH experiments with super-stretched chromosomes from barley, wheat, rye and chickpea, hybridised with 45S and 5S ribosomal DNAs and the [GAA]n microsatellite, the [TTTAGGG]n telomeric repeat and a bacterial artificial chromosome (BAC) clone as probes. FISH signals on stretched chromosomes were brighter than those on the untreated control, resulting from better accessibility of the stretched chromatin and maximum observed sensitivity of 1 kbp. Spatial resolution of neighbouring loci was improved down to 70 kbp as compared to 5-10 Mbp after FISH on mitotic chromosomes, revealing details of adjacent DNA sequences hitherto not obtained with any other method. Stretched chromosomes are advantageous over extended DNA fibres from interphase nuclei as targets for FISH studies because they still retain chromosomal integrity. Although the method is confined to species for which chromosome flow sorting has been developed, it provides a unique system for controlling stretching degree of mitotic chromosomes and high-resolution bar-code FISH.

  10. Unilateral Plantar Flexors Static-Stretching Effects on Ipsilateral and Contralateral Jump Measures

    PubMed Central

    da Silva, Josinaldo Jarbas; Behm, David George; Gomes, Willy Andrade; Silva, Fernando Henrique Domingues de Oliveira; Soares, Enrico Gori; Serpa, Érica Paes; Vilela Junior, Guanis de Barros; Lopes, Charles Ricardo; Marchetti, Paulo Henrique

    2015-01-01

    The aim of this study was to evaluate the acute effects of unilateral ankle plantar flexors static-stretching (SS) on the passive range of movement (ROM) of the stretched limb, surface electromyography (sEMG) and single-leg bounce drop jump (SBDJ) performance measures of the ipsilateral stretched and contralateral non-stretched lower limbs. Seventeen young men (24 ± 5 years) performed SBDJ before and after (stretched limb: immediately post-stretch, 10 and 20 minutes and non-stretched limb: immediately post-stretch) unilateral ankle plantar flexor SS (6 sets of 45s/15s, 70-90% point of discomfort). SBDJ performance measures included jump height, impulse, time to reach peak force, contact time as well as the sEMG integral (IEMG) and pre-activation (IEMGpre-activation) of the gastrocnemius lateralis. Ankle dorsiflexion passive ROM increased in the stretched limb after the SS (pre-test: 21 ± 4° and post-test: 26.5 ± 5°, p < 0.001). Post-stretching decreases were observed with peak force (p = 0.029), IEMG (P<0.001), and IEMGpre-activation (p = 0.015) in the stretched limb; as well as impulse (p = 0.03), and jump height (p = 0.032) in the non-stretched limb. In conclusion, SS effectively increased passive ankle ROM of the stretched limb, and transiently (less than 10 minutes) decreased muscle peak force and pre-activation. The decrease of jump height and impulse for the non-stretched limb suggests a SS-induced central nervous system inhibitory effect. Key points When considering whether or not to SS prior to athletic activities, one must consider the potential positive effects of increased ankle dorsiflexion motion with the potential deleterious effects of power and muscle activity during a simple jumping task or as part of the rehabilitation process. Since decreased jump performance measures can persist for 10 minutes in the stretched leg, the timing of SS prior to performance must be taken into consideration. Athletes, fitness enthusiasts and therapists should

  11. Effect of Lower Extremity Stretching Exercises on Balance in Geriatric Population.

    PubMed

    Reddy, Ravi Shankar; Alahmari, Khalid A

    2016-07-01

    The purpose of this study was to find "Effect of lower extremity stretching exercises on balance in the geriatric population. 60 subjects (30 male and 30 female) participated in the study. The subjects underwent 10 weeks of lower limb stretching exercise program. Pre and post 10 weeks stretching exercise program, the subjects were assessed for balance, using single limb stance time in seconds and berg balance score. These outcome measures were analyzed. Pre and post lower extremity stretching on balance was analyzed using paired t test. Of 60 subjects 50 subjects completed the stretching exercise program. Paired sample t test analysis showed a significant improvement in single limb stance time (eyes open and eyes closed) (p<0.001) and berg balance score (p<0.001). Lower extremity stretching exercises enhances balance in the geriatric population and thereby reduction in the number of falls.

  12. Group II muscle afferents probably contribute to the medium latency soleus stretch reflex during walking in humans

    PubMed Central

    Grey, Michael J; Ladouceur, Michel; Andersen, Jacob B; Nielsen, Jens Bo; Sinkjær, Thomas

    2001-01-01

    The objective of this study was to determine which afferents contribute to the medium latency response of the soleus stretch reflex resulting from an unexpected perturbation during human walking. Fourteen healthy subjects walked on a treadmill at approximately 3.5 km h−1 with the left ankle attached to a portable stretching device. The soleus stretch reflex was elicited by applying small amplitude (∼8 deg) dorsiflexion perturbations 200 ms after heel contact. Short and medium latency responses were observed with latencies of 55 ± 5 and 78 ± 6 ms, respectively. The short latency response was velocity sensitive (P < 0.001), while the medium latency response was not (P = 0.725). Nerve cooling increased the delay of the medium latency component to a greater extent than that of the short latency component (P < 0.005). Ischaemia strongly decreased the short latency component (P = 0.004), whereas the medium latency component was unchanged (P = 0.437). Two hours after the ingestion of tizanidine, an α2-adrenergic receptor agonist known to selectively depress the transmission in the group II afferent pathway, the medium latency reflex was strongly depressed (P = 0.007), whereas the short latency component was unchanged (P = 0.653). An ankle block with lidocaine hydrochloride was performed to suppress the cutaneous afferents of the foot and ankle. Neither the short (P = 0.453) nor medium (P = 0.310) latency reflexes were changed. Our results support the hypothesis that, during walking the medium latency component of the stretch reflex resulting from an unexpected perturbation is contributed to by group II muscle afferents. PMID:11483721

  13. Duration Dependent Effect of Static Stretching on Quadriceps and Hamstring Muscle Force.

    PubMed

    Alizadeh Ebadi, Leyla; Çetin, Ebru

    2018-03-13

    The aim of this study was to determine the acute effect of static stretching on hamstring and quadriceps muscles' isokinetic strength when applied for various durations to elite athletes, to investigate the effect of different static stretching durations on isokinetic strength, and finally to determine the optimal stretching duration. Fifteen elite male athletes from two different sport branches (10 football and five basketball) participated in this study. Experimental protocol was designed as 17 repetitive static stretching exercises for hamstring and quadriceps muscle groups according to the indicated experimental protocols; ((A) 5 min jogging; (B) 5 min jogging followed by 15 s static stretching; (C) 5 min jogging followed by 30 s static stretching; (D) 5 min jogging, followed by static stretching for 45 s). Immediately after each protocol, an isokinetic strength test consisting of five repetitions at 60°/s speed and 20 repetitions at 180°/s speed was recorded for the right leg by the Isomed 2000 device. Friedman variance analysis test was employed for data analysis. According to the analyzes, it was observed that 5 min jogging and 15 s stretching exercises increased the isokinetic strength, whereas 30 and 45 s stretching exercises caused a decrease.

  14. Duration Dependent Effect of Static Stretching on Quadriceps and Hamstring Muscle Force

    PubMed Central

    Çetin, Ebru

    2018-01-01

    The aim of this study was to determine the acute effect of static stretching on hamstring and quadriceps muscles’ isokinetic strength when applied for various durations to elite athletes, to investigate the effect of different static stretching durations on isokinetic strength, and finally to determine the optimal stretching duration. Fifteen elite male athletes from two different sport branches (10 football and five basketball) participated in this study. Experimental protocol was designed as 17 repetitive static stretching exercises for hamstring and quadriceps muscle groups according to the indicated experimental protocols; ((A) 5 min jogging; (B) 5 min jogging followed by 15 s static stretching; (C) 5 min jogging followed by 30 s static stretching; (D) 5 min jogging, followed by static stretching for 45 s). Immediately after each protocol, an isokinetic strength test consisting of five repetitions at 60°/s speed and 20 repetitions at 180°/s speed was recorded for the right leg by the Isomed 2000 device. Friedman variance analysis test was employed for data analysis. According to the analyzes, it was observed that 5 min jogging and 15 s stretching exercises increased the isokinetic strength, whereas 30 and 45 s stretching exercises caused a decrease.

  15. Lineage-specific evolution of bitter taste receptor genes in the giant and red pandas implies dietary adaptation.

    PubMed

    Shan, Lei; Wu, Qi; Wang, Le; Zhang, Lei; Wei, Fuwen

    2018-03-01

    Taste 2 receptors (TAS2R) mediate bitterness perception in mammals, thus are called bitter taste receptors. It is believed that these genes evolved in response to species-specific diets. The giant panda (Ailuropoda melanoleuca) and red panda (Ailurus fulgens styani) in the order Carnivora are specialized herbivores with an almost exclusive bamboo diet (>90% bamboo). Because bamboo is full of bitter tasting compounds, we hypothesized that adaptive evolution has occurred at TAS2R genes in giant and red pandas throughout the course of their dietary shift. Here, we characterized 195 TAS2R genes in 9 Carnivora species and examined selective pressures on these genes. We found that both pandas harbor more putative functional TAS2R genes than other carnivores, and pseudogenized TAS2R genes in the giant panda are different from the red panda. The purifying selection on TAS2R1, TAS2R9 and TAS2R38 in the giant panda, and TAS2R62 in the red panda, has been strengthened throughout the course of adaptation to bamboo diet, while selective constraint on TAS2R4 and TAS2R38 in the red panda is relaxed. Remarkably, a few positively selected sites on TAS2R42 have been specifically detected in the giant panda. These results suggest an adaptive response in both pandas to a dietary shift from carnivory to herbivory, and TAS2R genes evolved independently in the 2 pandas. Our findings provide new insight into the molecular basis of mammalian sensory evolution and the process of adaptation to new ecological niches. © 2017 The Authors. Integrative Zoology published by International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  16. Neural effects of muscle stretching on the spinal reflexes in multiple lower-limb muscles.

    PubMed

    Masugi, Yohei; Obata, Hiroki; Inoue, Daisuke; Kawashima, Noritaka; Nakazawa, Kimitaka

    2017-01-01

    While previous studies have shown that muscle stretching suppresses monosynaptic spinal reflex excitability in stretched muscles, its effects on non-stretched muscles is still largely unknown. The purpose of this study was to examine the effects of muscle stretching on monosynaptic spinal reflex in non-stretched muscles. Ten healthy male subjects participated in this study. Muscle stretching of the right triceps surae muscle was performed using a motor torque device for 1 minute. Three different dorsiflexion torques (at approximately 5, 10, and 15 Nm) were applied during muscle stretching. Spinal reflexes evoked by transcutaneous spinal cord stimulation were recorded in both the lower-limb muscles before, during, and at 0 and 5 min following muscle stretching. The amplitudes of the spinal reflexes in both the stretched and non-stretched muscles in the right (ipsilateral) leg were smaller during stretching compared to before, and at 0 and 5 min after stretching. Furthermore, the degree of reduction in the amplitude of the spinal reflexes in the right (ipsilateral) leg muscles increased significantly as the dorsiflexion torque (i.e., stretching of the right triceps surae muscles) increased. In contrast, reduction in the amplitude of the spinal reflexes with increasing dorsiflexion torque was not seen in the left (contralateral) leg muscles. Our results clearly indicate that muscle stretching has inhibitory effects on monosynaptic spinal reflexes, not only in stretched muscles, but also in non-stretched muscles of the ipsilateral leg.

  17. Neural effects of muscle stretching on the spinal reflexes in multiple lower-limb muscles

    PubMed Central

    Obata, Hiroki; Inoue, Daisuke; Kawashima, Noritaka; Nakazawa, Kimitaka

    2017-01-01

    While previous studies have shown that muscle stretching suppresses monosynaptic spinal reflex excitability in stretched muscles, its effects on non-stretched muscles is still largely unknown. The purpose of this study was to examine the effects of muscle stretching on monosynaptic spinal reflex in non-stretched muscles. Ten healthy male subjects participated in this study. Muscle stretching of the right triceps surae muscle was performed using a motor torque device for 1 minute. Three different dorsiflexion torques (at approximately 5, 10, and 15 Nm) were applied during muscle stretching. Spinal reflexes evoked by transcutaneous spinal cord stimulation were recorded in both the lower-limb muscles before, during, and at 0 and 5 min following muscle stretching. The amplitudes of the spinal reflexes in both the stretched and non-stretched muscles in the right (ipsilateral) leg were smaller during stretching compared to before, and at 0 and 5 min after stretching. Furthermore, the degree of reduction in the amplitude of the spinal reflexes in the right (ipsilateral) leg muscles increased significantly as the dorsiflexion torque (i.e., stretching of the right triceps surae muscles) increased. In contrast, reduction in the amplitude of the spinal reflexes with increasing dorsiflexion torque was not seen in the left (contralateral) leg muscles. Our results clearly indicate that muscle stretching has inhibitory effects on monosynaptic spinal reflexes, not only in stretched muscles, but also in non-stretched muscles of the ipsilateral leg. PMID:28662201

  18. Activation Dependence of Stretch Activation in Mouse Skinned Myocardium: Implications for Ventricular Function

    PubMed Central

    Stelzer, Julian E.; Larsson, Lars; Fitzsimons, Daniel P.; Moss, Richard L.

    2006-01-01

    Recent evidence suggests that ventricular ejection is partly powered by a delayed development of force, i.e., stretch activation, in regions of the ventricular wall due to stretch resulting from torsional twist of the ventricle around the apex-to-base axis. Given the potential importance of stretch activation in cardiac function, we characterized the stretch activation response and its Ca2+ dependence in murine skinned myocardium at 22°C in solutions of varying Ca2+ concentrations. Stretch activation was induced by suddenly imposing a stretch of 0.5–2.5% of initial length to the isometrically contracting muscle and then holding the muscle at the new length. The force response to stretch was multiphasic: force initially increased in proportion to the amount of stretch, reached a peak, and then declined to a minimum before redeveloping to a new steady level. This last phase of the response is the delayed force characteristic of myocardial stretch activation and is presumably due to increased attachment of cross-bridges as a consequence of stretch. The amplitude and rate of stretch activation varied with Ca2+ concentration and more specifically with the level of isometric force prior to the stretch. Since myocardial force is regulated both by Ca2+ binding to troponin-C and cross-bridge binding to thin filaments, we explored the role of cross-bridge binding in the stretch activation response using NEM-S1, a strong-binding, non-force–generating derivative of myosin subfragment 1. NEM-S1 treatment at submaximal Ca2+-activated isometric forces significantly accelerated the rate of the stretch activation response and reduced its amplitude. These data show that the rate and amplitude of myocardial stretch activation vary with the level of activation and that stretch activation involves cooperative binding of cross-bridges to the thin filament. Such a mechanism would contribute to increased systolic ejection in response to increased delivery of activator Ca2+ during

  19. Stretching single fibrin fibers hampers their lysis.

    PubMed

    Li, Wei; Lucioni, Tomas; Li, Rongzhong; Bonin, Keith; Cho, Samuel S; Guthold, Martin

    2017-09-15

    Blood clots, whose main structural component is a mesh of microscopic fibrin fibers, experience mechanical strain from blood flow, clot retraction and interactions with platelets and other cells. We developed a transparent, striated and highly stretchable substrate made from fugitive glue (a styrenic block copolymer) to investigate how mechanical strain affects lysis of single, suspended fibrin fibers. In this suspended fiber assay, lysis manifested itself by fiber elongation, thickening (disassembly), fraying and collapse. Stretching single fibrin fibers significantly hampered their lysis. This effect was seen in uncrosslinked and crosslinked fibers. Crosslinking (without stretching) also hampered single fiber lysis. Our data suggest that strain is a novel mechanosensitive factor that regulates blood clot dissolution (fibrinolysis) at the single fiber level. At the molecular level of single fibrin molecules, strain may distort, or hinder access to, plasmin cleavage sites and thereby hamper lysis. Fibrin fibers are the major structural component of a blood clot. We developed a highly stretchable substrate made from fugitive glue and a suspended fibrin fiber lysis assay to investigate the effect of stretching on single fibrin fibers lysis. The key findings from our experiments are: 1) Fibers thicken and elongate upon lysis; 2) stretching strongly reduces lysis; 3) this effect is more pronounced for uncrosslinked fibers; and 4) stretching fibers has a similar effect on reducing lysis as crosslinking fibers. At the molecular level, strain may distort plasmin cleavage sites, or restrict access to those sites. Our results suggest that strain may be a novel mechanobiological factor that regulates fibrinolysis. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. Targeting Toll-like receptor (TLR) signaling by Toll/interleukin-1 receptor (TIR) domain-containing adapter protein/MyD88 adapter-like (TIRAP/Mal)-derived decoy peptides.

    PubMed

    Couture, Leah A; Piao, Wenji; Ru, Lisa W; Vogel, Stefanie N; Toshchakov, Vladimir Y

    2012-07-13

    Toll/interleukin-1 receptor (TIR) domain-containing adapter protein/MyD88 adapter-like (TIRAP/Mal) is an adapter protein that facilitates recruitment of MyD88 to TLR4 and TLR2 signaling complexes. We previously generated a library of cell-permeating TLR4 TIR-derived decoy peptides fused to the translocating segment of the Drosophila Antennapedia homeodomain and examined each peptide for the ability to inhibit TLR4 signaling (Toshchakov, V. Y., Szmacinski, H., Couture, L. A., Lakowicz, J. R., and Vogel, S. N. (2011) J. Immunol. 186, 4819-4827). We have now expanded this study to test TIRAP decoy peptides. Five TIRAP peptides, TR3 (for TIRAP region 3), TR5, TR6, TR9, and TR11, inhibited LPS-induced cytokine mRNA expression and MAPK activation. Inhibition was confirmed at the protein level; select peptides abolished the LPS-induced cytokine production measured in cell culture 24 h after a single treatment. Two of the TLR4 inhibitory peptides, TR3 and TR6, also inhibited cytokine production induced by a TLR2/TLR1 agonist, S-(2,3-bis(palmitoyloxy)-(2R,2S)-propyl)-N-palmitoyl-(R)-Cys-Ser-Lys(4)-OH; however, a higher peptide concentration was required to achieve comparable inhibition of TLR2 versus TLR4 signaling. Two TLR4 inhibitory peptides, TR5 and TR6, were examined for the ability to inhibit TLR4-driven cytokine induction in mice. Pretreatment with either peptide significantly reduced circulating TNF-α and IL-6 in mice following LPS injection. This study has identified novel TLR inhibitory peptides that block cellular signaling at low micromolar concentrations in vitro and in vivo. Comparison of TLR4 inhibition by TLR4 and TIRAP TIR-derived peptides supports the view that structurally diverse regions mediate functional interactions of TIR domains.

  1. Effects on Hamstring Muscle Extensibility, Muscle Activity, and Balance of Different Stretching Techniques

    PubMed Central

    Lim, Kyoung-Il; Nam, Hyung-Chun; Jung, Kyoung-Sim

    2014-01-01

    [Purpose] The purpose of this study was to investigate the effects of two different stretching techniques on range of motion (ROM), muscle activation, and balance. [Subjects] For the present study, 48 adults with hamstring muscle tightness were recruited and randomly divided into three groups: a static stretching group (n=16), a PNF stretching group (n=16), a control group (n=16). [Methods] Both of the stretching techniques were applied to the hamstring once. Active knee extension angle, muscle activation during maximum voluntary isometric contraction (MVC), and static balance were measured before and after the application of each stretching technique. [Results] Both the static stretching and the PNF stretching groups showed significant increases in knee extension angle compared to the control group. However, there were no significant differences in muscle activation or balance between the groups. [Conclusion] Static stretching and PNF stretching techniques improved ROM without decrease in muscle activation, but neither of them exerted statistically significant effects on balance. PMID:24648633

  2. Stretch-Induced Hypertrophy Activates NFkB-Mediated VEGF Secretion in Adult Cardiomyocytes

    PubMed Central

    Leychenko, Anna; Konorev, Eugene; Jijiwa, Mayumi; Matter, Michelle L.

    2011-01-01

    Hypertension and myocardial infarction are associated with the onset of hypertrophy. Hypertrophy is a compensatory response mechanism to increases in mechanical load due to pressure or volume overload. It is characterized by extracellular matrix remodeling and hypertrophic growth of adult cardiomyocytes. Production of Vascular Endothelial Growth Factor (VEGF), which acts as an angiogenic factor and a modulator of cardiomyocyte function, is regulated by mechanical stretch. Mechanical stretch promotes VEGF secretion in neonatal cardiomyocytes. Whether this effect is retained in adult cells and the molecular mechanism mediating stretch-induced VEGF secretion has not been elucidated. Our objective was to investigate whether cyclic mechanical stretch induces VEGF secretion in adult cardiomyocytes and to identify the molecular mechanism mediating VEGF secretion in these cells. Isolated primary adult rat cardiomyocytes (ARCMs) were subjected to cyclic mechanical stretch at an extension level of 10% at 30 cycles/min that induces hypertrophic responses. Cyclic mechanical stretch induced a 3-fold increase in VEGF secretion in ARCMs compared to non-stretch controls. This increase in stretch-induced VEGF secretion correlated with NFkB activation. Cyclic mechanical stretch-mediated VEGF secretion was blocked by an NFkB peptide inhibitor and expression of a dominant negative mutant IkBα, but not by inhibitors of the MAPK/ERK1/2 or PI3K pathways. Chromatin immunoprecipitation assays demonstrated an interaction of NFkB with the VEGF promoter in stretched primary cardiomyocytes. Moreover, VEGF secretion is increased in the stretched myocardium during pressure overload-induced hypertrophy. These findings are the first to demonstrate that NFkB activation plays a role in mediating VEGF secretion upon cyclic mechanical stretch in adult cardiomyocytes. Signaling by NFkB initiated in response to cyclic mechanical stretch may therefore coordinate the hypertrophic response in adult

  3. Pulmonary atelectasis during low stretch ventilation: "open lung" versus "lung rest" strategy.

    PubMed

    Fanelli, Vito; Mascia, Luciana; Puntorieri, Valeria; Assenzio, Barbara; Elia, Vincenzo; Fornaro, Giancarlo; Martin, Erica L; Bosco, Martino; Delsedime, Luisa; Fiore, Tommaso; Grasso, Salvatore; Ranieri, V Marco

    2009-03-01

    Limiting tidal volume (VT) may minimize ventilator-induced lung injury (VILI). However, atelectasis induced by low VT ventilation may cause ultrastructural evidence of cell disruption. Apoptosis seems to be involved as protective mechanisms from VILI through the involvement of mitogen-activated protein kinases (MAPKs). We examined the hypothesis that atelectasis may influence the response to protective ventilation through MAPKs. Prospective randomized study. University animal laboratory. Adult male 129/Sv mice. Isolated, nonperfused lungs were randomized to VILI: VT of 20 mL/kg and positive end-expiratory pressure (PEEP) zero; low stretch/lung rest: VT of 6 mL/kg and 8-10 cm H2O of PEEP; low stretch/open lung: VT of 6 mL/kg, two recruitment maneuvers and 14-16 cm H2O of PEEP. Ventilator settings were adjusted using the stress index. Both low stretch strategies equally blunted the VILI-induced derangement of respiratory mechanics (static volume-pressure curve), lung histology (hematoxylin and eosin), and inflammatory mediators (interleukin-6, macrophage inflammatory protein-2 [enzyme-linked immunosorbent assay], and inhibitor of nuclear factor-kB[Western blot]). VILI caused nuclear swelling and membrane disruption of pulmonary cells (electron microscopy). Few pulmonary cells with chromatin condensation and fragmentation were seen during both low stretch strategies. However, although cell thickness during low stretch/open lung was uniform, low stretch/lung rest demonstrated thickening of epithelial cells and plasma membrane bleb formation. Compared with the low stretch/open lung, low stretch/lung rest caused a significant decrease in apoptotic cells (terminal deoxynucleotidyl transferase mediated deoxyuridine-triphosphatase nick end-labeling) and tissue expression of caspase-3 (Western blot). Both low stretch strategies attenuated the activation of MAPKs. Such reduction was larger during low stretch/open lung than during low stretch/lung rest (p < 0.001). Low stretch

  4. Characterizing the stretch-flangeability of hot rolled multiphase steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pathak, N.; Butcher, C.; Worswick, M.

    2013-12-16

    Hole expansion tests are commonly used to characterize the edge stretching limit of a material. Traditionally, a conical punch is used to expand a punched hole until a through-thickness crack appears. However, many automotive stretch flanging operations involve in-plane edge stretching that is best captured with a flat punch. In this paper, hole expansion tests were carried out on two different hot-rolled multiphase steels using both flat and conical punches. The fracture mechanisms for both punch types were investigated using scanning electron microscopy (SEM)

  5. Ankle-Dorsiflexion Range of Motion After Ankle Self-Stretching Using a Strap

    PubMed Central

    Jeon, In-cheol; Kwon, Oh-yun; Yi, Chung-Hwi; Cynn, Heon-Seock; Hwang, Ui-jae

    2015-01-01

    Context  A variety of ankle self-stretching exercises have been recommended to improve ankle-dorsiflexion range of motion (DFROM) in individuals with limited ankle dorsiflexion. A strap can be applied to stabilize the talus and facilitate anterior glide of the distal tibia at the talocrural joint during ankle self-stretching exercises. Novel ankle self-stretching using a strap (SSS) may be a useful method of improving ankle DFROM. Objective  To compare the effects of 2 ankle-stretching techniques (static stretching versus SSS) on ankle DFROM. Design  Randomized controlled clinical trial. Setting  University research laboratory. Patients or Other Participants  Thirty-two participants with limited active dorsiflexion (<20°) while sitting (14 women and 18 men) were recruited. Main Outcome Measure(s)  The participants performed 2 ankle self-stretching techniques (static stretching and SSS) for 3 weeks. Active DFROM (ADFROM), passive DFROM (PDFROM), and the lunge angle were measured. An independent t test was used to compare the improvements in these values before and after the 2 stretching interventions. The level of statistical significance was set at α = .05. Results  Active DFROM and PDFROM were greater in both stretching groups after the 3-week interventions. However, ADFROM, PDFROM, and the lunge angle were greater in the SSS group than in the static-stretching group (P < .05). Conclusions  Ankle SSS is recommended to improve ADFROM, PDFROM, and the lunge angle in individuals with limited DFROM. PMID:26633750

  6. Does the parental stretching programs improve metatarsus adductus in newborns?

    PubMed

    Eamsobhana, Perajit; Rojjananukulpong, Karn; Ariyawatkul, Thanase; Chotigavanichaya, Chatupon; Kaewpornsawan, Kamolporn

    2017-01-01

    Metatarsus adductus (MA) is a common pediatric foot deformity. Current recommendations suggest observation until 4-6 months, then casting if the deformity persists. Based on our review of the literatures, no randomized controlled trial has been conducted to study the effectiveness of parental stretching in the correction of MA in newborn. Ninety-four newborn feet that were diagnosed as MA by clinical examination were enrolled. Feet were randomized into two groups: observation group and stretching group. Outcome measurements were performed to compare success rate between groups. According to Pearson's χ 2 test, there were no statistically significant differences between groups with regard to the overall success of the parental stretching program ( p = 0.191). There was also no significant difference between groups for mild degree or moderate-to-severe degree ( p = 0.134, p = 0.274, respectively). A more rapid success rate was observed in the stretching group at the first month follow-up, but rate of improvement then decreased. The stretching group tended to have a lower success rate compared to the observation group in moderate-to-severe feet, but the difference was not statistically significant. Parental stretching program found no benefit over observation group in this study. Parental stretching program should not be applied for newborn babies with moderate-to-severe MA as the result from the study appeared to have lower success rate compared to observation group. Observe until 4-6 months, then corrective casting for the persisting deformity is recommended.

  7. STATIC STRETCHING DOES NOT REDUCE VARIABILITY, JUMP AND SPEED PERFORMANCE.

    PubMed

    de Oliveira, Fábio Carlos Lucas; Rama, Luís Manuel Pinto Lopes

    2016-04-01

    Stretching is often part of the warm-up routine prior to athletic participation; however, controversial evidence exists on the effects of stretching on countermovement jump (CMJ) and sprint performance. Additionally, analysis of variability between repeated tasks is useful for monitoring players, to analyze factors that could affect the performance, and to guide clinical decisions for training strategies. The purpose of this study was to examine whether static stretching (SS) prior to CMJ and 20-meter (20-m) sprint would affect performance, and to investigate whether SS affects an athlete's ability to perform these tasks consistently. Twenty-two trained healthy athletes (23.2 ± 5.0 years) attended, randomly, two testing sessions, separated by 48 hours. At session one, all participants underwent 10 minutes of dynamic running warm-up followed by the experimental tasks (three CMJ and three 20-m sprint), whereas five minutes of stretching was added after the warm-up routine at session two. All participants performed the same experimental tasks in both sessions. The stretching protocol consisted of five stretching exercises for each lower limb. The paired-samples t-test revealed no significant differences between the stretching protocol condition and no stretching condition for the 20-m sprint (t(21)=.920; p=.368) and CMJ (t(21)=.709; p=.486). There were no significant differences in trial-by-trial variability on 20-m sprint (t(21)=1.934; p=.067) and CMJ scores (t(21)=.793; p=.437) as result of SS. The SS protocol did not modify jumping and running ability in trained healthy athletes. The SS prior to training or competition may not cause detrimental effects to athletic performance. Level III, Nonrandomized controlled trial.

  8. STATIC STRETCHING DOES NOT REDUCE VARIABILITY, JUMP AND SPEED PERFORMANCE

    PubMed Central

    Rama, Luís Manuel Pinto Lopes

    2016-01-01

    Background Stretching is often part of the warm-up routine prior to athletic participation; however, controversial evidence exists on the effects of stretching on countermovement jump (CMJ) and sprint performance. Additionally, analysis of variability between repeated tasks is useful for monitoring players, to analyze factors that could affect the performance, and to guide clinical decisions for training strategies. Purpose The purpose of this study was to examine whether static stretching (SS) prior to CMJ and 20-meter (20-m) sprint would affect performance, and to investigate whether SS affects an athlete's ability to perform these tasks consistently. Methods Twenty-two trained healthy athletes (23.2 ± 5.0 years) attended, randomly, two testing sessions, separated by 48 hours. At session one, all participants underwent 10 minutes of dynamic running warm-up followed by the experimental tasks (three CMJ and three 20-m sprint), whereas five minutes of stretching was added after the warm-up routine at session two. All participants performed the same experimental tasks in both sessions. The stretching protocol consisted of five stretching exercises for each lower limb. Results The paired-samples t-test revealed no significant differences between the stretching protocol condition and no stretching condition for the 20-m sprint (t(21)=.920; p=.368) and CMJ (t(21)=.709; p=.486). There were no significant differences in trial-by-trial variability on 20-m sprint (t(21)=1.934; p=.067) and CMJ scores (t(21)=.793; p=.437) as result of SS. Conclusion The SS protocol did not modify jumping and running ability in trained healthy athletes. The SS prior to training or competition may not cause detrimental effects to athletic performance. Level of evidence Level III, Nonrandomized controlled trial. PMID:27104057

  9. Glucocorticoid receptor haploinsufficiency causes hypertension and attenuates hypothalamic-pituitary-adrenal axis and blood pressure adaptions to high-fat diet

    PubMed Central

    Michailidou, Z.; Carter, R. N.; Marshall, E.; Sutherland, H. G.; Brownstein, D. G.; Owen, E.; Cockett, K.; Kelly, V.; Ramage, L.; Al-Dujaili, E. A. S.; Ross, M.; Maraki, I.; Newton, K.; Holmes, M. C.; Seckl, J. R.; Morton, N. M.; Kenyon, C. J.; Chapman, K. E.

    2008-01-01

    Glucocorticoid hormones are critical to respond and adapt to stress. Genetic variations in the glucocorticoid receptor (GR) gene alter hypothalamic-pituitary-adrenal (HPA) axis activity and associate with hypertension and susceptibility to metabolic disease. Here we test the hypothesis that reduced GR density alters blood pressure and glucose and lipid homeostasis and limits adaption to obesogenic diet. Heterozygous GRβgeo/+ mice were generated from embryonic stem (ES) cells with a gene trap integration of a β-galactosidase-neomycin phosphotransferase (βgeo) cassette into the GR gene creating a transcriptionally inactive GR fusion protein. Although GRβgeo/+ mice have 50% less functional GR, they have normal lipid and glucose homeostasis due to compensatory HPA axis activation but are hypertensive due to activation of the renin-angiotensin-aldosterone system (RAAS). When challenged with a high-fat diet, weight gain, adiposity, and glucose intolerance were similarly increased in control and GRβgeo/+ mice, suggesting preserved control of intermediary metabolism and energy balance. However, whereas a high-fat diet caused HPA activation and increased blood pressure in control mice, these adaptions were attenuated or abolished in GRβgeo/+ mice. Thus, reduced GR density balanced by HPA activation leaves glucocorticoid functions unaffected but mineralocorticoid functions increased, causing hypertension. Importantly, reduced GR limits HPA and blood pressure adaptions to obesogenic diet.—Michailidou, Z., Carter, R. N., Marshall, E., Sutherland, H. G., Brownstein, D. G., Owen, E., Cockett, K., Kelly, V., Ramage, L., Al-Dujaili, E. A. S., Ross, M., Maraki, I., Newton, K., Holmes, M. C., Seckl, J. R., Morton, N. M., Kenyon, C. J., Chapman, K. E. Glucocorticoid receptor haploinsufficiency causes hypertension and attenuates hypothalamic-pituitary-adrenal axis and blood pressure adaptions to high-fat diet. PMID:18697839

  10. Convective Heat Transfer Scaling of Ignition Delay and Burning Rate with Heat Flux and Stretch Rate in the Equivalent Low Stretch Apparatus

    NASA Technical Reports Server (NTRS)

    Olson, Sandra

    2011-01-01

    To better evaluate the buoyant contributions to the convective cooling (or heating) inherent in normal-gravity material flammability test methods, we derive a convective heat transfer correlation that can be used to account for the forced convective stretch effects on the net radiant heat flux for both ignition delay time and burning rate. The Equivalent Low Stretch Apparatus (ELSA) uses an inverted cone heater to minimize buoyant effects while at the same time providing a forced stagnation flow on the sample, which ignites and burns as a ceiling fire. Ignition delay and burning rate data is correlated with incident heat flux and convective heat transfer and compared to results from other test methods and fuel geometries using similarity to determine the equivalent stretch rates and thus convective cooling (or heating) rates for those geometries. With this correlation methodology, buoyant effects inherent in normal gravity material flammability test methods can be estimated, to better apply the test results to low stretch environments relevant to spacecraft material selection.

  11. The Minimum M3-M4 Loop Length of Neurotransmitter-activated Pentameric Receptors Is Critical for the Structural Integrity of Cytoplasmic Portals*

    PubMed Central

    Baptista-Hon, Daniel T.; Deeb, Tarek Z.; Lambert, Jeremy J.; Peters, John A.; Hales, Tim G.

    2013-01-01

    The 5-HT3A receptor homology model, based on the partial structure of the nicotinic acetylcholine receptor from Torpedo marmorata, reveals an asymmetric ion channel with five portals framed by adjacent helical amphipathic (HA) stretches within the 114-residue loop between the M3 and M4 membrane-spanning domains. The positive charge of Arg-436, located within the HA stretch, is a rate-limiting determinant of single channel conductance (γ). Further analysis reveals that positive charge and volume of residue 436 are determinants of 5-HT3A receptor inward rectification, exposing an additional role for portals. A structurally unresolved stretch of 85 residues constitutes the bulk of the M3-M4 loop, leaving a >45-Å gap in the model between M3 and the HA stretch. There are no additional structural data for this loop, which is vestigial in bacterial pentameric ligand-gated ion channels and was largely removed for crystallization of the Caenorhabditis elegans glutamate-activated pentameric ligand-gated ion channels. We created 5-HT3A subunit loop truncation mutants, in which sequences framing the putative portals were retained, to determine the minimum number of residues required to maintain their functional integrity. Truncation to between 90 and 75 amino acids produced 5-HT3A receptors with unaltered rectification. Truncation to 70 residues abolished rectification and increased γ. These findings reveal a critical M3-M4 loop length required for functions attributable to cytoplasmic portals. Examination of all 44 subunits of the human neurotransmitter-activated Cys-loop receptors reveals that, despite considerable variability in their sequences and lengths, all M3-M4 loops exceed 70 residues, suggesting a fundamental requirement for portal integrity. PMID:23740249

  12. Pinched-flow hydrodynamic stretching of single-cells.

    PubMed

    Dudani, Jaideep S; Gossett, Daniel R; Tse, Henry T K; Di Carlo, Dino

    2013-09-21

    Reorganization of cytoskeletal networks, condensation and decondensation of chromatin, and other whole cell structural changes often accompany changes in cell state and can reflect underlying disease processes. As such, the observable mechanical properties, or mechanophenotype, which is closely linked to intracellular architecture, can be a useful label-free biomarker of disease. In order to make use of this biomarker, a tool to measure cell mechanical properties should accurately characterize clinical specimens that consist of heterogeneous cell populations or contain small diseased subpopulations. Because of the heterogeneity and potential for rare populations in clinical samples, single-cell, high-throughput assays are ideally suited. Hydrodynamic stretching has recently emerged as a powerful method for carrying out mechanical phenotyping. Importantly, this method operates independently of molecular probes, reducing cost and sample preparation time, and yields information-rich signatures of cell populations through significant image analysis automation, promoting more widespread adoption. In this work, we present an alternative mode of hydrodynamic stretching where inertially-focused cells are squeezed in flow by perpendicular high-speed pinch flows that are extracted from the single inputted cell suspension. The pinched-flow stretching method reveals expected differences in cell deformability in two model systems. Furthermore, hydraulic circuit design is used to tune stretching forces and carry out multiple stretching modes (pinched-flow and extensional) in the same microfluidic channel with a single fluid input. The ability to create a self-sheathing flow from a single input solution should have general utility for other cytometry systems and the pinched-flow design enables an order of magnitude higher throughput (65,000 cells s(-1)) compared to our previously reported deformability cytometry method, which will be especially useful for identification of rare

  13. The influence of foot position on stretching of the plantar fascia.

    PubMed

    Flanigan, Ryan M; Nawoczenski, Deborah A; Chen, Linlin; Wu, Hulin; DiGiovanni, Benedict F

    2007-07-01

    A recent study found nonweightbearing stretching exercises specific to the plantar fascia to be superior to the standard program of weightbearing Achilles tendon-stretching exercises in patients with chronic plantar fasciitis. The present study used a cadaver model to demonstrate the influence of foot and ankle position on stretching of the plantar fascia. Twelve fresh-frozen lower-leg specimens were tested in 15 different configurations representing various combinations of ankle and metatarsophalangeal (MTP) joint dorsiflexion, midtarsal transverse plane abduction and adduction, and forefoot varus and valgus. Measurements were recorded by a differential variable reluctance transducer (DVRT) implanted into the medial band of the plantar fascia, and primary measurement was a percent deformation of the plantar fascia (stretch) with respect to a reference position (90 degrees ankle dorsiflexion, 0 degrees midtarsal and forefoot orientation, and 0 degrees MTP dorsiflexion). Ankle and MTP joint dorsiflexion produced a significant increase (14.91%) in stretch compared to the position of either ankle dorsiflexion alone (9.31% increase, p < 0.001) or MTP dorsiflexion alone (7.33% increase, p < 0.01). There was no significant increase in stretch with positions of abduction or varus (2.49%, p = 0.27 and 0.55%, p = 0.79). This study provides a mechanical explanation for enhanced outcomes in recent clinical trials using plantar fascia tissue-specific stretching exercises and lends support to the use of ankle and MTP joint dorsiflexion when employing stretching protocols for nonoperative treatment in patients with chronic proximal plantar fasciitis.

  14. Orientation-specific responses to sustained uniaxial stretching in focal adhesion growth and turnover

    PubMed Central

    Chen, Yun; Pasapera, Ana M.; Koretsky, Alan P.; Waterman, Clare M.

    2013-01-01

    Cells are mechanosensitive to extracellular matrix (ECM) deformation, which can be caused by muscle contraction or changes in hydrostatic pressure. Focal adhesions (FAs) mediate the linkage between the cell and the ECM and initiate mechanically stimulated signaling events. We developed a stretching apparatus in which cells grown on fibronectin-coated elastic substrates can be stretched and imaged live to study how FAs dynamically respond to ECM deformation. Human bone osteosarcoma epithelial cell line U2OS was transfected with GFP-paxillin as an FA marker and subjected to sustained uniaxial stretching. Two responses at different timescales were observed: rapid FA growth within seconds after stretching, and delayed FA disassembly and loss of cell polarity that occurred over tens of minutes. Rapid FA growth occurred in all cells; however, delayed responses to stretch occurred in an orientation-specific manner, specifically in cells with their long axes perpendicular to the stretching direction, but not in cells with their long axes parallel to stretch. Pharmacological treatments demonstrated that FA kinase (FAK) promotes but Src inhibits rapid FA growth, whereas FAK, Src, and calpain 2 all contribute to delayed FA disassembly and loss of polarity in cells perpendicular to stretching. Immunostaining for phospho-FAK after stretching revealed that FAK activation was maximal at 5 s after stretching, specifically in FAs oriented perpendicular to stretch. We hypothesize that orientation-specific activation of strain/stress-sensitive proteins in FAs upstream to FAK and Src promote orientation-specific responses in FA growth and disassembly that mediate polarity rearrangement in response to sustained stretch. PMID:23754369

  15. Active shortening protects against stretch-induced force deficits in human skeletal muscle

    PubMed Central

    Saripalli, Anjali L.; Sugg, Kristoffer B.; Brooks, Susan V.

    2017-01-01

    Skeletal muscle contraction results from molecular interactions of myosin “crossbridges” with adjacent actin filament binding sites. The binding of myosin to actin can be “weak” or “strong,” and only strong binding states contribute to force production. During active shortening, the number of strongly bound crossbridges declines with increasing shortening velocity. Forcibly stretching a muscle that is actively shortening at high velocity results in no apparent negative consequences, whereas stretch of an isometrically (fixed-length) contracting muscle causes ultrastructural damage and a decline in force-generating capability. Our working hypothesis is that stretch-induced damage is uniquely attributable to the population of crossbridges that are strongly bound. We tested the hypothesis that stretch-induced force deficits decline as the prevailing shortening velocity is increased. Experiments were performed on permeabilized segments of individual skeletal muscle fibers obtained from human subjects. Fibers were maximally activated and allowed either to generate maximum isometric force (Fo), or to shorten at velocities that resulted in force maintenance of ≈50% Fo or ≈2% Fo. For each test condition, a rapid stretch equivalent to 0.1 × optimal fiber length was applied. Relative to prestretch Fo, force deficits resulting from stretches applied during force maintenance of 100, ≈50, and ≈2% Fo were 23.2 ± 8.6, 7.8 ± 4.2, and 0.3 ± 3.3%, respectively (means ± SD, n = 20). We conclude that stretch-induced damage declines with increasing shortening velocity, consistent with the working hypothesis that the fraction of strongly bound crossbridges is a causative factor in the susceptibility of skeletal muscle to stretch-induced damage. NEW & NOTEWORTHY Force deficits caused by stretch of contracting muscle are most severe when the stretch is applied during an isometric contraction, but prevented if the muscle is shortening at high velocity when the

  16. Gene expression profiles in chondrosarcoma cells subjected to cyclic stretching and hydrostatic pressure. A cDNA array study.

    PubMed

    Karjalainen, Hannu M; Sironen, Reijo K; Elo, Mika A; Kaarniranta, Kai; Takigawa, Masaharu; Helminen, Heikki J; Lammi, Mikko J

    2003-01-01

    Mechanical forces have a profound effect on cartilage tissue and chondrocyte metabolism. Strenuous loading inhibits the cellular metabolism, while optimal level of loading at correct frequency raises an anabolic response in chondrocytes. In this study, we used Atlas Human Cancer cDNA array to investigate mRNA expression profiles in human chondrosarcoma cells stretched 8% for 6 hours at a frequency of 0.5 Hz. In addition, cultures were exposed to continuous and cyclic (0.5 Hz) 5 MPa hydrostatic pressure. Cyclic stretch had a more profound effect on the gene expression profiles than 5 MPa hydrostatic pressure. Several genes involved with the regulation of cell cycle were increased in stretched cells, as well as mRNAs for PDGF-B, glucose-1-phosphate uridylyltransferase, Tiam1, cdc37 homolog, Gem, integrin alpha6, and matrix metalloproteinase-3. Among down-regulated genes were plakoglobin, TGF-alpha, retinoic acid receptor-alpha and Wnt8b. A smaller number of changes was detected after pressure treatments. Plakoglobin was increased under cyclic and continuous 5 MPa hydrostatic pressure, while mitogen-activated protein kinase-9, proliferating cell nuclear antigen, Rad6, CD9 antigen, integrins alphaE and beta8, and vimentin were decreased. Cyclic and continuous pressurization induces a number of specific changes. In conclusion, a different set of genes were affected by three different types of mechanical stimuli applied on chondrosarcoma cells.

  17. Effect of spinal manipulative therapy with stretching compared with stretching alone on full-swing performance of golf players: a randomized pilot trial☆

    PubMed Central

    Costa, Soraya M.V.; Chibana, Yumi E.T.; Giavarotti, Leandro; Compagnoni, Débora S.; Shiono, Adriana H.; Satie, Janice; Bracher, Eduardo S.B.

    2009-01-01

    Abstract Objective There has been a steady growth of chiropractic treatment using spinal manipulative therapy (SMT) that aims to increase the performance of athletes in various sports. This study evaluates the effect of SMT by chiropractors on the performance of golf players. Methods Golfers of 2 golf clubs in São Paulo, Brazil, participated in this study. They were randomized to 1 of 2 groups: Group I received a stretch program, and group II received a stretch program in addition to SMT. Participants in both groups performed the same standardized stretching program. Spinal manipulative therapy to dysfunctional spinal segments was performed on group II only. All golfers performed 3 full-swing maneuvers. Ball range was considered as the average distance for the 3 shots. Treatment was performed after the initial measurement, and the same maneuvers were performed afterward. Each participant repeated these procedures for a 4-week period. Student t test, Mann-Whitney nonparametric test, and 1-way analysis of variance for repeated measures with significance level of 5% were used to analyze the study. Results Forty-three golfers completed the protocol. Twenty participants were allocated to group I and 23 to group II. Average age, handicap, and initial swing were comparable. No improvement of full-swing performance was observed during the 4 sessions on group I (stretch only). An improvement was observed at the fourth session of group II (P = .005); when comparing the posttreatment, group II had statistical significance at all phases (P = .003). Conclusions Chiropractic SMT in association with muscle stretching may be associated with an improvement of full-swing performance when compared with muscle stretching alone. PMID:19948307

  18. Effects of Bed Rest on Conduction Velocity of the Triceps Surae Stretch Reflex and Postural Control

    NASA Technical Reports Server (NTRS)

    Reschke, M. F.; Wood, S. J.; Cerisano, J. M.; Kofman, I. S.; Fisher, E. A.; Esteves, J. T.; Taylor, L. C.; DeDios, Y. E.; Harm, D. L.

    2011-01-01

    Despite rigorous exercise and nutritional management during space missions, astronauts returning from microgravity exhibit neuromuscular deficits and a significant loss in muscle mass in the postural muscles of the lower leg. Similar changes in the postural muscles occur in subjects participating in long-duration bed rest studies. These adaptive muscle changes manifest as a reduction in reflex conduction velocity during head-down bed rest. Because the stretch reflex encompasses both the peripheral (muscle spindle and nerve axon) and central (spinal synapse) components involved in adaptation to calf muscle unloading, it may be used to provide feedback on the general condition of neuromuscular function, and might be used to evaluate the effectiveness of countermeasures aimed at preserving muscle mass and function during periods of unloading. Stretch reflexes were measured on 18 control subjects who spent 60 to 90 days in continuous 6 deg head-down bed rest. Using a motorized system capable of rotating the foot around the ankle joint (dorsiflexion) through an angle of 10 degrees at a peak velocity of about 250 deg/sec, a stretch reflex was recorded from the subject's left triceps surae muscle group. Using surface electromyography, about 300 reflex responses were obtained and ensemble-averaged on 3 separate days before bed rest, 3 to 4 times in bed, and 3 times after bed rest. The averaged responses for each test day were examined for reflex latency and conduction velocity (CV) across gender. Computerized posturography was also conducted on these same subjects before and after bed rest as part of the standard measures. Peak-to-peak sway was measured during Sensory Organization Tests (SOTs) to evaluate changes in the ability to effectively use or suppress visual, vestibular, and proprioceptive information for postural control. Although no gender differences were found, a significant increase in reflex latency and a significant decrease in CV were observed during the bed

  19. Effects of static stretching on 1-mile uphill run performance.

    PubMed

    Lowery, Ryan P; Joy, Jordan M; Brown, Lee E; Oliveira de Souza, Eduardo; Wistocki, David R; Davis, Gregory S; Naimo, Marshall A; Zito, Gina A; Wilson, Jacob M

    2014-01-01

    It is previously demonstrated that static stretching was associated with a decrease in running economy and distance run during a 30-minute time trial in trained runners. Recently, the detrimental effects of static stretching on economy were found to be limited to the first few minutes of an endurance bout. However, economy remains to be studied for its direct effects on performance during shorter endurance events. The aim of this study was to investigate the effects of static stretching on 1-mile uphill run performance, electromyography (EMG), ground contact time (GCT), and flexibility. Ten trained male distance runners aged 24 ± 5 years with an average VO2max of 64.9 ± 6.5 mL·kg-1·min-1 were recruited. Subjects reported to the laboratory on 3 separate days interspersed by 72 hours. On day 1, anthropometrics and V[Combining Dot Above]O2max were determined on a motor-driven treadmill. On days 2 and 3, subjects performed a 5-minute treadmill warm-up and either performed a series of 6 lower-body stretches for three 30-second repetitions or sat still for 10 minutes. Time to complete a 1-mile run under stretching and nonstretching conditions took place in randomized order. For the performance run, subjects were instructed to run as fast as possible at a set incline of 5% until a distance of 1 mile was completed. Flexibility from the sit and reach test, EMG, GCT, and performance, determined by time to complete the 1-mile run, were recorded after each condition. Time to complete the run was significantly less (6:51 ± 0:28 minutes) in the nonstretching condition as compared with the stretching condition (7:04 ± 0:32 minutes). A significant condition-by-time interaction for muscle activation existed, with no change in the nonstretching condition (pre 91.3 ± 11.6 mV to post 92.2 ± 12.9 mV) but increased in the stretching condition (pre 91.0 ± 11.6 mV to post 105.3 ± 12.9 mV). A significant condition-by-time interaction for GCT was also present, with no changes in

  20. Buoyant Low Stretch Diffusion Flames Beneath Cylindrical PMMA Samples

    NASA Technical Reports Server (NTRS)

    Olson, S. L.; Tien, J. S.

    1999-01-01

    A unique new way to study low gravity flames in normal gravity has been developed. To study flame structure and extinction characteristics in low stretch environments, a normal gravity low-stretch diffusion flame is generated using a cylindrical PMMA sample of varying large radii. Burning rates, visible flame thickness, visible flame standoff distance, temperature profiles in the solid and gas, and radiative loss from the system were measured. A transition from the blowoff side of the flammability map to the quenching side of the flammability map is observed at approximately 6-7/ sec, as determined by curvefits to the non-monotonic trends in peak temperatures, solid and gas-phase temperature gradients, and non-dimensional standoff distances. A surface energy balance reveals that the fraction of heat transfer from the flame that is lost to in-depth conduction and surface radiation increases with decreasing stretch until quenching extinction is observed. This is primarily due to decreased heat transfer from the flame, while the magnitude of the losses remains the same. A unique local extinction flamelet phenomena and associated pre-extinction oscillations are observed at very low stretch. An ultimate quenching extinction limit is found at low stretch with sufficiently high induced heat losses.

  1. Lewis lung carcinoma regulation of mechanical stretch-induced protein synthesis in cultured myotubes.

    PubMed

    Gao, Song; Carson, James A

    2016-01-01

    Mechanical stretch can activate muscle and myotube protein synthesis through mammalian target of rapamycin complex 1 (mTORC1) signaling. While it has been established that tumor-derived cachectic factors can induce myotube wasting, the effect of this catabolic environment on myotube mechanical signaling has not been determined. We investigated whether media containing cachectic factors derived from Lewis lung carcinoma (LLC) can regulate the stretch induction of myotube protein synthesis. C2C12 myotubes preincubated in control or LLC-derived media were chronically stretched. Protein synthesis regulation by anabolic and catabolic signaling was then examined. In the control condition, stretch increased mTORC1 activity and protein synthesis. The LLC treatment decreased basal mTORC1 activity and protein synthesis and attenuated the stretch induction of protein synthesis. LLC media increased STAT3 and AMP-activated protein kinase phosphorylation in myotubes, independent of stretch. Both stretch and LLC independently increased ERK1/2, p38, and NF-κB phosphorylation. In LLC-treated myotubes, the inhibition of ERK1/2 and p38 rescued the stretch induction of protein synthesis. Interestingly, either leukemia inhibitory factor or glycoprotein 130 antibody administration caused further inhibition of mTORC1 signaling and protein synthesis in stretched myotubes. AMP-activated protein kinase inhibition increased basal mTORC1 signaling activity and protein synthesis in LLC-treated myotubes, but did not restore the stretch induction of protein synthesis. These results demonstrate that LLC-derived cachectic factors can dissociate stretch-induced signaling from protein synthesis through ERK1/2 and p38 signaling, and that glycoprotein 130 signaling is associated with the basal stretch response in myotubes. Copyright © 2016 the American Physiological Society.

  2. Effects of special composite stretching on the swing of amateur golf players

    PubMed Central

    Lee, Joong-chul; Lee, Sung-wan; Yeo, Yun-ghi; Park, Gi Duck

    2015-01-01

    [Purpose] The study investigated stretching for safer a golf swing compared to present stretching methods for proper swings in order to examine the effects of stretching exercises on golf swings. [Subjects] The subjects were 20 amateur golf club members who were divided into two groups: an experimental group which performed stretching, and a control group which did not. The subjects had no bone deformity, muscle weakness, muscle soreness, or neurological problems. [Methods] A swing analyzer and a ROM measuring instrument were used as the measuring tools. The swing analyzer was a GS400-golf hit ball analyzer (Korea) and the ROM measuring instrument was a goniometer (Korea). [Results] The experimental group showed a statistically significant improvement in driving distance. After the special stretching training for golf, a statistically significant difference in hit-ball direction deviation after swings were found between the groups. The experimental group showed statistically significant decreases in hit ball direction deviation. After the special stretching training for golf, statistically significant differences in hit-ball speed were found between the groups. The experimental group showed significant increases in hit-ball speed. [Conclusion] To examine the effects of a special stretching program for golf on golf swing-related factors, 20 male amateur golf club members performed a 12-week stretching training program. After the golf stretching training, statistically significant differences were found between the groups in hit-ball driving distance, direction deviation, deflection distance, and speed. PMID:25995553

  3. Effects of special composite stretching on the swing of amateur golf players.

    PubMed

    Lee, Joong-Chul; Lee, Sung-Wan; Yeo, Yun-Ghi; Park, Gi Duck

    2015-04-01

    [Purpose] The study investigated stretching for safer a golf swing compared to present stretching methods for proper swings in order to examine the effects of stretching exercises on golf swings. [Subjects] The subjects were 20 amateur golf club members who were divided into two groups: an experimental group which performed stretching, and a control group which did not. The subjects had no bone deformity, muscle weakness, muscle soreness, or neurological problems. [Methods] A swing analyzer and a ROM measuring instrument were used as the measuring tools. The swing analyzer was a GS400-golf hit ball analyzer (Korea) and the ROM measuring instrument was a goniometer (Korea). [Results] The experimental group showed a statistically significant improvement in driving distance. After the special stretching training for golf, a statistically significant difference in hit-ball direction deviation after swings were found between the groups. The experimental group showed statistically significant decreases in hit ball direction deviation. After the special stretching training for golf, statistically significant differences in hit-ball speed were found between the groups. The experimental group showed significant increases in hit-ball speed. [Conclusion] To examine the effects of a special stretching program for golf on golf swing-related factors, 20 male amateur golf club members performed a 12-week stretching training program. After the golf stretching training, statistically significant differences were found between the groups in hit-ball driving distance, direction deviation, deflection distance, and speed.

