Science.gov

Sample records for adaptive automatic recognition

  1. Synthetic aperture radar automatic target recognition using adaptive boosting

    NASA Astrophysics Data System (ADS)

    Sun, Yijun; Liu, Zhipeng; Todorovic, Sinisa; Li, Jian

    2005-05-01

    We propose a novel automatic target recognition (ATR) system for classification of three types of ground vehicles in the MSTAR public release database. First, each image chip is pre-processed by extracting fine and raw feature sets, where raw features compensate for the target pose estimation error that corrupts fine image features. Then, the chips are classified by using the adaptive boosting (AdaBoost) algorithm with the radial basis function (RBF) net as the base learner. Since the RBF net is a binary classifier, we decompose our multiclass problem into a set of binary ones through the error-correcting output codes (ECOC) method, specifying a dictionary of code words for the set of three possible classes. AdaBoost combines the classification results of the RBF net for each binary problem into a code word, which is then "decoded" as one of the code words (i.e., ground-vehicle classes) in the specified dictionary. Along with classification, within the AdaBoost framework, we also conduct efficient fusion of the fine and raw image-feature vectors. The results of large-scale experiments demonstrate that our ATR scheme outperforms the state-of-the-art systems reported in the literature.

  2. Multiple Adaptive Neuro-Fuzzy Inference System with Automatic Features Extraction Algorithm for Cervical Cancer Recognition

    PubMed Central

    Subhi Al-batah, Mohammad; Mat Isa, Nor Ashidi; Klaib, Mohammad Fadel; Al-Betar, Mohammed Azmi

    2014-01-01

    To date, cancer of uterine cervix is still a leading cause of cancer-related deaths in women worldwide. The current methods (i.e., Pap smear and liquid-based cytology (LBC)) to screen for cervical cancer are time-consuming and dependent on the skill of the cytopathologist and thus are rather subjective. Therefore, this paper presents an intelligent computer vision system to assist pathologists in overcoming these problems and, consequently, produce more accurate results. The developed system consists of two stages. In the first stage, the automatic features extraction (AFE) algorithm is performed. In the second stage, a neuro-fuzzy model called multiple adaptive neuro-fuzzy inference system (MANFIS) is proposed for recognition process. The MANFIS contains a set of ANFIS models which are arranged in parallel combination to produce a model with multi-input-multioutput structure. The system is capable of classifying cervical cell image into three groups, namely, normal, low-grade squamous intraepithelial lesion (LSIL) and high-grade squamous intraepithelial lesion (HSIL). The experimental results prove the capability of the AFE algorithm to be as effective as the manual extraction by human experts, while the proposed MANFIS produces a good classification performance with 94.2% accuracy. PMID:24707316

  3. Multiple adaptive neuro-fuzzy inference system with automatic features extraction algorithm for cervical cancer recognition.

    PubMed

    Al-batah, Mohammad Subhi; Isa, Nor Ashidi Mat; Klaib, Mohammad Fadel; Al-Betar, Mohammed Azmi

    2014-01-01

    To date, cancer of uterine cervix is still a leading cause of cancer-related deaths in women worldwide. The current methods (i.e., Pap smear and liquid-based cytology (LBC)) to screen for cervical cancer are time-consuming and dependent on the skill of the cytopathologist and thus are rather subjective. Therefore, this paper presents an intelligent computer vision system to assist pathologists in overcoming these problems and, consequently, produce more accurate results. The developed system consists of two stages. In the first stage, the automatic features extraction (AFE) algorithm is performed. In the second stage, a neuro-fuzzy model called multiple adaptive neuro-fuzzy inference system (MANFIS) is proposed for recognition process. The MANFIS contains a set of ANFIS models which are arranged in parallel combination to produce a model with multi-input-multioutput structure. The system is capable of classifying cervical cell image into three groups, namely, normal, low-grade squamous intraepithelial lesion (LSIL) and high-grade squamous intraepithelial lesion (HSIL). The experimental results prove the capability of the AFE algorithm to be as effective as the manual extraction by human experts, while the proposed MANFIS produces a good classification performance with 94.2% accuracy. PMID:24707316

  4. Automatic speech recognition

    NASA Astrophysics Data System (ADS)

    Espy-Wilson, Carol

    2005-04-01

    Great strides have been made in the development of automatic speech recognition (ASR) technology over the past thirty years. Most of this effort has been centered around the extension and improvement of Hidden Markov Model (HMM) approaches to ASR. Current commercially-available and industry systems based on HMMs can perform well for certain situational tasks that restrict variability such as phone dialing or limited voice commands. However, the holy grail of ASR systems is performance comparable to humans-in other words, the ability to automatically transcribe unrestricted conversational speech spoken by an infinite number of speakers under varying acoustic environments. This goal is far from being reached. Key to the success of ASR is effective modeling of variability in the speech signal. This tutorial will review the basics of ASR and the various ways in which our current knowledge of speech production, speech perception and prosody can be exploited to improve robustness at every level of the system.

  5. Automatic speaker recognition system

    NASA Astrophysics Data System (ADS)

    Higgins, Alan; Naylor, Joe

    1984-07-01

    The Defense Communications Division of ITT (ITTDCD) has developed an automatic speaker recognition (ASR) system that meets the functional requirements defined in NRL's Statement of Work. This report is organized as follows. Chapter 2 is a short history of the development of the ASR system, both the algorithm and the implementation. Chapter 3 describes the methodology of system testing, and Chapter 4 summarizes test results. In Chapter 5, some additional testing performed using GFM test material is discussed. Conclusions derived from the contract work are given in Chapter 6.

  6. Towards spoken clinical-question answering: evaluating and adapting automatic speech-recognition systems for spoken clinical questions

    PubMed Central

    Liu, Feifan; Tur, Gokhan; Hakkani-Tür, Dilek

    2011-01-01

    Objective To evaluate existing automatic speech-recognition (ASR) systems to measure their performance in interpreting spoken clinical questions and to adapt one ASR system to improve its performance on this task. Design and measurements The authors evaluated two well-known ASR systems on spoken clinical questions: Nuance Dragon (both generic and medical versions: Nuance Gen and Nuance Med) and the SRI Decipher (the generic version SRI Gen). The authors also explored language model adaptation using more than 4000 clinical questions to improve the SRI system's performance, and profile training to improve the performance of the Nuance Med system. The authors reported the results with the NIST standard word error rate (WER) and further analyzed error patterns at the semantic level. Results Nuance Gen and Med systems resulted in a WER of 68.1% and 67.4% respectively. The SRI Gen system performed better, attaining a WER of 41.5%. After domain adaptation with a language model, the performance of the SRI system improved 36% to a final WER of 26.7%. Conclusion Without modification, two well-known ASR systems do not perform well in interpreting spoken clinical questions. With a simple domain adaptation, one of the ASR systems improved significantly on the clinical question task, indicating the importance of developing domain/genre-specific ASR systems. PMID:21705457

  7. Techniques for automatic speech recognition

    NASA Astrophysics Data System (ADS)

    Moore, R. K.

    1983-05-01

    A brief insight into some of the algorithms that lie behind current automatic speech recognition system is provided. Early phonetically based approaches were not particularly successful, due mainly to a lack of appreciation of the problems involved. These problems are summarized, and various recognition techniques are reviewed in the contect of the solutions that they provide. It is pointed out that the majority of currently available speech recognition equipments employ a "whole-word' pattern matching approach which, although relatively simple, has proved particularly successful in its ability to recognize speech. The concepts of time-normalizing plays a central role in this type of recognition process and a family of such algorithms is described in detail. The technique of dynamic time warping is not only capable of providing good performance for isolated word recognition, but how it is also extended to the recognition of connected speech (thereby removing one of the most severe limitations of early speech recognition equipment).

  8. Adaptation is automatic.

    PubMed

    Samuel, A G; Kat, D

    1998-04-01

    Two experiments were used to test whether selective adaptation for speech occurs automatically or instead requires attentional resources. A control condition demonstrated the usual large identification shifts caused by repeatedly presenting an adapting sound (/wa/, with listeners identifying members of a /ba/-/wa/ test series). Two types of distractor tasks were used: (1) Subjects did a rapid series of arithmetic problems during the adaptation periods (Experiments 1 and 2), or (2) they made a series of rhyming judgments, requiring phonetic coding (Experiment 2). A control experiment (Experiment 3) demonstrated that these tasks normally impose a heavy attentional cost on phonetic processing. Despite this, for both experimental conditions, the observed adaptation effect was just as large as in the control condition. This result indicates that adaptation is automatic, operating at an early, preattentive level. The implications of these results for current models of speech perception are discussed. PMID:9599999

  9. Automatic object recognition

    NASA Technical Reports Server (NTRS)

    Ranganath, H. S.; Mcingvale, Pat; Sage, Heinz

    1988-01-01

    Geometric and intensity features are very useful in object recognition. An intensity feature is a measure of contrast between object pixels and background pixels. Geometric features provide shape and size information. A model based approach is presented for computing geometric features. Knowledge about objects and imaging system is used to estimate orientation of objects with respect to the line of sight.

  10. Speaker-Machine Interaction in Automatic Speech Recognition. Technical Report.

    ERIC Educational Resources Information Center

    Makhoul, John I.

    The feasibility and limitations of speaker adaptation in improving the performance of a "fixed" (speaker-independent) automatic speech recognition system were examined. A fixed vocabulary of 55 syllables is used in the recognition system which contains 11 stops and fricatives and five tense vowels. The results of an experiment on speaker…

  11. Automatic Recognition of Road Signs

    NASA Astrophysics Data System (ADS)

    Inoue, Yasuo; Kohashi, Yuuichirou; Ishikawa, Naoto; Nakajima, Masato

    2002-11-01

    The increase in traffic accidents is becoming a serious social problem with the recent rapid traffic increase. In many cases, the driver"s carelessness is the primary factor of traffic accidents, and the driver assistance system is demanded for supporting driver"s safety. In this research, we propose the new method of automatic detection and recognition of road signs by image processing. The purpose of this research is to prevent accidents caused by driver"s carelessness, and call attention to a driver when the driver violates traffic a regulation. In this research, high accuracy and the efficient sign detecting method are realized by removing unnecessary information except for a road sign from an image, and detect a road sign using shape features. At first, the color information that is not used in road signs is removed from an image. Next, edges except for circular and triangle ones are removed to choose sign shape. In the recognition process, normalized cross correlation operation is carried out to the two-dimensional differentiation pattern of a sign, and the accurate and efficient method for detecting the road sign is realized. Moreover, the real-time operation in a software base was realized by holding down calculation cost, maintaining highly precise sign detection and recognition. Specifically, it becomes specifically possible to process by 0.1 sec(s)/frame using a general-purpose PC (CPU: Pentium4 1.7GHz). As a result of in-vehicle experimentation, our system could process on real time and has confirmed that detection and recognition of a sign could be performed correctly.

  12. Practical automatic Arabic license plate recognition system

    NASA Astrophysics Data System (ADS)

    Mohammad, Khader; Agaian, Sos; Saleh, Hani

    2011-02-01

    Since 1970's, the need of an automatic license plate recognition system, sometimes referred as Automatic License Plate Recognition system, has been increasing. A license plate recognition system is an automatic system that is able to recognize a license plate number, extracted from image sensors. In specific, Automatic License Plate Recognition systems are being used in conjunction with various transportation systems in application areas such as law enforcement (e.g. speed limit enforcement) and commercial usages such as parking enforcement and automatic toll payment private and public entrances, border control, theft and vandalism control. Vehicle license plate recognition has been intensively studied in many countries. Due to the different types of license plates being used, the requirement of an automatic license plate recognition system is different for each country. [License plate detection using cluster run length smoothing algorithm ].Generally, an automatic license plate localization and recognition system is made up of three modules; license plate localization, character segmentation and optical character recognition modules. This paper presents an Arabic license plate recognition system that is insensitive to character size, font, shape and orientation with extremely high accuracy rate. The proposed system is based on a combination of enhancement, license plate localization, morphological processing, and feature vector extraction using the Haar transform. The performance of the system is fast due to classification of alphabet and numerals based on the license plate organization. Experimental results for license plates of two different Arab countries show an average of 99 % successful license plate localization and recognition in a total of more than 20 different images captured from a complex outdoor environment. The results run times takes less time compared to conventional and many states of art methods.

  13. Support vector machine for automatic pain recognition

    NASA Astrophysics Data System (ADS)

    Monwar, Md Maruf; Rezaei, Siamak

    2009-02-01

    Facial expressions are a key index of emotion and the interpretation of such expressions of emotion is critical to everyday social functioning. In this paper, we present an efficient video analysis technique for recognition of a specific expression, pain, from human faces. We employ an automatic face detector which detects face from the stored video frame using skin color modeling technique. For pain recognition, location and shape features of the detected faces are computed. These features are then used as inputs to a support vector machine (SVM) for classification. We compare the results with neural network based and eigenimage based automatic pain recognition systems. The experiment results indicate that using support vector machine as classifier can certainly improve the performance of automatic pain recognition system.

  14. Automatic TLI recognition system, general description

    SciTech Connect

    Lassahn, G.D.

    1997-02-01

    This report is a general description of an automatic target recognition system developed at the Idaho National Engineering Laboratory for the Department of Energy. A user`s manual is a separate volume, Automatic TLI Recognition System, User`s Guide, and a programmer`s manual is Automatic TLI Recognition System, Programmer`s Guide. This system was designed as an automatic target recognition system for fast screening of large amounts of multi-sensor image data, based on low-cost parallel processors. This system naturally incorporates image data fusion, and it gives uncertainty estimates. It is relatively low cost, compact, and transportable. The software is easily enhanced to expand the system`s capabilities, and the hardware is easily expandable to increase the system`s speed. In addition to its primary function as a trainable target recognition system, this is also a versatile, general-purpose tool for image manipulation and analysis, which can be either keyboard-driven or script-driven. This report includes descriptions of three variants of the computer hardware, a description of the mathematical basis if the training process, and a description with examples of the system capabilities.

  15. Automatic TLI recognition system beta prototype testing

    SciTech Connect

    Lassahn, G.D.

    1996-06-01

    This report describes the beta prototype automatic target recognition system ATR3, and some performance tests done with this system. This is a fully operational system, with a high computational speed. It is useful for findings any kind of target in digitized image data, and as a general purpose image analysis tool.

  16. Automatic speech recognition in air traffic control

    NASA Technical Reports Server (NTRS)

    Karlsson, Joakim

    1990-01-01

    Automatic Speech Recognition (ASR) technology and its application to the Air Traffic Control system are described. The advantages of applying ASR to Air Traffic Control, as well as criteria for choosing a suitable ASR system are presented. Results from previous research and directions for future work at the Flight Transportation Laboratory are outlined.

  17. Image-based automatic recognition of larvae

    NASA Astrophysics Data System (ADS)

    Sang, Ru; Yu, Guiying; Fan, Weijun; Guo, Tiantai

    2010-08-01

    As the main objects, imagoes have been researched in quarantine pest recognition in these days. However, pests in their larval stage are latent, and the larvae spread abroad much easily with the circulation of agricultural and forest products. It is presented in this paper that, as the new research objects, larvae are recognized by means of machine vision, image processing and pattern recognition. More visional information is reserved and the recognition rate is improved as color image segmentation is applied to images of larvae. Along with the characteristics of affine invariance, perspective invariance and brightness invariance, scale invariant feature transform (SIFT) is adopted for the feature extraction. The neural network algorithm is utilized for pattern recognition, and the automatic identification of larvae images is successfully achieved with satisfactory results.

  18. Automatic TLI recognition system, user`s guide

    SciTech Connect

    Lassahn, G.D.

    1997-02-01

    This report describes how to use an automatic target recognition system (version 14). In separate volumes are a general description of the ATR system, Automatic TLI Recognition System, General Description, and a programmer`s manual, Automatic TLI Recognition System, Programmer`s Guide.

  19. Automatic speech recognition technology development at ITT Defense Communications Division

    NASA Technical Reports Server (NTRS)

    White, George M.

    1977-01-01

    An assessment of the applications of automatic speech recognition to defense communication systems is presented. Future research efforts include investigations into the following areas: (1) dynamic programming; (2) recognition of speech degraded by noise; (3) speaker independent recognition; (4) large vocabulary recognition; (5) word spotting and continuous speech recognition; and (6) isolated word recognition.

  20. Automatic target recognition on the connection machine

    SciTech Connect

    Buchanan, J.R. )

    1989-09-01

    Automatic target recognition (ATR) is a computationally intensive problem that benefits from the abilities of the Connection Machine (CM), a massively parallel computer used for data-level parallel computing. The large computational resources of the CM can efficiently handle an approach to ATR that uses parallel stereo-matching and neural-network algorithms. Such an approach shows promise as an ATR system of satisfactory performance. 13 refs.

  1. Modelling Errors in Automatic Speech Recognition for Dysarthric Speakers

    NASA Astrophysics Data System (ADS)

    Caballero Morales, Santiago Omar; Cox, Stephen J.

    2009-12-01

    Dysarthria is a motor speech disorder characterized by weakness, paralysis, or poor coordination of the muscles responsible for speech. Although automatic speech recognition (ASR) systems have been developed for disordered speech, factors such as low intelligibility and limited phonemic repertoire decrease speech recognition accuracy, making conventional speaker adaptation algorithms perform poorly on dysarthric speakers. In this work, rather than adapting the acoustic models, we model the errors made by the speaker and attempt to correct them. For this task, two techniques have been developed: (1) a set of "metamodels" that incorporate a model of the speaker's phonetic confusion matrix into the ASR process; (2) a cascade of weighted finite-state transducers at the confusion matrix, word, and language levels. Both techniques attempt to correct the errors made at the phonetic level and make use of a language model to find the best estimate of the correct word sequence. Our experiments show that both techniques outperform standard adaptation techniques.

  2. Unification of automatic target tracking and automatic target recognition

    NASA Astrophysics Data System (ADS)

    Schachter, Bruce J.

    2014-06-01

    The subject being addressed is how an automatic target tracker (ATT) and an automatic target recognizer (ATR) can be fused together so tightly and so well that their distinctiveness becomes lost in the merger. This has historically not been the case outside of biology and a few academic papers. The biological model of ATT∪ATR arises from dynamic patterns of activity distributed across many neural circuits and structures (including retina). The information that the brain receives from the eyes is "old news" at the time that it receives it. The eyes and brain forecast a tracked object's future position, rather than relying on received retinal position. Anticipation of the next moment - building up a consistent perception - is accomplished under difficult conditions: motion (eyes, head, body, scene background, target) and processing limitations (neural noise, delays, eye jitter, distractions). Not only does the human vision system surmount these problems, but it has innate mechanisms to exploit motion in support of target detection and classification. Biological vision doesn't normally operate on snapshots. Feature extraction, detection and recognition are spatiotemporal. When vision is viewed as a spatiotemporal process, target detection, recognition, tracking, event detection and activity recognition, do not seem as distinct as they are in current ATT and ATR designs. They appear as similar mechanism taking place at varying time scales. A framework is provided for unifying ATT and ATR.

  3. Image understanding research for automatic target recognition

    SciTech Connect

    Bhanu, B. ); Jones, T.L. )

    1993-10-01

    Automatic Target Recognition (ATR) is an extremely important capability for defense applications. Many aspects of Image Understanding (IU) research are traditionally used to solve ATR problems. In this paper, the authors discuss ATR applications and problems in developing real-world ATR systems, and present the status of technology for these systems. They identify several IU problems that need to be resolved in order to enhance the effectiveness of ATR-based weapon systems. Finally, they conclude that technological gains in developing robust ATR systems will also lead to significant advances in many other areas of applications of image understanding.

  4. Automatic target recognition via sparse representations

    NASA Astrophysics Data System (ADS)

    Estabridis, Katia

    2010-04-01

    Automatic target recognition (ATR) based on the emerging technology of Compressed Sensing (CS) can considerably improve accuracy, speed and cost associated with these types of systems. An image based ATR algorithm has been built upon this new theory, which can perform target detection and recognition in a low dimensional space. Compressed dictionaries (A) are formed to include rotational information for a scale of interest. The algorithm seeks to identify y(test sample) as a linear combination of the dictionary elements : y=Ax, where A ∈ Rnxm(n<recognition problems are solved by finding the sparse-solution to the undetermined system y=Ax via Orthogonal Matching Pursuit (OMP) and l1 minimization techniques. Visible and MWIR imagery collected by the Army Night Vision and Electronic Sensors Directorate (NVESD) was utilized to test the algorithm. Results show an average detection and recognition rates above 95% for targets at ranges up to 3Km for both image modalities.

  5. Automatic TLI recognition system, programmer`s guide

    SciTech Connect

    Lassahn, G.D.

    1997-02-01

    This report describes the software of an automatic target recognition system (version 14), from a programmer`s point of view. The intent is to provide information that will help people who wish to modify the software. In separate volumes are a general description of the ATR system, Automatic TLI Recognition System, General Description, and a user`s manual, Automatic TLI Recognition System, User`s Guide. 2 refs.

  6. Automatic processing, analysis, and recognition of images

    NASA Astrophysics Data System (ADS)

    Abrukov, Victor S.; Smirnov, Evgeniy V.; Ivanov, Dmitriy G.

    2004-11-01

    New approaches and computer codes (A&CC) for automatic processing, analysis and recognition of images are offered. The A&CC are based on presentation of object image as a collection of pixels of various colours and consecutive automatic painting of distinguished itself parts of the image. The A&CC have technical objectives centred on such direction as: 1) image processing, 2) image feature extraction, 3) image analysis and some others in any consistency and combination. The A&CC allows to obtain various geometrical and statistical parameters of object image and its parts. Additional possibilities of the A&CC usage deal with a usage of artificial neural networks technologies. We believe that A&CC can be used at creation of the systems of testing and control in a various field of industry and military applications (airborne imaging systems, tracking of moving objects), in medical diagnostics, at creation of new software for CCD, at industrial vision and creation of decision-making system, etc. The opportunities of the A&CC are tested at image analysis of model fires and plumes of the sprayed fluid, ensembles of particles, at a decoding of interferometric images, for digitization of paper diagrams of electrical signals, for recognition of the text, for elimination of a noise of the images, for filtration of the image, for analysis of the astronomical images and air photography, at detection of objects.

  7. Automatic Speech Recognition Based on Electromyographic Biosignals

    NASA Astrophysics Data System (ADS)

    Jou, Szu-Chen Stan; Schultz, Tanja

    This paper presents our studies of automatic speech recognition based on electromyographic biosignals captured from the articulatory muscles in the face using surface electrodes. We develop a phone-based speech recognizer and describe how the performance of this recognizer improves by carefully designing and tailoring the extraction of relevant speech feature toward electromyographic signals. Our experimental design includes the collection of audibly spoken speech simultaneously recorded as acoustic data using a close-speaking microphone and as electromyographic signals using electrodes. Our experiments indicate that electromyographic signals precede the acoustic signal by about 0.05-0.06 seconds. Furthermore, we introduce articulatory feature classifiers, which had recently shown to improved classical speech recognition significantly. We describe that the classification accuracy of articulatory features clearly benefits from the tailored feature extraction. Finally, these classifiers are integrated into the overall decoding framework applying a stream architecture. Our final system achieves a word error rate of 29.9% on a 100-word recognition task.

  8. Explanation mode for Bayesian automatic object recognition

    NASA Astrophysics Data System (ADS)

    Hazlett, Thomas L.; Cofer, Rufus H.; Brown, Harold K.

    1992-09-01

    One of the more useful techniques to emerge from AI is the provision of an explanation modality used by the researcher to understand and subsequently tune the reasoning of an expert system. Such a capability, missing in the arena of statistical object recognition, is not that difficult to provide. Long standing results show that the paradigm of Bayesian object recognition is truly optimal in a minimum probability of error sense. To a large degree, the Bayesian paradigm achieves optimality through adroit fusion of a wide range of lower informational data sources to give a higher quality decision--a very 'expert system' like capability. When various sources of incoming data are represented by C++ classes, it becomes possible to automatically backtrack the Bayesian data fusion process, assigning relative weights to the more significant datums and their combinations. A C++ object oriented engine is then able to synthesize 'English' like textural description of the Bayesian reasoning suitable for generalized presentation. Key concepts and examples are provided based on an actual object recognition problem.

  9. Towards automatic musical instrument timbre recognition

    NASA Astrophysics Data System (ADS)

    Park, Tae Hong

    This dissertation is comprised of two parts---focus on issues concerning research and development of an artificial system for automatic musical instrument timbre recognition and musical compositions. The technical part of the essay includes a detailed record of developed and implemented algorithms for feature extraction and pattern recognition. A review of existing literature introducing historical aspects surrounding timbre research, problems associated with a number of timbre definitions, and highlights of selected research activities that have had significant impact in this field are also included. The developed timbre recognition system follows a bottom-up, data-driven model that includes a pre-processing module, feature extraction module, and a RBF/EBF (Radial/Elliptical Basis Function) neural network-based pattern recognition module. 829 monophonic samples from 12 instruments have been chosen from the Peter Siedlaczek library (Best Service) and other samples from the Internet and personal collections. Significant emphasis has been put on feature extraction development and testing to achieve robust and consistent feature vectors that are eventually passed to the neural network module. In order to avoid a garbage-in-garbage-out (GIGO) trap and improve generality, extra care was taken in designing and testing the developed algorithms using various dynamics, different playing techniques, and a variety of pitches for each instrument with inclusion of attack and steady-state portions of a signal. Most of the research and development was conducted in Matlab. The compositional part of the essay includes brief introductions to "A d'Ess Are ," "Aboji," "48 13 N, 16 20 O," and "pH-SQ." A general outline pertaining to the ideas and concepts behind the architectural designs of the pieces including formal structures, time structures, orchestration methods, and pitch structures are also presented.

  10. Robust automatic target recognition in FLIR imagery

    NASA Astrophysics Data System (ADS)

    Soyman, Yusuf

    2012-05-01

    In this paper, a robust automatic target recognition algorithm in FLIR imagery is proposed. Target is first segmented out from the background using wavelet transform. Segmentation process is accomplished by parametric Gabor wavelet transformation. Invariant features that belong to the target, which is segmented out from the background, are then extracted via moments. Higher-order moments, while providing better quality for identifying the image, are more sensitive to noise. A trade-off study is then performed on a few moments that provide effective performance. Bayes method is used for classification, using Mahalanobis distance as the Bayes' classifier. Results are assessed based on false alarm rates. The proposed method is shown to be robust against rotations, translations and scale effects. Moreover, it is shown to effectively perform under low-contrast objects in FLIR images. Performance comparisons are also performed on both GPU and CPU. Results indicate that GPU has superior performance over CPU.

  11. Image simulation for automatic license plate recognition

    NASA Astrophysics Data System (ADS)

    Bala, Raja; Zhao, Yonghui; Burry, Aaron; Kozitsky, Vladimir; Fillion, Claude; Saunders, Craig; Rodríguez-Serrano, José

    2012-01-01

    Automatic license plate recognition (ALPR) is an important capability for traffic surveillance applications, including toll monitoring and detection of different types of traffic violations. ALPR is a multi-stage process comprising plate localization, character segmentation, optical character recognition (OCR), and identification of originating jurisdiction (i.e. state or province). Training of an ALPR system for a new jurisdiction typically involves gathering vast amounts of license plate images and associated ground truth data, followed by iterative tuning and optimization of the ALPR algorithms. The substantial time and effort required to train and optimize the ALPR system can result in excessive operational cost and overhead. In this paper we propose a framework to create an artificial set of license plate images for accelerated training and optimization of ALPR algorithms. The framework comprises two steps: the synthesis of license plate images according to the design and layout for a jurisdiction of interest; and the modeling of imaging transformations and distortions typically encountered in the image capture process. Distortion parameters are estimated by measurements of real plate images. The simulation methodology is successfully demonstrated for training of OCR.

  12. Adaptive wavelet-based recognition of oscillatory patterns on electroencephalograms

    NASA Astrophysics Data System (ADS)

    Nazimov, Alexey I.; Pavlov, Alexey N.; Hramov, Alexander E.; Grubov, Vadim V.; Koronovskii, Alexey A.; Sitnikova, Evgenija Y.

    2013-02-01

    The problem of automatic recognition of specific oscillatory patterns on electroencephalograms (EEG) is addressed using the continuous wavelet-transform (CWT). A possibility of improving the quality of recognition by optimizing the choice of CWT parameters is discussed. An adaptive approach is proposed to identify sleep spindles (SS) and spike wave discharges (SWD) that assumes automatic selection of CWT-parameters reflecting the most informative features of the analyzed time-frequency structures. Advantages of the proposed technique over the standard wavelet-based approaches are considered.

  13. On the Importance of Transition Regions for Automatic Speaker Recognition

    NASA Astrophysics Data System (ADS)

    Lee, Bong-Jin; Jung, Chi-Sang; Choi, Jeung-Yoon; Kang, Hong-Goo

    This letter describes the importance of transition regions, e.g. at phoneme boundaries, for automatic speaker recognition compared with using steady-state regions. Experimental results of automatic speaker identification tasks confirm that transition regions include the most speaker distinctive features. A possible reason for obtaining such results is described in view of articulation, in particular, the degree of freedom of articulators. These results are expected to provide useful information in designing an efficient automatic speaker recognition system.

  14. Military applications of automatic speech recognition and future requirements

    NASA Technical Reports Server (NTRS)

    Beek, Bruno; Cupples, Edward J.

    1977-01-01

    An updated summary of the state-of-the-art of automatic speech recognition and its relevance to military applications is provided. A number of potential systems for military applications are under development. These include: (1) digital narrowband communication systems; (2) automatic speech verification; (3) on-line cartographic processing unit; (4) word recognition for militarized tactical data system; and (5) voice recognition and synthesis for aircraft cockpit.

  15. Cascaded automatic target recognition (Cascaded ATR)

    NASA Astrophysics Data System (ADS)

    Walls, Bradley

    2010-04-01

    The global war on terror has plunged US and coalition forces into a battle space requiring the continuous adaptation of tactics and technologies to cope with an elusive enemy. As a result, technologies that enhance the intelligence, surveillance, and reconnaissance (ISR) mission making the warfighter more effective are experiencing increased interest. In this paper we show how a new generation of smart cameras built around foveated sensing makes possible a powerful ISR technique termed Cascaded ATR. Foveated sensing is an innovative optical concept in which a single aperture captures two distinct fields of view. In Cascaded ATR, foveated sensing is used to provide a coarse resolution, persistent surveillance, wide field of view (WFOV) detector to accomplish detection level perception. At the same time, within the foveated sensor, these detection locations are passed as a cue to a steerable, high fidelity, narrow field of view (NFOV) detector to perform recognition level perception. Two new ISR mission scenarios, utilizing Cascaded ATR, are proposed.

  16. Confidence and rejection in automatic speech recognition

    NASA Astrophysics Data System (ADS)

    Colton, Larry Don

    Automatic speech recognition (ASR) is performed imperfectly by computers. For some designated part (e.g., word or phrase) of the ASR output, rejection is deciding (yes or no) whether it is correct, and confidence is the probability (0.0 to 1.0) of it being correct. This thesis presents new methods of rejecting errors and estimating confidence for telephone speech. These are also called word or utterance verification and can be used in wordspotting or voice-response systems. Open-set or out-of-vocabulary situations are a primary focus. Language models are not considered. In vocabulary-dependent rejection all words in the target vocabulary are known in advance and a strategy can be developed for confirming each word. A word-specific artificial neural network (ANN) is shown to discriminate well, and scores from such ANNs are shown on a closed-set recognition task to reorder the N-best hypothesis list (N=3) for improved recognition performance. Segment-based duration and perceptual linear prediction (PLP) features are shown to perform well for such ANNs. The majority of the thesis concerns vocabulary- and task-independent confidence and rejection based on phonetic word models. These can be computed for words even when no training examples of those words have been seen. New techniques are developed using phoneme ranks instead of probabilities in each frame. These are shown to perform as well as the best other methods examined despite the data reduction involved. Certain new weighted averaging schemes are studied but found to give no performance benefit. Hierarchical averaging is shown to improve performance significantly: frame scores combine to make segment (phoneme state) scores, which combine to make phoneme scores, which combine to make word scores. Use of intermediate syllable scores is shown to not affect performance. Normalizing frame scores by an average of the top probabilities in each frame is shown to improve performance significantly. Perplexity of the wrong

  17. Automatic target recognition apparatus and method

    DOEpatents

    Baumgart, Chris W.; Ciarcia, Christopher A.

