Adaptive Algebraic Multigrid Methods
Brezina, M; Falgout, R; MacLachlan, S; Manteuffel, T; McCormick, S; Ruge, J
2004-04-09
Our ability to simulate physical processes numerically is constrained by our ability to solve the resulting linear systems, prompting substantial research into the development of multiscale iterative methods capable of solving these linear systems with an optimal amount of effort. Overcoming the limitations of geometric multigrid methods to simple geometries and differential equations, algebraic multigrid methods construct the multigrid hierarchy based only on the given matrix. While this allows for efficient black-box solution of the linear systems associated with discretizations of many elliptic differential equations, it also results in a lack of robustness due to assumptions made on the near-null spaces of these matrices. This paper introduces an extension to algebraic multigrid methods that removes the need to make such assumptions by utilizing an adaptive process. The principles which guide the adaptivity are highlighted, as well as their application to algebraic multigrid solution of certain symmetric positive-definite linear systems.
Filtering Algebraic Multigrid and Adaptive Strategies
Nagel, A; Falgout, R D; Wittum, G
2006-01-31
Solving linear systems arising from systems of partial differential equations, multigrid and multilevel methods have proven optimal complexity and efficiency properties. Due to shortcomings of geometric approaches, algebraic multigrid methods have been developed. One example is the filtering algebraic multigrid method introduced by C. Wagner. This paper proposes a variant of Wagner's method with substantially improved robustness properties. The method is used in an adaptive, self-correcting framework and tested numerically.
Toward robust scalable algebraic multigrid solvers.
Waisman, Haim; Schroder, Jacob; Olson, Luke; Hiriyur, Badri; Gaidamour, Jeremie; Siefert, Christopher; Hu, Jonathan Joseph; Tuminaro, Raymond Stephen
2010-10-01
This talk highlights some multigrid challenges that arise from several application areas including structural dynamics, fluid flow, and electromagnetics. A general framework is presented to help introduce and understand algebraic multigrid methods based on energy minimization concepts. Connections between algebraic multigrid prolongators and finite element basis functions are made to explored. It is shown how the general algebraic multigrid framework allows one to adapt multigrid ideas to a number of different situations. Examples are given corresponding to linear elasticity and specifically in the solution of linear systems associated with extended finite elements for fracture problems.
Smoothed aggregation adaptive spectral element-based algebraic multigrid
2015-01-20
SAAMGE provides parallel methods for building multilevel hierarchies and solvers that can be used for elliptic equations with highly heterogeneous coefficients. Additionally, hierarchy adaptation is implemented allowing solving multiple problems with close coefficients without rebuilding the hierarchy.
2013-05-06
AMG2013 is a parallel algebraic multigrid solver for linear systems arising from problems on unstructured grids. It has been derived directly from the Boomer AMG solver in the hypre library, a large linear solvers library that is being developed in the Center for Applied Scientific Computing (CASC) at LLNL. The driver provided in the benchmark can build various test problems. The default problem is a Laplace type problem on an unstructured domain with various jumps and an anisotropy in one part.
2013-05-06
AMG2013 is a parallel algebraic multigrid solver for linear systems arising from problems on unstructured grids. It has been derived directly from the Boomer AMG solver in the hypre library, a large linear solvers library that is being developed in the Center for Applied Scientific Computing (CASC) at LLNL. The driver provided in the benchmark can build various test problems. The default problem is a Laplace type problem on an unstructured domain with various jumpsmore » and an anisotropy in one part.« less
An Introduction to Algebraic Multigrid
Falgout, R D
2006-04-25
Algebraic multigrid (AMG) solves linear systems based on multigrid principles, but in a way that only depends on the coefficients in the underlying matrix. The author begins with a basic introduction to AMG methods, and then describes some more recent advances and theoretical developments
Adaptive Algebraic Multigrid for Finite Element Elliptic Equations with Random Coefficients
Kalchev, D
2012-04-02
This thesis presents a two-grid algorithm based on Smoothed Aggregation Spectral Element Agglomeration Algebraic Multigrid (SA-{rho}AMGe) combined with adaptation. The aim is to build an efficient solver for the linear systems arising from discretization of second-order elliptic partial differential equations (PDEs) with stochastic coefficients. Examples include PDEs that model subsurface flow with random permeability field. During a Markov Chain Monte Carlo (MCMC) simulation process, that draws PDE coefficient samples from a certain distribution, the PDE coefficients change, hence the resulting linear systems to be solved change. At every such step the system (discretized PDE) needs to be solved and the computed solution used to evaluate some functional(s) of interest that then determine if the coefficient sample is acceptable or not. The MCMC process is hence computationally intensive and requires the solvers used to be efficient and fast. This fact that at every step of MCMC the resulting linear system changes, makes an already existing solver built for the old problem perhaps not as efficient for the problem corresponding to the new sampled coefficient. This motivates the main goal of our study, namely, to adapt an already existing solver to handle the problem (with changed coefficient) with the objective to achieve this goal to be faster and more efficient than building a completely new solver from scratch. Our approach utilizes the local element matrices (for the problem with changed coefficients) to build local problems associated with constructed by the method agglomerated elements (a set of subdomains that cover the given computational domain). We solve a generalized eigenproblem for each set in a subspace spanned by the previous local coarse space (used for the old solver) and a vector, component of the error, that the old solver cannot handle. A portion of the spectrum of these local eigen-problems (corresponding to eigenvalues close to zero) form the
Parallel Algebraic Multigrids for Structural mechanics
Brezina, M; Tong, C; Becker, R
2004-05-11
This paper presents the results of a comparison of three parallel algebraic multigrid (AMG) preconditioners for structural mechanics applications. In particular, they are interested in investigating both the scalability and robustness of the preconditioners. Numerical results are given for a range of structural mechanics problems with various degrees of difficulty.
Philip, Bobby; Chartier, Dr Timothy
2012-01-01
methods based on Local Sensitivity Analysis (LSA). The method can be used in the context of geometric and algebraic multigrid methods for constructing smoothers, and in the context of Krylov methods for constructing block preconditioners. It is suitable for both constant and variable coecient problems. Furthermore, the method can be applied to systems arising from both scalar and coupled system partial differential equations (PDEs), as well as linear systems that do not arise from PDEs. The simplicity of the method will allow it to be easily incorporated into existing multigrid and Krylov solvers while providing a powerful tool for adaptively constructing methods tuned to a problem.
Scalable Parallel Algebraic Multigrid Solvers
Bank, R; Lu, S; Tong, C; Vassilevski, P
2005-03-23
The authors propose a parallel algebraic multilevel algorithm (AMG), which has the novel feature that the subproblem residing in each processor is defined over the entire partition domain, although the vast majority of unknowns for each subproblem are associated with the partition owned by the corresponding processor. This feature ensures that a global coarse description of the problem is contained within each of the subproblems. The advantages of this approach are that interprocessor communication is minimized in the solution process while an optimal order of convergence rate is preserved; and the speed of local subproblem solvers can be maximized using the best existing sequential algebraic solvers.
Parallel Algebraic Multigrid Methods - High Performance Preconditioners
Yang, U M
2004-11-11
The development of high performance, massively parallel computers and the increasing demands of computationally challenging applications have necessitated the development of scalable solvers and preconditioners. One of the most effective ways to achieve scalability is the use of multigrid or multilevel techniques. Algebraic multigrid (AMG) is a very efficient algorithm for solving large problems on unstructured grids. While much of it can be parallelized in a straightforward way, some components of the classical algorithm, particularly the coarsening process and some of the most efficient smoothers, are highly sequential, and require new parallel approaches. This chapter presents the basic principles of AMG and gives an overview of various parallel implementations of AMG, including descriptions of parallel coarsening schemes and smoothers, some numerical results as well as references to existing software packages.
Compatible Relaxation and Coarsening in Algebraic Multigrid
Brannick, J J; Falgout, R D
2009-09-22
We introduce a coarsening algorithm for algebraic multigrid (AMG) based on the concept of compatible relaxation (CR). The algorithm is significantly different from standard methods, most notably because it does not rely on any notion of strength of connection. We study its behavior on a number of model problems, and evaluate the performance of an AMG algorithm that incorporates the coarsening approach. Lastly, we introduce a variant of CR that provides a sharper metric of coarse-grid quality and demonstrate its potential with two simple examples.
Algebraic multigrid methods applied to problems in computational structural mechanics
NASA Technical Reports Server (NTRS)
Mccormick, Steve; Ruge, John
1989-01-01
The development of algebraic multigrid (AMG) methods and their application to certain problems in structural mechanics are described with emphasis on two- and three-dimensional linear elasticity equations and the 'jacket problems' (three-dimensional beam structures). Various possible extensions of AMG are also described. The basic idea of AMG is to develop the discretization sequence based on the target matrix and not the differential equation. Therefore, the matrix is analyzed for certain dependencies that permit the proper construction of coarser matrices and attendant transfer operators. In this manner, AMG appears to be adaptable to structural analysis applications.
Layout optimization with algebraic multigrid methods
NASA Technical Reports Server (NTRS)
Regler, Hans; Ruede, Ulrich
1993-01-01
Finding the optimal position for the individual cells (also called functional modules) on the chip surface is an important and difficult step in the design of integrated circuits. This paper deals with the problem of relative placement, that is the minimization of a quadratic functional with a large, sparse, positive definite system matrix. The basic optimization problem must be augmented by constraints to inhibit solutions where cells overlap. Besides classical iterative methods, based on conjugate gradients (CG), we show that algebraic multigrid methods (AMG) provide an interesting alternative. For moderately sized examples with about 10000 cells, AMG is already competitive with CG and is expected to be superior for larger problems. Besides the classical 'multiplicative' AMG algorithm where the levels are visited sequentially, we propose an 'additive' variant of AMG where levels may be treated in parallel and that is suitable as a preconditioner in the CG algorithm.
Challenges of Algebraic Multigrid across Multicore Architectures
Baker, A H; Gamblin, T; Schulz, M; Yang, U M
2010-04-12
Algebraic multigrid (AMG) is a popular solver for large-scale scientific computing and an essential component of many simulation codes. AMG has shown to be extremely efficient on distributed-memory architectures. However, when executed on modern multicore architectures, we face new challenges that can significantly deteriorate AMG's performance. We examine its performance and scalability on three disparate multicore architectures: a cluster with four AMD Opteron Quad-core processors per node (Hera), a Cray XT5 with two AMD Opteron Hex-core processors per node (Jaguar), and an IBM BlueGene/P system with a single Quad-core processor (Intrepid). We discuss our experiences on these platforms and present results using both an MPI-only and a hybrid MPI/OpenMP model. We also discuss a set of techniques that helped to overcome the associated problems, including thread and process pinning and correct memory associations.
Reducing Communication in Algebraic Multigrid Using Additive Variants
Vassilevski, Panayot S.; Yang, Ulrike Meier
2014-02-12
Algebraic multigrid (AMG) has proven to be an effective scalable solver on many high performance computers. However, its increasing communication complexity on coarser levels has shown to seriously impact its performance on computers with high communication cost. Moreover, additive AMG variants provide not only increased parallelism as well as decreased numbers of messages per cycle but also generally exhibit slower convergence. Here we present various new additive variants with convergence rates that are significantly improved compared to the classical additive algebraic multigrid method and investigate their potential for decreased communication, and improved communication-computation overlap, features that are essential for good performance on future exascale architectures.
Multiple Vector Preserving Interpolation Mappings in Algebraic Multigrid
Vassilevski, P S; Zikatanov, L T
2004-11-03
We propose algorithms for the construction of AMG (algebraic multigrid) interpolation mappings such that the resulting coarse space to span (locally and globally) any number of a priori given set of vectors. Specific constructions in the case of element agglomeration AMG methods are given. Some numerical illustration is also provided.
Coarse-grid selection for parallel algebraic multigrid
Cleary, A. J., LLNL
1998-06-01
The need to solve linear systems arising from problems posed on extremely large, unstructured grids has sparked great interest in parallelizing algebraic multigrid (AMG) To date, however, no parallel AMG algorithms exist We introduce a parallel algorithm for the selection of coarse-grid points, a crucial component of AMG, based on modifications of certain paallel independent set algorithms and the application of heuristics designed to insure the quality of the coarse grids A prototype serial version of the algorithm is implemented, and tests are conducted to determine its effect on multigrid convergence, and AMG complexity
Reducing Communication in Algebraic Multigrid Using Additive Variants
Vassilevski, Panayot S.; Yang, Ulrike Meier
2014-02-12
Algebraic multigrid (AMG) has proven to be an effective scalable solver on many high performance computers. However, its increasing communication complexity on coarser levels has shown to seriously impact its performance on computers with high communication cost. Moreover, additive AMG variants provide not only increased parallelism as well as decreased numbers of messages per cycle but also generally exhibit slower convergence. Here we present various new additive variants with convergence rates that are significantly improved compared to the classical additive algebraic multigrid method and investigate their potential for decreased communication, and improved communication-computation overlap, features that are essential for goodmore » performance on future exascale architectures.« less
Scaling Algebraic Multigrid Solvers: On the Road to Exascale
Baker, A H; Falgout, R D; Gamblin, T; Kolev, T; Schulz, M; Yang, U M
2010-12-12
Algebraic Multigrid (AMG) solvers are an essential component of many large-scale scientific simulation codes. Their continued numerical scalability and efficient implementation is critical for preparing these codes for exascale. Our experiences on modern multi-core machines show that significant challenges must be addressed for AMG to perform well on such machines. We discuss our experiences and describe the techniques we have used to overcome scalability challenges for AMG on hybrid architectures in preparation for exascale.
Coarse Spaces by Algebraic Multigrid: Multigrid Convergence and Upscaled Error Estimates
Vassilevski, P S
2010-04-30
We give an overview of a number of algebraic multigrid methods targeting finite element discretization problems. The focus is on the properties of the constructed hierarchy of coarse spaces that guarantee (two-grid) convergence. In particular, a necessary condition known as 'weak approximation property', and a sufficient one, referred to as 'strong approximation property' are discussed. Their role in proving convergence of the TG method (as iterative method) and also on the approximation properties of the AMG coarse spaces if used as discretization tool is pointed out. Some preliminary numerical results illustrating the latter aspect are also reported.
Lazarov, R; Pasciak, J; Jones, J
2002-02-01
Construction, analysis and numerical testing of efficient solution techniques for solving elliptic PDEs that allow for parallel implementation have been the focus of the research. A number of discretization and solution methods for solving second order elliptic problems that include mortar and penalty approximations and domain decomposition methods for finite elements and finite volumes have been investigated and analyzed. Techniques for parallel domain decomposition algorithms in the framework of PETC and HYPRE have been studied and tested. Hierarchical parallel grid refinement and adaptive solution methods have been implemented and tested on various model problems. A parallel code implementing the mortar method with algebraically constructed multiplier spaces was developed.
Multigrid solution strategies for adaptive meshing problems
NASA Technical Reports Server (NTRS)
Mavriplis, Dimitri J.
1995-01-01
This paper discusses the issues which arise when combining multigrid strategies with adaptive meshing techniques for solving steady-state problems on unstructured meshes. A basic strategy is described, and demonstrated by solving several inviscid and viscous flow cases. Potential inefficiencies in this basic strategy are exposed, and various alternate approaches are discussed, some of which are demonstrated with an example. Although each particular approach exhibits certain advantages, all methods have particular drawbacks, and the formulation of a completely optimal strategy is considered to be an open problem.
Non-Galerkin Coarse Grids for Algebraic Multigrid
Falgout, Robert D.; Schroder, Jacob B.
2014-06-26
Algebraic multigrid (AMG) is a popular and effective solver for systems of linear equations that arise from discretized partial differential equations. And while AMG has been effectively implemented on large scale parallel machines, challenges remain, especially when moving to exascale. Particularly, stencil sizes (the number of nonzeros in a row) tend to increase further down in the coarse grid hierarchy, and this growth leads to more communication. Therefore, as problem size increases and the number of levels in the hierarchy grows, the overall efficiency of the parallel AMG method decreases, sometimes dramatically. This growth in stencil size is due to the standard Galerkin coarse grid operator, $P^T A P$, where $P$ is the prolongation (i.e., interpolation) operator. For example, the coarse grid stencil size for a simple three-dimensional (3D) seven-point finite differencing approximation to diffusion can increase into the thousands on present day machines, causing an associated increase in communication costs. We therefore consider algebraically truncating coarse grid stencils to obtain a non-Galerkin coarse grid. First, the sparsity pattern of the non-Galerkin coarse grid is determined by employing a heuristic minimal “safe” pattern together with strength-of-connection ideas. Second, the nonzero entries are determined by collapsing the stencils in the Galerkin operator using traditional AMG techniques. The result is a reduction in coarse grid stencil size, overall operator complexity, and parallel AMG solve phase times.
Algebraic multigrid preconditioner for the cardiac bidomain model.
Plank, Gernot; Liebmann, Manfred; Weber dos Santos, Rodrigo; Vigmond, Edward J; Haase, Gundolf
2007-04-01
The bidomain equations are considered to be one of the most complete descriptions of the electrical activity in cardiac tissue, but large scale simulations, as resulting from discretization of an entire heart, remain a computational challenge due to the elliptic portion of the problem, the part associated with solving the extracellular potential. In such cases, the use of iterative solvers and parallel computing environments are mandatory to make parameter studies feasible. The preconditioned conjugate gradient (PCG) method is a standard choice for this problem. Although robust, its efficiency greatly depends on the choice of preconditioner. On structured grids, it has been demonstrated that a geometric multigrid preconditioner performs significantly better than an incomplete LU (ILU) preconditioner. However, unstructured grids are often preferred to better represent organ boundaries and allow for coarser discretization in the bath far from cardiac surfaces. Under these circumstances, algebraic multigrid (AMG) methods are advantageous since they compute coarser levels directly from the system matrix itself, thus avoiding the complexity of explicitly generating coarser, geometric grids. In this paper, the performance of an AMG preconditioner (BoomerAMG) is compared with that of the standard ILU preconditioner and a direct solver. BoomerAMG is used in two different ways, as a preconditioner and as a standalone solver. Two 3-D simulation examples modeling the induction of arrhythmias in rabbit ventricles were used to measure performance in both sequential and parallel simulations. It is shown that the AMG preconditioner is very well suited for the solution of the bidomain equation, being clearly superior to ILU preconditioning in all regards, with speedups by factors in the range 5.9-7.7. PMID:17405366
Geometric and algebraic multigrid techniques for fluid dynamics problems on unstructured grids
NASA Astrophysics Data System (ADS)
Volkov, K. N.; Emel'yanov, V. N.; Teterina, I. V.
2016-02-01
Issues concerning the implementation and practical application of geometric and algebraic multigrid techniques for solving systems of difference equations generated by the finite volume discretization of the Euler and Navier-Stokes equations on unstructured grids are studied. The construction of prolongation and interpolation operators, as well as grid levels of various resolutions, is discussed. The results of the application of geometric and algebraic multigrid techniques for the simulation of inviscid and viscous compressible fluid flows over an airfoil are compared. Numerical results show that geometric methods ensure faster convergence and weakly depend on the method parameters, while the efficiency of algebraic methods considerably depends on the input parameters.
Distance-Two Interpolation for Parallel Algebraic Multigrid
De Sterck, H; Falgout, R; Nolting, J; Yang, U M
2007-05-08
Algebraic multigrid (AMG) is one of the most efficient and scalable parallel algorithms for solving sparse linear systems on unstructured grids. However, for large three-dimensional problems, the coarse grids that are normally used in AMG often lead to growing complexity in terms of memory use and execution time per AMG V-cycle. Sparser coarse grids, such as those obtained by the Parallel Modified Independent Set coarsening algorithm (PMIS) [7], remedy this complexity growth, but lead to non-scalable AMG convergence factors when traditional distance-one interpolation methods are used. In this paper we study the scalability of AMG methods that combine PMIS coarse grids with long distance interpolation methods. AMG performance and scalability is compared for previously introduced interpolation methods as well as new variants of them for a variety of relevant test problems on parallel computers. It is shown that the increased interpolation accuracy largely restores the scalability of AMG convergence factors for PMIS-coarsened grids, and in combination with complexity reducing methods, such as interpolation truncation, one obtains a class of parallel AMG methods that enjoy excellent scalability properties on large parallel computers.
Multigrid techniques for unstructured meshes
NASA Technical Reports Server (NTRS)
Mavriplis, D. J.
1995-01-01
An overview of current multigrid techniques for unstructured meshes is given. The basic principles of the multigrid approach are first outlined. Application of these principles to unstructured mesh problems is then described, illustrating various different approaches, and giving examples of practical applications. Advanced multigrid topics, such as the use of algebraic multigrid methods, and the combination of multigrid techniques with adaptive meshing strategies are dealt with in subsequent sections. These represent current areas of research, and the unresolved issues are discussed. The presentation is organized in an educational manner, for readers familiar with computational fluid dynamics, wishing to learn more about current unstructured mesh techniques.
Multigrid solution of internal flows using unstructured solution adaptive meshes
NASA Astrophysics Data System (ADS)
Smith, Wayne A.; Blake, Kenneth R.
1992-11-01
This is the final report of the NASA Lewis SBIR Phase 2 Contract Number NAS3-25785, Multigrid Solution of Internal Flows Using Unstructured Solution Adaptive Meshes. The objective of this project, as described in the Statement of Work, is to develop and deliver to NASA a general three-dimensional Navier-Stokes code using unstructured solution-adaptive meshes for accuracy and multigrid techniques for convergence acceleration. The code will primarily be applied, but not necessarily limited, to high speed internal flows in turbomachinery.
Algebraic multigrid domain and range decomposition (AMG-DD / AMG-RD)*
Bank, R.; Falgout, R. D.; Jones, T.; Manteuffel, T. A.; McCormick, S. F.; Ruge, J. W.
2015-10-29
In modern large-scale supercomputing applications, algebraic multigrid (AMG) is a leading choice for solving matrix equations. However, the high cost of communication relative to that of computation is a concern for the scalability of traditional implementations of AMG on emerging architectures. This paper introduces two new algebraic multilevel algorithms, algebraic multigrid domain decomposition (AMG-DD) and algebraic multigrid range decomposition (AMG-RD), that replace traditional AMG V-cycles with a fully overlapping domain decomposition approach. While the methods introduced here are similar in spirit to the geometric methods developed by Brandt and Diskin [Multigrid solvers on decomposed domains, in Domain Decomposition Methods inmore » Science and Engineering, Contemp. Math. 157, AMS, Providence, RI, 1994, pp. 135--155], Mitchell [Electron. Trans. Numer. Anal., 6 (1997), pp. 224--233], and Bank and Holst [SIAM J. Sci. Comput., 22 (2000), pp. 1411--1443], they differ primarily in that they are purely algebraic: AMG-RD and AMG-DD trade communication for computation by forming global composite “grids” based only on the matrix, not the geometry. (As is the usual AMG convention, “grids” here should be taken only in the algebraic sense, regardless of whether or not it corresponds to any geometry.) Another important distinguishing feature of AMG-RD and AMG-DD is their novel residual communication process that enables effective parallel computation on composite grids, avoiding the all-to-all communication costs of the geometric methods. The main purpose of this paper is to study the potential of these two algebraic methods as possible alternatives to existing AMG approaches for future parallel machines. As a result, this paper develops some theoretical properties of these methods and reports on serial numerical tests of their convergence properties over a spectrum of problem parameters.« less
Algebraic multigrid domain and range decomposition (AMG-DD / AMG-RD)*
Bank, R.; Falgout, R. D.; Jones, T.; Manteuffel, T. A.; McCormick, S. F.; Ruge, J. W.
2015-10-29
In modern large-scale supercomputing applications, algebraic multigrid (AMG) is a leading choice for solving matrix equations. However, the high cost of communication relative to that of computation is a concern for the scalability of traditional implementations of AMG on emerging architectures. This paper introduces two new algebraic multilevel algorithms, algebraic multigrid domain decomposition (AMG-DD) and algebraic multigrid range decomposition (AMG-RD), that replace traditional AMG V-cycles with a fully overlapping domain decomposition approach. While the methods introduced here are similar in spirit to the geometric methods developed by Brandt and Diskin [Multigrid solvers on decomposed domains, in Domain Decomposition Methods in Science and Engineering, Contemp. Math. 157, AMS, Providence, RI, 1994, pp. 135--155], Mitchell [Electron. Trans. Numer. Anal., 6 (1997), pp. 224--233], and Bank and Holst [SIAM J. Sci. Comput., 22 (2000), pp. 1411--1443], they differ primarily in that they are purely algebraic: AMG-RD and AMG-DD trade communication for computation by forming global composite “grids” based only on the matrix, not the geometry. (As is the usual AMG convention, “grids” here should be taken only in the algebraic sense, regardless of whether or not it corresponds to any geometry.) Another important distinguishing feature of AMG-RD and AMG-DD is their novel residual communication process that enables effective parallel computation on composite grids, avoiding the all-to-all communication costs of the geometric methods. The main purpose of this paper is to study the potential of these two algebraic methods as possible alternatives to existing AMG approaches for future parallel machines. As a result, this paper develops some theoretical properties of these methods and reports on serial numerical tests of their convergence properties over a spectrum of problem parameters.
Adaptive Multigrid Solution of Stokes' Equation on CELL Processor
NASA Astrophysics Data System (ADS)
Elgersma, M. R.; Yuen, D. A.; Pratt, S. G.
2006-12-01
We are developing an adaptive multigrid solver for treating nonlinear elliptic partial-differential equations, needed for mantle convection problems. Since multigrid is being used for the complete solution, not just as a preconditioner, spatial difference operators are kept nearly diagonally dominant by increasing density of the coarsest grid in regions where coefficients have rapid spatial variation. At each time step, the unstructured coarse grid is refined in regions where coefficients associated with the differential operators or boundary conditions have rapid spatial variation, and coarsened in regions where there is more gradual spatial variation. For three-dimensional problems, the boundary is two-dimensional, and regions where coefficients change rapidly are often near two-dimensional surfaces, so the coarsest grid is only fine near two-dimensional subsets of the three-dimensional space. Coarse grid density drops off exponentially with distance from boundary surfaces and rapid-coefficient-change surfaces. This unstructured coarse grid results in the number of coarse grid voxels growing proportional to surface area, rather than proportional to volume. This results in significant computational savings for the coarse-grid solution. This coarse-grid solution is then refined for the fine-grid solution, and multigrid methods have memory usage and runtime proportional to the number of fine-grid voxels. This adaptive multigrid algorithm is being implemented on the CELL processor, where each chip has eight floating point processors and each processor operates on four floating point numbers each clock cycle. Both the adaptive grid algorithm and the multigrid solver have very efficient parallel implementations, in order to take advantage of the CELL processor architecture.
A new Rayleigh quotient minimization algorithm based on algebraic multigrid.
Lehoucq, Richard B.; Hetmaniuk, Ulrich L.
2005-01-01
Mandel and McCormick [2] introduced the RQMG method, which approximately minimizes the Rayleigh quotient over a sequence of grids. In this talk, we will present an algebraic extension. We replace the geometric mesh information with the algebraic information defined by an AMG preconditioner. At each level, we improve the smoother to accelerate the convergence. With a series of numerical experiments, we assess the efficiency of this new algorithm to compute several eigenpairs.
An adaptive multigrid model for hurricane track prediction
NASA Technical Reports Server (NTRS)
Fulton, Scott R.
1993-01-01
This paper describes a simple numerical model for hurricane track prediction which uses a multigrid method to adapt the model resolution as the vortex moves. The model is based on the modified barotropic vorticity equation, discretized in space by conservative finite differences and in time by a Runge-Kutta scheme. A multigrid method is used to solve an elliptic problem for the streamfunction at each time step. Nonuniform resolution is obtained by superimposing uniform grids of different spatial extent; these grids move with the vortex as it moves. Preliminary numerical results indicate that the local mesh refinement allows accurate prediction of the hurricane track with substantially less computer time than required on a single uniform grid.
Adaptive Multigrid Algorithm for the Lattice Wilson-Dirac Operator
Babich, R.; Brower, R. C.; Rebbi, C.; Brannick, J.; Clark, M. A.; Manteuffel, T. A.; McCormick, S. F.; Osborn, J. C.
2010-11-12
We present an adaptive multigrid solver for application to the non-Hermitian Wilson-Dirac system of QCD. The key components leading to the success of our proposed algorithm are the use of an adaptive projection onto coarse grids that preserves the near null space of the system matrix together with a simplified form of the correction based on the so-called {gamma}{sub 5}-Hermitian symmetry of the Dirac operator. We demonstrate that the algorithm nearly eliminates critical slowing down in the chiral limit and that it has weak dependence on the lattice volume.
Adaptive multigrid algorithm for the lattice Wilson-Dirac operator.
Babich, R; Brannick, J; Brower, R C; Clark, M A; Manteuffel, T A; McCormick, S F; Osborn, J C; Rebbi, C
2010-11-12
We present an adaptive multigrid solver for application to the non-Hermitian Wilson-Dirac system of QCD. The key components leading to the success of our proposed algorithm are the use of an adaptive projection onto coarse grids that preserves the near null space of the system matrix together with a simplified form of the correction based on the so-called γ5-Hermitian symmetry of the Dirac operator. We demonstrate that the algorithm nearly eliminates critical slowing down in the chiral limit and that it has weak dependence on the lattice volume. PMID:21231217
On the Performance of an Algebraic MultigridSolver on Multicore Clusters
Baker, A H; Schulz, M; Yang, U M
2010-04-29
Algebraic multigrid (AMG) solvers have proven to be extremely efficient on distributed-memory architectures. However, when executed on modern multicore cluster architectures, we face new challenges that can significantly harm AMG's performance. We discuss our experiences on such an architecture and present a set of techniques that help users to overcome the associated problems, including thread and process pinning and correct memory associations. We have implemented most of the techniques in a MultiCore SUPport library (MCSup), which helps to map OpenMP applications to multicore machines. We present results using both an MPI-only and a hybrid MPI/OpenMP model.
On the Performance of an Algebraic Multigrid Solver on Multicore Clusters
Baker, A; Schulz, M; Yang, U M
2009-11-24
Algebraic multigrid (AMG) solvers have proven to be extremely efficient on distributed-memory architectures. However, when executed on modern multicore cluster architectures, we face new challenges that can significantly harm AMG's performance. We discuss our experiences on such an architecture and present a set of techniques that help users to overcome the associated problems, including thread and process pinning and correct memory associations. We have implemented most of the techniques in a MultiCore SUPport library (MCSup), which helps to map OpenMP applications to multicore machines. We present results using both an MPI-only and a hybrid MPI/OpenMP model.
Henson, V E
2003-02-06
The purpose of this research project was to investigate, design, and implement new algebraic multigrid (AMG) algorithms to enable the effective use of AMG in large-scale multiphysics simulation codes. These problems are extremely large; storage requirements and excessive run-time make direct solvers infeasible. The problems are highly ill-conditioned, so that existing iterative solvers either fail or converge very slowly. While existing AMG algorithms have been shown to be robust and stable for a large class of problems, there are certain problems of great interest to the Laboratory for which no effective algorithm existed prior to this research.
The development of an algebraic multigrid algorithm for symmetric positive definite linear systems
Vanek, P.; Mandel, J.; Brezina, M.
1996-12-31
An algebraic multigrid algorithm for symmetric, positive definite linear systems is developed based on the concept of prolongation by smoothed aggregation. Coarse levels are generated automatically. We present a set of requirements motivated heuristically by a convergence theory. The algorithm then attempts to satisfy the requirements. Input to the method are the coefficient matrix and zero energy modes, which are determined from nodal coordinates and knowledge of the differential equation. Efficiency of the resulting algorithm is demonstrated by computational results on real world problems from solid elasticity, plate blending, and shells.
Crane, N K; Parsons, I D; Hjelmstad, K D
2002-03-21
Adaptive mesh refinement selectively subdivides the elements of a coarse user supplied mesh to produce a fine mesh with reduced discretization error. Effective use of adaptive mesh refinement coupled with an a posteriori error estimator can produce a mesh that solves a problem to a given discretization error using far fewer elements than uniform refinement. A geometric multigrid solver uses increasingly finer discretizations of the same geometry to produce a very fast and numerically scalable solution to a set of linear equations. Adaptive mesh refinement is a natural method for creating the different meshes required by the multigrid solver. This paper describes the implementation of a scalable adaptive multigrid method on a distributed memory parallel computer. Results are presented that demonstrate the parallel performance of the methodology by solving a linear elastic rocket fuel deformation problem on an SGI Origin 3000. Two challenges must be met when implementing adaptive multigrid algorithms on massively parallel computing platforms. First, although the fine mesh for which the solution is desired may be large and scaled to the number of processors, the multigrid algorithm must also operate on much smaller fixed-size data sets on the coarse levels. Second, the mesh must be repartitioned as it is adapted to maintain good load balancing. In an adaptive multigrid algorithm, separate mesh levels may require separate partitioning, further complicating the load balance problem. This paper shows that, when the proper optimizations are made, parallel adaptive multigrid algorithms perform well on machines with several hundreds of processors.
Algebraic Multigrid by Smoothed Aggregation for Second and Fourth Order Elliptic Problems
NASA Technical Reports Server (NTRS)
Vanek, Petr; Mandel, Jan; Brezina, Marian
1996-01-01
Multigrid methods are very efficient iterative solvers for system of algebraic equations arising from finite element and finite difference discretization of elliptic boundary value problems. The main principle of multigrid methods is to complement the local exchange of information in point-wise iterative methods by a global one utilizing several related systems, called coarse levels, with a smaller number of variables. The coarse levels are often obtained as a hierarchy of discretizations with different characteristic meshsizes, but this requires that the discretization is controlled by the iterative method. To solve linear systems produced by existing finite element software, one needs to create an artificial hierarchy of coarse problems. The principal issue is then to obtain computational complexity and approximation properties similar to those for nested meshes, using only information in the matrix of the system and as little extra information as possible. Such algebraic multigrid method that uses the system matrix only was developed by Ruge. The prolongations were based on the matrix of the system by partial solution from given values at selected coarse points. The coarse grid points were selected so that each point would be interpolated to via so-called strong connections. Our approach is based on smoothed aggregation introduced recently by Vanek. First the set of nodes is decomposed into small mutually disjoint subsets. A tentative piecewise constant interpolation (in the discrete sense) is then defined on those subsets as piecewise constant for second order problems, and piecewise linear for fourth order problems. The prolongation operator is then obtained by smoothing the output of the tentative prolongation and coarse level operators are defined variationally.
Adaptive multigrid domain decomposition solutions for viscous interacting flows
NASA Technical Reports Server (NTRS)
Rubin, Stanley G.; Srinivasan, Kumar
1992-01-01
Several viscous incompressible flows with strong pressure interaction and/or axial flow reversal are considered with an adaptive multigrid domain decomposition procedure. Specific examples include the triple deck structure surrounding the trailing edge of a flat plate, the flow recirculation in a trough geometry, and the flow in a rearward facing step channel. For the latter case, there are multiple recirculation zones, of different character, for laminar and turbulent flow conditions. A pressure-based form of flux-vector splitting is applied to the Navier-Stokes equations, which are represented by an implicit lowest-order reduced Navier-Stokes (RNS) system and a purely diffusive, higher-order, deferred-corrector. A trapezoidal or box-like form of discretization insures that all mass conservation properties are satisfied at interfacial and outflow boundaries, even for this primitive-variable, non-staggered grid computation.
NASA Astrophysics Data System (ADS)
Jönsthövel, T. B.; van Gijzen, M. B.; MacLachlan, S.; Vuik, C.; Scarpas, A.
2012-09-01
Many applications in computational science and engineering concern composite materials, which are characterized by large discontinuities in the material properties. Such applications require fine-scale finite-element meshes, which lead to large linear systems that are challenging to solve with current direct and iterative solutions algorithms. In this paper, we consider the simulation of asphalt concrete, which is a mixture of components with large differences in material stiffness. The discontinuities in material stiffness give rise to many small eigenvalues that negatively affect the convergence of iterative solution algorithms such as the preconditioned conjugate gradient (PCG) method. This paper considers the deflated preconditioned conjugate gradient (DPCG) method in which the rigid body modes of sets of elements with homogeneous material properties are used as deflation vectors. As preconditioner we consider several variants of the algebraic multigrid smoothed aggregation method. We evaluate the performance of the DPCG method on a parallel computer using up to 64 processors. Our test problems are derived from real asphalt core samples, obtained using CT scans. We show that the DPCG method is an efficient and robust technique for solving these challenging linear systems.
A multigrid method for steady Euler equations on unstructured adaptive grids
NASA Technical Reports Server (NTRS)
Riemslagh, Kris; Dick, Erik
1993-01-01
A flux-difference splitting type algorithm is formulated for the steady Euler equations on unstructured grids. The polynomial flux-difference splitting technique is used. A vertex-centered finite volume method is employed on a triangular mesh. The multigrid method is in defect-correction form. A relaxation procedure with a first order accurate inner iteration and a second-order correction performed only on the finest grid, is used. A multi-stage Jacobi relaxation method is employed as a smoother. Since the grid is unstructured a Jacobi type is chosen. The multi-staging is necessary to provide sufficient smoothing properties. The domain is discretized using a Delaunay triangular mesh generator. Three grids with more or less uniform distribution of nodes but with different resolution are generated by successive refinement of the coarsest grid. Nodes of coarser grids appear in the finer grids. The multigrid method is started on these grids. As soon as the residual drops below a threshold value, an adaptive refinement is started. The solution on the adaptively refined grid is accelerated by a multigrid procedure. The coarser multigrid grids are generated by successive coarsening through point removement. The adaption cycle is repeated a few times. Results are given for the transonic flow over a NACA-0012 airfoil.
MGGHAT: Elliptic PDE software with adaptive refinement, multigrid and high order finite elements
NASA Technical Reports Server (NTRS)
Mitchell, William F.
1993-01-01
MGGHAT (MultiGrid Galerkin Hierarchical Adaptive Triangles) is a program for the solution of linear second order elliptic partial differential equations in two dimensional polygonal domains. This program is now available for public use. It is a finite element method with linear, quadratic or cubic elements over triangles. The adaptive refinement via newest vertex bisection and the multigrid iteration are both based on a hierarchical basis formulation. Visualization is available at run time through an X Window display, and a posteriori through output files that can be used as GNUPLOT input. In this paper, we describe the methods used by MGGHAT, define the problem domain for which it is appropriate, illustrate use of the program, show numerical and graphical examples, and explain how to obtain the software.
Parallel Multigrid Equation Solver
2001-09-07
Prometheus is a fully parallel multigrid equation solver for matrices that arise in unstructured grid finite element applications. It includes a geometric and an algebraic multigrid method and has solved problems of up to 76 mullion degrees of feedom, problems in linear elasticity on the ASCI blue pacific and ASCI red machines.
Zonal multigrid solution of compressible flow problems on unstructured and adaptive meshes
NASA Technical Reports Server (NTRS)
Mavriplis, Dimitri J.
1989-01-01
The simultaneous use of adaptive meshing techniques with a multigrid strategy for solving the 2-D Euler equations in the context of unstructured meshes is studied. To obtain optimal efficiency, methods capable of computing locally improved solutions without recourse to global recalculations are pursued. A method for locally refining an existing unstructured mesh, without regenerating a new global mesh is employed, and the domain is automatically partitioned into refined and unrefined regions. Two multigrid strategies are developed. In the first, time-stepping is performed on a global fine mesh covering the entire domain, and convergence acceleration is achieved through the use of zonal coarse grid accelerator meshes, which lie under the adaptively refined regions of the global fine mesh. Both schemes are shown to produce similar convergence rates to each other, and also with respect to a previously developed global multigrid algorithm, which performs time-stepping throughout the entire domain, on each mesh level. However, the present schemes exhibit higher computational efficiency due to the smaller number of operations on each level.
A comparison of locally adaptive multigrid methods: LDC, FAC and FIC
NASA Technical Reports Server (NTRS)
Khadra, Khodor; Angot, Philippe; Caltagirone, Jean-Paul
1993-01-01
This study is devoted to a comparative analysis of three 'Adaptive ZOOM' (ZOom Overlapping Multi-level) methods based on similar concepts of hierarchical multigrid local refinement: LDC (Local Defect Correction), FAC (Fast Adaptive Composite), and FIC (Flux Interface Correction)--which we proposed recently. These methods are tested on two examples of a bidimensional elliptic problem. We compare, for V-cycle procedures, the asymptotic evolution of the global error evaluated by discrete norms, the corresponding local errors, and the convergence rates of these algorithms.
New Multigrid Solver Advances in TOPS
Falgout, R D; Brannick, J; Brezina, M; Manteuffel, T; McCormick, S
2005-06-27
In this paper, we highlight new multigrid solver advances in the Terascale Optimal PDE Simulations (TOPS) project in the Scientific Discovery Through Advanced Computing (SciDAC) program. We discuss two new algebraic multigrid (AMG) developments in TOPS: the adaptive smoothed aggregation method ({alpha}SA) and a coarse-grid selection algorithm based on compatible relaxation (CR). The {alpha}SA method is showing promising results in initial studies for Quantum Chromodynamics (QCD) applications. The CR method has the potential to greatly improve the applicability of AMG.
Detwiler, R.L.; Mehl, S.; Rajaram, H.; Cheung, W.W.
2002-01-01
Numerical solution of large-scale ground water flow and transport problems is often constrained by the convergence behavior of the iterative solvers used to solve the resulting systems of equations. We demonstrate the ability of an algebraic multigrid algorithm (AMG) to efficiently solve the large, sparse systems of equations that result from computational models of ground water flow and transport in large and complex domains. Unlike geometric multigrid methods, this algorithm is applicable to problems in complex flow geometries, such as those encountered in pore-scale modeling of two-phase flow and transport. We integrated AMG into MODFLOW 2000 to compare two- and three-dimensional flow simulations using AMG to simulations using PCG2, a preconditioned conjugate gradient solver that uses the modified incomplete Cholesky preconditioner and is included with MODFLOW 2000. CPU times required for convergence with AMG were up to 140 times faster than those for PCG2. The cost of this increased speed was up to a nine-fold increase in required random access memory (RAM) for the three-dimensional problems and up to a four-fold increase in required RAM for the two-dimensional problems. We also compared two-dimensional numerical simulations of steady-state transport using AMG and the generalized minimum residual method with an incomplete LU-decomposition preconditioner. For these transport simulations, AMG yielded increased speeds of up to 17 times with only a 20% increase in required RAM. The ability of AMG to solve flow and transport problems in large, complex flow systems and its ready availability make it an ideal solver for use in both field-scale and pore-scale modeling.
Detwiler, Russell L; Mehl, Steffen; Rajaram, Harihar; Cheung, Wendy W
2002-01-01
Numerical solution of large-scale ground water flow and transport problems is often constrained by the convergence behavior of the iterative solvers used to solve the resulting systems of equations. We demonstrate the ability of an algebraic multigrid algorithm (AMG) to efficiently solve the large, sparse systems of equations that result from computational models of ground water flow and transport in large and complex domains. Unlike geometric multigrid methods, this algorithm is applicable to problems in complex flow geometries, such as those encountered in pore-scale modeling of two-phase flow and transport. We integrated AMG into MODFLOW 2000 to compare two- and three-dimensional flow simulations using AMG to simulations using PCG2, a preconditioned conjugate gradient solver that uses the modified incomplete Cholesky preconditioner and is included with MODFLOW 2000. CPU times required for convergence with AMG were up to 140 times faster than those for PCG2. The cost of this increased speed was up to a nine-fold increase in required random access memory (RAM) for the three-dimensional problems and up to a four-fold increase in required RAM for the two-dimensional problems. We also compared two-dimensional numerical simulations of steady-state transport using AMG and the generalized minimum residual method with an incomplete LU-decomposition preconditioner. For these transport simulations, AMG yielded increased speeds of up to 17 times with only a 20% increase in required RAM. The ability of AMG to solve flow and transport problems in large, complex flow systems and its ready availability make it an ideal solver for use in both field-scale and pore-scale modeling. PMID:12019641
Structured adaptive grid generation using algebraic methods
NASA Technical Reports Server (NTRS)
Yang, Jiann-Cherng; Soni, Bharat K.; Roger, R. P.; Chan, Stephen C.
1993-01-01
The accuracy of the numerical algorithm depends not only on the formal order of approximation but also on the distribution of grid points in the computational domain. Grid adaptation is a procedure which allows optimal grid redistribution as the solution progresses. It offers the prospect of accurate flow field simulations without the use of an excessively timely, computationally expensive, grid. Grid adaptive schemes are divided into two basic categories: differential and algebraic. The differential method is based on a variational approach where a function which contains a measure of grid smoothness, orthogonality and volume variation is minimized by using a variational principle. This approach provided a solid mathematical basis for the adaptive method, but the Euler-Lagrange equations must be solved in addition to the original governing equations. On the other hand, the algebraic method requires much less computational effort, but the grid may not be smooth. The algebraic techniques are based on devising an algorithm where the grid movement is governed by estimates of the local error in the numerical solution. This is achieved by requiring the points in the large error regions to attract other points and points in the low error region to repel other points. The development of a fast, efficient, and robust algebraic adaptive algorithm for structured flow simulation applications is presented. This development is accomplished in a three step process. The first step is to define an adaptive weighting mesh (distribution mesh) on the basis of the equidistribution law applied to the flow field solution. The second, and probably the most crucial step, is to redistribute grid points in the computational domain according to the aforementioned weighting mesh. The third and the last step is to reevaluate the flow property by an appropriate search/interpolate scheme at the new grid locations. The adaptive weighting mesh provides the information on the desired concentration
Adaptive parallel multigrid for Euler and incompressible Navier-Stokes equations
Trottenberg, U.; Oosterlee, K.; Ritzdorf, H.
1996-12-31
The combination of (1) very efficient solution methods (Multigrid), (2) adaptivity, and (3) parallelism (distributed memory) clearly is absolutely necessary for future oriented numerics but still regarded as extremely difficult or even unsolved. We show that very nice results can be obtained for real life problems. Our approach is straightforward (based on {open_quotes}MLAT{close_quotes}). But, of course, reasonable refinement and load-balancing strategies have to be used. Our examples are 2D, but 3D is on the way.
Algorithms and data structures for adaptive multigrid elliptic solvers
NASA Technical Reports Server (NTRS)
Vanrosendale, J.
1983-01-01
Adaptive refinement and the complicated data structures required to support it are discussed. These data structures must be carefully tuned, especially in three dimensions where the time and storage requirements of algorithms are crucial. Another major issue is grid generation. The options available seem to be curvilinear fitted grids, constructed on iterative graphics systems, and unfitted Cartesian grids, which can be constructed automatically. On several grounds, including storage requirements, the second option seems preferrable for the well behaved scalar elliptic problems considered here. A variety of techniques for treatment of boundary conditions on such grids are reviewed. A new approach, which may overcome some of the difficulties encountered with previous approaches, is also presented.
Adaptive multi-grid method for a periodic heterogeneous medium in 1-D
Fish, J.; Belsky, V.
1995-12-31
A multi-grid method for a periodic heterogeneous medium in 1-D is presented. Based on the homogenization theory special intergrid connection operators have been developed to imitate a low frequency response of the differential equations with oscillatory coefficients. The proposed multi-grid method has been proved to have a fast rate of convergence governed by the ratio q/(4-q), where oadaptive multiscale computational scheme is developed. By this technique a computational model entirely constructed on the scale of material heterogeneity is only used where it is necessary to do so, or as indicated by so called Microscale Reduction Error (MRE) indicators, while in the remaining portion of the problem domain, the medium is treated as homogeneous with effective properties. Such a posteriori MRE indicators and estimators are developed on the basis of assessing the validity of two-scale asymptotic expansion.
Practical improvements of multi-grid iteration for adaptive mesh refinement method
NASA Astrophysics Data System (ADS)
Miyashita, Hisashi; Yamada, Yoshiyuki
2005-03-01
Adaptive mesh refinement(AMR) is a powerful tool to efficiently solve multi-scaled problems. However, the vanilla AMR method has a well-known critical demerit, i.e., it cannot be applied to non-local problems. Although multi-grid iteration (MGI) can be regarded as a good remedy for a non-local problem such as the Poisson equation, we observed fundamental difficulties in applying the MGI technique in AMR to realistic problems under complicated mesh layouts because it does not converge or it requires too many iterations even if it does converge. To cope with the problem, when updating the next approximation in the MGI process, we calculate the precise total corrections that are relatively accurate to the current residual by introducing a new iteration for such a total correction. This procedure greatly accelerates the MGI convergence speed especially under complicated mesh layouts.
