Science.gov

Sample records for adaptive acid tolerance

  1. Adaptation and tolerance of bacteria against acetic acid.

    PubMed

    Trček, Janja; Mira, Nuno Pereira; Jarboe, Laura R

    2015-08-01

    Acetic acid is a weak organic acid exerting a toxic effect to most microorganisms at concentrations as low as 0.5 wt%. This toxic effect results mostly from acetic acid dissociation inside microbial cells, causing a decrease of intracellular pH and metabolic disturbance by the anion, among other deleterious effects. These microbial inhibition mechanisms enable acetic acid to be used as a preservative, although its usefulness is limited by the emergence of highly tolerant spoilage strains. Several biotechnological processes are also inhibited by the accumulation of acetic acid in the growth medium including production of bioethanol from lignocellulosics, wine making, and microbe-based production of acetic acid itself. To design better preservation strategies based on acetic acid and to improve the robustness of industrial biotechnological processes limited by this acid's toxicity, it is essential to deepen the understanding of the underlying toxicity mechanisms. In this sense, adaptive responses that improve tolerance to acetic acid have been well studied in Escherichia coli and Saccharomyces cerevisiae. Strains highly tolerant to acetic acid, either isolated from natural environments or specifically engineered for this effect, represent a unique reservoir of information that could increase our understanding of acetic acid tolerance and contribute to the design of additional tolerance mechanisms. In this article, the mechanisms underlying the acetic acid tolerance exhibited by several bacterial strains are reviewed, with emphasis on the knowledge gathered in acetic acid bacteria and E. coli. A comparison of how these bacterial adaptive responses to acetic acid stress fit to those described in the yeast Saccharomyces cerevisiae is also performed. A systematic comparison of the similarities and dissimilarities of the ways by which different microbial systems surpass the deleterious effects of acetic acid toxicity has not been performed so far, although such exchange

  2. Variability in the adaptive acid tolerance response phenotype of Salmonella enterica strains.

    PubMed

    Lianou, Alexandra; Nychas, George-John E; Koutsoumanis, Konstantinos P

    2017-04-01

    The objective of this study was the assessment of the stationary-phase, low-pH-inducible acid tolerance response (ATR) of different Salmonella enterica strains. For this purpose, 30 strains of the pathogen were grown in tryptone soy broth in the absence (non-adapted cultures) and presence (1% w/v; acid-adapted cultures) of glucose, and then subjected to 4-h acid challenge trials at pH 3.0. Surviving populations of each strain were determined at 1-h intervals, and the Weibull model was fitted to the derived microbiological data. Extensive variability in the acid stress responses of the tested S. enterica strains was observed, with the total population reductions (log CFU/ml) attained in 4 h of acid challenge ranging from 0.9 to 5.5 and from 0.6 to 7.0 for the non-adapted and acid-adapted cultures, respectively. As demonstrated by the model scale parameter δ and shape parameter p, the effect of acid adaptation on the inactivation curves was strain-specific. Although acid adaptation resulted in enhanced acid survival for the majority of the tested strains, there were strains exhibiting similar or decreased acid resistance compared to their non-adapted counterparts. Moreover, acid adaptation appeared to decrease the strain variability of δ whereas increasing the strain variability of p: the coefficient of variation of δ among the tested strains was 97.2 and 54.9% for the non-adapted and acid-adapted cultures, respectively, while the corresponding values for p were 12.7 and 48.1%. The data of the present study, which is the first one to systematically evaluate the adaptive ATR of multiple S. enterica strains, clearly demonstrate that this phenotype (attempted to be induced by growing the pathogen in the presence of glucose) is strain-dependent.

  3. Adaptive reversals in acid tolerance in copepods from lakes recovering from historical stress.

    PubMed

    Derry, Alison M; Arnott, Shelley E

    2007-06-01

    Anthropogenic habitat disturbance can often lead to rapid evolution of environmental tolerances in taxa that are able to withstand the stressor. What we do not understand, however, is how species respond when the stressor no longer exists, especially across landscapes and over a considerable length of time. Once anthropogenic disturbance is removed and if there is an ecological trade-off associated with local adaptation to such an historical stressor, then evolutionary theory would predict evolutionary reversals. On the Boreal Shield, tens of thousands of lakes acidified as a result of SO2 emissions, but many of these lakes are undergoing chemical recovery as a consequence of reduced emissions. We investigated the adaptive consequences of disturbance and recovery to zooplankton living in these lakes by asking (1) if contemporary evolution of acid tolerance had arisen among Leptodiaptomus minutus copepod populations in multiple circum-neutral lakes with and without historical acidification, (2) if L. minutus populations were adaptively responding to reversals in selection in historically acidified lakes that had recovered to pH 6.0 for at least 6-8 years, and (3) if there was a fitness trade-off for L. minutus individuals with high acid tolerance at circum-neutral pH. L. minutus populations had higher acid tolerances in circum-neutral lakes with a history of acidification than in local and distant lakes that were never acidified. However, copepods in circum-neutral acid-recovering lakes were less acid-tolerant than were copepods in lakes with longer recovery time. This adaptive reversal in acid tolerance of L. minutus populations following lake recovery was supported by the results of a laboratory experiment that indicated a fitness trade-off in copepods with high acid tolerances at circum-neutral pH. These responses appear to have a genetic basis and suggest that L. minutus is highly adaptive to changes in environmental conditions. Therefore, restoration managers

  4. Adaptive laboratory evolution of ethanologenic Zymomonas mobilis strain tolerant to furfural and acetic acid inhibitors.

    PubMed

    Shui, Zong-Xia; Qin, Han; Wu, Bo; Ruan, Zhi-yong; Wang, Lu-shang; Tan, Fu-Rong; Wang, Jing-Li; Tang, Xiao-Yu; Dai, Li-Chun; Hu, Guo-Quan; He, Ming-Xiong

    2015-07-01

    Furfural and acetic acid from lignocellulosic hydrolysates are the prevalent inhibitors to Zymomonas mobilis during cellulosic ethanol production. Developing a strain tolerant to furfural or acetic acid inhibitors is difficul by using rational engineering strategies due to poor understanding of their underlying molecular mechanisms. In this study, strategy of adaptive laboratory evolution (ALE) was used for development of a furfural and acetic acid-tolerant strain. After three round evolution, four evolved mutants (ZMA7-2, ZMA7-3, ZMF3-2, and ZMF3-3) that showed higher growth capacity were successfully obtained via ALE method. Based on the results of profiling of cell growth, glucose utilization, ethanol yield, and activity of key enzymes, two desired strains, ZMA7-2 and ZMF3-3, were achieved, which showed higher tolerance under 7 g/l acetic acid and 3 g/l furfural stress condition. Especially, it is the first report of Z. mobilis strain that could tolerate higher furfural. The best strain, Z. mobilis ZMF3-3, has showed 94.84% theoretical ethanol yield under 3-g/l furfural stress condition, and the theoretical ethanol yield of ZM4 is only 9.89%. Our study also demonstrated that ALE method might also be used as a powerful metabolic engineering tool for metabolic engineering in Z. mobilis. Furthermore, the two best strains could be used as novel host for further metabolic engineering in cellulosic ethanol or future biorefinery. Importantly, the two strains may also be used as novel-tolerant model organisms for the genetic mechanism on the "omics" level, which will provide some useful information for inverse metabolic engineering.

  5. Adaptive Response and Tolerance to Weak Acids in Saccharomyces cerevisiae: A Genome-Wide View

    PubMed Central

    Mira, Nuno P.; Teixeira, Miguel Cacho

    2010-01-01

    Abstract Weak acids are widely used as food preservatives (e.g., acetic, propionic, benzoic, and sorbic acids), herbicides (e.g., 2,4-dichlorophenoxyacetic acid), and as antimalarial (e.g., artesunic and artemisinic acids), anticancer (e.g., artesunic acid), and immunosuppressive (e.g., mycophenolic acid) drugs, among other possible applications. The understanding of the mechanisms underlying the adaptive response and resistance to these weak acids is a prerequisite to develop more effective strategies to control spoilage yeasts, and the emergence of resistant weeds, drug resistant parasites or cancer cells. Furthermore, the identification of toxicity mechanisms and resistance determinants to weak acid-based pharmaceuticals increases current knowledge on their cytotoxic effects and may lead to the identification of new drug targets. This review integrates current knowledge on the mechanisms of toxicity and tolerance to weak acid stress obtained in the model eukaryote Saccharomyces cerevisiae using genome-wide approaches and more detailed gene-by-gene analysis. The major features of the yeast response to weak acids in general, and the more specific responses and resistance mechanisms towards a specific weak acid or a group of weak acids, depending on the chemical nature of the side chain R group (R-COOH), are highlighted. The involvement of several transcriptional regulatory networks in the genomic response to different weak acids is discussed, focusing on the regulatory pathways controlled by the transcription factors Msn2p/Msn4p, War1p, Haa1p, Rim101p, and Pdr1p/Pdr3p, which are known to orchestrate weak acid stress response in yeast. The extrapolation of the knowledge gathered in yeast to other eukaryotes is also attempted. PMID:20955006

  6. Ethanol tolerance and membrane fatty acid adaptation in adh multiple and null mutants of Kluyveromyces lactis.

    PubMed

    Heipieper, H J; Isken, S; Saliola, M

    2000-11-01

    The effects of ethanol and 1-octanol on growth and fatty acid composition of different strains of Kluyveromyces lactis containing a mutation in the four different alcohol dehydrogenase (KlADH) genes were investigated. In the presence of ethanol and 1-octanol K. lactis reduced the fluidity of its lipids by decreasing the unsaturation index (UI) of its membrane fatty acids. In this way, a direct correlation between nonlethal ethanol concentrations and the decrease in the UI could be observed. At concentrations which totally inhibited cell growth no reaction occurred. These adaptive modifications of the fatty acid pattern of K. lactis to ethanol contrasted with those reported for Saccharomyces cerevisiae and Schizosaccharomyces pombe. Whereas these two yeasts increased the fluidity of their membrane lipids in the presence of ethanol, K. lactis reduced the fluidity (UI) of its lipids. Among the different isogenic adh negative strains tested, the strain containing no ADH (adh0) and that containing only KlADH1 were the most alcohol-sensitive. The strain with only KlADH2 showed nearly the same tolerance as reference strain CBS 2359/152 containing all four ADH genes. This suggests that the KlADH2 product could play an important role in the adaptation/detoxification reactions of K. lactis to high ethanol concentrations.

  7. Tolerance of acid-adapted and non-adapted Escherichia coli O157:H7 cells to reduced pH as affected by type of acidulant.

    PubMed

    Deng, Y; Ryu, J H; Beuchat, L R

    1999-02-01

    A study was carried out to determine if three strains of Escherichia coli O157:H7 grown (18 h) in Tryptic Soy Broth (TSB) and TSB supplemented with 1.25% glucose (TSBG), i.e. unadapted and acid-adapted cells, respectively, exhibited changes in tolerance to reduced pH when plated on Tryptic Soy Agar (TSA) acidified (pH 3.9, 4.2, 4.5, 4.8, 5.1 and 5.4) with acetic, citric or malic acids. All test strains grew well on TSA acidified with acetic acid at pH > or = 5.4 or malic acid at pH > or = 4.5; two strains grew on TSA acidified with citric acid at pH > or = 4.5, while the third strain grew at pH > or = 4.8. Acid-adapted and control (unadapted) cells differed little in their ability to form visible colonies on TSA containing the same acid at the same pH. However, on plates not showing visible colonies, acid-adapted cells retained higher viability than unadapted cells when plated on acidified TSA. Growth of acid-adapted and control cells of E. coli O157:H7 inoculated into TSB containing acetic acid (pH 5.4 and 5.7) and citric or malic acids (pH 4.2 and 4.5) was also studied. There was essentially no difference in growth characteristics of the two types of cells in TSB acidified at the same pH with a given acid. Tolerance of acid-adapted and control cells on subsequent exposure to low pH is influenced by the type of acidulant. The order of sensitivity at a given pH is acetic > citric > malic acid. When performing acid challenge studies to determine survival and growth characteristics of E. coli O157:H7 in foods, consideration should be given to the type of acid to which cells have been exposed previously, the procedure used to achieve acidic environments and possible differences in response among strains. The use of strains less affected by pH than type of acidulant or vice versa could result in an underestimation of the potential for survival and growth of E. coli O157:H7 in acid foods.

  8. Acid tolerance in amphibians

    SciTech Connect

    Pierce, B.A.

    1985-04-01

    Studies of amphibian acid tolerance provide information about the potential effects of acid deposition on amphibian communities. Amphibians as a group appear to be relatively acid tolerant, with many species suffering increased mortality only below pH 4. However, amphibians exhibit much intraspecific variation in acid tolerance, and some species are sensitive to even low levels of acidity. Furthermore, nonlethal effects, including depression of growth rates and increases in developmental abnormalities, can occur at higher pH.

  9. Enhanced Acid Tolerance in Bifidobacterium longum by Adaptive Evolution: Comparison of the Genes between the Acid-Resistant Variant and Wild-Type Strain.

    PubMed

    Jiang, Yunyun; Ren, Fazheng; Liu, Songling; Zhao, Liang; Guo, Huiyuan; Hou, Caiyun

    2016-03-01

    Acid stress can affect the viability of probiotics, especially Bifidobacterium. This study aimed to improve the acid tolerance of Bifidobacterium longum BBMN68 using adaptive evolution. The stress response, and genomic differences of the parental strain and the variant strain were compared by acid stress. The highest acid-resistant mutant strain (BBMN68m) was isolated from more than 100 asexual lines, which were adaptive to the acid stress for 10(th), 20(th), 30(th), 40(th), and 50(th) repeats, respectively. The variant strain showed a significant increase in acid tolerance under conditions of pH 2.5 for 2 h (from 7.92 to 4.44 log CFU/ml) compared with the wildtype strain (WT, from 7.87 to 0 log CFU/ml). The surface of the variant strain was also smoother. Comparative whole-genome analysis showed that the galactosyl transferase D gene (cpsD, bbmn68_1012), a key gene involved in exopolysaccharide (EPS) synthesis, was altered by two nucleotides in the mutant, causing alteration in amino acids, pI (from 8.94 to 9.19), and predicted protein structure. Meanwhile, cpsD expression and EPS production were also reduced in the variant strain (p < 0.05) compared with WT, and the exogenous WT-EPS in the variant strain reduced its acid-resistant ability. These results suggested EPS was related to acid responses of BBMN68.

  10. Adaptive acidification tolerance response of Salmonella typhimurium.

    PubMed

    Foster, J W; Hall, H K

    1990-02-01

    Salmonella typhimurium can encounter a wide variety of environments during its life cycle. One component of the environment which will fluctuate widely is pH. In nature, S. typhimurium can experience and survive dramatic acid stresses that occur in diverse ecological niches ranging from pond water to phagolysosomes. However, in vitro the organism is very sensitive to acid. To provide an explanation for how this organism survives acid in natural environments, the adaptive ability of S. typhimurium to become acid tolerant was tested. Logarithmically grown cells (pH 7.6) shifted to mild acid (pH 5.8) for one doubling as an adaptive procedure were 100 to 1,000 times more resistant to subsequent strong acid challenge (pH 3.3) than were unadapted cells shifted directly from pH 7.6 to 3.3. This acidification tolerance response required protein synthesis and appears to be a specific defense mechanism for acid. No cross protection was noted for hydrogen peroxide, SOS, or heat shock. Two-dimensional polyacrylamide gel electrophoretic analysis of acid-regulated polypeptides revealed 18 proteins with altered expression, 6 of which were repressed while 12 were induced by mild acid shifts. An avirulent phoP mutant was 1,000-fold more sensitive to acid than its virulent phoP+ parent, suggesting a correlation between acid tolerance and virulence. The Mg2(+)-dependent proton-translocating ATPase was also found to play an important role in acid tolerance. Mutants (unc) lacking this activity were unable to mount an acid tolerance response and were extremely acid sensitive. In contrast to these acid-sensitive mutants, a constitutively acid-tolerant mutant (atr) was isolated from wild-type LT2 after prolonged acid exposure. This mutant overexpressed several acidification tolerance response polypeptides. The data presented reveal an important acidification defense modulon with broad significance toward survival in biologically hostile environments.

  11. The acid adaptive tolerance response in Campylobacter jejuni induces a global response, as suggested by proteomics and microarrays

    PubMed Central

    Varsaki, Athanasia; Murphy, Caroline; Barczynska, Alicja; Jordan, Kieran; Carroll, Cyril

    2015-01-01

    Campylobacter jejuni CI 120 is a natural isolate obtained during poultry processing and has the ability to induce an acid tolerance response (ATR) to acid + aerobic conditions in early stationary phase. Other strains tested they did not induce an ATR or they induced it in exponential phase. Campylobacter spp. do not contain the genes that encode the global stationary phase stress response mechanism. Therefore, the aim of this study was to identify genes that are involved in the C. jejuni CI 120 early stationary phase ATR, as it seems to be expressing a novel mechanism of stress tolerance. Two-dimensional gel electrophoresis was used to examine the expression profile of cytosolic proteins during the C. jejuni CI 120 adaptation to acid + aerobic stress and microarrays to determine the genes that participate in the ATR. The results indicate induction of a global response that activated a number of stress responses, including several genes encoding surface components and genes involved with iron uptake. The findings of this study provide new insights into stress tolerance of C. jejuni, contribute to a better knowledge of the physiology of this bacterium and highlight the diversity among different strains. PMID:26221965

  12. The acid adaptive tolerance response in Campylobacter jejuni induces a global response, as suggested by proteomics and microarrays.

    PubMed

    Varsaki, Athanasia; Murphy, Caroline; Barczynska, Alicja; Jordan, Kieran; Carroll, Cyril

    2015-11-01

    Campylobacter jejuni CI 120 is a natural isolate obtained during poultry processing and has the ability to induce an acid tolerance response (ATR) to acid + aerobic conditions in early stationary phase. Other strains tested they did not induce an ATR or they induced it in exponential phase. Campylobacter spp. do not contain the genes that encode the global stationary phase stress response mechanism. Therefore, the aim of this study was to identify genes that are involved in the C. jejuni CI 120 early stationary phase ATR, as it seems to be expressing a novel mechanism of stress tolerance. Two-dimensional gel electrophoresis was used to examine the expression profile of cytosolic proteins during the C. jejuni CI 120 adaptation to acid + aerobic stress and microarrays to determine the genes that participate in the ATR. The results indicate induction of a global response that activated a number of stress responses, including several genes encoding surface components and genes involved with iron uptake. The findings of this study provide new insights into stress tolerance of C. jejuni, contribute to a better knowledge of the physiology of this bacterium and highlight the diversity among different strains.

  13. Root transcriptomes of two acidic soil adapted Indica rice genotypes suggest diverse and complex mechanism of low phosphorus tolerance.

    PubMed

    Tyagi, Wricha; Rai, Mayank

    2017-03-01

    Low phosphorus (P) tolerance in rice is a biologically and agronomically important character. Low P tolerant Indica-type rice genotypes, Sahbhagi Dhan (SD) and Chakhao Poreiton (CP), are adapted to acidic soils and show variable response to low P levels. Using RNAseq approach, transcriptome data was generated from roots of SD and CP after 15 days of low P treatment to understand differences and similarities at molecular level. In response to low P, number of genes up-regulated (1318) was more when compared with down-regulated genes (761). Eight hundred twenty-one genes found to be significantly regulated between SD and CP in response to low P. De novo assembly using plant database led to further identification of 1535 novel transcripts. Functional annotation of significantly expressed genes suggests two distinct methods of low P tolerance. While root system architecture in SD works through serine-threonine kinase PSTOL1, suberin-mediated cell wall modification seems to be key in CP. The transcription data indicated that CP relies more on releasing its internally bound Pi and coping with low P levels by transcriptional and translational modifications and using dehydration response-based signals. Role of P transporters seems to be vital in response to low P in CP while sugar- and auxin-mediated pathway seems to be preferred in SD. At least six small RNA clusters overlap with transcripts highly expressed under low P, suggesting role of RNA super clusters in nutrient response in plants. These results help us to understand and thereby devise better strategy to enhance low P tolerance in Indica-type rice.

  14. Effect of acid adaptation and acid shock on thermal tolerance and survival of Escherichia coli O157:H7 and O111 in apple juice.

    PubMed

    Usaga, Jessie; Worobo, Randy W; Padilla-Zakour, Olga I

    2014-10-01

    Gradual exposure to moderate acidic environments may enhance the thermal tolerance and survival of Escherichia coli O157:H7 in acid and acidified foods. Limited studies comparing methodologies to induce this phenomenon have been performed. The effects of strain and physiological state on thermal tolerance and survival of E. coli in apple juice were studied. The decimal reduction time (D-value) at 56°C [D56°C] was determined for E. coli O157:H7 strains C7927 and ATCC 43895 and E. coli O111 at four physiological states: unadapted, acid-shocked (two methodologies used), and acid-adapted cells. The effect of acidulant was also evaluated by determining the D56°C for the O157:H7 strains subjected to acid shock during 18 h in Trypticase soy broth (TSB), with pH 5 adjusted with hydrochloric, lactic, and malic acids. Survival of the three strains at four physiological states was determined at 1 ± 1°C and 24 ± 2°C. Experiments were performed in triplicate. For thermal inactivation, a significant interaction was found between strain and physiological state (P < 0.0001). Highest thermal tolerance was observed for the 43895 strain subjected to acid shock during 18 h in TSB acidified with HCl (D56°C of 3.0 ± 0.1 min) and the lowest for the acid-shocked C7927 strain treated for 4 h in TSB acidified with HCl (D56°C of 0.45 ± 0.06 min). Acidulants did not alter the heat tolerance of strain C7927 (D56°C of 1.9 ± 0.1 min; P > 0.05) but significantly affected strain 43895 (P < 0.05), showing the greatest tolerance when malic acid was used (D56°C of 3.7 ± 0.3 min). A significant interaction between strain, storage temperature, and physiological state was noted during the survival experiments (P < 0.05). E. coli O111 was the most resistant strain, surviving 6 and 23 days at 24 and 1°C, respectively. Our findings may assist in designing challenge studies for juices and other pH-controlled products, where Shiga toxin-producing E. coli represents the pathogen of concern.

  15. UV Tolerance of Spoilage Microorganisms and Acid-Shocked and Acid-Adapted Escherichia coli in Apple Juice Treated with a Commercial UV Juice-Processing Unit.

    PubMed

    Usaga, Jessie; Padilla-Zakour, Olga I; Worobo, Randy W

    2016-02-01

    The enhanced thermal tolerance and survival responses of Escherichia coli O157:H7 in acid and acidified foods is a major safety concern for the production of low-pH products, including beverages. Little is known about this phenomenon when using UV light treatments. This study was conducted to evaluate the effects of strain (E. coli O157:H7 strains C7927, ATCC 35150, ATCC 43895, and ATCC 43889 and E. coli ATCC 25922) and physiological state (control-unadapted, acid adapted, and acid shocked) on the UV tolerance of E. coli in apple juice treated under conditions stipulated in current U.S. Food and Drug Administration regulations. A greater than 5-log reduction of E. coli was obtained under all tested conditions. A significant effect of strain (P < 0.05) was observed, but the physiological state did not influence pathogen inactivation (P ≥ 0.05). The UV sensitivity of three spoilage microorganisms (Aspergillus niger, Penicillium commune, and Alicyclobacillus acidoterrestris) was also determined at UV doses of 0 to 98 mJ/cm(2). Alicyclobacillus was the most UV sensitive, followed by Penicillium and Aspergillus. Because of the nonsignificant differences in UV sensitivity of E. coli in different physiological states, the use of an unadapted inoculum would be adequate to conduct challenge studies with the commercial UV unit used in this study at a UV dose of 14 mJ/cm(2). The high UV tolerance of spoilage microorganisms supports the need to use a hurdle approach (e.g., coupling of refrigeration, preservatives, and/or other technologies) to extend the shelf life of UV-treated beverages.

  16. Adaptation and transcriptome analysis of Aureobasidium pullulans in corncob hydrolysate for increased inhibitor tolerance to malic acid production.

    PubMed

    Zou, Xiang; Wang, Yongkang; Tu, Guangwei; Zan, Zhanquan; Wu, Xiaoyan

    2015-01-01

    Malic acid is a dicarboxylic acid widely used in the food industry, and is also a potential C4 platform chemical. Corncob is a low-cost renewable feedstock from agricultural industry. However, side-reaction products (furfural, 5-hydroxymethylfurfural (HMF), formic acid, and acetic acid) that severely hinder fermentation are formed during corncob pretreatment. The process for producing malic acid from a hydrolysate of corncob was investigated with a polymalic acid (PMA)-producing Aureobasidium pullulans strain. Under the optimal hydrolysate sugar concentration 110 g/L, A. pullulans was further adapted in an aerobic fibrous bed bioreactor (AFBB) by gradually increasing the sugar concentration of hydrolysate. After nine batches of fermentation, the production and productivity of malic acid reached 38.6 g/L and 0.4 g/L h, respectively, which was higher than that in the first batch (27.6 g/L and 0.29 g/L h, respectively). The adapted strain could grow under the stress of 0.5 g/L furfural, 3 g/L HMF, 2g/L acetic acid, and 0.5 g/L formic acid, whereas the wild type did not. Transcriptome analysis revealed that the differentially expressed genes were related to carbohydrate transport and metabolism, lipid transport and metabolism, signal transduction mechanism, redox metabolism, and energy production and conversion under 0.5 g/L furfural and 3 g/L HMF stress conditions. In total, 42 genes in the adapted strain were upregulated by 15-fold or more, and qRT-PCR also confirmed that the expression levels of key genes (i.e. SIR, GSS, CYS, and GSR) involved in sulfur assimilation pathway were upregulated by over 10-fold in adapted strain for cellular protection against oxidative stress.

  17. Adaptation and Transcriptome Analysis of Aureobasidium pullulans in Corncob Hydrolysate for Increased Inhibitor Tolerance to Malic Acid Production

    PubMed Central

    Zou, Xiang; Wang, Yongkang; Tu, Guangwei; Zan, Zhanquan; Wu, Xiaoyan

    2015-01-01

    Malic acid is a dicarboxylic acid widely used in the food industry, and is also a potential C4 platform chemical. Corncob is a low-cost renewable feedstock from agricultural industry. However, side-reaction products (furfural, 5-hydroxymethylfurfural (HMF), formic acid, and acetic acid) that severely hinder fermentation are formed during corncob pretreatment. The process for producing malic acid from a hydrolysate of corncob was investigated with a polymalic acid (PMA)-producing Aureobasidium pullulans strain. Under the optimal hydrolysate sugar concentration 110 g/L, A. pullulans was further adapted in an aerobic fibrous bed bioreactor (AFBB) by gradually increasing the sugar concentration of hydrolysate. After nine batches of fermentation, the production and productivity of malic acid reached 38.6 g/L and 0.4 g/L h, respectively, which was higher than that in the first batch (27.6 g/L and 0.29 g/L h, respectively). The adapted strain could grow under the stress of 0.5 g/L furfural, 3 g/L HMF, 2g/L acetic acid, and 0.5 g/L formic acid, whereas the wild type did not. Transcriptome analysis revealed that the differentially expressed genes were related to carbohydrate transport and metabolism, lipid transport and metabolism, signal transduction mechanism, redox metabolism, and energy production and conversion under 0.5 g/L furfural and 3 g/L HMF stress conditions. In total, 42 genes in the adapted strain were upregulated by 15-fold or more, and qRT-PCR also confirmed that the expression levels of key genes (i.e. SIR, GSS, CYS, and GSR) involved in sulfur assimilation pathway were upregulated by over 10-fold in adapted strain for cellular protection against oxidative stress. PMID:25793624

  18. Adaptive alterations in the fatty acids composition under induced oxidative stress in heavy metal-tolerant filamentous fungus Paecilomyces marquandii cultured in ascorbic acid presence.

    PubMed

    Słaba, Mirosława; Gajewska, Ewa; Bernat, Przemysław; Fornalska, Magdalena; Długoński, Jerzy

    2013-05-01

    The ability of the heavy metal-tolerant fungus Paecilomyces marquandii to modulate whole cells fatty acid composition and saturation in response to IC50 of Cd, Pb, Zn, Ni, and Cu was studied. Cadmium and nickel caused the most significant growth reduction. In the mycelia cultured with all tested metals, with the exception of nickel, a rise in the fatty acid unsaturation was noted. The fungus exposure to Pb, Cu, and Ni led to significantly higher lipid peroxidation. P. marquandii incubated in the presence of the tested metals responded with an increase in the level of linoleic acid and escalation of electrolyte leakage. The highest efflux of electrolytes was caused by lead. In these conditions, the fungus was able to bind up to 100 mg g(-1) of lead, whereas the content of the other metals in the mycelium was significantly lower and reached from 3.18 mg g(-1) (Cu) to 15.21 mg g(-1) (Zn). Additionally, it was shown that ascorbic acid at the concentration of 1 mM protected fungal growth and prevented the changes in the fatty acid composition and saturation but did not alleviate lipid peroxidation or affect the increased permeability of membranes after lead exposure. Pro-oxidant properties of ascorbic acid in the copper-stressed cells manifested strong growth inhibition and enhanced metal accumulation as a result of membrane damage. Toxic metals action caused cellular modulations, which might contributed to P. marquandii tolerance to the studied metals. Moreover, these changes can enhance metal removal from contaminated environment.

  19. Survival of the acid-adapted Bacillus cereus in acidic environments.

    PubMed

    Chen, Jui-Lin; Chiang, Ming-Lun; Chou, Cheng-Chun

    2009-01-15

    In this study, the acid tolerance of Bacillus cereus 1-4-1 after adaptation at pH 5.5 for 1, 2 and 4 h was first determined. The survival of acid-adapted and non-adapted cells of B. cereus in phosphate buffer solution (PBS pH 4.0) containing various organic acids such as acetic, propionic, citric, lactic or tartaric acid as well as in a commercial acidic beverage of mixed fruits and vegetables (pH 3.7) was then examined. Results revealed that acid adaptation time influenced the increased tolerance of B. cereus in PBS (pH 4.0). The 2 h-adapted cells exhibited the highest acid tolerance in PBS. The presence of chloramphenicol during the acid adaptation reduced the extent of increased acid tolerance. Acid adaptation was also found to enhance the tolerance of the test organism in the presence of the various organic acids tested. While the extent of increased acid tolerance varied with the organic acid examined. Acid-adapted B. cereus cells exhibited the largest extent of increased tolerance, showing an increased survival of ca. 1000 folds, in the propionic acid-containing PBS. Additionally, a higher survival percentage was noted with the acid-adapted than the non-adapted cells of B. cereus in the acidic beverage stored at 4 or 25 degrees C.

  20. Acid tolerance of acid-adapted and nonadapted Escherichia coli O157:H7 following habituation (10 degrees C) in fresh beef decontamination runoff fluids of different pH values.

    PubMed

    Samelis, John; Kendall, Patricia; Smith, Gary C; Sofos, John N

    2004-04-01

    This study evaluated survival of Escherichia coli O157:H7 strain ATCC 43895 during exposure to pH 3.5 following its habituation for 2 or 7 days at 10 degrees in fresh beef decontamination waste runoff fluid mixtures (washings) containing 0, 0.02, or 0.2% of lactic or acetic acids. Meat washings and sterile water (control) were initially inoculated with approximately 5 log CFU/ml of acid- and nonadapted E. coli O157:H7 cells cultured (30 degrees C, 24 h) in broth with and without 1% glucose, respectively. After 2 days, E. coli O157:H7 survivors from acetate washings (pH 3.7 to 4.7) survived at pH 3.5 better than E. coli O157:H7 survivors from lactate washings (pH 3.1 to 4.6), especially when the original inoculum was acid adapted. Also, although E. coli O157:H7 habituated in sterile water for 2 days survived well at pH 3.5, the corresponding survivors from nonacid water meat washings (pH 6.8) were rapidly killed at pH 3.5, irrespective of acid adaptation. After 7 days, E. coli O157:H7 survivors from acetate washings (pH 3.6 to 4.7) continued to resist pH 3.5, whereas those from lactate washings died off. This loss of acid tolerance by E. coli O157:H7 was due to either its low survival in 0.2% lactate washings (pH 3.1) or its acid sensitization in 0.02% lactate washings, in which a Pseudomonas-like natural flora showed extensive growth (> 8 log CFU/ml) and the pH increased to 6.5 to 6.6. Acid-adapted E. coli O157:H7 populations habituated in water washings (pH 7.1 to 7.3) for 7 days continued to be acid sensitive, whereas nonadapted populations increased their acid tolerance, a response merely correlated with their slight (< 1 log) growth at 10 degrees C. These results indicate that the expression of high acid tolerance by acid-adapted E. coli O157:H7 can be maintained or enhanced in acid-diluted meat decontamination waste runoff fluids of pH levels that could permit long-term survival at 10 degrees C. Previous acid adaptation, however, could reduce the growth

  1. Can crops tolerate acid rain

    SciTech Connect

    Kaplan, J.K.

    1989-11-01

    This brief article describes work by scientists at the ARS Air Quality-Plant Growth and Development Laboratory in Raleigh, North Carolina, that indicates little damage to crops as a result of acid rain. In studies with simulated acid rain and 216 exposed varieties of 18 crops, there were no significant injuries nor was there reduced growth in most species. Results of chronic and acute exposures were correlated in sensitive tomato and soybean plants and in tolerant winter wheat and lettuce plants. These results suggest that 1-hour exposures could be used in the future to screen varieties for sensitivity to acid rain.

  2. Cultural conditions required for the induction of an adaptive acid-tolerance response (ATR) in Sinorhizobium meliloti and the question as to whether or not the ATR helps rhizobia improve their symbiosis with alfalfa at low pH.

    PubMed

    Draghi, Walter O; Del Papa, María Florencia; Pistorio, Mariano; Lozano, Mauricio; de Los Angeles Giusti, María; Torres Tejerizo, Gonzalo A; Jofré, Edgardo; Boiardi, José Luis; Lagares, Antonio

    2010-01-01

    Sinorhizobium meliloti associates with Medicago and Melilotus species to develop nitrogen-fixing symbioses. The agricultural relevance of these associations, the worldwide distribution of acid soils, and the remarkable acid sensitivity of the microsymbiont have all stimulated research on the responses of the symbionts to acid environments. We show here that an adaptive acid-tolerance response (ATR) can be induced in S. meliloti, as shown previously for Sinorhizobium medicae, when the bacteria are grown in batch cultures at the slightly acid pH of 6.1. In marked contrast, no increased tolerance to hydrogen ions is obtained if rhizobia are grown in a chemostat under continuous cultivation at the same pH. The adaptive ATR appears as a complex process triggered by an increased hydrogen-ion concentration, but operative only if other--as yet unknown--concomitant factors that depend on the culture conditions are present (although not provided under continuous cultivation). Although the stability of the ATR and its influence on acid tolerance has been characterized in rhizobia, no data have been available on the effect of the adapted state on symbiosis. Coinoculation experiments showed that acid-adapted indicator rhizobia (ATR+) were present in >90% of the nodules when nodulation was performed at pH 5.6, representing a >30% increase in occupancy compared with a control test. We show that the ATR represents a clear advantage in competing for nodulation at low pH. It is not yet clear whether such an effect results from an improved performance in the acid environment during preinfection, an enhanced ability to initiate infections, or both conditions. The practical use of ATR+ rhizobia will depend on validation experiments with soil microcosms and on field testing, as well as on the possibility of preserving the physiology of ATR+ bacteria in inoculant formulations.

  3. Differential molecular responses of rice and wheat coleoptiles to anoxia reveal novel metabolic adaptations in amino acid metabolism for tissue tolerance.

    PubMed

    Shingaki-Wells, Rachel N; Huang, Shaobai; Taylor, Nicolas L; Carroll, Adam J; Zhou, Wenxu; Millar, A Harvey

    2011-08-01

    Rice (Oryza sativa) and wheat (Triticum aestivum) are the most important starch crops in world agriculture. While both germinate with an anatomically similar coleoptile, this tissue defines the early anoxia tolerance of rice and the anoxia intolerance of wheat seedlings. We combined protein and metabolite profiling analysis to compare the differences in response to anoxia between the rice and wheat coleoptiles. Rice coleoptiles responded to anoxia dramatically, not only at the level of protein synthesis but also at the level of altered metabolite pools, while the wheat response to anoxia was slight in comparison. We found significant increases in the abundance of proteins in rice coleoptiles related to protein translation and antioxidant defense and an accumulation of a set of enzymes involved in serine, glycine, and alanine biosynthesis from glyceraldehyde-3-phosphate or pyruvate, which correlates with an observed accumulation of these amino acids in anoxic rice. We show a positive effect on wheat root anoxia tolerance by exogenous addition of these amino acids, indicating that their synthesis could be linked to rice anoxia tolerance. The potential role of amino acid biosynthesis contributing to anoxia tolerance in cells is discussed.

  4. Acid tolerance in root nodule bacteria.

    PubMed

    Glenn, A R; Reeve, W G; Tiwari, R P; Dilworth, M J

    1999-01-01

    Biological nitrogen fixation, especially via the legume Rhizobium symbiosis, is important for world agriculture. The productivity of legume crops and pastures is significantly affected by soil acidity; in some cases it is the prokaryotic partner that is pH sensitive. Growth of Rhizobium is adversely affected by low pH, especially in the 'acid stress zone'. Rhizobia exhibit an adaptive acid tolerance response (ATR) that is influenced by calcium concentration. Using Tn5-mutagenesis, gusA fusions and 'proteome' analysis, we have identified a range of genes that are essential for growth at low pH (such as actA, actP, exoR, actR and actS). At least three regulatory systems exist. The two-component sensor-regulator system, actSR, is essential for induction of the adaptive ATR. Two other regulatory circuits exist that are independent of ActR. One system involves the low pH-induced regulator gene, phrR, which may control other low pH-regulated genes. The other circuit, involving a regulator that is yet unidentified, controls the expression of a pH-regulated structural gene (lpiA). We have used pH-responsive gusA fusions to identify acid-inducible genes (such as lpiA), and then attempted to identify the regulators of these genes. The emerging picture is of a relatively complex set of systems that respond to external pH.

  5. Tolerance to stress and ability of acid-adapted and non-acid-adapted Salmonella enterica serovar Typhimurium DT104 to invade and survive in mammalian cells in vitro.

    PubMed

    Fratamico, Pina M

    2003-07-01

    The ability of acid-adapted (AA) and non-acid-adapted (NA) Salmonella enterica serovar Typhimurium definitive type 104 (DT104) strains to invade and multiply in mammalian cells in vitro and to survive stress conditions was examined. DT104 and non-DT104 strains were grown in tryptic soy broth without glucose (NA) or in tryptic soy broth containing 1% glucose (AA) for 18 h at 37 degrees C. The invasiveness of DT104 strains in J774A.1 macrophage and Int407 intestinal cell lines was not more extensive than that of non-DT104 strains. In most cases, AA bacteria were less invasive than NA bacteria in both cell lines. Confocal microscopy showed that both DT104 and non-DT104 strains replicated in the two cell lines. In related studies, the survival levels of three strains of AA and NA DT104 and a non-DT104 (LT2) strain in 150 and 15 mM H2O2, 170 and 43 mM acetic acid, 2.6 M NaCl, 2.6 M NaCl containing 170 mM acetic acid, synthetic gastric fluid (SGF) at pH 2 and pH 3, and apple cider were compared. For all four strains, acid adaptation did not result in increased survival in apple cider. After 15 days of storage at 4 degrees C, reductions ranged from 1.96 to 4.1 log10 CFU/ml for AA bacteria and from 0.48 to 1.34 log10 CFU/ml for NA bacteria from a starting level of ca. 7.00 log10 CFU/ml of cider. Neither AA nor NA DT104 strains were more resistant to NaCl, acetic acid, H2O2, or SGF solutions than non-DT104 strain LT2. The level of AA bacteria was not appreciably reduced after exposure to SGF; however, the level of NA bacteria decreased to nondetectable levels in SGF at pH 2 within 3 h of exposure. These results indicate that the DT104 strains examined were not more invasive, nor did they display increased survival in mammalian cells or increased resistance to food environment stresses compared with non-DT104 strains. However, acid adaptation resulted in increased resistance to a low-pH gastric environment for all strains tested. These data indicate that DT104 strains are

  6. 40 CFR 180.289 - Methanearsonic acid; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Methanearsonic acid; tolerances for...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.289 Methanearsonic acid; tolerances for residues. (a) General. Tolerances are established...

  7. 40 CFR 180.289 - Methanearsonic acid; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Methanearsonic acid; tolerances for...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.289 Methanearsonic acid; tolerances for residues. (a) General. Tolerances are established...

  8. 40 CFR 180.289 - Methanearsonic acid; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Methanearsonic acid; tolerances for...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.289 Methanearsonic acid; tolerances for residues. (a) General. Tolerances are established...

  9. 40 CFR 180.289 - Methanearsonic acid; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Methanearsonic acid; tolerances for...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.289 Methanearsonic acid; tolerances for residues. (a) General. Tolerances are established...

  10. Method and system for environmentally adaptive fault tolerant computing

    NASA Technical Reports Server (NTRS)

    Copenhaver, Jason L. (Inventor); Jeremy, Ramos (Inventor); Wolfe, Jeffrey M. (Inventor); Brenner, Dean (Inventor)

    2010-01-01

    A method and system for adapting fault tolerant computing. The method includes the steps of measuring an environmental condition representative of an environment. An on-board processing system's sensitivity to the measured environmental condition is measured. It is determined whether to reconfigure a fault tolerance of the on-board processing system based in part on the measured environmental condition. The fault tolerance of the on-board processing system may be reconfigured based in part on the measured environmental condition.

  11. Metabolic Adaption of Ethanol-Tolerant Clostridium thermocellum

    PubMed Central

    Zhu, Xinshu; Cui, Jiatao; Feng, Yingang; Fa, Yun; Zhang, Jingtao; Cui, Qiu

    2013-01-01

    Clostridium thermocellum is a major candidate for bioethanol production via consolidated bioprocessing. However, the low ethanol tolerance of the organism dramatically impedes its usage in industry. To explore the mechanism of ethanol tolerance in this microorganism, systematic metabolomics was adopted to analyse the metabolic phenotypes of a C. thermocellum wild-type (WT) strain and an ethanol-tolerant strain cultivated without (ET0) or with (ET3) 3% (v/v) exogenous ethanol. Metabolomics analysis elucidated that the levels of numerous metabolites in different pathways were changed for the metabolic adaption of ethanol-tolerant C. thermocellum. The most interesting phenomenon was that cellodextrin was significantly more accumulated in the ethanol-tolerant strain compared with the WT strain, although cellobiose was completely consumed in both the ethanol-tolerant and wild-type strains. These results suggest that the cellodextrin synthesis was active, which might be a potential mechanism for stress resistance. Moreover, the overflow of many intermediate metabolites, which indicates the metabolic imbalance, in the ET0 cultivation was more significant than in the WT and ET3 cultivations. This indicates that the metabolic balance of the ethanol-tolerant strain was adapted better to the condition of ethanol stress. This study provides additional insight into the mechanism of ethanol tolerance and is valuable for further metabolic engineering aimed at higher bioethanol production. PMID:23936233

  12. [Lipid synthesis by an acidic acid tolerant Rhodotorula glutinis].

    PubMed

    Lin, Zhangnan; Liu, Hongjuan; Zhang, Jian'an; Wang, Gehua

    2016-03-01

    Acetic acid, as a main by-product generated in the pretreatment process of lignocellulose hydrolysis, significantly affects cell growth and lipid synthesis of oleaginous microorganisms. Therefore, we studied the tolerance of Rhodotorula glutinis to acetic acid and its lipid synthesis from substrate containing acetic acid. In the mixed sugar medium containing 6 g/L glucose and 44 g/L xylose, and supplemented with acetic acid, the cell growth was not:inhibited when the acetic acid concentration was below 10 g/L. Compared with the control, the biomass, lipid concentration and lipid content of R. glutinis increased 21.5%, 171% and 122% respectively when acetic acid concentration was 10 g/L. Furthermore, R. glutinis could accumulate lipid with acetate as the sole carbon source. Lipid concentration and lipid yield reached 3.20 g/L and 13% respectively with the initial acetic acid concentration of 25 g/L. The lipid composition was analyzed by gas chromatograph. The main composition of lipid produced with acetic acid was palmitic acid, stearic acid, oleic acid, linoleic acid and linolenic acid, including 40.9% saturated fatty acids and 59.1% unsaturated fatty acids. The lipid composition was similar to that of plant oil, indicating that lipid from oleaginous yeast R. glutinis had potential as the feedstock of biodiesel production. These results demonstrated that a certain concentration of acetic acid need not to be removed in the detoxification process when using lignocelluloses hydrolysate to produce microbial lipid by R. glutinis.

  13. Stress tolerance in plants via habitat-adapted symbiosis

    USGS Publications Warehouse

    Rodriguez, R.J.; Henson, J.; Van Volkenburgh, E.; Hoy, M.; Wright, L.; Beckwith, F.; Kim, Y.-O.; Redman, R.S.

    2008-01-01

    We demonstrate that native grass species from coastal and geothermal habitats require symbiotic fungal endophytes for salt and heat tolerance, respectively. Symbiotically conferred stress tolerance is a habitat-specific phenomenon with geothermal endophytes conferring heat but not salt tolerance, and coastal endophytes conferring salt but not heat tolerance. The same fungal species isolated from plants in habitats devoid of salt or heat stress did not confer these stress tolerances. Moreover, fungal endophytes from agricultural crops conferred disease resistance and not salt or heat tolerance. We define habitat-specific, symbiotically-conferred stress tolerance as habitat-adapted symbiosis and hypothesize that it is responsible for the establishment of plants in high-stress habitats. The agricultural, coastal and geothermal plant endophytes also colonized tomato (a model eudicot) and conferred disease, salt and heat tolerance, respectively. In addition, the coastal plant endophyte colonized rice (a model monocot) and conferred salt tolerance. These endophytes have a broad host range encompassing both monocots and eudicots. Interestingly, the endophytes also conferred drought tolerance to plants regardless of the habitat of origin. Abiotic stress tolerance correlated either with a decrease in water consumption or reactive oxygen sensitivity/generation but not to increased osmolyte production. The ability of fungal endophytes to confer stress tolerance to plants may provide a novel strategy for mitigating the impacts of global climate change on agricultural and native plant communities.The ISME Journal (2008) 2, 404-416; doi:10.1038/ismej.2007.106; published online 7 February 2008. ?? 2008 International Society for Microbial Ecology All rights reserved.

  14. A Decentralized Adaptive Approach to Fault Tolerant Flight Control

    NASA Technical Reports Server (NTRS)

    Wu, N. Eva; Nikulin, Vladimir; Heimes, Felix; Shormin, Victor

    2000-01-01

    This paper briefly reports some results of our study on the application of a decentralized adaptive control approach to a 6 DOF nonlinear aircraft model. The simulation results showed the potential of using this approach to achieve fault tolerant control. Based on this observation and some analysis, the paper proposes a multiple channel adaptive control scheme that makes use of the functionally redundant actuating and sensing capabilities in the model, and explains how to implement the scheme to tolerate actuator and sensor failures. The conditions, under which the scheme is applicable, are stated in the paper.

  15. 40 CFR 180.289 - Methanearsonic acid; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... residues. 180.289 Section 180.289 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.289 Methanearsonic acid; tolerances for residues. (a) General. Tolerances are established...

  16. 40 CFR 180.311 - Cacodylic acid; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... residues. 180.311 Section 180.311 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.311 Cacodylic acid; tolerances for residues. (a) General. Tolerances are established for...

  17. [Advances in functional genomics studies underlying acetic acid tolerance of Saccharomyces cerevisiae].

    PubMed

    Zhao, Xinqing; Zhang, Mingming; Xu, Guihong; Xu, Jianren; Bai, Fengwu

    2014-03-01

    Industrial microorganisms are subject to various stress conditions, including products and substrates inhibitions. Therefore, improvement of stress tolerance is of great importance for industrial microbial production. Acetic acid is one of the major inhibitors in the cellulosic hydrolysates, which affects seriously on cell growth and metabolism of Saccharomyces cerevisiae. Studies on the molecular mechanisms underlying adaptive response and tolerance of acetic acid of S. cerevisiae benefit breeding of robust strains of industrial yeast for more efficient production. In recent years, more insights into the molecular mechanisms underlying acetic acid tolerance have been revealed through analysis of global gene expression and metabolomics analysis, as well as phenomics analysis by single gene deletion libraries. Novel genes related to response to acetic acid and improvement of acetic acid tolerance have been identified, and novel strains with improved acetic acid tolerance were constructed by modifying key genes. Metal ions including potassium and zinc play important roles in acetic acid tolerance in S. cerevisiae, and the effect of zinc was first discovered in our previous studies on flocculating yeast. Genes involved in cell wall remodeling, membrane transport, energy metabolism, amino acid biosynthesis and transport, as well as global transcription regulation were discussed. Exploration and modification of the molecular mechanisms of yeast acetic acid tolerance will be done further on levels such as post-translational modifications and synthetic biology and engineering; and the knowledge obtained will pave the way for breeding robust strains for more efficient bioconversion of cellulosic materials to produce biofuels and bio-based chemicals.

  18. Immune tolerance induction by integrating innate and adaptive immune regulators

    PubMed Central

    Suzuki, Jun; Ricordi, Camillo; Chen, Zhibin

    2009-01-01

    A diversity of immune tolerance mechanisms have evolved to protect normal tissues from immune damage. Immune regulatory cells are critical contributors to peripheral tolerance. These regulatory cells, exemplified by the CD4+Foxp3+ regulatory T (Treg) cells and a recently identified population named myeloid-derived suppressor cells (MDSCs), regulate immune responses and limiting immune-mediated pathology. In a chronic inflammatory setting, such as allograft-directed immunity, there may be a dynamic “crosstalk” between the innate and adaptive immunomodulatory mechanisms for an integrated control of immune damage. CTLA4-B7-based interaction between the two branches may function as a molecular “bridge” to facilitate such “crosstalk”. Understanding the interplays among Treg cells, innate suppressors and pathogenic effector T (Teff) cells will be critical in the future to assist in the development of therapeutic strategies to enhance and synergize physiological immunosuppressive elements in the innate and adaptive immune system. Successful development of localized strategies of regulatory cell therapies could circumvent the requirement for very high number of cells and decrease the risks associated with systemic immunosuppression. To realize the potential of innate and adaptive immune regulators for the still-elusive goal of immune tolerance induction, adoptive cell therapies may also need to be coupled with agents enhancing endogenous tolerance mechanisms. PMID:19919733

  19. Genetic dissection of acetic acid tolerance in Saccharomyces cerevisiae.

    PubMed

    Geng, Peng; Xiao, Yin; Hu, Yun; Sun, Haiye; Xue, Wei; Zhang, Liang; Shi, Gui-Yang

    2016-09-01

    Dissection of the hereditary architecture underlying Saccharomyces cerevisiae tolerance to acetic acid is essential for ethanol fermentation. In this work, a genomics approach was used to dissect hereditary variations in acetic acid tolerance between two phenotypically different strains. A total of 160 segregants derived from these two strains were obtained. Phenotypic analysis indicated that the acetic acid tolerance displayed a normal distribution in these segregants, and suggested that the acetic acid tolerant traits were controlled by multiple quantitative trait loci (QTLs). Thus, 220 SSR markers covering the whole genome were used to detect QTLs of acetic acid tolerant traits. As a result, three QTLs were located on chromosomes 9, 12, and 16, respectively, which explained 38.8-65.9 % of the range of phenotypic variation. Furthermore, twelve genes of the candidates fell into the three QTL regions by integrating the QTL analysis with candidates of acetic acid tolerant genes. These results provided a novel avenue to obtain more robust strains.

  20. 77 FR 21676 - Silicic Acid, Sodium Salt etc.; Tolerance Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-11

    ... AGENCY 40 CFR Part 180 Silicic Acid, Sodium Salt etc.; Tolerance Exemption AGENCY: Environmental... requirement of a tolerance for residues of Silicic acid, sodium salt, reaction products with... residues of Silicic acid, sodium salt, reaction products with chlorotrimethylsilane and iso-propyl...

  1. 75 FR 71556 - Polyoxyalkylated Glycerol Fatty Acid Esters; Tolerance Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-24

    ... AGENCY 40 CFR Part 180 Polyoxyalkylated Glycerol Fatty Acid Esters; Tolerance Exemption AGENCY... from the requirement of a tolerance for residues of polyoxyalkylated glycerol fatty acid esters; the... unsaturated, fatty acids containing up to 15% water by weight reacted with a minimum of three moles of...

  2. Adaptive evolution of Saccharomyces cerevisiae with enhanced ethanol tolerance for Chinese rice wine fermentation.

    PubMed

    Chen, Shuang; Xu, Yan

    2014-08-01

    High tolerance towards ethanol is a desirable property for the Saccharomyces cerevisiae strains used in the alcoholic beverage industry. To improve the ethanol tolerance of an industrial Chinese rice wine yeast, a sequential batch fermentation strategy was used to adaptively evolve a chemically mutagenized Chinese rice wine G85 strain. The high level of ethanol produced under Chinese rice wine-like fermentation conditions was used as the selective pressure. After adaptive evolution of approximately 200 generations, mutant G85X-8 was isolated and shown to have markedly increased ethanol tolerance. The evolved strain also showed higher osmotic and temperature tolerances than the parental strain. Laboratory Chinese rice wine fermentation showed that the evolved G85X-8 strain was able to catabolize sugars more completely than the parental G85 strain. A higher level of yeast cell activity was found in the fermentation mash produced by the evolved strain, but the aroma profiles were similar between the evolved and parental strains. The improved ethanol tolerance in the evolved strain might be ascribed to the altered fatty acids composition of the cell membrane and higher intracellular trehalose concentrations. These results suggest that adaptive evolution is an efficient approach for the non-recombinant modification of industrial yeast strains.

  3. The Acetic Acid Tolerance Response induces cross-protection to salt stress in Salmonella typhimurium.

    PubMed

    Greenacre, E J; Brocklehurst, T F

    2006-10-15

    Salmonella typhimurium induces an Acid Tolerance Response (ATR) upon exposure to mildly acidic conditions in order to protect itself against severe acid shock. This response can also induce cross-protection to other stresses such as heat and salt. We investigated whether both the acetic acid induced and lactic acid induced ATR in S. typhimurium provided cross-protection to a salt stress at 20 degrees C. Acid-adapted cells were challenged with both a sodium chloride (NaCl) and potassium chloride (KCl) shock and their ability to survive ascertained. Acetic acid adaptation provided cells with protection against both NaCl and KCl stress. However, lactic acid adaptation did not protect against either osmotic stressor and rendered cells hypersensitive to NaCl. These results have implications for the food industry where hurdle technology means multiple sub-lethal stresses such as mild pH and low salt are commonly used in the preservation of products.

  4. Trehalose accumulation enhances tolerance of Saccharomyces cerevisiae to acetic acid.

    PubMed

    Yoshiyama, Yoko; Tanaka, Koichi; Yoshiyama, Kohei; Hibi, Makoto; Ogawa, Jun; Shima, Jun

    2015-02-01

    Trehalose confers protection against various environmental stresses on yeast cells. In this study, trehalase gene deletion mutants that accumulate trehalose at high levels showed significant stress tolerance to acetic acid. The enhancement of trehalose accumulation can thus be considered a target in the breeding of acetic acid-tolerant yeast strains.

  5. Deciphering the salinity adaptation mechanism in Penicilliopsis clavariiformis AP, a rare salt tolerant fungus from mangrove.

    PubMed

    Kashyap, Prem Lal; Rai, Anuradha; Singh, Ruchi; Chakdar, Hillol; Kumar, Sudheer; Srivastava, Alok Kumar

    2016-07-01

    Penicilliopsis clavariiformis AP, a rare salt tolerant fungus reported for the first time from India was identified through polyphasic taxonomy. Scanning electron microscopy showed that the fungus has unique features such as biverticillate penicilli bearing masses of oval to ellipsoidal conidia. The fungus has been characterized for salt tolerance and to understand the relevance of central carbon metabolism in salt stress adaptation. It showed optimal growth at 24 °C and able to tolerate up to 10% (w/v) NaCl. To understand the mechanism of adaptation to high salinity, activities of the key enzymes regulating glycolysis, pentose phosphate pathway, and tricarboxylic acid cycle were investigated under normal (0% NaCl) and saline stress environment (10% NaCl). The results revealed a re-routing of carbon metabolism away from glycolysis to the pentose phosphate pathway (PPP), served as a cellular stress-resistance mechanism in fungi under saline environment. The detection and significant expression of fungus genes (Hsp98, Hsp60, HTB, and RHO) under saline stress suggest that these halotolerance conferring genes from the fungus could have a role in fungus protection and adaptation under saline environment. Overall, the present findings indicate that the rearrangement of the metabolic fluxes distribution and stress related genes play an important role in cell survival and adaptation under saline environment.

  6. Adaptive phenotypic plasticity and local adaptation for temperature tolerance in freshwater zooplankton.

    PubMed

    Yampolsky, Lev Y; Schaer, Tobias M M; Ebert, Dieter

    2014-02-07

    Many organisms have geographical distributions extending from the tropics to near polar regions or can experience up to 30°C temperature variation within the lifespan of an individual. Two forms of evolutionary adaptation to such wide ranges in ambient temperatures are frequently discussed: local adaptation and phenotypic plasticity. The freshwater planktonic crustacean Daphnia magna, whose range extends from South Africa to near arctic sites, shows strong phenotypic and genotypic variation in response to temperature. In this study, we use D. magna clones from 22 populations (one clone per population) ranging from latitude 0° (Kenya) to 66° North (White Sea) to explore the contributions of phenotypic plasticity and local adaptation to high temperature tolerance. Temperature tolerance was studied as knockout time (time until immobilization, T(imm)) at 37°C in clones acclimatized to either 20°C or 28°C. Acclimatization to 28°C strongly increased T(imm), testifying to adaptive phenotypic plasticity. At the same time, Timm significantly correlated with average high temperature at the clones' sites of origin, suggesting local adaptation. As earlier studies have found that haemoglobin expression contributes to temperature tolerance, we also quantified haemoglobin concentration in experimental animals and found that both acclimatization temperature (AccT) and temperature at the site of origin are positively correlated with haemoglobin concentration. Furthermore, Daphnia from warmer climates upregulate haemoglobin much more strongly in response to AccT, suggesting local adaptation for plasticity in haemoglobin expression. Our results show that both local adaptation and phenotypic plasticity contribute to temperature tolerance, and elucidate a possible role of haemoglobin in mediating these effects that differs along a cold-warm gradient.

  7. Metabolic adaptation to tissue iron overload confers tolerance to malaria.

    PubMed

    Gozzelino, Raffaella; Andrade, Bruno Bezerril; Larsen, Rasmus; Luz, Nivea F; Vanoaica, Liviu; Seixas, Elsa; Coutinho, Antonio; Cardoso, Sílvia; Rebelo, Sofia; Poli, Maura; Barral-Netto, Manoel; Darshan, Deepak; Kühn, Lukas C; Soares, Miguel P

    2012-11-15

    Disease tolerance is a defense strategy that limits the fitness costs of infection irrespectively of pathogen burden. While restricting iron (Fe) availability to pathogens is perceived as a host defense strategy, the resulting tissue Fe overload can be cytotoxic and promote tissue damage to exacerbate disease severity. Examining this interplay during malaria, the disease caused by Plasmodium infection, we find that expression of the Fe sequestering protein ferritin H chain (FtH) in mice, and ferritin in humans, is associated with reduced tissue damage irrespectively of pathogen burden. FtH protection relies on its ferroxidase activity, which prevents labile Fe from sustaining proapoptotic c-Jun N-terminal kinase (JNK) activation. FtH expression is inhibited by JNK activation, promoting tissue Fe overload, tissue damage, and malaria severity. Mimicking FtH's antioxidant effect or inhibiting JNK activation pharmacologically confers therapeutic tolerance to malaria in mice. Thus, FtH provides metabolic adaptation to tissue Fe overload, conferring tolerance to malaria.

  8. 40 CFR 180.180 - Orthoarsenic acid; tolerance for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Orthoarsenic acid; tolerance for residues. 180.180 Section 180.180 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific...

  9. Acid tolerance response of Bordetella bronchiseptica in avirulent phase.

    PubMed

    Fingermann, M; Hozbor, D

    2015-12-01

    Bordetella bronchiseptica is a Gram-negative bacterium responsible for respiratory diseases in many mammalian hosts, including humans. This pathogen has been shown as able to persist inside the host cells, even in the phagosomes that are acidified to pH 4.5-5.0 after bacterial infection. Here we evaluated the resistance of B. bronchiseptica to survive under acidic conditions. In particular we analyzed the bacterial capacity to develop the mechanism known as acid tolerance response (ATR). Our studies were mainly focused on the avirulent phase of the bacteria since this phenotypic phase was reported to be more resistant to environmental stress conditions than the virulent phase. Results from B. bronchiseptica in virulent phase were also included for comparison purposes. In fact, for B. bronchiseptica 9.73 bacteria in virulent phase we observed that the viability of bacteria does not decrease significantly when grown at pH as low as 4.5, but it is affected when the pH of the medium was equal to or less than 4.0. After acid-adaptation at pH 5.5 for several hours, the survival rate of B. bronchiseptica 9.73 at lethal pH 4.0 for 6h was increased. Interestingly, the avirulent phase mediated by the two-component BvgAS system conferred further resistance to lethal acid challenge and a marked increase in the magnitude of the expressed ATR. The ATR for this avirulent phase seems to be associated with changes in LPS and surface protein profiles. 2D-gel electrophoresis revealed at least 25 polypeptides differentially expressed, 17 of which were only expressed or over-expressed under acid conditions. Using MALDI-TOF mass spectrometry, 10 of these differentially expressed polypeptides were identified.

  10. How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency.

    PubMed

    Kochian, Leon V; Hoekenga, Owen A; Pineros, Miguel A

    2004-01-01

    Acid soils significantly limit crop production worldwide because approximately 50% of the world's potentially arable soils are acidic. Because acid soils are such an important constraint to agriculture, understanding the mechanisms and genes conferring tolerance to acid soil stress has been a focus of intense research interest over the past decade. The primary limitations on acid soils are toxic levels of aluminum (Al) and manganese (Mn), as well as suboptimal levels of phosphorous (P). This review examines our current understanding of the physiological, genetic, and molecular basis for crop Al tolerance, as well as reviews the emerging area of P efficiency, which involves the genetically based ability of some crop genotypes to tolerate P deficiency stress on acid soils. These are interesting times for this field because researchers are on the verge of identifying some of the genes that confer Al tolerance in crop plants; these discoveries will open up new avenues of molecular/physiological inquiry that should greatly advance our understanding of these tolerance mechanisms. Additionally, these breakthroughs will provide new molecular resources for improving crop Al tolerance via both molecular-assisted breeding and biotechnology.

  11. Abscisic Acid and Abiotic Stress Tolerance in Crop Plants

    PubMed Central

    Sah, Saroj K.; Reddy, Kambham R.; Li, Jiaxu

    2016-01-01

    Abiotic stress is a primary threat to fulfill the demand of agricultural production to feed the world in coming decades. Plants reduce growth and development process during stress conditions, which ultimately affect the yield. In stress conditions, plants develop various stress mechanism to face the magnitude of stress challenges, although that is not enough to protect them. Therefore, many strategies have been used to produce abiotic stress tolerance crop plants, among them, abscisic acid (ABA) phytohormone engineering could be one of the methods of choice. ABA is an isoprenoid phytohormone, which regulates various physiological processes ranging from stomatal opening to protein storage and provides adaptation to many stresses like drought, salt, and cold stresses. ABA is also called an important messenger that acts as the signaling mediator for regulating the adaptive response of plants to different environmental stress conditions. In this review, we will discuss the role of ABA in response to abiotic stress at the molecular level and ABA signaling. The review also deals with the effect of ABA in respect to gene expression. PMID:27200044

  12. Amino acids improve acid tolerance and internal pH maintenance in Bacillus cereus ATCC14579 strain.

    PubMed

    Senouci-Rezkallah, Khadidja; Schmitt, Philippe; Jobin, Michel P

    2011-05-01

    This study investigated the involvement of glutamate-, arginine- and lysine-dependent systems in the Acid Tolerance Response (ATR) of Bacillus cereus ATCC14579 strain. Cells were grown in a chemostat at external pH (pH(e)) 7.0 and 5.5. Population reduction after acid shock at pH 4.0 was strongly limited in cells grown at pH 5.5 (acid-adapted) compared with cells grown at pH 7.0 (unadapted), indicating that B. cereus cells grown at low pH(e) were able to induce a marked ATR. Glutamate, arginine and lysine enhanced the resistance of unadapted cells to pH 4.0 acid shock of 1-log or 2-log populations, respectively. Amino acids had no detectable effect on acid resistance in acid-adapted cells. An acid shock at pH 4.0 resulted in a marked drop in internal pH (pH(i)) in unadapted cells compared with acid-adapted cells. When acid shock was achieved in the presence of glutamate, arginine or lysine, pH(i) was maintained at higher values (6.31, 6.69 or 6.99, respectively) compared with pH(i) in the absence of amino acids (4.88). Acid-adapted cells maintained their pH(i) at around 6.4 whatever the condition. Agmatine (a competitive inhibitor of arginine decarboxylase) had a negative effect on the ability of B. cereus cells to survive and maintain their pH(i) during acid shock. Our data demonstrate that B. cereus is able to induce an ATR during growth at low pH. This adaptation depends on pH(i) homeostasis and is enhanced in the presence of glutamate, arginine and lysine. Hence evaluations of the pathogenicity of B. cereus must take into account its ability to adapt to acid stress.

  13. Comprehensive molecular characterization of Methylobacterium extorquens AM1 adapted for 1-butanol tolerance

    DOE PAGES

    Hu, Bo; Yang, Yi -Ming; Beck, David A. C.; ...

    2016-04-11

    In this study, the toxicity of alcohols is one of the major roadblocks of biological fermentation for biofuels production. Methylobacterium extorquens AM1, a facultative methylotrophic α-proteobacterium, has been engineered to generate 1-butanol from cheap carbon feedstocks through a synthetic metabolic pathway. However, M. extorquens AM1 is vulnerable to solvent stress, which impedes further development for 1-butanol production. Only a few studies have reported the general stress response of M. extorquens AM1 to solvent stress. Therefore, it is highly desirable to obtain a strain with ameliorated 1-butanol tolerance and elucidate the molecular mechanism of 1-butnaol tolerance in M. extorquens AM1 formore » future strain improvement. In this work, adaptive laboratory evolution was used as a tool to isolate mutants with 1-butanol tolerance up to 0.5 %. The evolved strains, BHBT3 and BHBT5, demonstrated increased growth rates and higher survival rates with the existence of 1-butanol. Whole genome sequencing revealed a SNP mutation at kefB in BHBT5, which was confirmed to be responsible for increasing 1-butanol tolerance through an allelic exchange experiment. Global metabolomic analysis further discovered that the pools of multiple key metabolites, including fatty acids, amino acids, and disaccharides, were increased in BHBT5 in response to 1-butanol stress. Additionally, the carotenoid synthesis pathway was significantly down-regulated in BHBT5. In conclusion, we successfully screened mutants resistant to 1-butanol and provided insights into the molecular mechanism of 1-butanol tolerance in M. extorquens AM1. This research will be useful for uncovering the mechanism of cellular response of M. extorquens AM1 to solvent stress, and will provide the genetic blueprint for the rational design of a strain of M. extorquens AM1 with increased 1-butanol tolerance in the future.« less

  14. The acid tolerance response of Salmonella typhimurium provides protection against organic acids.

    PubMed

    Baik, H S; Bearson, S; Dunbar, S; Foster, J W

    1996-11-01

    Salmonella typhimurium encounters a variety of acid stress situations during pathogenesis and in the natural environment. These include the extreme low pH encountered in the stomach and a less acidic intestinal environment containing large amounts of organic weak acids (volatile fatty acids). The acid tolerance response (ATR) is a complex defence system that can minimize the lethal effects of extreme low pH (pH3). The data presented illustrate that the ATR can also defend against weak acids such as butyric, acetic or propionic acids. Although an acid shock of pH 4.4 induced the ATR, growth in subinhibitory concentrations of weak acids did not. Various mutations shown to affect tolerance to extreme acid conditions (pH 3) were tested for their effects on tolerance to weak acids. An rpoS mutant lacking the alternative sigma factor sigma s failed to protect cells against weak acids as well as extreme acid pH. The fur (ferric uptake regulator) and atp (Mg(2+)-dependent ATPase) mutants defective in extreme acid tolerance showed no defects in their tolerance to weak acids. Curiously, the atbR mutant that exhibits increased tolerance to extreme acid pH proved sensitive to weak acids. Several insertions that rendered cells sensitive to organic acids were isolated, all of which proved to be linked to the rpoS locus.

  15. Effects of Oxygen Availability on Acetic Acid Tolerance and Intracellular pH in Dekkera bruxellensis

    PubMed Central

    Capusoni, Claudia; Arioli, Stefania; Zambelli, Paolo; Moktaduzzaman, M.; Mora, Diego

    2016-01-01

    ABSTRACT The yeast Dekkera bruxellensis, associated with wine and beer production, has recently received attention, because its high ethanol and acid tolerance enables it to compete with Saccharomyces cerevisiae in distilleries that produce fuel ethanol. We investigated how different cultivation conditions affect the acetic acid tolerance of D. bruxellensis. We analyzed the ability of two strains (CBS 98 and CBS 4482) exhibiting different degrees of tolerance to grow in the presence of acetic acid under aerobic and oxygen-limited conditions. We found that the concomitant presence of acetic acid and oxygen had a negative effect on D. bruxellensis growth. In contrast, incubation under oxygen-limited conditions resulted in reproducible growth kinetics that exhibited a shorter adaptive phase and higher growth rates than those with cultivation under aerobic conditions. This positive effect was more pronounced in CBS 98, the more-sensitive strain. Cultivation of CBS 98 cells under oxygen-limited conditions improved their ability to restore their intracellular pH upon acetic acid exposure and to reduce the oxidative damage to intracellular macromolecules caused by the presence of acetic acid. This study reveals an important role of oxidative stress in acetic acid tolerance in D. bruxellensis, indicating that reduced oxygen availability can protect against the damage caused by the presence of acetic acid. This aspect is important for optimizing industrial processes performed in the presence of acetic acid. IMPORTANCE This study reveals an important role of oxidative stress in acetic acid tolerance in D. bruxellensis, indicating that reduced oxygen availability can have a protective role against the damage caused by the presence of acetic acid. This aspect is important for the optimization of industrial processes performed in the presence of acetic acid. PMID:27235432

  16. Mechanistic basis of adaptive maternal effects: egg jelly water balance mediates embryonic adaptation to acidity in Rana arvalis.

    PubMed

    Shu, Longfei; Suter, Marc J-F; Laurila, Anssi; Räsänen, Katja

    2015-11-01

    Environmental stress, such as acidification, can challenge persistence of natural populations and act as a powerful evolutionary force at ecological time scales. The ecological and evolutionary responses of natural populations to environmental stress at early life-stages are often mediated via maternal effects. During early life-stages, maternal effects commonly arise from egg coats (the extracellular structures surrounding the embryo), but the role of egg coats has rarely been studied in the context of adaptation to environmental stress. Previous studies on the moor frog Rana arvalis found that the egg coat mediated adaptive divergence along an acidification gradient in embryonic acid stress tolerance. However, the exact mechanisms underlying these adaptive maternal effects remain unknown. Here, we investigated the role of water balance and charge state (zeta potential) of egg jelly coats in embryonic adaptation to acid stress in three populations of R. arvalis. We found that acidic pH causes severe water loss in the egg jelly coat, but that jelly coats from an acid-adapted population retained more water than jelly coats from populations not adapted to acidity. Moreover, embryonic acid tolerance (survival at pH 4.0) correlated with both water loss and charge state of the jelly, indicating that negatively charged glycans influence jelly water balance and contribute to embryonic adaptation to acidity. These results indicate that egg coats can harbor extensive intra-specific variation, probably facilitated in part via strong selection on water balance and glycosylation status of egg jelly coats. These findings shed light on the molecular mechanisms of environmental stress tolerance and adaptive maternal effects.

  17. Fatty acid composition and extreme temperature tolerance following exposure to fluctuating temperatures in a soil arthropod.