    2000-01-01

    An automatic target recognition apparatus (10) is provided, having a video camera/digitizer (12) for producing a digitized image signal (20) representing an image containing therein objects which objects are to be recognized if they meet predefined criteria. The digitized image signal (20) is processed within a video analysis subroutine (22) residing in a computer (14) in a plurality of parallel analysis chains such that the objects are presumed to be lighter in shading than the background in the image in three of the chains and further such that the objects are presumed to be darker than the background in the other three chains. In two of the chains the objects are defined by surface texture analysis using texture filter operations. In another two of the chains the objects are defined by background subtraction operations. In yet another two of the chains the objects are defined by edge enhancement processes. In each of the analysis chains a calculation operation independently determines an error factor relating to the probability that the objects are of the type which should be recognized, and a probability calculation operation combines the results of the analysis chains.

  18. Application of wavelets to automatic target recognition

    NASA Astrophysics Data System (ADS)

    Stirman, Charles

    1995-03-01

    'Application of Wavelets to Automatic Target Recognition,' is the second phase of multiphase project to insert compactly supported wavelets into an existing or near-term Department of Defense system such as the Longbow fire control radar for the Apache Attack Helicopter. In this contract, we have concentrated mainly on the classifier function. During the first phase of the program ('Application of Wavelets to Radar Data Processing'), the feasibility of using wavelets to process high range resolution profile (HRRP) amplitude returns from a wide bandwidth radar system was demonstrated. This phase obtained fully polarized wide bandwidth radar HRRP amplitude returns and processed, them with wavelet and wavelet packet or (best basis) transforms. Then, by mathematically defined nonlinear feature selection, we showed that significant improvements in the probability of correct classification are possible, up to 14 percentage points maximum (4 percentage points average) improvement when compared to the current classifier performance. In addition, we addressed the feasibility of using wavelet packets' best basis to address target registration, man made object rejection, clutter discriminations, and synthetic aperture radar scene speckle removal and object registration.

  19. Remote weapon station for automatic target recognition system demand analysis

    NASA Astrophysics Data System (ADS)

    Lei, Zhang; Li, Sheng-cai; Shi, Cai

    2015-08-01

    Introduces a remote weapon station basic composition and the main advantage, analysis of target based on image automatic recognition system for remote weapon station of practical significance, the system elaborated the image based automatic target recognition system in the photoelectric stabilized technology, multi-sensor image fusion technology, integrated control target image enhancement, target behavior risk analysis technology, intelligent based on the character of the image automatic target recognition algorithm research, micro sensor technology as the key technology of the development in the field of demand.

  20. Automatic anatomy recognition of sparse objects

    NASA Astrophysics Data System (ADS)

    Zhao, Liming; Udupa, Jayaram K.; Odhner, Dewey; Wang, Huiqian; Tong, Yubing; Torigian, Drew A.

    2015-03-01

    A general body-wide automatic anatomy recognition (AAR) methodology was proposed in our previous work based on hierarchical fuzzy models of multitudes of objects which was not tied to any specific organ system, body region, or image modality. That work revealed the challenges encountered in modeling, recognizing, and delineating sparse objects throughout the body (compared to their non-sparse counterparts) if the models are based on the object's exact geometric representations. The challenges stem mainly from the variation in sparse objects in their shape, topology, geographic layout, and relationship to other objects. That led to the idea of modeling sparse objects not from the precise geometric representations of their samples but by using a properly designed optimal super form. This paper presents the underlying improved methodology which includes 5 steps: (a) Collecting image data from a specific population group G and body region Β and delineating in these images the objects in Β to be modeled; (b) Building a super form, S-form, for each object O in Β; (c) Refining the S-form of O to construct an optimal (minimal) super form, S*-form, which constitutes the (fuzzy) model of O; (d) Recognizing objects in Β using the S*-form; (e) Defining confounding and background objects in each S*-form for each object and performing optimal delineation. Our evaluations based on 50 3D computed tomography (CT) image sets in the thorax on four sparse objects indicate that substantially improved performance (FPVF~2%, FNVF~10%, and success where the previous approach failed) can be achieved using the new approach.

  1. System integration of pattern recognition, adaptive aided, upper limb prostheses

    NASA Technical Reports Server (NTRS)

    Lyman, J.; Freedy, A.; Solomonow, M.

    1975-01-01

    The requirements for successful integration of a computer aided control system for multi degree of freedom artificial arms are discussed. Specifications are established for a system which shares control between a human amputee and an automatic control subsystem. The approach integrates the following subsystems: (1) myoelectric pattern recognition, (2) adaptive computer aiding; (3) local reflex control; (4) prosthetic sensory feedback; and (5) externally energized arm with the functions of prehension, wrist rotation, elbow extension and flexion and humeral rotation.

  2. Automatic Intention Recognition in Conversation Processing

    ERIC Educational Resources Information Center

    Holtgraves, Thomas

    2008-01-01

    A fundamental assumption of many theories of conversation is that comprehension of a speaker's utterance involves recognition of the speaker's intention in producing that remark. However, the nature of intention recognition is not clear. One approach is to conceptualize a speaker's intention in terms of speech acts [Searle, J. (1969). "Speech…

  3. A Survey on Automatic Speaker Recognition Systems

    NASA Astrophysics Data System (ADS)

    Saquib, Zia; Salam, Nirmala; Nair, Rekha P.; Pandey, Nipun; Joshi, Akanksha

    Human listeners are capable of identifying a speaker, over the telephone or an entryway out of sight, by listening to the voice of the speaker. Achieving this intrinsic human specific capability is a major challenge for Voice Biometrics. Like human listeners, voice biometrics uses the features of a person's voice to ascertain the speaker's identity. The best-known commercialized forms of voice Biometrics is Speaker Recognition System (SRS). Speaker recognition is the computing task of validating a user's claimed identity using characteristics extracted from their voices. This literature survey paper gives brief introduction on SRS, and then discusses general architecture of SRS, biometric standards relevant to voice/speech, typical applications of SRS, and current research in Speaker Recognition Systems. We have also surveyed various approaches for SRS.

  4. 38 CFR 51.31 - Automatic recognition.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) PER DIEM FOR NURSING HOME CARE OF VETERANS IN STATE HOMES Obtaining Per Diem for Nursing Home Care in... that already is recognized by VA as a State home for nursing home care at the time this part becomes effective, automatically will continue to be recognized as a State home for nursing home care but will...

  5. 38 CFR 51.31 - Automatic recognition.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) PER DIEM FOR NURSING HOME CARE OF VETERANS IN STATE HOMES Obtaining Per Diem for Nursing Home Care in... that already is recognized by VA as a State home for nursing home care at the time this part becomes effective, automatically will continue to be recognized as a State home for nursing home care but will...

  6. 38 CFR 51.31 - Automatic recognition.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) PER DIEM FOR NURSING HOME CARE OF VETERANS IN STATE HOMES Obtaining Per Diem for Nursing Home Care in... that already is recognized by VA as a State home for nursing home care at the time this part becomes effective, automatically will continue to be recognized as a State home for nursing home care but will...

  7. 38 CFR 51.31 - Automatic recognition.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) PER DIEM FOR NURSING HOME CARE OF VETERANS IN STATE HOMES Obtaining Per Diem for Nursing Home Care in... that already is recognized by VA as a State home for nursing home care at the time this part becomes effective, automatically will continue to be recognized as a State home for nursing home care but will...

  8. 38 CFR 51.31 - Automatic recognition.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) PER DIEM FOR NURSING HOME CARE OF VETERANS IN STATE HOMES Obtaining Per Diem for Nursing Home Care in... that already is recognized by VA as a State home for nursing home care at the time this part becomes effective, automatically will continue to be recognized as a State home for nursing home care but will...

  9. RFID: A Revolution in Automatic Data Recognition

    ERIC Educational Resources Information Center

    Deal, Walter F., III

    2004-01-01

    Radio frequency identification, or RFID, is a generic term for technologies that use radio waves to automatically identify people or objects. There are several methods of identification, but the most common is to store a serial number that identifies a person or object, and perhaps other information, on a microchip that is attached to an antenna…

  10. Automatic TLI recognition system. Part 2: User`s guide

    SciTech Connect

    Partin, J.K.; Lassahn, G.D.; Davidson, J.R.

    1994-05-01

    This report describes an automatic target recognition system for fast screening of large amounts of multi-sensor image data, based on low-cost parallel processors. This system uses image data fusion and gives uncertainty estimates. It is relatively low cost, compact, and transportable. The software is easily enhanced to expand the system`s capabilities, and the hardware is easily expandable to increase the system`s speed. This volume is a user`s manual for an Automatic Target Recognition (ATR) system. This guide is intended to provide enough information and instruction to allow individuals to the system for their own applications.

  11. Automatic recognition of malicious intent indicators.

    SciTech Connect

    Drescher, D. J.; Yee, Mark L.; Giron, Casey; Fogler, Robert Joseph; Nguyen, Hung D.; Koch, Mark William

    2010-09-01

    A major goal of next-generation physical protection systems is to extend defenses far beyond the usual outer-perimeter-fence boundaries surrounding protected facilities. Mitigation of nuisance alarms is among the highest priorities. A solution to this problem is to create a robust capability to Automatically Recognize Malicious Indicators of intruders. In extended defense applications, it is not enough to distinguish humans from all other potential alarm sources as human activity can be a common occurrence outside perimeter boundaries. Our approach is unique in that it employs a stimulus to determine a malicious intent indicator for the intruder. The intruder's response to the stimulus can be used in an automatic reasoning system to decide the intruder's intent.

  12. Automatization and Orthographic Development in Second Language Visual Word Recognition

    ERIC Educational Resources Information Center

    Kida, Shusaku

    2016-01-01

    The present study investigated second language (L2) learners' acquisition of automatic word recognition and the development of L2 orthographic representation in the mental lexicon. Participants in the study were Japanese university students enrolled in a compulsory course involving a weekly 30-minute sustained silent reading (SSR) activity with…

  13. Automatic Speech Recognition: Reliability and Pedagogical Implications for Teaching Pronunciation

    ERIC Educational Resources Information Center

    Kim, In-Seok

    2006-01-01

    This study examines the reliability of automatic speech recognition (ASR) software used to teach English pronunciation, focusing on one particular piece of software, "FluSpeak, as a typical example." Thirty-six Korean English as a Foreign Language (EFL) college students participated in an experiment in which they listened to 15 sentences that…

  14. Using Automatic Speech Recognition Technology with Elicited Oral Response Testing

    ERIC Educational Resources Information Center

    Cox, Troy L.; Davies, Randall S.

    2012-01-01

    This study examined the use of automatic speech recognition (ASR) scored elicited oral response (EOR) tests to assess the speaking ability of English language learners. It also examined the relationship between ASR-scored EOR and other language proficiency measures and the ability of the ASR to rate speakers without bias to gender or native…

  15. Length Scales in Bayesian Automatic Adaptive Quadrature

    NASA Astrophysics Data System (ADS)

    Adam, Gh.; Adam, S.

    2016-02-01

    Two conceptual developments in the Bayesian automatic adaptive quadrature approach to the numerical solution of one-dimensional Riemann integrals [Gh. Adam, S. Adam, Springer LNCS 7125, 1-16 (2012)] are reported. First, it is shown that the numerical quadrature which avoids the overcomputing and minimizes the hidden floating point loss of precision asks for the consideration of three classes of integration domain lengths endowed with specific quadrature sums: microscopic (trapezoidal rule), mesoscopic (Simpson rule), and macroscopic (quadrature sums of high algebraic degrees of precision). Second, sensitive diagnostic tools for the Bayesian inference on macroscopic ranges, coming from the use of Clenshaw-Curtis quadrature, are derived.

  16. a New Structure for Automatic Speech Recognition

    NASA Astrophysics Data System (ADS)

    Duchnowski, Paul

    Speech is a wideband signal with cues identifying a particular element distributed across frequency. To capture these cues, most ASR systems analyze the speech signal into spectral (or spectrally-derived) components prior to recognition. Traditionally, these components are integrated across frequency to form a vector of "acoustic evidence" on which a decision by the ASR system is based. This thesis develops an alternate approach, post-labeling integration. In this scheme, tentative decisions or labels, of the identity of a given speech element are assigned in parallel by sub -recognizers, each operating on a band-limited portion of the speech waveform. Outputs of these independent channels are subsequently combined (integrated) to render the final decision. Remarkably good recognition of bandlimited nonsense syllables by humans leads to the consideration of this method. It also allows potentially more accurate parameterization of the speech waveform and simultaneously robust estimation of parameter probabilities. The algorithm also represents an attempt to make explicit use of redundancies in speech. Three basic methods of parameterizing the bandlimited input of the sub-recognizers were considered, focusing respectively on LPC and cepstrum coefficients, and parameters based on the autocorrelation function. Four sub-recognizers were implemented as discrete Hidden Markov Model (HMM) systems. Maximum A Posteriori (MAP) hypothesis testing approach was applied to the problem of integrating the individual sub-recognizer decisions on a frame by frame basis. Final segmentation was achieved by a secondary HMM. Five methods of estimating the probabilities necessary for MAP integration were tested. The proposed structure was applied to the task of phonetic, speaker-independent, continuous speech recognition. Performance for several combinations of parameterization schemes and integration methods was measured. The best score of 58.5% on a 39 phone alphabet is roughly

  17. Automatic Recognition of Object Names in Literature

    NASA Astrophysics Data System (ADS)

    Bonnin, C.; Lesteven, S.; Derriere, S.; Oberto, A.

    2008-08-01

    SIMBAD is a database of astronomical objects that provides (among other things) their bibliographic references in a large number of journals. Currently, these references have to be entered manually by librarians who read each paper. To cope with the increasing number of papers, CDS develops a tool to assist the librarians in their work, taking advantage of the Dictionary of Nomenclature of Celestial Objects, which keeps track of object acronyms and of their origin. The program searches for object names directly in PDF documents by comparing the words with all the formats stored in the Dictionary of Nomenclature. It also searches for variable star names based on constellation names and for a large list of usual names such as Aldebaran or the Crab. Object names found in the documents often correspond to several astronomical objects. The system retrieves all possible matches, displays them with their object type given by SIMBAD, and lets the librarian make the final choice. The bibliographic reference can then be automatically added to the object identifiers in the database. Besides, the systematic usage of the Dictionary of Nomenclature, which is updated manually, permitted to automatically check it and to detect errors and inconsistencies. Last but not least, the program collects some additional information such as the position of the object names in the document (in the title, subtitle, abstract, table, figure caption...) and their number of occurrences. In the future, this will permit to calculate the 'weight' of an object in a reference and to provide SIMBAD users with an important new information, which will help them to find the most relevant papers in the object reference list.

  18. Testing Saliency Parameters for Automatic Target Recognition

    NASA Technical Reports Server (NTRS)

    Pandya, Sagar

    2012-01-01

    A bottom-up visual attention model (the saliency model) is tested to enhance the performance of Automated Target Recognition (ATR). JPL has developed an ATR system that identifies regions of interest (ROI) using a trained OT-MACH filter, and then classifies potential targets as true- or false-positives using machine-learning techniques. In this project, saliency is used as a pre-processing step to reduce the space for performing OT-MACH filtering. Saliency parameters, such as output level and orientation weight, are tuned to detect known target features. Preliminary results are promising and future work entails a rigrous and parameter-based search to gain maximum insight about this method.

  19. Adaptive hybrid system for automatic sleep staging.

    PubMed

    Hassaan, Amr A; Morsy, Ahmed A

    2008-01-01

    We present a new adaptive system for automated sleep staging. The proposed system relies on each subject's own data for self-training. Conventional automatic sleep staging algorithms are either rule based, which typically fail to accurately model the complex nature of sleep signals, or numerical methods that use multi-patient training schemes, which suffer from inaccuracies caused by inherent inter-patient variability. The proposed system employs two stages. The first stage is a rule based reasoning engine that can be tuned conservatively to decrease or eliminate false positives, generating just enough samples to train the second stage, which is comprised of a neural network classifier. Results show that this hybrid approach provides an adaptive training scheme that performs more accurately compared to one of the popular commercially available systems. PMID:19162989

  20. Automatic recognition of harmonic bird sounds

    NASA Astrophysics Data System (ADS)

    Heller, Jason R.; Pinezich, John D.

    2005-09-01

    The method of sound recognition relies on a transformation of a sound into a spectrogram followed by extraction of the harmonics as curves. The extracted curves are called frequency tracks. A procedure called find-feasible-sets is used to extract sets of tracks that may correspond to harmonic sounds. If a set of tracks overlap each other sufficiently in time, then the set is designated a feasible set. Following the extraction of the feasible sets, the procedure find-maximal-subsets is applied to each feasible set. This procedure uses a function called harmonic-relate that determines if two tracks are harmonically related. All tracks that are not harmonically related to any other tracks in the feasible set are discarded. Furthermore, the feasible set is divided into maximal subsets. A maximal subset is a subset of the feasible set in which every track is harmonically related to one fixed track in the set called the reference track but no other tracks in the feasible set are related to the reference track. Each frequency track in a track set is transformed into a feature vector whose components describe the frequency, slope, and shape of the track. The species of birds analyzed are bluejay and herring gull.

  1. Digital signal processing algorithms for automatic voice recognition

    NASA Technical Reports Server (NTRS)

    Botros, Nazeih M.

    1987-01-01

    The current digital signal analysis algorithms are investigated that are implemented in automatic voice recognition algorithms. Automatic voice recognition means, the capability of a computer to recognize and interact with verbal commands. The digital signal is focused on, rather than the linguistic, analysis of speech signal. Several digital signal processing algorithms are available for voice recognition. Some of these algorithms are: Linear Predictive Coding (LPC), Short-time Fourier Analysis, and Cepstrum Analysis. Among these algorithms, the LPC is the most widely used. This algorithm has short execution time and do not require large memory storage. However, it has several limitations due to the assumptions used to develop it. The other 2 algorithms are frequency domain algorithms with not many assumptions, but they are not widely implemented or investigated. However, with the recent advances in the digital technology, namely signal processors, these 2 frequency domain algorithms may be investigated in order to implement them in voice recognition. This research is concerned with real time, microprocessor based recognition algorithms.

  2. Automatic Facial Expression Recognition and Operator Functional State

    NASA Technical Reports Server (NTRS)

    Blanson, Nina

    2012-01-01

    The prevalence of human error in safety-critical occupations remains a major challenge to mission success despite increasing automation in control processes. Although various methods have been proposed to prevent incidences of human error, none of these have been developed to employ the detection and regulation of Operator Functional State (OFS), or the optimal condition of the operator while performing a task, in work environments due to drawbacks such as obtrusiveness and impracticality. A video-based system with the ability to infer an individual's emotional state from facial feature patterning mitigates some of the problems associated with other methods of detecting OFS, like obtrusiveness and impracticality in integration with the mission environment. This paper explores the utility of facial expression recognition as a technology for inferring OFS by first expounding on the intricacies of OFS and the scientific background behind emotion and its relationship with an individual's state. Then, descriptions of the feedback loop and the emotion protocols proposed for the facial recognition program are explained. A basic version of the facial expression recognition program uses Haar classifiers and OpenCV libraries to automatically locate key facial landmarks during a live video stream. Various methods of creating facial expression recognition software are reviewed to guide future extensions of the program. The paper concludes with an examination of the steps necessary in the research of emotion and recommendations for the creation of an automatic facial expression recognition program for use in real-time, safety-critical missions

  3. Automatic Facial Expression Recognition and Operator Functional State

    NASA Technical Reports Server (NTRS)

    Blanson, Nina

    2011-01-01

    The prevalence of human error in safety-critical occupations remains a major challenge to mission success despite increasing automation in control processes. Although various methods have been proposed to prevent incidences of human error, none of these have been developed to employ the detection and regulation of Operator Functional State (OFS), or the optimal condition of the operator while performing a task, in work environments due to drawbacks such as obtrusiveness and impracticality. A video-based system with the ability to infer an individual's emotional state from facial feature patterning mitigates some of the problems associated with other methods of detecting OFS, like obtrusiveness and impracticality in integration with the mission environment. This paper explores the utility of facial expression recognition as a technology for inferring OFS by first expounding on the intricacies of OFS and the scientific background behind emotion and its relationship with an individual's state. Then, descriptions of the feedback loop and the emotion protocols proposed for the facial recognition program are explained. A basic version of the facial expression recognition program uses Haar classifiers and OpenCV libraries to automatically locate key facial landmarks during a live video stream. Various methods of creating facial expression recognition software are reviewed to guide future extensions of the program. The paper concludes with an examination of the steps necessary in the research of emotion and recommendations for the creation of an automatic facial expression recognition program for use in real-time, safety-critical missions.

  4. Automatic recognition and analysis of synapses. [in brain tissue

    NASA Technical Reports Server (NTRS)

    Ungerleider, J. A.; Ledley, R. S.; Bloom, F. E.

    1976-01-01

    An automatic system for recognizing synaptic junctions would allow analysis of large samples of tissue for the possible classification of specific well-defined sets of synapses based upon structural morphometric indices. In this paper the three steps of our system are described: (1) cytochemical tissue preparation to allow easy recognition of the synaptic junctions; (2) transmitting the tissue information to a computer; and (3) analyzing each field to recognize the synapses and make measurements on them.

  5. Automatic TLI recognition system. Part 1: System description

    SciTech Connect

    Partin, J.K.; Lassahn, G.D.; Davidson, J.R.

    1994-05-01

    This report describes an automatic target recognition system for fast screening of large amounts of multi-sensor image data, based on low-cost parallel processors. This system uses image data fusion and gives uncertainty estimates. It is relatively low cost, compact, and transportable. The software is easily enhanced to expand the system`s capabilities, and the hardware is easily expandable to increase the system`s speed. This volume gives a general description of the ATR system.

  6. Multiple cardiac arrhythmia recognition using adaptive wavelet network.

    PubMed

    Lin, Chia-Hung; Chen, Pei-Jarn; Chen, Yung-Fu; Lee, You-Yun; Chen, Tainsong

    2005-01-01

    This paper proposes a method for electrocardiogram (ECG) heartbeat pattern recognition using adaptive wavelet network (AWN). The ECG beat recognition can be divided into a sequence of stages, starting from feature extraction and conversion of QRS complexes, and then identifying cardiac arrhythmias based on the detected features. The discrimination method of ECG beats is a two-subnetwork architecture, consisting of a wavelet layer and a probabilistic neural network (PNN). Morlet wavelets are used to extract the features from each heartbeat, and then PNN is used to analyze the meaningful features and perform discrimination tasks. The AWN is suitable for application in a dynamic environment, with add-in and delete-off features using automatic target adjustment and parameter tuning. The experimental results obtained by testing the data of the MIT-BIH arrhythmia database demonstrate the efficiency of the proposed method. PMID:17281539

  7. Advanced automatic target recognition for police helicopter missions

    NASA Astrophysics Data System (ADS)

    Stahl, Christoph; Schoppmann, Paul

    2000-08-01

    The results of a case study about the application of an advanced method for automatic target recognition to infrared imagery taken from police helicopter missions are presented. The method consists of the following steps: preprocessing, classification, fusion, postprocessing and tracking, and combines the three paradigms image pyramids, neural networks and bayesian nets. The technology has been developed using a variety of different scenes typical for military aircraft missions. Infrared cameras have been in use for several years at the Bavarian police helicopter forces and are highly valuable for night missions. Several object classes like 'persons' or 'vehicles' are tested and the possible discrimination between persons and animals is shown. The analysis of complex scenes with hidden objects and clutter shows the potentials and limitations of automatic target recognition for real-world tasks. Several display concepts illustrate the achievable improvement of the situation awareness. The similarities and differences between various mission types concerning object variability, time constraints, consequences of false alarms, etc. are discussed. Typical police actions like searching for missing persons or runaway criminals illustrate the advantages of automatic target recognition. The results demonstrate the possible operational benefits for the helicopter crew. Future work will include performance evaluation issues and a system integration concept for the target platform.

  8. DWT features performance analysis for automatic speech recognition of Urdu.

    PubMed

    Ali, Hazrat; Ahmad, Nasir; Zhou, Xianwei; Iqbal, Khalid; Ali, Sahibzada Muhammad

    2014-01-01

    This paper presents the work on Automatic Speech Recognition of Urdu language, using a comparative analysis for Discrete Wavelets Transform (DWT) based features and Mel Frequency Cepstral Coefficients (MFCC). These features have been extracted for one hundred isolated words of Urdu, each word uttered by ten different speakers. The words have been selected from the most frequently used words of Urdu. A variety of age and dialect has been covered by using a balanced corpus approach. After extraction of features, the classification has been achieved by using Linear Discriminant Analysis. After the classification task, the confusion matrix obtained for the DWT features has been compared with the one obtained for Mel-Frequency Cepstral Coefficients based speech recognition. The framework has been trained and tested for speech data recorded under controlled environments. The experimental results are useful in determination of the optimum features for speech recognition task. PMID:25674450

  9. An automatic recognition method of pointer instrument based on improved Hough transform

    NASA Astrophysics Data System (ADS)

    Xu, Li; Fang, Tian; Gao, Xiaoyu

    2015-10-01

    For the automatic recognition of pointer instrument, the method for the automatic recognition of pointer instrument based on improved Hough Transform was proposed in this paper. The automatic recognition of pointer instrument is applied to all kinds of lighting conditions, but the accuracy of it binaryzation will be influenced when the light is too strong or too dark. Therefore, the improved Ostu method was suggested to realize recognition for adaptive thresholding of pointer instrument under all kinds of lighting conditions. On the basis of dial image characteristics, Otsu method is used to get the value of maximum between-cluster variance and initial threshold than analyze its maximum between-cluster variance value to determine the light and shade of the image. When the images are too bright or too dark, the smaller pixels should be given up and then calculate the initial threshold by Otsu method again and again until the best binaryzation image was obtained. Hence, transform the pointer straight line of the binaryzation image to Hough parameter space through improved Hough Transform to determine the position of the pointer straight line by searching the maximum value of arrays of the same angle. Finally, according to angle method, the pointer reading was obtained by the linear relationship for the initial scale and angle of the pointer instrument. Results show that the improved Otsu method make pointer instrument possible to obtained the accuracy binaryzation image even though the light is too bright or too dark , which improves the adaptability of pointer instrument to automatic recognize the light under different conditions. For the pressure gauges with range of 60MPa, the relative error identification reached to 0.005 when use the improved Hough Transform Algorithm.

  10. Image quality-based adaptive illumination normalisation for face recognition

    NASA Astrophysics Data System (ADS)

    Sellahewa, Harin; Jassim, Sabah A.

    2009-05-01

    Automatic face recognition is a challenging task due to intra-class variations. Changes in lighting conditions during enrolment and identification stages contribute significantly to these intra-class variations. A common approach to address the effects such of varying conditions is to pre-process the biometric samples in order normalise intra-class variations. Histogram equalisation is a widely used illumination normalisation technique in face recognition. However, a recent study has shown that applying histogram equalisation on well-lit face images could lead to a decrease in recognition accuracy. This paper presents a dynamic approach to illumination normalisation, based on face image quality. The quality of a given face image is measured in terms of its luminance distortion by comparing this image against a known reference face image. Histogram equalisation is applied to a probe image if its luminance distortion is higher than a predefined threshold. We tested the proposed adaptive illumination normalisation method on the widely used Extended Yale Face Database B. Identification results demonstrate that our adaptive normalisation produces better identification accuracy compared to the conventional approach where every image is normalised, irrespective of the lighting condition they were acquired.

  11. Error Rates in Users of Automatic Face Recognition Software

    PubMed Central

    White, David; Dunn, James D.; Schmid, Alexandra C.; Kemp, Richard I.

    2015-01-01

    In recent years, wide deployment of automatic face recognition systems has been accompanied by substantial gains in algorithm performance. However, benchmarking tests designed to evaluate these systems do not account for the errors of human operators, who are often an integral part of face recognition solutions in forensic and security settings. This causes a mismatch between evaluation tests and operational accuracy. We address this by measuring user performance in a face recognition system used to screen passport applications for identity fraud. Experiment 1 measured target detection accuracy in algorithm-generated ‘candidate lists’ selected from a large database of passport images. Accuracy was notably poorer than in previous studies of unfamiliar face matching: participants made over 50% errors for adult target faces, and over 60% when matching images of children. Experiment 2 then compared performance of student participants to trained passport officers–who use the system in their daily work–and found equivalent performance in these groups. Encouragingly, a group of highly trained and experienced “facial examiners” outperformed these groups by 20 percentage points. We conclude that human performance curtails accuracy of face recognition systems–potentially reducing benchmark estimates by 50% in operational settings. Mere practise does not attenuate these limits, but superior performance of trained examiners suggests that recruitment and selection of human operators, in combination with effective training and mentorship, can improve the operational accuracy of face recognition systems. PMID:26465631

  12. Speech recognition for embedded automatic positioner for laparoscope

    NASA Astrophysics Data System (ADS)

    Chen, Xiaodong; Yin, Qingyun; Wang, Yi; Yu, Daoyin

    2014-07-01

    In this paper a novel speech recognition methodology based on Hidden Markov Model (HMM) is proposed for embedded Automatic Positioner for Laparoscope (APL), which includes a fixed point ARM processor as the core. The APL system is designed to assist the doctor in laparoscopic surgery, by implementing the specific doctor's vocal control to the laparoscope. Real-time respond to the voice commands asks for more efficient speech recognition algorithm for the APL. In order to reduce computation cost without significant loss in recognition accuracy, both arithmetic and algorithmic optimizations are applied in the method presented. First, depending on arithmetic optimizations most, a fixed point frontend for speech feature analysis is built according to the ARM processor's character. Then the fast likelihood computation algorithm is used to reduce computational complexity of the HMM-based recognition algorithm. The experimental results show that, the method shortens the recognition time within 0.5s, while the accuracy higher than 99%, demonstrating its ability to achieve real-time vocal control to the APL.

  13. Automatic 3D object recognition and reconstruction based on neuro-fuzzy modelling

    NASA Astrophysics Data System (ADS)

    Samadzadegan, Farhad; Azizi, Ali; Hahn, Michael; Lucas, Curo

    Three-dimensional object recognition and reconstruction (ORR) is a research area of major interest in computer vision and photogrammetry. Virtual cities, for example, is one of the exciting application fields of ORR which became very popular during the last decade. Natural and man-made objects of cities such as trees and buildings are complex structures and automatic recognition and reconstruction of these objects from digital aerial images but also other data sources is a big challenge. In this paper a novel approach for object recognition is presented based on neuro-fuzzy modelling. Structural, textural and spectral information is extracted and integrated in a fuzzy reasoning process. The learning capability of neural networks is introduced to the fuzzy recognition process by taking adaptable parameter sets into account which leads to the neuro-fuzzy approach. Object reconstruction follows recognition seamlessly by using the recognition output and the descriptors which have been extracted for recognition. A first successful application of this new ORR approach is demonstrated for the three object classes 'buildings', 'cars' and 'trees' by using aerial colour images of an urban area of the town of Engen in Germany.

  14. Automatic integration of social information in emotion recognition.

    PubMed

    Mumenthaler, Christian; Sander, David

    2015-04-01

    This study investigated the automaticity of the influence of social inference on emotion recognition. Participants were asked to recognize dynamic facial expressions of emotion (fear or anger in Experiment 1 and blends of fear and surprise or of anger and disgust in Experiment 2) in a target face presented at the center of a screen while a subliminal contextual face appearing in the periphery expressed an emotion (fear or anger) or not (neutral) and either looked at the target face or not. Results of Experiment 1 revealed that recognition of the target emotion of fear was improved when a subliminal angry contextual face gazed toward-rather than away from-the fearful face. We replicated this effect in Experiment 2, in which facial expression blends of fear and surprise were more often and more rapidly categorized as expressing fear when the subliminal contextual face expressed anger and gazed toward-rather than away from-the target face. With the contextual face appearing for 30 ms in total, including only 10 ms of emotion expression, and being immediately masked, our data provide the first evidence that social influence on emotion recognition can occur automatically. PMID:25688908

  15. Statistical Evaluation of Biometric Evidence in Forensic Automatic Speaker Recognition

    NASA Astrophysics Data System (ADS)

    Drygajlo, Andrzej

    Forensic speaker recognition is the process of determining if a specific individual (suspected speaker) is the source of a questioned voice recording (trace). This paper aims at presenting forensic automatic speaker recognition (FASR) methods that provide a coherent way of quantifying and presenting recorded voice as biometric evidence. In such methods, the biometric evidence consists of the quantified degree of similarity between speaker-dependent features extracted from the trace and speaker-dependent features extracted from recorded speech of a suspect. The interpretation of recorded voice as evidence in the forensic context presents particular challenges, including within-speaker (within-source) variability and between-speakers (between-sources) variability. Consequently, FASR methods must provide a statistical evaluation which gives the court an indication of the strength of the evidence given the estimated within-source and between-sources variabilities. This paper reports on the first ENFSI evaluation campaign through a fake case, organized by the Netherlands Forensic Institute (NFI), as an example, where an automatic method using the Gaussian mixture models (GMMs) and the Bayesian interpretation (BI) framework were implemented for the forensic speaker recognition task.