  4. Stretched Loops

    NASA Image and Video Library

    2017-03-16

    When an active region rotated over to the edge of the sun, it presented us with a nice profile view of its elongated loops stretching and swaying above it (Mar. 8-9, 2017). These loops are actually charged particles (made visible in extreme ultraviolet light) swirling along the magnetic field lines of the active region. The video covers about 30 hours of activity. Also of note is a darker twisting mass of plasma to the left of the active region being pulled and spun about by magnetic forces. Video is available at http://photojournal.jpl.nasa.gov/catalog/PIA21562

  5. A Variable Resolution Stretched Grid General Circulation Model: Regional Climate Simulation

    NASA Technical Reports Server (NTRS)

    Fox-Rabinovitz, Michael S.; Takacs, Lawrence L.; Govindaraju, Ravi C.; Suarez, Max J.

    2000-01-01

    The development of and results obtained with a variable resolution stretched-grid GCM for the regional climate simulation mode, are presented. A global variable resolution stretched- grid used in the study has enhanced horizontal resolution over the U.S. as the area of interest The stretched-grid approach is an ideal tool for representing regional to global scale interaction& It is an alternative to the widely used nested grid approach introduced over a decade ago as a pioneering step in regional climate modeling. The major results of the study are presented for the successful stretched-grid GCM simulation of the anomalous climate event of the 1988 U.S. summer drought- The straightforward (with no updates) two month simulation is performed with 60 km regional resolution- The major drought fields, patterns and characteristics such as the time averaged 500 hPa heights precipitation and the low level jet over the drought area. appear to be close to the verifying analyses for the stretched-grid simulation- In other words, the stretched-grid GCM provides an efficient down-scaling over the area of interest with enhanced horizontal resolution. It is also shown that the GCM skill is sustained throughout the simulation extended to one year. The developed and tested in a simulation mode stretched-grid GCM is a viable tool for regional and subregional climate studies and applications.

  6. Acute effect of stretching one leg on regional arterial stiffness in young men.

    PubMed

    Yamato, Yosuke; Hasegawa, Natsuki; Fujie, Shumpei; Ogoh, Shigehiko; Iemitsu, Motoyuki

    2017-06-01

    Our previous study demonstrated that a single bout of stretching exercises acutely reduced arterial stiffness. We hypothesized that this acute vascular response is due to regional mechanical stimulation of the peripheral arteries. To test this hypothesis, we examined the effect of a single bout of passive one leg stretching on arterial stiffness, comparing the stretched and the non-stretched leg in the same subject. Twenty-five healthy young men (20.9 ± 0.3 years, 172.5 ± 1.4 cm, 64.1 ± 1.2 kg) volunteered for the study. Subjects underwent a passive calf stretching on one leg (six repetitions of 30-s static stretch with a 10-s recovery). Pulse wave velocity (PWV, an index of arterial stiffness), blood pressure (BP), and heart rate (HR) were measured before and immediately, 15, and 30 min after the stretching. Femoral-ankle PWV (faPWV) in the stretched leg was significantly decreased from baseline (835.0 ± 15.9 cm/s) to immediately (802.9 ± 16.8 cm/s, P < 0.01) and 15 min (810.5 ± 16.0 cm/s, P < 0.01) after the stretching, despite no changes in systolic and diastolic BP, or HR. However, faPWV in the non-stretched leg was not significantly altered at any time. Brachial-ankle PWV (baPWV) also showed similar responses with faPWV, but this response was not significant. Additionally, the passive stretching did not alter carotid-femoral PWV (cfPWV). These results suggest that mechanical stimulation to peripheral arteries as induced by static passive stretch may modulate arterial wall properties directly, rather than resulting in a systemic effect.

  7. Active shortening protects against stretch-induced force deficits in human skeletal muscle.

    PubMed

    Saripalli, Anjali L; Sugg, Kristoffer B; Mendias, Christopher L; Brooks, Susan V; Claflin, Dennis R

    2017-05-01

    Skeletal muscle contraction results from molecular interactions of myosin "crossbridges" with adjacent actin filament binding sites. The binding of myosin to actin can be "weak" or "strong," and only strong binding states contribute to force production. During active shortening, the number of strongly bound crossbridges declines with increasing shortening velocity. Forcibly stretching a muscle that is actively shortening at high velocity results in no apparent negative consequences, whereas stretch of an isometrically (fixed-length) contracting muscle causes ultrastructural damage and a decline in force-generating capability. Our working hypothesis is that stretch-induced damage is uniquely attributable to the population of crossbridges that are strongly bound. We tested the hypothesis that stretch-induced force deficits decline as the prevailing shortening velocity is increased. Experiments were performed on permeabilized segments of individual skeletal muscle fibers obtained from human subjects. Fibers were maximally activated and allowed either to generate maximum isometric force (F o ), or to shorten at velocities that resulted in force maintenance of ≈50% F o or ≈2% F o For each test condition, a rapid stretch equivalent to 0.1 × optimal fiber length was applied. Relative to prestretch F o , force deficits resulting from stretches applied during force maintenance of 100, ≈50, and ≈2% F o were 23.2 ± 8.6, 7.8 ± 4.2, and 0.3 ± 3.3%, respectively (means ± SD, n = 20). We conclude that stretch-induced damage declines with increasing shortening velocity, consistent with the working hypothesis that the fraction of strongly bound crossbridges is a causative factor in the susceptibility of skeletal muscle to stretch-induced damage. NEW & NOTEWORTHY Force deficits caused by stretch of contracting muscle are most severe when the stretch is applied during an isometric contraction, but prevented if the muscle is shortening at high velocity when the stretch

  8. Combining Dynamic Stretch and Tunable Stiffness to Probe Cell Mechanobiology In Vitro

    PubMed Central

    Throm Quinlan, Angela M.; Sierad, Leslie N.; Capulli, Andrew K.; Firstenberg, Laura E.; Billiar, Kristen L.

    2011-01-01

    Cells have the ability to actively sense their mechanical environment and respond to both substrate stiffness and stretch by altering their adhesion, proliferation, locomotion, morphology, and synthetic profile. In order to elucidate the interrelated effects of different mechanical stimuli on cell phenotype in vitro, we have developed a method for culturing mammalian cells in a two-dimensional environment at a wide range of combined levels of substrate stiffness and dynamic stretch. Polyacrylamide gels were covalently bonded to flexible silicone culture plates and coated with monomeric collagen for cell adhesion. Substrate stiffness was adjusted from relatively soft (G′ = 0.3 kPa) to stiff (G′ = 50 kPa) by altering the ratio of acrylamide to bis-acrylamide, and the silicone membranes were stretched over circular loading posts by applying vacuum pressure to impart near-uniform stretch, as confirmed by strain field analysis. As a demonstration of the system, porcine aortic valve interstitial cells (VIC) and human mesenchymal stem cells (hMSC) were plated on soft and stiff substrates either statically cultured or exposed to 10% equibiaxial or pure uniaxial stretch at 1Hz for 6 hours. In all cases, cell attachment and cell viability were high. On soft substrates, VICs cultured statically exhibit a small rounded morphology, significantly smaller than on stiff substrates (p<0.05). Following equibiaxial cyclic stretch, VICs spread to the extent of cells cultured on stiff substrates, but did not reorient in response to uniaxial stretch to the extent of cells stretched on stiff substrates. hMSCs exhibited a less pronounced response than VICs, likely due to a lower stiffness threshold for spreading on static gels. These preliminary data demonstrate that inhibition of spreading due to a lack of matrix stiffness surrounding a cell may be overcome by externally applied stretch suggesting similar mechanotransduction mechanisms for sensing stiffness and stretch. PMID

  9. Secondary structure estimation and properties analysis of stretched Asian and Caucasian hair.

    PubMed

    Zhou, A J; Liu, H L; Du, Z Q

    2015-02-01

    In this previous work, we investigated the secondary structure changes of stretched yak hairs by deconvolution, secondary derivation, and curve fitting and determined the number of bands and their positions in order to resolve the protein spectrum of Raman spectroscopy. The secondary structure estimation and properties analysis of stretched Asian and Caucasian hair were investigated by Fourier transform infrared spectroscopy, tensile curves, and measurement of density. The hairs were stretched, dried, and baked at ratios 20%, 40%, 60%, 80% and 100%. The analysis of the amide I band indicated that the transformation from α-helix to β-pleated structure occurred during the stretching process, which could be verified from the tensile analysis. The cysteine oxide in S-O vibration area exhibited that stretching led to the breakage of the disulfide bonds. When the stretching ratio of Caucasian hair was more than a certain ratio, the fiber macromolecular structure was destroyed because Caucasian hair had finer diameter and less medulla than Asian hair. The β turn was easier to retract compared with other conformations, resulted in the content increase. The density measurements revealed that the structure of Caucasian hair was indeed more destroyed than that of Asian hair. The cuticles characterization indicated the length of scales was stretched longer and the thickness became thinner. Caucasian hair tended to collapse to form small fragments at the early stage of stretching. With the increase in stretching ratio, the scales of Caucasian hair lifted up, then flaked off and the scale interval increased accordingly. Asian hair was more easily peeled off than Caucasian hair cuticles with the increase in stretching ratio. The secondary structure of Caucasian hair was destroyed more easily than that of Asian hair. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. The effectiveness of manual stretching in the treatment of plantar heel pain: a systematic review

    PubMed Central

    2011-01-01

    Background Plantar heel pain is a commonly occurring foot complaint. Stretching is frequently utilised as a treatment, yet a systematic review focusing only on its effectiveness has not been published. This review aimed to assess the effectiveness of stretching on pain and function in people with plantar heel pain. Methods Medline, EMBASE, CINAHL, AMED, and The Cochrane Library were searched from inception to July 2010. Studies fulfilling the inclusion criteria were independently assessed, and their quality evaluated using the modified PEDro scale. Results Six studies including 365 symptomatic participants were included. Two compared stretching with a control, one study compared stretching to an alternative intervention, one study compared stretching to both alternative and control interventions, and two compared different stretching techniques and durations. Quality rating on the modified Pedro scale varied from two to eight out of a maximum of ten points. The methodologies and interventions varied significantly between studies, making meta-analysis inappropriate. Most participants improved over the course of the studies, but when stretching was compared to alternative or control interventions, the changes only reached statistical significance in one study that used a combination of calf muscle stretches and plantar fascia stretches in their stretching programme. Another study comparing different stretching techniques, showed a statistically significant reduction in some aspects of pain in favour of plantar fascia stretching over calf stretches in the short term. Conclusions There were too few studies to assess whether stretching is effective compared to control or other interventions, for either pain or function. However, there is some evidence that plantar fascia stretching may be more effective than Achilles tendon stretching alone in the short-term. Appropriately powered randomised controlled trials, utilizing validated outcome measures, blinded assessors and

  11. Weak depth and along-strike variations in stretching from a multi-episodic finite stretching model: Evidence for uniform pure-shear extension in the opening of the South China Sea

    NASA Astrophysics Data System (ADS)

    Chen, Lin; Zhang, Zhongjie; Song, Haibin

    2013-12-01

    The South China Sea is widely believed to have been opened by seafloor spreading during the Cenozoic. The details of its lithospheric extension are still being debated, and it is unknown whether pure, simple, or conjunct shears are responsible for the opening of the South China Sea. The depth-dependent and along-strike extension derived from the single-stage finite stretching model or instantaneous stretching model is inconsistent with the observation that the South China Sea proto-margins have experienced multi-episodic extension since the Late Cretaceous. Based on the multi-episodic finite stretching model, we present the amount of lithosphere stretching at the northern continental margin of the South China Sea for different depth scales (upper crust, whole crust and lithosphere) and along several transects. The stretching factors are estimated by integrating seven deep-penetration seismic profiles, the Moho distribution derived from gravity modeling, and the tectonic subsidence data for 41 wells. The results demonstrate that the amount of stretching increases rapidly from 1.1 at the continent shelf to over 3.5 at the lower slope, but the stretching factors at the crust and lithosphere scales are consistent within error (from the uncertainty in paleobathymetry and sea-level change). Furthermore, the along-strike variation in stretching factor is within the range of 1.11-1.9 in west-east direction, accompanied by significant west-east differences in the thickness of high-velocity layers (HVLs) within the lowermost crust. This weak along-strike variation of the stretching factor is most likely produced by the preexisting contrasts in the composition and thermal structure of the lithosphere. The above observations suggest that the continental extension in the opening of the South China Sea mainly takes the form of a uniform pure shear rather than depth-dependent stretching.

  12. Postactivation potentiation can counteract declines in force and power that occur after stretching.

    PubMed

    Kümmel, J; Kramer, A; Cronin, N J; Gruber, M

    2017-12-01

    Stretching can decrease a muscle's maximal force, whereas short but intense muscle contractions can increase it. We hypothesized that when combined, postactivation potentiation induced by reactive jumps would counteract stretch-induced decrements in drop jump (DJ) performance. Moreover, we measured changes in muscle twitch forces and ankle joint stiffness (K A nkle ) to examine underlying mechanisms. Twenty subjects completed three DJs and 10 electrically evoked muscle twitches of the triceps surae subsequent to four different conditioning activities and control. The conditioning activities were 10 hops, 20s of static stretching of the triceps surae muscle, 20s of stretching followed by 10 hops, and vice versa. After 10 hops, twitch peak torque (TPT) was 20% and jump height 5% higher compared with control with no differences in K A nkle . After stretching, TPT and jump height were both 9% and K A nkle 6% lower. When hops and stretching were combined as conditioning activities, jump height was not different compared with control but significantly higher (11% and 8%) compared with stretching. TPTs were 16% higher compared with control when the hops were performed after stretching and 9% higher compared with the reverse order. K A nkle was significantly lower when stretching was performed after the hops (6%) compared with control, but no significant difference was observed when hops were performed after stretching. These results demonstrate that conditioning hops can counteract stretch-related declines in DJ performance. Furthermore, the differences in TPTs and K A nkle between combined conditioning protocols indicate that the order of conditioning tasks might play an important role at the muscle-tendon level. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. All-passive pixel super-resolution of time-stretch imaging

    PubMed Central

    Chan, Antony C. S.; Ng, Ho-Cheung; Bogaraju, Sharat C. V.; So, Hayden K. H.; Lam, Edmund Y.; Tsia, Kevin K.

    2017-01-01

    Based on image encoding in a serial-temporal format, optical time-stretch imaging entails a stringent requirement of state-of-the-art fast data acquisition unit in order to preserve high image resolution at an ultrahigh frame rate — hampering the widespread utilities of such technology. Here, we propose a pixel super-resolution (pixel-SR) technique tailored for time-stretch imaging that preserves pixel resolution at a relaxed sampling rate. It harnesses the subpixel shifts between image frames inherently introduced by asynchronous digital sampling of the continuous time-stretch imaging process. Precise pixel registration is thus accomplished without any active opto-mechanical subpixel-shift control or other additional hardware. Here, we present the experimental pixel-SR image reconstruction pipeline that restores high-resolution time-stretch images of microparticles and biological cells (phytoplankton) at a relaxed sampling rate (≈2–5 GSa/s)—more than four times lower than the originally required readout rate (20 GSa/s) — is thus effective for high-throughput label-free, morphology-based cellular classification down to single-cell precision. Upon integration with the high-throughput image processing technology, this pixel-SR time-stretch imaging technique represents a cost-effective and practical solution for large scale cell-based phenotypic screening in biomedical diagnosis and machine vision for quality control in manufacturing. PMID:28303936

  14. [Effects of different mechanical stretch conditions on differentiation of rat tendon stem cells].

    PubMed

    Li, Pao; Gao, Shang; Zhou, Mei; Tang, Hong; Mu, Miduo; Zhang, Jiqiang; Tang, Kanglai

    2017-04-01

    To investigate the effects of different mechanical stretch conditions on the differentiation of rat tendon stem cells (TSCs), to find the best uniaxial cyclic stretching for TSCs tenogenic differentiation, osteogenic differentiation, and adipogenic differentiation. TSCs were isolated from the Achilles tendons of 8-week-old male Sprague Dawley rats by enzymatic digestion method and cultured. The TSCs at passage 3 were randomly divided into 5 groups: group A (stretch strength of 4% and frequency of 1 Hz), group B (stretch strength of 4% and frequency of 2 Hz), group C (stretch strength of 8% and frequency of 1 Hz), group D (stretch strength of 8% and frequency of 2 Hz), and group E (static culture). At 12, 24, and 48 hours after mechanical stretch, the mRNA expressions of the tenogenic differentiation related genes [Scleraxis (SCX) and Tenascin C (TNC)], the osteogenic differentiation related genes [runt related transcription factor 2 (RUNX2) and distal-less homeobox 5 (DLX5)], and the adipogenic differentiation related genes [CCAAT-enhancer-binding protein-α (CEBPα) and lipoprteinlipase (LPL)] were detected by real-time fluorescent quantitative PCR and the protein expressions of TNC, CEBPα, and RUNX2 were detected by Western blot. The mRNA expressions of SCX and TNC in group B were significantly higher than those in groups A, C, D, and E at 24 hours after mechanical stretch ( P <0.05). The mRNA expressions of CEBPα and LPL in group D were significantly higher than those in groups A, B, C, and E at 48 hours after mechanical stretch ( P <0.05). The mRNA expressions of RUNX2 and DLX5 in group C were significantly higher than those in groups A, B, D, and E at 24 hours after mechanical stretch ( P <0.05). Western blot detection showed that higher protein expression of TNC in group B than group E at each time point after mechanical stretch ( P <0.05), and the protein expression of CEBPα was significantly inhibited when compared with group E at 24 hours after

  15. Factors That Influence the Efficacy of Stretching Programs for Patients With Hypomobility

    PubMed Central

    Jacobs, Cale A.; Sciascia, Aaron D.

    2011-01-01

    Context: Passive stretching exercise protocols, as part of outpatient treatment or home exercise programs, are used to improve hypomobility. Despite the cosmopolitan use of stretching exercises, little is known about the forces being applied to the joint during these routine treatments. Type of Study: Clinical review. Evidence Acquisition: Articles were identified using MEDLINE and Google Scholar databases, with searches initially limited to those articles published after 1995. Seminal articles that were referenced were also included. Results: Many factors contribute to the clinical success of a stretching program, including the frequency, intensity, and duration of the stretching exercises, as well as patient- and joint-specific factors. Conclusions: The goal of a stretching protocol is to maximize total end-range time both in the clinic and at home. Higher intensity, prolonged, and frequent stretching (10- to 15-minute bouts, 3 to 6 times per day) used as an adjunct to high-grade mobilizations may be beneficial for certain hypomobility conditions. PMID:23016052

  16. Role of lateral parabrachial nucleus in the inhibition of water intake produced by right atrial stretch

    NASA Technical Reports Server (NTRS)

    Ohman, Lynne E.

    1995-01-01

    Rats with either bilateral electrolytic or sham lesions of the ventrolateral portion of the lateral parabrachial nucleus (VLLPBN) were implanted with latex balloons that lay at the right superior vena cava/atrial junction (RSVC/AJ). Water intake in response to isoproterenol was measured both with and without inflation of the balloon. Water intake of the sham-lesioned rats was significantly depressed by balloon inflation during the first hour of the experiment. In contrast, water intake in the VLLPBN-lesioned rats was unaffected by balloon inflation. These results suggest that the VLLPBN is involved in the processing of afferent input from stretch-activated RSVC/AJ receptors.

  17. Wrinkling instability of an inhomogeneously stretched viscous sheet

    NASA Astrophysics Data System (ADS)

    Srinivasan, Siddarth; Wei, Zhiyan; Mahadevan, L.

    2017-07-01

    Motivated by the redrawing of hot glass into thin sheets, we investigate the shape and stability of a thin viscous sheet that is inhomogeneously stretched in an imposed nonuniform temperature field. We first determine the associated base flow by solving the long-time-scale stretching flow of a flat sheet as a function of two dimensionless parameters: the normalized stretching velocity α and a dimensionless width of the heating zone β . This allows us to determine the conditions for the onset of an out-of-plane wrinkling instability stated in terms of an eigenvalue problem for a linear partial differential equation governing the displacement of the midsurface of the sheet. We show that the sheet can become unstable in two regions that are upstream and downstream of the heating zone where the minimum in-plane stress is negative. This yields the shape and growth rates of the most unstable buckling mode in both regions for various values of the stretching velocity and heating zone width. A transition from stationary to oscillatory unstable modes is found in the upstream region with increasing β , while the downstream region is always stationary. We show that the wrinkling instability can be entirely suppressed when the surface tension is large enough relative to the magnitude of the in-plane stress. Finally, we present an operating diagram that indicates regions of the parameter space that result in a required outlet sheet thickness upon stretching while simultaneously minimizing or suppressing the out-of-plane buckling, a result that is relevant for the glass redraw method used to create ultrathin glass sheets.

  18. Plasmapheresis affects responses of slowly and rapidly adapting airway receptors to pulmonary venous congestion in dogs.

    PubMed Central

    Kappagoda, C T; Ravi, K

    1989-01-01

    1. The effects of plasmapheresis on the responses of rapidly adapting receptors (RARs) and slowly adapting receptors (SARs) of the airways to pulmonary venous congestion were examined in dogs anaesthetized with alpha-chloralose. Pulmonary venous congestion was produced in a graded manner by partial obstruction of the mitral valve sufficient to raise the mean left atrial pressure by 5, 10 and 15 mmHg. Plasmapheresis was performed by withdrawing 10% of blood volume twice. 2. Both RARs (n = 11) and SARs (n = 5) responded to pulmonary venous congestion by increasing their activities. The responses of the former were proportionately greater. 3. After plasmapheresis which reduced the concentration of plasma proteins by 12.3 +/- 1.0%, the responses of the RARs to pulmonary venous congestion were enhanced significantly. There was no significant change in the responses of SARs. 4. In another set of six RARs, the effects of graded pulmonary venous congestion were investigated twice with an interval of 45 min between the two observations. No significant differences were noted between the two responses. 5. Collection of lymph from the tracheobronchial lymph duct (n = 6) showed that after plasmapheresis, there was an increase in the control lymph flow. In addition, the lymph flow was enhanced during pulmonary venous congestion (mean left atrial pressure increased by 10 mmHg). 6. It is suggested that a natural stimulus for the excitation of the RAR is a function of the fluid fluxes in the pulmonary extravascular space. PMID:2607464

  19. Mechanical stretch triggers rapid epithelial cell division through Piezo1.

    PubMed

    Gudipaty, S A; Lindblom, J; Loftus, P D; Redd, M J; Edes, K; Davey, C F; Krishnegowda, V; Rosenblatt, J

    2017-03-02

    Despite acting as a barrier for the organs they encase, epithelial cells turn over at some of the fastest rates in the body. However, epithelial cell division must be tightly linked to cell death to preserve barrier function and prevent tumour formation. How does the number of dying cells match those dividing to maintain constant numbers? When epithelial cells become too crowded, they activate the stretch-activated channel Piezo1 to trigger extrusion of cells that later die. However, it is unclear how epithelial cell division is controlled to balance cell death at the steady state. Here we show that mammalian epithelial cell division occurs in regions of low cell density where cells are stretched. By experimentally stretching epithelia, we find that mechanical stretch itself rapidly stimulates cell division through activation of the Piezo1 channel. To stimulate cell division, stretch triggers cells that are paused in early G2 phase to activate calcium-dependent phosphorylation of ERK1/2, thereby activating the cyclin B transcription that is necessary to drive cells into mitosis. Although both epithelial cell division and cell extrusion require Piezo1 at the steady state, the type of mechanical force controls the outcome: stretch induces cell division, whereas crowding induces extrusion. How Piezo1-dependent calcium transients activate two opposing processes may depend on where and how Piezo1 is activated, as it accumulates in different subcellular sites with increasing cell density. In sparse epithelial regions in which cells divide, Piezo1 localizes to the plasma membrane and cytoplasm, whereas in dense regions in which cells extrude, it forms large cytoplasmic aggregates. Because Piezo1 senses both mechanical crowding and stretch, it may act as a homeostatic sensor to control epithelial cell numbers, triggering extrusion and apoptosis in crowded regions and cell division in sparse regions.

  20. Can Stretching Prior to Exercise and Sports Improve Performance and Prevent Injury?

    ERIC Educational Resources Information Center

    Bracko, Michael R.

    2002-01-01

    Examines data from research on stretching as it relates to enhanced performance and injury prevention so that fitness, exercise, and sports performance professionals can make informed decisions about stretching programs for clients. The paper notes that stretching is a misunderstood component of fitness and sports training. Few studies show…

  1. A Single 30-s Stretch Is Sufficient to Inhibit Maximal Voluntary Strength

    ERIC Educational Resources Information Center

    Winchester, Jason B.; Nelson, Arnold G.; Kokkonen, Joke

    2009-01-01

    While it has been well established that an acute stretching program can inhibit maximal muscle performance, the amount of stretching needed to produce the deleterious response is unknown. Therefore this study examined the dose-response relationship between acute stretching and strength inhibition. Eighteen college students performed a one…

  2. Theory of high-force DNA stretching and overstretching.

    PubMed

    Storm, C; Nelson, P C

    2003-05-01

    Single-molecule experiments on single- and double-stranded DNA have sparked a renewed interest in the force versus extension of polymers. The extensible freely jointed chain (FJC) model is frequently invoked to explain the observed behavior of single-stranded DNA, but this model does not satisfactorily describe recent high-force stretching data. We instead propose a model (the discrete persistent chain) that borrows features from both the FJC and the wormlike chain, and show that it resembles the data more closely. We find that most of the high-force behavior previously attributed to stretch elasticity is really a feature of the corrected entropic elasticity; the true stretch compliance of single-stranded DNA is several times smaller than that found by previous authors. Next we elaborate our model to allow coexistence of two conformational states of DNA, each with its own stretch and bend elastic constants. Our model is computationally simple and gives an excellent fit through the entire overstretching transition of nicked, double-stranded DNA. The fit gives the first value for the bend stiffness of the overstretched state. In particular, we find the effective bend stiffness for DNA in this state to be about 12 nm k(B)T, a value quite different from either the B-form or single-stranded DNA.

  3. The Acute Effects of Upper Extremity Stretching on Throwing Velocity in Baseball Throwers

    PubMed Central

    Melton, Jason; Delobel, Ashley; Puentedura, Emilio J.

    2013-01-01

    Purpose. To examine the effects of static and proprioceptive neuromuscular facilitation (PNF) stretching of the shoulder internal rotators on throwing velocity. Subjects. 27 male throwers (mean age = 25.1 years old, SD = 2.4) with adequate knowledge of demonstrable throwing mechanics. Study Design. Randomized crossover trial with repeated measures. Methods. Subjects warmed up, threw 10 pitches at their maximum velocity, were randomly assigned to 1 of 3 stretching protocols (static, PNF, or no stretch), and then repeated their 10 pitches. Velocities were recorded after each pitch and average and peak velocities were recorded after each session. Results. Data were analyzed using a 3 × 2 repeated measures ANOVA. No significant interaction between stretching and throwing velocity was observed. Main effects for time were not statistically significant. Main effects for the stretching groups were statistically significant. Discussion. Results suggest that stretching of the shoulder internal rotators did not significantly affect throwing velocity immediately after stretching. This may be due to the complexity of the throwing task. Conclusions. Stretching may be included in a thrower's warm-up without any effects on throwing velocity. Further research should be performed using a population with more throwing experience and skill. PMID:26464880

  4. On one-dimensional stretching functions for finite-difference calculations. [computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Vinokur, M.

    1979-01-01

    The class of one-dimensional stretching functions used in finite-difference calculations is studied. For solutions containing a highly localized region of rapid variation, simple criteria for a stretching function are derived using a truncation error analysis. These criteria are used to investigate two types of stretching functions. One is an interior stretching function, for which the location and slope of an interior clustering region are specified. The simplest such function satisfying the criteria is found to be one based on the inverse hyperbolic sine. The other type of function is a two-sided stretching function, for which the arbitrary slopes at the two ends of the one-dimensional interval are specified. The simplest such general function is found to be one based on the inverse tangent.

  5. Influence of prolonged static stretching on motor unit firing properties.

    PubMed

    Ye, Xin; Beck, Travis W; Wages, Nathan P

    2016-05-01

    The purpose of this study was to examine the influence of a stretching intervention on motor control strategy of the biceps brachii muscle. Ten men performed twelve 100-s passive static stretches of the biceps brachii. Before and after the intervention, isometric strength was tested during maximal voluntary contractions (MVCs) of the elbow flexors. Subjects also performed trapezoid isometric contractions at 30% and 70% of MVC. Surface electromyographic signals from the submaximal contractions were decomposed into individual motor unit action potential trains. Linear regression analysis was used to examine the relationship between motor unit mean firing rate and recruitment threshold. The stretching intervention caused significant decreases in y-intercepts of the linear regression lines. In addition, linear slopes at both intensities remained unchanged. Despite reduced motor unit firing rates following the stretches, the motor control scheme remained unchanged. © 2016 Wiley Periodicals, Inc.

  6. Damage percolation during stretch flange forming of aluminum alloy sheet

    NASA Astrophysics Data System (ADS)

    Chen, Zengtao; Worswick, Michael J.; Keith Pilkey, A.; Lloyd, David J.

    2005-12-01

    A multi-scale finite element (FE)-damage percolation model was employed to simulate stretch flange forming of aluminum alloys AA5182 and AA5754. Material softening and strain gradients were captured using a Gurson-based FE model. FE results were then fed into the so-called damage percolation code, from which the damage development was modelled within measured microstructures. The formability of the stretch flange samples was predicted based upon the onset of catastrophic failure triggered by profuse void coalescence within the measured second-phase particle field. Damage development is quantified in terms of crack and void areal fractions, and compared to metallographic results obtained from interrupted stretch flange specimens. Parametric study is conducted on the effect of void nucleation strain in the prediction of formability of stretch flanges to "calibrate" proper nucleation strains for both alloys.

  7. Small-Scale System for Evaluation of Stretch-Flangeability with Excellent Reliability

    NASA Astrophysics Data System (ADS)

    Yoon, Jae Ik; Jung, Jaimyun; Lee, Hak Hyeon; Kim, Hyoung Seop

    2018-02-01

    We propose a system for evaluating the stretch-flangeability of small-scale specimens based on the hole-expansion ratio (HER). The system has no size effect and shows excellent reproducibility, reliability, and economic efficiency. To verify the reliability and reproducibility of the proposed hole-expansion testing (HET) method, the deformation behavior of the conventional standard stretch-flangeability evaluation method was compared with the proposed method using finite-element method simulations. The distribution of shearing defects in the hole-edge region of the specimen, which has a significant influence on the HER, was investigated using scanning electron microscopy. The stretch-flangeability of several kinds of advanced high-strength steel determined using the conventional standard method was compared with that using the proposed small-scale HET method. It was verified that the deformation behavior, morphology and distribution of shearing defects, and stretch-flangeability results for the specimens were the same for the conventional standard method and the proposed small-scale stretch-flangeability evaluation system.

  8. Small-Scale System for Evaluation of Stretch-Flangeability with Excellent Reliability

    NASA Astrophysics Data System (ADS)

    Yoon, Jae Ik; Jung, Jaimyun; Lee, Hak Hyeon; Kim, Hyoung Seop

    2018-06-01

    We propose a system for evaluating the stretch-flangeability of small-scale specimens based on the hole-expansion ratio (HER). The system has no size effect and shows excellent reproducibility, reliability, and economic efficiency. To verify the reliability and reproducibility of the proposed hole-expansion testing (HET) method, the deformation behavior of the conventional standard stretch-flangeability evaluation method was compared with the proposed method using finite-element method simulations. The distribution of shearing defects in the hole-edge region of the specimen, which has a significant influence on the HER, was investigated using scanning electron microscopy. The stretch-flangeability of several kinds of advanced high-strength steel determined using the conventional standard method was compared with that using the proposed small-scale HET method. It was verified that the deformation behavior, morphology and distribution of shearing defects, and stretch-flangeability results for the specimens were the same for the conventional standard method and the proposed small-scale stretch-flangeability evaluation system.

  9. Receptor-mediated cell mechanosensing

    PubMed Central

    Chen, Yunfeng; Ju, Lining; Rushdi, Muaz; Ge, Chenghao; Zhu, Cheng

    2017-01-01

    Mechanosensing describes the ability of a cell to sense mechanical cues of its microenvironment, including not only all components of force, stress, and strain but also substrate rigidity, topology, and adhesiveness. This ability is crucial for the cell to respond to the surrounding mechanical cues and adapt to the changing environment. Examples of responses and adaptation include (de)activation, proliferation/apoptosis, and (de)differentiation. Receptor-mediated cell mechanosensing is a multistep process that is initiated by binding of cell surface receptors to their ligands on the extracellular matrix or the surface of adjacent cells. Mechanical cues are presented by the ligand and received by the receptor at the binding interface; but their transmission over space and time and their conversion into biochemical signals may involve other domains and additional molecules. In this review, a four-step model is described for the receptor-mediated cell mechanosensing process. Platelet glycoprotein Ib, T-cell receptor, and integrins are used as examples to illustrate the key concepts and players in this process. PMID:28954860

  10. NORTHERLY STRETCH OF MILLBURY PORTION; GENERAL VIEW ACROSS CANAL PRISM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    NORTHERLY STRETCH OF MILLBURY PORTION; GENERAL VIEW ACROSS CANAL PRISM TO TOWPATH BERM (LATER FILL ENCROACHING LEFT) NEAR CENTER OF THIS STRETCH; VIEW TO SOUTHWEST - Blackstone Canal Worcester-Millbury Segment, Eastern bank of Blackstone River, Millbury, Worcester County, MA

  11. Rapid feedback responses correlate with reach adaptation and properties of novel upper limb loads.

    PubMed

    Cluff, Tyler; Scott, Stephen H

    2013-10-02

    A hallmark of voluntary motor control is the ability to adjust motor patterns for novel mechanical or visuomotor contexts. Recent work has also highlighted the importance of feedback for voluntary control, leading to the hypothesis that feedback responses should adapt when we learn new motor skills. We tested this prediction with a novel paradigm requiring that human subjects adapt to a viscous elbow load while reaching to three targets. Target 1 required combined shoulder and elbow motion, target 2 required only elbow motion, and target 3 (probe target) required shoulder but no elbow motion. This simple approach controlled muscle activity at the probe target before, during, and after the application of novel elbow loads. Our paradigm allowed us to perturb the elbow during reaching movements to the probe target and identify several key properties of adapted stretch responses. Adapted long-latency responses expressed (de-) adaptation similar to reaching errors observed when we introduced (removed) the elbow load. Moreover, reaching errors during learning correlated with changes in the long-latency response, showing subjects who adapted more to the elbow load displayed greater modulation of their stretch responses. These adapted responses were sensitive to the size and direction of the viscous training load. Our results highlight an important link between the adaptation of feedforward and feedback control and suggest a key part of motor adaptation is to adjust feedback responses to the requirements of novel motor skills.

  12. No Effect of Muscle Stretching within a Full, Dynamic Warm-up on Athletic Performance.

    PubMed

    Blazevich, Anthony J; Gill, Nicholas D; Kvorning, Thue; Kay, Anthony D; Goh, Alvin G; Hilton, Bradley; Drinkwater, Eric J; Behm, David G

    2018-06-01

    This study aimed to examine the effects of static and dynamic stretching routines performed as part of a comprehensive warm-up on flexibility and sprint running, jumping, and change of direction tests in team sport athletes. A randomized, controlled, crossover study design with experimenter blinding was conducted. On separate days, 20 male team sport athletes completed a comprehensive warm-up routine. After a low-intensity warm-up, a 5-s static stretch (5S), a 30-s static stretch (30S; 3 × 10-s stretches), a 5-repetition (per muscle group) dynamic stretch (DYN), or a no-stretch (NS) protocol was completed; stretches were done on seven lower body and two upper body regions. This was followed by test-specific practice progressing to maximum intensity. A comprehensive test battery assessing intervention effect expectations as well as flexibility, vertical jump, sprint running, and change of direction outcomes was then completed in a random order. There were no effects of stretch condition on test performances. Before the study, 18/20 participants nominated DYN as the most likely to improve performance and 15/20 nominated NS as least likely. Immediately before testing, NS was rated less "effective" (4.0 ± 2.2 on a 10-point scale) than 5S, 30S, and DYN (5.3-6.4). Nonetheless, these ratings were not related to test performances. Participants felt they were more likely to perform well when stretching was performed as part of the warm-up, irrespective of stretch type. However, no effect of muscle stretching was observed on flexibility and physical function compared with no stretching. On the basis of the current evidence, the inclusion of short durations of either static or dynamic stretching is unlikely to affect sprint running, jumping, or change of direction performance when performed as part of a comprehensive physical preparation routine.

  13. Direct association between the Ret receptor tyrosine kinase and the Src homology 2-containing adapter protein Grb7.

    PubMed

    Pandey, A; Liu, X; Dixon, J E; Di Fiore, P P; Dixit, V M

    1996-05-03

    Adapter proteins containing Src homology 2 (SH2) domains link transmembrane receptor protein-tyrosine kinases to downstream signal transducing molecules. A family of SH2 containing adapter proteins including Grb7 and Grb10 has been recently identified. We had previously shown that Grb10 associates with Ret via its SH2 domain in an activation-dependent manner (Pandey, A., Duan, H., Di Fiore, P.P., and Dixit, V.M. (1995) J. Biol, Chem. 270, 21461-21463). We now demonstrate that the related adapter molecule Grb7 also associates with Ret in vitro and in vivo, and that the binding of the SH2 domain of Grb7 to Ret is direct. This binding is dependent upon Ret autophosphorylation since Grb7 is incapable of binding a kinase-defective mutant of Ret. Thus two members of the Grb family, Grb7 and Grb10, likely relay signals emanating from Ret to other, as yet, unidentified targets within the cell.

  14. Fluidization, resolidification, and reorientation of the endothelial cell in response to slow tidal stretches

    PubMed Central

    Krishnan, Ramaswamy; Canović, Elizabeth Peruski; Iordan, Andreea L.; Rajendran, Kavitha; Manomohan, Greeshma; Pirentis, Athanassios P.; Smith, Michael L.; Butler, James P.; Fredberg, Jeffrey J.

    2012-01-01

    Mechanical stretch plays an important role in regulating shape and orientation of the vascular endothelial cell. This morphological response to stretch is basic to angiogenesis, neovascularization, and vascular homeostasis, but mechanism remains unclear. To elucidate mechanisms, we used cell mapping rheometry to measure traction forces in primary human umbilical vein endothelial cells subjected to periodic uniaxial stretches. Onset of periodic stretch of 10% strain amplitude caused a fluidization response typified by attenuation of traction forces almost to zero. As periodic stretch continued, the prompt fluidization response was followed by a slow resolidification response typified by recovery of the traction forces, but now aligned along the axis perpendicular to the imposed stretch. Reorientation of the cell body lagged reorientation of the traction forces, however. Together, these observations demonstrate that cellular reorientation in response to periodic stretch is preceded by traction attenuation by means of cytoskeletal fluidization and subsequent traction recovery transverse to the stretch direction by means of cytoskeletal resolidification. PMID:22700796

  15. The effects of plantar flexor static stretching and dynamic stretching using an aero-step on foot pressure during gait in healthy adults: a preliminary study.

    PubMed

    Shim, Je-Myung; Jung, Ju-Hyeon; Kim, Hwan-Hee

    2015-07-01

    [Purpose] The aim of this study was to examine whether plantar flexor static stretching and dynamic stretching using an Aero-Step results in changes in foot pressure during gait in healthy adults. [Subjects] Eighteen normal adults were randomly allocated to either a dynamic stretching using an Aero-Step group (DSUAS) group (n = 8) or a static stretching (SS) group (n = 10). [Methods] The DSUAS and SS participants took part in an exercise program for 15 minutes. Outcome measures were foot plantar pressure, which was measured during the subject's gait stance phase; the asymmetric ratio of foot pressure for both feet; and the visual analogue scale (VAS) measured during the interventions. [Results] There were significant differences in the asymmetric ratio of foot pressure for both feet and VAS between the two groups after intervention. However, there were no significant differences in foot plantar pressure during the gait stance phase within both groups. [Conclusion] DSUSAS is an effective stretching method, as pain during it is lower than that with SS, which can minimize the asymmetric ratio of foot pressure for both feet during gait due to asymmetric postural alignment.

  16. Substance P receptor blockade decreases stretch-induced lung cytokines and lung injury in rats.

    PubMed

    Brégeon, Fabienne; Steinberg, Jean Guillaume; Andreotti, Nicolas; Sabatier, Jean-Marc; Delpierre, Stéphane; Ravailhe, Sylvie; Jammes, Yves

    2010-04-15

    Overdistension of lung tissue during mechanical ventilation causes cytokine release, which may be facilitated by the autonomic nervous system. We used mechanical ventilation to cause lung injury in rats, and studied how cervical section of the vagus nerve, or substance P (SP) antagonism, affected the injury. The effects of 40 or 25 cmH(2)O high airway pressure injurious ventilation (HV(40) and HV(25)) were studied and compared with low airway pressure ventilation (LV) and spontaneous breathing (controls). Lung mechanics, lung weight, gas exchange, lung myeloperoxidase activity, lung concentrations of interleukin (IL)-1 beta and IL-6, and amounts of lung SP were measured. Control rats were intact, others were bivagotomized, and in some animals we administered the neurokinin-1 (NK-1) receptor blocking agent SR140333. We first determined the durations of HV(40) and HV(25) that induced the same levels of lung injury and increased lung contents of IL-1 beta and IL-6. They were 90 min and 120 min, respectively. Both HV(40) and HV(25) increased lung SP, IL-1 beta and IL-6 levels, these effects being markedly reduced by NK-1 receptor blockade. Bivagotomy reduced to a lesser extent the HV(40)- and HV(25)-induced increases in SP but significantly reduced cytokine production. Neither vagotomy nor NK-1 receptor blockade prevented HV(40)-induced lung injury but, in the HV(25) group, they made it possible to maintain lung injury indices close to those measured in the LV group. This study suggests that both neuronal and extra-neuronal SP might be involved in ventilator-induced lung inflammation and injury. NK-1 receptor blockade could be a pharmacological tool to minimize some adverse effects of mechanical ventilation.

  17. Coherent time-stretch transformation for real-time capture of wideband signals.

    PubMed

    Buckley, Brandon W; Madni, Asad M; Jalali, Bahram

    2013-09-09

    Time stretch transformation of wideband waveforms boosts the performance of analog-to-digital converters and digital signal processors by slowing down analog electrical signals before digitization. The transform is based on dispersive Fourier transformation implemented in the optical domain. A coherent receiver would be ideal for capturing the time-stretched optical signal. Coherent receivers offer improved sensitivity, allow for digital cancellation of dispersion-induced impairments and optical nonlinearities, and enable decoding of phase-modulated optical data formats. Because time-stretch uses a chirped broadband (>1 THz) optical carrier, a new coherent detection technique is required. In this paper, we introduce and demonstrate coherent time stretch transformation; a technique that combines dispersive Fourier transform with optically broadband coherent detection.

  18. Stretch-stimulated glucose transport in skeletal muscle is regulated by Rac1

    PubMed Central

    Sylow, Lykke; Møller, Lisbeth L V; Kleinert, Maximilian; Richter, Erik A; Jensen, Thomas E

    2015-01-01

    An alternative to the canonical insulin signalling pathway for glucose transport is muscle contraction/exercise. Mechanical stress is an integrated part of the muscle contraction/relaxation cycle, and passive stretch stimulates muscle glucose transport. However, the signalling mechanism regulating stretch-stimulated glucose transport is not well understood. We recently reported that the actin cytoskeleton regulating GTPase, Rac1, was activated in mouse muscle in response to stretching. Rac1 is a regulator of contraction- and insulin-stimulated glucose transport, however, its role in stretch-stimulated glucose transport and signalling is unknown. We therefore investigated whether stretch-induced glucose transport in skeletal muscle required Rac1 and the actin cytoskeleton. We used muscle-specific inducible Rac1 knockout mice as well as pharmacological inhibitors of Rac1 and the actin cytoskeleton in isolated soleus and extensor digitorum longus muscles. In addition, the role of Rac1 in contraction-stimulated glucose transport during conditions without mechanical load on the muscles was evaluated in loosely hanging muscles and muscles in which cross-bridge formation was blocked by the myosin ATPase inhibitors BTS and Blebbistatin. Knockout as well as pharmacological inhibition of Rac1 reduced stretch-stimulated glucose transport by 30–50% in soleus and extensor digitorum longus muscle. The actin depolymerizing agent latrunculin B similarly decreased glucose transport in response to stretching by 40–50%. Rac1 inhibition reduced contraction-stimulated glucose transport by 30–40% in tension developing muscle but did not affect contraction-stimulated glucose transport in muscles in which force development was prevented. Our findings suggest that Rac1 and the actin cytoskeleton regulate stretch-stimulated glucose transport and that Rac1 is a required part of the mechanical stress-component of the contraction-stimulus to glucose transport in skeletal muscle. Key

  19. Acute muscle and joint mechanical responses following a high-intensity stretching protocol.

    PubMed

    Freitas, Sandro R; Andrade, Ricardo J; Nordez, Antoine; Mendes, Bruno; Mil-Homens, Pedro

    2016-08-01

    A previous study observed a joint passive torque increase above baseline ~30 min after a high-intensity stretching. This study examined the effect of a high-intensity stretching on ankle dorsiflexion passive torque, medial gastrocnemius (MG) shear modulus, and plantar flexors maximal voluntary isometric force (MVIC). Participants (n = 11, age 27.2 ± 6.5 years, height 172.0 ± 10.0 cm, weight 69.5 ± 10.4 kg) underwent two stretching sessions with plantar flexors isometric contractions performed: (1) 5 min before, 1 min after, and every 10 min after stretching (MVC session); (2) 5 min before, and 60 min after the stretching (no-MVC session). In both sessions, no changes were observed for MG shear modulus (p > 0.109). In the no-MVC session, passive torque decreased 1 min after stretching (-7.5 ± 8.4 %, p = 0.015), but increased above baseline 30 min after stretching (+6.3 ± 9.3 %, p = 0.049). In the MVC session, passive torque decreased at 1 min (-10.1 ± 6.3 %, p < 0.001), 10 min (-6.3 ± 8.2 %, p = 0.03), 20 min (-8.0 ± 9.2 %, p = 0.017), and 60 min (-9.2 ± 12.4 %, p = 0.034) after the stretching, whereas the MVIC decreased at 1 min (-5.0 ± 9.3 %, p = 0.04) and 10 min (-6.7 ± 8.7 %, p = 0.02) after stretching. The ankle passive torque increase 30 min following the stretch was not due to the MG shear modulus response; consequently, response may be due to changes in surrounding connective tissue mechanical properties.

  20. Stretch-Enhancers Delineate Disease-Associated Regulatory Nodes in T Cells

    PubMed Central

    Vahedi, Golnaz; Kanno, Yuka; Furumoto, Yasuko; Jiang, Kan; Parker, Stephen C.; Erdos, Michael; Davis, Sean R.; Roychoudhuri, Rahul; Restifo, Nicholas P.; Gadina, Massimo; Tang, Zhonghui; Ruan, Yijun; Collins, Francis S.; Sartorelli, Vittorio; O’Shea, John J.

    2014-01-01

    Enhancers regulate spatiotemporal gene expression and impart cell-specific transcriptional outputs that drive cell identity1. Stretch- or super-enhancers (SEs) are a subset of enhancers especially important for genes associated with cell identity and genetic risk of disease2,3,4,5,6. CD4+ T cells are critical for host defense and autoimmunity. Herein, we analyzed maps of T cell SEs as a non-biased means of identifying key regulatory nodes involved in cell specification. We found that cytokines and cytokine receptors were the dominant class of genes exhibiting SE architecture in T cells. This notwithstanding, the locus encoding Bach2, a key negative regulator of effector differentiation, emerged as the most prominent T cell SE, revealing a network wherein SE-associated genes critical for T cell biology are repressed by BACH2. Disease-associated SNPs for immune-mediated disorders, including rheumatoid arthritis (RA), were highly enriched for T cell-SEs versus typical enhancers (TEs) or SEs in other cell lineages7. Intriguingly, treatment of T cells with the Janus kinase (JAK) inhibitor, tofacitinib, disproportionately altered the expression of RA risk genes with SE structures. Together, these results indicate that genes with SE architecture in T cells encompass a variety of cytokines and cytokine receptors but are controlled by a “guardian” transcription factor, itself endowed with an SE. Thus, enumeration of SEs allows unbiased determination of key regulatory nodes in T cells, which are preferentially modulated by pharmacological intervention. PMID:25686607

  1. Immediate effect of passive and active stretching on hamstrings flexibility: a single-blinded randomized control trial.

    PubMed

    Nishikawa, Yuichi; Aizawa, Junya; Kanemura, Naohiko; Takahashi, Tetsuya; Hosomi, Naohisa; Maruyama, Hirofumi; Kimura, Hiroaki; Matsumoto, Masayasu; Takayanagi, Kiyomi

    2015-10-01

    [Purpose] This study compared the efficacy of passive and active stretching techniques on hamstring flexibility. [Subjects] Fifty-four healthy young subjects were randomly assigned to one of three groups (2 treatment groups and 1 control group). [Methods] Subjects in the passive stretching group had their knees extended by an examiner while lying supine 90° of hip flexion. In the same position, subjects in the active stretching group extended their knees. The groups performed 3 sets of the assigned stretch, with each stretch held for 10 seconds at the point where tightness in the hamstring muscles was felt. Subjects in the control group did not perform stretching. Before and immediately after stretching, hamstring flexibility was assessed by a blinded assessor, using the active knee-extension test. [Results] After stretching, there was a significant improvement in the hamstring flexibilities of the active and passive stretching groups compared with the control group. Furthermore, the passive stretching group showed significantly greater improvement in hamstring flexibility than the active stretching group. [Conclusion] Improvement in hamstring flexibility measured by the active knee-extension test was achieved by both stretching techniques; however, passive stretching was more effective than active stretching at achieving an immediate increase in hamstring flexibility.

  2. On one-dimensional stretching functions for finite-difference calculations. [computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Vinokur, M.

    1983-01-01

    The class of one-dimensional stretching functions used in finite-difference calculations is studied. For solutions containing a highly localized region of rapid variation, simple criteria for a stretching function are derived using a truncation error analysis. These criteria are used to investigate two types of stretching functions. One an interior stretching function, for which the location and slope of an interior clustering region are specified. The simplest such function satisfying the criteria is found to be one based on the inverse hyperbolic sine. The other type of function is a two-sided stretching function, for which the arbitrary slopes at the two ends of the one-dimensional interval are specified. The simplest such general function is found to be one based on the inverse tangent. Previously announced in STAR as N80-25055

  3. Nitric oxide regulates stretch-induced proliferation in C2C12 myoblasts.

    PubMed

    Soltow, Quinlyn A; Lira, Vitor A; Betters, Jenna L; Long, Jodi H D; Sellman, Jeff E; Zeanah, Elizabeth H; Criswell, David S

    2010-09-01

    Mechanical stretch of skeletal muscle activates nitric oxide (NO) production and is an important stimulator of satellite cell proliferation. Further, cyclooxygenase (COX) activity has been shown to promote satellite cell proliferation in response to stretch. Since COX-2 expression in skeletal muscle can be regulated by NO we sought to determine if NO is required for stretch-induced myoblast proliferation and whether supplemental NO can counter the effects of COX-2 and NF-kappaB inhibitors. C2C12 myoblasts were cultured for 24 h, then switched to medium containing either the NOS inhibitor, L-NAME (200 microM), the COX-2 specific inhibitor NS-398 (100 microM), the NF-kappaB inhibiting antioxidant, PDTC (5 mM), the nitric oxide donor, DETA-NONOate (10-100 microM) or no supplement (control) for 24 h. Subgroups of each treatment were exposed to 1 h of 15% cyclic stretch (1 Hz), and were then allowed to proliferate for 24 h before fixing. Proliferation was measured by BrdU incorporation during the last hour before fixing, and DAPI stain. Stretch induced a twofold increase in nuclear number compared to control, and this effect was completely inhibited by L-NAME, NS-398 or PDTC (P < 0.05). Although DETA-NONOate (10 microM) did not affect basal proliferation, the NO-donor augmented the stretch-induced increase in proliferation and rescued stretch-induced proliferation in NS-398-treated cells, but not in PDTC-treated cells. In conclusion, NO, COX-2, and NF-kappaB are necessary for stretch-induced proliferation of myoblasts. Although COX-2 and NF-kappaB are both involved in basal proliferation, NO does not affect basal growth. Thus, NO requires the synergistic effect of stretch in order to induce muscle cell proliferation.

  4. Optimal stretching in the reacting wake of a bluff body.

    PubMed

    Wang, Jinge; Tithof, Jeffrey; Nevins, Thomas D; Colón, Rony O; Kelley, Douglas H

    2017-12-01

    We experimentally study spreading of the Belousov-Zhabotinsky reaction behind a bluff body in a laminar flow. Locations of reacted regions (i.e., regions with high product concentration) correlate with a moderate range of Lagrangian stretching and that range is close to the range of optimal stretching previously observed in topologically different flows [T. D. Nevins and D. H. Kelley, Phys. Rev. Lett. 117, 164502 (2016)]. The previous work found optimal stretching in a closed, vortex dominated flow, but this article uses an open flow and only a small area of appreciable vorticity. We hypothesize that optimal stretching is common in advection-reaction-diffusion systems with an excitation threshold, including excitable and bistable systems, and that the optimal range depends on reaction chemistry and not on flow shape or characteristic speed. Our results may also give insight into plankton blooms behind islands in ocean currents.