    PubMed

    van Dooremalen, Coby; Suring, Wouter; Ellers, Jacintha

    2011-09-01

    Ectotherms commonly adjust their lipid composition to ambient temperature to counteract detrimental thermal effects on lipid fluidity. However, the extent of lipid remodeling and the associated fitness consequences under continuous temperature fluctuations are not well-described. The objective of this study was to investigate the effect of repeated temperature fluctuations on fatty acid composition and thermal tolerance. We exposed the springtail Orchesella cincta to two constant temperatures of 5 and 20°C, and a continuously fluctuating treatment between 5 and 20°C every 2 days. Fatty acid composition differed significantly between constant low and high temperatures. As expected, animals were most cold tolerant in the low temperature treatment, while heat tolerance was highest under high temperature. Under fluctuating temperatures, fatty acid composition changed with temperature initially, but later in the experiment fatty acid composition stabilized and closely resembled that found under constant warm temperatures. Consistent with this, heat tolerance in the fluctuating temperature treatment was comparable to the constant warm treatment. Cold tolerance in the fluctuating temperature treatment was intermediate compared to animals acclimated to constant cold or warmth, despite the fact that fatty acid composition was adjusted to warm conditions. This unexpected finding suggests that in animals acclimated to fluctuating temperatures an additional underlying mechanism is involved in the cold shock response. Other aspects of homeoviscous adaptation may protect animals during extreme cold. This paper forms a next step to fully understand the functioning of ectotherms in more thermally variable environments.

  18. Parameter Estimation Analysis for Hybrid Adaptive Fault Tolerant Control

    NASA Astrophysics Data System (ADS)

    Eshak, Peter B.

    Research efforts have increased in recent years toward the development of intelligent fault tolerant control laws, which are capable of helping the pilot to safely maintain aircraft control at post failure conditions. Researchers at West Virginia University (WVU) have been actively involved in the development of fault tolerant adaptive control laws in all three major categories: direct, indirect, and hybrid. The first implemented design to provide adaptation was a direct adaptive controller, which used artificial neural networks to generate augmentation commands in order to reduce the modeling error. Indirect adaptive laws were implemented in another controller, which utilized online PID to estimate and update the controller parameter. Finally, a new controller design was introduced, which integrated both direct and indirect control laws. This controller is known as hybrid adaptive controller. This last control design outperformed the two earlier designs in terms of less NNs effort and better tracking quality. The performance of online PID has an important role in the quality of the hybrid controller; therefore, the quality of the estimation will be of a great importance. Unfortunately, PID is not perfect and the online estimation process has some inherited issues; the online PID estimates are primarily affected by delays and biases. In order to ensure updating reliable estimates to the controller, the estimator consumes some time to converge. Moreover, the estimator will often converge to a biased value. This thesis conducts a sensitivity analysis for the estimation issues, delay and bias, and their effect on the tracking quality. In addition, the performance of the hybrid controller as compared to direct adaptive controller is explored. In order to serve this purpose, a simulation environment in MATLAB/SIMULINK has been created. The simulation environment is customized to provide the user with the flexibility to add different combinations of biases and delays to

  19. Differential soil acidity tolerance of dry bean genotypes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil acidity is a major yield limiting factors for bean production in the tropical regions. Using soil acidity tolerant genotypes is an important strategy in improving bean yields and reducing cost of production. A greenhouse experiment was conducted with the objective of evaluating 20 dry bean geno...

  20. Nucleic acid molecules conferring enhanced ethanol tolerance and microorganisms having enhanced tolerance to ethanol

    DOEpatents

    Brown, Steven; Guss, Adam; Yang, Shihui; Karpinets, Tatiana; Lynd, Lee; Shao, Xiongjun

    2014-01-14

    The present invention provides isolated nucleic acid molecules which encode a mutant acetaldehyde-CoA/alcohol dehydrogenase or mutant alcohol dehydrogenase and confer enhanced tolerance to ethanol. The invention also provides related expression vectors, genetically engineered microorganisms having enhanced tolerance to ethanol, as well as methods of making and using such genetically modified microorganisms for production of biofuels based on fermentation of biomass materials.

  1. Enhancing tolerance of rice (Oryza sativa) to simulated acid rain by exogenous abscisic acid.

    PubMed

    Wu, Xi; Liang, Chanjuan

    2017-02-01

    Abscisic acid (ABA) regulates much important plant physiological and biochemical processes and induces tolerance to different stresses. Here, we studied the regulation of exogenous ABA on adaptation of rice seedlings to simulated acid rain (SAR) stress by measuring biomass dry weight, stomatal conductance, net photosynthesis rate, nutrient elements, and endogenous hormones. The application of 10 μM ABA alleviated the SAR-induced inhibition on growth, stomatal conductance, net photosynthesis rate, and decreases in contents of nutrient (K, Mg, N, and P) and hormone (auxin, gibberellins, and zeatin). Moreover, 10 μM ABA could stimulate the Ca content as signaling molecules under SAR stress. Contrarily, the application of 100 μM ABA aggravated the SAR-induced inhibition on growth, stomatal conductance, net photosynthesis rate, and contents of nutrient and hormone. The results got after a 5-day recovery (without SAR) show that exogenous 10 μM ABA can promote self-restoration process in rice whereas 100 μM ABA hindered the restoration by increasing deficiency of nutrients and disturbing the balance of hormones. These results confirmed that exogenous ABA at proper concentration could enhance the tolerance of rice to SAR stress.

  2. Organic acids induce tolerance to zinc- and copper-exposed fungi under various growth conditions.

    PubMed

    Sazanova, Katerina; Osmolovskaya, Natalia; Schiparev, Sergey; Yakkonen, Kirill; Kuchaeva, Ludmila; Vlasov, Dmitry

    2015-04-01

    Heavy metals, Zn and Cu, in high concentration (2 mM for Zn and 0.5 mM for Cu) have some inhibiting effect on the growth of Aspergillus niger and Penicillium citrinum. Toxic effects of these metals considerably depend on cultivation conditions including nitrogen sources, pH of nutrient media, and its consistency (presence or absence of agar). In general, nitrate media provides less inhibiting effect on fungal growth under heavy metal exposure than ammonium-containing media. Adding of Zn in nitrate media induces oxalic acid production by fungi. Importance of oxalic acid production in detoxification of heavy metals is confirmed by the formation of Zn-containing crystals in fungal cultures. Cu bringing to the cultural media had no stimulating effect on oxalic acid production as well as no copper-containing crystals were observed. But proceeding from essential increase in oxalic acid production during a long-term fungi adaptation to Cu, it may be proposed that oxalic acid plays some functional role in Cu tolerance of fungi as well. It may be concluded that the role of organic acids and oxalate, in particular, in fungi tolerance and adaptation to heavy metals can be determined by the nature of the metal and its ability to form stable complexes with an acid anion. Stimulating effect of metals on acid production is not universal for all species of fungi and largely depends on metal concentration, nitrogen form in a medium, and other cultivation conditions.

  3. Thermal and Solvent Stress Cross-Tolerance Conferred to Corynebacterium glutamicum by Adaptive Laboratory Evolution

    PubMed Central

    Oide, Shinichi; Gunji, Wataru; Moteki, Yasuhiro; Yamamoto, Shogo; Suda, Masako; Jojima, Toru; Yukawa, Hideaki

    2015-01-01

    Reinforcing microbial thermotolerance is a strategy to enable fermentation with flexible temperature settings and thereby to save cooling costs. Here, we report on adaptive laboratory evolution (ALE) of the amino acid-producing bacterium Corynebacterium glutamicum under thermal stress. After 65 days of serial passage of the transgenic strain GLY3, in which the glycolytic pathway is optimized for alanine production under oxygen deprivation, three strains adapted to supraoptimal temperatures were isolated, and all the mutations they acquired were identified by whole-genome resequencing. Of the 21 mutations common to the three strains, one large deletion and two missense mutations were found to promote growth of the parental strain under thermal stress. Additive effects on thermotolerance were observed among these mutations, and the combination of the deletion with the missense mutation on otsA, encoding a trehalose-6-phosphate synthase, allowed the parental strain to overcome the upper limit of growth temperature. Surprisingly, the three evolved strains acquired cross-tolerance for isobutanol, which turned out to be partly attributable to the genomic deletion associated with the enhanced thermotolerance. The deletion involved loss of two transgenes, pfk and pyk, encoding the glycolytic enzymes, in addition to six native genes, and elimination of the transgenes, but not the native genes, was shown to account for the positive effects on thermal and solvent stress tolerance, implying a link between energy-producing metabolism and bacterial stress tolerance. Overall, the present study provides evidence that ALE can be a powerful tool to refine the phenotype of C. glutamicum and to investigate the molecular bases of stress tolerance. PMID:25595768

  4. 40 CFR 180.202 - p-Chlorophenoxyacetic acid; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false p-Chlorophenoxyacetic acid; tolerances... Tolerances § 180.202 p-Chlorophenoxyacetic acid; tolerances for residues. (a) General. A tolerance is established for the combined residues of the plant regulator p-chlorophenoxyacetic acid and its metabolite...

  5. 40 CFR 180.202 - p-Chlorophenoxyacetic acid; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false p-Chlorophenoxyacetic acid; tolerances... Tolerances § 180.202 p-Chlorophenoxyacetic acid; tolerances for residues. (a) General. A tolerance is established for the combined residues of the plant regulator p-chlorophenoxyacetic acid and its metabolite...

  6. 40 CFR 180.202 - p-Chlorophenoxyacetic acid; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false p-Chlorophenoxyacetic acid; tolerances... Tolerances § 180.202 p-Chlorophenoxyacetic acid; tolerances for residues. (a) General. A tolerance is established for the combined residues of the plant regulator p-chlorophenoxyacetic acid and its metabolite...

  7. 40 CFR 180.202 - p-Chlorophenoxyacetic acid; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false p-Chlorophenoxyacetic acid; tolerances... Tolerances § 180.202 p-Chlorophenoxyacetic acid; tolerances for residues. (a) General. A tolerance is established for the combined residues of the plant regulator p-chlorophenoxyacetic acid and its metabolite...

  8. 40 CFR 180.202 - p-Chlorophenoxyacetic acid; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false p-Chlorophenoxyacetic acid; tolerances... Tolerances § 180.202 p-Chlorophenoxyacetic acid; tolerances for residues. (a) General. A tolerance is established for the combined residues of the plant regulator p-chlorophenoxyacetic acid and its metabolite...

  9. Influence of acid tolerance responses on survival, growth, and thermal cross-protection of Escherichia coli O157:H7 in acidified media and fruit juices.

    PubMed

    Ryu, J H; Beuchat, L R

    1998-12-22

    A study was done to determine survival and growth characteristics of acid-adapted, acid-shocked, and control cells of Escherichia coli O157:H7 inoculated into tryptic soy broth (TSB) acidified with organic acids and three commercial brands of apple cider and orange juice. The three types of cells behaved similarly in TSB acidified with acetic acid; however, in TSB (pH 3.9) acidified with lactic acid, acid-adapted cells were more tolerant than acid-shocked cells which, in turn, were more tolerant than control cells. The ability of the three types of cells to grow after inoculation into acidified TSB, then plated on tryptic soy agar containing sodium chloride was determined. Tolerance of acid-adapted cells and, less markedly, acid-shocked cells to sodium chloride was diminished, compared to control cells. The pathogen showed extraordinary tolerance to the low pH of apple cider and orange juice held at 5 or 25 degrees C for up to 42 days. Growth occurred in one brand of apple cider (pH 3.98) incubated at 25 degrees C. Regardless of test parameters, there was no indication that cell types differed in tolerance to the acidic environment in apple cider or orange juice. Survival of control, acid-adapted, and acid-shocked cells heated in apple cider and orange juice was studied. Within each apple cider or orange juice, D(52 degrees C)-values of acid-adapted cells were considerably higher than those of acid-shocked or control cells, which indicates that heat tolerance can be substantially enhanced by acid adaptation compared to acid shock.

  10. Organic acid-tolerant microorganisms and uses thereof for producing organic acids

    DOEpatents

    Pfleger, Brian Frederick; Begemann, Matthew Brett

    2014-05-06

    Organic acid-tolerant microorganisms and methods of using same. The organic acid-tolerant microorganisms comprise modifications that reduce or ablate AcsA activity or AcsA homolog activity. The modifications increase tolerance of the microorganisms to such organic acids as 3-hydroxypropionic acid (3HP), acrylic acid, and propionic acid. Further modifications to the microorganisms such as increasing expression of malonyl-CoA reductase and/or acetyl-CoA carboxylase provide or increase the ability of the microorganisms to produce 3HP. Methods of generating an organic acid with the modified microorganisms are provided. Methods of using acsA or homologs thereof as counter-selectable markers include replacing acsA or homologs thereof in cells with genes of interest and selecting for the cells comprising the genes of interest with amounts of organic acids effective to inhibit growth of cells harboring acsA or the homologs.

  11. Comparison of acids on the induction of an Acid Tolerance Response in Salmonellatyphimurium, consequences for food safety.

    PubMed

    Alvarez-Ordóñez, Avelino; Fernández, Ana; Bernardo, Ana; López, Mercedes

    2009-01-01

    Salmonellatyphimurium inactivation at pH 3.0 in Brain Heart Infusion (BHI) and Meat Extract (ME) was studied using stationary-phase cells grown in non-acidified BHI (pH 7.4) and ME (pH 6.6) and acidified BHI and ME at pH values of 6.4, 5.4 and 4.5 with acetic, ascorbic, citric, lactic, malic and hydrochloric acids. Cells grown in buffered BHI (pH 7.0) were used as non-acid adapted control cells. Acid adapted S. typhimurium cells obtained in both media (BHI and ME) were more resistant to extremely acidic conditions when ME was used as challenge medium, although the ability of S. typhimurium to survive extreme pH conditions also depended on growth medium and type of acidulant used. Acid adapted cells grown in BHI developed a higher Acid Tolerance Response (ATR) than those grown in ME. When cells were grown in acidified BHI, no bacterial inactivation was observed after three hours of acid challenge in ME. Furthermore, when cells were grown in acidified ME at pH values of 6.4 and 5.4, D-values obtained using ME as challenge medium were, respectively, 6-9 and 10-15 fold higher than those found when BHI was used as challenge medium. In all cases, the order of acids in inducing the ATR was citric>acetic>lactic>malic⩾hydrochloric>ascorbic. These findings represent a concern for food safety as the increase in the acid resistance of acid adapted cells could allow for S. typhimurium survival in the strong acidic environment of the gastrointestinal tract.

  12. Adaptive fault-tolerant routing in hypercube multicomputers

    NASA Technical Reports Server (NTRS)

    Chen, Ming-Syan; Shin, Kang G.

    1990-01-01

    A connected hypercube with faulty links and/or nodes is called an injured hypercube. To enable any non-faulty node to communicate with any other non-faulty node in an injured hypercube, the information on component failures has to be made available to non-faulty nodes so as to route messages around the faulty components. A distributed adaptive fault tolerant routing scheme is proposed for an injured hypercube in which each node is required to know only the condition of its own links. Despite its simplicity, this scheme is shown to be capable of routing messages successfully in an injured hypercube as long as the number of faulty components is less than n. Moreover, it is proved that this scheme routes messages via shortest paths with a rather high probabiltiy and the expected length of a resulting path is very close to that of a shortest path. Since the assumption that the number of faulty components is less than n in an n-dimensional hypercube might limit the usefulness of the above scheme, a routing scheme is introduced based on depth-first search which works in the presence of an arbitrary number of faulty components. Due to the insufficient information on faulty components, the paths chosen by the above scheme may not always be the shortest. To guarantee that all messages be routed via shortest paths, it is proposed that every mode be equipped with more information than that on its own links. The effects of this additional information on routing efficiency are analyzed, and the additional information to be kept at each node for the shortest path routing is determined. Several examples and remarks are also given to illustrate the results.

  13. 40 CFR 180.1090 - Lactic acid; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Lactic acid; exemption from the... Exemptions From Tolerances § 180.1090 Lactic acid; exemption from the requirement of a tolerance. Lactic acid (2-hydroxypropanoic acid) is exempted from the requirement of a tolerance when used as a plant...

  14. 40 CFR 180.318 - 4-(2-Methyl-4-chlorophenoxy) butyric acid; tolerance for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...)butanoic acid, and its metabolite MCPA, (4-chloro-2-methylphenoxy)acetic acid, in or on the following food... acid; tolerance for residues. 180.318 Section 180.318 Protection of Environment ENVIRONMENTAL... FOOD Specific Tolerances § 180.318 4-(2-Methyl-4-chlorophenoxy) butyric acid; tolerance for...

  15. 40 CFR 180.318 - 4-(2-Methyl-4-chlorophenoxy) butyric acid; tolerance for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...)butanoic acid, and its metabolite MCPA, (4-chloro-2-methylphenoxy)acetic acid, in or on the following food... acid; tolerance for residues. 180.318 Section 180.318 Protection of Environment ENVIRONMENTAL... FOOD Specific Tolerances § 180.318 4-(2-Methyl-4-chlorophenoxy) butyric acid; tolerance for...

  16. 40 CFR 180.318 - 4-(2-Methyl-4-chlorophenoxy) butyric acid; tolerance for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...)butanoic acid, and its metabolite MCPA, (4-chloro-2-methylphenoxy)acetic acid, in or on the following food... acid; tolerance for residues. 180.318 Section 180.318 Protection of Environment ENVIRONMENTAL... FOOD Specific Tolerances § 180.318 4-(2-Methyl-4-chlorophenoxy) butyric acid; tolerance for...

  17. 40 CFR 180.318 - 4-(2-Methyl-4-chlorophenoxy) butyric acid; tolerance for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...)butanoic acid, and its metabolite MCPA, (4-chloro-2-methylphenoxy)acetic acid, in or on the following food... acid; tolerance for residues. 180.318 Section 180.318 Protection of Environment ENVIRONMENTAL... FOOD Specific Tolerances § 180.318 4-(2-Methyl-4-chlorophenoxy) butyric acid; tolerance for...

  18. 40 CFR 180.318 - 4-(2-Methyl-4-chlorophenoxy) butyric acid; tolerance for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...)butanoic acid, and its metabolite MCPA, (4-chloro-2-methylphenoxy)acetic acid, in or on the following food... acid; tolerance for residues. 180.318 Section 180.318 Protection of Environment ENVIRONMENTAL... FOOD Specific Tolerances § 180.318 4-(2-Methyl-4-chlorophenoxy) butyric acid; tolerance for...

  19. 40 CFR 180.297 - N-1-Naphthyl phthalamic acid; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...; tolerances for residues. 180.297 Section 180.297 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.297 N-1-Naphthyl phthalamic acid; tolerances for residues. (a) General. Tolerances...

  20. 40 CFR 180.297 - N-1-Naphthyl phthalamic acid; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...; tolerances for residues. 180.297 Section 180.297 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.297 N-1-Naphthyl phthalamic acid; tolerances for residues. (a) General. Tolerances...

  1. 40 CFR 180.297 - N-1-Naphthyl phthalamic acid; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...; tolerances for residues. 180.297 Section 180.297 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.297 N-1-Naphthyl phthalamic acid; tolerances for residues. (a) General. Tolerances...

  2. 40 CFR 180.297 - N-1-Naphthyl phthalamic acid; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...; tolerances for residues. 180.297 Section 180.297 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.297 N-1-Naphthyl phthalamic acid; tolerances for residues. (a) General. Tolerances...

  3. 40 CFR 180.297 - N-1-Naphthyl phthalamic acid; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...; tolerances for residues. 180.297 Section 180.297 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.297 N-1-Naphthyl phthalamic acid; tolerances for residues. (a) General. Tolerances...

  4. Mechanistic Insights Underlying Tolerance to Acetic Acid Stress in Vaginal Candida glabrata Clinical Isolates.

    PubMed

    Cunha, Diana V; Salazar, Sara B; Lopes, Maria M; Mira, Nuno P

    2017-01-01

    During colonization of the vaginal tract Candida glabrata cells are challenged with the presence of acetic acid at a low pH, specially when dysbiosis occurs. To avoid exclusion from this niche C. glabrata cells are expected to evolve efficient adaptive responses to cope with this stress; however, these responses remain largely uncharacterized, especially in vaginal strains. In this work a cohort of 18 vaginal strains and 2 laboratory strains (CBS138 and KUE100) were phenotyped for their tolerance against inhibitory concentrations of acetic acid at pH 4. Despite some heterogeneity has been observed among the vaginal strains tested, in general these strains were considerably more tolerant to acetic acid than the laboratory strains. To tackle the mechanistic insights behind this differential level of tolerance observed, a set of vaginal strains differently tolerant to acetic acid (VG281∼VG49 < VG99 < VG216) and the highly susceptible laboratory strain KUE100 were selected for further studies. When suddenly challenged with acetic acid the more tolerant vaginal strains exhibited a higher activity of the plasma membrane proton pump CgPma1 and a reduced internal accumulation of the acid, these being two essential features to maximize tolerance. Based on the higher level of resistance exhibited by the vaginal strains against the action of a β-1,3-glucanase, it is hypothesized that the reduced internal accumulation of acetic acid inside these strains may originate from them having a different cell wall structure resulting in a reduced porosity to undissociated acetic acid molecules. Both the vaginal and the two laboratory strains were found to consume acetic acid in the presence of glucose indicating that metabolization of the acid is used by C. glabrata species as a detoxification mechanism. The results gathered in this study advance the current knowledge on the mechanisms underlying the increased competitiveness of C. glabrata in the vaginal tract, a knowledge that can

  5. Mechanistic Insights Underlying Tolerance to Acetic Acid Stress in Vaginal Candida glabrata Clinical Isolates

    PubMed Central

    Cunha, Diana V.; Salazar, Sara B.; Lopes, Maria M.; Mira, Nuno P.

    2017-01-01

    During colonization of the vaginal tract Candida glabrata cells are challenged with the presence of acetic acid at a low pH, specially when dysbiosis occurs. To avoid exclusion from this niche C. glabrata cells are expected to evolve efficient adaptive responses to cope with this stress; however, these responses remain largely uncharacterized, especially in vaginal strains. In this work a cohort of 18 vaginal strains and 2 laboratory strains (CBS138 and KUE100) were phenotyped for their tolerance against inhibitory concentrations of acetic acid at pH 4. Despite some heterogeneity has been observed among the vaginal strains tested, in general these strains were considerably more tolerant to acetic acid than the laboratory strains. To tackle the mechanistic insights behind this differential level of tolerance observed, a set of vaginal strains differently tolerant to acetic acid (VG281∼VG49 < VG99 < VG216) and the highly susceptible laboratory strain KUE100 were selected for further studies. When suddenly challenged with acetic acid the more tolerant vaginal strains exhibited a higher activity of the plasma membrane proton pump CgPma1 and a reduced internal accumulation of the acid, these being two essential features to maximize tolerance. Based on the higher level of resistance exhibited by the vaginal strains against the action of a β-1,3-glucanase, it is hypothesized that the reduced internal accumulation of acetic acid inside these strains may originate from them having a different cell wall structure resulting in a reduced porosity to undissociated acetic acid molecules. Both the vaginal and the two laboratory strains were found to consume acetic acid in the presence of glucose indicating that metabolization of the acid is used by C. glabrata species as a detoxification mechanism. The results gathered in this study advance the current knowledge on the mechanisms underlying the increased competitiveness of C. glabrata in the vaginal tract, a knowledge that can

  6. 40 CFR 180.550 - Arsanilic acid [(4-aminophenyl) arsonic acid]; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... for residues of the plant growth regulator arsanilic acid , in or on the following food commodities in...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific...

  7. 40 CFR 180.550 - Arsanilic acid [(4-aminophenyl) arsonic acid]; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for residues of the plant growth regulator arsanilic acid , in or on the following food commodities in...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific...

  8. 40 CFR 180.550 - Arsanilic acid [(4-aminophenyl) arsonic acid]; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... for residues of the plant growth regulator arsanilic acid , in or on the following food commodities in...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific...

  9. Environmental adaptability and stress tolerance of Laribacter hongkongensis: a genome-wide analysis

    PubMed Central

    2011-01-01

    Background Laribacter hongkongensis is associated with community-acquired gastroenteritis and traveler's diarrhea and it can reside in human, fish, frogs and water. In this study, we performed an in-depth annotation of the genes in its genome related to adaptation to the various environmental niches. Results L. hongkongensis possessed genes for DNA repair and recombination, basal transcription, alternative σ-factors and 109 putative transcription factors, allowing DNA repair and global changes in gene expression in response to different environmental stresses. For acid stress, it possessed a urease gene cassette and two arc gene clusters. For alkaline stress, it possessed six CDSs for transporters of the monovalent cation/proton antiporter-2 and NhaC Na+:H+ antiporter families. For heavy metals acquisition and tolerance, it possessed CDSs for iron and nickel transport and efflux pumps for other metals. For temperature stress, it possessed genes related to chaperones and chaperonins, heat shock proteins and cold shock proteins. For osmotic stress, 25 CDSs were observed, mostly related to regulators for potassium ion, proline and glutamate transport. For oxidative and UV light stress, genes for oxidant-resistant dehydratase, superoxide scavenging, hydrogen peroxide scavenging, exclusion and export of redox-cycling antibiotics, redox balancing, DNA repair, reduction of disulfide bonds, limitation of iron availability and reduction of iron-sulfur clusters are present. For starvation, it possessed phosphorus and, despite being asaccharolytic, carbon starvation-related CDSs. Conclusions The L. hongkongensis genome possessed a high variety of genes for adaptation to acid, alkaline, temperature, osmotic, oxidative, UV light and starvation stresses and acquisition of and tolerance to heavy metals. PMID:21711489

  10. Fault-Tolerant Consensus of Multi-Agent System With Distributed Adaptive Protocol.

    PubMed

    Chen, Shun; Ho, Daniel W C; Li, Lulu; Liu, Ming

    2015-10-01

    In this paper, fault-tolerant consensus in multi-agent system using distributed adaptive protocol is investigated. Firstly, distributed adaptive online updating strategies for some parameters are proposed based on local information of the network structure. Then, under the online updating parameters, a distributed adaptive protocol is developed to compensate the fault effects and the uncertainty effects in the leaderless multi-agent system. Based on the local state information of neighboring agents, a distributed updating protocol gain is developed which leads to a fully distributed continuous adaptive fault-tolerant consensus protocol design for the leaderless multi-agent system. Furthermore, a distributed fault-tolerant leader-follower consensus protocol for multi-agent system is constructed by the proposed adaptive method. Finally, a simulation example is given to illustrate the effectiveness of the theoretical analysis.

  11. Microarray-based transcriptome of Listeria monocytogenes adapted to sublethal concentrations of acetic acid, lactic acid, and hydrochloric acid.

    PubMed

    Tessema, Girum Tadesse; Møretrø, Trond; Snipen, Lars; Heir, Even; Holck, Askild; Naterstad, Kristine; Axelsson, Lars

    2012-09-01

    Listeria monocytogenes , an important foodborne pathogen, commonly encounters organic acids in food-related environments. The transcriptome of L. monocytogenes L502 was analyzed after adaptation to pH 5 in the presence of acetic acid, lactic acid, or hydrochloric acid (HCl) at 25 °C, representing a condition encountered in mildly acidic ready-to-eat food kept at room temperature. The acid-treated cells were compared with a reference culture with a pH of 6.7 at the time of RNA harvesting. The number of genes and magnitude of transcriptional responses were higher for the organic acids than for HCl. Protein coding genes described for low pH stress, energy transport and metabolism, virulence determinates, and acid tolerance response were commonly regulated in the 3 acid-stressed cultures. Interestingly, the transcriptional levels of histidine and cell wall biosynthetic operons were upregulated, indicating possible universal response against low pH stress in L. monocytogenes. The opuCABCD operon, coding proteins for compatible solutes transport, and the transcriptional regulator sigL were significantly induced in the organic acids, strongly suggesting key roles during organic acid stress. The present study revealed the complex transcriptional responses of L. monocytogenes towards food-related acidulants and opens the roadmap for more specific and in-depth future studies.

  12. 40 CFR 180.1019 - Sulfuric acid; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Sulfuric acid; exemption from the... Exemptions From Tolerances § 180.1019 Sulfuric acid; exemption from the requirement of a tolerance. (a) Residues of sulfuric acid are exempted from the requirement of a tolerance when used in accordance...

  13. 40 CFR 180.1019 - Sulfuric acid; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Sulfuric acid; exemption from the... Exemptions From Tolerances § 180.1019 Sulfuric acid; exemption from the requirement of a tolerance. (a) Residues of sulfuric acid are exempted from the requirement of a tolerance when used in accordance...

  14. 40 CFR 180.1019 - Sulfuric acid; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Sulfuric acid; exemption from the... Exemptions From Tolerances § 180.1019 Sulfuric acid; exemption from the requirement of a tolerance. (a) Residues of sulfuric acid are exempted from the requirement of a tolerance when used in accordance...

  15. 40 CFR 180.1019 - Sulfuric acid; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Sulfuric acid; exemption from the... Exemptions From Tolerances § 180.1019 Sulfuric acid; exemption from the requirement of a tolerance. (a) Residues of sulfuric acid are exempted from the requirement of a tolerance when used in accordance...

  16. 40 CFR 180.1019 - Sulfuric acid; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Sulfuric acid; exemption from the... Exemptions From Tolerances § 180.1019 Sulfuric acid; exemption from the requirement of a tolerance. (a) Residues of sulfuric acid are exempted from the requirement of a tolerance when used in accordance...

  17. 40 CFR 180.325 - 2-(m-Chlorophenoxy) propionic acid; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false 2-(m-Chlorophenoxy) propionic acid... Tolerances § 180.325 2-(m-Chlorophenoxy) propionic acid; tolerances for residues. (a) General. A tolerance is established for negligible residues of the plant regulator 2-(m-chlorophenoxy) propionic acid from...

  18. 75 FR 37738 - 1-Naphthaleneacetic Acid; Time-Limited Tolerance, Technical Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-30

    ... AGENCY 40 CFR Part 180 1-Naphthaleneacetic Acid; Time-Limited Tolerance, Technical Correction AGENCY... restores the time-limited tolerance for 1-naphthaleneacetic acid in or on avocados which was inadvertently...-naphthaleneacetic acid ethyl ester in or on avocados. That time-limited tolerance was inadvertently removed by...

  19. 76 FR 11965 - Peroxyacetic Acid; Amendment to an Exemption From the Requirement of a Tolerance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-04

    ... AGENCY 40 CFR Part 180 Peroxyacetic Acid; Amendment to an Exemption From the Requirement of a Tolerance... existing tolerance exemption for peroxyacetic acid by establishing an exemption from the requirement of a tolerance for residues of the biochemical pesticide peroxyacetic acid (PAA) and its metabolites...

  20. Enhanced acid tolerance of Rhizopus oryzae during fumaric acid production.

    PubMed

    Liu, Ying; Lv, Chunwei; Xu, Qing; Li, Shuang; Huang, He; Ouyang, Pingkai

    2015-02-01

    Ensuring a suitable pH in the culture broth is a major problem in microorganism-assisted industrial fermentation of organic acids. To address this issue, we investigated the physiological changes in Rhizopus oryzae at different extracellular pH levels and attempted to solve the issue of cell shortage under low pH conditions. We compared various parameters, such as membrane fatty acids' composition, intracellular pH, and adenosine triphosphate (ATP) concentration. It was found that the shortage of intracellular ATP might be the main reason for the low rate of fumaric acid production by R. oryzae under low pH conditions. When 1 g/l citrate was added to the culture medium at pH 3.0, the intracellular ATP concentration increased from 0.4 to 0.7 µmol/mg, and the fumaric acid titer was enhanced by 63% compared with the control (pH 3.0 without citrate addition). The final fumaric acid concentration at pH 3.0 reached 21.9 g/l after 96 h of fermentation. This strategy is simple and feasible for industrial fumaric acid production under low pH conditions.

  1. Simulation of Spacecraft Damage Tolerance and Adaptive Controls

    DTIC Science & Technology

    2013-06-01

    operator. Limitations of current technology abounded, leaving the X-15 with a successful, but severely limited adaptive control system. Since then...many limitations have fallen away, allowing for the first time employment of adaptive controls on a large scale. The nature of adaptive controls, or...THIS PAGE Unclassified 19. SECURITY CLASSIFICATION OF ABSTRACT Unclassified 20. LIMITATION OF ABSTRACT UU NSN 7540–01–280–5500 Standard Form

  2. Proteomic adaptations to starvation prepare Escherichia coli for disinfection tolerance.

    PubMed

    Du, Zhe; Nandakumar, Renu; Nickerson, Kenneth W; Li, Xu

    2015-02-01

    Despite the low nutrient level and constant presence of secondary disinfectants, bacterial re-growth still occurs in drinking water distribution systems. The molecular mechanisms that starved bacteria use to survive low-level chlorine-based disinfectants are not well understood. The objective of this study is to investigate these molecular mechanisms at the protein level that prepare starved cells for disinfection tolerance. Two commonly used secondary disinfectants chlorine and monochloramine, both at 1 mg/L, were used in this study. The proteomes of normal and starved Escherichia coli (K12 MG1655) cells were studied using quantitative proteomics. Over 60-min disinfection, starved cells showed significantly higher disinfection tolerance than normal cells based on the inactivation curves for both chlorine and monochloramine. Proteomic analyses suggest that starvation may prepare cells for the oxidative stress that chlorine-based disinfection will cause by affecting glutathione metabolism. In addition, proteins involved in stress regulation and stress responses were among the ones up-regulated under both starvation and chlorine/monochloramine disinfection. By comparing the fold changes under different conditions, it is suggested that starvation prepares E. coli for disinfection tolerance by increasing the expression of enzymes that can help cells survive chlorine/monochloramine disinfection. Protein co-expression analyses show that proteins in glycolysis and pentose phosphate pathway that were up-regulated under starvation are also involved in disinfection tolerance. Finally, the production and detoxification of methylglyoxal may be involved in the chlorine-based disinfection and cell defense mechanisms.

  3. Proteomic Adaptations to Starvation Prepare Escherichia coli for Disinfection Tolerance

    PubMed Central

    Du, Zhe; Nandakumar, Renu; Nickerson, Kenneth; Li, Xu

    2015-01-01

    Despite the low nutrient level and constant presence of secondary disinfectants, bacterial re-growth still occurs in drinking water distribution systems. The molecular mechanisms that starved bacteria use to survive low-level chlorine-based disinfectants are not well understood. The objective of this study is to investigate these molecular mechanisms at the protein level that prepare starved cells for disinfection tolerance. Two commonly used secondary disinfectants chlorine and monochloramine, both at 1 mg/L, were used in this study. The proteomes of normal and starved Escherichia coli (K12 MG1655) cells were studied using quantitative proteomics. Over 60-min disinfection, starved cells showed significantly higher disinfection tolerance than normal cells based on the inactivation curves for both chlorine and monochloramine. Proteomic analyses suggest that starvation may prepare cells for the oxidative stress that chlorine-based disinfection will cause by affecting glutathione metabolism. In addition, proteins involved in stress regulation and stress responses were among the ones up-regulated under both starvation and chlorine/monochloramine disinfection. By comparing the fold changes under different conditions, it is suggested that starvation prepares E. coli for disinfection tolerance by increasing the expression of enzymes that can help cells survive chlorine/monochloramine disinfection. Protein co-expression analyses show that proteins in glycolysis and pentose phosphate pathway that were up-regulated under starvation are also involved in disinfection tolerance. Finally, the production and detoxification of methylglyoxal may be involved in the chlorine-based disinfection and cell defense mechanisms. PMID:25463932

  4. 40 CFR 180.1210 - Phosphorous acid; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... requirement of a tolerance. 180.1210 Section 180.1210 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1210 Phosphorous acid; exemption from the requirement of a tolerance....

  5. 40 CFR 180.1210 - Phosphorous acid; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... requirement of a tolerance. 180.1210 Section 180.1210 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1210 Phosphorous acid; exemption from the requirement of a tolerance....

  6. 40 CFR 180.1210 - Phosphorous acid; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... requirement of a tolerance. 180.1210 Section 180.1210 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1210 Phosphorous acid; exemption from the requirement of a tolerance....

  7. 40 CFR 180.1210 - Phosphorous acid; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... requirement of a tolerance. 180.1210 Section 180.1210 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1210 Phosphorous acid; exemption from the requirement of a tolerance....

  8. 40 CFR 180.1210 - Phosphorous acid; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... requirement of a tolerance. 180.1210 Section 180.1210 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1210 Phosphorous acid; exemption from the requirement of a tolerance....

  9. Acid tolerance response (ATR) of microbial communities during the enhanced biohydrogen process via cascade acid stress.

    PubMed

    Lin, Xiaoqin; Xia, Yan; Yan, Qun; Shen, Wei; Zhao, Mingxing

    2014-03-01

    Enhanced biohydrogen production via cascade acid stress on microbial communities, structure patterns of the microbial communities revealed by PLFAs, and the succession of biohydrogen related species against cascade acid stress were all investigated. It was found that hydrogen production could be improved from 48.7 to 79.4mL/gVS after cascade acid stress. In addition, the Gram negative (G(-)) bacteria were found to be more tolerant to organic acids than those of the Gram positive (G(+)) bacteria, regardless of the dominance of G(+) bacteria within the microbial communities. Moreover, Clostridium butyricum, Clostridium aciditolerans and Azospira oryzae, were proved to be enriched, and then might play indispensable roles for the enhanced biohydrogen production after cascade acid stress, as which were responsible for the biohydrogen accumulation, acid tolerance and nitrogen removal, respectively.

  10. Variation in soil aluminium tolerance genes is associated with local adaptation to soils at the Park Grass Experiment.

    PubMed

    Gould, Billie; McCouch, Susan; Geber, Monica

    2014-12-01

    Studies of the wild grass Anthoxanthum odoratum at the long-term Park Grass Experiment (PGE, Harpenden, UK) document a well-known example of rapid plant evolution in response to environmental change. Repeated fertilizer applications have acidified the soil in some experimental plots over the past 150+ years, and Anthoxanthum subpopulations have quickly become locally adapted. Early reciprocal transplants showed subpopulation differentiation specifically in response to soil aluminium (Al) toxicity across the experiment, even at small (30 m) spatial scales. Almost 40 years after its original measurement, we reassessed the degree of local adaptation to soil Al at the PGE using updated phenotyping methods and identified genes with variation linked to the tolerance trait. Root growth assays show that plants are locally adapted to soil Al at both the seedling and adult growth stages, but to a smaller extent than previously inferred. Among a large suite of candidate loci that were previously shown to have Al-sensitive expression differences between sensitive and tolerant plants, three loci contained SNPs that are associated with both Al tolerance and soil acidity: an Al-sensitive malate transporter (ALMT), a tonoplast intrinsic protein (TIP) and the putative homolog of the rice cell-wall modification gene STAR1. Natural genetic variation at these loci is likely to have contributed to the recent rapid evolution at PGE. Continued study of Al tolerance variants in Anthoxanthum will allow us to test hypotheses about the nature and source of genetic variation that enables some species to adapt to soil acidification and other types of rapid environmental change.

  11. 40 CFR 180.1187 - L-glutamic acid; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false L-glutamic acid; exemption from the requirement of a tolerance. 180.1187 Section 180.1187 Protection of Environment ENVIRONMENTAL PROTECTION... Exemptions From Tolerances § 180.1187 L-glutamic acid; exemption from the requirement of a tolerance....

  12. 40 CFR 180.1187 - L-glutamic acid; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false L-glutamic acid; exemption from the requirement of a tolerance. 180.1187 Section 180.1187 Protection of Environment ENVIRONMENTAL PROTECTION... Exemptions From Tolerances § 180.1187 L-glutamic acid; exemption from the requirement of a tolerance....

  13. Comprehensive molecular characterization of Methylobacterium extorquens AM1 adapted for 1-butanol tolerance

    SciTech Connect

    Hu, Bo; Yang, Yi -Ming; Beck, David A. C.; Wang, Qian -Wen; Chen, Wen -Jing; Yang, Jing; Lidstrom, Mary E.; Yang, Song

    2016-04-11

    In this study, the toxicity of alcohols is one of the major roadblocks of biological fermentation for biofuels production. Methylobacterium extorquens AM1, a facultative methylotrophic α-proteobacterium, has been engineered to generate 1-butanol from cheap carbon feedstocks through a synthetic metabolic pathway. However, M. extorquens AM1 is vulnerable to solvent stress, which impedes further development for 1-butanol production. Only a few studies have reported the general stress response of M. extorquens AM1 to solvent stress. Therefore, it is highly desirable to obtain a strain with ameliorated 1-butanol tolerance and elucidate the molecular mechanism of 1-butnaol tolerance in M. extorquens AM1 for future strain improvement. In this work, adaptive laboratory evolution was used as a tool to isolate mutants with 1-butanol tolerance up to 0.5 %. The evolved strains, BHBT3 and BHBT5, demonstrated increased growth rates and higher survival rates with the existence of 1-butanol. Whole genome sequencing revealed a SNP mutation at kefB in BHBT5, which was confirmed to be responsible for increasing 1-butanol tolerance through an allelic exchange experiment. Global metabolomic analysis further discovered that the pools of multiple key metabolites, including fatty acids, amino acids, and disaccharides, were increased in BHBT5 in response to 1-butanol stress. Additionally, the carotenoid synthesis pathway was significantly down-regulated in BHBT5. In conclusion, we successfully screened mutants resistant to 1-butanol and provided insights into the molecular mechanism of 1-butanol tolerance in M. extorquens AM1. This research will be useful for uncovering the mechanism of cellular response of M. extorquens AM1 to solvent stress, and will provide the genetic blueprint for the rational design of a strain of M. extorquens AM1 with increased 1-butanol tolerance in the future.

  14. 40 CFR 180.1090 - Lactic acid; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD... (2-hydroxypropanoic acid) is exempted from the requirement of a tolerance when used as a plant...

  15. 40 CFR 180.1090 - Lactic acid; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD... (2-hydroxypropanoic acid) is exempted from the requirement of a tolerance when used as a plant...

  16. 40 CFR 180.1090 - Lactic acid; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD... (2-hydroxypropanoic acid) is exempted from the requirement of a tolerance when used as a plant...

  17. 40 CFR 180.1090 - Lactic acid; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD... (2-hydroxypropanoic acid) is exempted from the requirement of a tolerance when used as a plant...

  18. Adaptive Engineering of Phytochelatin-based Heavy Metal Tolerance*

    PubMed Central

    Cahoon, Rebecca E.; Lutke, W. Kevin; Cameron, Jeffrey C.; Chen, Sixue; Lee, Soon Goo; Rivard, Rebecca S.; Rea, Philip A.; Jez, Joseph M.

    2015-01-01

    Metabolic engineering approaches are increasingly employed for environmental applications. Because phytochelatins (PC) protect plants from heavy metal toxicity, strategies directed at manipulating the biosynthesis of these peptides hold promise for the remediation of soils and groundwaters contaminated with heavy metals. Directed evolution of Arabidopsis thaliana phytochelatin synthase (AtPCS1) yields mutants that confer levels of cadmium tolerance and accumulation greater than expression of the wild-type enzyme in Saccharomyces cerevisiae, Arabidopsis, or Brassica juncea. Surprisingly, the AtPCS1 mutants that enhance cadmium tolerance and accumulation are catalytically less efficient than wild-type enzyme. Metabolite analyses indicate that transformation with AtPCS1, but not with the mutant variants, decreases the levels of the PC precursors, glutathione and γ-glutamylcysteine, upon exposure to cadmium. Selection of AtPCS1 variants with diminished catalytic activity alleviates depletion of these metabolites, which maintains redox homeostasis while supporting PC synthesis during cadmium exposure. These results emphasize the importance of metabolic context for pathway engineering and broaden the range of tools available for environmental remediation. PMID:26018077

  19. Adaptive Engineering of Phytochelatin-based Heavy Metal Tolerance.

    PubMed

    Cahoon, Rebecca E; Lutke, W Kevin; Cameron, Jeffrey C; Chen, Sixue; Lee, Soon Goo; Rivard, Rebecca S; Rea, Philip A; Jez, Joseph M

    2015-07-10

    Metabolic engineering approaches are increasingly employed for environmental applications. Because phytochelatins (PC) protect plants from heavy metal toxicity, strategies directed at manipulating the biosynthesis of these peptides hold promise for the remediation of soils and groundwaters contaminated with heavy metals. Directed evolution of Arabidopsis thaliana phytochelatin synthase (AtPCS1) yields mutants that confer levels of cadmium tolerance and accumulation greater than expression of the wild-type enzyme in Saccharomyces cerevisiae, Arabidopsis, or Brassica juncea. Surprisingly, the AtPCS1 mutants that enhance cadmium tolerance and accumulation are catalytically less efficient than wild-type enzyme. Metabolite analyses indicate that transformation with AtPCS1, but not with the mutant variants, decreases the levels of the PC precursors, glutathione and γ-glutamylcysteine, upon exposure to cadmium. Selection of AtPCS1 variants with diminished catalytic activity alleviates depletion of these metabolites, which maintains redox homeostasis while supporting PC synthesis during cadmium exposure. These results emphasize the importance of metabolic context for pathway engineering and broaden the range of tools available for environmental remediation.

  20. Role of Listeria monocytogenes sigma(B) in survival of lethal acidic conditions and in the acquired acid tolerance response.

    PubMed

    Ferreira, Adriana; Sue, David; O'Byrne, Conor P; Boor, Kathryn J

    2003-05-01

    The food-borne pathogen Listeria monocytogenes can acquire enhanced resistance to lethal acid conditions through multiple mechanisms. We investigated contributions of the stress-responsive alternative sigma factor, sigma(B), which is encoded by sigB, to growth phase-dependent acid resistance (AR) and to the adaptive acid tolerance response in L. monocytogenes. At various points throughout growth, we compared the relative survival of L. monocytogenes wild-type and DeltasigB strains that had been exposed to either brain heart infusion (pH 2.5) or synthetic gastric fluid (pH 2.5) with and without prior acid adaptation. Under these conditions, survival of the DeltasigB strain was consistently lower than that of the wild-type strain throughout all phases of growth, ranging from 4 orders of magnitude less in mid-log phase to 2 orders of magnitude less in stationary phase. Survival of both DeltasigB and wild-type L. monocytogenes strains increased by 6 orders of magnitude upon entry into stationary phase, demonstrating that the L. monocytogenes growth phase-dependent AR mechanism is sigma(B) independent. sigma(B)-mediated contributions to acquired acid tolerance appear to be greatest in early logarithmic growth. Loss of a functional sigma(B) reduced the survival of L. monocytogenes at pH 2.5 to a greater extent in the presence of organic acid (100 mM acetic acid) than in the presence of inorganic acid alone (HCl), suggesting that L. monocytogenes protection against organic and inorganic acid may be mediated through different mechanisms. sigma(B) does not appear to contribute to pH(i) homeostasis through regulation of net proton movement across the cell membrane or by regulation of pH(i) buffering by the GAD system under the conditions examined in this study. In summary, a functional sigma(B) protein is necessary for full resistance of L. monocytogenes to lethal acid treatments.

  1. Tetraploid Rangpur lime rootstock increases drought tolerance via enhanced constitutive root abscisic acid production.

    PubMed

    Allario, Thierry; Brumos, Javier; Colmenero-Flores, Jose M; Iglesias, Domingo J; Pina, Jose A; Navarro, Luis; Talon, Manuel; Ollitrault, Patrick; Morillon, Raphaël

    2013-04-01

    Whole-genome duplication, or polyploidy, is common in many plant species and often leads to better adaptation to adverse environmental condition. However, little is known about the physiological and molecular determinants underlying adaptation. We examined the drought tolerance in diploid (2x) and autotetraploid (4x) clones of Rangpur lime (Citrus limonia) rootstocks grafted with 2x Valencia Delta sweet orange (Citrus sinensis) scions, named V/2xRL and V/4xRL, respectively. Physiological experiments to study root-shoot communication associated with gene expression studies in roots and leaves were performed. V/4xRL was much more tolerant to water deficit than V/2xRL. Gene expression analysis in leaves and roots showed that more genes related to the response to water stress were differentially expressed in V/2xRL than in V/4xRL. Prior to the stress, when comparing V/4xRL to V/2xRL, V/4xRL leaves had lower stomatal conductance and greater abscisic acid (ABA) content. In roots, ABA content was higher in V/4xRL and was associated to a greater expression of drought responsive genes, including CsNCED1, a pivotal regulatory gene of ABA biosynthesis. We conclude that tetraploidy modifies the expression of genes in Rangpur lime citrus roots to regulate long-distance ABA signalling and adaptation to stress.

  2. Nitrification in a Biofilm at Low pH Values: Role of In Situ Microenvironments and Acid Tolerance

    PubMed Central

    Gieseke, Armin; Tarre, Sheldon; Green, Michal; de Beer, Dirk

    2006-01-01

    The sensitivity of nitrifying bacteria to acidic conditions is a well-known phenomenon and generally attributed to the lack and/or toxicity of substrates (NH3 and HNO2) with decreasing pHs. In contrast, we observed strong nitrification at a pH around 4 in biofilms grown on chalk particles and investigated the following hypotheses: the presence of less acidic microenvironments and/or the existence of acid-tolerant nitrifiers. Microelectrode measurements (in situ and under various experimental conditions) showed no evidence of a neutral microenvironment, either within the highly active biofilm colonizing the chalk surface or within a control biofilm grown on a nonbuffering (i.e., sintered glass) surface under acidic pH. A 16S rRNA approach (clone libraries and fluorescence in situ hybridizations) did not reveal uncommon nitrifying (potentially acid-tolerant) strains. Instead, we found a strongly acidic microenvironment, evidence for a clear adaptation to the low pH in situ, and the presence of nitrifying populations related to subgroups with low Kms for ammonia (Nitrosopira spp., Nitrosomonas oligotropha, and Nitrospira spp.). Acid-consuming (chalk dissolution) and acid-producing (ammonia oxidation) processes are equilibrated on a low-pH steady state that is controlled by mass transfer limitation through the biofilm. Strong affinity to ammonia and possibly the expression of additional functions, e.g., ammonium transporters, are adaptations that allow nitrifiers to cope with acidic conditions in biofilms and other habitats. PMID:16751543

  3. Acid tolerance in Salmonella typhimurium induced by culturing in the presence of organic acids at different growth temperatures.

    PubMed

    Alvarez-Ordóñez, Avelino; Fernández, Ana; Bernardo, Ana; López, Mercedes

    2010-02-01

    The influence of growth temperature and acidification of the culture medium up to pH 4.25 with acetic, citric, lactic and hydrochloric acids on the growth and subsequent acid resistance at pH 3.0 of Salmonella typhimurium CECT 443 was studied. The minimum pH value which allowed for S. typhimurium growth within the temperature range of 25-37 degrees C was 4.5 when the pH was reduced using citric and hydrochloric acids, and 5.4 and 6.4 when lactic acid and acetic acid were used, respectively. At high (45 degrees C) or low (10 degrees C) temperatures, the growth pH boundary was increased about 1 pH unit. The growth temperature markedly modified the acid resistance of the resulting cells. In all cases, D-values were lower for cells grown at 10 degrees C and significantly increased with increasing growth temperature up to 37 degrees C, at which D-values obtained were up to 10 times higher. Cells grown at 45 degrees C showed D-values similar to those found for cells grown at 25 degrees C. The growth of cells in acidified media, regardless of the pH value, caused an increase in their acid resistance at the four incubation temperatures, although the magnitude of the Acid Tolerance Response (ATR) observed depended on the growth temperature. Acid adapted cultures at 10 degrees C showed D-values ranging from 5.75 to 6.91 min, which turned out to be about 2 times higher than those corresponding to non-acid adapted cultures, while higher temperatures induced an increase in D-values of at least 3.5 times. Another finding was that, while at 10 and 45 degrees C no significant differences among the effect of the different acids tested in inducing an ATR were observed, when cells were grown at 25 and 37 degrees C citric acid generally turned out to be the acid which induced the strongest ATR. Results obtained in this study show that growth temperature is an important factor affecting S. typhimurium acid resistance and could contribute to find new strategies based on intelligent

  4. An acid-tolerant ammonia-oxidizing γ-proteobacterium from soil.

    PubMed

    Hayatsu, Masahito; Tago, Kanako; Uchiyama, Ikuo; Toyoda, Atsushi; Wang, Yong; Shimomura, Yumi; Okubo, Takashi; Kurisu, Futoshi; Hirono, Yuhei; Nonaka, Kunihiko; Akiyama, Hiroko; Itoh, Takehiko; Takami, Hideto

    2017-01-10

    Nitrification, the microbial oxidation of ammonia to nitrate via nitrite, occurs in a wide range of acidic soils. However, the ammonia-oxidizing bacteria (AOB) that have been isolated from soil to date are acid-sensitive. Here we report the isolation and characterization of an acid-adapted AOB from an acidic agricultural soil. The isolated AOB, strain TAO100, is classified within the Gammaproteobacteria based on phylogenetic characteristics. TAO100 can grow in the pH range of 5-7.5 and survive in highly acidic conditions until pH 2 by forming cell aggregates. Whereas all known gammaproteobacterial AOB (γ-AOB) species, which have been isolated from marine and saline aquatic environments, are halophiles, TAO100 is not phenotypically halophilic. Thus, TAO100 represents the first soil-originated and non-halophilic γ-AOB. The TAO100 genome is considerably smaller than those of other γ-AOB and lacks several genes associated with salt tolerance which are unnecessary for survival in soil. The ammonia monooxygenase subunit A gene of TAO100 and its transcript are higher in abundance than those of ammonia-oxidizing archaea and betaproteobacterial AOB in the strongly acidic soil. These results indicate that TAO100 plays an important role in the nitrification of acidic soils. Based on these results, we propose TAO100 as a novel species of a new genus, Candidatus Nitrosoglobus terrae.The ISME Journal advance online publication, 10 January 2017; doi:10.1038/ismej.2016.191.

  5. Degree of adaptive response in urban tolerant birds shows influence of habitat-of-origin

    PubMed Central

    2014-01-01

    Urban exploiters and adapters are often coalesced under a term of convenience as ‘urban tolerant’. This useful but simplistic characterisation masks a more nuanced interplay between and within assemblages of birds that are more or less well adapted to a range of urban habitats. I test the hypotheses that objectively-defined urban exploiter and suburban adapter assemblages within the broad urban tolerant grouping in Melbourne vary in their responses within the larger group to predictor variables, and that the most explanatory predictor variables vary between the two assemblages. A paired, partitioned analysis of exploiter and adapter preferences for points along the urban–rural gradient was undertaken to decompose the overall trend into diagnosable parts for each assemblage. In a similar way to that in which time since establishment has been found to be related to high urban densities of some bird species and biogeographic origin predictive of urban adaptation extent, habitat origins of members of bird assemblages influence the degree to which they become urban tolerant. Bird species that objectively classify as urban tolerant will further classify as either exploiters or adapters according to the degree of openness of their habitats-of-origin. PMID:24688881

  6. Comparative transcriptomics elucidates adaptive phenol tolerance and utilization in lipid-accumulating Rhodococcus opacus PD630

    DOE PAGES

    Yoneda, Aki; Henson, William R.; Goldner, Nicholas K.; ...

    2016-02-02

    Lignin-derived (e.g. phenolic) compounds can compromise the bioconversion of lignocellulosic biomass to fuels and chemicals due to their toxicity and recalcitrance. The lipid-accumulating bacterium Rhodococcus opacus PD630 has recently emerged as a promising microbial host for lignocellulose conversion to value-added products due to its natural ability to tolerate and utilize phenolics. To gain a better understanding of its phenolic tolerance and utilization mechanisms, we adaptively evolved R. opacus over 40 passages using phenol as its sole carbon source (up to 373% growth improvement over wild-type), and extensively characterized two strains from passages 33 and 40. The two adapted strains showedmore » higher phenol consumption rates (~20 mg/l/h) and ~2-fold higher lipid production from phenol than the wild-type strain.Whole-genome sequencing and comparative transcriptomics identified highly-upregulated degradation pathways and putative transporters for phenol in both adapted strains, highlighting the important linkage between mechanisms of regulated phenol uptake, utilization, and evolved tolerance. Our study shows that the R. opacus mutants are likely to use their transporters to import phenol rather than export them, suggesting a new aromatic tolerance mechanism. The identified tolerance genes and pathways are promising candidates for future metabolic engineering in R. opacus for improved lignin conversion to lipid-based products.« less

  7. Comparative transcriptomics elucidates adaptive phenol tolerance and utilization in lipid-accumulating Rhodococcus opacus PD630

    PubMed Central

    Yoneda, Aki; Henson, William R.; Goldner, Nicholas K.; Park, Kun Joo; Forsberg, Kevin J.; Kim, Soo Ji; Pesesky, Mitchell W.; Foston, Marcus; Dantas, Gautam; Moon, Tae Seok

    2016-01-01

    Lignin-derived (e.g. phenolic) compounds can compromise the bioconversion of lignocellulosic biomass to fuels and chemicals due to their toxicity and recalcitrance. The lipid-accumulating bacterium Rhodococcus opacus PD630 has recently emerged as a promising microbial host for lignocellulose conversion to value-added products due to its natural ability to tolerate and utilize phenolics. To gain a better understanding of its phenolic tolerance and utilization mechanisms, we adaptively evolved R. opacus over 40 passages using phenol as its sole carbon source (up to 373% growth improvement over wild-type), and extensively characterized two strains from passages 33 and 40. The two adapted strains showed higher phenol consumption rates (∼20 mg/l/h) and ∼2-fold higher lipid production from phenol than the wild-type strain. Whole-genome sequencing and comparative transcriptomics identified highly-upregulated degradation pathways and putative transporters for phenol in both adapted strains, highlighting the important linkage between mechanisms of regulated phenol uptake, utilization, and evolved tolerance. Our study shows that the R. opacus mutants are likely to use their transporters to import phenol rather than export them, suggesting a new aromatic tolerance mechanism. The identified tolerance genes and pathways are promising candidates for future metabolic engineering in R. opacus for improved lignin conversion to lipid-based products. PMID:26837573

  8. 40 CFR 180.331 - 4-(2,4-Dichlorophenoxy) butyric acid; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and conjugated, determined as the acid, in or on food commodities, as follows: Commodity Parts per... 40 Protection of Environment 24 2014-07-01 2014-07-01 false 4-(2,4-Dichlorophenoxy) butyric acid... Tolerances § 180.331 4-(2,4-Dichlorophenoxy) butyric acid; tolerances for residues. (a) General....

  9. 40 CFR 180.331 - 4-(2,4-Dichlorophenoxy) butyric acid; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... and conjugated, determined as the acid, in or on food commodities, as follows: Commodity Parts per... 40 Protection of Environment 25 2012-07-01 2012-07-01 false 4-(2,4-Dichlorophenoxy) butyric acid... Tolerances § 180.331 4-(2,4-Dichlorophenoxy) butyric acid; tolerances for residues. (a) General....

  10. 40 CFR 180.331 - 4-(2,4-Dichlorophenoxy) butyric acid; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and conjugated, determined as the acid, in or on food commodities, as follows: Commodity Parts per... 40 Protection of Environment 25 2013-07-01 2013-07-01 false 4-(2,4-Dichlorophenoxy) butyric acid... Tolerances § 180.331 4-(2,4-Dichlorophenoxy) butyric acid; tolerances for residues. (a) General....

  11. 40 CFR 180.331 - 4-(2,4-Dichlorophenoxy) butyric acid; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and conjugated, determined as the acid, in or on food commodities, as follows: Commodity Parts per... 40 Protection of Environment 23 2010-07-01 2010-07-01 false 4-(2,4-Dichlorophenoxy) butyric acid... Tolerances § 180.331 4-(2,4-Dichlorophenoxy) butyric acid; tolerances for residues. (a) General....

  12. 40 CFR 180.1196 - Peroxyacetic acid; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... metabolites and degradates, including hydrogen peroxide and acetic acid, in or on all food commodities, when... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Peroxyacetic acid; exemption from the... Exemptions From Tolerances § 180.1196 Peroxyacetic acid; exemption from the requirement of a tolerance....

  13. 40 CFR 180.1196 - Peroxyacetic acid; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... metabolites and degradates, including hydrogen peroxide and acetic acid, in or on all food commodities, when... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Peroxyacetic acid; exemption from the... Exemptions From Tolerances § 180.1196 Peroxyacetic acid; exemption from the requirement of a tolerance....

  14. 40 CFR 180.1258 - Acetic acid; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Acetic acid; exemption from the... Exemptions From Tolerances § 180.1258 Acetic acid; exemption from the requirement of a tolerance. An... acetic acid when used as a preservative on post-harvest agricultural commodities intended for animal...

  15. 40 CFR 180.1196 - Peroxyacetic acid; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... metabolites and degradates, including hydrogen peroxide and acetic acid, in or on all food commodities, when... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Peroxyacetic acid; exemption from the... Exemptions From Tolerances § 180.1196 Peroxyacetic acid; exemption from the requirement of a tolerance....

  16. 40 CFR 180.1196 - Peroxyacetic acid; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... metabolites and degradates, including hydrogen peroxide and acetic acid, in or on all food commodities, when... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Peroxyacetic acid; exemption from the... Exemptions From Tolerances § 180.1196 Peroxyacetic acid; exemption from the requirement of a tolerance....

  17. 75 FR 52269 - Acetic Acid Ethenyl Ester, Polymer With Oxirane; Tolerance Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-25

    ...-2010-0429; FRL-8841-2] Acetic Acid Ethenyl Ester, Polymer With Oxirane; Tolerance Exemption AGENCY... from the requirement of a tolerance for residues of acetic acid ethenyl ester, polymer with oxirane... permissible level for residues of acetic acid ethenyl ester, polymer with oxirane on food or feed...

  18. 75 FR 31713 - 2-Propenoic acid polymer, with 1,3-butadiene and ethenylbenzene; Tolerance Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-04

    ... AGENCY 40 CFR Part 180 2-Propenoic acid polymer, with 1,3-butadiene and ethenylbenzene; Tolerance... establishes an exemption from the requirement of a tolerance for residues of 2-propenoic acid polymer, with 1... a maximum permissible level for residues of 2-propenoic acid polymer, with 1,3-butadiene...

  19. 77 FR 65834 - Residues of Fatty Acids, Tall-Oil, Ethoxylated Propoxylated; Tolerance Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-31

    ... AGENCY 40 CFR Part 180 Residues of Fatty Acids, Tall-Oil, Ethoxylated Propoxylated; Tolerance Exemption... an exemption from the requirement of a tolerance for residues of fatty acids, tall-oil, ethoxylated... residues of fatty ] acids, tall-oil, ethoxylated propoxylated on food or feed commodities. DATES:...

  20. 75 FR 40736 - Acetic Acid; Exemption from the Requirement of a Tolerance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-14

    ... AGENCY 40 CFR Part 180 Acetic Acid; Exemption from the Requirement of a Tolerance AGENCY: Environmental... for acetic acid by establishing an exemption from the requirement of a tolerance for residues of acetic acid, also known as vinegar in or on all food crops resulting from unintentional spray and...

  1. 78 FR 46265 - Complex Polymeric Polyhydroxy Acids; Exemption From the Requirement of a Tolerance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-31

    ... AGENCY 40 CFR Part 180 Complex Polymeric Polyhydroxy Acids; Exemption From the Requirement of a Tolerance... an exemption from the requirement of a tolerance for residues of Complex Polymeric Polyhydroxy Acids... level for residues of Complex Polymeric Polyhydroxy Acids (CPPA) under FFDCA. DATES: This regulation...

  2. Acid adaptation promotes survival of Salmonella spp. in cheese.

    PubMed Central

    Leyer, G J; Johnson, E A

    1992-01-01

    Salmonella typhimurium was adapted to acid by exposure to hydrochloric acid at pH 5.8 for one to two doublings. Acid-adapted cells had increased resistance to inactivation by organic acids commonly present in cheese, including lactic, propionic, and acetic acids. Recovery of cells during the treatment with organic acids was increased 1,000-fold by inclusion of 0.1% sodium pyruvate in the recovery medium. Acid-adapted S. typhimurium cells survived better than nonadapted cells during a milk fermentation by a lactic acid culture. Acid-adapted cells also showed enhanced survival over a period of two months in cheddar, Swiss, and mozzarella cheeses kept at 5 degrees C. Acid adaptation was found in Salmonella spp., including Salmonella enteritidis, Salmonella choleraesuis subsp. choleraesuis serotype heidelberg, and Salmonella choleraesuis subsp. choleraesuis serotype javiana, associated with food poisoning. These observations support the theory that acid adaptation is an important survival mechanism enabling Salmonella spp. to persist in fermented dairy products and possibly other acidic food products. PMID:1622286

  3. Chitosan nanoparticles affect the acid tolerance response in adhered cells of Streptococcus mutans.

    PubMed

    Neilands, J; Sutherland, D; Resin, A; Wejse, P L; Chávez de Paz, L E

    2011-01-01

    In this study we evaluated the effect of chitosan nanoparticles on the acid tolerance response (ATR) of adhered Streptococcus mutans. An ATR was induced by exposing S. mutans to pH 5.5 for 2 h and confirmed by exposing the acid-adapted cells to pH 3.5 for 30 min, with the majority of cells appearing viable according to the LIVE/DEAD® technique. However, when chitosan nanoparticles were present during the exposure to pH 5.5, no ATR occurred as most cells appeared dead after the pH 3.5 shock. We conclude that the chitosan nanoparticles tested had the ability to hinder ATR induction in adhered S. mutans.

  4. Adaptive fuzzy fault-tolerant output feedback control of uncertain nonlinear systems with actuator faults

    NASA Astrophysics Data System (ADS)

    Huo, Baoyu; Tong, Shaocheng; Li, Yongming

    2013-12-01

    This article develops an adaptive fuzzy control method for accommodating actuator faults in a class of unknown nonlinear systems with unmeasured states. The considered faults are modelled as both loss of effectiveness and lock-in-place (stuck at unknown place). With the help of fuzzy logic systems to approximate the unknown nonlinear functions, a fuzzy adaptive observer is developed for estimating the unmeasured states. Combining the backstepping technique with the nonlinear tolerant-fault control theory, a novel adaptive fuzzy faults-tolerant control approach is constructed. It is proved that the proposed control approach can guarantee that all the signals of the resulting closed-loop system are bounded and the tracking error between the system output and the reference signal converges to a small neighbourhood of zero by appropriate choice of the design parameters. Simulation results are provided to show the effectiveness of the control approach.

  5. Improvement of acetic acid tolerance of Saccharomyces cerevisiae using a zinc-finger-based artificial transcription factor and identification of novel genes involved in acetic acid tolerance.

    PubMed

    Ma, Cui; Wei, Xiaowen; Sun, Cuihuan; Zhang, Fei; Xu, Jianren; Zhao, Xinqing; Bai, Fengwu

    2015-03-01

    Acetic acid is present in cellulosic hydrolysate as a potent inhibitor, and the superior acetic acid tolerance of Saccharomyces cerevisiae ensures good cell viability and efficient ethanol production when cellulosic raw materials are used as substrates. In this study, a mutant strain of S. cerevisiae ATCC4126 (Sc4126-M01) with improved acetic acid tolerance was obtained through screening strains transformed with an artificial zinc finger protein transcription factor (ZFP-TF) library. Further analysis indicated that improved acetic acid tolerance was associated with improved catalase (CAT) activity. The ZFP coding sequence associated with the improved phenotype was identified, and real-time RT-PCR analysis revealed that three of the possible genes involved in the enhanced acetic acid tolerance regulated by this ZFP-TF, namely YFL040W, QDR3, and IKS1, showed decreased transcription levels in Sc4126-M01 in the presence of acetic acid, compared to those in the control strain. Sc4126-M01 mutants having QDR3 and IKS1 deletion (ΔQDR3 and ΔIKS1) exhibited higher acetic acid tolerance than the wild-type strain under acetic acid treatment. Glucose consumption rate and ethanol productivity in the presence of 5 g/L acetic acid were improved in the ΔQDR3 mutant compared to the wild-type strain. Our studies demonstrated that the synthetic ZFP-TF library can be used to improve acetic acid tolerance of S. cerevisiae and that the employment of an artificial transcription factor can facilitate the exploration of novel functional genes involved in stress tolerance of S. cerevisiae.

  6. Acid-Tolerant Sulfate-Reducing Bacteria Play a Major Role in Iron Cycling in Acidic Iron Rich Sediments

    NASA Astrophysics Data System (ADS)

    Enright, K. A.; Moreau, J. W.

    2008-12-01

    acidic conditions. The dsrAB genes are related to other novel SRB lineages derived from acidic environments in previous reports, suggesting that these species have adapted to the acidity rather than colonized more circumneutral microenvironments. In an acidic hypersaline lake system in NW Victoria (Australia), previous studies suggested that pore water bisulfide derived from anoxic groundwater transported from distal locations. However, isolated potholes of oxic Fe(III)-rich springwater exhibited nearly a two-fold increase in conductivity and pH increase from 4.5 to 8.0 over time periods on the order of days; and biogeochemical and mineralogical observations were consistent with the presence of active acid- and halo-tolerant SRB. Furthermore, stratified active microbial mat communities, with zones of black FeS formation localized several millimeters below the sediment-air interface, were identified in cross-section from lakeshore sediments near groundwater discharge springs. Culture-independent and culture-based work to characterize the SRB population is ongoing at this site. We infer, from previous sulfur isotope tracer experiments at the lake, that overall sulfate reduction rates may be slow, but are nonetheless proceeding and contributing to the recycling of oxidized iron to a significant degree given the abundance of sulfate evidenced by widespread gypsum precipitation. We conclude from the two study-sites described above that acid-tolerant SRB species play an important role in the linked S, Fe and C cycles in acidifying, iron-rich environments, and their phylogenetic and physiological diversity should be further investigated.

  7. Adapted tolerance to benzalkonium chloride in Escherichia coli K-12 studied by transcriptome and proteome analyses.

    PubMed

    Bore, Erlend; Hébraud, Michel; Chafsey, Ingrid; Chambon, Christophe; Skjaeret, Camilla; Moen, Birgitte; Møretrø, Trond; Langsrud, Øyvind; Rudi, Knut; Langsrud, Solveig

    2007-04-01

    Benzalkonium chloride (BC) is a commonly used disinfectant and preservative. This study describes changes in expression level at the transcriptomic and proteomic level for Escherichia coli K-12 gradually adapted to a tolerance level to BC of 7-8 times the initial MIC. Results from DNA arrays and two-dimensional gel electrophoresis for global gene and protein expression studies were confirmed by real-time quantitative PCR. Peptide mass fingerprinting by MALDI-TOF MS was used to identify differentially expressed proteins. Changes in expression level in adapted cells were shown for porins, drug transporters, glycolytic enzymes, ribosomal subunits and several genes and proteins involved in protection against oxidative stress and antibiotics. Adapted strains showed increased tolerance to several antibiotics. In conclusion, E. coli K-12 adapted to higher tolerance to BC acquired several general resistance mechanisms, including responses normally related to the multiple antibiotic resistance (Mar) regulon and protection against oxidative stress. The results revealed that BC treatment might result in superoxide stress in E. coli.

  8. Adaptive Fault-Tolerant Control of Uncertain Nonlinear Large-Scale Systems With Unknown Dead Zone.

    PubMed

    Chen, Mou; Tao, Gang

    2016-08-01

    In this paper, an adaptive neural fault-tolerant control scheme is proposed and analyzed for a class of uncertain nonlinear large-scale systems with unknown dead zone and external disturbances. To tackle the unknown nonlinear interaction functions in the large-scale system, the radial basis function neural network (RBFNN) is employed to approximate them. To further handle the unknown approximation errors and the effects of the unknown dead zone and external disturbances, integrated as the compounded disturbances, the corresponding disturbance observers are developed for their estimations. Based on the outputs of the RBFNN and the disturbance observer, the adaptive neural fault-tolerant control scheme is designed for uncertain nonlinear large-scale systems by using a decentralized backstepping technique. The closed-loop stability of the adaptive control system is rigorously proved via Lyapunov analysis and the satisfactory tracking performance is achieved under the integrated effects of unknown dead zone, actuator fault, and unknown external disturbances. Simulation results of a mass-spring-damper system are given to illustrate the effectiveness of the proposed adaptive neural fault-tolerant control scheme for uncertain nonlinear large-scale systems.

  9. High cell density propionic acid fermentation with an acid tolerant strain of Propionibacterium acidipropionici.

    PubMed

    Wang, Zhongqiang; Jin, Ying; Yang, Shang-Tian

    2015-03-01

    Propionic acid is an important chemical with wide applications and its production via fermentation is of great interest. However, economic production of bio-based propionic acid requires high product titer, yield, and productivity in the fermentation. A highly efficient and stable high cell density (HCD) fermentation process with cell recycle by centrifugation was developed for propionic acid production from glucose using an acid-tolerant strain of Propionibacterium acidipropionici, which had a higher specific growth rate, productivity, and acid tolerance compared to the wild type ATCC 4875. The sequential batch HCD fermentation at pH 6.5 produced propionic acid at a high titer of ∼40 g/L and productivity of 2.98 g/L h, with a yield of ∼0.44 g/g. The product yield increased to 0.53-0.62 g/g at a lower pH of 5.0-5.5, which, however, decreased the productivity to 1.28 g/L h. A higher final propionic acid titer of >55 g/L with a productivity of 2.23 g/L h was obtained in fed-batch HCD fermentation at pH 6.5. A 3-stage simulated fed-batch process in serum bottles produced 49.2 g/L propionic acid with a yield of 0.53 g/g and productivity of 0.66 g/L h. These productivities, yields and propionic acid titers were among the highest ever obtained in free-cell propionic acid fermentation.

  10. FAAH-/- mice display differential tolerance, dependence, and cannabinoid receptor adaptation after delta 9-tetrahydrocannabinol and anandamide administration.