  16. A robust face recognition algorithm under varying illumination using adaptive retina modeling

    NASA Astrophysics Data System (ADS)

    Cheong, Yuen Kiat; Yap, Vooi Voon; Nisar, Humaira

    2013-10-01

    Variation in illumination has a drastic effect on the appearance of a face image. This may hinder the automatic face recognition process. This paper presents a novel approach for face recognition under varying lighting conditions. The proposed algorithm uses adaptive retina modeling based illumination normalization. In the proposed approach, retina modeling is employed along with histogram remapping following normal distribution. Retina modeling is an approach that combines two adaptive nonlinear equations and a difference of Gaussians filter. Two databases: extended Yale B database and CMU PIE database are used to verify the proposed algorithm. For face recognition Gabor Kernel Fisher Analysis method is used. Experimental results show that the recognition rate for the face images with different illumination conditions has improved by the proposed approach. Average recognition rate for Extended Yale B database is 99.16%. Whereas, the recognition rate for CMU-PIE database is 99.64%.

  17. Distance-invariant automatic engagement level recognition using visual cues

    NASA Astrophysics Data System (ADS)

    Yun, Woo-han; Lee, Dongjin; Park, Chankyu; Kim, Jaehong

    2015-12-01

    In a camera-based engagement level recognition, a face is an important factor because cues mainly come from a face, which is affected from a distance between a camera and a user. In this paper, we present an automatic engagement level recognition method showing stable performance regardless of a distance between a camera and a user. We show a detailed process about getting a distance-invariant cue and compare its performance with and without the process. We also adopt a temporal pyramid structure to extract temporal statistical feature and present a voting method for an engagement level estimation. We show the results and the analysis using the database acquired in the real environment.

  18. Automatic content recognition for the next-generation TV experience

    NASA Astrophysics Data System (ADS)

    Lin, Xiaofan

    2012-03-01

    Smart TVs has been introduced. Second, applications running on mobile devices (so called "second-screen apps") have significantly enriched TV watching experience. As an enabler of content-aware TVs and apps, automatic content recognition (ACR) is attracting a lot of attention recently. This paper presents an overview of ACR in this context. It attempts to answer a number of questions: Why do we need ACR for the next generation TV experience? What is the relationship between ACR and existing technologies? What are the unique requirements and challenges on ACR in those applications? What are the typical implementation architectures? It also describes the existing products in this space.

  19. Exploiting vibration-based spectral signatures for automatic target recognition

    NASA Astrophysics Data System (ADS)

    Crider, Lauren; Kangas, Scott

    2014-06-01

    Feature extraction algorithms for vehicle classification techniques represent a large branch of Automatic Target Recognition (ATR) efforts. Traditionally, vehicle ATR techniques have assumed time series vibration data collected from multiple accelerometers are a function of direct path, engine driven signal energy. If data, however, is highly dependent on measurement location these pre-established feature extraction algorithms are ineffective. In this paper, we examine the consequences of analyzing vibration data potentially contingent upon transfer path effects by exploring the sensitivity of sensor location. We summarize our analysis of spectral signatures from each accelerometer and investigate similarities within the data.

  20. Spectral analysis methods for automatic speech recognition applications

    NASA Astrophysics Data System (ADS)

    Parinam, Venkata Neelima Devi

    In this thesis, we evaluate the front-end of Automatic Speech Recognition (ASR) systems, with respect to different types of spectral processing methods that are extensively used. A filter bank approach for front end spectral analysis is one of the common methods used for spectral analysis. In this work we describe and evaluate spectral analysis based on Mel and Gammatone filter banks. These filtering methods are derived from auditory models and are thought to have some advantages for automatic speech recognition work. Experimentally, however, we show that direct use of FFT spectral values is just as effective as using either Mel or Gammatone filter banks, provided that the features extracted from the FFT spectral values take into account a Mel or Mel-like frequency scale. It is also shown that trajectory features based on sliding block of spectral features, computed using either FFT or filter bank spectral analysis are considerably more effective, in terms of ASR accuracy, than are delta and delta-delta terms often used for ASR. Although there is no major performance disadvantage to using a filter bank, simplicity of analysis is a reason to eliminate this step in speech processing. These assertions hold for both clean and noisy speech.

  1. Automatic recognition of landslides based on change detection

    NASA Astrophysics Data System (ADS)

    Li, Song; Hua, Houqiang

    2009-07-01

    After Wenchuan earthquake disaster, landslide disaster becomes a common concern, and remote sensing becomes more and more important in the application of landslide monitoring. Now, the method of interpretation and recognition for landslides using remote sensing is visual interpretation mostly. Automatic recognition of landslide is a new and difficult but significative job. For the purpose of seeking a more effective method to recognize landslide automatically, this project analyzes the current methods for the recognition of landslide disasters, and their applicability to the practice of landslide monitoring. Landslide is a phenomenon and disaster triggered by natural and artificial reasons that a part of slope comprised of rock, soil and other fragmental materials slide alone a certain weak structural surface under the gravitation. Consequently, according to the geo-science principle of landslide, there is an obvious change in the sliding region between the pre-landslide and post-landslide, and it can be described in remote sensing imagery, so we develop the new approach to identify landslides, which uses change detection based on texture analysis in multi-temporal imageries. Preprocessing the remote sensing data including the following aspects of image enhancement and filtering, smoothing and cutting, image mosaics, registration and merge, geometric correction and radiation calibration, this paper does change detection base on texture characteristics in multi-temporal images to recognize landslide automatically. After change detection of multi-temporal remote sensing images based on texture analysis, if there is no change in remote sensing image, the image detected is relatively homogeneous, the image detected shows some clustering characteristics; if there is part change in image, the image detected will show two or more clustering centers; if there is complete change in remote sensing image, the image detected will show disorderly and unsystematic. At last, this

  2. Automatic Recognition of Sunspots in HSOS Full-Disk Solar Images

    NASA Astrophysics Data System (ADS)

    Zhao, Cui; Lin, GangHua; Deng, YuanYong; Yang, Xiao

    2016-05-01

    A procedure is introduced to recognise sunspots automatically in solar full-disk photosphere images obtained from Huairou Solar Observing Station, National Astronomical Observatories of China. The images are first pre-processed through Gaussian algorithm. Sunspots are then recognised by the morphological Bot-hat operation and Otsu threshold. Wrong selection of sunspots is eliminated by a criterion of sunspot properties. Besides, in order to calculate the sunspots areas and the solar centre, the solar limb is extracted by a procedure using morphological closing and erosion operations and setting an adaptive threshold. Results of sunspot recognition reveal that the number of the sunspots detected by our procedure has a quite good agreement with the manual method. The sunspot recognition rate is 95% and error rate is 1.2%. The sunspot areas calculated by our method have high correlation (95%) with the area data from the United States Air Force/National Oceanic and Atmospheric Administration (USAF/NOAA).

  3. Selected military applications of automatic speech recognition technology

    NASA Astrophysics Data System (ADS)

    Woodard, J. P.; Cupples, E. J.

    1983-12-01

    Voice input for command and control, message sorting by voice, and advanced low-bit-rate voice communications systems are discussed in relation to automatic speech recognition (ASR) technology applications. Several research efforts in the areas of ASR and speech synthesis technology, which forms the basis for voice input/output systems, are described for military airborne and ground-based applications. The success of the speech enhancement unit in noise reduction for both human and machine listeners is documented and shown to be indispensible for the ASR used in message sorting, and for many command-and-control applications in harsh environments. Two experimental low-bit-rate systems, one phonetically based, the other based on vector, or block quantization, are compared. ASR technology is shown to have the potential to increase the effectiveness of man-machine communications in a variety of military applications, such as equipment maintenance and computers. Further research is necessary to solve some basic problems.

  4. Research on the multi-criteria combination in automatic recognition of marking points

    NASA Astrophysics Data System (ADS)

    An, Yan; Dong, Keyan

    2014-11-01

    Objective: In the field of computer vision, the technology for the automatic recognition of coded pattern plays an important basic role in the camera calibration process of intrinsic and extrinsic parameters, the binocular image matching process and the three-dimensional reconstruction process. Therefore, in the measurement processing, the successive rate for the automatic recognition of coded pattern must be guaranteed. Method: According to analyzing the geometric information of the coded pattern (the mixed type) and basing on the existing recognition method, a new automatic recognition method is proposed, which is the effective method to solve the multi-points recognition in single image by taking the multi-feature information of the coded pattern as the recognition criteria. Result: Both the new recognition method and the old recognition method are used in identifying the one hundred coded pattern which have been actually collected. The experimental result shows that, not only the new recognition method can achieve accurate identification of coded pattern with the recognition accuracy rate of 100%, but also its processing speed is 2.38 times faster than that in the old recognition method. Conclusion: It is obvious that there are many advantages in the new automatic recognition method, including the high effective recognition, the faster executive speed and independent on the auxiliary decoding process information. The new recognition method of multi-criteria combination can provide a strong guarantee for the realization of every aspect in the work of photogrammetry.

  5. A Hybrid Model for Automatic Emotion Recognition in Suicide Notes

    PubMed Central

    Yang, Hui; Willis, Alistair; de Roeck, Anne; Nuseibeh, Bashar

    2012-01-01

    We describe the Open University team’s submission to the 2011 i2b2/VA/Cincinnati Medical Natural Language Processing Challenge, Track 2 Shared Task for sentiment analysis in suicide notes. This Shared Task focused on the development of automatic systems that identify, at the sentence level, affective text of 15 specific emotions from suicide notes. We propose a hybrid model that incorporates a number of natural language processing techniques, including lexicon-based keyword spotting, CRF-based emotion cue identification, and machine learning-based emotion classification. The results generated by different techniques are integrated using different vote-based merging strategies. The automated system performed well against the manually-annotated gold standard, and achieved encouraging results with a micro-averaged F-measure score of 61.39% in textual emotion recognition, which was ranked 1st place out of 24 participant teams in this challenge. The results demonstrate that effective emotion recognition by an automated system is possible when a large annotated corpus is available. PMID:22879757

  6. Variable frame rate analysis for automatic speech recognition

    NASA Astrophysics Data System (ADS)

    Tan, Zheng-Hua

    2007-09-01

    In this paper we investigate the use of variable frame rate (VFR) analysis in automatic speech recognition (ASR). First, we review VFR technique and analyze its behavior. It is experimentally shown that VFR improves ASR performance for signals with low signal-to-noise ratios since it generates improved acoustic models and substantially reduces insertion and substitution errors although it may increase deletion errors. It is also underlined that the match between the average frame rate and the number of hidden Markov model states is critical in implementing VFR. Secondly, we analyze an effective VFR method that uses a cumulative, weighted cepstral-distance criterion for frame selection and present a revision for it. Lastly, the revised VFR method is combined with spectral- and cepstral-domain enhancement methods including the minimum statistics noise estimation (MSNE) based spectral subtraction and the cepstral mean subtraction, variance normalization and ARMA filtering (MVA) process. Experiments on the Aurora 2 database justify that VFR is highly complementary to the enhancement methods. Enhancement of speech both facilitates the frame selection in VFR and provides de-noised speech for recognition.

  7. Automatic voice recognition using traditional and artificial neural network approaches

    NASA Technical Reports Server (NTRS)

    Botros, Nazeih M.

    1989-01-01

    The main objective of this research is to develop an algorithm for isolated-word recognition. This research is focused on digital signal analysis rather than linguistic analysis of speech. Features extraction is carried out by applying a Linear Predictive Coding (LPC) algorithm with order of 10. Continuous-word and speaker independent recognition will be considered in future study after accomplishing this isolated word research. To examine the similarity between the reference and the training sets, two approaches are explored. The first is implementing traditional pattern recognition techniques where a dynamic time warping algorithm is applied to align the two sets and calculate the probability of matching by measuring the Euclidean distance between the two sets. The second is implementing a backpropagation artificial neural net model with three layers as the pattern classifier. The adaptation rule implemented in this network is the generalized least mean square (LMS) rule. The first approach has been accomplished. A vocabulary of 50 words was selected and tested. The accuracy of the algorithm was found to be around 85 percent. The second approach is in progress at the present time.

  8. Writer adaptation in off-line Arabic handwriting recognition

    NASA Astrophysics Data System (ADS)

    Ball, Gregory R.; Srihari, Sargur N.

    2008-01-01

    Writer adaptation or specialization is the adjustment of handwriting recognition algorithms to a specific writer's style of handwriting. Such adjustment yields significantly improved recognition rates over counterpart general recognition algorithms. We present the first unconstrained off-line handwriting adaptation algorithm for Arabic presented in the literature. We discuss an iterative bootstrapping model which adapts a writer-independent model to a writer-dependent model using a small number of words achieving a large recognition rate increase in the process. Furthermore, we describe a confidence weighting method which generates better results by weighting words based on their length. We also discuss script features unique to Arabic, and how we incorporate them into our adaptation process. Even though Arabic has many more character classes than languages such as English, significant improvement was observed. The testing set consisting of about 100 pages of handwritten text had an initial average overall recognition rate of 67%. After the basic adaptation was finished, the overall recognition rate was 73.3%. As the improvement was most marked for the longer words, and the set of confidently recognized longer words contained many fewer false results, a second method was presented using them alone, resulting in a recognition rate of about 75%. Initially, these words had a 69.5% recognition rate, improving to about a 92% recognition rate after adaptation. A novel hybrid method is presented with a rate of about 77.2%.

  9. Adaptive control of an automatic transmission

    SciTech Connect

    Lentz, C.A.; Runde, J.K.; Hunter, J.H.; Wiles, C.R.

    1991-12-10

    This patent describes a vehicular automatic transmission in which a shift from a first speed ratio to a second speed ratio is carried out through concurrent disengagement of a fluid pressure operated off-going torque transmitting device associated with the first speed ratio and engagement of a fluid pressure operated oncoming torque transmitting device associated with the second speed ratio, a method of automatically shifting the transmission. It comprises disengaging the off-going torque transmitting device by reducing its pre-shift engagement pressure, engaging the on-coming torque transmitting device by supplying it with hydraulic pressure according to a pressure command having a predetermined initial value, and thereafter initiating a closed-loop control of the pressure command based on a predefined pattern of input and output speeds chosen to yield high quality shifting, the pressure command achieving a final value upon completion of the closed-loop control; comparing a difference between the final value of the pressure command and the pressure command at the initiation of the closed-loop control with a threshold to detect an aberration; and if the difference exceeds the threshold, adjusting the predetermined initial value by an amount which is a function of the difference so that on the next shift the pressure command will have an initial value which is substantially correct for achieving the predefined pattern of input and output speeds.

  10. Noise reduction using a multimicrophone array for automatic speech recognition on a handheld computer

    NASA Astrophysics Data System (ADS)

    Shaw, Scott T.; Larow, Andrew J.; Schoenborn, William E.; Rodriguez, Jason; Gibian, Gary L.

    2001-05-01

    A four-microphone array and signal-processing card have been integrated with a handheld computer such that the integrated device can be carried in and operated with one hand. Automatic speech recognition (ASR) was added to the USAMRMC/TATRCs Battlefield Medical Information System (BMIST) software using an approach that does not require modifying the original code, to produce a Speech-Capable Personal Digital Assistant (SCPDA). Noise reduction was added to allow operation in noisier environments, using the previously reported Hybrid Adaptive Beamformer (HAB) algorithm. Tests demonstrated benefits of the array over the HP/COMPAQ-iPAQ built-in shielded microphone for noise reduction and automatic speech recognition. In electroacoustic and human testing including voice control and voice annotation, the array provided substantial benefit over the built-in microphone. The benefit varied from about 5 dB (worst-case scenario, diffuse noise) to about 20 dB (best-case scenario, directional noise). Future work is expected to produce more rugged SCPDA prototypes for user evaluations, revise the design based on user feedback and real-world testing, and possibly to allow hands-free use by using ASR to replace the push-to-talk switch, providing feedback aurally and/or via a head-up display. [Work supported by the U.S. Army Medical Research and Materiel Command (USAMRMC), Contract No. DAMD17-02-C-0112.

  11. Advances in image compression and automatic target recognition; Proceedings of the Meeting, Orlando, FL, Mar. 30, 31, 1989

    NASA Technical Reports Server (NTRS)

    Tescher, Andrew G. (Editor)

    1989-01-01

    Various papers on image compression and automatic target recognition are presented. Individual topics addressed include: target cluster detection in cluttered SAR imagery, model-based target recognition using laser radar imagery, Smart Sensor front-end processor for feature extraction of images, object attitude estimation and tracking from a single video sensor, symmetry detection in human vision, analysis of high resolution aerial images for object detection, obscured object recognition for an ATR application, neural networks for adaptive shape tracking, statistical mechanics and pattern recognition, detection of cylinders in aerial range images, moving object tracking using local windows, new transform method for image data compression, quad-tree product vector quantization of images, predictive trellis encoding of imagery, reduced generalized chain code for contour description, compact architecture for a real-time vision system, use of human visibility functions in segmentation coding, color texture analysis and synthesis using Gibbs random fields.

  12. Automatic Speech Acquisition and Recognition for Spacesuit Audio Systems

    NASA Technical Reports Server (NTRS)

    Ye, Sherry

    2015-01-01

    NASA has a widely recognized but unmet need for novel human-machine interface technologies that can facilitate communication during astronaut extravehicular activities (EVAs), when loud noises and strong reverberations inside spacesuits make communication challenging. WeVoice, Inc., has developed a multichannel signal-processing method for speech acquisition in noisy and reverberant environments that enables automatic speech recognition (ASR) technology inside spacesuits. The technology reduces noise by exploiting differences between the statistical nature of signals (i.e., speech) and noise that exists in the spatial and temporal domains. As a result, ASR accuracy can be improved to the level at which crewmembers will find the speech interface useful. System components and features include beam forming/multichannel noise reduction, single-channel noise reduction, speech feature extraction, feature transformation and normalization, feature compression, and ASR decoding. Arithmetic complexity models were developed and will help designers of real-time ASR systems select proper tasks when confronted with constraints in computational resources. In Phase I of the project, WeVoice validated the technology. The company further refined the technology in Phase II and developed a prototype for testing and use by suited astronauts.

  13. Automatic speech recognition in air-ground data link

    NASA Technical Reports Server (NTRS)

    Armstrong, Herbert B.

    1989-01-01

    In the present air traffic system, information presented to the transport aircraft cockpit crew may originate from a variety of sources and may be presented to the crew in visual or aural form, either through cockpit instrument displays or, most often, through voice communication. Voice radio communications are the most error prone method for air-ground data link. Voice messages can be misstated or misunderstood and radio frequency congestion can delay or obscure important messages. To prevent proliferation, a multiplexed data link display can be designed to present information from multiple data link sources on a shared cockpit display unit (CDU) or multi-function display (MFD) or some future combination of flight management and data link information. An aural data link which incorporates an automatic speech recognition (ASR) system for crew response offers several advantages over visual displays. The possibility of applying ASR to the air-ground data link was investigated. The first step was to review current efforts in ASR applications in the cockpit and in air traffic control and evaluated their possible data line application. Next, a series of preliminary research questions is to be developed for possible future collaboration.

  14. Real-time automatic target recognition using Zernike moments

    NASA Astrophysics Data System (ADS)

    Schlosser, Wolfgang; von der Fecht, Arno

    2005-10-01

    Automatic target recognition (ATR) and classification is a computationally demanding task, but with the recent increase in the computing power for industry standard FPGAs and DSPs it has become a feasible and very useful application in military sensing equipment. The ATR method presented here uses Zernike moments of binary representations of infra-red targets for the classification process. Zernike moments are known for their good image representation capabilities based on their orthogonality property. They are often used because the magnitude of the moments provides rotation and scale invariance. For the detection of the target candidates, a given region of interest (ROI) is searched for possible target signatures using a simple threshold segmentation. From the resulting binary objects, the biggest or center-most object can be selected. For this target, the minimum enclosing circle is determined using the bounding box found during the segmentation process. This minimum enclosing circle is scaled to the complex unit disk, where Zernike moments are defined. The moments up to order five are then computed directly from the binary image using a fast recursive algorithm. The resulting twelve-dimensional moment magnitude vector is then classified with a 1-NN algorithm, where a set of class templates has been pre-computed off-line for each class using a simulated annealing approach for cluster analysis.

  15. Semi-automatic recognition of marine debris on beaches

    PubMed Central

    Ge, Zhenpeng; Shi, Huahong; Mei, Xuefei; Dai, Zhijun; Li, Daoji

    2016-01-01

    An increasing amount of anthropogenic marine debris is pervading the earth’s environmental systems, resulting in an enormous threat to living organisms. Additionally, the large amount of marine debris around the world has been investigated mostly through tedious manual methods. Therefore, we propose the use of a new technique, light detection and ranging (LIDAR), for the semi-automatic recognition of marine debris on a beach because of its substantially more efficient role in comparison with other more laborious methods. Our results revealed that LIDAR should be used for the classification of marine debris into plastic, paper, cloth and metal. Additionally, we reconstructed a 3-dimensional model of different types of debris on a beach with a high validity of debris revivification using LIDAR-based individual separation. These findings demonstrate that the availability of this new technique enables detailed observations to be made of debris on a large beach that was previously not possible. It is strongly suggested that LIDAR could be implemented as an appropriate monitoring tool for marine debris by global researchers and governments. PMID:27156433

  16. Automatic speech recognition in air-ground data link

    NASA Astrophysics Data System (ADS)

    Armstrong, Herbert B.

    1989-09-01

    In the present air traffic system, information presented to the transport aircraft cockpit crew may originate from a variety of sources and may be presented to the crew in visual or aural form, either through cockpit instrument displays or, most often, through voice communication. Voice radio communications are the most error prone method for air-ground data link. Voice messages can be misstated or misunderstood and radio frequency congestion can delay or obscure important messages. To prevent proliferation, a multiplexed data link display can be designed to present information from multiple data link sources on a shared cockpit display unit (CDU) or multi-function display (MFD) or some future combination of flight management and data link information. An aural data link which incorporates an automatic speech recognition (ASR) system for crew response offers several advantages over visual displays. The possibility of applying ASR to the air-ground data link was investigated. The first step was to review current efforts in ASR applications in the cockpit and in air traffic control and evaluated their possible data line application. Next, a series of preliminary research questions is to be developed for possible future collaboration.

  17. Semi-automatic recognition of marine debris on beaches

    NASA Astrophysics Data System (ADS)

    Ge, Zhenpeng; Shi, Huahong; Mei, Xuefei; Dai, Zhijun; Li, Daoji

    2016-05-01

    An increasing amount of anthropogenic marine debris is pervading the earth’s environmental systems, resulting in an enormous threat to living organisms. Additionally, the large amount of marine debris around the world has been investigated mostly through tedious manual methods. Therefore, we propose the use of a new technique, light detection and ranging (LIDAR), for the semi-automatic recognition of marine debris on a beach because of its substantially more efficient role in comparison with other more laborious methods. Our results revealed that LIDAR should be used for the classification of marine debris into plastic, paper, cloth and metal. Additionally, we reconstructed a 3-dimensional model of different types of debris on a beach with a high validity of debris revivification using LIDAR-based individual separation. These findings demonstrate that the availability of this new technique enables detailed observations to be made of debris on a large beach that was previously not possible. It is strongly suggested that LIDAR could be implemented as an appropriate monitoring tool for marine debris by global researchers and governments.

  18. Semi-automatic recognition of marine debris on beaches.

    PubMed

    Ge, Zhenpeng; Shi, Huahong; Mei, Xuefei; Dai, Zhijun; Li, Daoji

    2016-01-01

    An increasing amount of anthropogenic marine debris is pervading the earth's environmental systems, resulting in an enormous threat to living organisms. Additionally, the large amount of marine debris around the world has been investigated mostly through tedious manual methods. Therefore, we propose the use of a new technique, light detection and ranging (LIDAR), for the semi-automatic recognition of marine debris on a beach because of its substantially more efficient role in comparison with other more laborious methods. Our results revealed that LIDAR should be used for the classification of marine debris into plastic, paper, cloth and metal. Additionally, we reconstructed a 3-dimensional model of different types of debris on a beach with a high validity of debris revivification using LIDAR-based individual separation. These findings demonstrate that the availability of this new technique enables detailed observations to be made of debris on a large beach that was previously not possible. It is strongly suggested that LIDAR could be implemented as an appropriate monitoring tool for marine debris by global researchers and governments. PMID:27156433

  19. Photon-counting passive 3D image sensing and processing for automatic target recognition

    NASA Astrophysics Data System (ADS)

    Yeom, Seokwon; Javidi, Bahram; Watson, Edward

    2008-04-01

    In this paper we overview the nonlinear matched filtering for photon counting recognition with 3D passive sensing. The first and second order statistical properties of the nonlinear matched filtering can improve the recognition performance compared to the linear matched filtering. Automatic target reconstruction and recognition are addressed for partially occluded objects. The recognition performance is shown to be improved significantly in the reconstruction space. The discrimination capability is analyzed in terms of Fisher ratio (FR) and receiver operating characteristic (ROC) curves.

  20. Gaussian process classification using automatic relevance determination for SAR target recognition

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangrong; Gou, Limin; Hou, Biao; Jiao, Licheng

    2010-10-01

    In this paper, a Synthetic Aperture Radar Automatic Target Recognition approach based on Gaussian process (GP) classification is proposed. It adopts kernel principal component analysis to extract sample features and implements target recognition by using GP classification with automatic relevance determination (ARD) function. Compared with k-Nearest Neighbor, Naïve Bayes classifier and Support Vector Machine, GP with ARD has the advantage of automatic model selection and hyper-parameter optimization. The experiments on UCI datasets and MSTAR database show that our algorithm is self-tuning and has better recognition accuracy as well.

  1. Adaptive Neural Networks for Automatic Negotiation

    SciTech Connect

    Sakas, D. P.; Vlachos, D. S.; Simos, T. E.

    2007-12-26

    The use of fuzzy logic and fuzzy neural networks has been found effective for the modelling of the uncertain relations between the parameters of a negotiation procedure. The problem with these configurations is that they are static, that is, any new knowledge from theory or experiment lead to the construction of entirely new models. To overcome this difficulty, we apply in this work, an adaptive neural topology to model the negotiation process. Finally a simple simulation is carried in order to test the new method.

  2. Mispronunciation Detection for Language Learning and Speech Recognition Adaptation

    ERIC Educational Resources Information Center

    Ge, Zhenhao

    2013-01-01

    The areas of "mispronunciation detection" (or "accent detection" more specifically) within the speech recognition community are receiving increased attention now. Two application areas, namely language learning and speech recognition adaptation, are largely driving this research interest and are the focal points of this work.…

  3. A hierarchical structure for automatic meshing and adaptive FEM analysis

    NASA Technical Reports Server (NTRS)

    Kela, Ajay; Saxena, Mukul; Perucchio, Renato

    1987-01-01

    A new algorithm for generating automatically, from solid models of mechanical parts, finite element meshes that are organized as spatially addressable quaternary trees (for 2-D work) or octal trees (for 3-D work) is discussed. Because such meshes are inherently hierarchical as well as spatially addressable, they permit efficient substructuring techniques to be used for both global analysis and incremental remeshing and reanalysis. The global and incremental techniques are summarized and some results from an experimental closed loop 2-D system in which meshing, analysis, error evaluation, and remeshing and reanalysis are done automatically and adaptively are presented. The implementation of 3-D work is briefly discussed.

  4. A Limited-Vocabulary, Multi-Speaker Automatic Isolated Word Recognition System.

    ERIC Educational Resources Information Center

    Paul, James E., Jr.

    Techniques for automatic recognition of isolated words are investigated, and a computer simulation of a word recognition system is effected. Considered in detail are data acquisition and digitizing, word detection, amplitude and time normalization, short-time spectral estimation including spectral windowing, spectral envelope approximation,…

  5. Development of Portable Automatic Number Plate Recognition System on Android Mobile Phone

    NASA Astrophysics Data System (ADS)

    Mutholib, Abdul; Gunawan, Teddy S.; Chebil, Jalel; Kartiwi, Mira

    2013-12-01

    The Automatic Number Plate Recognition (ANPR) System has performed as the main role in various access control and security, such as: tracking of stolen vehicles, traffic violations (speed trap) and parking management system. In this paper, the portable ANPR implemented on android mobile phone is presented. The main challenges in mobile application are including higher coding efficiency, reduced computational complexity, and improved flexibility. Significance efforts are being explored to find suitable and adaptive algorithm for implementation of ANPR on mobile phone. ANPR system for mobile phone need to be optimize due to its limited CPU and memory resources, its ability for geo-tagging image captured using GPS coordinates and its ability to access online database to store the vehicle's information. In this paper, the design of portable ANPR on android mobile phone will be described as follows. First, the graphical user interface (GUI) for capturing image using built-in camera was developed to acquire vehicle plate number in Malaysia. Second, the preprocessing of raw image was done using contrast enhancement. Next, character segmentation using fixed pitch and an optical character recognition (OCR) using neural network were utilized to extract texts and numbers. Both character segmentation and OCR were using Tesseract library from Google Inc. The proposed portable ANPR algorithm was implemented and simulated using Android SDK on a computer. Based on the experimental results, the proposed system can effectively recognize the license plate number at 90.86%. The required processing time to recognize a license plate is only 2 seconds on average. The result is consider good in comparison with the results obtained from previous system that was processed in a desktop PC with the range of result from 91.59% to 98% recognition rate and 0.284 second to 1.5 seconds recognition time.

  6. Speech Recognition as a Support Service for Deaf and Hard of Hearing Students: Adaptation and Evaluation. Final Report to Spencer Foundation.

    ERIC Educational Resources Information Center

    Stinson, Michael; Elliot, Lisa; McKee, Barbara; Coyne, Gina

    This report discusses a project that adapted new automatic speech recognition (ASR) technology to provide real-time speech-to-text transcription as a support service for students who are deaf and hard of hearing (D/HH). In this system, as the teacher speaks, a hearing intermediary, or captionist, dictates into the speech recognition system in a…

  7. Multi-Stage System for Automatic Target Recognition

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin; Lu, Thomas T.; Ye, David; Edens, Weston; Johnson, Oliver

    2010-01-01

    A multi-stage automated target recognition (ATR) system has been designed to perform computer vision tasks with adequate proficiency in mimicking human vision. The system is able to detect, identify, and track targets of interest. Potential regions of interest (ROIs) are first identified by the detection stage using an Optimum Trade-off Maximum Average Correlation Height (OT-MACH) filter combined with a wavelet transform. False positives are then eliminated by the verification stage using feature extraction methods in conjunction with neural networks. Feature extraction transforms the ROIs using filtering and binning algorithms to create feature vectors. A feedforward back-propagation neural network (NN) is then trained to classify each feature vector and to remove false positives. The system parameter optimizations process has been developed to adapt to various targets and datasets. The objective was to design an efficient computer vision system that can learn to detect multiple targets in large images with unknown backgrounds. Because the target size is small relative to the image size in this problem, there are many regions of the image that could potentially contain the target. A cursory analysis of every region can be computationally efficient, but may yield too many false positives. On the other hand, a detailed analysis of every region can yield better results, but may be computationally inefficient. The multi-stage ATR system was designed to achieve an optimal balance between accuracy and computational efficiency by incorporating both models. The detection stage first identifies potential ROIs where the target may be present by performing a fast Fourier domain OT-MACH filter-based correlation. Because threshold for this stage is chosen with the goal of detecting all true positives, a number of false positives are also detected as ROIs. The verification stage then transforms the regions of interest into feature space, and eliminates false positives using an

  8. The effect of mismatched recording conditions on human and automatic speaker recognition in forensic applications.

    PubMed

    Alexander, A; Botti, F; Dessimoz, D; Drygajlo, A

    2004-12-01

    In this paper, we analyse mismatched technical conditions in training and testing phases of speaker recognition and their effect on forensic human and automatic speaker recognition. We use perceptual tests performed by non-experts and compare their performance with that of a baseline automatic speaker recognition system. The degradation of the accuracy of human recognition in mismatched recording conditions is contrasted with that of the automatic system under similar recording conditions. The conditions considered are of public switched telephone network (PSTN) and global system for mobile communications (GSM) transmission and background noise. The perceptual cues that the human subjects use to perceive differences in voices are studied along with their importance in different conditions. We discuss the possibility of increasing the accuracy of automatic systems using the perceptual cues that remain robust to mismatched conditions. We estimate the strength of evidence for both humans and automatic systems, calculating likelihood ratios using the perceptual scores for humans and the log-likelihood scores for automatic systems. PMID:15639600

  9. Adaptive optical biocompact disk for molecular recognition

    NASA Astrophysics Data System (ADS)

    Peng, Leilei; Varma, Manoj M.; Regnier, Fred E.; Nolte, David D.