NASA Astrophysics Data System (ADS)
Koldan, Jelena; Puzyrev, Vladimir; de la Puente, Josep; Houzeaux, Guillaume; Cela, José María
2014-06-01
We present an elaborate preconditioning scheme for Krylov subspace methods which has been developed to improve the performance and reduce the execution time of parallel node-based finite-element (FE) solvers for 3-D electromagnetic (EM) numerical modelling in exploration geophysics. This new preconditioner is based on algebraic multigrid (AMG) that uses different basic relaxation methods, such as Jacobi, symmetric successive over-relaxation (SSOR) and Gauss-Seidel, as smoothers and the wave front algorithm to create groups, which are used for a coarse-level generation. We have implemented and tested this new preconditioner within our parallel nodal FE solver for 3-D forward problems in EM induction geophysics. We have performed series of experiments for several models with different conductivity structures and characteristics to test the performance of our AMG preconditioning technique when combined with biconjugate gradient stabilized method. The results have shown that, the more challenging the problem is in terms of conductivity contrasts, ratio between the sizes of grid elements and/or frequency, the more benefit is obtained by using this preconditioner. Compared to other preconditioning schemes, such as diagonal, SSOR and truncated approximate inverse, the AMG preconditioner greatly improves the convergence of the iterative solver for all tested models. Also, when it comes to cases in which other preconditioners succeed to converge to a desired precision, AMG is able to considerably reduce the total execution time of the forward-problem code-up to an order of magnitude. Furthermore, the tests have confirmed that our AMG scheme ensures grid-independent rate of convergence, as well as improvement in convergence regardless of how big local mesh refinements are. In addition, AMG is designed to be a black-box preconditioner, which makes it easy to use and combine with different iterative methods. Finally, it has proved to be very practical and efficient in the
Algebraic turbulence modeling for unstructured and adaptive meshes
NASA Technical Reports Server (NTRS)
Mavriplis, Dimitri J.
1990-01-01
An algebraic turbulence model based on the Baldwin-Lomax model, has been implemented for use on unstructured grids. The implementation is based on the use of local background structured turbulence meshes. At each time-step, flow variables are interpolated from the unstructured mesh onto the background structured meshes, the turbulence model is executed on these meshes, and the resulting eddy viscosity values are interpolated back to the unstructured mesh. Modifications to the algebraic model were required to enable the treatment of more complicated flows, such as confluent boundary layers and wakes. The model is used in conjuction with an efficient unstructured multigrid finite-element Navier-Stokes solver in order to compute compressible turbulent flows on fully unstructured meshes. Solutions about single and multiple element airfoils are obtained and compared with experimental data.
Report on the Copper Mountain Conference on Multigrid Methods
2001-04-06
OAK B188 Report on the Copper Mountain Conference on Multigrid Methods. The Copper Mountain Conference on Multigrid Methods was held on April 11-16, 1999. Over 100 mathematicians from all over the world attended the meeting. The conference had two major themes: algebraic multigrid and parallel multigrid. During the five day meeting 69 talks on current research topics were presented as well as 3 tutorials. Talks with similar content were organized into sessions. Session topics included: Fluids; Multigrid and Multilevel Methods; Applications; PDE Reformulation; Inverse Problems; Special Methods; Decomposition Methods; Student Paper Winners; Parallel Multigrid; Parallel Algebraic Multigrid; and FOSLS.
Augustin, Christoph M.; Neic, Aurel; Liebmann, Manfred; Prassl, Anton J.; Niederer, Steven A.; Haase, Gundolf; Plank, Gernot
2016-01-01
Electromechanical (EM) models of the heart have been used successfully to study fundamental mechanisms underlying a heart beat in health and disease. However, in all modeling studies reported so far numerous simplifications were made in terms of representing biophysical details of cellular function and its heterogeneity, gross anatomy and tissue microstructure, as well as the bidirectional coupling between electrophysiology (EP) and tissue distension. One limiting factor is the employed spatial discretization methods which are not sufficiently flexible to accommodate complex geometries or resolve heterogeneities, but, even more importantly, the limited efficiency of the prevailing solver techniques which are not sufficiently scalable to deal with the incurring increase in degrees of freedom (DOF) when modeling cardiac electromechanics at high spatio-temporal resolution. This study reports on the development of a novel methodology for solving the nonlinear equation of finite elasticity using human whole organ models of cardiac electromechanics, discretized at a high para-cellular resolution. Three patient-specific, anatomically accurate, whole heart EM models were reconstructed from magnetic resonance (MR) scans at resolutions of 220 μm, 440 μm and 880 μm, yielding meshes of approximately 184.6, 24.4 and 3.7 million tetrahedral elements and 95.9, 13.2 and 2.1 million displacement DOF, respectively. The same mesh was used for discretizing the governing equations of both electrophysiology (EP) and nonlinear elasticity. A novel algebraic multigrid (AMG) preconditioner for an iterative Krylov solver was developed to deal with the resulting computational load. The AMG preconditioner was designed under the primary objective of achieving favorable strong scaling characteristics for both setup and solution runtimes, as this is key for exploiting current high performance computing hardware. Benchmark results using the 220 μm, 440 μm and 880 μm meshes demonstrate
NASA Astrophysics Data System (ADS)
Augustin, Christoph M.; Neic, Aurel; Liebmann, Manfred; Prassl, Anton J.; Niederer, Steven A.; Haase, Gundolf; Plank, Gernot
2016-01-01
Electromechanical (EM) models of the heart have been used successfully to study fundamental mechanisms underlying a heart beat in health and disease. However, in all modeling studies reported so far numerous simplifications were made in terms of representing biophysical details of cellular function and its heterogeneity, gross anatomy and tissue microstructure, as well as the bidirectional coupling between electrophysiology (EP) and tissue distension. One limiting factor is the employed spatial discretization methods which are not sufficiently flexible to accommodate complex geometries or resolve heterogeneities, but, even more importantly, the limited efficiency of the prevailing solver techniques which is not sufficiently scalable to deal with the incurring increase in degrees of freedom (DOF) when modeling cardiac electromechanics at high spatio-temporal resolution. This study reports on the development of a novel methodology for solving the nonlinear equation of finite elasticity using human whole organ models of cardiac electromechanics, discretized at a high para-cellular resolution. Three patient-specific, anatomically accurate, whole heart EM models were reconstructed from magnetic resonance (MR) scans at resolutions of 220 μm, 440 μm and 880 μm, yielding meshes of approximately 184.6, 24.4 and 3.7 million tetrahedral elements and 95.9, 13.2 and 2.1 million displacement DOF, respectively. The same mesh was used for discretizing the governing equations of both electrophysiology (EP) and nonlinear elasticity. A novel algebraic multigrid (AMG) preconditioner for an iterative Krylov solver was developed to deal with the resulting computational load. The AMG preconditioner was designed under the primary objective of achieving favorable strong scaling characteristics for both setup and solution runtimes, as this is key for exploiting current high performance computing hardware. Benchmark results using the 220 μm, 440 μm and 880 μm meshes demonstrate
Final report on the Copper Mountain conference on multigrid methods
1997-10-01
The Copper Mountain Conference on Multigrid Methods was held on April 6-11, 1997. It took the same format used in the previous Copper Mountain Conferences on Multigrid Method conferences. Over 87 mathematicians from all over the world attended the meeting. 56 half-hour talks on current research topics were presented. Talks with similar content were organized into sessions. Session topics included: fluids; domain decomposition; iterative methods; basics; adaptive methods; non-linear filtering; CFD; applications; transport; algebraic solvers; supercomputing; and student paper winners.
An Adaptive Multigrid Algorithm for Simulating Solid Tumor Growth Using Mixture Models
Wise, S.M.; Lowengrub, J.S.; Cristini, V.
2010-01-01
In this paper we give the details of the numerical solution of a three-dimensional multispecies diffuse interface model of tumor growth, which was derived in (Wise et al., J. Theor. Biol. 253 (2008)) and used to study the development of glioma in (Frieboes et al., NeuroImage 37 (2007) and tumor invasion in (Bearer et al., Cancer Research, 69 (2009)) and (Frieboes et al., J. Theor. Biol. 264 (2010)). The model has a thermodynamic basis, is related to recently developed mixture models, and is capable of providing a detailed description of tumor progression. It utilizes a diffuse interface approach, whereby sharp tumor boundaries are replaced by narrow transition layers that arise due to differential adhesive forces among the cell-species. The model consists of fourth-order nonlinear advection-reaction-diffusion equations (of Cahn-Hilliard-type) for the cell-species coupled with reaction-diffusion equations for the substrate components. Numerical solution of the model is challenging because the equations are coupled, highly nonlinear, and numerically stiff. In this paper we describe a fully adaptive, nonlinear multigrid/finite difference method for efficiently solving the equations. We demonstrate the convergence of the algorithm and we present simulations of tumor growth in 2D and 3D that demonstrate the capabilities of the algorithm in accurately and efficiently simulating the progression of tumors with complex morphologies. PMID:21076663
An Adaptive Multigrid Algorithm for Simulating Solid Tumor Growth Using Mixture Models.
Wise, S M; Lowengrub, J S; Cristini, V
2011-01-01
In this paper we give the details of the numerical solution of a three-dimensional multispecies diffuse interface model of tumor growth, which was derived in (Wise et al., J. Theor. Biol. 253 (2008)) and used to study the development of glioma in (Frieboes et al., NeuroImage 37 (2007) and tumor invasion in (Bearer et al., Cancer Research, 69 (2009)) and (Frieboes et al., J. Theor. Biol. 264 (2010)). The model has a thermodynamic basis, is related to recently developed mixture models, and is capable of providing a detailed description of tumor progression. It utilizes a diffuse interface approach, whereby sharp tumor boundaries are replaced by narrow transition layers that arise due to differential adhesive forces among the cell-species. The model consists of fourth-order nonlinear advection-reaction-diffusion equations (of Cahn-Hilliard-type) for the cell-species coupled with reaction-diffusion equations for the substrate components. Numerical solution of the model is challenging because the equations are coupled, highly nonlinear, and numerically stiff. In this paper we describe a fully adaptive, nonlinear multigrid/finite difference method for efficiently solving the equations. We demonstrate the convergence of the algorithm and we present simulations of tumor growth in 2D and 3D that demonstrate the capabilities of the algorithm in accurately and efficiently simulating the progression of tumors with complex morphologies. PMID:21076663
NASA Technical Reports Server (NTRS)
Thompson, C. P.; Leaf, G. K.; Vanrosendale, J.
1991-01-01
An algorithm is described for the solution of the laminar, incompressible Navier-Stokes equations. The basic algorithm is a multigrid based on a robust, box-based smoothing step. Its most important feature is the incorporation of automatic, dynamic mesh refinement. This algorithm supports generalized simple domains. The program is based on a standard staggered-grid formulation of the Navier-Stokes equations for robustness and efficiency. Special grid transfer operators were introduced at grid interfaces in the multigrid algorithm to ensure discrete mass conservation. Results are presented for three models: the driven-cavity, a backward-facing step, and a sudden expansion/contraction.
Self-correcting Multigrid Solver
Jerome L.V. Lewandowski
2004-06-29
A new multigrid algorithm based on the method of self-correction for the solution of elliptic problems is described. The method exploits information contained in the residual to dynamically modify the source term (right-hand side) of the elliptic problem. It is shown that the self-correcting solver is more efficient at damping the short wavelength modes of the algebraic error than its standard equivalent. When used in conjunction with a multigrid method, the resulting solver displays an improved convergence rate with no additional computational work.
A Note on the Relationship Between Adaptive AMG and PCG
Falgout, R D
2004-08-06
In this note, we will show that preconditioned conjugate gradients (PCG) can be viewed as a particular adaptive algebraic multi-grid algorithm (adaptive AMG). The relationship between these two methods provides important insight into the construction of effective adaptive AMG algorithms.
Spectral element multigrid. Part 2: Theoretical justification
NASA Technical Reports Server (NTRS)
Maday, Yvon; Munoz, Rafael
1988-01-01
A multigrid algorithm is analyzed which is used for solving iteratively the algebraic system resulting from tha approximation of a second order problem by spectral or spectral element methods. The analysis, performed here in the one dimensional case, justifies the good smoothing properties of the Jacobi preconditioner that was presented in Part 1 of this paper.
Solving Upwind-Biased Discretizations. 2; Multigrid Solver Using Semicoarsening
NASA Technical Reports Server (NTRS)
Diskin, Boris
1999-01-01
This paper studies a novel multigrid approach to the solution for a second order upwind biased discretization of the convection equation in two dimensions. This approach is based on semi-coarsening and well balanced explicit correction terms added to coarse-grid operators to maintain on coarse-grid the same cross-characteristic interaction as on the target (fine) grid. Colored relaxation schemes are used on all the levels allowing a very efficient parallel implementation. The results of the numerical tests can be summarized as follows: 1) The residual asymptotic convergence rate of the proposed V(0, 2) multigrid cycle is about 3 per cycle. This convergence rate far surpasses the theoretical limit (4/3) predicted for standard multigrid algorithms using full coarsening. The reported efficiency does not deteriorate with increasing the cycle, depth (number of levels) and/or refining the target-grid mesh spacing. 2) The full multi-grid algorithm (FMG) with two V(0, 2) cycles on the target grid and just one V(0, 2) cycle on all the coarse grids always provides an approximate solution with the algebraic error less than the discretization error. Estimates of the total work in the FMG algorithm are ranged between 18 and 30 minimal work units (depending on the target (discretizatioin). Thus, the overall efficiency of the FMG solver closely approaches (if does not achieve) the goal of the textbook multigrid efficiency. 3) A novel approach to deriving a discrete solution approximating the true continuous solution with a relative accuracy given in advance is developed. An adaptive multigrid algorithm (AMA) using comparison of the solutions on two successive target grids to estimate the accuracy of the current target-grid solution is defined. A desired relative accuracy is accepted as an input parameter. The final target grid on which this accuracy can be achieved is chosen automatically in the solution process. the actual relative accuracy of the discrete solution approximation
MueLu Multigrid Preconditioning Package
2012-09-11
MueLu is intended for the research and development of multigrid algorithms used in the solution of sparse linear systems arising from systems of partial differential equations. The software provides multigrid source code, test programs, and short example programs to demonstrate the various interfaces for creating, accessing, and applying the solvers. MueLu currently provides an implementation of smoothed aggregation algebraic multigrid method and interfaces to many commonly used smoothers. However, the software is intended to be extensible, and new methods can be incorporated easily. MueLu also allows for advanced usage, such as combining multiple methods and segregated solves. The library supports point and block access to matrix data. All algorithms and methods in MueLu have been or will be published in the open scientific literature.
MueLu Multigrid Preconditioning Package
2012-09-11
MueLu is intended for the research and development of multigrid algorithms used in the solution of sparse linear systems arising from systems of partial differential equations. The software provides multigrid source code, test programs, and short example programs to demonstrate the various interfaces for creating, accessing, and applying the solvers. MueLu currently provides an implementation of smoothed aggregation algebraic multigrid method and interfaces to many commonly used smoothers. However, the software is intended to bemore » extensible, and new methods can be incorporated easily. MueLu also allows for advanced usage, such as combining multiple methods and segregated solves. The library supports point and block access to matrix data. All algorithms and methods in MueLu have been or will be published in the open scientific literature.« less
New Nonlinear Multigrid Analysis
NASA Technical Reports Server (NTRS)
Xie, Dexuan
1996-01-01
The nonlinear multigrid is an efficient algorithm for solving the system of nonlinear equations arising from the numerical discretization of nonlinear elliptic boundary problems. In this paper, we present a new nonlinear multigrid analysis as an extension of the linear multigrid theory presented by Bramble. In particular, we prove the convergence of the nonlinear V-cycle method for a class of mildly nonlinear second order elliptic boundary value problems which do not have full elliptic regularity.
Introduction to multigrid methods
NASA Technical Reports Server (NTRS)
Wesseling, P.
1995-01-01
These notes were written for an introductory course on the application of multigrid methods to elliptic and hyperbolic partial differential equations for engineers, physicists and applied mathematicians. The use of more advanced mathematical tools, such as functional analysis, is avoided. The course is intended to be accessible to a wide audience of users of computational methods. We restrict ourselves to finite volume and finite difference discretization. The basic principles are given. Smoothing methods and Fourier smoothing analysis are reviewed. The fundamental multigrid algorithm is studied. The smoothing and coarse grid approximation properties are discussed. Multigrid schedules and structured programming of multigrid algorithms are treated. Robustness and efficiency are considered.
NASA Technical Reports Server (NTRS)
Dendy, J. E., Jr.
1981-01-01
The black box multigrid (BOXMG) code, which only needs specification of the matrix problem for application in the multigrid method was investigated. It is contended that a major problem with the multigrid method is that each new grid configuration requires a major programming effort to develop a code that specifically handles that grid configuration. The SOR and ICCG methods only specify the matrix problem, no matter what the grid configuration. It is concluded that the BOXMG does everything else necessary to set up the auxiliary coarser problems to achieve a multigrid solution.
Algebraic grid adaptation method using non-uniform rational B-spline surface modeling
NASA Technical Reports Server (NTRS)
Yang, Jiann-Cherng; Soni, B. K.
1992-01-01
An algebraic adaptive grid system based on equidistribution law and utilized by the Non-Uniform Rational B-Spline (NURBS) surface for redistribution is presented. A weight function, utilizing a properly weighted boolean sum of various flow field characteristics is developed. Computational examples are presented to demonstrate the success of this technique.
Adaptive Intelligent Support to Improve Peer Tutoring in Algebra
ERIC Educational Resources Information Center
Walker, Erin; Rummel, Nikol; Koedinger, Kenneth R.
2014-01-01
Adaptive collaborative learning support (ACLS) involves collaborative learning environments that adapt their characteristics, and sometimes provide intelligent hints and feedback, to improve individual students' collaborative interactions. ACLS often involves a system that can automatically assess student dialogue, model effective and…
Scale-adaptive tensor algebra for local many-body methods of electronic structure theory
Liakh, Dmitry I
2014-01-01
While the formalism of multiresolution analysis (MRA), based on wavelets and adaptive integral representations of operators, is actively progressing in electronic structure theory (mostly on the independent-particle level and, recently, second-order perturbation theory), the concepts of multiresolution and adaptivity can also be utilized within the traditional formulation of correlated (many-particle) theory which is based on second quantization and the corresponding (generally nonorthogonal) tensor algebra. In this paper, we present a formalism called scale-adaptive tensor algebra (SATA) which exploits an adaptive representation of tensors of many-body operators via the local adjustment of the basis set quality. Given a series of locally supported fragment bases of a progressively lower quality, we formulate the explicit rules for tensor algebra operations dealing with adaptively resolved tensor operands. The formalism suggested is expected to enhance the applicability and reliability of local correlated many-body methods of electronic structure theory, especially those directly based on atomic orbitals (or any other localized basis functions).
Conduct of the International Multigrid Conference
NASA Technical Reports Server (NTRS)
Mccormick, S.
1984-01-01
The 1983 International Multigrid Conference was held at Colorado's Copper Mountain Ski Resort, April 5-8. It was organized jointly by the Institute for Computational Studies at Colorado State University, U.S.A., and the Gasellschaft fur Mathematik und Datenverarbeitung Bonn, F.R. Germany, and was sponsored by the Air Force Office of Sponsored Research and National Aeronautics and Space Administration Headquarters. The conference was attended by 80 scientists, divided by institution almost equally into private industry, research laboratories, and academia. Fifteen attendees came from countries other than the U.S.A. In addition to the fruitful discussions, the most significant factor of the conference was of course the lectures. The lecturers include most of the leaders in the field of multigrid research. The program offered a nice integrated blend of theory, numerical studies, basic research, and applications. Some of the new areas of research that have surfaced since the Koln-Porz conference include: the algebraic multigrid approach; multigrid treatment of Euler equations for inviscid fluid flow problems; 3-D problems; and the application of MG methods on vector and parallel computers.
Textbook Multigrid Efficiency for Leading Edge Stagnation
NASA Technical Reports Server (NTRS)
Diskin, Boris; Thomas, James L.; Mineck, Raymond E.
2004-01-01
A multigrid solver is defined as having textbook multigrid efficiency (TME) if the solutions to the governing system of equations are attained in a computational work which is a small (less than 10) multiple of the operation count in evaluating the discrete residuals. TME in solving the incompressible inviscid fluid equations is demonstrated for leading-edge stagnation flows. The contributions of this paper include (1) a special formulation of the boundary conditions near stagnation allowing convergence of the Newton iterations on coarse grids, (2) the boundary relaxation technique to facilitate relaxation and residual restriction near the boundaries, (3) a modified relaxation scheme to prevent initial error amplification, and (4) new general analysis techniques for multigrid solvers. Convergence of algebraic errors below the level of discretization errors is attained by a full multigrid (FMG) solver with one full approximation scheme (FAS) cycle per grid. Asymptotic convergence rates of the FAS cycles for the full system of flow equations are very fast, approaching those for scalar elliptic equations.
Textbook Multigrid Efficiency for Leading Edge Stagnation
NASA Technical Reports Server (NTRS)
Diskin, Boris; Thomas, James L.; Mineck, Raymond E.
2004-01-01
A multigrid solver is defined as having textbook multigrid efficiency (TME) if the solutions to the governing system of equations are attained in a computational work which is a small (less than 10) multiple of the operation count in evaluating the discrete residuals. TME in solving the incompressible inviscid fluid equations is demonstrated for leading- edge stagnation flows. The contributions of this paper include (1) a special formulation of the boundary conditions near stagnation allowing convergence of the Newton iterations on coarse grids, (2) the boundary relaxation technique to facilitate relaxation and residual restriction near the boundaries, (3) a modified relaxation scheme to prevent initial error amplification, and (4) new general analysis techniques for multigrid solvers. Convergence of algebraic errors below the level of discretization errors is attained by a full multigrid (FMG) solver with one full approximation scheme (F.4S) cycle per grid. Asymptotic convergence rates of the F.4S cycles for the full system of flow equations are very fast, approaching those for scalar elliptic equations.
Accuracy requirements of optical linear algebra processors in adaptive optics imaging systems
NASA Technical Reports Server (NTRS)
Downie, John D.; Goodman, Joseph W.
1989-01-01
The accuracy requirements of optical processors in adaptive optics systems are determined by estimating the required accuracy in a general optical linear algebra processor (OLAP) that results in a smaller average residual aberration than that achieved with a conventional electronic digital processor with some specific computation speed. Special attention is given to an error analysis of a general OLAP with regard to the residual aberration that is created in an adaptive mirror system by the inaccuracies of the processor, and to the effect of computational speed of an electronic processor on the correction. Results are presented on the ability of an OLAP to compete with a digital processor in various situations.
Fuzzy Backstepping Torque Control Of Passive Torque Simulator With Algebraic Parameters Adaptation
NASA Astrophysics Data System (ADS)
Ullah, Nasim; Wang, Shaoping; Wang, Xingjian
2015-07-01
This work presents fuzzy backstepping control techniques applied to the load simulator for good tracking performance in presence of extra torque, and nonlinear friction effects. Assuming that the parameters of the system are uncertain and bounded, Algebraic parameters adaptation algorithm is used to adopt the unknown parameters. The effect of transient fuzzy estimation error on parameters adaptation algorithm is analyzed and the fuzzy estimation error is further compensated using saturation function based adaptive control law working in parallel with the actual system to improve the transient performance of closed loop system. The saturation function based adaptive control term is large in the transient time and settles to an optimal lower value in the steady state for which the closed loop system remains stable. The simulation results verify the validity of the proposed control method applied to the complex aerodynamics passive load simulator.
Geometric-Algebra LMS Adaptive Filter and Its Application to Rotation Estimation
NASA Astrophysics Data System (ADS)
Lopes, Wilder B.; Al-Nuaimi, Anas; Lopes, Cassio G.
2016-06-01
This paper exploits Geometric (Clifford) Algebra (GA) theory in order to devise and introduce a new adaptive filtering strategy. From a least-squares cost function, the gradient is calculated following results from Geometric Calculus (GC), the extension of GA to handle differential and integral calculus. The novel GA least-mean-squares (GA-LMS) adaptive filter, which inherits properties from standard adaptive filters and from GA, is developed to recursively estimate a rotor (multivector), a hypercomplex quantity able to describe rotations in any dimension. The adaptive filter (AF) performance is assessed via a 3D point-clouds registration problem, which contains a rotation estimation step. Calculating the AF computational complexity suggests that it can contribute to reduce the cost of a full-blown 3D registration algorithm, especially when the number of points to be processed grows. Moreover, the employed GA/GC framework allows for easily applying the resulting filter to estimating rotors in higher dimensions.
The mixed finite element multigrid method for stokes equations.
Muzhinji, K; Shateyi, S; Motsa, S S
2015-01-01
The stable finite element discretization of the Stokes problem produces a symmetric indefinite system of linear algebraic equations. A variety of iterative solvers have been proposed for such systems in an attempt to construct efficient, fast, and robust solution techniques. This paper investigates one of such iterative solvers, the geometric multigrid solver, to find the approximate solution of the indefinite systems. The main ingredient of the multigrid method is the choice of an appropriate smoothing strategy. This study considers the application of different smoothers and compares their effects in the overall performance of the multigrid solver. We study the multigrid method with the following smoothers: distributed Gauss Seidel, inexact Uzawa, preconditioned MINRES, and Braess-Sarazin type smoothers. A comparative study of the smoothers shows that the Braess-Sarazin smoothers enhance good performance of the multigrid method. We study the problem in a two-dimensional domain using stable Hood-Taylor Q2-Q1 pair of finite rectangular elements. We also give the main theoretical convergence results. We present the numerical results to demonstrate the efficiency and robustness of the multigrid method and confirm the theoretical results. PMID:25945361
The Mixed Finite Element Multigrid Method for Stokes Equations
Muzhinji, K.; Shateyi, S.; Motsa, S. S.
2015-01-01
The stable finite element discretization of the Stokes problem produces a symmetric indefinite system of linear algebraic equations. A variety of iterative solvers have been proposed for such systems in an attempt to construct efficient, fast, and robust solution techniques. This paper investigates one of such iterative solvers, the geometric multigrid solver, to find the approximate solution of the indefinite systems. The main ingredient of the multigrid method is the choice of an appropriate smoothing strategy. This study considers the application of different smoothers and compares their effects in the overall performance of the multigrid solver. We study the multigrid method with the following smoothers: distributed Gauss Seidel, inexact Uzawa, preconditioned MINRES, and Braess-Sarazin type smoothers. A comparative study of the smoothers shows that the Braess-Sarazin smoothers enhance good performance of the multigrid method. We study the problem in a two-dimensional domain using stable Hood-Taylor Q2-Q1 pair of finite rectangular elements. We also give the main theoretical convergence results. We present the numerical results to demonstrate the efficiency and robustness of the multigrid method and confirm the theoretical results. PMID:25945361
Advanced Multigrid Solvers for Fluid Dynamics
NASA Technical Reports Server (NTRS)
Brandt, Achi
1999-01-01
The main objective of this project has been to support the development of multigrid techniques in computational fluid dynamics that can achieve "textbook multigrid efficiency" (TME), which is several orders of magnitude faster than current industrial CFD solvers. Toward that goal we have assembled a detailed table which lists every foreseen kind of computational difficulty for achieving it, together with the possible ways for resolving the difficulty, their current state of development, and references. We have developed several codes to test and demonstrate, in the framework of simple model problems, several approaches for overcoming the most important of the listed difficulties that had not been resolved before. In particular, TME has been demonstrated for incompressible flows on one hand, and for near-sonic flows on the other hand. General approaches were advanced for the relaxation of stagnation points and boundary conditions under various situations. Also, new algebraic multigrid techniques were formed for treating unstructured grid formulations. More details on all these are given below.
Brezina, M; Manteuffel, T; McCormick, S; Ruge, J; Sanders, G; Vassilevski, P S
2007-05-31
Consider the linear system Ax = b, where A is a large, sparse, real, symmetric, and positive definite matrix and b is a known vector. Solving this system for unknown vector x using a smoothed aggregation multigrid (SA) algorithm requires a characterization of the algebraically smooth error, meaning error that is poorly attenuated by the algorithm's relaxation process. For relaxation processes that are typically used in practice, algebraically smooth error corresponds to the near-nullspace of A. Therefore, having a good approximation to a minimal eigenvector is useful to characterize the algebraically smooth error when forming a linear SA solver. This paper discusses the details of a generalized eigensolver based on smoothed aggregation (GES-SA) that is designed to produce an approximation to a minimal eigenvector of A. GES-SA might be very useful as a standalone eigensolver for applications that desire an approximate minimal eigenvector, but the primary aim here is for GES-SA to produce an initial algebraically smooth component that may be used to either create a black-box SA solver or initiate the adaptive SA ({alpha}SA) process.
Element Agglomeration Algebraic Multigrid and Upscaling Library
2015-02-11
ELAG is a serial C++ library for numerical upscaling of finite element discretizations. It provides optimal complexity algorithms to build multilevel hierarchies and solvers that can be used for solving a wide class of partial differential equation (elliptic, hyperbolic, saddle point problems) on general unstructured mesh. Additionally, a novel multilevel solver for saddle point problems with divergence constraint is implemented.
Unstructured multigrid through agglomeration
NASA Technical Reports Server (NTRS)
Venkatakrishnan, V.; Mavriplis, D. J.; Berger, M. J.
1993-01-01
In this work the compressible Euler equations are solved using finite volume techniques on unstructured grids. The spatial discretization employs a central difference approximation augmented by dissipative terms. Temporal discretization is done using a multistage Runge-Kutta scheme. A multigrid technique is used to accelerate convergence to steady state. The coarse grids are derived directly from the given fine grid through agglomeration of the control volumes. This agglomeration is accomplished by using a greedy-type algorithm and is done in such a way that the load, which is proportional to the number of edges, goes down by nearly a factor of 4 when moving from a fine to a coarse grid. The agglomeration algorithm has been implemented and the grids have been tested in a multigrid code. An area-weighted restriction is applied when moving from fine to coarse grids while a trivial injection is used for prolongation. Across a range of geometries and flows, it is shown that the agglomeration multigrid scheme compares very favorably with an unstructured multigrid algorithm that makes use of independent coarse meshes, both in terms of convergence and elapsed times.
NASA Technical Reports Server (NTRS)
Golik, W. L.
1996-01-01
A robust solver for the elliptic grid generation equations is sought via a numerical study. The system of PDEs is discretized with finite differences, and multigrid methods are applied to the resulting nonlinear algebraic equations. Multigrid iterations are compared with respect to the robustness and efficiency. Different smoothers are tried to improve the convergence of iterations. The methods are applied to four 2D grid generation problems over a wide range of grid distortions. The results of the study help to select smoothing schemes and the overall multigrid procedures for elliptic grid generation.
Multigrid Methods in Electronic Structure Calculations
NASA Astrophysics Data System (ADS)
Briggs, Emil
1996-03-01
Multigrid techniques have become the method of choice for a broad range of computational problems. Their use in electronic structure calculations introduces a new set of issues when compared to traditional plane wave approaches. We have developed a set of techniques that address these issues and permit multigrid algorithms to be applied to the electronic structure problem in an efficient manner. In our approach the Kohn-Sham equations are discretized on a real-space mesh using a compact representation of the Hamiltonian. The resulting equations are solved directly on the mesh using multigrid iterations. This produces rapid convergence rates even for ill-conditioned systems with large length and/or energy scales. The method has been applied to both periodic and non-periodic systems containing over 400 atoms and the results are in very good agreement with both theory and experiment. Example applications include a vacancy in diamond, an isolated C60 molecule, and a 64-atom cell of GaN with the Ga d-electrons in valence which required a 250 Ry cutoff. A particular strength of a real-space multigrid approach is its ready adaptability to massively parallel computer architectures. The compact representation of the Hamiltonian is especially well suited to such machines. Tests on the Cray-T3D have shown nearly linear scaling of the execution time up to the maximum number of processors (512). The MPP implementation has been used for studies of a large Amyloid Beta Peptide (C_146O_45N_42H_210) found in the brains of Alzheimers disease patients. Further applications of the multigrid method will also be described. (in collaboration D. J. Sullivan and J. Bernholc)
Large-Scale Parallel Viscous Flow Computations using an Unstructured Multigrid Algorithm
NASA Technical Reports Server (NTRS)
Mavriplis, Dimitri J.
1999-01-01
The development and testing of a parallel unstructured agglomeration multigrid algorithm for steady-state aerodynamic flows is discussed. The agglomeration multigrid strategy uses a graph algorithm to construct the coarse multigrid levels from the given fine grid, similar to an algebraic multigrid approach, but operates directly on the non-linear system using the FAS (Full Approximation Scheme) approach. The scalability and convergence rate of the multigrid algorithm are examined on the SGI Origin 2000 and the Cray T3E. An argument is given which indicates that the asymptotic scalability of the multigrid algorithm should be similar to that of its underlying single grid smoothing scheme. For medium size problems involving several million grid points, near perfect scalability is obtained for the single grid algorithm, while only a slight drop-off in parallel efficiency is observed for the multigrid V- and W-cycles, using up to 128 processors on the SGI Origin 2000, and up to 512 processors on the Cray T3E. For a large problem using 25 million grid points, good scalability is observed for the multigrid algorithm using up to 1450 processors on a Cray T3E, even when the coarsest grid level contains fewer points than the total number of processors.
Recent Advances in Agglomerated Multigrid
NASA Technical Reports Server (NTRS)
Nishikawa, Hiroaki; Diskin, Boris; Thomas, James L.; Hammond, Dana P.
2013-01-01
We report recent advancements of the agglomerated multigrid methodology for complex flow simulations on fully unstructured grids. An agglomerated multigrid solver is applied to a wide range of test problems from simple two-dimensional geometries to realistic three- dimensional configurations. The solver is evaluated against a single-grid solver and, in some cases, against a structured-grid multigrid solver. Grid and solver issues are identified and overcome, leading to significant improvements over single-grid solvers.
Multigrid on massively parallel architectures
Falgout, R D; Jones, J E
1999-09-17
The scalable implementation of multigrid methods for machines with several thousands of processors is investigated. Parallel performance models are presented for three different structured-grid multigrid algorithms, and a description is given of how these models can be used to guide implementation. Potential pitfalls are illustrated when moving from moderate-sized parallelism to large-scale parallelism, and results are given from existing multigrid codes to support the discussion. Finally, the use of mixed programming models is investigated for multigrid codes on clusters of SMPs.
Multigrid Methods for Fully Implicit Oil Reservoir Simulation
NASA Technical Reports Server (NTRS)
Molenaar, J.
1996-01-01
In this paper we consider the simultaneous flow of oil and water in reservoir rock. This displacement process is modeled by two basic equations: the material balance or continuity equations and the equation of motion (Darcy's law). For the numerical solution of this system of nonlinear partial differential equations there are two approaches: the fully implicit or simultaneous solution method and the sequential solution method. In the sequential solution method the system of partial differential equations is manipulated to give an elliptic pressure equation and a hyperbolic (or parabolic) saturation equation. In the IMPES approach the pressure equation is first solved, using values for the saturation from the previous time level. Next the saturations are updated by some explicit time stepping method; this implies that the method is only conditionally stable. For the numerical solution of the linear, elliptic pressure equation multigrid methods have become an accepted technique. On the other hand, the fully implicit method is unconditionally stable, but it has the disadvantage that in every time step a large system of nonlinear algebraic equations has to be solved. The most time-consuming part of any fully implicit reservoir simulator is the solution of this large system of equations. Usually this is done by Newton's method. The resulting systems of linear equations are then either solved by a direct method or by some conjugate gradient type method. In this paper we consider the possibility of applying multigrid methods for the iterative solution of the systems of nonlinear equations. There are two ways of using multigrid for this job: either we use a nonlinear multigrid method or we use a linear multigrid method to deal with the linear systems that arise in Newton's method. So far only a few authors have reported on the use of multigrid methods for fully implicit simulations. Two-level FAS algorithm is presented for the black-oil equations, and linear multigrid for
Some Aspects of Multigrid Methods on Non-Structured Meshes
NASA Technical Reports Server (NTRS)
Guillard, H.; Marco, N.
1996-01-01
To solve a given fine mesh problem, the design of a multigrid method requires the definition of coarse levels, associated coarse grid operators and inter-grid transfer operators. For non-structured simplified meshes, these definitions can rely on the use of non-nested triangulations. These definitions can also be founded on agglomeration/aggregation techniques in a purely algebraic manner. This paper analyzes these two options, shows the connections of the volume-agglomeration method with algebraic methods and proposes a new definition of prolongation operator suitable for the application of the volume-agglomeration method to elliptic problems.
An evaluation of parallel multigrid as a solver and a preconditioner for singular perturbed problems
Oosterlee, C.W.; Washio, T.
1996-12-31
In this paper we try to achieve h-independent convergence with preconditioned GMRES and BiCGSTAB for 2D singular perturbed equations. Three recently developed multigrid methods are adopted as a preconditioner. They are also used as solution methods in order to compare the performance of the methods as solvers and as preconditioners. Two of the multigrid methods differ only in the transfer operators. One uses standard matrix- dependent prolongation operators from. The second uses {open_quotes}upwind{close_quotes} prolongation operators, developed. Both employ the Galerkin coarse grid approximation and an alternating zebra line Gauss-Seidel smoother. The third method is based on the block LU decomposition of a matrix and on an approximate Schur complement. This multigrid variant is presented in. All three multigrid algorithms are algebraic methods.
ERIC Educational Resources Information Center
Senarat, Somprasong; Tayraukham, Sombat; Piyapimonsit, Chatsiri; Tongkhambanjong, Sakesan
2013-01-01
The purpose of this research is to develop a multidimensional computerized adaptive test for diagnosing the cognitive process of grade 7 students in learning algebra by applying multidimensional item response theory. The research is divided into 4 steps: 1) the development of item bank of algebra, 2) the development of the multidimensional…
NASA Technical Reports Server (NTRS)
Mineck, Raymond E.; Thomas, James L.; Biedron, Robert T.; Diskin, Boris
2005-01-01
FMG3D (full multigrid 3 dimensions) is a pilot computer program that solves equations of fluid flow using a finite difference representation on a structured grid. Infrastructure exists for three dimensions but the current implementation treats only two dimensions. Written in Fortran 90, FMG3D takes advantage of the recursive subroutine feature, dynamic memory allocation, and structured-programming constructs of that language. FMG3D supports multi-block grids with three types of block-to-block interfaces: periodic, C-zero, and C-infinity. For all three types, grid points must match at interfaces. For periodic and C-infinity types, derivatives of grid metrics must be continuous at interfaces. The available equation sets are as follows: scalar elliptic equations, scalar convection equations, and the pressure-Poisson formulation of the Navier-Stokes equations for an incompressible fluid. All the equation sets are implemented with nonzero forcing functions to enable the use of user-specified solutions to assist in verification and validation. The equations are solved with a full multigrid scheme using a full approximation scheme to converge the solution on each succeeding grid level. Restriction to the next coarser mesh uses direct injection for variables and full weighting for residual quantities; prolongation of the coarse grid correction from the coarse mesh to the fine mesh uses bilinear interpolation; and prolongation of the coarse grid solution uses bicubic interpolation.
Multigrid contact detection method
NASA Astrophysics Data System (ADS)
He, Kejing; Dong, Shoubin; Zhou, Zhaoyao
2007-03-01
Contact detection is a general problem of many physical simulations. This work presents a O(N) multigrid method for general contact detection problems (MGCD). The multigrid idea is integrated with contact detection problems. Both the time complexity and memory consumption of the MGCD are O(N) . Unlike other methods, whose efficiencies are influenced strongly by the object size distribution, the performance of MGCD is insensitive to the object size distribution. We compare the MGCD with the no binary search (NBS) method and the multilevel boxing method in three dimensions for both time complexity and memory consumption. For objects with similar size, the MGCD is as good as the NBS method, both of which outperform the multilevel boxing method regarding memory consumption. For objects with diverse size, the MGCD outperform both the NBS method and the multilevel boxing method. We use the MGCD to solve the contact detection problem for a granular simulation system based on the discrete element method. From this granular simulation, we get the density property of monosize packing and binary packing with size ratio equal to 10. The packing density for monosize particles is 0.636. For binary packing with size ratio equal to 10, when the number of small particles is 300 times as the number of big particles, the maximal packing density 0.824 is achieved.
Preconditioners for the spectral multigrid method
NASA Technical Reports Server (NTRS)
Phillips, T. N.; Zang, T. A.; Hussaini, M. Y.
1983-01-01
The systems of algebraic equations which arise from spectral discretizations of elliptic equations are full and direct solutions of them are rarely feasible. Iterative methods are an attractive alternative because Fourier transform techniques enable the discrete matrix-vector products to be computed with nearly the same efficiency as is possible for corresponding but sparse finite difference discretizations. For realistic Dirichlet problems preconditioning is essential for acceptable convergence rates. A brief description of Chebyshev spectral approximations and spectral multigrid methods for elliptic problems is given. A survey of preconditioners for Dirichlet problems based on second-order finite difference methods is made. New preconditioning techniques based on higher order finite differences and on the spectral matrix itself are presented. The preconditioners are analyzed in terms of their spectra and numerical examples are presented.
Preconditioners for the spectral multigrid method
NASA Technical Reports Server (NTRS)
Phillips, T. N.; Hussaini, M. Y.; Zang, T. A.
1986-01-01
The systems of algebraic equations which arise from spectral discretizations of elliptic equations are full and direct solutions of them are rarely feasible. Iterative methods are an attractive alternative because Fourier transform techniques enable the discrete matrix-vector products to be computed with nearly the same efficiency as is possible for corresponding but sparse finite difference discretizations. For realistic Dirichlet problem preconditioning is essential for acceptable convergence rates. A brief description of Chebyshev spectral approximations and spectral multigrid methods for elliptic problems is given. A survey of preconditioners for Dirichlet problems based on second-order finite difference methods is made. New preconditioning techniques based on higher order finite differences and on the spectral matrix itself are presented. The preconditioners are analyzed in terms of their spectra and numerical examples are presented.
A Hexahedral Multigrid Approach for Simulating Cuts in Deformable Objects.
Dick, C; Georgii, J; Westermann, R
2011-11-01
We present a hexahedral finite element method for simulating cuts in deformable bodies using the corotational formulation of strain at high computational efficiency. Key to our approach is a novel embedding of adaptive element refinements and topological changes of the simulation grid into a geometric multigrid solver. Starting with a coarse hexahedral simulation grid, this grid is adaptively refined at the surface of a cutting tool until a finest resolution level, and the cut is modeled by separating elements along the cell faces at this level. To represent the induced discontinuities on successive multigrid levels, the affected coarse grid cells are duplicated and the resulting connectivity components are distributed to either side of the cut. Drawing upon recent work on octree and multigrid schemes for the numerical solution of partial differential equations, we develop efficient algorithms for updating the systems of equations of the adaptive finite element discretization and the multigrid hierarchy. To construct a surface that accurately aligns with the cuts, we adapt the splitting cubes algorithm to the specific linked voxel representation of the simulation domain we use. The paper is completed by a convergence analysis of the finite element solver and a performance comparison to alternative numerical solution methods. These investigations show that our approach offers high computational efficiency and physical accuracy, and that it enables cutting of deformable bodies at very high resolutions. PMID:21173453
Another look at neural multigrid
Baeker, M.
1997-04-01
We present a new multigrid method called neural multigrid which is based on joining multigrid ideas with concepts from neural nets. The main idea is to use the Greenbaum criterion as a cost functional for the neural net. The algorithm is able to learn efficient interpolation operators in the case of the ordered Laplace equation with only a very small critical slowing down and with a surprisingly small amount of work comparable to that of a Conjugate Gradient solver. In the case of the two-dimensional Laplace equation with SU(2) gauge fields at {beta}=0 the learning exhibits critical slowing down with an exponent of about z {approx} 0.4. The algorithm is able to find quite good interpolation operators in this case as well. Thereby it is proven that a practical true multigrid algorithm exists even for a gauge theory. An improved algorithm using dynamical blocks that will hopefully overcome the critical slowing down completely is sketched.
Final Report on Subcontract B591217: Multigrid Methods for Systems of PDEs
Xu, J; Brannick, J J; Zikatanov, L
2011-10-25
Progress is summarized in the following areas of study: (1) Compatible relaxation; (2) Improving aggregation-based MG solver performance - variable cycle; (3) First Order System Least Squares (FOSLS) for LQCD; (4) Auxiliary space preconditioners; (5) Bootstrap algebraic multigrid; and (6) Practical applications of AMG and fast auxiliary space preconditioners.
MGLab: An Interactive Multigrid Environment
NASA Technical Reports Server (NTRS)
Bordner, James; Saied, Faisal
1996-01-01
MGLab is a set of Matlab functions that defines an interactive environment for experimenting with multigrid algorithms. The package solves two-dimensional elliptic partial differential equations discretized using either finite differences or finite volumes, depending on the problem. Built-in problems include the Poisson equation, the Helmholtz equation, a convection-diffusion problem, and a discontinuous coefficient problem. A number of parameters controlling the multigrid V-cycle can be set using a point-and-click mechanism. The menu-based user interface also allows a choice of several Krylov subspace methods, including CG, GMRES(k), and Bi-CGSTAB, which can be used either as stand-alone solvers or as multigrid acceleration schemes. The package exploits Matlab's visualization and sparse matrix features and has been structured to be easily extensible.
Multigrid methods for isogeometric discretization.
Gahalaut, K P S; Kraus, J K; Tomar, S K
2013-01-01
We present (geometric) multigrid methods for isogeometric discretization of scalar second order elliptic problems. The smoothing property of the relaxation method, and the approximation property of the intergrid transfer operators are analyzed. These properties, when used in the framework of classical multigrid theory, imply uniform convergence of two-grid and multigrid methods. Supporting numerical results are provided for the smoothing property, the approximation property, convergence factor and iterations count for V-, W- and F-cycles, and the linear dependence of V-cycle convergence on the smoothing steps. For two dimensions, numerical results include the problems with variable coefficients, simple multi-patch geometry, a quarter annulus, and the dependence of convergence behavior on refinement levels [Formula: see text], whereas for three dimensions, only the constant coefficient problem in a unit cube is considered. The numerical results are complete up to polynomial order [Formula: see text], and for [Formula: see text] and [Formula: see text] smoothness. PMID:24511168
Multigrid methods for isogeometric discretization
Gahalaut, K.P.S.; Kraus, J.K.; Tomar, S.K.
2013-01-01
We present (geometric) multigrid methods for isogeometric discretization of scalar second order elliptic problems. The smoothing property of the relaxation method, and the approximation property of the intergrid transfer operators are analyzed. These properties, when used in the framework of classical multigrid theory, imply uniform convergence of two-grid and multigrid methods. Supporting numerical results are provided for the smoothing property, the approximation property, convergence factor and iterations count for V-, W- and F-cycles, and the linear dependence of V-cycle convergence on the smoothing steps. For two dimensions, numerical results include the problems with variable coefficients, simple multi-patch geometry, a quarter annulus, and the dependence of convergence behavior on refinement levels ℓ, whereas for three dimensions, only the constant coefficient problem in a unit cube is considered. The numerical results are complete up to polynomial order p=4, and for C0 and Cp-1 smoothness. PMID:24511168
Comparative Convergence Analysis of Nonlinear AMLI-Cycle Multigrid
Hu, Xiaozhe; Vassilevski, Panayot S.; Xu, Jinchao
2013-04-30
The purpose of our paper is to provide a comprehensive convergence analysis of the nonlinear algebraic multilevel iteration (AMLI)-cycle multigrid (MG) method for symmetric positive definite problems. We show that the nonlinear AMLI-cycle MG method is uniformly convergent, based on classical assumptions for approximation and smoothing properties. Furthermore, under only the assumption that the smoother is convergent, we show that the nonlinear AMLI-cycle method is always better (or not worse) than the respective V-cycle MG method. Finally, numerical experiments are presented to illustrate the theoretical results.
Adaptive Meshing Techniques for Viscous Flow Calculations on Mixed Element Unstructured Meshes
NASA Technical Reports Server (NTRS)
Mavriplis, D. J.
1997-01-01
An adaptive refinement strategy based on hierarchical element subdivision is formulated and implemented for meshes containing arbitrary mixtures of tetrahendra, hexahendra, prisms and pyramids. Special attention is given to keeping memory overheads as low as possible. This procedure is coupled with an algebraic multigrid flow solver which operates on mixed-element meshes. Inviscid flows as well as viscous flows are computed an adaptively refined tetrahedral, hexahedral, and hybrid meshes. The efficiency of the method is demonstrated by generating an adapted hexahedral mesh containing 3 million vertices on a relatively inexpensive workstation.