    PubMed

    Falenski, Katherine W; Thorpe, Andrew J; Schlosburg, Joel E; Cravatt, Benjamin F; Abdullah, Rehab A; Smith, Tricia H; Selley, Dana E; Lichtman, Aron H; Sim-Selley, Laura J

    2010-07-01

    Repeated administration of Delta(9)-tetrahydrocannabinol (THC), the primary psychoactive constituent of Cannabis sativa, induces profound tolerance that correlates with desensitization and downregulation of CB(1) cannabinoid receptors in the CNS. However, the consequences of repeated administration of the endocannabinoid N-arachidonoyl ethanolamine (anandamide, AEA) on cannabinoid receptor regulation are unclear because of its rapid metabolism by fatty acid amide hydrolase (FAAH). FAAH(-/-) mice dosed subchronically with equi-active maximally effective doses of AEA or THC displayed greater rightward shifts in THC dose-effect curves for antinociception, catalepsy, and hypothermia than in AEA dose-effect curves. Subchronic THC significantly attenuated agonist-stimulated [(35)S]GTP gamma S binding in brain and spinal cord, and reduced [(3)H]WIN55,212-2 binding in brain. Interestingly, AEA-treated FAAH(-/-) mice showed less CB(1) receptor downregulation and desensitization than THC-treated mice. Experiments examining tolerance and cross-tolerance indicated that the behavioral effects of THC, a low efficacy CB(1) receptor agonist, were more sensitive to receptor loss than those of AEA, a higher efficacy agonist, suggesting that the expression of tolerance was more affected by the intrinsic activity of the ligand at testing than during subchronic treatment. In addition, the CB(1) receptor antagonist, rimonabant, precipitated a markedly reduced magnitude of withdrawal in FAAH(-/-) mice treated subchronically with AEA compared with mice treated repeatedly with THC. The findings that repeated AEA administration produces lesser adaptive changes at the CB(1) receptor and has reduced dependence liability compared with THC suggest that pharmacotherapies targeting endocannabinoid catabolic enzymes are less likely to promote tolerance and dependence than direct acting CB(1) receptor agonists.

  11. Iron transformations induced by an acid-tolerant Desulfosporosinus species.

    PubMed

    Bertel, Doug; Peck, John; Quick, Thomas J; Senko, John M

    2012-01-01

    The mineralogical transformations of Fe phases induced by an acid-tolerant, Fe(III)- and sulfate-reducing bacterium, Desulfosporosinus sp. strain GBSRB4.2 were evaluated under geochemical conditions associated with acid mine drainage-impacted systems (i.e., low pH and high Fe concentrations). X-ray powder diffractometry coupled with magnetic analysis by first-order reversal curve diagrams were used to evaluate mineral phases produced by GBSRB4.2 in media containing different ratios of Fe(II) and Fe(III). In medium containing Fe predominately in the +II oxidation state, ferrimagnetic, single-domain greigite (Fe₃S₄) was formed, but the addition of Fe(III) inhibited greigite formation. In media that contained abundant Fe(III) [as schwertmannite; Fe₈O₈(OH)₆SO₄ · nH₂O], the activities of strain GBSRB4.2 enhanced the transformation of schwertmannite to goethite (α-FeOOH), due to the increased pH and Fe(II) concentrations that resulted from the activities of GBSRB4.2.

  12. Iron Transformations Induced by an Acid-Tolerant Desulfosporosinus Species

    PubMed Central

    Bertel, Doug; Peck, John; Quick, Thomas J.

    2012-01-01

    The mineralogical transformations of Fe phases induced by an acid-tolerant, Fe(III)- and sulfate-reducing bacterium, Desulfosporosinus sp. strain GBSRB4.2 were evaluated under geochemical conditions associated with acid mine drainage-impacted systems (i.e., low pH and high Fe concentrations). X-ray powder diffractometry coupled with magnetic analysis by first-order reversal curve diagrams were used to evaluate mineral phases produced by GBSRB4.2 in media containing different ratios of Fe(II) and Fe(III). In medium containing Fe predominately in the +II oxidation state, ferrimagnetic, single-domain greigite (Fe3S4) was formed, but the addition of Fe(III) inhibited greigite formation. In media that contained abundant Fe(III) [as schwertmannite; Fe8O8(OH)6SO4 · nH2O], the activities of strain GBSRB4.2 enhanced the transformation of schwertmannite to goethite (α-FeOOH), due to the increased pH and Fe(II) concentrations that resulted from the activities of GBSRB4.2. PMID:22038606

  13. Transcriptional profile of glucose-shocked and acid-adapted strains of Streptococcus mutans.

    PubMed

    Baker, J L; Abranches, J; Faustoferri, R C; Hubbard, C J; Lemos, J A; Courtney, M A; Quivey, R

    2015-12-01

    The aciduricity of Streptococcus mutans is an important virulence factor of the organism, required to both out-compete commensal oral microorganisms and cause dental caries. In this study, we monitored transcriptional changes that occurred as a continuous culture of either an acid-tolerant strain (UA159) or an acid-sensitive strain (fabM::Erm) moved from steady-state growth at neutral pH, experienced glucose-shock and acidification of the culture, and transitioned to steady-state growth at low pH. Hence, the timing of elements of the acid tolerance response (ATR) could be observed and categorized as acute vs. adaptive ATR mechanisms. Modulation of branched chain amino acid biosynthesis, DNA/protein repair mechanisms, reactive oxygen species metabolizers and phosphoenolpyruvate:phosphotransferase systems occurred in the initial acute phase, immediately following glucose-shock, while upregulation of F1 F0 -ATPase did not occur until the adaptive phase, after steady-state growth had been re-established. In addition to the archetypal ATR pathways mentioned above, glucose-shock led to differential expression of genes suggesting a re-routing of resources away from the synthesis of fatty acids and proteins, and towards synthesis of purines, pyrimidines and amino acids. These adjustments were largely transient, as upon establishment of steady-state growth at acidic pH, transcripts returned to basal expression levels. During growth at steady-state pH 7, fabM::Erm had a transcriptional profile analogous to that of UA159 during glucose-shock, indicating that even during growth in rich media at neutral pH, the cells were stressed. These results, coupled with a recently established collection of deletion strains, provide a starting point for elucidation of the acid tolerance response in S. mutans.

  14. 40 CFR 180.1225 - Decanoic acid; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD... exemption from the requirement of a tolerance is established for residues of decanoic acid in or on all raw... acid (up to 170 ppm per application) on food contact surfaces such as equipment, pipelines, tanks,...

  15. 40 CFR 180.1225 - Decanoic acid; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD... exemption from the requirement of a tolerance is established for residues of decanoic acid in or on all raw... acid (up to 170 ppm per application) on food contact surfaces such as equipment, pipelines, tanks,...

  16. 77 FR 68686 - Xylenesulfonic Acid, Sodium Salt; Exemption From the Requirement of a Tolerance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-16

    ... AGENCY 40 CFR Part 180 Xylenesulfonic Acid, Sodium Salt; Exemption From the Requirement of a Tolerance... an exemption from the requirement of a tolerance for residues of xylenesulfonic acid, sodium salt (also known as sodium xylene sulfonate) (CAS Reg. No. 1300-72-7) when used as an inert ingredient...

  17. 40 CFR 180.1225 - Decanoic acid; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD... exemption from the requirement of a tolerance is established for residues of decanoic acid in or on all raw... acid (up to 170 ppm per application) on food contact surfaces such as equipment, pipelines, tanks,...

  18. 76 FR 77709 - Butyl acrylate-methacrylic acid-styrene polymer; Tolerance Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-14

    ... AGENCY 40 CFR Part 180 Butyl acrylate-methacrylic acid-styrene polymer; Tolerance Exemption AGENCY... from the requirement of a tolerance for residues of 2-Propenoic acid, 2-methyl-, polymer with butyl 2...-styrene polymer when used as an inert ingredient in a pesticide chemical formulation....

  19. 40 CFR 180.311 - Cacodylic acid; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances... million Expiration/Revocation Date Cotton, undelinted seed 2.8 1/1/12 (b) Section 18 emergency...

  20. [Adaptation of yeasts of the genus Debaryomyces to protocatechuic acid].

    PubMed

    Karasevich, Iu N

    1980-01-01

    Among five yeast strains belonging to the genus Debaryomyces that were unable of utilizing aromatic compounds (phenols and hydroxybenzoic acids), three strains, viz. D. kloeckeri BKM-Y-1044, D. marama BKM-Y-100 and D. marama BKM-Y-2045, were adapted to protocatechuic acid. The adapted yeasts utilized protocatechuic acid if its concentration in the medium was 0.1%, but did not utilize it, or did at a very low rate, if the concentration of protocatechuic acid was decreased to 0.05%. The mechanism of adaptation is rare mutations occurring in succession, and the process takes therefore several months. The adaptation seems to be based on reversion of inactivated genes for enzymes involved in the preparative metabolism of protocatechuic acid. Three typical yeast species of the Debaryomyces genus are proposed (D. hansenii, D. kloeckeri and D. konokotinae) which include all of the Debaryomyces species and strains available at the Institute of Microbiology of the USSR Academy of Sciences.

  1. Adaptive Fault Tolerance for Many-Core Based Space-Borne Computing

    NASA Technical Reports Server (NTRS)

    James, Mark; Springer, Paul; Zima, Hans

    2010-01-01

    This paper describes an approach to providing software fault tolerance for future deep-space robotic NASA missions, which will require a high degree of autonomy supported by an enhanced on-board computational capability. Such systems have become possible as a result of the emerging many-core technology, which is expected to offer 1024-core chips by 2015. We discuss the challenges and opportunities of this new technology, focusing on introspection-based adaptive fault tolerance that takes into account the specific requirements of applications, guided by a fault model. Introspection supports runtime monitoring of the program execution with the goal of identifying, locating, and analyzing errors. Fault tolerance assertions for the introspection system can be provided by the user, domain-specific knowledge, or via the results of static or dynamic program analysis. This work is part of an on-going project at the Jet Propulsion Laboratory in Pasadena, California.

  2. Adaptation of lactic acid bacteria to butanol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Butanol can be produced biologically through fermentation of various substrates by Gram-positive Clostridium species. However, to profitably produce butanol at industrial scales, new microbial biocatalysts with increased tolerance to butanol are needed. In this study we report the isolation and se...

  3. Backstepping Design of Adaptive Neural Fault-Tolerant Control for MIMO Nonlinear Systems.

    PubMed

    Gao, Hui; Song, Yongduan; Wen, Changyun

    2016-08-24

    In this paper, an adaptive controller is developed for a class of multi-input and multioutput nonlinear systems with neural networks (NNs) used as a modeling tool. It is shown that all the signals in the closed-loop system with the proposed adaptive neural controller are globally uniformly bounded for any external input in L[₀,∞]. In our control design, the upper bound of the NN modeling error and the gains of external disturbance are characterized by unknown upper bounds, which is more rational to establish the stability in the adaptive NN control. Filter-based modification terms are used in the update laws of unknown parameters to improve the transient performance. Finally, fault-tolerant control is developed to accommodate actuator failure. An illustrative example applying the adaptive controller to control a rigid robot arm shows the validation of the proposed controller.

  4. Microevolution from shock to adaptation revealed strategies improving ethanol tolerance and production in Thermoanaerobacter

    PubMed Central

    2013-01-01

    Introduction The molecular links between shock-response and adaptation remain poorly understood, particularly for extremophiles. This has hindered rational engineering of solvent tolerance and correlated traits (e.g., productivity) in extremophiles. To untangle such molecular links, here we established a model that tracked the microevolution from shock to adaptation in thermophilic bacteria. Method Temporal dynamics of genomes and transcriptomes was tracked for Thermoanaerobacter sp. X514 which under increasing exogenous ethanol evolved from ethanol-sensitive wild-type (Strain X) to tolerance of 2%- (XI) and eventually 6%-ethanol (XII). Based on the reconstructed transcriptional network underlying stress tolerance, genetic engineering was employed to improve ethanol tolerance and production in Thermoanaerobacter. Results The spontaneous genome mutation rate (μg) of Thermoanaerobacter sp. X514, calculated at 0.045, suggested a higher mutation rate in thermophile than previously thought. Transcriptomic comparison revealed that shock-response and adaptation were distinct in nature, whereas the transcriptomes of XII resembled those of the extendedly shocked X. To respond to ethanol shock, X employed fructose-specific phosphotransferase system (PTS), Arginine Deiminase (ADI) pathway, alcohol dehydrogenase (Adh) and a distinct mechanism of V-type ATPase. As an adaptation to exogenous ethanol, XI mobilized resistance-nodulation-cell division (RND) efflux system and Adh, whereas XII, which produced higher ethanol than XI, employed ECF-type ϭ24, an alcohol catabolism operon and phase-specific heat-shock proteins (Hsps), modulated hexose/pentose-transport operon structure and reinforced membrane rigidity. Exploiting these findings, we further showed that ethanol productivity and tolerance can be improved simultaneously by overexpressing adh or ϭ24 in X. Conclusion Our work revealed thermophilic-bacteria specific features of adaptive evolution and demonstrated a rational

  5. Transcriptional profile of glucose-shocked and acid-adapted strains of Streptococcus mutans

    PubMed Central

    Baker, J.L.; Abranches, J.; Faustoferri, R.C.; Hubbard, C.J.; Lemos, J.A.; Courtney, M.A.; Quivey, R.

    2015-01-01

    Summary The aciduricity of Streptococcus mutans is an important virulence factor of the organism, required to both out-compete commensal oral microorganisms and cause dental caries. In this study, we monitored transcriptional changes that occurred as a continuous culture of either an acid-tolerant strain (UA159) or an acid-sensitive strain (fabM::Erm) moved from steady-state growth at neutral pH, experienced glucose-shock and acidification of the culture, and transitioned to steady-state growth at low pH. Thus, the timing of elements of the acid tolerance response (ATR) could be observed and categorized as acute vs. adaptive ATR mechanisms. Modulation of BCAA biosynthesis, DNA/protein repair mechanisms, ROS metabolizers, and PTS occurred in the initial acute phase, immediately following glucose-shock, while up-regulation of F1F0-ATPase did not occur until the adaptive phase, after steady-state growth had been re-established. In addition to the archetypal ATR pathways mentioned above, glucose-shock led to differential expression of genes suggesting a re-routing of resources away from synthesis of fatty acids and proteins, and towards synthesis of purines, pyrimidines and amino acids. These adjustments were largely transient, as upon establishment of steady-state growth at acidic pH, transcripts returned to basal expression levels. During growth at steady-state pH 7, fabM::Erm had a transcriptional profile analogous to that of UA159 during glucose-shock, indicating that even during growth in rich media at neutral pH, the cells were stressed. These results, coupled with a recently established collection of deletion strains (Quivey et al., 2015), provide a starting point for elucidation of the acid tolerance response in S. mutans. PMID:26042838

  6. Polyamino acid display on cell surfaces enhances salt and alcohol tolerance of Escherichia coli.

    PubMed

    Suzuki, Hirokazu; Ishii, Jun; Kondo, Akihiko; Yoshida, Ken-Ichi

    2015-02-01

    Microbes employ cell membranes for reducing exogenous stresses. Polyamino acid display on microbial cell surfaces and their effects on microbial chemical stress tolerance were examined. Growth analysis revealed that displays of polyarginine, polyaspartate and polytryptophan substantially enhanced tolerance of Escherichia coli to NaCl. A titration assay indicated that polyarginine and polyaspartate altered cell surface charges, implying tolerance enhancement via ion atmosphere and/or ionic bond network formations for electrostatic ion repulsion. The enhancement by polytryptophan may have arisen from surface hydrophobicity increase for hydrophobic ion exclusion, because of a strong correlation between hydrophobic characters of amino acids and their effects on tolerance enhancement. The display also enhanced tolerance to other salts and/or alcohols in E. coli and to NaCl in Saccharomyces cerevisiae. Thus polyamino acid display has the potential as an approach for conferring chemical stress tolerance on various microbes.

  7. Sphingolipid biosynthesis upregulation by TOR complex 2-Ypk1 signaling during yeast adaptive response to acetic acid stress.

    PubMed

    Guerreiro, Joana F; Muir, Alexander; Ramachandran, Subramaniam; Thorner, Jeremy; Sá-Correia, Isabel

    2016-12-01

    Acetic acid-induced inhibition of yeast growth and metabolism limits the productivity of industrial fermentation processes, especially when lignocellulosic hydrolysates are used as feedstock in industrial biotechnology. Tolerance to acetic acid of food spoilage yeasts is also a problem in the preservation of acidic foods and beverages. Thus understanding the molecular mechanisms underlying adaptation and tolerance to acetic acid stress is increasingly important in industrial biotechnology and the food industry. Prior genetic screens for Saccharomyces cerevisiae mutants with increased sensitivity to acetic acid identified loss-of-function mutations in the YPK1 gene, which encodes a protein kinase activated by the target of rapamycin (TOR) complex 2 (TORC2). We show in the present study by several independent criteria that TORC2-Ypk1 signaling is stimulated in response to acetic acid stress. Moreover, we demonstrate that TORC2-mediated Ypk1 phosphorylation and activation is necessary for acetic acid tolerance, and occurs independently of Hrk1, a protein kinase previously implicated in the cellular response to acetic acid. In addition, we show that TORC2-Ypk1-mediated activation of l-serine:palmitoyl-CoA acyltransferase, the enzyme complex that catalyzes the first committed step of sphingolipid biosynthesis, is required for acetic acid tolerance. Furthermore, analysis of the sphingolipid pathway using inhibitors and mutants indicates that it is production of certain complex sphingolipids that contributes to conferring acetic acid tolerance. Consistent with that conclusion, promoting sphingolipid synthesis by adding exogenous long-chain base precursor phytosphingosine to the growth medium enhanced acetic acid tolerance. Thus appropriate modulation of the TORC2-Ypk1-sphingolipid axis in industrial yeast strains may have utility in improving fermentations of acetic acid-containing feedstocks.

  8. Tolerance adaptation and precipitation changes complicate latitudinal patterns of climate change impacts.

    PubMed

    Bonebrake, Timothy C; Mastrandrea, Michael D

    2010-07-13

    Global patterns of biodiversity and comparisons between tropical and temperate ecosystems have pervaded ecology from its inception. However, the urgency in understanding these global patterns has been accentuated by the threat of rapid climate change. We apply an adaptive model of environmental tolerance evolution to global climate data and climate change model projections to examine the relative impacts of climate change on different regions of the globe. Our results project more adverse impacts of warming on tropical populations due to environmental tolerance adaptation to conditions of low interannual variability in temperature. When applied to present variability and future forecasts of precipitation data, the tolerance adaptation model found large reductions in fitness predicted for populations in high-latitude northern hemisphere regions, although some tropical regions had comparable reductions in fitness. We formulated an evolutionary regional climate change index (ERCCI) to additionally incorporate the predicted changes in the interannual variability of temperature and precipitation. Based on this index, we suggest that the magnitude of climate change impacts could be much more heterogeneous across latitude than previously thought. Specifically, tropical regions are likely to be just as affected as temperate regions and, in some regions under some circumstances, possibly more so.

  9. The role of tissue adaptation and graft size in immune tolerance.

    PubMed

    Hauben, Ehud; Roncarolo, Maria Grazia; Draghici, Elena; Nevo, Uri

    2007-11-01

    Understanding how immune tolerance is induced and maintained is critical for our approach to immune-related diseases. Ecoimmunity is a new theory that views the immune system-tissue interaction as a co-adapting predator-prey system. Ecoimmunity suggests that tissues adapt to the selective immune pressure during ontogeny and throughout life. Therefore, immune tolerance towards 'self' represents a symmetric balance between the propensity of the immune system to prey on 'self' cells, and the tissue's specific capacity to undergo phenotypic adaptations in order to avoid destructive immune interaction. According to this theory, we hypothesized that tissues of adult immune-deficient mice, which are not exposed to selective immune pressure, will not withstand immune activity and will therefore display higher susceptibility to graft rejection. To test this prediction, C57Bl/6 wild type female mice were rendered diabetic by streptozotocin and transplanted with syngeneic pancreatic islets isolated from either immune-deficient C57Bl/6 SCID or wild type females. Remarkably, recipients of islet grafts from immune-deficient syngeneic donors displayed significantly impaired glucose homeostasis compared to mice transplanted with islets of wild type donors (p<0.001, two way repeated measures ANOVA). The severity of this impairment was correlated with islet graft size, suggesting a capacity of transplanted islets to gradually acquire a tolerogenic phenotype. These findings support the view of graft survival that is based on 'natural selection' of tissue cells. In addition, we describe a new experimental system for molecular characterization of self-tolerance.

  10. Cold tolerance in sealworm ( Pseudoterranova decipiens) due to heat-shock adaptations.

    PubMed

    Stormo, S K; Praebel, K; Elvevoll, E O

    2009-09-01

    Third-stage larvae of Pseudoterranova decipiens commonly infect whitefish such as cod, and the parasite can be transferred to humans through lightly prepared (sushi) meals. Because little is known about the nematode's cold tolerance capacity, we examined the nematode's ability to supercool, and whether or not cold acclimation could induce physiological changes that might increase its ability to tolerate freezing conditions. Even if third-stage Pseudoterranova decipiens larvae have some supercooling ability, they show no potential for freezing avoidance because they are not able to withstand inoculative freezing. Still, they have the ability to survive freezing at high subzero temperatures, something which suggests that these nematodes have a moderate freeze tolerance. We also show that acclimation to high temperatures triggers trehalose accumulation to an even greater extent than cold acclimation. Trehalose is a potential cryoprotectant which has been shown to play a vital role in the freeze tolerance of nematodes. We suggest that the trehalose accumulation observed for the cold acclimation is a general response to thermal stress, and that the nematode's moderate freeze tolerance may be acquired through adaptation to heat rather than coldness.

  11. Anhydrobiosis and Freezing-Tolerance: Adaptations That Facilitate the Establishment of Panagrolaimus Nematodes in Polar Habitats

    PubMed Central

    McGill, Lorraine M.; Shannon, Adam J.; Pisani, Davide; Félix, Marie-Anne; Ramløv, Hans; Dix, Ilona; Wharton, David A.; Burnell, Ann M.

    2015-01-01

    Anhydrobiotic animals can survive the loss of both free and bound water from their cells. While in this state they are also resistant to freezing. This physiology adapts anhydrobiotes to harsh environments and it aids their dispersal. Panagrolaimus davidi, a bacterial feeding anhydrobiotic nematode isolated from Ross Island Antarctica, can survive intracellular ice formation when fully hydrated. A capacity to survive freezing while fully hydrated has also been observed in some other Antarctic nematodes. We experimentally determined the anhydrobiotic and freezing-tolerance phenotypes of 24 Panagrolaimus strains from tropical, temperate, continental and polar habitats and we analysed their phylogenetic relationships. We found that several other Panagrolaimus isolates can also survive freezing when fully hydrated and that tissue extracts from these freezing-tolerant nematodes can inhibit the growth of ice crystals. We show that P. davidi belongs to a clade of anhydrobiotic and freezing-tolerant panagrolaimids containing strains from temperate and continental regions and that P. superbus, an early colonizer at Surtsey island, Iceland after its volcanic formation, is closely related to a species from Pennsylvania, USA. Ancestral state reconstructions show that anhydrobiosis evolved deep in the phylogeny of Panagrolaimus. The early-diverging Panagrolaimus lineages are strongly anhydrobiotic but weakly freezing-tolerant, suggesting that freezing tolerance is most likely a derived trait. The common ancestors of the davidi and the superbus clades were anhydrobiotic and also possessed robust freezing tolerance, along with a capacity to inhibit the growth and recrystallization of ice crystals. Unlike other endemic Antarctic nematodes, the life history traits of P. davidi do not show evidence of an evolved response to polar conditions. Thus we suggest that the colonization of Antarctica by P. davidi and of Surtsey by P. superbus may be examples of recent “ecological fitting

  12. Anhydrobiosis and freezing-tolerance: adaptations that facilitate the establishment of Panagrolaimus nematodes in polar habitats.

    PubMed

    McGill, Lorraine M; Shannon, Adam J; Pisani, Davide; Félix, Marie-Anne; Ramløv, Hans; Dix, Ilona; Wharton, David A; Burnell, Ann M

    2015-01-01

    Anhydrobiotic animals can survive the loss of both free and bound water from their cells. While in this state they are also resistant to freezing. This physiology adapts anhydrobiotes to harsh environments and it aids their dispersal. Panagrolaimus davidi, a bacterial feeding anhydrobiotic nematode isolated from Ross Island Antarctica, can survive intracellular ice formation when fully hydrated. A capacity to survive freezing while fully hydrated has also been observed in some other Antarctic nematodes. We experimentally determined the anhydrobiotic and freezing-tolerance phenotypes of 24 Panagrolaimus strains from tropical, temperate, continental and polar habitats and we analysed their phylogenetic relationships. We found that several other Panagrolaimus isolates can also survive freezing when fully hydrated and that tissue extracts from these freezing-tolerant nematodes can inhibit the growth of ice crystals. We show that P. davidi belongs to a clade of anhydrobiotic and freezing-tolerant panagrolaimids containing strains from temperate and continental regions and that P. superbus, an early colonizer at Surtsey island, Iceland after its volcanic formation, is closely related to a species from Pennsylvania, USA. Ancestral state reconstructions show that anhydrobiosis evolved deep in the phylogeny of Panagrolaimus. The early-diverging Panagrolaimus lineages are strongly anhydrobiotic but weakly freezing-tolerant, suggesting that freezing tolerance is most likely a derived trait. The common ancestors of the davidi and the superbus clades were anhydrobiotic and also possessed robust freezing tolerance, along with a capacity to inhibit the growth and recrystallization of ice crystals. Unlike other endemic Antarctic nematodes, the life history traits of P. davidi do not show evidence of an evolved response to polar conditions. Thus we suggest that the colonization of Antarctica by P. davidi and of Surtsey by P. superbus may be examples of recent "ecological fitting

  13. Tolerance to acetic acid is improved by mutations of the TATA-binding protein gene.

    PubMed

    An, Jieun; Kwon, Hyeji; Kim, Eunjung; Lee, Young Mi; Ko, Hyeok Jin; Park, Hongjae; Choi, In-Geol; Kim, Sooah; Kim, Kyoung Heon; Kim, Wankee; Choi, Wonja

    2015-03-01

    Screening a library of overexpressing mutant alleles of the TATA-binding gene SPT15 yielded two Saccharomyces cerevisiae strains (MRRC 3252 and 3253) with enhanced tolerance to acetic acid. They were also tolerant to propionic acid and hydrogen peroxide. Transcriptome profile analysis identified 58 upregulated genes and 106 downregulated genes in MRRC 3252. Stress- and protein synthesis-related transcription factors were predominantly enriched in the upregulated and downregulated genes respectively. Eight deletion mutants for some of the highly downregulated genes were acetic acid-tolerant. The level of intracellular reactive oxygen species was considerably lessened in MRRC 3252 and 3253 upon exposure to acetic acid. Metabolome profile analysis revealed that intracellular concentrations of 5 and 102 metabolites were increased and decreased, respectively, in MRRC 3252, featuring a large increase of urea and a significant decrease of amino acids. The dur1/2Δmutant, in which the urea degradation gene DUR1/2 is deleted, displayed enhanced tolerance to acetic acid. Enhanced tolerance to acetic acid was also observed on the medium containing a low concentration of amino acids. Taken together, this study identified two SPT15 alleles, nine gene deletions and low concentration of amino acids in the medium that confer enhanced tolerance to acetic acid.

  14. Butyric acid fermentation from pretreated and hydrolysed wheat straw by an adapted Clostridium tyrobutyricum strain

    PubMed Central

    Baroi, G N; Baumann, I; Westermann, P; Gavala, H N

    2015-01-01

    Butyric acid is a valuable building-block for the production of chemicals and materials and nowadays it is produced exclusively from petroleum. The aim of this study was to develop a suitable and robust strain of Clostridium tyrobutyricum that produces butyric acid at a high yield and selectivity from lignocellulosic biomasses. Pretreated (by wet explosion) and enzymatically hydrolysed wheat straw (PHWS), rich in C6 and C5 sugars (71.6 and 55.4 g l−1 of glucose and xylose respectively), was used as substrate. After one year of serial selections, an adapted strain of C. tyrobutyricum was developed. The adapted strain was able to grow in 80% (v v−1) PHWS without addition of yeast extract compared with an initial tolerance to less than 10% PHWS and was able to ferment both glucose and xylose. It is noticeable that the adapted C. tyrobutyricum strain was characterized by a high yield and selectivity to butyric acid. Specifically, the butyric acid yield at 60–80% PHWS lie between 0.37 and 0.46 g g−1 of sugar, while the selectivity for butyric acid was as high as 0.9–1.0 g g−1 of acid. Moreover, the strain exhibited a robust response in regards to growth and product profile at pH 6 and 7. PMID:26230610

  15. A robust adaptive nonlinear fault-tolerant controller via norm estimation for reusable launch vehicles

    NASA Astrophysics Data System (ADS)

    Hu, Chaofang; Gao, Zhifei; Ren, Yanli; Liu, Yunbing

    2016-11-01

    In this paper, a reusable launch vehicle (RLV) attitude control problem with actuator faults is addressed via the robust adaptive nonlinear fault-tolerant control (FTC) with norm estimation. Firstly, the accurate tracking task of attitude angles in the presence of parameter uncertainties and external disturbances is considered. A fault-free controller is proposed using dynamic surface control (DSC) combined with fuzzy adaptive approach. Furthermore, the minimal learning parameter strategy via norm estimation technique is introduced to reduce the multi-parameter adaptive computation burden of fuzzy approximation of the lump uncertainties. Secondly, a compensation controller is designed to handle the partial loss fault of actuator effectiveness. The unknown maximum eigenvalue of actuator efficiency loss factors is estimated online. Moreover, stability analysis guarantees that all signals of the closed-loop control system are semi-global uniformly ultimately bounded. Finally, illustrative simulations show the effectiveness of the proposed method.

  16. Global error estimation based on the tolerance proportionality for some adaptive Runge-Kutta codes

    NASA Astrophysics Data System (ADS)

    Calvo, M.; González-Pinto, S.; Montijano, J. I.

    2008-09-01

    Modern codes for the numerical solution of Initial Value Problems (IVPs) in ODEs are based in adaptive methods that, for a user supplied tolerance [delta], attempt to advance the integration selecting the size of each step so that some measure of the local error is [similar, equals][delta]. Although this policy does not ensure that the global errors are under the prescribed tolerance, after the early studies of Stetter [Considerations concerning a theory for ODE-solvers, in: R. Burlisch, R.D. Grigorieff, J. Schröder (Eds.), Numerical Treatment of Differential Equations, Proceedings of Oberwolfach, 1976, Lecture Notes in Mathematics, vol. 631, Springer, Berlin, 1978, pp. 188-200; Tolerance proportionality in ODE codes, in: R. März (Ed.), Proceedings of the Second Conference on Numerical Treatment of Ordinary Differential Equations, Humbold University, Berlin, 1980, pp. 109-123] and the extensions of Higham [Global error versus tolerance for explicit Runge-Kutta methods, IMA J. Numer. Anal. 11 (1991) 457-480; The tolerance proportionality of adaptive ODE solvers, J. Comput. Appl. Math. 45 (1993) 227-236; The reliability of standard local error control algorithms for initial value ordinary differential equations, in: Proceedings: The Quality of Numerical Software: Assessment and Enhancement, IFIP Series, Springer, Berlin, 1997], it has been proved that in many existing explicit Runge-Kutta codes the global errors behave asymptotically as some rational power of [delta]. This step-size policy, for a given IVP, determines at each grid point tn a new step-size hn+1=h(tn;[delta]) so that h(t;[delta]) is a continuous function of t. In this paper a study of the tolerance proportionality property under a discontinuous step-size policy that does not allow to change the size of the step if the step-size ratio between two consecutive steps is close to unity is carried out. This theory is applied to obtain global error estimations in a few problems that have been solved with

  17. Phenotypically Adapted Mycobacterium tuberculosis Populations from Sputum Are Tolerant to First-Line Drugs

    PubMed Central

    Turapov, Obolbek; O'Connor, Benjamin D.; Sarybaeva, Asel A.; Williams, Caroline; Patel, Hemu; Kadyrov, Abdullaat S.; Sarybaev, Akpay S.; Woltmann, Gerrit; Barer, Michael R.

    2016-01-01

    Tuberculous sputum contains multiple Mycobacterium tuberculosis populations with different requirements for isolation in vitro. These include cells that form colonies on solid media (plateable M. tuberculosis), cells requiring standard liquid medium for growth (nonplateable M. tuberculosis), and cells requiring supplementation of liquid medium with culture supernatant (SN) for growth (SN-dependent M. tuberculosis). Here, we describe protocols for the cryopreservation and direct assessment of antimicrobial tolerance of these M. tuberculosis populations within sputum. Our results show that first-line drugs achieved only modest bactericidal effects on all three populations over 7 days (1 to 2.5 log10 reductions), and SN-dependent M. tuberculosis was more tolerant to streptomycin and isoniazid than the plateable and nonplateable M. tuberculosis strains. Susceptibility of plateable M. tuberculosis to bactericidal drugs was significantly increased after passage in vitro; thus, tolerance observed in the sputum samples from the population groups was likely associated with mycobacterial adaptation to the host environment at some time prior to expectoration. Our findings support the use of a simple ex vivo system for testing drug efficacies against mycobacteria that have phenotypically adapted during tuberculosis infection. PMID:26883695

  18. Amino acids implicated in plant defense are higher in Candidatus Liberibacter asiaticus-tolerant citrus varieties.

    PubMed

    Killiny, Nabil; Hijaz, Faraj

    2016-01-01

    Citrus Huanglongbing (HLB), also known as citrus greening, has been threatening the citrus industry since the early 1900's and up to this date there are no effective cures for this disease. Field observations and greenhouse controlled studies demonstrated that some citrus genotypes are more tolerant to Candidatus Liberibacter asiaticus (CLas) pathogen than others. However, the mechanisms underpinning tolerance has not been determined yet. The phloem sap composition of CLas-tolerant and sensitive citrus varieties was studied to identify metabolites that could be responsible for their tolerance to CLas. The citrus phloem sap was collected by centrifugation and was analyzed with gas chromatography-mass spectrometry after methyl chloroformate derivatization. Thirty-three metabolites were detected in the phloem sap of the studied varieties: twenty 20 amino acids, eight 8 organic acids, and five 5 fatty acids. Interestingly, the levels of most amino acids, especially those implicated in plantdefense to pathogens such as phenylalanine, tyrosine, tryptophan, lysine, and asparagine were higher in tolerant varieties. Although the level of organic acids varied between cultivars, this variation was not correlated with citrus resistance to CLas and could be cultivar specific. The fatty acids were found in trace amounts and in most cases their levels were not significantly different among varieties. Better understanding of the mechanisms underpinning citrus tolerance to CLas will help in developing economically tolerant varieties.

  19. Amino acids implicated in plant defense are higher in Candidatus Liberibacter asiaticus-tolerant citrus varieties

    PubMed Central

    Killiny, Nabil; Hijaz, Faraj

    2016-01-01

    ABSTRACT Citrus Huanglongbing (HLB), also known as citrus greening, has been threatening the citrus industry since the early 1900's and up to this date there are no effective cures for this disease. Field observations and greenhouse controlled studies demonstrated that some citrus genotypes are more tolerant to Candidatus Liberibacter asiaticus (CLas) pathogen than others. However, the mechanisms underpinning tolerance has not been determined yet. The phloem sap composition of CLas-tolerant and sensitive citrus varieties was studied to identify metabolites that could be responsible for their tolerance to CLas. The citrus phloem sap was collected by centrifugation and was analyzed with gas chromatography-mass spectrometry after methyl chloroformate derivatization. Thirty-three metabolites were detected in the phloem sap of the studied varieties: twenty 20 amino acids, eight 8 organic acids, and five 5 fatty acids. Interestingly, the levels of most amino acids, especially those implicated in plantdefense to pathogens such as phenylalanine, tyrosine, tryptophan, lysine, and asparagine were higher in tolerant varieties. Although the level of organic acids varied between cultivars, this variation was not correlated with citrus resistance to CLas and could be cultivar specific. The fatty acids were found in trace amounts and in most cases their levels were not significantly different among varieties. Better understanding of the mechanisms underpinning citrus tolerance to CLas will help in developing economically tolerant varieties. PMID:27057814

  20. An adaptive fault-tolerant event detection scheme for wireless sensor networks.

    PubMed

    Yim, Sung-Jib; Choi, Yoon-Hwa

    2010-01-01

    In this paper, we present an adaptive fault-tolerant event detection scheme for wireless sensor networks. Each sensor node detects an event locally in a distributed manner by using the sensor readings of its neighboring nodes. Confidence levels of sensor nodes are used to dynamically adjust the threshold for decision making, resulting in consistent performance even with increasing number of faulty nodes. In addition, the scheme employs a moving average filter to tolerate most transient faults in sensor readings, reducing the effective fault probability. Only three bits of data are exchanged to reduce the communication overhead in detecting events. Simulation results show that event detection accuracy and false alarm rate are kept very high and low, respectively, even in the case where 50% of the sensor nodes are faulty.

  1. Salicylic Acid Improved In Viro Meristem Regeneration and Salt Tolerance in Two Hibiscus Species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salicylic acid (SA) has been reported to induce abiotic stress, including salt tolerance in plants. The objective of this study was to determine whether application of various exogenous SA concentrations to in vitro grown meristem shoots could induce salt tolerance in two Hibiscus species. The effec...

  2. 40 CFR 180.1178 - Formic acid; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD... pesticide formic acid is exempted from the requirement of a tolerance in or on honey and honeycomb when used to control tracheal mites and suppress varroa mites in bee colonies, and applied in accordance...

  3. 40 CFR 180.1225 - Decanoic acid; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Decanoic acid; exemption from the requirement of a tolerance. 180.1225 Section 180.1225 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN...

  4. 40 CFR 180.1159 - Pelargonic acid; exemption from the requirement of tolerances.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Pelargonic acid; exemption from the requirement of tolerances. 180.1159 Section 180.1159 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD...

  5. Screening of Non- Saccharomyces cerevisiae Strains for Tolerance to Formic Acid in Bioethanol Fermentation.

    PubMed

    Oshoma, Cyprian E; Greetham, Darren; Louis, Edward J; Smart, Katherine A; Phister, Trevor G; Powell, Chris; Du, Chenyu

    2015-01-01

    Formic acid is one of the major inhibitory compounds present in hydrolysates derived from lignocellulosic materials, the presence of which can significantly hamper the efficiency of converting available sugars into bioethanol. This study investigated the potential for screening formic acid tolerance in non-Saccharomyces cerevisiae yeast strains, which could be used for the development of advanced generation bioethanol processes. Spot plate and phenotypic microarray methods were used to screen the formic acid tolerance of 7 non-Saccharomyces cerevisiae yeasts. S. kudriavzeii IFO1802 and S. arboricolus 2.3319 displayed a higher formic acid tolerance when compared to other strains in the study. Strain S. arboricolus 2.3319 was selected for further investigation due to its genetic variability among the Saccharomyces species as related to Saccharomyces cerevisiae and availability of two sibling strains: S. arboricolus 2.3317 and 2.3318 in the lab. The tolerance of S. arboricolus strains (2.3317, 2.3318 and 2.3319) to formic acid was further investigated by lab-scale fermentation analysis, and compared with S. cerevisiae NCYC2592. S. arboricolus 2.3319 demonstrated improved formic acid tolerance and a similar bioethanol synthesis capacity to S. cerevisiae NCYC2592, while S. arboricolus 2.3317 and 2.3318 exhibited an overall inferior performance. Metabolite analysis indicated that S. arboricolus strain 2.3319 accumulated comparatively high concentrations of glycerol and glycogen, which may have contributed to its ability to tolerate high levels of formic acid.

  6. Adaptation to high light irradiances enhances the photosynthetic Cu2+ resistance in Cu2+ tolerant and non-tolerant populations of the brown macroalgae Fucus serratus.

    PubMed

    Nielsen, Hanne Dalsgaard; Nielsen, Søren Laurentius

    2010-05-01

    The relationship between light acclimation and Cu(2+) tolerance was studied in two populations of Fucus serratus known to be naturally non-tolerant and tolerant to Cu(2+). Acclimation to high irradiances increased the photosynthetic tolerance to Cu(2+). The xanthophyll cycle was apparently not involved in protecting the photosynthetic apparatus against Cu(2+) toxicity, as results showed that Cu(2+) did not induce dynamic photoinhibition. The higher photosynthetic Cu(2+) resistance of high light algae did not result in increased growth. The excess energy acquired by high light-adapted algae appeared to be utilized in Cu(2+) defense mechanisms in the Cu(2+) non-tolerant population. The polyphenol content of the algae was reciprocal to the Cu(T) content, suggesting that polyphenol may be the primary Cu(2+) defense of non-tolerant low light algae, acting through secretion and extracellular chelating of Cu(2+), while the compounds do not seem to be involved in the primary Cu(2+) tolerance mechanism in Cu(2+) tolerant algae.

  7. A PCR assay for detection of acetic acid-tolerant lactic acid bacteria in acidic food products.

    PubMed

    Nakano, Shigeru; Matsumura, Atsushi; Yamada, Toshihiro

    2004-03-01

    A PCR assay for the detection of acetic acid-tolerant lactic acid bacteria in the genera of Lactobacillus and Pediococcus was developed in this study. Primers targeting the bacterial 16S rRNA gene were newly designed and used in this PCR assay. To determine the specificity of the assay, 56 different bacterial strains (of 33 genera), 2 fungi, 3 animals, and 4 plants were tested. Results were positive for most tested bacterial members of 16S rRNA gene-based phylogenetic groups (classified in the Lactobacillus casei and Pediococcus group), including Lactobacillus fructivorans, Lactobacillus brevis, Lactobacillus buchneri, Lactobacillus plantarum, and Lactobacillus paracasei. For all other bacterial strains and eukaryote tested, results were negative. Bacterial DNA for PCR was prepared with a simple procedure with the use of Chelex 100 resin from culture after growth in deMan Rogosa Sharpe broth (pH 6.0). To test this PCR assay for the monitoring of the acetic acid-tolerant lactic acid bacteria, L. fructivorans was inoculated into several acidic food as an indicator. Before the PCR, the inoculation of 10 to 50 CFU of bacteria per g of food was followed by a 28-h enrichment culture step, and the PCR assay allowed the detection of bacterial cells. Including the enrichment culture step, the entire PCR detection process can be completed within 30 h.

  8. 40 CFR 180.1178 - Formic acid; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... pesticide formic acid is exempted from the requirement of a tolerance in or on honey and honeycomb when used to control tracheal mites and suppress varroa mites in bee colonies, and applied in accordance...

  9. 40 CFR 180.1178 - Formic acid; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... pesticide formic acid is exempted from the requirement of a tolerance in or on honey and honeycomb when used to control tracheal mites and suppress varroa mites in bee colonies, and applied in accordance...

  10. 40 CFR 180.1178 - Formic acid; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... pesticide formic acid is exempted from the requirement of a tolerance in or on honey and honeycomb when used to control tracheal mites and suppress varroa mites in bee colonies, and applied in accordance...

  11. 40 CFR 180.1178 - Formic acid; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... pesticide formic acid is exempted from the requirement of a tolerance in or on honey and honeycomb when used to control tracheal mites and suppress varroa mites in bee colonies, and applied in accordance...

  12. 40 CFR 180.1225 - Decanoic acid; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD... acid (up to 170 ppm per application) on food contact surfaces such as equipment, pipelines, tanks,...

  13. A novel cold-adapted and highly salt-tolerant esterase from Alkalibacterium sp. SL3 from the sediment of a soda lake

    PubMed Central

    Wang, Guozeng; Wang, Qiaohuang; Lin, Xianju; Bun Ng, Tzi; Yan, Renxiang; Lin, Juan; Ye, Xiuyun

    2016-01-01

    A novel esterase gene (estSL3) was cloned from the Alkalibacterium sp. SL3, which was isolated from the sediment of soda lake Dabusu. The 636-bp full-length gene encodes a polypeptide of 211 amino acid residues that is closely related with putative GDSL family lipases from Alkalibacterium and Enterococcus. The gene was successfully expressed in E. coli, and the recombinant protein (rEstSL3) was purified to electrophoretic homogeneity and characterized. rEstSL3 exhibited the highest activity towards pNP-acetate and had no activity towards pNP-esters with acyl chains longer than C8. The enzyme was highly cold-adapted, showing an apparent temperature optimum of 30 °C and remaining approximately 70% of the activity at 0 °C. It was active and stable over the pH range from 7 to 10, and highly salt-tolerant up to 5 M NaCl. Moreover, rEstSL3 was strongly resistant to most tested metal ions, chemical reagents, detergents and organic solvents. Amino acid composition analysis indicated that EstSL3 had fewer proline residues, hydrogen bonds and salt bridges than mesophilic and thermophilic counterparts, but more acidic amino acids and less hydrophobic amino acids when compared with other salt-tolerant esterases. The cold active, salt-tolerant and chemical-resistant properties make it a promising enzyme for basic research and industrial applications. PMID:26915906

  14. MOLECULAR MECHANISMS FOR ADAPTIVE TOLERANCE AND OTHER T CELL ANERGY MODELS

    PubMed Central

    Choi, Seeyoung; Schwartz, Ronald H.

    2007-01-01

    Since the original description of T cell anergy in CD4 clones from mice and humans, a number of different unresponsive states have been described, both in vivo and in vitro, that have been called anergic. While initial attempts were made to understand the similarities between the different models, it has now become clear from biochemical experiments that many of them have different molecular mechanisms underlying their unresponsiveness. In this review we will detail our own work on the in vivo model referred to as adaptive tolerance and then attempt to compare this biochemical state to the multitude of other states that have been described in the literature. PMID:17400472

  15. Genome sequence of the acid-tolerant strain Rhizobium sp. LPU83.

    PubMed

    Wibberg, Daniel; Tejerizo, Gonzalo Torres; Del Papa, María Florencia; Martini, Carla; Pühler, Alfred; Lagares, Antonio; Schlüter, Andreas; Pistorio, Mariano

    2014-04-20

    Rhizobia are important members of the soil microbiome since they enter into nitrogen-fixing symbiosis with different legume host plants. Rhizobium sp. LPU83 is an acid-tolerant Rhizobium strain featuring a broad-host-range. However, it is ineffective in nitrogen fixation. Here, the improved draft genome sequence of this strain is reported. Genome sequence information provides the basis for analysis of its acid tolerance, symbiotic properties and taxonomic classification.

  16. Arginine and lysine decarboxylases and the acid tolerance response of Salmonella Typhimurium.

    PubMed

    Alvarez-Ordóñez, Avelino; Fernández, Ana; Bernardo, Ana; López, Mercedes

    2010-01-01

    Salmonella Typhimurium CECT 443 inactivation at pH 2.5 in Mineral Medium (MM) and MM supplemented with 0.01% (w/v) arginine, lysine or glutamic acid was studied using stationary-phase cells grown in buffered BHI pH 7.0 (non-acid adapted cells) and acidified BHI up to pH 4.5 with acetic, citric, lactic and hydrochloric acids (acid adapted cells). In all cases, acid adapted cells, with D-values ranging from 23.34 to 86.90 min, showed a significantly higher acid resistance than non-acid adapted cells, with D-values between 8.90 and 10.29 min. Whereas the conditions used for acid adaptation did not exert a significant effect on the acid resistance of the S. Typhimurium CECT 443 resulting cells, the inclusion of lysine and arginine in the challenge medium protected them against acid inactivation, reaching D-values of about 2 and 3 times higher, respectively, than those found in MM or MM supplemented with glutamic acid. None of these three amino acids significantly modified the acid resistance of non-acid adapted cells. The relative expression level of adiA (encoding the arginine decarboxylase), adiY (encoding the transcriptional activator of adiA), cadA (encoding the lysine decarboxylase) and cadB (encoding the lysine/cadaverine transport protein) was examined by quantitative PCR. Acid adapted cells showed higher relative expression levels for both systems, arginine decarboxylase and lysine decarboxylase, which demonstrates that the induction of specialized pH-homeostatic systems plays an important role in S. Typhimurium CECT 443 protection against acid stress. However, the increased acid resistance showed by acid adapted cells challenged in MM arginine or lysine free suggests the existence of other microbial survival strategies.

  17. Fatty acid composition of brown adipose tissue in genetically heat-tolerant FOK rats

    NASA Astrophysics Data System (ADS)

    Ohno, T.; Furuyama, F.; Kuroshima, A.

    The phospholipid fatty acid composition of brown adipose tissue (BAT) was examined in inbred heat-tolerant FOK rats and compared with that in conventional Wistar rats not previously exposed to heat. The FOK rats showed higher unsaturation states, as indicated by higher levels of polyunsaturated fatty acids and a higher unsaturation index and polyunsaturated fatty acids/saturated fatty acids ratio. This higher level of unsaturation was characterized by the higher amount of polyunsaturated fatty acids such as linoleic acid, arachidonic acid and docosahexaenoic acid. It may be concluded that the increased docosahexaenoic acid level in BAT phospholipids brings about the hyperplasia of BAT, causing an enhancement of its in vivo thermogernic activity as well as the systemic non-shivering thermogenesis observed in heat-tolerant FOK rats.

  18. Influence of incubation conditions on survival and acid tolerance response of Escherichia coli O157:H7 and non-O157:H7 isolates exposed to acetic acid.

    PubMed

    Brudzinski, L; Harrison, M A

    1998-05-01

    The increasing frequency of Escherichia coli O157:H7 outbreaks, especially in acidic foods, raises the concern of an acid tolerance response (ATR). Organic acids can be present in processed and preserved foods: shifts in the acid levels of foods due to these acids may allow E. coli to adapt and later tolerate pH levels that would normally inactivate the organism. The effect of temperature and agitation on the ATRs of three E. coli O157:H7 and two non-O157:H7 isolates were determined. Triggered at pH 5.0, the adaptive system of the ATR allowed for up to nearly 1,000-fold enhanced survival of E. coli O157:H7 cells in some cases compared to survival of nonadapted cells at pH 4.0. E. coli O157:H7 isolates revealed greater acid tolerance responses when incubated statically at 32 degrees C, whereas the non-O157:H7 E. coli isolates exhibited a greater acid tolerance response with orbital agitation at 25 degrees C. The magnitude of response changed over the incubation period.

  19. Radiation induces acid tolerance of Clostridium tyrobutyricum and enhances bioproduction of butyric acid through a metabolic switch

    PubMed Central

    2014-01-01

    Background Butyric acid as a renewable resource has become an increasingly attractive alternative to petroleum-based fuels. Clostridium tyrobutyricum ATCC 25755T is well documented as a fermentation strain for the production of acids. However, it has been reported that butyrate inhibits its growth, and the accumulation of acetate also inhibits biomass synthesis, making production of butyric acid from conventional fermentation processes economically challenging. The present study aimed to identify whether irradiation of C. tyrobutyricum cells makes them more tolerant to butyric acid inhibition and increases the production of butyrate compared with wild type. Results In this work, the fermentation kinetics of C. tyrobutyricum cultures after being classically adapted for growth at 3.6, 7.2 and 10.8 g·L-1 equivalents were studied. The results showed that, regardless of the irradiation used, there was a gradual inhibition of cell growth at butyric acid concentrations above 10.8 g·L-1, with no growth observed at butyric acid concentrations above 3.6 g·L-1 for the wild-type strain during the first 54 h of fermentation. The sodium dodecyl sulfate polyacrylamide gel electrophoresis also showed significantly different expression levels of proteins with molecular mass around the wild-type and irradiated strains. The results showed that the proportion of proteins with molecular weights of 85 and 106 kDa was much higher for the irradiated strains. The specific growth rate decreased by 50% (from 0.42 to 0.21 h-1) and the final concentration of butyrate increased by 68% (from 22.7 to 33.4 g·L-1) for the strain irradiated at 114 AMeV and 40 Gy compared with the wild-type strains. Conclusions This study demonstrates that butyric acid production from glucose can be significantly improved and enhanced by using 12C6+ heavy ion-irradiated C. tyrobutyricum. The approach is economical, making it competitive compared with similar fermentation processes. It may prove useful as

  20. YfdW and YfdU are required for oxalate-induced acid tolerance in Escherichia coli K-12.

    PubMed

    Fontenot, Elise M; Ezelle, Karen E; Gabreski, Lauren N; Giglio, Eleanor R; McAfee, John M; Mills, Alexandria C; Qureshi, Maryam N; Salmon, Kristin M; Toyota, Cory G

    2013-04-01

    Escherichia coli has several mechanisms for surviving low-pH stress. We report that oxalic acid, a small-chain organic acid (SCOA), induces a moderate acid tolerance response (ATR) in two ways. Adaptation of E. coli K-12 at pH 5.5 with 50 mM oxalate and inclusion of 25 mM oxalate in pH 3.0 minimal challenge medium separately conferred protection, with 67% ± 7% and 87% ± 17% survival after 2 h, respectively. The combination of oxalate adaptation and oxalate supplementation in the challenge medium resulted in increased survival over adaptation or oxalate in the challenge medium alone. The enzymes YfdW, a formyl coenzyme A (CoA) transferase, and YfdU, an oxalyl-CoA decarboxylase, are required for the adaptation effect but not during challenge. Unlike other SCOAs, this oxalate ATR is not a part of the RpoS regulon but appears to be linked to the signal protein GadE. We theorize that this oxalate ATR could enhance the pathogenesis of virulent E. coli consumed with oxalate-containing foods like spinach.

  1. YfdW and YfdU Are Required for Oxalate-Induced Acid Tolerance in Escherichia coli K-12

    PubMed Central

    Fontenot, Elise M.; Ezelle, Karen E.; Gabreski, Lauren N.; Giglio, Eleanor R.; McAfee, John M.; Mills, Alexandria C.; Qureshi, Maryam N.; Salmon, Kristin M.

    2013-01-01

    Escherichia coli has several mechanisms for surviving low-pH stress. We report that oxalic acid, a small-chain organic acid (SCOA), induces a moderate acid tolerance response (ATR) in two ways. Adaptation of E. coli K-12 at pH 5.5 with 50 mM oxalate and inclusion of 25 mM oxalate in pH 3.0 minimal challenge medium separately conferred protection, with 67% ± 7% and 87% ± 17% survival after 2 h, respectively. The combination of oxalate adaptation and oxalate supplementation in the challenge medium resulted in increased survival over adaptation or oxalate in the challenge medium alone. The enzymes YfdW, a formyl coenzyme A (CoA) transferase, and YfdU, an oxalyl-CoA decarboxylase, are required for the adaptation effect but not during challenge. Unlike other SCOAs, this oxalate ATR is not a part of the RpoS regulon but appears to be linked to the signal protein GadE. We theorize that this oxalate ATR could enhance the pathogenesis of virulent E. coli consumed with oxalate-containing foods like spinach. PMID:23335415

  2. Adaptation to cold swim stress-induced hypothermia: Absence of Pavlovian conditional tolerance.

    PubMed

    Kokkinidis, L

    1986-01-01

    Mice subjected to cold swim stress developed pronounced hypothermia. Exposure to warm water swim, however, had little or no effect on body temperature. After repeated exposure to cold swim, the stress-induced hypothermia was attenuated. The finding that cold swim resulted in hypothermia, whereas warm swim had no effect in this respect, provided a useful experimental design by which to assess the role of conditioning factors in the adaptation to the thermic effects of cold swim. In two subsequent experiments, mice received cold swim either in a familiar environment or in a novel environment. Adaptation to the thermic effects of cold swim was observed when mice were tested in the distinctive environment, regardless of the environmental cues previously paired with repeated exposure to the cold swim stress. These findings suggest that contextual cues were not of primary importance in the development of tolerance to the thermic effects of cold swim stress.

  3. Adaptation and survival of plants in high stress habitats via fungal endophyte conferred stress tolerance

    USGS Publications Warehouse

    Rodriguez, Rusty J.; Woodward, Claire; Redman, Regina S.

    2010-01-01

    From the Arctic to the Antarctic, plants thrive in diverse habitats that impose different levels of adaptive pressures depending on the type and degree of biotic and abiotic stresses inherent to each habitat (Stevens, 1989). At any particular location, the abundance and distribution of individual plant species vary tremendously and is theorized to be based on the ability to tolerate a wide range of edaphic conditions and habitat-specific stresses (Pianka, 1966). The ability of individual plant species to thrive in diverse habitats is commonly referred to as phenotypic plasticity and is thought to involve adaptations based on changes in the plant genome (Givnish, 2002; Pan et al., 2006; Robe and Griffiths, 2000; Schurr et al., 2006). Habitats that impose high levels of abiotic stress are typically colonized with fewer plant species compared to habitats imposing low levels of stress. Moreover, high stress habitats have decreased levels of plant abundance compared to low stress habitats even though these habitats may occur in close proximity to one another (Perelman et al., 2007). This is particularly interesting because all plants are known to perceive, transmit signals, and respond to abiotic stresses such as drought, heat, and salinity (Bartels and Sunkar, 2005; Bohnert et al., 1995). Although there has been extensive research performed to determine the genetic, molecular, and physiological bases of how plants respond to and tolerate stress, the nature of plant adaptation to high stress habitats remains unresolved (Leone et al., 2003; Maggio et al., 2003; Tuberosa et al., 2003). However, recent evidence indicates that a ubiquitous aspect of plant biology (fungal symbiosis) is involved in the adaptation and survival of at least some plants in high stress habitats (Rodriguez et al., 2008).

  4. Adaptation to multiday ozone exposure is associated with a sustained increase of bronchoalveolar uric acid.

    PubMed

    Kirschvink, Nathalie; Fiévez, Laurence; Bureau, Fabrice; Degand, Guy; Maghuin-Rogister, Guy; Smith, Nicola; Art, Tatiana; Lekeux, Pierre

    2002-01-01

    The phenomenon of ozone tolerance is described, but the underlying mechanisms remain unknown. We tested whether adaptation to multiday ozone exposure was related to an upregulated pulmonary antioxidant defence. Six calves were exposed to 0.75 ppm ozone, 12 h day(-1) for seven consecutive days. Pulmonary function tests and bronchoalveolar lavage (BAL) were performed before, after the first (D1), third (D3) and seventh (D7) exposure. Differential cell count, total proteins, 8-epi-PGF2alpha, glutathione and uric acid were determined in BAL. Dynamic lung compliance and arterial oxygen tension were significantly decreased and lung oedema impaired pulmonary function on D1. By repeating ozone exposures, progressive functional adaptation occurred. Ozone induced a significant increase of BAL neutrophil percentage on D1. On D3 and D7, neutrophil percentage was progressively decreased, but remained significantly elevated. BAL total proteins were significantly increased on D1 and decreased progressively until D7. 8-Epi-PGF2alpha was significantly increased on D1 and was returned to baseline on D3 and D7, whilst glutathione significantly increased on D3 and returned to baseline on D7. Uric acid was increased ten-fold on D1. On D3, uric acid was increased six-fold and was persistently elevated at D7. This study suggests that ozone adaptation of functional and inflammatory variables is accompanied with sustained BAL uric acid elevation.

  5. Acid stress mediated adaptive divergence in ion channel function during embryogenesis in Rana arvalis

    PubMed Central

    Shu, Longfei; Laurila, Anssi; Räsänen, Katja

    2015-01-01

    Ion channels and pumps are responsible for ion flux in cells, and are key mechanisms mediating cellular function. Many environmental stressors, such as salinity and acidification, are known to severely disrupt ionic balance of organisms thereby challenging fitness of natural populations. Although ion channels can have several vital functions during early life-stages (e.g. embryogenesis), it is currently not known i) how developing embryos maintain proper intracellular conditions when exposed to environmental stress and ii) to what extent environmental stress can drive intra-specific divergence in ion channels. Here we studied the moor frog, Rana arvalis, from three divergent populations to investigate the role of different ion channels and pumps for embryonic survival under acid stress (pH 4 vs 7.5) and whether populations adapted to contrasting acidities differ in the relative role of different ion channel/pumps. We found that ion channels that mediate Ca2+ influx are essential for embryonic survival under acidic pH, and, intriguingly, that populations differ in calcium channel function. Our results suggest that adaptive divergence in embryonic acid stress tolerance of amphibians may in part be mediated by Ca2+ balance. We suggest that ion flux may mediate adaptive divergence of natural populations at early life-stages in the face of environmental stress. PMID:26381453

  6. Adaptive tolerance to a pathogenic fungus drives major histocompatibility complex evolution in natural amphibian populations

    PubMed Central

    Savage, Anna E.; Zamudio, Kelly R.

    2016-01-01

    Amphibians have been affected globally by the disease chytridiomycosis, caused by the fungus Batrachochytrium dendrobatidis (Bd), and we are just now beginning to understand how immunogenetic variability contributes to disease susceptibility. Lineages of an expressed major histocompatibility complex (MHC) class II locus involved in acquired immunity are associated with chytridiomycosis susceptibility in controlled laboratory challenge assays. Here, we extend these findings to natural populations that vary both in exposure and response to Bd. We find that MHC alleles and supertypes associated with Bd survival in the field show a molecular signal of positive selection, while those associated with susceptibility do not, supporting the hypothesis that heritable Bd tolerance is rapidly evolving. We compare MHC supertypes to neutral loci to demonstrate where selection versus demography is shaping MHC variability. One population with Bd tolerance in nature shows a significant signal of directional selection for the same allele (allele Q) that was significantly associated with survival in an earlier laboratory study. Our findings indicate that selective pressure for Bd survival drives rapid immunogenetic adaptation in some natural populations, despite differences in environment and demography. Our field-based analysis of immunogenetic variation confirms that natural amphibian populations have the evolutionary potential to adapt to chytridiomycosis. PMID:27009220

  7. Abscisic Acid and Ethylene Increase in Heterodera avenae-infected Tolerant or Intolerant Oat Cultivars

    PubMed Central

    Volkmar, K. M.

    1991-01-01

    The relationship between root stunting caused by the cereal cyst nematode and levels of two root growth inhibiting hormones, abscisic acid and ethylene, was investigated in aseptically cultured root segments and in intact roots of two oat cultivars differing in tolerance to the nematode. Cultured root segments of oat cultivars New Zealand Cape (tolerant) and Sual (intolerant) were inoculated with sterilized Heterodera avenae second-stage juveniles. Suppressed growth of root axes and emerged laterals following nematode penetration corresponded to an increase in abscisic acid and ethylene in roots of both intolerant and tolerant cultivars. When the experiment was repeated on intact root systems, nematodes retarded root growth of Sual more than New Zealand Cape despite an increase in ABA and ethylene in both cultivars. Abscisic acid and (or) ethylene may be involved in growth inhibition of H. avenae-infected roots but appear to play no direct role in determining tolerance. PMID:19283149

  8. Transcriptomic analysis reveals the flooding tolerant mechanism in flooding tolerant line and abscisic acid treated soybean.

    PubMed

    Yin, Xiaojian; Hiraga, Susumu; Hajika, Makita; Nishimura, Minoru; Komatsu, Setsuko

    2017-03-01

    Soybean is highly sensitive to flooding stress and exhibits markedly reduced plant growth and grain yield under flooding conditions. To explore the mechanisms underlying initial flooding tolerance in soybean, RNA sequencing-based transcriptomic analysis was performed using a flooding-tolerant line and ABA-treated soybean. A total of 31 genes included 12 genes that exhibited similar temporal patterns were commonly changed in these plant groups in response to flooding and they were mainly involved in RNA regulation and protein metabolism. The mRNA expression of matrix metalloproteinase, glucose-6-phosphate isomerase, ATPase family AAA domain-containing protein 1, and cytochrome P450 77A1 was up-regulated in wild-type soybean under flooding conditions; however, no changes were detected in the flooding-tolerant line or ABA-treated soybean. The mRNA expression of cytochrome P450 77A1 was specifically up-regulated in root tips by flooding stress, but returned to the level found in control plants following treatment with the P450 inhibitor uniconazole. The survival ratio and root fresh weight of plants were markedly improved by 3-h uniconazole treatment under flooding stress. Taken together, these results suggest that cytochrome P450 77A1 is suppressed by uniconazole treatment and that this inhibition may enhance soybean tolerance to flooding stress.

  9. Natural variation among Arabidopsis accessions reveals malic acid as a key mediator of Nickel (Ni) tolerance.

    PubMed

    Agrawal, Bhavana; Lakshmanan, Venkatachalam; Kaushik, Shail; Bais, Harsh P

    2012-08-01

    Plants have evolved various mechanisms for detoxification that are specific to the plant species as well as the metal ion chemical properties. Malic acid, which is commonly found in plants, participates in a number of physiological processes including metal chelation. Using natural variation among Arabidopsis accessions, we investigated the function of malic acid in Nickel (Ni) tolerance and detoxification. The Ni-induced production of reactive oxygen species was found to be modulated by intracellular malic acid, indicating its crucial role in Ni detoxification. Ni tolerance in Arabidopsis may actively involve malic acid and/or complexes of Ni and malic acid. Investigation of malic acid content in roots among tolerant ecotypes suggested that a complex of Ni and malic acid may be involved in translocation of Ni from roots to leaves. The exudation of malic acid from roots in response to Ni treatment in either susceptible or tolerant plant species was found to be partially dependent on AtALMT1 expression. A lower concentration of Ni (10 µM) treatment induced AtALMT1 expression in the Ni-tolerant Arabidopsis ecotypes. We found that the ecotype Santa Clara (S.C.) not only tolerated Ni but also accumulated more Ni in leaves compared to other ecotypes. Thus, the ecotype S.C. can be used as a model system to delineate the biochemical and genetic basis of Ni tolerance, accumulation, and detoxification in plants. The evolution of Ni hyperaccumulators, which are found in serpentine soils, is an interesting corollary to the fact that S.C. is also native to serpentine soils.

  10. A multi-layer robust adaptive fault tolerant control system for high performance aircraft

    NASA Astrophysics Data System (ADS)

    Huo, Ying

    Modern high-performance aircraft demand advanced fault-tolerant flight control strategies. Not only the control effector failures, but the aerodynamic type failures like wing-body damages often result in substantially deteriorate performance because of low available redundancy. As a result the remaining control actuators may yield substantially lower maneuvering capabilities which do not authorize the accomplishment of the air-craft's original specified mission. The problem is to solve the control reconfiguration on available control redundancies when the mission modification is urged to save the aircraft. The proposed robust adaptive fault-tolerant control (RAFTC) system consists of a multi-layer reconfigurable flight controller architecture. It contains three layers accounting for different types and levels of failures including sensor, actuator, and fuselage damages. In case of the nominal operation with possible minor failure(s) a standard adaptive controller stands to achieve the control allocation. This is referred to as the first layer, the controller layer. The performance adjustment is accounted for in the second layer, the reference layer, whose role is to adjust the reference model in the controller design with a degraded transit performance. The upmost mission adjust is in the third layer, the mission layer, when the original mission is not feasible with greatly restricted control capabilities. The modified mission is achieved through the optimization of the command signal which guarantees the boundedness of the closed-loop signals. The main distinguishing feature of this layer is the the mission decision property based on the current available resources. The contribution of the research is the multi-layer fault-tolerant architecture that can address the complete failure scenarios and their accommodations in realities. Moreover, the emphasis is on the mission design capabilities which may guarantee the stability of the aircraft with restricted post

  11. Inverse metabolic engineering based on transient acclimation of yeast improves acid-containing xylose fermentation and tolerance to formic and acetic acids.

    PubMed

    Hasunuma, Tomohisa; Sakamoto, Takatoshi; Kondo, Akihiko

    2016-01-01

    Improving the production of ethanol from xylose is an important goal in metabolic engineering of Saccharomyces cerevisiae. Furthermore, S. cerevisiae must produce ethanol in the presence of weak acids (formate and acetate) generated during pre-treatment of lignocellulosic biomass. In this study, weak acid-containing xylose fermentation was significantly improved using cells that were acclimated to the weak acids during pre-cultivation. Transcriptome analyses showed that levels of transcripts for transcriptional/translational machinery-related genes (RTC3 and ANB1) were enhanced by formate and acetate acclimation. Recombinant yeast strains overexpressing RTC3 and ANB1 demonstrated improved ethanol production from xylose in the presence of the weak acids, along with improved tolerance to the acids. Novel metabolic engineering strategy based on the combination of short-term acclimation and system-wide analysis was developed, which can develop stress-tolerant strains in a short period of time, although conventional evolutionary engineering approach has required long periods of time to isolate inhibitor-adapted strains.

  12. Comparative proteomic analysis of differentially expressed proteins in β-aminobutyric acid enhanced Arabidopsis thaliana tolerance to simulated acid rain.

    PubMed

    Liu, Tingwu; Jiang, Xinwu; Shi, Wuliang; Chen, Juan; Pei, Zhenming; Zheng, Hailei

    2011-05-01

    Acid rain is a worldwide environmental issue that has seriously destroyed forest ecosystems. As a highly effective and broad-spectrum plant resistance-inducing agent, β-aminobutyric acid could elevate the tolerance of Arabidopsis when subjected to simulated acid rain. Using comparative proteomic strategies, we analyzed 203 significantly varied proteins of which 175 proteins were identified responding to β-aminobutyric acid in the absence and presence of simulated acid rain. They could be divided into ten groups according to their biological functions. Among them, the majority was cell rescue, development and defense-related proteins, followed by transcription, protein synthesis, folding, modification and destination-associated proteins. Our conclusion is β-aminobutyric acid can lead to a large-scale primary metabolism change and simultaneously activate antioxidant system and salicylic acid, jasmonic acid, abscisic acid signaling pathways. In addition, β-aminobutyric acid can reinforce physical barriers to defend simulated acid rain stress.

  13. 78 FR 20029 - Castor Oil, Polymer With Adipic Acid, Linoleic Acid, Oleic Acid and Ricinoleic Acid; Tolerance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-03

    ... AGENCY 40 CFR Part 180 Castor Oil, Polymer With Adipic Acid, Linoleic Acid, Oleic Acid and Ricinoleic..., polymer with adipic acid, linoleic acid, oleic acid and ricinoleic acid (CAS Reg. No. 1357486-09- 9) when used as an inert ingredient in a pesticide formulation. Advance Polymer Technology submitted a...

  14. Extraordinarily Adaptive Properties of the Genetically Encoded Amino Acids

    PubMed Central

    Ilardo, Melissa; Meringer, Markus; Freeland, Stephen; Rasulev, Bakhtiyor; Cleaves II, H. James

    2015-01-01

    Using novel advances in computational chemistry, we demonstrate that the set of 20 genetically encoded amino acids, used nearly universally to construct all coded terrestrial proteins, has been highly influenced by natural selection. We defined an adaptive set of amino acids as one whose members thoroughly cover relevant physico-chemical properties, or “chemistry space.” Using this metric, we compared the encoded amino acid alphabet to random sets of amino acids. These random sets were drawn from a computationally generated compound library containing 1913 alternative amino acids that lie within the molecular weight range of the encoded amino acids. Sets that cover chemistry space better than the genetically encoded alphabet are extremely rare and energetically costly. Further analysis of more adaptive sets reveals common features and anomalies, and we explore their implications for synthetic biology. We present these computations as evidence that the set of 20 amino acids found within the standard genetic code is the result of considerable natural selection. The amino acids used for constructing coded proteins may represent a largely global optimum, such that any aqueous biochemistry would use a very similar set. PMID:25802223

  15. Extraordinarily Adaptive Properties of the Genetically Encoded Amino Acids

    NASA Astrophysics Data System (ADS)

    Ilardo, Melissa; Meringer, Markus; Freeland, Stephen; Rasulev, Bakhtiyor; Cleaves, H. James, II

    2015-03-01

    Using novel advances in computational chemistry, we demonstrate that the set of 20 genetically encoded amino acids, used nearly universally to construct all coded terrestrial proteins, has been highly influenced by natural selection. We defined an adaptive set of amino acids as one whose members thoroughly cover relevant physico-chemical properties, or ``chemistry space.'' Using this metric, we compared the encoded amino acid alphabet to random sets of amino acids. These random sets were drawn from a computationally generated compound library containing 1913 alternative amino acids that lie within the molecular weight range of the encoded amino acids. Sets that cover chemistry space better than the genetically encoded alphabet are extremely rare and energetically costly. Further analysis of more adaptive sets reveals common features and anomalies, and we explore their implications for synthetic biology. We present these computations as evidence that the set of 20 amino acids found within the standard genetic code is the result of considerable natural selection. The amino acids used for constructing coded proteins may represent a largely global optimum, such that any aqueous biochemistry would use a very similar set.