  5. Pulsatile equibiaxial stretch inhibits thrombin-induced RhoA and NF-{kappa}B activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haga, Jason H.; Kaunas, Roland; Radeff-Huang, Julie

    2008-07-18

    This study investigated interactions between the effects of mechanical stretch and thrombin on RhoA activation in rat aortic smooth muscle cells (RASMC). Equibiaxial, pulsatile stretch, or thrombin produced a significant increase in RhoA activation. Surprisingly, in combination, 30 min of stretch inhibited the ability of thrombin to activate RhoA. NO donors and 8-bromo-cGMP significantly inhibited thrombin-induced RhoA activation. Interestingly, the nitric oxide synthase (NOS) inhibitor L-NAME increased basal RhoA activity, suggesting that NOS activity exerts a tonic inhibition on RhoA. Stretching RASMC increases nitrite production, consistent with the idea that NO contributes to the inhibitory effects of stretch. Thrombin stimulatesmore » MAP kinase and NF-{kappa}B pathways through Rho and these responses were blocked by 8-bromo-cGMP or stretch and restored by L-NAME. These data suggest that stretch, acting through NO and cGMP, can prevent the ability of thrombin to stimulate Rho signaling pathways that contribute to pathophysiological proliferative and inflammatory responses.« less

  6. Acute Effects of Dynamic Stretching on Muscle Flexibility and Performance: An Analysis of the Current Literature.

    PubMed

    Opplert, Jules; Babault, Nicolas

    2018-02-01

    Stretching has long been used in many physical activities to increase range of motion (ROM) around a joint. Stretching also has other acute effects on the neuromuscular system. For instance, significant reductions in maximal voluntary strength, muscle power or evoked contractile properties have been recorded immediately after a single bout of static stretching, raising interest in other stretching modalities. Thus, the effects of dynamic stretching on subsequent muscular performance have been questioned. This review aimed to investigate performance and physiological alterations following dynamic stretching. There is a substantial amount of evidence pointing out the positive effects on ROM and subsequent performance (force, power, sprint and jump). The larger ROM would be mainly attributable to reduced stiffness of the muscle-tendon unit, while the improved muscular performance to temperature and potentiation-related mechanisms caused by the voluntary contraction associated with dynamic stretching. Therefore, if the goal of a warm-up is to increase joint ROM and to enhance muscle force and/or power, dynamic stretching seems to be a suitable alternative to static stretching. Nevertheless, numerous studies reporting no alteration or even performance impairment have highlighted possible mitigating factors (such as stretch duration, amplitude or velocity). Accordingly, ballistic stretching, a form of dynamic stretching with greater velocities, would be less beneficial than controlled dynamic stretching. Notwithstanding, the literature shows that inconsistent description of stretch procedures has been an important deterrent to reaching a clear consensus. In this review, we highlight the need for future studies reporting homogeneous, clearly described stretching protocols, and propose a clarified stretching terminology and methodology.

  7. Hele-Shaw Experiments on Plume Stretching and Folding

    NASA Astrophysics Data System (ADS)

    Foster, M.; Mays, D. C.; Neupauer, R. M.

    2013-12-01

    Fluid mixing in laminar flow is important in a number of practical applications, including remediation of contaminated groundwater. Recent modeling studies have shown that mixing can be accelerated and amplified by imposing a flow that generates stretching and folding of an injected plume of treatment solution. Stretching and folding, in turn, results from engineered injection and extraction of clean water through an array of wells surrounding the treatment solution. This poster describes a series of experiments whose goal is to demonstrate plume stretching and folding in a Hele-Shaw apparatus. An initial plume of treatment solution is injected into the center of the Hele-Shaw apparatus, which is assumed to represent a zone of contaminated groundwater, with four wells spaced evenly around the treatment solution. In order to spread the treatment solution into the groundwater, the four wells perform a series of infusions and withdrawals that push and pull apart the plume of treatment solution. With the proper steps, it will be shown that the plume can be stretched and folded to greatly increase the reactive interface area between the treatment solution and the contaminated groundwater. Consideration is given to two qualitative differences with respect to previous modeling studies. First, constant volume is required by the no-flow boundary used at the edge of the Hele-Shaw cell; any pump that is withdrawing water must have a complementary pump adding water at the same rate. Second, in these experiments, mixing results from a physical process, namely Taylor dispersion, eliminating the uncertainty resulting from the need to assume dispersion mechanisms in numerical models. Therefore, these experiments further elucidate the benefits and challenges of imposing plume stretching and folding in systems (like aquifers) where dispersion is unavoidable, providing new insight into the required logistics of using this approach in groundwater treatment.

  8. Stretch-sensitive paresis and effort perception in hemiparesis.

    PubMed

    Vinti, Maria; Bayle, Nicolas; Hutin, Emilie; Burke, David; Gracies, Jean-Michel

    2015-08-01

    In spastic paresis, stretch applied to the antagonist increases its inappropriate recruitment during agonist command (spastic co-contraction). It is unknown whether antagonist stretch: (1) also affects agonist recruitment; (2) alters effort perception. We quantified voluntary activation of ankle dorsiflexors, effort perception, and plantar flexor co-contraction during graded dorsiflexion efforts at two gastrocnemius lengths. Eighteen healthy (age 41 ± 13) and 18 hemiparetic (age 54 ± 12) subjects performed light, medium and maximal isometric dorsiflexion efforts with the knee flexed or extended. We determined dorsiflexor torque, Root Mean Square EMG and Agonist Recruitment/Co-contraction Indices (ARI/CCI) from the 500 ms peak voluntary agonist recruitment in a 5-s maximal isometric effort in tibialis anterior, soleus and medial gastrocnemius. Subjects retrospectively reported effort perception on a 10-point visual analog scale. During gastrocnemius stretch in hemiparetic subjects, we observed: (1) a 25 ± 7 % reduction of tibialis anterior voluntary activation (maximum reduction 98 %; knee extended vs knee flexed; p = 0.007, ANOVA); (2) an increase in dorsiflexion effort perception (p = 0.03, ANCOVA). Such changes did not occur in healthy subjects. Effort perception depended on tibialis anterior recruitment only (βARI(TA) = 0.61, p < 0.01) in healthy subjects (not on gastrocnemius medialis co-contraction) while it depended on both tibialis anterior agonist recruitment (βARI(TA) = 0.41, p < 0.001) and gastrocnemius medialis co-contraction (βCCI(MG) = 0.43, p < 0.001) in hemiparetic subjects. In hemiparesis, voluntary ability to recruit agonist motoneurones is impaired--sometimes abolished--by antagonist stretch, a phenomenon defined here as stretch-sensitive paresis. In addition, spastic co-contraction increases effort perception, an additional incentive to evaluate and treat this phenomenon.

  9. Spasticity therapy reacts to astrocyte GluA1 receptor upregulation following spinal cord injury

    PubMed Central

    Gómez-Soriano, Julio; Goiriena, Eider; Taylor, Julian

    2010-01-01

    For almost three decades intrathecal baclofen therapy has been the standard treatment for spinal cord injury spasticity when oral medication is ineffective or produces serious side effects. Although intrathecal baclofen therapy has a good clinical benefit-risk ratio for spinal spasticity, tolerance and the life-threatening withdrawal syndrome present serious problems for its management. Now, in an experimental model of spinal cord injury spasticity, AMPA receptor blockade with NGX424 (Tezampanel) has been shown to reduce stretch reflex activity alone and during tolerance to intrathecal baclofen therapy. These results stem from the observation that GluA1 receptors are overexpressed on reactive astrocytes following experimental ischaemic spinal cord injury. Although further validation is required, the appropriate choice of AMPA receptor antagonists for treatment of stretch hyperreflexia based on our recent understanding of reactive astrocyte neurobiology following spinal cord injury may lead to the development of a better adjunct clinical therapy for spasticity without the side effects of intrathecal baclofen therapy. LINKED ARTICLE This article is a commentary on Oshiro et al., pp. 976–985 of this issue. To view this paper visit http://dx.doi.org/10.1111/j.1476-5381.2010.00954.x PMID:20662840

  10. Acute Effects of Hamstring Stretching on Sagittal Spinal Curvatures and Pelvic Tilt

    PubMed Central

    López-Miñarro, Pedro A.; Muyor, José M.; Belmonte, Felipe; Alacid, Fernando

    2012-01-01

    The aim of this study was to determine acute effects of hamstring stretching in thoracic and lumbar spinal curvatures and pelvic tilt. Fifty-five adults (29.24 ± 7.41 years) were recruited for this study. Subjects performed a hamstring stretching protocol consisting of four exercises. The session consisted of 3 sets of each exercise and subjects held the position for 20 seconds with a 30-second rest period between sets and exercises. Thoracic and lumbar spinal angles and pelvic tilt were measured with a SpinalMouse in relaxed standing, sit-and-reach test and Macrae & Wright position. Hamstring extensibility was determined by active straight leg raise test and sit-and-reach score. All measures were performed before and immediately after the hamstring stretching protocol. Active straight leg raise angle and sitand-reach score significantly improved immediately after the stretching protocol (p<0.001). Greater anterior pelvic tilt (p<0.001) and lumbar flexion (p<0.05) and a smaller thoracic kyphosis in the sit-and-reach (p<0.001) were found after the stretching protocol. However, stretching produced no significant change on spinal curvatures or pelvic tilt in standing and maximal trunk flexion with knees flexed. In conclusion, static stretching of the hamstring is associated to an immediate change in the sagittal spinal curvatures and pelvic position when performing trunk flexion with knees extended, so that allowing for greater lumbar flexion and anterior pelvic tilt and lower thoracic kyphosis. Hamstring stretching is recommended prior to sport activities involving trunk flexion with the knees straight. PMID:23486214

  11. [Case-control study of stretching exercise on treatment of plantar fasciitis].

    PubMed

    Wu, Chun-wei; Zheng, Ping; Wu, Jian; Lu, Jie; Yan, An

    2013-04-01

    To evaluate the effect of different methods of physical therapy on plantar fasciitis. From June 2009 to March 2012,30 patients with plantar fasciitis were randomly divided into 3 groups including phonophoresis (PH) combined with stretching exercise, ultrasound (US) combined with stretching exercise,stretching exercise, 10 patiens in each group. In stretching exercise group, there were 2 males and 8 females with an average age of (46.7+/-6.5) years old,the mean constitutional index duration was (26.7+/-2.8) kg/m2. In US combined with stretching exercise group, there were 4 males and 6 females with an average age of (45.8+/-6.1) years old,the mean constitutional index duration was (26.4+/-3.4) kg/m2. In PH combined with stretching exercise group,there were 3 males and 7 females with an average age of (48.4+/-8.0) years old,the mean constitutional index duration was (25.4+/-3.0) kg/m2. Patients in PH and US were treated for 10 min everyday by ultrasound, 5 times per week, lasted for 4 weeks; and patients by ultrasound therapy in PH were treated with diclofenac diethylamine at the same time. All the 30 patients received instruction for stretching exercises at home. Pain and ability to function were evaluated before treatment, immediately afterwards,and three months later. Morning pain was evaluated by VAS, and the sub-scale of FFI evaluated the affected foot function. Patients's general status and original pain state of plantar fasciitis before treatment had no significant difference among three groups. There were statistical differences of morning pain and FFI-disability score between PH group and stretching exercise group at 1 month (P<0.05), and no statistical differences among three groups at 3 months (P>0.05). Compared with before therapy,the pain and disability score of three groups significantly improved in the three points of time (P<0.05). Stretching exercises and combining with PH or US are effective for pain and disability in patients with plantar fasciitis

  12. Respiratory muscles stretching acutely increases expansion in hemiparetic chest wall.

    PubMed

    Rattes, Catarina; Campos, Shirley Lima; Morais, Caio; Gonçalves, Thiago; Sayão, Larissa Bouwman; Galindo-Filho, Valdecir Castor; Parreira, Verônica; Aliverti, Andrea; Dornelas de Andrade, Armèle

    2018-08-01

    Individuals post-stroke may present restrictive ventilatory pattern generated from changes in the functionality of respiratory system due to muscle spasticity and contractures. Objective was to assess the acute effects after respiratory muscle stretching on the ventilatory pattern and volume distribution of the chest wall in stroke subjects. Ten volunteers with right hemiparesis after stroke and a mean age of 60 ± 5.7 years were randomised into the following interventions: respiratory muscle stretching and at rest (control). The ventilatory pattern and chest wall volume distribution were evaluated through optoelectronic plethysmography before and immediately after each intervention. Respiratory muscle stretching promoted a significant acute increase of 120 mL in tidal volume, with an increase in minute ventilation, mean inspiratory flow and mean expiratory flow compared with the control group. Pulmonary ribcage increased 50 mL after stretching, with 30 mL of contribution to the right pulmonary rib cage (hemiparetic side) in comparison to the control group. Respiratory muscle stretching in patients with right hemiparesis post-stroke demonstrated that acute effects improve the expansion of the respiratory system during tidal breathing. NCT02416349 (URL: https://clinicaltrials.gov/ct2/show/ NCT02416349). Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Time stretch and its applications

    NASA Astrophysics Data System (ADS)

    Mahjoubfar, Ata; Churkin, Dmitry V.; Barland, Stéphane; Broderick, Neil; Turitsyn, Sergei K.; Jalali, Bahram

    2017-06-01

    Observing non-repetitive and statistically rare signals that occur on short timescales requires fast real-time measurements that exceed the speed, precision and record length of conventional digitizers. Photonic time stretch is a data acquisition method that overcomes the speed limitations of electronic digitizers and enables continuous ultrafast single-shot spectroscopy, imaging, reflectometry, terahertz and other measurements at refresh rates reaching billions of frames per second with non-stop recording spanning trillions of consecutive frames. The technology has opened a new frontier in measurement science unveiling transient phenomena in nonlinear dynamics such as optical rogue waves and soliton molecules, and in relativistic electron bunching. It has also created a new class of instruments that have been integrated with artificial intelligence for sensing and biomedical diagnostics. We review the fundamental principles and applications of this emerging field for continuous phase and amplitude characterization at extremely high repetition rates via time-stretch spectral interferometry.

  14. Indentation of a stretched elastomer

    NASA Astrophysics Data System (ADS)

    Zheng, Yue; Crosby, Alfred J.; Cai, Shengqiang

    2017-10-01

    Indentation has been intensively used to characterize mechanical properties of soft materials such as elastomers, gels, and soft biological tissues. In most indentation measurements, residual stress or stretch which can be commonly found in soft materials is ignored. In this article, we aim to quantitatively understand the effects of prestretches of an elastomer on its indentation measurement. Based on surface Green's function, we analytically derive the relationship between indentation force and indentation depth for a prestretched Neo-Hookean solid with a flat-ended cylindrical indenter as well as a spherical indenter. In addition, for a non-equal biaxially stretched elastomer, we obtain the equation determining the eccentricity of the elliptical contacting area between a spherical indenter and the elastomer. Our results clearly demonstrate that the effects of prestretches of an elastomer on its indentation measurement can be significant. To validate our analytical results, we further conduct correspondent finite element simulations of indentation of prestretched elastomers. The numerical results agree well with our analytical predictions.

  15. Intermittent But Not Continuous Static Stretching Improves Subsequent Vertical Jump Performance In Flexibility-Trained Athletes.

    PubMed

    Bogdanis, Gregory C; Donti, Olyvia; Tsolakis, Charilaos; Smilios, Ilias; Bishop, David J

    2017-02-23

    This study examined changes in countermovement jump (CMJ) height after an intermittent or a continuous static stretching protocol of equal total duration. Sixteen male, elite-level gymnasts performed 90 s of intermittent (3 x 30 s with 30 s rest) or continuous stretching (90 s) of the quadriceps muscle. A single-leg stretching and jumping design was used, with the contra-lateral limb serving as a control. The same individuals performed both conditions with alternate legs in a randomized, counterbalanced order. One leg CMJ height was measured for the stretched and the control leg after warm-up, immediately after stretching, and at regular intervals for 10 min after stretching. Range of motion (ROM) of the hip and knee joints was measured before, after, and 10 min post-stretching. Compared to the control leg, intermittent stretching increased CMJ height by 8.1±2.0%, 4 min into recovery (+2.2±2.0 cm, 95%CI: 1.0-3.4 cm, p=0.001), while continuous stretching decreased CMJ height by 17.5±3.3% immediately after (-2.9±1.7 cm, 95%CI: -2.0 to -3.7 cm, p=0.001) and by 12.0±2.7% one min after stretching (-2.2±2.1 cm, 95%CI: -1.2 to -3.2 cm, p=0.001). The increases in hip (2.9 and 3.6, p=0.001. d=2.4) and knee joint ROM (5.1 and 6.1, p=0.001. d=0.85) after the intermittent and continuous stretching protocols were not different. The opposite effects of intermittent vs. continuous stretching on subsequent CMJ performance suggests that stretching mode is an important variable when examining the acute effects of static stretching on performance in flexibility-trained athletes.

  16. Contact of a spherical probe with a stretched rubber substrate

    NASA Astrophysics Data System (ADS)

    Frétigny, Christian; Chateauminois, Antoine

    2017-07-01

    We report on a theoretical and experimental investigation of the normal contact of stretched neo-Hookean substrates with rigid spherical probes. Starting from a published formulation of surface Green's function for incremental displacements on a prestretched, neo-Hookean, substrate [J. Mech. Phys. Solids 56, 2957 (2008), 10.1016/j.jmps.2008.07.002], a model is derived for both adhesive and nonadhesive contacts. The shape of the elliptical contact area together with the contact load and the contact stiffness are predicted as a function of the in-plane stretch ratios λx and λy of the substrate. The validity of this model is assessed by contact experiments carried out using an uniaxally stretched silicone rubber. For stretch ratio below about 1.25, a good agreement is observed between theory and experiments. Above this threshold, some deviations from the theoretical predictions are induced as a result of the departure of the mechanical response of the silicone rubber from the neo-Hokeean description embedded in the model.

  17. Flexibility responses to different stretching methods in young elite basketball players.

    PubMed

    Notarnicola, Angela; Perroni, Fabrizio; Campese, Alessio; Maccagnano, Giuseppe; Monno, Antonio; Moretti, Biagio; Tafuri, Silvio

    2017-01-01

    The aims of study were: 1) to verify the effectiveness of different stretching methods and training; 2) to compare the effects with only training on the flexibility of joints in basketball players. 30 males basketball players (age: 17±1yrs; BMI: 23.4±3.1), divided into 2 groups (15 experimental group - EG - and 15 control group, CG), participated to study. EG performed 5 different stretching method: passive stretching, active stretching, postural protocol, PNF and dynamic stretching. To assess differences (p<0.05) between groups, an ANOVA was applied to anthropometrics characteristic (age; height; weight and BMI) and flexibility performances (leg raise in a supine position; forward trunk bending). ANOVA for repeated measurements was conducted to asses differences in each group with time (i.e., pre-post). Results showed a variation linked to time (F=21.9; p<0.0001) and an effect of the treatment of the leg raise in a supine position test (F=25.1; p<0.0001). Also in flexion test of trunk, the average values could be linked to time of measurement (F=9.96; p<0.0001) and group (F=8.65; p<0.0001). The results suggest that a specific different stretching protocol should be used in different part of body to offer performance benefit and decreasing of the incidents of injuries. IV.

  18. Periostin inhibits mechanical stretch-induced apoptosis in osteoblast-like MG-63 cells.

    PubMed

    Yu, Kai-Wen; Yao, Chung-Chen; Jeng, Jiiang-Huei; Shieh, Hao-Ying; Chen, Yi-Jane

    2018-04-01

    Appropriate mechanical stress plays an important role in regulating the proliferation and differentiation of osteoblasts, whereas high-level mechanical stress may be harmful and compromise cell survival. Periostin, a matricellular protein, is essential in maintaining functional integrity of bone and collagen-rich connective tissue in response to mechanical stress. This study investigated whether or not high-level mechanical stretch induces cell apoptosis and the regulatory role of periostin in mechanical stretch-induced apoptosis in osteoblastic cells. Osteoblast-like MG-63 cells were seeded onto Bio-Flex I culture plates and subjected to cyclic mechanical stretching (15% elongation, 0.1 Hz) in a Flexercell tension plus system-5000. The same process was applied to cells pre-treated with exogenous human recombinant periostin before mechanical stretching. We used a chromatin condensation and membrane permeability dead cell apoptosis kit to evaluate the stretch-induced cell responses. Expression of caspase-3 and cPARP was examined by immunofluorescent stain and flow cytometry. The expression of periostin in MG-63 cells is involved in the TGF-β signaling pathway. High-level cyclic mechanical stretch induced apoptotic responses in MG-63 osteoblastic cells. The percentages of apoptotic cells and cells expressing cPARP protein increased in the groups of cells subjected to mechanical stretch, but these responses were absent in the presence of exogenous periostin. Our study revealed that high-level mechanical stretch induces apoptotic cell death, and that periostin plays a protective role against mechanical stretch-induced apoptosis in osteoblastic cells. Copyright © 2017. Published by Elsevier B.V.

  19. Cooperativity among Short Amyloid Stretches in Long Amyloidogenic Sequences

    PubMed Central

    He, Zhisong; Shi, Xiaohe; Feng, Kaiyan; Ma, Buyong; Cai, Yu-Dong

    2012-01-01

    Amyloid fibrillar aggregates of polypeptides are associated with many neurodegenerative diseases. Short peptide segments in protein sequences may trigger aggregation. Identifying these stretches and examining their behavior in longer protein segments is critical for understanding these diseases and obtaining potential therapies. In this study, we combined machine learning and structure-based energy evaluation to examine and predict amyloidogenic segments. Our feature selection method discovered that windows consisting of long amino acid segments of ∼30 residues, instead of the commonly used short hexapeptides, provided the highest accuracy. Weighted contributions of an amino acid at each position in a 27 residue window revealed three cooperative regions of short stretch, resemble the β-strand-turn-β-strand motif in A-βpeptide amyloid and β-solenoid structure of HET-s(218–289) prion (C). Using an in-house energy evaluation algorithm, the interaction energy between two short stretches in long segment is computed and incorporated as an additional feature. The algorithm successfully predicted and classified amyloid segments with an overall accuracy of 75%. Our study revealed that genome-wide amyloid segments are not only dependent on short high propensity stretches, but also on nearby residues. PMID:22761773

  20. Orientation and length of mammalian skeletal myocytes in response to a unidirectional stretch

    NASA Technical Reports Server (NTRS)

    Collinsworth, A. M.; Torgan, C. E.; Nagda, S. N.; Rajalingam, R. J.; Kraus, W. E.; Truskey, G. A.

    2000-01-01

    Effects of mechanical forces exerted on mammalian skeletal muscle cells during development were studied using an in vitro model to unidirectionally stretch cultured C2C12 cells grown on silastic membrane. Previous models to date have not studied these responses of the mammalian system specifically. The silastic membrane upon which these cells were grown exhibited linear strain behavior over the range of 3.6-14.6% strain, with a Poisson's ratio of approximately 0.5. To mimic murine in utero long bone growth, cell substrates were stretched at an average strain rate of 2.36%/day for 4 days or 1.77%/day for 6 days with an overall membrane strain of 9.5% and 10.6%, respectively. Both control and stretched fibers stained positively for the contractile protein, alpha-actinin, demonstrating muscle fiber development. An effect of stretch on orientation and length of myofibers was observed. At both strain rates, stretched fibers aligned at a smaller angle relative to the direction of stretch and were significantly longer compared to randomly oriented control fibers. There was no effect of duration of stretch on orientation or length, suggesting the cellular responses are independent of strain rate for the range tested. These results demonstrate that, under conditions simulating mammalian long bone growth, cultured myocytes respond to mechanical forces by lengthening and orienting along the direction of stretch.

  1. Touch Locating and Stretch Sensing Studies of Conductive Hydrogels with Applications to Soft Robots

    PubMed Central

    He, Bin; Yan, Zhe; Shang, Yinghui; Wang, Qigang; Wang, Zhipeng

    2018-01-01

    Soft robots possess great potential in environmental adaptations, while their environmental sensing abilities are critical. Conductive hydrogels have been suggested to possess sensing abilities. However, their application in soft robots is lacking. In this work, we fabricated a soft and stretchable gel material, introduced its sensing mechanisms, and developed a measurement setup. Both experimental and simulation studies indicate strong nonlinearity of touch locating on a square touch panel with Cartesian coordinates. To simplify the touch locating, we proposed a touch locating system based on round touch panels with polar coordinates. Mathematical calculations and finite element method (FEM) simulations showed that in this system the locating of a touch point was only determined by its polar radius. This was verified by experimental studies. As a resistor, a gel strip’s resistance increases with stretching. To demonstrate their applications on soft robots, a 3D printed three-fingered soft gripper was employed with gel strips attached. During finger bending for rod grasping, the resistances of the gel strips increased, indicating stretching of the soft material. Furthermore, the strain and stress of a gel strip increased with a decrease of the rod diameter. These studies advance the application of conductive hydrogels on soft robots. PMID:29438318

  2. Touch Locating and Stretch Sensing Studies of Conductive Hydrogels with Applications to Soft Robots.

    PubMed

    Zhou, Yanmin; He, Bin; Yan, Zhe; Shang, Yinghui; Wang, Qigang; Wang, Zhipeng

    2018-02-13

    Soft robots possess great potential in environmental adaptations, while their environmental sensing abilities are critical. Conductive hydrogels have been suggested to possess sensing abilities. However, their application in soft robots is lacking. In this work, we fabricated a soft and stretchable gel material, introduced its sensing mechanisms, and developed a measurement setup. Both experimental and simulation studies indicate strong nonlinearity of touch locating on a square touch panel with Cartesian coordinates. To simplify the touch locating, we proposed a touch locating system based on round touch panels with polar coordinates. Mathematical calculations and finite element method (FEM) simulations showed that in this system the locating of a touch point was only determined by its polar radius. This was verified by experimental studies. As a resistor, a gel strip's resistance increases with stretching. To demonstrate their applications on soft robots, a 3D printed three-fingered soft gripper was employed with gel strips attached. During finger bending for rod grasping, the resistances of the gel strips increased, indicating stretching of the soft material. Furthermore, the strain and stress of a gel strip increased with a decrease of the rod diameter. These studies advance the application of conductive hydrogels on soft robots.

  3. Stretching Diagnostics and Mixing Properties In The Stratosphere

    NASA Astrophysics Data System (ADS)

    Legras, B.; Shuckburgh, E.

    The "finite size Lyapunov exponent" and the "effective diffusivity" are two diagnos- tics of mixing which have been recently introduced to investigate atmospheric flows. Both have been used to successfully identify the barriers to transport, for instance at the edge of the stratospheric polar vortex. Here we compare the two diagnostics in detail. The equivalent length has the advantage of arising as a mixing quantification from a rigid theoretical framework, however it has the disadvantage of being an aver- age quantity (the average around a tracer contour). The finite size Lyapunov exponent may be defined at any point in the flow, and quantifies the stretching properties expe- rienced by a fluid parcel both in its past and future evolution. In particular, the lines of maximum stretching at any time delineate the building blocks of the chaotic stirring. However the interpretation of the finite size Lyapunov exponent as a mixing time is less direct and depends on the alignment of tracer contours with the stretching lines.

  4. TRPV2 Channels Contribute to Stretch-Activated Cation Currents and Myogenic Constriction in Retinal Arterioles.

    PubMed

    McGahon, Mary K; Fernández, José A; Dash, Durga P; McKee, Jon; Simpson, David A; Zholos, Alex V; McGeown, J Graham; Curtis, Tim M

    2016-10-01

    Activation of the transient receptor potential channels, TRPC6, TRPM4, and TRPP1 (PKD2), has been shown to contribute to the myogenic constriction of cerebral arteries. In the present study we sought to determine the potential role of various mechanosensitive TRP channels to myogenic signaling in arterioles of the rat retina. Rat retinal arterioles were isolated for RT-PCR, Fura-2 Ca2+ microfluorimetry, patch-clamp electrophysiology, and pressure myography studies. In some experiments, confocal immunolabeling of wholemount preparations was used to examine the localization of specific mechanosensitive TRP channels in retinal vascular smooth muscle cells (VSMCs). Reverse transcription-polymerase chain reaction analysis demonstrated mRNA expression for TRPC1, M7, V1, V2, V4, and P1, but not TRPC6 or M4, in isolated retinal arterioles. Immunolabeling revealed plasma membrane, cytosolic and nuclear expression of TRPC1, M7, V1, V2, V4, and P1 in retinal VSMCs. Hypoosmotic stretch-induced Ca2+ influx in retinal VSMCs was reversed by the TRPV2 inhibitor tranilast and the nonselective TRPP1/V2 antagonist amiloride. Inhibitors of TRPC1, M7, V1, and V4 had no effect. Hypoosmotic stretch-activated cation currents were similar in Na+ and Cs+ containing solutions suggesting no contribution by TRPP1 channels. Direct plasma membrane stretch triggered cation current activity that was blocked by tranilast and specific TRPV2 pore-blocking antibodies and mimicked by the TRPV2 activator, Δ9-tetrahydrocannabinol. Preincubation of retinal arterioles with TRPV2 blocking antibodies prevented the development of myogenic tone. Our results suggest that retinal VSMCs express a range of mechanosensitive TRP channels, but only TRPV2 appears to contribute to myogenic signaling in this vascular bed.

  5. Stretch-stimulated glucose transport in skeletal muscle is regulated by Rac1.

    PubMed

    Sylow, Lykke; Møller, Lisbeth L V; Kleinert, Maximilian; Richter, Erik A; Jensen, Thomas E

    2015-02-01

    Rac1 regulates stretch-stimulated (i.e. mechanical stress) glucose transport in muscle. Actin depolymerization decreases stretch-induced glucose transport in skeletal muscle. Rac1 is a required part of the mechanical stress-component of the contraction-stimulus to glucose transport in skeletal muscle. An alternative to the canonical insulin signalling pathway for glucose transport is muscle contraction/exercise. Mechanical stress is an integrated part of the muscle contraction/relaxation cycle, and passive stretch stimulates muscle glucose transport. However, the signalling mechanism regulating stretch-stimulated glucose transport is not well understood. We recently reported that the actin cytoskeleton regulating GTPase, Rac1, was activated in mouse muscle in response to stretching. Rac1 is a regulator of contraction- and insulin-stimulated glucose transport, however, its role in stretch-stimulated glucose transport and signalling is unknown. We therefore investigated whether stretch-induced glucose transport in skeletal muscle required Rac1 and the actin cytoskeleton. We used muscle-specific inducible Rac1 knockout mice as well as pharmacological inhibitors of Rac1 and the actin cytoskeleton in isolated soleus and extensor digitorum longus muscles. In addition, the role of Rac1 in contraction-stimulated glucose transport during conditions without mechanical load on the muscles was evaluated in loosely hanging muscles and muscles in which cross-bridge formation was blocked by the myosin ATPase inhibitors BTS and Blebbistatin. Knockout as well as pharmacological inhibition of Rac1 reduced stretch-stimulated glucose transport by 30-50% in soleus and extensor digitorum longus muscle. The actin depolymerizing agent latrunculin B similarly decreased glucose transport in response to stretching by 40-50%. Rac1 inhibition reduced contraction-stimulated glucose transport by 30-40% in tension developing muscle but did not affect contraction-stimulated glucose transport in

  6. Fast-crawling cell types migrate to avoid the direction of periodic substratum stretching

    PubMed Central

    Okimura, Chika; Ueda, Kazuki; Sakumura, Yuichi; Iwadate, Yoshiaki

    2016-01-01

    ABSTRACT To investigate the relationship between mechanical stimuli from substrata and related cell functions, one of the most useful techniques is the application of mechanical stimuli via periodic stretching of elastic substrata. In response to this stimulus, Dictyostelium discoideum cells migrate in a direction perpendicular to the stretching direction. The origins of directional migration, higher migration velocity in the direction perpendicular to the stretching direction or the higher probability of a switch of migration direction to perpendicular to the stretching direction, however, remain unknown. In this study, we applied periodic stretching stimuli to neutrophil-like differentiated HL-60 cells, which migrate perpendicular to the direction of stretch. Detailed analysis of the trajectories of HL-60 cells and Dictyostelium cells obtained in a previous study revealed that the higher probability of a switch of migration direction to that perpendicular to the direction of stretching was the main cause of such directional migration. This directional migration appears to be a strategy adopted by fast-crawling cells in which they do not migrate faster in the direction they want to go, but migrate to avoid a direction they do not want to go. PMID:26980079

  7. Possible stretched exponential parametrization for humidity absorption in polymers.

    PubMed

    Hacinliyan, A; Skarlatos, Y; Sahin, G; Atak, K; Aybar, O O

    2009-04-01

    Polymer thin films have irregular transient current characteristics under constant voltage. In hydrophilic and hydrophobic polymers, the irregularity is also known to depend on the humidity absorbed by the polymer sample. Different stretched exponential models are studied and it is shown that the absorption of humidity as a function of time can be adequately modelled by a class of these stretched exponential absorption models.

  8. Effects of stretching and fatigue on peak torque, muscle imbalance, and stability.

    PubMed

    Costa, Pablo B; Ruas, Cassio V; Smith, Cory M

    2018-01-01

    The present study examined the acute effects of hamstrings stretching and fatigue on knee extension and flexion peak torque (PT), hamstrings to quadriceps (H:Q) ratio, and postural stability. Seventeen women (mean±SD age=21.8±2.1 years; body mass=63.0±10.5 kg; height=164.7±6.2 cm) and eighteen men (25.8±4.6 years; 83.6±13.2 kg; 175.3±6.0 cm) took part in three laboratory visits. The first visit was a familiarization session, and the subsequent two visits were randomly assigned as a control or stretching condition. For the testing visits, subjects performed a postural stability assessment, stretched (or sat quietly during the control condition), performed a 50-repetition unilateral isokinetic fatigue protocol, and repeated the postural stability assessment. There were no significant differences between control and stretching conditions for initial quadriceps and hamstrings PT, initial H:Q ratio, quadriceps and hamstrings PT fatigue indexes, H:Q ratio Fatigue Index, rating of perceived exertion (RPE), or postural stability (P>0.05). When analyzing 5 intervals of 10 repetitions, significant declines in quadriceps PT were found in all intervals for both conditions (P<0.05). However, a decline in hamstrings PT was only found until the fourth interval (i.e., repetitions 31 to 40) for the stretching condition (P<0.05). Stretching the hamstrings immediately prior to long-duration activities may eventually cause adverse effects in force-generating capacity of this muscle group to occur earlier when fatiguing tasks are involved. Nevertheless, no changes were found for the H:Q ratios after stretching when compared to no-stretching.

  9. Flow of nanofluid by nonlinear stretching velocity

    NASA Astrophysics Data System (ADS)

    Hayat, Tasawar; Rashid, Madiha; Alsaedi, Ahmed; Ahmad, Bashir

    2018-03-01

    Main objective in this article is to model and analyze the nanofluid flow induced by curved surface with nonlinear stretching velocity. Nanofluid comprises water and silver. Governing problem is solved by using homotopy analysis method (HAM). Induced magnetic field for low magnetic Reynolds number is not entertained. Development of convergent series solutions for velocity and skin friction coefficient is successfully made. Pressure in the boundary layer flow by curved stretching surface cannot be ignored. It is found that magnitude of power-law index parameter increases for pressure distibutions. Magnitude of radius of curvature reduces for pressure field while opposite trend can be observed for velocity.

  10. Glucocorticoid receptor modulators.

    PubMed

    Meijer, Onno C; Koorneef, Lisa L; Kroon, Jan

    2018-06-01

    The glucocorticoid hormone cortisol acts throughout the body to support circadian processes and adaptation to stress. The glucocorticoid receptor is the target of cortisol and of synthetic glucocorticoids, which are used widely in the clinic. Both agonism and antagonism of the glucocorticoid receptor may be beneficial in disease, but given the wide expression of the receptor and involvement in various processes, beneficial effects are often accompanied by unwanted side effects. Selective glucocorticoid receptor modulators are ligands that induce a receptor conformation that allows activation of only a subset of downstream signaling pathways. Such molecules thereby combine agonistic and antagonistic properties. Here we discuss the mechanisms underlying selective receptor modulation and their promise in treating diseases in several organ systems where cortisol signaling plays a role. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  11. Muscle afferent potential (`A-wave') in the surface electromyogram of a phasic stretch reflex in normal humans

    PubMed Central

    Clarke, Alex. M.; Michie, Patricia T.; Glue, Leonard C. T.

    1972-01-01

    The experiments reported in this paper tested the hypothesis that the afferent potential elicited by a tendon tap in an isometrically recorded phasic stretch reflex can be detected in the surface EMG of normal humans when appropriate techniques are used. These techniques involved (1) training the subjects to relax mentally and physically so that the EMG was silent before and immediately after the diphasic MAP which reflects a highly synchronous discharge of afferent impulses from low threshold muscle stretch receptors after a tendon tap, and (2) using a data retrieval computer to summate stimulus-locked potentials in the EMG over a series of 16 samples using taps of uniform peak force and duration on the Achilles tendon to elicit the tendon jerk in the calf muscles. A discrete, diphasic potential (`A-wave') was recorded from EMG electrodes placed on the surface of the skin over the medial gastrocnemius muscle. The `A-wave' afferent potential had the opposite polarity to the corresponding efferent MAP. Under control conditions of relaxation the `A-wave' had a latency after the onset of the tap of 2 msec, the peak to peak amplitude was of the order of 5 μV and the duration was in the range of 6 to 10 msec. Further experiments were conducted to show that the `A-wave' (1) was not an artefact of the instrumentation used, (2) had a threshold at low intensities of stimulation, and (3) could be reliably augmented by using a Jendrassik manoeuvre compared with the potential observed during control (relaxation) conditions. The results support the conclusion that the `A-wave' emanates from the pool of muscle spindles which discharges impulses along group Ia nerve fibres in response to the phasic stretch stimulus because the primary ending of the spindles is known to initiate the stretch reflex and the spindles can be sensitized by fusimotor impulses so that their threshold is lowered as a result of a Jendrassik manoeuvre. The finding has important implications for the

  12. Sequence-length variation of mtDNA HVS-I C-stretch in Chinese ethnic groups.

    PubMed

    Chen, Feng; Dang, Yong-hui; Yan, Chun-xia; Liu, Yan-ling; Deng, Ya-jun; Fulton, David J R; Chen, Teng

    2009-10-01

    The purpose of this study was to investigate mitochondrial DNA (mtDNA) hypervariable segment-I (HVS-I) C-stretch variations and explore the significance of these variations in forensic and population genetics studies. The C-stretch sequence variation was studied in 919 unrelated individuals from 8 Chinese ethnic groups using both direct and clone sequencing approaches. Thirty eight C-stretch haplotypes were identified, and some novel and population specific haplotypes were also detected. The C-stretch genetic diversity (GD) values were relatively high, and probability (P) values were low. Additionally, C-stretch length heteroplasmy was observed in approximately 9% of individuals studied. There was a significant correlation (r=-0.961, P<0.01) between the expansion of the cytosine sequence length in the C-stretch of HVS-I and a reduction in the number of upstream adenines. These results indicate that the C-stretch could be a useful genetic maker in forensic identification of Chinese populations. The results from the Fst and dA genetic distance matrix, neighbor-joining tree, and principal component map also suggest that C-stretch could be used as a reliable genetic marker in population genetics.

  13. Stretched Analogies and School Reform.

    ERIC Educational Resources Information Center

    Hesse, Joseph J., III

    1997-01-01

    Develops a "theory of stretched analogies" to explain limitations of student-as-customer and athletic motivational notions. Schools are neither shopping malls nor knowledge factories; for unengaged students, there will be nothing to purchase. Also, caring teacher-coaches must decide how high to set the bar. The goal is helping all…

  14. The Effectiveness of PNF Versus Static Stretching on Increasing Hip-Flexion Range of Motion.

    PubMed

    Lempke, Landon; Wilkinson, Rebecca; Murray, Caitlin; Stanek, Justin

    2018-05-22

    Clinical Scenario: Stretching is applied for the purposes of injury prevention, increasing joint range of motion (ROM), and increasing muscle extensibility. Many researchers have investigated various methods and techniques to determine the most effective way to increase joint ROM and muscle extensibility. Despite the numerous studies conducted, controversy still remains within clinical practice and the literature regarding the best methods and techniques for stretching. Focused Clinical Question: Is proprioceptive neuromuscular facilitation (PNF) stretching more effective than static stretching for increasing hamstring muscle extensibility through increased hip ROM or increased knee extension angle (KEA) in a physically active population? Summary of Key Findings: Five studies met the inclusion criteria and were included. All 5 studies were randomized control trials examining mobility of the hamstring group. The studies measured hamstring ROM in a variety of ways. Three studies measured active KEA, 1 study measured passive KEA, and 1 study measured hip ROM via the single-leg raise test. Of the 5 studies, 1 study found greater improvements using PNF over static stretching for increasing hip flexion, and the remaining 4 studies found no significant difference between PNF stretching and static stretching in increasing muscle extensibility, active KEA, or hip ROM. Clinical Bottom Line: PNF stretching was not demonstrated to be more effective at increasing hamstring extensibility compared to static stretching. The literature reviewed suggests both are effective methods for increasing hip-flexion ROM. Strength of Recommendation: Using level 2 evidence and higher, the results show both static and PNF stretching effectively increase ROM; however, one does not appear to be more effective than the other.

  15. Combinatorial Broadening Mechanism of O-H Stretching Bands in H-Bonded Molecular Clusters

    NASA Astrophysics Data System (ADS)

    Pitsevich, G. A.; Doroshenko, I. Yu.; Pogorelov, V. E.; Pettersson, L. G. M.; Sablinskas, V.; Sapeshko, V. V.; Balevicius, V.

    2016-07-01

    A new mechanism for combinatorial broadening of donor-OH stretching-vibration absorption bands in molecular clusters with H-bonds is proposed. It enables the experimentally observed increase of the O-H stretching-vibration bandwidth with increasing number of molecules in H-bonded clusters to be explained. Knowledge of the half-width of the OH stretching-vibration absorption band in the dimer and the number of H-bonds in the analyzed cluster is suffi cient in the zeroth-order approximation to estimate the O-H stretching-absorption bands in clusters containing several molecules. Good agreement between the calculated and published experimental half-widths of the OH stretching-vibration absorption bands in MeOH and PrOH clusters was obtained using this approach.

  16. Effects of stress fiber contractility on uniaxial stretch guiding mitosis orientation and stress fiber alignment.

    PubMed

    Zhao, Lei; Sang, Chen; Yang, Chun; Zhuang, Fengyuan

    2011-09-02

    It has been documented that mitosis orientation (MO) is guided by stress fibers (SFs), which are perpendicular to exogenous cyclic uniaxial stretch. However, the effect of mechanical forces on MO and the mechanism of stretch-induced SFs reorientation are not well elucidated to date. In the present study, we used murine 3T3 fibroblasts as a model, to investigate the effects of uniaxial stretch on SFO and MO utilizing custom-made stretch device. We found that cyclic uniaxial stretch induced both SFs and mitosis directions orienting perpendicularly to the stretch direction. The F-actin and myosin II blockages, which resulted in disoriented SFs and mitosis directions under uniaxial stretch, suggested a high correlation between SFO and MO. Y27632 (10 μM), ML7 (50 μM, or 75 μM), and blebbistatin (50 μM, or 75 μM) treatments resulted in SFO parallel to the principle stretch direction. Upon stimulating and inhibiting the phosphorylation of myosin light chain (p-MLC), we observed a monotonic proportion of SFO to the level of p-MLC. These results suggested that the level of cell contraction is crucial to the response of SFs, either perpendicular or parallel, to the external stretch. Showing the possible role of cell contractility in tuning SFO under external stretch, our experimental data are valuable to understand the predominant factor controlling SFO response to exogenous uniaxial stretch, and thus helpful for improving mechanical models. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. The Acute Effects of Static Stretching Compared to Dynamic Stretching with and without an Active Warm up on Anaerobic Performance.

    PubMed

    Kendall, Bradley J

    2017-01-01

    The Wingate Anaerobic Test (WAnT) has been used in many studies to determine anaerobic performance. However, there has been poor reporting of warm-up protocols and limited consistency between warm-up methods that have been used. With the WAnT being such a commonly-used test, consistency in warm-up methods is essential in order to compare results across studies. Therefore, this study was designed to compare how static stretching, dynamic stretching, and an active warm-up affect WAnT performance. Ten recreationally active participants (5 males, 5 females) with a mean (SD) age of 23.3 (0.7) volunteered for this study. Subjects were randomized to a specific order of five warm-up protocols, which were performed on individual days followed by a WAnT. Peak power, mean power, power drop, and fatigue index were compared for each trial using a repeated measures ANOVA. For peak power, results revealed that warm-up protocol had a significant effect, F (4,36) = 3.90, p = .01, partial η 2 = .302. It was hypothesized that the dynamic stretching would lead to greater peak power than the static stretching protocol. However, results of post hoc analyses failed to detect a significant difference (p =.065). For the other measured variables no significant differences were found. The findings from this study suggest that warm-up protocols may have significantly different impacts on peak power during the WAnT. Additional research should use larger sample sizes and further explore these warm-up protocols. Developing a standardized warm-up protocol for the WAnT may improve consistency between studies.

  18. The effects of passive stretching plus vibration on strength and activation of the plantar flexors.

    PubMed

    Miller, Jonathan D; Herda, Trent J; Trevino, Michael A; Mosier, Eric M

    2016-09-01

    This study examined the effects of passive stretching only (PS+CON) and passive stretching with the addition of continuous vibration (VIB) during post-passive stretching tests (PS+VIB) on peak torque (PT), percent voluntary inactivation (%VI), single stimulus twitch torque (TTSINGLE), and doublet stimuli twitch torque (TTDOUBLET) of the plantar flexors at a short (20° plantar flexion (PF)) and long muscle length (15° dorsiflexion (DF)). Fourteen healthy men (age = 22 ± 3 years) performed isometric maximal voluntary contractions at PF and DF, and passive range of motion (PROM) assessments before and after 8 × 30-s passive stretches without (PS+CON) or with VIB (PS+VIB) administered continuously throughout post-passive stretching tests. The passive properties of the muscle tendon unit were assessed pre- and post-passive stretching via PROM, passive torque (PASSTQ), and musculotendinous stiffness (MTS) measurements. PT, TTSINGLE, and TTDOUBLET decreased, whereas, %VI increased following passive stretching at PF and DF (P < 0.05) with no significant differences between PS+CON and PS+VIB. PASSTQ and MTS decreased while PROM increased post-passive stretching during both trials (P < 0.05). The stretching-induced force/torque deficit and increases in %VI were evident following passive stretching at short and long muscle lengths. Although not statistically significant, effect size calculations suggested large and moderate differences in the absolute changes in PT (Cohen's d = 1.14) and %VI (Cohen's d = 0.54) from pre- to post-passive stretching between treatments, with PS+VIB having greater decreases of PT and higher %VI than PS+CON. The decrement in PT following passive stretching may be primarily neural in origin.

  19. Acute Effects of Stretching on Leg and Vertical Stiffness During Treadmill Running.

    PubMed

    Pappas, Panagiotis T; Paradisis, Giorgos P; Exell, Timothy A; Smirniotou, Athanasia S; Tsolakis, Charilaos K; Arampatzis, Adamantios

    2017-12-01

    Pappas, PT, Paradisis, GP, Exell, TA, Smirniotou, AS, Tsolakis, CK, and Arampatzis, A. Acute effects of stretching on leg and vertical stiffness during treadmill running. J Strength Cond Res 31(12): 3417-3424, 2017-The implementation of static (SS) and dynamic (DS) stretching during warm-up routines produces significant changes in biological and functional properties of the human musculoskeletal system. These properties could affect the leg and vertical stiffness characteristics that are considered important factors for the success of athletic activities. The aim of this study was to investigate the influence of SS and DS on selected kinematic variables, and leg and vertical stiffness during treadmill running. Fourteen men (age: 22.58 ± 1.05 years, height: 1.77 ± 0.05 m, body mass: 72.74 ± 10.04 kg) performed 30-second running bouts at 4.44 m·s, under 3 different stretching conditions (SS, DS, and no stretching). The total duration in each stretching condition was 6 minutes, and each of the 4 muscle groups was stretched for 40 seconds. Leg and vertical stiffness values were calculated using the "sine wave" method, with no significant differences in stiffness found between stretching conditions. After DS, vertical ground reaction force increased by 1.7% (p < 0.05), which resulted in significant (p < 0.05) increases in flight time (5.8%), step length (2.2%), and vertical displacement of the center of mass (4.5%) and a decrease in step rate (2.2%). Practical durations of SS and DS stretching did not influence leg or vertical stiffness during treadmill running. However, DS seems to result in a small increase in lower-limb force production which may influence running mechanics.

  20. Stretching of roots contributes to the pathophysiology of radiculopathies.

    PubMed

    Berthelot, Jean-Marie; Laredo, Jean-Denis; Darrieutort-Laffite, Christelle; Maugars, Yves

    2018-01-01

    To perform a synthesis of articles addressing the role of stretching on roots in the pathophysiology of radiculopathy. Review of relevant articles on this topic available in the PubMed database. An intraoperative microscopy study of patients with sciatica showed that in all patients the hernia was adherent to the dura mater of nerve roots. During the SLR (Lasègue's) test, the limitation of nerve root movement occurs by periradicular adhesive tissue, and temporary ischemic changes in the nerve root induced by the root stretching cause transient conduction disturbances. Spinal roots are more frail than peripheral nerves, and other mechanical stresses than root compression can also induce radiculopathy, especially if they also impair intraradicular blood flow, or the function of the arachnoid villi intimately related to radicular veins. For instance arachnoiditis, the lack of peridural fat around the thecal sac, and epidural fibrosis following surgery, can all promote sciatica, especially in patients whose sciatic trunks also stick to piriformis or internus obturator muscles. Indeed, stretching of roots is greatly increased by adherence at two levels. As excessive traction of nerve roots is not shown by imaging, many physicians have unlearned to think in terms of microscopic and physiologic changes, although nerve root compression in the lumbar MRI is lacking in more than 10% of patients with sciatica. It should be reminded that, while compression of a spinal nerve root implies stretching of this root, the reverse is not true: stretching of some roots can occur without any visible compression. Copyright © 2017 Société française de rhumatologie. Published by Elsevier SAS. All rights reserved.

  1. Forced convective heat transfer in boundary layer flow of Sisko fluid over a nonlinear stretching sheet.

    PubMed

    Munir, Asif; Shahzad, Azeem; Khan, Masood

    2014-01-01

    The major focus of this article is to analyze the forced convective heat transfer in a steady boundary layer flow of Sisko fluid over a nonlinear stretching sheet. Two cases are studied, namely (i) the sheet with variable temperature (PST case) and (ii) the sheet with variable heat flux (PHF case). The heat transfer aspects are investigated for both integer and non-integer values of the power-law index. The governing partial differential equations are reduced to a system of nonlinear ordinary differential equations using appropriate similarity variables and solved numerically. The numerical results are obtained by the shooting method using adaptive Runge Kutta method with Broyden's method in the domain[Formula: see text]. The numerical results for the temperature field are found to be strongly dependent upon the power-law index, stretching parameter, wall temperature parameter, material parameter of the Sisko fluid and Prandtl number. In addition, the local Nusselt number versus wall temperature parameter is also graphed and tabulated for different values of pertaining parameters. Further, numerical results are validated by comparison with exact solutions as well as previously published results in the literature.

  2. Vortex stretching in self-gravitating protoplanetary discs

    NASA Astrophysics Data System (ADS)

    Regály, Zs.; Vorobyov, E.

    2017-10-01

    Horseshoe-shaped brightness asymmetries of several transitional discs are thought to be caused by large-scale vortices. Anticyclonic vortices efficiently collect dust particles, therefore they can play a major role in planet formation. Former studies suggest that the disc self-gravity weakens vortices formed at the edge of the gap opened by a massive planet in discs whose masses are in the range of 0.01 ≤ Mdisc/M* ≤ 0.1. Here, we present an investigation on the long-term evolution of the large-scale vortices formed at the viscosity transition of the discs' dead zone outer edge by means of two-dimensional hydrodynamic simulations taking disc self-gravity into account. We perform a numerical study of low-mass, 0.001 ≤ Mdisc/M* ≤ 0.01, discs, for which cases disc self-gravity was previously neglected. The large-scale vortices are found to be stretched due to disc self-gravity even for low-mass discs with Mdisc/M* ≳ 0.005, where initially the Toomre Q-parameter was ≲ 50 at the vortex distance. As a result of stretching, the vortex aspect ratio increases and a weaker azimuthal density contrast develops. The strength of the vortex stretching is proportional to the disc mass. The vortex stretching can be explained by a combined action of a non-vanishing gravitational torque caused by the vortex and the Keplerian shear of the disc. Self-gravitating vortices are subject to significantly faster decay than non-self-gravitating ones. We found that vortices developed at sharp viscosity transitions of self-gravitating discs can be described by a Goodman - Narayan - Goldreich (GNG) model as long as the disc viscosity is low, I.e. αdz ≤ 10-5.

  3. Infrared laser spectroscopy of the n-propyl and i-propyl radicals: Stretch-bend Fermi coupling in the alkyl CH stretch region

    DOE PAGES

    Franke, Peter R.; Tabor, Daniel P.; Moradi, Christopher P.; ...

    2016-12-13

    The n-propyl and i-propyl radicals were generated in the gas phase via pyrolysis of n-butyl nitrite [CH 3(CH 2) 3ONO] and i-butyl nitrite [(CH 3) 2CHCH 2ONO], respectively. Nascent radicals were promptly solvated by a beam of He nanodroplets, and the infrared spectra of the radicals were recorded in the CH stretching region. Several previously unreported bands are observed between 2800 and 3150 cm –1. The CH stretching modes observed above 3000 cm –1 are in excellent agreement with CCSD(T) anharmonic frequencies computed using second-order vibrational perturbation theory. However, between 2800 and 3000 cm –1, the spectra of n- andmore » i-propyl radicals become congested and difficult to assign due to the presence of multiple anharmonic resonance polyads. To model the spectrally congested region, Fermi and Darling-Dennison resonances are treated explicitly using “dressed” Hamiltonians and CCSD(T) quartic force fields in the normal mode representation, and the agreement with experiment is less than satisfactory. Computations employing local mode effective Hamiltonians reveal the origin of the spectral congestion to be strong coupling between the high frequency CH stretching modes and the lower frequency CH n bending/scissoring motions. The most significant coupling is between stretches and bends localized on the same CH 2/CH 3 group. As a result, spectral simulations using the local mode approach are in excellent agreement with experiment.« less

  4. Infrared laser spectroscopy of the n-propyl and i-propyl radicals: Stretch-bend Fermi coupling in the alkyl CH stretch region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franke, Peter R.; Tabor, Daniel P.; Moradi, Christopher P.