Multigrid for locally refined meshes
Shapira, Y.
1999-12-01
A multilevel method for the solution of finite element schemes on locally refined meshes is introduced. For isotropic diffusion problems, the condition number of the two-level method is bounded independently of the mesh size and the discontinuities in the diffusion coefficient. The curves of discontinuity need not be aligned with the coarse mesh. Indeed, numerical applications with 10 levels of local refinement yield a rapid convergence of the corresponding 10-level, multigrid V-cycle and other multigrid cycles which are more suitable for parallelism even when the discontinuities are invisible on most of the coarse meshes.
Applied Algebra Curriculum Modules.
ERIC Educational Resources Information Center
Texas State Technical Coll., Marshall.
This collection of 11 applied algebra curriculum modules can be used independently as supplemental modules for an existing algebra curriculum. They represent diverse curriculum styles that should stimulate the teacher's creativity to adapt them to other algebra concepts. The selected topics have been determined to be those most needed by students…
Multistage Schemes with Multigrid for Euler and Navier-Strokes Equations: Components and Analysis
NASA Technical Reports Server (NTRS)
Swanson, R. C.; Turkel, Eli
1997-01-01
A class of explicit multistage time-stepping schemes with centered spatial differencing and multigrids are considered for the compressible Euler and Navier-Stokes equations. These schemes are the basis for a family of computer programs (flow codes with multigrid (FLOMG) series) currently used to solve a wide range of fluid dynamics problems, including internal and external flows. In this paper, the components of these multistage time-stepping schemes are defined, discussed, and in many cases analyzed to provide additional insight into their behavior. Special emphasis is given to numerical dissipation, stability of Runge-Kutta schemes, and the convergence acceleration techniques of multigrid and implicit residual smoothing. Both the Baldwin and Lomax algebraic equilibrium model and the Johnson and King one-half equation nonequilibrium model are used to establish turbulence closure. Implementation of these models is described.
New convergence estimates for multigrid algorithms
Bramble, J.H.; Pasciak, J.E.
1987-10-01
In this paper, new convergence estimates are proved for both symmetric and nonsymmetric multigrid algorithms applied to symmetric positive definite problems. Our theory relates the convergence of multigrid algorithms to a ''regularity and approximation'' parameter ..cap alpha.. epsilon (0, 1) and the number of relaxations m. We show that for the symmetric and nonsymmetric ..nu.. cycles, the multigrid iteration converges for any positive m at a rate which deteriorates no worse than 1-cj/sup -(1-//sup ..cap alpha..//sup )///sup ..cap alpha../, where j is the number of grid levels. We then define a generalized ..nu.. cycle algorithm which involves exponentially increasing (for example, doubling) the number of smoothings on successively coarser grids. We show that the resulting symmetric and nonsymmetric multigrid iterations converge for any ..cap alpha.. with rates that are independent of the mesh size. The theory is presented in an abstract setting which can be applied to finite element multigrid and finite difference multigrid methods.
Analysis Tools for CFD Multigrid Solvers
NASA Technical Reports Server (NTRS)
Mineck, Raymond E.; Thomas, James L.; Diskin, Boris
2004-01-01
Analysis tools are needed to guide the development and evaluate the performance of multigrid solvers for the fluid flow equations. Classical analysis tools, such as local mode analysis, often fail to accurately predict performance. Two-grid analysis tools, herein referred to as Idealized Coarse Grid and Idealized Relaxation iterations, have been developed and evaluated within a pilot multigrid solver. These new tools are applicable to general systems of equations and/or discretizations and point to problem areas within an existing multigrid solver. Idealized Relaxation and Idealized Coarse Grid are applied in developing textbook-efficient multigrid solvers for incompressible stagnation flow problems.
Lecture Notes on Multigrid Methods
Vassilevski, P S
2010-06-28
The Lecture Notes are primarily based on a sequence of lectures given by the author while been a Fulbright scholar at 'St. Kliment Ohridski' University of Sofia, Sofia, Bulgaria during the winter semester of 2009-2010 academic year. The notes are somewhat expanded version of the actual one semester class he taught there. The material covered is slightly modified and adapted version of similar topics covered in the author's monograph 'Multilevel Block-Factorization Preconditioners' published in 2008 by Springer. The author tried to keep the notes as self-contained as possible. That is why the lecture notes begin with some basic introductory matrix-vector linear algebra, numerical PDEs (finite element) facts emphasizing the relations between functions in finite dimensional spaces and their coefficient vectors and respective norms. Then, some additional facts on the implementation of finite elements based on relation tables using the popular compressed sparse row (CSR) format are given. Also, typical condition number estimates of stiffness and mass matrices, the global matrix assembly from local element matrices are given as well. Finally, some basic introductory facts about stationary iterative methods, such as Gauss-Seidel and its symmetrized version are presented. The introductory material ends up with the smoothing property of the classical iterative methods and the main definition of two-grid iterative methods. From here on, the second part of the notes begins which deals with the various aspects of the principal TG and the numerous versions of the MG cycles. At the end, in part III, we briefly introduce algebraic versions of MG referred to as AMG, focusing on classes of AMG specialized for finite element matrices.
Accuracy requirements of optical linear algebra processors in adaptive optics imaging systems
NASA Technical Reports Server (NTRS)
Downie, John D.
1990-01-01
A ground-based adaptive optics imaging telescope system attempts to improve image quality by detecting and correcting for atmospherically induced wavefront aberrations. The required control computations during each cycle will take a finite amount of time. Longer time delays result in larger values of residual wavefront error variance since the atmosphere continues to change during that time. Thus an optical processor may be well-suited for this task. This paper presents a study of the accuracy requirements in a general optical processor that will make it competitive with, or superior to, a conventional digital computer for the adaptive optics application. An optimization of the adaptive optics correction algorithm with respect to an optical processor's degree of accuracy is also briefly discussed.
The multigrid preconditioned conjugate gradient method
NASA Technical Reports Server (NTRS)
Tatebe, Osamu
1993-01-01
A multigrid preconditioned conjugate gradient method (MGCG method), which uses the multigrid method as a preconditioner of the PCG method, is proposed. The multigrid method has inherent high parallelism and improves convergence of long wavelength components, which is important in iterative methods. By using this method as a preconditioner of the PCG method, an efficient method with high parallelism and fast convergence is obtained. First, it is considered a necessary condition of the multigrid preconditioner in order to satisfy requirements of a preconditioner of the PCG method. Next numerical experiments show a behavior of the MGCG method and that the MGCG method is superior to both the ICCG method and the multigrid method in point of fast convergence and high parallelism. This fast convergence is understood in terms of the eigenvalue analysis of the preconditioned matrix. From this observation of the multigrid preconditioner, it is realized that the MGCG method converges in very few iterations and the multigrid preconditioner is a desirable preconditioner of the conjugate gradient method.
Teaching Algebra without Algebra
ERIC Educational Resources Information Center
Kalman, Richard S.
2008-01-01
Algebra is, among other things, a shorthand way to express quantitative reasoning. This article illustrates ways for the classroom teacher to convert algebraic solutions to verbal problems into conversational solutions that can be understood by students in the lower grades. Three reasonably typical verbal problems that either appeared as or…
A multigrid method for the Euler equations
NASA Technical Reports Server (NTRS)
Jespersen, D. C.
1983-01-01
A multigrid algorithm has been developed for the numerical solution of the steady two-dimensional Euler equations. Flux vector splitting and one-sided differencing are employed to define the spatial discretization. Newton's method is used to solve the nonlinear equations, and a multigrid solver is used on each linear problem. The relaxation scheme for the linear problems is symmetric Gauss-Seidel. Standard restriction and interpolation operators are employed. Local mode analysis is used to predict the convergence rate of the multigrid process on the linear problems. Computed results for transonic flows over airfoils are presented.
A Parallel Multigrid Method for Neutronics Applications
Alcouffe, Raymond E.
2001-01-01
The multigrid method has been shown to be the most effective general method for solving the multi-dimensional diffusion equation encountered in neutronics. This being the method of choice, we develop a strategy for implementing the multigrid method on computers of massively parallel architecture. This leads us to strategies for parallelizing the relaxation, contraction (interpolation), and prolongation operators involved in the method. We then compare the efficiency of our parallel multigrid with other parallel methods for solving the diffusion equation on selected problems encountered in reactor physics.
Extending the applicability of multigrid methods
Brannick, J; Brezina, M; Falgout, R; Manteuffel, T; McCormick, S; Ruge, J; Sheehan, B; Xu, J; Zikatanov, L
2006-09-25
Multigrid methods are ideal for solving the increasingly large-scale problems that arise in numerical simulations of physical phenomena because of their potential for computational costs and memory requirements that scale linearly with the degrees of freedom. Unfortunately, they have been historically limited by their applicability to elliptic-type problems and the need for special handling in their implementation. In this paper, we present an overview of several recent theoretical and algorithmic advances made by the TOPS multigrid partners and their collaborators in extending applicability of multigrid methods. Specific examples that are presented include quantum chromodynamics, radiation transport, and electromagnetics.
Parallel Element Agglomeration Algebraic Multigrid and Upscaling Library
2015-02-19
ParFELAG is a parallel distributed memory C++ library for numerical upscaling of finite element discretizations. It provides optimal complesity algorithms ro build multilevel hierarchies and solvers that can be used for solving a wide class of partial differential equations (elliptic, hyperbolic, saddle point problems) on general unstructured mesh (under the assumption that the topology of the agglomerated entities is correct). Additionally, a novel multilevel solver for saddle point problems with divergence constraint is implemented.
Interactive multigrid refinement for deformable image registration.
Zhou, Wu; Xie, Yaoqin
2013-01-01
Deformable image registration is the spatial mapping of corresponding locations between images and can be used for important applications in radiotherapy. Although numerous methods have attempted to register deformable medical images automatically, such as salient-feature-based registration (SFBR), free-form deformation (FFD), and demons, no automatic method for registration is perfect, and no generic automatic algorithm has shown to work properly for clinical applications due to the fact that the deformation field is often complex and cannot be estimated well by current automatic deformable registration methods. This paper focuses on how to revise registration results interactively for deformable image registration. We can manually revise the transformed image locally in a hierarchical multigrid manner to make the transformed image register well with the reference image. The proposed method is based on multilevel B-spline to interactively revise the deformable transformation in the overlapping region between the reference image and the transformed image. The resulting deformation controls the shape of the transformed image and produces a nice registration or improves the registration results of other registration methods. Experimental results in clinical medical images for adaptive radiotherapy demonstrated the effectiveness of the proposed method. PMID:24232828
A Full Multi-Grid Method for the Solution of the Cell Vertex Finite Volume Cauchy-Riemann Equations
NASA Technical Reports Server (NTRS)
Borzi, A.; Morton, K. W.; Sueli, E.; Vanmaele, M.
1996-01-01
The system of inhomogeneous Cauchy-Riemann equations defined on a square domain and subject to Dirichlet boundary conditions is considered. This problem is discretised by using the cell vertex finite volume method on quadrilateral meshes. The resulting algebraic problem is overdetermined and the solution is defined in a least squares sense. By this approach a consistent algebraic problem is obtained which differs from the original one by O(h(exp 2)) perturbations of the right-hand side. A suitable cell-based convergent smoothing iteration is presented which is naturally linked to the least squares formulation. Hence, a standard multi-grid algorithm is reported which combines the given smoother and cell-based transfer operators. Some remarkable reduction properties of these operators are shown. A full multi-grid method is discussed which solves the discrete problem to the level of truncation error by employing one multi-grid cycle at each current level of discretisation. Experiments and applications of the full multi-grid scheme are presented.
Multigrid Methods for Mesh Relaxation
O'Brien, M J
2006-06-12
When generating a mesh for the initial conditions for a computer simulation, you want the mesh to be as smooth as possible. A common practice is to use equipotential mesh relaxation to smooth out a distorted computational mesh. Typically a Laplace-like equation is set up for the mesh coordinates and then one or more Jacobi iterations are performed to relax the mesh. As the zone count gets really large, the Jacobi iteration becomes less and less effective and we are stuck with our original unrelaxed mesh. This type of iteration can only damp high frequency errors and the smooth errors remain. When the zone count is large, almost everything looks smooth so relaxation cannot solve the problem. In this paper we examine a multigrid technique which effectively smooths out the mesh, independent of the number of zones.
An automatic multigrid method for the solution of sparse linear systems
NASA Technical Reports Server (NTRS)
Shapira, Yair; Israeli, Moshe; Sidi, Avram
1993-01-01
An automatic version of the multigrid method for the solution of linear systems arising from the discretization of elliptic PDE's is presented. This version is based on the structure of the algebraic system solely, and does not use the original partial differential operator. Numerical experiments show that for the Poisson equation the rate of convergence of our method is equal to that of classical multigrid methods. Moreover, the method is robust in the sense that its high rate of convergence is conserved for other classes of problems: non-symmetric, hyperbolic (even with closed characteristics) and problems on non-uniform grids. No double discretization or special treatment of sub-domains (e.g. boundaries) is needed. When supplemented with a vector extrapolation method, high rates of convergence are achieved also for anisotropic and discontinuous problems and also for indefinite Helmholtz equations. A new double discretization strategy is proposed for finite and spectral element schemes and is found better than known strategies.
BOLD response analysis by iterated local multigrid priors.
da Rocha Amaral, Selene; Rabbani, Said R; Caticha, Nestor
2007-06-01
We present a non parametric Bayesian multiscale method to characterize the Hemodynamic Response HR as function of time. This is done by extending and adapting the Multigrid Priors (MGP) method proposed in (S.D.R. Amaral, S.R. Rabbani, N. Caticha, Multigrid prior for a Bayesian approach to fMRI, NeuroImage 23 (2004) 654-662; N. Caticha, S.D.R. Amaral, S.R. Rabbani, Multigrid Priors for fMRI time series analysis, AIP Conf. Proc. 735 (2004) 27-34). We choose an initial HR model and apply the MGP method to assign a posterior probability of activity for every pixel. This can be used to construct the map of activity. But it can also be used to construct the posterior averaged time series activity for different regions. This permits defining a new model which is only data-dependent. Now in turn it can be used as the model behind a new application of the MGP method to obtain another posterior probability of activity. The method converges in just a few iterations and is quite independent of the original HR model, as long as it contains some information of the activity/rest state of the patient. We apply this method of HR inference both to simulated and real data of blocks and event-related experiments. Receiver operating characteristic (ROC) curves are used to measure the number of errors with respect to a few hyperparameters. We also study the deterioration of the results for real data, under information loss. This is done by decreasing the signal to noise ratio and also by decreasing the number of images available for analysis and compare the robustness to other methods. PMID:17258909
Multigrid methods with applications to reservoir simulation
Xiao, Shengyou
1994-05-01
Multigrid methods are studied for solving elliptic partial differential equations. Focus is on parallel multigrid methods and their use for reservoir simulation. Multicolor Fourier analysis is used to analyze the behavior of standard multigrid methods for problems in one and two dimensions. Relation between multicolor and standard Fourier analysis is established. Multiple coarse grid methods for solving model problems in 1 and 2 dimensions are considered; at each coarse grid level we use more than one coarse grid to improve convergence. For a given Dirichlet problem, a related extended problem is first constructed; a purification procedure can be used to obtain Moore-Penrose solutions of the singular systems encountered. For solving anisotropic equations, semicoarsening and line smoothing techniques are used with multiple coarse grid methods to improve convergence. Two-level convergence factors are estimated using multicolor. In the case where each operator has the same stencil on each grid point on one level, exact multilevel convergence factors can be obtained. For solving partial differential equations with discontinuous coefficients, interpolation and restriction operators should include information about the equation coefficients. Matrix-dependent interpolation and restriction operators based on the Schur complement can be used in nonsymmetric cases. A semicoarsening multigrid solver with these operators is used in UTCOMP, a 3-D, multiphase, multicomponent, compositional reservoir simulator. The numerical experiments are carried out on different computing systems. Results indicate that the multigrid methods are promising.
NASA Astrophysics Data System (ADS)
Debreu, Laurent; Neveu, Emilie; Simon, Ehouarn; Le Dimet, Francois Xavier; Vidard, Arthur
2014-05-01
In order to lower the computational cost of the variational data assimilation process, we investigate the use of multigrid methods to solve the associated optimal control system. On a linear advection equation, we study the impact of the regularization term on the optimal control and the impact of discretization errors on the efficiency of the coarse grid correction step. We show that even if the optimal control problem leads to the solution of an elliptic system, numerical errors introduced by the discretization can alter the success of the multigrid methods. The view of the multigrid iteration as a preconditioner for a Krylov optimization method leads to a more robust algorithm. A scale dependent weighting of the multigrid preconditioner and the usual background error covariance matrix based preconditioner is proposed and brings significant improvements. [1] Laurent Debreu, Emilie Neveu, Ehouarn Simon, François-Xavier Le Dimet and Arthur Vidard, 2014: Multigrid solvers and multigrid preconditioners for the solution of variational data assimilation problems, submitted to QJRMS, http://hal.inria.fr/hal-00874643 [2] Emilie Neveu, Laurent Debreu and François-Xavier Le Dimet, 2011: Multigrid methods and data assimilation - Convergence study and first experiments on non-linear equations, ARIMA, 14, 63-80, http://intranet.inria.fr/international/arima/014/014005.html
Multicloud: Multigrid convergence with a meshless operator
Katz, Aaron Jameson, Antony
2009-08-01
The primary objective of this work is to develop and test a new convergence acceleration technique we call multicloud. Multicloud is well-founded in the mathematical basis of multigrid, but relies on a meshless operator on coarse levels. The meshless operator enables extremely simple and automatic coarsening procedures for arbitrary meshes using arbitrary fine level discretization schemes. The performance of multicloud is compared with established multigrid techniques for structured and unstructured meshes for the Euler equations on two-dimensional test cases. Results indicate comparable convergence rates per unit work for multicloud and multigrid. However, because of its mesh and scheme transparency, multicloud may be applied to a wide array of problems with no modification of fine level schemes as is often required with agglomeration techniques. The implication is that multicloud can be implemented in a completely modular fashion, allowing researchers to develop fine level algorithms independent of the convergence accelerator for complex three-dimensional problems.
Spectral multigrid methods for elliptic equations
NASA Technical Reports Server (NTRS)
Zang, T. A.; Wong, Y. S.; Hussaini, M. Y.
1981-01-01
An alternative approach which employs multigrid concepts in the iterative solution of spectral equations was examined. Spectral multigrid methods are described for self adjoint elliptic equations with either periodic or Dirichlet boundary conditions. For realistic fluid calculations the relevant boundary conditions are periodic in at least one (angular) coordinate and Dirichlet (or Neumann) in the remaining coordinates. Spectral methods are always effective for flows in strictly rectangular geometries since corners generally introduce singularities into the solution. If the boundary is smooth, then mapping techniques are used to transform the problem into one with a combination of periodic and Dirichlet boundary conditions. It is suggested that spectral multigrid methods in these geometries can be devised by combining the techniques.
Multigrid Methods for Nonlinear Problems: An Overview
Henson, V E
2002-12-23
Since their early application to elliptic partial differential equations, multigrid methods have been applied successfully to a large and growing class of problems, from elasticity and computational fluid dynamics to geodetics and molecular structures. Classical multigrid begins with a two-grid process. First, iterative relaxation is applied, whose effect is to smooth the error. Then a coarse-grid correction is applied, in which the smooth error is determined on a coarser grid. This error is interpolated to the fine grid and used to correct the fine-grid approximation. Applying this method recursively to solve the coarse-grid problem leads to multigrid. The coarse-grid correction works because the residual equation is linear. But this is not the case for nonlinear problems, and different strategies must be employed. In this presentation we describe how to apply multigrid to nonlinear problems. There are two basic approaches. The first is to apply a linearization scheme, such as the Newton's method, and to employ multigrid for the solution of the Jacobian system in each iteration. The second is to apply multigrid directly to the nonlinear problem by employing the so-called Full Approximation Scheme (FAS). In FAS a nonlinear iteration is applied to smooth the error. The full equation is solved on the coarse grid, after which the coarse-grid error is extracted from the solution. This correction is then interpolated and applied to the fine grid approximation. We describe these methods in detail, and present numerical experiments that indicate the efficacy of them.
Multigrid Approach to Incompressible Viscous Cavity Flows
NASA Technical Reports Server (NTRS)
Wood, William A.
1996-01-01
Two-dimensional incompressible viscous driven-cavity flows are computed for Reynolds numbers on the range 100-20,000 using a loosely coupled, implicit, second-order centrally-different scheme. Mesh sequencing and three-level V-cycle multigrid error smoothing are incorporated into the symmetric Gauss-Seidel time-integration algorithm. Parametrics on the numerical parameters are performed, achieving reductions in solution times by more than 60 percent with the full multigrid approach. Details of the circulation patterns are investigated in cavities of 2-to-1, 1-to-1, and 1-to-2 depth to width ratios.
Multigrid in energy preconditioner for Krylov solvers
Slaybaugh, R.N.; Evans, T.M.; Davidson, G.G.; Wilson, P.P.H.
2013-06-01
We have added a new multigrid in energy (MGE) preconditioner to the Denovo discrete-ordinates radiation transport code. This preconditioner takes advantage of a new multilevel parallel decomposition. A multigroup Krylov subspace iterative solver that is decomposed in energy as well as space-angle forms the backbone of the transport solves in Denovo. The space-angle-energy decomposition facilitates scaling to hundreds of thousands of cores. The multigrid in energy preconditioner scales well in the energy dimension and significantly reduces the number of Krylov iterations required for convergence. This preconditioner is well-suited for use with advanced eigenvalue solvers such as Rayleigh Quotient Iteration and Arnoldi.
A multigrid method for variational inequalities
Oliveira, S.; Stewart, D.E.; Wu, W.
1996-12-31
Multigrid methods have been used with great success for solving elliptic partial differential equations. Penalty methods have been successful in solving finite-dimensional quadratic programs. In this paper these two techniques are combined to give a fast method for solving obstacle problems. A nonlinear penalized problem is solved using Newton`s method for large values of a penalty parameter. Multigrid methods are used to solve the linear systems in Newton`s method. The overall numerical method developed is based on an exterior penalty function, and numerical results showing the performance of the method have been obtained.
Some multigrid algorithms for SIMD machines
Dendy, J.E. Jr.
1996-12-31
Previously a semicoarsening multigrid algorithm suitable for use on SIMD architectures was investigated. Through the use of new software tools, the performance of this algorithm has been considerably improved. The method has also been extended to three space dimensions. The method performs well for strongly anisotropic problems and for problems with coefficients jumping by orders of magnitude across internal interfaces. The parallel efficiency of this method is analyzed, and its actual performance on the CM-5 is compared with its performance on the CRAY-YMP. A standard coarsening multigrid algorithm is also considered, and we compare its performance on these two platforms as well.
Highly indefinite multigrid for eigenvalue problems
Borges, L.; Oliveira, S.
1996-12-31
Eigenvalue problems are extremely important in understanding dynamic processes such as vibrations and control systems. Large scale eigenvalue problems can be very difficult to solve, especially if a large number of eigenvalues and the corresponding eigenvectors need to be computed. For solving this problem a multigrid preconditioned algorithm is presented in {open_quotes}The Davidson Algorithm, preconditioning and misconvergence{close_quotes}. Another approach for solving eigenvalue problems is by developing efficient solutions for highly indefinite problems. In this paper we concentrate on the use of new highly indefinite multigrid algorithms for the eigenvalue problem.
Three dimensional unstructured multigrid for the Euler equations
NASA Technical Reports Server (NTRS)
Mavriplis, D. J.
1991-01-01
The three dimensional Euler equations are solved on unstructured tetrahedral meshes using a multigrid strategy. The driving algorithm consists of an explicit vertex-based finite element scheme, which employs an edge-based data structure to assemble the residuals. The multigrid approach employs a sequence of independently generated coarse and fine meshes to accelerate the convergence to steady-state of the fine grid solution. Variables, residuals and corrections are passed back and forth between the various grids of the sequence using linear interpolation. The addresses and weights for interpolation are determined in a preprocessing stage using linear interpolation. The addresses and weights for interpolation are determined in a preprocessing stage using an efficient graph traversal algorithm. The preprocessing operation is shown to require a negligible fraction of the CPU time required by the overall solution procedure, while gains in overall solution efficiencies greater than an order of magnitude are demonstrated on meshes containing up to 350,000 vertices. Solutions using globally regenerated fine meshes as well as adaptively refined meshes are given.
Application of p-Multigrid to Discontinuous Galerkin Formulations of the Poisson Equation
NASA Technical Reports Server (NTRS)
Helenbrook, B. T.; Atkins, H. L.
2006-01-01
We investigate p-multigrid as a solution method for several different discontinuous Galerkin (DG) formulations of the Poisson equation. Different combinations of relaxation schemes and basis sets have been combined with the DG formulations to find the best performing combination. The damping factors of the schemes have been determined using Fourier analysis for both one and two-dimensional problems. One important finding is that when using DG formulations, the standard approach of forming the coarse p matrices separately for each level of multigrid is often unstable. To ensure stability the coarse p matrices must be constructed from the fine grid matrices using algebraic multigrid techniques. Of the relaxation schemes, we find that the combination of Jacobi relaxation with the spectral element basis is fairly effective. The results using this combination are p sensitive in both one and two dimensions, but reasonable convergence rates can still be achieved for moderate values of p and isotropic meshes. A competitive alternative is a block Gauss-Seidel relaxation. This actually out performs a more expensive line relaxation when the mesh is isotropic. When the mesh becomes highly anisotropic, the implicit line method and the Gauss-Seidel implicit line method are the only effective schemes. Adding the Gauss-Seidel terms to the implicit line method gives a significant improvement over the line relaxation method.
Turbulent flow calculations using unstructured and adaptive meshes
NASA Technical Reports Server (NTRS)
Mavriplis, Dimitri J.
1990-01-01
A method of efficiently computing turbulent compressible flow over complex two dimensional configurations is presented. The method makes use of fully unstructured meshes throughout the entire flow-field, thus enabling the treatment of arbitrarily complex geometries and the use of adaptive meshing techniques throughout both viscous and inviscid regions of flow-field. Mesh generation is based on a locally mapped Delaunay technique in order to generate unstructured meshes with highly-stretched elements in the viscous regions. The flow equations are discretized using a finite element Navier-Stokes solver, and rapid convergence to steady-state is achieved using an unstructured multigrid algorithm. Turbulence modeling is performed using an inexpensive algebraic model, implemented for use on unstructured and adaptive meshes. Compressible turbulent flow solutions about multiple-element airfoil geometries are computed and compared with experimental data.
Spectral multigrid methods for elliptic equations II
NASA Technical Reports Server (NTRS)
Zang, T. A.; Wong, Y. S.; Hussaini, M. Y.
1984-01-01
A detailed description of spectral multigrid methods is provided. This includes the interpolation and coarse-grid operators for both periodic and Dirichlet problems. The spectral methods for periodic problems use Fourier series and those for Dirichlet problems are based upon Chebyshev polynomials. An improved preconditioning for Dirichlet problems is given. Numerical examples and practical advice are included.
Spectral multigrid methods for elliptic equations 2
NASA Technical Reports Server (NTRS)
Zang, T. A.; Wong, Y. S.; Hussaini, M. Y.
1983-01-01
A detailed description of spectral multigrid methods is provided. This includes the interpolation and coarse-grid operators for both periodic and Dirichlet problems. The spectral methods for periodic problems use Fourier series and those for Dirichlet problems are based upon Chebyshev polynomials. An improved preconditioning for Dirichlet problems is given. Numerical examples and practical advice are included.
Relaxation schemes for Chebyshev spectral multigrid methods
NASA Technical Reports Server (NTRS)
Kang, Yimin; Fulton, Scott R.
1993-01-01
Two relaxation schemes for Chebyshev spectral multigrid methods are presented for elliptic equations with Dirichlet boundary conditions. The first scheme is a pointwise-preconditioned Richardson relaxation scheme and the second is a line relaxation scheme. The line relaxation scheme provides an efficient and relatively simple approach for solving two-dimensional spectral equations. Numerical examples and comparisons with other methods are given.
Sixth Copper Mountain Conference on Multigrid Methods. Final report
Not Available
1994-07-01
During the 5-day meeting, 112 half-hour talks on current research topics were presented. Session topics included: fluids, domain decomposition, iterative methods, Basics I and II, adaptive methods, nonlinear filtering, CFD I, II, and III, applications, transport, algebraic solvers, supercomputing, and student paper winners.
Vandewalle, S.
1994-12-31
Time-stepping methods for parabolic partial differential equations are essentially sequential. This prohibits the use of massively parallel computers unless the problem on each time-level is very large. This observation has led to the development of algorithms that operate on more than one time-level simultaneously; that is to say, on grids extending in space and in time. The so-called parabolic multigrid methods solve the time-dependent parabolic PDE as if it were a stationary PDE discretized on a space-time grid. The author has investigated the use of multigrid waveform relaxation, an algorithm developed by Lubich and Ostermann. The algorithm is based on a multigrid acceleration of waveform relaxation, a highly concurrent technique for solving large systems of ordinary differential equations. Another method of this class is the time-parallel multigrid method. This method was developed by Hackbusch and was recently subject of further study by Horton. It extends the elliptic multigrid idea to the set of equations that is derived by discretizing a parabolic problem in space and in time.
Multigrid calculations of 3-D turbulent viscous flows
NASA Technical Reports Server (NTRS)
Yokota, Jeffrey W.
1989-01-01
Convergence properties of a multigrid algorithm, developed to calculate compressible viscous flows, are analyzed by a vector sequence eigenvalue estimate. The full 3-D Reynolds-averaged Navier-Stokes equations are integrated by an implicit multigrid scheme while a k-epsilon turbulence model is solved, uncoupled from the flow equations. Estimates of the eigenvalue structure for both single and multigrid calculations are compared in an attempt to analyze the process as well as the results of the multigrid technique. The flow through an annular turbine is used to illustrate the scheme's ability to calculate complex 3-D flows.
Agglomeration multigrid for viscous turbulent flows
NASA Technical Reports Server (NTRS)
Mavriplis, D. J.; Venkatakrishnan, V.
1994-01-01
Agglomeration multigrid, which has been demonstrated as an efficient and automatic technique for the solution of the Euler equations on unstructured meshes, is extended to viscous turbulent flows. For diffusion terms, coarse grid discretizations are not possible, and more accurate grid transfer operators are required as well. A Galerkin coarse grid operator construction and an implicit prolongation operator are proposed. Their suitability is evaluated by examining their effect on the solution of Laplace's equation. The resulting strategy is employed to solve the Reynolds-averaged Navier-Stokes equations for aerodynamic flows. Convergence rates comparable to those obtained by a previously developed non-nested mesh multigrid approach are demonstrated, and suggestions for further improvements are given.
Textbook Multigrid Efficiency for Fluid Simulations
NASA Astrophysics Data System (ADS)
Thomas, James L.
Recent advances in achieving textbook multigrid efficiency for fluid simulations are presented. Textbook multigrid efficiency is defined as attaining the solution to the governing system of equations in a computational work that is a small multiple of the operation counts associated with discretizing the system. Strategies are reviewed to attain this efficiency by exploiting the factorizability properties inherent to a range of fluid simulations, including the compressible Navier-Stokes equations. Factorizability is used to separate the elliptic and hyperbolic factors contributing to the target system; each of the factors can then be treated individually and optimally. Boundary regions and discontinuities are addressed with separate (local) treatments. New formulations and recent calculations demonstrating the attainment of textbook efficiency for aerodynamic simulations are shown.
Updated users' guide for TAWFIVE with multigrid
NASA Technical Reports Server (NTRS)
Melson, N. Duane; Streett, Craig L.
1989-01-01
A program for the Transonic Analysis of a Wing and Fuselage with Interacted Viscous Effects (TAWFIVE) was improved by the incorporation of multigrid and a method to specify lift coefficient rather than angle-of-attack. A finite volume full potential multigrid method is used to model the outer inviscid flow field. First order viscous effects are modeled by a 3-D integral boundary layer method. Both turbulent and laminar boundary layers are treated. Wake thickness effects are modeled using a 2-D strip method. A brief discussion of the engineering aspects of the program is given. The input, output, and use of the program are covered in detail. Sample results are given showing the effects of boundary layer corrections and the capability of the lift specification method.
Multigrid shallow water equations on an FPGA
NASA Astrophysics Data System (ADS)
Jeffress, Stephen; Duben, Peter; Palmer, Tim
2015-04-01
A novel computing technology for multigrid shallow water equations is investigated. As power consumption begins to constrain traditional supercomputing advances, weather and climate simulators are exploring alternative technologies that achieve efficiency gains through massively parallel and low power architectures. In recent years FPGA implementations of reduced complexity atmospheric models have shown accelerated speeds and reduced power consumption compared to multi-core CPU integrations. We continue this line of research by designing an FPGA dataflow engine for a mulitgrid version of the 2D shallow water equations. The multigrid algorithm couples grids of variable resolution to improve accuracy. We show that a significant reduction of precision in the floating point representation of the fine grid variables allows greater parallelism and thus improved overall peformance while maintaining accurate integrations. Preliminary designs have been constructed by software emulation. Results of the hardware implementation will be presented at the conference.
Multigrid with red black SOR revisited
Yavneh, I.
1994-12-31
Optimal relaxation parameters are obtained for red-black point Gauss-Seidel relaxation in multigrid solvers of a family of elliptic equations. The resulting relaxation schemes are found to retain high efficiency over an appreciable range of coefficients of the elliptic operator, yielding simple, inexpensive and fully parallelizable smoothers in many situations where more complicated and less cost-effective block-relaxation and/or partial coarsening are commonly used.
Grandchild of the frequency: Decomposition multigrid method
Dendy, J.E. Jr.; Tazartes, C.C.
1994-12-31
Previously the authors considered the frequency decomposition multigrid method and rejected it because it was not robust for problems with discontinuous coefficients. In this paper they show how to modify the method so as to obtain such robustness while retaining robustness for problems with anisotropic coefficients. They also discuss application of this method to a problem arising in global ocean modeling on the CM-5.
Kucukboyaci, Vefa; Haghighat, Alireza
2001-06-17
New angular multigrid formulations have been developed, including the Simplified Angular Multigrid (SAM), Nested Iteration (NI), and V-Cycle schemes, which are compatible with the parallel environment and the adaptive differencing strategy of the PENTRAN three-dimensional parallel S{sub N} code. Through use of the Fourier analysis method for an infinite, homogeneous medium, the effectiveness of the V-Cycle scheme was investigated for different problem parameters including scattering ratio, spatial differencing weights, quadrature order, and mesh size. The theoretical analysis revealed that the V-Cycle scheme is effective for a large range of scattering ratios and is insensitive to mesh size. The effectiveness of the new schemes was also investigated for practical shielding applications such as the Kobayashi benchmark problem and the boiling water reactor core shroud problem.
On the solution of evolution equations based on multigrid and explicit iterative methods
NASA Astrophysics Data System (ADS)
Zhukov, V. T.; Novikova, N. D.; Feodoritova, O. B.
2015-08-01
Two schemes for solving initial-boundary value problems for three-dimensional parabolic equations are studied. One is implicit and is solved using the multigrid method, while the other is explicit iterative and is based on optimal properties of the Chebyshev polynomials. In the explicit iterative scheme, the number of iteration steps and the iteration parameters are chosen as based on the approximation and stability conditions, rather than on the optimization of iteration convergence to the solution of the implicit scheme. The features of the multigrid scheme include the implementation of the intergrid transfer operators for the case of discontinuous coefficients in the equation and the adaptation of the smoothing procedure to the spectrum of the difference operators. The results produced by these schemes as applied to model problems with anisotropic discontinuous coefficients are compared.
Element Agglomeration Algebraic Multilevel Monte-Carlo Library
2015-02-19
ElagMC is a parallel C++ library for Multilevel Monte Carlo simulations with algebraically constructed coarse spaces. ElagMC enables Multilevel variance reduction techniques in the context of general unstructured meshes by using the specialized element-based agglomeration techniques implemented in ELAG (the Element-Agglomeration Algebraic Multigrid and Upscaling Library developed by U. Villa and P. Vassilevski and currently under review for public release). The ElabMC library can support different type of deterministic problems, including mixed finite element discretizations of subsurface flow problems.
Element Agglomeration Algebraic Multilevel Monte-Carlo Library
2015-02-19
ElagMC is a parallel C++ library for Multilevel Monte Carlo simulations with algebraically constructed coarse spaces. ElagMC enables Multilevel variance reduction techniques in the context of general unstructured meshes by using the specialized element-based agglomeration techniques implemented in ELAG (the Element-Agglomeration Algebraic Multigrid and Upscaling Library developed by U. Villa and P. Vassilevski and currently under review for public release). The ElabMC library can support different type of deterministic problems, including mixed finite element discretizationsmore » of subsurface flow problems.« less
ERIC Educational Resources Information Center
Schaufele, Christopher; Zumoff, Nancy
Earth Algebra is an entry level college algebra course that incorporates the spirit of the National Council of Teachers of Mathematics (NCTM) Curriculum and Evaluation Standards for School Mathematics at the college level. The context of the course places mathematics at the center of one of the major current concerns of the world. Through…
ERIC Educational Resources Information Center
Cavanagh, Sean
2009-01-01
As educators and policymakers search for ways to prepare students for the rigors of algebra, teachers in the Helena, Montana, school system are starting early by attempting to nurture students' algebraic-reasoning ability, as well as their basic number skills, in early elementary school, rather than waiting until middle or early high school.…
Vectorized multigrid Poisson solver for the CDC CYBER 205
NASA Technical Reports Server (NTRS)
Barkai, D.; Brandt, M. A.
1984-01-01
The full multigrid (FMG) method is applied to the two dimensional Poisson equation with Dirichlet boundary conditions. This has been chosen as a relatively simple test case for examining the efficiency of fully vectorizing of the multigrid method. Data structure and programming considerations and techniques are discussed, accompanied by performance details.
Semi-coarsening multigrid methods for parallel computing
Jones, J.E.
1996-12-31
Standard multigrid methods are not well suited for problems with anisotropic coefficients which can occur, for example, on grids that are stretched to resolve a boundary layer. There are several different modifications of the standard multigrid algorithm that yield efficient methods for anisotropic problems. In the paper, we investigate the parallel performance of these multigrid algorithms. Multigrid algorithms which work well for anisotropic problems are based on line relaxation and/or semi-coarsening. In semi-coarsening multigrid algorithms a grid is coarsened in only one of the coordinate directions unlike standard or full-coarsening multigrid algorithms where a grid is coarsened in each of the coordinate directions. When both semi-coarsening and line relaxation are used, the resulting multigrid algorithm is robust and automatic in that it requires no knowledge of the nature of the anisotropy. This is the basic multigrid algorithm whose parallel performance we investigate in the paper. The algorithm is currently being implemented on an IBM SP2 and its performance is being analyzed. In addition to looking at the parallel performance of the basic semi-coarsening algorithm, we present algorithmic modifications with potentially better parallel efficiency. One modification reduces the amount of computational work done in relaxation at the expense of using multiple coarse grids. This modification is also being implemented with the aim of comparing its performance to that of the basic semi-coarsening algorithm.
Toward textbook multigrid efficiency for fully implicit resistive magnetohydrodynamics
Adams, Mark F.; Samtaney, Ravi; Brandt, Achi
2013-12-14
Multigrid methods can solve some classes of elliptic and parabolic equations to accuracy below the truncation error with a work-cost equivalent to a few residual calculations – so-called “textbook” multigrid efficiency. We investigate methods to solve the system of equations that arise in time dependent magnetohydrodynamics (MHD) simulations with textbook multigrid efficiency. We apply multigrid techniques such as geometric interpolation, full approximate storage, Gauss-Seidel smoothers, and defect correction for fully implicit, nonlinear, second-order finite volume discretizations of MHD. We apply these methods to a standard resistive MHD benchmark problem, the GEM reconnection problem, and add a strong magnetic guide field, which is a critical characteristic of magnetically confined fusion plasmas. We show that our multigrid methods can achieve near textbook efficiency on fully implicit resistive MHD simulations.
Toward textbook multigrid efficiency for fully implicit resistive magnetohydrodynamics
Adams, Mark F.; Samtaney, Ravi; Brandt, Achi
2010-09-01
Multigrid methods can solve some classes of elliptic and parabolic equations to accuracy below the truncation error with a work-cost equivalent to a few residual calculations – so-called ‘‘textbook” multigrid efficiency. We investigate methods to solve the system of equations that arise in time dependent magnetohydrodynamics (MHD) simulations with textbook multigrid efficiency. We apply multigrid techniques such as geometric interpolation, full approximate storage, Gauss–Seidel smoothers, and defect correction for fully implicit, nonlinear, second-order finite volume discretizations of MHD. We apply these methods to a standard resistive MHD benchmark problem, the GEM reconnection problem, and add a strong magnetic guide field,more » which is a critical characteristic of magnetically confined fusion plasmas. We show that our multigrid methods can achieve near textbook efficiency on fully implicit resistive MHD simulations.« less
Toward textbook multigrid efficiency for fully implicit resistive magnetohydrodynamics
Adams, Mark F.; Samtaney, Ravi; Brandt, Achi
2010-09-01
Multigrid methods can solve some classes of elliptic and parabolic equations to accuracy below the truncation error with a work-cost equivalent to a few residual calculations – so-called ‘‘textbook” multigrid efficiency. We investigate methods to solve the system of equations that arise in time dependent magnetohydrodynamics (MHD) simulations with textbook multigrid efficiency. We apply multigrid techniques such as geometric interpolation, full approximate storage, Gauss–Seidel smoothers, and defect correction for fully implicit, nonlinear, second-order finite volume discretizations of MHD. We apply these methods to a standard resistive MHD benchmark problem, the GEM reconnection problem, and add a strong magnetic guide field, which is a critical characteristic of magnetically confined fusion plasmas. We show that our multigrid methods can achieve near textbook efficiency on fully implicit resistive MHD simulations.
Toward textbook multigrid efficiency for fully implicit resistive magnetohydrodynamics
Adams, Mark F.; Samtaney, Ravi; Brandt, Achi
2010-09-01
Multigrid methods can solve some classes of elliptic and parabolic equations to accuracy below the truncation error with a work-cost equivalent to a few residual calculations - so-called 'textbook' multigrid efficiency. We investigate methods to solve the system of equations that arise in time dependent magnetohydrodynamics (MHD) simulations with textbook multigrid efficiency. We apply multigrid techniques such as geometric interpolation, full approximate storage, Gauss-Seidel smoothers, and defect correction for fully implicit, nonlinear, second-order finite volume discretizations of MHD. We apply these methods to a standard resistive MHD benchmark problem, the GEM reconnection problem, and add a strong magnetic guide field, which is a critical characteristic of magnetically confined fusion plasmas. We show that our multigrid methods can achieve near textbook efficiency on fully implicit resistive MHD simulations.
Agglomeration multigrid for the three-dimensional Euler equations
NASA Technical Reports Server (NTRS)
Venkatakrishnan, V.; Mavriplis, D. J.
1994-01-01
A multigrid procedure that makes use of coarse grids generated by the agglomeration of control volumes is advocated as a practical approach for solving the three dimensional Euler equations on unstructured grids about complex configurations. It is shown that the agglomeration procedure can be tailored to achieve certain coarse grid properties such as the sizes of the coarse grids and aspect ratios of the coarse grid cells. The agglomeration is done as a preprocessing step and runs in linear time. The implications for multigrid of using arbitrary polyhedral coarse grids are discussed. The agglomeration multigrid technique compares very favorably with existing multigrid procedures both in terms of convergence rates and elapsed times. The main advantage of the present approach is the ease with which coarse grids of any desired degree of coarseness may be generated in three dimensions, without being constrained by considerations of geometry. Inviscid flows over a variety of complex configurations are computed using the agglomeration multigrid strategy.
A multigrid preconditioner for the semiconductor equations
Meza, J.C.; Tuminaro, R.S.
1994-12-31
Currently, integrated circuits are primarily designed in a {open_quote}trial and error{close_quote} fashion. That is, prototypes are built and improved via experimentation and testing. In the near future, however, it may be possible to significantly reduce the time and cost of designing new devices by using computer simulations. To accurately perform these complex simulations in three dimensions, however, new algorithms and high performance computers are necessary. In this paper the authors discuss the use of multigrid preconditioning inside a semiconductor device modeling code, DANCIR. The DANCIR code is a full three-dimensional simulator capable of computing steady-state solutions of the drift-diffusion equations for a single semiconductor device and has been used to simulate a wide variety of different devices. At the inner core of DANCIR is a solver for the nonlinear equations that arise from the spatial discretization of the drift-diffusion equations on a rectangular grid. These nonlinear equations are resolved using Gummel`s method which requires three symmetric linear systems to be solved within each Gummel iteration. It is the resolution of these linear systems which comprises the dominant computational cost of this code. The original version of DANCIR uses a Cholesky preconditioned conjugate gradient algorithm to solve these linear systems. Unfortunately, this algorithm has a number of disadvantages: (1) it takes many iterations to converge (if it converges), (2) it can require a significant amount of computing time, and (3) it is not very parallelizable. To improve the situation, the authors consider a multigrid preconditioner. The multigrid method uses iterations on a hierarchy of grids to accelerate the convergence on the finest grid.
A diagonally inverted LU implicit multigrid scheme
NASA Technical Reports Server (NTRS)
Yokota, Jeffrey W.; Caughey, David A.; Chima, Rodrick V.
1988-01-01
A new Diagonally Inverted LU Implicit scheme is developed within the framework of the multigrid method for the 3-D unsteady Euler equations. The matrix systems that are to be inverted in the LU scheme are treated by local diagonalizing transformations that decouple them into systems of scalar equations. Unlike the Diagonalized ADI method, the time accuracy of the LU scheme is not reduced since the diagonalization procedure does not destroy time conservation. Even more importantly, this diagonalization significantly reduces the computational effort required to solve the LU approximation and therefore transforms it into a more efficient method of numerically solving the 3-D Euler equations.
An angular multigrid method for computing mono-energetic particle beams in Flatland
Boergers, Christoph MacLachlan, Scott
2010-04-20
Beams of microscopic particles penetrating scattering background matter play an important role in several applications. The parameter choices made here are motivated by the problem of electron-beam cancer therapy planning. Mathematically, a steady particle beam penetrating matter, or a configuration of several such beams, is modeled by a boundary value problem for a Boltzmann equation. Grid-based discretization of such a problem leads to a system of algebraic equations. This system is typically very large because of the large number of independent variables in the Boltzmann equation-six if no dimension-reducing assumptions other than time independence are made. If grid-based methods are to be practical for these problems, it is therefore necessary to develop very fast solvers for the discretized problems. For beams of mono-energetic particles interacting with a passive background, but not with each other, in two space dimensions, the first author proposed such a solver, based on angular domain decomposition, some time ago. Here, we propose and test an angular multigrid algorithm for the same model problem. Our numerical experiments show rapid, grid-independent convergence. For high-resolution calculations, our method is substantially more efficient than the angular domain decomposition method. In addition, unlike angular domain decomposition, the angular multigrid method works well even when the angular diffusion coefficient is fairly large.
Multigrid calculation of three-dimensional turbomachinery flows
NASA Technical Reports Server (NTRS)
Caughey, David A.
1989-01-01
Research was performed in the general area of computational aerodynamics, with particular emphasis on the development of efficient techniques for the solution of the Euler and Navier-Stokes equations for transonic flows through the complex blade passages associated with turbomachines. In particular, multigrid methods were developed, using both explicit and implicit time-stepping schemes as smoothing algorithms. The specific accomplishments of the research have included: (1) the development of an explicit multigrid method to solve the Euler equations for three-dimensional turbomachinery flows based upon the multigrid implementation of Jameson's explicit Runge-Kutta scheme (Jameson 1983); (2) the development of an implicit multigrid scheme for the three-dimensional Euler equations based upon lower-upper factorization; (3) the development of a multigrid scheme using a diagonalized alternating direction implicit (ADI) algorithm; (4) the extension of the diagonalized ADI multigrid method to solve the Euler equations of inviscid flow for three-dimensional turbomachinery flows; and also (5) the extension of the diagonalized ADI multigrid scheme to solve the Reynolds-averaged Navier-Stokes equations for two-dimensional turbomachinery flows.
Agglomeration Multigrid for an Unstructured-Grid Flow Solver
NASA Technical Reports Server (NTRS)
Frink, Neal; Pandya, Mohagna J.