  16. Mechanism of aluminum tolerance in snapbeans. Root exudation of citric acid

    SciTech Connect

    Miyasaka, S.C. ); Buta, J.G.; Howell, R.K.; Foy, C.D. )

    1991-07-01

    One proposed mechanism of aluminum (Al) tolerance in plants is the release of an Al-chelating compound into the rhizosphere. In this experiment, two cultivars of snapbeans (Phaseolus vulgaris L. Romano and Dade) that differ in Al tolerance were grown hydroponically with and without Al under aseptic conditions. After growth in nutrient solutions for 8 days, aliphatic and phenolic organic acids were analyzed in the culture solutions with an ion chromatograph and a high pressure liquid chromatograph. The tolerant snapbean, Dade when exposed to Al, exuded citric acid into the rhizosphere in a concentration that was 70 times as great as that of Dade grown without Al, and 10 times as great as that of Romano grown without Al, and 10 times as great as that of Romano, exuded only slightly more citric acid into the growing medium under Al-stress, compared to nonstressed conditions. Citric acid is known to chelate Al strongly and to reverse its phytotoxic effects. Also, citric acid has been shown previously to enhance the availability of phosphorus (P) from insoluble Al phosphates, Thus, one mechanism of Al-tolerance in snapbeans appears to be the exudation of citric acid into the rhizosphere, induced either by toxic levels of Al or by low P due to the precipitation of insoluble Al phosphates. The experiment was not able to distinguish between these two factors; however, tolerance to both primary and secondary Al-stress injuries are important for plants growing in Al-toxic soils.

  17. 40 CFR 180.1321 - Complex Polymeric Polyhydroxy Acids; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... RESIDUES IN FOOD Exemptions From Tolerances § 180.1321 Complex Polymeric Polyhydroxy Acids; exemption from... the residues of complex polymeric polyhydroxy acids in or on all food commodities when applied as a plant growth regulator and used in accordance with good agricultural practices....

  18. Altered macrophage arachidonic acid metabolism induced by endotoxin tolerance: characterization and mechanisms

    SciTech Connect

    Rogers, T.S.

    1986-01-01

    Altered macrophage arachidonic acid (AA) metabolism may play a role in endotoxic shock and the phenomenon of endotoxin tolerance induced by repeated injections of endotoxin. Studies were initiated to characterize both lipoxygenase and cyclooxygenase metabolite formation by endotoxin tolerant and non-tolerant macrophages in response to 4 different stimuli, i.e., endotoxin, glucan, zymosan, and the calcium ionophore A23187. In contrast to previous reports of decreased prostaglandin synthesis by tolerant macrophages, A23187-stimulated immunoreactive (i) leukotriene (LT) C/sub 4/D/sub 4/ and prostaglandin (PG) E/sub 2/ production by tolerant cells was greater than that by non-tolerant controls (p <0.001). However, A23187-stimulated i6-keto PGF/sub 1a/ levels were lower in tolerant macrophages compared to controls (P < 0.05). iL TC/sub 4/D/sub 4/ production was not significantly stimulated by endotoxin or glucan, but was stimulated by zymosan in non-tolerant cells. Synthesis of iLTB/sub 4/ by control macrophages was stimulated by endotoxin (p <0.01). The effect of tolerance on factors that affect AA release was investigated by measuring /sup 14/C-AA incorporation and release and phospholipase A/sub 2/ activity

  19. Naturally evolved enhanced Cd tolerance of Dianthus carthusianorum L. is not related to accumulation of thiol peptides and organic acids.

    PubMed

    Wójcik, Małgorzata; Dresler, Sławomir; Plak, Andrzej; Tukiendorf, Anna

    2015-05-01

    Two contrasting ecotypes of Dianthus carthusianorum L., metallicolous (M) and nonmetallicolous (NM), were cultivated in hydroponics at 0-50 μM Cd for 14 days to compare their Cd accumulation, sensitivity and tolerance mechanisms. While both ecotypes contained similar concentrations of Cd in the shoots and roots, the M ecotype was more Cd-tolerant (as measured by fresh weight production and root and leaf viability). Both ecotypes accumulated phytochelatins (PCs) in response to Cd with a higher amount thereof found in the NM ecotype. Concentrations of PCs remained unchanged with increasing Cd concentrations in the root tissues, but their content in the shoots increased. The addition of L-buthionine-sulfoximine (BSO) diminished glutathione (GSH) accumulation and arrested PC production, which increased the sensitivity to Cd of the NM, but not M ecotype. Organic acids (malate and citrate) as well as proline accumulation did not change significantly after Cd exposition and was at the same level in both ecotypes. The enhanced Cd tolerance of the M ecotype of D. carthusianorum cannot be explained in terms of restricted Cd uptake and differential production of PCs, organic acids or proline; some other mechanisms must be involved in its adaptation to the high Cd content in the environment.

  20. Acid-tolerant microaerophilic Fe(II)-oxidizing bacteria promote Fe(III)-accumulation in a fen.

    PubMed

    Lüdecke, Claudia; Reiche, Marco; Eusterhues, Karin; Nietzsche, Sandor; Küsel, Kirsten

    2010-10-01

    The ecological importance of Fe(II)-oxidizing bacteria (FeOB) at circumneutral pH is often masked in the presence of O(2) where rapid chemical oxidation of Fe(II) predominates. This study addresses the abundance, diversity and activity of microaerophilic FeOB in an acidic fen (pH ∼ 5) located in northern Bavaria, Germany. Mean O(2) penetration depth reached 16 cm where the highest dissolved Fe(II) concentrations (up to 140 µM) were present in soil water. Acid-tolerant FeOB cultivated in gradient tubes were most abundant (10(6) cells g(-1) peat) at the 10-20 cm depth interval. A stable enrichment culture was active at up to 29% O(2) saturation and Fe(III) accumulated 1.6 times faster than in abiotic controls. An acid-tolerant, microaerophilic isolate (strain CL21) was obtained which was closely related to the neutrophilic, lithoautotrophic FeOB Sideroxydans lithotrophicus strain LD-1. CL21 oxidized Fe(II) between pH 4 and 6.0, and produced nanoscale-goethites with a clearly lower mean coherence length (7 nm) perpendicular to the (110) plane than those formed abiotically (10 nm). Our results suggest that an acid-tolerant population of FeOB is thriving at redox interfaces formed by diffusion-limited O(2) transport in acidic peatlands. Furthermore, this well-adapted population is successfully competing with chemical oxidation and thereby playing an important role in the microbial iron cycle.

  1. An Autonomous Self-Aware and Adaptive Fault Tolerant Routing Technique for Wireless Sensor Networks

    PubMed Central

    Abba, Sani; Lee, Jeong-A

    2015-01-01

    We propose an autonomous self-aware and adaptive fault-tolerant routing technique (ASAART) for wireless sensor networks. We address the limitations of self-healing routing (SHR) and self-selective routing (SSR) techniques for routing sensor data. We also examine the integration of autonomic self-aware and adaptive fault detection and resiliency techniques for route formation and route repair to provide resilience to errors and failures. We achieved this by using a combined continuous and slotted prioritized transmission back-off delay to obtain local and global network state information, as well as multiple random functions for attaining faster routing convergence and reliable route repair despite transient and permanent node failure rates and efficient adaptation to instantaneous network topology changes. The results of simulations based on a comparison of the ASAART with the SHR and SSR protocols for five different simulated scenarios in the presence of transient and permanent node failure rates exhibit a greater resiliency to errors and failure and better routing performance in terms of the number of successfully delivered network packets, end-to-end delay, delivered MAC layer packets, packet error rate, as well as efficient energy conservation in a highly congested, faulty, and scalable sensor network. PMID:26295236

  2. Adaptive introgression of abiotic tolerance traits in the sunflower Helianthus annuus.

    PubMed

    Whitney, Kenneth D; Randell, Rebecca A; Rieseberg, Loren H

    2010-07-01

    *Adaptive trait introgression is increasingly recognized as common. However, it is unclear whether adaptive genetic exchanges typically affect only a single trait, or instead affect multiple aspects of the phenotype. Here, we examine introgression of abiotic tolerance traits between two hybridizing North American sunflower species, Helianthus annuus and Helianthus debilis. *In two common gardens in the hybrid range, we measured 10 ecophysiological, phenological, and architectural traits for parents and their natural and artificial hybrids, and examined how fitness covaried with trait values. *Eight of the 10 traits showed patterns consistent with introgression from H. debilis into H. annuus, and suggested that H. debilis-like traits allowing rapid growth and reproduction before summer heat and drought have been favored in the hybrid range. Natural selection currently favors BC(1) hybrids with H. debilis-like branching traits. *We demonstrate that introgression has altered multiple aspects of the H. annuus phenotype in an adaptive manner, has affected traits relevant to both biotic and abiotic environments, and may have aided expansion of the H. annuus range into central Texas, USA.

  3. Physiological basis for high CO2 tolerance in marine ectothermic animals: pre-adaptation through lifestyle and ontogeny?

    NASA Astrophysics Data System (ADS)

    Melzner, F.; Gutowska, M. A.; Langenbuch, M.; Dupont, S.; Lucassen, M.; Thorndyke, M. C.; Bleich, M.; Pörtner, H.-O.

    2009-05-01

    compensation of pH disturbances during exposure to elevated environmental pCO2. Compensation of extracellular acid-base status in turn may be extremely important in avoiding metabolic depression. So far, maintained "performance" at higher seawater pCO2 (>0.3 to 0.6 kPa) has only been observed in adults/juveniles of active, high metabolic species with a powerful ion regulatory apparatus. However, while some of these taxa are adapted to cope with elevated pCO2 during their regular embryonic development, unicellular gametes, which lack specialized ion-regulatory epithelia, may be the true bottleneck for ecological success - even of the more tolerant taxa.

  4. 40 CFR 180.1068 - C12-C18 fatty acid potassium salts; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false C12-C18 fatty acid potassium salts... RESIDUES IN FOOD Exemptions From Tolerances § 180.1068 C12-C18 fatty acid potassium salts; exemption from the requirement of a tolerance. C12-C18 fatty acids (saturated and unsaturated) potassium salts...

  5. 40 CFR 180.1068 - C12-C18 fatty acid potassium salts; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false C12-C18 fatty acid potassium salts... RESIDUES IN FOOD Exemptions From Tolerances § 180.1068 C12-C18 fatty acid potassium salts; exemption from the requirement of a tolerance. C12-C18 fatty acids (saturated and unsaturated) potassium salts...

  6. 40 CFR 180.1068 - C12-C18 fatty acid potassium salts; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false C12-C18 fatty acid potassium salts... RESIDUES IN FOOD Exemptions From Tolerances § 180.1068 C12-C18 fatty acid potassium salts; exemption from the requirement of a tolerance. C12-C18 fatty acids (saturated and unsaturated) potassium salts...

  7. 40 CFR 180.1068 - C12-C18 fatty acid potassium salts; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false C12-C18 fatty acid potassium salts... RESIDUES IN FOOD Exemptions From Tolerances § 180.1068 C12-C18 fatty acid potassium salts; exemption from the requirement of a tolerance. C12-C18 fatty acids (saturated and unsaturated) potassium salts...

  8. 40 CFR 180.1068 - C12-C18 fatty acid potassium salts; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false C12-C18 fatty acid potassium salts... RESIDUES IN FOOD Exemptions From Tolerances § 180.1068 C12-C18 fatty acid potassium salts; exemption from the requirement of a tolerance. C12-C18 fatty acids (saturated and unsaturated) potassium salts...

  9. A hybrid robust fault tolerant control based on adaptive joint unscented Kalman filter.

    PubMed

    Shabbouei Hagh, Yashar; Mohammadi Asl, Reza; Cocquempot, Vincent

    2017-01-01

    In this paper, a new hybrid robust fault tolerant control scheme is proposed. A robust H∞ control law is used in non-faulty situation, while a Non-Singular Terminal Sliding Mode (NTSM) controller is activated as soon as an actuator fault is detected. Since a linear robust controller is designed, the system is first linearized through the feedback linearization method. To switch from one controller to the other, a fuzzy based switching system is used. An Adaptive Joint Unscented Kalman Filter (AJUKF) is used for fault detection and diagnosis. The proposed method is based on the simultaneous estimation of the system states and parameters. In order to show the efficiency of the proposed scheme, a simulated 3-DOF robotic manipulator is used.

  10. Priming effect of abscisic acid on alkaline stress tolerance in rice (Oryza sativa L.) seedlings.

    PubMed

    Wei, Li-Xing; Lv, Bing-Sheng; Wang, Ming-Ming; Ma, Hong-Yuan; Yang, Hao-Yu; Liu, Xiao-Long; Jiang, Chang-Jie; Liang, Zheng-Wei

    2015-05-01

    Saline-alkaline stress is characterized by high salinity and high alkalinity (high pH); alkaline stress has been shown to be the primary factor inhibiting rice seedling growth. In this study, we investigated the potential priming effect of abscisic acid (ABA) on tolerance of rice seedlings to alkaline stress simulated by Na2CO3. Seedlings were pretreated with ABA at concentrations of 0 (control), 10, and 50 μM by root-drench for 24 h and then transferred to a Na2CO3 solution that did not contain ABA. Compared to control treatment, pretreatment with ABA substantially improved the survival rate of rice seedlings and increased biomass accumulation after 7 days under the alkaline condition. ABA application at 10 μM also alleviated the inhibitory effects of alkaline stress on the total root length and root surface area. Physiologically, ABA increased relative water content (RWC) and decreased cell membrane injury degree (MI) and Na(+)/K(+) ratios. In contrast, fluridone (an ABA biosynthesis inhibitor) decreased the RWC and increased MI in shoots under the alkaline conditions. These data suggest that ABA has a potent priming effect on the adaptive response to alkaline stress in rice and may be useful for improving rice growth in saline-alkaline paddy fields.

  11. Tolerability of intramuscular and intradermal delivery by CELLECTRA® adaptive constant current electroporation device in healthy volunteers

    PubMed Central

    Diehl, Malissa C; Lee, Jessica C; Daniels, Stephen E; Tebas, Pablo; Khan, Amir S; Giffear, Mary; Sardesai, Niranjan Y; Bagarazzi, Mark L

    2013-01-01

    DNA vaccines are being developed as a potentially safe and effective immunization platform. However, translation of DNA vaccines into a clinical setting has produced results that have fallen short of those generated in a preclinical setting. Various strategies are being developed to address this lack of potency, including improvements in delivery methods. Electroporation (EP) creates transient increases in cell membrane permeability, thus enhancing DNA uptake and leading to a more robust immune response. Here, we report on the safety and tolerability of delivering sterile saline via intramuscular (IM) or intradermal (ID) injection followed by in vivo electroporation using the CELLECTRA® adaptive constant current device in healthy adults from two open-label studies. Pain, as assessed by VAS, was highest immediately after EP but diminishes by about 50% within 5 min. Mean VAS scores appear to correlate with the amount of energy delivered and depth of needle insertion, especially for intramuscular EP. Mean scores did not exceed 7 out of 10 or 3 out of 10 for IM and ID EP, respectively. The majority of adverse events included mild to moderate injection site reactions that resolved within one day. No deaths or serious adverse events were reported during the course of either study. Overall, injection followed by EP with the CELLECTRA® device was well-tolerated and no significant safety concerns were identified. These studies support the further development of electroporation as a vaccine delivery method to enhance immunogenicity, particularly for diseases in which traditional vaccination approaches are ineffective. PMID:24051434

  12. 77 FR 26954 - 1-Naphthaleneacetic acid; Pesticide Tolerances

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-08

    ... 1- naphthaleneacetic acid, potassium and sodium salts in or on potatoes. Stehekin, LLC petitioned... irritant or a dermal sensitizer. The 1-naphthaleneacetic acid and its sodium salt were found to be... minor skeletal changes) were seen in rats orally gavaged with the sodium salt. Reproductive effects...

  13. Salmonella enterica serovar Typhimurium and Listeria monocytogenes acid tolerance response induced by organic acids at 20 degrees C: optimization and modeling.

    PubMed

    Greenacre, E J; Brocklehurst, T F; Waspe, C R; Wilson, D R; Wilson, P D G

    2003-07-01

    An acid tolerance response (ATR) has been demonstrated in Listeria monocytogenes and Salmonella enterica serovar Typhimurium in response to low pH poised (i.e., adapted) with acetic or lactic acids at 20 degrees C and modeled by using dynamic differential equations. The ATR was not immediate or prolonged, and optimization occurred after exposure of L. monocytogenes for 3 h at pH 5.5 poised with acetic acid and for 2 h at pH 5.5 poised with lactic acid and after exposure of S. enterica serovar Typhimurium for 2 h at pH 5.5 poised with acetic acid and for 3 h at pH 5.5 poised with lactic acid. An objective mechanistic analysis of the acid inactivation data yielded estimates of the duration of the shoulder (t(s)), the log-linear decline (k(max)), and the magnitude of a critical component (C). The magnitude of k(max) gave the best agreement with estimates of conditions for optimum ATR induction made from the raw data.

  14. Variation-tolerant capture and multiplex detection of nucleic acids: application to detection of microbes.

    PubMed

    Ohrmalm, Christina; Eriksson, Ronnie; Jobs, Magnus; Simonson, Magnus; Strømme, Maria; Bondeson, Kåre; Herrmann, Björn; Melhus, Asa; Blomberg, Jonas

    2012-10-01

    In contrast to ordinary PCRs, which have a limited multiplex capacity and often return false-negative results due to target variation or inhibition, our new detection strategy, VOCMA (variation-tolerant capture multiplex assay), allows variation-tolerant, target-specific capture and detection of many nucleic acids in one test. Here we demonstrate the use of a single-tube, dual-step amplification strategy that overcomes the usual limitations of PCR multiplexing, allowing at least a 22-plex format with retained sensitivity. Variation tolerance was achieved using long primers and probes designed to withstand variation at known sites and a judicious mix of degeneration and universal bases. We tested VOCMA in situations where enrichment from a large sample volume with high sensitivity and multiplexity is important (sepsis; streptococci, enterococci, and staphylococci, several enterobacteria, candida, and the most important antibiotic resistance genes) and where variation tolerance and high multiplexity is important (gastroenteritis; astrovirus, adenovirus, rotavirus, norovirus genogroups I and II, and sapovirus, as well as enteroviruses, which are not associated with gastroenteritis). Detection sensitivities of 10 to 1,000 copies per reaction were achieved for many targets. VOCMA is a highly multiplex, variation-tolerant, general purpose nucleic acid detection concept. It is a specific and sensitive method for simultaneous detection of nucleic acids from viruses, bacteria, fungi, and protozoa, as well as host nucleic acid, in the same test. It can be run on an ordinary PCR and a Luminex machine and is suitable for both clinical diagnoses and microbial surveillance.

  15. Tolerance to LSD and DOB induced shaking behaviour: differential adaptations of frontocortical 5-HT(2A) and glutamate receptor binding sites.

    PubMed

    Buchborn, Tobias; Schröder, Helmut; Dieterich, Daniela C; Grecksch, Gisela; Höllt, Volker

    2015-03-15

    Serotonergic hallucinogens, such as lysergic acid diethylamide (LSD) and dimethoxy-bromoamphetamine (DOB), provoke stereotype-like shaking behaviour in rodents, which is hypothesised to engage frontocortical glutamate receptor activation secondary to serotonin2A (5-HT2A) related glutamate release. Challenging this hypothesis, we here investigate whether tolerance to LSD and DOB correlates with frontocortical adaptations of 5-HT2A and/or overall-glutamate binding sites. LSD and DOB (0.025 and 0.25 mg/kg, i.p.) induce a ketanserin-sensitive (0.5 mg/kg, i.p., 30-min pretreatment) increase in shaking behaviour (including head twitches and wet dog shakes), which with repeated application (7× in 4 ds) is undermined by tolerance. Tolerance to DOB, as indexed by DOB-sensitive [(3)H]spiroperidol and DOB induced [(35)S]GTP-gamma-S binding, is accompanied by a frontocortical decrease in 5-HT2A binding sites and 5-HT2 signalling, respectively; glutamate-sensitive [(3)H]glutamate binding sites, in contrast, remain unchanged. As to LSD, 5-HT2 signalling and 5-HT2A binding, respectively, are not or only marginally affected, yet [(3)H]glutamate binding is significantly decreased. Correlation analysis interrelates tolerance to DOB to the reduced 5-HT2A (r=.80) as well as the unchanged [(3)H]glutamate binding sites (r=.84); tolerance to LSD, as opposed, shares variance with the reduction in [(3)H]glutamate binding sites only (r=.86). Given that DOB and LSD both induce tolerance, one correlating with 5-HT2A, the other with glutamate receptor adaptations, it might be inferred that tolerance can arise at either level. That is, if a hallucinogen (like LSD in our study) fails to induce 5-HT2A (down-)regulation, glutamate receptors (activated postsynaptic to 5-HT2A related glutamate release) might instead adapt and thus prevent further overstimulation of the cortex.

  16. Physiological basis for high CO2 tolerance in marine ectothermic animals: pre-adaptation through lifestyle and ontogeny?

    NASA Astrophysics Data System (ADS)

    Melzner, F.; Gutowska, M. A.; Langenbuch, M.; Dupont, S.; Lucassen, M.; Thorndyke, M. C.; Bleich, M.; Pörtner, H.-O.

    2009-10-01

    pH disturbances during exposure to elevated environmental pCO2. Compensation of extracellular acid-base status in turn may be important in avoiding metabolic depression. So far, maintained "performance" at higher seawater pCO2 (>0.3 to 0.6 kPa) has only been observed in adults/juveniles of active, high metabolic species with a powerful ion regulatory apparatus. However, while some of these taxa are adapted to cope with elevated pCO2 during their regular embryonic development, gametes, zygotes and early embryonic stages, which lack specialized ion-regulatory epithelia, may be the true bottleneck for ecological success - even of the more tolerant taxa. Our current understanding of which marine animal taxa will be affected adversely in their physiological and ecological fitness by projected scenarios of anthropogenic ocean acidification is quite incomplete. While a growing amount of empirical evidence from CO2 perturbation experiments suggests that several taxa might react quite sensitively to ocean acidification, others seem to be surprisingly tolerant. However, there is little mechanistic understanding on what physiological traits are responsible for the observed differential sensitivities (see reviews of Seibel and Walsh, 2003; Pörtner et al., 2004; Fabry et al., 2008; Pörtner, 2008). This leads us to the first very basic question of how to define general CO2 tolerance on the species level.

  17. Metabolomic analysis reveals key metabolites related to the rapid adaptation of Saccharomyce cerevisiae to multiple inhibitors of furfural, acetic acid, and phenol.

    PubMed

    Wang, Xin; Li, Bing-Zhi; Ding, Ming-Zhu; Zhang, Wei-Wen; Yuan, Ying-Jin

    2013-03-01

    During hydrolysis of lignocellulosic biomass, a broad range of inhibitors are generated, which interfere with yeast growth and bioethanol production. In order to improve the strain tolerance to multiple inhibitors--acetic acid, furfural, and phenol (three representative lignocellulose-derived inhibitors) and uncover the underlying tolerant mechanism, an adaptation experiment was performed in which the industrial Saccharomyces cerevisiae was cultivated repeatedly in a medium containing multiple inhibitors. The adaptation occurred quickly, accompanied with distinct increase in growth rate, glucose utilization rate, furfural metabolism rate, and ethanol yield, only after the first transfer. A similar rapid adaptation was also observed for the lab strains of BY4742 and BY4743. The metabolomic analysis was employed to investigate the responses of the industrial S. cereviaise to three inhibitors during the adaptation. The results showed that higher levels of 2-furoic acid, 2, 3-butanediol, intermediates in glycolytic pathway, and amino acids derived from glycolysis, were discovered in the adapted strains, suggesting that enhanced metabolic activity in these pathways may relate to resistance against inhibitors. Additionally, through single-gene knockouts, several genes related to alanine metabolism, GABA shunt, and glycerol metabolism were verified to be crucial for the resistance to multiple inhibitors. This study provides new insights into the tolerance mechanism against multiple inhibitors, and guides for the improvement of tolerant ethanologenic yeast strains for lignocellulose-bioethanol fermentation.

  18. Comparative transcriptomics elucidates adaptive phenol tolerance and utilization in lipid-accumulating Rhodococcus opacus PD630

    SciTech Connect

    Yoneda, Aki; Henson, William R.; Goldner, Nicholas K.; Park, Kun Joo; Forsberg, Kevin J.; Kim, Soo Ji; Pesesky, Mitchell W.; Foston, Marcus; Dantas, Gautam; Moon, Tae Seok

    2016-02-02

    Lignin-derived (e.g. phenolic) compounds can compromise the bioconversion of lignocellulosic biomass to fuels and chemicals due to their toxicity and recalcitrance. The lipid-accumulating bacterium Rhodococcus opacus PD630 has recently emerged as a promising microbial host for lignocellulose conversion to value-added products due to its natural ability to tolerate and utilize phenolics. To gain a better understanding of its phenolic tolerance and utilization mechanisms, we adaptively evolved R. opacus over 40 passages using phenol as its sole carbon source (up to 373% growth improvement over wild-type), and extensively characterized two strains from passages 33 and 40. The two adapted strains showed higher phenol consumption rates (~20 mg/l/h) and ~2-fold higher lipid production from phenol than the wild-type strain.Whole-genome sequencing and comparative transcriptomics identified highly-upregulated degradation pathways and putative transporters for phenol in both adapted strains, highlighting the important linkage between mechanisms of regulated phenol uptake, utilization, and evolved tolerance. Our study shows that the R. opacus mutants are likely to use their transporters to import phenol rather than export them, suggesting a new aromatic tolerance mechanism. The identified tolerance genes and pathways are promising candidates for future metabolic engineering in R. opacus for improved lignin conversion to lipid-based products.

  19. A Distance-Aware Replica Adaptive Data Gathering Protocol for Delay Tolerant Mobile Sensor Networks

    PubMed Central

    Feng, Yong; Gong, Haigang; Fan, Mingyu; Liu, Ming; Wang, Xiaomin

    2011-01-01

    In Delay Tolerant Mobile Sensor Networks (DTMSNs) that have the inherent features of intermitted connectivity and frequently changing network topology it is reasonable to utilize multi-replica schemes to improve the data gathering performance. However, most existing multi-replica approaches inject a large amount of message copies into the network to increase the probability of message delivery, which may drain each mobile node’s limited battery supply faster and result in too much contention for the restricted resources of the DTMSN, so a proper data gathering scheme needs a trade off between the number of replica messages and network performance. In this paper, we propose a new data gathering protocol called DRADG (for Distance-aware Replica Adaptive Data Gathering protocol), which economizes network resource consumption through making use of a self-adapting algorithm to cut down the number of redundant replicas of messages, and achieves a good network performance by leveraging the delivery probabilities of the mobile sensors as main routing metrics. Simulation results have shown that the proposed DRADG protocol achieves comparable or higher message delivery ratios at the cost of the much lower transmission overhead than several current DTMSN data gathering schemes. PMID:22163839

  20. Adaptive backstepping fault-tolerant control for flexible spacecraft with unknown bounded disturbances and actuator failures.

    PubMed

    Jiang, Ye; Hu, Qinglei; Ma, Guangfu

    2010-01-01

    In this paper, a robust adaptive fault-tolerant control approach to attitude tracking of flexible spacecraft is proposed for use in situations when there are reaction wheel/actuator failures, persistent bounded disturbances and unknown inertia parameter uncertainties. The controller is designed based on an adaptive backstepping sliding mode control scheme, and a sufficient condition under which this control law can render the system semi-globally input-to-state stable is also provided such that the closed-loop system is robust with respect to any disturbance within a quantifiable restriction on the amplitude, as well as the set of initial conditions, if the control gains are designed appropriately. Moreover, in the design, the control law does not need a fault detection and isolation mechanism even if the failure time instants, patterns and values on actuator failures are also unknown for the designers, as motivated from a practical spacecraft control application. In addition to detailed derivations of the new controller design and a rigorous sketch of all the associated stability and attitude error convergence proofs, illustrative simulation results of an application to flexible spacecraft show that high precise attitude control and vibration suppression are successfully achieved using various scenarios of controlling effective failures.

  1. Roles of diet and the acid tolerance response in survival of common Salmonella serotypes in feces of finishing pigs.

    PubMed

    Rajtak, Ursula; Boland, Fiona; Leonard, Nola; Bolton, Declan; Fanning, Séamus

    2012-01-01

    The persistence of Salmonella in the environment is an important factor influencing the transmission of infection in pig production. This study evaluated the effects of acid tolerance response (ATR), organic acid supplementation, and physical properties of feed on the survival of a five-strain Salmonella mixture in porcine feces held at 4 and 22°C for 88 days. Acid-adapted or non-acid-adapted nalidixic acid-resistant Salmonella strains were used to inoculate feces of pigs fed four different diets, which consisted of a nonpelleted, finely ground meal feed or a finely ground, pelleted feed that was left unsupplemented or was supplemented with K-diformate. Organic acid supplementation and physical properties of feed markedly influenced Salmonella survival, but the effects were highly dependent on storage temperature; survival was unaffected by ATR. The most pronounced effects were observed at 22°C, a temperature similar to that of finishing pig houses. The supplementation of meal diets with K-diformate significantly reduced the duration of survival (P < 0.1) and increased rates of decline (P < 0.0001) of salmonellae in feces compared to survival in feces of pigs fed unsupplemented meal. The pelleting of feed, compared to feeding meal, significantly reduced (P < 0.1) the duration of survival in feces held at 22°C. Only minor effects of feed form and acid supplementation on survivor numbers were observed at 4°C. Differences in the fecal survival of Salmonella could not be related to diet-induced changes in fecal physiochemical parameters. The predominant survival of S. enterica serovar Typhimurium DT193 and serotype 4,[5],12:i:- in porcine feces demonstrates the superior ability of these serotypes to survive in this environment. Fecal survival and transmission of Salmonella in pig herds may be reduced by dietary approaches, but effects are highly dependent on environmental temperature.

  2. High sustained +Gz acceleration: physiological adaptation to high-G tolerance

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.

    1998-01-01

    Since the early 1940s, a significant volume of research has been conducted in an effort to describe the impact of acute exposures to high-G acceleration on cardiovascular mechanisms responsible to maintaining cerebral perfusion and conscious in high performance aircraft pilots during aerial combat maneuvers. The value of understanding hemodynamic characteristics that underlie G-induced loss of consciousness has been instrumental in the evolution of optimal technology development (e.g., G-suits, positive pressure breathing, COMBAT EDGE, etc.) and pilot training (e.g., anti-G straining maneuvers). Although the emphasis of research has been placed on the development of protection against acute high +Gz acceleration effects, recent observations suggest that adaptation of cardiovascular mechanism associated with blood pressure regulation may contribute to a protective 'G-training' effect. Regular training at high G enhances G tolerance in humans, rats, guinea pigs, and dogs while prolonged layoff from exposure in high G profiles (G-layoff) can result in reduced G endurance. It seems probable that adaptations in physiological functions following chronically-repeated high G exposure (G training) or G-layoff could have significant impacts on performance during sustained high-G acceleration since protective technology such as G-suits and anit-G straining maneuvers are applied consistently during these periods of training. The purpose of this paper is to present a review of new data from three experiments that support the notion that repeated exposure on a regular basis to high sustained +Gz acceleration induces significant physiological adaptations which are associated with improved blood pressure regulation and subsequent protection of cerebral perfusion during orthostatic challenges.

  3. Tissue hypoxia during ischemic stroke: adaptive clues from hypoxia-tolerant animal models.

    PubMed

    Nathaniel, Thomas I; Williams-Hernandez, Ashley; Hunter, Anan L; Liddy, Caroline; Peffley, Dennis M; Umesiri, Francis E; Imeh-Nathaniel, Adebobola

    2015-05-01

    The treatment and prevention of hypoxic/ischemic brain injury in stroke patients remain a severe and global medical issue. Numerous clinical studies have resulted in a failure to develop chemical neuroprotection for acute, ischemic stroke. Over 150 estimated clinical trials of ischemic stroke treatments have been done, and more than 200 drugs and combinations of drugs for ischemic and hemorrhagic strokes have been developed. Billions of dollars have been invested for new scientific breakthroughs with only limited success. The revascularization of occluded cerebral arteries such as anti-clot treatments of thrombolysis has proven effective, but it can only be used in a 3-4.5h time frame after the onset of a stroke, and not for every patient. This review is about novel insights on how to resist tissue hypoxia from unconventional animal models. Ability to resist tissue hypoxia is an extraordinary ability that is not common in many laboratory animals such as rat and mouse models. For example, we can learn from a naked mole-rat, Chrysemys picta, how to actively regulate brain metabolic activity to defend the brain against fluctuating oxygen tension and acute bouts of oxidative stress following the onset of a stroke. Additionally, a euthermic arctic ground squirrel can teach us how the brain of a stroke patient can remain well oxygenated during tissue hypoxia with no evidence of cellular stress. In this review, we discuss how these animals provide us with a system to gain insight into the possible mechanisms of tissue hypoxia/ischemia. This issue is of clinical significance to stroke patients. We describe specific physiological and molecular adaptations employed by different animals' models of hypoxia tolerance in aquatic and terrestrial environments. We highlight how these adaptations might provide potential clues on strategies to adapt for the clinical management of tissue hypoxia during conditions such as stroke where oxygen demand fails to match the supply.

  4. Point mutation of H3/H4 histones affects acetic acid tolerance in Saccharomyces cerevisiae.

    PubMed

    Liu, Xiangyong; Zhang, Xiaohua; Zhang, Zhaojie

    2014-10-10

    The molecular mechanism of acetic acid tolerance in yeast remains unclear despite of its importance for efficient cellulosic ethanol production. In this study, we examined the effects of histone H3/H4 point mutations on yeast acetic acid tolerance by comprehensively screening a histone H3/H4 mutant library. A total of 24 histone H3/H4 mutants (six acetic acid resistant and 18 sensitive) were identified. Compared to the wild-type strain, the histone acetic acid-resistant mutants exhibited improved ethanol fermentation performance under acetic acid stress. Genome-wide transcriptome analysis revealed that changes in the gene expression in the acetic acid-resistant mutants H3 K37A and H4 K16Q were mainly related to energy production, antioxidative stress. Our results provide novel insights into yeast acetic acid tolerance on the basis of histone, and suggest a novel approach to improve ethanol production by altering the histone H3/H4 sequences.

  5. 78 FR 30213 - 1-Naphthaleneacetic acid; Pesticide Tolerances

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-22

    ... Classification System (NAICS) codes is not intended to be exhaustive, but rather provides a guide to help readers..., all forms degrade to the acid fairly quickly in the field and in biological systems. ] Therefore, EPA... weight and minor skeletal changes) were seen in rats orally gavaged with the sodium salt....

  6. Differential Soil Acidity Tolerance of Tropical Legume Cover Crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In tropical regions, soil acidity and low soil fertility are the most important yield limiting factors for sustainable crop production. Using legume cover crops as mulch is an important strategy not only to protect the soil loss from erosion but also ameliorating soil fertility. Information is limit...

  7. Tolerance of the nanocellulose-producing bacterium Gluconacetobacter xylinus to lignocellulose-derived acids and aldehydes.

    PubMed

    Zhang, Shuo; Winestrand, Sandra; Chen, Lin; Li, Dengxin; Jönsson, Leif J; Hong, Feng

    2014-10-08

    Lignocellulosic biomass serves as a potential alternative feedstock for production of bacterial nanocellulose (BNC), a high-value-added product of bacteria such as Gluconacetobacter xylinus. The tolerance of G. xylinus to lignocellulose-derived inhibitors (formic acid, acetic acid, levulinic acid, furfural, and 5-hydroxymethylfurfural) was investigated. Whereas 100 mM formic acid completely suppressed the metabolism of G. xylinus, 250 mM of either acetic acid or levulinic acid still allowed glucose metabolism and BNC production to occur. Complete suppression of glucose utilization and BNC production was observed after inclusion of 20 and 30 mM furfural and 5-hydroxymethylfurfural, respectively. The bacterium oxidized furfural and 5-hydroxymethylfurfural to furoic acid and 5-hydroxymethyl-2-furoic acid, respectively. The highest yields observed were 88% for furoic acid/furfural and 76% for 5-hydroxymethyl-2-furoic acid/5-hydroxymethylfurfural. These results are the first demonstration of the capability of G. xylinus to tolerate lignocellulose-derived inhibitors and to convert furan aldehydes.

  8. Adaptive response to acetic acid in the highly resistant yeast species Zygosaccharomyces bailii revealed by quantitative proteomics.

    PubMed

    Guerreiro, Joana F; Mira, Nuno P; Sá-Correia, Isabel

    2012-08-01

    Zygosaccharomyces bailii is the most tolerant yeast species to acetic acid-induced toxicity, being able to grow in the presence of concentrations of this food preservative close to the legal limits. For this reason, Z. bailii is the most important microbial contaminant of acidic food products but the mechanisms behind this intrinsic resistance to acetic acid are very poorly characterized. To gain insights into the adaptive response and tolerance to acetic acid in Z. bailii, we explored an expression proteomics approach, based on quantitative 2DE, to identify alterations occurring in the protein content in response to sudden exposure or balanced growth in the presence of an inhibitory but nonlethal concentration of this weak acid. A coordinate increase in the content of proteins involved in cellular metabolism, in particular, in carbohydrate metabolism (Mdh1p, Aco1p, Cit1p, Idh2p, and Lpd1p) and energy generation (Atp1p and Atp2p), as well as in general and oxidative stress response (Sod2p, Dak2p, Omp2p) was registered. Results reinforce the concept that glucose and acetic acid are coconsumed in Z. bailii, with acetate being channeled into the tricarboxylic acid cycle. When acetic acid is the sole carbon source, results suggest the activation of gluconeogenic and pentose phosphate pathways, based on the increased content of several proteins of these pathways after glucose exhaustion.

  9. Adaptive responses of Bacillus cereus ATCC14579 cells upon exposure to acid conditions involve ATPase activity to maintain their internal pH.

    PubMed

    Senouci-Rezkallah, Khadidja; Jobin, Michel P; Schmitt, Philippe

    2015-03-05

    This study examined the involvement of ATPase activity in the acid tolerance response (ATR) of Bacillus cereus ATCC14579 strain. In the current work, B. cereus cells were grown in anaerobic chemostat culture at external pH (pHe ) 7.0 or 5.5 and at a growth rate of 0.2 h(-1) . Population reduction and internal pH (pHi ) after acid shock at pH 4.0 was examined either with or without ATPase inhibitor N,N'-dicyclohexylcarbodiimide (DCCD) and ionophores valinomycin and nigericin. Population reduction after acid shock at pH 4.0 was strongly limited in cells grown at pH 5.5 (acid-adapted cells) compared with cells grown at pH 7.0 (unadapted cells), indicating that B. cereus cells grown at low pHe were able to induce a significant ATR and Exercise-induced increase in ATPase activity. However, DCCD and ionophores had a negative effect on the ability of B. cereus cells to survive and maintain their pHi during acid shock. When acid shock was achieved after DCCD treatment, pHi was markedly dropped in unadapted and acid-adapted cells. The ATPase activity was also significantly inhibited by DCCD and ionophores in acid-adapted cells. Furthermore, transcriptional analysis revealed that atpB (ATP beta chain) transcripts was increased in acid-adapted cells compared to unadapted cells before and after acid shock. Our data demonstrate that B. cereus is able to induce an ATR during growth at low pH. These adaptations depend on the ATPase activity induction and pHi homeostasis. Our data demonstrate that the ATPase enzyme can be implicated in the cytoplasmic pH regulation and in acid tolerance of B. cereus acid-adapted cells.

  10. 75 FR 28155 - Acephate, Cacodylic acid, Dicamba, Dicloran et al.; Proposed Tolerance Actions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-19

    ...EPA is proposing to revoke certain tolerances for the fungicides dicloran and thiophanate-methyl; the herbicides EPTC, hexazinone, picloram, and propazine; the defoliant and herbicide cacodylic acid; the plant growth regulator and herbicide diquat, the insecticides disulfoton, malathion, methamidophos, methomyl, phosmet, piperonyl butoxide, pyrethrins, and thiodicarb; the fumigant......

  11. 40 CFR 180.1196 - Peroxyacetic acid; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Peroxyacetic acid; exemption from the requirement of a tolerance. 180.1196 Section 180.1196 Protection of Environment ENVIRONMENTAL PROTECTION... handling establishments including, but not limited to dairies, dairy barns, restaurants, food...

  12. Heat tolerance of automotive lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Albers, Joern

    Starter batteries have to withstand a quite large temperature range. In Europe, the battery temperature can be -30 °C in winter and may even exceed +60 °C in summer. In most modern cars, there is not much space left in the engine compartment to install the battery. So the mean battery temperature may be higher than it was some decades ago. In some car models, the battery is located in the passenger or luggage compartment, where ambient temperatures are more moderate. Temperature effects are discussed in detail. The consequences of high heat impact into the lead-acid battery may vary for different battery technologies: While grid corrosion is often a dominant factor for flooded lead-acid batteries, water loss may be an additional influence factor for valve-regulated lead-acid batteries. A model was set up that considers external and internal parameters to estimate the water loss of AGM batteries. Even under hot climate conditions, AGM batteries were found to be highly durable and superior to flooded batteries in many cases. Considering the real battery temperature for adjustment of charging voltage, negative effects can be reduced. Especially in micro-hybrid applications, AGM batteries cope with additional requirements much better than flooded batteries, and show less sensitivity to high temperatures than suspected sometimes.

  13. Establishing tolerable dungeness crab (Cancer magister) and razor clam (Siliqua patula) domoic acid contaminant levels.

    PubMed

    Mariën, K

    1996-11-01

    Domoic acid has been found in razor clams (Siliqua patula) and dungeness crabs (Cancer magister) in Washington State and elsewhere on the West Coast of the United States. Due to toxic effects associated with domoic acid exposure, an effort has been made to establish tolerable domoic acid levels in crabs and clams obtained from commercial harvest and sale and from individual recreational harvesting. To accomplish this, the amount of clams and crabs consumed by populations of concern was determined, a tolerable daily intake (TDI) was developed for individuals most sensitive to effects of this compound, and the TDI was equated with consumption patterns to determine tolerable clam and crab domoic acid levels. Results indicate that the primary health effects associated with domoic acid toxicity can be averted in populations of concern and for others consuming crabs or clams less frequently (or in lesser quantity) if domoic acid contaminant concentration does not exceed 30 mg/kg in the hepatopancreas and viscera of dungeness crabs or 20 mg/kg in clams.

  14. Adaptive response of bacteria: Multiple hurdles, cross-tolerance and tools to illustrate underlying mechanisms

    NASA Astrophysics Data System (ADS)

    Paramythiotis, Spyridon; Skandamis, Panagiotis N.

    2015-01-01

    A basic principle in the bacterial resistance against lethal stresses is that exposure of microbial cells to a sublethal hurdle (e.g., pH 5.0, 3% NaCl, or 48°C) may induce resistance to lethal level of the same or different stress. The latter is called "cross-tolerance" and the bacteria experiencing such situations are termed "stress-hardened". The majority of scientific reports on the adaptive responses of bacteria to stresses have recently addressed the need to elucidate the underlying mechanisms controlling bacterial stress response. This in turn, will assist in the efficient application of the multiple hurdle approach, e.g., by selecting specific sanitizers, combining stress treatments or antimicrobials, especially in mild processing, against specific cellular targets, eliminating the possibility of the development of stress adapted cells. Common scientific approaches for studying the link between phenotype (e.g., inactivation, survival, or growth) and physiology is the assessment of global transcriptional changes (up- or down-regulation) or those of certain genes, as well as of proteins involved in certain metabolic pathways, occurring during exposure to stress. This may also be performed in parallel to comparative evaluation of the phenotypic response of wild and mutant strains. The post-genomics research on foodborne pathogens has extended our knowledge beyond their phenotypic behavior and may offer mechanistic insights in the following: (i) the top-down approach (induction), which is the search of the underlying mechanisms (low level) responsible for a specific phenotype based on "-omic" studies; and (ii) the bottom-up approach (deduction), which starts from intracellular level and forms a mechanistic (functional) basis for the cellular response. All these may eventually enable the development of mechanistic microbial models and efficient strategies for controlling survival and growth of pathogens in foods.

  15. Pavlovian conditional tolerance to haloperidol catalepsy: evidence of dynamic adaptation in the dopaminergic system.

    PubMed

    Poulos, C X; Hinson, R

    1982-10-29

    An experiment with rats has demonstrated that Pavlovian conditioning factors determine the occurrence of tolerance to haloperidol catalepsy. Rats exhibited tolerance only in the environment previously associated with the drug. Previous research involving receptor binding techniques implicated an increase in the number of brain dopamine receptors as the mediator of neuroleptic tolerance. The present findings demonstrate that this change, by itself, cannot account for the conditional occurrence of such tolerance.

  16. Metabolic pathways regulated by abscisic acid, salicylic acid and γ-aminobutyric acid in association with improved drought tolerance in creeping bentgrass (Agrostis stolonifera).

    PubMed

    Li, Zhou; Yu, Jingjin; Peng, Yan; Huang, Bingru

    2017-01-01

    Abscisic acid (ABA), salicylic acid (SA) and γ-aminobutyric acid (GABA) are known to play roles in regulating plant stress responses. This study was conducted to determine metabolites and associated pathways regulated by ABA, SA and GABA that could contribute to drought tolerance in creeping bentgrass (Agrostis stolonifera). Plants were foliar sprayed with ABA (5 μM), GABA (0.5 mM) and SA (10 μM) or water (untreated control) prior to 25 days drought stress in controlled growth chambers. Application of ABA, GABA or SA had similar positive effects on alleviating drought damages, as manifested by the maintenance of lower electrolyte leakage and greater relative water content in leaves of treated plants relative to the untreated control. Metabolic profiling showed that ABA, GABA and SA induced differential metabolic changes under drought stress. ABA mainly promoted the accumulation of organic acids associated with tricarboxylic acid cycle (aconitic acid, succinic acid, lactic acid and malic acid). SA strongly stimulated the accumulation of amino acids (proline, serine, threonine and alanine) and carbohydrates (glucose, mannose, fructose and cellobiose). GABA enhanced the accumulation of amino acids (GABA, glycine, valine, proline, 5-oxoproline, serine, threonine, aspartic acid and glutamic acid) and organic acids (malic acid, lactic acid, gluconic acid, malonic acid and ribonic acid). The enhanced drought tolerance could be mainly due to the enhanced respiration metabolism by ABA, amino acids and carbohydrates involved in osmotic adjustment (OA) and energy metabolism by SA, and amino acid metabolism related to OA and stress-defense secondary metabolism by GABA.

  17. Adaptive Chromatin Remodeling Drives Glioblastoma Stem Cell Plasticity and Drug Tolerance.

    PubMed

    Liau, Brian B; Sievers, Cem; Donohue, Laura K; Gillespie, Shawn M; Flavahan, William A; Miller, Tyler E; Venteicher, Andrew S; Hebert, Christine H; Carey, Christopher D; Rodig, Scott J; Shareef, Sarah J; Najm, Fadi J; van Galen, Peter; Wakimoto, Hiroaki; Cahill, Daniel P; Rich, Jeremy N; Aster, Jon C; Suvà, Mario L; Patel, Anoop P; Bernstein, Bradley E

    2017-02-02

    Glioblastoma, the most common and aggressive malignant brain tumor, is propagated by stem-like cancer cells refractory to existing therapies. Understanding the molecular mechanisms that control glioblastoma stem cell (GSC) proliferation and drug resistance may reveal opportunities for therapeutic interventions. Here we show that GSCs can reversibly transition to a slow-cycling, persistent state in response to targeted kinase inhibitors. In this state, GSCs upregulate primitive developmental programs and are dependent upon Notch signaling. This transition is accompanied by widespread redistribution of repressive histone methylation. Accordingly, persister GSCs upregulate, and are dependent on, the histone demethylases KDM6A/B. Slow-cycling cells with high Notch activity and histone demethylase expression are present in primary glioblastomas before treatment, potentially contributing to relapse. Our findings illustrate how cancer cells may hijack aspects of native developmental programs for deranged proliferation, adaptation, and tolerance. They also suggest strategies for eliminating refractory tumor cells by targeting epigenetic and developmental pathways.

  18. Adaptive response and tolerance to sugar and salt stress in the food yeast Zygosaccharomyces rouxii.

    PubMed

    Dakal, Tikam Chand; Solieri, Lisa; Giudici, Paolo

    2014-08-18

    The osmotolerant and halotolerant food yeast Zygosaccharomyces rouxii is known for its ability to grow and survive in the face of stress caused by high concentrations of non-ionic (sugars and polyols) and ionic (mainly Na(+) cations) solutes. This ability determines the success of fermentation on high osmolarity food matrices and leads to spoilage of high sugar and high salt foods. The knowledge about the genes, the metabolic pathways, and the regulatory circuits shaping the Z. rouxii sugar and salt-tolerance, is a prerequisite to develop effective strategies for fermentation control, optimization of food starter culture, and prevention of food spoilage. This review summarizes recent insights on the mechanisms used by Z. rouxii and other osmo and halotolerant food yeasts to endure salts and sugars stresses. Using the information gathered from S. cerevisiae as guide, we highlight how these non-conventional yeasts integrate general and osmoticum-specific adaptive responses under sugar and salts stresses, including regulation of Na(+) and K(+)-fluxes across the plasma membrane, modulation of cell wall properties, compatible osmolyte production and accumulation, and stress signalling pathways. We suggest how an integrated and system-based knowledge on these mechanisms may impact food and biotechnological industries, by improving the yeast spoilage control in food, enhancing the yeast-based bioprocess yields, and engineering the osmotolerance in other organisms.

  19. Enhancement of acid tolerance in Zymomonas mobilis by a proton-buffering peptide.

    PubMed

    Baumler, David J; Hung, Kai F; Bose, Jeffrey L; Vykhodets, Boris M; Cheng, Chorng M; Jeong, Kwang-Cheol; Kaspar, Charles W

    2006-07-01

    A portion of the cbpA gene from Escherichia coli K-12 encoding a 24 amino acid proton-buffering peptide (Pbp) was cloned via the shuttle vector pJB99 into E. coli JM105 and subsequently into Zymomonas mobilis CP4. Expression of Pbp was confirmed in both JM105 and CP4 by HPLC. Z. mobilis CP4 carrying pJB99-2 (Pbp) exhibited increased acid tolerance (p < 0.05) in acidified TSB (HCl [pH 3.0] or acetic acid [pH 3.5]), glycine-HCl buffer (pH 3.0), and sodium acetate-acetic acid buffer (pH 3.5) in comparison to the parent strain (CP4) and CP4 with pJB99 (control plasmid). Although the expression of Pbp influenced survival at a low pH, the minimum growth pH was unaffected. Growth of Z. mobilis in the presence of ampicillin also significantly increased acid tolerance by an unknown mechanism. Results from this study demonstrate that the production of a peptide with a high proportion of basic amino acids can contribute to protection from low pH and weak organic acids such as acetic acid.

  20. Genome shuffling in the ethanologenic yeast Candida krusei to improve acetic acid tolerance.

    PubMed

    Wei, Pingying; Li, Zilong; He, Peng; Lin, Yuping; Jiang, Ning

    2008-02-01

    Genome shuffling was used to improve the acetic acid tolerance of an ethanologenic yeast, Candida krusei GL560. A mutant, S4-3, was isolated and selected after four rounds of genome shuffling. It was found that the mutant S4-3 had a higher viability in the YNBX (yeast nitrogen base/xylose) medium with acetic acid and grew better in the YPD (yeast extract, peptone and dextrose) medium [1% (w/v) yeast extract, 2% (w/v) peptone and 2% (w/v) glucose] with acetic acid than the parent strain GL560. The mutant S4-3 also improved its multiple stress tolerance to ethanol, H2O2, heat and freeze-thaw. Furthermore, S4-3 showed higher ethanol production than GL560 in EFM (ethanol fermentation medium) with or without acetic acid. The DNA content of S4-3 was similar to its parent strains in the genome shuffling. This suggested that gene exchange, as caused by homologous recombination, may have occurred during the process. Higher membrane integrity and intracellular catalase activity were two possible reasons for the higher acid-tolerance phenotype of S4-3. These results indicated that genome shuffling is a powerful means of rapidly improving the complex traits of non-haploid organisms, while still maintaining robust growth.

  1. Emergence of drug tolerance in cancer cell populations: an evolutionary outcome of selection, nongenetic instability, and stress-induced adaptation.

    PubMed

    Chisholm, Rebecca H; Lorenzi, Tommaso; Lorz, Alexander; Larsen, Annette K; de Almeida, Luís Neves; Escargueil, Alexandre; Clairambault, Jean

    2015-03-15

    In recent experiments on isogenetic cancer cell lines, it was observed that exposure to high doses of anticancer drugs can induce the emergence of a subpopulation of weakly proliferative and drug-tolerant cells, which display markers associated with stem cell-like cancer cells. After a period of time, some of the surviving cells were observed to change their phenotype to resume normal proliferation and eventually repopulate the sample. Furthermore, the drug-tolerant cells could be drug resensitized following drug washout. Here, we propose a theoretical mechanism for the transient emergence of such drug tolerance. In this framework, we formulate an individual-based model and an integro-differential equation model of reversible phenotypic evolution in a cell population exposed to cytotoxic drugs. The outcomes of both models suggest that nongenetic instability, stress-induced adaptation, selection, and the interplay between these mechanisms can push an actively proliferating cell population to transition into a weakly proliferative and drug-tolerant state. Hence, the cell population experiences much less stress in the presence of the drugs and, in the long run, reacquires a proliferative phenotype, due to phenotypic fluctuations and selection pressure. These mechanisms can also reverse epigenetic drug tolerance following drug washout. Our study highlights how the transient appearance of the weakly proliferative and drug-tolerant cells is related to the use of high-dose therapy. Furthermore, we show how stem-like characteristics can act to stabilize the transient, weakly proliferative, and drug-tolerant subpopulation for a longer time window. Finally, using our models as in silico laboratories, we propose new testable hypotheses that could help uncover general principles underlying the emergence of cancer drug tolerance.

  2. Effect of acid tolerance response (ATR) on attachment of Listeria monocytogenes Scott A to stainless steel under extended exposure to acid or/and salt stress and resistance of sessile cells to subsequent strong acid challenge.

    PubMed

    Chorianopoulos, Nikos; Giaouris, Efstathios; Grigoraki, Ioanna; Skandamis, Panagiotis; Nychas, George-John

    2011-02-28

    The aim of this study was to investigate the potential effect of adaptive stationary phase acid tolerance response (ATR) of Listeria monocytogenes Scott A cells on their attachment to stainless steel (SS) under low pH or/and high salt conditions and on the subsequent resistance of sessile cells to strong acid challenge. Nonadapted or acid-adapted stationary-phase L. monocytogenes cells were used to inoculate (ca. 10⁸ CFU/ml) Brain Heart (BH) broth (pH 7.4, 0.5% w/v NaCl) in test tubes containing vertically placed SS coupons (used as abiotic substrates for bacterial attachment). Incubation was carried out at 16 °C for up to 15 days, without any nutrient refreshment. L. monocytogenes cells, prepared as described above, were also exposed to low pH (4.5; adjusted with HCl) or/and high salt (5.5% w/v NaCl) stresses, during attachment. On the 5th, 10th and 15th day of incubation, cells attached to SS coupons were detached (through bead vortexing) and enumerated (by agar plating). Results revealed that ATR significantly (p<0.05) affected bacterial attachment, when the latter took place under moderate acidic conditions (pH 4.5, 0.5 or 5.5% w/v NaCl), with the acid-adapted cells adhering slightly more than the nonadapted ones. Regardless of acidity/salinity conditions during attachment, ATR also enhanced the resistance of sessile cells to subsequent lethal acid challenge (exposure to pH 2 for 6 min; pH adjusted with either hydrochloric or lactic acid). The trend observed with viable count data agreed well with conductance measurements, used to indirectly quantify remaining attached bacteria (following the strong acid challenge) via their metabolic activity. To sum, this study demonstrates that acid adaptation of L. monocytogenes cells during their planktonic growth enhances their subsequent attachment to SS under extended exposure (at 16 °C for up to 15 days) to mild acidic conditions (pH 4.5), while it also improves the resistance of sessile cells to extreme acid

  3. Butanol production by a Clostridium beijerinckii mutant with high ferulic acid tolerance.

    PubMed

    Liu, Jun; Guo, Ting; Wang, Dong; Xu, Jiahui; Ying, Hanjie

    2016-09-01

    A mutant strain of Clostridium beijerinckii, with high tolerance to ferulic acid, was generated using atmospheric pressure glow discharge and high-throughput screening of C. beijerinckii NCIMB 8052. The mutant strain M11 produced 7.24 g/L of butanol when grown in P2 medium containing 30 g/L of glucose and 0.5 g/L of ferulic acid, which is comparable to the production from non-ferulic acid cultures (8.11 g/L of butanol). When 0.8 g/L of ferulic acid was introduced into the P2 medium, C. beijerinckii M11 grew well and produced 4.91 g/L of butanol. Both cell growth and butanol production of C. beijerinckii M11 were seriously inhibited when 0.9 g/L of ferulic acid was added into the P2 medium. Furthermore, C. beijerinckii M11 could produce 6.13 g/L of butanol using non-detoxified hemicellulosic hydrolysate from diluted sulfuric acid-treated corn fiber (SAHHC) as the carbon source. These results demonstrate that C. beijerinckii M11 has a high ferulic acid tolerance and is able to use non-detoxified SAHHC for butanol production.

  4. Substitutions in woolly mammoth hemoglobin confer biochemical properties adaptive for cold tolerance.

    PubMed

    Campbell, Kevin L; Roberts, Jason E E; Watson, Laura N; Stetefeld, Jörg; Sloan, Angela M; Signore, Anthony V; Howatt, Jesse W; Tame, Jeremy R H; Rohland, Nadin; Shen, Tong-Jian; Austin, Jeremy J; Hofreiter, Michael; Ho, Chien; Weber, Roy E; Cooper, Alan

    2010-06-01

    We have genetically retrieved, resurrected and performed detailed structure-function analyses on authentic woolly mammoth hemoglobin to reveal for the first time both the evolutionary origins and the structural underpinnings of a key adaptive physiochemical trait in an extinct species. Hemoglobin binds and carries O(2); however, its ability to offload O(2) to respiring cells is hampered at low temperatures, as heme deoxygenation is inherently endothermic (that is, hemoglobin-O(2) affinity increases as temperature decreases). We identify amino acid substitutions with large phenotypic effect on the chimeric beta/delta-globin subunit of mammoth hemoglobin that provide a unique solution to this problem and thereby minimize energetically costly heat loss. This biochemical specialization may have been involved in the exploitation of high-latitude environments by this African-derived elephantid lineage during the Pleistocene period. This powerful new approach to directly analyze the genetic and structural basis of physiological adaptations in an extinct species adds an important new dimension to the study of natural selection.

  5. An ethylene response factor (ERF5) promoting adaptation to drought and salt tolerance in tomato.

    PubMed

    Pan, Yu; Seymour, Graham B; Lu, Chungui; Hu, Zongli; Chen, Xuqing; Chen, Guoping

    2012-02-01

    A novel member of the AP2/ERF transcription factor family, SlERF5, was identified from a tomato mature leaf cDNA library screen. The complete DNA sequence of SlERF5 encodes a putative 244-amino acid DNA-binding protein which most likely acts as a transcriptional regulator and is a member of the ethylene responsive factor (ERF) superfamily. Analysis of the deduced SlERF5 protein sequence showed that it contained an ERF domain and belonged to the class III group of ERFs proteins. Expression of SlERF5 was induced by abiotic stress, such as high salinity, drought, flooding, wounding and cold temperatures. Over-expression of SlERF5 in transgenic tomato plants resulted in high tolerance to drought and salt stress and increased levels of relative water content compared with wild-type plants. This study indicates that SlERF5 is mainly involved in the responses to abiotic stress in tomato.

  6. Resistance and tolerance to tropodithietic acid, an antimicrobial in aquaculture, is hard to select.

    PubMed

    Porsby, Cisse Hedegaard; Webber, Mark A; Nielsen, Kristian Fog; Piddock, Laura J V; Gram, Lone

    2011-04-01

    The antibacterial compound tropodithietic acid (TDA) is produced by bacteria of the marine Roseobacter clade and is thought to explain the fish probiotic properties of some roseobacters. The aim of the present study was to determine the antibacterial spectrum of TDA and the likelihood of development of TDA resistance. A bacterial extract containing 95% TDA was effective against a range of human-pathogenic bacteria, including both Gram-negative and Gram-positive bacteria. TDA was bactericidal against Salmonella enterica serovar Typhimurium SL1344 and Staphylococcus aureus NCTC 12493 and killed both growing and nongrowing cells. Several experimental approaches were used to select mutants resistant to TDA or subpopulations of strains with enhanced tolerance to TDA. No approach (single exposures to TDA extract administered via different methods, screening of a transposon library for resistant mutants, or prolonged exposure to incremental concentrations of TDA) resulted in resistant or tolerant strains. After more than 300 generations exposed to sub-MIC and MIC concentrations of a TDA-containing extract, strains tolerant to 2× the MIC of TDA for wild-type strains were selected, but the tolerance disappeared after one passage in medium without TDA extract. S. Typhimurium mutants with nonfunctional efflux pump and porin genes had the same TDA susceptibility as wild-type strains, suggesting that efflux pumps and porins are not involved in innate tolerance to TDA. TDA is a promising broad-spectrum antimicrobial in part due to the fact that enhanced tolerance is difficult to gain and that the TDA-tolerant phenotype appears to confer only low-level resistance and is very unstable.

  7. Resistance and Tolerance to Tropodithietic Acid, an Antimicrobial in Aquaculture, Is Hard To Select▿ †

    PubMed Central

    Porsby, Cisse Hedegaard; Webber, Mark A.; Nielsen, Kristian Fog; Piddock, Laura J. V.; Gram, Lone

    2011-01-01

    The antibacterial compound tropodithietic acid (TDA) is produced by bacteria of the marine Roseobacter clade and is thought to explain the fish probiotic properties of some roseobacters. The aim of the present study was to determine the antibacterial spectrum of TDA and the likelihood of development of TDA resistance. A bacterial extract containing 95% TDA was effective against a range of human-pathogenic bacteria, including both Gram-negative and Gram-positive bacteria. TDA was bactericidal against Salmonella enterica serovar Typhimurium SL1344 and Staphylococcus aureus NCTC 12493 and killed both growing and nongrowing cells. Several experimental approaches were used to select mutants resistant to TDA or subpopulations of strains with enhanced tolerance to TDA. No approach (single exposures to TDA extract administered via different methods, screening of a transposon library for resistant mutants, or prolonged exposure to incremental concentrations of TDA) resulted in resistant or tolerant strains. After more than 300 generations exposed to sub-MIC and MIC concentrations of a TDA-containing extract, strains tolerant to 2× the MIC of TDA for wild-type strains were selected, but the tolerance disappeared after one passage in medium without TDA extract. S. Typhimurium mutants with nonfunctional efflux pump and porin genes had the same TDA susceptibility as wild-type strains, suggesting that efflux pumps and porins are not involved in innate tolerance to TDA. TDA is a promising broad-spectrum antimicrobial in part due to the fact that enhanced tolerance is difficult to gain and that the TDA-tolerant phenotype appears to confer only low-level resistance and is very unstable. PMID:21263047

  8. Quantitative Proteomics Reveals the Flooding-Tolerance Mechanism in Mutant and Abscisic Acid-Treated Soybean.

    PubMed

    Yin, Xiaojian; Nishimura, Minoru; Hajika, Makita; Komatsu, Setsuko

    2016-06-03

    Flooding negatively affects the growth of soybean, and several flooding-specific stress responses have been identified; however, the mechanisms underlying flooding tolerance in soybean remain unclear. To explore the initial flooding tolerance mechanisms in soybean, flooding-tolerant mutant and abscisic acid (ABA)-treated plants were analyzed. In the mutant and ABA-treated soybeans, 146 proteins were commonly changed at the initial flooding stress. Among the identified proteins, protein synthesis-related proteins, including nascent polypeptide-associated complex and chaperonin 20, and RNA regulation-related proteins were increased in abundance both at protein and mRNA expression. However, these proteins identified at the initial flooding stress were not significantly changed during survival stages under continuous flooding. Cluster analysis indicated that glycolysis- and cell wall-related proteins, such as enolase and polygalacturonase inhibiting protein, were increased in abundance during survival stages. Furthermore, lignification of root tissue was improved even under flooding stress. Taken together, these results suggest that protein synthesis- and RNA regulation-related proteins play a key role in triggering tolerance to the initial flooding stress in soybean. Furthermore, the integrity of cell wall and balance of glycolysis might be important factors for promoting tolerance of soybean root to flooding stress during survival stages.

  9. PVX-tolerant potato development using a nucleic acid-hydrolyzing recombinant antibody.

    PubMed

    Yang, J-G; Hwang, K-H; Kil, E-J; Park, J; Cho, S; Lee, Y-G; Auh, C-K; Rhee, Y; Lee, S

    2017-01-01

    3D8 scFv, a catalytic recombinant antibody developed in the MRL mouse, exhibits nucleic acid-hydrolyzing activity. Previous studies have demonstrated that tobacco plants harboring 3D8 scFv antibodies showed broad-spectrum resistance to infection by both DNA and RNA viruses. In this study, potatoes were transformed with the 3D8 scFv gene and screened by potato virus X (PVX) challenge. Starting with the T0 and T1 potato lines, PVX-tolerant T1 potatoes were identified in the field and characterized by ELISA and RT-PCR analysis. T2 potatoes were propagated for T3 generation and additional virus challenges in the field, and 44% of the 3D8 scFv T3 transgenic potatoes grown in GMO fields were found to be tolerant to PVX infection. Tubers from PVX-tolerant T3 lines were 60% bigger and 24% heavier, compared with tubers from PVX-susceptible transgenic lines and wild-type potatoes. Three-step virus challenge experiments and molecular characterization techniques were used for plants grown in growth chambers or fields to identify 3D8 scFv-transgenic, PVX-tolerant potatoes. These studies also revealed that the viral tolerance enabled by 3D8 scFv persisted during asexual propagation.

  10. The Effect of Abscisic Acid on the Freezing Tolerance of Callus Cultures of Lotus corniculatus L.

    PubMed

    Keith, C N; McKersie, B D

    1986-03-01

    The effects of growth temperature (2 degrees C and 24 degrees C), abscisic acid (ABA) concentration, duration of exposure to ABA, and light were assessed for their ability to induce acclimation to freezing temperatures in callus cultures of Lotus corniculatus L. cv Leo, a perennial forage legume. The maximal expression of freezing tolerance was achieved on B(5) media containing 10(-5) molar ABA, at 24 degrees C for 7 or 14 days. Under these culture conditions, the freezing tolerance of the callus approximated that observed in field grown plants. In contrast, low temperatures (2 degrees C) induced only a limited degree of freezing tolerance in these cultures. Viability was assessed by tetrazolium reduction and by regrowth of the callus. The two assays often differed in their estimates of absolute freezing tolerance. Regression analysis of the temperature profile suggested that there may be two or more distinct populations of cells differing in freezing tolerance, which may have contributed to the variability between viability assays.

  11. Hypervirulent-host-associated Citrobacter rodentium cells have poor acid tolerance.

    PubMed

    Smith, Allen; Bhagwat, Arvind A

    2013-05-01

    Enhanced virulence or infectivity after passage through a mammalian host has been reported for a number of enteric food-borne pathogens. Citrobacter rodentium is a mouse pathogen that mimics many aspects of enterohemorrhagic Escherichia coli infection of humans and serves as a useful model for studying virulence mechanisms. Emergence of a hyperinfectious state after passage through mouse gastrointestinal tract was reported for C. rodentium. We wanted to investigate if increased acid tolerance could explain hypervirulence status of C. rodentium. Although we were able to observe hyperinfectious state of C. rodentium upon host passage, the cells were extremely acid sensitive. Growth under mildly acidic conditions (LB-MES, pH 5.5) induced acid tolerance of C. rodentium, but did not improve the organism's ability to establish infection. Growth under anaerobic environment on fecal components also did not induce hyperinfectious state. Thus, contrary to conventional anticipation, hypervirulent C. rodentium cells were found to be acid sensitive thereby revealing limitations of the role of mouse gastric acidity by itself in elucidating the hypervirulent phenotype.

  12. Roles of Organic Acid Anion Secretion in Aluminium Tolerance of Higher Plants

    PubMed Central

    Yang, Lin-Tong; Qi, Yi-Ping; Jiang, Huan-Xin; Chen, Li-Song

    2013-01-01

    Approximately 30% of the world's total land area and over 50% of the world's potential arable lands are acidic. Furthermore, the acidity of the soils is gradually increasing as a result of the environmental problems including some farming practices and acid rain. At mildly acidic or neutral soils, aluminium(Al) occurs primarily as insoluble deposits and is essentially biologically inactive. However, in many acidic soils throughout the tropics and subtropics, Al toxicity is a major factor limiting crop productivity. The Al-induced secretion of organic acid (OA) anions, mainly citrate, oxalate, and malate, from roots is the best documented mechanism of Al tolerance in higher plants. Increasing evidence shows that the Al-induced secretion of OA anions may be related to the following several factors, including (a) anion channels or transporters, (b) internal concentrations of OA anions in plant tissues, (d) temperature, (e) root plasma membrane (PM) H+-ATPase, (f) magnesium (Mg), and (e) phosphorus (P). Genetically modified plants and cells with higher Al tolerance by overexpressing genes for the secretion and the biosynthesis of OA anions have been obtained. In addition, some aspects needed to be further studied are also discussed. PMID:23509687

  13. Roles of organic acid anion secretion in aluminium tolerance of higher plants.

    PubMed

    Yang, Lin-Tong; Qi, Yi-Ping; Jiang, Huan-Xin; Chen, Li-Song

    2013-01-01

    Approximately 30% of the world's total land area and over 50% of the world's potential arable lands are acidic. Furthermore, the acidity of the soils is gradually increasing as a result of the environmental problems including some farming practices and acid rain. At mildly acidic or neutral soils, aluminium (Al) occurs primarily as insoluble deposits and is essentially biologically inactive. However, in many acidic soils throughout the tropics and subtropics, Al toxicity is a major factor limiting crop productivity. The Al-induced secretion of organic acid (OA) anions, mainly citrate, oxalate, and malate, from roots is the best documented mechanism of Al tolerance in higher plants. Increasing evidence shows that the Al-induced secretion of OA anions may be related to the following several factors, including (a) anion channels or transporters, (b) internal concentrations of OA anions in plant tissues, (d) temperature, (e) root plasma membrane (PM) H(+)-ATPase, (f) magnesium (Mg), and (e) phosphorus (P). Genetically modified plants and cells with higher Al tolerance by overexpressing genes for the secretion and the biosynthesis of OA anions have been obtained. In addition, some aspects needed to be further studied are also discussed.

  14. Biofilm-forming bacteria with varying tolerance to peracetic acid from a paper machine.

    PubMed

    Rasimus, Stiina; Kolari, Marko; Rita, Hannu; Hoornstra, Douwe; Salkinoja-Salonen, Mirja

    2011-09-01

    Biofilms cause runnability problems in paper machines and are therefore controlled with biocides. Peracetic acid is usually effective in preventing bulky biofilms. This study investigated the microbiological status of a paper machine where low concentrations (≤ 15 ppm active ingredient) of peracetic acid had been used for several years. The paper machine contained a low amount of biofilms. Biofilm-forming bacteria from this environment were isolated and characterized by 16S rRNA gene sequencing, whole-cell fatty acid analysis, biochemical tests, and DNA fingerprinting. Seventy-five percent of the isolates were identified as members of the subclades Sphingomonas trueperi and S. aquatilis, and the others as species of the genera Burkholderia (B. cepacia complex), Methylobacterium, and Rhizobium. Although the isolation media were suitable for the common paper machine biofoulers Deinococcus, Meiothermus, and Pseudoxanthomonas, none of these were found, indicating that peracetic acid had prevented their growth. Spontaneous, irreversible loss of the ability to form biofilm was observed during subculturing of certain isolates of the subclade S. trueperi. The Sphingomonas isolates formed monoculture biofilms that tolerated peracetic acid at concentrations (10 ppm active ingredient) used for antifouling in paper machines. High pH and low conductivity of the process waters favored the peracetic acid tolerance of Sphingomonas sp. biofilms. This appears to be the first report on sphingomonads as biofilm formers in warm water using industries.

  15. Drug resistance marker-aided genome shuffling to improve acetic acid tolerance in Saccharomyces cerevisiae.

    PubMed

    Zheng, Dao-Qiong; Wu, Xue-Chang; Wang, Pin-Mei; Chi, Xiao-Qin; Tao, Xiang-Lin; Li, Ping; Jiang, Xin-Hang; Zhao, Yu-Hua

    2011-03-01

    Acetic acid existing in a culture medium is one of the most limiting constraints in yeast growth and viability during ethanol fermentation. To improve acetic acid tolerance in Saccharomyces cerevisiae strains, a drug resistance marker-aided genome shuffling approach with higher screen efficiency of shuffled mutants was developed in this work. Through two rounds of genome shuffling of ultraviolet mutants derived from the original strain 308, we obtained a shuffled strain YZ2, which shows significantly faster growth and higher cell viability under acetic acid stress. Ethanol production of YZ2 (within 60 h) was 21.6% higher than that of 308 when 0.5% (v/v) acetic acid was added to fermentation medium. Membrane integrity, higher in vivo activity of the H+-ATPase, and lower oxidative damage after acetic acid treatment are the possible reasons for the acetic acid-tolerance phenotype of YZ2. These results indicated that this novel genome shuffling approach is powerful to rapidly improve the complex traits of industrial yeast strains.