    The n-propyl and i-propyl radicals were generated in the gas phase via pyrolysis of n-butyl nitrite [CH 3(CH 2) 3ONO] and i-butyl nitrite [(CH 3) 2CHCH 2ONO], respectively. Nascent radicals were promptly solvated by a beam of He nanodroplets, and the infrared spectra of the radicals were recorded in the CH stretching region. Several previously unreported bands are observed between 2800 and 3150 cm –1. The CH stretching modes observed above 3000 cm –1 are in excellent agreement with CCSD(T) anharmonic frequencies computed using second-order vibrational perturbation theory. However, between 2800 and 3000 cm –1, the spectra of n- andmore » i-propyl radicals become congested and difficult to assign due to the presence of multiple anharmonic resonance polyads. To model the spectrally congested region, Fermi and Darling-Dennison resonances are treated explicitly using “dressed” Hamiltonians and CCSD(T) quartic force fields in the normal mode representation, and the agreement with experiment is less than satisfactory. Computations employing local mode effective Hamiltonians reveal the origin of the spectral congestion to be strong coupling between the high frequency CH stretching modes and the lower frequency CH n bending/scissoring motions. The most significant coupling is between stretches and bends localized on the same CH 2/CH 3 group. As a result, spectral simulations using the local mode approach are in excellent agreement with experiment.« less

  5. Effect of Ankle Positioning During Hamstring Stretches for Improving Straight Leg Hip Flexion Motion.

    PubMed

    Laudner, Kevin G; Benjamin, Peter J; Selkow, Noelle M

    2016-03-01

    To compare the effects of stretching the hamstrings with the ankle in either a plantar-flexed (PF) or dorsiflexed (DF) position for improving straight leg hip flexion range of motion (ROM) over a 4-week period. Randomized, single-blinded, pretest, posttest design. Athletic training facility. Each limb of 34 asymptomatic individuals (15 males, 19 females) was randomly assigned to one of the 3 groups. Twenty-four limbs received hamstring stretches with the ankle in DF, 24 limbs received hamstring stretches with the ankle in PF, and 20 limbs received no stretch (control). Ankle position (PF, DF) during hamstring stretching. We measured pretest and posttest passive straight leg hip flexion ROM with the test ankle in a neutral position. For the intervention groups, the test limb was passively stretched with the ankle held in end range DF or PF for their respective group. Each stretch was held for 30 seconds for a total of 3 applications. Two treatment sessions were completed per week for a total of 4 weeks. The control limbs received no stretching during the 4-week period. We conducted 1-way analyses of covariance to determine significant changes in ROM between groups (P < 0.05). There was no significant difference between treatment groups (P = 0.90), but a significant difference was found for both the PF (P = 0.04) and DF (P = 0.01) groups when compared with the control group. Our findings indicate that both stretching the hamstrings in either PF or DF improve straight leg hip ROM compared with a control group. The results of this study should be considered by clinicians when determining the optimal stretching techniques aimed at increasing hamstring length.

  6. Transient impact of prolonged versus repetitive stretch on hand motor control in chronic stroke.

    PubMed

    Triandafilou, Kristen M; Ochoa, Jose; Kang, Xuan; Fischer, Heidi C; Stoykov, Mary Ellen; Kamper, Derek G

    2011-01-01

    The purpose of this study was to investigate the influence of prolonged and repetitive passive range of motion (PROM) stretching of the fingers on hand function in stroke survivors. Fifteen chronic stroke survivors with moderate to severe hand impairment took part in the study. Participants underwent 3 experimental sessions consisting of 30 minutes of rest, prolonged, or repetitive stretching of the finger flexor muscles by a powered glove orthosis (X-Glove). Outcome measures, comprised of 3 selected tasks from the Graded Wolf Motor Function Test (GWMFT), grip strength, lateral pinch strength, and grip relaxation time, were recorded at the start and end of each session. Change in outcome score for each session was used for analysis. Data suggested a trend for improvement following stretching, especially for the repetitive PROM case. For one GWMFT task (lift washcloth), the effect of stretching condition on performance time approached a statistical significance (P = .015), with repetitive PROM stretching producing the greatest mean reduction. Similarly, repetitive stretching led to a 12% ± 16% increase in grip strength, although this change was not statistically different across groups (P = .356); and grip termination time was reduced, albeit non-significantly, by 66% ± 133%. Repetitive PROM stretching exhibited trends to be more effective than prolonged stretching for improving hand motor control. Although the results were highly variable and the effects are undoubtedly transient, an extended period of repetitive PROM stretching may prove advantageous prior to hand therapy sessions to maximize treatment.

  7. Stretching-induced nanostructures on shape memory polyurethane films and their regulation to osteoblasts morphology.

    PubMed

    Xing, Juan; Ma, Yufei; Lin, Manping; Wang, Yuanliang; Pan, Haobo; Ruan, Changshun; Luo, Yanfeng

    2016-10-01

    Programming such as stretching, compression and bending is indispensible to endow polyurethanes with shape memory effects. Despite extensive investigations on the contributions of programming processes to the shape memory effects of polyurethane, less attention has been paid to the nanostructures of shape memory polyurethanes surface during the programming process. Here we found that stretching could induce the reassembly of hard domains and thereby change the nanostructures on the film surfaces with dependence on the stretching ratios (0%, 50%, 100%, and 200%). In as-cast polyurethane films, hard segments sequentially assembled into nano-scale hard domains, round or fibrillar islands, and fibrillar apophyses. Upon stretching, the islands packed along the stretching axis to form reoriented fibrillar apophyses along the stretching direction. Stretching only changed the chemical patterns on polyurethane films without significantly altering surface roughness, with the primary composition of fibrillar apophyses being hydrophilic hard domains. Further analysis of osteoblasts morphology revealed that the focal adhesion formation and osteoblasts orientation were in accordance with the chemical patterns of the underlying stretched films, which corroborates the vital roles of stretching-induced nanostructures in regulating osteoblasts morphology. These novel findings suggest that programming might hold great potential for patterning polyurethane surfaces so as to direct cellular behavior. In addition, this work lays groundwork for guiding the programming of shape memory polyurethanes to produce appropriate nanostructures for predetermined medical applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Acute Effect of Different Combined Stretching Methods on Acceleration and Speed in Soccer Players.

    PubMed

    Amiri-Khorasani, Mohammadtaghi; Calleja-Gonzalez, Julio; Mogharabi-Manzari, Mansooreh

    2016-04-01

    The purpose of this study was to investigate the acute effect of different stretching methods, during a warm-up, on the acceleration and speed of soccer players. The acceleration performance of 20 collegiate soccer players (body height: 177.25 ± 5.31 cm; body mass: 65.10 ± 5.62 kg; age: 16.85 ± 0.87 years; BMI: 20.70 ± 5.54; experience: 8.46 ± 1.49 years) was evaluated after different warm-up procedures, using 10 and 20 m tests. Subjects performed five types of a warm-up: static, dynamic, combined static + dynamic, combined dynamic + static, and no-stretching. Subjects were divided into five groups. Each group performed five different warm-up protocols in five non-consecutive days. The warm-up protocol used for each group was randomly assigned. The protocols consisted of 4 min jogging, a 1 min stretching program (except for the no-stretching protocol), and 2 min rest periods, followed by the 10 and 20 m sprint test, on the same day. The current findings showed significant differences in the 10 and 20 m tests after dynamic stretching compared with static, combined, and no-stretching protocols. There were also significant differences between the combined stretching compared with static and no-stretching protocols. We concluded that soccer players performed better with respect to acceleration and speed, after dynamic and combined stretching, as they were able to produce more force for a faster execution.

  9. Directional Cell Migration in Response to Repeated Substratum Stretching

    NASA Astrophysics Data System (ADS)

    Okimura, Chika; Iwadate, Yoshiaki

    2017-10-01

    Crawling migration plays an essential role in a variety of biological phenomena, including development, wound healing, and immune system function. Migration properties such as anterior-posterior polarity, directionality, and velocity are regulated not only by the reception of a chemoattractant but also by sensing mechanical inputs from the external environment. In this review, we describe the mechanical response of migrating cells, particularly under repeated stretching of the elastic substratum, highlighting the fact that there appear to be two independent mechanosensing systems that generate the polarity needed for migration. Cells that have no stress fibers, such as Dictyostelium cells and neutrophil-like differentiated HL-60 cells, migrate perpendicular to the stretching direction via myosin II localization. Cells that do possess stress fibers, however, such as fish keratocytes, migrate parallel to the stretching via a stress-fiber-dependent process.

  10. Acute Effects of the Different Intensity of Static Stretching on Flexibility and Isometric Muscle Force.

    PubMed

    Kataura, Satoshi; Suzuki, Shigeyuki; Matsuo, Shingo; Hatano, Genki; Iwata, Masahiro; Yokoi, Kazuaki; Tsuchida, Wakako; Banno, Yasuhiro; Asai, Yuji

    2017-12-01

    Kataura, S, Suzuki, S, Matsuo, S, Hatano, G, Iwata, M, Yokoi, K, Tsuchida, W, Banno, Y, and Asai, Y. Acute effects of the different intensity of static stretching on flexibility and isometric muscle force. J Strength Cond Res 31(12): 3403-3410, 2017-In various fields, static stretching is commonly performed to improve flexibility, whereas the acute effects of different stretch intensities are unclear. Therefore, we investigated the acute effects of different stretch intensities on flexibility and muscle force. Eighteen healthy participants (9 men and 9 women) performed 180-second static stretches of the right hamstrings at 80, 100, and 120% of maximum tolerable intensity without stretching pain, in random order. The following outcomes were assessed as markers of lower limb function and flexibility: static passive torque (SPT), range of motion (ROM), passive joint (muscle-tendon) stiffness, passive torque (PT) at onset of pain, and isometric muscle force. Static passive torque was significantly decreased after all stretching intensities (p ≤ 0.05). Compared with before stretching at 100 and 120% intensities, ROM and PT were significantly increased after stretching (p ≤ 0.05), and passive stiffness (p = 0.05) and isometric muscle force (p ≤ 0.05) were significantly decreased. In addition, ROM was significantly greater after stretching at 100 and 120% than at 80%, and passive stiffness was significantly lower after 120% than after 80% (p ≤ 0.05). However, all measurements except SPT were unchanged after 80% intensity. There was a weak positive correlation between the intensities of stretching and the relative change for SPT (p ≤ 0.05), a moderate positive correlation with ROM (p ≤ 0.05), and a moderate positive correlation with passive stiffness (p ≤ 0.05). These results indicate that static stretching at greater intensity is more effective for increasing ROM and decreasing passive muscle-tendon stiffness.

  11. Effects of Static Stretching Exercise on Lumbar Flexibility and Central Arterial Stiffness.

    PubMed

    Logan, Jeongok G; Kim, Suk-Sun; Lee, Mijung; Byon, Ha Do; Yeo, SeonAe

    Previous studies have demonstrated that arterial stiffness is associated with lumbar flexibility (LF). Stretching exercise targeted to improve LF may have a beneficial effect on reducing arterial stiffness. We examined the effects of a single bout of a structured, static stretching exercise on arterial stiffness, LF, peripheral and central blood pressure (BP), and heart rate (HR) and tested the association between LF and central arterial stiffness. The study had a pretest-posttest design without a control group. Thirty healthy women followed a video demonstration of a 30-minute whole-body stretching exercise. Carotid-femoral pulse wave velocity (cf-PWV), augmentation index, LF, peripheral and central BP, and HR were measured before and after the stretching exercise. One bout of a static stretching exercise significantly reduced cf-PWV (t29 = 2.708, P = .011) and HR (t29 = 7.160, P = .000) and increased LF (t29 = 12.248, P < .000). Augmentation index and peripheral and central BP also decreased but did not reach statistical significance. Despite no association found between cf-PWV and LF, the larger increase in LF the subjects had, the larger decrease in cf-PWV they had after exercise (r = 0.500, P = .005). Study findings highlight the potential benefit of a static stretching exercise on central arterial stiffness, an independent predictor of cardiovascular morbidity. Static stretching exercise conducted in the sitting position may be used as an effective intervention to reduce cardiovascular risk after a cardiac event or for patients whose sympathetic function should not be overly activated or whose gaits are not stable.

  12. Jamming dynamics of stretch-induced surfactant release by alveolar type II cells

    PubMed Central

    Majumdar, Arnab; Arold, Stephen P.; Bartolák-Suki, Erzsébet; Parameswaran, Harikrishnan

    2012-01-01

    Secretion of pulmonary surfactant by alveolar epithelial type II cells is vital for the reduction of interfacial surface tension, thus preventing lung collapse. To study secretion dynamics, rat alveolar epithelial type II cells were cultured on elastic membranes and cyclically stretched. The amounts of phosphatidylcholine, the primary lipid component of surfactant, inside and outside the cells, were measured using radiolabeled choline. During and immediately after stretch, cells secreted less surfactant than unstretched cells; however, stretched cells secreted significantly more surfactant than unstretched cells after an extended lag period. We developed a model based on the hypothesis that stretching leads to jamming of surfactant traffic escaping the cell, similar to vehicular traffic jams. In the model, stretch increases surfactant transport from the interior to the exterior of the cell. This transport is mediated by a surface layer with a finite capacity due to the limited number of fusion pores through which secretion occurs. When the amount of surfactant in the surface layer approaches this capacity, interference among lamellar bodies carrying surfactant reduces the rate of secretion, effectively creating a jam. When the stretch stops, the jam takes an extended time to clear, and subsequently the amount of secreted surfactant increases. We solved the model analytically and show that its dynamics are consistent with experimental observations, implying that surfactant secretion is a fundamentally nonlinear process with memory representing collective behavior at the level of single cells. Our results thus highlight the importance of a jamming dynamics in stretch-induced cellular secretory processes. PMID:22033531

  13. Stretching and Young Children: Should We or Shouldn't We?

    ERIC Educational Resources Information Center

    Mally, Kristi K.

    2006-01-01

    The purpose of this article is to continue the discussion of "should we or shouldn't we?" Specifically, this article addresses whether or not young children need to spend time participating in static stretching activities during physical education class. Is it a worthwhile use of already limited time to ask young children to stretch? Do they need…

  14. Warm-up effects from concomitant use of vibration and static stretching after cycling.

    PubMed

    Yang, Wen-Wen; Liu, Chiang; Shiang, Tzyy-Yuang

    2017-04-01

    Static stretch is routinely used in traditional warm-up but impaired muscle performance. Combining vibration with static stretching as a feasible component may be an alternative to static stretching after submaximal aerobic exercise to improve jumping as well as flexibility. Therefore, the purpose of this study was to investigate and compare the effects of aerobic exercise, static stretching, and vibration with static stretching on flexibility and vertical jumping performance. A repeated measures experimental design was used in this study. Twelve participants randomly underwent 5 different warm-ups including cycling alone (C warm-up), static stretching alone (S warm-up), combining vibration with static stretching (VS warm-up), cycling followed by S (C+S warm-up), and cycling followed by VS (C+VS warm-up) on 5 separate days. Sit-and-reach, squat jump (SJ), and counter movement jump (CMJ) were measured for pre- and post- tests. The sit-and-reach scores after the S, VS, C+S and C+VS warm-ups were significantly enhanced (P<0.001), and were significantly greater than that of the C warm-up (P<0.05). The jumping height of SJ and CMJ after the C and C+VS warm-ups were significantly increased (P<0.05), whereas a significant reduction was found after the S warm-up (P<0.05). Vibration combined with stretching after submaximal cycling exercise (C+VS warm-up) could be a feasible warm-up protocol to improve both flexibility and vertical jump performance, compared with the traditional warm-up (C+S warm-up).

  15. Cyclic mechanical stretch enhances BMP9-induced osteogenic differentiation of mesenchymal stem cells.

    PubMed

    Song, Yang; Tang, Yinhong; Song, Jinlin; Lei, Mingxing; Liang, Panpan; Fu, Tiwei; Su, Xudong; Zhou, Pengfei; Yang, Li; Huang, Enyi

    2018-04-01

    The purpose of this study was to investigate whether mechanical stretch can enhance the bone morphogenetic protein 9 (BMP9)-induced osteogenic differentiation in MSCs. Recombinant adenoviruses were used to overexpress the BMP9 in C3H10T1/2 MSCs. Cells were seeded onto six-well BioFlex collagen I-coated plates and subjected to cyclic mechanical stretch [6% elongation at 60 cycles/minute (1 Hz)] in a Flexercell FX-4000 strain unit for up to 12 hours. Immunostaining and confocal microscope were used to detect cytoskeleton organization. Cell cycle progression was checked by flow cytometry. Alkaline phosphatase activity was measured with a Chemiluminescence Assay Kit and was quantified with a histochemical staining assay. Matrix mineralization was examined by Alizarin Red S Staining. Mechanical stretch induces cytoskeleton reorganization and inhibits cell proliferation by preventing cells entry into S phase of the cell cycle. Although mechanical stretch alone does not induce the osteogenic differentiation of C3H10T1/2 MSCs, co-stimulation with mechanical stretch and BMP9 enhances alkaline phosphatase activity. The expression of key lineage-specific regulators (e.g., osteocalcin (OCN), SRY-related HMG-box 9, and runt-related transcription factor 2) is also increased after the co-stimulation, compared to the mechanical stretch stimulation along. Furthermore, mechanical stretch augments the BMP9-mediated bone matrix mineralization of C3H10T1/2 MSCs. Our results suggest that mechanical stretch enhances BMP9-induced osteoblastic lineage specification in C3H10T1/2 MSCs.

  16. Infrared Laser Spectroscopy of the n-PROPYL and i-PROPYL Radicals in Helium Droplets: Significant Bend-Stretch Coupling Revealed in the CH Stretch Region

    NASA Astrophysics Data System (ADS)

    Moradi, Christopher P.; Douberly, Gary E.; Tabor, Daniel P.; Sibert, Edwin

    2016-06-01

    The n-propyl and i-propyl radicals were generated in the gas phase via pyrolysis of n-butyl nitrite (CH3(CH2)3ONO) and i-butyl nitrite (CH3CH(CH3)CH2ONO) precursors, respectively. Nascent radicals were promptly solvated by a beam of He nanodroplets, and the infrared spectra of the radicals were recorded in the C-H stretching region. In addition to three vibrations of n-propyl previously measured in an Ar matrix, we observe many unreported bands between 2800 and 3150 wn, which we attribute to propyl radicals. The C-H stretching modes observed above 2960 wn for both radicals are in excellent agreement with anharmonic frequencies computed using VPT2. Between 2800 and 2960 wn, however, the spectra of n-propyl and i-propyl radicals become quite congested and difficult to assign due to the presence of multiple anharmonic resonances. Computations employing a local mode Hamiltonian reveal the origin of the spectral congestion to be strong coupling between the high frequency C-H stretching modes and the lower frequency bending/scissoring motions. The only significant local coupling is between stretches and bends on the same CH2/CH3 group.

  17. Sleeper stretch accelerates recovery of glenohumeral internal rotation after pitching.

    PubMed

    Reuther, Katherine E; Larsen, Ryan; Kuhn, Pamela D; Kelly, John D; Thomas, Stephen J

    2016-12-01

    The natural time course for recovery of glenohumeral internal rotation (IR) loss after a throwing episode is unknown. In addition, the effect of the sleeper stretch on the time course for recovery of motion after a throwing episode has never been investigated. Therefore, the objectives of this study were to (1) to determine the natural time course for spontaneous recovery of IR after a throwing episode and (2) to evaluate the effect of the sleeper stretch on the time course for recovery of IR after a throwing episode. The study participants were 17 male high school baseball pitchers (aged 17.7 ± 0.9 years). A crossover designed was used over a 2-week period. For week 1, glenohumeral IR and external rotation (ER) were evaluated in the dominant shoulder 1 day before a throwing episode and at 2 hours, 1 day, 2 days, 3 days, 4 days, and 5 days after pitching. During week 2, participants completed a sleeper stretch protocol before measurements. The natural time course of spontaneous recovery for IR after a throwing episode was 4 days. Stretching reduced the time course of recovery for IR to 2 days. A sleeper stretch program for high school baseball pitchers can accelerate the recovery of commonly observed IR loss and also may mitigate the cumulative effects observed over the course of a season. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  18. Crustal Stretching Style and Lower Crust Flow of the South China Sea Northern Margin

    NASA Astrophysics Data System (ADS)

    Bai, Y.; Dong, D.; Runlin, D.

    2017-12-01

    There is a controversy about crustal stretching style of the South China Sea (SCS) northern margin mainly due to considerable uncertainty of stretching factor estimation, for example, as much as 40% of upper crust extension (Walsh et al., 1991) would be lost by seismic profiles due to poor resolution. To discover and understand crustal stretching style and lower crustal flow on the whole, we map the Moho and Conrad geometries based on gravity inversion constrained by deep seismic profiles, then according to the assumption of upper and lower crust initial thickness, upper and lower crust stretching factors are estimated. According to the comparison between upper and lower crust stretching factors, the SCS northern margin could be segmented into three parts, (1) sediment basins where upper crust is stretched more than lower crust, (2) COT regions where lower crust is stretched more than upper crust, (3) other regions where the two layers have similar stretching factors. Stretching factor map shows that lower crust flow happened in both of COT and sediment basin regions where upper crust decouples with lower crust due to high temperature. Pressure contrast by sediment loading in basins and erosion in sediment-source regions will lead to lower crust flow away from sediment sink to source. Decoupled and fractured upper crust is stretched further by sediment loading and the following compensation would result in relatively thick lower crust than upper crust. In COT regions with thin sediment coverage, low-viscosity lower crust is easier to thin in extensional environment, also the lower crust tends to flow away induced by magma upwelling. Therefore, continental crust on the margin is not stretching in a constant way but varies with the tectonic setting changes. This work is supported by National Natural Science Foundation of China (Grant No. 41506055, 41476042) and Fundamental Research Funds for the Central Universities China (No.17CX02003A).

  19. A Purposeful Dynamic Stretching Routine

    ERIC Educational Resources Information Center

    Leon, Craig; Oh, Hyun-Ju; Rana, Sharon

    2012-01-01

    Dynamic stretching, which involves moving parts of the body and gradually increases range of motion, speed of movement, or both through controlled, sport-specific movements, has become the popular choice of pre-exercise warm-up. This type of warm-up has evolved to encompass several variations, but at its core is the principle theme that preparing…

  20. Organization of an optimal adaptive immune system

    NASA Astrophysics Data System (ADS)

    Walczak, Aleksandra; Mayer, Andreas; Balasubramanian, Vijay; Mora, Thierry

    The repertoire of lymphocyte receptors in the adaptive immune system protects organisms from a diverse set of pathogens. A well-adapted repertoire should be tuned to the pathogenic environment to reduce the cost of infections. I will discuss a general framework for predicting the optimal repertoire that minimizes the cost of infections contracted from a given distribution of pathogens. The theory predicts that the immune system will have more receptors for rare antigens than expected from the frequency of encounters and individuals exposed to the same infections will have sparse repertoires that are largely different, but nevertheless exploit cross-reactivity to provide the same coverage of antigens. I will show that the optimal repertoires can be reached by dynamics that describes the competitive binding of antigens by receptors, and selective amplification of stimulated receptors.

  1. Effects of Static and Dynamic Stretching on the Isokinetic Peak Torques and Electromyographic Activities of the Antagonist Muscles

    PubMed Central

    Serefoglu, Abdullah; Sekir, Ufuk; Gür, Hakan; Akova, Bedrettin

    2017-01-01

    The aim of this study was to investigate if static and dynamic stretching exercises of the knee muscles (quadriceps and hamstring muscles) have any effects on concentric and eccentric isokinetic peak torques and electromyographic amplitudes (EMG) of the antagonist muscles. Twenty healthy male athletes (age between 18-30 years) voluntarily participated in this study. All of the subjects visited the laboratory to complete the following intervention in a randomized order on 5 separate days; (a) non-stretching (control), (b) static stretching of the quadriceps muscles, (c) static stretching of the hamstring muscles, (d) dynamic stretching of the quadriceps muscles, and (e) dynamic stretching of the hamstring muscles. Static stretching exercises either for the quadriceps or the hamstring muscles were carried out at the standing and sitting positions. Subjects performed four successive repetitions of each stretching exercises for 30 seconds in both stretching positions. Similar to static stretching exercises two different stretching modes were designed for dynamic stretching exercises. Concentric and eccentric isokinetic peak torque for the non-stretched antagonist quadriceps or hamstring muscles at angular velocities of 60°/sec and 240°/sec and their concurrent electromyographic (EMG) activities were measured before and immediately after the intervention. Isokinetic peak torques of the non-stretched agonist hamstring and quadriceps muscles did not represent any significant (p > 0.05) differences following static and dynamic stretching of the antagonist quadriceps and hamstring muscles, respectively. Similarly, the EMG activities of the agonist muscles exhibited no significant alterations (p > 0.05) following both stretching exercises of the antagonist muscles. According to the results of the present study it is possible to state that antagonist stretching exercises either in the static or dynamic modes do not affect the isokinetic peak torques and the EMG activities

  2. Mechanical stretching stimulates collagen synthesis via down-regulating SO2/AAT1 pathway

    PubMed Central

    Liu, Jia; Yu, Wen; Liu, Yan; Chen, Selena; Huang, Yaqian; Li, Xiaohui; Liu, Cuiping; Zhang, Yanqiu; Li, Zhenzhen; Du, Jie; Tang, Chaoshu; Du, Junbao; Jin, Hongfang

    2016-01-01

    The aim of the study was to investigate the role of endogenous sulfur dioxide (SO2)/ aspartate aminotransferase 1 (AAT1) pathway in stretch-induced excessive collagen expression and its mechanism. The mechanical stretch downregulated SO2/AAT1 pathway and increased collagen I and III protein expression. Importantly, AAT1 overexpression blocked the increase in collagen I and III expression, transforming growth factor-β1 (TGF- β1) expression and phosphorylation of Smad2/3 induced by stretch, but AAT1 knockdown mimicked the increase in collagen I and III expression, TGF- β1 expression and phosphorylation of Smad2/3 induced by stretch. Mechanistically, SB431542, a TGF-β1/Smad2/3 inhibitor, eliminated excessive collagen I and III accumulation induced by AAT1 knockdown, stretch or stretch plus AAT1 knockdown. In a rat model of high pulmonary blood flow-induced pulmonary vascular collagen accumulation, AAT1 expression and SO2 content in lung tissues of rat were reduced in shunt rats with high pulmonary blood flow. Supplement of SO2 derivatives inhibited activation of TGF- β1/Smad2/3 pathway and alleviated the excessive collagen accumulation in lung tissues of shunt rats. The results suggested that deficiency of endogenous SO2/AAT1 pathway mediated mechanical stretch-stimulated abnormal collagen accumulation via TGF-β1/Smad2/3 pathway. PMID:26880260

  3. A Portable Sensory Augmentation Device for Balance Rehabilitation Using Fingertip Skin Stretch Feedback.

    PubMed

    Pan, Yi-Tsen; Yoon, Han U; Hur, P

    2017-01-01

    Neurological disorders are the leading causes of poor balance. Previous studies have shown that biofeedback can compensate for weak or missing sensory information in people with sensory deficits. These biofeedback inputs can be easily recognized and converted into proper information by the central nervous system (CNS), which integrates the appropriate sensorimotor information and stabilizes the human posture. In this study, we proposed a form of cutaneous feedback which stretches the fingertip pad with a rotational contactor, so-called skin stretch. Skin stretch at a fingertip pad can be simply perceived and its small contact area makes it favored for small wearable devices. Taking advantage of skin stretch feedback, we developed a portable sensory augmentation device (SAD) for rehabilitation of balance. SAD was designed to provide postural sway information through additional skin stretch feedback. To demonstrate the feasibility of the SAD, quiet standing on a force plate was evaluated while sensory deficits were simulated. Fifteen healthy young adults were asked to stand quietly under six sensory conditions: three levels of sensory deficits (normal, visual deficit, and visual + vestibular deficits) combined with and without augmented sensation provided by SAD. The results showed that augmented sensation via skin stretch feedback helped subjects correct their posture and balance, especially as the deficit level of sensory feedback increased. These findings demonstrate the potential use of skin stretch feedback in balance rehabilitation.

  4. The Acute Effects of Static Stretching Compared to Dynamic Stretching with and without an Active Warm up on Anaerobic Performance

    PubMed Central

    KENDALL, BRADLEY J.

    2017-01-01

    The Wingate Anaerobic Test (WAnT) has been used in many studies to determine anaerobic performance. However, there has been poor reporting of warm-up protocols and limited consistency between warm-up methods that have been used. With the WAnT being such a commonly-used test, consistency in warm-up methods is essential in order to compare results across studies. Therefore, this study was designed to compare how static stretching, dynamic stretching, and an active warm-up affect WAnT performance. Ten recreationally active participants (5 males, 5 females) with a mean (SD) age of 23.3 (0.7) volunteered for this study. Subjects were randomized to a specific order of five warm-up protocols, which were performed on individual days followed by a WAnT. Peak power, mean power, power drop, and fatigue index were compared for each trial using a repeated measures ANOVA. For peak power, results revealed that warm-up protocol had a significant effect, F(4,36) = 3.90, p = .01, partial η2 = .302. It was hypothesized that the dynamic stretching would lead to greater peak power than the static stretching protocol. However, results of post hoc analyses failed to detect a significant difference (p =.065). For the other measured variables no significant differences were found. The findings from this study suggest that warm-up protocols may have significantly different impacts on peak power during the WAnT. Additional research should use larger sample sizes and further explore these warm-up protocols. Developing a standardized warm-up protocol for the WAnT may improve consistency between studies. PMID:28479947

  5. Markstein Numbers of Negatively-Stretched Premixed Flames: Microgravity Measurements and Computations

    NASA Technical Reports Server (NTRS)

    Ibarreta, Alfonso F.; Driscoll, James F.; Feikema, Douglas A.; Salzman, Jack (Technical Monitor)

    2001-01-01

    The effect of flame stretch, composed of strain and curvature, plays a major role in the propagation of turbulent premixed flames. Although all forms of stretch (positive and negative) are present in turbulent conditions, little research has been focused on the stretch due to curvature. The present study quantifies the Markstein number (which characterizes the sensitivity of the flame propagation speed to the imposed stretch rate) for an inwardly-propagating flame (IPF). This flame is of interest because it is negatively stretched, and is subjected to curvature effects alone, without the competing effects of strain. In an extension of our previous work, microgravity experiments were run using a vortex-flame interaction to create a pocket of reactants surrounded by an IPF. Computations using the RUN-1DL code of Rogg were also performed in order to explain the measurements. It was found that the Markstein number of an inwardly-propagating flame, for both the microgravity experiment and the computations, is significantly larger than that of an outwardly-propagating flame. Further insight was gained by running the computations for the simplified (hypothetical) cases of one step chemistry, unity Lewis number, and negligible heat release. Results provide additional evidence that the Markstein numbers associated with strain and curvature have different values.

  6. 49 CFR 180.413 - Repair, modification, stretching, rebarrelling, or mounting of specification cargo tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Repair, modification, stretching, rebarrelling, or... Tanks § 180.413 Repair, modification, stretching, rebarrelling, or mounting of specification cargo tanks. (a) General. Any repair, modification, stretching, rebarrelling, or mounting of a cargo tank must be...

  7. 49 CFR 180.413 - Repair, modification, stretching, rebarrelling, or mounting of specification cargo tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Repair, modification, stretching, rebarrelling, or... Tanks § 180.413 Repair, modification, stretching, rebarrelling, or mounting of specification cargo tanks. (a) General. Any repair, modification, stretching, rebarrelling, or mounting of a cargo tank must be...

  8. 49 CFR 180.413 - Repair, modification, stretching, rebarrelling, or mounting of specification cargo tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Repair, modification, stretching, rebarrelling, or... Tanks § 180.413 Repair, modification, stretching, rebarrelling, or mounting of specification cargo tanks. (a) General. Any repair, modification, stretching, rebarrelling, or mounting of a cargo tank must be...

  9. 49 CFR 180.413 - Repair, modification, stretching, rebarrelling, or mounting of specification cargo tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Repair, modification, stretching, rebarrelling, or... Tanks § 180.413 Repair, modification, stretching, rebarrelling, or mounting of specification cargo tanks. (a) General. Any repair, modification, stretching, rebarrelling, or mounting of a cargo tank must be...

  10. Effect of acute stretch injury on action potential and network activity of rat neocortical neurons in culture.

    PubMed

    Magou, George C; Pfister, Bryan J; Berlin, Joshua R

    2015-10-22

    The basis for acute seizures following traumatic brain injury (TBI) remains unclear. Animal models of TBI have revealed acute hyperexcitablility in cortical neurons that could underlie seizure activity, but studying initiating events causing hyperexcitability is difficult in these models. In vitro models of stretch injury with cultured cortical neurons, a surrogate for TBI, allow facile investigation of cellular changes after injury but they have only demonstrated post-injury hypoexcitability. The goal of this study was to determine if neuronal hyperexcitability could be triggered by in vitro stretch injury. Controlled uniaxial stretch injury was delivered to a spatially delimited region of a spontaneously active network of cultured rat cortical neurons, yielding a region of stretch-injured neurons and adjacent regions of non-stretched neurons that did not directly experience stretch injury. Spontaneous electrical activity was measured in non-stretched and stretch-injured neurons, and in control neuronal networks not subjected to stretch injury. Non-stretched neurons in stretch-injured cultures displayed a three-fold increase in action potential firing rate and bursting activity 30-60 min post-injury. Stretch-injured neurons, however, displayed dramatically lower rates of action potential firing and bursting. These results demonstrate that acute hyperexcitability can be observed in non-stretched neurons located in regions adjacent to the site of stretch injury, consistent with reports that seizure activity can arise from regions surrounding the site of localized brain injury. Thus, this in vitro procedure for localized neuronal stretch injury may provide a model to study the earliest cellular changes in neuronal function associated with acute post-traumatic seizures. Copyright © 2015. Published by Elsevier B.V.

  11. Morphology of presumptive rapidly adapting receptors in the rat bronchus.

    PubMed Central

    Kappagoda, C T; Skepper, J N; McNaughton, L; Siew, E E; Navaratnam, V

    1990-01-01

    The present investigation was undertaken in rats to determine whether sensory nerves exist in apposition to the bronchial microvessels which may function as rapidly adapting receptors (RAR). The primary and secondary bronchi on both sides were removed and processed for light and electron microscopy. Nerves were frequently found in relation to venules external to the muscle coat of bronchi. They comprised myelinated axons which ended individually as non-myelinated convoluted terminals enclosed within a loose capsule of attenuated cells. Serial sections showed that these terminals were not related to ganglion cells. Cervical vagal section and injection of HRP-WGA into the nodose ganglion provided corroborative evidence of the sensory nature of these terminals. Vagal section caused degenerative changes in the encapsulated nerve terminals in the bronchial walls and horseradish peroxidase labelling was demonstrable in such terminals. Moreover, immunocytochemical studies demonstrated the presence of calcitonin gene regulated peptide and substance P in these structures. It is suggested that they comprise the RAR. Encapsulated nerve terminals were not found in the epithelial layer, in the submucous coat or in the muscularis of bronchi. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 PMID:1691164

  12. Uninvolved versus target muscle contraction during contract: relax proprioceptive neuromuscular facilitation stretching.

    PubMed

    Azevedo, Daniel Camara; Melo, Raphael Marques; Alves Corrêa, Ricardo Vidal; Chalmers, Gordon

    2011-08-01

    The purpose of this study was to compare the acute effect of the contract-relax (CR) stretching technique on knee active range of motion (ROM) using target muscle contraction or an uninvolved muscle contraction. pre-test post-test control experimental design. Clinical research laboratory. Sixty healthy men were randomly assigned to one of three groups. The Contract-Relax group (CR) performed a traditional hamstring CR stretch, the Modified Contract-Relax group (MCR) performed hamstring CR stretching using contraction of an uninvolved muscle distant from the target muscle, and the Control group (CG) did not stretch. Active knee extension test was performed before and after the stretching procedure. Two-way between-within analysis of variance (ANOVA) results showed a significant interaction between group and pre-test to post-test (p < 0.001). Post-hoc examination of individual groups showed no significant change in ROM for the CG (0.8°, p = 0.084), and a significant moderate increase in ROM for both the CR (7.0°, p < 0.001) and MCR (7.0°, p < 0.001) groups. ROM gain following a CR PNF procedure is the same whether the target stretching muscle is contracted, or an uninvolved muscle is contracted. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Eccentric Training and Static Stretching Improve Hamstring Flexibility of High School Males

    PubMed Central

    Bandy, William D.

    2004-01-01

    Objective: To determine if the flexibility of high-school-aged males would improve after a 6-week eccentric exercise program. In addition, the changes in hamstring flexibility that occurred after the eccentric program were compared with a 6-week program of static stretching and with a control group (no stretching). Design and Setting: We used a test-retest control group design in a laboratory setting. Subjects were assigned randomly to 1 of 3 groups: eccentric training, static stretching, or control. Subjects: A total of 69 subjects, with a mean age of 16.45 ± 0.96 years and with limited hamstring flexibility (defined as 20° loss of knee extension measured with the thigh held at 90° of hip flexion) were recruited for this study. Measurements: Hamstring flexibility was measured using the passive 90/90 test before and after the 6-week program. Results: Differences were significant for test and for the test-by-group interaction. Follow-up analysis indicated significant differences between the control group (gain = 1.67°) and both the eccentric-training (gain = 12.79°) and static-stretching (gain = 12.05°) groups. No difference was found between the eccentric and static-stretching groups. Conclusions: The gains achieved in range of motion of knee extension (indicating improvement in hamstring flexibility) with eccentric training were equal to those made by statically stretching the hamstring muscles. PMID:15496995

  14. Eccentric Training and Static Stretching Improve Hamstring Flexibility of High School Males.

    PubMed

    Nelson, Russell T; Bandy, William D

    2004-09-01

    OBJECTIVE: To determine if the flexibility of high-school-aged males would improve after a 6-week eccentric exercise program. In addition, the changes in hamstring flexibility that occurred after the eccentric program were compared with a 6-week program of static stretching and with a control group (no stretching). DESIGN AND SETTING: We used a test-retest control group design in a laboratory setting. Subjects were assigned randomly to 1 of 3 groups: eccentric training, static stretching, or control. SUBJECTS: A total of 69 subjects, with a mean age of 16.45 +/- 0.96 years and with limited hamstring flexibility (defined as 20 degrees loss of knee extension measured with the thigh held at 90 degrees of hip flexion) were recruited for this study. MEASUREMENTS: Hamstring flexibility was measured using the passive 90/90 test before and after the 6-week program. RESULTS: Differences were significant for test and for the test-by-group interaction. Follow-up analysis indicated significant differences between the control group (gain = 1.67 degrees ) and both the eccentric-training (gain = 12.79 degrees ) and static-stretching (gain = 12.05 degrees ) groups. No difference was found between the eccentric and static-stretching groups. CONCLUSIONS: The gains achieved in range of motion of knee extension (indicating improvement in hamstring flexibility) with eccentric training were equal to those made by statically stretching the hamstring muscles.

  15. Human local adaptation of the TRPM8 cold receptor along a latitudinal cline.

    PubMed

    Key, Felix M; Abdul-Aziz, Muslihudeen A; Mundry, Roger; Peter, Benjamin M; Sekar, Aarthi; D'Amato, Mauro; Dennis, Megan Y; Schmidt, Joshua M; Andrés, Aida M

    2018-05-01

    Ambient temperature is a critical environmental factor for all living organisms. It was likely an important selective force as modern humans recently colonized temperate and cold Eurasian environments. Nevertheless, as of yet we have limited evidence of local adaptation to ambient temperature in populations from those environments. To shed light on this question, we exploit the fact that humans are a cosmopolitan species that inhabit territories under a wide range of temperatures. Focusing on cold perception-which is central to thermoregulation and survival in cold environments-we show evidence of recent local adaptation on TRPM8. This gene encodes for a cation channel that is, to date, the only temperature receptor known to mediate an endogenous response to moderate cold. The upstream variant rs10166942 shows extreme population differentiation, with frequencies that range from 5% in Nigeria to 88% in Finland (placing this SNP in the 0.02% tail of the FST empirical distribution). When all populations are jointly analyzed, allele frequencies correlate with latitude and temperature beyond what can be explained by shared ancestry and population substructure. Using a Bayesian approach, we infer that the allele originated and evolved neutrally in Africa, while positive selection raised its frequency to different degrees in Eurasian populations, resulting in allele frequencies that follow a latitudinal cline. We infer strong positive selection, in agreement with ancient DNA showing high frequency of the allele in Europe 3,000 to 8,000 years ago. rs10166942 is important phenotypically because its ancestral allele is protective of migraine. This debilitating disorder varies in prevalence across human populations, with highest prevalence in individuals of European descent-precisely the population with the highest frequency of rs10166942 derived allele. We thus hypothesize that local adaptation on previously neutral standing variation may have contributed to the genetic

  16. Passive stretch reduces calpain activity through nitric oxide pathway in unloaded soleus muscles.

    PubMed

    Xu, Peng-Tao; Li, Quan; Sheng, Juan-Juan; Chang, Hui; Song, Zhen; Yu, Zhi-Bin

    2012-08-01

    Unloading in spaceflight or long-term bed rest induces to pronounced atrophy of anti-gravity skeletal muscles. Passive stretch partially resists unloading-induced atrophy of skeletal muscle, but the mechanism remains elusive. The aims of this study were to investigate the hypotheses that stretch tension might increase protein level of neuronal nitric oxide synthase (nNOS) in unloaded skeletal muscle, and then nNOS-derived NO alleviated atrophy of skeletal muscle by inhibiting calpain activity. The tail-suspended rats were used to unload rat hindlimbs for 2 weeks, at the same time, left soleus muscle was stretched by applying a plaster cast to fix the ankle at 35° dorsiflexion. Stretch partially resisted atrophy and inhibited the decreased protein level and activity of nNOS in unloaded soleus muscles. Unloading increased frequency of calcium sparks and elevated intracellular resting and caffeine-induced Ca(2+) concentration ([Ca(2+)]i) in unloaded soleus muscle fibers. Stretch reduced frequency of calcium sparks and restored intracellular resting and caffeine-induced Ca(2+) concentration to control levels in unloaded soleus muscle fibers. The increased protein level and activity of calpain as well as the higher degradation of desmin induced by unloading were inhibited by stretch in soleus muscles. In conclusion, these results suggest that stretch can preserve the stability of sarcoplasmic reticulum Ca(2+) release channels which prevents the elevated [Ca(2+)]i by means of keeping nNOS activity, and then the enhanced protein level and activity of calpain return to control levels in unloaded soleus muscles. Therefore, stretch can resist in part atrophy of unloaded soleus muscles.

  17. Acute effect of different stretching methods on flexibility and jumping performance in competitive artistic gymnasts.

    PubMed

    Dallas, G; Smirniotou, A; Tsiganos, G; Tsopani, D; Di Cagno, A; Tsolakis, Ch

    2014-12-01

    The purpose of this study was to investigate the acute effects of 3 different warm up methods of stretching (static, proprioceptive neuromuscular facilitation, and stretching exercises on a Vibration platform) on flexibility and legs power-jumping performance in competitive artistic gymnasts. Eighteen competitive artistic gymnasts were recruited to participate in this study. Subjects were exposed to each of 3 experimental stretching conditions: static stretching (SS), proprioceptive neuromuscular facilitation stretching (PNF), and stretching exercises on a Vibration platform (S+V). Flexibility assessed with sit and reach test (S & R) and jumping performance with squat jump (SJ) and counter movement jump (CMJ) and were measured before, immediately after and 15 min after the interventions. Significant differences were observed for flexibility after all stretching conditions for S+V (+1.1%), SS (+5.7%) and PNF (+6.8%) (P=0.000), which remained higher 15 min after interventions (S+V (1.1%), SS (5.3%) and PNF (5.5%), respectively (P=0.000). PNF stretching increased flexibility in competitive gymnasts, while S+V maintained jumping performance when both methods were used as part of a warm-up procedure.

  18. Near-Body Grid Adaption for Overset Grids

    NASA Technical Reports Server (NTRS)

    Buning, Pieter G.; Pulliam, Thomas H.

    2016-01-01

    A solution adaption capability for curvilinear near-body grids has been implemented in the OVERFLOW overset grid computational fluid dynamics code. The approach follows closely that used for the Cartesian off-body grids, but inserts refined grids in the computational space of original near-body grids. Refined curvilinear grids are generated using parametric cubic interpolation, with one-sided biasing based on curvature and stretching ratio of the original grid. Sensor functions, grid marking, and solution interpolation tasks are implemented in the same fashion as for off-body grids. A goal-oriented procedure, based on largest error first, is included for controlling growth rate and maximum size of the adapted grid system. The adaption process is almost entirely parallelized using MPI, resulting in a capability suitable for viscous, moving body simulations. Two- and three-dimensional examples are presented.

  19. Adenovirus tumor targeting and hepatic untargeting by a coxsackie/adenovirus receptor ectodomain anti-carcinoembryonic antigen bispecific adapter.

    PubMed

    Li, Hua-Jung; Everts, Maaike; Pereboeva, Larisa; Komarova, Svetlana; Idan, Anat; Curiel, David T; Herschman, Harvey R

    2007-06-01

    Adenovirus vectors have a number of advantages for gene therapy. However, because of their lack of tumor tropism and their preference for liver infection following systemic administration, they cannot be used for systemic attack on metastatic disease. Many epithelial tumors (e.g., colon, lung, and breast) express carcinoembryonic antigen (CEA). To block the natural hepatic tropism of adenovirus and to "retarget" the virus to CEA-expressing tumors, we used a bispecific adapter protein (sCAR-MFE), which fuses the ectodomain of the coxsackie/adenovirus receptor (sCAR) with a single-chain anti-CEA antibody (MFE-23). sCAR-MFE untargets adenovirus-directed luciferase transgene expression in the liver by >90% following systemic vector administration. Moreover, sCAR-MFE can "retarget" adenovirus to CEA-positive epithelial tumor cells in cell culture, in s.c. tumor grafts, and in hepatic tumor grafts. The sCAR-MFE bispecific adapter should, therefore, be a powerful agent to retarget adenovirus vectors to epithelial tumor metastases.

  20. Thermodynamics and mechanics of stretch-induced crystallization in rubbers

    NASA Astrophysics Data System (ADS)

    Guo, Qiang; Zaïri, Fahmi; Guo, Xinglin

    2018-05-01

    The aim of the present paper is to provide a quantitative prediction of the stretch-induced crystallization in natural rubber, the exclusive reason for its history-dependent thermomechanical features. A constitutive model based on a micromechanism inspired molecular chain approach is formulated within the context of the thermodynamic framework. The molecular configuration of the partially crystallized single chain is analyzed and calculated by means of some statistical mechanical methods. The random thermal oscillation of the crystal orientation, considered as a continuous random variable, is treated by means of a representative angle. The physical expression of the chain free energy is derived according to a two-step strategy by separating crystallization and stretching. This strategy ensures that the stretch-induced part of the thermodynamic crystallization force is null at the initial instant and allows, without any additional constraint, the formulation of a simple linear relationship for the crystallinity evolution law. The model contains very few physically interpretable material constants to simulate the complex mechanism: two chain-scale constants, one crystallinity kinetics constant, three thermodynamic constants related to the newly formed crystallites, and a function controlling the crystal orientation with respect to the chain. The model is used to discuss some important aspects of the micromechanism and the macroresponse under the equilibrium state and the nonequilibrium state involved during stretching and recovery, and continuous relaxation.

  1. Effects of Static and Dynamic Stretching on the Isokinetic Peak Torques and Electromyographic Activities of the Antagonist Muscles.

    PubMed

    Serefoglu, Abdullah; Sekir, Ufuk; Gür, Hakan; Akova, Bedrettin

    2017-03-01

    The aim of this study was to investigate if static and dynamic stretching exercises of the knee muscles (quadriceps and hamstring muscles) have any effects on concentric and eccentric isokinetic peak torques and electromyographic amplitudes (EMG) of the antagonist muscles. Twenty healthy male athletes (age between 18-30 years) voluntarily participated in this study. All of the subjects visited the laboratory to complete the following intervention in a randomized order on 5 separate days; (a) non-stretching (control), (b) static stretching of the quadriceps muscles, (c) static stretching of the hamstring muscles, (d) dynamic stretching of the quadriceps muscles, and (e) dynamic stretching of the hamstring muscles. Static stretching exercises either for the quadriceps or the hamstring muscles were carried out at the standing and sitting positions. Subjects performed four successive repetitions of each stretching exercises for 30 seconds in both stretching positions. Similar to static stretching exercises two different stretching modes were designed for dynamic stretching exercises. Concentric and eccentric isokinetic peak torque for the non-stretched antagonist quadriceps or hamstring muscles at angular velocities of 60°/sec and 240°/sec and their concurrent electromyographic (EMG) activities were measured before and immediately after the intervention. Isokinetic peak torques of the non-stretched agonist hamstring and quadriceps muscles did not represent any significant (p > 0.05) differences following static and dynamic stretching of the antagonist quadriceps and hamstring muscles, respectively. Similarly, the EMG activities of the agonist muscles exhibited no significant alterations (p > 0.05) following both stretching exercises of the antagonist muscles. According to the results of the present study it is possible to state that antagonist stretching exercises either in the static or dynamic modes do not affect the isokinetic peak torques and the EMG activities

  2. Effectiveness of a Load-Imposing Device for Cyclic Stretching of Isolated Human Bronchi: A Validation Study

    PubMed Central

    Le Guen, Morgan; Naline, Emmanuel; Grassin-Delyle, Stanislas; Devillier, Philippe; Faisy, Christophe

    2015-01-01

    Background Mechanical ventilation may induce harmful effects in the airways of critically ill patients. Nevertheless, the effects of cyclic stretching caused by repetitive inflation-deflation of the bronchial compartment have not been well characterized in humans. The objective of the present study was to assess the effectiveness of a load-imposing device for the cyclic stretching of human bronchi. Methods Intact bronchial segments were removed from 128 thoracic surgery patients. After preparation and equilibration in an organ bath, bronchi were stretched repetitively and cyclically with a motorized transducer. The peak force imposed on the bronchi was set to 80% of each individual maximum contraction in response to acetylcholine and the minimal force corresponded to the initial basal tone before stretching. A 1-min cycle (stretching for 15 sec, relaxing for 15 sec and resting for 30 sec) was applied over a time period ranging from 5 to 60 min. The device's performance level was assessed and the properties of the stretched bronchi were compared with those of paired, non-stretched bronchi. Results Despite the intrinsic capacities of the device, the targets of the tension adjustments remained variable for minimal tension (156–178%) while the peak force set point was unchanged (87–115%). In the stretched bronchi, a time-dependent rise in basal tone (P <.05 vs. non-stretched) was apparent after as little as 5 min of cyclic stretching. The stretch-induced rise in basal tone continued to increase (P <.01) after the stretching had ended. Only 60 min of cyclic stretching was associated with a significant (P <.05) increase in responsiveness to acetylcholine, relative to non-stretched bronchi. Conclusions Low-frequency, low-force, cyclic loading of human bronchi is associated with elevated basal tone and acetylcholine responsiveness. The present experimental model is likely to be a useful tool for future investigations of the bronchial response to repetitive stress

  3. The circadian clock controls toll-like receptor 9-mediated innate and adaptive immunity

    PubMed Central

    Silver, Adam C.; Arjona, Alvaro; Walker, Wendy E.; Fikrig, Erol

    2012-01-01

    Circadian rhythms refer to biologic processes that oscillate with a period of approximately 24 hours. These rhythms are sustained by a molecular clock and provide a temporal matrix that ensures the coordination of homeostatic processes with the periodicity of environmental challenges. We demonstrate the circadian molecular clock controls the expression and function of toll like receptor 9 (TLR9). In a vaccination model using TLR9 ligand as adjuvant, mice immunized at the time of enhanced TLR9 responsiveness presented weeks later with an improved adaptive immune response. In a TLR9-dependent mouse model of sepsis, we found that disease severity was dependent on the timing of sepsis induction, coinciding with the daily changes in TLR9 expression and function. These findings unveil a direct molecular link between the circadian and innate immune systems with important implications for immunoprophylaxis and immunotherapy. PMID:22342842

  4. Evolutionary diversification of the trypanosome haptoglobin-haemoglobin receptor from an ancestral haemoglobin receptor.

    PubMed

    Lane-Serff, Harriet; MacGregor, Paula; Peacock, Lori; Macleod, Olivia Js; Kay, Christopher; Gibson, Wendy; Higgins, Matthew K; Carrington, Mark

    2016-04-15

    The haptoglobin-haemoglobin receptor of the African trypanosome species, Trypanosoma brucei, is expressed when the parasite is in the bloodstream of the mammalian host, allowing it to acquire haem through the uptake of haptoglobin-haemoglobin complexes. Here we show that in Trypanosoma congolense this receptor is instead expressed in the epimastigote developmental stage that occurs in the tsetse fly, where it acts as a haemoglobin receptor. We also present the structure of the T. congolense receptor in complex with haemoglobin. This allows us to propose an evolutionary history for this receptor, charting the structural and cellular changes that took place as it adapted from a role in the insect to a new role in the mammalian host.

  5. Formation of Highly Aligned Collagen Nanofibers by Continuous Cyclic Stretch of a Collagen Hydrogel Sheet.

    PubMed

    Nam, Eunryel; Lee, Won Chul; Takeuchi, Shoji

    2016-07-01

    A collagen sheet with highly aligned collagen fibers is fabricated by continuous cyclic stretch. The rearrangement of the collagen fibers depends on the different process parameters of the cyclic stretch, including magnitude, frequency, and period of stretch. The collagen fibers are aligned perpendicularly to the direction of the stretch. Corneal stromal cells and smooth muscle cells cultivated on the highly aligned collagen sheet show alignment along the collagen fibers without the stretch during culture. Thus, the sheet can be a suitable scaffold for use in regenerative medicine. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. The acute effects of stretching with vibration on dynamic flexibility in young female gymnasts.

    PubMed

    Johnson, Aaron W; Warcup, Caisa N; Seeley, Matthew K; Eggett, Dennis; Feland, Jeffery B

    2018-01-10

    While stretching with vibration has been shown to improve static flexibility; the effect of stretching with vibration on dynamic flexibility is not well known. The purpose of this study was to examine the effectiveness of stretching with vibration on acute dynamic flexibility and jump height in novice and advanced competitive female gymnasts during a split jump. Female gymnast (n=27, age: 11.5 ± 1.7 years, Junior Olympic levels 5-10) participated in this cross-over study. Dynamic flexibility during gymnastic split jumps were video recorded and analyzed with Dartfish software. All participants completed both randomized stretching protocols with either the vibration platform turned on (VIB) (frequency of 30 Hz and 2 mm amplitude) or off (NoVIB) separated by 48 h. Participants performed 4 sets of three stretches on the vibration platform. Each stretch was held for 30 s with 5 s rest for a total of 7 min of stretch. Split jump flexibility decreased significantly from pre to post measurement in both VIB (-5.8°±5.9°) (p<0.001) and NoVIB (-2.6°±6.1°) (p=0.041) conditions (adjusted for gymnast level). This effect was greatest in lower skill level gymnasts (p=0.003), while the highest skill level gymnasts showed no significant decrease in the split jump (p=0.105). Jump height was not significantly different between conditions (p=0.892) or within groups (p=0.880). An acute session of static stretching with or without vibration immediately before performance does not alter jump height. Stretching with vibration immediately prior to gymnastics competition decreases split jump flexibility in lower level gymnasts more than upper level gymnasts.