    2005-05-01

    We report the use of adaptive interferometry to detect a monolayer of protein immobilized in a periodic pattern on a spinning glass disk. A photorefractive quantum-well device acting as an adaptive beam mixer in a two-wave mixing geometry stabilizes the interferometric quadrature in the far field. Phase modulation generated by the spinning biolayer pattern in the probe beam is detected as a homodyne signal free of amplitude modulation. Binding between antibodies and immobilized antigens in a two-analyte immunoassay was tested with high specificity and without observable cross reactivity.

  10. Speech Acquisition and Automatic Speech Recognition for Integrated Spacesuit Audio Systems

    NASA Technical Reports Server (NTRS)

    Huang, Yiteng; Chen, Jingdong; Chen, Shaoyan

    2010-01-01

    A voice-command human-machine interface system has been developed for spacesuit extravehicular activity (EVA) missions. A multichannel acoustic signal processing method has been created for distant speech acquisition in noisy and reverberant environments. This technology reduces noise by exploiting differences in the statistical nature of signal (i.e., speech) and noise that exists in the spatial and temporal domains. As a result, the automatic speech recognition (ASR) accuracy can be improved to the level at which crewmembers would find the speech interface useful. The developed speech human/machine interface will enable both crewmember usability and operational efficiency. It can enjoy a fast rate of data/text entry, small overall size, and can be lightweight. In addition, this design will free the hands and eyes of a suited crewmember. The system components and steps include beam forming/multi-channel noise reduction, single-channel noise reduction, speech feature extraction, feature transformation and normalization, feature compression, model adaption, ASR HMM (Hidden Markov Model) training, and ASR decoding. A state-of-the-art phoneme recognizer can obtain an accuracy rate of 65 percent when the training and testing data are free of noise. When it is used in spacesuits, the rate drops to about 33 percent. With the developed microphone array speech-processing technologies, the performance is improved and the phoneme recognition accuracy rate rises to 44 percent. The recognizer can be further improved by combining the microphone array and HMM model adaptation techniques and using speech samples collected from inside spacesuits. In addition, arithmetic complexity models for the major HMMbased ASR components were developed. They can help real-time ASR system designers select proper tasks when in the face of constraints in computational resources.

  11. Metacognitive awareness and adaptive recognition biases

    PubMed Central

    Selmeczy, Diana; Dobbins, Ian G.

    2013-01-01

    In contrast to prior literature that primarily focuses on the negative influences of misleading external sources on memory judgments, we investigated whether participants can capitalize on generally reliable recommendations in order to improve their net performance, focusing on potential roles for metacognitive monitoring (i.e., knowledge about one’s own memory reliability) and performance feedback. In Experiment 1 participants received explicit external recommendations (“Likely Old” or “Likely New”) that were 75% valid during recognition tests containing deeply and shallowly encoded materials. In Experiment 2 participants received recommendations of differing validity (65% and 85%). Across both experiments discrimination improved when external recommendations were present versus absent. Critically, this improvement was influenced by metacognitive monitoring ability measured in the absence of recommendations. Thus, effective incorporation of external recommendations depended in part on how sensitive observers were to gradations of their internal evidence when recommendations were absent. Finally, corrective feedback did not improve participants’ ability to use external recommendations suggesting that metacognitive monitoring ability during recognition is not easily improved via feedback. PMID:22845066

  12. Research into automatic recognition of joints in human symmetrical movements

    NASA Astrophysics Data System (ADS)

    Fan, Yifang; Li, Zhiyu

    2008-03-01

    High speed photography is a major means of collecting data from human body movement. It enables the automatic identification of joints, which brings great significance to the research, treatment and recovery of injuries, the analysis to the diagnosis of sport techniques and the ergonomics. According to the features that when the adjacent joints of human body are in planetary motion, their distance remains the same, and according to the human body joint movement laws (such as the territory of the articular anatomy and the kinematic features), a new approach is introduced to process the image thresholding of joints filmed by the high speed camera, to automatically identify the joints and to automatically trace the joint points (by labeling markers at the joints). Based upon the closure of marking points, automatic identification can be achieved through thresholding treatment. Due to the screening frequency and the laws of human segment movement, when the marking points have been initialized, their automatic tracking can be achieved with the progressive sequential images.Then the testing results, the data from three-dimensional force platform and the characteristics that human body segment will only rotate around the closer ending segment when the segment has no boding force and only valid to the conservative force all tell that after being analyzed kinematically, the approach is approved to be valid.

  13. Phase coherence adaptive processor for automatic signal detection and identification

    NASA Astrophysics Data System (ADS)

    Wagstaff, Ronald A.

    2006-05-01

    A continuously adapting acoustic signal processor with an automatic detection/decision aid is presented. Its purpose is to preserve the signals of tactical interest, and filter out other signals and noise. It utilizes single sensor or beamformed spectral data and transforms the signal and noise phase angles into "aligned phase angles" (APA). The APA increase the phase temporal coherence of signals and leave the noise incoherent. Coherence thresholds are set, which are representative of the type of source "threat vehicle" and the geographic area or volume in which it is operating. These thresholds separate signals, based on the "quality" of their APA coherence. An example is presented in which signals from a submerged source in the ocean are preserved, while clutter signals from ships and noise are entirely eliminated. Furthermore, the "signals of interest" were identified by the processor's automatic detection aid. Similar performance is expected for air and ground vehicles. The processor's equations are formulated in such a manner that they can be tuned to eliminate noise and exploit signal, based on the "quality" of their APA temporal coherence. The mathematical formulation for this processor is presented, including the method by which the processor continuously self-adapts. Results show nearly complete elimination of noise, with only the selected category of signals remaining, and accompanying enhancements in spectral and spatial resolution. In most cases, the concept of signal-to-noise ratio looses significance, and "adaptive automated /decision aid" is more relevant.

  14. Toward automatic recognition of high quality clinical evidence.

    PubMed

    Kilicoglu, Halil; Demner-Fushman, Dina; Rindflesch, Thomas C; Wilczynski, Nancy L; Haynes, R Brian

    2008-01-01

    Automatic methods for recognizing topically relevant documents supported by high quality research can assist clinicians in practicing evidence-based medicine. We approach the challenge of identifying articles with high quality clinical evidence as a binary classification problem. Combining predictions from supervised machine learning methods and using deep semantic features, we achieve 73.5% precision and 67% recall. PMID:18998881

  15. Assessing Children's Home Language Environments Using Automatic Speech Recognition Technology

    ERIC Educational Resources Information Center

    Greenwood, Charles R.; Thiemann-Bourque, Kathy; Walker, Dale; Buzhardt, Jay; Gilkerson, Jill

    2011-01-01

    The purpose of this research was to replicate and extend some of the findings of Hart and Risley using automatic speech processing instead of human transcription of language samples. The long-term goal of this work is to make the current approach to speech processing possible by researchers and clinicians working on a daily basis with families and…

  16. Improved Techniques for Automatic Chord Recognition from Music Audio Signals

    ERIC Educational Resources Information Center

    Cho, Taemin

    2014-01-01

    This thesis is concerned with the development of techniques that facilitate the effective implementation of capable automatic chord transcription from music audio signals. Since chord transcriptions can capture many important aspects of music, they are useful for a wide variety of music applications and also useful for people who learn and perform…

  17. Automatic recognition of lactating sow behaviors through depth image processing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Manual observation and classification of animal behaviors is laborious, time-consuming, and of limited ability to process large amount of data. A computer vision-based system was developed that automatically recognizes sow behaviors (lying, sitting, standing, kneeling, feeding, drinking, and shiftin...

  18. Automatic recognition system of aquatic organisms by classical and fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Lauffer, M.; Genty, F.; Margueron, S.; Collette, J. L.; Pihan, J. C.

    2015-05-01

    Blooming of algae and more generally phytoplankton in water ponds or marine environments can lead to hyper eutrophication and lethal consequences on other organisms. The selective recognition of invading species is investigated by automatic recognition algorithms of optical and fluorescence imaging. On one hand, morphological characteristics of algae of microscopic imaging are treated. The image processing lead to the identification the genus of aquatic organisms and compared to a morphologic data base. On the other hand, fluorescence images allow an automatic recognition based on multispectral data that identify locally the ratio of different photosynthetic pigments and gives a unique finger print of algae. It is shown that the combination of both methods are useful in the recognition of aquatic organisms.

  19. Four-Channel Biosignal Analysis and Feature Extraction for Automatic Emotion Recognition

    NASA Astrophysics Data System (ADS)

    Kim, Jonghwa; André, Elisabeth

    This paper investigates the potential of physiological signals as a reliable channel for automatic recognition of user's emotial state. For the emotion recognition, little attention has been paid so far to physiological signals compared to audio-visual emotion channels such as facial expression or speech. All essential stages of automatic recognition system using biosignals are discussed, from recording physiological dataset up to feature-based multiclass classification. Four-channel biosensors are used to measure electromyogram, electrocardiogram, skin conductivity and respiration changes. A wide range of physiological features from various analysis domains, including time/frequency, entropy, geometric analysis, subband spectra, multiscale entropy, etc., is proposed in order to search the best emotion-relevant features and to correlate them with emotional states. The best features extracted are specified in detail and their effectiveness is proven by emotion recognition results.

  20. Automatic speech recognition research at NASA-Ames Research Center

    NASA Technical Reports Server (NTRS)

    Coler, Clayton R.; Plummer, Robert P.; Huff, Edward M.; Hitchcock, Myron H.

    1977-01-01

    A trainable acoustic pattern recognizer manufactured by Scope Electronics is presented. The voice command system VCS encodes speech by sampling 16 bandpass filters with center frequencies in the range from 200 to 5000 Hz. Variations in speaking rate are compensated for by a compression algorithm that subdivides each utterance into eight subintervals in such a way that the amount of spectral change within each subinterval is the same. The recorded filter values within each subinterval are then reduced to a 15-bit representation, giving a 120-bit encoding for each utterance. The VCS incorporates a simple recognition algorithm that utilizes five training samples of each word in a vocabulary of up to 24 words. The recognition rate of approximately 85 percent correct for untrained speakers and 94 percent correct for trained speakers was not considered adequate for flight systems use. Therefore, the built-in recognition algorithm was disabled, and the VCS was modified to transmit 120-bit encodings to an external computer for recognition.

  1. Studies in automatic speech recognition and its application in aerospace

    NASA Astrophysics Data System (ADS)

    Taylor, Michael Robinson

    Human communication is characterized in terms of the spectral and temporal dimensions of speech waveforms. Electronic speech recognition strategies based on Dynamic Time Warping and Markov Model algorithms are described and typical digit recognition error rates are tabulated. The application of Direct Voice Input (DVI) as an interface between man and machine is explored within the context of civil and military aerospace programmes. Sources of physical and emotional stress affecting speech production within military high performance aircraft are identified. Experimental results are reported which quantify fundamental frequency and coarse temporal dimensions of male speech as a function of the vibration, linear acceleration and noise levels typical of aerospace environments; preliminary indications of acoustic phonetic variability reported by other researchers are summarized. Connected whole-word pattern recognition error rates are presented for digits spoken under controlled Gz sinusoidal whole-body vibration. Correlations are made between significant increases in recognition error rate and resonance of the abdomen-thorax and head subsystems of the body. The phenomenon of vibrato style speech produced under low frequency whole-body Gz vibration is also examined. Interactive DVI system architectures and avionic data bus integration concepts are outlined together with design procedures for the efficient development of pilot-vehicle command and control protocols.

  2. Spectral saliency via automatic adaptive amplitude spectrum analysis

    NASA Astrophysics Data System (ADS)

    Wang, Xiaodong; Dai, Jialun; Zhu, Yafei; Zheng, Haiyong; Qiao, Xiaoyan

    2016-03-01

    Suppressing nonsalient patterns by smoothing the amplitude spectrum at an appropriate scale has been shown to effectively detect the visual saliency in the frequency domain. Different filter scales are required for different types of salient objects. We observe that the optimal scale for smoothing amplitude spectrum shares a specific relation with the size of the salient region. Based on this observation and the bottom-up saliency detection characterized by spectrum scale-space analysis for natural images, we propose to detect visual saliency, especially with salient objects of different sizes and locations via automatic adaptive amplitude spectrum analysis. We not only provide a new criterion for automatic optimal scale selection but also reserve the saliency maps corresponding to different salient objects with meaningful saliency information by adaptive weighted combination. The performance of quantitative and qualitative comparisons is evaluated by three different kinds of metrics on the four most widely used datasets and one up-to-date large-scale dataset. The experimental results validate that our method outperforms the existing state-of-the-art saliency models for predicting human eye fixations in terms of accuracy and robustness.

  3. Using Automatic Speech Recognition to Dictate Mathematical Expressions: The Development of the "TalkMaths" Application at Kingston University

    ERIC Educational Resources Information Center

    Wigmore, Angela; Hunter, Gordon; Pflugel, Eckhard; Denholm-Price, James; Binelli, Vincent

    2009-01-01

    Speech technology--especially automatic speech recognition--has now advanced to a level where it can be of great benefit both to able-bodied people and those with various disabilities. In this paper we describe an application "TalkMaths" which, using the output from a commonly-used conventional automatic speech recognition system, enables the user…

  4. Dynamic Data Driven Applications Systems (DDDAS) modeling for automatic target recognition

    NASA Astrophysics Data System (ADS)

    Blasch, Erik; Seetharaman, Guna; Darema, Frederica

    2013-05-01

    The Dynamic Data Driven Applications System (DDDAS) concept uses applications modeling, mathematical algorithms, and measurement systems to work with dynamic systems. A dynamic systems such as Automatic Target Recognition (ATR) is subject to sensor, target, and the environment variations over space and time. We use the DDDAS concept to develop an ATR methodology for multiscale-multimodal analysis that seeks to integrated sensing, processing, and exploitation. In the analysis, we use computer vision techniques to explore the capabilities and analogies that DDDAS has with information fusion. The key attribute of coordination is the use of sensor management as a data driven techniques to improve performance. In addition, DDDAS supports the need for modeling from which uncertainty and variations are used within the dynamic models for advanced performance. As an example, we use a Wide-Area Motion Imagery (WAMI) application to draw parallels and contrasts between ATR and DDDAS systems that warrants an integrated perspective. This elementary work is aimed at triggering a sequence of deeper insightful research towards exploiting sparsely sampled piecewise dense WAMI measurements - an application where the challenges of big-data with regards to mathematical fusion relationships and high-performance computations remain significant and will persist. Dynamic data-driven adaptive computations are required to effectively handle the challenges with exponentially increasing data volume for advanced information fusion systems solutions such as simultaneous target tracking and ATR.

  5. Is Handedness Recognition Automatic?: A Study Using a Simon-Like Paradigm

    ERIC Educational Resources Information Center

    Ottoboni, Giovanni; Tessari, Alessia; Cubelli, Roberto; Umilta, Carlo

    2005-01-01

    The authors used a modified Simon task (J. R. Simon, 1969) to assess the automatic recognition of handedness. Participants responded to the color of a circle in the center of the photograph of a right or a left hand, displayed in the center of the computer screen. A regular Simon effect was found for back views, whereas a reverse Simon effect was…

  6. Evaluating Automatic Speech Recognition-Based Language Learning Systems: A Case Study

    ERIC Educational Resources Information Center

    van Doremalen, Joost; Boves, Lou; Colpaert, Jozef; Cucchiarini, Catia; Strik, Helmer

    2016-01-01

    The purpose of this research was to evaluate a prototype of an automatic speech recognition (ASR)-based language learning system that provides feedback on different aspects of speaking performance (pronunciation, morphology and syntax) to students of Dutch as a second language. We carried out usability reviews, expert reviews and user tests to…

  7. Developing and Evaluating an Oral Skills Training Website Supported by Automatic Speech Recognition Technology

    ERIC Educational Resources Information Center

    Chen, Howard Hao-Jan

    2011-01-01

    Oral communication ability has become increasingly important to many EFL students. Several commercial software programs based on automatic speech recognition (ASR) technologies are available but their prices are not affordable for many students. This paper will demonstrate how the Microsoft Speech Application Software Development Kit (SASDK), a…

  8. Concept Recognition in an Automatic Text-Processing System for the Life Sciences.

    ERIC Educational Resources Information Center

    Vleduts-Stokolov, Natasha

    1987-01-01

    Describes a system developed for the automatic recognition of biological concepts in titles of scientific articles; reports results of several pilot experiments which tested the system's performance; analyzes typical ambiguity problems encountered by the system; describes a disambiguation technique that was developed; and discusses future plans…

  9. Speech Recognition-based and Automaticity Programs to Help Students with Severe Reading and Spelling Problems

    ERIC Educational Resources Information Center

    Higgins, Eleanor L.; Raskind, Marshall H.

    2004-01-01

    This study was conducted to assess the effectiveness of two programs developed by the Frostig Center Research Department to improve the reading and spelling of students with learning disabilities (LD): a computer Speech Recognition-based Program (SRBP) and a computer and text-based Automaticity Program (AP). Twenty-eight LD students with reading…

  10. Automatic Speech Recognition Technology as an Effective Means for Teaching Pronunciation

    ERIC Educational Resources Information Center

    Elimat, Amal Khalil; AbuSeileek, Ali Farhan

    2014-01-01

    This study aimed to explore the effect of using automatic speech recognition technology (ASR) on the third grade EFL students' performance in pronunciation, whether teaching pronunciation through ASR is better than regular instruction, and the most effective teaching technique (individual work, pair work, or group work) in teaching pronunciation…

  11. Errors in Automatic Speech Recognition versus Difficulties in Second Language Listening

    ERIC Educational Resources Information Center

    Mirzaei, Maryam Sadat; Meshgi, Kourosh; Akita, Yuya; Kawahara, Tatsuya

    2015-01-01

    Automatic Speech Recognition (ASR) technology has become a part of contemporary Computer-Assisted Language Learning (CALL) systems. ASR systems however are being criticized for their erroneous performance especially when utilized as a mean to develop skills in a Second Language (L2) where errors are not tolerated. Nevertheless, these errors can…

  12. Automatic ground control point recognition with parallel associative memory

    NASA Technical Reports Server (NTRS)

    Al-Tahir, Raid; Toth, Charles K.; Schenck, Anton F.

    1990-01-01

    The basic principle of the associative memory is to match the unknown input pattern against a stored training set, and responding with the 'closest match' and the corresponding label. Generally, an associative memory system requires two preparatory steps: selecting attributes of the pattern class, and training the system by associating patterns with labels. Experimental results gained from using Parallel Associative Memory are presented. The primary concern is an automatic search for ground control points in aerial photographs. Synthetic patterns are tested followed by real data. The results are encouraging as a relatively high level of correct matches is reached.

  13. Adaptive myoelectric pattern recognition toward improved multifunctional prosthesis control.

    PubMed

    Liu, Jie

    2015-04-01

    The non-stationary property of electromyography (EMG) signals in real life settings usually hinders the clinical application of the myoelectric pattern recognition for prosthesis control. The classical EMG pattern recognition approach consists of two separate steps: training and testing, without considering the changes between training and testing data induced by electrode shift, fatigue, impedance changes and psychological factors, and often results in performance degradation. The aim of this study was to develop an adaptive myoelectric pattern recognition system, aiming to retrain the classifier online with the testing data without supervision, providing a self-correction mechanism for suppressing misclassifications. This paper presents an adaptive unsupervised classifier based on support vector machine (SVM) to improve the classification performance. Experimental data from 15 healthy subjects were used to evaluate performance. Preliminary study on intra-session and inter-session EMG data was conducted to verify the performance of the unsupervised adaptive SVM classifier. The unsupervised adaptive SVM classifier outperformed the conventional SVM by 3.3% and 8.0% for the combination of time-domain and autoregressive features in the intra-session and inter-session tests, respectively. The proposed approach is capable of incorporating the useful information in testing data to the classification model by taking into account the overtime changes in the testing data with respect to the training data to retrain the original classifier, therefore providing a self-correction mechanism for suppressing misclassifications. PMID:25749182

  14. Adding articulatory features to acoustic features for automatic speech recognition

    SciTech Connect

    Zlokarnik, I.

    1995-05-01

    A hidden-Markov-model (HMM) based speech recognition system was evaluated that makes use of simultaneously recorded acoustic and articulatory data. The articulatory measurements were gathered by means of electromagnetic articulography and describe the movement of small coils fixed to the speakers` tongue and jaw during the production of German V{sub 1}CV{sub 2} sequences [P. Hoole and S. Gfoerer, J. Acoust. Soc. Am. Suppl. 1 {bold 87}, S123 (1990)]. Using the coordinates of the coil positions as an articulatory representation, acoustic and articulatory features were combined to make up an acoustic--articulatory feature vector. The discriminant power of this combined representation was evaluated for two subjects on a speaker-dependent isolated word recognition task. When the articulatory measurements were used both for training and testing the HMMs, the articulatory representation was capable of reducing the error rate of comparable acoustic-based HMMs by a relative percentage of more than 60%. In a separate experiment, the articulatory movements during the testing phase were estimated using a multilayer perceptron that performed an acoustic-to-articulatory mapping. Under these more realistic conditions, when articulatory measurements are only available during the training, the error rate could be reduced by a relative percentage of 18% to 25%.

  15. Automatic recognition of bone for x-ray bone densitometry

    NASA Astrophysics Data System (ADS)

    Shepp, Larry A.; Vardi, Y.; Lazewatsky, J.; Libeau, James; Stein, Jay A.

    1991-06-01

    We described a method for automatically identifying and separating pixels representing bone from those representing soft tissue in a dual- energy point-scanned projection radiograph of the abdomen. In order to achieve stable quantitative measurement of projected bone mineral density, a calibration using sample bone in regions containing only soft tissue must be performed. In addition, the projected area of bone must be measured. We show that, using an image with a realistically low noise, the histogram of pixel values exhibits a well-defined peak corresponding to the soft tissue region. A threshold at a fixed multiple of the calibration segment value readily separates bone from soft tissue in a wide variety of patient studies. Our technique, which is employed in the Hologic QDR-1000 Bone Densitometer, is rapid, robust, and significantly simpler than a conventional artificial intelligence approach using edge-detection to define objects and expert systems to recognize them.

  16. Automatic music genres classification as a pattern recognition problem

    NASA Astrophysics Data System (ADS)

    Ul Haq, Ihtisham; Khan, Fauzia; Sharif, Sana; Shaukat, Arsalan

    2013-12-01

    Music genres are the simplest and effect descriptors for searching music libraries stores or catalogues. The paper compares the results of two automatic music genres classification systems implemented by using two different yet simple classifiers (K-Nearest Neighbor and Naïve Bayes). First a 10-12 second sample is selected and features are extracted from it, and then based on those features results of both classifiers are represented in the form of accuracy table and confusion matrix. An experiment carried out on test 60 taken from middle of a song represents the true essence of its genre as compared to the samples taken from beginning and ending of a song. The novel techniques have achieved an accuracy of 91% and 78% by using Naïve Bayes and KNN classifiers respectively.

  17. Automatic air-to-ground target recognition using LWIR FPAs

    NASA Astrophysics Data System (ADS)

    Amadieu, Jean-Louis; Fraysse, Vincent

    1996-06-01

    The theoretical potential of optical sensors in terms of geometrical resolution makes them the ideal solution for achieving the terminal precision guidance of today's missiles. This paper describes such a sensor, working in the 8 to 12 micrometer spectral domain by using a 64 by 64 IRCCD focal plane array, and whose main mission is to recognize various types of armored vehicles within complex scenes that possibly include other vehicles of similar nature. The target recognition process is based upon a Bayesian approach and can be briefly described as follows: after a classical processing stage that performs the filtering and the multi- thresholding, the target recognition algorithm evaluates a similarity level between the objects, including the target, seen in the IR scene and the 'theoretical' target whose some mean, generic features have been implemented in a database. The surroundings of the target and its orientation in the IR scene are 'a priori' unknown. The similarity level is based on calculation of the Mahalanobis distance between the object features vector and the mean features vector of the model; this calculation involves a covariance matrix which is significant of the errors affecting the measured features and that in particular stem form the limited spatial resolution of the sensor, the detector noise and the sensor- to-target range estimation error. With respect to the sensor hardware, its main opto-mechanical characteristics as well as some electro-optics data are indicates; some examples of target acquisition in complex scenes involving different kinds of IR counter measures are also presented.

  18. Automatic target recognition performance losses in the presence of atmospheric and camera effects

    NASA Astrophysics Data System (ADS)

    Chen, Xiaohan; Schmid, Natalia A.

    2010-04-01

    The importance of networked automatic target recognition systems for surveillance applications is continuously increasing. Because of the requirement of a low cost and limited payload, these networks are traditionally equipped with lightweight, low-cost sensors such as electro-optical (EO) or infrared sensors. The quality of imagery acquired by these sensors critically depends on the environmental conditions, type and characteristics of sensors, and absence of occluding or concealing objects. In the past, a large number of efficient detection, tracking, and recognition algorithms have been designed to operate on imagery of good quality. However, detection and recognition limits under nonideal environmental and/or sensor-based distortions have not been carefully evaluated. We introduce a fully automatic target recognition system that involves a Haar-based detector to select potential regions of interest within images, performs adjustment of detected regions, segments potential targets using a region-based approach, identifies targets using Bessel K form-based encoding, and performs clutter rejection. We investigate the effects of environmental and camera conditions on target detection and recognition performance. Two databases are involved. One is a simulated database generated using a 3-D tool. The other database is formed by imaging 10 die-cast models of military vehicles from different elevation and orientation angles. The database contains imagery acquired both indoors and outdoors. The indoors data set is composed of clear and distorted images. The distortions include defocus blur, sided illumination, low contrast, shadows, and occlusions. All images in this database, however, have a uniform (blue) background. The indoors database is applied to evaluate the degradations of recognition performance due to camera and illumination effects. The database collected outdoors includes a real background and is much more complex to process. The numerical results

  19. EEG Responses to Auditory Stimuli for Automatic Affect Recognition

    PubMed Central

    Hettich, Dirk T.; Bolinger, Elaina; Matuz, Tamara; Birbaumer, Niels; Rosenstiel, Wolfgang; Spüler, Martin

    2016-01-01

    Brain state classification for communication and control has been well established in the area of brain-computer interfaces over the last decades. Recently, the passive and automatic extraction of additional information regarding the psychological state of users from neurophysiological signals has gained increased attention in the interdisciplinary field of affective computing. We investigated how well specific emotional reactions, induced by auditory stimuli, can be detected in EEG recordings. We introduce an auditory emotion induction paradigm based on the International Affective Digitized Sounds 2nd Edition (IADS-2) database also suitable for disabled individuals. Stimuli are grouped in three valence categories: unpleasant, neutral, and pleasant. Significant differences in time domain domain event-related potentials are found in the electroencephalogram (EEG) between unpleasant and neutral, as well as pleasant and neutral conditions over midline electrodes. Time domain data were classified in three binary classification problems using a linear support vector machine (SVM) classifier. We discuss three classification performance measures in the context of affective computing and outline some strategies for conducting and reporting affect classification studies. PMID:27375410

  20. EEG Responses to Auditory Stimuli for Automatic Affect Recognition.

    PubMed

    Hettich, Dirk T; Bolinger, Elaina; Matuz, Tamara; Birbaumer, Niels; Rosenstiel, Wolfgang; Spüler, Martin

    2016-01-01

    Brain state classification for communication and control has been well established in the area of brain-computer interfaces over the last decades. Recently, the passive and automatic extraction of additional information regarding the psychological state of users from neurophysiological signals has gained increased attention in the interdisciplinary field of affective computing. We investigated how well specific emotional reactions, induced by auditory stimuli, can be detected in EEG recordings. We introduce an auditory emotion induction paradigm based on the International Affective Digitized Sounds 2nd Edition (IADS-2) database also suitable for disabled individuals. Stimuli are grouped in three valence categories: unpleasant, neutral, and pleasant. Significant differences in time domain domain event-related potentials are found in the electroencephalogram (EEG) between unpleasant and neutral, as well as pleasant and neutral conditions over midline electrodes. Time domain data were classified in three binary classification problems using a linear support vector machine (SVM) classifier. We discuss three classification performance measures in the context of affective computing and outline some strategies for conducting and reporting affect classification studies. PMID:27375410

  1. Automatic identification of oculomotor behavior using pattern recognition techniques.

    PubMed

    Korda, Alexandra I; Asvestas, Pantelis A; Matsopoulos, George K; Ventouras, Errikos M; Smyrnis, Nikolaos P

    2015-05-01

    In this paper, a methodological scheme for identifying distinct patterns of oculomotor behavior such as saccades, microsaccades, blinks and fixations from time series of eye's angular displacement is presented. The first step of the proposed methodology involves signal detrending for artifacts removal and estimation of eye's angular velocity. Then, feature vectors from fourteen first-order statistical features are formed from each angular displacement and velocity signal using sliding, fixed-length time windows. The obtained feature vectors are used for training and testing three artificial neural network classifiers, connected in cascade. The three classifiers discriminate between blinks and non-blinks, fixations and non-fixations and saccades and microsaccades, respectively. The proposed methodology was tested on a dataset from 1392 subjects, each performing three oculomotor fixation conditions. The average overall accuracy of the three classifiers, with respect to the manual identification of eye movements by experts, was 95.9%. The proposed methodological scheme provided better results than the well-known Velocity Threshold algorithm, which was used for comparison. The findings of the present study indicate that the utilization of pattern recognition techniques in the task of identifying the various eye movements may provide accurate and robust results. PMID:25836568

  2. Towards automatic recognition of scientifically rigorous clinical research evidence.

    PubMed

    Kilicoglu, Halil; Demner-Fushman, Dina; Rindflesch, Thomas C; Wilczynski, Nancy L; Haynes, R Brian

    2009-01-01

    The growing numbers of topically relevant biomedical publications readily available due to advances in document retrieval methods pose a challenge to clinicians practicing evidence-based medicine. It is increasingly time consuming to acquire and critically appraise the available evidence. This problem could be addressed in part if methods were available to automatically recognize rigorous studies immediately applicable in a specific clinical situation. We approach the problem of recognizing studies containing useable clinical advice from retrieved topically relevant articles as a binary classification problem. The gold standard used in the development of PubMed clinical query filters forms the basis of our approach. We identify scientifically rigorous studies using supervised machine learning techniques (Naïve Bayes, support vector machine (SVM), and boosting) trained on high-level semantic features. We combine these methods using an ensemble learning method (stacking). The performance of learning methods is evaluated using precision, recall and F(1) score, in addition to area under the receiver operating characteristic (ROC) curve (AUC). Using a training set of 10,000 manually annotated MEDLINE citations, and a test set of an additional 2,000 citations, we achieve 73.7% precision and 61.5% recall in identifying rigorous, clinically relevant studies, with stacking over five feature-classifier combinations and 82.5% precision and 84.3% recall in recognizing rigorous studies with treatment focus using stacking over word + metadata feature vector. Our results demonstrate that a high quality gold standard and advanced classification methods can help clinicians acquire best evidence from the medical literature. PMID:18952929

  3. A Full-Body Layered Deformable Model for Automatic Model-Based Gait Recognition

    NASA Astrophysics Data System (ADS)

    Lu, Haiping; Plataniotis, Konstantinos N.; Venetsanopoulos, Anastasios N.

    2007-12-01

    This paper proposes a full-body layered deformable model (LDM) inspired by manually labeled silhouettes for automatic model-based gait recognition from part-level gait dynamics in monocular video sequences. The LDM is defined for the fronto-parallel gait with 22 parameters describing the human body part shapes (widths and lengths) and dynamics (positions and orientations). There are four layers in the LDM and the limbs are deformable. Algorithms for LDM-based human body pose recovery are then developed to estimate the LDM parameters from both manually labeled and automatically extracted silhouettes, where the automatic silhouette extraction is through a coarse-to-fine localization and extraction procedure. The estimated LDM parameters are used for model-based gait recognition by employing the dynamic time warping for matching and adopting the combination scheme in AdaBoost.M2. While the existing model-based gait recognition approaches focus primarily on the lower limbs, the estimated LDM parameters enable us to study full-body model-based gait recognition by utilizing the dynamics of the upper limbs, the shoulders and the head as well. In the experiments, the LDM-based gait recognition is tested on gait sequences with differences in shoe-type, surface, carrying condition and time. The results demonstrate that the recognition performance benefits from not only the lower limb dynamics, but also the dynamics of the upper limbs, the shoulders and the head. In addition, the LDM can serve as an analysis tool for studying factors affecting the gait under various conditions.