  16. Metabolic engineering and adaptive evolution for efficient production of D-lactic acid in Saccharomyces cerevisiae.

    PubMed

    Baek, Seung-Ho; Kwon, Eunice Y; Kim, Yong Hwan; Hahn, Ji-Sook

    2016-03-01

    There is an increasing demand for microbial production of lactic acid (LA) as a monomer of biodegradable poly lactic acid (PLA). Both optical isomers, D-LA and L-LA, are required to produce stereocomplex PLA with improved properties. In this study, we developed Saccharomyces cerevisiae strains for efficient production of D-LA. D-LA production was achieved by expressing highly stereospecific D-lactate dehydrogenase gene (ldhA, LEUM_1756) from Leuconostoc mesenteroides subsp. mesenteroides ATCC 8293 in S. cerevisiae lacking natural LA production activity. D-LA consumption after glucose depletion was inhibited by deleting DLD1 encoding D-lactate dehydrogenase and JEN1 encoding monocarboxylate transporter. In addition, ethanol production was reduced by deleting PDC1 and ADH1 genes encoding major pyruvate decarboxylase and alcohol dehydrogenase, respectively, and glycerol production was eliminated by deleting GPD1 and GPD2 genes encoding glycerol-3-phosphate dehydrogenase. LA tolerance of the engineered D-LA-producing strain was enhanced by adaptive evolution and overexpression of HAA1 encoding a transcriptional activator involved in weak acid stress response, resulting in effective D-LA production up to 48.9 g/L without neutralization. In a flask fed-batch fermentation under neutralizing condition, our evolved strain produced 112.0 g/L D-LA with a yield of 0.80 g/g glucose and a productivity of 2.2 g/(L · h).

  17. Computational prediction of the tolerance to amino-acid deletion in green-fluorescent protein

    PubMed Central

    Jackson, Eleisha L.; Spielman, Stephanie J.

    2017-01-01

    Proteins evolve through two primary mechanisms: substitution, where mutations alter a protein’s amino-acid sequence, and insertions and deletions (indels), where amino acids are either added to or removed from the sequence. Protein structure has been shown to influence the rate at which substitutions accumulate across sites in proteins, but whether structure similarly constrains the occurrence of indels has not been rigorously studied. Here, we investigate the extent to which structural properties known to covary with protein evolutionary rates might also predict protein tolerance to indels. Specifically, we analyze a publicly available dataset of single—amino-acid deletion mutations in enhanced green fluorescent protein (eGFP) to assess how well the functional effect of deletions can be predicted from protein structure. We find that weighted contact number (WCN), which measures how densely packed a residue is within the protein’s three-dimensional structure, provides the best single predictor for whether eGFP will tolerate a given deletion. We additionally find that using protein design to explicitly model deletions results in improved predictions of functional status when combined with other structural predictors. Our work suggests that structure plays fundamental role in constraining deletions at sites in proteins, and further that similar biophysical constraints influence both substitutions and deletions. This study therefore provides a solid foundation for future work to examine how protein structure influences tolerance of more complex indel events, such as insertions or large deletions. PMID:28369116

  18. Screening and characterization of ethanol-tolerant and thermotolerant acetic acid bacteria from Chinese vinegar Pei.

    PubMed

    Chen, Yang; Bai, Ye; Li, Dongsheng; Wang, Chao; Xu, Ning; Hu, Yong

    2016-01-01

    Acetic acid bacteria (AAB) are important microorganisms in the vinegar industry. However, AAB have to tolerate the presence of ethanol and high temperatures, especially in submerged fermentation (SF), which inhibits AAB growth and acid yield. In this study, seven AAB that are tolerant to temperatures above 40 °C and ethanol concentrations above 10% (v/v) were isolated from Chinese vinegar Pei. All the isolated AAB belong to Acetobacter pasteurianus according to 16S rDNA analysis. Among all AAB, AAB4 produced the highest acid yield under high temperature and ethanol test conditions. At 4% ethanol and 30-40 °C temperatures, AAB4 maintained an alcohol-acid transform ratio of more than 90.5 %. High alcohol-acid transform ratio was still maintained even at higher temperatures, namely, 87.2, 77.1, 14.5 and 2.9% at 41, 42, 43 and 44 °C, respectively. At 30 °C and different initial ethanol concentrations (4-10%), the acid yield by AAB4 increased gradually, although the alcohol-acid transform ratio decreased to some extent. However, 46.5, 8.7 and 0.9% ratios were retained at ethanol concentrations of 11, 12 and 13%, respectively. When compared with AS1.41 (an AAB widely used in China) using a 10 L fermentor, AAB4 produced 42.0 g/L acetic acid at 37 °C with 10% ethanol, whereas AS1.41 almost stopped producing acetic acid. In conclusion, these traits suggest that AAB4 is a valuable strain for vinegar production in SF.

  19. Role of a major facilitator superfamily transporter in adaptation capacity of Penicillium funiculosum under extreme acidic stress.

    PubMed

    Xu, Xiaoxue; Chen, Jinyin; Xu, Houjuan; Li, Duochuan

    2014-08-01

    Fungal species present in extreme low pH environments are expected to have adapted for tolerance to high H(+) concentrations. However, their adaptability mechanism is unclear. In this study, we isolated an acid-tolerant strain of Penicillium funiculosum, which can grow actively at pH 1.0 and thrived in pH 0.6. A major facilitator superfamily transporter (PfMFS) was isolated from an acid-sensitive random insertional mutant (M4) of the fungus. It encodes a putative protein of 551 residues and contains 14 transmembrane-spanning segments. A targeted mutant (M7) carrying an inactivated copy of PfMFS showed an obvious reduction of growth compared with the wild type (WT) and complementation of M7 with PfMFS restored the wild-type level of growth at pH 1.0. Further data showed that the wild-type showed higher intracellular pH than M7 in response to pH 1. Subcellular localization showed that PfMFS was a cell membrane protein. Homology modeling showed structural similarity with an MFS transporter EmrD from Escherichiacoli. These results demonstrate that the PfMFS transporter is involved in the acid resistance and intracellular pH homeostasis of P. funiculosum.

  20. Metabolite profiling of barley grain subjected to induced drought stress: responses of free amino acids in differently adapted cultivars.

    PubMed

    Lanzinger, Alexandra; Frank, Thomas; Reichenberger, Gabriela; Herz, Markus; Engel, Karl-Heinz

    2015-04-29

    To investigate cultivar-specific metabolite changes upon drought stress in barley grain, differently adapted cultivars were field-grown under drought conditions using a rain-out shelter and under normal weather conditions (2010-2012). The grain was subjected to a gas chromatography-mass spectrometry-based metabolite profiling approach allowing the analyses of a broad spectrum of lipophilic and hydrophilic low molecular weight constituents. Multi- and univariate analyses demonstrated that there are grain metabolites which were significantly changed upon drought stress, either decreased or increased in all cultivars. On the other hand, for proteinogenic free amino acids increased concentrations were consistently observed in all seasons only in cultivars for which no drought resistance/tolerance had been described. Consistent decreases were seen only in the group of stress tolerant/resistant cultivars. These cultivar-specific correlations were particularly pronounced for branched-chain amino acids. The results indicate that free amino acids may serve as potential markers for cultivars differently adapted to drought stress.

  1. Safety and tolerability of gamma-hydroxybutyric acid in the treatment of alcohol-dependent patients.

    PubMed

    Beghè, F; Carpanini, M T

    2000-04-01

    Gamma-hydroxybutyric acid (GHB) has been in clinical use in Italy since 1991 for treatment of alcohol dependence. Results of phase III and phase IV studies have shown that the drug is effective and well tolerated in the treatment of alcohol withdrawal syndrome and in reducing alcohol consumption and alcohol craving. Pharmacosurveillance indicates that abuse of gamma-hydroxybutyric acid is a limited phenomenon in clinical settings when the drug is dispensed under strict medical surveillance and entrusted to a referring familiar member of the patient.

  2. Low Temperature Adaptation Is Not the Opposite Process of High Temperature Adaptation in Terms of Changes in Amino Acid Composition

    PubMed Central

    Yang, Ling-Ling; Tang, Shu-Kun; Huang, Ying; Zhi, Xiao-Yang

    2015-01-01

    Previous studies focused on psychrophilic adaptation generally have demonstrated that multiple mechanisms work together to increase protein flexibility and activity, as well as to decrease the thermostability of proteins. However, the relationship between high and low temperature adaptations remains unclear. To investigate this issue, we collected the available predicted whole proteome sequences of species with different optimal growth temperatures, and analyzed amino acid variations and substitutional asymmetry in pairs of homologous proteins from related species. We found that changes in amino acid composition associated with low temperature adaptation did not exhibit a coherent opposite trend when compared with changes in amino acid composition associated with high temperature adaptation. This result indicates that during their evolutionary histories the proteome-scale evolutionary patterns associated with prokaryotes exposed to low temperature environments were distinct from the proteome-scale evolutionary patterns associated with prokaryotes exposed to high temperature environments in terms of changes in amino acid composition of the proteins. PMID:26614525

  3. The NF-YA transcription factor OsNF-YA7 confers drought stress tolerance of rice in an abscisic acid independent manner.

    PubMed

    Lee, Dong-Keun; Kim, Hyung Il; Jang, Geupil; Chung, Pil Joong; Jeong, Jin Seo; Kim, Youn Shic; Bang, Seung Woon; Jung, Harin; Choi, Yang Do; Kim, Ju-Kon

    2015-12-01

    The mechanisms of plant response and adaptation to drought stress require the regulation of transcriptional networks via the induction of drought-responsive transcription factors. Nuclear Factor Y (NF-Y) transcription factors have aroused interest in roles of plant drought stress responses. However, the molecular mechanism of the NF-Y-induced drought tolerance is not well understood. Here, we functionally analyzed two rice NF-YA genes, OsNF-YA7 and OsNF-YA4. Expression of OsNF-YA7 was induced by drought stress and its overexpression in transgenic rice plants improved their drought tolerance. In contrast, OsNF-YA4 expression was not increased by drought stress and its overexpression in transgenic rice plants did not affect their sensitivity to drought stress. OsNF-YA4 expression was highly induced by the stress-related hormone abscisic acid (ABA), while OsNF-YA7 was not, indicating that OsNF-YA7 mediates drought tolerance in an ABA-independent manner. Analysis of the OsNF-YA7 promoter revealed three ABA-independent DRE/CTR elements and RNA-seq analysis identified 48 genes downstream of OsNFYA7 action putatively involved in the OsNF-YA7-mediated drought tolerance pathway. Taken together, our results suggest an important role for OsNF-YA7 in rice drought stress tolerance.

  4. Behavioral tolerance to lysergic acid diethylamide is associated with reduced serotonin-2A receptor signaling in rat cortex.

    PubMed

    Gresch, Paul J; Smith, Randy L; Barrett, Robert J; Sanders-Bush, Elaine

    2005-09-01

    Tolerance is defined as a decrease in responsiveness to a drug after repeated administration. Tolerance to the behavioral effects of hallucinogens occurs in humans and animals. In this study, we used drug discrimination to establish a behavioral model of lysergic acid diethylamide (LSD) tolerance and examined whether tolerance to the stimulus properties of LSD is related to altered serotonin receptor signaling. Rats were trained to discriminate 60 microg/kg LSD from saline in a two-lever drug discrimination paradigm. Two groups of animals were assigned to either chronic saline treatment or chronic LSD treatment. For chronic treatment, rats from each group were injected once per day with either 130 microg/kg LSD or saline for 5 days. Rats were tested for their ability to discriminate either saline or 60 microg/kg LSD, 24 h after the last chronic injection. Rats receiving chronic LSD showed a 44% reduction in LSD lever selection, while rats receiving chronic vehicle showed no change in percent choice on the LSD lever. In another group of rats receiving the identical chronic LSD treatment, LSD-stimulated [35S]GTPgammaS binding, an index of G-protein coupling, was measured in the rat brain by autoradiography. After chronic LSD, a significant reduction in LSD-stimulated [35S]GTPgammaS binding was observed in the medial prefrontal cortex and anterior cingulate cortex. Furthermore, chronic LSD produced a significant reduction in 2,5-dimethoxy-4-iodoamphetamine-stimulated [35S]GTPgammaS binding in medial prefrontal cortex and anterior cingulate cortex, which was blocked by MDL 100907, a selective 5-HT2A receptor antagonist, but not SB206553, a 5-HT2C receptor antagonist, indicating a reduction in 5-HT2A receptor signaling. 125I-LSD binding to 5-HT2A receptors was reduced in cortical regions, demonstrating a reduction in 5-HT2A receptor density. Taken together, these results indicate that adaptive changes in LSD-stimulated serotonin receptor signaling may mediate tolerance

  5. Habituation of enterotoxigenic Staphylococcus aureus to Origanum vulgare L. essential oil does not induce direct-tolerance and cross-tolerance to salts and organic acids

    PubMed Central

    Tavares, Adassa Gama; do Monte, Daniel Farias Marinho; Albuquerque, Allan dos Reis; Sampaio, Fábio Correia; Magnani, Marciane; de Siqueira, José Pinto; de Souza, Evandro Leite

    2015-01-01

    Enterotoxigenic Staphylococcus aureus strains that were isolated from foods were investigated for their ability to develop direct-tolerance and cross-tolerance to sodium chloride (NaCl), potassium chloride (KCl), lactic acid (LA) and acetic acid (AA) after habituation in sublethal amounts (1/2 of the minimum inhibitory concentration - 1/2 MIC and 1/4 of the minimum inhibitory concentration - 1/4 MIC) of Origanum vulgare L. essential oil (OVEO). The habituation of S. aureus to 1/2 MIC and 1/4 MIC of OVEO did not induce direct-tolerance or cross-tolerance in the tested strains, as assessed by modulation of MIC values. Otherwise, exposing the strains to OVEO at sublethal concentrations maintained or increased the sensitivity of the cells to the tested stressing agents because the MIC values of OVEO, NaCl, KCl, LA and AA against the cells that were previously habituated to OVEO remained the same or decreased when compared with non-habituated cells. These data indicate that OVEO does not have an inductive effect on the acquisition of direct-tolerance or cross-tolerance in the tested enterotoxigenic strains of S. aureus to antimicrobial agents that are typically used in food preservation. PMID:26413067

  6. Habituation of enterotoxigenic Staphylococcus aureus to Origanum vulgare L. essential oil does not induce direct-tolerance and cross-tolerance to salts and organic acids.

    PubMed

    Tavares, Adassa Gama; Monte, Daniel Farias Marinho do; Albuquerque, Allan Dos Reis; Sampaio, Fábio Correia; Magnani, Marciane; Siqueira Júnior, José Pinto de; Souza, Evandro Leite de

    2015-01-01

    Enterotoxigenic Staphylococcus aureus strains that were isolated from foods were investigated for their ability to develop direct-tolerance and cross-tolerance to sodium chloride (NaCl), potassium chloride (KCl), lactic acid (LA) and acetic acid (AA) after habituation in sublethal amounts (1/2 of the minimum inhibitory concentration - 1/2 MIC and 1/4 of the minimum inhibitory concentration - 1/4 MIC) of Origanum vulgare L. essential oil (OVEO). The habituation of S. aureus to 1/2 MIC and 1/4 MIC of OVEO did not induce direct-tolerance or cross-tolerance in the tested strains, as assessed by modulation of MIC values. Otherwise, exposing the strains to OVEO at sublethal concentrations maintained or increased the sensitivity of the cells to the tested stressing agents because the MIC values of OVEO, NaCl, KCl, LA and AA against the cells that were previously habituated to OVEO remained the same or decreased when compared with non-habituated cells. These data indicate that OVEO does not have an inductive effect on the acquisition of direct-tolerance or cross-tolerance in the tested enterotoxigenic strains of S. aureus to antimicrobial agents that are typically used in food preservation.

  7. Integrated phospholipidomics and transcriptomics analysis of Saccharomyces cerevisiae with enhanced tolerance to a mixture of acetic acid, furfural, and phenol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A mixture of acetic acid, furfural and phenol (AFP), three representative lignocellulose derived inhibitors, significantly inhibited the growth and bioethanol production of Saccharomyces cerevisiae. In order to uncover mechanisms behind the enhanced tolerance of an inhibitor-tolerant S.cerevisiae s...

  8. Local adaptation constrains the distribution potential of heat-tolerant Symbiodinium from the Persian/Arabian Gulf

    PubMed Central

    D'Angelo, Cecilia; Hume, Benjamin C C; Burt, John; Smith, Edward G; Achterberg, Eric P; Wiedenmann, Jörg

    2015-01-01

    The symbiotic association of corals and unicellular algae of the genus Symbiodinium in the southern Persian/Arabian Gulf (PAG) display an exceptional heat tolerance, enduring summer peak temperatures of up to 36 °C. As yet, it is not clear whether this resilience is related to the presence of specific symbiont types that are exclusively found in this region. Therefore, we used molecular markers to identify the symbiotic algae of three Porites species along >1000 km of coastline in the PAG and the Gulf of Oman and found that a recently described species, Symbiodinium thermophilum, is integral to coral survival in the southern PAG, the world's hottest sea. Despite the geographic isolation of the PAG, we discovered that representatives of the S. thermophilum group can also be found in the adjacent Gulf of Oman providing a potential source of thermotolerant symbionts that might facilitate the adaptation of Indian Ocean populations to the higher water temperatures expected for the future. However, corals from the PAG associated with S. thermophilum show strong local adaptation not only to high temperatures but also to the exceptionally high salinity of their habitat. We show that their superior heat tolerance can be lost when these corals are exposed to reduced salinity levels common for oceanic environments elsewhere. Consequently, the salinity prevailing in most reefs outside the PAG might represent a distribution barrier for extreme temperature-tolerant coral/Symbiodinium associations from the PAG. PMID:25989370

  9. Local adaptation constrains the distribution potential of heat-tolerant Symbiodinium from the Persian/Arabian Gulf.

    PubMed

    D'Angelo, Cecilia; Hume, Benjamin C C; Burt, John; Smith, Edward G; Achterberg, Eric P; Wiedenmann, Jörg

    2015-12-01

    The symbiotic association of corals and unicellular algae of the genus Symbiodinium in the southern Persian/Arabian Gulf (PAG) display an exceptional heat tolerance, enduring summer peak temperatures of up to 36 °C. As yet, it is not clear whether this resilience is related to the presence of specific symbiont types that are exclusively found in this region. Therefore, we used molecular markers to identify the symbiotic algae of three Porites species along >1000 km of coastline in the PAG and the Gulf of Oman and found that a recently described species, Symbiodinium thermophilum, is integral to coral survival in the southern PAG, the world's hottest sea. Despite the geographic isolation of the PAG, we discovered that representatives of the S. thermophilum group can also be found in the adjacent Gulf of Oman providing a potential source of thermotolerant symbionts that might facilitate the adaptation of Indian Ocean populations to the higher water temperatures expected for the future. However, corals from the PAG associated with S. thermophilum show strong local adaptation not only to high temperatures but also to the exceptionally high salinity of their habitat. We show that their superior heat tolerance can be lost when these corals are exposed to reduced salinity levels common for oceanic environments elsewhere. Consequently, the salinity prevailing in most reefs outside the PAG might represent a distribution barrier for extreme temperature-tolerant coral/Symbiodinium associations from the PAG.

  10. "Salt tolerant" anion exchange chromatography for direct capture of an acidic protein from CHO cell culture.

    PubMed

    Champagne, Jérôme; Balluet, Guillaume; Gantier, René; Toueille, Magali

    2013-06-01

    The present study describes the use of the new HyperCel STAR AX "salt tolerant" anion exchange sorbent for the capture from Chinese Hamster Ovary (CHO) cell culture supernatant (CCS) of an acidic model protein (α-amylase). HyperCel STAR AX sorbent and other conventional anion exchangers were evaluated to purify biologically-active enzyme. Salt tolerance of the sorbent allowed reaching 5-fold higher dynamic binding capacity than conventional anion exchange during capture of the enzyme from neat (undiluted) CCS. After optimization of operating conditions, HyperCel STAR AX turned out to be the only sorbent allowing efficient protein capture directly from both neat and diluted CCS with consistent and satisfying purity, yield and productivity. Therefore implementation of the salt tolerant sorbent in industrial purification processes should allow avoiding time and cost consuming steps such as dilution or UF/DF that exclusively aim at establishing suitable conditions for ion exchange step without bringing any added value to the purification process performance. Altogether this study highlights the flexibility and cost-reduction potential brought in process design by the HyperCel STAR AX salt tolerant sorbent.

  11. Synthesis and role of salicylic acid in wheat varieties with different levels of cadmium tolerance.

    PubMed

    Kovács, Viktória; Gondor, Orsolya K; Szalai, Gabriella; Darkó, Eva; Majláth, Imre; Janda, Tibor; Pál, Magda

    2014-09-15

    Wheat genotypes with different endogenous SA contents were investigated, in order to reveal how cadmium influences salicylic acid (SA) synthesis, and to find possible relationships between SA and certain protective compounds (members of the antioxidants and the heavy metal detoxification system) and between the SA content and the level of cadmium tolerance. Cadmium exposure induced SA synthesis, especially in the leaves, and it is suggested that the phenyl-propanoid synthesis pathway is responsible for the accumulation of SA observed after cadmium stress. Cadmium influenced the synthesis and activation of protective compounds to varying extents in wheat genotypes with different levels of tolerance; the roots and leaves also responded differently to cadmium stress. Although a direct relationship was not found between the initial SA levels and the degree of cadmium tolerance, the results suggest that the increase in the root SA level during cadmium stress in the Mv varieties could be related with the enhancement of the internal glutathione cycle, thus inducing the antioxidant and metal detoxification systems, which promote Cd stress tolerance in wheat seedlings. The positive correlation between certain SA-related compounds and protective compounds suggests that SA-related signalling may also play a role in the acclimation to heavy metal stress.

  12. Genetic basis for rapidly evolved tolerance in the wild: adaptation to toxic pollutants by an estuarine fish species.

    PubMed

    Nacci, Diane; Proestou, Dina; Champlin, Denise; Martinson, John; Waits, Eric R

    2016-11-01

    Atlantic killifish (Fundulus heteroclitus) residing in some urban and industrialized estuaries of the US eastern seaboard demonstrate recently evolved and extreme tolerance to toxic aryl hydrocarbon pollutants, characterized as dioxin-like compounds (DLCs). Here, we provide an unusually comprehensive accounting (69%) through quantitative trait locus (QTL) analysis of the genetic basis for DLC tolerance in killifish inhabiting an urban estuary contaminated with PCB congeners, the most toxic of which are DLCs. Consistent with mechanistic knowledge of DLC toxicity in fish and other vertebrates, the aryl hydrocarbon receptor (ahr2) region accounts for 17% of trait variation; however, QTL on independent linkage groups and their interactions have even greater explanatory power (44%). QTL interpreted within the context of recently available Fundulus genomic resources and shared synteny among fish species suggest adaptation via interacting components of a complex stress response network. Some QTL were also enriched in other killifish populations characterized as DLC-tolerant and residing in distant urban estuaries contaminated with unique mixtures of pollutants. Together, our results suggest that DLC tolerance in killifish represents an emerging example of parallel contemporary evolution that has been driven by intense human-mediated selection on natural populations.

  13. Enhance nisin yield via improving acid-tolerant capability of Lactococcus lactis F44

    PubMed Central

    Zhang, Jian; Caiyin, Qinggele; Feng, Wenjing; Zhao, Xiuli; Qiao, Bin; Zhao, Guangrong; Qiao, Jianjun

    2016-01-01

    Traditionally, nisin was produced industrially by using Lactococcus lactis in the neutral fermentation process. However, nisin showed higher activity in the acidic environment. How to balance the pH value for bacterial normal growth and nisin activity might be the key problem. In this study, 17 acid-tolerant genes and 6 lactic acid synthetic genes were introduced in L. lactis F44, respectively. Comparing to the 2810 IU/mL nisin yield of the original strain F44, the nisin titer of the engineered strains over-expressing hdeAB, ldh and murG, increased to 3850, 3979 and 4377 IU/mL, respectively. These engineered strains showed more stable intracellular pH value during the fermentation process. Improvement of lactate production could partly provide the extra energy for the expression of acid tolerance genes during growth. Co-overexpression of hdeAB, murG, and ldh(Z) in strain F44 resulted in the nisin titer of 4913 IU/mL. The engineered strain (ABGL) could grow on plates with pH 4.2, comparing to the surviving pH 4.6 of strain F44. The fed-batch fermentation showed nisin titer of the co-expression L. lactis strain could reach 5563 IU/mL with lower pH condition and longer cultivation time. This work provides a novel strategy of constructing robust strains for use in industry process. PMID:27306587

  14. Membrane Tolerance to Ethanol is Rapidly Lost after Withdrawal: A Model for Studies of Membrane Adaptation

    NASA Astrophysics Data System (ADS)

    Taraschi, Theodore F.; Ellingson, John S.; Wu, Alice; Zimmerman, Robert; Rubin, Emanuel

    1986-06-01

    The structural properties of liver microsomes and erythrocytes obtained from rats that had been chronically administered ethanol were examined by electron spin resonance (ESR) following ethanol withdrawal for 1-10 days. Membranes obtained from control animals exhibited considerable molecular disordering upon the addition of ethanol in vitro (50-100 mM). Conversely, microsomal and erythrocyte membranes from alcoholic animals were resistant to this disordering by ethanol (membrane tolerance). These membrane properties were also apparent in lipid bilayers comprised of either total lipids or phospholipids isolated from the control and alcoholic animals. While several weeks of ethanol administration were required for both erythrocytes and microsomes to develop membrane tolerance, erythrocytes from alcoholic animals were disordered by ethanol in vitro after the animals had been withdrawn from ethanol for only 1 day. The same rapid loss of tolerance was observed in microsomes after 2 days of withdrawal. The same time course for the loss of tolerance was observed in lipid bilayers prepared from the total lipid and phospholipid extracts. No significant differences in the cholesterol/phospholipid ratio were observed between the microsomal or erythrocyte membranes isolated before and after withdrawal. Thus, alterations in the microsomal and erythrocyte phospholipids, and not cholesterol content, were responsible for conveying membrane tolerance. Membrane structural properties can be rapidly adjusted in a mammalian system in response to the withdrawal of the external membrane perturbant ethanol. The withdrawal model, which begins with established membrane tolerance and leads to rapid and complete loss of tolerance, provides a model to analyze the compositional changes responsible for this tolerance to disordering by ethanol.

  15. Bacterial Drug Tolerance under Clinical Conditions Is Governed by Anaerobic Adaptation but not Anaerobic Respiration

    PubMed Central

    Hemsley, Claudia M.; Luo, Jamie X.; Andreae, Clio A.; Butler, Clive S.; Soyer, Orkun S.

    2014-01-01

    Noninherited antibiotic resistance is a phenomenon whereby a subpopulation of genetically identical bacteria displays phenotypic tolerance to antibiotics. We show here that compared to Escherichia coli, the clinically relevant genus Burkholderia displays much higher levels of cells that tolerate ceftazidime. By measuring the dynamics of the formation of drug-tolerant cells under conditions that mimic in vivo infections, we show that in Burkholderia bacteria, oxygen levels affect the formation of these cells. The drug-tolerant cells are characterized by an anaerobic metabolic signature and can be eliminated by oxygenating the system or adding nitrate. The transcriptome profile suggests that these cells are not dormant persister cells and are likely to be drug tolerant as a consequence of the upregulation of anaerobic nitrate respiration, efflux pumps, β-lactamases, and stress response proteins. These findings have important implications for the treatment of chronic bacterial infections and the methodologies and conditions that are used to study drug-tolerant and persister cells in vitro. PMID:25049258

  16. Bacterial drug tolerance under clinical conditions is governed by anaerobic adaptation but not anaerobic respiration.

    PubMed

    Hemsley, Claudia M; Luo, Jamie X; Andreae, Clio A; Butler, Clive S; Soyer, Orkun S; Titball, Richard W

    2014-10-01

    Noninherited antibiotic resistance is a phenomenon whereby a subpopulation of genetically identical bacteria displays phenotypic tolerance to antibiotics. We show here that compared to Escherichia coli, the clinically relevant genus Burkholderia displays much higher levels of cells that tolerate ceftazidime. By measuring the dynamics of the formation of drug-tolerant cells under conditions that mimic in vivo infections, we show that in Burkholderia bacteria, oxygen levels affect the formation of these cells. The drug-tolerant cells are characterized by an anaerobic metabolic signature and can be eliminated by oxygenating the system or adding nitrate. The transcriptome profile suggests that these cells are not dormant persister cells and are likely to be drug tolerant as a consequence of the upregulation of anaerobic nitrate respiration, efflux pumps, β-lactamases, and stress response proteins. These findings have important implications for the treatment of chronic bacterial infections and the methodologies and conditions that are used to study drug-tolerant and persister cells in vitro.

  17. Root Adaptive Responses to Aluminum-Treatment Revealed by RNA-Seq in Two Citrus Species With Different Aluminum-Tolerance

    PubMed Central

    Guo, Peng; Qi, Yi-Ping; Yang, Lin-Tong; Lai, Ning-Wei; Ye, Xin; Yang, Yi; Chen, Li-Song

    2017-01-01

    Seedlings of aluminum (Al)-tolerant Citrus sinensis and Al-intolerant Citrus grandis were fertigated daily with nutrient solution containing 0 and 1.0 mM AlCl3●6H2O for 18 weeks. The Al-induced decreases of biomass and root total soluble proteins only occurred in C. grandis, demonstrating that C. sinensis had higher Al-tolerance than C. grandis. Under Al-treatment, C. sinensis roots secreted more citrate and malate than C. grandis ones; less Al was accumulated in C. sinenis than in C. grandis leaves. The Al-induced reduction of phosphorus was lesser in C. sinensis roots and leaves than in C. grandis ones, whereas the Al-induced increase of sulfur was greater in C. sinensis roots and leaves. Using RNA-seq, we isolated 1905 and 2670 differentially expressed genes (DEGs) from Al-treated C. sinensis than C. grandis roots, respectively. Among these DEGs, only 649 DEGs were shared by the two species. Further analysis suggested that the following several aspects conferred C. sinensis higher Al-tolerance: (a) Al-treated C. sinensis seedlings had a higher external Al detoxification capacity via enhanced Al-induced secretion of organic acid anions, a higher antioxidant capacity and a more efficient chelation system in roots; (b) Al-treated C. sinensis seedlings displayed a higher level of sulfur in roots and leaves possibly due to increased uptake and decreased export of sulfur and a higher capacity to maintain the cellular phosphorus homeostasis by enhancing phosphorus acquisition and utilization; (c) Cell wall and cytoskeleton metabolism, energy and carbohydrate metabolism and signal transduction displayed higher adaptative responses to Al in C. sinensis than in C. grandis roots; (d) More upregulated than downregulated genes related to fatty acid and amino acid metabolisms were isolated from Al-treated C. sinensis roots, but the reverse was the case for Al-treated C. grandis roots. These results provide a platform for further investigating the roles of genes possibly

  18. Root Adaptive Responses to Aluminum-Treatment Revealed by RNA-Seq in Two Citrus Species With Different Aluminum-Tolerance.

    PubMed

    Guo, Peng; Qi, Yi-Ping; Yang, Lin-Tong; Lai, Ning-Wei; Ye, Xin; Yang, Yi; Chen, Li-Song

    2017-01-01

    Seedlings of aluminum (Al)-tolerant Citrus sinensis and Al-intolerant Citrus grandis were fertigated daily with nutrient solution containing 0 and 1.0 mM AlCl3●6H2O for 18 weeks. The Al-induced decreases of biomass and root total soluble proteins only occurred in C. grandis, demonstrating that C. sinensis had higher Al-tolerance than C. grandis. Under Al-treatment, C. sinensis roots secreted more citrate and malate than C. grandis ones; less Al was accumulated in C. sinenis than in C. grandis leaves. The Al-induced reduction of phosphorus was lesser in C. sinensis roots and leaves than in C. grandis ones, whereas the Al-induced increase of sulfur was greater in C. sinensis roots and leaves. Using RNA-seq, we isolated 1905 and 2670 differentially expressed genes (DEGs) from Al-treated C. sinensis than C. grandis roots, respectively. Among these DEGs, only 649 DEGs were shared by the two species. Further analysis suggested that the following several aspects conferred C. sinensis higher Al-tolerance: (a) Al-treated C. sinensis seedlings had a higher external Al detoxification capacity via enhanced Al-induced secretion of organic acid anions, a higher antioxidant capacity and a more efficient chelation system in roots; (b) Al-treated C. sinensis seedlings displayed a higher level of sulfur in roots and leaves possibly due to increased uptake and decreased export of sulfur and a higher capacity to maintain the cellular phosphorus homeostasis by enhancing phosphorus acquisition and utilization; (c) Cell wall and cytoskeleton metabolism, energy and carbohydrate metabolism and signal transduction displayed higher adaptative responses to Al in C. sinensis than in C. grandis roots; (d) More upregulated than downregulated genes related to fatty acid and amino acid metabolisms were isolated from Al-treated C. sinensis roots, but the reverse was the case for Al-treated C. grandis roots. These results provide a platform for further investigating the roles of genes possibly

  19. Thermal resistance parameters of acid-adapted and unadapted Escherichia coli O157:H7 in apple-carrot juice blends: effect of organic acids and pH.

    PubMed

    Usaga, Jessie; Worobo, Randy W; Padilla-Zakour, Olga I

    2014-04-01

    Numerous outbreaks involving fresh juices contaminated with Escherichia coli O157:H7 have occurred in the United States and around the world, raising concern for the safety of these products. Until now, only a few studies regarding the thermal tolerance of this pathogen in acidic juices over a wide range of pH values have been published. Therefore, the effect of varying the pH with different organic acids on the thermal inactivation of non-acid-adapted and acid-adapted E. coli O157:H7 (strain C7927) was determined. The decimal reduction times (D-values) and the change in temperature required for the thermal destruction curve to traverse 1 log cycle (z-values) were calculated for non-acid-adapted E. coli in an apple-carrot juice blend (80:20) adjusted to three pH values (3.3, 3.5, and 3.7) by the addition of lactic, malic, or acetic acid and at a pH of 4.5 adjusted with NaOH. Thermal parameters were also determined for acid-adapted cells in juices acidified with malic acid. The effect of the soluble solids content on the thermal tolerance was studied in samples with a pH of 3.7 at 9.4 to 11.5 °Brix. The D-values were determined at 54, 56, and 58 °C, and trials were conducted in triplicate. Non-acid-adapted E. coli exhibited the highest thermal tolerance at pH 4.5 (D-value at 54 °C [D54 °C] of 20 ± 4 min and z-value of 6.2 °C), although on average, the D-values increased significantly (P < 0.01) due to acid adaptation. In acidified juices, the highest tolerance was observed in acid-adapted E. coli in samples adjusted to pH 3.7 with malic acid (D54 °C of 9 ± 2 min and z-value of 5.4 °C) and the lowest in unadapted E. coli at pH 3.3 acidified with acetic acid (D58 °C of 0.03 ± 0.01 min and z-value of 10.4 °C). For juices acidified to the same endpoint pH with different acids, E. coli was found to be more tolerant in samples acidified with malic acid, followed by lactic and acetic acids. Increasing the soluble solids content from 9.4 to 11.5 °Brix showed no

  20. Investigation of Growth Phase-Dependent Acid Tolerance in Bifidobacteria longum BBMN68.

    PubMed

    Jin, Junhua; Song, Jingyi; Ren, Fazheng; Zhang, Hongxing; Xie, Yuanhong; Ma, Jingsheng; Li, Xue

    2016-11-01

    The underlying mechanisms imparting the growth phase-dependent acid tolerance have not been extensively investigated. In this study, we compared the acid resistance of the Bifidobacterium longum strain BBMN68 from different growth phases at lethal pH values (pH 2.5, 3.0, and 3.5), and analyzed the activity of H(+)-ATPase, the composition of fatty acids, and the mRNA abundance of ffh, uvrA, recA, lexA, groES, and dnaK in cells from different growth phases. The results indicated that the survival rates of cells from early stationary (ES) and late stationary (LS) growth phases at lethal pH values were significantly higher than those of exponential growth phase cells. Our findings indicated that by inducing a continuously auto-acidizing environment during cell growth, the acid resistance of ES and LS cells was strengthened. The higher activity of H(+)-ATPase, the decrease in unsaturated fatty acids, and the increased expression of genes involved in DNA repair and protein protection in the cells in stationary growth phase were all implicated in the significantly increased acid resistance of ES and LS cells compared with exponential growth phase cells of the B. longum strain BBMN68.

  1. Transcriptome analysis of acetic-acid-treated yeast cells identifies a large set of genes whose overexpression or deletion enhances acetic acid tolerance.

    PubMed

    Lee, Yeji; Nasution, Olviyani; Choi, Eunyong; Choi, In-Geol; Kim, Wankee; Choi, Wonja

    2015-08-01

    Acetic acid inhibits the metabolic activities of Saccharomyces cerevisiae. Therefore, a better understanding of how S. cerevisiae cells acquire the tolerance to acetic acid is of importance to develop robust yeast strains to be used in industry. To do this, we examined the transcriptional changes that occur at 12 h post-exposure to acetic acid, revealing that 56 and 58 genes were upregulated and downregulated, respectively. Functional categorization of them revealed that 22 protein synthesis genes and 14 stress response genes constituted the largest portion of the upregulated and downregulated genes, respectively. To evaluate the association of the regulated genes with acetic acid tolerance, 3 upregulated genes (DBP2, ASC1, and GND1) were selected among 34 non-protein synthesis genes, and 54 viable mutants individually deleted for the downregulated genes were retrieved from the non-essential haploid deletion library. Strains overexpressing ASC1 and GND1 displayed enhanced tolerance to acetic acid, whereas a strain overexpressing DBP2 was sensitive. Fifty of 54 deletion mutants displayed enhanced acetic acid tolerance. Three chosen deletion mutants (hsps82Δ, ato2Δ, and ssa3Δ) were also tolerant to benzoic acid but not propionic and sorbic acids. Moreover, all those five (two overexpressing and three deleted) strains were more efficient in proton efflux and lower in membrane permeability and internal hydrogen peroxide content than controls. Individually or in combination, those physiological changes are likely to contribute at least in part to enhanced acetic acid tolerance. Overall, information of our transcriptional profile was very useful to identify molecular factors associated with acetic acid tolerance.

  2. Klebsiella sp. strain C2A isolated from olive oil mill waste is able to tolerate and degrade tannic acid in very high concentrations.

    PubMed

    Pepi, Milva; Cappelli, Serena; Hachicho, Nancy; Perra, Guido; Renzi, Monia; Tarabelli, Alessandro; Altieri, Roberto; Esposito, Alessandro; Focardi, Silvano E; Heipieper, Hermann J

    2013-06-01

    Four bacterial strains capable of growing in the presence of tannic acid as sole carbon and energy source were isolated from olive mill waste mixtures. 16S rRNA gene sequencing assigned them to the genus Klebsiella. The most efficient strain, Klebsiella sp. strain C2A, was able to degrade 3.5 g L(-1) tannic acid within 35 h with synthesizing gallic acid as main product. The capability of Klebsiella sp. strain C2A to produce tannase was evidenced at high concentrations of tannic acid up to 50 g L(-1) . The bacteria adapted to the toxicity of tannic acids by an increase in the membrane lipid fatty acids degree of saturation, especially in the presence of concentrations higher than 20 g L(-1) . The highly tolerant and adaptable bacterial strain characterized in this study could be used in bioremediation processes of wastes rich in polyphenols such as those derived from olive mills, winery or tanneries.

  3. Supported zirconium sulfate on carbon nanotubes as water-tolerant solid acid catalyst

    SciTech Connect

    Juan, Joon Ching; Jiang Yajie; Meng Xiujuan; Cao Weiliang; Yarmo, Mohd Ambar; Zhang Jingchang . E-mail: zhangjc1@mail.buct.edu.cn

    2007-07-03

    A new solid acid of zirconium sulfate (CZ) was successfully supported on carbon nanotube (CNT) for esterification reaction. Preparation conditions of the supported CZ have been investigated, to obtain highest catalytic activity for esterification reaction. XRD, TEM, BET, X-ray photoelectron spectra (XPS) and in situ FTIR analysis has also been carried out to understand the characteristics of the catalyst. In the esterification of acrylic acid with n-octanol, the supported CZ exhibited high catalytic activity and stability. The catalytic activity was nearly unchanged during four times of reuse. XRD and TEM analysis indicated that CZ was finely dispersed on CNT. XPS analysis shows that the CZ species was preserved and the chemical environment of the CZ has changed after loaded on CNT. This finding show that CNT as CZ support is an efficient water-tolerant solid acid.

  4. Batch and continuous culture-based selection strategies for acetic acid tolerance in xylose-fermenting Saccharomyces cerevisiae.

    PubMed

    Wright, Jeremiah; Bellissimi, Eleonora; de Hulster, Erik; Wagner, Andreas; Pronk, Jack T; van Maris, Antonius J A

    2011-05-01

    Acetic acid tolerance of Saccharomyces cerevisiae is crucial for the production of bioethanol and other bulk chemicals from lignocellulosic plant-biomass hydrolysates, especially at a low pH. This study explores two evolutionary engineering strategies for the improvement of acetic acid tolerance of the xylose-fermenting S. cerevisiae RWB218, whose anaerobic growth on xylose at pH 4 is inhibited at acetic acid concentrations >1 g L(-1) : (1) sequential anaerobic, batch cultivation (pH 4) at increasing acetic acid concentrations and (2) prolonged anaerobic continuous cultivation without pH control, in which acidification by ammonium assimilation generates selective pressure for acetic acid tolerance. After c. 400 generations, the sequential-batch and continuous selection cultures grew on xylose at pH≤4 with 6 and 5 g L(-1) acetic acid, respectively. In the continuous cultures, the specific xylose-consumption rate had increased by 75% to 1.7 g xylose g(-1) biomass h(-1) . After storage of samples from both selection experiments at -80 °C and cultivation without acetic acid, they failed to grow on xylose at pH 4 in the presence of 5 g L(-1) acetic acid. Characterization in chemostat cultures with linear acetic acid gradients demonstrated an acetate-inducible acetic acid tolerance in samples from the continuous selection protocol.

  5. An amino acid mixture improves glucose tolerance and lowers insulin resistance in the obese Zucker rat.

    PubMed

    Bernard, Jeffrey R; Liao, Yi-Hung; Ding, Zhenping; Hara, Daisuke; Kleinert, Maximilian; Nelson, Jeffrey L; Ivy, John L

    2013-07-01

    The purpose of this investigation was to test an amino acid mixture on glucose tolerance in obese Zucker rats [experiment (Exp)-1] and determine whether differences in blood glucose were associated with alterations in muscle glucose uptake [experiment (Exp)-2]. Exp-1 rats were gavaged with either carbohydrate (OB-CHO), carbohydrate plus amino acid mixture (OB-AA-1), carbohydrate plus amino acid mixture with increased leucine concentration (OB-AA-2) or water (OB-PLA). The glucose response in OB-AA-1 and OB-AA-2 were similar, and both were lower compared to OB-CHO. This effect of the amino acid mixtures did not appear to be solely attributable to an increase in plasma insulin. Rats in Exp-2 were gavaged with carbohydrate (OB-CHO), carbohydrate plus amino acid mixture (OB-AA-1) or water (OB-PLA). Lean Zuckers were gavaged with carbohydrate (LN-CHO). Fifteen minutes after gavage, a radiolabeled glucose analog was infused through a catheter previously implanted in the right jugular vein. Blood glucose was significantly lower in OB-AA-1 compared to OB-CHO while the insulin responses were similar. Glucose uptake was greater in OB-AA-1 compared with OB-CHO, and similar to that in LN-CHO in red gastrocnemius muscle (5.15 ± 0.29, 3.8 ± 0.27, 5.18 ± 0.34 µmol/100 g/min, respectively). Western blot analysis showed that Akt substrate of 160 kDa (AS160) phosphorylation was enhanced for OB-AA-1 and LN-CHO compared to OB-CHO. These findings suggest that an amino acid mixture improves glucose tolerance in an insulin resistant model and that these improvements are associated with an increase in skeletal muscle glucose uptake possibly due to improved intracellular signaling.

  6. Screening and genetic characterization of thermo-tolerant Synechocystis sp. PCC6803 strains created by adaptive evolution

    PubMed Central

    2014-01-01

    Background Temperature tolerance is an important aspect for commercial scale outdoor cultivation of microalgae and cyanobacteria. While various genes are known to be related to Synechocystis sp. PCC6803's heat shock response, there is very limited published data concerning the specific genes involved in long term thermal tolerance. We have previously used random mutagenesis and adaptive evolution to generate a mixture of strains of Synechocystis sp. PCC6803 with significantly increased thermal tolerance. The genetic modifications leading to the phenotypes of the newly generated strains are the focus of this work. Results We used a custom screening platform, based on 96-deepwell microplate culturing in an in house designed cultivation chamber integrated in a liquid handling robot for screening and selection; in addition we also used a more conventional system. The increased thermal tolerances of the isolated monoclonal strains were validated in larger bioreactors and their whole genomes sequenced. Comparison of the sequence information to the parental wild type identified various mutations responsible for the enhanced phenotypes. Among the affected genes identified are clpC, pnp, pyk2, sigF, nlpD, pyrR, pilJ and cya1. Conclusions The applied methods (random mutagenesis, in vivo selection, screening, validation, whole genome sequencing) were successfully applied to identify various mutations, some of which are very unlikely to have been identified by other approaches. Several of the identified mutations are found in various strains and (due to their distribution) are likely to have occurred independently. This, coupled with the relatively low number of affected genes underscores the significance of these specific mutations to convey thermal tolerance in Synechocystis. PMID:25029912

  7. Genetic Analysis of Physcomitrella patens Identifies ABSCISIC ACID NON-RESPONSIVE, a Regulator of ABA Responses Unique to Basal Land Plants and Required for Desiccation Tolerance.

    PubMed

    Stevenson, Sean R; Kamisugi, Yasuko; Trinh, Chi H; Schmutz, Jeremy; Jenkins, Jerry W; Grimwood, Jane; Muchero, Wellington; Tuskan, Gerald A; Rensing, Stefan A; Lang, Daniel; Reski, Ralf; Melkonian, Michael; Rothfels, Carl J; Li, Fay-Wei; Larsson, Anders; Wong, Gane K-S; Edwards, Thomas A; Cuming, Andrew C

    2016-06-01

    The anatomically simple plants that first colonized land must have acquired molecular and biochemical adaptations to drought stress. Abscisic acid (ABA) coordinates responses leading to desiccation tolerance in all land plants. We identified ABA nonresponsive mutants in the model bryophyte Physcomitrella patens and genotyped a segregating population to map and identify the ABA NON-RESPONSIVE (ANR) gene encoding a modular protein kinase comprising an N-terminal PAS domain, a central EDR domain, and a C-terminal MAPKKK-like domain. anr mutants fail to accumulate dehydration tolerance-associated gene products in response to drought, ABA, or osmotic stress and do not acquire ABA-dependent desiccation tolerance. The crystal structure of the PAS domain, determined to 1.7-Å resolution, shows a conserved PAS-fold that dimerizes through a weak dimerization interface. Targeted mutagenesis of a conserved tryptophan residue within the PAS domain generates plants with ABA nonresponsive growth and strongly attenuated ABA-responsive gene expression, whereas deleting this domain retains a fully ABA-responsive phenotype. ANR orthologs are found in early-diverging land plant lineages and aquatic algae but are absent from more recently diverged vascular plants. We propose that ANR genes represent an ancestral adaptation that enabled drought stress survival of the first terrestrial colonizers but were lost during land plant evolution.

  8. Genetic analysis of Physcomitrella patens identifies ABSCISIC ACID NON-RESPONSIVE, a regulator of ABA responses unique to basal land plants and required for desiccation tolerance

    DOE PAGES

    Stevenson, Sean Ross; Kamisugi, Yasuko; Trinh, Chi H.; ...

    2016-05-18

    The anatomically simple plants that first colonized land must have acquired molecular and biochemical adaptations to drought stress. Abscisic acid (ABA) coordinates responses leading to desiccation tolerance in all land plants. We identified ABA nonresponsive mutants in the model bryophyte Physcomitrella patens and genotyped a segregating population to map and identify the ABA NON-RESPONSIVE (ANR) gene encoding a modular protein kinase comprising an N-terminal PAS domain, a central EDR domain, and a C-terminal MAPKKK-like domain. anr mutants fail to accumulate dehydration tolerance-associated gene products in response to drought, ABA, or osmotic stress and do not acquire ABA-dependent desiccation tolerance. Themore » crystal structure of the PAS domain, determined to 1.7-Å resolution, shows a conserved PAS-fold that dimerizes through a weak dimerization interface. Targeted mutagenesis of a conserved tryptophan residue within the PAS domain generates plants with ABA nonresponsive growth and strongly attenuated ABA-responsive gene expression, whereas deleting this domain retains a fully ABA-responsive phenotype. ANR orthologs are found in early-diverging land plant lineages and aquatic algae but are absent from more recently diverged vascular plants. Lastly, we propose that ANR genes represent an ancestral adaptation that enabled drought stress survival of the first terrestrial colonizers but were lost during land plant evolution.« less

  9. Influence of temperature on acid-stress adaptation in Listeria monocytogenes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several factors play critical roles in controlling the induction of acid-stress adaptation in L. monocytogenes. Our findings show that temperature plays a significant role in the induction of acid-stress adaptation in Listeria monocytogenes and two distinct patterns were observed: (I) Presence of su...

  10. Metabolic pathways regulated by γ-aminobutyric acid (GABA) contributing to heat tolerance in creeping bentgrass (Agrostis stolonifera)

    PubMed Central

    Li, Zhou; Yu, Jingjin; Peng, Yan; Huang, Bingru

    2016-01-01

    γ-Aminobutyric acid is a non-protein amino acid involved in various metabolic processes. The objectives of this study were to examine whether increased GABA could improve heat tolerance in cool-season creeping bentgrass through physiological analysis, and to determine major metabolic pathways regulated by GABA through metabolic profiling. Plants were pretreated with 0.5 mM GABA or water before exposed to non-stressed condition (21/19 °C) or heat stress (35/30 °C) in controlled growth chambers for 35 d. The growth and physiological analysis demonstrated that exogenous GABA application significantly improved heat tolerance of creeping bentgrass. Metabolic profiling found that exogenous application of GABA led to increases in accumulations of amino acids (glutamic acid, aspartic acid, alanine, threonine, serine, and valine), organic acids (aconitic acid, malic acid, succinic acid, oxalic acid, and threonic acid), sugars (sucrose, fructose, glucose, galactose, and maltose), and sugar alcohols (mannitol and myo-inositol). These findings suggest that GABA-induced heat tolerance in creeping bentgrass could involve the enhancement of photosynthesis and ascorbate-glutathione cycle, the maintenance of osmotic adjustment, and the increase in GABA shunt. The increased GABA shunt could be the supply of intermediates to feed the tricarboxylic acid cycle of respiration metabolism during a long-term heat stress, thereby maintaining metabolic homeostasis. PMID:27455877

  11. Metabolic pathways regulated by γ-aminobutyric acid (GABA) contributing to heat tolerance in creeping bentgrass (Agrostis stolonifera).

    PubMed

    Li, Zhou; Yu, Jingjin; Peng, Yan; Huang, Bingru

    2016-07-26

    γ-Aminobutyric acid is a non-protein amino acid involved in various metabolic processes. The objectives of this study were to examine whether increased GABA could improve heat tolerance in cool-season creeping bentgrass through physiological analysis, and to determine major metabolic pathways regulated by GABA through metabolic profiling. Plants were pretreated with 0.5 mM GABA or water before exposed to non-stressed condition (21/19 °C) or heat stress (35/30 °C) in controlled growth chambers for 35 d. The growth and physiological analysis demonstrated that exogenous GABA application significantly improved heat tolerance of creeping bentgrass. Metabolic profiling found that exogenous application of GABA led to increases in accumulations of amino acids (glutamic acid, aspartic acid, alanine, threonine, serine, and valine), organic acids (aconitic acid, malic acid, succinic acid, oxalic acid, and threonic acid), sugars (sucrose, fructose, glucose, galactose, and maltose), and sugar alcohols (mannitol and myo-inositol). These findings suggest that GABA-induced heat tolerance in creeping bentgrass could involve the enhancement of photosynthesis and ascorbate-glutathione cycle, the maintenance of osmotic adjustment, and the increase in GABA shunt. The increased GABA shunt could be the supply of intermediates to feed the tricarboxylic acid cycle of respiration metabolism during a long-term heat stress, thereby maintaining metabolic homeostasis.

  12. Amino acid mixture acutely improves the glucose tolerance of healthy overweight adults.

    PubMed

    Wang, Bei; Kammer, Lynne M; Ding, Zhenping; Lassiter, David G; Hwang, Jungyun; Nelson, Jeffrey L; Ivy, John L

    2012-01-01

    Certain amino acids have been reported to influence carbohydrate metabolism and blood glucose clearance, as well as improve the glucose tolerance in animal models. We hypothesized that an amino acid mixture consisting of isoleucine and 4 additional amino acids would improve the glucose response of healthy overweight men and women to an oral glucose tolerance test (OGTT). Twenty-two overweight healthy subjects completed 2 OGTTs after consuming 2 different test beverages. The amino acid mixture beverage (CHO/AA) consisted of 0.088 g cystine 2HCl, 0.043 g methionine, 0.086 g valine, 12.094 g isoleucine, 0.084 g leucine, and 100 g dextrose. The control beverage (CHO) consisted of 100 g dextrose only. Venous blood samples were drawn 10 minutes before the start of ingesting the drinks and 15, 30, 60, 120, and 180 minutes after the completion of the drinks. During the OGTT, the plasma glucose response for the CHO/AA treatment was significantly lower than that of the CHO treatment (P < .01), as was the plasma glucose area under the curve (CHO/AA 806 ± 31 mmol/L·3 hours vs CHO 942 ± 40 mmol/L·3 hours). Differences in plasma glucose between treatments occurred at 30, 60, 120, and 180 minutes after supplement ingestion. Plasma glucagon during the CHO/AA treatment was significantly higher than during the CHO treatment. However, there were no significant differences in plasma insulin or C-peptide responses between treatments. These results suggest that the amino acid mixture lowers the glucose response to an OGTT in healthy overweight subjects in an insulin-independent manner.

  13. Role of fatty acids in Bacillus environmental adaptation

    PubMed Central

    Diomandé, Sara E.; Nguyen-The, Christophe; Guinebretière, Marie-Hélène; Broussolle, Véronique; Brillard, Julien

    2015-01-01

    The large bacterial genus Bacillus is widely distributed in the environment and is able to colonize highly diverse niches. Some Bacillus species harbor pathogenic characteristics. The fatty acid (FA) composition is among the essential criteria used to define Bacillus species. Some elements of the FA pattern composition are common to Bacillus species, whereas others are specific and can be categorized in relation to the ecological niches of the species. Bacillus species are able to modify their FA patterns to adapt to a wide range of environmental changes, including changes in the growth medium, temperature, food processing conditions, and pH. Like many other Gram-positive bacteria, Bacillus strains display a well-defined FA synthesis II system that is equilibrated with a FA degradation pathway and regulated to efficiently respond to the needs of the cell. Like endogenous FAs, exogenous FAs may positively or negatively affect the survival of Bacillus vegetative cells and the spore germination ability in a given environment. Some of these exogenous FAs may provide a powerful strategy for preserving food against contamination by the Bacillus pathogenic strains responsible for foodborne illness. PMID:26300876

  14. Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants

    PubMed Central

    Khan, M. Iqbal R.; Fatma, Mehar; Per, Tasir S.; Anjum, Naser A.; Khan, Nafees A.

    2015-01-01

    Abiotic stresses (such as metals/metalloids, salinity, ozone, UV-B radiation, extreme temperatures, and drought) are among the most challenging threats to agricultural system and economic yield of crop plants. These stresses (in isolation and/or combination) induce numerous adverse effects in plants, impair biochemical/physiological and molecular processes, and eventually cause severe reductions in plant growth, development and overall productivity. Phytohormones have been recognized as a strong tool for sustainably alleviating adverse effects of abiotic stresses in crop plants. In particular, the significance of salicylic acid (SA) has been increasingly recognized in improved plant abiotic stress-tolerance via SA-mediated control of major plant-metabolic processes. However, the basic biochemical/physiological and molecular mechanisms that potentially underpin SA-induced plant-tolerance to major abiotic stresses remain least discussed. Based on recent reports, this paper: (a) overviews historical background and biosynthesis of SA under both optimal and stressful environments in plants; (b) critically appraises the role of SA in plants exposed to major abiotic stresses; (c) cross-talks potential mechanisms potentially governing SA-induced plant abiotic stress-tolerance; and finally (d) briefly highlights major aspects so far unexplored in the current context. PMID:26175738

  15. Effect of nicotinic acid on the sleep time and tolerance induced by ethanol in the rat

    SciTech Connect

    Basilio, C.; Toro, A.; Yojay, L.

    1986-05-01

    The intraperitoneal (i.p.) administration (50 mg/kg) of nicotinic acid (NA), markedly decreased the sleep time of rats pretreated (10 min before), post-treated (10 min after) or simultaneously treated with ethanol (4 g/Kg i.p.). A similar effect was observed on the sleep time induced by pentobarbital (37 mg/Kg i.p.). Blood alcohol levels (BAL) were the same or slightly higher in the animals pretreated with NA than in the control animals pre-injected with saline. Nicotinamide and NAD had no effect. A total of three doses of ethanol, each one administered weekly or biweekly, induced tolerance, which persisted for approximately six weeks. After this period, a hypersensitivity to ethanol appeared to develop. This phenomenon was not observed when NA was pre-injected 10 min before each dose of ethanol. The sleep time of the latter animals did not change neither during the treatment period nor after six weeks without any treatment. BAL were slightly higher in NA treated than in control animals. The authors concluded that the effect of NA on the sleep time and tolerance induced by ethanol is not due to an increased rate of its metabolism and/or elimination but to a long-lasting effect that decreases the sensitivity of the nervous cells to ethanol. The mechanisms involved in the shortening of the sleep time as well as those responsible for the loss of the capacity to develop tolerance are under current investigation.

  16. Ectopic Expression of JcWRKY Transcription Factor Confers Salinity Tolerance via Salicylic Acid Signaling

    PubMed Central

    Agarwal, Parinita; Dabi, Mitali; Sapara, Komal K.; Joshi, Priyanka S.; Agarwal, Pradeep K.

    2016-01-01

    Plants, being sessile, have developed intricate signaling network to specifically respond to the diverse environmental stress. The plant-specific WRKY TFs form one of the largest TF family and are involved in diverse plant processes, involving growth, development and stress signaling through auto and cross regulation with different genes and TFs. Here, we report the functional characterization of a salicylic acid -inducible JcWRKY TF. The JcWRKY overexpression confers salinity tolerance in transgenic tobacco, as was evident by increased chlorophyll content and seed germination potential. The transgenic plants showed increased soluble sugar, membrane stability, reduced electrolyte leakage and generation of reactive oxygen species (H2O2 and O2•-) as compared to the wild type. Furthermore, the low SA treatment along with salinity improved the tolerance potential of the transgenics by maintaining ROS homeostasis and high K+/Na+ ratio. The transcript expression of SA biosynthetic gene ICS1 and antioxidative enzymes (CAT and SOD) showed upregulation during stress. Thus, the present study reflects that JcWRKY is working in co-ordination with SA signaling to orchestrate the different biochemical and molecular pathways to maneuvre salt stress tolerance of the transgenic plants. PMID:27799936

  17. Transcriptomic analysis of Escherichia coli O157:H7 and K-12 cultures exposed to inorganic and organic acids in stationary phase reveals acidulant- and strain-specific acid tolerance responses.

    PubMed

    King, Thea; Lucchini, Sacha; Hinton, Jay C D; Gobius, Kari

    2010-10-01

    The food-borne pathogen Escherichia coli O157:H7 is commonly exposed to organic acid in processed and preserved foods, allowing adaptation and the development of tolerance to pH levels otherwise lethal. Since little is known about the molecular basis of adaptation of E. coli to organic acids, we studied K-12 MG1655 and O157:H7 Sakai during exposure to acetic, lactic, and hydrochloric acid at pH 5.5. This is the first analysis of the pH-dependent transcriptomic response of stationary-phase E. coli. Thirty-four genes and three intergenic regions were upregulated by both strains during exposure to all acids. This universal acid response included genes involved in oxidative, envelope, and cold stress resistance and iron and manganese uptake, as well as 10 genes of unknown function. Acidulant- and strain-specific responses were also revealed. The acidulant-specific response reflects differences in the modes of microbial inactivation, even between weak organic acids. The two strains exhibited similar responses to lactic and hydrochloric acid, while the response to acetic acid was distinct. Acidulant-dependent differences between the strains involved induction of genes involved in the heat shock response, osmoregulation, inorganic ion and nucleotide transport and metabolism, translation, and energy production. E. coli O157:H7-specific acid-inducible genes were identified, suggesting that the enterohemorrhagic E. coli strain possesses additional molecular mechanisms contributing to acid resistance that are absent in K-12. While E. coli K-12 was most resistant to lactic and hydrochloric acid, O157:H7 may have a greater ability to survive in more complex acidic environments, such as those encountered in the host and during food processing.

  18. Mutants of the pentose-fermenting yeast Pachysolen tannophilus tolerant to hardwood spent sulfite liquor and acetic acid.

    PubMed

    Harner, Nicole K; Bajwa, Paramjit K; Habash, Marc B; Trevors, Jack T; Austin, Glen D; Lee, Hung

    2014-01-01

    A strain development program was initiated to improve the tolerance of the pentose-fermenting yeast Pachysolen tannophilus to inhibitors in lignocellulosic hydrolysates. Several rounds of UV mutagenesis followed by screening were used to select for mutants of P. tannophilus NRRL Y2460 with improved tolerance to hardwood spent sulfite liquor (HW SSL) and acetic acid in separate selection lines. The wild type (WT) strain grew in 50 % (v/v) HW SSL while third round HW SSL mutants (designated UHW301, UHW302 and UHW303) grew in 60 % (v/v) HW SSL, with two of these isolates (UHW302 and UHW303) being viable and growing, respectively, in 70 % (v/v) HW SSL. In defined liquid media containing acetic acid, the WT strain grew in 0.70 % (w/v) acetic acid, while third round acetic acid mutants (designated UAA301, UAA302 and UAA303) grew in 0.80 % (w/v) acetic acid, with one isolate (UAA302) growing in 0.90 % (w/v) acetic acid. Cross-tolerance of HW SSL-tolerant mutants to acetic acid and vice versa was observed with UHW303 able to grow in 0.90 % (w/v) acetic acid and UAA302 growing in 60 % (v/v) HW SSL. The UV-induced mutants retained the ability to ferment glucose and xylose to ethanol in defined media. These mutants of P. tannophilus are of considerable interest for bioconversion of the sugars in lignocellulosic hydrolysates to ethanol.

  19. The LysR-type regulator LeuO regulates the acid tolerance response in Vibrio cholerae

    PubMed Central

    Ante, Vanessa M.; Bina, X. Renee

    2015-01-01

    Vibrio cholerae is a neutrophilic enteric pathogen that is extremely sensitive to acid. As V. cholerae passages through the host gastrointestinal tract it is exposed to a variety of environmental stresses including low pH and volatile fatty acids. Exposure to acidic environments induces expression of the V. cholerae acid tolerance response. A key component of the acid tolerance response is the cad system, which is encoded by cadC and the cadBA operon. CadB is a lysine/cadaverine antiporter and CadA is a lysine decarboxylase and these function together to counter low intracellular and extracellular pH. CadC is a membrane-associated transcription factor that activates cadBA expression in response to acidic conditions. Herein we investigated the role of the LysR-type transcriptional regulator LeuO in the V. cholerae acid tolerance response. Transcriptional reporter assays revealed that leuO expression repressed cadC transcription, indicating that LeuO was a cadC repressor. Consistent with this, leuO expression was inversely linked to lysine decarboxylase production and leuO overexpression resulted in increased sensitivity to organic acids. Overexpression of leuO in a cadA mutant potentiated killing by organic acids, suggesting that the function of leuO in the acid tolerance response extended beyond its regulation of the cad system. Collectively, these studies have identified a new physiological role for LeuO in V. cholerae acid tolerance. PMID:26424466

  20. Plasticity and stress tolerance override local adaptation in the responses of Mediterranean holm oak seedlings to drought and cold.

    PubMed

    Gimeno, Teresa E; Pías, Beatriz; Lemos-Filho, José P; Valladares, Fernando

    2009-01-01

    Plant populations of widely distributed species experience a broad range of environmental conditions that can be faced by phenotypic plasticity or ecotypic differentiation and local adaptation. The strategy chosen will determine a population's ability to respond to climate change. To explore this, we grew Quercus ilex (L.) seedlings from acorns collected at six selected populations from climatically contrasting localities and evaluated their response to drought and late season cold events. Maximum photosynthetic rate (A(max)), instantaneous water use efficiency (iWUE), and thermal tolerance to freeze and heat (estimated from chlorophyll fluorescence versus temperature curves) were measured in 5-month-old seedlings in control (no stress), drought (water-stressed), and cold (low suboptimal temperature) conditions. The observed responses were similar for the six populations: drought decreased A(max) and increased iWUE, and cold reduced A(max) and iWUE. All the seedlings maintained photosynthetic activity under adverse conditions (drought and cold), and rapidly increased their iWUE by closing stomata when exposed to drought. Heat and freeze tolerances were similarly high for seedlings from all the populations, and they were significantly increased by drought and cold, respectively; and were positively related to each other. Differences in seedling performance across populations were primarily induced by maternal effects mediated by seed size and to a lesser extent by idiosyncratic physiologic responses to drought and low temperatures. Tolerance to multiple stresses together with the capacity to physiologically acclimate to heat waves and cold snaps may allow Q. ilex to cope with the increasingly stressful conditions imposed by climate change. Lack of evidence of physiologic seedling adaptation to local climate may reflect opposing selection pressures to complex, multidimensional environmental conditions operating within the distribution range of this species.

  1. Soil Drench Treatment with ß-Aminobutyric Acid Increases Drought Tolerance of Potato

    PubMed Central

    Sós-Hegedűs, Anita; Juhász, Zsófia; Poór, Péter; Kondrák, Mihály; Antal, Ferenc; Tari, Irma; Mauch-Mani, Brigitte; Bánfalvi, Zsófia

    2014-01-01

    The non-protein amino acid β-aminobutyric acid (BABA) is known to be a priming agent for a more efficient activation of cellular defence responses and a potent inducer of resistance against biotic and abiotic stresses in plants. Nevertheless, most of the studies on priming have been carried out in Arabidopsis. In potato, the effect of BABA was demonstrated only on biotic stress tolerance. We investigated the effect of BABA on the drought tolerance of potato and found that soil drenched with BABA at a final concentration of 0.3 mM improves the drought tolerance of potato. Water loss from the leaves of the primed plants is attenuated and the yield is increased compared to the unprimed drought-stressed plants. The metabolite composition of the tubers of the BABA-treated plants is less affected by drought than the tuber composition of the non-treated plants. Nitric oxide and ROS (reactive oxygen species) production is increased in the BABA-treated roots but not in the leaves. In the leaves of the BABA-treated plants, the expression of the drought-inducible gene StDS2 is delayed, but the expression of ETR1, encoding an ethylene receptor, is maintained for a longer period under the drought conditions than in the leaves of the non-treated, drought-stressed control plants. This result suggests that the ethylene-inducible gene expression remains suppressed in primed plants leading to a longer leaf life and increased tuber yield compared to the non-treated, drought-stressed plants. The priming effect of BABA in potato, however, is transient and reverts to an unprimed state within a few weeks. PMID:25489951

  2. Salicylic acid and methyl jasmonate improve chilling tolerance in cold-stored lemon fruit (Citrus limon).

    PubMed

    Siboza, Xolani Irvin; Bertling, Isa; Odindo, Alfred Oduor

    2014-11-15

    Chilling injury (CI) is associated with the degradation of membrane integrity which can be aligned to phenolic oxidation activated by polyphenol oxidase (PPO) and peroxidase (POD), enzymes responsible for tissue browning. Phenylalanine ammonia-lyase (PAL) is a further enzyme prominent in the phenolic metabolism that is involved in acclimation against chilling stress. It was hypothesized that treatment with methyl jasmonate (MJ) and salicylic acid (SA) may enhance chilling tolerance in lemon fruit by increasing the synthesis of total phenolics and PAL by activating the key enzyme regulating the shikimic acid pathway whilst inhibiting the activity of POD and PPO. Lemon fruit were treated with 10μM MJ, 2mM SA or 10μM MJ plus 2mM SA, waxed, stored at -0.5, 2 or 4.5°C for up to 28 days plus 7 days at 23°C. Membrane integrity was studied by investigating membrane permeability and the degree of membrane lipid peroxidation in lemon flavedo following cold storage. The 10μM MJ plus 2mM SA treatment was most effective in enhancing chilling tolerance of lemon fruit, significantly reducing chilling-induced membrane permeability and membrane lipid peroxidation of lemon flavedo tissue. This treatment also increased total phenolics and PAL activity in such tissue while inhibiting POD activity, the latter possibly contributing to the delay of CI manifestation. PPO activity was found to be a poor biochemical marker of CI. Treatment with 10μM MJ plus 2mM SA resulted in an alteration of the phenolic metabolism, enhancing chilling tolerance, possibly through increased production of total phenolics and the activation of PAL and inhibition of POD.

  3. Oxalic acid enhances Cr tolerance in the accumulating plant Leersia hexandra Swartz.

    PubMed

    Wang, Dunqiu; Zhang, Xuehong; Liu, Jie; Zhu, Yinian; Zhang, Hui; Zhang, Aili; Jin, Xiaodan

    2012-12-01

    This study examined the relationship between oxalic acid and Cr tolerance in an accumulating plant Leersia hexandra Swartz. The plants grown in hydroponics were exposed to Cr at 0, 5, 30, and 60 mg/L (without oxalate), and 0, 40, and 80 mg/L concentrations of Cr (with 70 mg/L oxalate or without oxalate). The results showed that more than 50% of Cr in shoots was found in HCl-extracted fraction (chromium oxalate) when the plants were exposed to Cr. Cr supply significantly increased oxalate concentration in shoots of L. hexandra (p < 0.05), but did not increase oxalate concentration in roots. Under 80 mg/L Cr stress, electrolyte leakages from roots and shoots with oxalate treatment were both significantly lower than those without oxalate treatment (p < 0.05), indicating exogenous oxalate supply alleviated Cr-induced membrane damage. Oxalate added to growth solution ameliorated reduction of biomass and inhibition of root growth induced by Cr, which demonstrated that application of oxalate helped L. hexandra tolerate Cr stress. However, oxalate supply did not affect the Cr concentrations both in roots and shoots of L. hexandra. These results suggest that oxalic acid may act as an important chelator and takes part in detoxifying chromium in internal process of L. hexandra.

  4. Swellable, water- and acid-tolerant polymer sponges for chemoselective carbon dioxide capture.

    PubMed

    Woodward, Robert T; Stevens, Lee A; Dawson, Robert; Vijayaraghavan, Meera; Hasell, Tom; Silverwood, Ian P; Ewing, Andrew V; Ratvijitvech, Thanchanok; Exley, Jason D; Chong, Samantha Y; Blanc, Frédéric; Adams, Dave J; Kazarian, Sergei G; Snape, Colin E; Drage, Trevor C; Cooper, Andrew I

    2014-06-25

    To impact carbon emissions, new materials for carbon capture must be inexpensive, robust, and able to adsorb CO2 specifically from a mixture of other gases. In particular, materials must be tolerant to the water vapor and to the acidic impurities that are present in gas streams produced by using fossil fuels to generate electricity. We show that a porous organic polymer has excellent CO2 capacity and high CO2 selectivity under conditions relevant to precombustion CO2 capture. Unlike polar adsorbents, such as zeolite 13x and the metal-organic framework, HKUST-1, the CO2 adsorption capacity for the hydrophobic polymer is hardly affected by the adsorption of water vapor. The polymer is even stable to boiling in concentrated acid for extended periods, a property that is matched by few microporous adsorbents. The polymer adsorbs CO2 in a different way from rigid materials by physical swelling, much as a sponge adsorbs water. This gives rise to a higher CO2 capacities and much better CO2 selectivity than for other water-tolerant, nonswellable frameworks, such as activated carbon and ZIF-8. The polymer has superior function as a selective gas adsorbent, even though its constituent monomers are very simple organic feedstocks, as would be required for materials preparation on the large industrial scales required for carbon capture.

  5. Involvement of vacuolar sequestration and active transport in tolerance of Saccharomyces cerevisiae to hop iso-alpha-acids.