2004-01-01
An agglomeration multigrid scheme has been implemented into the sequential version of the NASA code USM3Dns, tetrahedral cell-centered finite volume Euler/Navier-Stokes flow solver. Efficiency and robustness of the multigrid-enhanced flow solver have been assessed for three configurations assuming an inviscid flow and one configuration assuming a viscous fully turbulent flow. The inviscid studies include a transonic flow over the ONERA M6 wing and a generic business jet with flow-through nacelles and a low subsonic flow over a high-lift trapezoidal wing. The viscous case includes a fully turbulent flow over the RAE 2822 rectangular wing. The multigrid solutions converged with 12%-33% of the Central Processing Unit (CPU) time required by the solutions obtained without multigrid. For all of the inviscid cases, multigrid in conjunction with an explicit time-stepping scheme performed the best with regard to the run time memory and CPU time requirements. However, for the viscous case multigrid had to be used with an implicit backward Euler time-stepping scheme that increased the run time memory requirement by 22% as compared to the run made without multigrid.
Convergence acceleration of the Proteus computer code with multigrid methods
NASA Technical Reports Server (NTRS)
Demuren, A. O.; Ibraheem, S. O.
1995-01-01
This report presents the results of a study to implement convergence acceleration techniques based on the multigrid concept in the two-dimensional and three-dimensional versions of the Proteus computer code. The first section presents a review of the relevant literature on the implementation of the multigrid methods in computer codes for compressible flow analysis. The next two sections present detailed stability analysis of numerical schemes for solving the Euler and Navier-Stokes equations, based on conventional von Neumann analysis and the bi-grid analysis, respectively. The next section presents details of the computational method used in the Proteus computer code. Finally, the multigrid implementation and applications to several two-dimensional and three-dimensional test problems are presented. The results of the present study show that the multigrid method always leads to a reduction in the number of iterations (or time steps) required for convergence. However, there is an overhead associated with the use of multigrid acceleration. The overhead is higher in 2-D problems than in 3-D problems, thus overall multigrid savings in CPU time are in general better in the latter. Savings of about 40-50 percent are typical in 3-D problems, but they are about 20-30 percent in large 2-D problems. The present multigrid method is applicable to steady-state problems and is therefore ineffective in problems with inherently unstable solutions.
Implementing abstract multigrid or multilevel methods
NASA Technical Reports Server (NTRS)
Douglas, Craig C.
1993-01-01
Multigrid methods can be formulated as an algorithm for an abstract problem that is independent of the partial differential equation, domain, and discretization method. In such an abstract setting, problems not arising from partial differential equations can be treated. A general theory exists for linear problems. The general theory was motivated by a series of abstract solvers (Madpack). The latest version was motivated by the theory. Madpack now allows for a wide variety of iterative and direct solvers, preconditioners, and interpolation and projection schemes, including user callback ones. It allows for sparse, dense, and stencil matrices. Mildly nonlinear problems can be handled. Also, there is a fast, multigrid Poisson solver (two and three dimensions). The type of solvers and design decisions (including language, data structures, external library support, and callbacks) are discussed. Based on the author's experiences with two versions of Madpack, a better approach is proposed. This is based on a mixed language formulation (C and FORTRAN + preprocessor). Reasons for not using FORTRAN, C, or C++ (individually) are given. Implementing the proposed strategy is not difficult.
Operator induced multigrid algorithms using semirefinement
NASA Technical Reports Server (NTRS)
Decker, Naomi; Vanrosendale, John
1989-01-01
A variant of multigrid, based on zebra relaxation, and a new family of restriction/prolongation operators is described. Using zebra relaxation in combination with an operator-induced prolongation leads to fast convergence, since the coarse grid can correct all error components. The resulting algorithms are not only fast, but are also robust, in the sense that the convergence rate is insensitive to the mesh aspect ratio. This is true even though line relaxation is performed in only one direction. Multigrid becomes a direct method if an operator-induced prolongation is used, together with the induced coarse grid operators. Unfortunately, this approach leads to stencils which double in size on each coarser grid. The use of an implicit three point restriction can be used to factor these large stencils, in order to retain the usual five or nine point stencils, while still achieving fast convergence. This algorithm achieves a V-cycle convergence rate of 0.03 on Poisson's equation, using 1.5 zebra sweeps per level, while the convergence rate improves to 0.003 if optimal nine point stencils are used. Numerical results for two and three dimensional model problems are presented, together with a two level analysis explaining these results.
Operator induced multigrid algorithms using semirefinement
NASA Technical Reports Server (NTRS)
Decker, Naomi Henderson; Van Rosendale, John
1989-01-01
A variant of multigrid, based on zebra relaxation, and a new family of restriction/prolongation operators is described. Using zebra relaxation in combination with an operator-induced prolongation leads to fast convergence, since the coarse grid can correct all error components. The resulting algorithms are not only fast, but are also robust, in the sense that the convergence rate is insensitive to the mesh aspect ratio. This is true even though line relaxation is performed in only one direction. Multigrid becomes a direct method if an operator-induced prolongation is used, together with the induced coarse grid operators. Unfortunately, this approach leads to stencils which double in size on each coarser grid. The use of an implicit three point restriction can be used to factor these large stencils, in order to retain the usual five or nine point stencils, while still achieving fast convergence. This algorithm achieves a V-cycle convergence rate of 0.03 on Poisson's equation, using 1.5 zebra sweeps per level, while the convergence rate improves to 0.003 if optimal nine point stencils are used. Numerical results for two- and three-dimensional model problems are presented, together with a two level analysis explaining these results.
The Development of a Factorizable Multigrid Algorithm for Subsonic and Transonic Flow
NASA Technical Reports Server (NTRS)
Roberts, Thomas W.
2001-01-01
The factorizable discretization of Sidilkover for the compressible Euler equations previously demonstrated for channel flows has been extended to external flows.The dissipation of the original scheme has been modified to maintain stability for moderately stretched grids. The discrete equations are solved by symmetric collective Gauss-Seidel relaxation and FAS multigrid. Unlike the earlier work ordering the grid vertices in the flow direction has been found to be unnecessary. Solutions for essential incompressible flow (Mach 0.01) and supercritical flows have obtained for a Karman-Trefftz airfoil with it conformally mapped grid,as well as a NACA 0012 on an algebraically generated grid. The current work demonstrates nearly 0(n) convergence for subsonic and slightly transonic flows.
Convergence acceleration of the Proteus computer code with multigrid methods
NASA Technical Reports Server (NTRS)
Demuren, A. O.; Ibraheem, S. O.
1992-01-01
Presented here is the first part of a study to implement convergence acceleration techniques based on the multigrid concept in the Proteus computer code. A review is given of previous studies on the implementation of multigrid methods in computer codes for compressible flow analysis. Also presented is a detailed stability analysis of upwind and central-difference based numerical schemes for solving the Euler and Navier-Stokes equations. Results are given of a convergence study of the Proteus code on computational grids of different sizes. The results presented here form the foundation for the implementation of multigrid methods in the Proteus code.
Locally Refined Multigrid Solution of the All-Electron Kohn-Sham Equation.
Cohen, Or; Kronik, Leeor; Brandt, Achi
2013-11-12
We present a fully numerical multigrid approach for solving the all-electron Kohn-Sham equation in molecules. The equation is represented on a hierarchy of Cartesian grids, from coarse ones that span the entire molecule to very fine ones that describe only a small volume around each atom. This approach is adaptable to any type of geometry. We demonstrate it for a variety of small molecules and obtain high accuracy agreement with results obtained previously for diatomic molecules using a prolate-spheroidal grid. We provide a detailed presentation of the numerical methodology and discuss possible extensions of this approach. PMID:26583393
Filiform Lie algebras of order 3
Navarro, R. M.
2014-04-15
The aim of this work is to generalize a very important type of Lie algebras and superalgebras, i.e., filiform Lie (super)algebras, into the theory of Lie algebras of order F. Thus, the concept of filiform Lie algebras of order F is obtained. In particular, for F = 3 it has been proved that by using infinitesimal deformations of the associated model elementary Lie algebra it can be obtained families of filiform elementary lie algebras of order 3, analogously as that occurs into the theory of Lie algebras [M. Vergne, “Cohomologie des algèbres de Lie nilpotentes. Application à l’étude de la variété des algèbres de Lie nilpotentes,” Bull. Soc. Math. France 98, 81–116 (1970)]. Also we give the dimension, using an adaptation of the sl(2,C)-module Method, and a basis of such infinitesimal deformations in some generic cases.
Progress with multigrid schemes for hypersonic flow problems
NASA Technical Reports Server (NTRS)
Radespiel, R.; Swanson, R. C.
1991-01-01
Several multigrid schemes are considered for the numerical computation of viscous hypersonic flows. For each scheme, the basic solution algorithm uses upwind spatial discretization with explicit multistage time stepping. Two level versions of the various multigrid algorithms are applied to the two dimensional advection equation, and Fourier analysis is used to determine their damping properties. The capabilities of the multigrid methods are assessed by solving three different hypersonic flow problems. Some new multigrid schemes based on semicoarsening strategies are shown to be quite effective in relieving the stiffness caused by the high aspect ratio cells required to resolve high Reynolds number flows. These schemes exhibit good convergence rates for Reynolds numbers up to 200 x 10(exp 6) and Mach numbers up to 25.
Progress with multigrid schemes for hypersonic flow problems
Radespiel, R.; Swanson, R.C.
1995-01-01
Several multigrid schemes are considered for the numerical computation of viscous hypersonic flows. For each scheme, the basic solution algorithm employs upwind spatial discretization with explicit multistage time stepping. Two-level versions of the various multigrid algorithms are applied to the two-dimensional advection equation, and Fourier analysis is used to determine their damping properties. The capabilities of the multigrid methods are assessed by solving three different hypersonic flow problems. Some new multigrid schemes based on semicoarsening strategies are shown to be quite effective in relieving the stiffness caused by the high-aspect-ratio cells required to resolve high Reynolds number flows. These schemes exhibit good convergence rates for Reynolds numbers up to 200 X 10{sup 6} and Mach numbers up to 25. 32 refs., 31 figs., 1 tab.
On the connection between multigrid and cyclic reduction
NASA Technical Reports Server (NTRS)
Merriam, M. L.
1984-01-01
A technique is shown whereby it is possible to relate a particular multigrid process to cyclic reduction using purely mathematical arguments. This technique suggest methods for solving Poisson's equation in 1-, 2-, or 3-dimensions with Dirichlet or Neumann boundary conditions. In one dimension the method is exact and, in fact, reduces to cyclic reduction. This provides a valuable reference point for understanding multigrid techniques. The particular multigrid process analyzed is referred to here as Approximate Cyclic Reduction (ACR) and is one of a class known as Multigrid Reduction methods in the literature. It involves one approximation with a known error term. It is possible to relate the error term in this approximation with certain eigenvector components of the error. These are sharply reduced in amplitude by classical relaxation techniques. The approximation can thus be made a very good one.
Multigrid techniques for the numerical solution of the diffusion equation
NASA Technical Reports Server (NTRS)
Phillips, R. E.; Schmidt, F. W.
1984-01-01
An accurate numerical solution of diffusion problems containing large local gradients can be obtained with a significant reduction in computational time by using a multigrid computational scheme. The spatial domain is covered with sets of uniform square grids of different sizes. The finer grid patterns overlap the coarse grid patterns. The finite-difference expressions for each grid pattern are solved independently by iterative techniques. Two interpolation methods were used to establish the values of the potential function on the fine grid boundaries with information obtained from the coarse grid solution. The accuracy and computational requirements for solving a test problem by a simple multigrid and a multilevel-multigrid method were compared. The multilevel-multigrid method combined with a Taylor series interpolation scheme was found to be best.
Multigrid-based reconstruction algorithm for quantitative photoacoustic tomography
Li, Shengfu; Montcel, Bruno; Yuan, Zhen; Liu, Wanyu; Vray, Didier
2015-01-01
This paper proposes a multigrid inversion framework for quantitative photoacoustic tomography reconstruction. The forward model of optical fluence distribution and the inverse problem are solved at multiple resolutions. A fixed-point iteration scheme is formulated for each resolution and used as a cost function. The simulated and experimental results for quantitative photoacoustic tomography reconstruction show that the proposed multigrid inversion can dramatically reduce the required number of iterations for the optimization process without loss of reliability in the results. PMID:26203371
Multigrid-based reconstruction algorithm for quantitative photoacoustic tomography.
Li, Shengfu; Montcel, Bruno; Yuan, Zhen; Liu, Wanyu; Vray, Didier
2015-07-01
This paper proposes a multigrid inversion framework for quantitative photoacoustic tomography reconstruction. The forward model of optical fluence distribution and the inverse problem are solved at multiple resolutions. A fixed-point iteration scheme is formulated for each resolution and used as a cost function. The simulated and experimental results for quantitative photoacoustic tomography reconstruction show that the proposed multigrid inversion can dramatically reduce the required number of iterations for the optimization process without loss of reliability in the results. PMID:26203371
Matrix-dependent multigrid-homogenization for diffusion problems
Knapek, S.
1996-12-31
We present a method to approximately determine the effective diffusion coefficient on the coarse scale level of problems with strongly varying or discontinuous diffusion coefficients. It is based on techniques used also in multigrid, like Dendy`s matrix-dependent prolongations and the construction of coarse grid operators by means of the Galerkin approximation. In numerical experiments, we compare our multigrid-homogenization method with homogenization, renormalization and averaging approaches.
Spectral multigrid methods with applications to transonic potential flow
NASA Technical Reports Server (NTRS)
Streett, C. L.; Zang, T. A.; Hussaini, M. Y.
1983-01-01
Spectral multigrid methods are demonstrated to be a competitive technique for solving the transonic potential flow equation. The spectral discretization, the relaxation scheme, and the multigrid techniques are described in detail. Significant departures from current approaches are first illustrated on several linear problems. The principal applications and examples, however, are for compressible potential flow. These examples include the relatively challenging case of supercritical flow over a lifting airfoil.
Spectral multigrid methods with applications to transonic potential flow
NASA Technical Reports Server (NTRS)
Streett, C. L.; Zang, T. A.; Hussaini, M. Y.
1985-01-01
Spectral multigrid methods are demonstrated to be a competitive technique for solving the transonic potential flow equation. The spectral discretization, the relaxation scheme, and the multigrid techniques are described in detail. Significant departures from current approaches are first illustrated on several linear problems. The principal applications and examples, however, are for compressible potential flow. These examples include the relatively challenging case of supercritical flow over a lifting airfoil.
Applications of multigrid software in the atmospheric sciences
NASA Technical Reports Server (NTRS)
Adams, J.; Garcia, R.; Gross, B.; Hack, J.; Haidvogel, D.; Pizzo, V.
1992-01-01
Elliptic partial differential equations from different areas in the atmospheric sciences are efficiently and easily solved utilizing the multigrid software package named MUDPACK. It is demonstrated that the multigrid method is more efficient than other commonly employed techniques, such as Gaussian elimination and fixed-grid relaxation. The efficiency relative to other techniques, both in terms of storage requirement and computational time, increases quickly with grid size.
A Multigrid Algorithm for Immersed Interface Problems
NASA Technical Reports Server (NTRS)
Adams, Loyce
1996-01-01
Many physical problems involve interior interfaces across which the coefficients in the problem, the solution, its derivatives, the flux, or the source term may have jumps. These interior interfaces may or may not align with a underlying Cartesian grid. Zhilin Li, in his dissertation, showed how to discretize such elliptic problems using only a Cartesian grid and the known jump conditions to second order accuracy. In this paper, we describe how to apply the full multigrid algorithm in this context. In particular, the restriction, interpolation, and coarse grid problem will be described. Numerical results for several model problems are given to demonstrate that good rates can be obtained even when jumps in the coefficients are large and do not align with the grid.
Multigrid algorithms for tensor network states.
Dolfi, Michele; Bauer, Bela; Troyer, Matthias; Ristivojevic, Zoran
2012-07-13
The widely used density matrix renormalization group (DRMG) method often fails to converge in systems with multiple length scales, such as lattice discretizations of continuum models and dilute or weakly doped lattice models. The local optimization employed by DMRG to optimize the wave function is ineffective in updating large-scale features. Here we present a multigrid algorithm that solves these convergence problems by optimizing the wave function at different spatial resolutions. We demonstrate its effectiveness by simulating bosons in continuous space and study nonadiabaticity when ramping up the amplitude of an optical lattice. The algorithm can be generalized to tensor network methods and combined with the contractor renormalization group method to study dilute and weakly doped lattice models. PMID:23030148
A Critical Study of Agglomerated Multigrid Methods for Diffusion
NASA Technical Reports Server (NTRS)
Nishikawa, Hiroaki; Diskin, Boris; Thomas, James L.
2011-01-01
Agglomerated multigrid techniques used in unstructured-grid methods are studied critically for a model problem representative of laminar diffusion in the incompressible limit. The studied target-grid discretizations and discretizations used on agglomerated grids are typical of current node-centered formulations. Agglomerated multigrid convergence rates are presented using a range of two- and three-dimensional randomly perturbed unstructured grids for simple geometries with isotropic and stretched grids. Two agglomeration techniques are used within an overall topology-preserving agglomeration framework. The results show that multigrid with an inconsistent coarse-grid scheme using only the edge terms (also referred to in the literature as a thin-layer formulation) provides considerable speedup over single-grid methods but its convergence deteriorates on finer grids. Multigrid with a Galerkin coarse-grid discretization using piecewise-constant prolongation and a heuristic correction factor is slower and also grid-dependent. In contrast, grid-independent convergence rates are demonstrated for multigrid with consistent coarse-grid discretizations. Convergence rates of multigrid cycles are verified with quantitative analysis methods in which parts of the two-grid cycle are replaced by their idealized counterparts.
NASA Technical Reports Server (NTRS)
Cannizzaro, Frank E.; Ash, Robert L.
1992-01-01
A state-of-the-art computer code has been developed that incorporates a modified Runge-Kutta time integration scheme, upwind numerical techniques, multigrid acceleration, and multi-block capabilities (RUMM). A three-dimensional thin-layer formulation of the Navier-Stokes equations is employed. For turbulent flow cases, the Baldwin-Lomax algebraic turbulence model is used. Two different upwind techniques are available: van Leer's flux-vector splitting and Roe's flux-difference splitting. Full approximation multi-grid plus implicit residual and corrector smoothing were implemented to enhance the rate of convergence. Multi-block capabilities were developed to provide geometric flexibility. This feature allows the developed computer code to accommodate any grid topology or grid configuration with multiple topologies. The results shown in this dissertation were chosen to validate the computer code and display its geometric flexibility, which is provided by the multi-block structure.
NASA Technical Reports Server (NTRS)
Dinar, N.
1978-01-01
Several aspects of multigrid methods are briefly described. The main subjects include the development of very efficient multigrid algorithms for systems of elliptic equations (Cauchy-Riemann, Stokes, Navier-Stokes), as well as the development of control and prediction tools (based on local mode Fourier analysis), used to analyze, check and improve these algorithms. Preliminary research on multigrid algorithms for time dependent parabolic equations is also described. Improvements in existing multigrid processes and algorithms for elliptic equations were studied.
Mapping robust parallel multigrid algorithms to scalable memory architectures
NASA Technical Reports Server (NTRS)
Overman, Andrea; Vanrosendale, John
1993-01-01
The convergence rate of standard multigrid algorithms degenerates on problems with stretched grids or anisotropic operators. The usual cure for this is the use of line or plane relaxation. However, multigrid algorithms based on line and plane relaxation have limited and awkward parallelism and are quite difficult to map effectively to highly parallel architectures. Newer multigrid algorithms that overcome anisotropy through the use of multiple coarse grids rather than relaxation are better suited to massively parallel architectures because they require only simple point-relaxation smoothers. In this paper, we look at the parallel implementation of a V-cycle multiple semicoarsened grid (MSG) algorithm on distributed-memory architectures such as the Intel iPSC/860 and Paragon computers. The MSG algorithms provide two levels of parallelism: parallelism within the relaxation or interpolation on each grid and across the grids on each multigrid level. Both levels of parallelism must be exploited to map these algorithms effectively to parallel architectures. This paper describes a mapping of an MSG algorithm to distributed-memory architectures that demonstrates how both levels of parallelism can be exploited. The result is a robust and effective multigrid algorithm for distributed-memory machines.
Mapping robust parallel multigrid algorithms to scalable memory architectures
NASA Technical Reports Server (NTRS)
Overman, Andrea; Vanrosendale, John
1993-01-01
The convergence rate of standard multigrid algorithms degenerates on problems with stretched grids or anisotropic operators. The usual cure for this is the use of line or plane relaxation. However, multigrid algorithms based on line and plane relaxation have limited and awkward parallelism and are quite difficult to map effectively to highly parallel architectures. Newer multigrid algorithms that overcome anisotropy through the use of multiple coarse grids rather than line relaxation are better suited to massively parallel architectures because they require only simple point-relaxation smoothers. The parallel implementation of a V-cycle multiple semi-coarsened grid (MSG) algorithm or distributed-memory architectures such as the Intel iPSC/860 and Paragon computers is addressed. The MSG algorithms provide two levels of parallelism: parallelism within the relaxation or interpolation on each grid and across the grids on each multigrid level. Both levels of parallelism must be exploited to map these algorithms effectively to parallel architectures. A mapping of an MSG algorithm to distributed-memory architectures that demonstrate how both levels of parallelism can be exploited is described. The results is a robust and effective multigrid algorithm for distributed-memory machines.
A Critical Study of Agglomerated Multigrid Methods for Diffusion
NASA Technical Reports Server (NTRS)
Thomas, James L.; Nishikawa, Hiroaki; Diskin, Boris
2009-01-01
Agglomerated multigrid techniques used in unstructured-grid methods are studied critically for a model problem representative of laminar diffusion in the incompressible limit. The studied target-grid discretizations and discretizations used on agglomerated grids are typical of current node-centered formulations. Agglomerated multigrid convergence rates are presented using a range of two- and three-dimensional randomly perturbed unstructured grids for simple geometries with isotropic and highly stretched grids. Two agglomeration techniques are used within an overall topology-preserving agglomeration framework. The results show that multigrid with an inconsistent coarse-grid scheme using only the edge terms (also referred to in the literature as a thin-layer formulation) provides considerable speedup over single-grid methods but its convergence deteriorates on finer grids. Multigrid with a Galerkin coarse-grid discretization using piecewise-constant prolongation and a heuristic correction factor is slower and also grid-dependent. In contrast, grid-independent convergence rates are demonstrated for multigrid with consistent coarse-grid discretizations. Actual cycle results are verified using quantitative analysis methods in which parts of the cycle are replaced by their idealized counterparts.
Twisted Quantum Toroidal Algebras
NASA Astrophysics Data System (ADS)
Jing, Naihuan; Liu, Rongjia
2014-09-01
We construct a principally graded quantum loop algebra for the Kac-Moody algebra. As a special case a twisted analog of the quantum toroidal algebra is obtained together with the quantum Serre relations.
Textbook Multigrid Efficiency for the Steady Euler Equations
NASA Technical Reports Server (NTRS)
Roberts, Thomas W.; Sidilkover, David; Swanson, R. C.
2004-01-01
A fast multigrid solver for the steady incompressible Euler equations is presented. Unlike time-marching schemes, this approach uses relaxation of the steady equations. Application of this method results in a discretization that correctly distinguishes between the advection and elliptic parts of the operator, allowing efficient smoothers to be constructed. Solvers for both unstructured triangular grids and structured quadrilateral grids have been written. Computations for channel flow and flow over a nonlifting airfoil have computed. Using Gauss-Seidel relaxation ordered in the flow direction, textbook multigrid convergence rates of nearly one order-of-magnitude residual reduction per multigrid cycle are achieved, independent of the grid spacing. This approach also may be applied to the compressible Euler equations and the incompressible Navier-Stokes equations.
Towards Optimal Multigrid Efficiency for the Navier-Stokes Equations
NASA Technical Reports Server (NTRS)
Swanson, R. C.
2001-01-01
A fast multigrid solver for the steady incompressible Navier-Stokes equations is presented. Unlike time-marching schemes, this approach uses relaxation of the steady equations. Application of this method results in a discretization that correctly distinguishes between the advection and elliptic parts of the operator, allowing efficient smoothers to be constructed. Numerical solutions are shown for flow over a flat plate and a Karman-Trefftz airfoil. Using collective Gauss-Seidel line relaxation in both the vertical and horizontal directions, multigrid convergence behavior approaching that of O(N) methods is achieved. The computational efficiency of the numerical scheme is compared with that of a Runge-Kutta based multigrid method.
A multigrid fluid pressure solver handling separating solid boundary conditions.
Chentanez, Nuttapong; Müller-Fischer, Matthias
2012-08-01
We present a multigrid method for solving the linear complementarity problem (LCP) resulting from discretizing the Poisson equation subject to separating solid boundary conditions in an Eulerian liquid simulation’s pressure projection step. The method requires only a few small changes to a multigrid solver for linear systems. Our generalized solver is fast enough to handle 3D liquid simulations with separating boundary conditions in practical domain sizes. Previous methods could only handle relatively small 2D domains in reasonable time, because they used expensive quadratic programming (QP) solvers. We demonstrate our technique in several practical scenarios, including nonaxis-aligned containers and moving solids in which the omission of separating boundary conditions results in disturbing artifacts of liquid sticking to solids. Our measurements show, that the convergence rate of our LCP solver is close to that of a standard multigrid solver. PMID:22411885
Multigrid and multilevel domain decomposition for unstructured grids
Chan, T.; Smith, B.
1994-12-31
Multigrid has proven itself to be a very versatile method for the iterative solution of linear and nonlinear systems of equations arising from the discretization of PDES. In some applications, however, no natural multilevel structure of grids is available, and these must be generated as part of the solution procedure. In this presentation the authors will consider the problem of generating a multigrid algorithm when only a fine, unstructured grid is given. Their techniques generate a sequence of coarser grids by first forming an approximate maximal independent set of the vertices and then applying a Cavendish type algorithm to form the coarser triangulation. Numerical tests indicate that convergence using this approach can be as fast as standard multigrid on a structured mesh, at least in two dimensions.
A multigrid solution method for mixed hybrid finite elements
Schmid, W.
1996-12-31
We consider the multigrid solution of linear equations arising within the discretization of elliptic second order boundary value problems of the form by mixed hybrid finite elements. Using the equivalence of mixed hybrid finite elements and non-conforming nodal finite elements, we construct a multigrid scheme for the corresponding non-conforming finite elements, and, by this equivalence, for the mixed hybrid finite elements, following guidelines from Arbogast/Chen. For a rectangular triangulation of the computational domain, this non-conforming schemes are the so-called nodal finite elements. We explicitly construct prolongation and restriction operators for this type of non-conforming finite elements. We discuss the use of plain multigrid and the multilevel-preconditioned cg-method and compare their efficiency in numerical tests.
Analysis of multigrid algorithms for nonsymmetric and indefinite elliptic problems
Bramble, J.H.; Pasciak, J.E.; Xu, J.
1988-10-01
We prove some new estimates for the convergence of multigrid algorithms applied to nonsymmetric and indefinite elliptic boundary value problems. We provide results for the so-called 'symmetric' multigrid schemes. We show that for the variable V-script-cycle and the W-script-cycle schemes, multigrid algorithms with any amount of smoothing on the finest grid converge at a rate that is independent of the number of levels or unknowns, provided that the initial grid is sufficiently fine. We show that the V-script-cycle algorithm also converges (under appropriate assumptions on the coarsest grid) but at a rate which may deteriorate as the number of levels increases. This deterioration for the V-script-cycle may occur even in the case of full elliptic regularity. Finally, the results of numerical experiments are given which illustrate the convergence behavior suggested by the theory.
ERIC Educational Resources Information Center
Wainer, Howard; And Others
The initial development of a testlet-based algebra test was previously reported (Wainer and Lewis, 1990). This account provides the details of this excursion into the use of hierarchical testlets and validity-based scoring. A pretest of two 15-item hierarchical testlets was carried out in which examinees' performance on a 4-item subset of each…
Seventh Copper Mountain Conference on Multigrid Methods. Part 2
NASA Technical Reports Server (NTRS)
Melson, N. Duane (Editor); Manteuffel, Tom A. (Editor); McCormick, Steve F. (Editor); Douglas, Craig C. (Editor)
1996-01-01
The Seventh Copper Mountain Conference on Multigrid Methods was held on April 2-7, 1995 at Copper Mountain, Colorado. This book is a collection of many of the papers presented at the conference and so represents the conference proceedings. NASA Langley graciously provided printing of this document so that all of the papers could be presented in a single forum. Each paper was reviewed by a member of the conference organizing committee under the coordination of the editors. The vibrancy and diversity in this field are amply expressed in these important papers, and the collection clearly shows the continuing rapid growth of the use of multigrid acceleration techniques.
Multigrid Methods for Aerodynamic Problems in Complex Geometries
NASA Technical Reports Server (NTRS)
Caughey, David A.
1995-01-01
Work has been directed at the development of efficient multigrid methods for the solution of aerodynamic problems involving complex geometries, including the development of computational methods for the solution of both inviscid and viscous transonic flow problems. The emphasis is on problems of complex, three-dimensional geometry. The methods developed are based upon finite-volume approximations to both the Euler and the Reynolds-Averaged Navier-Stokes equations. The methods are developed for use on multi-block grids using diagonalized implicit multigrid methods to achieve computational efficiency. The work is focused upon aerodynamic problems involving complex geometries, including advanced engine inlets.
Development and Application of Agglomerated Multigrid Methods for Complex Geometries
NASA Technical Reports Server (NTRS)
Nishikawa, Hiroaki; Diskin, Boris; Thomas, James L.
2010-01-01
We report progress in the development of agglomerated multigrid techniques for fully un- structured grids in three dimensions, building upon two previous studies focused on efficiently solving a model diffusion equation. We demonstrate a robust fully-coarsened agglomerated multigrid technique for 3D complex geometries, incorporating the following key developments: consistent and stable coarse-grid discretizations, a hierarchical agglomeration scheme, and line-agglomeration/relaxation using prismatic-cell discretizations in the highly-stretched grid regions. A signi cant speed-up in computer time is demonstrated for a model diffusion problem, the Euler equations, and the Reynolds-averaged Navier-Stokes equations for 3D realistic complex geometries.
Fast Multigrid Techniques in Total Variation-Based Image Reconstruction
NASA Technical Reports Server (NTRS)
Oman, Mary Ellen
1996-01-01
Existing multigrid techniques are used to effect an efficient method for reconstructing an image from noisy, blurred data. Total Variation minimization yields a nonlinear integro-differential equation which, when discretized using cell-centered finite differences, yields a full matrix equation. A fixed point iteration is applied with the intermediate matrix equations solved via a preconditioned conjugate gradient method which utilizes multi-level quadrature (due to Brandt and Lubrecht) to apply the integral operator and a multigrid scheme (due to Ewing and Shen) to invert the differential operator. With effective preconditioning, the method presented seems to require Omicron(n) operations. Numerical results are given for a two-dimensional example.
Some multigrid algorithms for elliptic problems on data parallel machines
Bandy, V.A.; Dendy, J.E. Jr.; Spangenberg, W.H.
1998-01-01
Previously a semicoarsening multigrid algorithm suitable for use on data parallel architectures was investigated. Through the use of new software tools, the performance of this algorithm has been considerably improved. The method has also been extended to three space dimensions. The method performs well for strongly anisotropic problems and for problems with coefficients jumping by orders of magnitude across internal interfaces. The parallel efficiency of this method is analyzed, and its actual performance on the CM-5 is compared with its performance on the CRAY Y-MP and the Sparc-5. A standard coarsening multigrid algorithm is also considered, and they compare its performance on these three platforms as well.
Vectorizable multigrid algorithms for transonic-flow calculations
NASA Technical Reports Server (NTRS)
Melson, N. D.
1986-01-01
The analysis and the incorporation into a multigrid scheme of several vectorizable algorithms are discussed. von Neumann analyses of vertical-line, horizontal-line, and alternating-direction ZEBRA algorithms were performed; and the results were used to predict their multigrid damping rates. The algorithms were then successfully implemented in a transonic conservative full-potential computer program. The convergence acceleration effect of multiple grids is shown, and the convergence rates of the vectorizable algorithms are compared with those of standard successive-line overrelaxation (SLOR) algorithms.
Black box multigrid solver for definite and indefinite problems
Shapira, Yair
1997-02-01
A two-level analysis method for certain separable problems is introduced. It motivates the definition of improved versions of Black Box Multigrid for diffusion problems with discontinuous coefficients and indefinite Helmholtz equations. For anisotropic problems, it helps in choosing suitable implementations for frequency decomposition multigrid methods. For highly indefinite problems, it provides a way to choose in advance a suitable mesh size for the coarsest grid used. Numerical experiments confirm the analysis and show the advantage of the present methods for several examples.
Multigrid methods for flow transition in three-dimensional boundary layers with surface roughness
NASA Technical Reports Server (NTRS)
Liu, Chaoqun; Liu, Zhining; Mccormick, Steve
1993-01-01
The efficient multilevel adaptive method has been successfully applied to perform direct numerical simulations (DNS) of flow transition in 3-D channels and 3-D boundary layers with 2-D and 3-D isolated and distributed roughness in a curvilinear coordinate system. A fourth-order finite difference technique on stretched and staggered grids, a fully-implicit time marching scheme, a semi-coarsening multigrid method associated with line distributive relaxation scheme, and an improved outflow boundary-condition treatment, which needs only a very short buffer domain to damp all order-one wave reflections, are developed. These approaches make the multigrid DNS code very accurate and efficient. This allows us not only to be able to do spatial DNS for the 3-D channel and flat plate at low computational costs, but also to do spatial DNS for transition in the 3-D boundary layer with 3-D single and multiple roughness elements, which would have extremely high computational costs with conventional methods. Numerical results show good agreement with the linear stability theory, the secondary instability theory, and a number of laboratory experiments. The contribution of isolated and distributed roughness to transition is analyzed.
Algebraic vs physical N = 6 3-algebras
Cantarini, Nicoletta; Kac, Victor G.
2014-01-15
In our previous paper, we classified linearly compact algebraic simple N = 6 3-algebras. In the present paper, we classify their “physical” counterparts, which actually appear in the N = 6 supersymmetric 3-dimensional Chern-Simons theories.
Multigrid Strategies for Viscous Flow Solvers on Anisotropic Unstructured Meshes
NASA Technical Reports Server (NTRS)
Movriplis, Dimitri J.
1998-01-01
Unstructured multigrid techniques for relieving the stiffness associated with high-Reynolds number viscous flow simulations on extremely stretched grids are investigated. One approach consists of employing a semi-coarsening or directional-coarsening technique, based on the directions of strong coupling within the mesh, in order to construct more optimal coarse grid levels. An alternate approach is developed which employs directional implicit smoothing with regular fully coarsened multigrid levels. The directional implicit smoothing is obtained by constructing implicit lines in the unstructured mesh based on the directions of strong coupling. Both approaches yield large increases in convergence rates over the traditional explicit full-coarsening multigrid algorithm. However, maximum benefits are achieved by combining the two approaches in a coupled manner into a single algorithm. An order of magnitude increase in convergence rate over the traditional explicit full-coarsening algorithm is demonstrated, and convergence rates for high-Reynolds number viscous flows which are independent of the grid aspect ratio are obtained. Further acceleration is provided by incorporating low-Mach-number preconditioning techniques, and a Newton-GMRES strategy which employs the multigrid scheme as a preconditioner. The compounding effects of these various techniques on speed of convergence is documented through several example test cases.
Recent developments in multigrid methods for the steady Euler equations
NASA Technical Reports Server (NTRS)
Jespersen, D. C.
1984-01-01
The solution by multigrid techniques of the steady inviscid compressible equations of gas dynamics, the Euler equations is investigated. Steady two dimensional transonic flow over an airfoil section is studied intensively. Most of the material is applicable to three dimensional flow problems of aerodynamic interest.
A multigrid nonoscillatory method for computing high speed flows
NASA Technical Reports Server (NTRS)
Li, C. P.; Shieh, T. H.
1993-01-01
A multigrid method using different smoothers has been developed to solve the Euler equations discretized by a nonoscillatory scheme up to fourth order accuracy. The best smoothing property is provided by a five-stage Runge-Kutta technique with optimized coefficients, yet the most efficient smoother is a backward Euler technique in factored and diagonalized form. The singlegrid solution for a hypersonic, viscous conic flow is in excellent agreement with the solution obtained by the third order MUSCL and Roe's method. Mach 8 inviscid flow computations for a complete entry probe have shown that the accuracy is at least as good as the symmetric TVD scheme of Yee and Harten. The implicit multigrid method is four times more efficient than the explicit multigrid technique and 3.5 times faster than the single-grid implicit technique. For a Mach 8.7 inviscid flow over a blunt delta wing at 30 deg incidence, the CPU reduction factor from the three-level multigrid computation is 2.2 on a grid of 37 x 41 x 73 nodes.
Multigrid and cyclic reduction applied to the Helmholtz equation
NASA Technical Reports Server (NTRS)
Brackenridge, Kenneth
1993-01-01
We consider the Helmholtz equation with a discontinuous complex parameter and inhomogeneous Dirichlet boundary conditions in a rectangular domain. A variant of the direct method of cyclic reduction (CR) is employed to facilitate the design of improved multigrid (MG) components, resulting in the method of CR-MG. We demonstrate the improved convergence properties of this method.
Multigrid methods for bifurcation problems: The self adjoint case
NASA Technical Reports Server (NTRS)
Taasan, Shlomo
1987-01-01
This paper deals with multigrid methods for computational problems that arise in the theory of bifurcation and is restricted to the self adjoint case. The basic problem is to solve for arcs of solutions, a task that is done successfully with an arc length continuation method. Other important issues are, for example, detecting and locating singular points as part of the continuation process, switching branches at bifurcation points, etc. Multigrid methods have been applied to continuation problems. These methods work well at regular points and at limit points, while they may encounter difficulties in the vicinity of bifurcation points. A new continuation method that is very efficient also near bifurcation points is presented here. The other issues mentioned above are also treated very efficiently with appropriate multigrid algorithms. For example, it is shown that limit points and bifurcation points can be solved for directly by a multigrid algorithm. Moreover, the algorithms presented here solve the corresponding problems in just a few work units (about 10 or less), where a work unit is the work involved in one local relaxation on the finest grid.
ERIC Educational Resources Information Center
National Council of Teachers of Mathematics, Inc., Reston, VA.
This is a reprint of the historical capsules dealing with algebra from the 31st Yearbook of NCTM,"Historical Topics for the Mathematics Classroom." Included are such themes as the change from a geometric to an algebraic solution of problems, the development of algebraic symbolism, the algebraic contributions of different countries, the origin and…
Geometric multigrid for an implicit-time immersed boundary method
Guy, Robert D.; Philip, Bobby; Griffith, Boyce E.
2014-10-12
The immersed boundary (IB) method is an approach to fluid-structure interaction that uses Lagrangian variables to describe the deformations and resulting forces of the structure and Eulerian variables to describe the motion and forces of the fluid. Explicit time stepping schemes for the IB method require solvers only for Eulerian equations, for which fast Cartesian grid solution methods are available. Such methods are relatively straightforward to develop and are widely used in practice but often require very small time steps to maintain stability. Implicit-time IB methods permit the stable use of large time steps, but efficient implementations of such methodsmore » require significantly more complex solvers that effectively treat both Lagrangian and Eulerian variables simultaneously. Moreover, several different approaches to solving the coupled Lagrangian-Eulerian equations have been proposed, but a complete understanding of this problem is still emerging. This paper presents a geometric multigrid method for an implicit-time discretization of the IB equations. This multigrid scheme uses a generalization of box relaxation that is shown to handle problems in which the physical stiffness of the structure is very large. Numerical examples are provided to illustrate the effectiveness and efficiency of the algorithms described herein. Finally, these tests show that using multigrid as a preconditioner for a Krylov method yields improvements in both robustness and efficiency as compared to using multigrid as a solver. They also demonstrate that with a time step 100–1000 times larger than that permitted by an explicit IB method, the multigrid-preconditioned implicit IB method is approximately 50–200 times more efficient than the explicit method.« less
Geometric multigrid for an implicit-time immersed boundary method
Guy, Robert D.; Philip, Bobby; Griffith, Boyce E.
2014-10-12
The immersed boundary (IB) method is an approach to fluid-structure interaction that uses Lagrangian variables to describe the deformations and resulting forces of the structure and Eulerian variables to describe the motion and forces of the fluid. Explicit time stepping schemes for the IB method require solvers only for Eulerian equations, for which fast Cartesian grid solution methods are available. Such methods are relatively straightforward to develop and are widely used in practice but often require very small time steps to maintain stability. Implicit-time IB methods permit the stable use of large time steps, but efficient implementations of such methods require significantly more complex solvers that effectively treat both Lagrangian and Eulerian variables simultaneously. Moreover, several different approaches to solving the coupled Lagrangian-Eulerian equations have been proposed, but a complete understanding of this problem is still emerging. This paper presents a geometric multigrid method for an implicit-time discretization of the IB equations. This multigrid scheme uses a generalization of box relaxation that is shown to handle problems in which the physical stiffness of the structure is very large. Numerical examples are provided to illustrate the effectiveness and efficiency of the algorithms described herein. Finally, these tests show that using multigrid as a preconditioner for a Krylov method yields improvements in both robustness and efficiency as compared to using multigrid as a solver. They also demonstrate that with a time step 100–1000 times larger than that permitted by an explicit IB method, the multigrid-preconditioned implicit IB method is approximately 50–200 times more efficient than the explicit method.
Figueroa-O'Farrill, Jose Miguel
2009-11-15
We phrase deformations of n-Leibniz algebras in terms of the cohomology theory of the associated Leibniz algebra. We do the same for n-Lie algebras and for the metric versions of n-Leibniz and n-Lie algebras. We place particular emphasis on the case of n=3 and explore the deformations of 3-algebras of relevance to three-dimensional superconformal Chern-Simons theories with matter.
Barriers to Achieving Textbook Multigrid Efficiency (TME) in CFD
NASA Technical Reports Server (NTRS)
Brandt, Achi
1998-01-01
As a guide to attaining this optimal performance for general CFD problems, the table below lists every foreseen kind of computational difficulty for achieving that goal, together with the possible ways for resolving that difficulty, their current state of development, and references. Included in the table are staggered and nonstaggered, conservative and nonconservative discretizations of viscous and inviscid, incompressible and compressible flows at various Mach numbers, as well as a simple (algebraic) turbulence model and comments on chemically reacting flows. The listing of associated computational barriers involves: non-alignment of streamlines or sonic characteristics with the grids; recirculating flows; stagnation points; discretization and relaxation on and near shocks and boundaries; far-field artificial boundary conditions; small-scale singularities (meaning important features, such as the complete airplane, which are not visible on some of the coarse grids); large grid aspect ratios; boundary layer resolution; and grid adaption.
Quantum cluster algebras and quantum nilpotent algebras
Goodearl, Kenneth R.; Yakimov, Milen T.
2014-01-01
A major direction in the theory of cluster algebras is to construct (quantum) cluster algebra structures on the (quantized) coordinate rings of various families of varieties arising in Lie theory. We prove that all algebras in a very large axiomatically defined class of noncommutative algebras possess canonical quantum cluster algebra structures. Furthermore, they coincide with the corresponding upper quantum cluster algebras. We also establish analogs of these results for a large class of Poisson nilpotent algebras. Many important families of coordinate rings are subsumed in the class we are covering, which leads to a broad range of applications of the general results to the above-mentioned types of problems. As a consequence, we prove the Berenstein–Zelevinsky conjecture [Berenstein A, Zelevinsky A (2005) Adv Math 195:405–455] for the quantized coordinate rings of double Bruhat cells and construct quantum cluster algebra structures on all quantum unipotent groups, extending the theorem of Geiß et al. [Geiß C, et al. (2013) Selecta Math 19:337–397] for the case of symmetric Kac–Moody groups. Moreover, we prove that the upper cluster algebras of Berenstein et al. [Berenstein A, et al. (2005) Duke Math J 126:1–52] associated with double Bruhat cells coincide with the corresponding cluster algebras. PMID:24982197
Broom, Donald M
2006-01-01
The term adaptation is used in biology in three different ways. It may refer to changes which occur at the cell and organ level, or at the individual level, or at the level of gene action and evolutionary processes. Adaptation by cells, especially nerve cells helps in: communication within the body, the distinguishing of stimuli, the avoidance of overload and the conservation of energy. The time course and complexity of these mechanisms varies. Adaptive characters of organisms, including adaptive behaviours, increase fitness so this adaptation is evolutionary. The major part of this paper concerns adaptation by individuals and its relationships to welfare. In complex animals, feed forward control is widely used. Individuals predict problems and adapt by acting before the environmental effect is substantial. Much of adaptation involves brain control and animals have a set of needs, located in the brain and acting largely via motivational mechanisms, to regulate life. Needs may be for resources but are also for actions and stimuli which are part of the mechanism which has evolved to obtain the resources. Hence pigs do not just need food but need to be able to carry out actions like rooting in earth or manipulating materials which are part of foraging behaviour. The welfare of an individual is its state as regards its attempts to cope with its environment. This state includes various adaptive mechanisms including feelings and those which cope with disease. The part of welfare which is concerned with coping with pathology is health. Disease, which implies some significant effect of pathology, always results in poor welfare. Welfare varies over a range from very good, when adaptation is effective and there are feelings of pleasure or contentment, to very poor. A key point concerning the concept of individual adaptation in relation to welfare is that welfare may be good or poor while adaptation is occurring. Some adaptation is very easy and energetically cheap and
Multigrid solution of incompressible turbulent flows by using two-equation turbulence models
Zheng, X.; Liu, C.; Sung, C.H.
1996-12-31
Most of practical flows are turbulent. From the interest of engineering applications, simulation of realistic flows is usually done through solution of Reynolds-averaged Navier-Stokes equations and turbulence model equations. It has been widely accepted that turbulence modeling plays a very important role in numerical simulation of practical flow problem, particularly when the accuracy is of great concern. Among the most used turbulence models today, two-equation models appear to be favored for the reason that they are more general than algebraic models and affordable with current available computer resources. However, investigators using two-equation models seem to have been more concerned with the solution of N-S equations. Less attention is paid to the solution method for the turbulence model equations. In most cases, the turbulence model equations are loosely coupled with N-S equations, multigrid acceleration is only applied to the solution of N-S equations due to perhaps the fact the turbulence model equations are source-term dominant and very stiff in sublayer region.
NASA Technical Reports Server (NTRS)
Jentink, Thomas Neil; Usab, William J., Jr.
1990-01-01
An explicit, Multigrid algorithm was written to solve the Euler and Navier-Stokes equations with special consideration given to the coarse mesh boundary conditions. These are formulated in a manner consistent with the interior solution, utilizing forcing terms to prevent coarse-mesh truncation error from affecting the fine-mesh solution. A 4-Stage Hybrid Runge-Kutta Scheme is used to advance the solution in time, and Multigrid convergence is further enhanced by using local time-stepping and implicit residual smoothing. Details of the algorithm are presented along with a description of Jameson's standard Multigrid method and a new approach to formulating the Multigrid equations.
On multigrid methods for the Navier-Stokes Computer
NASA Technical Reports Server (NTRS)
Nosenchuck, D. M.; Krist, S. E.; Zang, T. A.
1988-01-01
The overall architecture of the multipurpose parallel-processing Navier-Stokes Computer (NSC) being developed by Princeton and NASA Langley (Nosenchuck et al., 1986) is described and illustrated with extensive diagrams, and the NSC implementation of an elementary multigrid algorithm for simulating isotropic turbulence (based on solution of the incompressible time-dependent Navier-Stokes equations with constant viscosity) is characterized in detail. The present NSC design concept calls for 64 nodes, each with the performance of a class VI supercomputer, linked together by a fiber-optic hypercube network and joined to a front-end computer by a global bus. In this configuration, the NSC would have a storage capacity of over 32 Gword and a peak speed of over 40 Gflops. The multigrid Navier-Stokes code discussed would give sustained operation rates of about 25 Gflops.
The Sixth Copper Mountain Conference on Multigrid Methods, part 1
NASA Technical Reports Server (NTRS)
Melson, N. Duane (Editor); Manteuffel, T. A. (Editor); Mccormick, S. F. (Editor)
1993-01-01
The Sixth Copper Mountain Conference on Multigrid Methods was held on 4-9 Apr. 1993, at Copper Mountain, CO. This book is a collection of many of the papers presented at the conference and as such represents the conference proceedings. NASA LaRC graciously provided printing of this document so that all of the papers could be presented in a single forum. Each paper was reviewed by a member of the conference organizing committee under the coordination of the editors. The multigrid discipline continues to expand and mature, as is evident from these proceedings. The vibrancy in this field is amply expressed in these important papers, and the collection clearly shows its rapid trend to further diversity and depth.