  7. Dopamine D4 Receptor Counteracts Morphine-Induced Changes in μ Opioid Receptor Signaling in the Striosomes of the Rat Caudate Putamen

    PubMed Central

    Suárez-Boomgaard, Diana; Gago, Belén; Valderrama-Carvajal, Alejandra; Roales-Buján, Ruth; Van Craenenbroeck, Kathleen; Duchou, Jolien; Borroto-Escuela, Dasiel O.; Medina-Luque, José; de la Calle, Adelaida; Fuxe, Kjell; Rivera, Alicia

    2014-01-01

    The mu opioid receptor (MOR) is critical in mediating morphine analgesia. However, prolonged exposure to morphine induces adaptive changes in this receptor leading to the development of tolerance and addiction. In the present work we have studied whether the continuous administration of morphine induces changes in MOR protein levels, its pharmacological profile, and MOR-mediated G-protein activation in the striosomal compartment of the rat CPu, by using immunohistochemistry and receptor and DAMGO-stimulated [35S]GTPγS autoradiography. MOR immunoreactivity, agonist binding density and its coupling to G proteins are up-regulated in the striosomes by continuous morphine treatment in the absence of changes in enkephalin and dynorphin mRNA levels. In addition, co-treatment of morphine with the dopamine D4 receptor (D4R) agonist PD168,077 fully counteracts these adaptive changes in MOR, in spite of the fact that continuous PD168,077 treatment increases the [3H]DAMGO Bmax values to the same degree as seen after continuous morphine treatment. Thus, in spite of the fact that both receptors can be coupled to Gi/0 protein, the present results give support for the existence of antagonistic functional D4R-MOR receptor-receptor interactions in the adaptive changes occurring in MOR of striosomes on continuous administration of morphine. PMID:24451133

  8. Fast and Forceful Refolding of Stretched α-Helical Solenoid Proteins

    PubMed Central

    Kim, Minkyu; Abdi, Khadar; Lee, Gwangrog; Rabbi, Mahir; Lee, Whasil; Yang, Ming; Schofield, Christopher J.; Bennett, Vann; Marszalek, Piotr E.

    2010-01-01

    Abstract Anfinsen's thermodynamic hypothesis implies that proteins can encode for stretching through reversible loss of structure. However, large in vitro extensions of proteins that occur through a progressive unfolding of their domains typically dissipate a significant amount of energy, and therefore are not thermodynamically reversible. Some coiled-coil proteins have been found to stretch nearly reversibly, although their extension is typically limited to 2.5 times their folded length. Here, we report investigations on the mechanical properties of individual molecules of ankyrin-R, β-catenin, and clathrin, which are representative examples of over 800 predicted human proteins composed of tightly packed α-helical repeats (termed ANK, ARM, or HEAT repeats, respectively) that form spiral-shaped protein domains. Using atomic force spectroscopy, we find that these polypeptides possess unprecedented stretch ratios on the order of 10–15, exceeding that of other proteins studied so far, and their extension and relaxation occurs with minimal energy dissipation. Their sequence-encoded elasticity is governed by stepwise unfolding of small repeats, which upon relaxation of the stretching force rapidly and forcefully refold, minimizing the hysteresis between the stretching and relaxing parts of the cycle. Thus, we identify a new class of proteins that behave as highly reversible nanosprings that have the potential to function as mechanosensors in cells and as building blocks in springy nanostructures. Our physical view of the protein component of cells as being comprised of predominantly inextensible structural elements under tension may need revision to incorporate springs. PMID:20550922

  9. Mechanical stretch endows mesenchymal stem cells stronger angiogenic and anti-apoptotic capacities via NFκB activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Zhuoli; Gan, Xueqi; Fan, Hongyi

    Mesenchymal stem cells (MSCs) have been broadly used for tissue regeneration and repair due to their broad differentiation potential and potent paracrine properties such as angiogenic capacity. Strategies to increase their survival rate after transplantation and the angiogenic ability are of priority for the utility of MSCs. In this study, we found that mechanical stretch (10% extension, 30 cycles/min cyclic stretch) preconditioning increase the angiogenic capacity via VEGFA induction. In addition, mechanical stretch also increases the survival rate of mesenchymal stem cells under nutrients deprivation. Consistent with the increase VEGFA expression and resistance to apoptosis, nuclear localization of NFκB activity p65more » increased upon mechanical stretch. Inhibition of NFκB activity by BAY 11-708 blocks the pro-angiogenesis and anti-apoptosis function of mechanical stretch. Taken together, our findings here raise the possibility that mechanical stretch preconditioning might enhance the therapeutic efficacy of mesenchymal stem cells. - Highlights: • Mechanical stretch increases the angiogenic capacity via VEGFA induction in MSCs. • Mechanical stretch increases the survival rate of MSCs under nutrients deprivation. • Mechanical stretch manipulates MSCs via the activation of NFκB.« less

  10. Tolerance to LSD and DOB induced shaking behaviour: differential adaptations of frontocortical 5-HT(2A) and glutamate receptor binding sites.

    PubMed

    Buchborn, Tobias; Schröder, Helmut; Dieterich, Daniela C; Grecksch, Gisela; Höllt, Volker

    2015-03-15

    Serotonergic hallucinogens, such as lysergic acid diethylamide (LSD) and dimethoxy-bromoamphetamine (DOB), provoke stereotype-like shaking behaviour in rodents, which is hypothesised to engage frontocortical glutamate receptor activation secondary to serotonin2A (5-HT2A) related glutamate release. Challenging this hypothesis, we here investigate whether tolerance to LSD and DOB correlates with frontocortical adaptations of 5-HT2A and/or overall-glutamate binding sites. LSD and DOB (0.025 and 0.25 mg/kg, i.p.) induce a ketanserin-sensitive (0.5 mg/kg, i.p., 30-min pretreatment) increase in shaking behaviour (including head twitches and wet dog shakes), which with repeated application (7× in 4 ds) is undermined by tolerance. Tolerance to DOB, as indexed by DOB-sensitive [(3)H]spiroperidol and DOB induced [(35)S]GTP-gamma-S binding, is accompanied by a frontocortical decrease in 5-HT2A binding sites and 5-HT2 signalling, respectively; glutamate-sensitive [(3)H]glutamate binding sites, in contrast, remain unchanged. As to LSD, 5-HT2 signalling and 5-HT2A binding, respectively, are not or only marginally affected, yet [(3)H]glutamate binding is significantly decreased. Correlation analysis interrelates tolerance to DOB to the reduced 5-HT2A (r=.80) as well as the unchanged [(3)H]glutamate binding sites (r=.84); tolerance to LSD, as opposed, shares variance with the reduction in [(3)H]glutamate binding sites only (r=.86). Given that DOB and LSD both induce tolerance, one correlating with 5-HT2A, the other with glutamate receptor adaptations, it might be inferred that tolerance can arise at either level. That is, if a hallucinogen (like LSD in our study) fails to induce 5-HT2A (down-)regulation, glutamate receptors (activated postsynaptic to 5-HT2A related glutamate release) might instead adapt and thus prevent further overstimulation of the cortex. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Transcription upregulation via force-induced direct stretching of chromatin

    NASA Astrophysics Data System (ADS)

    Tajik, Arash; Zhang, Yuejin; Wei, Fuxiang; Sun, Jian; Jia, Qiong; Zhou, Wenwen; Singh, Rishi; Khanna, Nimish; Belmont, Andrew S.; Wang, Ning

    2016-12-01

    Mechanical forces play critical roles in the function of living cells. However, the underlying mechanisms of how forces influence nuclear events remain elusive. Here, we show that chromatin deformation as well as force-induced transcription of a green fluorescent protein (GFP)-tagged bacterial-chromosome dihydrofolate reductase (DHFR) transgene can be visualized in a living cell by using three-dimensional magnetic twisting cytometry to apply local stresses on the cell surface via an Arg-Gly-Asp-coated magnetic bead. Chromatin stretching depended on loading direction. DHFR transcription upregulation was sensitive to load direction and proportional to the magnitude of chromatin stretching. Disrupting filamentous actin or inhibiting actomyosin contraction abrogated or attenuated force-induced DHFR transcription, whereas activating endogenous contraction upregulated force-induced DHFR transcription. Our findings suggest that local stresses applied to integrins propagate from the tensed actin cytoskeleton to the LINC complex and then through lamina-chromatin interactions to directly stretch chromatin and upregulate transcription.

  12. Universal physical responses to stretch in the living cell

    PubMed Central

    Trepat, Xavier; Deng, Linhong; An, Steven S.; Navajas, Daniel; Tschumperlin, Daniel J.; Gerthoffer, William T.; Butler, James P.; Fredberg, Jeffrey J.

    2008-01-01

    With every beat of the heart, inflation of the lung or peristalsis of the gut, cell types of diverse function are subjected to substantial stretch. Stretch is a potent stimulus for growth, differentiation, migration, remodelling and gene expression1,2. Here, we report that in response to transient stretch the cytoskeleton fluidizes in such a way as to define a universal response class. This finding implicates mechanisms mediated not only by specific signalling intermediates, as is usually assumed, but also by non-specific actions of a slowly evolving network of physical forces. These results support the idea that the cell interior is at once a crowded chemical space3 and a fragile soft material in which the effects of biochemistry, molecular crowding and physical forces are complex and inseparable, yet conspire nonetheless to yield remarkably simple phenomenological laws. These laws seem to be both universal and primitive, and thus comprise a striking intersection between the worlds of cell biology and soft matter physics. PMID:17538621

  13. Resolving DNA-ligand intercalation in the entropic stretching regime

    NASA Astrophysics Data System (ADS)

    Almaqwashi, Ali A.

    Single molecule studies of DNA intercalation are typically conducted by applying stretching forces to obtain force-dependent DNA elongation measurements. The zero-force properties of DNA intercalation are determined by equilibrium and kinetic force-analysis. However, the applied stretching forces that are above the entropic regime (>5 pN) prevent DNA-DNA contact which may eliminate competitive DNA-ligand interactions. In particular, it is noted that cationic mono-intercalators investigated by single molecule force spectroscopy are mostly found to intercalate DNA with single rate, while bulk studies reported additional slower rates. Here, a proposed framework quantifies DNA intercalation by cationic ligands in competition with relatively rapid kinetic DNA-ligand aggregation. At a constant applied force in the entropic stretching regime, the analysis illustrates that DNA intercalation would be measurably optimized only within a narrow range of low ligand concentrations. As DNA intercalators are considered for potential DNA-targeted therapeutics, this analysis provides insights in tuning ligand concertation to maximize therapeutics efficiency.

  14. Acute Effects of Different Agonist and Antagonist Stretching Arrangements on Static and Dynamic Range of Motion.

    PubMed

    Amiri-Khorasani, Mohammadtaghi; Kellis, Eleftherios

    2015-12-01

    Traditionally, stretching exercises are considered as basic components of warm up aiming to prepare the musculoskeletal system for performance and to prevent injuries. The purpose of this study was to examine the effects of different agonist and antagonist stretching arrangements within a pre-exercise warm-up on hip static (SROM) and dynamic range of motion (DROM). Sixty trained male subjects (Mean ± SD: height, 177.38 ± 6.92 cm; body mass, 68.4 ± 10.22 kg; age, 21.52 ± 1.17 years) volunteered to participate in this study. SROM was measured by V-sit test and DROM captured by a motion analysis system before and after (i) static stretching for both hip flexor and extensor muscles (SFSE), (ii) dynamic stretching for both hip flexor and extensor muscles (DFDE), (iii) static stretching for the hip flexors and dynamic stretching for hip extensors (SFDE), and (iv) dynamic stretching for the hip flexors and static stretching for hip extensors (DFSE). DFSE showed a significantly higher increase in DROM and SROM than the remainder of the stretching protocols (P < 0.05). There were significant differences between DFDE with SFSE and SFDE (P < 0.05) and SFSE showed significant increase as compared to SFDE (P < 0.05). In conclusion, DFSE is probably the best stretching arrangement due to producing more post activation potentiation on agonist muscles and less muscle stiffness in antagonist muscles.

  15. Examining Magnetotail Stretching and Substorm Onsets using GOES Satellite Data and Information Theory

    NASA Astrophysics Data System (ADS)

    Johnson, J.; Verrill, N.; Horton, D.; Wing, S.

    2017-12-01

    Since the beginning of NOAA and NASA's Geostationary Operational Environmental Satellite (GOES) program in 1975, GOES satellites have been monitoring the geomagnetic field at geosynchronous orbit with onboard magnetometers. Using this GOES magnetometer data, we develop a state variable which characterizes the stretching of the near-Earth magnetotail by mapping the data to a central location within the magnetotail at geosynchronous distance (≈6.6 RE). Because the stretching of the magnetotail is thought to be related to the occurrence of substorms, we then assess the transfer entropy between the measure of tail stretching and substorm onsets in order to quantify the information content of our state variable with regards to substorms. Our results support the idea that stretching in the magnetotail precedes substorms and that the relationship is causal, which can be useful for magnetospheric activity and substorm predictions. We are currently assessing how well magnetic field measurements at geosynchronous orbit characterize tail stretching and their usefulness for predictions.

  16. Effects of Stretching Speed on Mechanical Rupture of Phospholipid/Cholesterol Bilayers: Molecular Dynamics Simulation

    PubMed Central

    Shigematsu, Taiki; Koshiyama, Kenichiro; Wada, Shigeo

    2015-01-01

    Rupture of biological cell membrane under mechanical stresses is critical for cell viability. It is triggered by local rearrangements of membrane molecules. We investigated the effects of stretching speed on mechanical rupture of phospholipid/cholesterol bilayers using unsteady molecular dynamics simulations. We focused on pore formation, the trigger of rupture, in a 40 mol% cholesterol-including bilayer. The unsteady stretching was modeled by proportional and temporal scaling of atom positions at stretching speeds from 0.025 to 30 m/s. The effects of the stretching speed on the critical areal strain, where the pore forms, is composed of two regimes. At low speeds (<1.0 m/s), the critical areal strain is insensitive to speed, whereas it significantly increases at higher speeds. Also, the strain is larger than that of a pure bilayer, regardless of the stretching speeds, which qualitatively agrees with available experimental data. Transient recovery of the cholesterol and phospholipid molecular orientations was evident at lower speeds, suggesting the formation of a stretch-induced interdigitated gel-like phase. However, this recovery was not confirmed at higher speeds or for the pure bilayer. The different responses of the molecular orientations may help explain the two regimes for the effect of stretching speed on pore formation. PMID:26471872

  17. The influence of mechanical stretching on mitosis, growth, and adipose conversion in adipocyte cultures.

    PubMed

    Shoham, Naama; Gefen, Amit

    2012-09-01

    The mechanotransduction of adipocytes is not well characterized in the literature. In this study, we employ stochastic modeling fitted to experiments for characterizing the influence of mechanical stretching delivered to adipocyte monolayers on the probabilities of commitment to the adipocyte lineage, mitosis, and growth after mitosis in 3T3-L1 adipocytes. We found that the probability of a cell to become committed to the adipocyte lineage in a single division when cultured on an elastic substrate was 0.025, which was indistinguishable between cultures that were radially stretched (to 12% strain) and control cultures. The probability of undergoing mitosis however was different between the groups, being 0.4 in the stretched cultures and 0.6 in the controls. The probability of growing after mitosis was affected by the stretching as well and was 0.9 and 0.8 in the stretched and control groups, respectively. We conclude that static stretching of the substrate of adipocyte cultures influences the mitotic potential of the cells as well as the growth potential post-mitosis. The present work provides better understanding of the mechanotransduction of adipocytes and in particular quantify how stretching influences the likelihood of cell proliferation and differentiation and, consequently, adipogenesis in the adipocyte cultures.

  18. Muscle oxygenation and fascicle length during passive muscle stretching in ballet-trained subjects.

    PubMed

    Otsuki, A; Fujita, E; Ikegawa, S; Kuno-Mizumura, M

    2011-07-01

    Muscle stretching transiently decreases muscle-blood flow corresponding to a muscle extension. It may disturb a balance between muscular oxygen demand and oxygen supply to muscles and reduce muscle oxygenation. However, muscle-stretching training may improve blood circulatory condition, resulting in the maintained muscle oxygenation during muscle stretching. The aim of this study was to investigate changes in muscle-blood volume (tHb) and tissue oxygenation index (TOI) during muscle stretching determined by using near-infrared spectroscopy (NIRS) in ballet-trained (BT) and untrained (C) subjects. 11 BT women who regularly perform muscle stretching and 11 C women participated in this study. Fascicle lengths, tHb and TOI in the tibialis anterior muscle were measured during passive plantar flexion from ankle joint angles of 120° (baseline) to 140°, 160°, the maximal comfortable position without pain (CP), and the maximal position (MP). At 160°, the % fascicle-length change from baseline was significantly lower in the BT than the C group, however, for the changes in tHb and TOI the significant interaction effect between the 2 groups was not detected. On the other hand, although the increases in the fascicle length from baseline to CP and MP were greater in BT than C, the tHb and TOI reductions were comparable between groups. We concluded that it appears that BT can extend their muscles without excessive reduction in muscle-blood volume and muscle oxygenation at relatively same but absolutely greater muscle-stretching levels than C. The attenuation in these indices during high-level muscle stretching may be associated with the repetitive muscle stretching of long-term ballet training. © Georg Thieme Verlag KG Stuttgart · New York.

  19. Effects of Combining Running and Practical Duration Stretching on Proprioceptive Skills of National Sprinters.

    PubMed

    Romero-Franco, Natalia; Párraga-Montilla, Juan Antonio; Molina-Flores, Enrique M; Jiménez-Reyes, Pedro

    2018-06-01

    Romero-Franco, N, Párraga-Montilla, JA, Molina-Flores, EM, and Jiménez-Reyes, P. Effects of combining running and practical duration stretching on proprioceptive skills of national sprinters. J Strength Cond Res XX(X): 000-000, 2018-Practical duration stretching after aerobic activities is a recommended component of the first part of warm-up because of its effects on performance. However, its effects on proprioceptive skills are unknown. This study aimed to analyze the effects of running and practical duration static stretching (SS) and dynamic stretching (DS) on postural balance and the joint position sense (JPS) of national sprinters. Thirty-two national sprinters were randomly classified into a SS group (n = 11), DS group (n = 11), or control group (n = 10). Static stretching performed 5 minutes of running and short-duration (20 seconds) static stretches; DS performed 5 minutes of running and short-duration dynamic (20 seconds) stretches; and the control group performed 5 minutes of running. Before and after the intervention, unipedal static postural balance and knee JPS were evaluated. Static stretching exhibited a more centralized center of pressure in the medial-lateral plane for unipedal static postural balance in right-leg support after stretching (p = 0.005, d = 1.24), whereas DS showed values further from the center after stretching for the same unipedal support compared with baseline (p = 0.042, d = 0.49), and the control group remained stable (p > 0.05). Joint position sense did not show significant differences in any group (p > 0.05). In conclusion, combining running and practical duration SS may be beneficial for right-leg postural stabilization, whereas DS may be partly and slightly deleterious. Both SS and DS combined with running and running alone have neutral effects on knee JPS. Sports professionals should consider running and practical duration SS as part of the warm-up of sprinters to partly improve unipedal static postural balance.

  20. Effects of Static Stretching on Squat Performance in Division I Female Athletes

    PubMed Central

    HEISEY, CLARE F.; KINGSLEY, J. DEREK

    2016-01-01

    Static stretching was once recognized as a method of preparation for physical activity that would inhibit performance and increase risk of injury. However, a growing body of research suggests that static stretching may not have an inhibitory effect. Regardless, the data have not examined gender differences or the fatigue index (FI) and flexibility effects of static stretching on the back squat over multiple sets. Therefore, the purpose of this study was to examine the relationship between a static-stretch condition (SC) and control condition (CC) on flexibility and the FI of Division I female athletes during 4 sets of the back squat. Eighteen subjects (mean ± SD; age 20 ± 1 yrs; height 164.5 ± 14.6 cm; mass 74.1 ± 26.8 kg; waist circumference 73.2 ± 5.4 cm) participated in 3 testing days over the course of 3 weeks. Each subject’s 1RM back squat was assessed during the first day of testing and verified during the second. On the third testing day, subjects assigned to the SC held 3 lower-body stretches twice for 30 second intervals and those assigned to the CC rested during the corresponding 7 minutes and 50 second time period. The subjects also performed a fatiguing squat protocol consisting of 4 sets of maximum repetitions on the third day of testing. A significant (p=0.04) interaction was noted for flexibility. No significant interaction (p=0.41) was observed between the FI of the CC (41.8 ± 24.1%) or the SC (27.6 ± 45.2%). These results indicate that static stretching does not have a significant effect on multiple sets of the back squat. Therefore, coaches may allow their athletes to engage in static stretching prior to resistance exercise ad libitum. PMID:27766127

  1. Designing a Robust Micromixer Based on Fluid Stretching

    NASA Astrophysics Data System (ADS)

    Mott, David; Gautam, Dipesh; Voth, Greg; Oran, Elaine

    2010-11-01

    A metric for measuring fluid stretching based on finite-time Lyapunov exponents is described, and the use of this metric for optimizing mixing in microfluidic components is explored. The metric is implemented within an automated design approach called the Computational Toolbox (CTB). The CTB designs components by adding geometric features, such a grooves of various shapes, to a microchannel. The transport produced by each of these features in isolation was pre-computed and stored as an "advection map" for that feature, and the flow through a composite geometry that combines these features is calculated rapidly by applying the corresponding maps in sequence. A genetic algorithm search then chooses the feature combination that optimizes a user-specified metric. Metrics based on the variance of concentration generally require the user to specify the fluid distributions at inflow, which leads to different mixer designs for different inflow arrangements. The stretching metric is independent of the fluid arrangement at inflow. Mixers designed using the stretching metric are compared to those designed using a variance of concentration metric and show excellent performance across a variety of inflow distributions and diffusivities.

  2. Fracture Toughness to Understand Stretch-Flangeability and Edge Cracking Resistance in AHSS

    NASA Astrophysics Data System (ADS)

    Casellas, Daniel; Lara, Antoni; Frómeta, David; Gutiérrez, David; Molas, Sílvia; Pérez, Lluís; Rehrl, Johannes; Suppan, Clemens

    2017-01-01

    The edge fracture is considered as a high risk for automotive parts, especially for parts made of advanced high strength steels (AHSS). The limited ductility of AHSS makes them more sensitive to the edge damage. The traditional approaches, such as those based on ductility measurements or forming limit diagrams, are unable to predict this type of fractures. Thus, stretch-flangeability has become an important formability parameter in addition to tensile and formability properties. The damage induced in sheared edges in AHSS parts affects stretch-flangeability, because the generated microcracks propagate from the edge. Accordingly, a fracture mechanics approach may be followed to characterize the crack propagation resistance. With this aim, this work addresses the applicability of fracture toughness as a tool to understand crack-related problems, as stretch-flangeability and edge cracking, in different AHSS grades. Fracture toughness was determined by following the essential work of fracture methodology and stretch-flangeability was characterized by means of hole expansions tests. Results show a good correlation between stretch-flangeability and fracture toughness. It allows postulating fracture toughness, measured by the essential work of fracture methodology, as a key material property to rationalize crack propagation phenomena in AHSS.

  3. A cell biologist's perspective on physiological adaptation to opiate drugs.

    PubMed

    von Zastrow, Mark

    2004-01-01

    Opiate drugs such as morphine and heroin are among the most effective analgesics known but are also highly addictive. The clinical utility of opiates is limited by adaptive changes in the nervous system occurring after prolonged or repeated drug administration. These adaptations are believed to play an important role in the development of physiological tolerance and dependence to opiates, and to contribute to additional changes underlying the complex neurobehavioral syndrome of drug addiction. All of these adaptive changes are initiated by the binding of opiate drugs to a subfamily of G protein-coupled receptors that are also activated by endogenously produced opioid neuropeptides. It is increasingly evident that opiate-induced adaptations occur at multiple levels in the nervous system, beginning with regulation of opioid receptors themselves and extending to a complex network of direct and indirect modifications of "downstream" signaling machinery. Efforts in my laboratory are directed at understanding the biochemical and cell biological basis of opiate adaptations. So far, we have focused primarily on adaptations occurring at the level of opioid receptors themselves. These studies have contributed to defining a set of membrane trafficking mechanisms by which the number and functional activity of opioid receptors are controlled. The role of these mechanisms in affecting adaptation of "downstream" neurobiological substrates, and in mediating opiate-induced changes in whole-animal physiology and behavior, are exciting questions that are only beginning to be explored.

  4. Dynamic "Range of Motion" Hindlimb Stretching Disrupts Locomotor Function in Rats with Moderate Subacute Spinal Cord Injuries.

    PubMed

    Keller, Anastasia; Rees, Kathlene; Prince, Daniella; Morehouse, Johnny; Shum-Siu, Alice; Magnuson, David

    2017-06-15

    Joint contractures and spasticity are two common secondary complications of a severe spinal cord injury (SCI), which can significantly reduce quality of life, and stretching is one of the top strategies for rehabilitation of these complications. We have previously shown that a daily static stretching protocol administered to rats at either acute or chronic time points after a moderate or moderate-severe T10 SCI significantly disrupts their hindlimb locomotor function. The objective of the current study was to examine the effects of dynamic range of motion (ROM) stretching on the locomotor function of rats with SCI as an alternative to static stretching. Starting at 6 weeks post-injury (T10 moderate contusion) eight adult Sprague-Dawley rats were subjected to hindlimb stretching for 4 weeks. Our standard stretching protocol (six maneuvers to stretch the major hindlimb muscle groups) was modified from 1 min static stretch-and-hold at the end ROM of each stretch position to a dynamic 2 sec hold, 1 sec release rhythm repeated for a duration of 1 min. Four weeks of daily (5 days/week) dynamic stretching led to significant disruption of locomotor function as assessed by the Basso, Beattie, Bresnahan (BBB) Open Field Locomotor Scale and three-dimensional (3D) kinematic and gait analyses. In addition, we identified and analyzed an apparently novel hindlimb response to dynamic stretch that resembles human clonus. The results of the current study extend the observation of the stretching phenomenon to a new modality of stretching that is also commonly used in SCI rehabilitation. Although mechanisms and clinical relevance still need to be established, our findings continue to raise concerns that stretching as a therapy can potentially hinder aspects of locomotor recovery.

  5. From Static Stretching to Dynamic Exercises: Changing the Warm-Up Paradigm

    ERIC Educational Resources Information Center

    Young, Shawna

    2010-01-01

    In the United States, pre-exercise static stretching seems to have become common practice and routine. However, research suggests that it is time for a paradigm shift--that pre-exercise static stretching be replaced with dynamic warm-up exercises. Research indicates that a dynamic warm-up elevates body temperature, decreases muscle and joint…

  6. Simultaneous Study of Mechanical Stretch-Induced Cell Proliferation and Apoptosis on C2C12 Myoblasts.

    PubMed

    Feng, Yu; Tian, Xiang-Yang; Sun, Peng; Cheng, Ze-Peng; Shi, Reng-Fei

    2018-06-27

    Mechanical stretch may cause myoblasts to either proliferate or undergo apoptosis. Identifying the molecular events that switch the fate of a stretched cell from proliferation to apoptosis is practically important in the field of regenerative medicine. A recent study on vascular smooth muscle cells illustrated that identification of these events may be achieved by addressing the stretch-induced opposite cellular outcomes simultaneously within a single investigation. To define conditions or a model in which both proliferation and apoptosis can be studied at the same time, we exposed in vitro cultured C2C12 myoblasts to a cyclic mechanical stretch regimen of 15% elongation at a stretching frequency of 1 Hz for 0, 2, 4, 6, or 8 h every day, consecutively, for 3 days. Both proliferation and apoptosis were observed. Moreover, as the duration of the stretch was prolonged, cell proliferation increased until it peaked at the optimal stretching duration. Afterwards, apoptosis gradually prevailed. Therefore, we established a model in which stretch-induced cell proliferation and apoptosis can be studied simultaneously. © 2018 S. Karger AG, Basel.

  7. Barriers to performing stretching exercises among Korean-Chinese female migrant workers in Korea.

    PubMed

    Lee, Hyeonkyeong; Wilbur, JoEllen; Chae, Duckhee; Lee, Kyongeun; Lee, Meenhye

    2015-01-01

    The purpose of this study was to investigate the barriers to performing stretching exercise experienced by Korean-Chinese female migrant workers during a community-based 12-week stretching exercise intervention trial. Qualitative secondary data analysis was conducted using telephone counseling interview transcripts from 27 middle-aged, Korean-Chinese migrant women workers. A semistructured interview question asking barriers to performing stretching exercise was given to women who did not adhere to recommended stretching exercise. During the 12-week home-based stretching exercise intervention trial, six telephone calls were made to participants biweekly to elicit barriers to performing stretching exercise. Directed content analysis approach was utilized using three barrier categories: intrapersonal, interpersonal, and work-related environmental factors based on the ecological model. Participants experienced an average of 2.5 barriers during the study period. Intrapersonal barriers included lack of time and lack of motivation, and interpersonal barriers included no family to provide support and also a feeling resistance from coworkers. Work-related environmental barriers included frequent job changes, long working hours, lack of rest time, and unpredictable job demands. The findings highlight that migrant workers in Korea face unique work-related difficulties which present barriers to exercise. © 2014 Wiley Periodicals, Inc.

  8. Cross-bridge mechanism of residual force enhancement after stretching in a skeletal muscle.

    PubMed

    Tamura, Youjiro

    2018-01-01

    A muscle model that uses a modified Langevin equation with actomyosin potentials was used to describe the residual force enhancement after active stretching. Considering that the new model uses cross-bridge theory to describe the residual force enhancement, it is different from other models that use passive stretching elements. Residual force enhancement was simulated using a half sarcomere comprising 100 myosin molecules. In this paper, impulse is defined as the integral of an excess force from the steady isometric force over the time interval for which a stretch is applied. The impulse was calculated from the force response due to fast and slow muscle stretches to demonstrate the viscoelastic property of the cross-bridges. A cross-bridge mechanism was proposed as a way to describe the residual force enhancement on the basis of the impulse results with reference to the compliance of the actin filament. It was assumed that the period of the actin potential increased by 0.5% and the amplitude of the potential decreased by 0.5% when the half sarcomere was stretched by 10%. The residual force enhancement after 21.0% sarcomere stretching was 6.9% of the maximum isometric force of the muscle; this value was due to the increase in the number of cross-bridges.

  9. Effects of hamstring stretching on passive muscle stiffness vary between hip flexion and knee extension maneuvers.

    PubMed

    Miyamoto, N; Hirata, K; Kanehisa, H

    2017-01-01

    The purpose of this study was to examine whether the effects of hamstring stretching on the passive stiffness of each of the long head of the biceps femoris (BFl), semitendinosus (ST), and semimembranosus (SM) vary between passive knee extension and hip flexion stretching maneuvers. In 12 male subjects, before and after five sets of 90 s static stretching, passive lengthening measurements where knee or hip joint was passively rotated to the maximal range of motion (ROM) were performed. During the passive lengthening, shear modulus of each muscle was measured by ultrasound shear wave elastography. Both stretching maneuvers significantly increased maximal ROM and decreased passive torque at a given joint angle. Passive knee extension stretching maneuver significantly reduced shear modulus at a given knee joint angle in all of BFl, ST, and SM. In contrast, the stretching effect by passive hip flexion maneuver was significant only in ST and SM. The present findings indicate that the effects of hamstring stretching on individual passive muscles' stiffness vary between passive knee extension and hip flexion stretching maneuvers. In terms of reducing the muscle stiffness of BFl, stretching of the hamstring should be performed by passive knee extension rather than hip flexion. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Effect of Static and Dynamic Stretching on the Diurnal Variations of Jump Performance in Soccer Players

    PubMed Central

    Chtourou, Hamdi; Aloui, Asma; Hammouda, Omar; Chaouachi, Anis; Chamari, Karim; Souissi, Nizar

    2013-01-01

    Purpose The present study addressed the lack of data on the effect of different types of stretching on diurnal variations in vertical jump height - i.e., squat-jump (SJ) and countermovement-jump (CMJ). We hypothesized that dynamic stretching could affect the diurnal variations of jump height by producing a greater increase in short-term maximal performance in the morning than the evening through increasing core temperature at this time-of-day. Methods Twenty male soccer players (age, 18.6±1.3 yrs; height, 174.6±3.8 cm; body-mass, 71.1±8.6 kg; mean ± SD) completed the SJ and CMJ tests either after static stretching, dynamic stretching or no-stretching protocols at two times of day, 07:00 h and 17:00 h, with a minimum of 48 hours between testing sessions. One minute after warming-up for 5 minutes by light jogging and performing one of the three stretching protocols (i.e., static stretching, dynamic stretching or no-stretching) for 8 minutes, each subject completed the SJ and CMJ tests. Jumping heights were recorded and analyzed using a two-way analysis of variance with repeated measures (3 [stretching]×2 [time-of-day]). Results The SJ and CMJ heights were significantly higher at 17:00 than 07:00 h (p<0.01) after the no-stretching protocol. These daily variations disappeared (i.e., the diurnal gain decreased from 4.2±2.81% (p<0.01) to 1.81±4.39% (not-significant) for SJ and from 3.99±3.43% (p<0.01) to 1.51±3.83% (not-significant) for CMJ) after dynamic stretching due to greater increases in SJ and CMJ heights in the morning than the evening (8.4±6.36% vs. 4.4±2.64%, p<0.05 for SJ and 10.61±5.49% vs. 6.03±3.14%, p<0.05 for CMJ). However, no significant effect of static stretching on the diurnal variations of SJ and CMJ heights was observed. Conclusion Dynamic stretching affects the typical diurnal variations of SJ and CMJ and helps to counteract the lower morning values in vertical jump height. PMID:23940589

  11. The purinergic component of human bladder smooth muscle cells’ proliferation and contraction under physiological stretch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wazir, Romel; Luo, De-Yi; Tian, Ye

    Highlights: •Stretch induces proliferation and contraction. •Optimum applied stretch in vitro is 5% and 10% equibiaxial stretching respectively. •Expression of P2X1 and P2X2 is upregulated after application of stretch. •P2X2 is possibly more susceptible to stretch related changes. •Purinoceptors functioning may explain conditions with atropine resistance. -- Abstract: Objective: To investigate whether cyclic stretch induces proliferation and contraction of human smooth muscle cells (HBSMCs), mediated by P2X purinoceptor 1 and 2 and the signal transduction mechanisms of this process. Methods: HBSMCs were seeded on silicone membrane and stretched under varying parameters; (equibiaxial elongation: 2.5%, 5%, 10%, 15%, 20%, 25%), (Frequency:more » 0.05 Hz, 0.1 Hz, 0.2 Hz, 0.5 Hz, 1 Hz). 5-Bromo-2-deoxyuridine assay was employed for proliferative studies. Contractility of the cells was determined using collagen gel contraction assay. After optimal physiological stretch was established; P2X1 and P2X2 were analyzed by real time polymerase chain reaction and Western Blot. Specificity of purinoceptors was maintained by employing specific inhibitors; (NF023 for P2X1, and A317491for P2X2), in some experiments. Results: Optimum proliferation and contractility were observed at 5% and 10% equibiaxial stretching respectively, applied at a frequency of 0.1 Hz; At 5% stretch, proliferation increased from 0.837 ± 0.026 (control) to 1.462 ± 0.023%, p < 0.05. Mean contraction at 10% stretching increased from 31.7 ± 2.3%, (control) to 78.28 ±1.45%, p < 0.05. Expression of P2X1 and P2X2 was upregulated after application of stretch. Inhibition had effects on proliferation (1.232 ± 0.051, p < 0.05 NF023) and (1.302 ± 0.021, p < 0.05 A314791) while contractility was markedly reduced (68.24 ± 2.31, p < 0.05 NF023) and (73.2 ± 2.87, p < 0.05 A314791). These findings shows that mechanical stretch can promote magnitude-dependent proliferative and contractile modulation of

  12. Metabolic adaptation to intermittent fasting is independent of peroxisome proliferator-activated receptor alpha.

    PubMed

    Li, Guolin; Brocker, Chad N; Yan, Tingting; Xie, Cen; Krausz, Kristopher W; Xiang, Rong; Gonzalez, Frank J

    2018-01-01

    Peroxisome proliferator-activated receptor alpha (PPARA) is a major regulator of fatty acid oxidation and severe hepatic steatosis occurs during acute fasting in Ppara-null mice. Thus, PPARA is considered an important mediator of the fasting response; however, its role in other fasting regiments such as every-other-day fasting (EODF) has not been investigated. Mice were pre-conditioned using either a diet containing the potent PPARA agonist Wy-14643 or an EODF regimen prior to acute fasting. Ppara-null mice were used to assess the contribution of PPARA activation during the metabolic response to EODF. Livers were collected for histological, biochemical, qRT-PCR, and Western blot analysis. Acute fasting activated PPARA and led to steatosis, whereas EODF protected against fasting-induced hepatic steatosis without affecting PPARA signaling. In contrast, pretreatment with Wy-14,643 did activate PPARA signaling but did not ameliorate acute fasting-induced steatosis and unexpectedly promoted liver injury. Ppara ablation exacerbated acute fasting-induced hypoglycemia, hepatic steatosis, and liver injury in mice, whereas these detrimental effects were absent in response to EODF, which promoted PPARA-independent fatty acid metabolism and normalized serum lipids. These findings indicate that PPARA activation prior to acute fasting cannot ameliorate fasting-induced hepatic steatosis, whereas EODF induced metabolic adaptations to protect against fasting-induced steatosis without altering PPARA signaling. Therefore, PPARA activation does not mediate the metabolic adaptation to fasting, at least in preventing acute fasting-induced steatosis. Published by Elsevier GmbH.

  13. Acute Effects of Different Agonist and Antagonist Stretching Arrangements on Static and Dynamic Range of Motion

    PubMed Central

    Amiri-Khorasani, Mohammadtaghi; Kellis, Eleftherios

    2015-01-01

    Background: Traditionally, stretching exercises are considered as basic components of warm up aiming to prepare the musculoskeletal system for performance and to prevent injuries. Objectives: The purpose of this study was to examine the effects of different agonist and antagonist stretching arrangements within a pre-exercise warm-up on hip static (SROM) and dynamic range of motion (DROM). Materials and Methods: Sixty trained male subjects (Mean ± SD: height, 177.38 ± 6.92 cm; body mass, 68.4 ± 10.22 kg; age, 21.52 ± 1.17 years) volunteered to participate in this study. SROM was measured by V-sit test and DROM captured by a motion analysis system before and after (i) static stretching for both hip flexor and extensor muscles (SFSE), (ii) dynamic stretching for both hip flexor and extensor muscles (DFDE), (iii) static stretching for the hip flexors and dynamic stretching for hip extensors (SFDE), and (iv) dynamic stretching for the hip flexors and static stretching for hip extensors (DFSE). Results: DFSE showed a significantly higher increase in DROM and SROM than the remainder of the stretching protocols (P < 0.05). There were significant differences between DFDE with SFSE and SFDE (P < 0.05) and SFSE showed significant increase as compared to SFDE (P < 0.05). Conclusions: In conclusion, DFSE is probably the best stretching arrangement due to producing more post activation potentiation on agonist muscles and less muscle stiffness in antagonist muscles. PMID:26715975

  14. Acute effects of static stretching on peak and end-range hamstring-to-quadriceps functional ratios.

    PubMed

    Sekir, Ufuk; Arabaci, Ramiz; Akova, Bedrettin

    2015-10-18

    To evaluate if static stretching influences peak and end-range functional hamstring-to-quadriceps (H/Q) strength ratios in elite women athletes. Eleven healthy female athletes in an elite competitive level participated to the study. All the participants fulfilled the static stretching or non-stretching (control) intervention protocol in a randomized design on different days. Two static unassisted stretching exercises, one in standing and one in sitting position, were used to stretch both the hamstring and quadriceps muscles during these protocols. The total time for the static stretching was 6 ± 1 min. The isokinetic peak torque measurements for the hamstring and quadriceps muscles in eccentric and concentric modes and the calculations for the functional H/Q strength ratios at angular velocities of 60°/s and 180°/s were made before (pre) and after (post) the control or stretching intervention. The strength measurements and functional strength ratio calculations were based during the entire- and end-range of knee extension. The pre-test scores for quadriceps and hamstring peak torque and end range values were not significantly different between the groups (P > 0.05). Subsequently, although the control group did not exhibit significant changes in quadriceps and hamstring muscle strength (P > 0.05), static stretching decreased eccentric and concentric quadriceps muscle strength at both the 60°/s and 180°/s test speeds (P < 0.01). Similarly, static stretching also decreased eccentric and concentric hamstring muscle strength at both the 60°/s and 180°/s test speeds (P < 0.01). On the other hand, when the functional H/Q strength ratios were taken into consideration, the pre-intervention values were not significant different between the groups both during the entire and end range of knee extension (P > 0.05). Furthermore, the functional H/Q strength ratios exhibited no significant alterations during the entire and end ranges of knee extension both in the static

  15. Acute effects of static stretching on peak and end-range hamstring-to-quadriceps functional ratios

    PubMed Central

    Sekir, Ufuk; Arabaci, Ramiz; Akova, Bedrettin

    2015-01-01

    AIM: To evaluate if static stretching influences peak and end-range functional hamstring-to-quadriceps (H/Q) strength ratios in elite women athletes. METHODS: Eleven healthy female athletes in an elite competitive level participated to the study. All the participants fulfilled the static stretching or non-stretching (control) intervention protocol in a randomized design on different days. Two static unassisted stretching exercises, one in standing and one in sitting position, were used to stretch both the hamstring and quadriceps muscles during these protocols. The total time for the static stretching was 6 ± 1 min. The isokinetic peak torque measurements for the hamstring and quadriceps muscles in eccentric and concentric modes and the calculations for the functional H/Q strength ratios at angular velocities of 60°/s and 180°/s were made before (pre) and after (post) the control or stretching intervention. The strength measurements and functional strength ratio calculations were based during the entire- and end-range of knee extension. RESULTS: The pre-test scores for quadriceps and hamstring peak torque and end range values were not significantly different between the groups (P > 0.05). Subsequently, although the control group did not exhibit significant changes in quadriceps and hamstring muscle strength (P > 0.05), static stretching decreased eccentric and concentric quadriceps muscle strength at both the 60°/s and 180°/s test speeds (P < 0.01). Similarly, static stretching also decreased eccentric and concentric hamstring muscle strength at both the 60°/s and 180°/s test speeds (P < 0.01). On the other hand, when the functional H/Q strength ratios were taken into consideration, the pre-intervention values were not significant different between the groups both during the entire and end range of knee extension (P > 0.05). Furthermore, the functional H/Q strength ratios exhibited no significant alterations during the entire and end ranges of knee extension

  16. Effect of chronic mitral valve damage on activity of pulmonary rapidly adapting receptors in the rabbit

    PubMed Central

    Gunawardena, S; Bravo, E; Kappagoda, C T

    1998-01-01

    The effects of acute pulmonary venous congestion on the activity of rapidly adapting receptors (RARs) were determined in intact (control and sham-operated) rabbits and in rabbits 6 and 12 weeks after surgical destruction of the mitral valve.Destruction of the mitral valve increased the mean left atrial pressure (LAP) by approximately 2·6 and 3·8 mmHg, 6 and 12 weeks after surgery, respectively. These changes were accompanied by significant increases in left ventricular weight. The effect of acute increments in LAP on RAR activity was examined against this background of chronic pulmonary venous congestion.In intact control and sham-operated animals RAR activity increased from 48·8 ± 0·9 to 83·5 ± 3·6 and 121·1 ± 4·7 action potentials min−1 when the LAP was raised by 5 and 10 mmHg, respectively, above control values. Six weeks after surgery only 40 % of RARs were activated in this way.In animals maintained for 12 weeks after surgery, RAR activity at LAPs of 6·6 ± 1·2 (control), 11·6 ± 1·2 and 16·6 ± 1·2 (mmHg) were 35·5 ± 2·3, 33·8 ± 14·4 and 34·0 ± 3·4 action potentials min−1, respectively. These changes were statistically not significant.Slowly adapting receptors (SARs) in the lung showed a small but statistically significant increase in activity when the left atrial pressure was acutely elevated in both intact and mitral valve damaged animals.It is concluded that chronic pulmonary venous congestion resulting from destruction of the mitral valve attenuates the ability of RARs to respond to acute moderate elevations of LAP. PMID:9679165

  17. Individually programmable cell stretching microwell arrays actuated by a Braille display.

    PubMed

    Kamotani, Yoko; Bersano-Begey, Tommaso; Kato, Nobuhiro; Tung, Yi-Chung; Huh, Dongeun; Song, Jonathan W; Takayama, Shuichi

    2008-06-01

    Cell culture systems are often static and are therefore nonphysiological. In vivo, many cells are exposed to dynamic surroundings that stimulate cellular responses in a process known as mechanotransduction. To recreate this environment, stretchable cell culture substrate systems have been developed, however, these systems are limited by being macroscopic and low throughput. We have developed a device consisting of 24 miniature cell stretching chambers with flexible bottom membranes that are deformed using the computer-controlled, piezoelectrically actuated pins of a Braille display. We have also developed efficient image capture and analysis protocols to quantify morphological responses of the cells to applied strain. Human dermal microvascular endothelial cells (HDMECs) were found to show increasing degrees of alignment and elongation perpendicular to the radial strain in response to cyclic stretch at increasing frequencies of 0.2, 1, and 5 Hz, after 2, 4, and 12h. Mouse myogenic C2C12 cells were also found to align in response to the stretch, while A549 human lung adenocarcinoma epithelial cells did not respond to stretch.

  18. Individually Programmable Cell Stretching Microwell Arrays Actuated by a Braille Display

    PubMed Central

    Kamotani, Yoko; Bersano-Begey, Tommaso; Kato, Nobuhiro; Tung, Yi-chung; Huh, Dongeun; Song, Jonathan W.; Takayama, Shuichi

    2008-01-01

    Cell culture systems are often static and are therefore nonphysiological. In vivo, many cells are exposed to dynamic surroundings that stimulate cellular responses in a process known as mechanotransduction. To recreate this environment, stretchable cell culture substrate systems have been developed, however these systems are limited by being macroscopic and low throughput. We have developed a device consisting of 24 miniature cell stretching chambers with flexible bottom membranes that are deformed using the computer-controlled, piezoelectrically actuated pins of a Braille display. We have also developed efficient image capture and analysis protocols to quantify morphological responses of the cells to applied strain. Human dermal microvascular endothelial cells (HDMECs) were found to show increasing degrees of alignment and elongation perpendicular to the radial strain in response to cyclic stretch at increasing frequencies of 0.2, 1, and 5 Hz, after 2, 4, and 12 hours. Mouse myogenic C2C12 cells were also found to align in response to the stretch, while A549 human lung adenocarcinoma epithelial cells did not respond to stretch. PMID:18342367

  19. To Stretch and Search for Better Ways

    NASA Astrophysics Data System (ADS)

    Moore, John W.

    2000-06-01

    There's a lot to do to get each issue of this Journal ready for publication, and there's a lot that can go awry during that process. We the editorial staff do our utmost to make certain that each issue is the best it can possibly be, but, of necessity, a lot of our effort is focused on solving problems, correcting errors, and avoiding pitfalls. It is not surprising that we sometimes lose sight of the bigger picture--all of the things that came out as well as or better than we hoped they would. Therefore it gives us great pleasure when a reader applauds (and thereby rewards) our efforts. One such communication inspired this editorial.

    I have appreciated the extra effort put forward by the staff to make the Journal really come alive. The high quality of the Journal serves as an incentive to chemical educators to stretch and search for better ways to inspire our students.
    I fervently hope that we do encourage you "to stretch and search for better ways", not only to inspire students but in everything you do. Stretching and searching for better ways is what life, science, chemistry, and teaching are all about, and it is a wonderfully stimulating and exciting way to approach anything and everything. Sometimes, though, one's ability to stretch is akin to that of a rubber band exposed too long to sunlight. Change becomes a threat or a burden instead of an opportunity. This often happens in one area but not others, as in the case of someone doing original research but whose lecture notes are yellow with age, or someone who experiments with new teaching approaches but neglects the latest chemical discoveries. Whatever its manifestation, failure to stretch and search for better ways is a great loss, both for the individual directly involved and for others. Fortunately there are many who continually stretch and search, often in conjunction with JCE. For example, some time ago the Chair of the Board of Publication, Jerry Bell, challenged Journal

  20. Stretching Reduces Skin Thickness and Improves Subcutaneous Tissue Mobility in a Murine Model of Systemic Sclerosis.

    PubMed

    Xiong, Ying; Berrueta, Lisbeth; Urso, Katia; Olenich, Sara; Muskaj, Igla; Badger, Gary J; Aliprantis, Antonios; Lafyatis, Robert; Langevin, Helene M

    2017-01-01

    Although physical therapy can help preserve mobility in patients with systemic sclerosis (SSc), stretching has not been used systematically as a treatment to prevent or reverse the disease process. We previously showed in rodent models that stretching promotes the resolution of connective tissue inflammation and reduces new collagen formation after injury. Here, we tested the hypothesis that stretching would impact scleroderma development using a mouse sclerodermatous graft-versus-host disease (sclGvHD) model. The model consists in the adoptive transfer (allogeneic) of splenocytes from B10.D2 mice (graft) into Rag2 -/- BALB/c hosts (sclGvHD), resulting in skin inflammation followed by fibrosis over 4 weeks. SclGvHD mice and controls were randomized to stretching in vivo for 10 min daily versus no stretching. Weekly ultrasound measurements of skin thickness and subcutaneous tissue mobility in the back (relative tissue displacement during passive trunk motion) successfully captured the different phases of the sclGvHD model. Stretching reduced skin thickness and increased subcutaneous tissue mobility compared to no stretching at week 3. Stretching also reduced the expression of CCL2 and ADAM8 in the skin at week 4, which are two genes known to be upregulated in both murine sclGvHD and the inflammatory subset of human SSc. However, there was no evidence that stretching attenuated inflammation at week 2. Daily stretching for 10 min can improve skin thickness and mobility in the absence of any other treatment in the sclGvHD murine model. These pre-clinical results suggest that a systematic investigation of stretching as a therapeutic modality is warranted in patients with SSc.

  1. Effectiveness of Manual Therapy and Stretching for Baseball Players With Shoulder Range of Motion Deficits.

    PubMed

    Bailey, Lane B; Thigpen, Charles A; Hawkins, Richard J; Beattie, Paul F; Shanley, Ellen

    Baseball players displaying deficits in shoulder range of motion (ROM) are at increased risk of arm injury. Currently, there is a lack of consensus regarding the best available treatment options to restore shoulder ROM. Instrumented manual therapy with self-stretching will result in clinically significant deficit reductions when compared with self-stretching alone. Controlled laboratory study. Shoulder ROM and humeral torsion were assessed in 60 active baseball players (mean age, 19 ± 2 years) with ROM deficits (nondominant - dominant, ≥15°). Athletes were randomly assigned to receive a single treatment of instrumented manual therapy plus self-stretching (n = 30) or self-stretching only (n = 30). Deficits in internal rotation, horizontal adduction, and total arc of motion were compared between groups immediately before and after a single treatment session. Treatment effectiveness was determined by mean comparison data, and a number-needed-to-treat (NNT) analysis was used for assessing the presence of ROM risk factors. Prior to intervention, players displayed significant ( P < 0.001) dominant-sided deficits in internal rotation (-26°), total arc of motion (-18°), and horizontal adduction (-17°). After the intervention, both groups displayed significant improvements in ROM, with the instrumented manual therapy plus self-stretching group displaying greater increases in internal rotation (+5°, P = 0.010), total arc of motion (+6°, P = 0.010), and horizontal adduction (+7°, P = 0.004) compared with self-stretching alone. For horizontal adduction deficits, the added use of instrumented manual therapy with self-stretching decreased the NNT to 2.2 (95% CI, 2.1-2.4; P = 0.010). Instrumented manual therapy with self-stretching significantly reduces ROM risk factors in baseball players with motion deficits when compared with stretching alone. The added benefits of manual therapy may help to reduce ROM deficits in clinical scenarios where stretching alone is

  2. [Current trends in the effects of stretching: application to physical exercise in the workplace].

    PubMed

    Eguchi, Yasumasa; Ohta, Masanori; Yamato, Hiroshi

    2011-09-01

    A review of the Survey on the State of Employees' Health by the Ministry of Health, Labour and Welfare (2008) shows that the most commonly implemented aspect as an activity of worksite health promotion is "Health counseling", and the second is "Workplace physical exercise." Physical exercise, "Taiso", is acceptable and sustainable for workers, as it is easy to do in a group or alone. Various modes of stretching are implemented for workplace physical exercise. However, articles suggesting negative or contradictory effects of stretching have increased in recent years. Several review articles have revealed that static stretching may induce impairments of muscle power performance and no stretching will prevent or reduce muscle soreness after exercise. There are various aims of workplace physical exercise, so we have to consider the situational method when we apply stretching to occupational health.

  3. High altitude simulation, substance P and airway rapidly adapting receptor activity in rabbits.

    PubMed

    Bhagat, R; Yasir, A; Vashisht, A; Kulshreshtha, R; Singh, S B; Ravi, K

    2011-09-15

    To investigate whether there is a change in airway rapidly adapting receptor (RAR) activity during high altitude exposure, rabbits were placed in a high altitude simulation chamber (barometric pressure, 429 mm Hg). With 12 h exposure, when there was pulmonary congestion, an increase in basal RAR activity was observed. With 36 h exposure, when there was alveolar edema, there was a further increase in basal RAR activity. In these backgrounds, there was an increase in the sensitivity of the RARs to substance P (SP). To assess whether there was an increase in lung SP level, neutral endopeptidase activity was determined which showed a decrease in low barometric pressure exposed groups. It is concluded that along with the SP released, pulmonary congestion and edema produced, respectively by different durations of low barometric pressure exposure cause a progressive increase in RAR activity which may account for the respiratory symptoms reported in climbers who are unacclimatized. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Permeability of C2C12 myotube membranes is influenced by stretch velocity.

    PubMed

    Burkholder, Thomas J

    2003-05-30

    Mechanical signals are critical to the growth and maintenance of skeletal muscle, but the mechanism by which these signals are transduced by the cell remains unknown. This work examined the hypothesis that stretch conditions influence membrane permeability consistent with a role for membrane permeability in mechanotransduction. C2C12 myotubes were grown in conditions that encourage uniform alignment and subjected to uniform mechanical deformation in the presence of fluorescein labeled dextran to evaluate membrane permeability as a function of stretch amplitude and velocity. Within a physiologically relevant range of conditions, a complex interaction between the two aspects of stretch was observed, with velocity contributing most strongly at large stretch amplitudes. This suggests that membrane viscosity could contribute to mechanotransduction.

  5. Acute Lower Extremity Running Kinematics After a Hamstring Stretch

    PubMed Central

    Davis Hammonds, Autumn L.; Laudner, Kevin G.; McCaw, Steve; McLoda, Todd A.