    PubMed

    Hazelwood, Lucie A; Walsh, Michael C; Pronk, Jack T; Daran, Jean-Marc

    2010-01-01

    The hop plant, Humulus lupulus L., has an exceptionally high content of secondary metabolites, the hop alpha-acids, which possess a range of beneficial properties, including antiseptic action. Studies performed on the mode of action of hop iso-alpha-acids have hitherto been restricted to lactic acid bacteria. The present study investigated molecular mechanisms of hop iso-alpha-acid resistance in the model eukaryote Saccharomyces cerevisiae. Growth inhibition occurred at concentrations of hop iso-alpha-acids that were an order of magnitude higher than those found with hop-tolerant prokaryotes. Chemostat-based transcriptome analysis and phenotype screening of the S. cerevisiae haploid gene deletion collection were used as complementary methods to screen for genes involved in hop iso-alpha-acid detoxification and tolerance. This screening and further analysis of deletion mutants confirmed that yeast tolerance to hop iso-alpha-acids involves three major processes, active proton pumping into the vacuole by the vacuolar-type ATPase to enable vacuolar sequestration of iso-alpha-acids and alteration of cell wall structure and, to a lesser extent, active export of iso-alpha-acids across the plasma membrane. Furthermore, iso-alpha-acids were shown to affect cellular metal homeostasis by acting as strong zinc and iron chelators.

  6. Differential effects of abscisic acid on desiccation tolerance and carbohydrates in three species of liverworts.

    PubMed

    Pence, Valerie C; Dunford, Susan S; Redella, Steven

    2005-12-01

    Tissues of three species of in vitro grown liverworts, Riccia fluitans, Pallavicinia lyellii, and Marchantia polymorpha, were subjected to rapid drying with and without preculture for 1 week on medium containing 10 microM ABA. ABA preculture initiated total desiccation tolerance in R. fluitans, whereas control tissues were killed after 30 min of drying. Survival was also improved in P. lyellii, whereas ABA did not affect survival of M. polymorpha after rapid drying. ABA treatment did, however, reduce the rate of water loss in M. polymorpha. Total soluble carbohydrates were increased in ABA-treated R. fluitans and P. lyellii, but not in M. polymorpha, although there was no correlation between survival and changes in the percentage of these carbohydrates as reducing sugars. These differences in response to ABA and desiccation likely reflect different adaptations of these three species to conditions in situ.

  7. Trading-off tolerable risk with climate change adaptation costs in water supply systems

    NASA Astrophysics Data System (ADS)

    Borgomeo, Edoardo; Mortazavi-Naeini, Mohammad; Hall, Jim W.; O'Sullivan, Michael J.; Watson, Tim

    2016-02-01

    Choosing secure water resource management plans inevitably requires trade-offs between risks (for a variety of stakeholders), costs, and other impacts. We have previously argued that water resources planning should focus upon metrics of risk of water restrictions, accompanied by extensive simulation and scenario-based exploration of uncertainty. However, the results of optimization subject to risk constraints can be sensitive to the specification of tolerable risk, which may not be precisely or consistently defined by different stakeholders. In this paper, we recast the water resources planning problem as a multiobjective optimization problem to identify least cost schemes that satisfy a set of criteria for tolerable risk, where tolerable risk is defined in terms of the frequency of water use restrictions of different levels of severity. Our proposed method links a very large ensemble of climate model projections to a water resource system model and a multiobjective optimization algorithm to identify a Pareto optimal set of water resource management plans across a 25 years planning period. In a case study application to the London water supply system, we identify water resources management plans that, for a given financial cost, maximize performance with respect to one or more probabilistic criteria. This illustrates trade-offs between financial costs of plans and risk, and between risk criteria for four different severities of water use restrictions. Graphical representation of alternative sequences of investments in the Pareto set helps to identify water management options for which there is a robust case for including them in the plan.

  8. Lmo0036, an ornithine and putrescine carbamoyltransferase in Listeria monocytogenes, participates in arginine deiminase and agmatine deiminase pathways and mediates acid tolerance.

    PubMed

    Chen, Jianshun; Cheng, Changyong; Xia, Ye; Zhao, Hanxin; Fang, Chun; Shan, Ying; Wu, Beibei; Fang, Weihuan

    2011-11-01

    Listeria monocytogenes is a foodborne pathogen causing listeriosis. Acid is one of the stresses that foodborne pathogens encounter most frequently. The ability to survive and proliferate in acidic environments is a prerequisite for infection. However, there is limited knowledge about the molecular basis of adaptation of L. monocytogenes to acid. Arginine deiminase (ADI) and agmatine deiminase (AgDI) systems are implicated in bacterial tolerance to acidic environments. Homologues of ADI and AgDI systems have been found in L. monocytogenes lineages I and II strains. Sequence analysis indicated that lmo0036 encodes a putative carbamoyltransferase containing conserved motifs and residues important for substrate binding. Lmo0036 acted as an ornithine carbamoyltransferase and putrescine carbamoyltransferase, representing the first example, to our knowledge, that catalyses reversible ornithine and putrescine carbamoyltransfer reactions. Catabolic ornithine and putrescine carbamoyltransfer reactions constitute the second step of ADI and AgDI pathways. However, the equilibrium of in vitro carbamoyltransfer reactions was overwhelmingly towards the anabolic direction, suggesting that catabolic carbamoyltransferase was probably the limiting step of the pathways. lmo0036 was induced at the transcriptional level when L. monocytogenes was subjected to low-pH stress. Its expression product in Escherichia coli exhibited higher catabolic carbamoyltransfer activities under acidic conditions. Consistently, absence of this enzyme impaired the growth of Listeria under mild acidic conditions (pH 4.8) and reduced its survival in synthetic human gastric fluid (pH 2.5), and corresponded to a loss in ammonia production, indicating that Lmo0036 was responsible for acid tolerance at both sublethal and lethal pH levels. Furthermore, Lmo0036 played a possible role in Listeria virulence.

  9. Acid and bile tolerance and cholesterol removal ability of lactobacilli strains.

    PubMed

    Liong, M T; Shah, N P

    2005-01-01

    Eleven strains of lactobacilli were studied for their acid and bile tolerance. Possible mechanisms of cholesterol removal by strains of lactobacilli were examined. Cholesterol assimilation as determined by the difference in cholesterol content in the medium before and after the incubation period showed that all lactobacilli strains were able to assimilate cholesterol at varying levels ranging from 12.03 to 32.25 microg/mL. Cholesterol removal was associated with growth of cultures. Binding of cholesterol to lactobacilli cells was determined using growing, heat-killed, and resting cells in phosphate buffer. Cholesterol removed by dead and resting cells ranged from 0.79 to 3.82 mg/g of dry weight compared with growing cells, which ranged from 4.53 to 16.03 mg/g of dry weight. Fatty acid methyl esters, as quantified using gas chromatography, showed changes in lipid profiles in cells grown in the presence of cholesterol compared with those grown without cholesterol. Fatty acid profiles, especially of hexadecanoic, octadecanoic, total saturated, and unsaturated acids suggested that cholesterol from the medium was incorporated into the cellular membrane. These findings suggest that strains of lactobacilli could remove cholesterol via various mechanisms and may be promising candidates for use as a dietary adjunct to lower serum cholesterol in vivo.

  10. Cellular fatty acid composition and exopolysaccharide contribute to bile tolerance in Lactobacillus brevis strains isolated from fermented Japanese pickles.

    PubMed

    Suzuki, Shigenori; Kimoto-Nira, Hiromi; Suganuma, Hiroyuki; Suzuki, Chise; Saito, Tadao; Yajima, Nobuhiro

    2014-04-01

    Bile tolerance is a fundamental ability of probiotic bacteria. We examined this property in 56 Lactobacillus brevis strains isolated from Japanese pickles and also evaluated cellular fatty acid composition and cell-bound exopolysaccharide (EPS-b) production. The bile tolerance of these strains was significantly lower in modified de Man - Rogosa - Sharpe (MRS) medium (without Tween 80 or sodium acetate) than in standard MRS medium. Aggregating strains showed significantly higher bile tolerance than nonaggregating strains in MRS medium, but there was no significant difference in the modified MRS media. The relative octadecenoic acid (C18:1) content of the 3 most tolerant aggregating and nonaggregating strains was significantly higher when bile was added to MRS. In MRS without Tween 80, the relative C18:1 content was only marginally affected by addition of bile. In MRS without sodium acetate, only the 3 most tolerant nonaggregating strains increased their relative C18:1 content in the presence of bile. Meanwhile, culture in MRS without sodium acetate reduced EPS-b production in aggregating strains. In conclusion, both EPS-b and cellular fatty acid composition play important roles in bile tolerance of pickle-derived L. brevis.

  11. Clofibrate-induced reduction of plasma branched-chain amino acid concentrations impairs glucose tolerance in rats.

    PubMed

    Kadota, Yoshihiro; Kazama, Shunsuke; Bajotto, Gustavo; Kitaura, Yasuyuki; Shimomura, Yoshiharu

    2012-05-01

    It has been reported that branched-chain amino acid (BCAA) administration stimulates glucose uptake into muscles and whole body glucose oxidation in rats. The authors examined the effect of decreased plasma BCAA concentrations induced by clofibrate treatment on glucose tolerance in rats. Since clofibrate, a drug for hyperlipidemia (high serum triglyceride concentration), is a potent inhibitor of the branched-chain α-keto acid dehydrogenase kinase, clofibrate treatment (0.2 g/kg body weight) activated the hepatic branched-chain α-keto acid dehydrogenase complex, resulting in decreased plasma BCAA concentrations by 30% to 50% from the normal level. An intraperitoneal glucose tolerance test was conducted after clofibrate administration, and the results showed that peak plasma glucose concentration and the area under the curve of glucose concentration during the intraperitoneal glucose tolerance test were significantly higher in clofibrate-treated rats than in control rats. This impaired glucose tolerance in the clofibrate-treated rats was ameliorated by administration of BCAAs (0.45 g/kg body weight, leucine:isoleucine:valine = 2:1:1), which kept plasma BCAA concentrations at normal levels during the intraperitoneal glucose tolerance test. These results suggest that plasma BCAAs play an important role in maintaining normal glucose tolerance in rats.

  12. Cinnamic acid exerts anti-diabetic activity by improving glucose tolerance in vivo and by stimulating insulin secretion in vitro.

    PubMed

    Hafizur, Rahman M; Hameed, Abdul; Shukrana, Mishkat; Raza, Sayed Ali; Chishti, Sidra; Kabir, Nurul; Siddiqui, Rehan A

    2015-02-15

    Although the anti-diabetic activity of cinnamic acid, a pure compound from cinnamon, has been reported but its mechanism(s) is not yet clear. The present study was designed to explore the possible mechanism(s) of anti-diabetic activity of cinnamic acid in in vitro and in vivo non-obese type 2 diabetic rats. Non-obese type 2 diabetes was developed by injecting 90 mg/kg streptozotocin in 2-day-old Wistar pups. Cinnamic acid and cinnamaldehyde were administered orally to diabetic rats for assessing acute blood glucose lowering effect and improvement of glucose tolerance. Additionally, insulin secretory activity of cinnamic acid and cinnamaldehyde was evaluated in isolated mice islets. Cinnamic acid, but not cinnamaldehyde, decreased blood glucose levels in diabetic rats in a time- and dose-dependent manner. Oral administration of cinnamic acid with 5 and 10 mg/kg doses to diabetic rats improved glucose tolerance in a dose-dependent manner. The improvement by 10 mg/kg cinnamic acid was comparable to that of standard drug glibenclamide (5 mg/kg). Further in vitro studies showed that cinnamaldehyde has little or no effect on glucose-stimulated insulin secretion; however, cinnamic acid significantly enhanced glucose-stimulated insulin secretion in isolated islets. In conclusion, it can be said that cinnamic acid exerts anti-diabetic activity by improving glucose tolerance in vivo and stimulating insulin secretion in vitro.

  13. Thermal tolerance and survival of Cronobacter sakazakii in powdered infant formula supplemented with vanillin, ethyl vanillin, and vanillic acid.

    PubMed

    Yemiş, Gökçe Polat; Pagotto, Franco; Bach, Susan; Delaquis, Pascal

    2012-09-01

    The thermal tolerance Cronobacter sakazakii was examined in sterile powdered infant formula (PIF) rehydrated at 58 °C in water or apple juice supplemented with vanillin, ethyl vanillin, or vanillic acid. All three compounds decreased thermal tolerance during-rehydration and the lowest decimal reduction time (D-value, 0.19 ± 0.01 min) was measured in PIF rehydrated in apple juice supplemented with 20 mM vanillic acid. At this level of supplementation no C. sakazakii were detected in PIF stored for 48 h at 10 and 24 h at 21 °C subsequent to a sublethal heat treatment. Thermal tolerance during rehydration and survival in reconstituted PIF were influenced by compound type, concentration, and temperature. Supplementation of PIF with vanillin, ethyl vanillin, or vanillic acid could enhance the safety of PIF or other dehydrated foods contaminated with C. sakazakii.

  14. Aluminium tolerance of root hairs underlies genotypic differences in rhizosheath size of wheat (Triticum aestivum) grown on acid soil.

    PubMed

    Delhaize, Emmanuel; James, Richard A; Ryan, Peter R

    2012-08-01

    We found significant genetic variation in the ability of wheat (Triticum aestivum) to form rhizosheaths on acid soil and assessed whether differences in aluminium (Al(3+) ) tolerance of root hairs between genotypes was the physiological basis for this genetic variation. A method was developed to rapidly screen rhizosheath size in a range of wheat genotypes. Backcrossed populations were generated from cv Fronteira (large rhizosheath) using cv EGA-Burke (small rhizosheath) as the recurrent parent. A positive correlation existed between rhizosheath size on acid soil and root hair length. In hydroponic experiments, root hairs of the backcrossed lines with large rhizosheaths were more tolerant of Al(3+) toxicity than the backcrossed lines with small rhizosheaths. We conclude that greater Al(3+) tolerance of root hairs underlies the larger rhizosheath of wheat grown on acid soil. Tolerance of the root hairs to Al(3+) was largely independent of the TaALMT1 gene which suggests that different genes encode the Al(3+) tolerance of root hairs. The maintenance of longer root hairs in acid soils is important for the efficient uptake of water and nutrients.

  15. Low overhead and nonlinear-tolerant adaptive zero-guard-interval CO-OFDM.

    PubMed

    Wang, Wei; Zhuge, Qunbi; Gao, Yuliang; Qiu, Meng; Morsy-Osman, Mohamed; Chagnon, Mathieu; Xu, Xian; Plant, David V

    2014-07-28

    We propose an adaptive channel estimation (CE) method for zero-guard-interval (ZGI) coherent optical (CO)-OFDM systems, and demonstrate its performance in a single channel 28 Gbaud polarization-division multiplexed ZGI CO-OFDM experiment with only 1% OFDM processing overhead. We systematically investigate its robustness against various transmission impairments including residual chromatic dispersion, polarization-mode dispersion, state of polarization rotation, sampling frequency offset and fiber nonlinearity. Both experimental and numerical results show that the adaptive CE-aided ZGI CO-OFDM is highly robust against these transmission impairments in fiber optical transmission systems.

  16. Adaptive tolerance in mice upon subchronic exposure to chloroform: Increased exhalation and target tissue regeneration

    SciTech Connect

    Anand, Sathanandam S. . E-mail: sanand@rx.uga.edu; Philip, Binu K.; Palkar, Prajakta S.; Mumtaz, Moiz M.; Latendresse, John R.; Mehendale, Harihara M. . E-mail: mehendale@ulm.edu

    2006-06-15

    The aims of the present study were to characterize the subchronic toxicity of chloroform by measuring tissue injury, repair, and distribution of chloroform and to assess the reasons for the development of tolerance to subchronic chloroform toxicity. Male Swiss Webster (SW) mice were given three dose levels of chloroform (150, 225, and 300 mg/kg/day) by gavage in aqueous vehicle for 30 days. Liver and kidney injury were measured by plasma ALT and BUN, respectively, and by histopathology. Tissue regeneration was assessed by {sup 3}H-thymidine incorporation into hepato- and nephro-nuclear DNA and by proliferating cell nuclear antigen staining. In addition, GSH and CYP2E1 in liver and kidney were assessed at selected time points. The levels of chloroform were measured in blood, liver, and kidney during the dosing regimen (1, 7, 14, and 30 days). Kidney injury was evident after 1 day with all three doses and sustained until 7 days followed by complete recovery. Mild to moderate liver injury was observed from 1 to 14 days with all three dose levels followed by gradual decrease. Significantly higher regenerative response was evident in liver and kidney at 7 days, but the response was robust in kidney, preventing progression of injury beyond first week of exposure. While the kidney regeneration reached basal levels by 21 days, moderate liver regeneration with two higher doses sustained through the end of the dosing regimen and 3 days after that. Following repeated exposure for 7, 14, and 30 days, the blood and tissue levels of chloroform were substantially lower with all three dose levels compared to the levels observed with single exposure. Increased exhalation of {sup 14}C-chloroform after repeated exposures explains the decreased chloroform levels in circulation and tissues. These results suggest that toxicokinetics and toxicodynamics (tissue regeneration) contribute to the tolerance observed in SW mice to subchronic chloroform toxicity. Neither bioactivation nor

  17. The Role of Efflux and Physiological Adaptation in Biofilm Tolerance and Resistance.

    PubMed

    Van Acker, Heleen; Coenye, Tom

    2016-06-10

    Microbial biofilms demonstrate a decreased susceptibility to antimicrobial agents. Various mechanisms have been proposed to be involved in this recalcitrance. We focus on two of these factors. Firstly, the ability of sessile cells to actively mediate efflux of antimicrobial compounds has a profound impact on resistance and tolerance, and several studies point to the existence of biofilm-specific efflux systems. Secondly, biofilm-specific stress responses have a marked influence on cellular physiology, and contribute to the occurrence of persister cells. We provide an overview of the data that demonstrate that both processes are important for survival following exposure to antimicrobial agents.

  18. Exogenous Abscisic Acid Mimics Cold Acclimation for Cacti Differing in Freezing Tolerance.

    PubMed Central

    Loik, M. E.; Nobel, P. S.

    1993-01-01

    The responses to low temperature were determined for two species of cacti sensitive to freezing, Ferocactus viridescens and Opuntia ficus-indica, and a cold hardy species, Opuntia fragilis. Fourteen days after shifting the plants from day/night air temperatures of 30/20[deg]C to 10/0[deg]C, the chlorenchyma water content decreased only for O. fragilis. This temperature shift caused the freezing tolerance (measured by vital stain uptake) of chlorenchyma cells to be enhanced only by about 2.0[deg]C for F. viridescens and O. ficus-indica but by 14.6[deg]C for O. fragilis. Also, maintenance of high water content by injection of water into plants at 10/0[deg]C reversed the acclimation. The endogenous abscisic acid (ABA) concentration was below 0.4 pmol g-1 fresh weight at 30/20[deg]C, but after 14 d at 10/0[deg]C it increased to 84 pmol g-1 fresh weight for O. ficus-indica and to 49 pmol g-1 fresh weight for O. fragilis. Four days after plants were sprayed with 7.5 x 10-5 M ABA at 30/20[deg]C, freezing tolerance was enhanced by 0.5[deg]C for F. viridescens, 4.1[deg]C for O. ficus-indica, and 23.4[deg]C for O. fragilis. Moreover, the time course for the change in freezing tolerance over 14 d was similar for plants shifted to low temperatures as for plants treated with exogenous ABA at moderate temperatures. Decreases in plant water content and increases in ABA concentration may be important for low-temperature acclimation by cacti, especially O. fragilis, which is widely distributed in Canada and the United States. PMID:12231985

  19. Exogenous Abscisic Acid Mimics Cold Acclimation for Cacti Differing in Freezing Tolerance.

    PubMed

    Loik, M. E.; Nobel, P. S.

    1993-11-01

    The responses to low temperature were determined for two species of cacti sensitive to freezing, Ferocactus viridescens and Opuntia ficus-indica, and a cold hardy species, Opuntia fragilis. Fourteen days after shifting the plants from day/night air temperatures of 30/20[deg]C to 10/0[deg]C, the chlorenchyma water content decreased only for O. fragilis. This temperature shift caused the freezing tolerance (measured by vital stain uptake) of chlorenchyma cells to be enhanced only by about 2.0[deg]C for F. viridescens and O. ficus-indica but by 14.6[deg]C for O. fragilis. Also, maintenance of high water content by injection of water into plants at 10/0[deg]C reversed the acclimation. The endogenous abscisic acid (ABA) concentration was below 0.4 pmol g-1 fresh weight at 30/20[deg]C, but after 14 d at 10/0[deg]C it increased to 84 pmol g-1 fresh weight for O. ficus-indica and to 49 pmol g-1 fresh weight for O. fragilis. Four days after plants were sprayed with 7.5 x 10-5 M ABA at 30/20[deg]C, freezing tolerance was enhanced by 0.5[deg]C for F. viridescens, 4.1[deg]C for O. ficus-indica, and 23.4[deg]C for O. fragilis. Moreover, the time course for the change in freezing tolerance over 14 d was similar for plants shifted to low temperatures as for plants treated with exogenous ABA at moderate temperatures. Decreases in plant water content and increases in ABA concentration may be important for low-temperature acclimation by cacti, especially O. fragilis, which is widely distributed in Canada and the United States.

  20. "On-off" thermoresponsive coating agent containing salicylic acid applied to maize seeds for chilling tolerance.

    PubMed

    Guan, Yajing; Li, Zhan; He, Fei; Huang, Yutao; Song, Wenjian; Hu, Jin

    2015-01-01

    Chilling stress is an important constraint for maize seed establishment in the field. In this study, a type of "on-off" thermoresponsive coating agent containing poly (N-isopropylacrylamide-co-butylmethacrylate) (Abbr. P(NIPAm-co-BMA)) hydrogel was developed to improve the chilling tolerance of coated maize seed. The P(NIPAm-co-BMA) hydrogel was synthesized by free-radical polymerization of N-isopropylacrylamide (NIPAm) and butylmethacrylate (BMA). Salicylic acid (SA) was loaded in the hydrogel as the chilling resistance agent. SA-loaded P(NIPAm-co-BMA) was used for seed film-coating of two maize varieties, Huang C (HC, chilling-tolerant) and Mo17 (chilling-sensitive), to investigate the coated seed germination and seedling growth status under chilling stress. The results showed that the hydrogel obtained a phase transition temperature near 12°C with a NIPAM to MBA weight ratio of 1: 0.1988 (w/w). The temperature of 12°C was considered the "on-off" temperature for chilling-resistant agent release; the SA was released from the hydrogel more rapidly at external temperatures below 12°C than above 12°C. In addition, when seedlings of both maize varieties suffered a short chilling stress (5°C), higher concentrations of SA-loaded hydrogel resulted in increased germination energy, germination percentage, germination index, root length, shoot height, dry weight of roots and shoots and protective enzyme activities and a decreased malondialdehyde content in coated maize seeds compared to single SA treatments. The majority of these physiological and biochemical parameters achieved significant levels compared with the control. Therefore, SA-loaded P(NIPAm-co-BMA), a nontoxic thermoresponsive hydrogel, can be used as an effective material for chilling tolerance in film-coated maize seeds.

  1. Keto-Mycolic Acid-Dependent Pellicle Formation Confers Tolerance to Drug-Sensitive Mycobacterium tuberculosis

    PubMed Central

    Sambandan, Dhinakaran; Dao, Dee N.; Weinrick, Brian C.; Vilchèze, Catherine; Gurcha, Sudagar S.; Ojha, Anil; Kremer, Laurent; Besra, Gurdyal S.; Hatfull, Graham F.; Jacobs, William R.

    2013-01-01

    ABSTRACT The chronic nature of tuberculosis (TB), its requirement of long duration of treatment, its ability to evade immune intervention, and its propensity to relapse after drug treatment is discontinued are reminiscent of other chronic, biofilm-associated bacterial diseases. Historically, Mycobacterium tuberculosis was grown as a pellicle, a biofilm-like structure, at the liquid-air interface in a variety of synthetic media. Notably, the most widely administered human vaccine, BCG, is grown as a pellicle for vaccine production. However, the molecular requirements for this growth remain ill defined. Here, we demonstrate that keto-mycolic acids (keto-MA) are essential for pellicle growth, and mutants lacking in or depleted of this MA species are unable to form a pellicle. We investigated the role of the pellicle biofilm in the reduction of antibiotic sensitivity known as drug tolerance using the pellicle-defective ΔmmaA4 mutant strain. We discovered that the ΔmmaA4 mutant, which is both pellicle defective and highly sensitive to rifampicin (RIF) under planktonic growth, when incorporated within the wild-type pellicle biofilm, was protected from the bactericidal activity of RIF. The observation that growth within the M. tuberculosis pellicle biofilm can confer drug tolerance to a drug-hypersensitive strain suggests that identifying molecular requirements for pellicle growth could lead to development of novel interventions against mycobacterial infections. Our findings also suggest that a class of drugs that can disrupt M. tuberculosis biofilm formation, when used in conjunction with conventional antibiotics, has the potential to overcome drug tolerance. PMID:23653446

  2. Fault-tolerant adaptive control for load-following in static space nuclear power systems

    NASA Technical Reports Server (NTRS)

    Parlos, Alexander G.; Onbasioglu, Fetiye O.; Peddicord, Kenneth L.; Metzger, John D.

    1992-01-01

    The possible use of a dual-loop model-based adaptive control system for load following in static space nuclear power systems is investigated. The proposed approach has thus far been applied only to a thermoelectric space nuclear power system but is equally applicable to other static space nuclear power systems such as thermionic systems.

  3. Fault Tolerance Analysis of L1 Adaptive Control System for Unmanned Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Krishnamoorthy, Kiruthika

    Trajectory tracking is a critical element for the better functionality of autonomous vehicles. The main objective of this research study was to implement and analyze L1 adaptive control laws for autonomous flight under normal and upset flight conditions. The West Virginia University (WVU) Unmanned Aerial Vehicle flight simulation environment was used for this purpose. A comparison study between the L1 adaptive controller and a baseline conventional controller, which relies on position, proportional, and integral compensation, has been performed for a reduced size jet aircraft, the WVU YF-22. Special attention was given to the performance of the proposed control laws in the presence of abnormal conditions. The abnormal conditions considered are locked actuators (stabilator, aileron, and rudder) and excessive turbulence. Several levels of abnormal condition severity have been considered. The performance of the control laws was assessed over different-shape commanded trajectories. A set of comprehensive evaluation metrics was defined and used to analyze the performance of autonomous flight control laws in terms of control activity and trajectory tracking errors. The developed L1 adaptive control laws are supported by theoretical stability guarantees. The simulation results show that L1 adaptive output feedback controller achieves better trajectory tracking with lower level of control actuation as compared to the baseline linear controller under nominal and abnormal conditions.

  4. Methylomonas paludis sp. nov., the first acid-tolerant member of the genus Methylomonas, from an acidic wetland.

    PubMed

    Danilova, Olga V; Kulichevskaya, Irina S; Rozova, Olga N; Detkova, Ekaterina N; Bodelier, Paul L E; Trotsenko, Yuri A; Dedysh, Svetlana N

    2013-06-01

    An aerobic methanotrophic bacterium was isolated from an acidic (pH 3.9) Sphagnum peat bog in north-eastern Russia and designated strain MG30(T). Cells of this strain were Gram-negative, pale pink-pigmented, non-motile, thick rods that were covered by large polysaccharide capsules and contained an intracytoplasmic membrane system typical of type I methanotrophs. They possessed a particulate methane monooxygenase enzyme (pMMO) and utilized only methane and methanol. Carbon was assimilated via the ribulose-monophosphate pathway; nitrogen was fixed via an oxygen-sensitive nitrogenase. Strain MG30(T) was able to grow at a pH range of 3.8-7.3 (optimum pH 5.8-6.4) and at temperatures between 8 and 30 °C (optimum 20-25 °C). The major cellular fatty acids were C16:1ω5t, C16:1ω8c, C16:1ω7c and C14:0; the DNA G+C content was 48.5 mol%. The isolate belongs to the family Methylococcaceae of the class Gammaproteobacteria and displayed 94.7-96.9% 16S rRNA gene sequence similarity to members of the genus Methylomonas. However, strain MG30(T) differed from all taxonomically characterized members of this genus by the absence of motility, the ability to grow in acidic conditions and low DNA G+C content. Therefore, we propose to classify this strain as representing a novel, acid-tolerant species of the genus Methylomonas, Methylomonas paludis sp. nov. Strain MG30(T) (=DSM 24973(T)=VKM B-2745(T)) is the type strain.

  5. Adaptive mechanisms and genomic plasticity for drought tolerance identified in European black poplar (Populus nigra L.)

    PubMed Central

    Viger, Maud; Smith, Hazel K.; Cohen, David; Dewoody, Jennifer; Trewin, Harriet; Steenackers, Marijke; Bastien, Catherine; Taylor, Gail

    2016-01-01

    Summer droughts are likely to increase in frequency and intensity across Europe, yet long-lived trees may have a limited ability to tolerate drought. It is therefore critical that we improve our understanding of phenotypic plasticity to drought in natural populations for ecologically and economically important trees such as Populus nigra L. A common garden experiment was conducted using ∼500 wild P. nigra trees, collected from 11 river populations across Europe. Phenotypic variation was found across the collection, with southern genotypes from Spain and France characterized by small leaves and limited biomass production. To examine the relationship between phenotypic variation and drought tolerance, six genotypes with contrasting leaf morphologies were subjected to a water deficit experiment. ‘North eastern’ genotypes were collected at wet sites and responded to water deficit with reduced biomass growth, slow stomatal closure and reduced water use efficiency (WUE) assessed by Δ13C. In contrast, ‘southern’ genotypes originating from arid sites showed rapid stomatal closure, improved WUE and limited leaf loss. Transcriptome analyses of a genotype from Spain (Sp2, originating from an arid site) and another from northern Italy (Ita, originating from a wet site) revealed dramatic differences in gene expression response to water deficit. Transcripts controlling leaf development and stomatal patterning, including SPCH, ANT, ER, AS1, AS2, PHB, CLV1, ERL1–3 and TMM, were down-regulated in Ita but not in Sp2 in response to drought. PMID:27174702

  6. Expression of Vitis amurensis NAC26 in Arabidopsis enhances drought tolerance by modulating jasmonic acid synthesis

    PubMed Central

    Fang, Linchuan; Su, Lingye; Sun, Xiaoming; Li, Xinbo; Sun, Mengxiang; Karungo, Sospeter Karanja; Fang, Shuang; Chu, Jinfang; Li, Shaohua; Xin, Haiping

    2016-01-01

    The growth and fruit quality of grapevines are widely affected by abnormal climatic conditions such as water deficits, but many of the precise mechanisms by which grapevines respond to drought stress are still largely unknown. Here, we report that VaNAC26, a member of the NAC transcription factor family, was upregulated dramatically during cold, drought and salinity treatments in Vitis amurensis, a cold and drought-hardy wild Vitis species. Heterologous overexpression of VaNAC26 enhanced drought and salt tolerance in transgenic Arabidopsis. Higher activities of antioxidant enzymes and lower concentrations of H2O2 and O2 − were found in VaNAC26-OE lines than in wild type plants under drought stress. These results indicated that scavenging by reactive oxygen species (ROS) was enhanced by VaNAC26 in transgenic lines. Microarray-based transcriptome analysis revealed that genes related to jasmonic acid (JA) synthesis and signaling were upregulated in VaNAC26-OE lines under both normal and drought conditions. VaNAC26 showed a specific binding ability on the NAC recognition sequence (NACRS) motif, which broadly exists in the promoter regions of upregulated genes in transgenic lines. Endogenous JA content significantly increased in the VaNAC26-OE lines 2 and 3. Our data suggest that VaNAC26 responds to abiotic stresses and may enhance drought tolerance by transcriptional regulation of JA synthesis in Arabidopsis. PMID:27162276

  7. Expression of Vitis amurensis NAC26 in Arabidopsis enhances drought tolerance by modulating jasmonic acid synthesis.

    PubMed

    Fang, Linchuan; Su, Lingye; Sun, Xiaoming; Li, Xinbo; Sun, Mengxiang; Karungo, Sospeter Karanja; Fang, Shuang; Chu, Jinfang; Li, Shaohua; Xin, Haiping

    2016-04-01

    The growth and fruit quality of grapevines are widely affected by abnormal climatic conditions such as water deficits, but many of the precise mechanisms by which grapevines respond to drought stress are still largely unknown. Here, we report that VaNAC26, a member of the NAC transcription factor family, was upregulated dramatically during cold, drought and salinity treatments in Vitis amurensis, a cold and drought-hardy wild Vitis species. Heterologous overexpression of VaNAC26 enhanced drought and salt tolerance in transgenic Arabidopsis. Higher activities of antioxidant enzymes and lower concentrations of H2O2 and O2 (-) were found in VaNAC26-OE lines than in wild type plants under drought stress. These results indicated that scavenging by reactive oxygen species (ROS) was enhanced by VaNAC26 in transgenic lines. Microarray-based transcriptome analysis revealed that genes related to jasmonic acid (JA) synthesis and signaling were upregulated in VaNAC26-OE lines under both normal and drought conditions. VaNAC26 showed a specific binding ability on the NAC recognition sequence (NACRS) motif, which broadly exists in the promoter regions of upregulated genes in transgenic lines. Endogenous JA content significantly increased in the VaNAC26-OE lines 2 and 3. Our data suggest that VaNAC26 responds to abiotic stresses and may enhance drought tolerance by transcriptional regulation of JA synthesis in Arabidopsis.

  8. Modulating Membrane Composition Alters Free Fatty Acid Tolerance in Escherichia coli

    PubMed Central

    Lennen, Rebecca M.; Pfleger, Brian F.

    2013-01-01

    Microbial synthesis of free fatty acids (FFA) is a promising strategy for converting renewable sugars to advanced biofuels and oleochemicals. Unfortunately, FFA production negatively impacts membrane integrity and cell viability in Escherichia coli, the dominant host in which FFA production has been studied. These negative effects provide a selective pressure against FFA production that could lead to genetic instability at industrial scale. In prior work, an engineered E. coli strain harboring an expression plasmid for the Umbellularia californica acyl-acyl carrier protein (ACP) thioesterase was shown to have highly elevated levels of unsaturated fatty acids in the cell membrane. The change in membrane content was hypothesized to be one underlying cause of the negative physiological effects associated with FFA production. In this work, a connection between the regulator of unsaturated fatty acid biosynthesis in E. coli, FabR, thioesterase expression, and unsaturated membrane content was established. A strategy for restoring normal membrane saturation levels and increasing tolerance towards endogenous production of FFAs was implemented by modulating acyl-ACP pools with a second thioesterase (from Geobacillus sp. Y412MC10) that primarily targets medium chain length, unsaturated acyl-ACPs. The strategy succeeded in restoring membrane content and improving viability in FFA producing E. coli while maintaining FFA titers. However, the restored fitness did not increase FFA productivity, indicating the existence of additional metabolic or regulatory barriers. PMID:23349781

  9. Modulating membrane composition alters free fatty acid tolerance in Escherichia coli.

    PubMed

    Lennen, Rebecca M; Pfleger, Brian F

    2013-01-01

    Microbial synthesis of free fatty acids (FFA) is a promising strategy for converting renewable sugars to advanced biofuels and oleochemicals. Unfortunately, FFA production negatively impacts membrane integrity and cell viability in Escherichia coli, the dominant host in which FFA production has been studied. These negative effects provide a selective pressure against FFA production that could lead to genetic instability at industrial scale. In prior work, an engineered E. coli strain harboring an expression plasmid for the Umbellularia californica acyl-acyl carrier protein (ACP) thioesterase was shown to have highly elevated levels of unsaturated fatty acids in the cell membrane. The change in membrane content was hypothesized to be one underlying cause of the negative physiological effects associated with FFA production. In this work, a connection between the regulator of unsaturated fatty acid biosynthesis in E. coli, FabR, thioesterase expression, and unsaturated membrane content was established. A strategy for restoring normal membrane saturation levels and increasing tolerance towards endogenous production of FFAs was implemented by modulating acyl-ACP pools with a second thioesterase (from Geobacillus sp. Y412MC10) that primarily targets medium chain length, unsaturated acyl-ACPs. The strategy succeeded in restoring membrane content and improving viability in FFA producing E. coli while maintaining FFA titers. However, the restored fitness did not increase FFA productivity, indicating the existence of additional metabolic or regulatory barriers.

  10. Improving high carbon dioxide tolerance and carbon dioxide fixation capability of Chlorella sp. by adaptive laboratory evolution.

    PubMed

    Li, Dengjin; Wang, Liang; Zhao, Quanyu; Wei, Wei; Sun, Yuhan

    2015-06-01

    CO2 capture by microalgae is a promising method to reduce greenhouse gas emissions. It is critical to construct a highly efficient way to obtain a microalgal strain tolerant to high CO2 concentrations with high CO2 fixation capability. In this study, two evolved Chlorella sp. strains, AE10 and AE20 were obtained after 31 cycles of adaptive laboratory evolution (ALE) under 10% and 20% CO2, respectively. Both of them grew rapidly in 30% CO2 and the maximal biomass concentration of AE10 was 3.68±0.08g/L, which was 1.22 and 2.94 times to those of AE20 and original strain, respectively. The chlorophyll contents of AE10 and AE20 were significantly higher than those of the original one under 1-30% CO2. The influences of ALE process on biochemical compositions of Chlorella cells were also investigated. This study proved that ALE was an effective approach to improve high CO2 tolerance of Chlorella sp.

  11. Tolerability of intramuscular and intradermal delivery by CELLECTRA(®) adaptive constant current electroporation device in healthy volunteers.

    PubMed

    Diehl, Malissa C; Lee, Jessica C; Daniels, Stephen E; Tebas, Pablo; Khan, Amir S; Giffear, Mary; Sardesai, Niranjan Y; Bagarazzi, Mark L

    2013-10-01

    DNA vaccines are being developed as a potentially safe and effective immunization platform. However, translation of DNA vaccines into a clinical setting has produced results that have fallen short of those generated in a preclinical setting. Various strategies are being developed to address this lack of potency, including improvements in delivery methods. Electroporation (EP) creates transient increases in cell membrane permeability, thus enhancing DNA uptake and leading to a more robust immune response. Here, we report on the safety and tolerability of delivering sterile saline via intramuscular (IM) or intradermal (ID) injection followed by in vivo electroporation using the CELLECTRA(®) adaptive constant current device in healthy adults from two open-label studies. Pain, as assessed by VAS, was highest immediately after EP but diminishes by about 50% within 5 min. Mean VAS scores appear to correlate with the amount of energy delivered and depth of needle insertion, especially for intramuscular EP. Mean scores did not exceed 7 out of 10 or 3 out of 10 for IM and ID EP, respectively. The majority of adverse events included mild to moderate injection site reactions that resolved within one day. No deaths or serious adverse events were reported during the course of either study. Overall, injection followed by EP with the CELLECTRA(®) device was well-tolerated and no significant safety concerns were identified. These studies support the further development of electroporation as a vaccine delivery method to enhance immunogenicity, particularly for diseases in which traditional vaccination approaches are ineffective.

  12. Simultaneous induction of jasmonic acid and disease-responsive genes signifies tolerance of American elm to Dutch elm disease

    PubMed Central

    Sherif , S. M.; Shukla, M. R.; Murch, S. J.; Bernier, L.; Saxena, P. K.

    2016-01-01

    Dutch elm disease (DED), caused by three fungal species in the genus Ophiostoma, is the most devastating disease of both native European and North American elm trees. Although many tolerant cultivars have been identified and released, the tolerance mechanisms are not well understood and true resistance has not yet been achieved. Here we show that the expression of disease-responsive genes in reactions leading to tolerance or susceptibility is significantly differentiated within the first 144 hours post-inoculation (hpi). Analysis of the levels of endogenous plant defense molecules such as jasmonic acid (JA) and salicylic acid (SA) in tolerant and susceptible American elm saplings suggested SA and methyl-jasmonate as potential defense response elicitors, which was further confirmed by field observations. However, the tolerant phenotype can be best characterized by a concurrent induction of JA and disease-responsive genes at 96 hpi. Molecular investigations indicated that the expression of fungal genes (i.e. cerato ulmin) was also modulated by endogenous SA and JA and this response was unique among aggressive and non-aggressive fungal strains. The present study not only provides better understanding of tolerance mechanisms to DED, but also represents a first, verified template for examining simultaneous transcriptomic changes during American elm-fungus interactions. PMID:26902398

  13. Endogenous salicylic acid accumulation is required for chilling tolerance in cucumber (Cucumis sativus L.) seedlings.

    PubMed

    Dong, Chun-Juan; Li, Liang; Shang, Qing-Mao; Liu, Xin-Yan; Zhang, Zhi-Gang

    2014-10-01

    Salicylic acid (SA) is an important plant hormone, and its exogenous application can induce tolerance to multiple environmental stresses in plants. In this study, we examine the potential involvement of endogenous SA in response to chilling in cucumber (Cucumis sativus L.) seedlings. A low temperature of 8 °C induces a moderate increase in endogenous SA levels. Chilling stimulates the enzymatic activities and the expression of genes for phenylalanine ammonia-lyase (PAL) and benzoic acid-2-hydroxylase rather than isochorismate synthase. This indicates that the PAL enzymatic pathway contributes to chilling-induced SA production. Cucumber seedlings pretreated with SA biosynthesis inhibitors accumulate less endogenous SA and suffer more from chilling damage. The expression of cold-responsive genes is also repressed by SA inhibitors. The reduction in stress tolerance and in gene expression can be restored by the exogenous application of SA, confirming the critical roles of SA in chilling responses in cucumber seedlings. Furthermore, the inhibition of SA biosynthesis under chilling stress results in a prolonged and enhanced hydrogen peroxide (H2O2) accumulation. The application of exogenous SA and the chemical scavenger of H2O2 reduces the excess H2O2 and alleviates chilling injury. In contrast, the protective effects of SA are negated by foliar spraying with high concentrations of H2O2 and an inhibitor of the antioxidant enzyme. These results suggest that endogenous SA is required in response to chilling stress in cucumber seedlings, by modulating the expression of cold-responsive genes and the precise induction of cellular H2O2 levels.

  14. Cold-adapted organic solvent tolerant alkalophilic family I.3 lipase from an Antarctic Pseudomonas.

    PubMed

    Ganasen, Menega; Yaacob, Norhayati; Rahman, Raja Noor Zaliha Raja Abd; Leow, Adam Thean Chor; Basri, Mahiran; Salleh, Abu Bakar; Ali, Mohd Shukuri Mohamad

    2016-11-01

    Lipolytic enzymes with cold adaptation are gaining increasing interest due to their biotechnological prospective. Previously, a cold adapted family I.3 lipase (AMS8 lipase) was isolated from an Antarctic Pseudomonas. AMS8 lipase was largely expressed in insoluble form. The refolded His-tagged recombinant AMS8 lipase was purified with 23.0% total recovery and purification factor of 9.7. The purified AMS8 lipase migrated as a single band with a molecular weight approximately 65kDa via electrophoresis. AMS8 lipase was highly active at 30°C at pH 10. The half-life of AMS8 lipase was reported at 4 and 2h under the incubation of 30 and 40°C, respectively. The lipase was stable over a broad range of pH. It showed enhancement effect in its relative activity under the presence of Li(+), Na(+), K(+), Rb(+) and Cs(+) after 30min treatment. Heavy metal ions such as Cu(2+), Fe(3+) and Zn(2+) inhibited AMS8 activity. This cold adapted alkalophilic AMS lipase was also active in various organic solvent of different polarity. These unique properties of this biological macromolecule will provide considerable potential for many biotechnological applications and organic synthesis at low temperature.

  15. Resin Adaptation of Radicular Dentin Tubules after Endodontic Instrumentation and Acid Etching.

    DTIC Science & Technology

    1983-02-01

    the manuscript. DISCLAIMERS The statements, opinions, and advertisements in the Journal of Endodontics are solely those of the individual authors...I RD-Ai26 872 RESIN ADAPTATION OF RADICULAR DENTIN TUBULES AFTER / I ENDODONTIC INSTRUMENTATION AND ACID ETCHING(U) WALTER I REED ARMY INST OF...Adaptation to Radicular Dentin Tubules SbisoofpeAfter Endodontic Instrumentation and Acid Etching 1982-1983 6. PERFORMING ORG. REPORTNUMBER -, AUTHOR(a) S

  16. Noise-Tolerant Hyperspectral Signature Classification in Unresolved Object Detection with Adaptive Tabular Nearest Neighbor Encoding

    NASA Astrophysics Data System (ADS)

    Schmalz, M.; Key, G.

    Accurate spectral signature classification is a crucial step in the nonimaging detection and recognition of spaceborne objects. In classical hyperspectral recognition applications, especially where linear mixing models are employed, signature classification accuracy depends on accurate spectral endmember discrimination. In selected target recognition (ATR) applications, previous non-adaptive techniques for signature classification have yielded class separation and classifier refinement results that tend to be suboptimal. In practice, the number of signatures accurately classified often depends linearly on the number of inputs. This can lead to potentially severe classification errors in the presence of noise or densely interleaved signatures. In this paper, we present an enhancement of an emerging technology for nonimaging spectral signature classification based on a highly accurate, efficient search engine called Tabular Nearest Neighbor Encoding (TNE). Adaptive TNE can optimize its classifier performance to track input nonergodicities and yield measures of confidence or caution for evaluation of classification results. Unlike neural networks, TNE does not have a hidden intermediate data structure (e.g., a neural net weight matrix). Instead, TNE generates and exploits a user-accessible data structure called the agreement map (AM), which can be manipulated by Boolean logic operations to effect accurate classifier refinement through programmable algorithms. The open architecture and programmability of TNE's pattern-space (AM) processing allows a TNE developer to determine the qualitative and quantitative reasons for classification accuracy, as well as characterize in detail the signatures for which TNE does not obtain classification matches, and why such mis-matches occur. In this study AM-based classification has been modified to partially compensate for input statistical changes, in response to performance metrics such as probability of correct classification (Pd

  17. Grain yield, adaptation and progress in breeding for early-maturing and heat-tolerant wheat lines in South Asia.

    PubMed

    Mondal, S; Singh, R P; Mason, E R; Huerta-Espino, J; Autrique, E; Joshi, A K

    2016-06-01

    Maintaining wheat productivity under the increasing temperatures in South Asia is a challenge. We focused on developing early maturing wheat lines as an adaptive mechanism in regions suffering from terminal heat stress and those areas that require wheat adapted to shorter cycles under continual high temperature stress. We evaluated the grain yield performance of early-maturing heat-tolerant germplasm developed by CIMMYT, Mexico at diverse locations in South Asia from 2009 to 2014 and estimated the breeding progress for high-yielding and early-maturing heat-tolerant germplasm in South Asia. Each year the trial comprised of 28 new entries, one CIMMYT check (Baj) and a local check variety. Locations were classified by mega environment (ME); ME1 being the temperate irrigated locations with terminal high temperature stress, and ME5 as hot, sub-tropical, irrigated locations. Grain yield (GY), days to heading (DTH) and plant height (PH) were recorded at each location. Effect of temperature on GY was observed in both ME1 and ME5. Across years, mean minimum temperatures in ME1 and mean maximum temperatures in ME5 during grain filling had significant negative association with GY. The ME1 locations were cooler that those in ME5 in the 5 years of evaluations and had a 1-2 t/ha higher GY. A mean reduction of 20 days for DTH and 20 cm in PH was observed in ME5. Negative genetic correlations of -0.43 to -0.79 were observed between GY and DTH in South Asia during 2009-2014. Each year, we identified early-maturing germplasm with higher grain yield than the local checks. A positive trend was observed while estimating the breeding progress across five years for high-yielding early-maturing heat tolerant wheat compared to the local checks in South Asia. The results suggests the potential of the high-yielding early-maturing wheat lines developed at CIMMYT in improving wheat production and maintaining genetic gains in South Asia.

  18. The effect of rumen adaptation to oxalic acid on selection of oxalic-acid-rich plants by goats.

    PubMed

    Duncan, A J; Frutos, P; Young, S A

    2000-01-01

    Rumen microbial degradation is an important route for detoxification of secondary plant compounds encountered in the diets of free-grazing ruminants. Exposure to diets containing particular secondary plant compounds can lead to increased rates of secondary compound degradation in the rumen. An experiment was conducted to determine whether rumen adaptation to oxalic acid would influence the diet selection of goats offered choices between plant species differing in their oxalic acid content. Twelve adult female goats were divided into two groups of six animals each. One group received a daily oral dose, in gelatin capsules, of 0.6 mmol oxalic acid/kg live weight per d throughout the experiment while the other group received placebos consisting of empty gelatin capsules. After an adaptation period of 8 d, the animals were allowed to graze a mixture of spinach (rich in oxalic acid) and cabbage (low in oxalic acid) for 7 h/d on two consecutive days per week during four consecutive 1-week periods. Intervening days were spent on grass pasture. Diet composition and intake were measured using cuticular wax n-alkanes as internal markers. Results showed that adapted goats included a higher proportion of spinach in their diet (P < 0.05) although absolute intakes of spinach were the same for the two groups. Goats in the oxalic-acid-adapted group consumed less cabbage than control animals (P < 0.05) suggesting that adaptation to oxalic acid at the rumen level may have interfered with detoxification of cabbage-derived secondary plant compounds. Voluntary intake increased progressively through the four experimental periods (P < 0.001) with a tendency for higher intakes among control than among adapted animals (P < 0.1). The experiment demonstrates how differences in the rate of degradation of secondary plant compounds may influence diet selection in ruminants.

  19. The rice OsNAC6 transcription factor orchestrates multiple molecular mechanisms involving root structural adaptions and nicotianamine biosynthesis for drought tolerance.

    PubMed

    Lee, Dong-Keun; Chung, Pil Joong; Jeong, Jin Seo; Jang, Geupil; Bang, Seung Woon; Jung, Harin; Kim, Youn Shic; Ha, Sun-Hwa; Choi, Yang Do; Kim, Ju-Kon

    2016-11-28

    Drought has a serious impact on agriculture worldwide. A plant's ability to adapt to rhizosphere drought stress requires reprogramming of root growth and development. Although physiological studies have documented the root adaption for tolerance to the drought stress, underlying molecular mechanisms is still incomplete, which is essential for crop engineering. Here, we identified OsNAC6-mediated root structural adaptations, including increased root number and root diameter, which enhanced drought tolerance. Multiyear drought field tests demonstrated that the grain yield of OsNAC6 root-specific overexpressing transgenic rice lines was less affected by drought stress than were nontransgenic controls. Genome-wide analyses of loss- and gain-of-function mutants revealed that OsNAC6 up-regulates the expression of direct target genes involved in membrane modification, nicotianamine (NA) biosynthesis, glutathione relocation, 3'-phophoadenosine 5'-phosphosulphate accumulation and glycosylation, which represent multiple drought tolerance pathways. Moreover, overexpression of NICOTIANAMINE SYNTHASE genes, direct targets of OsNAC6, promoted the accumulation of the metal chelator NA and, consequently, drought tolerance. Collectively, OsNAC6 orchestrates novel molecular drought tolerance mechanisms and has potential for the biotechnological development of high-yielding crops under water-limiting conditions.

  20. Adaptations to exercise training within skeletal muscle in adults with type 2 diabetes or impaired glucose tolerance: a systematic review.

    PubMed

    Wang, Yi; Simar, David; Fiatarone Singh, Maria A

    2009-01-01

    The aim of this investigation was to review morphological and metabolic adaptations within skeletal muscle to exercise training in adults with type 2 diabetes mellitus (T2DM) or impaired glucose tolerance (IGT). A comprehensive, systematic database search for manuscripts was performed from 1966 to March 2008 using computerized databases, including Medline, Premedline, CINAHL, AMED, EMBASE and SportDiscus. Three reviewers independently assessed studies for potential inclusion (exposure to exercise training, T2DM or IGT, muscle biopsy performed). A total of 18 exercise training studies were reviewed. All morphological and metabolic outcomes from muscle biopsies were collected. The metabolic outcomes were divided into six domains: glycogen, glucose facilitated transporter 4 (GLUT4) and insulin signalling, enzymes, markers of inflammation, lipids metabolism and so on. Beneficial adaptations to exercise were seen primarily in muscle fiber area and capillary density, glycogen, glycogen synthase and GLUT4 protein expressions. Few randomized controlled trials including muscle biopsy data existed, with a small number of subjects involved. More trials, especially robustly designed exercise training studies, are needed in this field. Future research should focus on the insulin signalling pathway to better understand the mechanism of the improvements in insulin sensitivity and glucose homeostasis in response to various modalities and doses of exercise in this cohort.

  1. Study on Chaotic Fault Tolerant Synchronization Control Based on Adaptive Observer

    PubMed Central

    Chen, Dongming; Huang, Xinyu; Ren, Tao

    2014-01-01

    Aiming at the abrupt faults of the chaotic system, an adaptive observer is proposed to trace the states of the master system. The sufficient conditions for synchronization of such chaotic systems are also derived. Then the feasibility and effectiveness of the proposed method are illustrated via numerical simulations of chaotic Chen system. Finally, the proposed synchronization schemes are applied to secure communication system successfully. The experimental results demonstrate that the employed observer can manage real-time fault diagnosis and parameter identification as well as states tracing of the master system, and so the synchronization of master system and slave system is achieved. PMID:24959615

  2. Influence of amino acids on gastric adaptive relaxation (accommodation) in rats as evaluated with a barostat

    PubMed Central

    Uchida, Masayuki; Iwamoto, Chizuru

    2016-01-01

    Aim: The present study aimed to evaluate the effects of selected straight alkyl chain, hydroxylated chain and branched chain amino acids on gastric adaptive relaxation, as these have previously been shown to have differing effects on gastric emptying. Materials and Methods: Gastric adaptive relaxation was evaluated using a barostat in rats under urethane anesthesia. The pressure within the balloon, introduced from the mouth to the stomach, was changed stepwise from 1 to 8 mmHg. The increased volume just after the increase of balloon pressure was defined as distension-induced gastric adaptive relaxation (accommodation). Amino acids were administered orally or intravenously. Results: As compared with control rats administered with distilled water, those rats that were orally administered amino acids having straight alkyl chain and extra hydroxylated alkyl chain, such as glycine and l-serine, had significantly enhanced gastric adaptive relaxation, but administration of l-alanine and l-threonine did not. Branched chain amino acids, such as l-isoleucine, l-leucine and l-valine, also did not significantly influence gastric adaptive relaxation. Glycine and l-serine showed the same efficacy when administered intravenously. Conclusion: Among the amino acids evaluated in the present study, glycine and l-serine significantly enhanced gastric adaptive relaxation, suggesting that short alkyl chain amino acids may enhance gastric adaptive relaxation as compared with the other amino acids. These findings may suggest that glycine and l-serine would be useful in the therapy of functional dyspepsia, especially for early satiety, because the dysfunction of adaptive relaxation is one of the causes of early satiety. PMID:27558952

  3. A highly pleiotropic amino acid polymorphism in the Drosophila insulin receptor contributes to life-history adaptation

    PubMed Central

    Paaby, Annalise B.; Bergland, Alan O.; Behrman, Emily L.; Schmidt, Paul S.

    2016-01-01

    Finding the specific nucleotides that underlie adaptive variation is a major goal in evolutionary biology, but polygenic traits pose a challenge because the complex genotype–phenotype relationship can obscure the effects of individual alleles. However, natural selection working in large wild populations can shift allele frequencies and indicate functional regions of the genome. Previously, we showed that the two most common alleles of a complex amino acid insertion–deletion polymorphism in the Drosophila insulin receptor show independent, parallel clines in frequency across the North American and Australian continents. Here, we report that the cline is stable over at least a five-year period and that the polymorphism also demonstrates temporal shifts in allele frequency concurrent with seasonal change. We tested the alleles for effects on levels of insulin signaling, fecundity, development time, body size, stress tolerance, and life span. We find that the alleles are associated with predictable differences in these traits, consistent with patterns of Drosophila life-history variation across geography that likely reflect adaptation to the heterogeneous climatic environment. These results implicate insulin signaling as a major mediator of life-history adaptation in Drosophila, and suggest that life-history trade-offs can be explained by extensive pleiotropy at a single locus. PMID:25319083

  4. Effects of Indole-3-Acetic Acid on the Transcriptional Activities and Stress Tolerance of Bradyrhizobium japonicum

    PubMed Central

    Donati, Andrew J.; Lee, Hae-In; Leveau, Johan H. J.; Chang, Woo-Suk

    2013-01-01

    A genome-wide transcriptional profile of Bradyrhizobium japonicum, the nitrogen-fixing endosymbiont of the soybean plant, revealed differential expression of approximately 15% of the genome after a 1 mM treatment with the phytohormone indole-3-acetic acid (IAA). A total of 1,323 genes were differentially expressed (619 up-regulated and 704 down-regulated) at a two-fold cut off with q value ≤ 0.05. General stress response genes were induced, such as those involved in response to heat, cold, oxidative, osmotic, and desiccation stresses and in exopolysaccharide (EPS) biosynthesis. This suggests that IAA is effective in activating a generalized stress response in B. japonicum. The transcriptional data were corroborated by the finding that stress tolerance of B. japonicum in cell viability assays was enhanced when pre-treated with 1 mM IAA compared to controls. The IAA treatment also stimulated biofilm formation and EPS production by B. japonicum, especially acidic sugar components in the total EPS. The IAA pre-treatment did not influence the nodulation ability of B. japonicum. The data provide a comprehensive overview of the potential transcriptional responses of the symbiotic bacterium when exposed to the ubiquitous hormone of its plant host. PMID:24098533

  5. Effects of indole-3-acetic acid on the transcriptional activities and stress tolerance of Bradyrhizobium japonicum.

    PubMed

    Donati, Andrew J; Lee, Hae-In; Leveau, Johan H J; Chang, Woo-Suk

    2013-01-01

    A genome-wide transcriptional profile of Bradyrhizobium japonicum, the nitrogen-fixing endosymbiont of the soybean plant, revealed differential expression of approximately 15% of the genome after a 1 mM treatment with the phytohormone indole-3-acetic acid (IAA). A total of 1,323 genes were differentially expressed (619 up-regulated and 704 down-regulated) at a two-fold cut off with q value ≤ 0.05. General stress response genes were induced, such as those involved in response to heat, cold, oxidative, osmotic, and desiccation stresses and in exopolysaccharide (EPS) biosynthesis. This suggests that IAA is effective in activating a generalized stress response in B. japonicum. The transcriptional data were corroborated by the finding that stress tolerance of B. japonicum in cell viability assays was enhanced when pre-treated with 1 mM IAA compared to controls. The IAA treatment also stimulated biofilm formation and EPS production by B. japonicum, especially acidic sugar components in the total EPS. The IAA pre-treatment did not influence the nodulation ability of B. japonicum. The data provide a comprehensive overview of the potential transcriptional responses of the symbiotic bacterium when exposed to the ubiquitous hormone of its plant host.

  6. [The titration of double bonds in fatty acids of blood plasma in patients in testing of glucose tolerance].

    PubMed

    Titov, V N; Sazhina, N N; Evteeva, N M; Aripovskiĭ, A V; Tkhagalizhokova, E M

    2015-01-01

    The article deals with per oral glucose tolerance test applied to 20 patients with arterial hypertension. The blood plasma was analyzed to detect content of individual fatty acids, double bounds, glucose, insulin and metabolites of fatty acids. In patients with different resistance to insulin content of non-etherized fatty acids decreased approximatively up to 3 times. Without insulin resistance secretion of insulin in 2 hours after glucose load increased up to 3 times and content of individual fatty acids decreases in greater extent. Under insulin resistance secretion of insulin increases up to 8 times and decreasing of content of fatty acids is less expressed. The decrease in blood plasma of content of oleic and linoleic fatty acids and double bounds reflects effectiveness of effect of insulin--blockade of hydrolysis of triglycerides in subcutaneous adipocytes. The concentration of insulin positively correlates with initial content of palmitic fatty acid in the pool of lipids of blood plasma.

  7. Limits to the thermal tolerance of corals adapted to a highly fluctuating, naturally extreme temperature environment

    NASA Astrophysics Data System (ADS)

    Schoepf, Verena; Stat, Michael; Falter, James L.; McCulloch, Malcolm T.

    2015-12-01

    Naturally extreme temperature environments can provide important insights into the processes underlying coral thermal tolerance. We determined the bleaching resistance of Acropora aspera and Dipsastraea sp. from both intertidal and subtidal environments of the naturally extreme Kimberley region in northwest Australia. Here tides of up to 10 m can cause aerial exposure of corals and temperatures as high as 37 °C that fluctuate daily by up to 7 °C. Control corals were maintained at ambient nearshore temperatures which varied diurnally by 4-5 °C, while treatment corals were exposed to similar diurnal variations and heat stress corresponding to ~20 degree heating days. All corals hosted Symbiodinium clade C independent of treatment or origin. Detailed physiological measurements showed that these corals were nevertheless highly sensitive to daily average temperatures exceeding their maximum monthly mean of ~31 °C by 1 °C for only a few days. Generally, Acropora was much more susceptible to bleaching than Dipsastraea and experienced up to 75% mortality, whereas all Dipsastraea survived. Furthermore, subtidal corals, which originated from a more thermally stable environment compared to intertidal corals, were more susceptible to bleaching. This demonstrates that while highly fluctuating temperatures enhance coral resilience to thermal stress, they do not provide immunity to extreme heat stress events.

  8. Limits to the thermal tolerance of corals adapted to a highly fluctuating, naturally extreme temperature environment

    PubMed Central

    Schoepf, Verena; Stat, Michael; Falter, James L.; McCulloch, Malcolm T.

    2015-01-01

    Naturally extreme temperature environments can provide important insights into the processes underlying coral thermal tolerance. We determined the bleaching resistance of Acropora aspera and Dipsastraea sp. from both intertidal and subtidal environments of the naturally extreme Kimberley region in northwest Australia. Here tides of up to 10 m can cause aerial exposure of corals and temperatures as high as 37 °C that fluctuate daily by up to 7 °C. Control corals were maintained at ambient nearshore temperatures which varied diurnally by 4-5 °C, while treatment corals were exposed to similar diurnal variations and heat stress corresponding to ~20 degree heating days. All corals hosted Symbiodinium clade C independent of treatment or origin. Detailed physiological measurements showed that these corals were nevertheless highly sensitive to daily average temperatures exceeding their maximum monthly mean of ~31 °C by 1 °C for only a few days. Generally, Acropora was much more susceptible to bleaching than Dipsastraea and experienced up to 75% mortality, whereas all Dipsastraea survived. Furthermore, subtidal corals, which originated from a more thermally stable environment compared to intertidal corals, were more susceptible to bleaching. This demonstrates that while highly fluctuating temperatures enhance coral resilience to thermal stress, they do not provide immunity to extreme heat stress events. PMID:26627576

  9. Improved adaptation to heat, cold, and solvent tolerance in Lactobacillus plantarum.

    PubMed

    Fiocco, D; Capozzi, V; Goffin, P; Hols, P; Spano, Giuseppe

    2007-12-01

    The effect of overproducing each of the three small heat shock proteins (Hsp; Hsp 18.5, Hsp 18.55, and Hsp 19.3) was investigated in Lactobacillus plantarum strain WCFS1. Overproduction of the three genes, hsp 18.5, hsp 18.55, and hsp 19.3, translationally fused to the start codon of the ldhL gene yielded a protein of approximately 19 kDa, as estimated from Tricine sodium dodecyl sulfate-polyacrylamide gel electrophoresis in agreement with the predicted molecular weight of small Hsps. Small Hsp overproduction alleviated the reduction in growth rate triggered by exposing exponentially growing cells to heat shock (37 or 40 degrees C) and cold shock (12 degrees C). Moreover, overproduction of Hsp 18.55 and Hsp 19.3 led to an enhanced survival in the presence of butanol (1% v/v) or ethanol (12% v/v) treatment suggesting a potential role of L. plantarum small Hsps in solvent tolerance.

  10. Local adaptation drives thermal tolerance among parasite populations: a common garden experiment.

    PubMed

    Mazé-Guilmo, Elise; Blanchet, Simon; Rey, Olivier; Canto, Nicolas; Loot, Géraldine

    2016-05-11

    Understanding the evolutionary responses of organisms to thermal regimes is of prime importance to better predict their ability to cope with ongoing climate change. Although this question has attracted interest in free-living organisms, whether or not infectious diseases have evolved heterogeneous responses to climate is still an open question. Here, we ran a common garden experiment using the fish ectoparasite Tracheliastes polycolpus, (i) to test whether parasites living in thermally heterogeneous rivers respond differently to an experimental thermal gradient and (ii) to determine the evolutionary processes (natural selection or genetic drift) underlying these responses. We demonstrated that the reaction norms involving the survival rate of the parasite larvae (i.e. the infective stage) across a temperature gradient significantly varied among six parasite populations. Using a Qst/Fst approach and phenotype-environment associations, we further showed that the evolution of survival rate partly depended upon temperature regimes experienced in situ, and was mostly underlined by diversifying selection, but also-to some extent-by stabilizing selection and genetic drift. This evolutionary response led to population divergences in thermal tolerance across the landscape, which has implications for predicting the effects of future climate change.

  11. Adapting an enzymatic toxicity test to allow comparative evaluation of natural freshwater biofilms' tolerance to metals.

    PubMed

    Fechner, Lise C; Gourlay-Francé, Catherine; Uher, Emmanuelle; Tusseau-Vuillemin, Marie-Hélène

    2010-10-01

    A simple, low-cost and non-radioactive short-term toxicity test was developed to study the effects of urban metals on natural freshwater periphytic communities. β-glucosidase activity of natural freshwater biofilms collected in situ was chosen as an endpoint. Metals (Cd, Cu, Ni, Pb, and Zn) successfully inhibited bacterial enzymatic activity after a 1-h exposure enabling the calculation of EC(50). The EC(50) value of a biofilm sample varied with the Total Suspended Solids concentration (TSS) of the biofilm suspension, showing that EC(50) values (expressed as total added metal concentrations) are not representative of the bioavailable metal concentration during the toxicity test. For Cu, Cd, Ni, Zn and Pb, the EC(50) values increased linearly with the TSS concentration leading us to define a normalized EC(50): the value of the EC(50) divided by the corresponding TSS concentration. Normalized EC(50) proved to be a robust, reliable way to assess metal tolerance of a biofilm for Cd, Cu, Ni, Zn and Pb. Normalized EC(50) obtained, expressed as kg(metal)/g(TSS), varied between 0.2 to 7.6 for Cu, 1 to 8 for Cd, 1.8 to 92.3 for Ni, 1.8 to 76.6 for Zn and 25 to 189 for Pb.

  12. Wood frog adaptations to overwintering in Alaska: new limits to freezing tolerance.

    PubMed

    Larson, Don J; Middle, Luke; Vu, Henry; Zhang, Wenhui; Serianni, Anthony S; Duman, John; Barnes, Brian M

    2014-06-15

    We investigated the ecological physiology and behavior of free-living wood frogs [Lithobates (Rana) sylvaticus] overwintering in Interior Alaska by tracking animals into natural hibernacula, recording microclimate, and determining frog survival in spring. We measured cryoprotectant (glucose) concentrations and identified the presence of antifreeze glycolipids in tissues from subsamples of naturally freezing frogs. We also recorded the behavior of wood frogs preparing to freeze in artificial hibernacula, and tissue glucose concentrations in captive wood frogs frozen in the laboratory to -2.5°C. Wood frogs in natural hibernacula remained frozen for 193 ± 11 consecutive days and experienced average (October-May) temperatures of -6.3°C and average minimum temperatures of -14.6 ± 2.8°C (range -8.9 to -18.1°C) with 100% survival (N=18). Mean glucose concentrations were 13-fold higher in muscle, 10-fold higher in heart and 3.3-fold higher in liver in naturally freezing compared with laboratory frozen frogs. Antifreeze glycolipid was present in extracts from muscle and internal organs, but not skin, of frozen frogs. Wood frogs in Interior Alaska survive freezing to extreme limits and durations compared with those described in animals collected in southern Canada or the Midwestern United States. We hypothesize that this enhancement of freeze tolerance in Alaskan wood frogs is due to higher cryoprotectant levels that are produced by repeated freezing and thawing cycles experienced under natural conditions during early autumn.

  13. Pharmacokinetics, Safety and Tolerability of Melissa officinalis Extract which Contained Rosmarinic Acid in Healthy Individuals: A Randomized Controlled Trial

    PubMed Central

    Noguchi-Shinohara, Moeko; Ono, Kenjiro; Hamaguchi, Tsuyoshi; Iwasa, Kazuo; Nagai, Toshitada; Kobayashi, Shoko; Nakamura, Hiroyuki; Yamada, Masahito

    2015-01-01

    The aim of this study was to evaluate the safety, tolerability and pharmacokinetics of single dose of Melissa officinalis extract which contained rosmarinic acid, including food-effects in healthy individuals. A total of eleven healthy individuals were randomly assigned to treatment arms in the two studies [Study 1 (fasted state) and Study 2 (fed state)]. Rosmarinic acid in serum was measured by a coulometric detection method using High-Performance Liquid Chromatography electrochemical detector. The serum concentration of total rosmarinic acid peaked at 1 hour after administration of Melissa officinalis extract containing 500mg rosmarinic acid in fasted state, with a maximum serum concentration 162.20 nmol/ L. The area under the curve for intact rosmarinic acid was calculated from the serum concentration-time profile to be 832.13 nmol • hour/ L. Food intake increases area under the curve and delayed time at which the maximum serum concentration. Rosmarinic acid supplementation did not affect liver, kidney, or blood cell function parameters. No adverse event was reported by any of the participants due to the study treatment. Single dose of Melissa officinalis extract containing 500 mg rosmarinic acid appears to be safe and tolerable in healthy individuals. Food intake increased the exposure of rosmarinic acid and delayed absorption of rosmarinic acid in healthy individuals. Trial Registration Trial Registration: UMIN-CTR UMIN000004997 PMID:25978046

  14. Comparative Genomics Reveals Adaptation by Alteromonas sp. SN2 to Marine Tidal-Flat Conditions: Cold Tolerance and Aromatic Hydrocarbon Metabolism

    PubMed Central

    Math, Renukaradhya K.; Jin, Hyun Mi; Kim, Jeong Myeong; Hahn, Yoonsoo; Park, Woojun; Madsen, Eugene L.; Jeon, Che Ok

    2012-01-01

    Alteromonas species are globally distributed copiotrophic bacteria in marine habitats. Among these, sea-tidal flats are distinctive: undergoing seasonal temperature and oxygen-tension changes, plus periodic exposure to petroleum hydrocarbons. Strain SN2 of the genus Alteromonas was isolated from hydrocarbon-contaminated sea-tidal flat sediment and has been shown to metabolize aromatic hydrocarbons there. Strain SN2's genomic features were analyzed bioinformatically and compared to those of Alteromonas macleodii ecotypes: AltDE and ATCC 27126. Strain SN2's genome differs from that of the other two strains in: size, average nucleotide identity value, tRNA genes, noncoding RNAs, dioxygenase gene content, signal transduction genes, and the degree to which genes collected during the Global Ocean Sampling project are represented. Patterns in genetic characteristics (e.g., GC content, GC skew, Karlin signature, CRISPR gene homology) indicate that strain SN2's genome architecture has been altered via horizontal gene transfer (HGT). Experiments proved that strain SN2 was far more cold tolerant, especially at 5°C, than the other two strains. Consistent with the HGT hypothesis, a total of 15 genomic islands in strain SN2 likely confer ecological fitness traits (especially membrane transport, aromatic hydrocarbon metabolism, and fatty acid biosynthesis) specific to the adaptation of strain SN2 to its seasonally cold sea-tidal flat habitat. PMID:22563400

  15. The CgHaa1-Regulon Mediates Response and Tolerance to Acetic Acid Stress in the Human Pathogen Candida glabrata

    PubMed Central

    Bernardo, Ruben T.; Cunha, Diana V.; Wang, Can; Pereira, Leonel; Silva, Sónia; Salazar, Sara B.; Schröder, Markus S.; Okamoto, Michiyo; Takahashi-Nakaguchi, Azusa; Chibana, Hiroji; Aoyama, Toshihiro; Sá-Correia, Isabel; Azeredo, Joana; Butler, Geraldine; Mira, Nuno Pereira

    2016-01-01

    To thrive in the acidic vaginal tract, Candida glabrata has to cope with high concentrations of acetic acid. The mechanisms underlying C. glabrata tolerance to acetic acid at low pH remain largely uncharacterized. In this work, the essential role of the CgHaa1 transcription factor (encoded by ORF CAGL0L09339g) in the response and tolerance of C. glabrata to acetic acid is demonstrated. Transcriptomic analysis showed that CgHaa1 regulates, directly or indirectly, the expression of about 75% of the genes activated under acetic acid stress. CgHaa1-activated targets are involved in multiple physiological functions including membrane transport, metabolism of carbohydrates and amino acids, regulation of the activity of the plasma membrane H+-ATPase, and adhesion. Under acetic acid stress, CgHaa1 increased the activity and the expression of the CgPma1 proton pump and contributed to increased colonization of vaginal epithelial cells by C. glabrata. CgHAA1, and two identified CgHaa1-activated targets, CgTPO3 and CgHSP30, are herein demonstrated to be determinants of C. glabrata tolerance to acetic acid. The protective effect of CgTpo3 and of CgHaa1 was linked to a role of these proteins in reducing the accumulation of acetic acid inside C. glabrata cells. In response to acetic acid stress, marked differences were found in the regulons controlled by CgHaa1 and by its S. cerevisiae ScHaa1 ortholog, demonstrating a clear divergent evolution of the two regulatory networks. The results gathered in this study significantly advance the understanding of the molecular mechanisms underlying the success of C. glabrata as a vaginal colonizer. PMID:27815348

  16. The CgHaa1-Regulon Mediates Response and Tolerance to Acetic Acid Stress in the Human Pathogen Candida glabrata.

    PubMed

    Bernardo, Ruben T; Cunha, Diana V; Wang, Can; Pereira, Leonel; Silva, Sónia; Salazar, Sara B; Schröder, Markus S; Okamoto, Michiyo; Takahashi-Nakaguchi, Azusa; Chibana, Hiroji; Aoyama, Toshihiro; Sá-Correia, Isabel; Azeredo, Joana; Butler, Geraldine; Mira, Nuno Pereira

    2017-01-05

    To thrive in the acidic vaginal tract, Candida glabrata has to cope with high concentrations of acetic acid. The mechanisms underlying C. glabrata tolerance to acetic acid at low pH remain largely uncharacterized. In this work, the essential role of the CgHaa1 transcription factor (encoded by ORF CAGL0L09339g) in the response and tolerance of C. glabrata to acetic acid is demonstrated. Transcriptomic analysis showed that CgHaa1 regulates, directly or indirectly, the expression of about 75% of the genes activated under acetic acid stress. CgHaa1-activated targets are involved in multiple physiological functions including membrane transport, metabolism of carbohydrates and amino acids, regulation of the activity of the plasma membrane H(+)-ATPase, and adhesion. Under acetic acid stress, CgHaa1 increased the activity and the expression of the CgPma1 proton pump and contributed to increased colonization of vaginal epithelial cells by C. glabrata CgHAA1, and two identified CgHaa1-activated targets, CgTPO3 and CgHSP30, are herein demonstrated to be determinants of C. glabrata tolerance to acetic acid. The protective effect of CgTpo3 and of CgHaa1 was linked to a role of these proteins in reducing the accumulation of acetic acid inside C. glabrata cells. In response to acetic acid stress, marked differences were found in the regulons controlled by CgHaa1 and by its S. cerevisiae ScHaa1 ortholog, demonstrating a clear divergent evolution of the two regulatory networks. The results gathered in this study significantly advance the understanding of the molecular mechanisms underlying the success of C. glabrata as a vaginal colonizer.