The Sixth Copper Mountain Conference on Multigrid Methods, part 2
NASA Technical Reports Server (NTRS)
Melson, N. Duane (Editor); Mccormick, Steve F. (Editor); Manteuffel, Thomas A. (Editor)
1993-01-01
The Sixth Copper Mountain Conference on Multigrid Methods was held on April 4-9, 1993, at Copper Mountain, Colorado. This book is a collection of many of the papers presented at the conference and so represents the conference proceedings. NASA Langley graciously provided printing of this document so that all of the papers could be presented in a single forum. Each paper was reviewed by a member of the conference organizing committee under the coordination of the editors. The multigrid discipline continues to expand and mature, as is evident from these proceedings. The vibrancy in this field is amply expressed in these important papers, and the collection clearly shows its rapid trend to further diversity and depth.
Linear Multigrid Techniques in Self-consistent Electronic Structure Calculations
Fattebert, J-L
2000-05-23
Ab initio DFT electronic structure calculations involve an iterative process to solve the Kohn-Sham equations for an Hamiltonian depending on the electronic density. We discretize these equations on a grid by finite differences. Trial eigenfunctions are improved at each step of the algorithm using multigrid techniques to efficiently reduce the error at all length scale, until self-consistency is achieved. In this paper we focus on an iterative eigensolver based on the idea of inexact inverse iteration, using multigrid as a preconditioner. We also discuss how this technique can be used for electrons described by general non-orthogonal wave functions, and how that leads to a linear scaling with the system size for the computational cost of the most expensive parts of the algorithm.
Seventh Copper Mountain Conference on Multigrid Methods. Part 1
NASA Technical Reports Server (NTRS)
Melson, N. Duane; Manteuffel, Tom A.; McCormick, Steve F.; Douglas, Craig C.
1996-01-01
The Seventh Copper Mountain Conference on Multigrid Methods was held on 2-7 Apr. 1995 at Copper Mountain, Colorado. This book is a collection of many of the papers presented at the conference and so represents the conference proceedings. NASA Langley graciously provided printing of this document so that all of the papers could be presented in a single forum. Each paper was reviewed by a member of the conference organizing committee under the coordination of the editors. The multigrid discipline continues to expand and mature, as is evident from these proceedings. The vibrancy in this field is amply expressed in these important papers, and the collection shows its rapid trend to further diversity and depth.
Multi-grid calculation of transonic potential flows
NASA Technical Reports Server (NTRS)
Caughey, D. A.; Shmilovich, A.
1985-01-01
The finite-volume method discussed by Jameson and Caughey (1977), and Caughey and Jameson (1979, 1980) has made it possible to calculate the transonic potential flow past any configuration for which a suitable boundary-conforming coordinate grid can be constructed. However, computations for practical three-dimensional problems have remained quite expensive in terms of the required computer time. The reason for this is primarily related to the large number of grid cells necessary for adequate resolution in these complex three-dimensional problems, taking into account the large number of iterations required to achieve even modest convergence on these fine grids. The present chapter provides a description of work directed at removing this latter difficulty by making use of the multigrid method. Attention is given to finite-volume formulation, multigrid iteration, geometrical aspects, and computed results.
Segmented Domain Decomposition Multigrid For 3-D Turbomachinery Flows
NASA Technical Reports Server (NTRS)
Celestina, M. L.; Adamczyk, J. J.; Rubin, S. G.
2001-01-01
A Segmented Domain Decomposition Multigrid (SDDMG) procedure was developed for three-dimensional viscous flow problems as they apply to turbomachinery flows. The procedure divides the computational domain into a coarse mesh comprised of uniformly spaced cells. To resolve smaller length scales such as the viscous layer near a surface, segments of the coarse mesh are subdivided into a finer mesh. This is repeated until adequate resolution of the smallest relevant length scale is obtained. Multigrid is used to communicate information between the different grid levels. To test the procedure, simulation results will be presented for a compressor and turbine cascade. These simulations are intended to show the ability of the present method to generate grid independent solutions. Comparisons with data will also be presented. These comparisons will further demonstrate the usefulness of the present work for they allow an estimate of the accuracy of the flow modeling equations independent of error attributed to numerical discretization.
A parallel multigrid method for data-driven multiprocessor systems
Lin, C.H.; Gaudiot, J.L.; Proskurowski, W.
1989-12-31
The multigrid algorithm (MG) is recognized as an efficient and rapidly converging method to solve a wide family of partial differential equations (PDE). When this method is implemented on a multiprocessor system, its major drawback is the low utilization of processors. Due to the sequentiality of the standard algorithm, the fine grid levels cannot start relaxation until the coarse grid levels complete their own relaxation. Indeed, of all processors active on the fine two dimensional grid level only one fourth will be active at the coarse grid level, leaving full 75% idle. In this paper, a novel parallel V-cycle multigrid (PVM) algorithm is proposed to cure the idle processors` problem. Highly programmable systems such as data-flow architectures are then applied to support this new algorithm. The experiments based on the proposed architecture show that the convergence rate of the new algorithm is about twice faster than that of the standard method and twice as efficient system utilization is achieved.
Multigrid for hypersonic viscous two- and three-dimensional flows
NASA Technical Reports Server (NTRS)
Turkel, E.; Swanson, R. C.; Vatsa, V. N.; White, J. A.
1991-01-01
The use of a multigrid method with central differencing to solve the Navier-Stokes equations for hypersonic flows is considered. The time-dependent form of the equations is integrated with an explicit Runge-Kutta scheme accelerated by local time stepping and implicit residual smoothing. Variable coefficients are developed for the implicit process that remove the diffusion limit on the time step, producing significant improvement in convergence. A numerical dissipation formulation that provides good shock-capturing capability for hypersonic flows is presented. This formulation is shown to be a crucial aspect of the multigrid method. Solutions are given for two-dimensional viscous flow over a NACA 0012 airfoil and three-dimensional viscous flow over a blunt biconic.
Multigrid time-accurate integration of Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Arnone, Andrea; Liou, Meng-Sing; Povinelli, Louis A.
1993-01-01
Efficient acceleration techniques typical of explicit steady-state solvers are extended to time-accurate calculations. Stability restrictions are greatly reduced by means of a fully implicit time discretization. A four-stage Runge-Kutta scheme with local time stepping, residual smoothing, and multigridding is used instead of traditional time-expensive factorizations. Some applications to natural and forced unsteady viscous flows show the capability of the procedure.
Learning Algebra in a Computer Algebra Environment
ERIC Educational Resources Information Center
Drijvers, Paul
2004-01-01
This article summarises a doctoral thesis entitled "Learning algebra in a computer algebra environment, design research on the understanding of the concept of parameter" (Drijvers, 2003). It describes the research questions, the theoretical framework, the methodology and the results of the study. The focus of the study is on the understanding of…
Realizations of Galilei algebras
NASA Astrophysics Data System (ADS)
Nesterenko, Maryna; Pošta, Severin; Vaneeva, Olena
2016-03-01
All inequivalent realizations of the Galilei algebras of dimensions not greater than five are constructed using the algebraic approach proposed by Shirokov. The varieties of the deformed Galilei algebras are discussed and families of one-parametric deformations are presented in explicit form. It is also shown that a number of well-known and physically interesting equations and systems are invariant with respect to the considered Galilei algebras or their deformations.
Monolithic multigrid methods for two-dimensional resistive magnetohydrodynamics
Adler, James H.; Benson, Thomas R.; Cyr, Eric C.; MacLachlan, Scott P.; Tuminaro, Raymond S.
2016-01-06
Magnetohydrodynamic (MHD) representations are used to model a wide range of plasma physics applications and are characterized by a nonlinear system of partial differential equations that strongly couples a charged fluid with the evolution of electromagnetic fields. The resulting linear systems that arise from discretization and linearization of the nonlinear problem are generally difficult to solve. In this paper, we investigate multigrid preconditioners for this system. We consider two well-known multigrid relaxation methods for incompressible fluid dynamics: Braess--Sarazin relaxation and Vanka relaxation. We first extend these to the context of steady-state one-fluid viscoresistive MHD. Then we compare the two relaxationmore » procedures within a multigrid-preconditioned GMRES method employed within Newton's method. To isolate the effects of the different relaxation methods, we use structured grids, inf-sup stable finite elements, and geometric interpolation. Furthermore, we present convergence and timing results for a two-dimensional, steady-state test problem.« less
NASA Technical Reports Server (NTRS)
Iachello, Franco
1995-01-01
An algebraic formulation of quantum mechanics is presented. In this formulation, operators of interest are expanded onto elements of an algebra, G. For bound state problems in nu dimensions the algebra G is taken to be U(nu + 1). Applications to the structure of molecules are presented.
Orientation in operator algebras
Alfsen, Erik M.; Shultz, Frederic W.
1998-01-01
A concept of orientation is relevant for the passage from Jordan structure to associative structure in operator algebras. The research reported in this paper bridges the approach of Connes for von Neumann algebras and ourselves for C*-algebras in a general theory of orientation that is of geometric nature and is related to dynamics. PMID:9618457
Developing Thinking in Algebra
ERIC Educational Resources Information Center
Mason, John; Graham, Alan; Johnson-Wilder, Sue
2005-01-01
This book is for people with an interest in algebra whether as a learner, or as a teacher, or perhaps as both. It is concerned with the "big ideas" of algebra and what it is to understand the process of thinking algebraically. The book has been structured according to a number of pedagogic principles that are exposed and discussed along the way,…
Connecting Arithmetic to Algebra
ERIC Educational Resources Information Center
Darley, Joy W.; Leapard, Barbara B.
2010-01-01
Algebraic thinking is a top priority in mathematics classrooms today. Because elementary school teachers lay the groundwork to develop students' capacity to think algebraically, it is crucial for teachers to have a conceptual understanding of the connections between arithmetic and algebra and be confident in communicating these connections. Many…
Profiles of Algebraic Competence
ERIC Educational Resources Information Center
Humberstone, J.; Reeve, R.A.
2008-01-01
The algebraic competence of 72 12-year-old female students was examined to identify profiles of understanding reflecting different algebraic knowledge states. Beginning algebraic competence (mapping abilities: word-to-symbol and vice versa, classifying, and solving equations) was assessed. One week later, the nature of assistance required to map…
Ternary Virasoro - Witt algebra.
Zachos, C.; Curtright, T.; Fairlie, D.; High Energy Physics; Univ. of Miami; Univ. of Durham
2008-01-01
A 3-bracket variant of the Virasoro-Witt algebra is constructed through the use of su(1,1) enveloping algebra techniques. The Leibniz rules for 3-brackets acting on other 3-brackets in the algebra are discussed and verified in various situations.
Kim, D.; Ghanem, R.
1994-12-31
Multigrid solution technique to solve a material nonlinear problem in a visual programming environment using the finite element method is discussed. The nonlinear equation of equilibrium is linearized to incremental form using Newton-Rapson technique, then multigrid solution technique is used to solve linear equations at each Newton-Rapson step. In the process, adaptive mesh refinement, which is based on the bisection of a pair of triangles, is used to form grid hierarchy for multigrid iteration. The solution process is implemented in a visual programming environment with distributed computing capability, which enables more intuitive understanding of solution process, and more effective use of resources.
NASA Astrophysics Data System (ADS)
Bargatze, L. F.
2015-12-01
Active Data Archive Product Tracking (ADAPT) is a collection of software routines that permits one to generate XML metadata files to describe and register data products in support of the NASA Heliophysics Virtual Observatory VxO effort. ADAPT is also a philosophy. The ADAPT concept is to use any and all available metadata associated with scientific data to produce XML metadata descriptions in a consistent, uniform, and organized fashion to provide blanket access to the full complement of data stored on a targeted data server. In this poster, we present an application of ADAPT to describe all of the data products that are stored by using the Common Data File (CDF) format served out by the CDAWEB and SPDF data servers hosted at the NASA Goddard Space Flight Center. These data servers are the primary repositories for NASA Heliophysics data. For this purpose, the ADAPT routines have been used to generate data resource descriptions by using an XML schema named Space Physics Archive, Search, and Extract (SPASE). SPASE is the designated standard for documenting Heliophysics data products, as adopted by the Heliophysics Data and Model Consortium. The set of SPASE XML resource descriptions produced by ADAPT includes high-level descriptions of numerical data products, display data products, or catalogs and also includes low-level "Granule" descriptions. A SPASE Granule is effectively a universal access metadata resource; a Granule associates an individual data file (e.g. a CDF file) with a "parent" high-level data resource description, assigns a resource identifier to the file, and lists the corresponding assess URL(s). The CDAWEB and SPDF file systems were queried to provide the input required by the ADAPT software to create an initial set of SPASE metadata resource descriptions. Then, the CDAWEB and SPDF data repositories were queried subsequently on a nightly basis and the CDF file lists were checked for any changes such as the occurrence of new, modified, or deleted
Large-Eddy Simulation and Multigrid Methods
Falgout,R D; Naegle,S; Wittum,G
2001-06-18
A method to simulate turbulent flows with Large-Eddy Simulation on unstructured grids is presented. Two kinds of dynamic models are used to model the unresolved scales of motion and are compared with each other on different grids. Thereby the behavior of the models is shown and additionally the feature of adaptive grid refinement is investigated. Furthermore the parallelization aspect is addressed.
3DRISM Multigrid Algorithm for Fast Solvation Free Energy Calculations.
Sergiievskyi, Volodymyr P; Fedorov, Maxim V
2012-06-12
In this paper we present a fast and accurate method for modeling solvation properties of organic molecules in water with a main focus on predicting solvation (hydration) free energies of small organic compounds. The method is based on a combination of (i) a molecular theory, three-dimensional reference interaction sites model (3DRISM); (ii) a fast multigrid algorithm for solving the high-dimensional 3DRISM integral equations; and (iii) a recently introduced universal correction (UC) for the 3DRISM solvation free energies by properly scaled molecular partial volume (3DRISM-UC, Palmer et al., J. Phys.: Condens. Matter2010, 22, 492101). A fast multigrid algorithm is the core of the method because it helps to reduce the high computational costs associated with solving the 3DRISM equations. To facilitate future applications of the method, we performed benchmarking of the algorithm on a set of several model solutes in order to find optimal grid parameters and to test the performance and accuracy of the algorithm. We have shown that the proposed new multigrid algorithm is on average 24 times faster than the simple Picard method and at least 3.5 times faster than the MDIIS method which is currently actively used by the 3DRISM community (e.g., the MDIIS method has been recently implemented in a new 3DRISM implicit solvent routine in the recent release of the AmberTools 1.4 molecular modeling package (Luchko et al. J. Chem. Theory Comput. 2010, 6, 607-624). Then we have benchmarked the multigrid algorithm with chosen optimal parameters on a set of 99 organic compounds. We show that average computational time required for one 3DRISM calculation is 3.5 min per a small organic molecule (10-20 atoms) on a standard personal computer. We also benchmarked predicted solvation free energy values for all of the compounds in the set against the corresponding experimental data. We show that by using the proposed multigrid algorithm and the 3DRISM-UC model, it is possible to obtain good
Computer algebra and operators
NASA Technical Reports Server (NTRS)
Fateman, Richard; Grossman, Robert
1989-01-01
The symbolic computation of operator expansions is discussed. Some of the capabilities that prove useful when performing computer algebra computations involving operators are considered. These capabilities may be broadly divided into three areas: the algebraic manipulation of expressions from the algebra generated by operators; the algebraic manipulation of the actions of the operators upon other mathematical objects; and the development of appropriate normal forms and simplification algorithms for operators and their actions. Brief descriptions are given of the computer algebra computations that arise when working with various operators and their actions.
Multigrid methods and the surface consistent equations of Geophysics
NASA Astrophysics Data System (ADS)
Millar, John
The surface consistent equations are a large linear system that is frequently used in signal enhancement for land seismic surveys. Different signatures may be consistent with a particular dynamite (or other) source. Each receiver and the conditions around the receiver will have different impact on the signal. Seismic deconvolution operators, amplitude corrections and static shifts of traces are calculated using the surface consistent equations, both in commercial and scientific seismic processing software. The system of equations is singular, making direct methods such as Gaussian elimination impossible to implement. Iterative methods such as Gauss-Seidel and conjugate gradient are frequently used. A limitation in the nature of the methods leave the long wavelengths of the solution poorly resolved. To reduce the limitations of traditional iterative methods, we employ a multigrid method. Multigrid methods re-sample the entire system of equations on a more coarse grid. An iterative method is employed on the coarse grid. The long wavelengths of the solutions that traditional iterative methods were unable to resolve are calculated on the reduced system of equations. The coarse estimate can be interpolated back up to the original sample rate, and refined using a standard iterative procedure. Multigrid methods provide more accurate solutions to the surface consistent equations, with the largest improvement concentrated in the long wavelengths. Synthetic models and tests on field data show that multigrid solutions to the system of equations can significantly increase the resolution of the seismic data, when used to correct both static time shifts and in calculating deconvolution operators. The first chapter of this thesis is a description of the physical model we are addressing. It reviews some of the literature concerning the surface consistent equations, and provides background on the nature of the problem. Chapter 2 contains a review of iterative and multigrid methods
Lefrancois, Daniel; Wormit, Michael; Dreuw, Andreas
2015-09-28
For the investigation of molecular systems with electronic ground states exhibiting multi-reference character, a spin-flip (SF) version of the algebraic diagrammatic construction (ADC) scheme for the polarization propagator up to third order perturbation theory (SF-ADC(3)) is derived via the intermediate state representation and implemented into our existing ADC computer program adcman. The accuracy of these new SF-ADC(n) approaches is tested on typical situations, in which the ground state acquires multi-reference character, like bond breaking of H{sub 2} and HF, the torsional motion of ethylene, and the excited states of rectangular and square-planar cyclobutadiene. Overall, the results of SF-ADC(n) reveal an accurate description of these systems in comparison with standard multi-reference methods. Thus, the spin-flip versions of ADC are easy-to-use methods for the calculation of “few-reference” systems, which possess a stable single-reference triplet ground state.
2003-06-03
The ALGEBRA II program allows the user to manipulate data from a finite element analysis before it is plotted by evaluating algebraic expressions. The equation variables are dependent on the input database variable names. The finite element output data is in the form of variable values (e.g., stress, strain, and velocity components) in an EXODUS II database which can be read by plot programs. Code is written in a portable form as possible. Fortran codemore » is written in ANSI Standard FORTRAN-77. Machine-specific routines are limited in number and are grouped together to minimize the time required to adapt them to a new system. SEACAS codes has been ported to several Unix systems.« less
Multigrid method for the equilibrium equations of elasticity using a compact scheme
NASA Technical Reports Server (NTRS)
Taasan, S.
1986-01-01
A compact difference scheme is derived for treating the equilibrium equations of elasticity. The scheme is inconsistent and unstable. A multigrid method which takes into account these properties is described. The solution of the discrete equations, up to the level of discretization errors, is obtained by this method in just two multigrid cycles.
Multigrid solution of the convection-diffusion equation with high-Reynolds number
Zhang, Jun
1996-12-31
A fourth-order compact finite difference scheme is employed with the multigrid technique to solve the variable coefficient convection-diffusion equation with high-Reynolds number. Scaled inter-grid transfer operators and potential on vectorization and parallelization are discussed. The high-order multigrid method is unconditionally stable and produces solution of 4th-order accuracy. Numerical experiments are included.
Evaluation of a Multigrid Scheme for the Incompressible Navier-Stokes Equations
NASA Technical Reports Server (NTRS)
Swanson, R. C.
2004-01-01
A fast multigrid solver for the steady, incompressible Navier-Stokes equations is presented. The multigrid solver is based upon a factorizable discrete scheme for the velocity-pressure form of the Navier-Stokes equations. This scheme correctly distinguishes between the advection-diffusion and elliptic parts of the operator, allowing efficient smoothers to be constructed. To evaluate the multigrid algorithm, solutions are computed for flow over a flat plate, parabola, and a Karman-Trefftz airfoil. Both nonlifting and lifting airfoil flows are considered, with a Reynolds number range of 200 to 800. Convergence and accuracy of the algorithm are discussed. Using Gauss-Seidel line relaxation in alternating directions, multigrid convergence behavior approaching that of O(N) methods is achieved. The computational efficiency of the numerical scheme is compared with that of Runge-Kutta and implicit upwind based multigrid methods.
Multigrid approaches to non-linear diffusion problems on unstructured meshes
NASA Technical Reports Server (NTRS)
Mavriplis, Dimitri J.; Bushnell, Dennis M. (Technical Monitor)
2001-01-01
The efficiency of three multigrid methods for solving highly non-linear diffusion problems on two-dimensional unstructured meshes is examined. The three multigrid methods differ mainly in the manner in which the nonlinearities of the governing equations are handled. These comprise a non-linear full approximation storage (FAS) multigrid method which is used to solve the non-linear equations directly, a linear multigrid method which is used to solve the linear system arising from a Newton linearization of the non-linear system, and a hybrid scheme which is based on a non-linear FAS multigrid scheme, but employs a linear solver on each level as a smoother. Results indicate that all methods are equally effective at converging the non-linear residual in a given number of grid sweeps, but that the linear solver is more efficient in cpu time due to the lower cost of linear versus non-linear grid sweeps.
Application of multi-grid methods for solving the Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Demuren, A. O.
1989-01-01
The application of a class of multi-grid methods to the solution of the Navier-Stokes equations for two-dimensional laminar flow problems is discussed. The methods consist of combining the full approximation scheme-full multi-grid technique (FAS-FMG) with point-, line-, or plane-relaxation routines for solving the Navier-Stokes equations in primitive variables. The performance of the multi-grid methods is compared to that of several single-grid methods. The results show that much faster convergence can be procured through the use of the multi-grid approach than through the various suggestions for improving single-grid methods. The importance of the choice of relaxation scheme for the multi-grid method is illustrated.
Application of multi-grid methods for solving the Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Demuren, A. O.
1989-01-01
This paper presents the application of a class of multi-grid methods to the solution of the Navier-Stokes equations for two-dimensional laminar flow problems. The methods consists of combining the full approximation scheme-full multi-grid technique (FAS-FMG) with point-, line- or plane-relaxation routines for solving the Navier-Stokes equations in primitive variables. The performance of the multi-grid methods is compared to those of several single-grid methods. The results show that much faster convergence can be procured through the use of the multi-grid approach than through the various suggestions for improving single-grid methods. The importance of the choice of relaxation scheme for the multi-grid method is illustrated.
The analysis of multigrid algorithms for pseudodifferential operators of order minus one
Bramble, J.H.; Leyk, Z.; Pasciak, J.E. ||
1994-10-01
Multigrid algorithms are developed to solve the discrete systems approximating the solutions of operator equations involving pseudodifferential operators of order minus one. Classical multigrid theory deals with the case of differential operators of positive order. The pseudodifferential operator gives rise to a coercive form on H{sup {minus}1/2}({Omega}). Effective multigrid algorithms are developed for this problem. These algorithms are novel in that they use the inner product on H{sup {minus}1}({Omega}) as a base inner product for the multigrid development. The authors show that the resulting rate of iterative convergence can, at worst, depend linearly on the number of levels in these novel multigrid algorithms. In addition, it is shown that the convergence rate is independent of the number of levels (and unknowns) in the case of a pseudodifferential operator defined by a single-layer potential. Finally, the results of numerical experiments illustrating the theory are presented. 19 refs., 1 fig., 2 tabs.
A generalized BPX multigrid framework covering nonnested V-cycle methods
NASA Astrophysics Data System (ADS)
Duan, Huo-Yuan; Gao, Shao-Qin; Tan, Roger C. E.; Zhang, Shangyou
2007-03-01
More than a decade ago, Bramble, Pasciak and Xu developed a framework in analyzing the multigrid methods with nonnested spaces or noninherited quadratic forms. It was subsequently known as the BPX multigrid framework, which was widely used in the analysis of multigrid and domain decomposition methods. However, the framework has an apparent limit in the analysis of nonnested V-cycle methods, and it produces a variable V-cycle, or nonuniform convergence rate V-cycle methods, or other nonoptimal results in analysis thus far. This paper completes a long-time effort in extending the BPX multigrid framework so that it truly covers the nonnested V-cycle. We will apply the extended BPX framework to the analysis of many V-cycle nonnested multigrid methods. Some of them were proven previously only for two-level and W-cycle iterations. Some numerical results are presented to support the theoretical analysis of this paper.
A Richer Understanding of Algebra
ERIC Educational Resources Information Center
Foy, Michelle
2008-01-01
Algebra is one of those hard-to-teach topics where pupils seem to struggle to see it as more than a set of rules to learn, but this author recently used the software "Grid Algebra" from ATM, which engaged her Year 7 pupils in exploring algebraic concepts for themselves. "Grid Algebra" allows pupils to experience number, pre-algebra, and algebra…
Spectral multigrid methods for the solution of homogeneous turbulence problems
NASA Technical Reports Server (NTRS)
Erlebacher, G.; Zang, T. A.; Hussaini, M. Y.
1987-01-01
New three-dimensional spectral multigrid algorithms are analyzed and implemented to solve the variable coefficient Helmholtz equation. Periodicity is assumed in all three directions which leads to a Fourier collocation representation. Convergence rates are theoretically predicted and confirmed through numerical tests. Residual averaging results in a spectral radius of 0.2 for the variable coefficient Poisson equation. In general, non-stationary Richardson must be used for the Helmholtz equation. The algorithms developed are applied to the large-eddy simulation of incompressible isotropic turbulence.
A multigrid method for N-component nucleation.
van Putten, Dennis S; Glazenborg, Simon P; Hagmeijer, Rob; Venner, Cornelis H
2011-07-01
A multigrid algorithm has been developed enabling more efficient solution of the cluster size distribution for N-component nucleation from the Becker-Döring equations. The theoretical derivation is valid for an arbitrary number of condensing components, making the simulation of many-component nucleating systems feasible. A steady state ternary nucleation problem is defined to demonstrate its efficiency. The results are used as a validation for existing nucleation theories. The non-steady state ternary problem provides useful insight into the initial stages of the nucleation process. We observe that for the ideal mixture the main nucleation flux bypasses the saddle point. PMID:21744895
Fast multigrid solution of the advection problem with closed characteristics
Yavneh, I.; Venner, C.H.; Brandt, A.
1996-12-31
The numerical solution of the advection-diffusion problem in the inviscid limit with closed characteristics is studied as a prelude to an efficient high Reynolds-number flow solver. It is demonstrated by a heuristic analysis and numerical calculations that using upstream discretization with downstream relaxation-ordering and appropriate residual weighting in a simple multigrid V cycle produces an efficient solution process. We also derive upstream finite-difference approximations to the advection operator, whose truncation terms approximate {open_quotes}physical{close_quotes} (Laplacian) viscosity, thus avoiding spurious solutions to the homogeneous problem when the artificial diffusivity dominates the physical viscosity.
Conjugate gradient coupled with multigrid for an indefinite problem
NASA Technical Reports Server (NTRS)
Gozani, J.; Nachshon, A.; Turkel, E.
1984-01-01
An iterative algorithm for the Helmholtz equation is presented. This scheme was based on the preconditioned conjugate gradient method for the normal equations. The preconditioning is one cycle of a multigrid method for the discrete Laplacian. The smoothing algorithm is red-black Gauss-Seidel and is constructed so it is a symmetric operator. The total number of iterations needed by the algorithm is independent of h. By varying the number of grids, the number of iterations depends only weakly on k when k(3)h(2) is constant. Comparisons with a SSOR preconditioner are presented.
Connecting Algebra and Chemistry.
ERIC Educational Resources Information Center
O'Connor, Sean
2003-01-01
Correlates high school chemistry curriculum with high school algebra curriculum and makes the case for an integrated approach to mathematics and science instruction. Focuses on process integration. (DDR)
Multigrid properties of upwind-biased data reconstructions
NASA Technical Reports Server (NTRS)
Warren, Gary P.; Roberts, Thomas W.
1993-01-01
The multigrid properties of two data reconstruction methods used for achieving second-order spatial accuracy when solving the two-dimensional Euler equations are examined. The data reconstruction methods are used with an implicit upwind algorithm which uses linearized backward-Euler time-differencing. The solution of the resulting linear system is performed by an iterative procedure. In the present study only regular quadrilateral grids are considered, so a red-black Gauss-Seidel iteration is used. Although the Jacobian is approximated by first-order upwind extrapolation, two alternative data reconstruction techniques for the flux integral that yield higher-order spatial accuracy at steady state are examined. The first method, probably most popular for structured quadrilateral grids, is based on estimating the cell gradients using one-dimensional reconstruction along curvilinear coordinates. The second method is based on Green's theorem. Analysis and numerical results for the two dimensional Euler equations show that data reconstruction based on Green's theorem has superior multigrid properties as compared to the one-dimensional data reconstruction method.
Multigrid MALDI mass spectrometry imaging (mMALDI MSI).
Urbanek, Annett; Hölzer, Stefan; Knop, Katrin; Schubert, Ulrich S; von Eggeling, Ferdinand
2016-05-01
Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) is an important technique for the spatially resolved molecular analysis of tissue sections. The selection of matrices influences the resulting mass spectra to a high degree. For extensive and simultaneous analysis, the application of different matrices to one tissue sample is desirable. To date, only a single matrix could be applied to a tissue section per experiment. However, repetitive removal of the matrix makes this approach time-consuming and damaging to tissue samples. To overcome these drawbacks, we developed a multigrid MALDI MSI technique (mMALDI MSI) that relies on automated inkjet printing to place differing matrices onto predefined dot grids. We used a cooled printhead to prevent cavitation of low viscosity solvents in the printhead nozzle. Improved spatial resolution of the dot grids was achieved by using a triple-pulse procedure that reduced droplet volume. The matrices can either be applied directly to the thaw-mounted tissue sample or by precoating the slide followed by mounting of the tissue sample. During the MALDI imaging process, we were able to precisely target different matrix point grids with the laser to simultaneously produce distinct mass spectra. Unlike the standard method, the prespotting approach optimizes the spectra quality, avoids analyte delocalization, and enables subsequent hematoxylin and eosin (H&E) staining. Graphical Abstract Scheme of the pre-spotted multigrid MALDI MSI workflow. PMID:27039200
A Cell-Centered Multigrid Algorithm for All Grid Sizes
NASA Technical Reports Server (NTRS)
Gjesdal, Thor
1996-01-01
Multigrid methods are optimal; that is, their rate of convergence is independent of the number of grid points, because they use a nested sequence of coarse grids to represent different scales of the solution. This nesting does, however, usually lead to certain restrictions of the permissible size of the discretised problem. In cases where the modeler is free to specify the whole problem, such constraints are of little importance because they can be taken into consideration from the outset. We consider the situation in which there are other competing constraints on the resolution. These restrictions may stem from the physical problem (e.g., if the discretised operator contains experimental data measured on a fixed grid) or from the need to avoid limitations set by the hardware. In this paper we discuss a modification to the cell-centered multigrid algorithm, so that it can be used br problems with any resolution. We discuss in particular a coarsening strategy and choice of intergrid transfer operators that can handle grids with both an even or odd number of cells. The method is described and applied to linear equations obtained by discretization of two- and three-dimensional second-order elliptic PDEs.
A multigrid method for variable coefficient Maxwell's equations
Jones, J E; Lee, B
2004-05-13
This paper presents a multigrid method for solving variable coefficient Maxwell's equations. The novelty in this method is the use of interpolation operators that do not produce multilevel commutativity complexes that lead to multilevel exactness. Rather, the effects of multilevel exactness are built into the level equations themselves--on the finest level using a discrete T-V formulation, and on the coarser grids through the Galerkin coarsening procedure of a T-V formulation. These built-in structures permit the levelwise use of an effective hybrid smoother on the curl-free near-nullspace components, and these structures permit the development of interpolation operators for handling the curl-free and divergence-free error components separately, with the resulting block diagonal interpolation operator not satisfying multilevel commutativity but having good approximation properties for both of these error components. Applying operator-dependent interpolation for each of these error components leads to an effective multigrid scheme for variable coefficient Maxwell's equations, where multilevel commutativity-based methods can degrade. Numerical results are presented to verify the effectiveness of this new scheme.
Constructive interference II: Semi-chaotic multigrid methods
Douglas, C.C.
1994-12-31
Parallel computer vendors have mostly decided to move towards multi-user, multi-tasking per node machines. A number of these machines already exist today. Self load balancing on these machines is not an option to the users except when the user can convince someone to boot the entire machine in single user mode, which may have to be done node by node. Chaotic relaxation schemes were considered for situations like this as far back as the middle 1960`s. However, very little convergence theory exists. Further, what exists indicates that this is not really a good method. Besides chaotic relaxation, chaotic conjugate direction and minimum residual methods are explored as smoothers for symmetric and nonsymmetric problems. While having each processor potentially going off in a different direction from the rest is not what one would strive for in a unigrid situation, the change of grid procedures in multigrid provide a natural way of aiming all of the processors in the right direction. The author presents some new results for multigrid methods in which synchronization of the calculations on one or more levels is not assumed. However, he assumes that he knows how far out of synch neighboring subdomains are with respect to each other. Thus the author can show that the combination of a limited chaotic smoother and coarse level corrections produces a better algorithm than would be expected.
On the parallel efficiency of the Frederickson-McBryan multigrid
NASA Technical Reports Server (NTRS)
Decker, Naomi H.
1990-01-01
To take full advantage of the parallelism in a standard multigrid algorithm requires as many processors as points. However, since coarse grids contain fewer points, most processors are idle during the coarse grid iterations. Frederickson and McBryan claim that retaining all points on all grid levels (using all processors) can lead to a superconvergent algorithm. The purpose of this work is to show that the parellel superconvergent multigrid (PSMG) algorithm of Frederickson and McBryan, though it achieves perfect processor utilization, is no more efficient than a parallel implementation of standard multigrid methods. PSMG is simply a new and perhaps simpler way of achieving the same results.
Solving nonlinear heat conduction problems with multigrid preconditioned Newton-Krylov methods
Rider, W.J.; Knoll, D.A.
1997-09-01
Our objective is to investigate the utility of employing multigrid preconditioned Newton-Krylov methods for solving initial value problems. Multigrid based method promise better performance from the linear scaling associated with them. Our model problem is nonlinear heat conduction which can model idealized Marshak waves. Here we will investigate the efficiency of using a linear multigrid method to precondition a Krylov subspace method. In effect we will show that a fixed point nonlinear iterative method provides an effective preconditioner for the nonlinear problem.
ERIC Educational Resources Information Center
Merlin, Ethan M.
2013-01-01
This article describes how the author has developed tasks for students that address the missed "essence of the matter" of algebraic transformations. Specifically, he has found that having students practice "perceiving" algebraic structure--by naming the "glue" in the expressions, drawing expressions using…
ERIC Educational Resources Information Center
Levy, Alissa Beth
2012-01-01
The California Department of Education (CDE) has long asserted that success Algebra I by Grade 8 is the goal for all California public school students. In fact, the state's accountability system penalizes schools that do not require all of their students to take the Algebra I end-of-course examination by Grade 8 (CDE, 2009). In this…
NASA Technical Reports Server (NTRS)
Lawson, C. L.; Krogh, F. T.; Gold, S. S.; Kincaid, D. R.; Sullivan, J.; Williams, E.; Hanson, R. J.; Haskell, K.; Dongarra, J.; Moler, C. B.
1982-01-01
The Basic Linear Algebra Subprograms (BLAS) library is a collection of 38 FORTRAN-callable routines for performing basic operations of numerical linear algebra. BLAS library is portable and efficient source of basic operations for designers of programs involving linear algebriac computations. BLAS library is supplied in portable FORTRAN and Assembler code versions for IBM 370, UNIVAC 1100 and CDC 6000 series computers.
ERIC Educational Resources Information Center
Cavanagh, Sean
2008-01-01
A popular humorist and avowed mathphobe once declared that in real life, there's no such thing as algebra. Kathie Wilson knows better. Most of the students in her 8th grade class will be thrust into algebra, the definitive course that heralds the beginning of high school mathematics, next school year. The problem: Many of them are about three…
Semigroups and computer algebra in algebraic structures
NASA Astrophysics Data System (ADS)
Bijev, G.
2012-11-01
Some concepts in semigroup theory can be interpreted in several algebraic structures. A generalization fA,B,fA,B(X) = A(X')B of the complement operator (') on Boolean matrices is made, where A and B denote any rectangular Boolean matrices. While (') is an isomorphism between Boolean semilattices, the generalized complement operator is homomorphism in the general case. The map fA,B and its general inverse (fA,B)+ have quite similar properties to those in the linear algebra and are useful for solving linear equations in Boolean matrix algebras. For binary relations on a finite set, necessary and sufficient conditions for the equation αξβ = γ to have a solution ξ are proved. A generalization of Green's equivalence relations in semigroups for rectangular matrices is proposed. Relationships between them and the Moore-Penrose inverses are investigated. It is shown how any generalized Green's H-class could be constructed by given its corresponding linear subspaces and converted into a group isomorphic to a linear group. Some information about using computer algebra methods concerning this paper is given.
Uniform convergence of multigrid V-cycle iterations for indefinite and nonsymmetric problems
NASA Technical Reports Server (NTRS)
Bramble, James H.; Kwak, Do Y.; Pasciak, Joseph E.
1993-01-01
In this paper, we present an analysis of a multigrid method for nonsymmetric and/or indefinite elliptic problems. In this multigrid method various types of smoothers may be used. One type of smoother which we consider is defined in terms of an associated symmetric problem and includes point and line, Jacobi, and Gauss-Seidel iterations. We also study smoothers based entirely on the original operator. One is based on the normal form, that is, the product of the operator and its transpose. Other smoothers studied include point and line, Jacobi, and Gauss-Seidel. We show that the uniform estimates for symmetric positive definite problems carry over to these algorithms. More precisely, the multigrid iteration for the nonsymmetric and/or indefinite problem is shown to converge at a uniform rate provided that the coarsest grid in the multilevel iteration is sufficiently fine (but not depending on the number of multigrid levels).
Uniform convergence of multigrid v-cycle iterations for indefinite and nonsymmetric problems
Bramble, J.H. . Dept. of Mathematics); Kwak, D.Y. . Dept. of Mathematics); Pasciak, J.E. . Dept. of Applied Science)
1994-12-01
In this paper, an analysis of a multigrid method for nonsymmetric and/or indefinite elliptic problems is presented. In this multigrid method various types of smothers may be used. One type of smoother considered is defined in terms of an associated symmetric problem and includes point and line, Jacobi, and Gauss-Seidel iterations. Smothers based entirely on the original operator are also considered. One smoother is based on the normal form, that is, the product of the operator and its transpose. Other smothers studied include point and line, Jacobi, and Gauss-Seidel. It is shown that the uniform estimates for symmetric positive definite problems carry over to these algorithms. More precisely, the multigrid iteration for the nonsymmetric and/or indefinite problem is shown to converge at a uniform rate provided that the coarsest grid in the multilevel iteration is sufficiently fine (but not dependent on the number of multigrid levels).
Lie algebra extensions of current algebras on S3
NASA Astrophysics Data System (ADS)
Kori, Tosiaki; Imai, Yuto
2015-06-01
An affine Kac-Moody algebra is a central extension of the Lie algebra of smooth mappings from S1 to the complexification of a Lie algebra. In this paper, we shall introduce a central extension of the Lie algebra of smooth mappings from S3 to the quaternization of a Lie algebra and investigate its root space decomposition. We think this extension of current algebra might give a mathematical tool for four-dimensional conformal field theory as Kac-Moody algebras give it for two-dimensional conformal field theory.
Development of a pressure based multigrid solution method for complex fluid flows
NASA Technical Reports Server (NTRS)
Shyy, Wei
1991-01-01
In order to reduce the computational difficulty associated with a single grid (SG) solution procedure, the multigrid (MG) technique was identified as a useful means for improving the convergence rate of iterative methods. A full MG full approximation storage (FMG/FAS) algorithm is used to solve the incompressible recirculating flow problems in complex geometries. The algorithm is implemented in conjunction with a pressure correction staggered grid type of technique using the curvilinear coordinates. In order to show the performance of the method, two flow configurations, one a square cavity and the other a channel, are used as test problems. Comparisons are made between the iterations, equivalent work units, and CPU time. Besides showing that the MG method can yield substantial speed-up with wide variations in Reynolds number, grid distributions, and geometry, issues such as the convergence characteristics of different grid levels, the choice of convection schemes, and the effectiveness of the basic iteration smoothers are studied. An adaptive grid scheme is also combined with the MG procedure to explore the effects of grid resolution on the MG convergence rate as well as the numerical accuracy.
NASA Astrophysics Data System (ADS)
Briggs, Emil; Hodak, Miroslav; Lu, Wenchang; Bernholc, Jerry; Li, Yan
RMG is a cross platform open source package for ab initio electronic structure calculations that uses real-space grids, multigrid pre-conditioning, and subspace diagonalization to solve the Kohn-Sham equations. The code has been successfully used for a wide range of problems ranging from complex bulk materials to multifunctional electronic devices and biological systems. RMG makes efficient use of GPU accelerators, if present, but does not require them. Recent work has extended GPU support to systems with multiple GPU's per computational node, as well as optimized both CPU and GPU memory usage to enable large problem sizes, which are no longer limited by the memory of the GPU board. Additional enhancements include increased portability, scalability and performance. New versions of the code are regularly released at sourceforge.net/projects/rmgdft/. The releases include binaries for Linux, Windows and MacIntosh systems, automated builds for clusters using cmake, as well as versions adapted to the major supercomputing installations and platforms.
NASA Astrophysics Data System (ADS)
Langer, Stefan
2014-11-01
For unstructured finite volume methods an agglomeration multigrid with an implicit multistage Runge-Kutta method as a smoother is developed for solving the compressible Reynolds averaged Navier-Stokes (RANS) equations. The implicit Runge-Kutta method is interpreted as a preconditioned explicit Runge-Kutta method. The construction of the preconditioner is based on an approximate derivative. The linear systems are solved approximately with a symmetric Gauss-Seidel method. To significantly improve this solution method grid anisotropy is treated within the Gauss-Seidel iteration in such a way that the strong couplings in the linear system are resolved by tridiagonal systems constructed along these directions of strong coupling. The agglomeration strategy is adapted to this procedure by taking into account exactly these anisotropies in such a way that a directional coarsening is applied along these directions of strong coupling. Turbulence effects are included by a Spalart-Allmaras model, and the additional transport-type equation is approximately solved in a loosely coupled manner with the same method. For two-dimensional and three-dimensional numerical examples and a variety of differently generated meshes we show the wide range of applicability of the solution method. Finally, we exploit the GMRES method to determine approximate spectral information of the linearized RANS equations. This approximate spectral information is used to discuss and compare characteristics of multistage Runge-Kutta methods.
Leibniz algebras associated with representations of filiform Lie algebras
NASA Astrophysics Data System (ADS)
Ayupov, Sh. A.; Camacho, L. M.; Khudoyberdiyev, A. Kh.; Omirov, B. A.
2015-12-01
In this paper we investigate Leibniz algebras whose quotient Lie algebra is a naturally graded filiform Lie algebra nn,1. We introduce a Fock module for the algebra nn,1 and provide classification of Leibniz algebras L whose corresponding Lie algebra L / I is the algebra nn,1 with condition that the ideal I is a Fock nn,1-module, where I is the ideal generated by squares of elements from L. We also consider Leibniz algebras with corresponding Lie algebra nn,1 and such that the action I ×nn,1 → I gives rise to a minimal faithful representation of nn,1. The classification up to isomorphism of such Leibniz algebras is given for the case of n = 4.
A Conforming Multigrid Method for the Pure Traction Problem of Linear Elasticity: Mixed Formulation
NASA Technical Reports Server (NTRS)
Lee, Chang-Ock
1996-01-01
A multigrid method using conforming P-1 finite element is developed for the two-dimensional pure traction boundary value problem of linear elasticity. The convergence is uniform even as the material becomes nearly incompressible. A heuristic argument for acceleration of the multigrid method is discussed as well. Numerical results with and without this acceleration as well as performance estimates on a parallel computer are included.
The multigrid algorithm applied to a degenerate equation: A convergence analysis
NASA Astrophysics Data System (ADS)
Almendral Vázquez, Ariel; Fredrik Nielsen, Bjørn
2009-03-01
In this paper we analyze the convergence properties of the Multigrid Method applied to the Black-Scholes differential equation arising in mathematical finance. We prove, for the discretized single-asset Black-Scholes equation, that the multigrid V-cycle possesses optimal convergence properties. Furthermore, through a series of numerical experiments we test the performance of the method for single-asset option problems. Throughout the paper we focus on models of European options.
NASA Technical Reports Server (NTRS)
Fay, John F.
1990-01-01
A calculation is made of the stability of various relaxation schemes for the numerical solution of partial differential equations. A multigrid acceleration method is introduced, and its effects on stability are explored. A detailed stability analysis of a simple case is carried out and verified by numerical experiment. It is shown that the use of multigrids can speed convergence by several orders of magnitude without adversely affecting stability.
Copper Mountain conference on multigrid methods. Preliminary proceedings -- List of abstracts
1995-12-31
This report contains abstracts of the papers presented at the conference. Papers cover multigrid algorithms and applications of multigrid methods. Applications include the following: solution of elliptical problems; electric power grids; fluid mechanics; atmospheric data assimilation; thermocapillary effects on weld pool shape; boundary-value problems; prediction of hurricane tracks; modeling multi-dimensional combustion and detailed chemistry; black-oil reservoir simulation; image processing; and others.
Coreflections in Algebraic Quantum Logic
NASA Astrophysics Data System (ADS)
Jacobs, Bart; Mandemaker, Jorik
2012-07-01
Various generalizations of Boolean algebras are being studied in algebraic quantum logic, including orthomodular lattices, orthomodular po-sets, orthoalgebras and effect algebras. This paper contains a systematic study of the structure in and between categories of such algebras. It does so via a combination of totalization (of partially defined operations) and transfer of structure via coreflections.
Multigrid hierarchical simulated annealing method for reconstructing heterogeneous media.
Pant, Lalit M; Mitra, Sushanta K; Secanell, Marc
2015-12-01
A reconstruction methodology based on different-phase-neighbor (DPN) pixel swapping and multigrid hierarchical annealing is presented. The method performs reconstructions by starting at a coarse image and successively refining it. The DPN information is used at each refinement stage to freeze interior pixels of preformed structures. This preserves the large-scale structures in refined images and also reduces the number of pixels to be swapped, thereby resulting in a decrease in the necessary computational time to reach a solution. Compared to conventional single-grid simulated annealing, this method was found to reduce the required computation time to achieve a reconstruction by around a factor of 70-90, with the potential of even higher speedups for larger reconstructions. The method is able to perform medium sized (up to 300(3) voxels) three-dimensional reconstructions with multiple correlation functions in 36-47 h. PMID:26764849
Multigrid methods for differential equations with highly oscillatory coefficients
NASA Technical Reports Server (NTRS)
Engquist, Bjorn; Luo, Erding
1993-01-01
New coarse grid multigrid operators for problems with highly oscillatory coefficients are developed. These types of operators are necessary when the characters of the differential equations on coarser grids or longer wavelengths are different from that on the fine grid. Elliptic problems for composite materials and different classes of hyperbolic problems are practical examples. The new coarse grid operators can be constructed directly based on the homogenized differential operators or hierarchically computed from the finest grid. Convergence analysis based on the homogenization theory is given for elliptic problems with periodic coefficients and some hyperbolic problems. These are classes of equations for which there exists a fairly complete theory for the interaction between shorter and longer wavelengths in the problems. Numerical examples are presented.
Development of a multigrid transonic potential flow code for cascades
NASA Technical Reports Server (NTRS)
Steinhoff, John
1992-01-01
Finite-volume methods for discretizing transonic potential flow equations have proven to be very flexible and accurate for both two and three dimensional problems. Since they only use local properties of the mapping, they allow decoupling of the grid generation from the rest of the problem. A very effective method for solving the discretized equations and converging to a solution is the multigrid-ADI technique. It has been successfully applied to airfoil problems where O type, C type and slit mappings have been used. Convergence rates for these cases are more than an order of magnitude faster than with relaxation techniques. In this report, we describe a method to extend the above methods, with the C type mappings, to airfoil cascade problems.
Developing Algebraic Thinking.