  4. Kernel sparse coding method for automatic target recognition in infrared imagery using covariance descriptor

    NASA Astrophysics Data System (ADS)

    Yang, Chunwei; Yao, Junping; Sun, Dawei; Wang, Shicheng; Liu, Huaping

    2016-05-01

    Automatic target recognition in infrared imagery is a challenging problem. In this paper, a kernel sparse coding method for infrared target recognition using covariance descriptor is proposed. First, covariance descriptor combining gray intensity and gradient information of the infrared target is extracted as a feature representation. Then, due to the reason that covariance descriptor lies in non-Euclidean manifold, kernel sparse coding theory is used to solve this problem. We verify the efficacy of the proposed algorithm in terms of the confusion matrices on the real images consisting of seven categories of infrared vehicle targets.

  5. Call recognition and individual identification of fish vocalizations based on automatic speech recognition: An example with the Lusitanian toadfish.

    PubMed

    Vieira, Manuel; Fonseca, Paulo J; Amorim, M Clara P; Teixeira, Carlos J C

    2015-12-01

    The study of acoustic communication in animals often requires not only the recognition of species specific acoustic signals but also the identification of individual subjects, all in a complex acoustic background. Moreover, when very long recordings are to be analyzed, automatic recognition and identification processes are invaluable tools to extract the relevant biological information. A pattern recognition methodology based on hidden Markov models is presented inspired by successful results obtained in the most widely known and complex acoustical communication signal: human speech. This methodology was applied here for the first time to the detection and recognition of fish acoustic signals, specifically in a stream of round-the-clock recordings of Lusitanian toadfish (Halobatrachus didactylus) in their natural estuarine habitat. The results show that this methodology is able not only to detect the mating sounds (boatwhistles) but also to identify individual male toadfish, reaching an identification rate of ca. 95%. Moreover this method also proved to be a powerful tool to assess signal durations in large data sets. However, the system failed in recognizing other sound types. PMID:26723348

  6. Stable odor recognition by a neuro-adaptive electronic nose.

    PubMed

    Martinelli, Eugenio; Magna, Gabriele; Polese, Davide; Vergara, Alexander; Schild, Detlev; Di Natale, Corrado

    2015-01-01

    Sensitivity, selectivity and stability are decisive properties of sensors. In chemical gas sensors odor recognition can be severely compromised by poor signal stability, particularly in real life applications where the sensors are exposed to unpredictable sequences of odors under changing external conditions. Although olfactory receptor neurons in the nose face similar stimulus sequences under likewise changing conditions, odor recognition is very stable and odorants can be reliably identified independently from past odor perception. We postulate that appropriate pre-processing of the output signals of chemical sensors substantially contributes to the stability of odor recognition, in spite of marked sensor instabilities. To investigate this hypothesis, we use an adaptive, unsupervised neural network inspired by the glomerular input circuitry of the olfactory bulb. Essentially the model reduces the effect of the sensors' instabilities by utilizing them via an adaptive multicompartment feed-forward inhibition. We collected and analyzed responses of a 4 × 4 gas sensor array to a number of volatile compounds applied over a period of 18 months, whereby every sensor was sampled episodically. The network conferred excellent stability to the compounds' identification and was clearly superior over standard classifiers, even when one of the sensors exhibited random fluctuations or stopped working at all. PMID:26043043

  7. Automatic Recognition of Fetal Facial Standard Plane in Ultrasound Image via Fisher Vector.

    PubMed

    Lei, Baiying; Tan, Ee-Leng; Chen, Siping; Zhuo, Liu; Li, Shengli; Ni, Dong; Wang, Tianfu

    2015-01-01

    Acquisition of the standard plane is the prerequisite of biometric measurement and diagnosis during the ultrasound (US) examination. In this paper, a new algorithm is developed for the automatic recognition of the fetal facial standard planes (FFSPs) such as the axial, coronal, and sagittal planes. Specifically, densely sampled root scale invariant feature transform (RootSIFT) features are extracted and then encoded by Fisher vector (FV). The Fisher network with multi-layer design is also developed to extract spatial information to boost the classification performance. Finally, automatic recognition of the FFSPs is implemented by support vector machine (SVM) classifier based on the stochastic dual coordinate ascent (SDCA) algorithm. Experimental results using our dataset demonstrate that the proposed method achieves an accuracy of 93.27% and a mean average precision (mAP) of 99.19% in recognizing different FFSPs. Furthermore, the comparative analyses reveal the superiority of the proposed method based on FV over the traditional methods. PMID:25933215

  8. Assessment of Severe Apnoea through Voice Analysis, Automatic Speech, and Speaker Recognition Techniques

    NASA Astrophysics Data System (ADS)

    Fernández Pozo, Rubén; Blanco Murillo, Jose Luis; Hernández Gómez, Luis; López Gonzalo, Eduardo; Alcázar Ramírez, José; Toledano, Doroteo T.

    2009-12-01

    This study is part of an ongoing collaborative effort between the medical and the signal processing communities to promote research on applying standard Automatic Speech Recognition (ASR) techniques for the automatic diagnosis of patients with severe obstructive sleep apnoea (OSA). Early detection of severe apnoea cases is important so that patients can receive early treatment. Effective ASR-based detection could dramatically cut medical testing time. Working with a carefully designed speech database of healthy and apnoea subjects, we describe an acoustic search for distinctive apnoea voice characteristics. We also study abnormal nasalization in OSA patients by modelling vowels in nasal and nonnasal phonetic contexts using Gaussian Mixture Model (GMM) pattern recognition on speech spectra. Finally, we present experimental findings regarding the discriminative power of GMMs applied to severe apnoea detection. We have achieved an 81% correct classification rate, which is very promising and underpins the interest in this line of inquiry.

  9. Automatic Recognition of Fetal Facial Standard Plane in Ultrasound Image via Fisher Vector

    PubMed Central

    Lei, Baiying; Tan, Ee-Leng; Chen, Siping; Zhuo, Liu; Li, Shengli; Ni, Dong; Wang, Tianfu

    2015-01-01

    Acquisition of the standard plane is the prerequisite of biometric measurement and diagnosis during the ultrasound (US) examination. In this paper, a new algorithm is developed for the automatic recognition of the fetal facial standard planes (FFSPs) such as the axial, coronal, and sagittal planes. Specifically, densely sampled root scale invariant feature transform (RootSIFT) features are extracted and then encoded by Fisher vector (FV). The Fisher network with multi-layer design is also developed to extract spatial information to boost the classification performance. Finally, automatic recognition of the FFSPs is implemented by support vector machine (SVM) classifier based on the stochastic dual coordinate ascent (SDCA) algorithm. Experimental results using our dataset demonstrate that the proposed method achieves an accuracy of 93.27% and a mean average precision (mAP) of 99.19% in recognizing different FFSPs. Furthermore, the comparative analyses reveal the superiority of the proposed method based on FV over the traditional methods. PMID:25933215

  10. An efficient multimodal 2D-3D hybrid approach to automatic face recognition.

    PubMed

    Mian, Ajmal S; Bennamoun, Mohammed; Owens, Robyn

    2007-11-01

    We present a fully automatic face recognition algorithm and demonstrate its performance on the FRGC v2.0 data. Our algorithm is multimodal (2D and 3D) and performs hybrid (feature-based and holistic) matching in order to achieve efficiency and robustness to facial expressions. The pose of a 3D face along with its texture is automatically corrected using a novel approach based on a single automatically detected point and the Hotelling transform. A novel 3D Spherical Face Representation (SFR) is used in conjunction with the SIFT descriptor to form a rejection classifier which quickly eliminates a large number of candidate faces at an early stage for efficient recognition in case of large galleries. The remaining faces are then verified using a novel region-based matching approach which is robust to facial expressions. This approach automatically segments the eyes-forehead and the nose regions, which are relatively less sensitive to expressions, and matches them separately using a modified ICP algorithm. The results of all the matching engines are fused at the metric level to achieve higher accuracy. We use the FRGC benchmark to compare our results to other algorithms which used the same database. Our multimodal hybrid algorithm performed better than others by achieving 99.74% and 98.31% verification rates at 0.001 FAR and identification rates of 99.02% and 95.37% for probes with neutral and non-neutral expression respectively. PMID:17848775

  11. Adaptive activity and environment recognition for mobile phones.

    PubMed

    Parviainen, Jussi; Bojja, Jayaprasad; Collin, Jussi; Leppänen, Jussi; Eronen, Antti

    2014-01-01

    In this paper, an adaptive activity and environment recognition algorithm running on a mobile phone is presented. The algorithm makes inferences based on sensor and radio receiver data provided by the phone. A wide set of features that can be extracted from these data sources were investigated, and a Bayesian maximum a posteriori classifier was used for classifying between several user activities and environments. The accuracy of the method was evaluated on a dataset collected in a real-life trial. In addition, comparison to other state-of-the-art classifiers, namely support vector machines and decision trees, was performed. To make the system adaptive for individual user characteristics, an adaptation algorithm for context model parameters was designed. Moreover, a confidence measure for the classification correctness was designed. The proposed adaptation algorithm and confidence measure were evaluated on a second dataset obtained from another real-life trial, where the users were requested to provide binary feedback on the classification correctness. The results show that the proposed adaptation algorithm is effective at improving the classification accuracy. PMID:25372620

  12. Adaptive Activity and Environment Recognition for Mobile Phones

    PubMed Central

    Parviainen, Jussi; Bojja, Jayaprasad; Collin, Jussi; Leppänen, Jussi; Eronen, Antti

    2014-01-01

    In this paper, an adaptive activity and environment recognition algorithm running on a mobile phone is presented. The algorithm makes inferences based on sensor and radio receiver data provided by the phone. A wide set of features that can be extracted from these data sources were investigated, and a Bayesian maximum a posteriori classifier was used for classifying between several user activities and environments. The accuracy of the method was evaluated on a dataset collected in a real-life trial. In addition, comparison to other state-of-the-art classifiers, namely support vector machines and decision trees, was performed. To make the system adaptive for individual user characteristics, an adaptation algorithm for context model parameters was designed. Moreover, a confidence measure for the classification correctness was designed. The proposed adaptation algorithm and confidence measure were evaluated on a second dataset obtained from another real-life trial, where the users were requested to provide binary feedback on the classification correctness. The results show that the proposed adaptation algorithm is effective at improving the classification accuracy. PMID:25372620

  13. Effect of speech-intrinsic variations on human and automatic recognition of spoken phonemes.

    PubMed

    Meyer, Bernd T; Brand, Thomas; Kollmeier, Birger

    2011-01-01

    The aim of this study is to quantify the gap between the recognition performance of human listeners and an automatic speech recognition (ASR) system with special focus on intrinsic variations of speech, such as speaking rate and effort, altered pitch, and the presence of dialect and accent. Second, it is investigated if the most common ASR features contain all information required to recognize speech in noisy environments by using resynthesized ASR features in listening experiments. For the phoneme recognition task, the ASR system achieved the human performance level only when the signal-to-noise ratio (SNR) was increased by 15 dB, which is an estimate for the human-machine gap in terms of the SNR. The major part of this gap is attributed to the feature extraction stage, since human listeners achieve comparable recognition scores when the SNR difference between unaltered and resynthesized utterances is 10 dB. Intrinsic variabilities result in strong increases of error rates, both in human speech recognition (HSR) and ASR (with a relative increase of up to 120%). An analysis of phoneme duration and recognition rates indicates that human listeners are better able to identify temporal cues than the machine at low SNRs, which suggests incorporating information about the temporal dynamics of speech into ASR systems. PMID:21303019

  14. Definition and automatic anatomy recognition of lymph node zones in the pelvis on CT images

    NASA Astrophysics Data System (ADS)

    Liu, Yu; Udupa, Jayaram K.; Odhner, Dewey; Tong, Yubing; Guo, Shuxu; Attor, Rosemary; Reinicke, Danica; Torigian, Drew A.

    2016-03-01

    Currently, unlike IALSC-defined thoracic lymph node zones, no explicitly provided definitions for lymph nodes in other body regions are available. Yet, definitions are critical for standardizing the recognition, delineation, quantification, and reporting of lymphadenopathy in other body regions. Continuing from our previous work in the thorax, this paper proposes a standardized definition of the grouping of pelvic lymph nodes into 10 zones. We subsequently employ our earlier Automatic Anatomy Recognition (AAR) framework designed for body-wide organ modeling, recognition, and delineation to actually implement these zonal definitions where the zones are treated as anatomic objects. First, all 10 zones and key anatomic organs used as anchors are manually delineated under expert supervision for constructing fuzzy anatomy models of the assembly of organs together with the zones. Then, optimal hierarchical arrangement of these objects is constructed for the purpose of achieving the best zonal recognition. For actual localization of the objects, two strategies are used -- optimal thresholded search for organs and one-shot method for the zones where the known relationship of the zones to key organs is exploited. Based on 50 computed tomography (CT) image data sets for the pelvic body region and an equal division into training and test subsets, automatic zonal localization within 1-3 voxels is achieved.

  15. Thermographic techniques and adapted algorithms for automatic detection of foreign bodies in food

    NASA Astrophysics Data System (ADS)

    Meinlschmidt, Peter; Maergner, Volker

    2003-04-01

    At the moment foreign substances in food are detected mainly by using mechanical and optical methods as well as ultrasonic technique and than they are removed from the further process. These techniques detect a large portion of the foreign substances due to their different mass (mechanical sieving), their different colour (optical method) and their different surface density (ultrasonic detection). Despite the numerous different methods a considerable portion of the foreign substances remain undetected. In order to recognise materials still undetected, a complementary detection method would be desirable removing the foreign substances not registered by the a.m. methods from the production process. In a project with 13 partner from the food industry, the Fraunhofer - Institut für Holzforschung (WKI) and the Technische Unsiversität are trying to adapt thermography for the detection of foreign bodies in the food industry. After the initial tests turned out to be very promising for the differentiation of food stuffs and foreign substances, more and detailed investigation were carried out to develop suitable algorithms for automatic detection of foreign bodies. In order to achieve -besides the mere visual detection of foreign substances- also an automatic detection under production conditions, numerous experiences in image processing and pattern recognition are exploited. Results for the detection of foreign bodies will be presented at the conference showing the different advantages and disadvantages of using grey - level, statistical and morphological image processing techniques.

  16. Automatic Recognition of Element Classes and Boundaries in the Birdsong with Variable Sequences

    PubMed Central

    Okanoya, Kazuo

    2016-01-01

    Researches on sequential vocalization often require analysis of vocalizations in long continuous sounds. In such studies as developmental ones or studies across generations in which days or months of vocalizations must be analyzed, methods for automatic recognition would be strongly desired. Although methods for automatic speech recognition for application purposes have been intensively studied, blindly applying them for biological purposes may not be an optimal solution. This is because, unlike human speech recognition, analysis of sequential vocalizations often requires accurate extraction of timing information. In the present study we propose automated systems suitable for recognizing birdsong, one of the most intensively investigated sequential vocalizations, focusing on the three properties of the birdsong. First, a song is a sequence of vocal elements, called notes, which can be grouped into categories. Second, temporal structure of birdsong is precisely controlled, meaning that temporal information is important in song analysis. Finally, notes are produced according to certain probabilistic rules, which may facilitate the accurate song recognition. We divided the procedure of song recognition into three sub-steps: local classification, boundary detection, and global sequencing, each of which corresponds to each of the three properties of birdsong. We compared the performances of several different ways to arrange these three steps. As results, we demonstrated a hybrid model of a deep convolutional neural network and a hidden Markov model was effective. We propose suitable arrangements of methods according to whether accurate boundary detection is needed. Also we designed the new measure to jointly evaluate the accuracy of note classification and boundary detection. Our methods should be applicable, with small modification and tuning, to the songs in other species that hold the three properties of the sequential vocalization. PMID:27442240

  17. Automatic Recognition of Element Classes and Boundaries in the Birdsong with Variable Sequences.

    PubMed

    Koumura, Takuya; Okanoya, Kazuo

    2016-01-01

    Researches on sequential vocalization often require analysis of vocalizations in long continuous sounds. In such studies as developmental ones or studies across generations in which days or months of vocalizations must be analyzed, methods for automatic recognition would be strongly desired. Although methods for automatic speech recognition for application purposes have been intensively studied, blindly applying them for biological purposes may not be an optimal solution. This is because, unlike human speech recognition, analysis of sequential vocalizations often requires accurate extraction of timing information. In the present study we propose automated systems suitable for recognizing birdsong, one of the most intensively investigated sequential vocalizations, focusing on the three properties of the birdsong. First, a song is a sequence of vocal elements, called notes, which can be grouped into categories. Second, temporal structure of birdsong is precisely controlled, meaning that temporal information is important in song analysis. Finally, notes are produced according to certain probabilistic rules, which may facilitate the accurate song recognition. We divided the procedure of song recognition into three sub-steps: local classification, boundary detection, and global sequencing, each of which corresponds to each of the three properties of birdsong. We compared the performances of several different ways to arrange these three steps. As results, we demonstrated a hybrid model of a deep convolutional neural network and a hidden Markov model was effective. We propose suitable arrangements of methods according to whether accurate boundary detection is needed. Also we designed the new measure to jointly evaluate the accuracy of note classification and boundary detection. Our methods should be applicable, with small modification and tuning, to the songs in other species that hold the three properties of the sequential vocalization. PMID:27442240

  18. 3D automatic anatomy recognition based on iterative graph-cut-ASM

    NASA Astrophysics Data System (ADS)

    Chen, Xinjian; Udupa, Jayaram K.; Bagci, Ulas; Alavi, Abass; Torigian, Drew A.

    2010-02-01

    We call the computerized assistive process of recognizing, delineating, and quantifying organs and tissue regions in medical imaging, occurring automatically during clinical image interpretation, automatic anatomy recognition (AAR). The AAR system we are developing includes five main parts: model building, object recognition, object delineation, pathology detection, and organ system quantification. In this paper, we focus on the delineation part. For the modeling part, we employ the active shape model (ASM) strategy. For recognition and delineation, we integrate several hybrid strategies of combining purely image based methods with ASM. In this paper, an iterative Graph-Cut ASM (IGCASM) method is proposed for object delineation. An algorithm called GC-ASM was presented at this symposium last year for object delineation in 2D images which attempted to combine synergistically ASM and GC. Here, we extend this method to 3D medical image delineation. The IGCASM method effectively combines the rich statistical shape information embodied in ASM with the globally optimal delineation capability of the GC method. We propose a new GC cost function, which effectively integrates the specific image information with the ASM shape model information. The proposed methods are tested on a clinical abdominal CT data set. The preliminary results show that: (a) it is feasible to explicitly bring prior 3D statistical shape information into the GC framework; (b) the 3D IGCASM delineation method improves on ASM and GC and can provide practical operational time on clinical images.

  19. Assessing the impact of graphical quality on automatic text recognition in digital maps

    NASA Astrophysics Data System (ADS)

    Chiang, Yao-Yi; Leyk, Stefan; Honarvar Nazari, Narges; Moghaddam, Sima; Tan, Tian Xiang

    2016-08-01

    Converting geographic features (e.g., place names) in map images into a vector format is the first step for incorporating cartographic information into a geographic information system (GIS). With the advancement in computational power and algorithm design, map processing systems have been considerably improved over the last decade. However, the fundamental map processing techniques such as color image segmentation, (map) layer separation, and object recognition are sensitive to minor variations in graphical properties of the input image (e.g., scanning resolution). As a result, most map processing results would not meet user expectations if the user does not "properly" scan the map of interest, pre-process the map image (e.g., using compression or not), and train the processing system, accordingly. These issues could slow down the further advancement of map processing techniques as such unsuccessful attempts create a discouraged user community, and less sophisticated tools would be perceived as more viable solutions. Thus, it is important to understand what kinds of maps are suitable for automatic map processing and what types of results and process-related errors can be expected. In this paper, we shed light on these questions by using a typical map processing task, text recognition, to discuss a number of map instances that vary in suitability for automatic processing. We also present an extensive experiment on a diverse set of scanned historical maps to provide measures of baseline performance of a standard text recognition tool under varying map conditions (graphical quality) and text representations (that can vary even within the same map sheet). Our experimental results help the user understand what to expect when a fully or semi-automatic map processing system is used to process a scanned map with certain (varying) graphical properties and complexities in map content.

  20. Application of pattern recognition in molecular spectroscopy: Automatic line search in high-resolution spectra

    NASA Astrophysics Data System (ADS)

    Bykov, A. D.; Pshenichnikov, A. M.; Sinitsa, L. N.; Shcherbakov, A. P.

    2004-07-01

    An expert system has been developed for the initial analysis of a recorded spectrum, namely, for the line search and the determination of line positions and intensities. The expert system is based on pattern recognition algorithms. Object recognition learning allows the system to achieve the needed flexibility and automatically detect groups of overlapping lines, whose profiles should be fit together. Gauss, Lorentz, and Voigt profiles are used as model profiles to which spectral lines are fit. The expert system was applied to processing of the Fourier transform spectrum of the D2O molecule in the region 3200-4200 cm-1, and it detected 4670 lines in the spectrum, which consisted of 439000 dots. No one experimentally observed line exceeding the noise level was missed.

  1. Automatic Modulation Recognition Using Wavelet Transform and Neural Networks in Wireless Systems

    NASA Astrophysics Data System (ADS)

    Hassan, K.; Dayoub, I.; Hamouda, W.; Berbineau, M.

    2010-12-01

    Modulation type is one of the most important characteristics used in signal waveform identification. In this paper, an algorithm for automatic digital modulation recognition is proposed. The proposed algorithm is verified using higher-order statistical moments (HOM) of continuous wavelet transform (CWT) as a features set. A multilayer feed-forward neural network trained with resilient backpropagation learning algorithm is proposed as a classifier. The purpose is to discriminate among different M-ary shift keying modulation schemes and the modulation order without any priori signal information. Pre-processing and features subset selection using principal component analysis is used to reduce the network complexity and to improve the classifier's performance. The proposed algorithm is evaluated through confusion matrix and false recognition probability. The proposed classifier is shown to be capable of recognizing the modulation scheme with high accuracy over wide signal-to-noise ratio (SNR) range over both additive white Gaussian noise (AWGN) and different fading channels.

  2. Automatic recognition of light source from color negative films using sorting classification techniques

    NASA Astrophysics Data System (ADS)

    Sanger, Demas S.; Haneishi, Hideaki; Miyake, Yoichi

    1995-08-01

    This paper proposed a simple and automatic method for recognizing the light sources from various color negative film brands by means of digital image processing. First, we stretched the image obtained from a negative based on the standardized scaling factors, then extracted the dominant color component among red, green, and blue components of the stretched image. The dominant color component became the discriminator for the recognition. The experimental results verified that any one of the three techniques could recognize the light source from negatives of any film brands and all brands greater than 93.2 and 96.6% correct recognitions, respectively. This method is significant for the automation of color quality control in color reproduction from color negative film in mass processing and printing machine.

  3. Automatic Speech Recognition in Air Traffic Control: a Human Factors Perspective

    NASA Technical Reports Server (NTRS)

    Karlsson, Joakim

    1990-01-01

    The introduction of Automatic Speech Recognition (ASR) technology into the Air Traffic Control (ATC) system has the potential to improve overall safety and efficiency. However, because ASR technology is inherently a part of the man-machine interface between the user and the system, the human factors issues involved must be addressed. Here, some of the human factors problems are identified and related methods of investigation are presented. Research at M.I.T.'s Flight Transportation Laboratory is being conducted from a human factors perspective, focusing on intelligent parser design, presentation of feedback, error correction strategy design, and optimal choice of input modalities.

  4. Monitoring caustic injuries from emergency department databases using automatic keyword recognition software

    PubMed Central

    Vignally, P.; Fondi, G.; Taggi, F.; Pitidis, A.; National Injury Database and National Information System on Accidents in the Home Surveillance Groups

    2011-01-01

    Summary In Italy the European Union Injury Database reports the involvement of chemical products in 0.9% of home and leisure accidents. The Emergency Department registry on domestic accidents in Italy and the Poison Control Centres record that 90% of cases of exposure to toxic substances occur in the home. It is not rare for the effects of chemical agents to be observed in hospitals, with a high potential risk of damage - the rate of this cause of hospital admission is double the domestic injury average. The aim of this study was to monitor the effects of injuries caused by caustic agents in Italy using automatic free-text recognition in Emergency Department medical databases. We created a Stata software program to automatically identify caustic or corrosive injury cases using an agent-specific list of keywords. We focused attention on the procedure’s sensitivity and specificity. Ten hospitals in six regions of Italy participated in the study. The program identified 112 cases of injury by caustic or corrosive agents. Checking the cases by quality controls (based on manual reading of ED reports), we assessed 99 cases as true positive, i.e. 88.4% of the patients were automatically recognized by the software as being affected by caustic substances (99% CI: 80.6%- 96.2%), that is to say 0.59% (99% CI: 0.45%-0.76%) of the whole sample of home injuries, a value almost three times as high as that expected (p < 0.0001) from European codified information. False positives were 11.6% of the recognized cases (99% CI: 5.1%- 21.5%). Our automatic procedure for caustic agent identification proved to have excellent product recognition capacity with an acceptable level of excess sensitivity. Contrary to our a priori hypothesis, the automatic recognition system provided a level of identification of agents possessing caustic effects that was significantly much greater than was predictable on the basis of the values from current codifications reported in the European Database. PMID

  5. The role of binary mask patterns in automatic speech recognition in background noise

    PubMed Central

    Narayanan, Arun; Wang, DeLiang

    2013-01-01

    Processing noisy signals using the ideal binary mask improves automatic speech recognition (ASR) performance. This paper presents the first study that investigates the role of binary mask patterns in ASR under various noises, signal-to-noise ratios (SNRs), and vocabulary sizes. Binary masks are computed either by comparing the SNR within a time-frequency unit of a mixture signal with a local criterion (LC), or by comparing the local target energy with the long-term average spectral energy of speech. ASR results show that (1) akin to human speech recognition, binary masking significantly improves ASR performance even when the SNR is as low as −60 dB; (2) the ASR performance profiles are qualitatively similar to those obtained in human intelligibility experiments; (3) the difference between the LC and mixture SNR is more correlated to the recognition accuracy than LC; (4) LC at which the performance peaks is lower than 0 dB, which is the threshold that maximizes the SNR gain of processed signals. This broad agreement with human performance is rather surprising. The results also indicate that maximizing the SNR gain is probably not an appropriate goal for improving either human or machine recognition of noisy speech. PMID:23654411

  6. Conversion of the Haydn symphonies into electronic form using automatic score recognition: a pilot study

    NASA Astrophysics Data System (ADS)

    Carter, Nicholas P.

    1994-03-01

    As part of the development of an automatic recognition system for printed music scores, a series of `real-world' tasks are being undertaken. The first of these involves the production of a new edition of an existing 104-page, engraved, chamber-music score for Oxford University Press. The next substantial project, which is described here, has begun with a pilot study with a view to conversion of the 104 Haydn symphonies from a printed edition into machine- readable form. The score recognition system is based on a structural decomposition approach which provides advantages in terms of speed and tolerance of significant variations in font, scale, rotation and noise. Inevitably, some editing of the output data files is required, partially due to the limited vocabulary of symbols supported by the system and their permitted superimpositions. However, the possibility of automatically processing the bulk of the contents of over 600 pages of orchestral score in less than a day of compute time makes the conversion task manageable. The influence that this undertaking is having on the future direction of system development also is discussed.

  7. A fast automatic recognition and location algorithm for fetal genital organs in ultrasound images

    PubMed Central

    Tang, Sheng; Chen, Si-ping

    2009-01-01

    Severe sex ratio imbalance at birth is now becoming an important issue in several Asian countries. Its leading immediate cause is prenatal sex-selective abortion following illegal sex identification by ultrasound scanning. In this paper, a fast automatic recognition and location algorithm for fetal genital organs is proposed as an effective method to help prevent ultrasound technicians from unethically and illegally identifying the sex of the fetus. This automatic recognition algorithm can be divided into two stages. In the ‘rough’ stage, a few pixels in the image, which are likely to represent the genital organs, are automatically chosen as points of interest (POIs) according to certain salient characteristics of fetal genital organs. In the ‘fine’ stage, a specifically supervised learning framework, which fuses an effective feature data preprocessing mechanism into the multiple classifier architecture, is applied to every POI. The basic classifiers in the framework are selected from three widely used classifiers: radial basis function network, backpropagation network, and support vector machine. The classification results of all the POIs are then synthesized to determine whether the fetal genital organ is present in the image, and to locate the genital organ within the positive image. Experiments were designed and carried out based on an image dataset comprising 658 positive images (images with fetal genital organs) and 500 negative images (images without fetal genital organs). The experimental results showed true positive (TP) and true negative (TN) results from 80.5% (265 from 329) and 83.0% (415 from 500) of samples, respectively. The average computation time was 453 ms per image. PMID:19735097

  8. Real-time imaging systems' combination of methods to achieve automatic target recognition

    NASA Astrophysics Data System (ADS)

    Maraviglia, Carlos G.; Williams, Elmer F.; Pezzulich, Alan Z.

    1998-03-01

    Using a combination of strategies real time imaging weapons systems are achieving their goals of detecting their intended targets. The demands of acquiring a target in a cluttered environment in a timely manner with a high degree of confidence demands compromise be made as to having a truly automatic system. A combination of techniques such as dedicated image processing hardware, real time operating systems, mixes of algorithmic methods, and multi-sensor detectors are a forbearance of the unleashed potential of future weapons system and their incorporation in truly autonomous target acquisition. Elements such as position information, sensor gain controls, way marks for mid course correction, and augmentation with different imaging spectrums as well as future capabilities such as neural net expert systems and decision processors over seeing a fusion matrix architecture may be considered tools for a weapon system's achievement of its ultimate goal. Currently, acquiring a target in a cluttered environment in a timely manner with a high degree of confidence demands compromises be made as to having a truly automatic system. It is now necessary to include a human in the track decision loop, a system feature that may be long lived. Automatic Track Recognition will still be the desired goal in future systems due to the variability of military missions and desirability of an expendable asset. Furthermore, with the increasing incorporation of multi-sensor information into the track decision the human element's real time contribution must be carefully engineered.

  9. Automatic recognition of cardiac arrhythmias based on the geometric patterns of Poincaré plots.

    PubMed

    Zhang, Lijuan; Guo, Tianci; Xi, Bin; Fan, Yang; Wang, Kun; Bi, Jiacheng; Wang, Ying

    2015-02-01

    The Poincaré plot emerges as an effective tool for assessing cardiovascular autonomic regulation. It displays nonlinear characteristics of heart rate variability (HRV) from electrocardiographic (ECG) recordings and gives a global view of the long range of ECG signals. In the telemedicine or computer-aided diagnosis system, it would offer significant auxiliary information for diagnosis if the patterns of the Poincaré plots can be automatically classified. Therefore, we developed an automatic classification system to distinguish five geometric patterns of the Poincaré plots from four types of cardiac arrhythmias. The statistics features are designed on measurements and an ensemble classifier of three types of neural networks is proposed. Aiming at the difficulty to set a proper threshold for classifying the multiple categories, the threshold selection strategy is analyzed. 24 h ECG monitoring recordings from 674 patients, which have four types of cardiac arrhythmias, are adopted for recognition. For comparison, Support Vector Machine (SVM) classifiers with linear and Gaussian kernels are also applied. The experiment results demonstrate the effectiveness of the extracted features and the better performance of the designed classifier. Our study can be applied to diagnose the corresponding sinus rhythm and arrhythmia substrates disease automatically in the telemedicine and computer-aided diagnosis system. PMID:25582837

  10. Automatic Recognition of Ocean Structures from Satellite Images by Means of Neural Nets and Expert Systems

    NASA Astrophysics Data System (ADS)

    Guindos-Rojas, F.; Cantón-Garbín, M.; Torres-Arriaza, J. A.; Peralta-López, M.; Piedra-Fernández, J. A.; Molina-Martínez, A.

    2004-09-01

    Images received from satellites have became a great source of information about our environment. This is raw information that needs experts to make the most of it, but there are not many experts and the work is too much. The solution to this problem is the compilation of human experience into automatic systems that could do the same work. We depict here the structure for a knowledge based system capable of taking the place of human experts when it is properly trained. This structure has been used to build an automatic recognition system that process AVHRR images from NOAA satellites to detect and locate ocean phenomena of interest like upwellings, eddies and island wakes. The model covers every phase of the process from the source image, once it is corrected and geocoded, to the final features map. In the most delicate phase of the process pipeline, artificial neural nets and rule-based expert systems are used in a parallel redundant way so results can be validated by comparing the outcome of both subsystems. The automatic knowledge driven image processing system has been trained with ubiquitous and localized information and has proved his qualities with images of Canary Island, Mediterranean Sea and Cantabric and Portuguese coasts.