  17. Comparison of Sub1 markers and their combinations for submergence tolerance and analysis of adaptation strategies of rice in rainfed lowland ecology.

    PubMed

    Pradhan, Sharat Kumar; Barik, Saumya Ranjan; Sahoo, Jayashree; Pandit, Elssa; Nayak, Deepak Kumar; Pani, Dipti Ranjan; Anandan, Annamalai

    2015-10-01

    Ninety lowland rice cultivars of the eastern region of India were collected and screened for submergence and water logging tolerance and further used for validating the efficiency of molecular markers and their combinations for submergence tolerance. Submergence tolerance and elongation ability of the tested genotypes were measured in screening tanks along with tolerant and susceptible checks. The genotypes FR13A, Khoda, CR Dhan 300, Savitri Sub1, IR64 Sub1, IC-568009 and IC-568842 exhibited high submergence tolerance may be used as donor in the breeding program. Landrace 'Khoda' showed tolerance to submergence with moderate elongation ability for adaption. Boitalpakhia, Gayatri, Atiranga, Aghonibora, Chakaakhi, Moti, IC-567993 and IC-568921 possessed both characters of moderate elongation ability and moderate tolerance to submergence. Both of these traits are required for lowland varieties of eastern India to survive under flash flood and accumulated stagnant water conditions. RM8300, Sub1A203, AEX, Sub1BC2 and Sub1C173 were employed for molecular screening to identify the submergence-tolerant genotypes. Sub1A203 was capable of differentiating the tolerant and susceptible genotypes into groups. RM8300 and Sub1BC2 could also differentiate the genotypes with inclusion of some susceptible genotypes. The AEX and Sub1C173 marker could not show discrimination among the genotypes with respect to the traits. Using Sub1A203+Sub1BC2 was better amongst the combinations studied. The results of the study indicated a trend toward a negative association of Sub1BC2 with submergence tolerance while AEX and Sub1C marker did not show any significant association. The donors identified can be useful as parental lines while the molecular markers can be used for marker-assisted breeding work.

  18. Mechanistic studies of the immunochemical termination of self-tolerance with unnatural amino acids.

    PubMed

    Grünewald, Jan; Hunt, Grady S; Dong, Liqun; Niessen, Frank; Wen, Ben G; Tsao, Meng-Lin; Perera, Roshan; Kang, Mingchao; Laffitte, Bryan A; Azarian, Sassan; Ruf, Wolfram; Nasoff, Marc; Lerner, Richard A; Schultz, Peter G; Smider, Vaughn V

    2009-03-17

    For more than 2 centuries active immunotherapy has been at the forefront of efforts to prevent infectious disease [Waldmann TA (2003) Nat Med 9:269-277]. However, the decreased ability of the immune system to mount a robust immune response to self-antigens has made it more difficult to generate therapeutic vaccines against cancer or chronic degenerative diseases. Recently, we showed that the site-specific incorporation of an immunogenic unnatural amino acid into an autologous protein offers a simple and effective approach to overcome self-tolerance. Here, we characterize the nature and durability of the polyclonal IgG antibody response and begin to establish the generality of p-nitrophenylalanine (pNO(2)Phe)-induced loss of self-tolerance. Mutation of several surface residues of murine tumor necrosis factor-alpha (mTNF-alpha) independently to pNO(2)Phe leads to a T cell-dependent polyclonal and sustainable anti-mTNF-alpha IgG autoantibody response that lasts for at least 40 weeks. The antibodies bind multiple epitopes on mTNF-alpha and protect mice from severe endotoxemia induced by lipopolysaccharide (LPS) challenge. Immunization of mice with a pNO(2)Phe(43) mutant of murine retinol-binding protein (RBP4) also elicited a high titer IgG antibody response, which was cross-reactive with wild-type mRBP4. These findings suggest that this may be a relatively general approach to generate effective immunotherapeutics against cancer-associated or other weakly immunogenic antigens.

  19. Role of Abscisic Acid in the Induction of Desiccation Tolerance in Developing Seeds of Arabidopsis thaliana

    PubMed Central

    Meurs, Cor; Basra, Amarjit S.; Karssen, Cees M.; van Loon, Leendert C.

    1992-01-01

    In contrast to wild-type seeds of Arabidopsis thaliana and to seeds deficient in (aba) or insensitive to (abi3) abscisic acid (ABA), maturing seeds of recombinant (aba,abi3) plants fail to desiccate, remain green, and lose viability upon drying. These double-mutant seeds acquire only low levels of the major storage proteins and are deficient in several low mol wt polypeptides, both soluble and bound, and some of which are heat stable. A major heat-stable glycoprotein of more than 100 kilodaltons behaves similarly; during seed development, it shows a decrease in size associated with the abi3 mutation. In seeds of the double mutant from 14 to 20 days after pollination, the low amounts of various maturation-specific proteins disappear and many higher mol wt proteins similar to those occurring during germination are induced, but no visible germination is apparent. It appears that in the aba,abi3 double mutant seed development is not completed and the program for seed germination is initiated prematurely in the absence of substances protective against dehydration. Seeds may be made desiccation tolerant by watering the plants with the ABA analog LAB 173711 or by imbibition of isolated immature seeds, 11 to 15 days after pollination, with ABA and sucrose. Whereas sucrose stimulates germination and may protect dehydration-sensitive structures from desiccation damage, ABA inhibits precocious germination and is required to complete the program for seed maturation and the associated development of desiccation tolerance. ImagesFigure 1Figure 2Figure 4Figure 5Figure 6Figure 8 PMID:16668818

  20. Sensitivity of acid-adapted and acid-shocked Shigella flexneri to reduced pH achieved with acetic, lactic, and propionic acids.

    PubMed

    Tetteh, G L; Beuchat, L R

    2001-07-01

    Survival and growth characteristics of unadapted, acid-adapted, and acid-shocked Shigella flexneri 2a cells in acidified (pH 3.5 to 5.5) tryptic soy broth with 0.25% glucose (TSB) and tryptic soy agar (TSA) were determined. S. flexneri was grown at 37 degrees C for 18 h in tryptic soy broth without glucose (TSBNG) (unadapted) and TSBNG supplemented with 1% glucose (TSBG) (acid-adapted). Cells grown in TSBNG were acid shocked by adjusting 16-h cultures to pH 5.05 +/- 0.05 with lactic acid. Cells were then inoculated into TSB acidified with acetic, lactic, or propionic acids to pH 5.5, 4.5, or 3.5 and incubated at 37 degrees C for 6 h. The order of lethality at a given pH was lactic acid < acetic acid < propionic acid. Significantly (P < or = 0.05) higher numbers of acid-adapted cells, compared to acid-shocked and unadapted cells, were recovered from TSB acidified (pH 3.5) with lactic or acetic acids. None of the cells survived a 30-min exposure in TSB acidified with propionic acid to pH 3.5. When the three cell types were plated on TSA acidified with lactic, acetic, or propionic acids at pH < or = 4.5, < or = 5.5, and < or = 5.5, respectively, visible colonies were not detected. Viable unadapted, acid-adapted, and acid-shocked cells were, however, recovered from TSA acidified with all three acids at pH > or = 4.5. Acid-adapted and, to a lesser extent, acid-shocked cells survived at lower pH than did unadapted cells, indicating that prior exposure to mild acidic environment results in increased acid resistance. Survival of S. flexneri at a given pH was influenced by the type of acidulant used, a response characteristic exhibited by other gram-negative enteric pathogens.

  1. Low pH, aluminum, and phosphorus coordinately regulate malate exudation through GmALMT1 to improve soybean adaptation to acid soils.

    PubMed

    Liang, Cuiyue; Piñeros, Miguel A; Tian, Jiang; Yao, Zhufang; Sun, Lili; Liu, Jiping; Shaff, Jon; Coluccio, Alison; Kochian, Leon V; Liao, Hong

    2013-03-01

    Low pH, aluminum (Al) toxicity, and low phosphorus (P) often coexist and are heterogeneously distributed in acid soils. To date, the underlying mechanisms of crop adaptation to these multiple factors on acid soils remain poorly understood. In this study, we found that P addition to acid soils could stimulate Al tolerance, especially for the P-efficient genotype HN89. Subsequent hydroponic studies demonstrated that solution pH, Al, and P levels coordinately altered soybean (Glycine max) root growth and malate exudation. Interestingly, HN89 released more malate under conditions mimicking acid soils (low pH, +P, and +Al), suggesting that root malate exudation might be critical for soybean adaptation to both Al toxicity and P deficiency on acid soils. GmALMT1, a soybean malate transporter gene, was cloned from the Al-treated root tips of HN89. Like root malate exudation, GmALMT1 expression was also pH dependent, being suppressed by low pH but enhanced by Al plus P addition in roots of HN89. Quantitative real-time PCR, transient expression of a GmALMT1-yellow fluorescent protein chimera in Arabidopsis protoplasts, and electrophysiological analysis of Xenopus laevis oocytes expressing GmALMT1 demonstrated that GmALMT1 encodes a root cell plasma membrane transporter that mediates malate efflux in an extracellular pH-dependent and Al-independent manner. Overexpression of GmALMT1 in transgenic Arabidopsis, as well as overexpression and knockdown of GmALMT1 in transgenic soybean hairy roots, indicated that GmALMT1-mediated root malate efflux does underlie soybean Al tolerance. Taken together, our results suggest that malate exudation is an important component of soybean adaptation to acid soils and is coordinately regulated by three factors, pH, Al, and P, through the regulation of GmALMT1 expression and GmALMT1 function.

  2. Concommitant adaptation of a GH11 xylanase by directed evolution to create an alkali-tolerant/thermophilic enzyme.

    PubMed

    Ruller, Roberto; Alponti, Juliana; Deliberto, Laila Aparecida; Zanphorlin, Letícia Maria; Machado, Carla Botelho; Ward, Richard John

    2014-08-01

    As part of an ongoing directed evolution program, the catalytic performance of the Xylanase A from Bacillus subtilis (XynA), which presents temperature and pH optima of 50°C and 6.0, respectively, has been enhanced to create a highly thermostable and alkali-tolerant enzyme. A library of random XynA mutants generated by error-prone polymerase chain reaction was screened by halo formation on agar containing xylan at pH 8.0. Two mutants showing higher catalytic activity at elevated pH in relation to the wild-type XynA were selected, and pooled with a further 5 XynA variants selected by screening thermostable XynA obtained from a previous directed evolution study for activity at alkaline pH. This pool of variants was used as a template for a further round of error-prone polymerase chain reaction and DNase fragment shuffling, with screening at pH 12.0 at 55°C. Selected mutants were subjected to further DNase shuffling, and a final round of screening at pH 12.0 and 80°C. A XynA variant containing eight mutations was isolated (Q7H/G13R/S22P/S31Y/T44A/I51V/I107L/S179C) that presented a temperature optimum of 80°C, a 3-fold increase in the specific activity compared with the wild-type enzyme at pH 8.0, and a 50% loss of activity (t50) of 60 min at 80°C (wild type <2 min). This directed evolution strategy therefore allows the concomitant adaption of increased thermostability and alkali tolerance of an endo-xylanase.

  3. Adaptive Encapsulation of ω-Amino Acids and Their Guanidinium-Amide Congeners.

    PubMed

    Feng, Wei-Xu; van der Lee, Arie; Legrand, Yves-Marie; Petit, Eddy; Dumitrescu, Dan; Su, Cheng-Yong; Barboiu, Mihail

    2016-11-04

    The binding and the encapsulation of the 6-aminohexanoic acid (1) and 11-aminoundecanoic acid (2) are achieved in aqueous solution and in crystalline Pyrene-box cages. Unexpectedly, the amino-guanidinium AG(+) and the amino acids 1 or 2 are reacting in aqueous solution in the absence and in the presence of Pyrene-box cages. The formation of an amide bond between a carboxylic acid and the amino-guanidine unit under mild acidic conditions in water without the use a coupling reagent is extremely interesting and unexpected. The resulted adducts AG1 and AG2 show adaptive binding behaviors and compressions.

  4. Physiological Function of Alcohol Dehydrogenases and Long-Chain (C30) Fatty Acids in Alcohol Tolerance of Thermoanaerobacter ethanolicus

    PubMed Central

    Burdette, D. S.; Jung, S.-H.; Shen, G.-J.; Hollingsworth, R. I.; Zeikus, J. G.

    2002-01-01

    A mutant strain (39E H8) of Thermoanaerobacter ethanolicus that displayed high (8% [vol/vol]) ethanol tolerance for growth was developed and characterized in comparison to the wild-type strain (39E), which lacks alcohol tolerance (<1.5% [vol/vol]). The mutant strain, unlike the wild type, lacked primary alcohol dehydrogenase and was able to increase the percentage of transmembrane fatty acids (i.e., long-chain C30 fatty acids) in response to increasing levels of ethanol. The data support the hypothesis that primary alcohol dehydrogenase functions primarily in ethanol consumption, whereas secondary alcohol dehydrogenase functions in ethanol production. These results suggest that improved thermophilic ethanol fermentations at high alcohol levels can be developed by altering both cell membrane composition (e.g., increasing transmembrane fatty acids) and the metabolic machinery (e.g., altering primary alcohol dehydrogenase and lactate dehydrogenase activities). PMID:11916712

  5. Enhanced Butanol Production Through Adding Organic Acids and Neutral Red by Newly Isolated Butanol-Tolerant Bacteria.

    PubMed

    Jiang, Cheng; Cao, Guangli; Wang, Zhenyu; Li, Ying; Song, Jinzhu; Cong, Hua; Zhang, Junzheng; Yang, Qian

    2016-12-01

    As alternative microorganisms for butanol production with high butanol tolerant and productivity are in high demand, one excellent butanol-tolerant bacterium, S10, was isolated and identified as Clostridium acetobutylicum S10. In order to enhance the performance of butanol production, organic acids and neutral red were added during butanol fermentation. Synergistic effects were exhibited in the combinations of organic acids and neutral red to promote butanol production. Consequently, the optimal concentrations of combined acetate, butyrate, and neutral red were determined at sodium acetate 1.61 g/L, sodium butyrate 1.88 g/L, and neutral red 0.79 g/L, respectively, with the butanol yield of 6.09 g/L which was 20.89 % higher than that in control. These results indicated that combination of adding organic acid and neutral red is a potential effective measure to improve butanol production.

  6. Genotypes Associated with Listeria monocytogenes Isolates Displaying Impaired or Enhanced Tolerances to Cold, Salt, Acid, or Desiccation Stress

    PubMed Central

    Hingston, Patricia; Chen, Jessica; Dhillon, Bhavjinder K.; Laing, Chad; Bertelli, Claire; Gannon, Victor; Tasara, Taurai; Allen, Kevin; Brinkman, Fiona S. L.; Truelstrup Hansen, Lisbeth; Wang, Siyun

    2017-01-01

    The human pathogen Listeria monocytogenes is a large concern in the food industry where its continuous detection in food products has caused a string of recalls in North America and Europe. Most recognized for its ability to grow in foods during refrigerated storage, L. monocytogenes can also tolerate several other food-related stresses with some strains possessing higher levels of tolerances than others. The objective of this study was to use a combination of phenotypic analyses and whole genome sequencing to elucidate potential relationships between L. monocytogenes genotypes and food-related stress tolerance phenotypes. To accomplish this, 166 L. monocytogenes isolates were sequenced and evaluated for their ability to grow in cold (4°C), salt (6% NaCl, 25°C), and acid (pH 5, 25°C) stress conditions as well as survive desiccation (33% RH, 20°C). The results revealed that the stress tolerance of L. monocytogenes is associated with serotype, clonal complex (CC), full length inlA profiles, and the presence of a plasmid which was identified in 55% of isolates. Isolates with full length inlA exhibited significantly (p < 0.001) enhanced cold tolerance relative to those harboring a premature stop codon (PMSC) in this gene. Similarly, isolates possessing a plasmid demonstrated significantly (p = 0.013) enhanced acid tolerance. We also identified nine new L. monocytogenes sequence types, a new inlA PMSC, and several connections between CCs and the presence/absence or variations of specific genetic elements. A whole genome single-nucleotide-variants phylogeny revealed sporadic distribution of tolerant isolates and closely related sensitive and tolerant isolates, highlighting that minor genetic differences can influence the stress tolerance of L. monocytogenes. Specifically, a number of cold and desiccation sensitive isolates contained PMSCs in σB regulator genes (rsbS, rsbU, rsbV). Collectively, the results suggest that knowing the sequence type of an isolate in

  7. Genotypes Associated with Listeria monocytogenes Isolates Displaying Impaired or Enhanced Tolerances to Cold, Salt, Acid, or Desiccation Stress.

    PubMed

    Hingston, Patricia; Chen, Jessica; Dhillon, Bhavjinder K; Laing, Chad; Bertelli, Claire; Gannon, Victor; Tasara, Taurai; Allen, Kevin; Brinkman, Fiona S L; Truelstrup Hansen, Lisbeth; Wang, Siyun

    2017-01-01

    The human pathogen Listeria monocytogenes is a large concern in the food industry where its continuous detection in food products has caused a string of recalls in North America and Europe. Most recognized for its ability to grow in foods during refrigerated storage, L. monocytogenes can also tolerate several other food-related stresses with some strains possessing higher levels of tolerances than others. The objective of this study was to use a combination of phenotypic analyses and whole genome sequencing to elucidate potential relationships between L. monocytogenes genotypes and food-related stress tolerance phenotypes. To accomplish this, 166 L. monocytogenes isolates were sequenced and evaluated for their ability to grow in cold (4°C), salt (6% NaCl, 25°C), and acid (pH 5, 25°C) stress conditions as well as survive desiccation (33% RH, 20°C). The results revealed that the stress tolerance of L. monocytogenes is associated with serotype, clonal complex (CC), full length inlA profiles, and the presence of a plasmid which was identified in 55% of isolates. Isolates with full length inlA exhibited significantly (p < 0.001) enhanced cold tolerance relative to those harboring a premature stop codon (PMSC) in this gene. Similarly, isolates possessing a plasmid demonstrated significantly (p = 0.013) enhanced acid tolerance. We also identified nine new L. monocytogenes sequence types, a new inlA PMSC, and several connections between CCs and the presence/absence or variations of specific genetic elements. A whole genome single-nucleotide-variants phylogeny revealed sporadic distribution of tolerant isolates and closely related sensitive and tolerant isolates, highlighting that minor genetic differences can influence the stress tolerance of L. monocytogenes. Specifically, a number of cold and desiccation sensitive isolates contained PMSCs in σ(B) regulator genes (rsbS, rsbU, rsbV). Collectively, the results suggest that knowing the sequence type of an isolate in

  8. LSPV+7, a branch-point-tolerant reconstructor for strong turbulence adaptive optics.

    PubMed

    Steinbock, Michael J; Hyde, Milo W; Schmidt, Jason D

    2014-06-20

    Optical wave propagation through long paths of extended turbulence presents unique challenges to adaptive optics (AO) systems. As scintillation and branch points develop in the beacon phase, challenges arise in accurately unwrapping the received wavefront and optimizing the reconstructed phase with respect to branch cut placement on a continuous facesheet deformable mirror. Several applications are currently restricted by these capability limits: laser communication, laser weapons, remote sensing, and ground-based astronomy. This paper presents a set of temporally evolving AO simulations comparing traditional least-squares reconstruction techniques to a complex-exponential reconstructor and several other reconstructors derived from the postprocessing congruence operation. The reconstructors' behavior in closed-loop operation is compared and discussed, providing several insights into the fundamental strengths and limitations of each reconstructor type. This research utilizes a self-referencing interferometer (SRI) as the high-order wavefront sensor, driving a traditional linear control law in conjunction with a cooperative point source beacon. The SRI model includes practical optical considerations and frame-by-frame fiber coupling effects to allow for realistic noise modeling. The "LSPV+7" reconstructor is shown to offer the best performance in terms of Strehl ratio and correction stability-outperforming the traditional least-squares reconstructed system by an average of 120% in the studied scenarios. Utilizing a continuous facesheet deformable mirror, these reconstructors offer significant AO performance improvements in strong turbulence applications without the need for segmented deformable mirrors.

  9. Altered architecture and enhanced drought tolerance in rice via the down-regulation of indole-3-acetic acid by TLD1/OsGH3.13 activation.

    PubMed

    Zhang, Sheng-Wei; Li, Chen-Hui; Cao, Jia; Zhang, Yong-Cun; Zhang, Su-Qiao; Xia, Yu-Feng; Sun, Da-Ye; Sun, Ying

    2009-12-01

    Plant architecture is determined by genetic and developmental programs as well as by environmental factors. Sessile plants have evolved a subtle adaptive mechanism that allows them to alter their growth and development during periods of stress. Phytohormones play a central role in this process; however, the molecules responsible for integrating growth- and stress-related signals are unknown. Here, we report a gain-of-function rice (Oryza sativa) mutant, tld1-D, characterized by (and named for) an increased number of tillers, enlarged leaf angles, and dwarfism. TLD1 is a rice GH3.13 gene that encodes indole-3-acetic acid (IAA)-amido synthetase, which is suppressed in aboveground tissues under normal conditions but which is dramatically induced by drought stress. The activation of TLD1 reduced the IAA maxima at the lamina joint, shoot base, and nodes, resulting in subsequent alterations in plant architecture and tissue patterning but enhancing drought tolerance. Accordingly, the decreased level of free IAA in tld1-D due to the conjugation of IAA with amino acids greatly facilitated the accumulation of late-embryogenesis abundant mRNA compared with the wild type. The direct regulation of such drought-inducible genes by changes in the concentration of IAA provides a model for changes in plant architecture via the process of drought adaptation, which occurs frequently in nature.

  10. Reducing activity, glucose metabolism and acid tolerance response of Bacillus cereus grown at various pH and oxydo-reduction potential levels.

    PubMed

    Le Lay, Julien; Bahloul, Halim; Sérino, Sylvie; Jobin, Michel; Schmitt, Philippe

    2015-04-01

    Bacillus cereus is a major foodborne bacterial pathogen able to survive a large number of physical-chemical stresses. B. cereus encounters different pH and redox potential (Eh7) levels during its passage through the gastrointestinal tract. Analysis of the combined influence of pH and redox stresses on B. cereus F4430/73 physiology found that B. cereus F4430/73 growth at pH 7.0 at 37 °C had strong reducing capacities, with a total change of 315 mV from an initial redox value of +214 ± 17 mV. The combination of low Eh7 and low pH led to a drastic reduction of growth parameters compared to oxidative Eh7 and neutral pH. Metabolic analysis showed that low pH significantly modifies glucose fermentative metabolism, with changes including decreased production of acid metabolite (acetate, lactate, formate) and increased production of 2,3-butanediol. Low Eh7 slightly enhanced the acid-tolerance response of B. cereus whereas low pH pre-adaptation led to thermal stress cross-protection. These results highlight new mechanisms that bring fresh insight into B. cereus pH and redox stress adaptations.

  11. Mechanism Analysis of Acid Tolerance Response of Bifidobacterium longum subsp. longum BBMN 68 by Gene Expression Profile Using RNA-Sequencing

    PubMed Central

    Jin, Junhua; Zhang, Bing; Guo, Huiyuan; Cui, Jianyun; Jiang, Lu; Song, Shuhui; Sun, Min; Ren, Fazheng

    2012-01-01

    To analyze the mechanism of the acid tolerance response (ATR) in Bifidobacterium longum subsp. longum BBMN68, we optimized the acid-adaptation condition to stimulate ATR effectively and analyzed the change of gene expression profile after acid-adaptation using high-throughput RNA-Seq. After acid-adaptation at pH 4.5 for 2 hours, the survival rate of BBMN68 at lethal pH 3.5 for 120 min was increased by 70 fold and the expression of 293 genes were upregulated by more than 2 fold, and 245 genes were downregulated by more than 2 fold. Gene expression profiling of ATR in BBMN68 suggested that, when the bacteria faced acid stress, the cells strengthened the integrity of cell wall and changed the permeability of membrane to keep the H+ from entering. Once the H+ entered the cytoplasm, the cells showed four main responses: First, the F0F1-ATPase system was initiated to discharge H+. Second, the ability to produce NH3 by cysteine-cystathionine-cycle was strengthened to neutralize excess H+. Third, the cells started NER-UVR and NER-VSR systems to minimize the damage to DNA and upregulated HtpX, IbpA, and γ-glutamylcysteine production to protect proteins against damage. Fourth, the cells initiated global response signals ((p)ppGpp, polyP, and Sec-SRP) to bring the whole cell into a state of response to the stress. The cells also secreted the quorum sensing signal (AI-2) to communicate between intraspecies cells by the cellular signal system, such as two-component systems, to improve the overall survival rate. Besides, the cells varied the pathways of producing energy by shifting to BCAA metabolism and enhanced the ability to utilize sugar to supply sufficient energy for the operation of the mechanism mentioned above. Based on these reults, it was inferred that, during industrial applications, the acid resistance of bifidobacteria could be improved by adding BCAA, γ-glutamylcysteine, cysteine, and cystathionine into the acid-stress environment. PMID:23236393

  12. Defective liver disposal of free fatty acids in patients with impaired glucose tolerance.

    PubMed

    Iozzo, Patricia; Turpeinen, Anu K; Takala, Teemu; Oikonen, Vesa; Bergman, Jörgen; Grönroos, Tove; Ferrannini, Ele; Nuutila, Pirjo; Knuuti, Juhani

    2004-07-01

    The liver exchanges high fluxes of glucose and free fatty acids (FFA) and is one main site of their reciprocal regulation. Acute exposure to hyperglycemia and hyperinsulinemia has been shown to reduce splanchnic beta-oxidation in healthy humans. We investigated whether a spontaneous condition of chronic mild hyperglycemia and hyperinsulinemia affects liver FFA uptake. Hepatic FFA influx rate constant (LKi) was measured after a 12-15-h fast in 10 patients with impaired glucose tolerance (IGT) and eight control subjects using positron emission tomography in combination with the long-chain FFA analog 14(R,S)-[18F]fluoro-6-thia-heptadecanoic acid. Compared with controls, IGT patients had higher serum insulin, glucose, and triglyceride levels (1.71 +/- 0.24 vs. 0.59 +/- 0.06 mmol/liter, P < 0.001), lower high-density lipoprotein (1.04 +/- 0.11 vs. 1.42 +/- 0.13 mmol/liter, P < 0.05), and similar FFA levels (0.59 +/- 0.06 vs. 0.56 +/- 0.05 mmol/liter(-1), P = not significant). LKi was significantly reduced in IGT (0.288 +/- 0.014 min(-1)) compared with control subjects (0.341 +/- 0.014 min(-1), P < 0.02). LKi was negatively correlated with plasma glucose (r = 0.51, P < 0.03), glycosylated hemoglobin (r = 0.55, P < 0.02), and blood lactate levels (r = 0.52, P < 0.03). We conclude that, in IGT patients, the ability of the liver to extract FFA from the circulation appears to be impaired. The reciprocal relationship between hepatic FFA extraction and glucose/lactate flux may derive from intrahepatic substrate competition.

  13. High acidity tolerance in lichens with fumarprotocetraric, perlatolic or thamnolic acids is correlated with low pKa1 values of these lichen substances.

    PubMed

    Hauck, Markus; Jürgens, Sascha-René; Huneck, Siegfried; Leuschner, Christoph

    2009-10-01

    The depsidone fumarprotocetraric acid as well as the depsides perlatolic and thamnolic acids are lichen secondary metabolites. Their first dissociation constants (pK(a1)) in methanol were determined to be 2.7 for perlatolic acid and 2.8 for fumarprotocetraric and thamnolic acids by UV spectroscopy. Lower pK(a1) values are, so far, not known from lichen substances. Several lichens producing at least one of these compounds are known for their outstanding tolerance to acidic air pollution. This is demonstrated by evaluating published pH preferences for central European lichens. The low pK(a1) values suggest that strong dissociation of the studied lichen substances is a prerequisite for the occurrence of lichens with these compounds on very acidic substrata, as protonated lichen substances of different chemical groups, but not their conjugated bases, are known to shuttle protons into the cytoplasm and thereby apparently damage lichens.

  14. Fumarate Production by Torulopsis glabrata: Engineering Heterologous Fumarase Expression and Improving Acid Tolerance

    PubMed Central

    Chen, Xiulai; Song, Wei; Gao, Cong; Qin, Wen; Luo, Qiuling; Liu, Jia; Liu, Liming

    2016-01-01

    Fumarate is a well-known biomass building block compound. However, the poor catalytic efficiency of fumarase is one of the major factors preventing its widespread production. To address this issue, we selected residues 159HPND162 of fumarase from Rhizopus oryzae as targets for site-directed mutagenesis based on molecular docking analysis. Twelve mutants were generated and characterized in detail. Kinetic studies showed that the Km values of the P160A, P160T, P160H, N161E, and D162W mutants were decreased, whereas Km values of H159Y, H159V, H159S, N161R, N161F, D162K, and D162M mutants were increased. In addition, all mutants displayed decreased catalytic efficiency except for the P160A mutant, whose kcat/Km was increased by 33.2%. Moreover, by overexpressing the P160A mutant, the engineered strain T.G-PMS-P160A was able to produce 5.2 g/L fumarate. To further enhance fumarate production, the acid tolerance of T.G-PMS-P160A was improved by deleting ade12, a component of the purine nucleotide cycle, and the resulting strain T.G(△ade12)-PMS-P160A produced 9.2 g/L fumarate. The strategy generated in this study opens up new avenues for pathway optimization and efficient production of natural products. PMID:27711153

  15. Proteomic analysis on salicylic acid-induced salt tolerance in common wheat seedlings (Triticum aestivum L.).

    PubMed

    Kang, Guozhang; Li, Gezi; Zheng, Beibei; Han, Qiaoxia; Wang, Chenyang; Zhu, Yunji; Guo, Tiancai

    2012-12-01

    The influence of salicylic acid (SA) on the salt tolerance mechanism in seedlings of common wheat (Triticum aestivum L.) was investigated using physiological measurements combined with global expression profiling (proteomics). In the present study, 0.5mM SA significantly reduced NaCl-induced growth inhibition in wheat seedlings, manifesting as increased fresh weights, dry weights, and photosynthetic pigments, but decreased lipid peroxidation. Two-week-old wheat seedlings treated with 0.5mM SA, 250 mM NaCl and 250 mM NaCl+0.5mM SA for 3 days were used for the proteomic analyses. In total, 39 proteins differentially regulated by both salt and SA were revealed by 2D PAGE, and 38 proteins were identified by MALDI-TOF/TOF MS. The identified proteins were involved in various cellular responses and metabolic processes including signal transduction, stress defense, energy, metabolism, photosynthesis, and others of unknown function. All protein spots involved in signal transduction and the defense response were significantly upregulated by SA under salt stress, suggesting that these proteins could play a role in the SA-induced salt resistance in wheat seedlings.

  16. Changes in the serum composition of free-fatty acids during an intravenous glucose tolerance test.

    PubMed

    Soriguer, Federico; García-Serrano, Sara; García-Almeida, Jose M; Garrido-Sánchez, Lourdes; García-Arnés, Juan; Tinahones, Francisco J; Cardona, Isabel; Rivas-Marín, Jose; Gallego-Perales, Jose L; García-Fuentes, Eduardo

    2009-01-01

    Recent studies suggest that measuring the free-fatty acids (FFA) during an intravenous glucose tolerance test (IVGTT) may provide information about the metabolic associations between serum FFA and carbohydrate and insulin metabolism. We evaluated the FFA profile during an IVGTT and determined whether this test changes the composition and concentration of FFA. An IVGTT was given to 38 severely obese persons before and 7 months after undergoing bariatric surgery and also to 12 healthy, nonobese persons. The concentration and composition of the FFA were studied at different times during the test. The concentration of FFA fell significantly faster during the IVGTT in the controls and in the severely obese persons with normal-fasting glucose (NFG) than in the severely obese persons with impaired-fasting glucose (IFG) or type 2 diabetes mellitus (T2DM) (P < 0.05). Significant differences were found in the time to minimum serum concentrations of FFA (control = NFG < IFG < T2DM) (P < 0.001). These variables improved after bariatric surgery in the three groups. The percentage of monounsaturated and n-6 polyunsaturated FFA in the control subjects and in the obese persons, both before and after surgery, decreased significantly during the IVGTT. In conclusion, during an IVGTT, severely obese persons with IFG or T2DM experienced a lower fall in the FFA than the severely obese persons with NFG and the controls, becoming normal after bariatric surgery.

  17. Versatile and sustainable synthesis of cyclic imides from dicarboxylic acids and amines by Nb2O5 as a base-tolerant heterogeneous Lewis acid catalyst.

    PubMed

    Ali, Md Ayub; Siddiki, S M A Hakim; Kon, Kenichi; Hasegawa, Junya; Shimizu, Ken-Ichi

    2014-10-27

    Catalytic condensation of dicarboxylics acid and amines without excess amount of activating reagents is the most atom-efficient but unprecedented synthetic method of cyclic imides. Here we present the first general catalytic method, proceeding selectively and efficiently in the presence of a commercial Nb2 O5 as a reusable and base-tolerant heterogeneous Lewis acid catalyst. The method is effective for the direct synthesis of pharmaceutically or industrially important cyclic imides, such as phensuximide, N-hydroxyphthalimide (NHPI), and unsubstituted cyclic imides from dicarboxylic acid or anhydrides with amines, hydroxylamine, or ammonia.

  18. Proteomics reveals the effects of salicylic acid on growth and tolerance to subsequent drought stress in wheat.

    PubMed

    Kang, Guozhang; Li, Gezi; Xu, Wei; Peng, Xiaoqi; Han, Qiaoxia; Zhu, Yunji; Guo, Tiancai

    2012-12-07

    Pretreatment with 0.5 mM salicylic acid (SA) for 3 days significantly enhanced the growth and tolerance to subsequent drought stress (PEG-6000, 15%) in wheat seedlings, manifesting as increased shoot and root dry weights, and decreased lipid peroxidation. Total proteins from wheat leaves exposed to (i) 0.5 mM SA pretreatment, (ii) drought stress, and (iii) 0.5 mM SA treatment plus drought-stress treatments were analyzed using a proteomics method. Eighty-two stress-responsive protein spots showed significant changes, of which 76 were successfully identified by MALDI-TOF-TOF. Analysis of protein expression patterns revealed that proteins associated with signal transduction, stress defense, photosynthesis, carbohydrate metabolism, protein metabolism, and energy production could by involved in SA-induced growth and drought tolerance in wheat seedlings. Furthermore, the SA-responsive protein interaction network revealed 35 key proteins, suggesting that these proteins are critical for SA-induced tolerance.

  19. A novel cold-adapted and glucose-tolerant GH1 β-glucosidase from Exiguobacterium antarcticum B7.

    PubMed

    Crespim, Elaine; Zanphorlin, Letícia M; de Souza, Flavio H M; Diogo, José A; Gazolla, Alex C; Machado, Carla B; Figueiredo, Fernanda; Sousa, Amanda S; Nóbrega, Felipe; Pellizari, Vivian H; Murakami, Mário T; Ruller, Roberto

    2016-01-01

    A novel GH1 β-glucosidase (EaBgl1A) from a bacterium isolated from Antarctica soil samples was recombinantly overexpressed in Escherichia coli cells and characterized. The enzyme showed unusual pH dependence with maximum activity at neutral pH and retention of high catalytic activity in the pH range 6 to 9, indicating a catalytic machinery compatible with alkaline conditions. EaBgl1A is also a cold-adapted enzyme, exhibiting activity in the temperature range from 10 to 40°C with optimal activity at 30°C, which allows its application in industrial processes using low temperatures. Kinetic characterization revealed an enzymatic turnover (Kcat) of 6.92s(-1) (cellobiose) and 32.98s(-1) (pNPG) and a high tolerance for product inhibition, which is an extremely desirable feature for biotechnological purposes. Interestingly, the enzyme was stimulated by up to 200 mM glucose, whereas the commercial cocktails tested were found fully inhibited at this concentration. These properties indicate EaBgl1A as a promising biocatalyst for biotechnological applications where low temperatures are required.

  20. Patterns of host-parasite adaptation in three populations of monarch butterflies infected with a naturally occurring protozoan disease: virulence, resistance, and tolerance.

    PubMed

    Sternberg, Eleanore D; Li, Hui; Wang, Rebecca; Gowler, Camden; de Roode, Jacobus C

    2013-12-01

    Many studies have used host-parasite systems to study local adaptation, but few of these studies have found unequivocal evidence for adaptation. One potential reason is that most studies have focused on limited measures of host and parasite fitness that are generally assumed to be under negative frequency-dependent selection. We have used reciprocal cross-infection experiments to test for local adaptation in Hawaiian, south Floridian, and eastern North American populations of monarch butterflies and their protozoan parasites. Sympatric host-parasite combinations did not result in greater host or parasite fitness, as would be expected under coevolutionary dynamics driven by negative frequency-dependent selection. Instead, we found that Hawaiian hosts were more resistant and carried more infective and virulent parasites, which is consistent with theoretical predictions for virulence evolution and coevolutionary arms race dynamics. We also found that Hawaiian hosts were more tolerant, particularly of Hawaiian parasites, indicating that increased resistance does not preclude increased tolerance within a population and that hosts may be more tolerant of local parasites. We did not find a similar pattern in the south Floridian or eastern populations, possibly because host-parasite adaptation occurs within the context of a greater ecological community.

  1. Tolerability in the elderly population of high-dose alpha lipoic acid: a potential antioxidant therapy for the eye

    PubMed Central

    Sarezky, Daniel; Raquib, Aaishah R; Dunaief, Joshua L; Kim, Benjamin J

    2016-01-01

    Purpose Alpha lipoic acid (ALA) is an antioxidant and iron-chelating supplement that has potential benefits for geographic atrophy in dry age-related macular degeneration as well as other eye diseases. The purpose of this study was to determine the tolerability of ALA in the elderly population. Patients and methods Fifteen subjects, age ≥65 years, took sequential ALA doses of 600, 800, and 1,200 mg. Each dose was taken once daily with a meal for 5 days. After each dose was taken by the subjects for 5 days, the subjects were contacted by phone, a review of systems was performed, and they were asked if they thought they could tolerate taking that dose of ALA for an extended period of time. Results The 600 mg dose was well tolerated. At the 800 mg dose, one subject had an intolerable flushing sensation. At the 1,200 mg dose, two subjects had intolerable upper gastrointestinal side effects and one subject had an intolerable flushing sensation. Subjects taking gastrointestinal prophylaxis medications had no upper gastrointestinal side effects. Conclusion High-dose ALA is not completely tolerated by the elderly. These preliminary data suggest that gastrointestinal prophylaxis may improve tolerability. (ClinicalTrials.gov, NCT02613572). PMID:27729766

  2. The fraction of cells that resume growth after acetic acid addition is a strain-dependent parameter of acetic acid tolerance in Saccharomyces cerevisiae.

    PubMed

    Swinnen, Steve; Fernández-Niño, Miguel; González-Ramos, Daniel; van Maris, Antonius J A; Nevoigt, Elke

    2014-06-01

    High acetic acid tolerance of Saccharomyces cerevisiae is a relevant phenotype in industrial biotechnology when using lignocellulosic hydrolysates as feedstock. A screening of 38 S. cerevisiae strains for tolerance to acetic acid revealed considerable differences, particularly with regard to the duration of the latency phase. To understand how this phenotype is quantitatively manifested, four strains exhibiting significant differences were studied in more detail. Our data show that the duration of the latency phase is primarily determined by the fraction of cells within the population that resume growth. Only this fraction contributed to the exponential growth observed after the latency phase, while all other cells persisted in a viable but non-proliferating state. A remarkable variation in the size of the fraction was observed among the tested strains differing by several orders of magnitude. In fact, only 11 out of 10(7)  cells of the industrial bioethanol production strain Ethanol Red resumed growth after exposure to 157 mM acetic acid at pH 4.5, while this fraction was 3.6 × 10(6) (out of 10(7)  cells) in the highly acetic acid tolerant isolate ATCC 96581. These strain-specific differences are genetically determined and represent a valuable starting point to identify genetic targets for future strain improvement.

  3. 75 FR 60231 - Acephate, Cacodylic Acid, Dicamba, Dicloran, et al.; Tolerance Actions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-29

    ... not limited to: Crop production (NAICS code 111). Animal production (NAICS code 112). Food... tolerance reassessment processes (including follow-up on canceled or additional uses of pesticides). As part of these processes, EPA is required to determine whether each of the amended tolerances meets...

  4. 40 CFR 180.1159 - Pelargonic acid; exemption from the requirement of tolerances.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions... food commodities when used as a plant regulator on plants, seeds, or cuttings and on all food... herbicide is exempt from the requirement of a tolerance on all plant food commodities provided that:...

  5. 40 CFR 180.1159 - Pelargonic acid; exemption from the requirement of tolerances.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions... food commodities when used as a plant regulator on plants, seeds, or cuttings and on all food... herbicide is exempt from the requirement of a tolerance on all plant food commodities provided that:...

  6. The Cytosolic pH of Individual Saccharomyces cerevisiae Cells Is a Key Factor in Acetic Acid Tolerance.

    PubMed

    Fernández-Niño, Miguel; Marquina, Maribel; Swinnen, Steve; Rodríguez-Porrata, Boris; Nevoigt, Elke; Ariño, Joaquín

    2015-11-01

    It was shown recently that individual cells of an isogenic Saccharomyces cerevisiae population show variability in acetic acid tolerance, and this variability affects the quantitative manifestation of the trait at the population level. In the current study, we investigated whether cell-to-cell variability in acetic acid tolerance could be explained by the observed differences in the cytosolic pHs of individual cells immediately before exposure to the acid. Results obtained with cells of the strain CEN.PK113-7D in synthetic medium containing 96 mM acetic acid (pH 4.5) showed a direct correlation between the initial cytosolic pH and the cytosolic pH drop after exposure to the acid. Moreover, only cells with a low initial cytosolic pH, which experienced a less severe drop in cytosolic pH, were able to proliferate. A similar correlation between initial cytosolic pH and cytosolic pH drop was also observed in the more acid-tolerant strain MUCL 11987-9. Interestingly, a fraction of cells in the MUCL 11987-9 population showed initial cytosolic pH values below the minimal cytosolic pH detected in cells of the strain CEN.PK113-7D; consequently, these cells experienced less severe drops in cytosolic pH. Although this might explain in part the difference between the two strains with regard to the number of cells that resumed proliferation, it was observed that all cells from strain MUCL 11987-9 were able to proliferate, independently of their initial cytosolic pH. Therefore, other factors must also be involved in the greater ability of MUCL 11987-9 cells to endure strong drops in cytosolic pH.

  7. Arabidopsis fatty acid desaturase FAD2 is required for salt tolerance during seed germination and early seedling growth.

    PubMed

    Zhang, Jiantao; Liu, Hua; Sun, Jian; Li, Bei; Zhu, Qiang; Chen, Shaoliang; Zhang, Hongxia

    2012-01-01

    Fatty acid desaturases play important role in plant responses to abiotic stresses. However, their exact function in plant resistance to salt stress is unknown. In this work, we provide the evidence that FAD2, an endoplasmic reticulum localized ω-6 desaturase, is required for salt tolerance in Arabidopsis. Using vacuolar and plasma membrane vesicles prepared from the leaves of wild-type (Col-0) and the loss-of-function Arabidopsis mutant, fad2, which lacks the functional FAD2, we examined the fatty acid composition and Na+-dependent H+ movements of the isolated vesicles. We observed that, when compared to Col-0, the level of vacuolar and plasma membrane polyunsaturation was lower, and the Na+/H+ exchange activity was reduced in vacuolar and plasma membrane vesicles isolated from fad2 mutant. Consistent with the reduced Na+/H+ exchange activity, fad2 accumulated more Na+ in the cytoplasm of root cells, and was more sensitive to salt stress during seed germination and early seedling growth, as indicated by CoroNa-Green staining, net Na+ efflux and salt tolerance analyses. Our results suggest that FAD2 mediated high-level vacuolar and plasma membrane fatty acid desaturation is essential for the proper function of membrane attached Na+/H+ exchangers, and thereby to maintain a low cytosolic Na+ concentration for salt tolerance during seed germination and early seedling growth in Arabidopsis.

  8. Acid-Tolerant Moderately Thermophilic Methanotrophs of the Class Gammaproteobacteria Isolated From Tropical Topsoil with Methane Seeps

    PubMed Central

    Islam, Tajul; Torsvik, Vigdis; Larsen, Øivind; Bodrossy, Levente; Øvreås, Lise; Birkeland, Nils-Kåre

    2016-01-01

    Terrestrial tropical methane seep habitats are important ecosystems in the methane cycle. Methane oxidizing bacteria play a key role in these ecosystems as they reduce methane emissions to the atmosphere. Here, we describe the isolation and initial characterization of two novel moderately thermophilic and acid-tolerant obligate methanotrophs, assigned BFH1 and BFH2 recovered from a tropical methane seep topsoil habitat. The new isolates were strictly aerobic, non-motile, coccus-shaped and utilized methane and methanol as sole carbon and energy source. Isolates grew at pH range 4.2–7.5 (optimal 5.5–6.0) and at a temperature range of 30–60°C (optimal 51–55°C). 16S rRNA gene phylogeny placed them in a well-separated branch forming a cluster together with the genus Methylocaldum as the closest relatives (93.1–94.1% sequence similarity). The genes pmoA, mxaF, and cbbL were detected, but mmoX was absent. Strains BFH1 and BFH2 are, to our knowledge, the first isolated acid-tolerant moderately thermophilic methane oxidizers of the class Gammaproteobacteria. Each strain probably denotes a novel species and they most likely represent a novel genus within the family Methylococcaceae of type I methanotrophs. Furthermore, the isolates increase our knowledge of acid-tolerant aerobic methanotrophs and signify a previously unrecognized biological methane sink in tropical ecosystems. PMID:27379029

  9. Expression of PprI from Deinococcus radiodurans Improves Lactic Acid Production and Stress Tolerance in Lactococcus lactis.

    PubMed

    Dong, Xiangrong; Tian, Bing; Dai, Shang; Li, Tao; Guo, Linna; Tan, Zhongfang; Jiao, Zhen; Jin, Qingsheng; Wang, Yanping; Hua, Yuejin

    2015-01-01

    PprI is a general switch protein that regulates the expression of certain proteins involved in pathways of cellular resistance in the extremophilic bacterium Deinococcus radiodurans. In this study, we transformed pprI into Lactococcus lactis strain MG1363 using the lactococcal shuttle vector pMG36e and investigated its effects on the tolerance and lactic acid production of L. lactis while under stress. PprI was stably expressed in L. lactis as confirmed by western blot assays. L. lactis expressing PprI exhibited significantly improved resistance to oxidative stress and high osmotic pressure. This enhanced cellular tolerance to stressors might be due to the regulation of resistance-related genes (e.g., recA, recO, sodA, and nah) by pprI. Moreover, transformed L. lactis demonstrated increased lactic acid production, attributed to enhanced lactate dehydrogenase activity. These results suggest that pprI can improve the tolerance of L. lactis to environmental stresses, and this transformed bacterial strain is a promising candidate for industrial applications of lactic acid production.

  10. Expression of PprI from Deinococcus radiodurans Improves Lactic Acid Production and Stress Tolerance in Lactococcus lactis

    PubMed Central

    Dong, Xiangrong; Tian, Bing; Dai, Shang; Li, Tao; Guo, Linna; Tan, Zhongfang; Jiao, Zhen; Jin, Qingsheng; Wang, Yanping; Hua, Yuejin

    2015-01-01

    PprI is a general switch protein that regulates the expression of certain proteins involved in pathways of cellular resistance in the extremophilic bacterium Deinococcus radiodurans. In this study, we transformed pprI into Lactococcus lactis strain MG1363 using the lactococcal shuttle vector pMG36e and investigated its effects on the tolerance and lactic acid production of L. lactis while under stress. PprI was stably expressed in L. lactis as confirmed by western blot assays. L. lactis expressing PprI exhibited significantly improved resistance to oxidative stress and high osmotic pressure. This enhanced cellular tolerance to stressors might be due to the regulation of resistance-related genes (e.g., recA, recO, sodA, and nah) by pprI. Moreover, transformed L. lactis demonstrated increased lactic acid production, attributed to enhanced lactate dehydrogenase activity. These results suggest that pprI can improve the tolerance of L. lactis to environmental stresses, and this transformed bacterial strain is a promising candidate for industrial applications of lactic acid production. PMID:26562776

  11. Exogenous jasmonic acid can enhance tolerance of wheat seedlings to salt stress.

    PubMed

    Qiu, ZongBo; Guo, JunLi; Zhu, AiJing; Zhang, Liang; Zhang, ManMan

    2014-06-01

    Jasmonic acid (JA) is regarded as endogenous regulator that plays an important role in regulating stress responses, plant growth and development. To investigate the physiological mechanisms of salt stress mitigated by exogenous JA, foliar application of 2mM JA was done to wheat seedlings for 3days and then they were subjected to 150mM NaCl. Our results showed that 150mM NaCl treatment significantly decreased plant height, root length, shoot dry weight, root dry weight, the concentration of glutathione (GSH), chlorophyll b (Chl b) and carotenoid (Car), the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), enhanced the concentration of malondialdehyde (MDA), hydrogen peroxide (H2O2) and the rate of superoxide radical (O2•-) generation in the wheat seedlings when compared with the control. However, treatments with exogenous JA for 3 days significantly enhanced salt stress tolerance in wheat seedlings by decreasing the concentration of MDA and H2O2, the production rate of O2•- and increasing the transcript levels and activities of SOD, POD, CAT and APX and the contents of GSH, Chl b and Car, which, in turn, enhanced the growth of salt stressed seedlings. These results suggested that JA could effectively protect wheat seedlings from salt stress damage by enhancing activities of antioxidant enzymes and the concentration of antioxidative compounds to quench the excessive reactive oxygen species caused by salt stress and presented a practical implication for wheat cultivation in salt-affected soils.

  12. Absence of Rtt109p, a fungal-specific histone acetyltransferase, results in improved acetic acid tolerance of Saccharomyces cerevisiae.

    PubMed

    Cheng, Cheng; Zhao, Xinqing; Zhang, Mingming; Bai, Fengwu

    2016-03-01

    RTT109 is a histone acetyltransferase for the acetylation of histone H3. It is still not clear whether RTT109 plays a role in regulation of gene expression under environmental stresses. In this study, the involvement of RTT109 in acetic acid stress tolerance of Saccharomyces cerevisiae was investigated. It was revealed that the absence of RTT109 enhanced resistance to 5.5 g L(-1) acetic acid, which was indicated by improved growth of RTT109Δ mutant compared with that of the wild-type BY4741 strain. Meanwhile, the lag phase was shortened for 48 h and glucose consumption completed 36 h in advance for RTT109Δ mutant compared to the wild-type strain, with ethanol production rate increased from 0.39 to 0.60 g L(-1) h(-1). Significantly, elevated transcription levels of HSP12, CTT1 and GSH1, as well as increased activities of antioxidant enzymes were observed in RTT109Δ under acetic acid stress. Improved flocculation of RTT109Δ compared to that of the control strain BY4741 under the acetic acid stress was also observed. These results suggest that the absence of RTT109 not only activates transcription of stress responsive genes, but also improves resistance to oxidative stress, which ultimately contributes to improved acetic acid tolerance in S. cerevisiae.

  13. Plasma membrane proteins Yro2 and Mrh1 are required for acetic acid tolerance in Saccharomyces cerevisiae.

    PubMed

    Takabatake, Akiko; Kawazoe, Nozomi; Izawa, Shingo

    2015-03-01

    Yro2 and its paralogous protein Mrh1 of Saccharomyces cerevisiae have seven predicted transmembrane domains and predominantly localize to the plasma membrane. Their physiological functions and regulation of gene expression have not yet been elucidated in detail. We herein demonstrated that MRH1 was constitutively expressed, whereas the expression of YRO2 was induced by acetic acid stress and entering the stationary phase. Fluorescence microscopic analysis revealed that Mrh1 and Yro2 were distributed as small foci in the plasma membrane under acetic acid stress conditions. The null mutants of these genes (mrh1∆, yro2∆, and mrh1∆yro2∆) showed delayed growth and a decrease in the productivity of ethanol in the presence of acetic acid, indicating that Yro2 and Mrh1 are involved in tolerance to acetic acid stress.

  14. Screening of Cholesterol-lowering Bifidobacterium from Guizhou Xiang Pigs, and Evaluation of Its Tolerance to Oxygen, Acid, and Bile

    PubMed Central

    Zhang, Rujiao; He, Laping; Zhang, Ling; Li, Cuiqin; Zhu, Qiujin

    2016-01-01

    Cardiovascular and cerebrovascular diseases seriously harm human health, and Bifidobacterium is the most beneficial probiotic in the gastrointestinal tract of humans. This work aimed to screen cholesterol-lowering Bifidobacterium from Guizhou Xiang Pig and evaluate its tolerance to oxygen, acid, and bile. Twenty-seven aerotolerant strains with similar colony to Bifidobacterium were isolated through incubation at 37℃ in 20% (v/v) CO2-80% (v/v) atmospheric air by using Mupirocin lithium modified MRS agar medium, modified PTYG with added CaCO3, and modified PTYG supplemented with X-gal. Ten strains with cholesterol-lowering rates above 20% (w/w) were used for further screening. The selected strains’ tolerance to acid and bile was then determined. A combination of colony and cell morphology, physiological, and biochemical experiments, as well as 16S rRNA gene-sequence analysis, was performed. Results suggested that BZ25 with excellent characteristics of high cholesterol-removal rate of 36.32% (w/w), as well as tolerance to acid and bile, was identified as Bifidobacterium animalis subsp. lactis. To further evaluate Bifidobacterium BZ25’s growth characteristic and tolerance to oxygen, culture experiments were performed in liquid medium and an agar plate. Findings suggested that BZ25 grew well both in environmental 20% (v/v) CO2-80% (v/v) atmospheric air and in 100% atmospheric air because BZ25 reached an absorbance of 1.185 at 600 nm in 100% atmospheric air. Moreover, BZ25 was aerotolerant and can grow in an agar medium under the environmental condition of 100% atmospheric air. This study can lay a preliminary foundation for the potential industrial applications of BZ25. PMID:27499662

  15. Highly efficient bioethanol production by a Saccharomyces cerevisiae strain with multiple stress tolerance to high temperature, acid and ethanol.

    PubMed

    Benjaphokee, Suthee; Hasegawa, Daisuke; Yokota, Daiki; Asvarak, Thipa; Auesukaree, Choowong; Sugiyama, Minetaka; Kaneko, Yoshinobu; Boonchird, Chuenchit; Harashima, Satoshi

    2012-02-15

    Use of super strains exhibiting tolerance to high temperature, acidity and ethanol is a promising way to make ethanol production economically feasible. We describe here the breeding and performance of such a multiple-tolerant strain of Saccharomyces cerevisiae generated by a spore-to-cell hybridization technique without recombinant DNA technology. A heterothallic strain showing a high-temperature (41°C) tolerant (Htg(+)) phenotype, a derivative from a strain isolated from nature, was crossed with a homothallic strain displaying high-ethanol productivity (Hep(+)), a stock culture at the Thailand Institute of Scientific and Technological Research. The resultant hybrid TJ14 displayed ability to rapidly utilize glucose, and produced ethanol (46.6g/l) from 10% glucose fermentation medium at high temperature (41°C). Not only ethanol productivity at 41°C but also acid tolerance (Acd(+)) was improved in TJ14 as compared with its parental strains, enabling TJ14 to grow in liquid medium even at pH 3. TJ14 maintained high ethanol productivity (46.0g/l) from 10% glucose when fermentation was done under multiple-stress conditions (41°C and pH 3.5). Furthermore, when TJ14 was subjected to a repeated-batch fermentation scheme, the growth and ethanol production of TJ14 were maintained at excellent levels over ten cycles of fermentation. Thus, the multiple-stress (Htg(+) Hep(+) Acd(+)) resistant strain TJ14 should be useful for cost-effective bioethanol production under high-temperature and acidic conditions.

  16. Fatty acid synthase 2 contributes to diapause preparation in a beetle by regulating lipid accumulation and stress tolerance genes expression

    PubMed Central

    Tan, Qian-Qian; Liu, Wen; Zhu, Fen; Lei, Chao-Liang; Wang, Xiao-Ping

    2017-01-01

    Diapause, also known as dormancy, is a state of arrested development that allows insects to survive unfavorable environmental conditions. Diapause-destined insects store large amounts of fat when preparing for diapause. However, the extent to which these accumulated fat reserves influence diapause remains unclear. To address this question, we investigated the function of fatty acid synthase (FAS), which plays a central role in lipid synthesis, in stress tolerance, the duration of diapause preparation, and whether insects enter diapause or not. In diapause-destined adult female cabbage beetles, Colaphellus bowringi, FAS2 was more highly expressed than FAS1 at the peak stage of diapause preparation. FAS2 knockdown suppressed lipid accumulation and subsequently affected stress tolerance genes expression and water content. However, silencing FAS2 had no significant effects on the duration of diapause preparation or the incidence of diapause. FAS2 transcription was suppressed by juvenile hormone (JH) and the JH receptor methoprene-tolerant (Met). These results suggest that the absence of JH-Met induces FAS2 expression, thereby promoting lipid storage in diapause-destined female beetles. These results demonstrate that fat reserves regulate stress tolerance genes expression and water content, but have no significant effect on the duration of diapause preparation or the incidence of diapause. PMID:28071706

  17. Zinc, magnesium, and calcium ion supplementation confers tolerance to acetic acid stress in industrial Saccharomyces cerevisiae utilizing xylose.

    PubMed

    Ismail, Ku Syahidah Ku; Sakamoto, Takatoshi; Hasunuma, Tomohisa; Zhao, Xin-Qing; Kondo, Akihiko

    2014-12-01

    Lignocellulosic biomass is a potential substrate for ethanol production. However, pretreatment of lignocellulosic materials produces inhibitory compounds such as acetic acid, which negatively affect ethanol production by Saccharomyces cerevisiae. Supplementation of the medium with three metal ions (Zn(2+) , Mg(2+) , and Ca(2+) ) increased the tolerance of S. cerevisiae toward acetic acid compared to the absence of the ions. Ethanol production from xylose was most improved (by 34%) when the medium was supplemented with 2 mM Ca(2+) , followed by supplementation with 3.5 mM Mg(2+) (29% improvement), and 180 μM Zn(2+) (26% improvement). Higher ethanol production was linked to high cell viability in the presence of metal ions. Comparative transcriptomics between the supplemented cultures and the control suggested that improved cell viability resulted from the induction of genes controlling the cell wall and membrane. Only one gene, FIT2, was found to be up-regulated in common between the three metal ions. Also up-regulation of HXT1 and TKL1 might enhance xylose consumption in the presence of acetic acid. Thus, the addition of ionic nutrients is a simple and cost-effective method to improve the acetic acid tolerance of S. cerevisiae.

  18. Ascorbic acid enhances oxidative stress tolerance and biological control efficacy of Pichia caribbica against postharvest blue mold decay of apples.

    PubMed

    Li, Chaolan; Zhang, Hongyin; Yang, Qiya; Komla, Mahunu Gustav; Zhang, Xiaoyun; Zhu, Shuyun

    2014-07-30

    The effect of ascorbic acid (VC) on improving oxidative stress tolerance of Pichia caribbica and biocontrol efficacy against blue mold caused by Penicillium expansum on apples was investigated. P. caribbica showed susceptibility to the oxidative stress in vitro test, and 250 μg/mL VC treatment improved its oxidative stress tolerance. The higher viability exhibited by VC-treated yeast was associated with a lower intracellular ROS level. The activities of antioxidant enzymes of P. caribbica were improved by VC treatment, including catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPX). Additionally, VC-treated yeast exhibited greater biocontrol activity against P. expansum and faster growth when stored at 25 and 4 °C, respectively, compared to the performance of the non-VC-treated yeast. In response to the VC treatment under oxidative stress, several differentially expressed proteins were identified in P. caribbica, and most of the poteins were confirmed to be related to basic metabolism. Therefore, the application of ascorbic acid is a useful approach to improve oxidative stress tolerance of P. caribbica and its biocontrol efficacy on apples.

  19. Determination of tolerable fatty acids and cholera toxin concentrations using human intestinal epithelial cells and BALB/c mouse macrophages.

    PubMed

    Tamari, Farshad; Tychowski, Joanna; Lorentzen, Laura

    2013-05-30

    The positive role of fatty acids in the prevention and alleviation of non-human and human diseases have been and continue to be extensively documented. These roles include influences on infectious and non-infectious diseases including prevention of inflammation as well as mucosal immunity to infectious diseases. Cholera is an acute intestinal illness caused by the bacterium Vibrio cholerae. It occurs in developing nations and if left untreated, can result in death. While vaccines for cholera exist, they are not always effective and other preventative methods are needed. We set out to determine tolerable concentrations of three fatty acids (oleic, linoleic and linolenic acids) and cholera toxin using mouse BALB/C macrophages and human intestinal epithelial cells, respectively. We solubilized the above fatty acids and used cell proliferation assays to determine the concentration ranges and specific concentrations of the fatty acids that are not detrimental to human intestinal epithelial cell viability. We solubilized cholera toxin and used it in an assay to determine the concentration ranges and specific concentrations of cholera toxin that do not statistically decrease cell viability in BALB/C macrophages. We found the optimum fatty acid concentrations to be between 1-5 ng/μl, and that for cholera toxin to be < 30 ng per treatment. This data may aid future studies that aim to find a protective mucosal role for fatty acids in prevention or alleviation of cholera infections.

  20. Thermal tolerances of reef corals in the Gulf: a review of the potential for increasing coral survival and adaptation to climate change through assisted translocation.

    PubMed

    Coles, Steve L; Riegl, Bernhard M

    2013-07-30

    Corals in the Gulf withstand summer temperatures up to 10 °C higher than corals elsewhere and have recovered from extreme temperature events in 10 years or less. This heat-tolerance of Gulf corals has positive implications for the world's coral populations to adapt to increasing water temperatures. However, survival of Gulf corals has been severely tested by 35-37 °C temperatures five times in the last 15 years, each time causing extensive coral bleaching and mortality. Anticipated future temperature increases may therefore challenge survival of already highly stressed Gulf corals. Previously proposed translocation of Gulf corals to introduce temperature-adapted corals outside of the Gulf is assessed and determined to be problematical, and to be considered a tool of last resort. Coral culture and transplantation within the Gulf is feasible for helping maintain coral species populations and preserving genomes and adaptive capacities of Gulf corals that are endangered by future thermal stress events.

  1. Reverse of Acute and Chronic Morphine Tolerance by Lithocholic Acid via Down-Regulating UGT2B7

    PubMed Central

    Yang, Zizhao; Li, Li; Hu, Haihong; Xu, Mingcheng; Gu, Jingkai; Wang, Zaijie Jim; Yu, Lushan; Zeng, Su

    2016-01-01

    Lithocholic acid (LCA) deposited in human livers always induces drastic pains which need analgesic drug, like morphine to release. Our research showed that LCA can effectively inhibit uridine 5’-diphospho-glucuronosyltransferase 2B7 (UGT2B7) in morphine tolerance-like human normal liver cells, HL-7702, then increase μ-opioid receptor (MOR) and calcium–calmodulin dependent protein kinase IIα (CaMKIIα) expression. In vivo assay, UGT2B7 was significantly repressed in the livers of acute or chronic morphine tolerance mice pretreated with LCA (10, 50, and 100 mg/kg, p.o.). To investigate the connections between LCA function performance and change of UGT2B7 enzymatic activity in mice livers, two morphine metabolites, morphine-3-glucuronide (M3G) and morphine-6-glucuronide (M6G) were quantified by solid phase extraction (SPE)–HPLC–MS/MS. The result indicated no matter in acute or chronic morphine tolerance, the concentrations of M3G and M6G were all decreased, the later one fell even more. Besides that, 50 mg/kg of LCA administration can prevent auto-phosphorylation of CaMKIIα at Thr286 in acute or chronic morphine tolerance mice prefrontal cortexes (mPFCs) due to synthesis increase of cyclic adenosine monophosphate. As a consequence, UGT2B7 depression mediated by LCA can affect its selective catalysis ability to morphine, that may be responsible to acute or chronic morphine tolerance alleviation. These findings might assist to modify antinociception of morphine in clinic. PMID:27847477

  2. Nuclear-localized AtHSPR links abscisic acid-dependent salt tolerance and antioxidant defense in Arabidopsis.

    PubMed

    Yang, Tao; Zhang, Liang; Hao, Hongyan; Zhang, Peng; Zhu, Haowei; Cheng, Wei; Wang, Yongli; Wang, Xinyu; Wang, Chongying

    2015-12-01

    Salt stress from soil or irrigation water limits plant growth. A T-DNA insertion mutant in C24, named athspr (Arabidopsis thaliana heat shock protein-related), showed several phenotypes, including reduced organ size and enhanced sensitivity to environmental cues. The athspr mutant is severely impaired under salinity levels at which wild-type (WT) plants grow normally. AtHSPR encodes a nuclear-localized protein with ATPase activity, and its expression was enhanced by high salinity and abscisic acid (ABA). Overexpression (OE) of AtHSPR significantly enhanced tolerance to salt stress by increasing the activities of the antioxidant system and by maintaining K(+) /Na(+) homeostasis. Quantitative RT-PCR analyses showed that OE of AtHSPR increased the expression of ABA/stress-responsive, salt overly sensitive (SOS)-related and antioxidant-related genes. In addition, ABA content was reduced in athspr plants with or without salt stress, and exogenous ABA restored WT-like salt tolerance to athspr plants. athspr exhibited increased leaf stomatal density and stomatal index, slower ABA-induced stomatal closure and reduced drought tolerance relative to the WT. AtHSPR OE enhanced drought tolerance by reducing leaf water loss and stomatal aperture. Transcript profiling in athspr showed a differential salt-stress response for genes involved in accumulation of reactive oxygen species (ROS), ABA signaling, cell death, stress response and photosynthesis. Taken together, our results suggested that AtHSPR is involved in salt tolerance in Arabidopsis through modulation of ROS levels, ABA-dependent stomatal closure, photosynthesis and K(+) /Na(+) homeostasis.

  3. The expansion of amino-acid repeats is not associated to adaptive evolution in mammalian genes

    PubMed Central

    2009-01-01

    Background The expansion of amino acid repeats is determined by a high mutation rate and can be increased or limited by selection. It has been suggested that recent expansions could be associated with the potential of adaptation to new environments. In this work, we quantify the strength of this association, as well as the contribution of potential confounding factors. Results Mammalian positively selected genes have accumulated more recent amino acid repeats than other mammalian genes. However, we found little support for an accelerated evolutionary rate as the main driver for the expansion of amino acid repeats. The most significant predictors of amino acid repeats are gene function and GC content. There is no correlation with expression level. Conclusions Our analyses show that amino acid repeat expansions are causally independent from protein adaptive evolution in mammalian genomes. Relaxed purifying selection or positive selection do not associate with more or more recent amino acid repeats. Their occurrence is slightly favoured by the sequence context but mainly determined by the molecular function of the gene. PMID:20021652

  4. Adaptation.

    PubMed

    Broom, Donald M

    2006-01-01

    The term adaptation is used in biology in three different ways. It may refer to changes which occur at the cell and organ level, or at the individual level, or at the level of gene action and evolutionary processes. Adaptation by cells, especially nerve cells helps in: communication within the body, the distinguishing of stimuli, the avoidance of overload and the conservation of energy. The time course and complexity of these mechanisms varies. Adaptive characters of organisms, including adaptive behaviours, increase fitness so this adaptation is evolutionary. The major part of this paper concerns adaptation by individuals and its relationships to welfare. In complex animals, feed forward control is widely used. Individuals predict problems and adapt by acting before the environmental effect is substantial. Much of adaptation involves brain control and animals have a set of needs, located in the brain and acting largely via motivational mechanisms, to regulate life. Needs may be for resources but are also for actions and stimuli which are part of the mechanism which has evolved to obtain the resources. Hence pigs do not just need food but need to be able to carry out actions like rooting in earth or manipulating materials which are part of foraging behaviour. The welfare of an individual is its state as regards its attempts to cope with its environment. This state includes various adaptive mechanisms including feelings and those which cope with disease. The part of welfare which is concerned with coping with pathology is health. Disease, which implies some significant effect of pathology, always results in poor welfare. Welfare varies over a range from very good, when adaptation is effective and there are feelings of pleasure or contentment, to very poor. A key point concerning the concept of individual adaptation in relation to welfare is that welfare may be good or poor while adaptation is occurring. Some adaptation is very easy and energetically cheap and

  5. Cellular fatty acid profile and H(+)-ATPase activity to assess acid tolerance of Bacillus sp. for potential probiotic functional attributes.

    PubMed

    Shobharani, P; Halami, Prakash M

    2014-11-01

    The present study has been focused widely on comparative account of probiotic qualities of Bacillus spp. for safer usage. Initially, 170 heat resistant flora were isolated and selected for non-pathogenic cultures devoid of cytK, hblD, and nhe1 virulence genes. Subsequently, through biochemical tests along with 16S rRNA gene sequencing and fatty acid profiling, the cultures were identified as Bacillus megaterium (AR-S4), Bacillus subtilis (HR-S1), Bacillus licheniformis (Csm1-1a and HN-S1), and Bacillus flexus (CDM4-3c and CDM3-1). The selected cultures showed 70-80 % survival under simulated gastrointestinal condition which was also confirmed through H(+)-ATPase production. The amount of H(+)-ATPase increased by more than 2-fold when grown at pH 2 which support for the acid tolerance ability of Bacillus isolates. The study also examined the influence of acidic pH on cellular fatty acid composition of Bacillus spp. A remarkable shift in the fatty acid profile was observed at acidic pH through an increased amount of even numbered fatty acid (C16 and C18) in comparison with odd numbered (C15 and C17). Additionally, the cultures exhibited various probiotic functional properties. Overall, the study increases our understanding of Bacillus spp. and will allow both industries and consumers to choose for well-defined probiotic with possible health benefits.

  6. Genetic basis for rapidly evolved tolerance in the wild: adaptation to toxic pollutants by an estuarine fish species

    EPA Science Inventory

    Atlantic killifish (Fundulus heteroclitus) residing in some urban and industrialized estuaries of the US eastern seaboard demonstrate recently evolved and extreme tolerance to toxic aryl hydrocarbon pollutants, characterized as dioxin-like compounds (DLCs). Here we provide an unu...