ERIC Educational Resources Information Center
Alejandre, Suzanne
2002-01-01
Presents a teaching experience that resulted in students getting to a point of full understanding of the kinesthetic activity and the algebra behind it. Includes a lesson plan for a traffic jam activity. (KHR)
Algebraic integrability: a survey.
Vanhaecke, Pol
2008-03-28
We give a concise introduction to the notion of algebraic integrability. Our exposition is based on examples and phenomena, rather than on detailed proofs of abstract theorems. We mainly focus on algebraic integrability in the sense of Adler-van Moerbeke, where the fibres of the momentum map are affine parts of Abelian varieties; as it turns out, most examples from classical mechanics are of this form. Two criteria are given for such systems (Kowalevski-Painlevé and Lyapunov) and each is illustrated in one example. We show in the case of a relatively simple example how one proves algebraic integrability, starting from the differential equations for the integrable vector field. For Hamiltonian systems that are algebraically integrable in the generalized sense, two examples are given, which illustrate the non-compact analogues of Abelian varieties which typically appear in such systems. PMID:17588863
Algebraic Semantics for Narrative
ERIC Educational Resources Information Center
Kahn, E.
1974-01-01
This paper uses discussion of Edmund Spenser's "The Faerie Queene" to present a theoretical framework for explaining the semantics of narrative discourse. The algebraic theory of finite automata is used. (CK)
Aprepro - Algebraic Preprocessor
2005-08-01
Aprepro is an algebraic preprocessor that reads a file containing both general text and algebraic, string, or conditional expressions. It interprets the expressions and outputs them to the output file along witht the general text. Aprepro contains several mathematical functions, string functions, and flow control constructs. In addition, functions are included that, with some additional files, implement a units conversion system and a material database lookup system.
Geometric Algebra for Physicists
NASA Astrophysics Data System (ADS)
Doran, Chris; Lasenby, Anthony
2007-11-01
Preface; Notation; 1. Introduction; 2. Geometric algebra in two and three dimensions; 3. Classical mechanics; 4. Foundations of geometric algebra; 5. Relativity and spacetime; 6. Geometric calculus; 7. Classical electrodynamics; 8. Quantum theory and spinors; 9. Multiparticle states and quantum entanglement; 10. Geometry; 11. Further topics in calculus and group theory; 12. Lagrangian and Hamiltonian techniques; 13. Symmetry and gauge theory; 14. Gravitation; Bibliography; Index.
Covariant deformed oscillator algebras
NASA Technical Reports Server (NTRS)
Quesne, Christiane
1995-01-01
The general form and associativity conditions of deformed oscillator algebras are reviewed. It is shown how the latter can be fulfilled in terms of a solution of the Yang-Baxter equation when this solution has three distinct eigenvalues and satisfies a Birman-Wenzl-Murakami condition. As an example, an SU(sub q)(n) x SU(sub q)(m)-covariant q-bosonic algebra is discussed in some detail.
NASA Technical Reports Server (NTRS)
Marvriplis, D. J.; Venkatakrishnan, V.
1995-01-01
An agglomeration multigrid strategy is developed and implemented for the solution of three-dimensional steady viscous flows. The method enables convergence acceleration with minimal additional memory overheads, and is completely automated, in that it can deal with grids of arbitrary construction. The multigrid technique is validated by comparing the delivered convergence rates with those obtained by a previously developed overset-mesh multigrid approach, and by demonstrating grid independent convergence rates for aerodynamic problems on very large grids. Prospects for further increases in multigrid efficiency for high-Reynolds number viscous flows on highly stretched meshes are discussed.
NASA Astrophysics Data System (ADS)
Hiley, B. J.
In this chapter, we examine in detail the non-commutative symplectic algebra underlying quantum dynamics. By using this algebra, we show that it contains both the Weyl-von Neumann and the Moyal quantum algebras. The latter contains the Wigner distribution as the kernel of the density matrix. The underlying non-commutative geometry can be projected into either of two Abelian spaces, so-called `shadow phase spaces'. One of these is the phase space of Bohmian mechanics, showing that it is a fragment of the basic underlying algebra. The algebraic approach is much richer, giving rise to two fundamental dynamical time development equations which reduce to the Liouville equation and the Hamilton-Jacobi equation in the classical limit. They also include the Schrödinger equation and its wave-function, showing that these features are a partial aspect of the more general non-commutative structure. We discuss briefly the properties of this more general mathematical background from which the non-commutative symplectic algebra emerges.
DG Poisson algebra and its universal enveloping algebra
NASA Astrophysics Data System (ADS)
Lü, JiaFeng; Wang, XingTing; Zhuang, GuangBin
2016-05-01
In this paper, we introduce the notions of differential graded (DG) Poisson algebra and DG Poisson module. Let $A$ be any DG Poisson algebra. We construct the universal enveloping algebra of $A$ explicitly, which is denoted by $A^{ue}$. We show that $A^{ue}$ has a natural DG algebra structure and it satisfies certain universal property. As a consequence of the universal property, it is proved that the category of DG Poisson modules over $A$ is isomorphic to the category of DG modules over $A^{ue}$. Furthermore, we prove that the notion of universal enveloping algebra $A^{ue}$ is well-behaved under opposite algebra and tensor product of DG Poisson algebras. Practical examples of DG Poisson algebras are given throughout the paper including those arising from differential geometry and homological algebra.
Textbook Multigrid Efficiency for Computational Fluid Dynamics Simulations
NASA Technical Reports Server (NTRS)
Brandt, Achi; Thomas, James L.; Diskin, Boris
2001-01-01
Considerable progress over the past thirty years has been made in the development of large-scale computational fluid dynamics (CFD) solvers for the Euler and Navier-Stokes equations. Computations are used routinely to design the cruise shapes of transport aircraft through complex-geometry simulations involving the solution of 25-100 million equations; in this arena the number of wind-tunnel tests for a new design has been substantially reduced. However, simulations of the entire flight envelope of the vehicle, including maximum lift, buffet onset, flutter, and control effectiveness have not been as successful in eliminating the reliance on wind-tunnel testing. These simulations involve unsteady flows with more separation and stronger shock waves than at cruise. The main reasons limiting further inroads of CFD into the design process are: (1) the reliability of turbulence models; and (2) the time and expense of the numerical simulation. Because of the prohibitive resolution requirements of direct simulations at high Reynolds numbers, transition and turbulence modeling is expected to remain an issue for the near term. The focus of this paper addresses the latter problem by attempting to attain optimal efficiencies in solving the governing equations. Typically current CFD codes based on the use of multigrid acceleration techniques and multistage Runge-Kutta time-stepping schemes are able to converge lift and drag values for cruise configurations within approximately 1000 residual evaluations. An optimally convergent method is defined as having textbook multigrid efficiency (TME), meaning the solutions to the governing system of equations are attained in a computational work which is a small (less than 10) multiple of the operation count in the discretized system of equations (residual equations). In this paper, a distributed relaxation approach to achieving TME for Reynolds-averaged Navier-Stokes (RNAS) equations are discussed along with the foundations that form the
NASA Astrophysics Data System (ADS)
Roitman, Michael
2008-08-01
In this paper we prove that for any commutative (but in general non-associative) algebra A with an invariant symmetric non-degenerate bilinear form there is a graded vertex algebra V = V0 Å V2 Å V3 Å ¼, such that dim V0 = 1 and V2 contains A. We can choose V so that if A has a unit e, then 2e is the Virasoro element of V, and if G is a finite group of automorphisms of A, then G acts on V as well. In addition, the algebra V can be chosen with a non-degenerate invariant bilinear form, in which case it is simple.
Multigrid solution of the Navier-Stokes equations on highly stretched grids with defect correction
NASA Technical Reports Server (NTRS)
Sockol, Peter M.
1993-01-01
Relaxation-based multigrid solvers for the steady incompressible Navier-Stokes equations are examined to determine their computational speed and robustness. Four relaxation methods with a common discretization have been used as smoothers in a single tailored multigrid procedure. The equations are discretized on a staggered grid with first order upwind used for convection in the relaxation process on all grids and defect correction to second order central on the fine grid introduced once per multigrid cycle. A fixed W(1,1) cycle with full weighting of residuals is used in the FAS multigrid process. The resulting solvers have been applied to three 2D flow problems, over a range of Reynolds numbers, on both uniform and highly stretched grids. In all cases the L(sub 2) norm of the velocity changes is reduced to 10(exp -6) in a few 10's of fine grid sweeps. The results from this study are used to draw conclusions on the strengths and weaknesses of the individual relaxation schemes as well as those of the overall multigrid procedure when used as a solver on highly stretched grids.
Implementation and Optimization of miniGMG - a Compact Geometric Multigrid Benchmark
Williams, Samuel; Kalamkar, Dhiraj; Singh, Amik; Deshpande, Anand M.; Straalen, Brian Van; Smelyanskiy, Mikhail; Almgren, Ann; Dubey, Pradeep; Shalf, John; Oliker, Leonid
2012-12-01
Multigrid methods are widely used to accelerate the convergence of iterative solvers for linear systems used in a number of different application areas. In this report, we describe miniGMG, our compact geometric multigrid benchmark designed to proxy the multigrid solves found in AMR applications. We explore optimization techniques for geometric multigrid on existing and emerging multicore systems including the Opteron-based Cray XE6, Intel Sandy Bridge and Nehalem-based Infiniband clusters, as well as manycore-based architectures including NVIDIA's Fermi and Kepler GPUs and Intel's Knights Corner (KNC) co-processor. This report examines a variety of novel techniques including communication-aggregation, threaded wavefront-based DRAM communication-avoiding, dynamic threading decisions, SIMDization, and fusion of operators. We quantify performance through each phase of the V-cycle for both single-node and distributed-memory experiments and provide detailed analysis for each class of optimization. Results show our optimizations yield significant speedups across a variety of subdomain sizes while simultaneously demonstrating the potential of multi- and manycore processors to dramatically accelerate single-node performance. However, our analysis also indicates that improvements in networks and communication will be essential to reap the potential of manycore processors in large-scale multigrid calculations.
Abstract Algebra for Algebra Teaching: Influencing School Mathematics Instruction
ERIC Educational Resources Information Center
Wasserman, Nicholas H.
2016-01-01
This article explores the potential for aspects of abstract algebra to be influential for the teaching of school algebra (and early algebra). Using national standards for analysis, four primary areas common in school mathematics--and their progression across elementary, middle, and secondary mathematics--where teaching may be transformed by…
NASA Technical Reports Server (NTRS)
Nishida, Brian A.; Langhi, Ronald G.; Bencze, Daniel P.
1991-01-01
A multiblock/multigrid computation of the inviscid flow over a wing-mounted propfan transport with propwash is presented. An explicit multistage scheme drives the integral Euler equations to a steady state solution, while an actuator disk approximates the slipstream effects of the propfan blades. Practical applications of detailed surface gridding, multiple block field grids and multigrid convergence acceleration are demonstrated.
Computer Program For Linear Algebra
NASA Technical Reports Server (NTRS)
Krogh, F. T.; Hanson, R. J.
1987-01-01
Collection of routines provided for basic vector operations. Basic Linear Algebra Subprogram (BLAS) library is collection from FORTRAN-callable routines for employing standard techniques to perform basic operations of numerical linear algebra.
NASA Technical Reports Server (NTRS)
Shahshahani, M.
1991-01-01
The performance characteristics are discussed of certain algebraic geometric codes. Algebraic geometric codes have good minimum distance properties. On many channels they outperform other comparable block codes; therefore, one would expect them eventually to replace some of the block codes used in communications systems. It is suggested that it is unlikely that they will become useful substitutes for the Reed-Solomon codes used by the Deep Space Network in the near future. However, they may be applicable to systems where the signal to noise ratio is sufficiently high so that block codes would be more suitable than convolutional or concatenated codes.
NASA Astrophysics Data System (ADS)
Bouwknegt, Peter
1988-06-01
We investigate extensions of the Virasoro algebra by a single primary field of integer or halfinteger conformal dimension Δ. We argue that for vanishing structure constant CΔΔΔ, the extended conformal algebra can only be associative for a generic c-value if Δ=1/2, 1, 3/2, 2 or 3. For the other Δ<=5 we compute the finite set of allowed c-values and identify the rational solutions. The case CΔΔΔ≠0 is also briefly discussed. I would like to thank Kareljan Schoutens for discussions and Sander Bais for a careful reading of the manuscript.
An adaptive grid algorithm for one-dimensional nonlinear equations
NASA Technical Reports Server (NTRS)
Gutierrez, William E.; Hills, Richard G.
1990-01-01
Richards' equation, which models the flow of liquid through unsaturated porous media, is highly nonlinear and difficult to solve. Step gradients in the field variables require the use of fine grids and small time step sizes. The numerical instabilities caused by the nonlinearities often require the use of iterative methods such as Picard or Newton interation. These difficulties result in large CPU requirements in solving Richards equation. With this in mind, adaptive and multigrid methods are investigated for use with nonlinear equations such as Richards' equation. Attention is focused on one-dimensional transient problems. To investigate the use of multigrid and adaptive grid methods, a series of problems are studied. First, a multigrid program is developed and used to solve an ordinary differential equation, demonstrating the efficiency with which low and high frequency errors are smoothed out. The multigrid algorithm and an adaptive grid algorithm is used to solve one-dimensional transient partial differential equations, such as the diffusive and convective-diffusion equations. The performance of these programs are compared to that of the Gauss-Seidel and tridiagonal methods. The adaptive and multigrid schemes outperformed the Gauss-Seidel algorithm, but were not as fast as the tridiagonal method. The adaptive grid scheme solved the problems slightly faster than the multigrid method. To solve nonlinear problems, Picard iterations are introduced into the adaptive grid and tridiagonal methods. Burgers' equation is used as a test problem for the two algorithms. Both methods obtain solutions of comparable accuracy for similar time increments. For the Burgers' equation, the adaptive grid method finds the solution approximately three times faster than the tridiagonal method. Finally, both schemes are used to solve the water content formulation of the Richards' equation. For this problem, the adaptive grid method obtains a more accurate solution in fewer work units and
Multigrid optimal mass transport for image registration and morphing
NASA Astrophysics Data System (ADS)
Rehman, Tauseef ur; Tannenbaum, Allen
2007-02-01
In this paper we present a computationally efficient Optimal Mass Transport algorithm. This method is based on the Monge-Kantorovich theory and is used for computing elastic registration and warping maps in image registration and morphing applications. This is a parameter free method which utilizes all of the grayscale data in an image pair in a symmetric fashion. No landmarks need to be specified for correspondence. In our work, we demonstrate significant improvement in computation time when our algorithm is applied as compared to the originally proposed method by Haker et al [1]. The original algorithm was based on a gradient descent method for removing the curl from an initial mass preserving map regarded as 2D vector field. This involves inverting the Laplacian in each iteration which is now computed using full multigrid technique resulting in an improvement in computational time by a factor of two. Greater improvement is achieved by decimating the curl in a multi-resolutional framework. The algorithm was applied to 2D short axis cardiac MRI images and brain MRI images for testing and comparison.
Transonic Drag Prediction Using an Unstructured Multigrid Solver
NASA Technical Reports Server (NTRS)
Mavriplis, D. J.; Levy, David W.
2001-01-01
This paper summarizes the results obtained with the NSU-3D unstructured multigrid solver for the AIAA Drag Prediction Workshop held in Anaheim, CA, June 2001. The test case for the workshop consists of a wing-body configuration at transonic flow conditions. Flow analyses for a complete test matrix of lift coefficient values and Mach numbers at a constant Reynolds number are performed, thus producing a set of drag polars and drag rise curves which are compared with experimental data. Results were obtained independently by both authors using an identical baseline grid and different refined grids. Most cases were run in parallel on commodity cluster-type machines while the largest cases were run on an SGI Origin machine using 128 processors. The objective of this paper is to study the accuracy of the subject unstructured grid solver for predicting drag in the transonic cruise regime, to assess the efficiency of the method in terms of convergence, cpu time, and memory, and to determine the effects of grid resolution on this predictive ability and its computational efficiency. A good predictive ability is demonstrated over a wide range of conditions, although accuracy was found to degrade for cases at higher Mach numbers and lift values where increasing amounts of flow separation occur. The ability to rapidly compute large numbers of cases at varying flow conditions using an unstructured solver on inexpensive clusters of commodity computers is also demonstrated.
A multiblock multigrid three-dimensional Euler equation solver
NASA Technical Reports Server (NTRS)
Cannizzaro, Frank E.; Elmiligui, Alaa; Melson, N. Duane; Vonlavante, E.
1990-01-01
Current aerodynamic designs are often quite complex (geometrically). Flexible computational tools are needed for the analysis of a wide range of configurations with both internal and external flows. In the past, geometrically dissimilar configurations required different analysis codes with different grid topologies in each. The duplicity of codes can be avoided with the use of a general multiblock formulation which can handle any grid topology. Rather than hard wiring the grid topology into the program, it is instead dictated by input to the program. In this work, the compressible Euler equations, written in a body-fitted finite-volume formulation, are solved using a pseudo-time-marching approach. Two upwind methods (van Leer's flux-vector-splitting and Roe's flux-differencing) were investigated. Two types of explicit solvers (a two-step predictor-corrector and a modified multistage Runge-Kutta) were used with multigrid acceleration to enhance convergence. A multiblock strategy is used to allow greater geometric flexibility. A report on simple explicit upwind schemes for solving compressible flows is included.
Application of the multigrid method to grid generation
NASA Technical Reports Server (NTRS)
Ohring, S.
1980-01-01
The multigrid method (MGM), used to numerically solve the pair of nonlinear elliptic equations commonly used to generate two dimensional boundary-fitted coordinate systems is discussed. Two different geometries are considered: one involving a coordinate system fitted about a circle and the other selected for an impinging jet flow problem. Two different relaxation schemes are tried: one is successive point overrelaxation and the other is a four-color scheme vectorizeable to take advantage of a parallel processor computer for greater computational speed. Results using MGM are compared with those using SOR (doing successive overrelaxations with the corresponding relaxation scheme on the fine grid only). It is found that MGM becomes significantly more effective than SOR as more accuracy is demanded and as more corrective grids, or more grid points, are used. For the accuracy required, it is found that MGM is two to three times faster than SOR in computing time. With the four-color relaxation scheme as applied to the impinging jet problem, the advantage of MGM over SOR is not as great. This may be due to the effect of a poor initial guess on MGM for this problem.
Time-accurate Navier-Stokes calculations with multigrid acceleration
NASA Technical Reports Server (NTRS)
Melson, N. Duane; Atkins, Harold L.; Sanetrik, Mark D.
1993-01-01
A numerical scheme to solve the unsteady Navier-Stokes equations is described. The scheme is implemented by modifying the multigrid-multiblock version of the steady Navier-Stokes equations solver, TLNS3D. The scheme is fully implicit in time and uses TLNS3D to iteratively invert the equations at each physical time step. The design objective of the scheme is unconditional stability (at least for first- and second-order discretizations of the physical time derivatives). With unconditional stability, the choice of the time step is based on the physical phenomena to be resolved rather than limited by numerical stability which is especially important for high Reynolds number viscous flows, where the spatial variation of grid cell size can be as much as six orders of magnitude. An analysis of the iterative procedure and the implementation of this procedure in TLNS3D are discussed. Numerical results are presented to show both the capabilities of the scheme and its speed up relative to the use of global minimum time stepping. Reductions in computational times of an order of magnitude are demonstrated.
Teaching Arithmetic and Algebraic Expressions
ERIC Educational Resources Information Center
Subramaniam, K.; Banerjee, Rakhi
2004-01-01
A teaching intervention study was conducted with sixth grade students to explore the interconnections between students' growing understanding of arithmetic expressions and beginning algebra. Three groups of students were chosen, with two groups receiving instruction in arithmetic and algebra, and one group in algebra without arithmetic. Students…
Assessing Elementary Algebra with STACK
ERIC Educational Resources Information Center
Sangwin, Christopher J.
2007-01-01
This paper concerns computer aided assessment (CAA) of mathematics in which a computer algebra system (CAS) is used to help assess students' responses to elementary algebra questions. Using a methodology of documentary analysis, we examine what is taught in elementary algebra. The STACK CAA system, http://www.stack.bham.ac.uk/, which uses the CAS…
Spinors in the hyperbolic algebra
NASA Astrophysics Data System (ADS)
Ulrych, S.
2006-01-01
The three-dimensional universal complex Clifford algebra Cbar3,0 is used to represent relativistic vectors in terms of paravectors. In analogy to the Hestenes spacetime approach spinors are introduced in an algebraic form. This removes the dependance on an explicit matrix representation of the algebra.
Directional Agglomeration Multigrid Techniques for High-Reynolds Number Viscous Flows
NASA Technical Reports Server (NTRS)
Mavriplis, Dimitri J.
1998-01-01
A preconditioned directional-implicit agglomeration algorithm is developed for solving two- and three-dimensional viscous flows on highly anisotropic unstructured meshes of mixed-element types. The multigrid smoother consists of a pre-conditioned point- or line-implicit solver which operates on lines constructed in the unstructured mesh using a weighted graph algorithm. Directional coarsening or agglomeration is achieved using a similar weighted graph algorithm. A tight coupling of the line construction and directional agglomeration algorithms enables the use of aggressive coarsening ratios in the multigrid algorithm, which in turn reduces the cost of a multigrid cycle. Convergence rates which are independent of the degree of grid stretching are demonstrated in both two and three dimensions. Further improvement of the three-dimensional convergence rates through a GMRES technique is also demonstrated.
Directional Agglomeration Multigrid Techniques for High Reynolds Number Viscous Flow Solvers
NASA Technical Reports Server (NTRS)
1998-01-01
A preconditioned directional-implicit agglomeration algorithm is developed for solving two- and three-dimensional viscous flows on highly anisotropic unstructured meshes of mixed-element types. The multigrid smoother consists of a pre-conditioned point- or line-implicit solver which operates on lines constructed in the unstructured mesh using a weighted graph algorithm. Directional coarsening or agglomeration is achieved using a similar weighted graph algorithm. A tight coupling of the line construction and directional agglomeration algorithms enables the use of aggressive coarsening ratios in the multigrid algorithm, which in turn reduces the cost of a multigrid cycle. Convergence rates which are independent of the degree of grid stretching are demonstrated in both two and three dimensions. Further improvement of the three-dimensional convergence rates through a GMRES technique is also demonstrated.
Fast and Robust Sixth Order Multigrid Computation for 3D Convection Diffusion Equation.
Wang, Yin; Zhang, Jun
2010-10-15
We present a sixth order explicit compact finite difference scheme to solve the three dimensional (3D) convection diffusion equation. We first use multiscale multigrid method to solve the linear systems arising from a 19-point fourth order discretization scheme to compute the fourth order solutions on both the coarse grid and the fine grid. Then an operator based interpolation scheme combined with an extrapolation technique is used to approximate the sixth order accurate solution on the fine grid. Since the multigrid method using a standard point relaxation smoother may fail to achieve the optimal grid independent convergence rate for solving convection diffusion equation with a high Reynolds number, we implement the plane relaxation smoother in the multigrid solver to achieve better grid independency. Supporting numerical results are presented to demonstrate the efficiency and accuracy of the sixth order compact scheme (SOC), compared with the previously published fourth order compact scheme (FOC). PMID:21151737
Integration of a Multigrid ODE solver into an open medical simulation framework.
Wu, Xunlei; Yao, Jianhua; Enquobahrie, Andinet; Lee, Huai-Ping; Audette, Michel A
2012-01-01
In this paper, we present the implementation of a Multigrid ODE solver in SOFA framework. By combining the stability advantage of coarse meshes and the transient detail preserving virtue of fine meshes, Multigrid ODE solver computes more efficiently than classic ODE solvers based on a single level discretization. With the ever wider adoption of the SOFA framework in many surgical simulation projects, introducing this Multigrid ODE solver into SOFA's pool of ODE solvers shall benefit the entire community. This contribution potentially has broad ramifications in the surgical simulation research community, given that in a single-resolution system, a constitutively realistic interactive tissue response, which presupposes large elements, is in direct conflict with the need to represent clinically relevant critical tissues in the simulation, which are typically be comprised of small elements. PMID:23366578
Gao, Hao; Phan, Lan; Lin, Yuting
2012-09-01
A graphics processing unit-based parallel multigrid solver for a radiative transfer equation with vacuum boundary condition or reflection boundary condition is presented for heterogeneous media with complex geometry based on two-dimensional triangular meshes or three-dimensional tetrahedral meshes. The computational complexity of this parallel solver is linearly proportional to the degrees of freedom in both angular and spatial variables, while the full multigrid method is utilized to minimize the number of iterations. The overall gain of speed is roughly 30 to 300 fold with respect to our prior multigrid solver, which depends on the underlying regime and the parallelization. The numerical validations are presented with the MATLAB codes at https://sites.google.com/site/rtefastsolver/. PMID:23085905
Multigrid-based 'shifted-Laplacian' preconditioning for the time-harmonic elastic wave equation
NASA Astrophysics Data System (ADS)
Rizzuti, G.; Mulder, W. A.
2016-07-01
We investigate the numerical performance of an iterative solver for a frequency-domain finite-difference discretization of the isotropic elastic wave equation. The solver is based on the 'shifted-Laplacian' preconditioner, originally designed for the acoustic wave equation. This preconditioner represents a discretization of a heavily damped wave equation and can be efficiently inverted by a multigrid iteration. However, the application of multigrid to the elastic case is not straightforward because standard methods, such as point-Jacobi, fail to smooth the S-wave wavenumber components of the error when high P-to-S velocity ratios are present. We consider line smoothers as an alternative and apply local-mode analysis to evaluate the performance of the various components of the multigrid preconditioner. Numerical examples in 2-D demonstrate the efficacy of our method.
Multigrid on unstructured grids using an auxiliary set of structured grids
Douglas, C.C.; Malhotra, S.; Schultz, M.H.
1996-12-31
Unstructured grids do not have a convenient and natural multigrid framework for actually computing and maintaining a high floating point rate on standard computers. In fact, just the coarsening process is expensive for many applications. Since unstructured grids play a vital role in many scientific computing applications, many modifications have been proposed to solve this problem. One suggested solution is to map the original unstructured grid onto a structured grid. This can be used as a fine grid in a standard multigrid algorithm to precondition the original problem on the unstructured grid. We show that unless extreme care is taken, this mapping can lead to a system with a high condition number which eliminates the usefulness of the multigrid method. Theorems with lower and upper bounds are provided. Simple examples show that the upper bounds are sharp.
ERIC Educational Resources Information Center
Glick, David
1995-01-01
Presents a technique that helps students concentrate more on the science and less on the mechanics of algebra while dealing with introductory physics formulas. Allows the teacher to do complex problems at a lower level and not be too concerned about the mathematical abilities of the students. (JRH)
ERIC Educational Resources Information Center
Ketterlin-Geller, Leanne R.; Jungjohann, Kathleen; Chard, David J.; Baker, Scott
2007-01-01
Much of the difficulty that students encounter in the transition from arithmetic to algebra stems from their early learning and understanding of arithmetic. Too often, students learn about the whole number system and the operations that govern that system as a set of procedures to solve addition, subtraction, multiplication, and division problems.…
Computer Algebra versus Manipulation
ERIC Educational Resources Information Center
Zand, Hossein; Crowe, David
2004-01-01
In the UK there is increasing concern about the lack of skill in algebraic manipulation that is evident in students entering mathematics courses at university level. In this note we discuss how the computer can be used to ameliorate some of the problems. We take as an example the calculations needed in three dimensional vector analysis in polar…
ERIC Educational Resources Information Center
Boiteau, Denise; Stansfield, David
This document describes mathematical programs on the basic concepts of algebra produced by Louisiana Public Broadcasting. Programs included are: (1) "Inverse Operations"; (2) "The Order of Operations"; (3) "Basic Properties" (addition and multiplication of numbers and variables); (4) "The Positive and Negative Numbers"; and (5) "Using Positive…
Thinking Visually about Algebra
ERIC Educational Resources Information Center
Baroudi, Ziad
2015-01-01
Many introductions to algebra in high school begin with teaching students to generalise linear numerical patterns. This article argues that this approach needs to be changed so that students encounter variables in the context of modelling visual patterns so that the variables have a meaning. The article presents sample classroom activities,…
ERIC Educational Resources Information Center
Kennedy, John
This text provides information and exercises on arithmetic topics which should be mastered before a student enrolls in an Elementary Algebra course. Section I describes the fundamental properties and relationships of whole numbers, focusing on basic operations, divisibility tests, exponents, order of operations, prime numbers, greatest common…
ERIC Educational Resources Information Center
Nwabueze, Kenneth K.
2004-01-01
The current emphasis on flexible modes of mathematics delivery involving new information and communication technology (ICT) at the university level is perhaps a reaction to the recent change in the objectives of education. Abstract algebra seems to be one area of mathematics virtually crying out for computer instructional support because of the…
Singular Dimensions of theN= 2 Superconformal Algebras. I
NASA Astrophysics Data System (ADS)
Dörrzapf, Matthias; Gato-Rivera, Beatriz
Verma modules of superconfomal algebras can have singular vector spaces with dimensions greater than 1. Following a method developed for the Virasoro algebra by Kent, we introduce the concept of adapted orderings on superconformal algebras. We prove several general results on the ordering kernels associated to the adapted orderings and show that the size of an ordering kernel implies an upper limit for the dimension of a singular vector space. We apply this method to the topological N= 2 algebra and obtain the maximal dimensions of the singular vector spaces in the topological Verma modules: 0, 1, 2 or 3 depending on the type of Verma module and the type of singular vector. As a consequence we prove the conjecture of Gato-Rivera and Rosado on the possible existing types of topological singular vectors (4 in chiral Verma modules and 29 in complete Verma modules). Interestingly, we have found two-dimensional spaces of singular vectors at level 1. Finally, by using the topological twists and the spectral flows, we also obtain the maximal dimensions of the singular vector spaces for the Neveu-Schwarz N= 2 algebra (0, 1 or 2) and for the Ramond N= 2 algebra (0, 1, 2 or 3).
Parallel adaptive mesh refinement for electronic structure calculations
Kohn, S.; Weare, J.; Ong, E.; Baden, S.
1996-12-01
We have applied structured adaptive mesh refinement techniques to the solution of the LDA equations for electronic structure calculations. Local spatial refinement concentrates memory resources and numerical effort where it is most needed, near the atomic centers and in regions of rapidly varying charge density. The structured grid representation enables us to employ efficient iterative solver techniques such as conjugate gradients with multigrid preconditioning. We have parallelized our solver using an object-oriented adaptive mesh refinement framework.
A positivity-preserving, implicit defect-correction multigrid method for turbulent combustion
NASA Astrophysics Data System (ADS)
Wasserman, M.; Mor-Yossef, Y.; Greenberg, J. B.
2016-07-01
A novel, robust multigrid method for the simulation of turbulent and chemically reacting flows is developed. A survey of previous attempts at implementing multigrid for the problems at hand indicated extensive use of artificial stabilization to overcome numerical instability arising from non-linearity of turbulence and chemistry model source-terms, small-scale physics of combustion, and loss of positivity. These issues are addressed in the current work. The highly stiff Reynolds-averaged Navier-Stokes (RANS) equations, coupled with turbulence and finite-rate chemical kinetics models, are integrated in time using the unconditionally positive-convergent (UPC) implicit method. The scheme is successfully extended in this work for use with chemical kinetics models, in a fully-coupled multigrid (FC-MG) framework. To tackle the degraded performance of multigrid methods for chemically reacting flows, two major modifications are introduced with respect to the basic, Full Approximation Storage (FAS) approach. First, a novel prolongation operator that is based on logarithmic variables is proposed to prevent loss of positivity due to coarse-grid corrections. Together with the extended UPC implicit scheme, the positivity-preserving prolongation operator guarantees unconditional positivity of turbulence quantities and species mass fractions throughout the multigrid cycle. Second, to improve the coarse-grid-correction obtained in localized regions of high chemical activity, a modified defect correction procedure is devised, and successfully applied for the first time to simulate turbulent, combusting flows. The proposed modifications to the standard multigrid algorithm create a well-rounded and robust numerical method that provides accelerated convergence, while unconditionally preserving the positivity of model equation variables. Numerical simulations of various flows involving premixed combustion demonstrate that the proposed MG method increases the efficiency by a factor of
NASA Astrophysics Data System (ADS)
Zhang, Ming; Yao, JingTao
2004-04-01
The XML is a new standard for data representation and exchange on the Internet. There are studies on XML query languages as well as XML algebras in literature. However, attention has not been paid to research on XML algebras for data mining due to partially the fact that there is no widely accepted definition of XML mining tasks. This paper tries to examine the XML mining tasks and provide guidelines to design XML algebras for data mining. Some summarization and comparison have been done to existing XML algebras. We argue that by adding additional operators for mining tasks, XML algebras may work well for data mining with XML documents.
Inverse airfoil design procedure using a multigrid Navier-Stokes method
NASA Technical Reports Server (NTRS)
Malone, J. B.; Swanson, R. C.
1991-01-01
The Modified Garabedian McFadden (MGM) design procedure was incorporated into an existing 2-D multigrid Navier-Stokes airfoil analysis method. The resulting design method is an iterative procedure based on a residual correction algorithm and permits the automated design of airfoil sections with prescribed surface pressure distributions. The new design method, Multigrid Modified Garabedian McFadden (MG-MGM), is demonstrated for several different transonic pressure distributions obtained from both symmetric and cambered airfoil shapes. The airfoil profiles generated with the MG-MGM code are compared to the original configurations to assess the capabilities of the inverse design method.
Vectorizable multigrid algorithms for transonic flow calculations. M.S. Thesis
NASA Technical Reports Server (NTRS)
Melson, N. D.
1985-01-01
The analysis and incorporation into a multigrid scheme of several vectorizable algorithms are discussed. Von Neumann analyses of vertical line, horizontal line, and alternating direction ZEBRA algorithms were performed; and the results were used to predict their multigrid damping rates. The algorithms were then successfully implemented in a transonic conservative full-potential computer program. The convergence acceleration effect of multiple grids is shown and the convergence rates of the vectorizable algorithms are compared to the convergence rates of standard successive line overrelaxation (SLOR) algorithms.
A parallel multigrid-based preconditioner for the 3D heterogeneous high-frequency Helmholtz equation
Riyanti, C.D. . E-mail: C.D.Riyanti@tudelft.nl; Kononov, A.; Erlangga, Y.A.; Vuik, C.; Oosterlee, C.W.; Plessix, R.-E.; Mulder, W.A.
2007-05-20
We investigate the parallel performance of an iterative solver for 3D heterogeneous Helmholtz problems related to applications in seismic wave propagation. For large 3D problems, the computation is no longer feasible on a single processor, and the memory requirements increase rapidly. Therefore, parallelization of the solver is needed. We employ a complex shifted-Laplace preconditioner combined with the Bi-CGSTAB iterative method and use a multigrid method to approximate the inverse of the resulting preconditioning operator. A 3D multigrid method with 2D semi-coarsening is employed. We show numerical results for large problems arising in geophysical applications.
A multigrid algorithm for the cell-centered finite difference scheme
NASA Technical Reports Server (NTRS)
Ewing, Richard E.; Shen, Jian
1993-01-01
In this article, we discuss a non-variational V-cycle multigrid algorithm based on the cell-centered finite difference scheme for solving a second-order elliptic problem with discontinuous coefficients. Due to the poor approximation property of piecewise constant spaces and the non-variational nature of our scheme, one step of symmetric linear smoothing in our V-cycle multigrid scheme may fail to be a contraction. Again, because of the simple structure of the piecewise constant spaces, prolongation and restriction are trivial; we save significant computation time with very promising computational results.
Simulation of viscous flows using a multigrid-control volume finite element method
Hookey, N.A.
1994-12-31
This paper discusses a multigrid control volume finite element method (MG CVFEM) for the simulation of viscous fluid flows. The CVFEM is an equal-order primitive variables formulation that avoids spurious solution fields by incorporating an appropriate pressure gradient in the velocity interpolation functions. The resulting set of discretized equations is solved using a coupled equation line solver (CELS) that solves the discretized momentum and continuity equations simultaneously along lines in the calculation domain. The CVFEM has been implemented in the context of both FMV- and V-cycle multigrid algorithms, and preliminary results indicate a five to ten fold reduction in execution times.
A multigrid solver for semi-implicit global shallow-water models
NASA Technical Reports Server (NTRS)
Barros, Saulo R. M.; Dee, Dick P.; Dickstein, Flavio
1990-01-01
A multigrid solver is developed for the discretized two-dimensional elliptic equation on the sphere that arises from a semiimplicit time discretization of the global shallow-water equations. Different formulations of the semiimplicit scheme result in variable-coefficient Helmholtz-type equations for which no fast direct solvers are available. The efficiency of the multigrid solver is optimal, in the sense that the total operation count is proportional to the number of unknowns. Numerical experiments using initial data derived from actual 300-mb height and wind velocity fields indicate that the present model has very good accuracy and stability properties.
Multigrid for the Galerkin least squares method in linear elasticity: The pure displacement problem
Yoo, Jaechil
1996-12-31
Franca and Stenberg developed several Galerkin least squares methods for the solution of the problem of linear elasticity. That work concerned itself only with the error estimates of the method. It did not address the related problem of finding effective methods for the solution of the associated linear systems. In this work, we prove the convergence of a multigrid (W-cycle) method. This multigrid is robust in that the convergence is uniform as the parameter, v, goes to 1/2 Computational experiments are included.
On Dunkl angular momenta algebra
NASA Astrophysics Data System (ADS)
Feigin, Misha; Hakobyan, Tigran
2015-11-01
We consider the quantum angular momentum generators, deformed by means of the Dunkl operators. Together with the reflection operators they generate a subalgebra in the rational Cherednik algebra associated with a finite real reflection group. We find all the defining relations of the algebra, which appear to be quadratic, and we show that the algebra is of Poincaré-Birkhoff-Witt (PBW) type. We show that this algebra contains the angular part of the Calogero-Moser Hamiltonian and that together with constants it generates the centre of the algebra. We also consider the gl( N ) version of the subalge-bra of the rational Cherednik algebra and show that it is a non-homogeneous quadratic algebra of PBW type as well. In this case the central generator can be identified with the usual Calogero-Moser Hamiltonian associated with the Coxeter group in the harmonic confinement.
Algebraic connectivity and graph robustness.
Feddema, John Todd; Byrne, Raymond Harry; Abdallah, Chaouki T.
2009-07-01
Recent papers have used Fiedler's definition of algebraic connectivity to show that network robustness, as measured by node-connectivity and edge-connectivity, can be increased by increasing the algebraic connectivity of the network. By the definition of algebraic connectivity, the second smallest eigenvalue of the graph Laplacian is a lower bound on the node-connectivity. In this paper we show that for circular random lattice graphs and mesh graphs algebraic connectivity is a conservative lower bound, and that increases in algebraic connectivity actually correspond to a decrease in node-connectivity. This means that the networks are actually less robust with respect to node-connectivity as the algebraic connectivity increases. However, an increase in algebraic connectivity seems to correlate well with a decrease in the characteristic path length of these networks - which would result in quicker communication through the network. Applications of these results are then discussed for perimeter security.
NASA Technical Reports Server (NTRS)
Ku, Hwar-Ching; Ramaswamy, Bala
1993-01-01
The new multigrid (or adaptive) pseudospectral element method was carried out for the solution of incompressible flow in terms of primitive variable formulation. The desired features of the proposed method include the following: (1) the ability to treat complex geometry; (2) high resolution adapted in the interesting areas; (3) requires minimal working space; and (4) effective in a multiprocessing environment. The approach for flow problems, complex geometry or not, is to first divide the computational domain into a number of fine-grid and coarse-grid subdomains with the inter-overlapping area. Next, it is necessary to implement the Schwarz alternating procedure (SAP) to exchange the data among subdomains, where the coarse-grid correction is used to remove the high frequency error that occurs when the data interpolation from the fine-grid subdomain to the coarse-grid subdomain is conducted. The strategy behind the coarse-grid correction is to adopt the operator of the divergence of the velocity field, which intrinsically links the pressure equation, into this process. The solution of each subdomain can be efficiently solved by the direct (or iterative) eigenfunction expansion technique with the least storage requirement, i.e. O(N(exp 3)) in 3-D and O(N(exp 2)) in 2-D. Numerical results of both driven cavity and jet flow will be presented in the paper to account for the versatility of the proposed method.
Multigrid lattice Boltzmann method for accelerated solution of elliptic equations
NASA Astrophysics Data System (ADS)
Patil, Dhiraj V.; Premnath, Kannan N.; Banerjee, Sanjoy
2014-05-01
A new solver for second-order elliptic partial differential equations (PDEs) based on the lattice Boltzmann method (LBM) and the multigrid (MG) technique is presented. Several benchmark elliptic equations are solved numerically with the inclusion of multiple grid-levels in two-dimensional domains at an optimal computational cost within the LB framework. The results are compared with the corresponding analytical solutions and numerical solutions obtained using the Stone's strongly implicit procedure. The classical PDEs considered in this article include the Laplace and Poisson equations with Dirichlet boundary conditions, with the latter involving both constant and variable coefficients. A detailed analysis of solution accuracy, convergence and computational efficiency of the proposed solver is given. It is observed that the use of a high-order stencil (for smoothing) improves convergence and accuracy for an equivalent number of smoothing sweeps. The effect of the type of scheduling cycle (V- or W-cycle) on the performance of the MG-LBM is analyzed. Next, a parallel algorithm for the MG-LBM solver is presented and then its parallel performance on a multi-core cluster is analyzed. Lastly, a practical example is provided wherein the proposed elliptic PDE solver is used to compute the electro-static potential encountered in an electro-chemical cell, which demonstrates the effectiveness of this new solver in complex coupled systems. Several orders of magnitude gains in convergence and parallel scaling for the canonical problems, and a factor of 5 reduction for the multiphysics problem are achieved using the MG-LBM.
Parallel multigrid preconditioner for the cardiac bidomain model.
Weber dos Santos, Rodrigo; Plank, Gernot; Bauer, Steffen; Vigmond, Edward J
2004-11-01
The bidomain equations are widely used for the simulation of electrical activity in cardiac tissue but are computationally expensive, limiting the size of the problem which can be modeled. The purpose of this study is to determine more efficient ways to solve the elliptic portion of the bidomain equations, the most computationally expensive part of the computation. Specifically, we assessed the performance of a parallel multigrid (MG) preconditioner for a conjugate gradient solver. We employed an operator splitting technique, dividing the computation in a parabolic equation, an elliptical equation, and a nonlinear system of ordinary differential equations at each time step. The elliptic equation was solved by the preconditioned conjugate gradient method, and the traditional block incomplete LU parallel preconditioner (ILU) was compared to MG. Execution time was minimized for each preconditioner by adjusting the fill-in factor for ILU, and by choosing the optimal number of levels for MG. The parallel implementation was based on the PETSc library and we report results for up to 16 nodes on a distributed cluster, for two and three dimensional simulations. A direct solver was also available to compare results for single processor runs. MG was found to solve the system in one third of the time required by ILU but required about 40% more memory. Thus, MG offered an attractive tradeoff between memory usage and speed, since its performance lay between those of the classic iterative methods (slow and low memory consumption) and direct methods (fast and high memory consumption). Results suggest the MG preconditioner is well suited for quickly and accurately solving the bidomain equations. PMID:15536898
Marquette, Ian
2013-07-15
We introduce the most general quartic Poisson algebra generated by a second and a fourth order integral of motion of a 2D superintegrable classical system. We obtain the corresponding quartic (associative) algebra for the quantum analog, extend Daskaloyannis construction obtained in context of quadratic algebras, and also obtain the realizations as deformed oscillator algebras for this quartic algebra. We obtain the Casimir operator and discuss how these realizations allow to obtain the finite-dimensional unitary irreducible representations of quartic algebras and obtain algebraically the degenerate energy spectrum of superintegrable systems. We apply the construction and the formula obtained for the structure function on a superintegrable system related to type I Laguerre exceptional orthogonal polynomials introduced recently.
NASA Astrophysics Data System (ADS)
Dankova, T. S.; Rosensteel, G.
1998-10-01
Mean field theory has an unexpected group theoretic mathematical foundation. Instead of representation theory which applies to most group theoretic quantum models, Hartree-Fock and Hartree-Fock-Bogoliubov have been formulated in terms of coadjoint orbits for the groups U(n) and O(2n). The general theory of mean fields is formulated for an arbitrary Lie algebra L of fermion operators. The moment map provides the correspondence between the Hilbert space of microscopic wave functions and the dual space L^* of densities. The coadjoint orbits of the group in the dual space are phase spaces on which time-dependent mean field theory is equivalent to a classical Hamiltonian dynamical system. Indeed it forms a finite-dimensional Lax system. The mean field theories for the Elliott SU(3) and symplectic Sp(3,R) algebras are constructed explicitly in the coadjoint orbit framework.
ERIC Educational Resources Information Center
Beigie, Darin
2014-01-01
Most people who are attracted to STEM-related fields are drawn not by a desire to take mathematics tests but to create things. The opportunity to create an algebra drawing gives students a sense of ownership and adventure that taps into the same sort of energy that leads a young person to get lost in reading a good book, building with Legos®,…
Vertex Algebras, Kac-Moody Algebras, and the Monster
NASA Astrophysics Data System (ADS)
Borcherds, Richard E.
1986-05-01
It is known that the adjoint representation of any Kac-Moody algebra A can be identified with a subquotient of a certain Fock space representation constructed from the root lattice of A. I define a product on the whole of the Fock space that restricts to the Lie algebra product on this subquotient. This product (together with a infinite number of other products) is constructed using a generalization of vertex operators. I also construct an integral form for the universal enveloping algebra of any Kac-Moody algebra that can be used to define Kac-Moody groups over finite fields, some new irreducible integrable representations, and a sort of affinization of any Kac-Moody algebra. The ``Moonshine'' representation of the Monster constructed by Frenkel and others also has products like the ones constructed for Kac-Moody algebras, one of which extends the Griess product on the 196884-dimensional piece to the whole representation.
NASA Astrophysics Data System (ADS)
Palmkvist, Jakob
2014-01-01
We introduce an infinite-dimensional Lie superalgebra which is an extension of the U-duality Lie algebra of maximal supergravity in D dimensions, for 3 ⩽ D ⩽ 7. The level decomposition with respect to the U-duality Lie algebra gives exactly the tensor hierarchy of representations that arises in gauge deformations of the theory described by an embedding tensor, for all positive levels p. We prove that these representations are always contained in those coming from the associated Borcherds-Kac-Moody superalgebra, and we explain why some of the latter representations are not included in the tensor hierarchy. The most remarkable feature of our Lie superalgebra is that it does not admit a triangular decomposition like a (Borcherds-)Kac-Moody (super)algebra. Instead the Hodge duality relations between level p and D - 2 - p extend to negative p, relating the representations at the first two negative levels to the supersymmetry and closure constraints of the embedding tensor.
NASA Technical Reports Server (NTRS)
Cleaveland, Rance; Luettgen, Gerald; Natarajan, V.
1999-01-01
This paper surveys the semantic ramifications of extending traditional process algebras with notions of priority that allow for some transitions to be given precedence over others. These enriched formalisms allow one to model system features such as interrupts, prioritized choice, or real-time behavior. Approaches to priority in process algebras can be classified according to whether the induced notion of preemption on transitions is global or local and whether priorities are static or dynamic. Early work in the area concentrated on global pre-emption and static priorities and led to formalisms for modeling interrupts and aspects of real-time, such as maximal progress, in centralized computing environments. More recent research has investigated localized notions of pre-emption in which the distribution of systems is taken into account, as well as dynamic priority approaches, i.e., those where priority values may change as systems evolve. The latter allows one to model behavioral phenomena such as scheduling algorithms and also enables the efficient encoding of real-time semantics. Technically, this paper studies the different models of priorities by presenting extensions of Milner's Calculus of Communicating Systems (CCS) with static and dynamic priority as well as with notions of global and local pre- emption. In each case the operational semantics of CCS is modified appropriately, behavioral theories based on strong and weak bisimulation are given, and related approaches for different process-algebraic settings are discussed.
Palmkvist, Jakob
2014-01-15
We introduce an infinite-dimensional Lie superalgebra which is an extension of the U-duality Lie algebra of maximal supergravity in D dimensions, for 3 ⩽ D ⩽ 7. The level decomposition with respect to the U-duality Lie algebra gives exactly the tensor hierarchy of representations that arises in gauge deformations of the theory described by an embedding tensor, for all positive levels p. We prove that these representations are always contained in those coming from the associated Borcherds-Kac-Moody superalgebra, and we explain why some of the latter representations are not included in the tensor hierarchy. The most remarkable feature of our Lie superalgebra is that it does not admit a triangular decomposition like a (Borcherds-)Kac-Moody (super)algebra. Instead the Hodge duality relations between level p and D − 2 − p extend to negative p, relating the representations at the first two negative levels to the supersymmetry and closure constraints of the embedding tensor.