    2012-01-01

    Context: Limited passive hamstring flexibility might affect kinematics, performance, and injury risk during running. Pre-activity static straight-leg raise stretching often is used to gain passive hamstring flexibility. Objective: To investigate the acute effects of a single session of passive hamstring stretching on pelvic, hip, and knee kinematics during the swing phase of running. Design: Randomized controlled clinical trial. Setting: Biomechanics research laboratory. Patients or Other Participants: Thirty-four male (age = 21.2 ± 1.4 years) and female (age = 21.3±2.0 years) recreational athletes. Intervention(s): Participants performed treadmill running pretests and posttests at 70% of their age-predicted maximum heart rate. Pelvis, hip, and knee joint angles during the swing phase of 5 consecutive gait cycles were collected using a motion analysis system. Right and left hamstrings of the intervention group participants were passively stretched 3 times for 30 seconds in random order immediately after the pretest. Control group participants performed no stretching or movement between running sessions. Main Outcome Measure(s): Six 2-way analyses of variance to determine joint angle differences between groups at maximum hip flexion and maximum knee extension with an α level of .008. Results: Flexibility increased between pretest and post-test in all participants (F1,30 = 80.61, P<.001). Anterior pelvic tilt (F1,30 = 0.73, P=.40), hip flexion (F1,30 = 2.44, P=.13), and knee extension (F1,30 = 0.06, P=.80) at maximum hip flexion were similar between groups throughout testing. Anterior pelvic tilt (F1,30 = 0.69, P=.41), hip flexion (F1,30 = 0.23, P=.64), and knee extension (F1,30 = 3.38, P=.62) at maximum knee extension were similar between groups throughout testing. Men demonstrated greater anterior pelvic tilt than women at maximum knee extension (F1,30 = 13.62, P=.001). Conclusions: A single session of 3 straight-leg raise hamstring stretches did not change

  6. Image stretching on a curved surface to improve satellite gridding

    NASA Technical Reports Server (NTRS)

    Ormsby, J. P.

    1975-01-01

    A method for substantially reducing gridding errors due to satellite roll, pitch and yaw is given. A gimbal-mounted curved screen, scaled to 1:7,500,000, is used to stretch the satellite image whereby visible landmarks coincide with a projected map outline. The resulting rms position errors averaged 10.7 km as compared with 25.6 and 34.9 km for two samples of satellite imagery upon which image stretching was not performed.

  7. Role of Ca2+ signaling in initiation of stretch-induced apoptosis in neonatal heart cells.

    PubMed

    Liao, Xu Dong; Tang, Ai Hui; Chen, Quan; Jin, Hai Jing; Wu, Cai Hong; Chen, Lan-Ying; Wang, Shi Qiang

    2003-10-17

    Abnormal mechanical load, as seen in hypertension, is found to induce heart cell apoptosis, yet the signaling link between cell stretch and apoptotic pathways is not known. Using an in vitro stretch model mimicking diastolic pressure stress, here we show that Ca(2+) signaling participates essentially in the early stage of stretch-induced apoptosis. In neonatal rat cardiomyocytes, the moderate 20% stretch resulted in tonic elevation of intracellular free Ca(2+) ([Ca(2+)](i)). Buffering [Ca(2+)](i) by EGTA-AM, suppressing ryanodine-sensitive Ca(2+) release, and blocking L-type Ca(2+) channels all prevented the stretch-induced apoptosis as assessed by phosphatidylserine exposure and nuclear fragmentation. Notably, Ca(2+) suppression also prevented known stretch-activated apoptotic events, including caspase-3/-9 activation, mitochondrial membrane potential corruption, and reactive oxygen species production, suggesting that Ca(2+) signaling is the upstream of these events. Since [Ca(2+)](i) did not change without activating mechanosensitive Ca(2+) entry, we conclude that stretch-induced Ca(2+) entry, via the Ca(2+)-induced Ca(2+) release mechanism, plays an important role in initiating apoptotic signaling during mechanical stress.

  8. Effects of Plantar Flexor Muscle Static Stretching Alone and Combined With Massage on Postural Balance.

    PubMed

    Hemmati, Ladan; Rojhani-Shirazi, Zahra; Ebrahimi, Samaneh

    2016-10-01

    To evaluate and compare the effects of stretching and combined therapy (stretching and massage) on postural balance in people aged 50 to 65 years. Twenty-three subjects participated in this nonrandomized clinical trial study. Each participant randomly received plantar flexor muscle stretching (3 cycles of 45 seconds with a 30-second recovery period between cycles) alone and in combination with deep stroking massage (an interval of at least 30 minutes separated the two interventions). The data were recorded with a force platform immediately after each condition with eyes open and closed. The center of pressure displacement and velocity along the mediolateral and anteroposterior axes were calculated under each condition. The data were analyzed with multiple-pair t-tests. The center of pressure displacement and velocity along the mediolateral axis increased after both stretching and the combined intervention. There were significant differences in both values between participants in the stretching and combined interventions (p<0.05). Plantar flexor muscle stretching (for 45 seconds) combined with deep stroking massage may have more detrimental effects on postural balance than stretching alone because each intervention can intensify the effects of the other.

  9. Prolonged passive static stretching-induced innervation zone shift in biceps brachii.

    PubMed

    Ye, Xin; Beck, Travis W; Wages, Nathan P

    2015-05-01

    The purpose of this study was to examine the influence of a bout of repeated and prolonged passive static stretching on the innervation zone (IZ) location of the human biceps brachii muscle. Eleven men performed 12 sets of 100-s passive stretches on their biceps brachii. Before (Pre) and immediately after (Post) the stretching intervention, isometric strength was tested during the maximal voluntary contractions (MVCs) of the forearm flexors. The subjects also performed several separate isometric forearm flexion muscle actions at 30%, 50%, and 70% of their predetermined MVCs for examining the locations of the IZ at different contraction intensities. The IZ was identified through multi-channel surface electromyographic (EMG) recordings from a linear electrode array. The stretching intervention induced an average of 10% isometric strength loss for the forearm flexors (mean±SD: Pre-MVC vs. Post-MVC=332.12±59.40 N vs. 299.53±70.51 N; p<0.001). In addition, the average IZ shift was nearly 4.5 mm in average in the proximal direction. However, this shift was not specific to the contraction intensity. We believe that the IZ shift was caused by the elongation of the entire muscle-tendon unit in the proximal direction. Therefore, caution should be taken when using surface EMG technique to examine possible changes in the EMG variables after a stretching protocol, as these variables can be contaminated by the shift of the IZ.

  10. Flexibility training in preadolescent female athletes: Acute and long-term effects of intermittent and continuous static stretching.

    PubMed

    Donti, Οlyvia; Papia, Konstantina; Toubekis, Argyris; Donti, Anastasia; Sands, William A; Bogdanis, Gregory C

    2018-07-01

    This study compared the acute and long-term effects of intermittent and continuous static stretching training on straight leg raise range of motion (ROM). Seventy-seven preadolescent female gymnasts were divided into a stretching (n = 57), and a control group (n = 20). The stretching group performed static stretching of the hip extensors of both legs, three times per week for 15 weeks. One leg performed intermittent (3 × 30 s with 30 s rest) while the other leg performed continuous stretching (90 s). ROM pre- and post-stretching was measured at baseline, on weeks 3, 6, 9, 12, 15 and after 2 weeks of detraining. ROM was increased during both intermittent and continuous stretching training, but remained unchanged in the control group. Intermittent stretching conferred a larger improvement in ROM compared to both continuous stretching and control from week 3, until the end of training, and following detraining (p = 0.045 to 0.001 and d = 0.80 to 1.41). During detraining, ROM after the intermittent protocol decreased (p = 0.001), while it was maintained after the continuous protocol (p = 0.36). Acute increases in ROM following the intermittent stretching were also larger than in the continuous (p = 0.038). Intermittent stretching was more effective than continuous, for both long-term and acute ROM enhancement in preadolescent female athletes.

  11. Intraplaque stretch in carotid atherosclerotic plaque--an effective biomechanical predictor for subsequent cerebrovascular ischemic events.

    PubMed

    Teng, Zhongzhao; Sadat, Umar; Wang, Wenkai; Bahaei, Nasim S; Chen, Shengyong; Young, Victoria E; Graves, Martin J; Gillard, Jonathan H

    2013-01-01

    Stretch is a mechanical parameter, which has been proposed previously to affect the biological activities in different tissues. This study explored its utility in determining plaque vulnerability. One hundred and six patients with mild to moderate carotid stenosis were recruited in this study (53 symptomatic and 53 asymptomatic). High resolution, multi-sequence magnetic resonance (MR) imaging was performed to delineate various plaque components. Finite element method was used to predict high stretch concentration within the plaque. During a two-year follow-up, 11 patients in symptomatic group and 3 in asymptomatic group experienced recurrent cerebrovascular events. Plaque stretch at systole and stretch variation during one cardiac cycle was greater in symptomatic group than those in the asymptomatic. Within the symptomatic group, a similar trend was observed in patients with recurrent events compared to those without. Plaques with high stretch concentration and large stretch variation are associated with increased risk of future cerebrovascular events.

  12. Near Surface Vapor Bubble Layers in Buoyant Low Stretch Burning of Polymethylmethacrylate

    NASA Technical Reports Server (NTRS)

    Olson, Sandra L.; Tien, J. S.

    1999-01-01

    Large-scale buoyant low stretch stagnation point diffusion flames over solid fuel (polymethylmethacrylate) were studied for a range of aerodynamic stretch rates of 2-12/ sec which are of the same order as spacecraft ventilation-induced stretch in a microgravity environment. An extensive layer of polymer material above the glass transition temperature is observed. Unique phenomena associated with this extensive glass layer included substantial swelling of the burning surface, in-depth bubble formation, and migration and/or elongation of the bubbles normal to the hot surface. The bubble layer acted to insulate the polymer surface by reducing the effective conductivity of the solid. The reduced in-depth conduction stabilized the flame for longer than expected from theory neglecting the bubble layer. While buoyancy acts to move the bubbles deeper into the molten polymer, thermocapillary forces and surface regression both act to bring the bubbles to the burning surface. Bubble layers may thus be very important in low gravity (low stretch) burning of materials. As bubbles reached the burning surface, monomer fuel vapors jetted from the surface, enhancing burning by entraining ambient air flow. Popping of these bubbles at the surface can expel burning droplets of the molten material, which may increase the fire propagation hazards at low stretch rates.

  13. Biochemical analysis of force-sensitive responses using a large-scale cell stretch device.

    PubMed

    Renner, Derrick J; Ewald, Makena L; Kim, Timothy; Yamada, Soichiro

    2017-09-03

    Physical force has emerged as a key regulator of tissue homeostasis, and plays an important role in embryogenesis, tissue regeneration, and disease progression. Currently, the details of protein interactions under elevated physical stress are largely missing, therefore, preventing the fundamental, molecular understanding of mechano-transduction. This is in part due to the difficulty isolating large quantities of cell lysates exposed to force-bearing conditions for biochemical analysis. We designed a simple, easy-to-fabricate, large-scale cell stretch device for the analysis of force-sensitive cell responses. Using proximal biotinylation (BioID) analysis or phospho-specific antibodies, we detected force-sensitive biochemical changes in cells exposed to prolonged cyclic substrate stretch. For example, using promiscuous biotin ligase BirA* tagged α-catenin, the biotinylation of myosin IIA increased with stretch, suggesting the close proximity of myosin IIA to α-catenin under a force bearing condition. Furthermore, using phospho-specific antibodies, Akt phosphorylation was reduced upon stretch while Src phosphorylation was unchanged. Interestingly, phosphorylation of GSK3β, a downstream effector of Akt pathway, was also reduced with stretch, while the phosphorylation of other Akt effectors was unchanged. These data suggest that the Akt-GSK3β pathway is force-sensitive. This simple cell stretch device enables biochemical analysis of force-sensitive responses and has potential to uncover molecules underlying mechano-transduction.

  14. Unconsciously triggered conflict adaptation.

    PubMed

    van Gaal, Simon; Lamme, Victor A F; Ridderinkhof, K Richard

    2010-07-09

    In conflict tasks such as the Stroop, the Eriksen flanker or the Simon task, it is generally observed that the detection of conflict in the current trial reduces the impact of conflicting information in the subsequent trial; a phenomenon termed conflict adaptation. This higher-order cognitive control function has been assumed to be restricted to cases where conflict is experienced consciously. In the present experiment we manipulated the awareness of conflict-inducing stimuli in a metacontrast masking paradigm to directly test this assumption. Conflicting response tendencies were elicited either consciously (through primes that were weakly masked) or unconsciously (strongly masked primes). We demonstrate trial-by-trial conflict adaptation effects after conscious as well as unconscious conflict, which could not be explained by direct stimulus/response repetitions. These findings show that unconscious information can have a longer-lasting influence on our behavior than previously thought and further stretch the functional boundaries of unconscious cognition.

  15. Unconsciously Triggered Conflict Adaptation

    PubMed Central

    van Gaal, Simon; Lamme, Victor A. F.; Ridderinkhof, K. Richard

    2010-01-01

    In conflict tasks such as the Stroop, the Eriksen flanker or the Simon task, it is generally observed that the detection of conflict in the current trial reduces the impact of conflicting information in the subsequent trial; a phenomenon termed conflict adaptation. This higher-order cognitive control function has been assumed to be restricted to cases where conflict is experienced consciously. In the present experiment we manipulated the awareness of conflict-inducing stimuli in a metacontrast masking paradigm to directly test this assumption. Conflicting response tendencies were elicited either consciously (through primes that were weakly masked) or unconsciously (strongly masked primes). We demonstrate trial-by-trial conflict adaptation effects after conscious as well as unconscious conflict, which could not be explained by direct stimulus/response repetitions. These findings show that unconscious information can have a longer-lasting influence on our behavior than previously thought and further stretch the functional boundaries of unconscious cognition. PMID:20634898

  16. No significant correlation between the intensity of static stretching and subject's perception of pain.

    PubMed

    Lim, Wootaek; Park, Hyunju

    2017-10-01

    [Purpose] The purpose of this study was to determine whether the intensity of static stretching measured quantitatively is related to subjects' perception of pain. [Subjects and Methods] Sixty-eight participants were recruited. Static stretching was performed once for 30 seconds while maintaining the knee at 0° flexion and was continued to the point where pain was recognized. The intensity of stretching exerted by the practitioner was quantitatively measured by using a handheld dynamometer (HHD). A subject's pain scaled on one's perception was measured by using the visual analog scale (VAS). [Results] No significant correlation was found between the intensity of stretching and the VAS score representing the subject's pain scaled on one's perception. In this study, the most frequent VAS score was 7, and the mean VAS score was 5.57 ± 1.77. The stretching intensity measured by using a HHD ranged from 28.4 to 133.0 N (mean, 72.04 ± 22.37 N). [Conclusion] This study showed that the intensity of stretching quantitatively measured by using HHD did not correlate with the degree of pain reported by the subjects. Therefore, subjective responses cannot guarantee a consistent application of intensity.

  17. Developmental axon stretch stimulates neuron growth while maintaining normal electrical activity, intracellular calcium flux, and somatic morphology

    PubMed Central

    Loverde, Joseph R.; Pfister, Bryan J.

    2015-01-01

    Elongation of nerve fibers intuitively occurs throughout mammalian development, and is synchronized with expansion of the growing body. While most tissue systems enlarge through mitosis and differentiation, elongation of nerve fibers is remarkably unique. The emerging paradigm suggests that axons undergo stretch as contiguous tissues enlarge between the proximal and distal segments of spanning nerve fibers. While stretch is distinct from growth, tension is a known stimulus which regulates the growth of axons. Here, we hypothesized that the axon stretch-growth process may be a natural form of injury, whereby regenerative processes fortify elongating axons in order to prevent disconnection. Harnessing the live imaging capability of our axon stretch-growth bioreactors, we assessed neurons both during and following stretch for biomarkers associated with injury. Utilizing whole-cell patch clamp recording, we found no evidence of changes in spontaneous action potential activity or degradation of elicited action potentials during real-time axon stretch at strains of up to 18% applied over 5 min. Unlike traumatic axonal injury, functional calcium imaging of the soma revealed no shifts in free intracellular calcium during axon stretch. Finally, the cross-sectional areas of nuclei and cytoplasms were normal, with no evidence of chromatolysis following week-long stretch-growth limited to the lower of 25% strain or 3 mm total daily stretch. The neuronal growth cascade coupled to stretch was concluded to be independent of the changes in membrane potential, action potential generation, or calcium flux associated with traumatic injury. While axon stretch-growth is likely to share overlap with regenerative processes, we conclude that developmental stretch is a distinct stimulus from traumatic axon injury. PMID:26379492

  18. Cyclical cell stretching of skin-derived fibroblasts downregulates connective tissue growth factor (CTGF) production.

    PubMed

    Kanazawa, Yuichiro; Nomura, Jun; Yoshimoto, Shinya; Suzuki, Toshikazu; Kita, Kazuko; Suzuki, Nobuo; Ichinose, Masaharu

    2009-01-01

    Delayed healing of skin wounds can be caused by wound instability, whereas appropriate massage or exercise prevents sclerosis and scar contracture. However, the mechanism by which wound healing is related to mechanical stress has not been fully elucidated. The present study aimed to identify whether mechanical stretching of fibroblasts reduces their production of extracellular matrix. We transferred skin fibroblasts into collagen-coated elastic silicone chambers, cultured them on a stretching apparatus, and used RT-PCR to examine the effects of mechanical stretching on the expression levels of 17 genes related to extracellular matrix production and growth factor secretion. We found that connective tissue growth factor (CTGF) was downregulated after 24 hr of cell stretching. Specifically, the CTGF mRNA and protein levels were 50% and 48% of the control levels, respectively. These findings suggest that cyclic stretching of fibroblasts contributes to anti-fibrotic processes by reducing CTGF production.

  19. The acute benefits and risks of passive stretching to the point of pain.

    PubMed

    Muanjai, Pornpimol; Jones, David A; Mickevicius, Mantas; Satkunskiene, Danguole; Snieckus, Audrius; Skurvydas, Albertas; Kamandulis, Sigitas

    2017-06-01

    This study evaluated the acute effects of two different stretch intensities on muscle damage and extensibility. Twenty-two physically active women (age 20 ± 1.0 years) were divided into two matched groups and undertook eight sets of 30-s passive hamstring stretching. One group stretched to the point of discomfort (POD) and the other to the point of pain (POP). Hamstring passive torque, sit and reach (S&R), straight leg raise (SLR), and markers of muscle damage were measured before, immediately after stretching and 24 h later. S&R acutely increased and was still increased at 24 h with median (interquartile range) of 2.0 cm (0.5-3.75 cm) and 2.0 cm (0.25-3.0 cm) for POP and POD (p < 0.05), respectively, with no difference between groups; similar changes were seen with SLR. Passive stiffness fully recovered by 24 h and there was no torque deficit. A small, but significant increase in muscle tenderness occurred at 24 h in both groups and there was a very small increase in thigh circumference in both groups which persisted at 24 h in POP. Plasma CK activity was not raised at 24 h. Stretching to the point of pain had no acute advantages over stretching to the discomfort point. Both forms of stretching resulted in very mild muscle tenderness but with no evidence of muscle damage. The increased ROM was not associated with changes in passive stiffness of the muscle but most likely resulted from increased tolerance of the discomfort.

  20. [Role of thyroid system in adaptation to cold].

    PubMed

    Maslov, L N; Vychuzhanova, E A; Gorbunov, A S; Tsybul'nikov, S Iu; Khaliulin, I G; Chauski, E

    2014-06-01

    Adaptation to cold promotes an increase in blood T3 and T4 levels in men and animals. The long-term cold exposure can induce a decrease in concentration of serum total and free T3 in human due to an enhancement of this hormone clearance. Endogenous catecholamines during adaptation to cold raise iodothyronine deiodinase D2 activity in brown fat due to α1-adrenergic receptor stimulation. Triiodothyronine is an inductor of iodothyronine deiodinase expression in brown fat, liver and kidney. Iodothyronine deiodinase D2 plays an important role in adaptation of organism to cold contributing to the high adrenergic reactivity of brown fat. At adaptation to cold T3 interacts with T3Rβ, it is formed T3Rβ-RXR complex, which binds to DNA with following transcription of UCP-1 and UCP-3 genes and UCP-1 and UCP-3 protein synthesis and uncoupling oxidative phosphorylation and an increase in heat production, where T3Rβ is T3-receptor-β, RXR is retinoid X-receptor, UCP is uncoupling protein. Triiodothyronine contributes to normal response to adrenergic agents of brown fat due to T3Rα activation. Sympatho-adrenomedullary and thyroid systems act as synergists in adaptation to cold.

  1. Dystrophic cardiomyopathy: role of TRPV2 channels in stretch-induced cell damage.

    PubMed

    Lorin, Charlotte; Vögeli, Isabelle; Niggli, Ernst

    2015-04-01

    Duchenne muscular dystrophy (DMD), a degenerative pathology of skeletal muscle, also induces cardiac failure and arrhythmias due to a mutation leading to the lack of the protein dystrophin. In cardiac cells, the subsarcolemmal localization of dystrophin is thought to protect the membrane from mechanical stress. The absence of dystrophin results in an elevated stress-induced Ca2+ influx due to the inadequate functioning of several proteins, such as stretch-activated channels (SACs). Our aim was to investigate whether transient receptor potential vanilloid channels type 2 (TRPV2) form subunits of the dysregulated SACs in cardiac dystrophy. We defined the role of TRPV2 channels in the abnormal Ca2+ influx of cardiomyocytes isolated from dystrophic mdx mice, an established animal model for DMD. In dystrophic cells, western blotting showed that TRPV2 was two-fold overexpressed. While normally localized intracellularly, in myocytes from mdx mice TRPV2 channels were translocated to the sarcolemma and were prominent along the T-tubules, as indicated by immunocytochemistry. Membrane localization was confirmed by biotinylation assays. Furthermore, in mdx myocytes pharmacological modulators suggested an abnormal activity of TRPV2, which has a unique pharmacological profile among TRP channels. Confocal imaging showed that these compounds protected the cells from stress-induced abnormal Ca2+ signals. The involvement of TRPV2 in these signals was confirmed by specific pore-blocking antibodies and by small-interfering RNA ablation of TRPV2. Together, these results establish the involvement of TRPV2 in a stretch-activated calcium influx pathway in dystrophic cardiomyopathy, contributing to the defective cellular Ca2+ handling in this disease. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  2. The Effect of Static Stretch on Elastin Degradation in Arteries

    PubMed Central

    Chow, Ming-Jay; Choi, Myunghwan; Yun, Seok Hyun; Zhang, Yanhang

    2013-01-01

    Previously we have shown that gradual changes in the structure of elastin during an elastase treatment can lead to important transition stages in the mechanical behavior of arteries [1]. However, in vivo arteries are constantly being loaded due to systolic and diastolic pressures and so understanding the effects of loading on the enzymatic degradation of elastin in arteries is important. With biaxial tensile testing, we measured the mechanical behavior of porcine thoracic aortas digested with a mild solution of purified elastase (5 U/mL) in the presence of a static stretch. Arterial mechanical properties and biochemical composition were analyzed to assess the effects of mechanical stretch on elastin degradation. As elastin is being removed, the dimensions of the artery increase by more than 20% in both the longitude and circumference directions. Elastin assays indicate a faster rate of degradation when stretch was present during the digestion. A simple exponential decay fitting confirms the time constant for digestion with stretch (0.11±0.04 h−1) is almost twice that of digestion without stretch (0.069±0.028 h−1). The transition from J-shaped to S-shaped stress vs. strain behavior in the longitudinal direction generally occurs when elastin content is reduced by about 60%. Multiphoton image analysis confirms the removal/fragmentation of elastin and also shows that the collagen fibers are closely intertwined with the elastin lamellae in the medial layer. After removal of elastin, the collagen fibers are no longer constrained and become disordered. Release of amorphous elastin during the fragmentation of the lamellae layers is observed and provides insights into the process of elastin degradation. Overall this study reveals several interesting microstructural changes in the extracellular matrix that could explain the resulting mechanical behavior of arteries with elastin degradation. PMID:24358135

  3. Linear response of stretch-affected premixed flames to flow oscillations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, H.Y.; Law, C.K.; Lieuwen, T.

    2009-04-15

    The linear response of 2D wedge-shaped premixed flames to harmonic velocity disturbances was studied, allowing for the influence of flame stretch manifested as variations in the local flame speed along the wrinkled flame front. Results obtained from analyzing the G-equation show that the flame response is mainly characterized by a Markstein number {sigma}{sub C}, which measures the curvature effect of the wrinkles, and a Strouhal number, St{sub f}, defined as the angular frequency of the disturbance normalized by the time taken for the disturbance to propagate the flame length. Flame stretch is found to become important when the disturbance frequencymore » satisfies {sigma}{sub C}St{sub f}{sup 2}{proportional_to} O(1), i.e. St{sub f}{proportional_to} O({sigma}{sub C}{sup -1/2}). Specifically, for disturbance frequencies below this order, stretch effects are small and the flame responds as an unstretched one. When the disturbance frequencies are of this order, the transfer function, defined as the ratio of the normalized fluctuation of the heat release rate to that of the velocity, is contributed mostly from fluctuations of the flame surface area, which is now affected by stretch. Finally, as the disturbance frequency increases to St{sub f}{proportional_to} O({sigma}{sub C}{sup -1}), i.e. {sigma}{sub C}St{sub f}{proportional_to} O(1), the direct contribution from the stretch-affected flame speed fluctuation to the transfer function becomes comparable to that of the flame surface area. The present study phenomenologically explains the experimentally observed filtering effect in which the flame wrinkles developed at the flame base decay along the flame surface for large frequency disturbances as well as for thermal-diffusively stable and weakly unstable mixtures. (author)« less

  4. Evidence against a critical role of CB1 receptors in adaptation of the hypothalamic-pituitary-adrenal axis and other consequences of daily repeated stress.

    PubMed

    Rabasa, Cristina; Pastor-Ciurana, Jordi; Delgado-Morales, Raúl; Gómez-Román, Almudena; Carrasco, Javier; Gagliano, Humberto; García-Gutiérrez, María S; Manzanares, Jorge; Armario, Antonio

    2015-08-01

    There is evidence that endogenous cannabinoids (eCBs) play a role in the control of the hypothalamic-pituitary-adrenal (HPA) axis, although they appear to have dual, stimulatory and inhibitory, effects. Recent data in rats suggest that eCBs, acting through CB1 receptors (CB1R), may be involved in adaptation of the HPA axis to daily repeated stress. In the present study we analyze this issue in male mice and rats. Using a knock-out mice for the CB1 receptor (CB1-/-) we showed that mutant mice presented similar adrenocorticotropic hormone (ACTH) response to the first IMO as wild-type mice. Daily repeated exposure to 1h of immobilization reduced the ACTH response to the stressor, regardless of the genotype, demonstrating that adaptation occurred to the same extent in absence of CB1R. Prototypical changes observed after repeated stress such as enhanced corticotropin releasing factor (CRH) gene expression in the paraventricular nucleus of the hypothalamus, impaired body weight gain and reduced thymus weight were similarly observed in both genotypes. The lack of effect of CB1R in the expression of HPA adaptation to another similar stressor (restraint) was confirmed in wild-type CD1 mice by the lack of effect of the CB1R antagonist AM251 just before the last exposure to stress. Finally, the latter drug did not blunt the HPA, glucose and behavioral adaptation to daily repeated forced swim in rats. Thus, the present results indicate that CB1R is not critical for overall effects of daily repeated stress or proper adaptation of the HPA axis in mice and rats. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.

  5. Dynamic “Range of Motion” Hindlimb Stretching Disrupts Locomotor Function in Rats with Moderate Subacute Spinal Cord Injuries

    PubMed Central

    Keller, Anastasia; Rees, Kathlene; Prince, Daniella; Morehouse, Johnny; Shum-Siu, Alice

    2017-01-01

    Abstract Joint contractures and spasticity are two common secondary complications of a severe spinal cord injury (SCI), which can significantly reduce quality of life, and stretching is one of the top strategies for rehabilitation of these complications. We have previously shown that a daily static stretching protocol administered to rats at either acute or chronic time points after a moderate or moderate-severe T10 SCI significantly disrupts their hindlimb locomotor function. The objective of the current study was to examine the effects of dynamic range of motion (ROM) stretching on the locomotor function of rats with SCI as an alternative to static stretching. Starting at 6 weeks post-injury (T10 moderate contusion) eight adult Sprague–Dawley rats were subjected to hindlimb stretching for 4 weeks. Our standard stretching protocol (six maneuvers to stretch the major hindlimb muscle groups) was modified from 1 min static stretch-and-hold at the end ROM of each stretch position to a dynamic 2 sec hold, 1 sec release rhythm repeated for a duration of 1 min. Four weeks of daily (5 days/week) dynamic stretching led to significant disruption of locomotor function as assessed by the Basso, Beattie, Bresnahan (BBB) Open Field Locomotor Scale and three-dimensional (3D) kinematic and gait analyses. In addition, we identified and analyzed an apparently novel hindlimb response to dynamic stretch that resembles human clonus. The results of the current study extend the observation of the stretching phenomenon to a new modality of stretching that is also commonly used in SCI rehabilitation. Although mechanisms and clinical relevance still need to be established, our findings continue to raise concerns that stretching as a therapy can potentially hinder aspects of locomotor recovery. PMID:28288544

  6. Incretin Receptor Null Mice Reveal Key Role of GLP-1 but Not GIP in Pancreatic Beta Cell Adaptation to Pregnancy

    PubMed Central

    Moffett, R. Charlotte; Vasu, Srividya; Thorens, Bernard; Drucker, Daniel J.; Flatt, Peter R.

    2014-01-01

    Islet adaptations to pregnancy were explored in C57BL6/J mice lacking functional receptors for glucagon-like peptide 1 (GLP-1) and gastric inhibitory polypeptide (GIP). Pregnant wild type mice and GIPRKO mice exhibited marked increases in islet and beta cell area, numbers of medium/large sized islets, with positive effects on Ki67/Tunel ratio favouring beta cell growth and enhanced pancreatic insulin content. Alpha cell area and glucagon content were unchanged but prohormone convertases PC2 and PC1/3 together with significant amounts of GLP-1 and GIP were detected in alpha cells. Knockout of GLP-1R abolished these islet adaptations and paradoxically decreased pancreatic insulin, GLP-1 and GIP. This was associated with abolition of normal pregnancy-induced increases in plasma GIP, L-cell numbers, and intestinal GIP and GLP-1 stores. These data indicate that GLP-1 but not GIP is a key mediator of beta cell mass expansion and related adaptations in pregnancy, triggered in part by generation of intra-islet GLP-1. PMID:24927416

  7. Substance P contributes to rapidly adapting receptor responses to pulmonary venous congestion in rabbits.

    PubMed

    Bonham, A C; Kott, K S; Ravi, K; Kappagoda, C T; Joad, J P

    1996-05-15

    1. This study tested the hypothesis that substance P stimulates rapidly adapting receptors (RARs), contributes to the increase in RAR activity produced by mild pulmonary congestion, and evokes an augmented response from RARs when combined with near-threshold levels of pulmonary congestion. 2. RAR activity, peak tracheal pressure, arterial blood pressure and left atrial pressure were measured in paralysed, anaesthetized and ventilated rabbits. Substance P was given i.v. in one-half log incremental doses to a maximum of 3 micrograms kg-1. Mild pulmonary congestion was produced by inflating a balloon in the left atrium to increase left atrial pressure by 5 mmHg. Near-threshold levels of pulmonary congestion were produced by increasing left atrial pressure by 2 mmHg. 3. Substance P produced dose-dependent increases in RAR activity. The highest dose given increased the activity from 1.3 +/- 0.5 to 11.0 +/- 3.1 impulses bin-1. Increases in left atrial pressure of 5 mmHg increased RAR activity from 3.8 +/- 1.4 to 14.7 +/- 3.9 impulses bin-1. Blockade of NK1 receptors with CP 96345 significantly attenuated RAR responses to substance P and to mild pulmonary congestion. 4. Doses of substance P, which alone had no effect, stimulated the RARs when delivered during near-threshold levels of pulmonary congestion. 5. The findings suggest that substance P augments the stimulatory effect of mild pulmonary congestion on RAR activity, most probably by enhancing hydraulically induced microvascular leak.

  8. Dependence of Actuation Strain of Dielectric Elastomer on Equi-biaxial, Pure Shear and Uniaxial Modes of Pre-stretching

    NASA Astrophysics Data System (ADS)

    Kumar, Ajeet; Ahmad, Dilshad; Patra, Karali

    2018-02-01

    A dielectric elastomer is capable of large deformation under three basic modes of deformation: equi-biaxial, pure shear and uniaxial. Pre-stretching of dielectric elastomer improves the actuation strain appreciably. Experimental results shows that pre-stretching using equal biaxial mode can result to higher actuation strain compared to other two modes of stretching, i.e., uniaxial and pure shear. However, analysis of the experimental results shows that the actuation strain is independent of the modes of pre-stretching rather it is dependent upon the thickness stretch. For same thickness stretch at a particular voltage, the actuation strain is almost similar for all pre-stretching modes. Power trend lines are obtained to predict the actuation strain at any thickness stretch for a particular voltage. The present analysis opens the door to easily design the actuators, sensors and energy harvesting devices.

  9. The direction of stretch-induced cell and stress fiber orientation depends on collagen matrix stress.

    PubMed

    Tondon, Abhishek; Kaunas, Roland

    2014-01-01

    Cell structure depends on both matrix strain and stiffness, but their interactive effects are poorly understood. We investigated the interactive roles of matrix properties and stretching patterns on cell structure by uniaxially stretching U2OS cells expressing GFP-actin on silicone rubber sheets supporting either a surface-adsorbed coating or thick hydrogel of type-I collagen. Cells and their actin stress fibers oriented perpendicular to the direction of cyclic stretch on collagen-coated sheets, but oriented parallel to the stretch direction on collagen gels. There was significant alignment parallel to the direction of a steady increase in stretch for cells on collagen gels, while cells on collagen-coated sheets did not align in any direction. The extent of alignment was dependent on both strain rate and duration. Stretch-induced alignment on collagen gels was blocked by the myosin light-chain kinase inhibitor ML7, but not by the Rho-kinase inhibitor Y27632. We propose that active orientation of the actin cytoskeleton perpendicular and parallel to direction of stretch on stiff and soft substrates, respectively, are responses that tend to maintain intracellular tension at an optimal level. Further, our results indicate that cells can align along directions of matrix stress without collagen fibril alignment, indicating that matrix stress can directly regulate cell morphology.

  10. Bend, stretch, and touch: Locating a finger on an actively deformed transparent sensor array

    PubMed Central

    Sarwar, Mirza Saquib; Dobashi, Yuta; Preston, Claire; Wyss, Justin K. M.; Mirabbasi, Shahriar; Madden, John David Wyndham

    2017-01-01

    The development of bendable, stretchable, and transparent touch sensors is an emerging technological goal in a variety of fields, including electronic skin, wearables, and flexible handheld devices. Although transparent tactile sensors based on metal mesh, carbon nanotubes, and silver nanowires demonstrate operation in bent configurations, we present a technology that extends the operation modes to the sensing of finger proximity including light touch during active bending and even stretching. This is accomplished using stretchable and ionically conductive hydrogel electrodes, which project electric field above the sensor to couple with and sense a finger. The polyacrylamide electrodes are embedded in silicone. These two widely available, low-cost, transparent materials are combined in a three-step manufacturing technique that is amenable to large-area fabrication. The approach is demonstrated using a proof-of-concept 4 × 4 cross-grid sensor array with a 5-mm pitch. The approach of a finger hovering a few centimeters above the array is readily detectable. Light touch produces a localized decrease in capacitance of 15%. The movement of a finger can be followed across the array, and the location of multiple fingers can be detected. Touch is detectable during bending and stretch, an important feature of any wearable device. The capacitive sensor design can be made more or less sensitive to bending by shifting it relative to the neutral axis. Ultimately, the approach is adaptable to the detection of proximity, touch, pressure, and even the conformation of the sensor surface. PMID:28345045

  11. Bend, stretch, and touch: Locating a finger on an actively deformed transparent sensor array.

    PubMed

    Sarwar, Mirza Saquib; Dobashi, Yuta; Preston, Claire; Wyss, Justin K M; Mirabbasi, Shahriar; Madden, John David Wyndham

    2017-03-01

    The development of bendable, stretchable, and transparent touch sensors is an emerging technological goal in a variety of fields, including electronic skin, wearables, and flexible handheld devices. Although transparent tactile sensors based on metal mesh, carbon nanotubes, and silver nanowires demonstrate operation in bent configurations, we present a technology that extends the operation modes to the sensing of finger proximity including light touch during active bending and even stretching. This is accomplished using stretchable and ionically conductive hydrogel electrodes, which project electric field above the sensor to couple with and sense a finger. The polyacrylamide electrodes are embedded in silicone. These two widely available, low-cost, transparent materials are combined in a three-step manufacturing technique that is amenable to large-area fabrication. The approach is demonstrated using a proof-of-concept 4 × 4 cross-grid sensor array with a 5-mm pitch. The approach of a finger hovering a few centimeters above the array is readily detectable. Light touch produces a localized decrease in capacitance of 15%. The movement of a finger can be followed across the array, and the location of multiple fingers can be detected. Touch is detectable during bending and stretch, an important feature of any wearable device. The capacitive sensor design can be made more or less sensitive to bending by shifting it relative to the neutral axis. Ultimately, the approach is adaptable to the detection of proximity, touch, pressure, and even the conformation of the sensor surface.

  12. Influence of different shortening velocities preceding stretch on human triceps surae moment generation in vivo.

    PubMed

    De Monte, Gianpiero; Arampatzis, Adamantios

    2008-07-19

    The purpose of this study was to examine the influence of different shortening velocities preceding the stretch on moment generation of the triceps surae muscles and architecture of the m. gastrocnemius medialis after shortening-stretch cycles of equal magnitude in vivo. Eleven male subjects (31.6+/-5.8 years, 178.4+/-7.3cm, 80.6+/-9.6kg) performed a series of electro-stimulated (85Hz) shortening-stretch plantar flexion contractions. The shortening-stretch cycles were performed at three constant angular velocities (25, 50, 100 degrees /s) in the plantar flexion direction (shortening) and at 50 degrees /s in the dorsiflexion direction (stretching). The resultant ankle joint moments were calculated through inverse dynamics. Pennation angle and fascicle length of the m. gastrocnemius medialis at rest and during contractions were measured using ultrasonography. The corresponding ankle moments, kinematics and changes in muscle architecture were analysed at seven time intervals. An analysis of variance for repeated measurements and post hoc test with Bonferroni correction was used to check the velocity-related effects on moment enhancement (alpha=0.05). The results show an increase in pennation angles and a decrease in fascicle lengths after the shortening-stretch cycle. The ankle joint moment ratio (post to pre) was higher (p<0.01) than 1.0 indicating a moment enhancement after the shortening-stretch cycle. The found ankle joint moment enhancement was 2-5% after the shortening-stretch cycle and was independed of the shortening velocity. Furthermore, the decrease in fascicle length after the shortening-stretch cycle indicates that the moment enhancement found in the present study is underestimated at least by 1-3%. Considering that the experiments have been done at the ascending limb of the force-length curve and that force enhancement is higher at the descending and the plateau region of the force-length curve, we conclude that the moment enhancement after shortening-stretch

  13. SmartStretch™ technology. I. Improving the tenderness of sheep topsides (m. semimembranosus) using a meat stretching device.

    PubMed

    Toohey, E S; van de Ven, R; Thompson, J M; Geesink, G H; Hopkins, D L

    2012-06-01

    This study evaluated the effect of stretching hot-boned sheep topsides using a pre-production prototype device (SmartStretch™). To test this effect, 40 sheep from 3 consignments were assessed. Left and right topsides were collected pre-rigour and randomly allocated to one of four treatments; 0 days ageing+SmartStretch™, 0 days ageing+no stretch, 5 days ageing+SmartStretch™ and 5 days ageing+no stretch. Meat from the 0 days aged+no stretch treatment was the least tender and the 5 days ageing+SmartStretch™ treatment resulted in the most tender meat. The m. semimembranosus from topsides stretched using the SmartStretch™ prototype device had a lower cooking loss percentage (P<0.001) and longer sarcomeres (P<0.001) than non-stretched m. semimembranosus. There was no effect of SmartStretch™ on myofibrillar degradation measured using particle size analysis (PSA), but there was an ageing effect (P<0.001). The tenderness of stretched m. semimembranosus showed significant improvement over non-stretched m. semimembranosus. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  14. Comparison between static stretching and the Pilates method on the flexibility of older women.

    PubMed

    Oliveira, Laís Campos de; Oliveira, Raphael Gonçalves de; Pires-Oliveira, Deise Aparecida de Almeida

    2016-10-01

    Flexibility decreases with advancing age and some forms of exercise, such as static stretching and Pilates, can contribute to the improvement of this physical ability. To compare the effects of static stretching and Pilates on the flexibility of healthy older women, over the age of 60 years. Thirty-two volunteers were randomized into two groups (Static stretching or Pilates) to perform exercises for 60 min, twice a week, for three months. Evaluations to analyze the movements of the trunk (flexion and extension), hip flexion and plantar and dorsiflexion of the ankle were performed before and after the intervention, using a fleximeter. The static stretching exercises improved the trunk flexion and hip flexion movements, while the Pilates improved all evaluated movements. However, over time, the groups presented differences only for the trunk extension movement. For some body segments, Pilates may be more effective for improving flexibility in older women compared to static stretching. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Near-Limit Flamelet Phenomena in Buoyant Low Stretch Diffusion Flames Beneath a Solid Fuel

    NASA Technical Reports Server (NTRS)

    Olson, S. L.; Tien, J. S.

    2000-01-01

    A unique near-limit low stretch multidimensional stable flamelet phenomena has been observed for the first time which extends the material flammability limit beyond the one-dimensional low stretch flammability limit to lower burning rates and higher relative heat losses than is possible with uniform flame coverage. During low stretch experiments burning the underside of very large radii (greater than or = 75 cm stretch rate less than or = 3/s) cylindrical cast PMMA samples, multidimensional flamelets were observed, in contrast with a one-dimensional flame that was found to blanket the surface for smaller radii samples ( higher stretch rate). Flamelets were observed by decreasing the stretch rate or by increasing the conductive heat loss from the flame. Flamelets are defined as flames that cover only part of the burning sample at any given time, but persist for many minutes. Flamelet phenomena is viewed as the flame's method of enhancing oxygen flow to the flame, through oxygen transport into the edges of the flamelet. Flamelets form as heat losses (surface radiation and solid-phase conduction) become large relative to the weakened heat release of the low stretch flame. While heat loss rates remain fairly constant, the limiting factor in the heat release of the flame is hypothesized to be the oxygen transport to the flame in this low stretch (low convective) environment. Flamelet extinction is frequently caused by encroachment of an adjacent flamelet. Large-scale whole-body flamelet oscillations at 1.2 - 1.95 Hz are noted prior to extinction of a flamelet. This oscillation is believed to be due a repeated process of excess fuel leakage through the dark channels between the flamelets, fuel premixing with slow incoming oxidizer, and subsequent rapid flame spread and retreat of the flamelet through the premixed layer. The oscillation frequency is driven by gas-phase diffusive time scales.

  16. Optimizing an Intermittent Stretch Paradigm Using ERK1/2 Phosphorylation Results in Increased Collagen Synthesis in Engineered Ligaments

    PubMed Central

    Paxton, Jennifer Z.; Hagerty, Paul; Andrick, Jonathan J.

    2012-01-01

    Dynamic mechanical input is believed to play a critical role in the development of functional musculoskeletal tissues. To study this phenomenon, cyclic uniaxial mechanical stretch was applied to engineered ligaments using a custom-built bioreactor and the effects of different stretch frequency, amplitude, and duration were determined. Stretch acutely increased the phosphorylation of p38 (3.5±0.74-fold), S6K1 (3.9±0.19-fold), and ERK1/2 (2.45±0.32-fold). The phosphorylation of ERK1/2 was dependent on time, rather than on frequency or amplitude, within these constructs. ERK1/2 phosphorylation was similar following stretch at frequencies from 0.1 to 1 Hz and amplitudes from 2.5% to 15%, whereas phosphorylation reached maximal levels at 10 min of stretch and returned toward basal within 60 min of stretch. Following a single 10-min bout of cyclic stretch, the cells remained refractory to a second stretch for up to 6 h. Using the phosphorylation of ERK1/2 as a guide, the optimum stretch paradigm was hypothesized to be 10 min of stretch at 2.5% of resting length repeated every 6 h. Consistent with this hypothesis, 7 days of stretch using this optimized intermittent stretch program increased the collagen content of the grafts more than a continuous stretch program (CTL=3.1%±0.44%; CONT=4.8%±0.30%; and INT=5.9%±0.56%). These results suggest that short infrequent bouts of loading are optimal for improving engineered tendon and ligament physiology. PMID:21902469

  17. Design considerations and challenges for mechanical stretch bioreactors in tissue engineering.

    PubMed

    Lei, Ying; Ferdous, Zannatul

    2016-05-01

    With the increase in average life expectancy and growing aging population, lack of functional grafts for replacement surgeries has become a severe problem. Engineered tissues are a promising alternative to this problem because they can mimic the physiological function of the native tissues and be cultured on demand. Cyclic stretch is important for developing many engineered tissues such as hearts, heart valves, muscles, and bones. Thus a variety of stretch bioreactors and corresponding scaffolds have been designed and tested to study the underlying mechanism of tissue formation and to optimize the mechanical conditions applied to the engineered tissues. In this review, we look at various designs of stretch bioreactors and common scaffolds and offer insights for future improvements in tissue engineering applications. First, we summarize the requirements and common configuration of stretch bioreactors. Next, we present the features of different actuating and motion transforming systems and their applications. Since most bioreactors must measure detailed distributions of loads and deformations on engineered tissues, techniques with high accuracy, precision, and frequency have been developed. We also cover the key points in designing culture chambers, nutrition exchanging systems, and regimens used for specific tissues. Since scaffolds are essential for providing biophysical microenvironments for residing cells, we discuss materials and technologies used in fabricating scaffolds to mimic anisotropic native tissues, including decellularized tissues, hydrogels, biocompatible polymers, electrospinning, and 3D bioprinting techniques. Finally, we present the potential future directions for improving stretch bioreactors and scaffolds. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:543-553, 2016. © 2016 American Institute of Chemical Engineers.

  18. High throughput web inspection system using time-stretch real-time imaging

    NASA Astrophysics Data System (ADS)

    Kim, Chanju

    Photonic time-stretch is a novel technology that enables capturing of fast, rare and non-repetitive events. Therefore, it operates in real-time with ability to record over long period of time while having fine temporal resolution. The powerful property of photonic time-stretch has already been employed in various fields of application such as analog-to-digital conversion, spectroscopy, laser scanner and microscopy. Further expanding the scope, we fully exploit the time-stretch technology to demonstrate a high throughput web inspection system. Web inspection, namely surface inspection is a nondestructive evaluation method which is crucial for semiconductor wafer and thin film production. We successfully report a dark-field web inspection system with line scan speed of 90.9 MHz which is up to 1000 times faster than conventional inspection instruments. The manufacturing of high quality semiconductor wafer and thin film may directly benefit from this technology as it can easily locate defects with area of less than 10 microm x 10 microm where it allows maximum web flow speed of 1.8 km/s. The thesis provides an overview of our web inspection technique, followed by description of the photonic time-stretch technique which is the keystone in our system. A detailed explanation of each component is covered to provide quantitative understanding of the system. Finally, imaging results from a hard-disk sample and flexible films are presented along with performance analysis of the system. This project was the first application of time-stretch to industrial inspection, and was conducted under financial support and with close involvement by Hitachi, Ltd.

  19. Human local adaptation of the TRPM8 cold receptor along a latitudinal cline

    PubMed Central

    Mundry, Roger; Peter, Benjamin M.; Sekar, Aarthi; D’Amato, Mauro; Dennis, Megan Y.; Andrés, Aida M.

    2018-01-01

    Ambient temperature is a critical environmental factor for all living organisms. It was likely an important selective force as modern humans recently colonized temperate and cold Eurasian environments. Nevertheless, as of yet we have limited evidence of local adaptation to ambient temperature in populations from those environments. To shed light on this question, we exploit the fact that humans are a cosmopolitan species that inhabit territories under a wide range of temperatures. Focusing on cold perception–which is central to thermoregulation and survival in cold environments–we show evidence of recent local adaptation on TRPM8. This gene encodes for a cation channel that is, to date, the only temperature receptor known to mediate an endogenous response to moderate cold. The upstream variant rs10166942 shows extreme population differentiation, with frequencies that range from 5% in Nigeria to 88% in Finland (placing this SNP in the 0.02% tail of the FST empirical distribution). When all populations are jointly analyzed, allele frequencies correlate with latitude and temperature beyond what can be explained by shared ancestry and population substructure. Using a Bayesian approach, we infer that the allele originated and evolved neutrally in Africa, while positive selection raised its frequency to different degrees in Eurasian populations, resulting in allele frequencies that follow a latitudinal cline. We infer strong positive selection, in agreement with ancient DNA showing high frequency of the allele in Europe 3,000 to 8,000 years ago. rs10166942 is important phenotypically because its ancestral allele is protective of migraine. This debilitating disorder varies in prevalence across human populations, with highest prevalence in individuals of European descent–precisely the population with the highest frequency of rs10166942 derived allele. We thus hypothesize that local adaptation on previously neutral standing variation may have contributed to the

  20. Acute effects of static and dynamic stretching on leg flexor and extensor isokinetic strength in elite women athletes.

    PubMed

    Sekir, U; Arabaci, R; Akova, B; Kadagan, S M

    2010-04-01

    The aim of this study was to explore the effects of static and dynamic stretching of the leg flexors and extensors on concentric and eccentric peak torque (PT) and electromyography (EMG) amplitude of the leg extensors and flexors in women athletes. Ten elite women athletes completed the following intervention protocol in a randomized order on separate days: (a) non-stretching (control), (b) static stretching, and (c) dynamic stretching. Stretched muscles were the quadriceps and hamstring muscles. Before and after the stretching or control intervention, concentric and eccentric isokinetic PT and EMG activity of the leg extensors and flexors were measured at 60 and 180 degrees/s. Concentric and eccentric quadriceps and hamstring muscle strength at both test speeds displayed a significant decrease following static stretching (P<0.01-0.001). In contrast, a significant increase was observed after dynamic stretching for these strength parameters (P<0.05-0.001). Parallel to this, normalized EMG amplitude parameters exhibited significant decreases following static (P<0.05-0.001) and significant increases following dynamic stretching (P<0.05-0.001) during quadriceps and hamstring muscle actions at both concentric and eccentric testing modes. Our findings suggest that dynamic stretching, as opposed to static or no stretching, may be an effective technique for enhancing muscle performance during the pre-competition warm-up routine in elite women athletes.

  1. Reducing charging effects in scanning electron microscope images by Rayleigh contrast stretching method (RCS).

    PubMed

    Wan Ismail, W Z; Sim, K S; Tso, C P; Ting, H Y

    2011-01-01

    To reduce undesirable charging effects in scanning electron microscope images, Rayleigh contrast stretching is developed and employed. First, re-scaling is performed on the input image histograms with Rayleigh algorithm. Then, contrast stretching or contrast adjustment is implemented to improve the images while reducing the contrast charging artifacts. This technique has been compared to some existing histogram equalization (HE) extension techniques: recursive sub-image HE, contrast stretching dynamic HE, multipeak HE and recursive mean separate HE. Other post processing methods, such as wavelet approach, spatial filtering, and exponential contrast stretching, are compared as well. Overall, the proposed method produces better image compensation in reducing charging artifacts. Copyright © 2011 Wiley Periodicals, Inc.

  2. Shoulder horizontal abduction stretching effectively increases shear elastic modulus of pectoralis minor muscle.

    PubMed

    Umehara, Jun; Nakamura, Masatoshi; Fujita, Kosuke; Kusano, Ken; Nishishita, Satoru; Araki, Kojiro; Tanaka, Hiroki; Yanase, Ko; Ichihashi, Noriaki

    2017-07-01

    Stretching maneuvers for the pectoralis minor muscle, which involve shoulder horizontal abduction or scapular retraction, are performed in clinical and sports settings because the tightness of this muscle may contribute to scapular dyskinesis. The effectiveness of stretching maneuvers for the pectoralis minor muscle is unclear in vivo. The purpose of this study was to verify the effectiveness of stretching maneuvers for the pectoralis minor muscle in vivo using ultrasonic shear wave elastography. Eighteen healthy men participated in this study. Elongation of the pectoralis minor muscle was measured for 3 stretching maneuvers (shoulder flexion, shoulder horizontal abduction, and scapular retraction) at 3 shoulder elevation angles (30°, 90°, and 150°). The shear elastic modulus, used as the index of muscle elongation, was computed using ultrasonic shear wave elastography for the 9 aforementioned stretching maneuver-angle combinations. The shear elastic modulus was highest in horizontal abduction at 150°, followed by horizontal abduction at 90°, horizontal abduction at 30°, scapular retraction at 30°, scapular retraction at 90°, scapular retraction at 150°, flexion at 150°, flexion at 90°, and flexion at 30°. The shear elastic moduli of horizontal abduction at 90° and horizontal abduction at 150° were significantly higher than those of other stretching maneuvers. There was no significant difference between horizontal abduction at 90° and horizontal abduction at 150°. This study determined that shoulder horizontal abduction at an elevation of 90° and horizontal abduction at an elevation of 150° were the most effective stretching maneuvers for the pectoralis minor muscle in vivo. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  3. Cloud Network Helps Stretch IT Dollars

    ERIC Educational Resources Information Center

    Collins, Hilton

    2012-01-01

    No matter how many car washes or bake sales schools host to raise money, adding funds to their coffers is a recurring problem. This perpetual financial difficulty makes expansive technology purchases or changes seem like a pipe dream for school CIOs and has education technologists searching for ways to stretch money. In 2005, state K-12 school…

  4. Guinea pig-adapted foot-and-mouth disease virus with altered receptor recognition can productively infect a natural host.

    PubMed

    Núñez, José I; Molina, Nicolas; Baranowski, Eric; Domingo, Esteban; Clark, Stuart; Burman, Alison; Berryman, Stephen; Jackson, Terry; Sobrino, Francisco

    2007-08-01

    We report that adaptation to infect the guinea pig did not modify the capacity of foot-and-mouth disease virus (FMDV) to kill suckling mice and to cause an acute and transmissible disease in the pig, an important natural host for this pathogen. Adaptive amino acid replacements (I(248)-->T in 2C, Q(44)-->R in 3A, and L(147)-->P in VP1), selected upon serial passages of a type C FMDV isolated from swine (biological clone C-S8c1) in the guinea pig, were maintained after virus multiplication in swine and suckling mice. However, the adaptive replacement L(147)-->P, next to the integrin-binding RGD motif at the GH loop in VP1, abolished growth of the virus in different established cell lines and modified its antigenicity. In contrast, primary bovine thyroid cell cultures could be productively infected by viruses with replacement L(147)-->P, and this infection was inhibited by antibodies to alphavbeta6 and by an FMDV-derived RGD-containing peptide, suggesting that integrin alphavbeta6 may be used as a receptor for these mutants in the animal (porcine, guinea pig, and suckling mice) host. Substitution T(248)-->N in 2C was not detectable in C-S8c1 but was present in a low proportion of the guinea pig-adapted virus. This substitution became rapidly dominant in the viral population after the reintroduction of the guinea pig-adapted virus into pigs. These observations illustrate how the appearance of minority variant viruses in an unnatural host can result in the dominance of these viruses on reinfection of the original host species.