  7. Acidogenicity and acid tolerance of Streptococcus oralis and Streptococcus mitis isolated from plaque of healthy and incipient caries teeth

    PubMed Central

    Banas, Jeffrey A.; Zhu, Min; Dawson, Deborah V.; Blanchette, Derek R.; Drake, David R.; Gu, Hongjie; Frost, Ryan; McCaulley, Grant; Levy, Steven M.

    2016-01-01

    Background Non-mutans low pH oral streptococci are postulated to contribute to caries etiology. Objective This study was undertaken to investigate whether the acidogenicity and acid tolerance of clinical strains of Streptococcus oralis and Streptococcus mitis correlate with health or early-stage enamel caries. Design S. oralis and S. mitis were isolated from plaque samples taken from the occlusal surfaces of second molars sampled at two different visits 4 years apart. All sites were sound at Visit 1; subjects were segregated into one of three groups based on the status of the site at Visit 2 and caries elsewhere in the dentition. Strains of S. oralis and S. mitis were evaluated for acidogenicity and acid tolerance, and the results correlated with the clinical status of the sites from which they were isolated. Mutans streptococci (MS) isolated from the plaque samples were also quantified, and the presence or absence of growth on pH 5.5 media or on media selective for bifidobacteria was recorded. Results No significant positive correlations were found between the acidogenicity properties of the S. oralis and S. mitis clones and caries at either visit. Similar results were obtained for acid tolerance of S. oralis clones but were inconclusive for S. mitis clones. A statistically significant positive correlation between MS levels and caries (or future caries) was evident at both visits, but there were no statistical correlations with the growth on pH 5.5 media or media selective for bifidobacteria. Conclusions The low pH potential likely varies considerably among oral streptococcal species and is least likely to be found among strains of S. mitis. Accordingly, the concept and constitution of ‘low pH streptococci’ may need to be re-evaluated. PMID:27790973

  8. Isolation of oxalic acid tolerating fungi and decipherization of its potential to control Sclerotinia sclerotiorum through oxalate oxidase like protein.

    PubMed

    Yadav, Shivani; Srivastava, Alok K; Singh, Dhanajay P; Arora, Dilip K

    2012-11-01

    Oxalic acid plays major role in the pathogenesis by Sclerotinia sclerotiorum; it lowers the pH of nearby environment and creates the favorable condition for the infection. In this study we examined the degradation of oxalic acid through oxalate oxidase and biocontrol of Sclerotinia sclerotiorum. A survey was conducted to collect the rhizospheric soil samples from Indo-Gangetic Plains of India to isolate the efficient fungal strains able to tolerate oxalic acid. A total of 120 fungal strains were isolated from root adhering soils of different vegetable crops. Out of 120 strains a total of 80 isolates were able to grow at 10 mM of oxalic acid whereas only 15 isolates were grow at 50 mM of oxalic acid concentration. Then we examined the antagonistic activity of the 15 isolates against Sclerotinia sclerotiorum. These strains potentially inhibit the growth of the test pathogen. A total of three potential strains and two standard cultures of fungi were tested for the oxalate oxidase activity. Strains S7 showed the maximum degradation of oxalic acid (23 %) after 60 min of incubation with fungal extract having oxalate oxidase activity. Microscopic observation and ITS (internally transcribed spacers) sequencing categorized the potential fungal strains into the Aspergillus, Fusarium and Trichoderma. Trichoderma sp. are well studied biocontrol agent and interestingly we also found the oxalate oxidase type activity in these strains which further strengthens the potentiality of these biocontrol agents.

  9. Genetic analysis of Physcomitrella patens identifies ABSCISIC ACID NON-RESPONSIVE, a regulator of ABA responses unique to basal land plants and required for desiccation tolerance

    SciTech Connect

    Stevenson, Sean Ross; Kamisugi, Yasuko; Trinh, Chi H.; Schmutz, Jeremy; Jenkins, Jerry W.; Grimwood, Jane; Muchero, Wellington; Tuskan, Gerald A.; Rensing, Stefan A.; Lang, Daniel; Reski, Ralf; Melkonian, Michael; Rothfels, Carl J.; Li, Fay -Wei; Larsson, Anders; Wong, Gane Ka-Shu; Edwards, Thomas A.; Cuming, Andrew C.

    2016-05-18

    The anatomically simple plants that first colonized land must have acquired molecular and biochemical adaptations to drought stress. Abscisic acid (ABA) coordinates responses leading to desiccation tolerance in all land plants. We identified ABA nonresponsive mutants in the model bryophyte Physcomitrella patens and genotyped a segregating population to map and identify the ABA NON-RESPONSIVE (ANR) gene encoding a modular protein kinase comprising an N-terminal PAS domain, a central EDR domain, and a C-terminal MAPKKK-like domain. anr mutants fail to accumulate dehydration tolerance-associated gene products in response to drought, ABA, or osmotic stress and do not acquire ABA-dependent desiccation tolerance. The crystal structure of the PAS domain, determined to 1.7-Å resolution, shows a conserved PAS-fold that dimerizes through a weak dimerization interface. Targeted mutagenesis of a conserved tryptophan residue within the PAS domain generates plants with ABA nonresponsive growth and strongly attenuated ABA-responsive gene expression, whereas deleting this domain retains a fully ABA-responsive phenotype. ANR orthologs are found in early-diverging land plant lineages and aquatic algae but are absent from more recently diverged vascular plants. Lastly, we propose that ANR genes represent an ancestral adaptation that enabled drought stress survival of the first terrestrial colonizers but were lost during land plant evolution.

  10. Improving the tolerance of Escherichia coli to medium-chain fatty acid production.

    PubMed

    Sherkhanov, Saken; Korman, Tyler P; Bowie, James U

    2014-09-01

    Microbial fatty acids are an attractive source of precursors for a variety of renewable commodity chemicals such as alkanes, alcohols, and biofuels. Rerouting lipid biosynthesis into free fatty acid production can be toxic, however, due to alterations of membrane lipid composition. Here we find that membrane lipid composition can be altered by the direct incorporation of medium-chain fatty acids into lipids via the Aas pathway in cells expressing the medium-chain thioesterase from Umbellularia californica (BTE). We find that deletion of the aas gene and sequestering exported fatty acids reduces medium-chain fatty acid toxicity, partially restores normal lipid composition, and improves medium-chain fatty acid yields.

  11. Urinary metabolomics in Fxr-null mice reveals activated adaptive metabolic pathways upon bile acid challenge.

    PubMed

    Cho, Joo-Youn; Matsubara, Tsutomu; Kang, Dong Wook; Ahn, Sung-Hoon; Krausz, Kristopher W; Idle, Jeffrey R; Luecke, Hans; Gonzalez, Frank J

    2010-05-01

    Farnesoid X receptor (FXR) is a nuclear receptor that regulates genes involved in synthesis, metabolism, and transport of bile acids and thus plays a major role in maintaining bile acid homeostasis. In this study, metabolomic responses were investigated in urine of wild-type and Fxr-null mice fed cholic acid, an FXR ligand, using ultra-performance liquid chromatography (UPLC) coupled with electrospray time-of-flight mass spectrometry (TOFMS). Multivariate data analysis between wild-type and Fxr-null mice on a cholic acid diet revealed that the most increased ions were metabolites of p-cresol (4-methylphenol), corticosterone, and cholic acid in Fxr-null mice. The structural identities of the above metabolites were confirmed by chemical synthesis and by comparing retention time (RT) and/or tandem mass fragmentation patterns of the urinary metabolites with the authentic standards. Tauro-3alpha,6,7alpha,12alpha-tetrol (3alpha,6,7alpha,12alpha-tetrahydroxy-5beta-cholestan-26-oyltaurine), one of the most increased metabolites in Fxr-null mice on a CA diet, is a marker for efficient hydroxylation of toxic bile acids possibly through induction of Cyp3a11. A cholestatic model induced by lithocholic acid revealed that enhanced expression of Cyp3a11 is the major defense mechanism to detoxify cholestatic bile acids in Fxr-null mice. These results will be useful for identification of biomarkers for cholestasis and for determination of adaptive molecular mechanisms in cholestasis.

  12. 40 CFR 180.155 - 1-Naphthaleneacetic acid; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific... ammonium, sodium, or potassium salts, ethyl ester, and acetamide in or on food commodities as follows: Commodity Parts per million Cherry, sweet 0.1 Fruit, pome, group 11 0.15 Olive 0.7 Orange 0.1 Pineapple1...

  13. Biological Function of Acetic Acid-Improvement in Obesity and Glucose Tolerance by Acetic Acid in Type 2 Diabetic Rats.

    PubMed

    Yamashita, Hiromi

    2016-07-29

    Fatty acids derived from adipose tissue are oxidized by β-oxidation to form ketone bodies as final products under the starving condition. Previously, we found that free acetic acid was formed concomitantly with the production of ketone bodies in isolated rat liver perfusion, and mitochondrial acetyl CoA hydrolase was appeared to be involved with the acetic acid production. It was revealed that acetic acid was formed as a final product of enhanced β-oxidation of fatty acids and utilized as a fuel in extrahepatic tissues under the starving condition. Under the fed condition, β-oxidation is suppressed and acetic acid production is decreased. When acetic acid was taken daily by obesity-linked type 2 diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats under the fed condition, it protected OLETF rats against obesity. Furthermore, acetic acid contributed to protect from the accumulation of lipid in the liver as well as abdominal fat in OLETF rats. Transcripts of lipogenic genes in the liver were decreased, while transcripts of myoglobin and Glut4 genes in abdominal muscles were increased in the acetic acid-administered OLETF rats. It is indicated that exogenously administered acetic acid would have effects on lipid metabolism in both the liver and the skeletal muscles, and have function that works against obesity and obesity-linked type 2 diabetes.

  14. Cross-protection between controlled acid-adaptation and thermal inactivation for 48 Escherichia coli strains.

    PubMed

    Haberbeck, Leticia Ungaretti; Wang, Xiang; Michiels, Chris; Devlieghere, Frank; Uyttendaele, Mieke; Geeraerd, Annemie H

    2017-01-16

    Given the importance of pH reduction and thermal treatment in food processing and food preservation strategies, the cross-protection between acid adaptation and subsequent thermal inactivation for 48 Escherichia coli strains was investigated. Those strains were selected among 188 E. coli strains according to their odds of growth under low pH conditions as determined by Haberbeck et al. (2015) [Haberbeck, L.U., Oliveira, R.C., Vivijs, B., Wenseleers, T., Aertsen, A., Michiels, C., Geeraerd, A.H., 2015. Variability in growth/no growth boundaries of 188 different Escherichia coli strains reveals that approximately 75% have a higher growth probability under low pH conditions than E. coli O157:H7 strain ATCC 43888. Food Microbiol. 45, 222-230]. E. coli cells were acid and nonacid-adapted during overnight growth in controlled acidic pH (5.5) and neutral pH (7.0), respectively, in buffered Lysogenic Broth (LB). Then, they were heat inactivated at 58°C in non-buffered LB adjusted to pH6.2 and 7.0. Thus, four conditions were tested in total by combining the different pH values during growth/thermal inactivation: 5.5/6.2, 5.5/7.0, 7.0/6.2 and 7.0/7.0. Acid adaptation in buffered LB at pH5.5 increased the heat resistance of E. coli strains in comparison with nonacid-adaptation at pH7.0. For instance, the median D58-value of strains inactivated at pH7.0 was approximately 6 and 4min for acid-adapted and nonacid-adapted strains, respectively. For the nonacid-adapted strains, the thermal inactivation at pH6.2 and 7.0 was not significantly (p=0.06) different, while for the acid-adapted strains, the thermal treatment at pH6.2 showed a higher heat resistance than at pH7.0. The correlation between the odds of growth under low pH previously determined and the heat resistance was significant (p<0.05). Remarkably, a great variability in heat resistance among the strains was observed for all pH combinations, with D58-values varying between 1.0 and 69.0min. In addition, highly heat

  15. Best of Both Worlds: Simultaneous High-Light and Shade-Tolerance Adaptations within Individual Leaves of the Living Stone Lithops aucampiae

    PubMed Central

    Field, Katie J.; George, Rachel; Fearn, Brian; Quick, W. Paul; Davey, Matthew P.

    2013-01-01

    “Living stones” (Lithops spp.) display some of the most extreme morphological and physiological adaptations in the plant kingdom to tolerate the xeric environments in which they grow. The physiological mechanisms that optimise the photosynthetic processes of Lithops spp. while minimising transpirational water loss in both above- and below-ground tissues remain unclear. Our experiments have shown unique simultaneous high-light and shade-tolerant adaptations within individual leaves of Lithops aucampiae. Leaf windows on the upper surfaces of the plant allow sunlight to penetrate to photosynthetic tissues within while sunlight-blocking flavonoid accumulation limits incoming solar radiation and aids screening of harmful UV radiation. Increased concentration of chlorophyll a and greater chlorophyll a∶b in above-ground regions of leaves enable maximum photosynthetic use of incoming light, while inverted conical epidermal cells, increased chlorophyll b, and reduced chlorophyll a∶b ensure maximum absorption and use of low light levels within the below-ground region of the leaf. High NPQ capacity affords physiological flexibility under variable natural light conditions. Our findings demonstrate unprecedented physiological flexibility in a xerophyte and further our understanding of plant responses and adaptations to extreme environments. PMID:24194825

  16. Best of both worlds: simultaneous high-light and shade-tolerance adaptations within individual leaves of the living stone Lithops aucampiae.

    PubMed

    Field, Katie J; George, Rachel; Fearn, Brian; Quick, W Paul; Davey, Matthew P

    2013-01-01

    "Living stones" (Lithops spp.) display some of the most extreme morphological and physiological adaptations in the plant kingdom to tolerate the xeric environments in which they grow. The physiological mechanisms that optimise the photosynthetic processes of Lithops spp. while minimising transpirational water loss in both above- and below-ground tissues remain unclear. Our experiments have shown unique simultaneous high-light and shade-tolerant adaptations within individual leaves of Lithops aucampiae. Leaf windows on the upper surfaces of the plant allow sunlight to penetrate to photosynthetic tissues within while sunlight-blocking flavonoid accumulation limits incoming solar radiation and aids screening of harmful UV radiation. Increased concentration of chlorophyll a and greater chlorophyll a:b in above-ground regions of leaves enable maximum photosynthetic use of incoming light, while inverted conical epidermal cells, increased chlorophyll b, and reduced chlorophyll a:b ensure maximum absorption and use of low light levels within the below-ground region of the leaf. High NPQ capacity affords physiological flexibility under variable natural light conditions. Our findings demonstrate unprecedented physiological flexibility in a xerophyte and further our understanding of plant responses and adaptations to extreme environments.

  17. Synergistic effect of antioxidant system and osmolyte in hydrogen sulfide and salicylic acid crosstalk-induced heat tolerance in maize (Zea mays L.) seedlings.

    PubMed

    Li, Zhong-Guang

    2015-01-01

    Salicylic acid (SA), is a plant hormone with multifunction that is involved in plant growth, development and the acquisition of stress tolerance. Hydrogen sulfide (H2S) is emerging similar functions, but crosstalk between SA and H2S in the acquisition of heat tolerance is not clear. Our recent study firstly reported that SA treatment enhanced the activity of L-cysteine desulfhydrase (L-DES), a key enzyme in H2S biosynthesis, followed by induced endogenous H2S accumulation, which in turn improved the heat tolerance of maize seedlings. (1) In addition, NaHS, a H2S donor, enhanced SA-induced heat tolerance, while its biosynthesis inhibitor DL-propargylglycine (PAG) and scavenger hydroxylamine (HT) weakened SA-induced heat tolerance. Also, NaHS had no significant effect on SA accumulation and its biosynthesis enzymes phenylalanine ammonia lyase (PAL) and benzoic-acid-2-hydroxylase (BA2H) activities, as well as significant difference was not observed in NaHS-induced heat tolerance of maize seedlings by SA biosynthesis inhibitors paclobutrazol (PAC) and 2-aminoindan-2-phosph- onic acid (AIP) treatment. (1) Further study displayed that SA induced osmolytes (proline, betaine and trehalose) accumulation and enhancement in activity of antioxidant system in maize seedlings. These results showed that antioxidant system and osmolyte play a synergistic role in SA and H2S crosstalk-induced heat tolerance of maize seedlings.

  18. Lack of Physiological Depth Patterns in Conspecifics of Endemic Antarctic Brown Algae: A Trade-Off between UV Stress Tolerance and Shade Adaptation?

    PubMed Central

    Gómez, Iván; Huovinen, Pirjo

    2015-01-01

    A striking characteristic of endemic Antarctic brown algae is their broad vertical distribution. This feature is largely determined by the shade adaptation in order to cope with the seasonal variation in light availability. However, during spring-summer months, when light penetrates deep in the water column these organisms have to withstand high levels of solar radiation, including UV. In the present study we examine the light use characteristics in parallel to a potential for UV tolerance (measured as content of phenolic compounds, antioxidant activity and maximum quantum yield of fluorescence) in conspecific populations of four Antarctic brown algae (Ascoseira mirabilis, Desmarestia menziesii, D. anceps and Himantothallus grandifolius) distributed over a depth gradient between 5 and 30 m. The main results indicated that a) photosynthetic efficiency was uniform along the depth gradient in all the studied species, and b) short-term (6 h) exposure to UV radiation revealed a high tolerance measured as chlorophyll fluorescence, phlorotannin content and antioxidant capacity. Multivariate analysis of similarity indicated that light requirements for photosynthesis, soluble phlorotannins and antioxidant capacity are the variables determining the responses along the depth gradient in all the studied species. The suite of physiological responses of algae with a shallower distribution (A. mirabilis and D. menziesii) differed from those with deeper vertical range (D. anceps and H. grandifolius). These patterns are consistent with the underwater light penetration that defines two zones: 0–15 m, with influence of UV radiation (1% of UV-B and UV-A at 9 m and 15 m respectively) and a zone below 15 m marked by PAR incidence (1% up to 30 m). These results support the prediction that algae show a UV stress tolerance capacity along a broad depth range according to their marked shade adaptation. The high contents of phlorotannins and antioxidant potential appear to be strongly

  19. Lack of Physiological Depth Patterns in Conspecifics of Endemic Antarctic Brown Algae: A Trade-Off between UV Stress Tolerance and Shade Adaptation?

    PubMed

    Gómez, Iván; Huovinen, Pirjo

    2015-01-01

    A striking characteristic of endemic Antarctic brown algae is their broad vertical distribution. This feature is largely determined by the shade adaptation in order to cope with the seasonal variation in light availability. However, during spring-summer months, when light penetrates deep in the water column these organisms have to withstand high levels of solar radiation, including UV. In the present study we examine the light use characteristics in parallel to a potential for UV tolerance (measured as content of phenolic compounds, antioxidant activity and maximum quantum yield of fluorescence) in conspecific populations of four Antarctic brown algae (Ascoseira mirabilis, Desmarestia menziesii, D. anceps and Himantothallus grandifolius) distributed over a depth gradient between 5 and 30 m. The main results indicated that a) photosynthetic efficiency was uniform along the depth gradient in all the studied species, and b) short-term (6 h) exposure to UV radiation revealed a high tolerance measured as chlorophyll fluorescence, phlorotannin content and antioxidant capacity. Multivariate analysis of similarity indicated that light requirements for photosynthesis, soluble phlorotannins and antioxidant capacity are the variables determining the responses along the depth gradient in all the studied species. The suite of physiological responses of algae with a shallower distribution (A. mirabilis and D. menziesii) differed from those with deeper vertical range (D. anceps and H. grandifolius). These patterns are consistent with the underwater light penetration that defines two zones: 0-15 m, with influence of UV radiation (1% of UV-B and UV-A at 9 m and 15 m respectively) and a zone below 15 m marked by PAR incidence (1% up to 30 m). These results support the prediction that algae show a UV stress tolerance capacity along a broad depth range according to their marked shade adaptation. The high contents of phlorotannins and antioxidant potential appear to be strongly

  20. Constitutive salicylic acid defences do not compromise seed yield, drought tolerance and water productivity in the Arabidopsis accession C24.

    PubMed

    Bechtold, Ulrike; Lawson, Tracy; Mejia-Carranza, Jaime; Meyer, Rhonda C; Brown, Ian R; Altmann, Thomas; Ton, Jurriaan; Mullineaux, Philip M

    2010-11-01

    Plants that constitutively express otherwise inducible disease resistance traits often suffer a depressed seed yield in the absence of a challenge by pathogens. This has led to the view that inducible disease resistance is indispensable, ensuring that minimal resources are diverted from growth, reproduction and abiotic stress tolerance. The Arabidopsis genotype C24 has enhanced basal resistance, which was shown to be caused by permanent expression of normally inducible salicylic acid (SA)-regulated defences. However, the seed yield of C24 was greatly enhanced in comparison to disease-resistant mutants that display identical expression of SA defences. Under both water-replete and -limited conditions, C24 showed no difference and increased seed yield, respectively, in comparison with pathogen-susceptible genotypes. C24 was the most drought-tolerant genotype and showed elevated water productivity, defined as seed yield per plant per millilitre water consumed, and achieved this by displaying adjustments to both its development and transpiration efficiency (TE). Therefore, constitutive high levels of disease resistance in C24 do not affect drought tolerance, seed yield and seed viability. This study demonstrates that it will be possible to combine traits that elevate basal disease resistance and improve water productivity in crop species, and such traits need not be mutually exclusive.

  1. Increase of hypoxic tolerance in rat hippocampal slices following 3-nitropropionic acid is not mediated by endogenous nerve growth factor.

    PubMed

    Riepe, M W; Kasischke, K; Gericke, C A; Löwe, A; Hellweg, R

    1996-06-14

    Chemical preconditioning with low dose inhibition of succinic dehydrogenase by 3-nitropropionic acid (3-np) increases tolerance against succeeding hypoxia. Supraphysiological doses of nerve growth factor (NGF) repeatedly were shown to protect against ischemic damage. We investigated whether increased tolerance against hypoxia results from increased or accelerated production of endogenous NGF. Average recovery of population spike amplitude after 15 min of hypoxia and 45 min of reoxygenation was 31 +/- 9% (mean +/- SE) in control hippocampal slices. After pretreatment with 3-np (single i.p. injection of 20 mg/kg body weight 1 h to 3 days prior to slice preparation), recovery exceeded 90% (P < 0.01). However, NGF content did not increase upon slice preparation, hypoxia in vitro, and pretreatment with 3-np in vivo 1 h to 1 day prior to slice preparation with and without additional hypoxia in vitro. We conclude that early-onset tolerance to hypoxia induced by 3-np treatment is not caused by induction of endogenous NGF production.

  2. Abscisic Acid Signaling and Abiotic Stress Tolerance in Plants: A Review on Current Knowledge and Future Prospects

    PubMed Central

    Vishwakarma, Kanchan; Upadhyay, Neha; Kumar, Nitin; Yadav, Gaurav; Singh, Jaspreet; Mishra, Rohit K.; Kumar, Vivek; Verma, Rishi; Upadhyay, R. G.; Pandey, Mayank; Sharma, Shivesh

    2017-01-01

    Abiotic stress is one of the severe stresses of environment that lowers the growth and yield of any crop even on irrigated land throughout the world. A major phytohormone abscisic acid (ABA) plays an essential part in acting toward varied range of stresses like heavy metal stress, drought, thermal or heat stress, high level of salinity, low temperature, and radiation stress. Its role is also elaborated in various developmental processes including seed germination, seed dormancy, and closure of stomata. ABA acts by modifying the expression level of gene and subsequent analysis of cis- and trans-acting regulatory elements of responsive promoters. It also interacts with the signaling molecules of processes involved in stress response and development of seeds. On the whole, the stress to a plant can be susceptible or tolerant by taking into account the coordinated activities of various stress-responsive genes. Numbers of transcription factor are involved in regulating the expression of ABA responsive genes by acting together with their respective cis-acting elements. Hence, for improvement in stress-tolerance capacity of plants, it is necessary to understand the mechanism behind it. On this ground, this article enlightens the importance and role of ABA signaling with regard to various stresses as well as regulation of ABA biosynthetic pathway along with the transcription factors for stress tolerance. PMID:28265276

  3. Heart-type Fatty Acid-binding Protein Is Essential for Efficient Brown Adipose Tissue Fatty Acid Oxidation and Cold Tolerance*

    PubMed Central

    Vergnes, Laurent; Chin, Robert; Young, Stephen G.; Reue, Karen

    2011-01-01

    Brown adipose tissue has a central role in thermogenesis to maintain body temperature through energy dissipation in small mammals and has recently been verified to function in adult humans as well. Here, we demonstrate that the heart-type fatty acid-binding protein, FABP3, is essential for cold tolerance and efficient fatty acid oxidation in mouse brown adipose tissue, despite the abundant expression of adipose-type fatty acid-binding protein, FABP4 (also known as aP2). Fabp3−/− mice exhibit extreme cold sensitivity despite induction of uncoupling and oxidative genes and hydrolysis of brown adipose tissue lipid stores. However, using FABP3 gain- and loss-of-function approaches in brown adipocytes, we detected a correlation between FABP3 levels and the utilization of exogenous fatty acids. Thus, Fabp3−/− brown adipocytes fail to oxidize exogenously supplied fatty acids, whereas enhanced Fabp3 expression promotes more efficient oxidation. These results suggest that FABP3 levels are a determinant of fatty acid oxidation efficiency by brown adipose tissue and that FABP3 represents a potential target for modulation of energy dissipation. PMID:21044951

  4. Rice G-protein subunits qPE9-1 and RGB1 play distinct roles in abscisic acid responses and drought adaptation.

    PubMed

    Zhang, Dong-Ping; Zhou, Yong; Yin, Jian-Feng; Yan, Xue-Jiao; Lin, Sheng; Xu, Wei-Feng; Baluška, František; Wang, Yi-Ping; Xia, Yi-Ji; Liang, Guo-hua; Liang, Jian-Sheng

    2015-10-01

    Heterotrimeric GTP-binding protein (G-protein)-mediated abscisic acid (ABA) and drought-stress responses have been documented in numerous plant species. However, our understanding of the function of rice G-protein subunits in ABA signalling and drought tolerance is limited. In this study, the function of G-protein subunits in ABA response and drought resistance in rice plants was explored. It was found that the transcription level of qPE9-1 (rice Gγ subunit) gradually decreased with increasing ABA concentration and the lack of qPE9-1 showed an enhanced drought tolerance in rice plants. In contrast, mRNA levels of RGB1 (rice Gβ subunit) were significantly upregulated by ABA treatment and the lack of RGB1 led to reduced drought tolerance. Furthermore, the results suggested that qPE9-1 negatively regulates the ABA response by suppressing the expression of key transcription factors involved in ABA and stress responses, while RGB1 positively regulates ABA biosynthesis by upregulating NCED gene expression under both normal and drought stress conditions. Taken together, it is proposed that RGB1 is a positive regulator of the ABA response and drought adaption in rice plants, whereas qPE9-1 is modulated by RGB1 and functions as a negative regulator in the ABA-dependent drought-stress responses.

  5. Micropepsia pineolensis gen. nov., sp. nov., an acid-tolerant alphaproteobacterium isolated from a poor fen, and proposal of Micropepsiaceae fam. nov. within Micropepsiales ord. nov.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A novel, obligately anaerobic, acid-tolerant, fermentative alphaproteobacterium, designated strain CS4T, was isolated from an acidic, oligotrophic (nutrient-poor) poor fen located near Pineola, NC, USA. Cultures contained Gram-negative, slightly curved, non-motile, non-spore forming, non-prosthecat...

  6. An organic solvent-tolerant phenolic acid decarboxylase from Bacillus licheniformis for the efficient bioconversion of hydroxycinnamic acids to vinyl phenol derivatives.

    PubMed

    Hu, Hongfei; Li, Lulu; Ding, Shaojun

    2015-06-01

    A new phenolic acid decarboxylase gene (blpad) from Bacillus licheniformis was cloned and overexpressed in Escherichia coli. The full-length blpad encodes a 166-amino acid polypeptide with a predicted molecular mass and pI of 19,521 Da and 5.02, respectively. The recombinant BLPAD displayed maximum activity at 37 °C and pH 6.0. This enzyme possesses a broad substrate specificity and is able to decarboxylate p-coumaric, ferulic, caffeic, and sinapic acids at the relative ratios of specific activities 100:74.59:34.41:0.29. Kinetic constant K m values toward p-coumaric, ferulic, caffeic, and sinapic acids were 1.64, 1.55, 1.93, and 2.45 mM, and V max values were 268.43, 216.80, 119.07, and 0.78 U mg(-1), respectively. In comparison with other phenolic acid decarboxylases, BLPAD exhibited remarkable organic solvent tolerance and good thermal stability. BLPAD showed excellent catalytic performance in biphasic organic/aqueous systems and efficiently converted p-coumaric and ferulic acids into 4-vinylphenol and 4-vinylguaiacol. At 500 mM of p-coumaric and ferulic acids, the recombinant BLPAD produced a total 60.63 g l(-1) 4-vinylphenol and 58.30 g l(-1) 4-vinylguaiacol with the conversion yields 97.02 and 70.96 %, respectively. The low yield and product concentration are the crucial drawbacks to the practical bioproduction of vinyl phenol derivatives using phenolic acid decarboxylases. These unusual properties make BLPAD a desirable biocatalyst for commercial use in the bioconversion of hydroxycinnamic acids to vinyl phenol derivatives via enzymatic decarboxylation in a biphasic organic/aqueous reaction system.

  7. Relationship between acid tolerance and cell membrane in Bifidobacterium, revealed by comparative analysis of acid-resistant derivatives and their parental strains grown in medium with and without Tween 80.

    PubMed

    Yang, Xu; Hang, Xiaomin; Zhang, Min; Liu, Xianglong; Yang, Hong

    2015-06-01

    The acid tolerance is particularly important for bifidobacteria to function as probiotics because they usually encounter acidic environments in food products and gastrointestinal tract passage. In this study, two acid-resistant derivatives Bifidobacterium longum JDY1017dpH and Bifidobacterium breve BB8dpH, which displayed a stable acid-resistant phenotype, were generated. The relationship between acid tolerance and cell membrane was investigated by comparing the two acid-resistant derivatives and their parental strains grown in medium with and without Tween 80. The fold increase in acid tolerance of the two acid-resistant derivatives relative to their parental strains was much higher when cells were grown in medium with Tween 80 (10(4) ~ 10(5)-fold) than without Tween 80 (181- and 245-fold). Moreover, when cells were grown in medium with Tween 80, the two acid-resistant derivatives exhibited more C18:1 and cycC19:0, higher mean fatty acid chain length, lower membrane fluidity, and higher expression of cfa gene encoding cyclopropane fatty acid synthase than their parental strains. No significant differences in cell membrane were observed between the two acid-resistant derivatives and their parental strains when cells were grown in medium without Tween 80. The present study revealed that, when cells were grown in medium with Tween 80, the significant fold increase in acid tolerance of the two acid-resistant derivatives was mainly ascribed to the pronounced changes in cell membrane compared with their parental strains. Results presented here could provide a basis for developing new strategies of cell membrane modification to enhance acid tolerance in bifidobacteria.

  8. Overexpression of acetyl-CoA synthetase in Saccharomyces cerevisiae increases acetic acid tolerance.

    PubMed

    Ding, Jun; Holzwarth, Garrett; Penner, Michael H; Patton-Vogt, Jana; Bakalinsky, Alan T

    2015-01-01

    Acetic acid-mediated inhibition of the fermentation of lignocellulose-derived sugars impedes development of plant biomass as a source of renewable ethanol. In order to overcome this inhibition, the capacity of Saccharomyces cerevisiae to synthesize acetyl-CoA from acetic acid was increased by overexpressing ACS2 encoding acetyl-coenzyme A synthetase. Overexpression of ACS2 resulted in higher resistance to acetic acid as measured by an increased growth rate and shorter lag phase relative to a wild-type control strain, suggesting that Acs2-mediated consumption of acetic acid during fermentation contributes to acetic acid detoxification.

  9. Deficiency of PdxR in Streptococcus mutans affects vitamin B6 metabolism, acid tolerance response and biofilm formation.

    PubMed

    Liao, S; Bitoun, J P; Nguyen, A H; Bozner, D; Yao, X; Wen, Z T

    2015-08-01

    Streptococcus mutans, a key etiological agent of the human dental caries, lives primarily on the tooth surface in tenacious biofilms. The SMU864 locus, designated pdxR, is predicted to encode a member of the novel MocR/GabR family proteins, which are featured with a winged helix DNA-binding N-terminal domain and a C-terminal domain highly homologous to the pyridoxal phosphate-dependent aspartate aminotransferases. A pdxR-deficient mutant, TW296, was constructed using allelic exchange. PdxR deficiency in S. mutans had little effect on cell morphology and growth when grown in brain heart infusion. However, when compared with its parent strain, UA159, the PdxR-deficient mutant displayed major defects in acid tolerance response and formed significantly fewer biofilms (P < 0.01). When analyzed by real-time polymerase chain reaction, PdxR deficiency was found to drastically reduce expression of an apparent operon encoding a pyridoxal kinase (SMU865) and a pyridoxal permease (SMU866) of the salvage pathway of vitamin B6 biosynthesis. In addition, PdxR deficiency also altered the expression of genes for ClpL protease, glucosyltransferase B and adhesin SpaP, which are known to play important roles in stress tolerance and biofilm formation. Consistently, PdxR-deficiency affected the growth of the deficient mutant when grown in defined medium with and without vitamin B6 . Further studies revealed that although S. mutans is known to require vitamin B6 to grow in defined medium, B6 vitamers, especially pyridoxal, were strongly inhibitory at millimolar concentrations, against S. mutans growth and biofilm formation. Our results suggest that PdxR in S. mutans plays an important role in regulation of vitamin B6 metabolism, acid tolerance response and biofilm formation.

  10. Identification, stress tolerance, and antioxidant activity of lactic acid bacteria isolated from tropically grown fruits and leaves.

    PubMed

    Fessard, Amandine; Bourdon, Emmanuel; Payet, Bertrand; Remize, Fabienne

    2016-07-01

    From 6 samples of tropically grown fruits and leaves, 10 lactic acid bacteria belonging Leuconostoc, Weissella, and Lactobacillus species were isolated and identified by 16S rRNA gene sequencing and (GTG)5 fingerprinting. Acidification kinetics determined from BHI broth cultures showed genus-related patterns. In particular, Weissella cibaria appeared to act as a potent acidifier. Tolerance of isolates to acid, oxidative, or salt stress was highly variable and strain dependent. Isolate S14 (Leuconostoc pseudomesenteroides) growth was not affected by the presence of 0.05% H2O2, while Lactobacillus spp. isolates (S17 and S29) were the most tolerant to pH 4.5. The growth of 4 isolates, S5 (Leuconostoc mesenteroides), S14 and S10 (Leuconostoc pseudomesenteroides), and S27 (W. cibaria), was not affected by 5% NaCl. Nutritional beneficial properties were examined through measurement of antioxidant activities of short-term fermented pineapple juice, such as LDL oxidation and polyphenol content, and through exopolysaccharide formation from sucrose. Two isolates, S14 and S27, increased the antioxidant capacity of pineapple juice. The robust capacity of W. cibaria and of Leuconostoc pseudomesenteroides for vegetable lactic fermentation aimed to ameliorate food nutritional and functional quality was highlighted.

  11. Mutagenesis of solvent-exposed amino acids in Photinus pyralis luciferase improves thermostability and pH-tolerance.

    PubMed

    Law, G H Erica; Gandelman, Olga A; Tisi, Laurence C; Lowe, Christopher R; Murray, James A H

    2006-07-15

    Firefly luciferase catalyses a two-step reaction, using ATP-Mg2+, firefly luciferin and molecular oxygen as substrates, leading to the efficient emission of yellow-green light. We report the identification of novel luciferase mutants which combine improved pH-tolerance and thermostability and that retain the specific activity of the wild-type enzyme. These were identified by the mutagenesis of solvent-exposed non-conserved hydrophobic amino acids to hydrophilic residues in Photinus pyralis firefly luciferase followed by in vivo activity screening. Mutants F14R, L35Q, V182K, I232K and F465R were found to be the preferred substitutions at the respective positions. The effects of these amino acid replacements are additive, since combination of the five substitutions produced an enzyme with greatly improved pH-tolerance and stability up to 45 degrees C. All mutants, including the mutant with all five substitutions, showed neither a decrease in specific activity relative to the recombinant wild-type enzyme, nor any substantial differences in kinetic constants. It is envisaged that the combined mutant will be superior to wild-type luciferase for many in vitro and in vivo applications.

  12. Inhibition of Nucleic Acid Biosynthesis Makes Little Difference to Formation of Amphotericin B-Tolerant Persisters in Candida albicans Biofilm

    PubMed Central

    Sun, Jing; Liu, Xiaohua

    2014-01-01

    Candida albicans persisters constitute a small subpopulation of biofilm cells and play a major role in recalcitrant chronic candidiasis; however, the mechanism underlying persister formation remains unclear. Persisters are often described as dormant, multidrug-tolerant, nongrowing cells. Persister cells are difficult to isolate and study not only due to their low levels in C. albicans biofilms but also due to their transient, reversible phenotype. In this study, we tried to induce persister formation by inducing C. albicans cells into a dormant state. C. albicans cells were pretreated with 5-fluorocytosine (planktonic cells, 0.8 μg ml−1; biofilm cells, 1 μg ml−1) for 6 h at 37°C, which inhibits nucleic acid and protein synthesis. Biofilms and planktonic cultures of eight C. albicans strains were surveyed for persisters after amphotericin B treatment (100 μg ml−1 for 24 h) and CFU assay. None of the planktonic cultures, with or without 5-fluorocytosine pretreatment, contained persisters. Persister cells were found in biofilms of all tested C. albicans strains, representing approximately 0.01 to 1.93% of the total population. However, the persister levels were not significantly increased in C. albicans biofilms pretreated with 5-fluorocytosine. These results suggest that inhibition of nucleic acid synthesis did not seem to increase the formation of amphotericin B-tolerant persisters in C. albicans biofilms. PMID:25547355

  13. Open fermentative production of fuel ethanol from food waste by an acid-tolerant mutant strain of Zymomonas mobilis.

    PubMed

    Ma, Kedong; Ruan, Zhiyong; Shui, Zongxia; Wang, Yanwei; Hu, Guoquan; He, Mingxiong

    2016-03-01

    The aim of present study was to develop a process for open ethanol fermentation from food waste using an acid-tolerant mutant of Zymomonas mobilis (ZMA7-2). The mutant showed strong tolerance to acid condition of food waste hydrolysate and high ethanol production performance. By optimizing fermentation parameters, ethanol fermentation with initial glucose concentration of 200 g/L, pH value around 4.0, inoculum size of 10% and without nutrient addition was considered as best conditions. Moreover, the potential of bench scales fermentation and cell reusability was also examined. The fermentation in bench scales (44 h) was faster than flask scale (48 h), and the maximum ethanol concentration and ethanol yield (99.78 g/L, 0.50 g/g) higher than that of flask scale (98.31 g/L, 0.49 g/g). In addition, the stable cell growth and ethanol production profile in five cycles successive fermentation was observed, indicating the mutant was suitable for industrial ethanol production.

  14. Adaptation of Salmonella spp. in juice stored under refrigerated and room temperature enhances acid resistance to simulated gastric fluid.

    PubMed

    Yuk, H G; Schneider, K R

    2006-10-01

    The objective of this study was to evaluate the acid resistance of Salmonella spp. adapted in juices stored under refrigeration and room temperatures to simulated gastric fluid (SGF, pH 1.5). Five Salmonella serovars, Agona, Gaminara, Michigan, Montevideo, and Poona were used in this study. Apple, orange, and tomato juices inoculated with five serovars were stored at refrigeration (7 degrees C) and room temperature (20 degrees C) for 24 h for adaptation. Acid resistances of serovars adapted in juice were determined in SGF at 37 degrees C. All acid-adapted Salmonella serovars in juices displayed enhanced survival time compared to non-adapted controls. Among serovars, S. Poona adapted in apple at 20 degrees C and orange juices at 7 and 20 degrees C showed >2.0 log cfu/ml survivors, while the other serovars decreased to non-detectable level or <2.0 log cfu/ml for 100 s in SGF. Unlike apple and orange juices, all serovars adapted in tomato juice survived with >2.0 log cfu/ml for 100 s. For D-values, all Salmonella serovars adapted in apple and tomato juice enhanced their acid resistances compared to orange juices. S. Agona adapted in tomato juice at 7 degrees C and S. Poona in apple juice at 20 degrees C had the highest D-values with 82.9 and 82.5s, respectively. Results showed that the adaptation in juice increased acid resistance in SGF and varied by serovar, juice type, and adaptation temperature. Therefore, this study indicates that the introduction of Salmonella spp. to an acidic juice environment during processing can enhance their ability to survive in a human stomach, possibly increasing the risk of a Salmonella outbreak by juice.

  15. Effects of short-term acid and aluminum exposure on the parr-smolt transformation in Atlantic salmon (Salmo salar): Disruption of seawater tolerance and endocrine status

    USGS Publications Warehouse

    Monette, M.Y.; Bjornsson, Bjorn Thrandur; McCormick, S.D.

    2008-01-01

    Episodic acidification resulting in increased acidity and inorganic aluminum (Ali) is known to interfere with the parr-smolt transformation of Atlantic salmon (Salmo salar), and has been implicated as a possible cause of population decline. To determine the extent and mechanism(s) by which short-term acid/Al exposure compromises smolt development, Atlantic salmon smolts were exposed to either control (pH 6.7-6.9) or acid/Al (pH 5.4-6.3, 28-64 ??g l-1 Ali) conditions for 2 and 5 days, and impacts on freshwater (FW) ion regulation, seawater (SW) tolerance, plasma hormone levels and stress response were examined. Gill Al concentrations were elevated in all smolts exposed to acid/Al relative to controls confirming exposure to increased Ali. There was no effect of acid/Al on plasma ion concentrations in FW however, smolts exposed to acid/Al followed by a 24 h SW challenge exhibited greater plasma Cl- levels than controls, indicating reduced SW tolerance. Loss of SW tolerance was accompanied by reductions in gill Na+,K+-ATPase (NKA) activity and Na+,K+,2Cl- (NKCC) cotransporter protein abundance. Acid/Al exposure resulted in decreased plasma insulin-like growth factor (IGF-I) and 3,3???,5???-triiodo-l-thyronine (T3) levels, whereas no effect of treatment was seen on plasma cortisol, growth hormone (GH), or thyroxine (T4) levels. Acid/Al exposure resulted in increased hematocrit and plasma glucose levels in FW, but both returned to control levels after 24 h in SW. The results indicate that smolt development and SW tolerance are compromised by short-term exposure to acid/Al in the absence of detectable impacts on FW ion regulation. Loss of SW tolerance during short-term acid/Al exposure likely results from reductions in gill NKA and NKCC, possibly mediated by decreases in plasma IGF-I and T3. ?? 2008 Elsevier Inc.

  16. Physiological and molecular analysis of selected Kenyan maize lines for aluminum tolerance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aluminum (Al) toxicity is an important limitation to maize production in many tropical and sub-tropical acid soil areas. The aim of this study was to survey the variation in Al tolerance in a panel of maize lines adapted for Kenya and look for novel sources of Al tolerance. 112 Kenyan maize accessio...

  17. A Clostridium Group IV Species Dominates and Suppresses a Mixed Culture Fermentation by Tolerance to Medium Chain Fatty Acids Products

    PubMed Central

    Andersen, Stephen J.; De Groof, Vicky; Khor, Way Cern; Roume, Hugo; Props, Ruben; Coma, Marta; Rabaey, Korneel

    2017-01-01

    hexanoic acid concentration to 32 ± 2% below the steady-state average. As opposed to the current view of MCFA toxicity broadly leading to production collapse, this study demonstrates that varied tolerance to MCFA within the community can lead to the dominance of some species and the suppression of others, which can result in a decreased productivity of the fermentation. PMID:28265558

  18. Adapt

    NASA Astrophysics Data System (ADS)

    Bargatze, L. F.

    2015-12-01

    Active Data Archive Product Tracking (ADAPT) is a collection of software routines that permits one to generate XML metadata files to describe and register data products in support of the NASA Heliophysics Virtual Observatory VxO effort. ADAPT is also a philosophy. The ADAPT concept is to use any and all available metadata associated with scientific data to produce XML metadata descriptions in a consistent, uniform, and organized fashion to provide blanket access to the full complement of data stored on a targeted data server. In this poster, we present an application of ADAPT to describe all of the data products that are stored by using the Common Data File (CDF) format served out by the CDAWEB and SPDF data servers hosted at the NASA Goddard Space Flight Center. These data servers are the primary repositories for NASA Heliophysics data. For this purpose, the ADAPT routines have been used to generate data resource descriptions by using an XML schema named Space Physics Archive, Search, and Extract (SPASE). SPASE is the designated standard for documenting Heliophysics data products, as adopted by the Heliophysics Data and Model Consortium. The set of SPASE XML resource descriptions produced by ADAPT includes high-level descriptions of numerical data products, display data products, or catalogs and also includes low-level "Granule" descriptions. A SPASE Granule is effectively a universal access metadata resource; a Granule associates an individual data file (e.g. a CDF file) with a "parent" high-level data resource description, assigns a resource identifier to the file, and lists the corresponding assess URL(s). The CDAWEB and SPDF file systems were queried to provide the input required by the ADAPT software to create an initial set of SPASE metadata resource descriptions. Then, the CDAWEB and SPDF data repositories were queried subsequently on a nightly basis and the CDF file lists were checked for any changes such as the occurrence of new, modified, or deleted

  19. Life-history evolution at the molecular level: adaptive amino acid composition of avian vitellogenins

    PubMed Central

    Hughes, Austin L.

    2015-01-01

    Avian genomes typically encode three distinct vitellogenin (VTG) egg yolk proteins (VTG1, VTG2 and VTG3), which arose by gene duplication prior to the most recent common ancestor of birds. Analysis of VTG sequences from 34 avian species in a phylogenetic framework supported the hypothesis that VTG amino acid composition has co-evolved with embryo incubation time. Embryo incubation time was positively correlated with the proportions of dietary essential amino acids (EAAs) in VTG1 and VTG2, and with the proportion of sulfur-containing amino acids in VTG3. These patterns were seen even when only semi-altricial and/or altricial species were considered, suggesting that the duration of embryo incubation is a major selective factor on the amino acid composition of VTGs, rather than developmental mode alone. The results are consistent with the hypothesis that the level of EAAs provided to the egg represents an adaptation to the loss of amino acids through breakdown over the course of incubation and imply that life-history phenotypes and VTG amino acid composition have co-evolved throughout the evolutionary history of birds. PMID:26224713

  20. Low Temperature-Induced Decrease in trans-Δ3-Hexadecenoic Acid Content Is Correlated with Freezing Tolerance in Cereals 1

    PubMed Central

    Huner, Norman P. A.; Williams, John P.; Maissan, Ellen E.; Myscich, Elizabeth G.; Krol, Marianna; Laroche, Andre; Singh, Jasbir

    1989-01-01

    The effect of growth at 5°C on the trans-Δ3-hexadecenoic acid content of phosphatidyl(d)glycerol was examined in a total of eight cultivars of rye (Secale cereale L.) and what (Triticum aestivum L.) of varying freezing tolerance. In these monocots, low temperature growth caused decreases in the trans-Δ3-hexadecenoic acid content of between 0 and 74% with concomitant increases in the palmitic acid content of phosphatidyl(d)glycerol. These trends were observed for whole leaf extracts as well as isolated thylakoids. The low growth temperature-induced decrease in the trans-Δ3-hexadecenoic acid content was shown to be a linear function (r2 = 0.954) of freezing tolerance in these cultivars. Of the six cold tolerant dicotyledonous species examined, only Brassica and Arabidopsis thaliana L. cv Columbia exhibited a 42% and 65% decrease, respectively, in trans-Δ3-hexadecenoic acid content. Thus, the relationship between the change in trans-Δ3-hexadecenoic acid content of phosphatidyl(d)glycerol and freezing tolerance cannot be considered a general one for all cold tolerant plant species. However, species which exhibited a low growth temperature-induced decrease in trans-Δ3-hexadecenoic acid also exhibited a concomitant shift in the in vitro organization of the light harvesting complex II from a predominantly oligomeric form to the monomeric form. We conclude that the proposed role of phosphatidyl(d)glycerol in modulating the organization of light harvesting complex II as a function of growth temperature manifests itself to varying degrees in different plant species. A possible physiological role for this phenomenon with respect to low temperature acclimation and freezing tolerance in cereals is discussed. PMID:16666505

  1. [The content of individual fatty acids and numbers of double bonds, insulin, C-peptide and unesterified fatty acids in blood plasma in testing tolerance to glucose].

    PubMed

    Titov, V N; Sazhina, N N; Aripovskiĭ, A V; Evteeva, N M; Tkhagalizhokova, É M; Parkhimovich, R M

    2014-10-01

    The glucose tolerance test demonstrates that content of unesterified fatty acids in blood plasma decreases up to three times and the content of oleic and linoleic acids is more decreased in the pool of fatty acids lipids. Out of resistance to insulin, hormone secretion increases up to three times. The decreasing of level of individual fatty acids occurs in a larger extent. Under resistance to insulin secretion of insulin is increasing up to eight times. The decreasing of level of each fatty acid is less expressed. The effect of insulin reflects decreasing of content of double bonds in blood plasma. The number of double bonds characterizes the degree of unsaturation of fatty acids in lipids of blood plasma. The higher number of double bonds is in the pool of unesterified fatty acids the more active is the effect of insulin. The hyper-secretion of insulin is directly proportional to content of palmitic fatty acid in lipids of blood plasma on fasting. According the phylogenetic theory of general pathology, the effect of insulin on metabolism of glucose is mediated by fatty acids. The insulin is blocking lipolysis in insulin-depended subcutaneous adipocytes and decreases content of unesterified fatty acids in blood plasma. The insulin is depriving all cells of possibility to absorb unesterified fatty acids and "forces" them to absorb glucose increasing hereby number of GLUT4 on cell membrane. The resistance to insulin is manifested in high concentration of unesterfied fatty acids, hyperinsulinemia, hyperalbuminemia and increasing of concentration of C-reactive protein-monomer. The resistance to insulin is groundlessly referred to as a symptom of diabetes mellitus type II. The resistance to insulin is only a functional disorder lasting for years. It can be successfully arrested. The diabetes mellitus is developed against the background of resistance to insulin only after long-term hyper-secretion of insulin and under emaciation and death of β-cells. The diabetes

  2. Thermal and acid tolerant beta-xylosidases, genes encoding, related organisms, and methods

    DOEpatents

    Thompson, David N.; Thompson, Vicki S.; Schaller, Kastli D.; Apel, William A.; Lacey, Jeffrey A.; Reed, David W.

    2011-04-12

    Isolated and/or purified polypeptides and nucleic acid sequences encoding polypeptides from Alicyclobacillus acidocaldarius and variations thereof are provided. Further provided are methods of at least partially degrading xylotriose and/or xylobiose using isolated and/or purified polypeptides and nucleic acid sequences encoding polypeptides from Alicyclobacillus acidocaldarius and variations thereof.

  3. Thermal and acid tolerant beta xylosidases, arabinofuranosidases, genes encoding, related organisms, and methods

    SciTech Connect

    Thompson, David N; Thompson, Vicki S; Schaller, Kastli D; Apel, William A; Reed, David W; Lacey, Jeffrey A

    2013-04-30

    Isolated and/or purified polypeptides and nucleic acid sequences encoding polypeptides from Alicyclobacillus acidocaldarius and variations thereof are provided. Further provided are methods of at least partially degrading xylotriose, xylobiose, and/or arabinofuranose-substituted xylan using isolated and/or purified polypeptides and nucleic acid sequences encoding polypeptides from Alicyclobacillus acidocaldarius and variations thereof.

  4. Viability, Acid and Bile Tolerance of Spray Dried Probiotic Bacteria and Some Commercial Probiotic Supplement Products Kept at Room Temperature.

    PubMed

    Dianawati, Dianawati; Mishra, Vijay; Shah, Nagendra P

    2016-06-01

    Production of probiotic food supplements that are shelf-stable at room temperature has been developed for consumer's convenience, but information on the stability in acid and bile environment is still scarce. Viability and acid and bile tolerance of microencapsulated Bifidobacterium spp. and Lactobacillus acidophilus and 4 commercial probiotic supplements were evaluated. Bifidobacterium and L. acidophilus were encapsulated with casein-based emulsion using spray drying. Water activity (aw ) of the microspheres containing Bifidobacterium or L. acidophilus (SD GM product) was adjusted to 0.07 followed by storage at 25 °C for 10 wk. Encapsulated Bifidobacterium spp. and Lactobacillus acidophilus and 4 commercial probiotic supplement products (AL, GH, RE, and BM) were tested. Since commercial probiotic products contained mixed bacteria, selective media MRS-LP (containing L-cysteine and Na-propionate) and MRS-clindamycin agar were used to grow Bifidobacterium spp. or L. acidophilus, respectively, and to inhibit the growth of other strains. The results showed that aw had a strong negative correlation with the viability of dehydrated probiotics of the 6 products. Viable counts of Bifidobacterium spp. and L. acidophilus of SD GM, AL, and GH were between 8.3 and 9.2 log CFU/g, whereas that of BM and RE were between 6.7 and 7.3 log CFU/g. Bifidobacterium in SD GM, in AL, and in GH products and L. acidophilus in SD GM, in AL, and in BM products demonstrated high tolerance to acid. Most of dehydrated probiotic bacteria were able to survive in bile environment except L. acidophilus in RE product. Exposure to gastric juice influenced bacterial survivability in subsequent bile environment.

  5. Increasing palmitic acid intake enhances milk production and prevents glucose-stimulated fatty acid disappearance without modifying systemic glucose tolerance in mid-lactation dairy cows.

    PubMed

    Mathews, A T; Rico, J E; Sprenkle, N T; Lock, A L; McFadden, J W

    2016-11-01

    Feeding saturated fatty acids may enhance milk yield in part by decreasing insulin sensitivity and shifting glucose utilization toward the mammary gland. Our objective was to evaluate the effects of palmitic acid (C16:0) on milk production and insulin sensitivity in cows. Twenty multiparous mid-lactation Holstein cows were enrolled in a study consisting of a 5-d covariate, 49-d treatment, and 14-d posttreatment period. All cows received a common sorghum silage-based diet and were randomly assigned to a diet containing no supplemental fat (control; n=10; 138±45d in milk) or C16:0 at 4% of ration DM (PALM; 98% C16:0; n=10; 136±44d in milk). Blood and milk were collected at routine intervals. Intravenous glucose tolerance tests (300mg/kg of body weight) were performed at d -1, 24, and 49 relative to start of treatment. Data were analyzed as repeated measures using a mixed model with fixed effects of treatment and time, and milk yield served as a covariate. The PALM treatment increased milk yield by wk 7. Furthermore, PALM increased milk fat yield and energy-corrected milk at wk 3 and 7. Changes in milk production occurred in parallel with enhanced energy intake. Increased milk fat yield during PALM treatment was due to increased C16:0 and C16:1 incorporation; PALM had no effect on concentration of milk components, BW, or body condition score. Two weeks posttreatment, energy-corrected milk and milk fat yield remained elevated in PALM-fed cows whereas yields of milk were similar between treatments. Increased milk fat yield after PALM treatment was due to increased de novo lipogenesis and uptake of preformed fatty acids. The basal concentration of nonesterified fatty acids (NEFA) in plasma increased by d 4, 6, and 8 of PALM treatment, a response not observed thereafter. Although PALM supplementation did not modify insulin, glucose, or triacylglycerol levels in plasma, total cholesterol in plasma was elevated by wk 3. Estimated insulin sensitivity was lower during the

  6. Influence of an n-6 polyunsaturated fatty acid-enriched diet on the development of tolerance during chronic ethanol administration in rats.

    PubMed

    Meehan, E; Beaugé, F; Choquart, D; Leonard, B E

    1995-12-01

    This study investigates the effects of n-6 polyunsaturated fatty acids (PUFAs), in the form of dietary Evening Primrose Oil (EPO) and safflower oil, on the development of tolerance to ethanol. The degree of fluorescence polarization of the fluoroprobes DPH, PROP-DPH, and TMA-DPH in isolated cortical synaptosomal membranes was measured. In addition, the development of tolerance, as shown by changes in synaptosomal membrane fluidity after an acute in vitro ethanol challenge, was also determined after 20 weeks of ethanol administration, either alone or together with a PUFA-enriched diet. Although the administration of EPO-enriched diet did not significantly render the inner core of the cortical synaptosomal membrane tolerant to the acute ethanol challenge, concomitant administration of ethanol and EPO was found to increase further the rigidity and tolerance to the acute ethanol challenge in the inner core. Chronic administration of safflower oil, which lacks gamma-linolenic acid (18:3, n-6) but like EPO contains linoleic acid, either alone or together with chronic ethanol had no effect on synaptosomal membrane fluidity after an acute ethanol challenge. The results suggest that gamma-linolenic acid or its metabolites may have an important role to play in the development of tolerance to chronic ethanol.

  7. Efficient production of L-lactic acid by newly isolated thermophilic Bacillus coagulans WCP10-4 with high glucose tolerance.

    PubMed

    Zhou, Xingding; Ye, Lidan; Wu, Jin Chuan

    2013-05-01

    A thermophilic Bacillus coagulans WCP10-4 with tolerance to high concentration of glucose was isolated from soil and used to produce optically pure L-lactic acid from glucose and starch. In batch fermentation at pH 6.0, 240 g/L of glucose was completely consumed giving 210 g/L of L-lactic acid with a yield of 95 % and a productivity of 3.5 g/L/h. In simultaneous saccharification and fermentation at 50 °C without sterilizing the medium, 200 g/L of corn starch was completely consumed producing 202.0 g/L of L-lactic acid. To the best of our knowledge, this strain shows the highest osmotic tolerance to glucose among the strains ever reported for lactic acid production. This is the first report of simultaneous saccharification and fermentation of starch for lactic acid production under a non-sterilized condition.

  8. “On-Off” Thermoresponsive Coating Agent Containing Salicylic Acid Applied to Maize Seeds for Chilling Tolerance

    PubMed Central

    He, Fei; Huang, Yutao; Song, Wenjian; Hu, Jin

    2015-01-01

    Chilling stress is an important constraint for maize seed establishment in the field. In this study, a type of “on-off” thermoresponsive coating agent containing poly (N-isopropylacrylamide-co-butylmethacrylate) (Abbr. P(NIPAm-co-BMA)) hydrogel was developed to improve the chilling tolerance of coated maize seed. The P(NIPAm-co-BMA) hydrogel was synthesized by free-radical polymerization of N-isopropylacrylamide (NIPAm) and butylmethacrylate (BMA). Salicylic acid (SA) was loaded in the hydrogel as the chilling resistance agent. SA-loaded P(NIPAm-co-BMA) was used for seed film-coating of two maize varieties, Huang C (HC, chilling-tolerant) and Mo17 (chilling-sensitive), to investigate the coated seed germination and seedling growth status under chilling stress. The results showed that the hydrogel obtained a phase transition temperature near 12°C with a NIPAM to MBA weight ratio of 1: 0.1988 (w/w). The temperature of 12°C was considered the “on-off” temperature for chilling-resistant agent release; the SA was released from the hydrogel more rapidly at external temperatures below 12°C than above 12°C. In addition, when seedlings of both maize varieties suffered a short chilling stress (5°C), higher concentrations of SA-loaded hydrogel resulted in increased germination energy, germination percentage, germination index, root length, shoot height, dry weight of roots and shoots and protective enzyme activities and a decreased malondialdehyde content in coated maize seeds compared to single SA treatments. The majority of these physiological and biochemical parameters achieved significant levels compared with the control. Therefore, SA-loaded P(NIPAm-co-BMA), a nontoxic thermoresponsive hydrogel, can be used as an effective material for chilling tolerance in film-coated maize seeds. PMID:25807522

  9. A Single Amino-Acid Substitution in the Sodium Transporter HKT1 Associated with Plant Salt Tolerance.

    PubMed

    Ali, Akhtar; Raddatz, Natalia; Aman, Rashid; Kim, Songmi; Park, Hyeong Cheol; Jan, Masood; Baek, Dongwon; Khan, Irfan Ullah; Oh, Dong-Ha; Lee, Sang Yeol; Bressan, Ray A; Lee, Keun Woo; Maggio, Albino; Pardo, Jose M; Bohnert, Hans J; Yun, Dae-Jin

    2016-07-01

    A crucial prerequisite for plant growth and survival is the maintenance of potassium uptake, especially when high sodium surrounds the root zone. The Arabidopsis HIGH-AFFINITY K(+) TRANSPORTER1 (HKT1), and its homologs in other salt-sensitive dicots, contributes to salinity tolerance by removing Na(+) from the transpiration stream. However, TsHKT1;2, one of three HKT1 copies in Thellungiella salsuginea, a halophytic Arabidopsis relative, acts as a K(+) transporter in the presence of Na(+) in yeast (Saccharomyces cerevisiae). Amino-acid sequence comparisons indicated differences between TsHKT1;2 and most other published HKT1 sequences with respect to an Asp residue (D207) in the second pore-loop domain. Two additional T salsuginea and most other HKT1 sequences contain Asn (n) in this position. Wild-type TsHKT1;2 and altered AtHKT1 (AtHKT1(N-D)) complemented K(+)-uptake deficiency of yeast cells. Mutant hkt1-1 plants complemented with both AtHKT1(N) (-) (D) and TsHKT1;2 showed higher tolerance to salt stress than lines complemented by the wild-type AtHKT1 Electrophysiological analysis in Xenopus laevis oocytes confirmed the functional properties of these transporters and the differential selectivity for Na(+) and K(+) based on the n/d variance in the pore region. This change also dictated inward-rectification for Na(+) transport. Thus, the introduction of Asp, replacing Asn, in HKT1-type transporters established altered cation selectivity and uptake dynamics. We describe one way, based on a single change in a crucial protein that enabled some crucifer species to acquire improved salt tolerance, which over evolutionary time may have resulted in further changes that ultimately facilitated colonization of saline habitats.

  10. A Single Amino-Acid Substitution in the Sodium Transporter HKT1 Associated with Plant Salt Tolerance1[OPEN

    PubMed Central

    Ali, Akhtar; Aman, Rashid; Park, Hyeong Cheol; Jan, Masood; Baek, Dongwon; Khan, Irfan Ullah; Oh, Dong-Ha; Lee, Sang Yeol; Bressan, Ray A.; Lee, Keun Woo; Maggio, Albino; Yun, Dae-Jin

    2016-01-01

    A crucial prerequisite for plant growth and survival is the maintenance of potassium uptake, especially when high sodium surrounds the root zone. The Arabidopsis HIGH-AFFINITY K+ TRANSPORTER1 (HKT1), and its homologs in other salt-sensitive dicots, contributes to salinity tolerance by removing Na+ from the transpiration stream. However, TsHKT1;2, one of three HKT1 copies in Thellungiella salsuginea, a halophytic Arabidopsis relative, acts as a K+ transporter in the presence of Na+ in yeast (Saccharomyces cerevisiae). Amino-acid sequence comparisons indicated differences between TsHKT1;2 and most other published HKT1 sequences with respect to an Asp residue (D207) in the second pore-loop domain. Two additional T. salsuginea and most other HKT1 sequences contain Asn (n) in this position. Wild-type TsHKT1;2 and altered AtHKT1 (AtHKT1N-D) complemented K+-uptake deficiency of yeast cells. Mutant hkt1-1 plants complemented with both AtHKT1N-D and TsHKT1;2 showed higher tolerance to salt stress than lines complemented by the wild-type AtHKT1. Electrophysiological analysis in Xenopus laevis oocytes confirmed the functional properties of these transporters and the differential selectivity for Na+ and K+ based on the n/d variance in the pore region. This change also dictated inward-rectification for Na+ transport. Thus, the introduction of Asp, replacing Asn, in HKT1-type transporters established altered cation selectivity and uptake dynamics. We describe one way, based on a single change in a crucial protein that enabled some crucifer species to acquire improved salt tolerance, which over evolutionary time may have resulted in further changes that ultimately facilitated colonization of saline habitats. PMID:27208305

  11. SlMAPK3 enhances tolerance to tomato yellow leaf curl virus (TYLCV) by regulating salicylic acid and jasmonic acid signaling in tomato (Solanum lycopersicum)

    PubMed Central

    Li, Yunzhou; Qin, Lei; Zhao, Jingjing; Muhammad, Tayeb; Cao, Hehe; Li, Hailiang; Zhang, Yan; Liang, Yan

    2017-01-01

    Several recent studies have reported on the role of mitogen-activated protein kinase (MAPK3) in plant immune responses. However, little is known about how MAPK3 functions in tomato (Solanum lycopersicum L.) infected with tomato yellow leaf curl virus (TYLCV). There is also uncertainty about the connection between plant MAPK3 and the salicylic acid (SA) and jasmonic acid (JA) defense-signaling pathways. The results of this study indicated that SlMAPK3 participates in the antiviral response against TYLCV. Tomato seedlings were inoculated with TYLCV to investigate the possible roles of SlMAPK1, SlMAPK2, and SlMAPK3 against this virus. Inoculation with TYLCV strongly induced the expression and the activity of all three genes. Silencing of SlMAPK1, SlMAPK2, and SlMAPK3 reduced tolerance to TYLCV, increased leaf H2O2 concentrations, and attenuated expression of defense-related genes after TYLCV infection, especially in SlMAPK3-silenced plants. Exogenous SA and methyl jasmonic acid (MeJA) both significantly induced SlMAPK3 expression in tomato leaves. Over-expression of SlMAPK3 increased the transcript levels of SA/JA-mediated defense-related genes (PR1, PR1b/SlLapA, SlPI-I, and SlPI-II) and enhanced tolerance to TYLCV. After TYLCV inoculation, the leaves of SlMAPK3 over-expressed plants compared with wild type plants showed less H2O2 accumulation and greater superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) activity. Overall, the results suggested that SlMAPK3 participates in the antiviral response of tomato to TYLCV, and that this process may be through either the SA or JA defense-signaling pathways. PMID:28222174

  12. Conjugated linoleic acid versus high-oleic acid sunflower oil: effects on energy metabolism, glucose tolerance, blood lipids, appetite and body composition in regularly exercising individuals.

    PubMed

    Lambert, Estelle V; Goedecke, Julia H; Bluett, Kerry; Heggie, Kerry; Claassen, Amanda; Rae, Dale E; West, Sacha; Dugas, Jonathan; Dugas, Lara; Meltzeri, Shelly; Charlton, Karen; Mohede, Inge

    2007-05-01

    The aim of this study was to measure the effects of 12 weeks of conjugated linoleic acid (CLA) supplementation on body composition, RER, RMR, blood lipid profiles, insulin sensitivity and appetite in exercising, normal-weight persons. In this double-blind, randomised, controlled trial, sixty-two non-obese subjects (twenty-five men, thirty-seven women) received either 3.9 g/d CLA or 3.9 g high-oleic acid sunflower oil for 12 weeks. Prior to and after 12 weeks of supplementation, oral glucose tolerance, blood lipid concentrations, body composition (dual-energy X-ray absorptiometry and computerised tomography scans), RMR, resting and exercising RER and appetite were measured. There were no significant effects of CLA on body composition or distribution, RMR, RER or appetite. During the oral glucose tolerance tests, mean plasma insulin concentrations (0, 30, 120 min) were significantly lower (P= 0.04) in women who supplemented with CLA (24.3 (SD 9.7) to 20.4 (SD 8.5) microU/ml) compared to high-oleic acid sunflower oil control (23.7 (SD 9.8) to 26.0 (SD 8.8) microU/ml). Serum NEFA levels in response to oral glucose were attenuated in both men and women in the CLA (P=0.001) compared to control group. However, serum total cholesterol and LDL-cholesterol concentrations decreased in both groups and HDL-cholesterol concentrations decreased in women over 12 weeks (P=0.001, P=0.02, P=0.02, respectively). In conclusion, mixed-isomer CLA supplementation had a favourable effect on serum insulin and NEFA response to oral glucose in non-obese, regularly exercising women, but there were no CLA-specific effects on body composition, energy expenditure or appetite.

  13. 40 CFR 180.155 - 1-Naphthaleneacetic acid; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... established for the combined residues of the plant growth regulator 1-naphthaleneacetic acid and its... ammonium, sodium, or potassium salts, ethyl ester, and acetamide in or on food commodities as...

  14. 40 CFR 180.1023 - Propanoic acid; exemptions from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... byproducts; milk, and egg when applied as a bactericide/fungicide to livestock drinking water, poultry litter... (CAS Reg. No. 79-09-4), propanioc acid, calcium salt (CAS Reg. No. 4075-81-4), and propanioc...

  15. Flight Test Comparison of Different Adaptive Augmentations for Fault Tolerant Control Laws for a Modified F-15 Aircraft

    NASA Technical Reports Server (NTRS)

    Burken, John J.; Hanson, Curtis E.; Lee, James A.; Kaneshige, John T.

    2009-01-01

    This report describes the improvements and enhancements to a neural network based approach for directly adapting to aerodynamic changes resulting from damage or failures. This research is a follow-on effort to flight tests performed on the NASA F-15 aircraft as part of the Intelligent Flight Control System research effort. Previous flight test results demonstrated the potential for performance improvement under destabilizing damage conditions. Little or no improvement was provided under simulated control surface failures, however, and the adaptive system was prone to pilot-induced oscillations. An improved controller was designed to reduce the occurrence of pilot-induced oscillations and increase robustness to failures in general. This report presents an analysis of the neural networks used in the previous flight test, the improved adaptive controller, and the baseline case with no adaptation. Flight test results demonstrate significant improvement in performance by using the new adaptive controller compared with the previous adaptive system and the baseline system for control surface failures.

  16. Postnatal neonatal myocardial adaptation is associated with loss of tolerance to tachycardia: a simultaneous invasive and noninvasive assessment.

    PubMed

    Fortin-Pellerin, Etienne; Khoo, Nee S; Mills, Lindsay; Coe, James Y; Serrano-Lomelin, Jesus; Cheung, Po-Yin; Hornberger, Lisa K

    2016-03-01

    Doppler studies at rest suggest left ventricular (LV) diastolic function rapidly improves from the neonate to infant. Whether this translates to its response to hemodynamic challenges is uncertain. We sought to explore the impact of early LV maturation on its ability to tolerate atrial tachycardia. As tachycardia reduces filling time, we hypothesized that the neonatal LV would be less tolerant of atrial tachycardia. Landrace cross piglets of two age groups (1-3 days; NPs; 14-17 days, YPs; n = 7/group) were instrumented for an atrial pacing protocol (from 200 to 300 beats/min) and assessed by invasive monitoring and echocardiography. NPs maintained their LV output and blood pressure, whereas YPs did not. Although negative dP/dt in NPs at baseline was lower than that of YPs (-1,599 ± 83 vs. -2,470 ± 226 mmHg/s, respectively, P = 0.007), with increasing tachycardia negative dP/dt converged between groups and was not different. Both groups had similar preload reduction during tachycardia; however, NPs maintained shortening fraction while YPs decreased (NPs: 35.4 ± 1.4 vs. 31.8 ± 2.2%, P = 0.35; YPs: 31.4 ± 0.8 vs. 22.9 ± 0.8%, P < 0.001). Contractility measures did not differ between groups. Peak LV twist and untwisting rate also did not differ; however, NPs tended to augment LV twist through increased apical rotation and YPs through increasing basal rotation (P = 0.009). The NPs appear more tolerant of atrial tachycardia than the YPs. They have at least similar diastolic performance, enhanced systolic performance, and different LV twist mechanics, which may contribute to improved tachycardia tolerance of NPs.

  17. Adaptation of in vivo amino acid kinetics facilitates increased amino acid availability for fetal growth in adolescent and adult pregnancies alike

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During pregnancy, adult women with a normal BMI synthesize extra amino acids after an overnight fast by increasing body protein breakdown and decreasing amino acid oxidation. It is not known whether adolescent girls can make these adaptations during pregnancy. The present study aimed to measure and ...

  18. Hydrogen sulfide acts as a downstream signal molecule in salicylic acid-induced heat tolerance in maize (Zea mays L.) seedlings.

    PubMed

    Li, Zhong-Guang; Xie, Lin-Run; Li, Xiao-Juan

    2015-04-01

    Salicylic acid (SA), 2-hydroxy benzoic acid, is a small phenolic compound with multifunction that is involved in plant growth, development, and the acquisition of stress tolerance. In recent years, hydrogen sulfide (H2S) has been found to have similar functions, but cross talk between SA and H2S in the acquisition of heat tolerance is not clear. In this study, pretreatment of maize seedlings with SA improved the survival percentage of seedlings under heat stress, indicating that SA pretreatment could improve the heat tolerance of maize seedlings. In addition, treatment with SA enhanced the activity of L-cysteine desulfhydrase (L-DES), a key enzyme in H2S biosynthesis, which in turn induced accumulation of endogenous H2S. Interestingly, SA-induced heat tolerance was enhanced by