Eigensystem analysis of classical relaxation techniques with applications to multigrid analysis
NASA Technical Reports Server (NTRS)
Lomax, Harvard; Maksymiuk, Catherine
1987-01-01
Classical relaxation techniques are related to numerical methods for solution of ordinary differential equations. Eigensystems for Point-Jacobi, Gauss-Seidel, and SOR methods are presented. Solution techniques such as eigenvector annihilation, eigensystem mixing, and multigrid methods are examined with regard to the eigenstructure.
An overlapped grid method for multigrid, finite volume/difference flow solvers: MaGGiE
NASA Technical Reports Server (NTRS)
Baysal, Oktay; Lessard, Victor R.
1990-01-01
The objective is to develop a domain decomposition method via overlapping/embedding the component grids, which is to be used by upwind, multi-grid, finite volume solution algorithms. A computer code, given the name MaGGiE (Multi-Geometry Grid Embedder) is developed to meet this objective. MaGGiE takes independently generated component grids as input, and automatically constructs the composite mesh and interpolation data, which can be used by the finite volume solution methods with or without multigrid convergence acceleration. Six demonstrative examples showing various aspects of the overlap technique are presented and discussed. These cases are used for developing the procedure for overlapping grids of different topologies, and to evaluate the grid connection and interpolation data for finite volume calculations on a composite mesh. Time fluxes are transferred between mesh interfaces using a trilinear interpolation procedure. Conservation losses are minimal at the interfaces using this method. The multi-grid solution algorithm, using the coaser grid connections, improves the convergence time history as compared to the solution on composite mesh without multi-gridding.
Fast Tree Multigrid Transport Application for the Simplified P{sub 3} Approximation
Kotiluoto, Petri
2001-07-15
Calculation of neutron flux in three-dimensions is a complex problem. A novel approach for solving complicated neutron transport problems is presented, based on the tree multigrid technique and the Simplified P{sub 3} (SP{sub 3}) approximation. Discretization of the second-order elliptic SP{sub 3} equations is performed for a regular three-dimensional octree grid by using an integrated scheme. The octree grid is generated directly from STL files, which can be exported from practically all computer-aided design-systems. Marshak-like boundary conditions are utilized. Iterative algorithms are constructed for SP{sub 3} approximation with simple coarse-to-fine prolongation and fine-to-coarse restriction operations of the tree multigrid technique. Numerical results are presented for a simple cylindrical homogeneous one-group test case and for a simplistic two-group pressurized water reactor pressure vessel fluence calculation benchmark. In the former homogeneous test case, a very good agreement with 1.6% maximal deviation compared with DORT results was obtained. In the latter test case, however, notable discrepancies were observed. These comparisons show that the tree multigrid technique is capable of solving three-dimensional neutron transport problems with a very low computational cost, but that the SP{sub 3} approximation itself is not satisfactory for all problems. However, the tree multigrid technique is a very promising new method for neutron transport.
An efficient non-linear multigrid procedure for the incompressible Navier-Stokes equations
NASA Astrophysics Data System (ADS)
Sivaloganathan, S.; Shaw, G. J.
An efficient Full Approximation multigrid scheme for finite volume discretizations of the Navier-Stokes equations is presented. The algorithm is applied to the driven cavity test problem. Numerical results are presented and a comparison made with PACE, a Rolls-Royce industrial code, which uses the SIMPLE pressure correction method as an iterative solver.
Multigrid-Based Methodology for Implicit Solvation Models in Periodic DFT.
Garcia-Ratés, Miquel; López, Núria
2016-03-01
Continuum solvation models have become a widespread approach for the study of environmental effects in Density Functional Theory (DFT) methods. Adding solvation contributions mainly relies on the solution of the Generalized Poisson Equation (GPE) governing the behavior of the electrostatic potential of a system. Although multigrid methods are especially appropriate for the solution of partial differential equations, up to now, their use is not much extended in DFT-based codes because of their high memory requirements. In this Article, we report the implementation of an accelerated multigrid solver-based approach for the treatment of solvation effects in the Vienna ab initio Simulation Package (VASP). The stated implicit solvation model, named VASP-MGCM (VASP-Multigrid Continuum Model), uses an efficient and transferable algorithm for the product of sparse matrices that highly outperforms serial multigrid solvers. The calculated solvation free energies for a set of molecules, including neutral and ionic species, as well as adsorbed molecules on metallic surfaces, agree with experimental data and with simulation results obtained with other continuum models. PMID:26771105
A multigrid LU-SSOR scheme for approximate Newton iteration applied to the Euler equations
NASA Technical Reports Server (NTRS)
Yoon, Seokkwan; Jameson, Antony
1986-01-01
A new efficient relaxation scheme in conjunction with a multigrid method is developed for the Euler equations. The LU SSOR scheme is based on a central difference scheme and does not need flux splitting for Newton iteration. Application to transonic flow shows that the new method surpasses the performance of the LU implicit scheme.
A fast multigrid algorithm for energy minimization under planar density constraints.
Ron, D.; Safro, I.; Brandt, A.; Mathematics and Computer Science; Weizmann Inst. of Science
2010-09-07
The two-dimensional layout optimization problem reinforced by the efficient space utilization demand has a wide spectrum of practical applications. Formulating the problem as a nonlinear minimization problem under planar equality and/or inequality density constraints, we present a linear time multigrid algorithm for solving a correction to this problem. The method is demonstrated in various graph drawing (visualization) instances.
A multigrid Newton-Krylov method for flux-limited radiation diffusion
Rider, W.J.; Knoll, D.A.; Olson, G.L.
1998-09-01
The authors focus on the integration of radiation diffusion including flux-limited diffusion coefficients. The nonlinear integration is accomplished with a Newton-Krylov method preconditioned with a multigrid Picard linearization of the governing equations. They investigate the efficiency of the linear and nonlinear iterative techniques.
Robust Multigrid Smoothers for Three Dimensional Elliptic Equations with Strong Anisotropies
NASA Technical Reports Server (NTRS)
Llorente, Ignacio M.; Melson, N. Duane
1998-01-01
We discuss the behavior of several plane relaxation methods as multigrid smoothers for the solution of a discrete anisotropic elliptic model problem on cell-centered grids. The methods compared are plane Jacobi with damping, plane Jacobi with partial damping, plane Gauss-Seidel, plane zebra Gauss-Seidel, and line Gauss-Seidel. Based on numerical experiments and local mode analysis, we compare the smoothing factor of the different methods in the presence of strong anisotropies. A four-color Gauss-Seidel method is found to have the best numerical and architectural properties of the methods considered in the present work. Although alternating direction plane relaxation schemes are simpler and more robust than other approaches, they are not currently used in industrial and production codes because they require the solution of a two-dimensional problem for each plane in each direction. We verify the theoretical predictions of Thole and Trottenberg that an exact solution of each plane is not necessary and that a single two-dimensional multigrid cycle gives the same result as an exact solution, in much less execution time. Parallelization of the two-dimensional multigrid cycles, the kernel of the three-dimensional implicit solver, is also discussed. Alternating-plane smoothers are found to be highly efficient multigrid smoothers for anisotropic elliptic problems.
Compactly Generated de Morgan Lattices, Basic Algebras and Effect Algebras
NASA Astrophysics Data System (ADS)
Paseka, Jan; Riečanová, Zdenka
2010-12-01
We prove that a de Morgan lattice is compactly generated if and only if its order topology is compatible with a uniformity on L generated by some separating function family on L. Moreover, if L is complete then L is (o)-topological. Further, if a basic algebra L (hence lattice with sectional antitone involutions) is compactly generated then L is atomic. Thus all non-atomic Boolean algebras as well as non-atomic lattice effect algebras (including non-atomic MV-algebras and orthomodular lattices) are not compactly generated.
Algebraic, geometric, and stochastic aspects of genetic operators
NASA Technical Reports Server (NTRS)
Foo, N. Y.; Bosworth, J. L.
1972-01-01
Genetic algorithms for function optimization employ genetic operators patterned after those observed in search strategies employed in natural adaptation. Two of these operators, crossover and inversion, are interpreted in terms of their algebraic and geometric properties. Stochastic models of the operators are developed which are employed in Monte Carlo simulations of their behavior.
Locally finite dimensional Lie algebras
NASA Astrophysics Data System (ADS)
Hennig, Johanna
We prove that in a locally finite dimensional Lie algebra L, any maximal, locally solvable subalgebra is the stabilizer of a maximal, generalized flag in an integrable, faithful module over L. Then we prove two structure theorems for simple, locally finite dimensional Lie algebras over an algebraically closed field of characteristic p which give sufficient conditions for the algebras to be of the form [K(R, *), K( R, *)] / (Z(R) ∩ [ K(R, *), K(R, *)]) for a simple, locally finite dimensional associative algebra R with involution *. Lastly, we explore the noncommutative geometry of locally simple representations of the diagonal locally finite Lie algebras sl(ninfinity), o( ninfinity), and sp(n infinity).
Quantum computation using geometric algebra
NASA Astrophysics Data System (ADS)
Matzke, Douglas James
This dissertation reports that arbitrary Boolean logic equations and operators can be represented in geometric algebra as linear equations composed entirely of orthonormal vectors using only addition and multiplication Geometric algebra is a topologically based algebraic system that naturally incorporates the inner and anticommutative outer products into a real valued geometric product, yet does not rely on complex numbers or matrices. A series of custom tools was designed and built to simplify geometric algebra expressions into a standard sum of products form, and automate the anticommutative geometric product and operations. Using this infrastructure, quantum bits (qubits), quantum registers and EPR-bits (ebits) are expressed symmetrically as geometric algebra expressions. Many known quantum computing gates, measurement operators, and especially the Bell/magic operators are also expressed as geometric products. These results demonstrate that geometric algebra can naturally and faithfully represent the central concepts, objects, and operators necessary for quantum computing, and can facilitate the design and construction of quantum computing tools.
Verburgt, Lukas M
2016-01-01
This paper provides a detailed account of the period of the complex history of British algebra and geometry between the publication of George Peacock's Treatise on Algebra in 1830 and William Rowan Hamilton's paper on quaternions of 1843. During these years, Duncan Farquharson Gregory and William Walton published several contributions on 'algebraical geometry' and 'geometrical algebra' in the Cambridge Mathematical Journal. These contributions enabled them not only to generalize Peacock's symbolical algebra on the basis of geometrical considerations, but also to initiate the attempts to question the status of Euclidean space as the arbiter of valid geometrical interpretations. At the same time, Gregory and Walton were bound by the limits of symbolical algebra that they themselves made explicit; their work was not and could not be the 'abstract algebra' and 'abstract geometry' of figures such as Hamilton and Cayley. The central argument of the paper is that an understanding of the contributions to 'algebraical geometry' and 'geometrical algebra' of the second generation of 'scientific' symbolical algebraists is essential for a satisfactory explanation of the radical transition from symbolical to abstract algebra that took place in British mathematics in the 1830s-1840s. PMID:26806075
On the cohomology of Leibniz conformal algebras
NASA Astrophysics Data System (ADS)
Zhang, Jiao
2015-04-01
We construct a new cohomology complex of Leibniz conformal algebras with coefficients in a representation instead of a module. The low-dimensional cohomology groups of this complex are computed. Meanwhile, we construct a Leibniz algebra from a Leibniz conformal algebra and prove that the category of Leibniz conformal algebras is equivalent to the category of equivalence classes of formal distribution Leibniz algebras.
Assessing Algebraic Solving Ability: A Theoretical Framework
ERIC Educational Resources Information Center
Lian, Lim Hooi; Yew, Wun Thiam
2012-01-01
Algebraic solving ability had been discussed by many educators and researchers. There exists no definite definition for algebraic solving ability as it can be viewed from different perspectives. In this paper, the nature of algebraic solving ability in terms of algebraic processes that demonstrate the ability in solving algebraic problem is…
Quantum hypercomputation based on the dynamical algebra \\mathfrak{su}(1\\, 1)
NASA Astrophysics Data System (ADS)
Sicard, A.; Ospina, J.; Vélez, M.
2006-10-01
An adaptation of Kieu's hypercomputational quantum algorithm (KHQA) is presented. The method that was used was to replace the Weyl Heisenberg algebra by other dynamical algebra of low dimension that admits infinite-dimensional irreducible representations with naturally defined generalized coherent states. We have selected the Lie algebra \\mathfrak{su}(1,1) , because this algebra possesses the necessary characteristics to realize the hypercomputation and also because such algebra has been identified as the dynamical algebra associated with many relatively simple quantum systems. In addition to an algebraic adaptation of KHQA over the algebra \\mathfrak{su}(1,1) , we presented an adaptation of KHQA over some concrete physical referents: the infinite square well, the infinite cylindrical well, the perturbed infinite cylindrical well, the Pöschl Teller potentials, the Holstein Primakoff system and the Laguerre oscillator. We conclude that it is possible to have many physical systems within condensed matter and quantum optics in which it is possible to consider an implementation of KHQA.
Advanced discretizations and multigrid methods for liquid crystal configurations
NASA Astrophysics Data System (ADS)
Emerson, David B.
addition, we present two novel, optimally scaling, multigrid approaches for these systems based on Vanka- and Braess-Sarazin-type relaxation. Both approaches outperform direct methods and represent highly efficient and scalable iterative solvers. Finally, a three-dimensional problem considering the effects of geometrically patterned surfaces is presented, which gives rise to a nonlinear anisotropic reaction-diffusion equation. Well-posedness is shown for the intermediate linearization systems of the proposed Newton linearization. The configurations under consideration are part of ongoing physics research seeking new bistable configurations induced by geometric nano-patterning.
ERIC Educational Resources Information Center
Novotna, Jarmila; Hoch, Maureen
2008-01-01
Many students have difficulties with basic algebraic concepts at high school and at university. In this paper two levels of algebraic structure sense are defined: for high school algebra and for university algebra. We suggest that high school algebra structure sense components are sub-components of some university algebra structure sense…
Higher level twisted Zhu algebras
Ekeren, Jethro van
2011-05-15
The study of twisted representations of graded vertex algebras is important for understanding orbifold models in conformal field theory. In this paper, we consider the general setup of a vertex algebra V, graded by {Gamma}/Z for some subgroup {Gamma} of R containing Z, and with a Hamiltonian operator H having real (but not necessarily integer) eigenvalues. We construct the directed system of twisted level p Zhu algebras Zhu{sub p,{Gamma}}(V), and we prove the following theorems: For each p, there is a bijection between the irreducible Zhu{sub p,{Gamma}}(V)-modules and the irreducible {Gamma}-twisted positive energy V-modules, and V is ({Gamma}, H)-rational if and only if all its Zhu algebras Zhu{sub p,{Gamma}}(V) are finite dimensional and semisimple. The main novelty is the removal of the assumption of integer eigenvalues for H. We provide an explicit description of the level p Zhu algebras of a universal enveloping vertex algebra, in particular of the Virasoro vertex algebra Vir{sup c} and the universal affine Kac-Moody vertex algebra V{sup k}(g) at non-critical level. We also compute the inverse limits of these directed systems of algebras.
Handheld Computer Algebra Systems in the Pre-Algebra Classroom
ERIC Educational Resources Information Center
Gantz, Linda Ann Galofaro
2010-01-01
This mixed method analysis sought to investigate several aspects of student learning in pre-algebra through the use of computer algebra systems (CAS) as opposed to non-CAS learning. This research was broken into two main parts, one which compared results from both the experimental group (instruction using CAS, N = 18) and the control group…
Abstract Algebra to Secondary School Algebra: Building Bridges
ERIC Educational Resources Information Center
Christy, Donna; Sparks, Rebecca
2015-01-01
The authors have experience with secondary mathematics teacher candidates struggling to make connections between the theoretical abstract algebra course they take as college students and the algebra they will be teaching in secondary schools. As a mathematician and a mathematics educator, the authors collaborated to create and implement a…
Algebra and Algebraic Thinking in School Math: 70th YB
ERIC Educational Resources Information Center
National Council of Teachers of Mathematics, 2008
2008-01-01
Algebra is no longer just for college-bound students. After a widespread push by the National Council of Teachers of Mathematics (NCTM) and teachers across the country, algebra is now a required part of most curricula. However, students' standardized test scores are not at the level they should be. NCTM's seventieth yearbook takes a look at the…
NASA Technical Reports Server (NTRS)
Cain, Michael D.
1999-01-01
The goal of this thesis is to develop an efficient and robust locally preconditioned semi-coarsening multigrid algorithm for the two-dimensional Navier-Stokes equations. This thesis examines the performance of the multigrid algorithm with local preconditioning for an upwind-discretization of the Navier-Stokes equations. A block Jacobi iterative scheme is used because of its high frequency error mode damping ability. At low Mach numbers, the performance of a flux preconditioner is investigated. The flux preconditioner utilizes a new limiting technique based on local information that was developed by Siu. Full-coarsening and-semi-coarsening are examined as well as the multigrid V-cycle and full multigrid. The numerical tests were performed on a NACA 0012 airfoil at a range of Mach numbers. The tests show that semi-coarsening with flux preconditioning is the most efficient and robust combination of coarsening strategy, and iterative scheme - especially at low Mach numbers.
Statecharts Via Process Algebra
NASA Technical Reports Server (NTRS)
Luttgen, Gerald; vonderBeeck, Michael; Cleaveland, Rance
1999-01-01
Statecharts is a visual language for specifying the behavior of reactive systems. The Language extends finite-state machines with concepts of hierarchy, concurrency, and priority. Despite its popularity as a design notation for embedded system, precisely defining its semantics has proved extremely challenging. In this paper, a simple process algebra, called Statecharts Process Language (SPL), is presented, which is expressive enough for encoding Statecharts in a structure-preserving and semantic preserving manner. It is establish that the behavioral relation bisimulation, when applied to SPL, preserves Statecharts semantics
The Algebra of Complex Numbers.
ERIC Educational Resources Information Center
LePage, Wilbur R.
This programed text is an introduction to the algebra of complex numbers for engineering students, particularly because of its relevance to important problems of applications in electrical engineering. It is designed for a person who is well experienced with the algebra of real numbers and calculus, but who has no experience with complex number…
Algebraic Squares: Complete and Incomplete.
ERIC Educational Resources Information Center
Gardella, Francis J.
2000-01-01
Illustrates ways of using algebra tiles to give students a visual model of competing squares that appear in algebra as well as in higher mathematics. Such visual representations give substance to the symbolic manipulation and give students who do not learn symbolically a way of understanding the underlying concepts of completing the square. (KHR)
ERIC Educational Resources Information Center
Buerman, Margaret
2007-01-01
Finding real-world examples for middle school algebra classes can be difficult but not impossible. As we strive to accomplish teaching our students how to solve and graph equations, we neglect to teach the big ideas of algebra. One of those big ideas is functions. This article gives three examples of functions that are found in Arches National…
Online Algebraic Tools for Teaching
ERIC Educational Resources Information Center
Kurz, Terri L.
2011-01-01
Many free online tools exist to complement algebraic instruction at the middle school level. This article presents findings that analyzed the features of algebraic tools to support learning. The findings can help teachers select appropriate tools to facilitate specific topics. (Contains 1 table and 4 figures.)
Condensing Algebra for Technical Mathematics.
ERIC Educational Resources Information Center
Greenfield, Donald R.
Twenty Algebra-Packets (A-PAKS) were developed by the investigator for technical education students at the community college level. Each packet contained a statement of rationale, learning objectives, performance activities, performance test, and performance test answer key. The A-PAKS condensed the usual sixteen weeks of algebra into a six-week…
Algebraic Thinking in Adult Education
ERIC Educational Resources Information Center
Manly, Myrna; Ginsburg, Lynda
2010-01-01
In adult education, algebraic thinking can be a sense-making tool that introduces coherence among mathematical concepts for those who previously have had trouble learning math. Further, a modeling approach to algebra connects mathematics and the real world, demonstrating the usefulness of math to those who have seen it as just an academic…
Linear Algebra and Image Processing
ERIC Educational Resources Information Center
Allali, Mohamed
2010-01-01
We use the computing technology digital image processing (DIP) to enhance the teaching of linear algebra so as to make the course more visual and interesting. Certainly, this visual approach by using technology to link linear algebra to DIP is interesting and unexpected to both students as well as many faculty. (Contains 2 tables and 11 figures.)
ERIC Educational Resources Information Center
Instructional Objectives Exchange, Los Angeles, CA.
A complete set of behavioral objectives for first-year algebra taught in any of grades 8 through 12 is presented. Three to six sample test items and answers are provided for each objective. Objectives were determined by surveying the most used secondary school algebra textbooks. Fourteen major categories are included: (1) whole numbers--operations…
Exploring Algebraic Patterns through Literature.
ERIC Educational Resources Information Center
Austin, Richard A.; Thompson, Denisse R.
1997-01-01
Presents methods for using literature to develop algebraic thinking in an environment that connects algebra to various situations. Activities are based on the book "Anno's Magic Seeds" with additional resources listed. Students express a constant function, exponential function, and a recursive function in their own words as well as writing about…
Learning Algebra from Worked Examples
ERIC Educational Resources Information Center
Lange, Karin E.; Booth, Julie L.; Newton, Kristie J.
2014-01-01
For students to be successful in algebra, they must have a truly conceptual understanding of key algebraic features as well as the procedural skills to complete a problem. One strategy to correct students' misconceptions combines the use of worked example problems in the classroom with student self-explanation. "Self-explanation" is…
Thermodynamics. [algebraic structure
NASA Technical Reports Server (NTRS)
Zeleznik, F. J.
1976-01-01
The fundamental structure of thermodynamics is purely algebraic, in the sense of atopological, and it is also independent of partitions, composite systems, the zeroth law, and entropy. The algebraic structure requires the notion of heat, but not the first law. It contains a precise definition of entropy and identifies it as a purely mathematical concept. It also permits the construction of an entropy function from heat measurements alone when appropriate conditions are satisfied. Topology is required only for a discussion of the continuity of thermodynamic properties, and then the weak topology is the relevant topology. The integrability of the differential form of the first law can be examined independently of Caratheodory's theorem and his inaccessibility axiom. Criteria are established by which one can determine when an integrating factor can be made intensive and the pseudopotential extensive and also an entropy. Finally, a realization of the first law is constructed which is suitable for all systems whether they are solids or fluids, whether they do or do not exhibit chemical reactions, and whether electromagnetic fields are or are not present.
Adaptive grid embedding for the two-dimensional Euler equations
NASA Technical Reports Server (NTRS)
Warren, Gary P.
1990-01-01
A numerical algorithm is presented for solving the two-dimensional flux-split Euler equations using a multigrid method with adaptive grid embedding. The method uses an unstructured data set along with a system of pointers for communication on the irregularly shaped grid topologies. An explicit two-stage time advancement scheme is implemented. A multigrid algorithm is used to provide grid level communication and to accelerate the convergence of the solution to steady state. Results are presented for an NACA 0012 airfoil in a freestream with Mach numbers of 0.95 and 1.054. Excellent resolution of the shock structures is obtained with the adaptive grid embedding method with significantly fewer grid points than the comparable structured grid.
Invariants of triangular Lie algebras
NASA Astrophysics Data System (ADS)
Boyko, Vyacheslav; Patera, Jiri; Popovych, Roman
2007-07-01
Triangular Lie algebras are the Lie algebras which can be faithfully represented by triangular matrices of any finite size over the real/complex number field. In the paper invariants ('generalized Casimir operators') are found for three classes of Lie algebras, namely those which are either strictly or non-strictly triangular, and for so-called special upper triangular Lie algebras. Algebraic algorithm of Boyko et al (2006 J. Phys. A: Math. Gen.39 5749 (Preprint math-ph/0602046)), developed further in Boyko et al (2007 J. Phys. A: Math. Theor.40 113 (Preprint math-ph/0606045)), is used to determine the invariants. A conjecture of Tremblay and Winternitz (2001 J. Phys. A: Math. Gen.34 9085), concerning the number of independent invariants and their form, is corroborated.
Three-Dimensional High-Lift Analysis Using a Parallel Unstructured Multigrid Solver
NASA Technical Reports Server (NTRS)
Mavriplis, Dimitri J.
1998-01-01
A directional implicit unstructured agglomeration multigrid solver is ported to shared and distributed memory massively parallel machines using the explicit domain-decomposition and message-passing approach. Because the algorithm operates on local implicit lines in the unstructured mesh, special care is required in partitioning the problem for parallel computing. A weighted partitioning strategy is described which avoids breaking the implicit lines across processor boundaries, while incurring minimal additional communication overhead. Good scalability is demonstrated on a 128 processor SGI Origin 2000 machine and on a 512 processor CRAY T3E machine for reasonably fine grids. The feasibility of performing large-scale unstructured grid calculations with the parallel multigrid algorithm is demonstrated by computing the flow over a partial-span flap wing high-lift geometry on a highly resolved grid of 13.5 million points in approximately 4 hours of wall clock time on the CRAY T3E.
NASA Astrophysics Data System (ADS)
Lavery, N.; Taylor, C.
1999-07-01
Multigrid and iterative methods are used to reduce the solution time of the matrix equations which arise from the finite element (FE) discretisation of the time-independent equations of motion of the incompressible fluid in turbulent motion. Incompressible flow is solved by using the method of reduce interpolation for the pressure to satisfy the Brezzi-Babuska condition. The k-l model is used to complete the turbulence closure problem. The non-symmetric iterative matrix methods examined are the methods of least squares conjugate gradient (LSCG), biconjugate gradient (BCG), conjugate gradient squared (CGS), and the biconjugate gradient squared stabilised (BCGSTAB). The multigrid algorithm applied is based on the FAS algorithm of Brandt, and uses two and three levels of grids with a V-cycling schedule. These methods are all compared to the non-symmetric frontal solver. Copyright
An Optimal Order Nonnested Mixed Multigrid Method for Generalized Stokes Problems
NASA Technical Reports Server (NTRS)
Deng, Qingping
1996-01-01
A multigrid algorithm is developed and analyzed for generalized Stokes problems discretized by various nonnested mixed finite elements within a unified framework. It is abstractly proved by an element-independent analysis that the multigrid algorithm converges with an optimal order if there exists a 'good' prolongation operator. A technique to construct a 'good' prolongation operator for nonnested multilevel finite element spaces is proposed. Its basic idea is to introduce a sequence of auxiliary nested multilevel finite element spaces and define a prolongation operator as a composite operator of two single grid level operators. This makes not only the construction of a prolongation operator much easier (the final explicit forms of such prolongation operators are fairly simple), but the verification of the approximate properties for prolongation operators is also simplified. Finally, as an application, the framework and technique is applied to seven typical nonnested mixed finite elements.
Numerical solution of flame sheet problems with and without multigrid methods
NASA Technical Reports Server (NTRS)
Douglas, Craig C.; Ern, Alexandre
1993-01-01
Flame sheet problems are on the natural route to the numerical solution of multidimensional flames, which, in turn, are important in many engineering applications. In order to model the structure of flames more accurately, we use the vorticity-velocity formulation of the fluid flow equations, as opposed to the streamfunction-vorticity approach. The numerical solution of the resulting nonlinear coupled elliptic partial differential equations involves a pseudo transient process and a steady state Newton iteration. Rather than working with dimensionless variables, we introduce scale factors that can yield significant savings in the execution time. In this context, we also investigate the applicability and performance of several multigrid methods, focusing on nonlinear damped Newton multigrid, using either one way or correction schemes.
Design and implementation of a multigrid code for the Euler equations
NASA Technical Reports Server (NTRS)
Jespersen, D. C.
1983-01-01
The steady-state equations of inviscid fluid flow, the Euler equations, are a nonlinear nonelliptic system of equations admitting solutions with discontinuities (for example, shocks). The efficient numerical solution of these equations poses a strenuous challenge to multigrid methods. A multigrid code has been developed for the numerical solution of the Euler equations. In this paper some of the factors that had to be taken into account in the design and development of the code are reviewed. These factors include the importance of choosing an appropriate difference scheme, the usefulness of local mode analysis as a design tool, and the crucial question of how to treat the nonlinearity. Sample calculations of transonic flow about airfoils will be presented. No claim is made that the particular algorithm presented is optimal.
Multigrid solver for the reference interaction site model of molecular liquids theory.
Sergiievskyi, Volodymyr P; Hackbusch, Wolfgang; Fedorov, Maxim V
2011-07-15
In this article, we propose a new multigrid-based algorithm for solving integral equations of the reference interactions site model (RISM). We also investigate the relationship between the parameters of the algorithm and the numerical accuracy of the hydration free energy calculations by RISM. For this purpose, we analyzed the performance of the method for several numerical tests with polar and nonpolar compounds. The results of this analysis provide some guidelines for choosing an optimal set of parameters to minimize computational expenses. We compared the performance of the proposed multigrid-based method with the one-grid Picard iteration and nested Picard iteration methods. We show that the proposed method is over 30 times faster than the one-grid iteration method, and in the high accuracy regime, it is almost seven times faster than the nested Picard iteration method. PMID:21455965
A Parallel Multigrid Method for the Finite Element Analysis of Mechanical Contact
Hales, J D; Parsons, I D
2002-03-21
A geometrical multigrid method for solving the linearized matrix equations arising from node-on-face three-dimensional finite element contact is described. The development of an efficient implementation of this combination that minimizes both the memory requirements and the computational cost requires careful construction and storage of the portion of the coarse mesh stiffness matrices that are associated with the contact stiffness on the fine mesh. The multigrid contact algorithm is parallelized in a manner suitable for distributed memory architectures: results are presented that demonstrates the scheme's scalability. The solution of a large contact problem derived from an analysis of the factory joints present in the Space Shuttle reusable solid rocket motor demonstrates the usefulness of the general approach.
On Efficient Multigrid Methods for Materials Processing Flows with Small Particles
NASA Technical Reports Server (NTRS)
Thomas, James (Technical Monitor); Diskin, Boris; Harik, VasylMichael
2004-01-01
Multiscale modeling of materials requires simulations of multiple levels of structural hierarchy. The computational efficiency of numerical methods becomes a critical factor for simulating large physical systems with highly desperate length scales. Multigrid methods are known for their superior efficiency in representing/resolving different levels of physical details. The efficiency is achieved by employing interactively different discretizations on different scales (grids). To assist optimization of manufacturing conditions for materials processing with numerous particles (e.g., dispersion of particles, controlling flow viscosity and clusters), a new multigrid algorithm has been developed for a case of multiscale modeling of flows with small particles that have various length scales. The optimal efficiency of the algorithm is crucial for accurate predictions of the effect of processing conditions (e.g., pressure and velocity gradients) on the local flow fields that control the formation of various microstructures or clusters.
A Parallel Multigrid Solver for Viscous Flows on Anisotropic Structured Grids
NASA Technical Reports Server (NTRS)
Prieto, Manuel; Montero, Ruben S.; Llorente, Ignacio M.; Bushnell, Dennis M. (Technical Monitor)
2001-01-01
This paper presents an efficient parallel multigrid solver for speeding up the computation of a 3-D model that treats the flow of a viscous fluid over a flat plate. The main interest of this simulation lies in exhibiting some basic difficulties that prevent optimal multigrid efficiencies from being achieved. As the computing platform, we have used Coral, a Beowulf-class system based on Intel Pentium processors and equipped with GigaNet cLAN and switched Fast Ethernet networks. Our study not only examines the scalability of the solver but also includes a performance evaluation of Coral where the investigated solver has been used to compare several of its design choices, namely, the interconnection network (GigaNet versus switched Fast-Ethernet) and the node configuration (dual nodes versus single nodes). As a reference, the performance results have been compared with those obtained with the NAS-MG benchmark.
Multigrid acceleration and turbulence models for computations of 3D turbulent jets in crossflow
NASA Technical Reports Server (NTRS)
Demuren, A. O.
1992-01-01
A multigrid method is presented for the calculation of three-dimensional turbulent jets in crossflow. Turbulence closure is achieved with either the standard k-epsilon model or a Reynolds stress model (RSM). Multigrid acceleration enables convergence rates which are far superior to that for a single grid method to be obtained with both turbulence models. With the k-epsilon model the rate approaches that for laminar flow, but with RSM it is somewhat slower. The increased stiffness of the system of equation in the latter may be responsible. Computed results with both turbulence models are compared to experimental data for a pair of opposed jets in crossflow. Both models yield reasonable agreement for the mean flow velocity, but RSM yields better predictions of the Reynolds stresses.
Three-dimensional multigrid algorithms for the flux-split Euler equations
NASA Technical Reports Server (NTRS)
Anderson, W. Kyle; Thomas, James L.; Whitfield, David L.
1988-01-01
The Full Approximation Scheme (FAS) multigrid method is applied to several implicit flux-split algorithms for solving the three-dimensional Euler equations in a body fitted coordinate system. Each of the splitting algorithms uses a variation of approximate factorization and is implemented in a finite volume formulation. The algorithms are all vectorizable with little or no scalar computation required. The flux vectors are split into upwind components using both the splittings of Steger-Warming and Van Leer. The stability and smoothing rate of each of the schemes are examined using a Fourier analysis of the complete system of equations. Results are presented for three-dimensional subsonic, transonic, and supersonic flows which demonstrate substantially improved convergence rates with the multigrid algorithm. The influence of using both a V-cycle and a W-cycle on the convergence is examined.
Multigrid acceleration and turbulence models for computations of 3D turbulent jets in crossflow
NASA Technical Reports Server (NTRS)
Demuren, A. O.
1991-01-01
A multigrid method is presented for the calculation of three-dimensional turbulent jets in crossflow. Turbulence closure is achieved with either the standard k-epsilon model or a Reynolds Stress Model (RSM). Multigrid acceleration enables convergence rates which are far superior to that for a single grid method. With the k-epsilon model the rate approaches that for laminar flow, but with RSM it is somewhat slower. The increased stiffness of the system of equations in the latter may be responsible. Computed results with both turbulence models are compared with experimental data for a pair of opposed jets in crossflow. Both models yield reasonable agreement with mean flow velocity but RSM yields better prediction of the Reynolds stresses.
Rotor-stator interaction analysis using the Navier-Stokes equations and a multigrid method
Arnone, A.; Pacciani, R.
1996-10-01
A recently developed, time-accurate multigrid viscous solver has been extended to the analysis of unsteady rotor-stator interaction. In the proposed method, a fully implicit discretization is used to remove stability limitations. By means of a dual time-stepping approach, a four-stage Runge-Kutta scheme is used in conjunction with several accelerating techniques typical of steady-state solvers, instead of traditional time-expensive factorizations. The accelerating strategies include local time stepping, residual smoothing, and multigrid. Two-dimensional viscous calculations of unsteady rotor-stator interaction in the first stage of a modern gas turbine are presented. The stage analysis is based on the introduction of several blade passages to approximate the stator:rotor count ratio. Particular attention is dedicated to grid dependency in space and time as well as to the influence of the number of blades included in the calculations.
Multigrid Solution of the Navier-Stokes Equations at Low Speeds with Large Temperature Variations
NASA Technical Reports Server (NTRS)
Sockol, Peter M.
2002-01-01
Multigrid methods for the Navier-Stokes equations at low speeds and large temperature variations are investigated. The compressible equations with time-derivative preconditioning and preconditioned flux-difference splitting of the inviscid terms are used. Three implicit smoothers have been incorporated into a common multigrid procedure. Both full coarsening and semi-coarsening with directional fine-grid defect correction have been studied. The resulting methods have been tested on four 2D laminar problems over a range of Reynolds numbers on both uniform and highly stretched grids. Two of the three methods show efficient and robust performance over the entire range of conditions. In addition none of the methods have any difficulty with the large temperature variations.
Multilevel local refinement and multigrid methods for 3-D turbulent flow
Liao, C.; Liu, C.; Sung, C.H.; Huang, T.T.
1996-12-31
A numerical approach based on multigrid, multilevel local refinement, and preconditioning methods for solving incompressible Reynolds-averaged Navier-Stokes equations is presented. 3-D turbulent flow around an underwater vehicle is computed. 3 multigrid levels and 2 local refinement grid levels are used. The global grid is 24 x 8 x 12. The first patch is 40 x 16 x 20 and the second patch is 72 x 32 x 36. 4th order artificial dissipation are used for numerical stability. The conservative artificial compressibility method are used for further improvement of convergence. To improve the accuracy of coarse/fine grid interface of local refinement, flux interpolation method for refined grid boundary is used. The numerical results are in good agreement with experimental data. The local refinement can improve the prediction accuracy significantly. The flux interpolation method for local refinement can keep conservation for a composite grid, therefore further modify the prediction accuracy.
ERIC Educational Resources Information Center
Gonzalez-Vega, Laureano
1999-01-01
Using a Computer Algebra System (CAS) to help with the teaching of an elementary course in linear algebra can be one way to introduce computer algebra, numerical analysis, data structures, and algorithms. Highlights the advantages and disadvantages of this approach to the teaching of linear algebra. (Author/MM)
Chen, J.; Safro, I.
2011-01-01
Measuring the connection strength between a pair of vertices in a graph is one of the most important concerns in many graph applications. Simple measures such as edge weights may not be sufficient for capturing the effects associated with short paths of lengths greater than one. In this paper, we consider an iterative process that smooths an associated value for nearby vertices, and we present a measure of the local connection strength (called the algebraic distance; see [D. Ron, I. Safro, and A. Brandt, Multiscale Model. Simul., 9 (2011), pp. 407-423]) based on this process. The proposed measure is attractive in that the process is simple, linear, and easily parallelized. An analysis of the convergence property of the process reveals that the local neighborhoods play an important role in determining the connectivity between vertices. We demonstrate the practical effectiveness of the proposed measure through several combinatorial optimization problems on graphs and hypergraphs.
Constraint algebra in bigravity
Soloviev, V. O.
2015-07-15
The number of degrees of freedom in bigravity theory is found for a potential of general form and also for the potential proposed by de Rham, Gabadadze, and Tolley (dRGT). This aim is pursued via constructing a Hamiltonian formalismand studying the Poisson algebra of constraints. A general potential leads to a theory featuring four first-class constraints generated by general covariance. The vanishing of the respective Hessian is a crucial property of the dRGT potential, and this leads to the appearance of two additional second-class constraints and, hence, to the exclusion of a superfluous degree of freedom—that is, the Boulware—Deser ghost. The use of a method that permits avoiding an explicit expression for the dRGT potential is a distinctive feature of the present study.
Quantum algebra of N superspace
Hatcher, Nicolas; Restuccia, A.; Stephany, J.
2007-08-15
We identify the quantum algebra of position and momentum operators for a quantum system bearing an irreducible representation of the super Poincare algebra in the N>1 and D=4 superspace, both in the case where there are no central charges in the algebra, and when they are present. This algebra is noncommutative for the position operators. We use the properties of superprojectors acting on the superfields to construct explicit position and momentum operators satisfying the algebra. They act on the projected wave functions associated to the various supermultiplets with defined superspin present in the representation. We show that the quantum algebra associated to the massive superparticle appears in our construction and is described by a supermultiplet of superspin 0. This result generalizes the construction for D=4, N=1 reported recently. For the case N=2 with central charges, we present the equivalent results when the central charge and the mass are different. For the {kappa}-symmetric case when these quantities are equal, we discuss the reduction to the physical degrees of freedom of the corresponding superparticle and the construction of the associated quantum algebra.
General relaxation schemes in multigrid algorithms for higher order singularity methods
NASA Technical Reports Server (NTRS)
Oskam, B.; Fray, J. M. J.
1981-01-01
Relaxation schemes based on approximate and incomplete factorization technique (AF) are described. The AF schemes allow construction of a fast multigrid method for solving integral equations of the second and first kind. The smoothing factors for integral equations of the first kind, and comparison with similar results from the second kind of equations are a novel item. Application of the MD algorithm shows convergence to the level of truncation error of a second order accurate panel method.
Interpolation between Sobolev spaces in Lipschitz domains with an application to multigrid theory
Bramble, J.H. |
1995-10-01
In this paper the author describes an interpolation result for the Sobolev spaces H{sub 0}{sup S}({Omega}) where {Omega} is a bounded domain with a Lipschitz boundary. This result is applied to derive discrete norm estimates related to multilevel preconditioners and multigrid methods in the finite element method. The estimates are valid for operators of order 2m with Dirichlet boundary conditions. 11 refs.
A monolithic FEM-multigrid solver for non-isothermal incompressible flow on general meshes
NASA Astrophysics Data System (ADS)
Damanik, H.; Hron, J.; Ouazzi, A.; Turek, S.
2009-06-01
We present special numerical simulation methods for non-isothermal incompressible viscous fluids which are based on LBB-stable FEM discretization techniques together with monolithic multigrid solvers. For time discretization, we apply the fully implicit Crank-Nicolson scheme of 2nd order accuracy while we utilize the high order Q2P1 finite element pair for discretization in space which can be applied on general meshes together with local grid refinement strategies including hanging nodes. To treat the nonlinearities in each time step as well as for direct steady approaches, the resulting discrete systems are solved via a Newton method based on divided differences to calculate explicitly the Jacobian matrices. In each nonlinear step, the coupled linear subproblems are solved simultaneously for all quantities by means of a monolithic multigrid method with local multilevel pressure Schur complement smoothers of Vanka type. For validation and evaluation of the presented methodology, we perform the MIT benchmark 2001 [M.A. Christon, P.M. Gresho, S.B. Sutton, Computational predictability of natural convection flows in enclosures, in: First MIT Conference on Computational Fluid and Solid Mechanics, vol. 40, Elsevier, 2001, pp. 1465-1468] of natural convection flow in enclosures to compare our results with respect to accuracy and efficiency. Additionally, we simulate problems with temperature and shear dependent viscosity and analyze the effect of an additional dissipation term inside the energy equation. Moreover, we discuss how these FEM-multigrid techniques can be extended to monolithic approaches for viscoelastic flow problems.
A multigrid method for a model of the implicit immersed boundary equations
Guy, Robert; Philip, Bobby
2012-01-01
Explicit time stepping schemes for the immersed boundary method require very small time steps in order to maintain stability. Solving the equations that arise from an implicit discretization is difficult. Recently, several different approaches have been proposed, but a complete understanding of this problem is still emerging. A multigrid method is developed and explored for solving the equations in an implicit time discretization of a model of the immersed boundary equations. The model problem consists of a scalar Poisson equation with conformation-dependent singular forces on an immersed boundary. This model does not include the inertial terms or the incompressibility constraint. The method is more efficient than an explicit method, but the efficiency gain is limited. The multigrid method alone may not be an effective solver, but when used as a preconditioner for Krylov methods, the speed-up over the explicit time method is substantial. For example, depending on the constitutive law for the boundary force, with a time step 100 times larger than the explicit method, the implicit method is about 15-100 times more efficient than the explicit method. A very attractive feature of this method is that the efficiency of the multigrid preconditioned Krylov solver is shown to be independent of the number of immersed boundary points.
Multigrid Acceleration of Time-Accurate DNS of Compressible Turbulent Flow
NASA Technical Reports Server (NTRS)
Broeze, Jan; Geurts, Bernard; Kuerten, Hans; Streng, Martin
1996-01-01
An efficient scheme for the direct numerical simulation of 3D transitional and developed turbulent flow is presented. Explicit and implicit time integration schemes for the compressible Navier-Stokes equations are compared. The nonlinear system resulting from the implicit time discretization is solved with an iterative method and accelerated by the application of a multigrid technique. Since we use central spatial discretizations and no artificial dissipation is added to the equations, the smoothing method is less effective than in the more traditional use of multigrid in steady-state calculations. Therefore, a special prolongation method is needed in order to obtain an effective multigrid method. This simulation scheme was studied in detail for compressible flow over a flat plate. In the laminar regime and in the first stages of turbulent flow the implicit method provides a speed-up of a factor 2 relative to the explicit method on a relatively coarse grid. At increased resolution this speed-up is enhanced correspondingly.
Implicit multigrid algorithms for the three-dimensional flux split Euler equations. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Anderson, W. K.
1986-01-01
The full approximation scheme multigrid method is applied to several implicit flux-split algorithms for solving the three-dimensional Euler equations in a body fitted coordinate system. Each uses a variation of approximate factorization and is implemented in a finite volume formulation. The algorithms are all vectorizable with little or no scalar computations required. The flux vectors are split into upwind components using both the splittings of Steger-Warming and Van Leer. Results comparing pressure distributions with experimental data using both splitting types are shown. The stability and smoothing rate of each of the schemes are examined using a Fourier analysis of the complete system of equations. Results are presented for three-dimensional subsonic, transonic, and supersonic flows which demonstrate substantially improved convergence rates with the multigrid algorithm. The influence of using both a V-cycle and a W-cycle on the convergence is examined. Using the multigrid method on both subsonic and transonic wing calculations, the final lift coefficient is obtained to within 0.1 percent of its final value in a few as 15 cycles for a mesh with over 210,000 points. A spectral radius of 0.89 is achieved for both subsonic and transonic flow over the ONERA M6 wing while a spectral radius of 0.83 is obtained for supersonic flow over an analytically defined forebody. Results compared with experiment for all cases show good agreement.
Convergence of Defect-Correction and Multigrid Iterations for Inviscid Flows
NASA Technical Reports Server (NTRS)
Diskin, Boris; Thomas, James L.
2011-01-01
Convergence of multigrid and defect-correction iterations is comprehensively studied within different incompressible and compressible inviscid regimes on high-density grids. Good smoothing properties of the defect-correction relaxation have been shown using both a modified Fourier analysis and a more general idealized-coarse-grid analysis. Single-grid defect correction alone has some slowly converging iterations on grids of medium density. The convergence is especially slow for near-sonic flows and for very low compressible Mach numbers. Additionally, the fast asymptotic convergence seen on medium density grids deteriorates on high-density grids. Certain downstream-boundary modes are very slowly damped on high-density grids. Multigrid scheme accelerates convergence of the slow defect-correction iterations to the extent determined by the coarse-grid correction. The two-level asymptotic convergence rates are stable and significantly below one in most of the regions but slow convergence is noted for near-sonic and very low-Mach compressible flows. Multigrid solver has been applied to the NACA 0012 airfoil and to different flow regimes, such as near-tangency and stagnation. Certain convergence difficulties have been encountered within stagnation regions. Nonetheless, for the airfoil flow, with a sharp trailing-edge, residuals were fast converging for a subcritical flow on a sequence of grids. For supercritical flow, residuals converged slower on some intermediate grids than on the finest grid or the two coarsest grids.
Using Homemade Algebra Tiles To Develop Algebra and Prealgebra Concepts.
ERIC Educational Resources Information Center
Leitze, Annette Ricks; Kitt, Nancy A.
2000-01-01
Describes how to use homemade tiles, sketches, and the box method to reach a broader group of students for successful algebra learning. Provides a list of concepts appropriate for such an approach. (KHR)
Distance geometry and geometric algebra
NASA Astrophysics Data System (ADS)
Dress, Andreas W. M.; Havel, Timothy F.
1993-10-01
As part of his program to unify linear algebra and geometry using the language of Clifford algebra, David Hestenes has constructed a (well-known) isomorphism between the conformal group and the orthogonal group of a space two dimensions higher, thus obtaining homogeneous coordinates for conformal geometry.(1) In this paper we show that this construction is the Clifford algebra analogue of a hyperbolic model of Euclidean geometry that has actually been known since Bolyai, Lobachevsky, and Gauss, and we explore its wider invariant theoretic implications. In particular, we show that the Euclidean distance function has a very simple representation in this model, as demonstrated by J. J. Seidel.(18)
Loop Virasoro Lie conformal algebra
Wu, Henan Chen, Qiufan; Yue, Xiaoqing
2014-01-15
The Lie conformal algebra of loop Virasoro algebra, denoted by CW, is introduced in this paper. Explicitly, CW is a Lie conformal algebra with C[∂]-basis (L{sub i} | i∈Z) and λ-brackets [L{sub i} {sub λ} L{sub j}] = (−∂−2λ)L{sub i+j}. Then conformal derivations of CW are determined. Finally, rank one conformal modules and Z-graded free intermediate series modules over CW are classified.
Hopf algebras and Dyson-Schwinger equations
NASA Astrophysics Data System (ADS)
Weinzierl, Stefan
2016-06-01
In this paper I discuss Hopf algebras and Dyson-Schwinger equations. This paper starts with an introduction to Hopf algebras, followed by a review of the contribution and application of Hopf algebras to particle physics. The final part of the paper is devoted to the relation between Hopf algebras and Dyson-Schwinger equations.