  11. Morphological characterization of Mycobacterium tuberculosis in a MODS culture for an automatic diagnostics through pattern recognition.

    PubMed

    Alva, Alicia; Aquino, Fredy; Gilman, Robert H; Olivares, Carlos; Requena, David; Gutiérrez, Andrés H; Caviedes, Luz; Coronel, Jorge; Larson, Sandra; Sheen, Patricia; Moore, David A J; Zimic, Mirko

    2013-01-01

    Tuberculosis control efforts are hampered by a mismatch in diagnostic technology: modern optimal diagnostic tests are least available in poor areas where they are needed most. Lack of adequate early diagnostics and MDR detection is a critical problem in control efforts. The Microscopic Observation Drug Susceptibility (MODS) assay uses visual recognition of cording patterns from Mycobacterium tuberculosis (MTB) to diagnose tuberculosis infection and drug susceptibility directly from a sputum sample in 7-10 days with a low cost. An important limitation that laboratories in the developing world face in MODS implementation is the presence of permanent technical staff with expertise in reading MODS. We developed a pattern recognition algorithm to automatically interpret MODS results from digital images. The algorithm using image processing, feature extraction and pattern recognition determined geometrical and illumination features used in an object-model and a photo-model to classify TB-positive images. 765 MODS digital photos were processed. The single-object model identified MTB (96.9% sensitivity and 96.3% specificity) and was able to discriminate non-tuberculous mycobacteria with a high specificity (97.1% M. avium, 99.1% M. chelonae, and 93.8% M. kansasii). The photo model identified TB-positive samples with 99.1% sensitivity and 99.7% specificity. This algorithm is a valuable tool that will enable automatic remote diagnosis using Internet or cellphone telephony. The use of this algorithm and its further implementation in a telediagnostics platform will contribute to both faster TB detection and MDR TB determination leading to an earlier initiation of appropriate treatment. PMID:24358227

  12. Automatic anatomy recognition in post-tonsillectomy MR images of obese children with OSAS

    NASA Astrophysics Data System (ADS)

    Tong, Yubing; Udupa, Jayaram K.; Odhner, Dewey; Sin, Sanghun; Arens, Raanan

    2015-03-01

    Automatic Anatomy Recognition (AAR) is a recently developed approach for the automatic whole body wide organ segmentation. We previously tested that methodology on image cases with some pathology where the organs were not distorted significantly. In this paper, we present an advancement of AAR to handle organs which may have been modified or resected by surgical intervention. We focus on MRI of the neck in pediatric Obstructive Sleep Apnea Syndrome (OSAS). The proposed method consists of an AAR step followed by support vector machine techniques to detect the presence/absence of organs. The AAR step employs a hierarchical organization of the organs for model building. For each organ, a fuzzy model over a population is built. The model of the body region is then described in terms of the fuzzy models and a host of other descriptors which include parent to offspring relationship estimated over the population. Organs are recognized following the organ hierarchy by using an optimal threshold based search. The SVM step subsequently checks for evidence of the presence of organs. Experimental results show that AAR techniques can be combined with machine learning strategies within the AAR recognition framework for good performance in recognizing missing organs, in our case missing tonsils in post-tonsillectomy images as well as in simulating tonsillectomy images. The previous recognition performance is maintained achieving an organ localization accuracy of within 1 voxel when the organ is actually not removed. To our knowledge, no methods have been reported to date for handling significantly deformed or missing organs, especially in neck MRI.

  13. Morphological Characterization of Mycobacterium tuberculosis in a MODS Culture for an Automatic Diagnostics through Pattern Recognition

    PubMed Central

    Alva, Alicia; Aquino, Fredy; Gilman, Robert H.; Olivares, Carlos; Requena, David; Gutiérrez, Andrés H.; Caviedes, Luz; Coronel, Jorge; Larson, Sandra; Sheen, Patricia; Moore, David A. J.; Zimic, Mirko

    2013-01-01

    Tuberculosis control efforts are hampered by a mismatch in diagnostic technology: modern optimal diagnostic tests are least available in poor areas where they are needed most. Lack of adequate early diagnostics and MDR detection is a critical problem in control efforts. The Microscopic Observation Drug Susceptibility (MODS) assay uses visual recognition of cording patterns from Mycobacterium tuberculosis (MTB) to diagnose tuberculosis infection and drug susceptibility directly from a sputum sample in 7–10 days with a low cost. An important limitation that laboratories in the developing world face in MODS implementation is the presence of permanent technical staff with expertise in reading MODS. We developed a pattern recognition algorithm to automatically interpret MODS results from digital images. The algorithm using image processing, feature extraction and pattern recognition determined geometrical and illumination features used in an object-model and a photo-model to classify TB-positive images. 765 MODS digital photos were processed. The single-object model identified MTB (96.9% sensitivity and 96.3% specificity) and was able to discriminate non-tuberculous mycobacteria with a high specificity (97.1% M. avium, 99.1% M. chelonae, and 93.8% M. kansasii). The photo model identified TB-positive samples with 99.1% sensitivity and 99.7% specificity. This algorithm is a valuable tool that will enable automatic remote diagnosis using Internet or cellphone telephony. The use of this algorithm and its further implementation in a telediagnostics platform will contribute to both faster TB detection and MDR TB determination leading to an earlier initiation of appropriate treatment. PMID:24358227

  14. Parallel System Architecture (PSA): An efficient approach for automatic recognition of volcano-seismic events

    NASA Astrophysics Data System (ADS)

    Cortés, Guillermo; García, Luz; Álvarez, Isaac; Benítez, Carmen; de la Torre, Ángel; Ibáñez, Jesús

    2014-02-01

    Automatic recognition of volcano-seismic events is becoming one of the most demanded features in the early warning area at continuous monitoring facilities. While human-driven cataloguing is time-consuming and often an unreliable task, an appropriate machine framework allows expert technicians to focus only on result analysis and decision-making. This work presents an alternative to serial architectures used in classic recognition systems introducing a parallel implementation of the whole process: configuration, feature extraction, feature selection and classification stages are independently carried out for each type of events in order to exploit the intrinsic properties of each signal class. The system uses Gaussian Mixture Models (GMMs) to classify the database recorded at Deception Volcano Island (Antarctica) obtaining a baseline recognition rate of 84% with a cepstral-based waveform parameterization in the serial architecture. The parallel approach increases the results to close to 92% using mixture-based parameterization vectors or up to 91% when the vector size is reduced by 19% via the Discriminative Feature Selection (DFS) algorithm. Besides the result improvement, the parallel architecture represents a major step in terms of flexibility and reliability thanks to the class-focused analysis, providing an efficient tool for monitoring observatories which require real-time solutions.

  15. Automatic recognition of surface landmarks of anatomical structures of back and posture

    NASA Astrophysics Data System (ADS)

    Michoński, Jakub; Glinkowski, Wojciech; Witkowski, Marcin; Sitnik, Robert

    2012-05-01

    Faulty postures, scoliosis and sagittal plane deformities should be detected as early as possible to apply preventive and treatment measures against major clinical consequences. To support documentation of the severity of deformity and diminish x-ray exposures, several solutions utilizing analysis of back surface topography data were introduced. A novel approach to automatic recognition and localization of anatomical landmarks of the human back is presented that may provide more repeatable results and speed up the whole procedure. The algorithm was designed as a two-step process involving a statistical model built upon expert knowledge and analysis of three-dimensional back surface shape data. Voronoi diagram is used to connect mean geometric relations, which provide a first approximation of the positions, with surface curvature distribution, which further guides the recognition process and gives final locations of landmarks. Positions obtained using the developed algorithms are validated with respect to accuracy of manual landmark indication by experts. Preliminary validation proved that the landmarks were localized correctly, with accuracy depending mostly on the characteristics of a given structure. It was concluded that recognition should mainly take into account the shape of the back surface, putting as little emphasis on the statistical approximation as possible.

  16. Automatic recognition of surface landmarks of anatomical structures of back and posture.

    PubMed

    Michoński, Jakub; Glinkowski, Wojciech; Witkowski, Marcin; Sitnik, Robert

    2012-05-01

    Faulty postures, scoliosis and sagittal plane deformities should be detected as early as possible to apply preventive and treatment measures against major clinical consequences. To support documentation of the severity of deformity and diminish x-ray exposures, several solutions utilizing analysis of back surface topography data were introduced. A novel approach to automatic recognition and localization of anatomical landmarks of the human back is presented that may provide more repeatable results and speed up the whole procedure. The algorithm was designed as a two-step process involving a statistical model built upon expert knowledge and analysis of three-dimensional back surface shape data. Voronoi diagram is used to connect mean geometric relations, which provide a first approximation of the positions, with surface curvature distribution, which further guides the recognition process and gives final locations of landmarks. Positions obtained using the developed algorithms are validated with respect to accuracy of manual landmark indication by experts. Preliminary validation proved that the landmarks were localized correctly, with accuracy depending mostly on the characteristics of a given structure. It was concluded that recognition should mainly take into account the shape of the back surface, putting as little emphasis on the statistical approximation as possible. PMID:22612138

  17. Noise Robust Feature Scheme for Automatic Speech Recognition Based on Auditory Perceptual Mechanisms

    NASA Astrophysics Data System (ADS)

    Cai, Shang; Xiao, Yeming; Pan, Jielin; Zhao, Qingwei; Yan, Yonghong

    Mel Frequency Cepstral Coefficients (MFCC) are the most popular acoustic features used in automatic speech recognition (ASR), mainly because the coefficients capture the most useful information of the speech and fit well with the assumptions used in hidden Markov models. As is well known, MFCCs already employ several principles which have known counterparts in the peripheral properties of human hearing: decoupling across frequency, mel-warping of the frequency axis, log-compression of energy, etc. It is natural to introduce more mechanisms in the auditory periphery to improve the noise robustness of MFCC. In this paper, a k-nearest neighbors based frequency masking filter is proposed to reduce the audibility of spectra valleys which are sensitive to noise. Besides, Moore and Glasberg's critical band equivalent rectangular bandwidth (ERB) expression is utilized to determine the filter bandwidth. Furthermore, a new bandpass infinite impulse response (IIR) filter is proposed to imitate the temporal masking phenomenon of the human auditory system. These three auditory perceptual mechanisms are combined with the standard MFCC algorithm in order to investigate their effects on ASR performance, and a revised MFCC extraction scheme is presented. Recognition performances with the standard MFCC, RASTA perceptual linear prediction (RASTA-PLP) and the proposed feature extraction scheme are evaluated on a medium-vocabulary isolated-word recognition task and a more complex large vocabulary continuous speech recognition (LVCSR) task. Experimental results show that consistent robustness against background noise is achieved on these two tasks, and the proposed method outperforms both the standard MFCC and RASTA-PLP.

  18. EEG-Based Emotion Recognition Using Deep Learning Network with Principal Component Based Covariate Shift Adaptation

    PubMed Central

    Jirayucharoensak, Suwicha; Pan-Ngum, Setha; Israsena, Pasin

    2014-01-01

    Automatic emotion recognition is one of the most challenging tasks. To detect emotion from nonstationary EEG signals, a sophisticated learning algorithm that can represent high-level abstraction is required. This study proposes the utilization of a deep learning network (DLN) to discover unknown feature correlation between input signals that is crucial for the learning task. The DLN is implemented with a stacked autoencoder (SAE) using hierarchical feature learning approach. Input features of the network are power spectral densities of 32-channel EEG signals from 32 subjects. To alleviate overfitting problem, principal component analysis (PCA) is applied to extract the most important components of initial input features. Furthermore, covariate shift adaptation of the principal components is implemented to minimize the nonstationary effect of EEG signals. Experimental results show that the DLN is capable of classifying three different levels of valence and arousal with accuracy of 49.52% and 46.03%, respectively. Principal component based covariate shift adaptation enhances the respective classification accuracy by 5.55% and 6.53%. Moreover, DLN provides better performance compared to SVM and naive Bayes classifiers. PMID:25258728

  19. EEG-based emotion recognition using deep learning network with principal component based covariate shift adaptation.

    PubMed

    Jirayucharoensak, Suwicha; Pan-Ngum, Setha; Israsena, Pasin

    2014-01-01

    Automatic emotion recognition is one of the most challenging tasks. To detect emotion from nonstationary EEG signals, a sophisticated learning algorithm that can represent high-level abstraction is required. This study proposes the utilization of a deep learning network (DLN) to discover unknown feature correlation between input signals that is crucial for the learning task. The DLN is implemented with a stacked autoencoder (SAE) using hierarchical feature learning approach. Input features of the network are power spectral densities of 32-channel EEG signals from 32 subjects. To alleviate overfitting problem, principal component analysis (PCA) is applied to extract the most important components of initial input features. Furthermore, covariate shift adaptation of the principal components is implemented to minimize the nonstationary effect of EEG signals. Experimental results show that the DLN is capable of classifying three different levels of valence and arousal with accuracy of 49.52% and 46.03%, respectively. Principal component based covariate shift adaptation enhances the respective classification accuracy by 5.55% and 6.53%. Moreover, DLN provides better performance compared to SVM and naive Bayes classifiers. PMID:25258728

  20. User acceptance of intelligent avionics: A study of automatic-aided target recognition

    NASA Technical Reports Server (NTRS)

    Becker, Curtis A.; Hayes, Brian C.; Gorman, Patrick C.

    1991-01-01

    User acceptance of new support systems typically was evaluated after the systems were specified, designed, and built. The current study attempts to assess user acceptance of an Automatic-Aided Target Recognition (ATR) system using an emulation of such a proposed system. The detection accuracy and false alarm level of the ATR system were varied systematically, and subjects rated the tactical value of systems exhibiting different performance levels. Both detection accuracy and false alarm level affected the subjects' ratings. The data from two experiments suggest a cut-off point in ATR performance below which the subjects saw little tactical value in the system. An ATR system seems to have obvious tactical value only if it functions at a correct detection rate of 0.7 or better with a false alarm level of 0.167 false alarms per square degree or fewer.

  1. Automatic intraductal breast carcinoma classification using a neural network-based recognition system.

    PubMed

    Reigosa, A; Hernández, L; Torrealba, V; Barrios, V; Montilla, G; Bosnjak, A; Araez, M; Turiaf, M; Leon, A

    1998-07-01

    A contour-based automatic recognition system was applied to classify intraductal breast carcinoma into high nuclear grade and low nuclear grade in a digitized histologic image. The image discriminating characteristics were selected by their invariability condition to rotation and translation. They were acquired from cellular contours information. The totally interconnected multilayer perceptron network architecture was selected, and it was trained with the error back propagation algorithm. Forty cases were analyzed by the system and the diagnoses were compared with that of pathologist consensus, obtaining agreement in 97.5% (p < .00001 of cases). The system may become a very useful tool for the pathologist in the definitive classification of intraductal carcinoma. PMID:21223442

  2. Minimum average correlation energy (MACE) prefilter networks for automatic target recognition

    NASA Astrophysics Data System (ADS)

    Hobson, Gregory L.; Sims, S. Richard F.; Gader, Paul D.; Keller, James M.

    1994-07-01

    Minimum average correlation energy (MACE) filters have been shown to be an effective generalization of the synthetic discriminant function (SDF) approach to automatic target recognition. The MACE filter has the advantage of having a very low false alarm rate, but suffers from a diminished probability of detection. Several generalizations have recently been proposed to maintain the low false alarm rate while increasing the probability of detection. The mathematical formulation of the MACE filter can be decomposed into a linear `prefilter' followed by an SDF-like operation. It is the prefiltering portion of the MACE which accounts for the low false alarm rate. In this paper, we insert a nonlinearity in this process by replacing the SDF portion of the operation by a neural network and show that we can increase the probability of detection without sacrificing low false alarm rates. This approach is demonstrated on a standard multiaspect image set and compared to the MACE and its generalizations.

  3. Difficulties in Automatic Speech Recognition of Dysarthric Speakers and Implications for Speech-Based Applications Used by the Elderly: A Literature Review

    ERIC Educational Resources Information Center

    Young, Victoria; Mihailidis, Alex

    2010-01-01

    Despite their growing presence in home computer applications and various telephony services, commercial automatic speech recognition technologies are still not easily employed by everyone; especially individuals with speech disorders. In addition, relatively little research has been conducted on automatic speech recognition performance with older…

  4. Model-based vision system for automatic recognition of structures in dental radiographs

    NASA Astrophysics Data System (ADS)

    Acharya, Raj S.; Samarabandu, Jagath K.; Hausmann, E.; Allen, K. A.

    1991-07-01

    X-ray diagnosis of destructive periodontal disease requires assessing serial radiographs by an expert to determine the change in the distance between cemento-enamel junction (CEJ) and the bone crest. To achieve this without the subjectivity of a human expert, a knowledge based system is proposed to automatically locate the two landmarks which are the CEJ and the level of alveolar crest at its junction with the periodontal ligament space. This work is a part of an ongoing project to automatically measure the distance between CEJ and the bone crest along a line parallel to the axis of the tooth. The approach presented in this paper is based on identifying a prominent feature such as the tooth boundary using local edge detection and edge thresholding to establish a reference and then using model knowledge to process sub-regions in locating the landmarks. Segmentation techniques invoked around these regions consists of a neural-network like hierarchical refinement scheme together with local gradient extraction, multilevel thresholding and ridge tracking. Recognition accuracy is further improved by first locating the easily identifiable parts of the bone surface and the interface between the enamel and the dentine and then extending these boundaries towards the periodontal ligament space and the tooth boundary respectively. The system is realized as a collection of tools (or knowledge sources) for pre-processing, segmentation, primary and secondary feature detection and a control structure based on the blackboard model to coordinate the activities of these tools.

  5. Automatic recognition of piping system from laser scanned point clouds using normal-based region growing

    NASA Astrophysics Data System (ADS)

    Kawashima, K.; Kanai, S.; Date, H.

    2013-10-01

    In recent years, renovations of plant equipment have been more frequent, and constructing 3D as-built models of existing plants from large-scale laser scanned data is expected to make rebuilding processes more efficient. However, laser scanned data consists of enormous number of points, captures tangled objects and includes a high noise level, so that the manual reconstruction of a 3D model is very time-consuming. Among plant equipment, piping systems especially account for the greatest proportion. Therefore, the purpose of this research was to propose an algorithm which can automatically recognize a piping system from large-scale laser scanned data of plants. The straight portion of pipes, connecting parts and connection relationship of the piping system can be automatically recognized. Normal-based region growing enables the extraction of points on the piping system. Eigen analysis of the normal tensor and cylinder surface fitting allows the algorithm to recognize portions of straight pipes. Tracing the axes of the piping system and interpolation of the axes can derive connecting parts and connection relationships between elements of the piping system. The algorithm was applied to large-scale scanned data of an oil rig and a chemical plant. The recognition rate of straight pipes, elbows, junctions achieved 93%, 88% and 87% respectively.

  6. Three-dimensional transformation for automatic target recognition using lidar data

    NASA Astrophysics Data System (ADS)

    Nieves, Ruben D.; Reynolds, William D., Jr.

    2010-04-01

    The three-dimensional (3-D) nature and the unorganized structure of topographic LIDAR data pose several challenges for target recognition tasks. In the past, several approaches have applied two-dimensional transformations such as spinimages or Digital Elevation Maps (DEMs) as an intermediate step for analyzing the 3-D data with two-dimensional (2-D) methods. However, these techniques are computationally intensive and often sacrifice some of the overall geometrical relationship of the target points. In this paper, we present a simple and efficient 3-D spatial transformation that preserves the geometrical attributes of the LIDAR data in all its dimensions. This transformation permits the utilization of well established statistical and shapebased descriptors for the implementation of an automatic target recognition algorithm. We evaluate our transformation and analysis technique on a set of simulated LIDAR point clouds of ground vehicles with varied obstructions and noise levels. Classification results demonstrate that our approach is efficient, tolerant to scale, rotation, and robust to noise and other degradations.

  7. A Compact Methodology to Understand, Evaluate, and Predict the Performance of Automatic Target Recognition

    PubMed Central

    Li, Yanpeng; Li, Xiang; Wang, Hongqiang; Chen, Yiping; Zhuang, Zhaowen; Cheng, Yongqiang; Deng, Bin; Wang, Liandong; Zeng, Yonghu; Gao, Lei

    2014-01-01

    This paper offers a compacted mechanism to carry out the performance evaluation work for an automatic target recognition (ATR) system: (a) a standard description of the ATR system's output is suggested, a quantity to indicate the operating condition is presented based on the principle of feature extraction in pattern recognition, and a series of indexes to assess the output in different aspects are developed with the application of statistics; (b) performance of the ATR system is interpreted by a quality factor based on knowledge of engineering mathematics; (c) through a novel utility called “context-probability” estimation proposed based on probability, performance prediction for an ATR system is realized. The simulation result shows that the performance of an ATR system can be accounted for and forecasted by the above-mentioned measures. Compared to existing technologies, the novel method can offer more objective performance conclusions for an ATR system. These conclusions may be helpful in knowing the practical capability of the tested ATR system. At the same time, the generalization performance of the proposed method is good. PMID:24967605

  8. A Study of Web-Based Oral Activities Enhanced by Automatic Speech Recognition for EFL College Learning

    ERIC Educational Resources Information Center

    Chiu, Tsuo-Lin; Liou, Hsien-Chin; Yeh, Yuli

    2007-01-01

    Recently, a promising topic in computer-assisted language learning is the application of Automatic Speech Recognition (ASR) technology for assisting learners to engage in meaningful speech interactions. Simulated real-life conversation supported by the application of ASR has been suggested as helpful for speaking. In this study, a web-based…

  9. An Exploration of the Potential of Automatic Speech Recognition to Assist and Enable Receptive Communication in Higher Education

    ERIC Educational Resources Information Center

    Wald, Mike

    2006-01-01

    The potential use of Automatic Speech Recognition to assist receptive communication is explored. The opportunities and challenges that this technology presents students and staff to provide captioning of speech online or in classrooms for deaf or hard of hearing students and assist blind, visually impaired or dyslexic learners to read and search…

  10. Machines a Comprendre la Parole: Methodologie et Bilan de Recherche (Automatic Speech Recognition: Methodology and the State of the Research)

    ERIC Educational Resources Information Center

    Haton, Jean-Pierre

    1974-01-01

    Still no decisive result has been achieved in the automatic machine recognition of sentences of a natural language. Current research concentrates on developing algorithms for syntactic and semantic analysis. It is obvious that clues from all levels of perception have to be taken into account if a long term solution is ever to be found. (Author/MSE)

  11. Using Multi-threading for the Automatic Load Balancing of 2D Adaptive Finite Element Meshes

    NASA Technical Reports Server (NTRS)

    Heber, Gerd; Biswas, Rupak; Thulasiraman, Parimala; Gao, Guang R.; Saini, Subhash (Technical Monitor)

    1998-01-01

    In this paper, we present a multi-threaded approach for the automatic load balancing of adaptive finite element (FE) meshes The platform of our choice is the EARTH multi-threaded system which offers sufficient capabilities to tackle this problem. We implement the adaption phase of FE applications oil triangular meshes and exploit the EARTH token mechanism to automatically balance the resulting irregular and highly nonuniform workload. We discuss the results of our experiments oil EARTH-SP2, on implementation of EARTH on the IBM SP2 with different load balancing strategies that are built into the runtime system.

  12. Speech dereverberation for enhancement and recognition using dynamic features constrained deep neural networks and feature adaptation

    NASA Astrophysics Data System (ADS)

    Xiao, Xiong; Zhao, Shengkui; Ha Nguyen, Duc Hoang; Zhong, Xionghu; Jones, Douglas L.; Chng, Eng Siong; Li, Haizhou

    2016-01-01

    This paper investigates deep neural networks (DNN) based on nonlinear feature mapping and statistical linear feature adaptation approaches for reducing reverberation in speech signals. In the nonlinear feature mapping approach, DNN is trained from parallel clean/distorted speech corpus to map reverberant and noisy speech coefficients (such as log magnitude spectrum) to the underlying clean speech coefficients. The constraint imposed by dynamic features (i.e., the time derivatives of the speech coefficients) are used to enhance the smoothness of predicted coefficient trajectories in two ways. One is to obtain the enhanced speech coefficients with a least square estimation from the coefficients and dynamic features predicted by DNN. The other is to incorporate the constraint of dynamic features directly into the DNN training process using a sequential cost function. In the linear feature adaptation approach, a sparse linear transform, called cross transform, is used to transform multiple frames of speech coefficients to a new feature space. The transform is estimated to maximize the likelihood of the transformed coefficients given a model of clean speech coefficients. Unlike the DNN approach, no parallel corpus is used and no assumption on distortion types is made. The two approaches are evaluated on the REVERB Challenge 2014 tasks. Both speech enhancement and automatic speech recognition (ASR) results show that the DNN-based mappings significantly reduce the reverberation in speech and improve both speech quality and ASR performance. For the speech enhancement task, the proposed dynamic feature constraint help to improve cepstral distance, frequency-weighted segmental signal-to-noise ratio (SNR), and log likelihood ratio metrics while moderately degrades the speech-to-reverberation modulation energy ratio. In addition, the cross transform feature adaptation improves the ASR performance significantly for clean-condition trained acoustic models.

  13. Automatic Concept Relationships Discovery for an Adaptive E-Course

    ERIC Educational Resources Information Center

    Simko, Marian; Bielikova, Maria

    2009-01-01

    To make learning process more effective, the educational systems deliver content adapted to specific user needs. Adequate personalization requires the domain of learning to be described explicitly in a particular detail, involving relationships between knowledge elements referred to as concepts. Manual creation of necessary annotations is in the…

  14. An Automatic Online Calibration Design in Adaptive Testing

    ERIC Educational Resources Information Center

    Makransky, Guido; Glas, Cees A. W.

    2010-01-01

    An accurately calibrated item bank is essential for a valid computerized adaptive test. However, in some settings, such as occupational testing, there is limited access to test takers for calibration. As a result of the limited access to possible test takers, collecting data to accurately calibrate an item bank in an occupational setting is…

  15. Adaptive automatic segmentation of Leishmaniasis parasite in Indirect Immunofluorescence images.

    PubMed

    Ouertani, F; Amiri, H; Bettaib, J; Yazidi, R; Ben Salah, A

    2014-01-01

    This paper describes the first steps for the automation of the serum titration process. In fact, this process requires an Indirect Immunofluorescence (IIF) diagnosis automation. We deal with the initial phase that represents the fluorescence images segmentation. Our approach consists of three principle stages: (1) a color based segmentation which aims at extracting the fluorescent foreground based on k-means clustering, (2) the segmentation of the fluorescent clustered image, and (3) a region-based feature segmentation, intended to remove the fluorescent noisy regions and to locate fluorescent parasites. We evaluated the proposed method on 40 IIF images. Experimental results show that such a method provides reliable and robust automatic segmentation of fluorescent Promastigote parasite. PMID:25571049

  16. Pattern Recognition With Adaptive-Thresholds For Sleep Spindle In High Density EEG Signals

    PubMed Central

    Gemignani, Jessica; Agrimi, Jacopo; Cheli, Enrico; Gemignani, Angelo; Laurino, Marco; Allegrini, Paolo; Landi, Alberto; Menicucci, Danilo

    2016-01-01

    Sleep spindles are electroencephalographic oscillations peculiar of non-REM sleep, related to neuronal mechanisms underlying sleep restoration and learning consolidation. Based on their very singular morphology, sleep spindles can be visually recognized and detected, even though this approach can lead to significant mis-detections. For this reason, many efforts have been put in developing a reliable algorithm for spindle automatic detection, and a number of methods, based on different techniques, have been tested via visual validation. This work aims at improving current pattern recognition procedures for sleep spindles detection by taking into account their physiological sources of variability. We provide a method as a synthesis of the current state of art that, improving dynamic threshold adaptation, is able to follow modification of spindle characteristics as a function of sleep depth and inter-subjects variability. The algorithm has been applied to physiological data recorded by a high density EEG in order to perform a validation based on visual inspection and on evaluation of expected results from normal night sleep in healthy subjects. PMID:26736332

  17. Study on application of adaptive fuzzy control and neural network in the automatic leveling system

    NASA Astrophysics Data System (ADS)

    Xu, Xiping; Zhao, Zizhao; Lan, Weiyong; Sha, Lei; Qian, Cheng

    2015-04-01

    This paper discusses the adaptive fuzzy control and neural network BP algorithm in large flat automatic leveling control system application. The purpose is to develop a measurement system with a flat quick leveling, Make the installation on the leveling system of measurement with tablet, to be able to achieve a level in precision measurement work quickly, improve the efficiency of the precision measurement. This paper focuses on the automatic leveling system analysis based on fuzzy controller, Use of the method of combining fuzzy controller and BP neural network, using BP algorithm improve the experience rules .Construct an adaptive fuzzy control system. Meanwhile the learning rate of the BP algorithm has also been run-rate adjusted to accelerate convergence. The simulation results show that the proposed control method can effectively improve the leveling precision of automatic leveling system and shorten the time of leveling.

  18. A Stochastic Approach for Automatic and Dynamic Modeling of Students' Learning Styles in Adaptive Educational Systems

    ERIC Educational Resources Information Center

    Dorça, Fabiano Azevedo; Lima, Luciano Vieira; Fernandes, Márcia Aparecida; Lopes, Carlos Roberto

    2012-01-01

    Considering learning and how to improve students' performances, an adaptive educational system must know how an individual learns best. In this context, this work presents an innovative approach for student modeling through probabilistic learning styles combination. Experiments have shown that our approach is able to automatically detect and…

  19. Towards an automatic early stress recognition system for office environments based on multimodal measurements: A review.

    PubMed

    Alberdi, Ane; Aztiria, Asier; Basarab, Adrian

    2016-02-01

    Stress is a major problem of our society, as it is the cause of many health problems and huge economic losses in companies. Continuous high mental workloads and non-stop technological development, which leads to constant change and need for adaptation, makes the problem increasingly serious for office workers. To prevent stress from becoming chronic and provoking irreversible damages, it is necessary to detect it in its early stages. Unfortunately, an automatic, continuous and unobtrusive early stress detection method does not exist yet. The multimodal nature of stress and the research conducted in this area suggest that the developed method will depend on several modalities. Thus, this work reviews and brings together the recent works carried out in the automatic stress detection looking over the measurements executed along the three main modalities, namely, psychological, physiological and behavioural modalities, along with contextual measurements, in order to give hints about the most appropriate techniques to be used and thereby, to facilitate the development of such a holistic system. PMID:26621099

  20. Automatic disease screening method using image processing for dried blood microfluidic drop stain pattern recognition.

    PubMed

    Sikarwar, Basant S; Roy, Mukesh; Ranjan, Priya; Goyal, Ayush

    2016-07-01

    This paper examines programmed automatic recognition of infection from samples of dried stains of micro-scale drops of patient blood. This technique has the upside of being low-cost and less-intrusive and not requiring puncturing the patient with a needle for drawing blood, which is especially critical for infants and the matured. It also does not require expensive pathological blood test laboratory equipment. The method is shown in this work to be successful for ailment identification in patients suffering from tuberculosis and anaemia. Illness affects the physical properties of blood, which thus influence the samples of dried micro-scale blood drop stains. For instance, if a patient has a severe drop in platelet count, which is often the case of dengue or malaria patients, the blood's physical property of viscosity drops substantially, i.e. the blood is thinner. Thus, the blood micro-scale drop stain samples can be utilised for diagnosing maladies. This paper presents programmed automatic examination of the dried micro-scale drop blood stain designs utilising an algorithm based on pattern recognition. The samples of micro-scale blood drop stains of ordinary non-infected people are clearly recognisable as well as the samples of micro-scale blood drop stains of sick people, due to key distinguishing features. As a contextual analysis, the micro-scale blood drop stains of patients infected with tuberculosis have been contrasted with the micro-scale blood drop stains of typical normal healthy people. The paper dives into the fundamental flow mechanics behind how the samples of the dried micro-scale blood drop stain is shaped. What has been found is a thick ring like feature in the dried micro-scale blood drop stains of non-ailing people and thin shape like lines in the dried micro-scale blood drop stains of patients with anaemia or tuberculosis disease. The ring like feature at the periphery is caused by an outward stream conveying suspended particles to the edge

  1. Empirical study on neural network based predictive techniques for automatic number plate recognition

    NASA Astrophysics Data System (ADS)

    Shashidhara, M. S.; Indrakumar, S. S.