  5. Effects of Self Stretching on Pain and Musculoskeletal Symptom of Bus Drivers

    PubMed Central

    Lee, Jung-Ho; Gak, Hwang Bo

    2014-01-01

    [Purpose] The aim of this study was to evaluate the musculoskeletal symptoms, pain and risk of postures as well as the effects of stretching exercise on the work-related symptoms and pain of bus drivers. [Subjects and Methods] Eighty-one drivers were randomly recruited from a bus corporation for this study. Information about pain levels, painful regions, and general characteristics of subjects was obtained using the symptom research form (KOSHA Code H-30-2003). The level of pain was assessed on a scale of numeric rating scale (NRS) which is divided by 10. Ergonomic posture assessment was conducted using the rapid upper limb assessment (RULA). Self-stretching exercise was performed for 4 weeks by the bus drivers who suffered from neck and shoulder pain. [Results] Musculoskeletal symptoms were present in the order of shoulder, neck, lower back and lower extremities. Compared with other jobs, the final score, and the action level of bus drivers were very high, showing 57.6% of action levels 3 and 4. A statistically significant decrease of pain was shown after the self-stretching intervention. There was also a significant decrease of musculoskeletal symptoms in the neck and shoulders after the self-stretching exercise. [Conclusion] Performing stretching for musculoskeletal symptoms had a positive influence on the symptoms and reduced pain. PMID:25540496

  6. Adaptations in AMPA receptor transmission in the nucleus accumbens contributing to incubation of cocaine craving

    PubMed Central

    Loweth, Jessica A.; Tseng, Kuei Y.; Wolf, Marina E.

    2013-01-01

    Cue-induced cocaine craving in rodents intensifies or “incubates” during the first months of withdrawal from long access cocaine self-administration. This incubation phenomenon is relevant to human users who achieve abstinence but exhibit persistent vulnerability to cue-induced relapse. It is well established that incubation of cocaine craving involves complex neuronal circuits. Here we will focus on neuroadaptations in the nucleus accumbens (NAc), a region of convergence for pathways that control cocaine seeking. A key adaptation is a delayed (~3–4 weeks) accumulation of Ca2+-permeable AMPAR receptors (CP-AMPARs) in synapses on medium spiny neurons (MSN) of the NAc. These CP-AMPARs mediate the expression of incubation after prolonged withdrawal, although different mechanisms must be responsible during the first weeks of withdrawal, prior to CP-AMPAR accumulation. The cascade of events leading to CP-AMPAR accumulation is still unclear. However, several candidate mechanisms have been identified. First, mGluR1 has been shown to negatively regulate CP-AMPAR levels in NAc synapses, and it is possible that a withdrawal-dependent decrease in this effect may help explain CP-AMPAR accumulation during incubation. Second, an increase in phosphorylation of GluA1 subunits (at the protein kinase A site) within extrasynaptic homomeric GluA1 receptors (CP-AMPARs) may promote their synaptic insertion and oppose their removal. Finally, elevation of brain-derived neurotrophic factor (BDNF) levels in the NAc may contribute to maintenance of incubation after months of withdrawal, although incubation-related increases in BDNF accumulation do not account for CP-AMPAR accumulation. Receptors and pathways that negatively regulate incubation, such as mGluR1, are promising targets for the development of therapeutic strategies to help recovering addicts maintain abstinence. PMID:23727437

  7. Adaptations in AMPA receptor transmission in the nucleus accumbens contributing to incubation of cocaine craving.

    PubMed

    Loweth, Jessica A; Tseng, Kuei Y; Wolf, Marina E

    2014-01-01

    Cue-induced cocaine craving in rodents intensifies or "incubates" during the first months of withdrawal from long access cocaine self-administration. This incubation phenomenon is relevant to human users who achieve abstinence but exhibit persistent vulnerability to cue-induced relapse. It is well established that incubation of cocaine craving involves complex neuronal circuits. Here we will focus on neuroadaptations in the nucleus accumbens (NAc), a region of convergence for pathways that control cocaine seeking. A key adaptation is a delayed (~3-4 weeks) accumulation of Ca(2+)-permeable AMPAR receptors (CP-AMPARs) in synapses on medium spiny neurons (MSN) of the NAc. These CP-AMPARs mediate the expression of incubation after prolonged withdrawal, although different mechanisms must be responsible during the first weeks of withdrawal, prior to CP-AMPAR accumulation. The cascade of events leading to CP-AMPAR accumulation is still unclear. However, several candidate mechanisms have been identified. First, mGluR1 has been shown to negatively regulate CP-AMPAR levels in NAc synapses, and it is possible that a withdrawal-dependent decrease in this effect may help explain CP-AMPAR accumulation during incubation. Second, an increase in phosphorylation of GluA1 subunits (at the protein kinase A site) within extrasynaptic homomeric GluA1 receptors (CP-AMPARs) may promote their synaptic insertion and oppose their removal. Finally, elevation of brain-derived neurotrophic factor (BDNF) levels in the NAc may contribute to maintenance of incubation after months of withdrawal, although incubation-related increases in BDNF accumulation do not account for CP-AMPAR accumulation. Receptors and pathways that negatively regulate incubation, such as mGluR1, are promising targets for the development of therapeutic strategies to help recovering addicts maintain abstinence. This article is part of a Special Issue entitled 'NIDA 40th Anniversary Issue'. Copyright © 2013 Elsevier Ltd. All

  8. Comparison of Maximum Stretch Forces between Femtosecond Laser-Assisted Capsulotomy and Continuous Curvilinear Capsulorhexis

    PubMed Central

    Ichikawa, Kei; Tanaka, Yoshiki; Kato, Yukihito; Horai, Rie; Tamaoki, Akeno; Ichikawa, Kazuo

    2017-01-01

    The current study reports comparing the postoperative mechanical properties of the anterior capsule between femtosecond laser capsulotomy (FLC) and continuous curvilinear capsulorhexis (CCC) of variable size and shape in porcine eyes. All CCCs were created using capsule forceps. Irregular or eccentric CCCs were also created to simulate real cataract surgery. For FLC, capsulotomies 5.3 mm in diameter were created using the LenSx® (Alcon) platform. Fresh porcine eyes were used in all experiments. The edges of the capsule openings were pulled at a constant speed using two L-shaped jigs. Stretch force and distance were recorded over time, and the maximum values in this regard were defined as those that were recorded when the capsule broke. There was no difference in maximum stretch force between CCC and FLC. There were no differences in circularity between FLC and same-sized CCC. However, same-sized CCC did show significantly higher maximum stretch forces than FLC. Teardrop-shaped CCC showed lower maximum stretch forces than same-sized CCC and FLC. Heart-shaped CCC showed lower maximum stretch forces than same-sized CCC. Conclusively, while capsule edge strength after CCC varied depending on size or irregularities, FLC had the advantage of stable maximum stretch forces. PMID:28210504

  9. Comparison of Maximum Stretch Forces between Femtosecond Laser-Assisted Capsulotomy and Continuous Curvilinear Capsulorhexis.

    PubMed

    Takagi, Mari; Kojima, Takashi; Ichikawa, Kei; Tanaka, Yoshiki; Kato, Yukihito; Horai, Rie; Tamaoki, Akeno; Ichikawa, Kazuo

    2017-01-01

    The current study reports comparing the postoperative mechanical properties of the anterior capsule between femtosecond laser capsulotomy (FLC) and continuous curvilinear capsulorhexis (CCC) of variable size and shape in porcine eyes. All CCCs were created using capsule forceps. Irregular or eccentric CCCs were also created to simulate real cataract surgery. For FLC, capsulotomies 5.3 mm in diameter were created using the LenSx® (Alcon) platform. Fresh porcine eyes were used in all experiments. The edges of the capsule openings were pulled at a constant speed using two L-shaped jigs. Stretch force and distance were recorded over time, and the maximum values in this regard were defined as those that were recorded when the capsule broke. There was no difference in maximum stretch force between CCC and FLC. There were no differences in circularity between FLC and same-sized CCC. However, same-sized CCC did show significantly higher maximum stretch forces than FLC. Teardrop-shaped CCC showed lower maximum stretch forces than same-sized CCC and FLC. Heart-shaped CCC showed lower maximum stretch forces than same-sized CCC. Conclusively, while capsule edge strength after CCC varied depending on size or irregularities, FLC had the advantage of stable maximum stretch forces.

  10. Myosin-II-Mediated Directional Migration of Dictyostelium Cells in Response to Cyclic Stretching of Substratum

    PubMed Central

    Iwadate, Yoshiaki; Okimura, Chika; Sato, Katsuya; Nakashima, Yuta; Tsujioka, Masatsune; Minami, Kazuyuki

    2013-01-01

    Living cells are constantly subjected to various mechanical stimulations, such as shear flow, osmotic pressure, and hardness of substratum. They must sense the mechanical aspects of their environment and respond appropriately for proper cell function. Cells adhering to substrata must receive and respond to mechanical stimuli from the substrata to decide their shape and/or migrating direction. In response to cyclic stretching of the elastic substratum, intracellular stress fibers in fibroblasts and endothelial, osteosarcoma, and smooth muscle cells are rearranged perpendicular to the stretching direction, and the shape of those cells becomes extended in this new direction. In the case of migrating Dictyostelium cells, cyclic stretching regulates the direction of migration, and not the shape, of the cell. The cells migrate in a direction perpendicular to that of the stretching. However, the molecular mechanisms that induce the directional migration remain unknown. Here, using a microstretching device, we recorded green fluorescent protein (GFP)-myosin-II dynamics in Dictyostelium cells on an elastic substratum under cyclic stretching. Repeated stretching induced myosin II localization equally on both stretching sides in the cells. Although myosin-II-null cells migrated randomly, myosin-II-null cells expressing a variant of myosin II that cannot hydrolyze ATP migrated perpendicular to the stretching. These results indicate that Dictyostelium cells accumulate myosin II at the portion of the cell where a large strain is received and migrate in a direction other than that of the portion where myosin II accumulated. This polarity generation for migration does not require the contraction of actomyosin. PMID:23442953

  11. A comparison of two stretching programs for hamstring muscles: A randomized controlled assessor-blinded study.

    PubMed

    Demoulin, Christophe; Wolfs, Sébastien; Chevalier, Madeline; Granado, Caroline; Grosdent, Stéphanie; Depas, Yannick; Roussel, Nathalie; Hage, Renaud; Vanderthommen, Marc

    2016-01-01

    Most parameters regarding hamstring flexibility training programs have been investigated; however, the joint (i.e. hip or knee) on which the stretching should preferentially be focused needs to be further explored. This randomized controlled assessor-blinded study aimed to investigate the influence of this parameter. We randomly assigned 111 asymptomatic participants with tight hamstring muscles in three groups: a control group and two groups following a different home-based 8-week (five 10-minute sessions per week) hamstring stretching program (i.e. stretching performed by flexing the hip while keeping the knee extended [SH] or by first flexing the hip with a flexed knee and then extending the knee [SK]). Range of motion (ROM) of hip flexion and knee extension were measured before and after the stretching program by means of the straight leg raising test and the passive knee extension angle test, respectively. Eighty-nine participants completed the study. A significant increase in ROM was observed at post-test. Analyses showed significant group-by-time interactions for changes regarding all outcomes. Whereas the increase in hip flexion and knee extension ROM was higher in the stretching groups than in the CG (especially for the SH group p < 0.05), no differences between the two stretching groups were observed (p > 0.05). In conclusion, the fact that both stretching programs resulted in similar results suggests no influence of the joint at which the stretching is focused upon, as assessed by the straight leg raising and knee extension angle tests.

  12. The combined effects of transcutaneous electrical nerve stimulation (TENS) and stretching on muscle hardness and pressure pain threshold.

    PubMed

    Karasuno, Hiroshi; Ogihara, Hisayoshi; Morishita, Katsuyuki; Yokoi, Yuka; Fujiwara, Takayuki; Ogoma, Yoshiro; Abe, Koji

    2016-04-01

    [Purpose] This study aimed to clarify the immediate effects of a combined transcutaneous electrical nerve stimulation and stretching protocol. [Subjects] Fifteen healthy young males volunteered to participate in this study. The inclusion criterion was a straight leg raising range of motion of less than 70 degrees. [Methods] Subjects performed two protocols: 1) stretching (S group) of the medial hamstrings, and 2) tanscutaneous electrical nerve stimulation (100 Hz) with stretching (TS group). The TS group included a 20-minute electrical stimulation period followed by 10 minutes of stretching. The S group performed 10 minutes of stretching. Muscle hardness, pressure pain threshold, and straight leg raising range of motion were analyzed to evaluate the effects. The data were collected before transcutaneous electrical nerve stimulation (T1), before stretching (T2), immediately after stretching (T3), and 10 minutes after stretching (T4). [Results] Combined transcutaneous electrical nerve stimulation and stretching had significantly beneficial effects on muscle hardness, pressure pain threshold, and straight leg raising range of motion at T2, T3, and T4 compared with T1. [Conclusion] These results support the belief that transcutaneous electrical nerve stimulation combined with stretching is effective in reducing pain and decreasing muscle hardness, thus increasing range of motion.

  13. Stretch-induced Ca2+ independent ATP release in hippocampal astrocytes.

    PubMed

    Xiong, Yingfei; Teng, Sasa; Zheng, Lianghong; Sun, Suhua; Li, Jie; Guo, Ning; Li, Mingli; Wang, Li; Zhu, Feipeng; Wang, Changhe; Rao, Zhiren; Zhou, Zhuan

    2018-02-28

    Similar to neurons, astrocytes actively participate in synaptic transmission via releasing gliotransmitters. The Ca 2+ -dependent release of gliotransmitters includes glutamate and ATP. Following an 'on-cell-like' mechanical stimulus to a single astrocyte, Ca 2+ independent single, large, non-quantal, ATP release occurs. Astrocytic ATP release is inhibited by either selective antagonist treatment or genetic knockdown of P2X7 receptor channels. Our work suggests that ATP can be released from astrocytes via two independent pathways in hippocampal astrocytes; in addition to the known Ca 2+ -dependent vesicular release, larger non-quantal ATP release depends on P2X7 channels following mechanical stretch. Astrocytic ATP release is essential for brain functions such as synaptic long-term potentiation for learning and memory. However, whether and how ATP is released via exocytosis remains hotly debated. All previous studies of non-vesicular ATP release have used indirect assays. By contrast, two recent studies report vesicular ATP release using more direct assays. In the present study, using patch clamped 'ATP-sniffer cells', we re-investigated astrocytic ATP release at single-vesicle resolution in hippocampal astrocytes. Following an 'on-cell-like' mechanical stimulus of a single astrocyte, a Ca 2+ independent single large non-quantal ATP release occurred, in contrast to the Ca 2+ -dependent multiple small quantal ATP release in a chromaffin cell. The mechanical stimulation-induced ATP release from an astrocyte was inhibited by either exposure to a selective antagonist or genetic knockdown of P2X7 receptor channels. Functional P2X7 channels were expressed in astrocytes in hippocampal brain slices. Thus, in addition to small quantal ATP release, larger non-quantal ATP release depends on P2X7 channels in astrocytes. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.

  14. Manipulation under anaesthesia versus low stretch device in poor range of motion after TKA.

    PubMed

    Witvrouw, E; Bellemans, J; Victor, J

    2013-12-01

    The purpose of this study was to evaluate the effectiveness of two frequently used non-operative treatment techniques for a stiff knee after total knee arthroplasty. Sixty-four patients with a stiff knee after total knee arthroplasty (TKA) were randomized into a manipulation under anaesthesia group, or a low load stretch (stretch) group. The patients were followed up for 6 weeks and were evaluated for maximum flexion and extension, range of motion (ROM), pain, stiffness and function. Both groups showed a significant increase in knee flexion in this study. Only the stretch group showed a significant increase in extension ROM. In both groups, a significant increase in Western Ontario and McMaster Universities was observed. No significant difference was observed between both groups for the flexion or extension ROM, or for any of the pain, function or stiffness scores during this study. The results of this study showed that the stretch technique had equal or superior results concerning ROM and function compared to manipulation under anaesthesia. The stretch technique achieved this without requiring the patient to undergo in-hospital treatment or anaesthesia, limiting the costs and the risks for complications. The results of this study showed that stretching is a valuable tool for treating joint contractures of the knee. Therefore, the use of this stretching technique may be an excellent first choice of treatment modality in patients with slow progress of knee flexion or persistent knee stiffness following TKA, prior to manipulation under anaesthesia or lysis of adhesions.

  15. Ultrafast dynamics of liquid water: Frequency fluctuations of the OH stretch and the HOH bend

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imoto, Sho; Xantheas, Sotiris S.; Saito, Shinji

    2013-07-28

    Frequency fluctuations of the OH stretch and the HOH bend in liquid water are reported from the third-order response function evaluated using the TTM3-F potential for water. The simulated two-dimensional infrared (IR) spectra of the OH stretch are similar to previously reported theoretical results. The present study suggests that the frequency fluctuation of the HOH bend is faster than that of the OH stretch. The ultrafast loss of the frequency correlation of the HOH bend is due to the strong couplings with the OH stretch as well as the intermolecular hydrogen bond bend.

  16. Comparison of 2 Dosages of Stretching Treatment in Infants with Congenital Muscular Torticollis: A Randomized Trial.

    PubMed

    He, Lu; Yan, Xiaohua; Li, Jinling; Guan, Buyun; Ma, Liying; Chen, Ying; Mai, Jianning; Xu, Kaishou

    2017-05-01

    To compare the short-term efficacy of 2 dosages of stretching treatment on the clinical outcomes in infants with congenital muscular torticollis. This was a prospective randomized controlled study. Fifty infants with congenital muscular torticollis who were randomly assigned to 100-times stretching group and 50-times stretching group received stretching treatment for the affected sternocleidomastoid muscle. The outcomes including the head tilt, the cervical passive range of motion, and the muscle function of cervical lateral flexors determined by the muscle function scale were assessed at baseline and at 4 and 8 weeks after treatment. The sternocleidomastoid muscle growth analyzed by the thickness ratio of sternocleidomastoid muscles was measured using ultrasonography at baseline and 8 weeks after treatment. Except the ratio of muscle function scale scores, the postintervention outcomes were all significantly improved in both groups compared with baseline (P < 0.05). The 100-times stretching group showed greater improvement compared with 50-times stretching group in head tilt and cervical passive range of motion at 4 and 8 weeks after treatment (P < 0.05). Stretching treatment of 2 dosages may effectively improve head tilt, cervical passive range of motion, and sternocleidomastoid muscle growth in infants with congenital muscular torticollis. The stretching treatment of 100 times per day is likely to associate with greater improvement in head tilt and cervical passive range of motion.

  17. Porous poly(L-lactic acid) sheet prepared by stretching with starch particles as filler for tissue engineering.

    PubMed

    Ju, Dandan; Han, Lijing; Li, Zonglin; Chen, Yunjing; Wang, Qingjiang; Bian, Junjia; Dong, Lisong

    2016-05-20

    Porous poly(L-lactic acid) (PLLA) sheets were prepared by uniaxial stretching PLLA sheets containing starch filler. Here, the starch filler content, stretching ratio, stretching rate and stretching temperature are important factors to influence the structure of the porous PLLA sheets, therefore, they have been investigated in detail. The pore size distribution and tortuosity were characterized by Mercury Intrusion Porosimetry. The results revealed that the porosity and pore size enlarged with the increase of the starch filler content and stretching ratio, while shrank with the rise of stretching temperature. On the other hand, the pore structure almost had no changes with the stretching rate ranging between 5 and 40 mm/min. In order to test and verify that the porous PLLA sheet was suitable for the tissue engineering, the starch particles were removed by selective enzymatic degradation and its in vitro biocompatibility to osteoblast-like MC3T3-E1 cells was investigated. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Lenticular stretch structures in eastern Nevada - possible trapping mechanism in supposed graben

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, C.T.; Dennis, J.G.; Lumsden, W.W.

    Eastern Nevada is widely recognized as a region of tectonic extension. The dominant structures are generally agreed to be low-dipping, younger over older faults and steeper listric faults that are responsible for the basins (grabens) and ranges (horsts). In the Schell Creek-Duck Creek Range, east of Ely, and in the White Pine Range, southwest of Ely, small lenticular structures bounded by tectonic discontinuities can be clearly seen in the field. These lenticular units, or stretch structures, range in length from a few meters to more than 200 m. All lenticular stretch structures that can be clearly seen in the fieldmore » are stratigraphically restricted; the stretched formations are the Eureka Quartzite, the Pilot Shale, the Joana Limestone, and the Chainman Shale. Still larger stretch structures, which may include several formations, are inferred, and the authors suggest that extension has created lenticular structures at all scales. The Duck Creek and Schell Creek Ranges east of Ely consist mostly of Devonian and older rocks. They are separated by a topographically lower area containing mostly Mississippian and Pennsylvanian rocks. This structure, which separates the ranges, has been referred to as a graben, but field evidence suggests that it is a large-scale lenticular stretch structure. Unlike a true graben, the structure does not extend downward. For example, in several places within the supposed graben, Cambrian and Ordovician rocks project through a cover of Carboniferous Chainman Shale and Ely Limestone, suggesting the Chainman-Ely is a thin sheet underlain by Cambrian-Ordovician rocks. Accordingly, they suggest that extension in the Duck Creek-Schell Creek Ranges stretched the formations into lenticular bodies. Between the Duck Creek and Schell Creek Ranges, the Cambrian-Ordovician is attenuated, and the resulting tectonic depression is occupied by a lenticular mass of Carboniferous rocks.« less

  19. Acute effects of warm-up stretch protocols on balance, vertical jump height, and range of motion in dancers.

    PubMed

    Morrin, Niamh; Redding, Emma

    2013-01-01

    The aim of this study was to examine the acute effects of static stretching (SS), dynamic stretching (DS), and a combined (static and dynamic) stretch protocol on vertical jump (VJ) height, balance, and range of motion (ROM) in dancers. A no-stretch (NS) intervention acted as the control condition. It was hypothesized that the DS and combination stretch protocols would have more positive effects on performance indicators than SS and NS, and SS would have negative effects as compared to the NS condition. Ten trained female dancers (27 ± 5 years of age) were tested on four occasions. Each session began with initial measurements of hamstring ROM on the dominant leg. The participants subsequently carried out a cardiovascular (CV) warm-up, which was followed by one of the four randomly selected stretch conditions. Immediately after the stretch intervention the participants were tested on VJ performance, hamstring ROM, and balance. The data showed that DS (p < 0.05) and the combination stretch (p < .05) produced significantly greater VJ height scores as compared to SS, and the combination stretch demonstrated significantly enhanced balance performance as compared to SS (p < 0.05). With regard to ROM, a one-way ANOVA indicated that SS and the combination stretch displayed significantly greater changes in ROM than DS (p < 0.05). From comparison of the stretch protocols used in the current study, it can be concluded that SS does not appear to be detrimental to a dancer's performance, and DS has some benefits but not in all three key area's tested, namely lower body power (VJ height), balance, and range of motion. However, combination stretching showed significantly enhanced balance and vertical jump height scores and significantly improved pre-stretch and post-stretch ROM values. It is therefore suggested that a combined warm-up protocol consisting of SS and DS should be promoted as an effective warm-up for dancers.

  20. Responses to Microbial Challenges by SLAMF Receptors

    PubMed Central

    van Driel, Boaz Job; Liao, Gongxian; Engel, Pablo; Terhorst, Cox

    2016-01-01

    The SLAMF family (SLAMF) of cell surface glycoproteins is comprised of nine glycoproteins and while SLAMF1, 3, 5, 6, 7, 8, and 9 are self-ligand receptors, SLAMF2 and SLAMF4 interact with each other. Their interactions induce signal transduction networks in trans, thereby shaping immune cell–cell communications. Collectively, these receptors modulate a wide range of functions, such as myeloid cell and lymphocyte development, and T and B cell responses to microbes and parasites. In addition, several SLAMF receptors serve as microbial sensors, which either positively or negatively modulate the function of macrophages, dendritic cells, neutrophils, and NK cells in response to microbial challenges. The SLAMF receptor–microbe interactions contribute both to intracellular microbicidal activity as well as to migration of phagocytes to the site of inflammation. In this review, we describe the current knowledge on how the SLAMF receptors and their specific adapters SLAM-associated protein and EAT-2 regulate innate and adaptive immune responses to microbes. PMID:26834746

  1. Acute effects of static stretching on passive stiffness of the hamstring muscles calculated using different mathematical models.

    PubMed

    Nordez, Antoine; Cornu, Christophe; McNair, Peter

    2006-08-01

    The aim of this study was to assess the effects of static stretching on hamstring passive stiffness calculated using different data reduction methods. Subjects performed a maximal range of motion test, five cyclic stretching repetitions and a static stretching intervention that involved five 30-s static stretches. A computerised dynamometer allowed the measurement of torque and range of motion during passive knee extension. Stiffness was then calculated as the slope of the torque-angle relationship fitted using a second-order polynomial, a fourth-order polynomial, and an exponential model. The second-order polynomial and exponential models allowed the calculation of stiffness indices normalized to knee angle and passive torque, respectively. Prior to static stretching, stiffness levels were significantly different across the models. After stretching, while knee maximal joint range of motion increased, stiffness was shown to decrease. Stiffness decreased more at the extended knee joint angle, and the magnitude of change depended upon the model used. After stretching, the stiffness indices also varied according to the model used to fit data. Thus, the stiffness index normalized to knee angle was found to decrease whereas the stiffness index normalized to passive torque increased after static stretching. Stretching has significant effects on stiffness, but the findings highlight the need to carefully assess the effect of different models when analyzing such data.

  2. The behaviour of the long-latency stretch reflex in patients with Parkinson's disease

    PubMed Central

    Rothwell, Jc; Obeso, Ja; Traub, Mm; Marsden, Cd

    1983-01-01

    The size of the long-latency stretch reflex was measured in a proximal (triceps) and distal (flexor pollicis longus) muscle in 47 patients with Parkinson's disease, and was compared with that seen in a group of 12 age-matched normal control subjects. The patients were classified clinically into four groups according to the degree of rigidity at the elbow or tremor. Stretch reflexes were evaluated while the subject was exerting a small force against a constant preload supplied by a torque motor, and the size of the reflex response was measured as fractional increase over basal levels of activity. When stretches were given at random intervals by increasing the force exerted by the motor by a factor of 2 or 3, there was a clear trend for the more severely affected patients to have larger long latency responses in the triceps muscle, although there was no change in the size of the short-latency, spinal component of the response. In contrast, there was no change in the size of the long-latency response of the flexor pollicis longus in any group of patients with Parkinson's disease. Despite any differences in reflex size, the inherent muscle stiffness of both muscles appeared to be normal in all groups of patients with Parkinson's disease, since the displacement trajectory of the limb following the force increase was the same as control values in the short (25 ms) period before reflex compensation could intervene. In 20 of the patients and in seven of the control subjects, servo-controlled, ramp positional disturbances were given to the thumb. Up to a velocity of 300°/s, the size of the long-latency stretch reflex was proportional to the log velocity of stretch. This technique revealed, in both moderately and severely rigid patients, increases in the reflex sensitivity of the flexor pollicis longus, which had not been clear using step torque stretches alone. However, whether using ramp or step displacements, long latency stretch reflex gain was not closely related to

  3. Chaperones in Polyglutamine Aggregation: Beyond the Q-Stretch

    PubMed Central

    Kuiper, E. F. E.; de Mattos, Eduardo P.; Jardim, Laura B.; Kampinga, Harm H.; Bergink, Steven

    2017-01-01

    Expanded polyglutamine (polyQ) stretches in at least nine unrelated proteins lead to inherited neuronal dysfunction and degeneration. The expansion size in all diseases correlates with age at onset (AO) of disease and with polyQ protein aggregation, indicating that the expanded polyQ stretch is the main driving force for the disease onset. Interestingly, there is marked interpatient variability in expansion thresholds for a given disease. Between different polyQ diseases the repeat length vs. AO also indicates the existence of modulatory effects on aggregation of the upstream and downstream amino acid sequences flanking the Q expansion. This can be either due to intrinsic modulation of aggregation by the flanking regions, or due to differential interaction with other proteins, such as the components of the cellular protein quality control network. Indeed, several lines of evidence suggest that molecular chaperones have impact on the handling of different polyQ proteins. Here, we review factors differentially influencing polyQ aggregation: the Q-stretch itself, modulatory flanking sequences, interaction partners, cleavage of polyQ-containing proteins, and post-translational modifications, with a special focus on the role of molecular chaperones. By discussing typical examples of how these factors influence aggregation, we provide more insight on the variability of AO between different diseases as well as within the same polyQ disorder, on the molecular level. PMID:28386214

  4. Single-shot time stretch stimulated Raman spectroscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Saltarelli, Francesco; Kumar, Vikas; Viola, Daniele; Crisafi, Francesco; Preda, Fabrizio; Cerullo, Giulio; Polli, Dario

    2017-02-01

    Stimulated Raman scattering spectroscopy is a powerful technique for label-free molecular identification, but its broadband implementation is technically challenging. We introduce and experimentally demonstrate a novel approach based on photonic time stretch. The broadband femtosecond Stokes pulse, after interacting with the sample, is stretched by a telecom fiber to 15ns, mapping its spectrum in time. The signal is sampled through a fast analog-to-digital converter, providing single-shot spectra at 80-kHz rate. We demonstrate 10^-5 sensitivity over 500 cm-1 in the C-H region. Our results pave the way to high-speed broadband vibrational imaging for materials science and biophotonics.

  5. Stretching, twisting and supercoiling in short, single DNA molecules

    NASA Astrophysics Data System (ADS)

    Lam, Pui-Man; Zhen, Yi

    2018-02-01

    We had combined the Neukirch-Marko model that describes the extension, torque and supercoiling in single, stretched and twisted DNA of infinite contour length, with a form of the free energy suggested by Sinha and Samuels to describe short DNA, with contour length only a few times the persistence length. We find that the free energy of the stretched but untwisted DNA, is significantly modified from its infinitely length value and this in turn modifies significantly the torque and supercoiling. We show that this is consistent with short DNA being more flexible than infinitely long DNA. We hope our results will stimulate experimental investigation of torque and supercoiling in short DNA.

  6. Yoga Is as Good as Stretching-Strengthening Exercises in Improving Functional Fitness Outcomes: Results From a Randomized Controlled Trial.

    PubMed

    Gothe, Neha P; McAuley, Edward

    2016-03-01

    Despite yoga's popularity, few clinical trials have employed rigorous methodology to systematically explore its functional benefits compared with more established forms of exercise. The objective of this study was to compare the functional benefits of yoga with the conventional stretching-strengthening exercises recommended for adults. Sedentary healthy adults (N = 118; M age = 62.0) participated in an 8-week (three times a week for 1 hour) randomized controlled trial, which consisted of a Hatha yoga group (n = 61) and a stretching-strengthening exercise group (n = 57). Standardized functional fitness tests assessing balance, strength, flexibility, and mobility were administered at baseline and postintervention. A repeated measures multivariate analysis of variance showed a significant time effect for measures of balance [F(3,18) = 4.88, p < .01, partial η(2) = .45], strength [F(2,19) = 15.37, p < .001, partial η(2) = .62], flexibility [F(4,17) = 8.86, p < .001, partial η(2) = .68], and mobility [F(2,19) = 8.54, p < .002, partial η(2) = .47]. Both groups showed significant improvements on measures of balance (left-right leg and four square step); strength (chair stands and arm curls); flexibility (back scratch and sit-and-reach); and mobility (gait speed and 8-feet up and go), with partial η(2) ranging from .05 to .47. These data suggest that regular yoga practice is just as effective as stretching-strengthening exercises in improving functional fitness. To our knowledge, this is the first study to examine functional benefits of yoga in comparison with stretching-strengthening exercises in sedentary, healthy, community-dwelling older adults. These findings have clinical implications as yoga is a more amenable form of exercise than strengthening exercises as it requires minimal equipment and can be adapted for individuals with lower levels of functioning or disabilities. © The Author 2015. Published by Oxford University Press on behalf of The Gerontological

  7. Adaptability and selectivity of human peroxisome proliferator-activated receptor (PPAR) pan agonists revealed from crystal structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oyama, Takuji; Toyota, Kenji; Waku, Tsuyoshi

    2009-08-01

    The structures of the ligand-binding domains (LBDs) of human peroxisome proliferator-activated receptors (PPARα, PPARγ and PPARδ) in complexes with a pan agonist, an α/δ dual agonist and a PPARδ-specific agonist were determined. The results explain how each ligand is recognized by the PPAR LBDs at an atomic level. Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear hormone receptor family, which is defined as transcriptional factors that are activated by the binding of ligands to their ligand-binding domains (LBDs). Although the three PPAR subtypes display different tissue distribution patterns and distinct pharmacological profiles, they all are essentially related to fatty-acid andmore » glucose metabolism. Since the PPARs share similar three-dimensional structures within the LBDs, synthetic ligands which simultaneously activate two or all of the PPARs could be potent candidates in terms of drugs for the treatment of abnormal metabolic homeostasis. The structures of several PPAR LBDs were determined in complex with synthetic ligands, derivatives of 3-(4-alkoxyphenyl)propanoic acid, which exhibit unique agonistic activities. The PPARα and PPARγ LBDs were complexed with the same pan agonist, TIPP-703, which activates all three PPARs and their crystal structures were determined. The two LBD–ligand complex structures revealed how the pan agonist is adapted to the similar, but significantly different, ligand-binding pockets of the PPARs. The structures of the PPARδ LBD in complex with an α/δ-selective ligand, TIPP-401, and with a related δ-specific ligand, TIPP-204, were also determined. The comparison between the two PPARδ complexes revealed how each ligand exhibits either a ‘dual selective’ or ‘single specific’ binding mode.« less

  8. Development of Aluminum-Lithium 2195 Gores by the Stretch Forming Process

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Chen, P. S.; Gorti, S.; Salvail, P.

    2014-01-01

    Aluminum-Lithium alloy 2195 exhibits higher mechanical properties and lower density than aluminum alloy 2219, which is the current baseline material for Space Launch System (SLS) cryogenic tank components. Replacement of Al 2219 with Al-Li 2195 would result in substantial weight savings, as was the case when this replacement was made on the shuttle external tank. A key component of cryogenic tanks are the gores, which are welded together to make the rounded ends of the tanks. The required thicknesses of these gores depend on the specific SLS configuration and may exceed the current experience base in the manufacture of such gores by the stretch forming process. Here we describe the steps taken to enhance the formability of Al-Li 2195 by optimizing the heat treatment and stretch forming processes for gore thicknesses up to 0.75", which envelopes the maximum expected gore thicknesses for SLS tanks. An annealing treatment, developed at Marshall Space Flight Center, increased the forming range and strain hardening exponent of Al-Li 2195 plates. Using this annealing treatment, one 0.525" thick and two 0.75" thick gores were manufactured by the stretch forming process. The annealing treatment enabled the stretch forming of the largest ever cross sectional area (thickness x width) of an Al-Li 2195 plate achieved by the manufacturer. Mechanical testing of the gores showed greater than expected ultimate tensile strength, yield strength, modulus, and elongation values. The gores also exhibited acceptable fracture toughness at room and LN2 temperatures. All of the measured data indicate that the stretch formed gores have sufficient material properties to be used in flight domes.

  9. A Critical View of Static Stretching and Its Relevance in Physical Education

    ERIC Educational Resources Information Center

    Parrott, James Allen; Zhu, Xihe

    2013-01-01

    Stretching before activity has been a customary part of most physical education classes (PE), with static stretching typically the preferred method due to its ease of implementation. Historical and implicit support for its continued use is due in part to the sit-and-reach test and flexibility as one of the components of health-related fitness.…

  10. Using Atomic Orbitals and Kinesthetic Learning to Authentically Derive Molecular Stretching Vibrations

    ERIC Educational Resources Information Center

    Bridgeman, Adam J.; Schmidt, Timothy W.; Young, Nigel A.

    2013-01-01

    The stretching modes of ML[subscript "x"] complexes have the same symmetry as the atomic orbitals on M that are used to form its s bonds. In the exercise suggested here, the atomic orbitals are used to derive the form of the stretching modes without the need for formal group theory. The analogy allows students to help understand many…

  11. FE-Analysis of Stretch-Blow Moulded Bottles Using an Integrative Process Simulation

    NASA Astrophysics Data System (ADS)

    Hopmann, C.; Michaeli, W.; Rasche, S.

    2011-05-01

    The two-stage stretch-blow moulding process has been established for the large scale production of high quality PET containers with excellent mechanical and optical properties. The total production costs of a bottle are significantly caused by the material costs. Due to this dominant share of the bottle material, the PET industry is interested in reducing the total production costs by an optimised material efficiency. However, a reduced material inventory means decreasing wall thicknesses and therewith a reduction of the bottle properties (e.g. mechanical properties, barrier properties). Therefore, there is often a trade-off between a minimal bottle weight and adequate properties of the bottle. In order to achieve the objectives Computer Aided Engineering (CAE) techniques can assist the designer of new stretch-blow moulded containers. Hence, tools such as the process simulation and the structural analysis have become important in the blow moulding sector. The Institute of Plastics Processing (IKV) at RWTH Aachen University, Germany, has developed an integrative three-dimensional process simulation which models the complete path of a preform through a stretch-blow moulding machine. At first, the reheating of the preform is calculated by a thermal simulation. Afterwards, the inflation of the preform to a bottle is calculated by finite element analysis (FEA). The results of this step are e.g. the local wall thickness distribution and the local biaxial stretch ratios. Not only the material distribution but also the material properties that result from the deformation history of the polymer have significant influence on the bottle properties. Therefore, a correlation between the material properties and stretch ratios is considered in an integrative simulation approach developed at IKV. The results of the process simulation (wall thickness, stretch ratios) are transferred to a further simulation program and mapped on the bottles FE mesh. This approach allows a local

  12. Acute effects of static stretching on passive stiffness and postural balance in healthy, elderly men.

    PubMed

    Palmer, Ty B; Agu-Udemba, Chinonye C; Palmer, Bailey M

    2018-02-01

    This study aimed to examine the acute effects of straight-leg raise (SLR) static stretching on passive stiffness and postural balance in healthy, elderly men. An additional aim of this study was to examine the relationships between stiffness and balance at baseline (prior to stretching) and the relationships between the stretch-induced changes in these variables. Eleven elderly men (age = 69 ± 6 years; height = 177 ± 7 cm; mass = 83 ± 13 kg) underwent postural balance and passive stiffness assessments before and after: 1) a stretching treatment consisting of four, 15-s SLR static stretches performed by the primary investigator and 2) a control treatment consisting of no static stretching. Passive stiffness was calculated from the slopes of the initial (phase 1) and final (phase 2) portions of the angle-torque curve. Unilateral postural balance was assessed on the right leg using a commercially designed balance testing device, which provides a measurement of static stability based on the overall stability index (OSI). The slope coefficients and OSI values decreased from pre- to post-treatment for the stretching intervention (P = 0.015 and 0.018, respectively); however, there were no changes for the control (P = 0.654 and 0.920). For the stretching intervention, a significant positive relationship was observed between OSI and the slope coefficient of phase 1 at baseline (r = 0.619; P = 0.042). A significant positive relationship was also observed between the stretched-induced changes in OSI and the slope coefficient of phase 1 (r = 0.731; P = 0.011). No relationship was observed between OSI and the slope coefficient of phase 2 at baseline (r = 0.262; P = 0.437) nor was there a relationship between the changes in these variables (r = 0.419; P = 0.200). A short, practical bout of SLR static stretching may be an effective intervention for reducing passive stiffness and improving postural balance in healthy, elderly men.

  13. Comparison electrical stimulation and passive stretching for blood glucose control type 2 diabetes mellitus patients

    NASA Astrophysics Data System (ADS)

    Arsianti, Rika Wahyuni; Parman, Dewy Haryanti; Lesmana, Hendy

    2018-04-01

    Physical exercise is one of the cornerstones for management and treatment type 2 diabetes mellitus. But not all people are able to perform physical exercise because of their physical limitation condition. The strategy for those people in this study is electrical stimulation and passive stretching. The aim of this study is to find out the effect of electrical stimulation and passive stretching to lowering blood glucose level. 20 subjects is divided into electrical stimulation and passive stretching group. The provision of electrical stimulation on lower extremities muscles for 30 minutes for electrical stimulation group (N=10). And other underwent passive stretching for 30 minutes (N=10). The result shows that blood glucose level is decrease from 192.9 ± 10.7087 mg/dL to 165.3 ± 10.527 mg/dL for electrical stimulation intervention group while for the passive stretching group the blood glucose decrease from 153 ± 12.468 mg/dL to 136.1 ± 12.346 mg/dL. Both electrical stimulation and passive stretching are effective to lowering blood glucose level and can be proposed for those people restricted to perform exercise.

  14. Mechanical stretch induces MMP-2 release and activation in lung endothelium: role of EMMPRIN.

    PubMed

    Haseneen, Nadia A; Vaday, Gayle G; Zucker, Stanley; Foda, Hussein D

    2003-03-01

    High-volume mechanical ventilation leads to ventilator-induced lung injury. This type of lung injury is accompanied by an increased release and activation of matrix metalloproteinases (MMPs). To investigate the mechanism leading to the increased MMP release, we systematically studied the effect of mechanical stretch on human microvascular endothelial cells isolated from the lung. We exposed cells grown on collagen 1 BioFlex plates to sinusoidal cyclic stretch at 0.5 Hz using the Flexercell system with 17-18% elongation of cells. After 4 days of cell stretching, conditioned media and cell lysate were collected and analyzed by gelatin, casein, and reverse zymograms as well as Western blotting. RT-PCR of mRNA extracted from stretched cells was performed. Our results show that 1) cyclic stretch led to increased release and activation of MMP-2 and MMP-1; 2) the activation of MMP-2 was accompanied by an increase in membrane type-1 MMP (MT1-MMP) and inhibited by a hydroxamic acid-derived inhibitor of MMPs (Prinomastat, AG3340); and 3) the MMP-2 release and activation were preceded by an increase in production of extracellular MMP inducer (EMMPRIN). These results suggest that cyclic mechanical stretch leads to MMP-2 activation through an MT1-MMP mechanism. EMMPRIN may play an important role in the release and activation of MMPs during lung injury.

  15. Self-induced stretch syncope of adolescence: a video-EEG documentation.

    PubMed

    Mazzuca, Michel; Thomas, Pierre

    2007-12-01

    We present the first video-EEG documentation, with ECG and EMG features, of stretch syncope of adolescence in a young, healthy 16-year-old boy. Stretch syncope of adolescence is a rarely reported, benign cause of fainting in young patients, which can be confused with epileptic seizures. In our patient, syncopes were self-induced to avoid school. Dynamic transcranial Doppler showed evidence of blood flow decrease in both posterior cerebral arteries mimicking effects of a Valsalva manoeuvre. Dynamic angiogram of the vertebral arteries was normal. Hypotheses concerning the physiopathology are discussed. [Published with video sequences].

  16. Morpho-functional implications of myofascial stretching applied to muscle chains: A case study.

    PubMed

    Raţ, Bogdan Constantin; Raţă, Marinela; Antohe, Bogdan

    2018-03-16

    Most lesions of the soft tissues, especially those at the muscle level, are due to the lack of elasticity of the connective tissue and fascia. Stretching is one of the most commonly used methods of treatment for such musculoskeletal issues. This study tracks the effects of stretching on the electromyographic activity of muscle chains, applied to a 24-year-old athlete diagnosed with the Haglund's disease. For the evaluation, we used visual examination and surface electromyography (maximum volumetric isometric contraction). The therapeutic intervention consisted in the application of the static stretching positions, which intended the elongation of the shortened muscle chains. The treatment program had a duration of 2 months, with a frequency of 2 sessions per week and an average duration of 60 minutes. The posterior muscle chains recorded an increase in the EMG activity, while the anterior muscle chains tended to diminish their EMG activity. As a result of the applied treatment, all the evaluated muscle chains recorded a rebalancing of the electromyographic activity, demonstrating the efficiency of stretching as a method of global treatment of muscle chains. By analysing all the data, we have come to the conclusion that static stretching is an effective treatment method for shortened muscle chains.

  17. Evolution of olfactory receptors.

    PubMed

    Hoover, Kara C

    2013-01-01

    Olfactory receptors are a specialized set of receptor cells responsible for the detection of odors. These cells are G protein-coupled receptors and expressed in the cell membranes of olfactory sensory neurons. Once a cell is activated by a ligand, it initiates a signal transduction cascade that produces a nerve impulse to the brain where odor perception is processed. Vertebrate olfactory evolution is characterized by birth-and-death events, a special case of the stochastic continuous time Markov process. Vertebrate fish have three general types of receptor cells (two dedicated to pheromones). Terrestrial animals have different epithelial biology due to the specialized adaptation to detecting airborne odors. Two general classes of olfactory receptor gene reflect the vertebrate marine heritage (Class I) and the derived amphibian, reptile, and mammal terrestrial heritage (Class II). While we know much about olfactory receptor cells, there are still areas where our knowledge is insufficient, such as intra-individual diversity throughout the life time, epigenetic processes acting on olfactory receptors, and association of ligands to specific cells.

  18. Gab1 Acts as an Adapter Molecule Linking the Cytokine Receptor gp130 to ERK Mitogen-Activated Protein Kinase

    PubMed Central

    Takahashi-Tezuka, Mariko; Yoshida, Yuichi; Fukada, Toshiyuki; Ohtani, Takuya; Yamanaka, Yojiro; Nishida, Keigo; Nakajima, Koichi; Hibi, Masahiko; Hirano, Toshio

    1998-01-01

    Gab1 has structural similarities with Drosophila DOS (daughter of sevenless), which is a substrate of the protein tyrosine phosphatase Corkscrew. Both Gab1 and DOS have a pleckstrin homology domain and tyrosine residues, potential binding sites for various SH2 domain-containing adapter molecules when they are phosphorylated. We found that Gab1 was tyrosine phosphorylated in response to various cytokines, such as interleukin-6 (IL-6), IL-3, alpha interferon (IFN-α), and IFN-γ. Upon the stimulation of IL-6 or IL-3, Gab1 was found to form a complex with phosphatidylinositol (PI)-3 kinase and SHP-2, a homolog of Corkscrew. Mutational analysis of gp130, the common subunit of IL-6 family cytokine receptors, revealed that neither tyrosine residues of gp130 nor its carboxy terminus was required for tyrosine phosphorylation of Gab1. Expression of Gab1 enhanced gp130-dependent mitogen-activated protein (MAP) kinase ERK2 activation. A mutation of tyrosine 759, the SHP-2 binding site of gp130, abrogated the interactions of Gab1 with SHP-2 and PI-3 kinase as well as ERK2 activation. Furthermore, ERK2 activation was inhibited by a dominant negative p85 PI-3 kinase, wortmannin, or a dominant negative Ras. These observations suggest that Gab1 acts as an adapter molecule in transmitting signals to ERK MAP kinase for the cytokine receptor gp130 and that SHP-2, PI-3 kinase, and Ras are involved in Gab1-mediated ERK activation. PMID:9632795

  19. Highly Stretchable Superhydrophobic Composite Coating Based on Self-Adaptive Deformation of Hierarchical Structures.

    PubMed

    Hu, Xin; Tang, Changyu; He, Zhoukun; Shao, Hong; Xu, Keqin; Mei, Jun; Lau, Woon-Ming

    2017-05-01

    With the rapid development of stretchable electronics, functional textiles, and flexible sensors, water-proof protection materials are required to be built on various highly flexible substrates. However, maintaining the antiwetting of superhydrophobic surface under stretching is still a big challenge since the hierarchical structures at hybridized micro-nanoscales are easily damaged following large deformation of the substrates. This study reports a highly stretchable and mechanically stable superhydrophobic surface prepared by a facile spray coating of carbon black/polybutadiene elastomeric composite on a rubber substrate followed by thermal curing. The resulting composite coating can maintain its superhydrophobic property (water contact angle ≈170° and sliding angle <4°) at an extremely large stretching strain of up to 1000% and can withstand 1000 stretching-releasing cycles without losing its superhydrophobic property. Furthermore, the experimental observation and modeling analysis reveal that the stable superhydrophobic properties of the composite coating are attributed to the unique self-adaptive deformation ability of 3D hierarchical roughness of the composite coating, which delays the Cassie-Wenzel transition of surface wetting. In addition, it is first observed that the damaged coating can automatically recover its superhydrophobicity via a simple stretching treatment without incorporating additional hydrophobic materials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Jack-knife stretching promotes flexibility of tight hamstrings after 4 weeks: a pilot study.

    PubMed

    Sairyo, Koichi; Kawamura, Takeshi; Mase, Yasuyoshi; Hada, Yasushi; Sakai, Toshinori; Hasebe, Kiyotaka; Dezawa, Akira

    2013-08-01

    Tight hamstrings are reported to be one of the causes of low back pain. However, there have been few reports on effective stretching procedures for the tight hamstrings. The so-called jack-knife stretch, an active-static type of stretching, can efficiently increase the flexibility of tight hamstrings. To evaluate hamstring tightness before and after the 4-week stretching protocol in healthy volunteer adults and patients aged under 18 years with low back pain. For understanding the hamstrings tightness, we measured two parameters including (1) finger to floor distance (FFD) and (2) pelvis forward inclination angle (PFIA). Eight healthy adult volunteers who had no lumbar or hip problems participated in this study (mean age: 26.8 years). All lacked flexibility and their FFD were positive before the experiment. Subjects performed 2 sets of the jack-knife stretch every day for 4 weeks. One set consisted of 5 repetitions, each held for 5 s. Before and during the 4-week experiment, the FFD and PFIA of toe-touching tests were measured weekly. For 17 of the sports players aged under 18, only FFD was measured. In adult volunteers, FFD was 14.1 ± 6.1 cm before the experiment and decreased to -8.1 ± 3.7 cm by the end of week 4, indicating a gain in flexibility of 22.2 cm. PFIA was 50.6 ± 8.2 before the experiment and 83.8 ± 5.8 degrees after. Before and after the experiment, the differences were significant (p < 0.05). For those aged under 18, FFD was 8.1 ± 8.0 and -9.6 ± 6.8, before and after the stretching, respectively. This difference was significant (p < 0.05). The jack-knife stretch is a useful active-static stretching technique to efficiently increase flexibility of tight hamstrings.

  1. Stretch sensors for human body motion

    NASA Astrophysics Data System (ADS)

    O'Brien, Ben; Gisby, Todd; Anderson, Iain A.

    2014-03-01

    Sensing motion of the human body is a difficult task. From an engineers' perspective people are soft highly mobile objects that move in and out of complex environments. As well as the technical challenge of sensing, concepts such as comfort, social intrusion, usability, and aesthetics are paramount in determining whether someone will adopt a sensing solution or not. At the same time the demands for human body motion sensing are growing fast. Athletes want feedback on posture and technique, consumers need new ways to interact with augmented reality devices, and healthcare providers wish to track recovery of a patient. Dielectric elastomer stretch sensors are ideal for bridging this gap. They are soft, flexible, and precise. They are low power, lightweight, and can be easily mounted on the body or embedded into clothing. From a commercialisation point of view stretch sensing is easier than actuation or generation - such sensors can be low voltage and integrated with conventional microelectronics. This paper takes a birds-eye view of the use of these sensors to measure human body motion. A holistic description of sensor operation and guidelines for sensor design will be presented to help technologists and developers in the space.

  2. Evaluation of truncation error and adaptive grid generation for the transonic full potential flow calculations

    NASA Technical Reports Server (NTRS)

    Nakamura, S.

    1983-01-01

    The effects of truncation error on the numerical solution of transonic flows using the full potential equation are studied. The effects of adapting grid point distributions to various solution aspects including shock waves is also discussed. A conclusion is that a rapid change of grid spacing is damaging to the accuracy of the flow solution. Therefore, in a solution adaptive grid application an optimal grid is obtained as a tradeoff between the amount of grid refinement and the rate of grid stretching.

  3. Increased excitability of spinal pain reflexes and altered frequency-dependent modulation in the dopamine D3-receptor knockout mouse.

    PubMed

    Keeler, Benjamin E; Baran, Christine A; Brewer, Kori L; Clemens, Stefan

    2012-12-01

    Frequency-dependent modulation and dopamine (DA) receptors strongly modulate neural circuits in the spinal cord. Of the five known DA receptor subtypes, the D3 receptor has the highest affinity to DA, and D3-mediated actions are mainly inhibitory. Using an animal model of spinal sensorimotor dysfunction, the D3 receptor knockout mouse (D3KO), we investigated the physiological consequences of D3 receptor dysfunction on pain-associated signaling pathways in the spinal cord, the initial integration site for the processing of pain signaling. In the D3KO spinal cord, inhibitory actions of DA on the proprioceptive monosynaptic stretch reflex are converted from depression to facilitation, but its effects on longer-latency and pain-associated reflex responses and the effects of FM have not been studied. Using behavioral approaches in vivo, we found that D3KO animals exhibit reduced paw withdrawal latencies to thermal pain stimulation (Hargreaves' test) over wild type (WT) controls. Electrophysiological and pharmacological approaches in the isolated spinal cord in vitro showed that constant current stimulation of dorsal roots at a pain-associated frequency was associated with a significant reduction in the frequency-dependent modulation of longer-latency reflex (LLRs) responses but not monosynaptic stretch reflexes (MSRs) in D3KO. Application of the D1 and D2 receptor agonists and the voltage-gated calcium-channel ligand, pregabalin, but not DA, was able to restore the frequency-dependent modulation of the LLR in D3KO to WT levels. Thus we demonstrate that nociception-associated LLRs and proprioceptive MSRs are differentially modulated by frequency, dopaminergics and the Ca(2+) channel ligand, pregabalin. Our data suggest a role for the DA D3 receptor in pain modulation and identify the D3KO as a possible model for increased nociception. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Substance P contributes to rapidly adapting receptor responses to pulmonary venous congestion in rabbits.