Kohn, S.; Weare, J.; Ong, E.; Baden, S.
1997-05-01
We have applied structured adaptive mesh refinement techniques to the solution of the LDA equations for electronic structure calculations. Local spatial refinement concentrates memory resources and numerical effort where it is most needed, near the atomic centers and in regions of rapidly varying charge density. The structured grid representation enables us to employ efficient iterative solver techniques such as conjugate gradient with FAC multigrid preconditioning. We have parallelized our solver using an object- oriented adaptive mesh refinement framework.
Sequential products on effect algebras
NASA Astrophysics Data System (ADS)
Gudder, Stan; Greechie, Richard
2002-02-01
A sequential effect algebra (SEA) is an effect algebra on which a sequential product with natural properties is defined. The properties of sequential products on Hilbert space effect algebras are discussed. For a general SEA, relationships between sequential independence, coexistence and compatibility are given. It is shown that the sharp elements of a SEA form an orthomodular poset. The sequential center of a SEA is discussed and a characterization of when the sequential center is isomorphic to a fuzzy set system is presented. It is shown that the existence, of a sequential product is a strong restriction that eliminates many effect algebras from being SEA's. For example, there are no finite nonboolean SEA's, A measure of sharpness called the sharpness index is studied. The existence of horizontal sums of SEA's is characterized and examples of horizontal sums and tensor products are presented.
Curvature calculations with spacetime algebra
Hestenes, D.
1986-06-01
A new method for calculating the curvature tensor is developed and applied to the Scharzschild case. The method employs Clifford algebra and has definite advantages over conventional methods using differential forms or tensor analysis.
GCD, LCM, and Boolean Algebra?
ERIC Educational Resources Information Center
Cohen, Martin P.; Juraschek, William A.
1976-01-01
This article investigates the algebraic structure formed when the process of finding the greatest common divisor and the least common multiple are considered as binary operations on selected subsets of positive integers. (DT)
Cartooning in Algebra and Calculus
ERIC Educational Resources Information Center
Moseley, L. Jeneva
2014-01-01
This article discusses how teachers can create cartoons for undergraduate math classes, such as college algebra and basic calculus. The practice of cartooning for teaching can be helpful for communication with students and for students' conceptual understanding.
NASA Technical Reports Server (NTRS)
Klumpp, A. R.; Lawson, C. L.
1988-01-01
Routines provided for common scalar, vector, matrix, and quaternion operations. Computer program extends Ada programming language to include linear-algebra capabilities similar to HAS/S programming language. Designed for such avionics applications as software for Space Station.
Semiclassical states on Lie algebras
Tsobanjan, Artur
2015-03-15
The effective technique for analyzing representation-independent features of quantum systems based on the semiclassical approximation (developed elsewhere) has been successfully used in the context of the canonical (Weyl) algebra of the basic quantum observables. Here, we perform the important step of extending this effective technique to the quantization of a more general class of finite-dimensional Lie algebras. The case of a Lie algebra with a single central element (the Casimir element) is treated in detail by considering semiclassical states on the corresponding universal enveloping algebra. Restriction to an irreducible representation is performed by “effectively” fixing the Casimir condition, following the methods previously used for constrained quantum systems. We explicitly determine the conditions under which this restriction can be consistently performed alongside the semiclassical truncation.
NASA Astrophysics Data System (ADS)
Lannes, A.; Teunissen, P. J. G.
2011-05-01
The first objective of this paper is to show that some basic concepts used in global navigation satellite systems (GNSS) are similar to those introduced in Fourier synthesis for handling some phase calibration problems. In experimental astronomy, the latter are at the heart of what is called `phase closure imaging.' In both cases, the analysis of the related structures appeals to the algebraic graph theory and the algebraic number theory. For example, the estimable functions of carrier-phase ambiguities, which were introduced in GNSS to correct some rank defects of the undifferenced equations, prove to be `closure-phase ambiguities:' the so-called `closure-delay' (CD) ambiguities. The notion of closure delay thus generalizes that of double difference (DD). The other estimable functional variables involved in the phase and code undifferenced equations are the receiver and satellite pseudo-clock biases. A related application, which corresponds to the second objective of this paper, concerns the definition of the clock information to be broadcasted to the network users for their precise point positioning (PPP). It is shown that this positioning can be achieved by simply having access to the satellite pseudo-clock biases. For simplicity, the study is restricted to relatively small networks. Concerning the phase for example, these biases then include five components: a frequency-dependent satellite-clock error, a tropospheric satellite delay, an ionospheric satellite delay, an initial satellite phase, and an integer satellite ambiguity. The form of the PPP equations to be solved by the network user is then similar to that of the traditional PPP equations. As soon as the CD ambiguities are fixed and validated, an operation which can be performed in real time via appropriate decorrelation techniques, estimates of these float biases can be immediately obtained. No other ambiguity is to be fixed. The satellite pseudo-clock biases can thus be obtained in real time. This is
Hopf algebras and topological recursion
NASA Astrophysics Data System (ADS)
Esteves, João N.
2015-11-01
We consider a model for topological recursion based on the Hopf algebra of planar binary trees defined by Loday and Ronco (1998 Adv. Math. 139 293-309 We show that extending this Hopf algebra by identifying pairs of nearest neighbor leaves, and thus producing graphs with loops, we obtain the full recursion formula discovered by Eynard and Orantin (2007 Commun. Number Theory Phys. 1 347-452).
2005-04-11
The ALGEBRA program allows the user to manipulate data from a finite element analysis before it is plotted. The finite element output data is in the form of variable values (e.g., stress, strain, and velocity components) in an EXODUS II database. The ALGEBRA program evaluates user-supplied functions of the data and writes the results to an output EXODUS II database that can be read by plot programs.
NASA Astrophysics Data System (ADS)
Kuzmin, Dmitri; Möller, Matthias; Gurris, Marcel
Flux limiting for hyperbolic systems requires a careful generalization of the design principles and algorithms introduced in the context of scalar conservation laws. In this chapter, we develop FCT-like algebraic flux correction schemes for the Euler equations of gas dynamics. In particular, we discuss the construction of artificial viscosity operators, the choice of variables to be limited, and the transformation of antidiffusive fluxes. An a posteriori control mechanism is implemented to make the limiter failsafe. The numerical treatment of initial and boundary conditions is discussed in some detail. The initialization is performed using an FCT-constrained L 2 projection. The characteristic boundary conditions are imposed in a weak sense, and an approximate Riemann solver is used to evaluate the fluxes on the boundary. We also present an unconditionally stable semi-implicit time-stepping scheme and an iterative solver for the fully discrete problem. The results of a numerical study indicate that the nonlinearity and non-differentiability of the flux limiter do not inhibit steady state convergence even in the case of strongly varying Mach numbers. Moreover, the convergence rates improve as the pseudo-time step is increased.
Lin, Paul T. Shadid, John N.; Sala, Marzio; Tuminaro, Raymond S.; Hennigan, Gary L.; Hoekstra, Robert J.
2009-09-20
In this study results are presented for the large-scale parallel performance of an algebraic multilevel preconditioner for solution of the drift-diffusion model for semiconductor devices. The preconditioner is the key numerical procedure determining the robustness, efficiency and scalability of the fully-coupled Newton-Krylov based, nonlinear solution method that is employed for this system of equations. The coupled system is comprised of a source term dominated Poisson equation for the electric potential, and two convection-diffusion-reaction type equations for the electron and hole concentration. The governing PDEs are discretized in space by a stabilized finite element method. Solution of the discrete system is obtained through a fully-implicit time integrator, a fully-coupled Newton-based nonlinear solver, and a restarted GMRES Krylov linear system solver. The algebraic multilevel preconditioner is based on an aggressive coarsening graph partitioning of the nonzero block structure of the Jacobian matrix. Representative performance results are presented for various choices of multigrid V-cycles and W-cycles and parameter variations for smoothers based on incomplete factorizations. Parallel scalability results are presented for solution of up to 10{sup 8} unknowns on 4096 processors of a Cray XT3/4 and an IBM POWER eServer system.
NASA Astrophysics Data System (ADS)
Lin, Paul T.; Shadid, John N.; Sala, Marzio; Tuminaro, Raymond S.; Hennigan, Gary L.; Hoekstra, Robert J.
2009-09-01
In this study results are presented for the large-scale parallel performance of an algebraic multilevel preconditioner for solution of the drift-diffusion model for semiconductor devices. The preconditioner is the key numerical procedure determining the robustness, efficiency and scalability of the fully-coupled Newton-Krylov based, nonlinear solution method that is employed for this system of equations. The coupled system is comprised of a source term dominated Poisson equation for the electric potential, and two convection-diffusion-reaction type equations for the electron and hole concentration. The governing PDEs are discretized in space by a stabilized finite element method. Solution of the discrete system is obtained through a fully-implicit time integrator, a fully-coupled Newton-based nonlinear solver, and a restarted GMRES Krylov linear system solver. The algebraic multilevel preconditioner is based on an aggressive coarsening graph partitioning of the nonzero block structure of the Jacobian matrix. Representative performance results are presented for various choices of multigrid V-cycles and W-cycles and parameter variations for smoothers based on incomplete factorizations. Parallel scalability results are presented for solution of up to 108 unknowns on 4096 processors of a Cray XT3/4 and an IBM POWER eServer system.
Nonnumeric Computer Applications to Algebra, Trigonometry and Calculus.
ERIC Educational Resources Information Center
Stoutemyer, David R.
1983-01-01
Described are computer program packages requiring little or no knowledge of computer programing for college algebra, calculus, and abstract algebra. Widely available computer algebra systems are listed. (MNS)
Virasoro algebra in the KN algebra; Bosonic string with fermionic ghosts on Riemann surfaces
Koibuchi, H. )
1991-10-10
In this paper the bosonic string model with fermionic ghosts is considered in the framework of the KN algebra. The authors' attentions are paid to representations of KN algebra and a Clifford algebra of the ghosts. The authors show that a Virasoro-like algebra is obtained from KN algebra when KN algebra has certain antilinear anti-involution, and that it is isomorphic to the usual Virasoro algebra. The authors show that there is an expected relation between a central charge of this Virasoro-like algebra and an anomaly of the combined system.
Invertible linear transformations and the Lie algebras
NASA Astrophysics Data System (ADS)
Zhang, Yufeng; Tam, Honwah; Guo, Fukui
2008-07-01
With the help of invertible linear transformations and the known Lie algebras, a way to generate new Lie algebras is given. These Lie algebras obtained have a common feature, i.e. integrable couplings of solitary hierarchies could be obtained by using them, specially, the Hamiltonian structures of them could be worked out. Some ways to construct the loop algebras of the Lie algebras are presented. It follows that some various loop algebras are given. In addition, a few new Lie algebras are explicitly constructed in terms of the classification of Lie algebras proposed by Ma Wen-Xiu, which are bases for obtaining new Lie algebras by using invertible linear transformations. Finally, some solutions of a (2 + 1)-dimensional partial-differential equation hierarchy are obtained, whose Hamiltonian form-expressions are manifested by using the quadratic-form identity.
Combustor flow computations in general coordinates with a multigrid method
NASA Astrophysics Data System (ADS)
Shyy, Wei; Braaten, Mark E.
The computational approach presented for single-phase combusting turbulent flowfields balances the requirements of complex physical and chemical flow interactions with those of resolving the three-dimensional geometrical constraints of the combustor contours, film cooling slots, and circular dilution holes. Attention is given to the three-dimensional grid-generation algorithm, the two-dimensional adaptive grid method applied to recirculating turbulent reacting flows, and theory/data assessments for three-dimensional combusting flows in an annular gas turbine combustor.
A Pseudo-Temporal Multi-Grid Relaxation Scheme for Solving the Parabolized Navier-Stokes Equations
NASA Technical Reports Server (NTRS)
White, J. A.; Morrison, J. H.
1999-01-01
A multi-grid, flux-difference-split, finite-volume code, VULCAN, is presented for solving the elliptic and parabolized form of the equations governing three-dimensional, turbulent, calorically perfect and non-equilibrium chemically reacting flows. The space marching algorithms developed to improve convergence rate and or reduce computational cost are emphasized. The algorithms presented are extensions to the class of implicit pseudo-time iterative, upwind space-marching schemes. A full approximate storage, full multi-grid scheme is also described which is used to accelerate the convergence of a Gauss-Seidel relaxation method. The multi-grid algorithm is shown to significantly improve convergence on high aspect ratio grids.
Elliptic Solvers for Adaptive Mesh Refinement Grids
Quinlan, D.J.; Dendy, J.E., Jr.; Shapira, Y.
1999-06-03
We are developing multigrid methods that will efficiently solve elliptic problems with anisotropic and discontinuous coefficients on adaptive grids. The final product will be a library that provides for the simplified solution of such problems. This library will directly benefit the efforts of other Laboratory groups. The focus of this work is research on serial and parallel elliptic algorithms and the inclusion of our black-box multigrid techniques into this new setting. The approach applies the Los Alamos object-oriented class libraries that greatly simplify the development of serial and parallel adaptive mesh refinement applications. In the final year of this LDRD, we focused on putting the software together; in particular we completed the final AMR++ library, we wrote tutorials and manuals, and we built example applications. We implemented the Fast Adaptive Composite Grid method as the principal elliptic solver. We presented results at the Overset Grid Conference and other more AMR specific conferences. We worked on optimization of serial and parallel performance and published several papers on the details of this work. Performance remains an important issue and is the subject of continuing research work.
Algebraic Theories and (Infinity,1)-Categories
NASA Astrophysics Data System (ADS)
Cranch, James
2010-11-01
We adapt the classical framework of algebraic theories to work in the setting of (infinity,1)-categories developed by Joyal and Lurie. This gives a suitable approach for describing highly structured objects from homotopy theory. A central example, treated at length, is the theory of E_infinity spaces: this has a tidy combinatorial description in terms of span diagrams of finite sets. We introduce a theory of distributive laws, allowing us to describe objects with two distributing E_infinity stuctures. From this we produce a theory of E_infinity ring spaces. We also study grouplike objects, and produce theories modelling infinite loop spaces (or connective spectra), and infinite loop spaces with coherent multiplicative structure (or connective ring spectra). We use this to construct the units of a grouplike E_infinity ring space in a natural manner. Lastly we provide a speculative pleasant description of the K-theory of monoidal quasicategories and quasicategories with ring-like structures.
Ternary generalization of Heisenberg's algebra
NASA Astrophysics Data System (ADS)
Kerner, Richard
2015-06-01
A concise study of ternary and cubic algebras with Z3 grading is presented. We discuss some underlying ideas leading to the conclusion that the discrete symmetry group of permutations of three objects, S3, and its abelian subgroup Z3 may play an important role in quantum physics. We show then how most of important algebras with Z2 grading can be generalized with ternary composition laws combined with a Z3 grading. We investigate in particular a ternary, Z3-graded generalization of the Heisenberg algebra. It turns out that introducing a non-trivial cubic root of unity, , one can define two types of creation operators instead of one, accompanying the usual annihilation operator. The two creation operators are non-hermitian, but they are mutually conjugate. Together, the three operators form a ternary algebra, and some of their cubic combinations generate the usual Heisenberg algebra. An analogue of Hamiltonian operator is constructed by analogy with the usual harmonic oscillator, and some properties of its eigenfunctions are briefly discussed.
Beyond Dirac - a Unified Algebra
NASA Astrophysics Data System (ADS)
Lundberg, Wayne R.
2001-10-01
A introductory insight will be shared regarding a 'separation of variables' approach to understanding the relationship between QCD and the origins of cosmological and particle mass. The discussion will then build upon work presented at DFP 2000, focussing on the formal basis for using 3x3x3 matrix algebra as it underlies and extends Dirac notation. A set of restrictions are established which break the multiple symmetries of the 3x3x3 matrix algebra, yielding Standard Model QCD objects and interactions. It will be shown that the 3x3x3 matrix representation unifies the algebra of strong and weak (and by extension, electromagnetic) interactions. A direct correspondence to string theoretic objects is established by considering the string to be partitioned in thirds. Rubik's cube is used as a graphical means of handling algebraic manipulation of 3x3x3 algebra. Further, its potential utility for advancing pedagogical methods through active engagement is discussed. A simulated classroom exercize will be conducted.
NASA Astrophysics Data System (ADS)
Audette, Michel A.; Rivière, Denis; Law, Charles; Ibanez, Luis; Aylward, Stephen R.; Finet, Julien; Wu, Xunlei; Ewend, Matthew G.
2011-03-01
We present on-going work on multi-resolution sulcal-separable meshing for approach-specific neurosurgery simulation, in conjunction multi-grid and Total Lagrangian Explicit Dynamics finite elements. Conflicting requirements of interactive nonlinear finite elements and small structures lead to a multi-grid framework. Implications for meshing are explicit control over resolution, and prior knowledge of the intended neurosurgical approach and intended path. This information is used to define a subvolume of clinical interest, within some distance of the path and the target pathology. Restricted to this subvolume are a tetrahedralization of finer resolution, the representation of critical tissues, and sulcal separability constraint for all mesh levels.
Adaptive Finite Element Methods in Geodynamics
NASA Astrophysics Data System (ADS)
Davies, R.; Davies, H.; Hassan, O.; Morgan, K.; Nithiarasu, P.
2006-12-01
Adaptive finite element methods are presented for improving the quality of solutions to two-dimensional (2D) and three-dimensional (3D) convection dominated problems in geodynamics. The methods demonstrate the application of existing technology in the engineering community to problems within the `solid' Earth sciences. Two-Dimensional `Adaptive Remeshing': The `remeshing' strategy introduced in 2D adapts the mesh automatically around regions of high solution gradient, yielding enhanced resolution of the associated flow features. The approach requires the coupling of an automatic mesh generator, a finite element flow solver and an error estimator. In this study, the procedure is implemented in conjunction with the well-known geodynamical finite element code `ConMan'. An unstructured quadrilateral mesh generator is utilised, with mesh adaptation accomplished through regeneration. This regeneration employs information provided by an interpolation based local error estimator, obtained from the computed solution on an existing mesh. The technique is validated by solving thermal and thermo-chemical problems with known benchmark solutions. In a purely thermal context, results illustrate that the method is highly successful, improving solution accuracy whilst increasing computational efficiency. For thermo-chemical simulations the same conclusions can be drawn. However, results also demonstrate that the grid based methods employed for simulating the compositional field are not competitive with the other methods (tracer particle and marker chain) currently employed in this field, even at the higher spatial resolutions allowed by the adaptive grid strategies. Three-Dimensional Adaptive Multigrid: We extend the ideas from our 2D work into the 3D realm in the context of a pre-existing 3D-spherical mantle dynamics code, `TERRA'. In its original format, `TERRA' is computationally highly efficient since it employs a multigrid solver that depends upon a grid utilizing a clever
Multigrid solution of the nonlinear Poisson-Boltzmann equation and calculation of titration curves.
Oberoi, H; Allewell, N M
1993-01-01
Although knowledge of the pKa values and charge states of individual residues is critical to understanding the role of electrostatic effects in protein structure and function, calculating these quantities is challenging because of the sensitivity of these parameters to the position and distribution of charges. Values for many different proteins which agree well with experimental results have been obtained with modified Tanford-Kirkwood theory in which the protein is modeled as a sphere (reviewed in Ref. 1); however, convergence is more difficult to achieve with finite difference methods, in which the protein is mapped onto a grid and derivatives of the potential function are calculated as differences between the values of the function at grid points (reviewed in Ref. 6). Multigrid methods, in which the size of the grid is varied from fine to coarse in several cycles, decrease computational time, increase rates of convergence, and improve agreement with experiment. Both the accuracy and computational advantage of the multigrid approach increase with grid size, because the time required to achieve a solution increases slowly with grid size. We have implemented a multigrid procedure for solving the nonlinear Poisson-Boltzmann equation, and, using lysozyme as a test case, compared calculations for several crystal forms, different refinement procedures, and different charge assignment schemes. The root mean square difference between calculated and experimental pKa values for the crystal structure which yields best agreement with experiment (1LZT) is 1.1 pH units, with the differences in calculated and experimental pK values being less than 0.6 pH units for 16 out of 21 residues. The calculated titration curves of several residues are biphasic. Images FIGURE 8 PMID:8369451
Final Report on Subcontract B605152. Multigrid Methods for Systems of PDEs
Brannick, James; Xu, Jinchao
2015-07-07
The project team has continued with work on developing aggressive coarsening techniques for AMG methods. Of particular interest is the idea to use aggressive coarsening with polynomial smoothing. Using local Fourier analysis the optimal values for the parameters involved in defining the polynomial smoothers are determined automatically in a way to achieve fast convergence of cycles with aggressive coarsening. Numerical tests have the sharpness of the theoretical results. The methods are highly parallelizable and efficient multigrid algorithms on structured and semistructured grids in two and three spatial dimensions.
Multigrid solution for the compressible Euler equations by an implicit characteristic-flux-averaging
NASA Astrophysics Data System (ADS)
Kanarachos, A.; Vournas, I.
A formulation of an implicit characteristic-flux-averaging method for the compressible Euler equations combined with the multigrid method is presented. The method is based on correction scheme and implicit Gudunov type finite volume scheme and is applied to two dimensional cases. Its principal feature is an averaging procedure based on the eigenvalue analysis of the Euler equations by means of which the fluxes are evaluated at the finite volume faces. The performance of the method is demonstrated for different flow problems around RAE-2922 and NACA-0012 airfoils and an internal flow over a circular arc.
Fast multigrid fluorescent ion chamber with 0.1 ms time response.
Suzuki, Motohiro; Kawamura, Naomi; Lytle, Farrel W; Ishikawa, Tetsuya
2002-03-01
A fast multigrid ion chamber for the detection of fluorescent X-rays has been developed. The structure of 17 grids with close separation was employed to maximize the time response as well as to give sufficient detection efficiency. The measured rise/fall response time to cyclic X-rays was shorter than that of an existing three-grid ion chamber by more than one order of magnitude. A 0.13 ms time response was obtained at the 500 V applied voltage, where the detector can stably operate without any discharge. The available frequency range is as high as 1 kHz with a practical amplitude response. PMID:11872931
A parallel multigrid preconditioner for the simulation of large fracture networks
Sampath, Rahul S; Barai, Pallab; Nukala, Phani K
2010-01-01
Computational modeling of a fracture in disordered materials using discrete lattice models requires the solution of a linear system of equations every time a new lattice bond is broken. Solving these linear systems of equations successively is the most expensive part of fracture simulations using large three-dimensional networks. In this paper, we present a parallel multigrid preconditioned conjugate gradient algorithm to solve these linear systems. Numerical experiments demonstrate that this algorithm performs significantly better than the algorithms previously used to solve this problem.
Multigrid methods for a semilinear PDE in the theory of pseudoplastic fluids
NASA Technical Reports Server (NTRS)
Henson, Van Emden; Shaker, A. W.
1993-01-01
We show that by certain transformations the boundary layer equations for the class of non-Newtonian fluids named pseudoplastic can be generalized in the form the vector differential operator(u) + p(x)u(exp -lambda) = 0, where x is a member of the set Omega and Omega is a subset of R(exp n), n is greater than or equal to 1 under the classical conditions for steady flow over a semi-infinite flat plate. We provide a survey of the existence, uniqueness, and analyticity of the solutions for this problem. We also establish numerical solutions in one- and two-dimensional regions using multigrid methods.
A simplified analysis of the multigrid V-cycle as a fast elliptic solver
NASA Technical Reports Server (NTRS)
Decker, Naomi H.; Taasan, Shlomo
1988-01-01
For special model problems, Fourier analysis gives exact convergence rates for the two-grid multigrid cycle and, for more general problems, provides estimates of the two-grid convergence rates via local mode analysis. A method is presented for obtaining mutigrid convergence rate estimates for cycles involving more than two grids (using essentially the same analysis as for the two-grid cycle). For the simple cast of the V-cycle used as a fast Laplace solver on the unit square, the k-grid convergence rate bounds obtained by this method are sharper than the bounds predicted by the variational theory. Both theoretical justification and experimental evidence are presented.
Design and Implementation of a Multi-Grid Resource Broker for Grid Computing
NASA Astrophysics Data System (ADS)
Yang, Chao-Tung; Hu, Wen-Jen
Grid computing integrates geographical computing resources across multiple virtual organizations to achieve high performance computing. A single grid often could not provide huge resources, because virtual organizations have no adequate of computing resources restriction on the scale of organizations. In this paper, we present a multi-grid, new grid architecture for integrating multiple computational grids from different virtual organizations. A resource broker is built on multiple grid environments; it integrates a number of single grids from different virtual organizations without the limitation of organizations. The multiple grid resource could be utilized efficiently and precisely.
NASA Technical Reports Server (NTRS)
Liu, C.; Liu, Z.
1993-01-01
The fourth-order finite-difference scheme with fully implicit time-marching presently used to computationally study the spatial instability of planar Poiseuille flow incorporates a novel treatment for outflow boundary conditions that renders the buffer area as short as one wavelength. A semicoarsening multigrid method accelerates convergence for the implicit scheme at each time step; a line-distributive relaxation is developed as a robust fast solver that is efficient for anisotropic grids. Computational cost is no greater than that of explicit schemes, and excellent agreement with linear theory is obtained.
A multigrid scheme for three dimensional body-fitted coordinates in turbomachine applications
Camarero, R.; Reggio, M.
1983-03-01
An efficient numerical scheme for the generation of curvilinear body-fitted coordinate systems in three dimensions is presented. The grid is obtained by the solution of a system of three elliptic partial differential equations. The method is based on the classical SOR scheme with an acceleration of convergence using the multigrid technique. The full approximation scheme has been used and is described with the overall algorithm. A number of numerical experiments are given with comparisons to illustrate the efficiency of the method. Practical applications to typical three-dimensional turbomachinery geometries are then shown.
An investigation of cell centered and cell vertex multigrid schemes for the Navier-Stokes equations
NASA Astrophysics Data System (ADS)
Radespiel, R.; Swanson, R. C.
1989-01-01
Two efficient and robust finite-volume multigrid schemes for solving the Navier-Stokes equations are investigated. These schemes employ either a cell centered or a cell vertex discretization technique. An explicit Runge-Kutta algorithm is used to advance the solution in time. Acceleration techniques are applied to obtain faster steady-state convergence. Accuracy and convergence of the schemes are examined. Computational results for transonic airfoil flows are essentially the same, even for a coarse mesh. Both schemes exhibit good convergence rates for a broad range of artificial dissipation coefficients.
Algebraic Lattices in QFT Renormalization
NASA Astrophysics Data System (ADS)
Borinsky, Michael
2016-04-01
The structure of overlapping subdivergences, which appear in the perturbative expansions of quantum field theory, is analyzed using algebraic lattice theory. It is shown that for specific QFTs the sets of subdivergences of Feynman diagrams form algebraic lattices. This class of QFTs includes the standard model. In kinematic renormalization schemes, in which tadpole diagrams vanish, these lattices are semimodular. This implies that the Hopf algebra of Feynman diagrams is graded by the coradical degree or equivalently that every maximal forest has the same length in the scope of BPHZ renormalization. As an application of this framework, a formula for the counter terms in zero-dimensional QFT is given together with some examples of the enumeration of primitive or skeleton diagrams.
Algebraic Lattices in QFT Renormalization
NASA Astrophysics Data System (ADS)
Borinsky, Michael
2016-07-01
The structure of overlapping subdivergences, which appear in the perturbative expansions of quantum field theory, is analyzed using algebraic lattice theory. It is shown that for specific QFTs the sets of subdivergences of Feynman diagrams form algebraic lattices. This class of QFTs includes the standard model. In kinematic renormalization schemes, in which tadpole diagrams vanish, these lattices are semimodular. This implies that the Hopf algebra of Feynman diagrams is graded by the coradical degree or equivalently that every maximal forest has the same length in the scope of BPHZ renormalization. As an application of this framework, a formula for the counter terms in zero-dimensional QFT is given together with some examples of the enumeration of primitive or skeleton diagrams.
Moving frames and prolongation algebras
NASA Technical Reports Server (NTRS)
Estabrook, F. B.
1982-01-01
Differential ideals generated by sets of 2-forms which can be written with constant coefficients in a canonical basis of 1-forms are considered. By setting up a Cartan-Ehresmann connection, in a fiber bundle over a base space in which the 2-forms live, one finds an incomplete Lie algebra of vector fields in the fields in the fibers. Conversely, given this algebra (a prolongation algebra), one can derive the differential ideal. The two constructs are thus dual, and analysis of either derives properties of both. Such systems arise in the classical differential geometry of moving frames. Examples of this are discussed, together with examples arising more recently: the Korteweg-de Vries and Harrison-Ernst systems.
NASA Astrophysics Data System (ADS)
Ţene, Matei; Al Kobaisi, Mohammed Saad; Hajibeygi, Hadi
2016-09-01
This paper introduces an Algebraic MultiScale method for simulation of flow in heterogeneous porous media with embedded discrete Fractures (F-AMS). First, multiscale coarse grids are independently constructed for both porous matrix and fracture networks. Then, a map between coarse- and fine-scale is obtained by algebraically computing basis functions with local support. In order to extend the localization assumption to the fractured media, four types of basis functions are investigated: (1) Decoupled-AMS, in which the two media are completely decoupled, (2) Frac-AMS and (3) Rock-AMS, which take into account only one-way transmissibilities, and (4) Coupled-AMS, in which the matrix and fracture interpolators are fully coupled. In order to ensure scalability, the F-AMS framework permits full flexibility in terms of the resolution of the fracture coarse grids. Numerical results are presented for two- and three-dimensional heterogeneous test cases. During these experiments, the performance of F-AMS, paired with ILU(0) as second-stage smoother in a convergent iterative procedure, is studied by monitoring CPU times and convergence rates. Finally, in order to investigate the scalability of the method, an extensive benchmark study is conducted, where a commercial algebraic multigrid solver is used as reference. The results show that, given an appropriate coarsening strategy, F-AMS is insensitive to severe fracture and matrix conductivity contrasts, as well as the length of the fracture networks. Its unique feature is that a fine-scale mass conservative flux field can be reconstructed after any iteration, providing efficient approximate solutions in time-dependent simulations.
Generalized Galilean algebras and Newtonian gravity
NASA Astrophysics Data System (ADS)
González, N.; Rubio, G.; Salgado, P.; Salgado, S.
2016-04-01
The non-relativistic versions of the generalized Poincaré algebras and generalized AdS-Lorentz algebras are obtained. These non-relativistic algebras are called, generalized Galilean algebras of type I and type II and denoted by GBn and GLn respectively. Using a generalized Inönü-Wigner contraction procedure we find that the generalized Galilean algebras of type I can be obtained from the generalized Galilean algebras type II. The S-expansion procedure allows us to find the GB5 algebra from the Newton Hooke algebra with central extension. The procedure developed in Ref. [1] allows us to show that the nonrelativistic limit of the five dimensional Einstein-Chern-Simons gravity is given by a modified version of the Poisson equation. The modification could be compatible with the effects of Dark Matter, which leads us to think that Dark Matter can be interpreted as a non-relativistic limit of Dark Energy.
Computer Algebra Systems in Undergraduate Instruction.
ERIC Educational Resources Information Center
Small, Don; And Others
1986-01-01
Computer algebra systems (such as MACSYMA and muMath) can carry out many of the operations of calculus, linear algebra, and differential equations. Use of them with sketching graphs of rational functions and with other topics is discussed. (MNS)
Motivating Activities that Lead to Algebra
ERIC Educational Resources Information Center
Menon, Ramakrishnan
2004-01-01
Four activities consisting of puzzles are introduced, which help students to recognize the strength of algebraic generalizations. They also assist them to comprehend algebraic concepts, and enable them to develop their individual puzzles and games.
Computational triadic algebras of signs
Zadrozny, W.
1996-12-31
We present a finite model of Peirce`s ten classes of signs. We briefly describe Peirce`s taxonomy of signs; we prove that any finite collection of signs can be extended to a finite algebra of signs in which all interpretants are themselves being interpreted; and we argue that Peirce`s ten classes of signs can be defined using constraints on algebras of signs. The paper opens the possibility of defining multimodal cognitive agents using Peirce`s classes of signs, and is a first step towards building a computational logic of signs based on Peirce`s taxonomies.
ERIC Educational Resources Information Center
Star, Jon R.; Rittle-Johnson, Bethany
2009-01-01
Competence in algebra is increasingly recognized as a critical milestone in students' middle and high school years. The transition from arithmetic to algebra is a notoriously difficult one, and improvements in algebra instruction are greatly needed (National Research Council, 2001). Algebra historically has represented students' first sustained…
Ghosh, A
1989-06-15
There are two different approaches for improving the accuracy of analog optical associative processors: postprocessing with a bimodal system and preprocessing with a preconditioner. These two approaches can be combined to develop an adaptive optical multiprocessor that can adjust the computational steps depending on the data and produce solutions of linear algebra problems with a specified accuracy in a given amount of time. PMID:19752909
Spatial-Operator Algebra For Robotic Manipulators
NASA Technical Reports Server (NTRS)
Rodriguez, Guillermo; Kreutz, Kenneth K.; Milman, Mark H.
1991-01-01
Report discusses spatial-operator algebra developed in recent studies of mathematical modeling, control, and design of trajectories of robotic manipulators. Provides succinct representation of mathematically complicated interactions among multiple joints and links of manipulator, thereby relieving analyst of most of tedium of detailed algebraic manipulations. Presents analytical formulation of spatial-operator algebra, describes some specific applications, summarizes current research, and discusses implementation of spatial-operator algebra in the Ada programming language.
The weak Hopf algebras related to generalized Kac-Moody algebra
Wu Zhixiang
2006-06-15
We define a kind of quantized enveloping algebra of a generalized Kac-Moody algebra G by adding a generator J satisfying J{sup m}=J{sup m-1} for some integer m. We denote this algebra by wU{sub q}{sup {tau}}(G). This algebra is a weak Hopf algebra if and only if m=2. In general, it is a bialgebra, and contains a Hopf subalgebra. This Hopf subalgebra is isomorphic to the usually quantum envelope algebra U{sub q}(G) of a generalized Kac-Moody algebra G.
Algebra? A Gate! A Barrier! A Mystery!
ERIC Educational Resources Information Center
Mathematics Educatio Dialogues, 2000
2000-01-01
This issue of Mathematics Education Dialogues focuses on the nature and the role of algebra in the K-14 curriculum. Articles on this theme include: (1) "Algebra For All? Why?" (Nel Noddings); (2) "Algebra For All: It's a Matter of Equity, Expectations, and Effectiveness" (Dorothy S. Strong and Nell B. Cobb); (3) "Don't Delay: Build and Talk about…
UCSMP Algebra. What Works Clearinghouse Intervention Report
ERIC Educational Resources Information Center
What Works Clearinghouse, 2007
2007-01-01
"University of Chicago School Mathematics Project (UCSMP) Algebra," designed to increase students' skills in algebra, is appropriate for students in grades 7-10, depending on the students' incoming knowledge. This one-year course highlights applications, uses statistics and geometry to develop the algebra of linear equations and inequalities, and…
Graphing Calculator Use in Algebra Teaching
ERIC Educational Resources Information Center
Dewey, Brenda L.; Singletary, Ted J.; Kinzel, Margaret T.
2009-01-01
This study examines graphing calculator technology availability, characteristics of teachers who use it, teacher attitudes, and how use reflects changes to algebra curriculum and instructional practices. Algebra I and Algebra II teachers in 75 high school and junior high/middle schools in a diverse region of a northwestern state were surveyed.…
New family of Maxwell like algebras
NASA Astrophysics Data System (ADS)
Concha, P. K.; Durka, R.; Merino, N.; Rodríguez, E. K.
2016-08-01
We introduce an alternative way of closing Maxwell like algebras. We show, through a suitable change of basis, that resulting algebras are given by the direct sums of the AdS and the Maxwell algebras already known in the literature. Casting the result into the S-expansion method framework ensures the straightaway construction of the gravity theories based on a found enlargement.
Build an Early Foundation for Algebra Success
ERIC Educational Resources Information Center
Knuth, Eric; Stephens, Ana; Blanton, Maria; Gardiner, Angela
2016-01-01
Research tells us that success in algebra is a factor in many other important student outcomes. Emerging research also suggests that students who are started on an algebra curriculum in the earlier grades may have greater success in the subject in secondary school. What's needed is a consistent, algebra-infused mathematics curriculum all…
A Balancing Act: Making Sense of Algebra
ERIC Educational Resources Information Center
Gavin, M. Katherine; Sheffield, Linda Jensen
2015-01-01
For most students, algebra seems like a totally different subject than the number topics they studied in elementary school. In reality, the procedures followed in arithmetic are actually based on the properties and laws of algebra. Algebra should be a logical next step for students in extending the proficiencies they developed with number topics…
Difficulties in Initial Algebra Learning in Indonesia
ERIC Educational Resources Information Center
Jupri, Al; Drijvers, Paul; van den Heuvel-Panhuizen, Marja
2014-01-01
Within mathematics curricula, algebra has been widely recognized as one of the most difficult topics, which leads to learning difficulties worldwide. In Indonesia, algebra performance is an important issue. In the Trends in International Mathematics and Science Study (TIMSS) 2007, Indonesian students' achievement in the algebra domain was…
Teaching Strategies to Improve Algebra Learning
ERIC Educational Resources Information Center
Zbiek, Rose Mary; Larson, Matthew R.
2015-01-01
Improving student learning is the primary goal of every teacher of algebra. Teachers seek strategies to help all students learn important algebra content and develop mathematical practices. The new Institute of Education Sciences[IES] practice guide, "Teaching Strategies for Improving Algebra Knowledge in Middle and High School Students"…
Lessons for Algebraic Thinking. Grades K-2.
ERIC Educational Resources Information Center
von Rotz, Leyani; Burns, Marilyn
Algebra is one of the top priorities of mathematics instruction for the elementary and middle grades. This book is designed to help K-2 teachers meet the challenge of making algebra an integral part of their mathematics instruction and realize both what to teach and how to teach central algebraic concepts. Classroom-tested lessons help teachers…
Unifying the Algebra for All Movement
ERIC Educational Resources Information Center
Eddy, Colleen M.; Quebec Fuentes, Sarah; Ward, Elizabeth K.; Parker, Yolanda A.; Cooper, Sandi; Jasper, William A.; Mallam, Winifred A.; Sorto, M. Alejandra; Wilkerson, Trena L.
2015-01-01
There exists an increased focus on school mathematics, especially first-year algebra, due to recent efforts for all students to be college and career ready. In addition, there are calls, policies, and legislation advocating for all students to study algebra epitomized by four rationales of the "Algebra for All" movement. In light of this…
A unified multigrid solver for the Navier-Stokes equations on mixed element meshes
NASA Technical Reports Server (NTRS)
Mavriplis, D. J.; Venkatakrishnan, V.
1995-01-01
A unified multigrid solution technique is presented for solving the Euler and Reynolds-averaged Navier-Stokes equations on unstructured meshes using mixed elements consisting of triangles and quadrilaterals in two dimensions, and of hexahedra, pyramids, prisms, and tetrahedra in three dimensions. While the use of mixed elements is by no means a novel idea, the contribution of the paper lies in the formulation of a complete solution technique which can handle structured grids, block structured grids, and unstructured grids of tetrahedra or mixed elements without any modification. This is achieved by discretizing the full Navier-Stokes equations on tetrahedral elements, and the thin layer version of these equations on other types of elements, while using a single edge-based data-structure to construct the discretization over all element types. An agglomeration multigrid algorithm, which naturally handles meshes of any types of elements, is employed to accelerate convergence. An automatic algorithm which reduces the complexity of a given triangular or tetrahedral mesh by merging candidate triangular or tetrahedral elements into quadrilateral or prismatic elements is also described. The gains in computational efficiency afforded by the use of non-simplicial meshes over fully tetrahedral meshes are demonstrated through several examples.
Higher-order ice-sheet modelling accelerated by multigrid on graphics cards
NASA Astrophysics Data System (ADS)
Brædstrup, Christian; Egholm, David
2013-04-01
Higher-order ice flow modelling is a very computer intensive process owing primarily to the nonlinear influence of the horizontal stress coupling. When applied for simulating long-term glacial landscape evolution, the ice-sheet models must consider very long time series, while both high temporal and spatial resolution is needed to resolve small effects. The use of higher-order and full stokes models have therefore seen very limited usage in this field. However, recent advances in graphics card (GPU) technology for high performance computing have proven extremely efficient in accelerating many large-scale scientific computations. The general purpose GPU (GPGPU) technology is cheap, has a low power consumption and fits into a normal desktop computer. It could therefore provide a powerful tool for many glaciologists working on ice flow models. Our current research focuses on utilising the GPU as a tool in ice-sheet and glacier modelling. To this extent we have implemented the Integrated Second-Order Shallow Ice Approximation (iSOSIA) equations on the device using the finite difference method. To accelerate the computations, the GPU solver uses a non-linear Red-Black Gauss-Seidel iterator coupled with a Full Approximation Scheme (FAS) multigrid setup to further aid convergence. The GPU finite difference implementation provides the inherent parallelization that scales from hundreds to several thousands of cores on newer cards. We demonstrate the efficiency of the GPU multigrid solver using benchmark experiments.
FAS multigrid calculations of three dimensional flow using non-staggered grids
NASA Technical Reports Server (NTRS)
Matovic, D.; Pollard, A.; Becker, H. A.; Grandmaison, E. W.
1993-01-01
Grid staggering is a well known remedy for the problem of velocity/pressure coupling in incompressible flow calculations. Numerous inconveniences occur, however, when staggered grids are implemented, particularly when a general-purpose code, capable of handling irregular three-dimensional domains, is sought. In several non-staggered grid numerical procedures proposed in the literature, the velocity/pressure coupling is achieved by either pressure or velocity (momentum) averaging. This approach is not convenient for simultaneous (block) solvers that are preferred when using multigrid methods. A new method is introduced in this paper that is based upon non-staggered grid formulation with a set of virtual cell face velocities used for pressure/velocity coupling. Instead of pressure or velocity averaging, a momentum balance at the cell face is used as a link between the momentum and mass balance constraints. The numerical stencil is limited to 9 nodes (in 2D) or 27 nodes (in 3D), both during the smoothing and inter-grid transfer, which is a convenient feature when a block point solver is applied. The results for a lid-driven cavity and a cube in a lid-driven cavity are presented and compared to staggered grid calculations using the same multigrid algorithm. The method is shown to be stable and produce a smooth (wiggle-free) pressure field.
A multigrid integral equation method for large-scale models with inhomogeneous backgrounds
NASA Astrophysics Data System (ADS)
Endo, Masashi; Čuma, Martin; Zhdanov, Michael S.
2008-12-01
We present a multigrid integral equation (IE) method for three-dimensional (3D) electromagnetic (EM) field computations in large-scale models with inhomogeneous background conductivity (IBC). This method combines the advantages of the iterative IBC IE method and the multigrid quasi-linear (MGQL) approximation. The new EM modelling method solves the corresponding systems of linear equations within the domains of anomalous conductivity, Da, and inhomogeneous background conductivity, Db, separately on coarse grids. The observed EM fields in the receivers are computed using grids with fine discretization. The developed MGQL IBC IE method can also be applied iteratively by taking into account the return effect of the anomalous field inside the domain of the background inhomogeneity Db, and vice versa. The iterative process described above is continued until we reach the required accuracy of the EM field calculations in both domains, Da and Db. The method was tested for modelling the marine controlled-source electromagnetic field for complex geoelectrical structures with hydrocarbon petroleum reservoirs and a rough sea-bottom bathymetry.
10B multi-grid proportional gas counters for large area thermal neutron detectors
NASA Astrophysics Data System (ADS)
Andersen, K.; Bigault, T.; Birch, J.; Buffet, J. C.; Correa, J.; Hall-Wilton, R.; Hultman, L.; Höglund, C.; Guérard, B.; Jensen, J.; Khaplanov, A.; Kirstein, O.; Piscitelli, F.; Van Esch, P.; Vettier, C.
2013-08-01
3He was a popular material in neutrons detectors until its availability dropped drastically in 2008. The development of techniques based on alternative convertors is now of high priority for neutron research institutes. Thin films of 10B or 10B4C have been used in gas proportional counters to detect neutrons, but until now, only for small or medium sensitive area. We present here the multi-grid design, introduced at the ILL and developed in collaboration with ESS for LAN (large area neutron) detectors. Typically thirty 10B4C films of 1 μm thickness are used to convert neutrons into ionizing particles which are subsequently detected in a proportional gas counter. The principle and the fabrication of the multi-grid are described and some preliminary results obtained with a prototype of 200 cm×8 cm are reported; a detection efficiency of 48% has been measured at 2.5 Å with a monochromatic neutron beam line, showing the good potential of this new technique.
Weaving Geometry and Algebra Together
ERIC Educational Resources Information Center
Cetner, Michelle
2015-01-01
When thinking about student reasoning and sense making, teachers must consider the nature of tasks given to students along with how to plan to use the tasks in the classroom. Students should be presented with tasks in a way that encourages them to draw connections between algebraic and geometric concepts. This article focuses on the idea that it…
Inequalities, Assessment and Computer Algebra
ERIC Educational Resources Information Center
Sangwin, Christopher J.
2015-01-01
The goal of this paper is to examine single variable real inequalities that arise as tutorial problems and to examine the extent to which current computer algebra systems (CAS) can (1) automatically solve such problems and (2) determine whether students' own answers to such problems are correct. We review how inequalities arise in…
ERIC Educational Resources Information Center
Bosse, Michael J.; Ries, Heather; Chandler, Kayla
2012-01-01
Secondary school mathematics teachers often need to answer the "Why do we do that?" question in such a way that avoids confusion and evokes student interest. Understanding the properties of number systems can provide an avenue to better grasp algebraic structures, which in turn builds students' conceptual knowledge of secondary mathematics. This…
Implementing Change in College Algebra
ERIC Educational Resources Information Center
Haver, William E.
2007-01-01
In this paper, departments are urged to consider implementing the type of changes proposed in Beyond Crossroads in College Algebra. The author of this paper is chair of the Curriculum Renewal Across the First Two Years (CRAFTY) Committee of the Mathematical Association of America. The committee has members from two-year colleges, four-year…
Algebraic Activities Aid Discovery Lessons
ERIC Educational Resources Information Center
Wallace-Gomez, Patricia
2013-01-01
After a unit on the rules for positive and negative numbers and the order of operations for evaluating algebraic expressions, many students believe that they understand these principles well enough, but they really do not. They clearly need more practice, but not more of the same kind of drill. Wallace-Gomez provides three graphing activities that…
Fuzzy-algebra uncertainty assessment
Cooper, J.A.; Cooper, D.K.
1994-12-01
A significant number of analytical problems (for example, abnormal-environment safety analysis) depend on data that are partly or mostly subjective. Since fuzzy algebra depends on subjective operands, we have been investigating its applicability to these forms of assessment, particularly for portraying uncertainty in the results of PRA (probabilistic risk analysis) and in risk-analysis-aided decision-making. Since analysis results can be a major contributor to a safety-measure decision process, risk management depends on relating uncertainty to only known (not assumed) information. The uncertainties due to abnormal environments are even more challenging than those in normal-environment safety assessments; and therefore require an even more judicious approach. Fuzzy algebra matches these requirements well. One of the most useful aspects of this work is that we have shown the potential for significant differences (especially in perceived margin relative to a decision threshold) between fuzzy assessment and probabilistic assessment based on subtle factors inherent in the choice of probability distribution models. We have also shown the relation of fuzzy algebra assessment to ``bounds`` analysis, as well as a description of how analyses can migrate from bounds analysis to fuzzy-algebra analysis, and to probabilistic analysis as information about the process to be analyzed is obtained. Instructive examples are used to illustrate the points.
Entropy algebras and Birkhoff factorization
NASA Astrophysics Data System (ADS)
Marcolli, Matilde; Tedeschi, Nicolas
2015-11-01
We develop notions of Rota-Baxter structures and associated Birkhoff factorizations, in the context of min-plus semirings and their thermodynamic deformations, including deformations arising from quantum information measures such as the von Neumann entropy. We consider examples related to Manin's renormalization and computation program, to Markov random fields and to counting functions and zeta functions of algebraic varieties.
Algebra for All. Research Brief
ERIC Educational Resources Information Center
Bleyaert, Barbara
2009-01-01
The call for "algebra for all" is not a recent phenomenon. Concerns about the inadequacy of math (and science) preparation in America's high schools have been a steady drumbeat since the 1957 launch of Sputnik; a call for raising standards and the number of math (and science) courses required for graduation has been a part of countless national…