    2011-10-01

    The objective of this study is to provide an easy, accurate and effective technology for the Bangalore city traffic control. This is based on the techniques of image processing and laser beam technology. The core concept chosen here is an image processing technology by the method of automatic number plate recognition system. First number plate is recognized if any vehicle breaks the traffic rules in the signals. The number is fetched from the database of the RTO office by the process of automatic database fetching. Next this sends the notice and penalty related information to the vehicle owner email-id and an SMS sent to vehicle owner. In this paper, we use of cameras with zooming options & laser beams to get accurate pictures further applied image processing techniques such as Edge detection to understand the vehicle, Identifying the location of the number plate, Identifying the number plate for further use, Plain plate number, Number plate with additional information, Number plates in the different fonts. Accessing the database of the vehicle registration office to identify the name and address and other information of the vehicle number. The updates to be made to the database for the recording of the violation and penalty issues. A feed forward artificial neural network is used for OCR. This procedure is particularly important for glyphs that are visually similar such as '8' and '9' and results in training sets of between 25,000 and 40,000 training samples. Over training of the neural network is prevented by Bayesian regularization. The neural network output value is set to 0.05 when the input is not desired glyph, and 0.95 for correct input.

  2. Extracting contextual information in digital imagery: applications to automatic target recognition and mammography

    NASA Astrophysics Data System (ADS)

    Spence, Clay D.; Sajda, Paul; Pearson, John C.

    1996-02-01

    An important problem in image analysis is finding small objects in large images. The problem is challenging because (1) searching a large image is computationally expensive, and (2) small targets (on the order of a few pixels in size) have relatively few distinctive features which enable them to be distinguished from non-targets. To overcome these challenges we have developed a hierarchical neural network (HNN) architecture which combines multi-resolution pyramid processing with neural networks. The advantages of the architecture are: (1) both neural network training and testing can be done efficiently through coarse-to-fine techniques, and (2) such a system is capable of learning low-resolution contextual information to facilitate the detection of small target objects. We have applied this neural network architecture to two problems in which contextual information appears to be important for detecting small targets. The first problem is one of automatic target recognition (ATR), specifically the problem of detecting buildings in aerial photographs. The second problem focuses on a medical application, namely searching mammograms for microcalcifications, which are cues for breast cancer. Receiver operating characteristic (ROC) analysis suggests that the hierarchical architecture improves the detection accuracy for both the ATR and microcalcification detection problems, reducing false positive rates by a significant factor. In addition, we have examined the hidden units at various levels of the processing hierarchy and found what appears to be representations of road location (for the ATR example) and ductal/vasculature location (for mammography), both of which are in agreement with the contextual information used by humans to find these classes of targets. We conclude that this hierarchical neural network architecture is able to automatically extract contextual information in imagery and utilize it for target detection.

  3. Dosimetric Evaluation of Automatic Segmentation for Adaptive IMRT for Head-and-Neck Cancer

    SciTech Connect

    Tsuji, Stuart Y.; Hwang, Andrew; Weinberg, Vivian; Yom, Sue S.; Quivey, Jeanne M.; Xia Ping

    2010-07-01

    Purpose: Adaptive planning to accommodate anatomic changes during treatment requires repeat segmentation. This study uses dosimetric endpoints to assess automatically deformed contours. Methods and Materials: Sixteen patients with head-and-neck cancer had adaptive plans because of anatomic change during radiotherapy. Contours from the initial planning computed tomography (CT) were deformed to the mid-treatment CT using an intensity-based free-form registration algorithm then compared with the manually drawn contours for the same CT using the Dice similarity coefficient and an overlap index. The automatic contours were used to create new adaptive plans. The original and automatic adaptive plans were compared based on dosimetric outcomes of the manual contours and on plan conformality. Results: Volumes from the manual and automatic segmentation were similar; only the gross tumor volume (GTV) was significantly different. Automatic plans achieved lower mean coverage for the GTV: V95: 98.6 {+-} 1.9% vs. 89.9 {+-} 10.1% (p = 0.004) and clinical target volume: V95: 98.4 {+-} 0.8% vs. 89.8 {+-} 6.2% (p < 0.001) and a higher mean maximum dose to 1 cm{sup 3} of the spinal cord 39.9 {+-} 3.7 Gy vs. 42.8 {+-} 5.4 Gy (p = 0.034), but no difference for the remaining structures. Conclusions: Automatic segmentation is not robust enough to substitute for physician-drawn volumes, particularly for the GTV. However, it generates normal structure contours of sufficient accuracy when assessed by dosimetric end points.

  4. An algorithm for automatic target recognition using passive radar and an EKF for estimating aircraft orientation

    NASA Astrophysics Data System (ADS)

    Ehrman, Lisa M.

    2005-07-01

    Rather than emitting pulses, passive radar systems rely on "illuminators of opportunity," such as TV and FM radio, to illuminate potential targets. These systems are attractive since they allow receivers to operate without emitting energy, rendering them covert. Until recently, most of the research regarding passive radar has focused on detecting and tracking targets. This dissertation focuses on extending the capabilities of passive radar systems to include automatic target recognition. The target recognition algorithm described in this dissertation uses the radar cross section (RCS) of potential targets, collected over a short period of time, as the key information for target recognition. To make the simulated RCS as accurate as possible, the received signal model accounts for aircraft position and orientation, propagation losses, and antenna gain patterns. An extended Kalman filter (EKF) estimates the target's orientation (and uncertainty in the estimate) from velocity measurements obtained from the passive radar tracker. Coupling the aircraft orientation and state with the known antenna locations permits computation of the incident and observed azimuth and elevation angles. The Fast Illinois Solver Code (FISC) simulates the RCS of potential target classes as a function of these angles. Thus, the approximated incident and observed angles allow the appropriate RCS to be extracted from a database of FISC results. Using this process, the RCS of each aircraft in the target class is simulated as though each is executing the same maneuver as the target detected by the system. Two additional scaling processes are required to transform the RCS into a power profile (magnitude only) simulating the signal in the receiver. First, the RCS is scaled by the Advanced Refractive Effects Prediction System (AREPS) code to account for propagation losses that occur as functions of altitude and range. Then, the Numerical Electromagnetic Code (NEC2) computes the antenna gain pattern

  5. Automatic recognition of abnormal cells in cytological tests using multispectral imaging

    NASA Astrophysics Data System (ADS)

    Gertych, A.; Galliano, G.; Bose, S.; Farkas, D. L.

    2010-03-01

    Cervical cancer is the leading cause of gynecologic disease-related death worldwide, but is almost completely preventable with regular screening, for which cytological testing is a method of choice. Although such testing has radically lowered the death rate from cervical cancer, it is plagued by low sensitivity and inter-observer variability. Moreover, its effectiveness is still restricted because the recognition of shape and morphology of nuclei is compromised by overlapping and clumped cells. Multispectral imaging can aid enhanced morphological characterization of cytological specimens. Features including spectral intensity and texture, reflecting relevant morphological differences between normal and abnormal cells, can be derived from cytopathology images and utilized in a detection/classification scheme. Our automated processing of multispectral image cubes yields nuclear objects which are subjected to classification facilitated by a library of spectral signatures obtained from normal and abnormal cells, as marked by experts. Clumps are processed separately with reduced set of signatures. Implementation of this method yields high rate of successful detection and classification of nuclei into predefined malignant and premalignant types and correlates well with those obtained by an expert. Our multispectral approach may have an impact on the diagnostic workflow of cytological tests. Abnormal cells can be automatically highlighted and quantified, thus objectivity and performance of the reading can be improved in a way which is currently unavailable in clinical setting.

  6. Automatic recognition of lung lobes and fissures from multislice CT images

    NASA Astrophysics Data System (ADS)

    Zhou, Xiangrong; Hayashi, Tatsuro; Hara, Takeshi; Fujita, Hiroshi; Yokoyama, Ryujiro; Kiryu, Takuji; Hoshi, Hiroaki

    2004-05-01

    Computer-aided diagnosis (CAD) has been expected to help radiologists to improve the accuracy of abnormality detection and reduce the burden during CT image interpretations. In order to realize such functions, automated segmentations of the target organ regions are always required by CAD systems. This paper describes a fully automatic processing procedure, which is designed to identify inter-lobe fissures and divide lung into five lobe regions. The lung fissures are disappeared very fuzzy and indefinite in CT images, so that it is very difficult to extract fissures directly based on its CT values. We propose a method to solve this problem using the anatomy knowledge of human lung. We extract lung region firstly and then recognize the structures of lung vessels and bronchus. Based on anatomy knowledge, we classify the vessels and bronchus on a lobe-by-lobe basis and estimate the boundary of each lobe region as the initial fissure locations. Within those locations, we extract lung fissures precisely based on an edge detection method and divide lung regions into five lung lobes lastly. The performance of the proposed method was evaluated using 9 patient cases of high-resolution multi-slice chest CT images; the improvement has been confirmed with the reliable recognition results.

  7. The Effects of Training on Automatization of Word Recognition in English as a Foreign Language

    ERIC Educational Resources Information Center

    Akamatsu, Nobuhiko

    2008-01-01

    The present study investigated the effects of word-recognition training on the word-recognition processing of learners of English as a foreign language (EFL). Providing 7-week word-recognition training, the study examined whether such training improves EFL learners' word-recognition performance. The main aspects of this study concerned word…

  8. Using Multithreading for the Automatic Load Balancing of 2D Adaptive Finite Element Meshes

    NASA Technical Reports Server (NTRS)

    Heber, Gerd; Biswas, Rupak; Thulasiraman, Parimala; Gao, Guang R.; Bailey, David H. (Technical Monitor)

    1998-01-01

    In this paper, we present a multi-threaded approach for the automatic load balancing of adaptive finite element (FE) meshes. The platform of our choice is the EARTH multi-threaded system which offers sufficient capabilities to tackle this problem. We implement the question phase of FE applications on triangular meshes, and exploit the EARTH token mechanism to automatically balance the resulting irregular and highly nonuniform workload. We discuss the results of our experiments on EARTH-SP2, an implementation of EARTH on the IBM SP2, with different load balancing strategies that are built into the runtime system.

  9. Hopfield network with constraint parameter adaptation for overlapped shape recognition.

    PubMed

    Suganthan, P N; Teoh, E K; Mital, D P

    1999-01-01

    In this paper, we propose an energy formulation for homomorphic graph matching by the Hopfield network and a Lyapunov indirect method-based learning approach to adaptively learn the constraint parameter in the energy function. The adaptation scheme eliminates the need to specify the constraint parameter empirically and generates valid and better quality mappings than the analog Hopfield network with a fixed constraint parameter. The proposed Hopfield network with constraint parameter adaptation is applied to match silhouette images of keys and results are presented. PMID:18252543

  10. Machine learning based sample extraction for automatic speech recognition using dialectal Assamese speech.

    PubMed

    Agarwalla, Swapna; Sarma, Kandarpa Kumar

    2016-06-01

    Automatic Speaker Recognition (ASR) and related issues are continuously evolving as inseparable elements of Human Computer Interaction (HCI). With assimilation of emerging concepts like big data and Internet of Things (IoT) as extended elements of HCI, ASR techniques are found to be passing through a paradigm shift. Oflate, learning based techniques have started to receive greater attention from research communities related to ASR owing to the fact that former possess natural ability to mimic biological behavior and that way aids ASR modeling and processing. The current learning based ASR techniques are found to be evolving further with incorporation of big data, IoT like concepts. Here, in this paper, we report certain approaches based on machine learning (ML) used for extraction of relevant samples from big data space and apply them for ASR using certain soft computing techniques for Assamese speech with dialectal variations. A class of ML techniques comprising of the basic Artificial Neural Network (ANN) in feedforward (FF) and Deep Neural Network (DNN) forms using raw speech, extracted features and frequency domain forms are considered. The Multi Layer Perceptron (MLP) is configured with inputs in several forms to learn class information obtained using clustering and manual labeling. DNNs are also used to extract specific sentence types. Initially, from a large storage, relevant samples are selected and assimilated. Next, a few conventional methods are used for feature extraction of a few selected types. The features comprise of both spectral and prosodic types. These are applied to Recurrent Neural Network (RNN) and Fully Focused Time Delay Neural Network (FFTDNN) structures to evaluate their performance in recognizing mood, dialect, speaker and gender variations in dialectal Assamese speech. The system is tested under several background noise conditions by considering the recognition rates (obtained using confusion matrices and manually) and computation time

  11. Using pattern recognition to automatically localize reflection hyperbolas in data from ground penetrating radar

    NASA Astrophysics Data System (ADS)

    Maas, Christian; Schmalzl, Jörg

    2013-08-01

    Ground Penetrating Radar (GPR) is used for the localization of supply lines, land mines, pipes and many other buried objects. These objects can be recognized in the recorded data as reflection hyperbolas with a typical shape depending on depth and material of the object and the surrounding material. To obtain the parameters, the shape of the hyperbola has to be fitted. In the last years several methods were developed to automate this task during post-processing. In this paper we show another approach for the automated localization of reflection hyperbolas in GPR data by solving a pattern recognition problem in grayscale images. In contrast to other methods our detection program is also able to immediately mark potential objects in real-time. For this task we use a version of the Viola-Jones learning algorithm, which is part of the open source library "OpenCV". This algorithm was initially developed for face recognition, but can be adapted to any other simple shape. In our program it is used to narrow down the location of reflection hyperbolas to certain areas in the GPR data. In order to extract the exact location and the velocity of the hyperbolas we apply a simple Hough Transform for hyperbolas. Because the Viola-Jones Algorithm reduces the input for the computational expensive Hough Transform dramatically the detection system can also be implemented on normal field computers, so on-site application is possible. The developed detection system shows promising results and detection rates in unprocessed radargrams. In order to improve the detection results and apply the program to noisy radar images more data of different GPR systems as input for the learning algorithm is necessary.

  12. Recognition of voice commands using adaptation of foreign language speech recognizer via selection of phonetic transcriptions

    NASA Astrophysics Data System (ADS)

    Maskeliunas, Rytis; Rudzionis, Vytautas

    2011-06-01

    In recent years various commercial speech recognizers have become available. These recognizers provide the possibility to develop applications incorporating various speech recognition techniques easily and quickly. All of these commercial recognizers are typically targeted to widely spoken languages having large market potential; however, it may be possible to adapt available commercial recognizers for use in environments where less widely spoken languages are used. Since most commercial recognition engines are closed systems the single avenue for the adaptation is to try set ways for the selection of proper phonetic transcription methods between the two languages. This paper deals with the methods to find the phonetic transcriptions for Lithuanian voice commands to be recognized using English speech engines. The experimental evaluation showed that it is possible to find phonetic transcriptions that will enable the recognition of Lithuanian voice commands with recognition accuracy of over 90%.

  13. Action adaptation during natural unfolding social scenes influences action recognition and inferences made about actor beliefs.

    PubMed

    Keefe, Bruce D; Wincenciak, Joanna; Jellema, Tjeerd; Ward, James W; Barraclough, Nick E

    2016-07-01

    When observing another individual's actions, we can both recognize their actions and infer their beliefs concerning the physical and social environment. The extent to which visual adaptation influences action recognition and conceptually later stages of processing involved in deriving the belief state of the actor remains unknown. To explore this we used virtual reality (life-size photorealistic actors presented in stereoscopic three dimensions) to see how visual adaptation influences the perception of individuals in naturally unfolding social scenes at increasingly higher levels of action understanding. We presented scenes in which one actor picked up boxes (of varying number and weight), after which a second actor picked up a single box. Adaptation to the first actor's behavior systematically changed perception of the second actor. Aftereffects increased with the duration of the first actor's behavior, declined exponentially over time, and were independent of view direction. Inferences about the second actor's expectation of box weight were also distorted by adaptation to the first actor. Distortions in action recognition and actor expectations did not, however, extend across different actions, indicating that adaptation is not acting at an action-independent abstract level but rather at an action-dependent level. We conclude that although adaptation influences more complex inferences about belief states of individuals, this is likely to be a result of adaptation at an earlier action recognition stage rather than adaptation operating at a higher, more abstract level in mentalizing or simulation systems. PMID:27472496

  14. Investigation of measureable parameters that correlate with automatic target recognition performance in synthetic aperture sonar

    NASA Astrophysics Data System (ADS)

    Gazagnaire, Julia; Cobb, J. T.; Isaacs, Jason

    2015-05-01

    There is a desire in the Mine Counter Measure community to develop a systematic method to predict and/or estimate the performance of Automatic Target Recognition (ATR) algorithms that are detecting and classifying mine-like objects within sonar data. Ideally, parameters exist that can be measured directly from the sonar data that correlate with ATR performance. In this effort, two metrics were analyzed for their predictive potential using high frequency synthetic aperture sonar (SAS) images. The first parameter is a measure of contrast. It is essentially the variance in pixel intensity over a fixed partition of relatively small size. An analysis was performed to determine the optimum block size for this contrast calculation. These blocks were then overlapped in the horizontal and vertical direction over the entire image. The second parameter is the one-dimensional K-shape parameter. The K-distribution is commonly used to describe sonar backscatter return from range cells that contain a finite number of scatterers. An Ada-Boosted Decision Tree classifier was used to calculate the probability of classification (Pc) and false alarm rate (FAR) for several types of targets in SAS images from three different data sets. ROC curves as a function of the measured parameters were generated and the correlation between the measured parameters in the vicinity of each of the contacts and the ATR performance was investigated. The contrast and K-shape parameters were considered separately. Additionally, the contrast and K-shape parameter were associated with background texture types using previously labeled high frequency SAS images.

  15. Development of automatic target recognition for infrared sensor-based close-range land mine detector

    NASA Astrophysics Data System (ADS)

    Ngan, Peter; Garcia, Sigberto A.; Cloud, Eugene L.; Duvoisin, Herbert A., III; Long, Daniel T.; Hackett, Jay K.

    1995-06-01

    Infrared imagery scenes change continuously with environmental conditions. Strategic targets embedded in them are often difficult to be identified with the naked eye. An IR sensor-based mine detector must include Automatic Target Recognition (ATR) to detect and extract land mines from IR scenes. In the course of the ATR development process, mine signature data were collected using a commercial 8-12 (mu) spectral range FLIR, model Inframetrics 445L, and a commercial 3-5 (mu) starting focal planar array FLIR, model Infracam. These sensors were customized to the required field-of-view for short range operation. These baseline data were then input into a specialized parallel processor on which the mine detection algorithm is developed and trained. The ATR is feature-based and consists of several subprocesses to progress from raw input IR imagery to a neural network classifier for final nomination of the targets. Initially, image enhancement is used to remove noise and sensor artifact. Three preprocessing techniques, namely model-based segmentation, multi-element prescreener, and geon detector are then applied to extract specific features of the targets and to reject all objects that do not resemble mines. Finally, to further reduce the false alarm rate, the extracted features are presented to the neural network classifier. Depending on the operational circumstances, one of three neural network techniques will be adopted; back propagation, supervised real-time learning, or unsupervised real-time learning. The Close Range IR Mine Detection System is an Army program currently being experimentally developed to be demonstrated in the Army's Advanced Technology Demonstration in FY95. The ATR resulting from this program will be integrated in the 21st Century Land Warrior program in which the mine avoidance capability is its primary interest.

  16. A Corpus-Based Approach for Automatic Thai Unknown Word Recognition Using Boosting Techniques

    NASA Astrophysics Data System (ADS)

    Techo, Jakkrit; Nattee, Cholwich; Theeramunkong, Thanaruk

    While classification techniques can be applied for automatic unknown word recognition in a language without word boundary, it faces with the problem of unbalanced datasets where the number of positive unknown word candidates is dominantly smaller than that of negative candidates. To solve this problem, this paper presents a corpus-based approach that introduces a so-called group-based ranking evaluation technique into ensemble learning in order to generate a sequence of classification models that later collaborate to select the most probable unknown word from multiple candidates. Given a classification model, the group-based ranking evaluation (GRE) is applied to construct a training dataset for learning the succeeding model, by weighing each of its candidates according to their ranks and correctness when the candidates of an unknown word are considered as one group. A number of experiments have been conducted on a large Thai medical text to evaluate performance of the proposed group-based ranking evaluation approach, namely V-GRE, compared to the conventional naïve Bayes classifier and our vanilla version without ensemble learning. As the result, the proposed method achieves an accuracy of 90.93±0.50% when the first rank is selected while it gains 97.26±0.26% when the top-ten candidates are considered, that is 8.45% and 6.79% improvement over the conventional record-based naïve Bayes classifier and the vanilla version. Another result on applying only best features show 93.93±0.22% and up to 98.85±0.15% accuracy for top-1 and top-10, respectively. They are 3.97% and 9.78% improvement over naive Bayes and the vanilla version. Finally, an error analysis is given.

  17. Tracker-aided adaptive multi-frame recognition of a specific target

    NASA Astrophysics Data System (ADS)

    Mahalanobis, Abhijit

    2016-05-01

    We consider the problem of recognizing a particular target of interest (i.e. the "correct" target) while rejecting other targets and background clutter. In such instances, the probability of recognizing the correct target (PCT) is a suitable metric for assessing the performance of the target recognition algorithm. We present a definition for PCT and illustrate how it differs from conventional metrics for target recognition by means of an example. It is further shown that an adaptive target recognition algorithm, which relies on track position to obtain multiple looks at the target, can significantly improve PCT while reducing the track uncertainty.

  18. Automatic Adaptation to Fast Input Changes in a Time-Invariant Neural Circuit.

    PubMed

    Bharioke, Arjun; Chklovskii, Dmitri B

    2015-08-01

    Neurons must faithfully encode signals that can vary over many orders of magnitude despite having only limited dynamic ranges. For a correlated signal, this dynamic range constraint can be relieved by subtracting away components of the signal that can be predicted from the past, a strategy known as predictive coding, that relies on learning the input statistics. However, the statistics of input natural signals can also vary over very short time scales e.g., following saccades across a visual scene. To maintain a reduced transmission cost to signals with rapidly varying statistics, neuronal circuits implementing predictive coding must also rapidly adapt their properties. Experimentally, in different sensory modalities, sensory neurons have shown such adaptations within 100 ms of an input change. Here, we show first that linear neurons connected in a feedback inhibitory circuit can implement predictive coding. We then show that adding a rectification nonlinearity to such a feedback inhibitory circuit allows it to automatically adapt and approximate the performance of an optimal linear predictive coding network, over a wide range of inputs, while keeping its underlying temporal and synaptic properties unchanged. We demonstrate that the resulting changes to the linearized temporal filters of this nonlinear network match the fast adaptations observed experimentally in different sensory modalities, in different vertebrate species. Therefore, the nonlinear feedback inhibitory network can provide automatic adaptation to fast varying signals, maintaining the dynamic range necessary for accurate neuronal transmission of natural inputs. PMID:26247884

  19. Learning and plan refinement in a knowledge-based system for automatic speech recognition

    SciTech Connect

    De Mori, R.; Lam, L.; Gilloux, M.

    1987-03-01

    This paper shows how a semiautomatic design of a speech recognition system can be done as a planning activity. Recognition performances are used for deciding plan refinement. Inductive learning is performed for setting action preconditions. Experimental results in the recognition of connected letters spoken by 100 speakers are presented.

  20. Automatic Delineation of On-Line Head-And-Neck Computed Tomography Images: Toward On-Line Adaptive Radiotherapy

    SciTech Connect

    Zhang Tiezhi . E-mail: tiezhi.zhang@beaumont.edu; Chi Yuwei; Meldolesi, Elisa; Yan Di

    2007-06-01

    Purpose: To develop and validate a fully automatic region-of-interest (ROI) delineation method for on-line adaptive radiotherapy. Methods and Materials: On-line adaptive radiotherapy requires a robust and automatic image segmentation method to delineate ROIs in on-line volumetric images. We have implemented an atlas-based image segmentation method to automatically delineate ROIs of head-and-neck helical computed tomography images. A total of 32 daily computed tomography images from 7 head-and-neck patients were delineated using this automatic image segmentation method. Manually drawn contours on the daily images were used as references in the evaluation of automatically delineated ROIs. Two methods were used in quantitative validation: (1) the dice similarity coefficient index, which indicates the overlapping ratio between the manually and automatically delineated ROIs; and (2) the distance transformation, which yields the distances between the manually and automatically delineated ROI surfaces. Results: Automatic segmentation showed agreement with manual contouring. For most ROIs, the dice similarity coefficient indexes were approximately 0.8. Similarly, the distance transformation evaluation results showed that the distances between the manually and automatically delineated ROI surfaces were mostly within 3 mm. The distances between two surfaces had a mean of 1 mm and standard deviation of <2 mm in most ROIs. Conclusion: With atlas-based image segmentation, it is feasible to automatically delineate ROIs on the head-and-neck helical computed tomography images in on-line adaptive treatments.

  1. A DVH-guided IMRT optimization algorithm for automatic treatment planning and adaptive radiotherapy replanning

    SciTech Connect

    Zarepisheh, Masoud; Li, Nan; Long, Troy; Romeijn, H. Edwin; Tian, Zhen; Jia, Xun; Jiang, Steve B.

    2014-06-15

    Purpose: To develop a novel algorithm that incorporates prior treatment knowledge into intensity modulated radiation therapy optimization to facilitate automatic treatment planning and adaptive radiotherapy (ART) replanning. Methods: The algorithm automatically creates a treatment plan guided by the DVH curves of a reference plan that contains information on the clinician-approved dose-volume trade-offs among different targets/organs and among different portions of a DVH curve for an organ. In ART, the reference plan is the initial plan for the same patient, while for automatic treatment planning the reference plan is selected from a library of clinically approved and delivered plans of previously treated patients with similar medical conditions and geometry. The proposed algorithm employs a voxel-based optimization model and navigates the large voxel-based Pareto surface. The voxel weights are iteratively adjusted to approach a plan that is similar to the reference plan in terms of the DVHs. If the reference plan is feasible but not Pareto optimal, the algorithm generates a Pareto optimal plan with the DVHs better than the reference ones. If the reference plan is too restricting for the new geometry, the algorithm generates a Pareto plan with DVHs close to the reference ones. In both cases, the new plans have similar DVH trade-offs as the reference plans. Results: The algorithm was tested using three patient cases and found to be able to automatically adjust the voxel-weighting factors in order to generate a Pareto plan with similar DVH trade-offs as the reference plan. The algorithm has also been implemented on a GPU for high efficiency. Conclusions: A novel prior-knowledge-based optimization algorithm has been developed that automatically adjust the voxel weights and generate a clinical optimal plan at high efficiency. It is found that the new algorithm can significantly improve the plan quality and planning efficiency in ART replanning and automatic treatment

  2. Ethanolamine Signaling Promotes Salmonella Niche Recognition and Adaptation during Infection.

    PubMed

    Anderson, Christopher J; Clark, David E; Adli, Mazhar; Kendall, Melissa M

    2015-11-01

    Chemical and nutrient signaling are fundamental for all cellular processes, including interactions between the mammalian host and the microbiota, which have a significant impact on health and disease. Ethanolamine is an essential component of cell membranes and has profound signaling activity within mammalian cells by modulating inflammatory responses and intestinal physiology. Here, we describe a virulence-regulating pathway in which the foodborne pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium) exploits ethanolamine signaling to recognize and adapt to distinct niches within the host. The bacterial transcription factor EutR promotes ethanolamine metabolism in the intestine, which enables S. Typhimurium to establish infection. Subsequently, EutR directly activates expression of the Salmonella pathogenicity island 2 in the intramacrophage environment, and thus augments intramacrophage survival. Moreover, EutR is critical for robust dissemination during mammalian infection. Our findings reveal that S. Typhimurium co-opts ethanolamine as a signal to coordinate metabolism and then virulence. Because the ability to sense ethanolamine is a conserved trait among pathogenic and commensal bacteria, our work indicates that ethanolamine signaling may be a key step in the localized adaptation of bacteria within their mammalian hosts. PMID:26565973

  3. Ethanolamine Signaling Promotes Salmonella Niche Recognition and Adaptation during Infection

    PubMed Central

    Anderson, Christopher J.; Clark, David E.; Adli, Mazhar; Kendall, Melissa M.

    2015-01-01

    Chemical and nutrient signaling are fundamental for all cellular processes, including interactions between the mammalian host and the microbiota, which have a significant impact on health and disease. Ethanolamine is an essential component of cell membranes and has profound signaling activity within mammalian cells by modulating inflammatory responses and intestinal physiology. Here, we describe a virulence-regulating pathway in which the foodborne pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium) exploits ethanolamine signaling to recognize and adapt to distinct niches within the host. The bacterial transcription factor EutR promotes ethanolamine metabolism in the intestine, which enables S. Typhimurium to establish infection. Subsequently, EutR directly activates expression of the Salmonella pathogenicity island 2 in the intramacrophage environment, and thus augments intramacrophage survival. Moreover, EutR is critical for robust dissemination during mammalian infection. Our findings reveal that S. Typhimurium co-opts ethanolamine as a signal to coordinate metabolism and then virulence. Because the ability to sense ethanolamine is a conserved trait among pathogenic and commensal bacteria, our work indicates that ethanolamine signaling may be a key step in the localized adaptation of bacteria within their mammalian hosts. PMID:26565973

  4. Robust method for the matching of attributed scattering centers with application to synthetic aperture radar automatic target recognition

    NASA Astrophysics Data System (ADS)

    Ding, Baiyuan; Wen, Gongjian; Zhong, Jinrong; Ma, Conghui; Yang, Xiaoliang

    2016-01-01

    This paper proposes a robust method for the matching of attributed scattering centers (ASCs) with application to synthetic aperture radar automatic target recognition (ATR). For the testing image to be classified, ASCs are extracted to match with the ones predicted by templates. First, Hungarian algorithm is employed to match those two ASC sets initially. Then, a precise matching is carried out through a threshold method. Point similarity and structure similarity are calculated, which are fused to evaluate the overall similarity of the two ASC sets based on the Dempster-Shafer theory of evidence. Finally, the target type is determined by such similarities between the testing image and various types of targets. Experiments on the moving and stationary target acquisition and recognition data verify the validity of the proposed method.

  5. Automatic balancing of AMB systems using plural notch filter and adaptive synchronous compensation

    NASA Astrophysics Data System (ADS)

    Xu, Xiangbo; Chen, Shao; Zhang, Yanan

    2016-07-01

    To achieve automatic balancing in active magnetic bearing (AMB) system, a control method with notch filters and synchronous compensators is widely employed. However, the control precision is significantly affected by the synchronous compensation error, which is caused by parameter errors and variations of the power amplifiers. Furthermore, the computation effort may become intolerable if a 4-degree-of-freedom (dof) AMB system is studied. To solve these problems, an adaptive automatic balancing control method in the AMB system is presented in this study. Firstly, a 4-dof radial AMB system is described and analyzed. To simplify the controller design, the 4-dof dynamic equations are transferred into two plural functions related to translation and rotation, respectively. Next, to achieve automatic balancing of the AMB system, two synchronous equations are formed. Solution of them leads to a control strategy based on notch filters and feedforward controllers with an inverse function of the power amplifier. The feedforward controllers can be simplified as synchronous phases and amplitudes. Then, a plural phase-shift notch filter which can identify the synchronous components in 2-dof motions is formulated, and an adaptive compensation method that can form two closed-loop systems to tune the synchronous amplitude of the feedforward controller and the phase of the plural notch filter is proposed. Finally, the proposed control strategy is verified by both simulations and experiments on a test rig of magnetically suspended control moment gyro. The results indicate that this method can fulfill the automatic balancing of the AMB system with a light computational load.