    PubMed Central

    Bonham, A C; Kott, K S; Ravi, K; Kappagoda, C T; Joad, J P

    1996-01-01

    1. This study tested the hypothesis that substance P stimulates rapidly adapting receptors (RARs), contributes to the increase in RAR activity produced by mild pulmonary congestion, and evokes an augmented response from RARs when combined with near-threshold levels of pulmonary congestion. 2. RAR activity, peak tracheal pressure, arterial blood pressure and left atrial pressure were measured in paralysed, anaesthetized and ventilated rabbits. Substance P was given i.v. in one-half log incremental doses to a maximum of 3 micrograms kg-1. Mild pulmonary congestion was produced by inflating a balloon in the left atrium to increase left atrial pressure by 5 mmHg. Near-threshold levels of pulmonary congestion were produced by increasing left atrial pressure by 2 mmHg. 3. Substance P produced dose-dependent increases in RAR activity. The highest dose given increased the activity from 1.3 +/- 0.5 to 11.0 +/- 3.1 impulses bin-1. Increases in left atrial pressure of 5 mmHg increased RAR activity from 3.8 +/- 1.4 to 14.7 +/- 3.9 impulses bin-1. Blockade of NK1 receptors with CP 96345 significantly attenuated RAR responses to substance P and to mild pulmonary congestion. 4. Doses of substance P, which alone had no effect, stimulated the RARs when delivered during near-threshold levels of pulmonary congestion. 5. The findings suggest that substance P augments the stimulatory effect of mild pulmonary congestion on RAR activity, most probably by enhancing hydraulically induced microvascular leak. Images Figure 6 PMID:8735708

  5. Guinea Pig-Adapted Foot-and-Mouth Disease Virus with Altered Receptor Recognition Can Productively Infect a Natural Host▿

    PubMed Central

    Núñez, José I.; Molina, Nicolas; Baranowski, Eric; Domingo, Esteban; Clark, Stuart; Burman, Alison; Berryman, Stephen; Jackson, Terry; Sobrino, Francisco

    2007-01-01

    We report that adaptation to infect the guinea pig did not modify the capacity of foot-and-mouth disease virus (FMDV) to kill suckling mice and to cause an acute and transmissible disease in the pig, an important natural host for this pathogen. Adaptive amino acid replacements (I248→T in 2C, Q44→R in 3A, and L147→P in VP1), selected upon serial passages of a type C FMDV isolated from swine (biological clone C-S8c1) in the guinea pig, were maintained after virus multiplication in swine and suckling mice. However, the adaptive replacement L147→P, next to the integrin-binding RGD motif at the GH loop in VP1, abolished growth of the virus in different established cell lines and modified its antigenicity. In contrast, primary bovine thyroid cell cultures could be productively infected by viruses with replacement L147→P, and this infection was inhibited by antibodies to αvβ6 and by an FMDV-derived RGD-containing peptide, suggesting that integrin αvβ6 may be used as a receptor for these mutants in the animal (porcine, guinea pig, and suckling mice) host. Substitution T248→N in 2C was not detectable in C-S8c1 but was present in a low proportion of the guinea pig-adapted virus. This substitution became rapidly dominant in the viral population after the reintroduction of the guinea pig-adapted virus into pigs. These observations illustrate how the appearance of minority variant viruses in an unnatural host can result in the dominance of these viruses on reinfection of the original host species. PMID:17522230

  6. Anomalies in the coil-stretch transition of flexible polymers

    NASA Astrophysics Data System (ADS)

    Ghosal, Aishani; Cherayil, Binny J.

    2018-03-01

    The flow-induced coil-stretch transition of high molecular weight polymers has generally been held to be of first order. But evidence of significant slowing down in the rate at which the polymers relax to equilibrium in the vicinity of the transition suggests that the thermodynamic character of the transition may be less clear-cut. The above slowing down effect is actually characteristic of a second-order transition, and it points to the existence of a broad spectrum of conformational states in the transition region, analogous to the existence of fluctuations of all length scales at a critical point. In this paper, using a path integral approach based on a free-draining finitely extensible chain model, we calculate various polymer properties as a function of elongational flow as a way of exploring different statistical mechanical details of the coil-stretch transition. These properties include the molecular weight dependence of the flow-extension curve of the polymer, the distribution of its steady-state end-to-end distances, and the characteristic relaxation time τR of these distances. Among other findings, our calculations indicate that the coil-stretch transition is discontinuous in the N → ∞ limit, that the effective free energy of the chain is unimodal at all values of the flow, becoming broad and flat in the immediate vicinity of the transition, and that the ratio of τR to the Rouse relaxation time increases abruptly at the transition before eventually reaching a plateau value at large flow strengths. These aspects of the coil-stretch transition place it among a larger class of unconventional nominally first-order single chain transitions that include the adsorption transition of surface-tethered polymers and the escape transition of compressed polymers.

  7. Influence of UV and Gamma radiations on the induced birefringence of stretched poly(vinyl) alcohol foils

    NASA Astrophysics Data System (ADS)

    Nechifor, Cristina-Delia; Zelinschi, Carmen Beatrice; Dorohoi, Dana-Ortansa

    2014-03-01

    The aim of our paper is to evidence the influence of Gamma and UV radiations on the induced birefringence of poly(vinyl alcohol) stretched foils. Thin foils of PVA were prepared and dried without modifying their surfaces. The polymeric foils were irradiated from 15 min to 6 h using UV and Gamma radiations. The induced by stretching under heating birefringence of PVA films was measured at λ = 589.3 nm with a Babinet Compensator. Physico-chemical processes (photo stabilization, photo degradation, oxidation) induced by irradiation of polymer matrix influence both the stretching degree and the anisotropy of etired foils. An increase of birefringence versus the stretching ratio of the PVA foils was evidenced for all studied samples. The dependence of the birefringence on the exposure time, stretching ratio and nature of radiation was also confirmed.

  8. Gain-guided soliton fiber laser with high-quality rectangle spectrum for ultrafast time-stretch microscopy.

    PubMed

    Hu, Song; Yao, Jian; Liu, Meng; Luo, Ai-Ping; Luo, Zhi-Chao; Xu, Wen-Cheng

    2016-05-16

    The ultrafast time-stretch microscopy has been proposed to enhance the temporal resolution of a microscopy system. The optical source is a key component for ultrafast time-stretch microscopy system. Herein, we reported on the gain-guided soliton fiber laser with high-quality rectangle spectrum for ultrafast time-stretch microscopy. By virtue of the excellent characteristics of the gain-guided soliton, the output power and the 3-dB bandwidth of the stable mode-locked soliton could be up to 3 mW and 33.7 nm with a high-quality rectangle shape, respectively. With the proposed robust optical source, the ultrafast time-stretch microscopy with the 49.6 μm resolution and a scan rate of 11 MHz was achieved without the external optical amplification. The obtained results demonstrated that the gain-guided soliton fiber laser could be used as an alternative high-quality optical source for ultrafast time-stretch microscopy and will introduce some applications in fields such as biology, chemical, and optical sensing.

  9. Chemisorption of hydrogen atoms and hydroxyl groups on stretched graphene: A coupled QM/QM study

    NASA Astrophysics Data System (ADS)

    Katin, Konstantin P.; Prudkovskiy, Vladimir S.; Maslov, Mikhail M.

    2017-09-01

    Using the density functional theory coupled with the nonorthogonal tight-binding model, we analyze the chemisorption of hydrogen atoms and hydroxyl groups on the unstrained and stretched graphene sheets. Drawback of finite cluster model of graphene for the chemisorption energy calculation in comparison with the QM/QM approach applied is discussed. It is shown that the chemisorption energy for the hydroxyl group is sufficiently lower than for hydrogen at stretching up to 7.5%. The simultaneous paired chemisorption of hydrogen and hydroxyl groups on the same hexagon has also been examined. Adsorption of two radicals in ortho and para positions is found to be more energetically favorable than those in meta position at any stretching considered. In addition the energy difference between adsorbent pairs in ortho and para positions decreases as the stretching rises. It could be concluded that the graphene stretching leads to the loss of preferred mutual arrangement of two radicals on its surface.

  10. Systematics of stretching of fluid inclusions I: fluorite and sphalerite at 1 atmosphere confining pressure.

    USGS Publications Warehouse

    Bodnar, R.J.; Bethke, P.M.

    1984-01-01

    Measured homogenization T of fluid inclusions in fluorite and sphalerite may be higher than the true homogenization T of samples that have been previously heated in the laboratory or naturally in post-entrapment events. As T and with it internal P is increased, the resulting volume increase may become inelastic. If the volume increase exceeds the precision of T measurement, the inclusion is said to have stretched. More than 1300 measurements on fluid inclusions in fluorite and sphalerite indicate that stretching is systematically related to P-V-T-X properties of the fluid, inclusion size and shape, physical properties of the host mineral, and the confining P. Experimental methods are detailed in an appendix. The mechanism of stretching is probably plastic deformation or - not observed - microfracturing. The systematic relationship between the internal P necessary to initiate stretching and the inclusion volume provides a means of recognizing previously stretched inclusions and estimating the magnitude of post-entrapment thermal events. -G.J.N.

  11. Hyperglycemia Augments the Adipogenic Transdifferentiation Potential of Tenocytes and Is Alleviated by Cyclic Mechanical Stretch.

    PubMed

    Wu, Yu-Fu; Huang, Yu-Ting; Wang, Hsing-Kuo; Yao, Chung-Chen Jane; Sun, Jui-Sheng; Chao, Yuan-Hung

    2017-12-28

    Diabetes mellitus is associated with damage to tendons, which may result from cellular dysfunction in response to a hyperglycemic environment. Tenocytes express diminished levels of tendon-associated genes under hyperglycemic conditions. In contrast, mechanical stretch enhances tenogenic differentiation. However, whether hyperglycemia increases the non-tenogenic differentiation potential of tenocytes and whether this can be mitigated by mechanical stretch remains elusive. We explored the in vitro effects of high glucose and mechanical stretch on rat primary tenocytes. Specifically, non-tenogenic gene expression, adipogenic potential, cell migration rate, filamentous actin expression, and the activation of signaling pathways were analyzed in tenocytes treated with high glucose, followed by the presence or absence of mechanical stretch. We analyzed tenocyte phenotype in vivo by immunohistochemistry using an STZ (streptozotocin)-induced long-term diabetic mouse model. High glucose-treated tenocytes expressed higher levels of the adipogenic transcription factors PPAR γ and C/EBPs. PPARγ was also highly expressed in diabetic tendons. In addition, increased adipogenic differentiation and decreased cell migration induced by high glucose implicated a fibroblast-to-adipocyte phenotypic change. By applying mechanical stretch to tenocytes in high-glucose conditions, adipogenic differentiation was repressed, while cell motility was enhanced, and fibroblastic morphology and gene expression profiles were strengthened. In part, these effects resulted from a stretch-induced activation of ERK (extracellular signal-regulated kinases) and a concomitant inactivation of Akt. Our results show that mechanical stretch alleviates the augmented adipogenic transdifferentiation potential of high glucose-treated tenocytes and helps maintain their fibroblastic characteristics. The alterations induced by high glucose highlight possible pathological mechanisms for diabetic tendinopathy

  12. Mechanical stretch is a highly selective regulator of gene expression in human bladder smooth muscle cells.

    PubMed

    Adam, Rosalyn M; Eaton, Samuel H; Estrada, Carlos; Nimgaonkar, Ashish; Shih, Shu-Ching; Smith, Lois E H; Kohane, Isaac S; Bägli, Darius; Freeman, Michael R

    2004-12-15

    Application of mechanical stimuli has been shown to alter gene expression in bladder smooth muscle cells (SMC). To date, only a limited number of "stretch-responsive" genes in this cell type have been reported. We employed oligonucleotide arrays to identify stretch-sensitive genes in primary culture human bladder SMC subjected to repetitive mechanical stimulation for 4 h. Differential gene expression between stretched and nonstretched cells was assessed using Significance Analysis of Microarrays (SAM). Expression of 20 out of 11,731 expressed genes ( approximately 0.17%) was altered >2-fold following stretch, with 19 genes induced and one gene (FGF-9) repressed. Using real-time RT-PCR, we tested independently the responsiveness of 15 genes to stretch and to platelet-derived growth factor-BB (PDGF-BB), another hypertrophic stimulus for bladder SMC. In response to both stimuli, expression of 13 genes increased, 1 gene (FGF-9) decreased, and 1 gene was unchanged. Six transcripts (HB-EGF, BMP-2, COX-2, LIF, PAR-2, and FGF-9) were evaluated using an ex vivo rat model of bladder distension. HB-EGF, BMP-2, COX-2, LIF, and PAR-2 increased with bladder stretch ex vivo, whereas FGF-9 decreased, consistent with expression changes observed in vitro. In silico analysis of microarray data using the FIRED algorithm identified c-jun, AP-1, ATF-2, and neurofibromin-1 (NF-1) as potential transcriptional mediators of stretch signals. Furthermore, the promoters of 9 of 13 stretch-responsive genes contained AP-1 binding sites. These observations identify stretch as a highly selective regulator of gene expression in bladder SMC. Moreover, they suggest that mechanical and growth factor signals converge on common transcriptional regulators that include members of the AP-1 family.

  13. Stretch or contraction induced inversion of rectification in diblock molecular junctions

    NASA Astrophysics Data System (ADS)

    Zhang, Guang-Ping; Hu, Gui-Chao; Song, Yang; Xie, Zhen; Wang, Chuan-Kui

    2013-09-01

    Based on ab initio theory and nonequilibrium Green's function method, the effect of stretch or contraction on the rectification in diblock co-oligomer molecular diodes is investigated theoretically. Interestingly, an inversion of rectifying direction induced by stretching or contracting the molecular junctions, which is closely related to the number of the pyrimidinyl-phenyl units, is proposed. The analysis of the molecular projected self-consistent Hamiltonian and the evolution of the frontier molecular orbitals as well as transmission coefficients under external biases gives an inside view of the observed results. It reveals that the asymmetric molecular level shift and asymmetric evolution of orbital wave functions under biases are competitive mechanisms for rectification. The stretching or contracting induced inversion of the rectification is due to the conversion of the dominant mechanism. This work suggests a feasible technique to manipulate the rectification performance in molecular diodes by use of the mechanically controllable method.

  14. High-resolution spectroscopy of the C-N stretching band of methylamine

    NASA Astrophysics Data System (ADS)

    Lees, Ronald M.; Sun, Zhen-Dong; Billinghurst, B. E.

    2011-09-01

    The C-N stretching infrared fundamental of CH3NH2 has been investigated by high-resolution laser sideband and Fourier transform synchrotron spectroscopy to explore the energy level structure and to look for possible interactions with high-lying torsional levels of the ground state and other vibrational modes. The spectrum is complicated by two coupled large-amplitude motions in the molecule, the CH3 torsion and the NH2 inversion, which lead to rich spectral structure with a wide range of energy level splittings and relative line intensities. Numerous sub-bands have been assigned for K values ranging up to 12 for the stronger a inversion species for the vt = 0 torsional state, along with many of the weaker sub-bands of the s species. The C-N stretching sub-state origins have been determined by fitting the upper-state term values to J(J + 1) power-series expansions. For comparison with the ground-state behaviour, both ground and C-N stretch origins have been fitted to a phenomenological Fourier series model that produces an interesting pattern with the differing periodicities of the torsional and inversion energies. The amplitude of the torsional energy oscillation increases substantially for the C-N stretch, while the amplitude of the inversion energy oscillation is relatively unchanged. Independent inertial scale factors ρ were fitted for the torsion and the inversion and differ significantly in the upper state. The C-N stretching vibrational energy is determined to be 1044.817 cm-1, while the effective upper state B-value is 0.7318 cm-1. Several anharmonic resonances with vt = 4 ground-state levels have been observed and partially characterized. A variety of J-localized level-crossing resonances have also been seen, five of which display forbidden transitions arising from intensity borrowing that allow determination of the interaction coupling constants.

  15. DNA stretching on the wall surfaces in curved microchannels with different radii

    NASA Astrophysics Data System (ADS)

    Hsieh, Shou-Shing; Wu, Fong-He; Tsai, Ming-Ju

    2014-08-01

    DNA molecule conformation dynamics and stretching were made on semi-circular surfaces with different radii (500 to 5,000 μm) in microchannels measuring 200 μm × 200 μm in cross section. Five different buffer solutions - 1× Tris-acetate-EDTA (TAE), 1× Tris-borate-EDTA (TBE), 1× Tris-EDTA (TE), 1× Tris-phosphate-EDTA (TPE), and 1× Tris-buffered saline (TBS) solutions - were used with a variety of viscosity such as 40, 60, and 80 cP, with resultant 10-4 ≤ Re ≤ 10-3 and the corresponding 5 ≤ Wi ≤ 12. The test fluids were seeded with JOJO-1 tracer particles for flow visualization and driven through the test channels via a piezoelectric (PZT) micropump. Micro particle image velocimetry (μPIV) measuring technique was applied for the centered-plane velocity distribution measurements. It is found that the radius effect on the stretch ratio of DNA dependence is significant. The stretch ratio becomes larger as the radius becomes small due to the larger centrifugal force. Consequently, the maximum stretch was found at the center of the channel with a radius of 500 μm.

  16. Acute effect of different time periods of passive static stretching on the hamstring flexibility.

    PubMed

    Cini, Anelize; de Vasconcelos, Gabriela Souza; Lima, Claudia Silveira

    2017-01-01

    Several factors are associated with the presence of chronic low back pain; one of them is the flexibility of the hamstring muscles that influences the posture of the pelvic spine. Investigate the influence of two different time periods of passive static stretching on the flexibility of the hamstring. Forty-six physiotherapy students were divided into two groups performing stretching exercises: 30 s and 60 s duration. The collections consisted of: (1) pre-test: evaluation of the flexibility of the hip and knee, using a manual goniometer by means of the following tests: Straight Leg Raise Test (SLR), Passive Hip Flexion Test (PHFT) and Modified Knee Extension Test (MKET), (2) intervention: stretching with different runtimes, (3) post-test: reappraisal of flexibility, conducted immediately after the intervention. Significant difference was observed intra groups, group that did stretching exercises lasting 30 seconds (G30) (SLR p = 0.000. PHFT p = 0.003 and MKET p = 0.000) and group that did stretching exercises lasting 60 seconds (G60) (SLR p = 0.000. PHFT p = 0.001 and MKET p = 0.002). Comparing the groups, no significant difference was found (SLR p = 0.307; PHFT p = 0.904; MKET p = 0.132). Thus it can be inferred that 30 seconds are sufficient for increased flexibility of young women. Therefore the time-treatment sessions can be optimized. Only the acute effect of stretching was observed; further investigation of the long-term effect is required.

  17. Effects of repeated ankle stretching on calf muscle-tendon and ankle biomechanical properties in stroke survivors

    PubMed Central

    Gao, Fan; Ren, Yupeng; Roth, Elliot J.; Harvey, Richard; Zhang, Li-Qun

    2011-01-01

    Background The objective of this study was to investigate changes in active and passive biomechanical properties of the calf muscle-tendon unit induced by controlled ankle stretching in stroke survivors. Methods Ten stroke survivors with ankle spasticity/contracture and ten healthy control subjects received intervention of 60-min ankle stretching. Joint biomechanical properties including resistance torque, stiffness and index of hysteresis were evaluated pre- and post-intervention. Achilles tendon length was measured using ultrasonography. The force output of the triceps surae muscles was characterized via the torque-angle relationship, by stimulating the calf muscles at a controlled intensity across different ankle positions. Findings Compared to healthy controls, the ankle position corresponding to the peak torque of the stroke survivors was shifted towards plantar flexion (P<0.001). Stroke survivors showed significantly higher resistance torques and joint stiffness (P<0.05), and these higher resistances were reduced significantly after the stretching intervention, especially in dorsiflexion (P = 0.013). Stretching significantly improved the force output of the impaired calf muscles in stroke survivors under matched stimulations (P<0.05). Ankle range of motion was also increased by stretching (P<0.001). Interpretation At the joint level, repeated stretching loosened the ankle joint with increased passive joint range of motion and decreased joint stiffness. At the muscle-tendon level, repeated stretching improved calf muscle force output, which might be associated with decreased muscle fascicle stiffness, increased fascicle length and shortening of the Achilles tendon. The study provided evidence of improvement in muscle tendon properties through stretching intervention. PMID:21211873

  18. Static vs. Dynamic Acute Stretching Effect on Quadriceps Muscle Activity during Soccer Instep Kicking

    PubMed Central

    Amiri-Khorasani, Mohammadtaghi; Kellis, Eleftherios

    2013-01-01

    The purpose of this study was to compare the effects of static and dynamic stretching on quadriceps muscle activation during maximal soccer instep kicking. The kicking motion of twelve male college soccer players (body height: 174.66 ± 5.01 cm; body mass: 72.83 ± 4.83 kg; age: 18.83 ± 0.75 years) was captured using six synchronized high-speed infra-red cameras whilst electromyography (EMG) signals from vastus medialis (VM), lateralis (VL) and rectus femoris (RF) were recorded before and after static or dynamic stretching. Analysis of variance designs showed a higher increase in knee extension angular velocity (9.65% vs. −1.45%, p < 0.001), RF (37.5% vs. −8.33%, p < 0.001), VM (12% vs. −12%, p < 0.018), and VL EMG activity (20% vs. −6.67%, p < 0.001) after dynamic stretching exercises. Based on these results, it could be suggested that dynamic stretching is probably more effective in increasing quadriceps muscle activity and knee extension angular velocity during the final swing phase of a maximal soccer instep kick than static stretching. PMID:24511339

  19. A neuropeptide-mediated stretch response links muscle contraction to changes in neurotransmitter release

    PubMed Central

    Hu, Zhitao; Pym, Edward C.G.; Babu, Kavita; Vashlishan Murray, Amy B.; Kaplan, Joshua M.

    2011-01-01

    Although C. elegans has been utilized extensively to study synapse formation and function, relatively little is known about synaptic plasticity in C. elegans. We show that a brief treatment with the cholinesterase inhibitor aldicarb induces a form of presynaptic potentiation whereby ACh release at neuromuscular junctions (NMJs) is doubled. Aldicarb-induced potentiation was eliminated by mutations that block processing of pro-neuropeptides, by mutations inactivating a single pro-neuropeptide (NLP-12), and by those inactivating an NLP-12 receptor (CKR-2). NLP-12 expression is limited to a single stretch-activated neuron, DVA. Analysis of a YFP-tagged NLP-12 suggests that aldicarb stimulates DVA secretion of NLP-12. Mutations disrupting the DVA mechanoreceptor (TRP-4) decreased aldicarb-induced NLP-12 secretion and blocked aldicarb-induced synaptic potentiation. Mutants lacking NLP-12 or CKR-2 have decreased locomotion rates. Collectively, these results suggest that NLP-12 mediates a mechanosensory feedback loop that couples muscle contraction to changes in presynaptic release, thereby providing a mechanism for proprioceptive control of locomotion. PMID:21745640

  20. The impact of low-frequency, low-force cyclic stretching of human bronchi on airway responsiveness.

    PubMed

    Le Guen, Morgan; Grassin-Delyle, Stanislas; Naline, Emmanuel; Buenestado, Amparo; Brollo, Marion; Longchampt, Elisabeth; Kleinmann, Philippe; Devillier, Philippe; Faisy, Christophe

    2016-11-14

    In vivo, the airways are constantly subjected to oscillatory strain (due to tidal breathing during spontaneous respiration) and (in the event of mechanical ventilation) positive pressure. This exposure is especially problematic for the cartilage-free bronchial tree. The effects of cyclic stretching (other than high-force stretching) have not been extensively characterized. Hence, the objective of the present study was to investigate the functional and transcriptional response of human bronchi to repetitive mechanical stress caused by low-frequency, low-force cyclic stretching. After preparation and equilibration in an organ bath, human bronchial rings from 66 thoracic surgery patients were stretched in 1-min cycles of elongation and relaxation over a 60-min period. For each segment, the maximal tension corresponded to 80% of the reference contraction (the response to 3 mM acetylcholine). The impact of cyclic stretching (relative to non-stretched controls) was examined by performing functional assessments (epithelium removal and incubation with sodium channel agonists/antagonists or inhibitors of intracellular pathways), biochemical assays of the organ bath fluid (for detecting the release of pro-inflammatory cytokines), and RT-PCR assays of RNA isolated from tissue samples. The application of low-force cyclic stretching to human bronchial rings for 60 min resulted in an immediate, significant increase in bronchial basal tone, relative to non-cyclic stretching (4.24 ± 0.16 g vs. 3.28 ± 0.12 g, respectively; p < 0.001). This cyclic stimulus also increased the affinity for acetylcholine (-log EC50: 5.67 ± 0.07 vs. 5.32 ± 0.07, respectively; p p < 0.001). Removal of airway epithelium and pretreatment with the Rho-kinase inhibitor Y27632 and inward-rectifier K+ or L-type Ca 2+ channel inhibitors significantly modified the basal tone response. Exposure to L-NAME had opposing effects in all cases. Pro-inflammatory pathways were not involved

  1. Axons guided by insulin receptor in Drosophila visual system.

    PubMed

    Song, Jianbo; Wu, Lingling; Chen, Zun; Kohanski, Ronald A; Pick, Leslie

    2003-04-18

    Insulin receptors are abundant in the central nervous system, but their roles remain elusive. Here we show that the insulin receptor functions in axon guidance. The Drosophila insulin receptor (DInR) is required for photoreceptor-cell (R-cell) axons to find their way from the retina to the brain during development of the visual system. DInR functions as a guidance receptor for the adapter protein Dock/Nck. This function is independent of Chico, the Drosophila insulin receptor substrate (IRS) homolog.

  2. NT-PGC-1α protein is sufficient to link β3-adrenergic receptor activation to transcriptional and physiological components of adaptive thermogenesis.

    PubMed

    Chang, Ji Suk; Fernand, Vivian; Zhang, Yubin; Shin, Jeho; Jun, Hee-Jin; Joshi, Yagini; Gettys, Thomas W

    2012-03-16

    PGC-1α is an inducible transcriptional coactivator that regulates cellular energy metabolism and adaptation to environmental and nutritional stimuli. In tissues expressing PGC-1α, alternative splicing produces a truncated protein (NT-PGC-1α) corresponding to the first 267 amino acids of PGC-1α. Brown adipose tissue also expresses two novel exon 1b-derived isoforms of PGC-1α and NT-PGC-1α, which are 4 and 13 amino acids shorter in the N termini than canonical PGC-1α and NT-PGC-1α, respectively. To evaluate the ability of NT-PGC-1α to substitute for PGC-1α and assess the isoform-specific role of NT-PGC-1α, adaptive thermogenic responses of adipose tissue were evaluated in mice lacking full-length PGC-1α (FL-PGC-1(-/-)) but expressing slightly shorter but functionally equivalent forms of NT-PGC-1α (NT-PGC-1α(254)). At room temperature, NT-PGC-1α and NT-PGC-1α(254) were produced from conventional exon 1a-derived transcripts in brown adipose tissue of wild type and FL-PGC-1α(-/-) mice, respectively. However, cold exposure shifted transcription to exon 1b, increasing exon 1b-derived mRNA levels. The resulting transcriptional responses produced comparable increases in energy expenditure and maintenance of core body temperature in WT and FL-PGC-1α(-/-) mice. Moreover, treatment of the two genotypes with a selective β(3)-adrenergic receptor agonist produced similar increases in energy expenditure, mitochondrial DNA, and reductions in adiposity. Collectively, these findings illustrate that the transcriptional and physiological responses to sympathetic input are unabridged in FL-PGC-1α(-/-) mice, and that NT-PGC-1α is sufficient to link β(3)-androgenic receptor activation to adaptive thermogenesis in adipose tissue. Furthermore, the transcriptional shift from exon 1a to 1b supports isoform-specific roles for NT-PGC-1α in basal and adaptive thermogenesis.

  3. The passive hamstring stretch test: clinical evaluation.

    PubMed

    Fisk, J W

    1979-03-28

    The passive hamstring stretch test is described. Using a modified goniometer it is shown that independent measurements taken by trained examiners approximate very closely to each other. This establishes the test as a valid objective measurement. The possible value of this test as a research tool in low back pain problems is discussed.

  4. Low Stretch PMMA Burning in Microgravity: Status of the Ground-Based Program and New ISS Glovebox Experiment SALSA

    NASA Technical Reports Server (NTRS)

    Olson, S. L.; T'ien, J. S.; Armstrong, J. B.

    2001-01-01

    The objective of this ground-based program is to study low stretch diffusion flames burning PMMA as the solid fuel to determine the relationship between buoyant low stretch burning in normal gravity and forced flow low stretch burning in microgravity. The low stretch is generated in normal gravity by using the buoyant convection induced by burning the bottom of a large radius of curvature sample. Low stretch is also generated using the Combustion Tunnel drop tower rig (2.2 and 5.2 second facilities), which provides a forced convective low velocity flow past smaller radius of curvature samples. Lastly, an ISS glovebox investigation is being developed to study low stretch burning of PMMA spheres to obtain long duration testing needed to accurately assess the flammability and burning characteristics of the material in microgravity. A comparison of microgravity experiment results with normal gravity test results allows us to establish a direct link between a material's burning characteristics in normal gravity (easily measured) with its burning characteristics in extraterrestrial environments, including microgravity forced convective environments. Theoretical predictions and recent experimental results indicate that it should be possible to understand a material's burning characteristics in the low stretch environment of spacecraft (non-buoyant air movement induced by fans and crew disturbances) by understanding its burning characteristics in an equivalent Earth-based low stretch environment (induced by normal gravity buoyancy). Similarly, Earth-based stretch environments can be made equivalent to those in Lunar- and Martian-surface stretch environments (which would induce partial-gravity buoyancy).

  5. Peptide-specific recognition of human cytomegalovirus strains controls adaptive natural killer cells.

    PubMed

    Hammer, Quirin; Rückert, Timo; Borst, Eva Maria; Dunst, Josefine; Haubner, André; Durek, Pawel; Heinrich, Frederik; Gasparoni, Gilles; Babic, Marina; Tomic, Adriana; Pietra, Gabriella; Nienen, Mikalai; Blau, Igor Wolfgang; Hofmann, Jörg; Na, Il-Kang; Prinz, Immo; Koenecke, Christian; Hemmati, Philipp; Babel, Nina; Arnold, Renate; Walter, Jörn; Thurley, Kevin; Mashreghi, Mir-Farzin; Messerle, Martin; Romagnani, Chiara

    2018-05-01

    Natural killer (NK) cells are innate lymphocytes that lack antigen-specific rearranged receptors, a hallmark of adaptive lymphocytes. In some people infected with human cytomegalovirus (HCMV), an NK cell subset expressing the activating receptor NKG2C undergoes clonal-like expansion that partially resembles anti-viral adaptive responses. However, the viral ligand that drives the activation and differentiation of adaptive NKG2C + NK cells has remained unclear. Here we found that adaptive NKG2C + NK cells differentially recognized distinct HCMV strains encoding variable UL40 peptides that, in combination with pro-inflammatory signals, controlled the population expansion and differentiation of adaptive NKG2C + NK cells. Thus, we propose that polymorphic HCMV peptides contribute to shaping of the heterogeneity of adaptive NKG2C + NK cell populations among HCMV-seropositive people.

  6. The Effects of Different Passive Static Stretching Intensities on Recovery from Unaccustomed Eccentric Exercise - A Randomized Controlled Trial.

    PubMed

    Apostolopoulos, Nikos C; Lahart, Ian M; Plyley, Michael J; Taunton, Jack; Nevill, Alan M; Koutedakis, Yiannis; Wyon, Matthew; Metsios, George S

    2018-03-12

    Effects of passive static stretching intensity on recovery from unaccustomed eccentric exercise of right knee extensors was investigated in 30 recreationally active males randomly allocated into three groups: high-intensity (70-80% maximum perceived stretch), low-intensity (30-40% maximum perceived stretch), and control. Both stretching groups performed 3 sets of passive static stretching exercises of 60s each for hamstrings, hip flexors, and quadriceps, over 3 consecutive days, post-unaccustomed eccentric exercise. Muscle function (eccentric and isometric peak torque) and blood biomarkers (CK and CRP) were measured before (baseline) and after (24, 48, and 72h) unaccustomed eccentric exercise. Perceived muscle soreness scores were collected immediately (time 0), and after 24, 48, and 72h post-exercise. Statistical time x condition interactions observed only for eccentric peak torque (p=.008). Magnitude-based inference analyses revealed low-intensity stretching had most likely, very likely, or likely beneficial effects on perceived muscle soreness (48-72h and 0-72h) and eccentric peak torque (baseline-24h and baseline-72h), compared with high-intensity stretching. Compared with control, low-intensity stretching had very likely or likely beneficial effects on perceived muscle soreness (0-24h and 0-72h), eccentric peak torque (baseline-48h and baseline-72h), and isometric peak torque (baseline-72h). High-intensity stretching had likely beneficial effects on eccentric peak torque (baseline-48h), but likely harmful effects eccentric peak torque (baseline-24h) and CK (baseline-48h and baseline-72h), compared with control. Therefore, low-intensity stretching is likely to result in small-to-moderate beneficial effects on perceived muscle soreness and recovery of muscle function post-unaccustomed eccentric exercise, but not markers of muscle damage and inflammation, compared with high-intensity or no stretching.

  7. Stimulation of pulmonary rapidly adapting receptors by inhaled wood smoke in rats

    PubMed Central

    Lai, C J; Kou, Y R

    1998-01-01

    The stimulation of pulmonary rapidly adapting receptors (RARs) by wood smoke was investigated. Impulses from seventy RARs were recorded in fifty-nine anaesthetized, open-chest and artificially ventilated rats; responses to delivery of 6 ml of wood smoke into the lungs were studied in sixty-one receptors whereas responses to histamine (10 or 100 μg kg−1, i.v.) were studied in the other nine. Delivery of wood smoke stimulated fifty-two of the sixty-one RARs studied. When stimulated, an intense burst of discharge was evoked within 1 or 2 s of smoke delivery. This increased activity quickly peaked in 1-3 s (Δ= 15.8 ± 1.6 impulses s−1; n = 61; mean ± s.e.m.), then declined and yet remained at a level higher than the baseline activity. The mean duration of the stimulation was 25.1 ± 2.7 s. In contrast, smoke delivery did not affect tracheal pressure. Peak responses of RARs to wood smoke were partially reduced by removal of smoke particulates and were largely attenuated by pretreatment with dimethylthiourea (DMTU, a hydroxyl radical scavenger), indomethacin (Indo, a cyclo-oxygenase inhibitor), or both DMTU and Indo (DMTU + Indo). Conversely, the peak responses of RARs were not significantly affected by pretreatment with isoprenaline (a bronchodilator) or vehicle for these chemicals. Additionally, pretreatment with DMTU, Indo, or DMTU + Indo did not significantly alter the RAR sensitivity to mechanical stimulation (constant-pressure lung inflation; 20 cmH2O). Of the nine RARs tested, six were stimulated by histamine and their sensitivity to this chemical irritant was not altered by pretreatment with DMTU + Indo. The results suggest that both the particulates and gas phases are responsible for, and both the hydroxyl radical and cyclo-oxygenase products are involved in, the stimulation of RARs by wood smoke. Furthermore, changes in lung mechanics following smoke delivery are not the cause of this afferent stimulation. PMID:9508820

  8. Muscle progenitor cells proliferation doesn't sufficiently contribute to maintaining stretched soleus muscle mass during gravitational unloading

    NASA Astrophysics Data System (ADS)

    Tarakina, M. V.; Turtikova, O. V.; Nemirovskaya, T. L.; Kokontcev, A. A.; Shenkman, B. S.

    Skeletal muscle work hypertrophy is usually connected with muscle progenitor satellite cells (SC) activation with subsequent incorporation of their nuclei into myofibers. Passive stretch of unloaded muscle was earlier established to prevent atrophic processes and is accompanied by enhanced protein synthesis. We hypothesized that elimination of SC proliferation capacity by γ-irradiation would partly avert stretched muscle fiber capability to maintain their size under the conditions of gravitational unloading. To assess the role of muscle progenitor (satellite) cells in development of passive stretch preventive effect SC proliferation was suppressed by local exposing to ionized radiation (2500 rad), subsequent hindlimb suspension or hindlimb suspension with concomitant passive stretch were carried out. Reduction of myofiber cross-sectional area and decrease in myonuclei number accompanying unloaded muscle atrophy were completely abolished by passive stretch both in irradiated and sham-treated animals. We conclude that SC did not make essential contribution to passive stretch preventive action under the conditions of simulated weightlessness.

  9. Quantifying the magnitude of torque physiotherapists apply when stretching the hamstring muscles of people with spinal cord injury.

    PubMed

    Harvey, Lisa A; McQuade, Lea; Hawthorne, Scott; Byak, Adrian

    2003-07-01

    To quantify the magnitude of stretch that physiotherapists apply to the hamstring muscles of people with spinal cord injury (SCI). Repeated-measures design. SCI unit in Australia. Fifteen individuals with motor complete paraplegia or tetraplegia. Twelve physiotherapists manually administered a stretch to the hamstring muscles of each subject. The stretch was applied by flexing the hip with the knee extended. Applied hip flexor torque. Therapists applied median hip flexor torques of between 30 and 68Nm, although some torques were as large as 121Nm. The stretch applied by different therapists to any 1 subject varied as much as 40-fold. There is a large range of stretch torques provided by physiotherapists to patients with SCI. Some therapists provide stretch torques well in excess of those tolerated by individuals with intact sensation.

  10. Regulated lysosomal trafficking as a mechanism for regulating GABAA receptor abundance at synapses in Caenorhabditis elegans.

    PubMed

    Davis, Kathleen M; Sturt, Brianne L; Friedmann, Andrew J; Richmond, Janet E; Bessereau, Jean-Louis; Grant, Barth D; Bamber, Bruce A

    2010-08-01

    GABA(A) receptor plasticity is important for both normal brain function and disease progression. We are studying GABA(A) receptor plasticity in Caenorhabditis elegans using a genetic approach. Acute exposure of worms to the GABA(A) agonist muscimol hyperpolarizes postsynaptic cells, causing paralysis. Worms adapt after several hours, but show uncoordinated locomotion consistent with decreased GABA signaling. Using patch-clamp and immunofluorescence approaches, we show that GABA(A) receptors are selectively removed from synapses during adaptation. Subunit mRNA levels were unchanged, suggesting a post-transcriptional mechanism. Mutants with defective lysosome function (cup-5) show elevated GABA(A) receptor levels at synapses prior to muscimol exposure. During adaptation, these receptors are removed more slowly, and accumulate in intracellular organelles positive for the late endosome marker GFP-RAB-7. These findings suggest that chronic agonist exposure increases endocytosis and lysosomal trafficking of GABA(A) receptors, leading to reduced levels of synaptic GABA(A) receptors and reduced postsynaptic GABA sensitivity.

  11. Comparison of the effects of local cryotherapy and passive cross-body stretch on extensibility in subjects with posterior shoulder tightness.

    PubMed

    Park, Kyue-Nam; Kwon, Oh-Yun; Weon, Jong-Hyuck; Choung, Sung-Dae; Kim, Si-Hyun

    2014-01-01

    The objective was to compare the immediate effects of local cryotherapy (LC) and passive cross-body stretch on the extensibility of the posterior shoulder muscle in individuals with posterior shoulder tightness. Eighty-seven healthy subjects with a between-shoulder difference in internal rotation (IR) range of motion (ROM) greater than 10° were randomly divided into three groups: LC group, stretching group, and control group (n = 29 in each group). Subjects in the LC group received LC on infraspinatus and posterior deltoid muscles and subjects in the stretching group performed passive cross-body stretch. Stretch sensation was measured at the end range of passive IR and horizontal adduction (HA) using numerical rating scale, and the pressure pain threshold (PPT) at the infraspinatus and posterior deltoid muscles was measured using pressure algometry. Passive and active ROM of IR and HA of the glenohumeral joint were measured using an inclinometer. All measurements were performed at pre-intervention, post- intervention, and 10-min follow-up. Stretch sensation was significantly decreased and PPT was significantly increased in the LC and stretching groups at post-intervention, and these effects were maintained at 10-min follow-up, compared to the control group. Both the LC group and stretching group had a significantly greater increase in passive and active ROM of IR and HA, compared to the control group at post-intervention and 10-min follow-up. However, there were no significant differences in stretch sensation, PPT, or ROM of IR and HA between the LC group and stretching group. LC can be used to decrease the stretch sensation and increase PPT and ROM of IR and HA as much as a stretching exercise. LC could be an alternative method for increasing the restricted ROM of glenohumeral IR and HA for individuals with posterior shoulder tightness, especially for patients and sports players who have severe stretching discomfort. Key PointsLocal cryotherapy (LC) decreased the

  12. Comparison of the Effects of Local Cryotherapy and Passive Cross-Body Stretch on Extensibility in Subjects with Posterior Shoulder Tightness

    PubMed Central

    Park, Kyue-nam; Kwon, Oh-yun; Weon, Jong-hyuck; Choung, Sung-dae; Kim, Si-hyun

    2014-01-01

    The objective was to compare the immediate effects of local cryotherapy (LC) and passive cross-body stretch on the extensibility of the posterior shoulder muscle in individuals with posterior shoulder tightness. Eighty-seven healthy subjects with a between-shoulder difference in internal rotation (IR) range of motion (ROM) greater than 10° were randomly divided into three groups: LC group, stretching group, and control group (n = 29 in each group). Subjects in the LC group received LC on infraspinatus and posterior deltoid muscles and subjects in the stretching group performed passive cross-body stretch. Stretch sensation was measured at the end range of passive IR and horizontal adduction (HA) using numerical rating scale, and the pressure pain threshold (PPT) at the infraspinatus and posterior deltoid muscles was measured using pressure algometry. Passive and active ROM of IR and HA of the glenohumeral joint were measured using an inclinometer. All measurements were performed at pre-intervention, post- intervention, and 10-min follow-up. Stretch sensation was significantly decreased and PPT was significantly increased in the LC and stretching groups at post-intervention, and these effects were maintained at 10-min follow-up, compared to the control group. Both the LC group and stretching group had a significantly greater increase in passive and active ROM of IR and HA, compared to the control group at post-intervention and 10-min follow-up. However, there were no significant differences in stretch sensation, PPT, or ROM of IR and HA between the LC group and stretching group. LC can be used to decrease the stretch sensation and increase PPT and ROM of IR and HA as much as a stretching exercise. LC could be an alternative method for increasing the restricted ROM of glenohumeral IR and HA for individuals with posterior shoulder tightness, especially for patients and sports players who have severe stretching discomfort. Key Points Local cryotherapy (LC) decreased

  13. Involvement of pre- and postsynaptic NMDA receptors at local circuit interneuron connections in rat neocortex

    PubMed Central

    De-May, C.L.; Ali, A.B.

    2013-01-01

    To investigate the involvement of N-Methyl-D-aspartate (NMDA) receptors in local neocortical synaptic transmission, dual whole-cell recordings – combined with biocytin labelling – were obtained from bitufted adapting, multipolar adapting or multipolar non-adapting interneurons and pyramidal cells in layers II–V of rat (postnatal days 17–22) sensorimotor cortex. The voltage dependency of the amplitude of Excitatory postsynaptic potentials (EPSPs) received by the three types of interneuron appeared to coincide with the interneuron subclass; upon depolarisation, EPSPs received by multipolar non-adapting interneurons either decreased in amplitude or appeared insensitive, multipolar adapting interneuron EPSP amplitudes increased or appeared insensitive, whereas bitufted interneuron EPSP amplitudes increased or decreased. Connections were challenged with the NMDA receptor antagonist d-(−)-2-amino-5-phosphonopentanoic acid (d-AP5) (50 μM) revealing NMDA receptors to contribute to EPSPs received by all cell types, this also abolished the non-conventional voltage dependency. Reciprocal connections were frequent between pyramidal cells and multipolar interneurons, and inhibitory postsynaptic potentials (IPSPs) elicited in pyramidal cells by both multipolar adapting and multipolar non-adapting interneurons were sensitive to a significant reduction in amplitude by d-AP5. The involvement of presynaptic NMDA receptors was indicated by coefficient of variation analysis and an increase in the failures of transmission. Furthermore, by loading MK-801 into the pre- or postsynaptic neurons, we observed that a reduction in inhibition requires presynaptic and not postsynaptic NMDA receptors. These results suggest that NMDA receptors possess pre- and postsynaptic roles at selective neocortical synapses that are probably important in governing spike-timing and information flow. PMID:23079623

  14. Genetics of Taste Receptors

    PubMed Central

    Bachmanov, Alexander A.; Bosak, Natalia P.; Lin, Cailu; Matsumoto, Ichiro; Ohmoto, Makoto; Reed, Danielle R.; Nelson, Theodore M.

    2016-01-01

    Taste receptors function as one of the interfaces between internal and external milieus. Taste receptors for sweet and umami (T1R [taste receptor, type 1]), bitter (T2R [taste receptor, type 2]), and salty (ENaC [epithelial sodium channel]) have been discovered in the recent years, but transduction mechanisms of sour taste and ENaC-independent salt taste are still poorly understood. In addition to these five main taste qualities, the taste system detects such noncanonical “tastes” as water, fat, and complex carbohydrates, but their reception mechanisms require further research. Variations in taste receptor genes between and within vertebrate species contribute to individual and species differences in taste-related behaviors. These variations are shaped by evolutionary forces and reflect species adaptations to their chemical environments and feeding ecology. Principles of drug discovery can be applied to taste receptors as targets in order to develop novel taste compounds to satisfy demand in better artificial sweeteners, enhancers of sugar and sodium taste, and blockers of bitterness of food ingredients and oral medications. PMID:23886383

  15. Alpha-1-Adrenergic Receptors in Heart Failure: The Adaptive Arm of the Cardiac Response to Chronic Catecholamine Stimulation

    PubMed Central

    Jensen, Brian C.; O'Connell, Timothy D.; Simpson, Paul C.

    2013-01-01

    Alpha-1-adrenergic receptors are G-protein coupled receptors (GPCRs) activated by catecholamines. The alpha-1A and alpha-1B subtypes are expressed in mouse and human myocardium, whereas the alpha-1D protein is found only in coronary arteries. There are far fewer alpha-1-ARs than beta-ARs in the non-failing heart, but their abundance is maintained or increased in the setting of heart failure, which is characterized by pronounced chronic elevation of catecholamines and b□eta-AR dysfunction. Decades of evidence from gain- and loss-of-function studies in isolated cardiac myocytes and numerous animal models demonstrate important adaptive functions for cardiac alpha-1-ARs, to include physiological hypertrophy, positive inotropy, ischemic preconditioning, and protection from cell death. Clinical trial data indicate that blocking alpha-1-ARs is associated with incident heart failure in patients with hypertension. Collectively, these findings suggest that alpha-1-AR activation might mitigate the well-recognized toxic effects of beta-ARs in the hyperadrenergic setting of chronic heart failure. Thus, exogenous cardioselective activation of alpha-1-ARs might represent a novel and viable approach to the treatment of heart failure. PMID:24145181

  16. Agonist muscle adaptation accompanied by antagonist muscle atrophy in the hindlimb of mice following stretch-shortening contraction training.

    PubMed

    Rader, Erik P; Naimo, Marshall A; Ensey, James; Baker, Brent A

    2017-02-02

    The vast majority of dynamometer-based animal models for investigation of the response to chronic muscle contraction exposure has been limited to analysis of isometric, lengthening, or shortening contractions in isolation. An exception to this has been the utilization of a rat model to study stretch-shortening contractions (SSCs), a sequence of consecutive isometric, lengthening, and shortening contractions common during daily activity and resistance-type exercise. However, the availability of diverse genetic strains of rats is limited. Therefore, the purpose of the present study was to develop a dynamometer-based SSC training protocol to induce increased muscle mass and performance in plantarflexor muscles of mice. Young (3 months old) C57BL/6 mice were subjected to 1 month of plantarflexion SSC training. Hindlimb muscles were analyzed for muscle mass, quantitative morphology, myogenesis/myopathy relevant gene expression, and fiber type distribution. The main aim of the research was achieved when training induced a 2-fold increase in plantarflexion peak torque output and a 19% increase in muscle mass for the agonist plantaris (PLT) muscle. In establishing this model, several outcomes emerged which raised the value of the model past that of being a mere recapitulation of the rat model. An increase in the number of muscle fibers per transverse muscle section accounted for the PLT muscle mass gain while the antagonist tibialis anterior (TA) muscle atrophied by 30% with preferential atrophy of type IIb and IIx fibers. These alterations were accompanied by distinct gene expression profiles. The findings confirm the development of a stretch-shortening contraction training model for the PLT muscle of mice and demonstrate that increased cross-sectional fiber number can occur following high-intensity SSC training. Furthermore, the TA muscle atrophy provides direct evidence for the concept of muscle imbalance in phasic non-weight bearing muscles, a concept largely

  17. Effects of combined stretching and clenbuterol on disuse atrophy in rat soleus muscle.

    PubMed

    Yamazaki, Toshiaki; Yokogawa, Masami; Tachino, Katsuhiko

    2009-01-01

    Clinically, disuse muscle atrophy is often seen among patients who are severely debilited and are on prolonged bed rest. Common physical therapy interventions are not successful in preventing disuse muscle atrophy early in the medical treatment of critically ill patients. In situations such as this, the use of a β 2-adrenergic agonist such as clenbuterol (Cb) may be of benefit in preventing atrophy. Also, recent studies have suggested that stretching is possible in preventing disuse muscle atrophy and the decline in muscle strength. The objective of this study was to evaluate the effects of Cb medication combined with stretching (ST) on rat soleus muscle (SOL) during the progression of disuse muscle atrophy. Thirty-five male Wistar rats were used in this study. The rats were divided into five groups: control (CON), hindlimb-unweighting (HU) only, HU+ST, HU+Cb medication, and HU+ST+Cb groups. The right SOL in stretching groups was maintained a stretched position for one hour daily by passively dorsiflexing the ankle joint under non-anesthesia. The experimental period was 2 weeks. In the ST group, peak twitch tension per cross-sectional area in soleus muscle was significantly larger than in the Cb group, while there was no significant difference between the CON and ST groups. The conversion of type I to type II fibers that was observed in the Cb group was not recognized in the combined ST and Cb group. Distinct effect of combined stretching and Cb medication was not recognized statistically. The results indicate that Cb affects muscle morphological characteristics while stretching affects contractile properties. These data suggest that a combined ST and Cb intervention considered the type-specificity of muscle fiber may be need more consideration for preventing disuse muscle atrophy and the decline in muscle strength.

  18. The effects of ramp stretches on active contractions in intact mammalian fast and slow muscle fibres.

    PubMed

    Mutungi, G; Ranatunga, K W

    2001-01-01

    The effects of a ramp stretch (amplitude <6% muscle fibre length (L0), speed < 13L0 s(-1)) on twitch tension and twitch tension re-development were examined in intact mammalian (rat) fast and slow muscle fibre bundles. The experiments were done in vitro at 20 degrees C and at an initial sarcomere length of 2.68 microm. In both fibre types, a stretch applied during the rising phase of the twitch response (including the time of stimulation) increased the re-developed twitch tension (15-35%). A stretch applied before the stimulus had little or no effect on the twitch myogram in fast muscle fibres, but it increased the twitch tension (approximately 5%) in slow muscle fibres. A similar stretch had little or no effect on tetanic tension in either muscle fibre type. In general, the results indicate that the contractile-activation mechanism may be stretch sensitive and this is particularly pronounced in slow muscle fibres. Recorded at a high sampling rate and examined at an appropriate time scale, the transitory tension response to a stretch rose in at least two phases; an initial rapid tension rise to a break (break point tension, P1a) followed by a slower tension rise (apparent P2a) to a peak reached at the end of the stretch. Plotted against stretch velocity, P1a tension increased in direct proportion to stretch velocity (viscous-like) whereas, P2a tension (calculated as peak tension minus P1a tension) increased with stretch velocity to a plateau (visco-elastic). Examined at the peak of a twitch, P1a tension had a slope (viscosity coefficient) of 1.8 kN m(-2) per L0 s(-1) in fast fibres and 4.7 kN m(-2) per L0 s(-1) in slow muscle fibres. In the same preparations, P2a tension had a relaxation time of 8 ms in the fast muscle fibres and 25 ms in the slow muscle fibres. The amplitudes of both tension components scaled with the instantaneous twitch tension in qualitatively the same way as the instantaneous fibre stiffness. These fast/slow fibre type differences probably

  19. Effects of acute static, ballistic, and PNF stretching exercise on the muscle and tendon tissue properties.

    PubMed

    Konrad, A; Stafilidis, S; Tilp, M

    2017-10-01

    The purpose of this study was to investigate the influence of a single static, ballistic, or proprioceptive neuromuscular facilitation (PNF) stretching exercise on the various muscle-tendon parameters of the lower leg and to detect possible differences in the effects between the methods. Volunteers (n = 122) were randomly divided into static, ballistic, and PNF stretching groups and a control group. Before and after the 4 × 30 s stretching intervention, we determined the maximum dorsiflexion range of motion (RoM) with the corresponding fascicle length and pennation angle of the gastrocnemius medialis. Passive resistive torque (PRT) and maximum voluntary contraction (MVC) were measured with a dynamometer. Observation of muscle-tendon junction (MTJ) displacement with ultrasound allowed us to determine the length changes in the tendon and muscle, respectively, and hence to calculate stiffness. Although RoM increased (static: +4.3%, ballistic: +4.5%, PNF: +3.5%), PRT (static: -11.4%, ballistic: -11.5%, PNF: -13,7%), muscle stiffness (static: -13.1%, ballistic: -20.3%, PNF: -20.2%), and muscle-tendon stiffness (static: -11.3%, ballistic: -10.5%, PNF: -13.7%) decreased significantly in all the stretching groups. Only in the PNF stretching group, the pennation angle in the stretched position (-4.2%) and plantar flexor MVC (-4.6%) decreased significantly. Multivariate analysis showed no clinically relevant difference between the stretching groups. The increase in RoM and the decrease in PRT and muscle-tendon stiffness could be explained by more compliant muscle tissue following a single static, ballistic, or PNF stretching exercise. © 2017 The Authors Scandinavian Journal of Medicine & Science In Sports Published by John Wiley & Sons Ltd.

  20. Cyclic stretching force selectively up-regulates transforming growth factor-beta isoforms in cultured rat mesangial cells.

    PubMed Central

    Riser, B. L.; Cortes, P.; Heilig, C.; Grondin, J.; Ladson-Wofford, S.; Patterson, D.; Narins, R. G.

    1996-01-01

    Glomerular distention from increased intraglomerular pressure stretches mesangial cells (MCs). Stretching MCs in culture stimulates extracellular matrix accumulation, suggesting that this may be a mechanism for glomerular hypertension-associated glomerulosclerosis. We examined whether mechanical stretching serves as a stimulus for the synthesis and activation of the prosclerotic molecule transforming growth factor (TGF)-beta, thus providing a potential system for auto-induction of extracellular matrix. Rat MCs cultured on flexible-bottom plates were subjected to cyclic stretching for up to 3 days and then assayed for TGF-beta mRNA, secretion of TGF-beta, and localization of active TGF-beta by immunostaining. MCs contained mRNA for all three mammalian isoforms of TGF-beta. Cyclic stretching for 36 hours increased TGF-beta1 and TGF-beta3 mRNA levels approximately twofold, without altering the levels of TGF-beta2 mRNA. This was followed at 48 to 72 hours by the increased secretion of both latent and active TGF-beta1. Latent, but not active, TGF-beta3 secretion also increased whereas the levels of TGF-beta2 were unaffected by mechanical force. The stretching force in this system is unequally distributed over the culture membrane. Localization of active TGF-beta by immunostaining demonstrated that the quantity of cell-associated cytokine across the culture was directly proportional to the zonal amplitude of the stretching force. These results demonstrate that stretching force stimulates MCs to selectively release and activate TGF-beta1. This mechanical induction of TGF-beta1 may help explain the increased extracellular matrix associated with intraglomerular hypertension. Images Figure 1 Figure 3 PMID:8669477