  6. Automaticity and Stability of Adaptation to a Foreign-Accented Speaker.

    PubMed

    Witteman, Marijt J; Bardhan, Neil P; Weber, Andrea; McQueen, James M

    2015-06-01

    In three cross-modal priming experiments we asked whether adaptation to a foreign-accented speaker is automatic, and whether adaptation can be seen after a long delay between initial exposure and test. Dutch listeners were exposed to a Hebrew-accented Dutch speaker with two types of Dutch words: those that contained [I] (globally accented words), and those in which the Dutch [i] was shortened to [I] (specific accent marker words). Experiment 1, which served as a baseline, showed that native Dutch participants showed facilitatory priming for globally accented, but not specific accent, words. In experiment 2, participants performed a 3.5-minute phoneme monitoring task, and were tested on their comprehension of the accented speaker 24 hours later using the same cross-modal priming task as in experiment 1. During the phoneme monitoring task, listeners were asked to detect a consonant that was not strongly accented. In experiment 3, the delay between exposure and test was extended to 1 week. Listeners in experiments 2 and 3 showed facilitatory priming for both globally accented and specific accent marker words. Together, these results show that adaptation to a foreign-accented speaker can be rapid and automatic, and can be observed after a prolonged delay in testing. PMID:26677641

  7. Automatic carrier landing system for V/STOL aircraft using L1 adaptive and optimal control

    NASA Astrophysics Data System (ADS)

    Hariharapura Ramesh, Shashank

    This thesis presents a framework for developing automatic carrier landing systems for aircraft with vertical or short take-off and landing capability using two different control strategies---gain-scheduled linear optimal control, and L1 adaptive control. The carrier landing sequence of V/STOL aircraft involves large variations in dynamic pressure and aerodynamic coefficients arising because of the transition from aerodynamic-supported to jet-borne flight, descent to the touchdown altitude, and turns performed to align with the runway. Consequently, the dynamics of the aircraft exhibit a highly non-linear dynamical behavior with variations in flight conditions prior to touchdown. Therefore, the implication is the need for non-linear control techniques to achieve automatic landing. Gain-scheduling has been one of the most widely employed techniques for control of aircraft, which involves designing linear controllers for numerous trimmed flight conditions, and interpolating them to achieve a global non-linear control. Adaptive control technique, on the other hand, eliminates the need to schedule the controller parameters as they adapt to changing flight conditions.

  8. Applications of automatic mesh generation and adaptive methods in computational medicine

    SciTech Connect

    Schmidt, J.A.; Macleod, R.S.; Johnson, C.R.; Eason, J.C.

    1995-12-31

    Important problems in Computational Medicine exist that can benefit from the implementation of adaptive mesh refinement techniques. Biological systems are so inherently complex that only efficient models running on state of the art hardware can begin to simulate reality. To tackle the complex geometries associated with medical applications we present a general purpose mesh generation scheme based upon the Delaunay tessellation algorithm and an iterative point generator. In addition, automatic, two- and three-dimensional adaptive mesh refinement methods are presented that are derived from local and global estimates of the finite element error. Mesh generation and adaptive refinement techniques are utilized to obtain accurate approximations of bioelectric fields within anatomically correct models of the heart and human thorax. Specifically, we explore the simulation of cardiac defibrillation and the general forward and inverse problems in electrocardiography (ECG). Comparisons between uniform and adaptive refinement techniques are made to highlight the computational efficiency and accuracy of adaptive methods in the solution of field problems in computational medicine.

  9. First steps toward automatic patterns recognition from sequences of a restored river corridor photographs

    NASA Astrophysics Data System (ADS)

    Nouta, S.; Perona, P.; Schneider, P.; Wombacher, A.; Burlando, P.

    2009-04-01

    Obtaining information about river morphology and riparian vegetation patterns by means of photographic techniques is a challenging task with promising applications in the field of river hydraulic engineering and restoration. For instance, such a tool would speed up the post- processing phase of aerial images that is needed to calibrate both hydraulics and ecosystem models. Recognizing patterns automatically is relatively easy in the presence of well-defined objects and contrasting background colors, but this operation becomes rather difficult for open air or environmental photographs (e.g. of river corridors) where a multitude of colors, shadows, reflections and changing light conditions typically characterize the images. In this work an attempt is made in this direction and we begin with the already challenging task of recognizing water and non-water classes from digital photographs under changing light and surface albedo. Such conditions are typically due to either diurnal variability or bad weather conditions (e.g., like fog or snow). We use aerial photographs of the restored corridor of River Thur at Niederneunforn (Switzerland), which is currently monitored with high-resolution digital cameras as a task of the research project RECORD. Images of the river reach are taken from the top of two observation towers installed on the river levee and shots are frequency-dependent on current flow conditions. The approach we present here consists of masking the images by ignoring the irrelevant parts like mountains and sky, for instance. Next, features are defined which describe properties of the image or the image content, like e.g. color values, gradients of neighboring pixels, or application specific information like a probability distribution of a pixel being water derived from the digital elevation model. The investigated features can be classified according to two orthogonal dimensions: i) Pixel based features and features derived from a group of pixels and ii) Time

  10. Automatism

    PubMed Central

    McCaldon, R. J.

    1964-01-01

    Individuals can carry out complex activity while in a state of impaired consciousness, a condition termed “automatism”. Consciousness must be considered from both an organic and a psychological aspect, because impairment of consciousness may occur in both ways. Automatism may be classified as normal (hypnosis), organic (temporal lobe epilepsy), psychogenic (dissociative fugue) or feigned. Often painstaking clinical investigation is necessary to clarify the diagnosis. There is legal precedent for assuming that all crimes must embody both consciousness and will. Jurists are loath to apply this principle without reservation, as this would necessitate acquittal and release of potentially dangerous individuals. However, with the sole exception of the defence of insanity, there is at present no legislation to prohibit release without further investigation of anyone acquitted of a crime on the grounds of “automatism”. PMID:14199824

  11. Action Recognition and Movement Direction Discrimination Tasks Are Associated with Different Adaptation Patterns

    PubMed Central

    de la Rosa, Stephan; Ekramnia, Mina; Bülthoff, Heinrich H.

    2016-01-01

    The ability to discriminate between different actions is essential for action recognition and social interactions. Surprisingly previous research has often probed action recognition mechanisms with tasks that did not require participants to discriminate between actions, e.g., left-right direction discrimination tasks. It is not known to what degree visual processes in direction discrimination tasks are also involved in the discrimination of actions, e.g., when telling apart a handshake from a high-five. Here, we examined whether action discrimination is influenced by movement direction and whether direction discrimination depends on the type of action. We used an action adaptation paradigm to target action and direction discrimination specific visual processes. In separate conditions participants visually adapted to forward and backward moving handshake and high-five actions. Participants subsequently categorized either the action or the movement direction of an ambiguous action. The results showed that direction discrimination adaptation effects were modulated by the type of action but action discrimination adaptation effects were unaffected by movement direction. These results suggest that action discrimination and direction categorization rely on partly different visual information. We propose that action discrimination tasks should be considered for the exploration of visual action recognition mechanisms. PMID:26941633

  12. Fully automatic hp-adaptivity for acoustic and electromagnetic scattering in three dimensions

    NASA Astrophysics Data System (ADS)

    Kurtz, Jason Patrick

    We present an algorithm for fully automatic hp-adaptivity for finite element approximations of elliptic and Maxwell boundary value problems in three dimensions. The algorithm automatically generates a sequence of coarse grids, and a corresponding sequence of fine grids, such that the energy norm of the error decreases exponentially with respect to the number of degrees of freedom in either sequence. At each step, we employ a discrete optimization algorithm to determine the refinements for the current coarse grid such that the projection-based interpolation error for the current fine grid solution decreases with an optimal rate with respect to the number of degrees of freedom added by the refinement. The refinements are restricted only by the requirement that the resulting mesh is at most 1-irregular, but they may be anisotropic in both element size h and order of approximation p. While we cannot prove that our method converges at all, we present numerical evidence of exponential convergence for a diverse suite of model problems from acoustic and electromagnetic scattering. In particular we show that our method is well suited to the automatic resolution of exterior problems truncated by the introduction of a perfectly matched layer. To enable and accelerate the solution of these problems on commodity hardware, we include a detailed account of three critical aspects of our implementation, namely an efficient implementation of sum factorization, several efficient interfaces to the direct multi-frontal solver MUMPS, and some fast direct solvers for the computation of a sequence of nested projections.

  13. Automatic segmentation of canine retinal OCT using adaptive gradient enhancement and region growing

    NASA Astrophysics Data System (ADS)

    He, Yufan; Sun, Yankui; Chen, Min; Zheng, Yuanjie; Liu, Hui; Leon, Cecilia; Beltran, William; Gee, James C.

    2016-03-01

    In recent years, several studies have shown that the canine retina model offers important insight for our understanding of human retinal diseases. Several therapies developed to treat blindness in such models have already moved onto human clinical trials, with more currently under development [1]. Optical coherence tomography (OCT) offers a high resolution imaging modality for performing in-vivo analysis of the retinal layers. However, existing algorithms for automatically segmenting and analyzing such data have been mostly focused on the human retina. As a result, canine retinal images are often still being analyzed using manual segmentations, which is a slow and laborious task. In this work, we propose a method for automatically segmenting 5 boundaries in canine retinal OCT. The algorithm employs the position relationships between different boundaries to adaptively enhance the gradient map. A region growing algorithm is then used on the enhanced gradient maps to find the five boundaries separately. The automatic segmentation was compared against manual segmentations showing an average absolute error of 5.82 +/- 4.02 microns.

  14. Experience with automatic, dynamic load balancing and adaptive finite element computation

    SciTech Connect

    Wheat, S.R.; Devine, K.D.; Maccabe, A.B.

    1993-10-01

    Distributed memory, Massively Parallel (MP), MIMD technology has enabled the development of applications requiring computational resources previously unobtainable. Structural mechanics and fluid dynamics applications, for example, are often solved by finite element methods (FEMs) requiring, millions of degrees of freedom to accurately simulate physical phenomenon. Adaptive methods, which automatically refine or coarsen meshes and vary the order of accuracy of the numerical solution, offer greater robustness and computational efficiency than traditional FEMs by reducing the amount of computation required away from physical structures such as shock waves and boundary layers. On MP computers, FEMs frequently result in distributed processor load imbalances. To overcome load imbalance, many MP FEMs use static load balancing as a preprocessor to the finite element calculation. Adaptive methods complicate the load imbalance problem since the work per element is not uniform across the solution domain and changes as the computation proceeds. Therefore, dynamic load balancing is required to maintain global load balance. We describe a dynamic, fine-grained, element-based data migration system that maintains global load balance and is effective in the presence of changing work loads. Global load balance is achieved by overlapping neighborhoods of processors, where each neighborhood performs local load balancing. The method utilizes an automatic element management system library to which a programmer integrates the application`s computational description. The library`s flexibility supports a large class of finite element and finite difference based applications.

  15. An approach of crater automatic recognition based on contour digital elevation model from Chang'E Missions

    NASA Astrophysics Data System (ADS)

    Zuo, W.; Li, C.; Zhang, Z.; Li, H.; Feng, J.

    2015-12-01

    In order to provide fundamental information for exploration and related scientific research on the Moon and other planets, we propose a new automatic method to recognize craters on the lunar surface based on contour data extracted from a digital elevation model (DEM). First, we mapped 16-bits DEM to 256 gray scales for data compression, then for the purposes of better visualization, the grayscale is converted into RGB image. After that, a median filter is applied twice to DEM for data optimization, which produced smooth, continuous outlines for subsequent construction of contour plane. Considering the fact that the morphology of crater on contour plane can be approximately expressed as an ellipse or circle, we extract the outer boundaries of contour plane with the same color(gray value) as targets for further identification though a 8- neighborhood counterclockwise searching method. Then, A library of training samples is constructed based on above targets calculated from some sample DEM data, from which real crater targets are labeled as positive samples manually, and non-crater objects are labeled as negative ones. Some morphological feathers are calculated for all these samples, which are major axis (L), circumference(C), area inside the boundary(S), and radius of the largest inscribed circle(R). We use R/L, R/S, C/L, C/S, R/C, S/L as the key factors for identifying craters, and apply Fisher discrimination method on the sample library to calculate the weight of each factor and determine the discrimination formula, which is then applied to DEM data for identifying lunar craters. The method has been tested and verified with DEM data from CE-1 and CE-2, showing strong recognition ability and robustness and is applicable for the recognition of craters with various diameters and significant morphological differences, making fast and accurate automatic crater recognition possible.

  16. An automatic dose verification system for adaptive radiotherapy for helical tomotherapy

    NASA Astrophysics Data System (ADS)

    Mo, Xiaohu; Chen, Mingli; Parnell, Donald; Olivera, Gustavo; Galmarini, Daniel; Lu, Weiguo

    2014-03-01

    Purpose: During a typical 5-7 week treatment of external beam radiotherapy, there are potential differences between planned patient's anatomy and positioning, such as patient weight loss, or treatment setup. The discrepancies between planned and delivered doses resulting from these differences could be significant, especially in IMRT where dose distributions tightly conforms to target volumes while avoiding organs-at-risk. We developed an automatic system to monitor delivered dose using daily imaging. Methods: For each treatment, a merged image is generated by registering the daily pre-treatment setup image and planning CT using treatment position information extracted from the Tomotherapy archive. The treatment dose is then computed on this merged image using our in-house convolution-superposition based dose calculator implemented on GPU. The deformation field between merged and planning CT is computed using the Morphon algorithm. The planning structures and treatment doses are subsequently warped for analysis and dose accumulation. All results are saved in DICOM format with private tags and organized in a database. Due to the overwhelming amount of information generated, a customizable tolerance system is used to flag potential treatment errors or significant anatomical changes. A web-based system and a DICOM-RT viewer were developed for reporting and reviewing the results. Results: More than 30 patients were analysed retrospectively. Our in-house dose calculator passed 97% gamma test evaluated with 2% dose difference and 2mm distance-to-agreement compared with Tomotherapy calculated dose, which is considered sufficient for adaptive radiotherapy purposes. Evaluation of the deformable registration through visual inspection showed acceptable and consistent results, except for cases with large or unrealistic deformation. Our automatic flagging system was able to catch significant patient setup errors or anatomical changes. Conclusions: We developed an automatic dose

  17. A 3D approach for object recognition in illuminated scenes with adaptive correlation filters

    NASA Astrophysics Data System (ADS)

    Picos, Kenia; Díaz-Ramírez, Víctor H.

    2015-09-01

    In this paper we solve the problem of pose recognition of a 3D object in non-uniformly illuminated and noisy scenes. The recognition system employs a bank of space-variant correlation filters constructed with an adaptive approach based on local statistical parameters of the input scene. The position and orientation of the target are estimated with the help of the filter bank. For an observed input frame, the algorithm computes the correlation process between the observed image and the bank of filters using a combination of data and task parallelism by taking advantage of a graphics processing unit (GPU) architecture. The pose of the target is estimated by finding the template that better matches the current view of target within the scene. The performance of the proposed system is evaluated in terms of recognition accuracy, location and orientation errors, and computational performance.

  18. Face recognition using artificial neural network group-based adaptive tolerance (GAT) trees.

    PubMed

    Zhang, M; Fulcher, J

    1996-01-01

    Recent artificial neural network research has focused on simple models, but such models have not been very successful in describing complex systems (such as face recognition). This paper introduces the artificial neural network group-based adaptive tolerance (GAT) tree model for translation-invariant face recognition, suitable for use in an airport security system. GAT trees use a two-stage divide-and-conquer tree-type approach. The first stage determines general properties of the input, such as whether the facial image contains glasses or a beard. The second stage identifies the individual. Face perception classification, detection of front faces with glasses and/or beards, and face recognition results using GAT trees under laboratory conditions are presented. We conclude that the neural network group-based model offers significant improvement over conventional neural network trees for this task. PMID:18263454

  19. Interfacing sound stream segregation to automatic speech recognition-Preliminary results on listening to several sounds simultaneously

    SciTech Connect

    Okuno, Hiroshi G.; Nakatani, Tomohiro; Kawabata, Takeshi

    1996-12-31

    This paper reports the preliminary results of experiments on listening to several sounds at once. Two issues are addressed: segregating speech streams from a mixture of sounds, and interfacing speech stream segregation with automatic speech recognition (ASR). Speech stream segregation (SSS) is modeled as a process of extracting harmonic fragments, grouping these extracted harmonic fragments, and substituting some sounds for non-harmonic parts of groups. This system is implemented by extending the harmonic-based stream segregation system reported at AAAI-94 and IJCAI-95. The main problem in interfacing SSS with HMM-based ASR is how to improve the recognition performance which is degraded by spectral distortion of segregated sounds caused mainly by the binaural input, grouping, and residue substitution. Our solution is to re-train the parameters of the HMM with training data binauralized for four directions, to group harmonic fragments according to their directions, and to substitute the residue of harmonic fragments for non-harmonic parts of each group. Experiments with 500 mixtures of two women`s utterances of a word showed that the cumulative accuracy of word recognition up to the 10th candidate of each woman`s utterance is, on average, 75%.

  20. Audiovisual cues benefit recognition of accented speech in noise but not perceptual adaptation.

    PubMed

    Banks, Briony; Gowen, Emma; Munro, Kevin J; Adank, Patti

    2015-01-01

    Perceptual adaptation allows humans to recognize different varieties of accented speech. We investigated whether perceptual adaptation to accented speech is facilitated if listeners can see a speaker's facial and mouth movements. In Study 1, participants listened to sentences in a novel accent and underwent a period of training with audiovisual or audio-only speech cues, presented in quiet or in background noise. A control group also underwent training with visual-only (speech-reading) cues. We observed no significant difference in perceptual adaptation between any of the groups. To address a number of remaining questions, we carried out a second study using a different accent, speaker and experimental design, in which participants listened to sentences in a non-native (Japanese) accent with audiovisual or audio-only cues, without separate training. Participants' eye gaze was recorded to verify that they looked at the speaker's face during audiovisual trials. Recognition accuracy was significantly better for audiovisual than for audio-only stimuli; however, no statistical difference in perceptual adaptation was observed between the two modalities. Furthermore, Bayesian analysis suggested that the data supported the null hypothesis. Our results suggest that although the availability of visual speech cues may be immediately beneficial for recognition of unfamiliar accented speech in noise, it does not improve perceptual adaptation. PMID:26283946

  1. Audiovisual cues benefit recognition of accented speech in noise but not perceptual adaptation

    PubMed Central

    Banks, Briony; Gowen, Emma; Munro, Kevin J.; Adank, Patti

    2015-01-01

    Perceptual adaptation allows humans to recognize different varieties of accented speech. We investigated whether perceptual adaptation to accented speech is facilitated if listeners can see a speaker’s facial and mouth movements. In Study 1, participants listened to sentences in a novel accent and underwent a period of training with audiovisual or audio-only speech cues, presented in quiet or in background noise. A control group also underwent training with visual-only (speech-reading) cues. We observed no significant difference in perceptual adaptation between any of the groups. To address a number of remaining questions, we carried out a second study using a different accent, speaker and experimental design, in which participants listened to sentences in a non-native (Japanese) accent with audiovisual or audio-only cues, without separate training. Participants’ eye gaze was recorded to verify that they looked at the speaker’s face during audiovisual trials. Recognition accuracy was significantly better for audiovisual than for audio-only stimuli; however, no statistical difference in perceptual adaptation was observed between the two modalities. Furthermore, Bayesian analysis suggested that the data supported the null hypothesis. Our results suggest that although the availability of visual speech cues may be immediately beneficial for recognition of unfamiliar accented speech in noise, it does not improve perceptual adaptation. PMID:26283946

  2. Multiple ANN Recognizers for Adaptive Recognition of the Speech of Dysarthric Patients in AAL Systems.

    PubMed

    Nagy, Gabriella; Kutor, Laszlo

    2015-01-01

    People suffering from neuromuscular disorders are one of the main target groups of speech-controlled Ambient Assisted Living systems. However, the speech of these patients is often distorted because of the dysarthric symptoms of the disease. The dysarthria is known to become worse as the disease progresses. We propose a framework for an adaptive speech recognition system that may be able to follow the slow deterioration of speech quality without risking the accuracy of the system from incorrect data. PMID:26294603

  3. A smart pattern recognition system for the automatic identification of aerospace acoustic sources

    NASA Technical Reports Server (NTRS)

    Cabell, R. H.; Fuller, C. R.

    1989-01-01

    An intelligent air-noise recognition system is described that uses pattern recognition techniques to distinguish noise signatures of five different types of acoustic sources, including jet planes, propeller planes, a helicopter, train, and wind turbine. Information for classification is calculated using the power spectral density and autocorrelation taken from the output of a single microphone. Using this system, as many as 90 percent of test recordings were correctly identified, indicating that the linear discriminant functions developed can be used for aerospace source identification.

  4. The development of adaptive decision making: Recognition-based inference in children and adolescents.

    PubMed

    Horn, Sebastian S; Ruggeri, Azzurra; Pachur, Thorsten

    2016-09-01

    Judgments about objects in the world are often based on probabilistic information (or cues). A frugal judgment strategy that utilizes memory (i.e., the ability to discriminate between known and unknown objects) as a cue for inference is the recognition heuristic (RH). The usefulness of the RH depends on the structure of the environment, particularly the predictive power (validity) of recognition. Little is known about developmental differences in use of the RH. In this study, the authors examined (a) to what extent children and adolescents recruit the RH when making judgments, and (b) around what age adaptive use of the RH emerges. Primary schoolchildren (M = 9 years), younger adolescents (M = 12 years), and older adolescents (M = 17 years) made comparative judgments in task environments with either high or low recognition validity. Reliance on the RH was measured with a hierarchical multinomial model. Results indicated that primary schoolchildren already made systematic use of the RH. However, only older adolescents adaptively adjusted their strategy use between environments and were better able to discriminate between situations in which the RH led to correct versus incorrect inferences. These findings suggest that the use of simple heuristics does not progress unidirectionally across development but strongly depends on the task environment, in line with the perspective of ecological rationality. Moreover, adaptive heuristic inference seems to require experience and a developed base of domain knowledge. (PsycINFO Database Record PMID:27505696

  5. Real-Time Reconfigurable Adaptive Speech Recognition Command and Control Apparatus and Method

    NASA Technical Reports Server (NTRS)

    Salazar, George A. (Inventor); Haynes, Dena S. (Inventor); Sommers, Marc J. (Inventor)

    1998-01-01

    An adaptive speech recognition and control system and method for controlling various mechanisms and systems in response to spoken instructions and in which spoken commands are effective to direct the system into appropriate memory nodes, and to respective appropriate memory templates corresponding to the voiced command is discussed. Spoken commands from any of a group of operators for which the system is trained may be identified, and voice templates are updated as required in response to changes in pronunciation and voice characteristics over time of any of the operators for which the system is trained. Provisions are made for both near-real-time retraining of the system with respect to individual terms which are determined not be positively identified, and for an overall system training and updating process in which recognition of each command and vocabulary term is checked, and in which the memory templates are retrained if necessary for respective commands or vocabulary terms with respect to an operator currently using the system. In one embodiment, the system includes input circuitry connected to a microphone and including signal processing and control sections for sensing the level of vocabulary recognition over a given period and, if recognition performance falls below a given level, processing audio-derived signals for enhancing recognition performance of the system.

  6. Automaticity of Basic-Level Categorization Accounts for Labeling Effects in Visual Recognition Memory

    ERIC Educational Resources Information Center

    Richler, Jennifer J.; Gauthier, Isabel; Palmeri, Thomas J.

    2011-01-01

    Are there consequences of calling objects by their names? Lupyan (2008) suggested that overtly labeling objects impairs subsequent recognition memory because labeling shifts stored memory representations of objects toward the category prototype (representational shift hypothesis). In Experiment 1, we show that processing objects at the basic…

  7. Automatic concept recognition using the Human Phenotype Ontology reference and test suite corpora

    PubMed Central

    Groza, Tudor; Köhler, Sebastian; Doelken, Sandra; Collier, Nigel; Oellrich, Anika; Smedley, Damian; Couto, Francisco M; Baynam, Gareth; Zankl, Andreas; Robinson, Peter N.

    2015-01-01

    Concept recognition tools rely on the availability of textual corpora to assess their performance and enable the identification of areas for improvement. Typically, corpora are developed for specific purposes, such as gene name recognition. Gene and protein name identification are longstanding goals of biomedical text mining, and therefore a number of different corpora exist. However, phenotypes only recently became an entity of interest for specialized concept recognition systems, and hardly any annotated text is available for performance testing and training. Here, we present a unique corpus, capturing text spans from 228 abstracts manually annotated with Human Phenotype Ontology (HPO) concepts and harmonized by three curators, which can be used as a reference standard for free text annotation of human phenotypes. Furthermore, we developed a test suite for standardized concept recognition error analysis, incorporating 32 different types of test cases corresponding to 2164 HPO concepts. Finally, three established phenotype concept recognizers (NCBO Annotator, OBO Annotator and Bio-LarK CR) were comprehensively evaluated, and results are reported against both the text corpus and the test suites. The gold standard and test suites corpora are available from http://bio-lark.org/hpo_res.html. Database URL: http://bio-lark.org/hpo_res.html PMID:25725061

  8. The application of automatic recognition techniques in the Apollo 9 SO-65 experiment

    NASA Technical Reports Server (NTRS)

    Macdonald, R. B.

    1970-01-01

    A synoptic feature analysis is reported on Apollo 9 remote earth surface photographs that uses the methods of statistical pattern recognition to classify density points and clusterings in digital conversion of optical data. A computer derived geological map of a geological test site indicates that geological features of the range are separable, but that specific rock types are not identifiable.

  9. User Experience of a Mobile Speaking Application with Automatic Speech Recognition for EFL Learning

    ERIC Educational Resources Information Center

    Ahn, Tae youn; Lee, Sangmin-Michelle

    2016-01-01

    With the spread of mobile devices, mobile phones have enormous potential regarding their pedagogical use in language education. The goal of this study is to analyse user experience of a mobile-based learning system that is enhanced by speech recognition technology for the improvement of EFL (English as a foreign language) learners' speaking…

  10. Evaluation of Model Recognition for Grammar-Based Automatic 3d Building Model Reconstruction

    NASA Astrophysics Data System (ADS)

    Yu, Qian; Helmholz, Petra; Belton, David

    2016-06-01

    In recent years, 3D city models are in high demand by many public and private organisations, and the steadily growing capacity in both quality and quantity are increasing demand. The quality evaluation of these 3D models is a relevant issue both from the scientific and practical points of view. In this paper, we present a method for the quality evaluation of 3D building models which are reconstructed automatically from terrestrial laser scanning (TLS) data based on an attributed building grammar. The entire evaluation process has been performed in all the three dimensions in terms of completeness and correctness of the reconstruction. Six quality measures are introduced to apply on four datasets of reconstructed building models in order to describe the quality of the automatic reconstruction, and also are assessed on their validity from the evaluation point of view.

  11. Reliable emotion recognition system based on dynamic adaptive fusion of forehead biopotentials and physiological signals.

    PubMed

    Khezri, Mahdi; Firoozabadi, Mohammad; Sharafat, Ahmad Reza

    2015-11-01

    In this study, we proposed a new adaptive method for fusing multiple emotional modalities to improve the performance of the emotion recognition system. Three-channel forehead biosignals along with peripheral physiological measurements (blood volume pressure, skin conductance, and interbeat intervals) were utilized as emotional modalities. Six basic emotions, i.e., anger, sadness, fear, disgust, happiness, and surprise were elicited by displaying preselected video clips for each of the 25 participants in the experiment; the physiological signals were collected simultaneously. In our multimodal emotion recognition system, recorded signals with the formation of several classification units identified the emotions independently. Then the results were fused using the adaptive weighted linear model to produce the final result. Each classification unit is assigned a weight that is determined dynamically by considering the performance of the units during the testing phase and the training phase results. This dynamic weighting scheme enables the emotion recognition system to adapt itself to each new user. The results showed that the suggested method outperformed conventional fusion of the features and classification units using the majority voting method. In addition, a considerable improvement, compared to the systems that used the static weighting schemes for fusing classification units, was also shown. Using support vector machine (SVM) and k-nearest neighbors (KNN) classifiers, the overall classification accuracies of 84.7% and 80% were obtained in identifying the emotions, respectively. In addition, applying the forehead or physiological signals in the proposed scheme indicates that designing a reliable emotion recognition system is feasible without the need for additional emotional modalities. PMID:26253158

  12. Automatic speech recognition (ASR) and its use as a tool for assessment or therapy of voice, speech, and language disorders.

    PubMed

    Kitzing, Peter; Maier, Andreas; Ahlander, Viveka Lyberg

    2009-01-01

    In general opinion computerized automatic speech recognition (ASR) seems to be regarded as a method only to accomplish transcriptions from spoken language to written text and as such quite insecure and rather cumbersome. However, due to great advances in computer technology and informatics methodology ASR has nowadays become quite dependable and easier to handle, and the number of applications has increased considerably. After some introductory background information on ASR a number of applications of great interest for professionals in voice, speech, and language therapy are pointed out. In the foreseeable future, the keyboard and mouse will by means of ASR technology be replaced in many functions by a microphone as the human-computer interface, and the computer will talk back via its loud-speaker. It seems important that professionals engaged in the care of oral communication disorders take part in this development so their clients may get the optimal benefit from this new technology. PMID:19173117

  13. Logical implementation of the Automatic Target Recognition Working Group (ATRWG) 9-track tape format image storage format

    NASA Astrophysics Data System (ADS)

    Kolodzy, P. J.; Baum, J. E.

    1991-04-01

    Over the past two years, the Opto-Radar Systems Group has spearheaded the effort to select and incorporate a standard file format for raw sensor imagery. The goal is to use only one format for the multiple computing facilities and thus eliminate the problem of individual users creating custom software. Such a format must include all the header information that existed on the original data tapes, so all the available sensor information is retained. The format selected, called the NATO format within the Opto-Radar Systems Group, is a subset of the NATO data format developed by the Automatic Target Recognition Working Group (ATRWG). This format is apparently widely used in the ATR community. Thus, an additional benefit to such a format is the ability to transport data to and from other ATR facilities.

  14. Adaptive weighted local textural features for illumination, expression, and occlusion invariant face recognition

    NASA Astrophysics Data System (ADS)

    Cui, Chen; Asari, Vijayan K.

    2014-03-01

    Biometric features such as fingerprints, iris patterns, and face features help to identify people and restrict access to secure areas by performing advanced pattern analysis and matching. Face recognition is one of the most promising biometric methodologies for human identification in a non-cooperative security environment. However, the recognition results obtained by face recognition systems are a affected by several variations that may happen to the patterns in an unrestricted environment. As a result, several algorithms have been developed for extracting different facial features for face recognition. Due to the various possible challenges of data captured at different lighting conditions, viewing angles, facial expressions, and partial occlusions in natural environmental conditions, automatic facial recognition still remains as a difficult issue that needs to be resolved. In this paper, we propose a novel approach to tackling some of these issues by analyzing the local textural descriptions for facial feature representation. The textural information is extracted by an enhanced local binary pattern (ELBP) description of all the local regions of the face. The relationship of each pixel with respect to its neighborhood is extracted and employed to calculate the new representation. ELBP reconstructs a much better textural feature extraction vector from an original gray level image in different lighting conditions. The dimensionality of the texture image is reduced by principal component analysis performed on each local face region. Each low dimensional vector representing a local region is now weighted based on the significance of the sub-region. The weight of each sub-region is determined by employing the local variance estimate of the respective region, which represents the significance of the region. The final facial textural feature vector is obtained by concatenating the reduced dimensional weight sets of all the modules (sub-regions) of the face image

  15. Automatic ultrasonic imaging system with adaptive-learning-network signal-processing techniques

    SciTech Connect

    O'Brien, L.J.; Aravanis, N.A.; Gouge, J.R. Jr.; Mucciardi, A.N.; Lemon, D.K.; Skorpik, J.R.

    1982-04-01

    A conventional pulse-echo imaging system has been modified to operate with a linear ultrasonic array and associated digital electronics to collect data from a series of defects fabricated in aircraft quality steel blocks. A thorough analysis of the defect responses recorded with this modified system has shown that considerable improvements over conventional imaging approaches can be obtained in the crucial areas of defect detection and characterization. A combination of advanced signal processing concepts with the Adaptive Learning Network (ALN) methodology forms the basis for these improvements. Use of established signal processing algorithms such as temporal and spatial beam-forming in concert with a sophisticated detector has provided a reliable defect detection scheme which can be implemented in a microprocessor-based system to operate in an automatic mode.

  16. Automatic window size selection in Windowed Fourier Transform for 3D reconstruction using adapted mother wavelets

    NASA Astrophysics Data System (ADS)

    Fernandez, Sergio; Gdeisat, Munther A.; Salvi, Joaquim; Burton, David

    2011-06-01

    Fringe pattern analysis in coded structured light constitutes an active field of research. Techniques based on first projecting a sinusoidal pattern and then recovering the phase deviation permit the computation of the phase map and its corresponding depth map, leading to a dense acquisition of the measuring object. Among these techniques, the ones based on time-frequency analysis permit to extract the depth map from a single image, thus having potential applications measuring moving objects. The main techniques are Fourier Transform (FT), Windowed Fourier Transform (WFT) and Wavelet Transform (WT). This paper first analyzes the pros and cons of these three techniques, then a new algorithm for the automatic selection of the window size in WFT is proposed. This algorithm is compared to the traditional WT using adapted mother wavelet signals both with simulated and real objects, showing the performance results for quantitative and qualitative evaluations of the new method.

  17. Automatic front-crawl temporal phase detection using adaptive filtering of inertial signals.

    PubMed

    Dadashi, Farzin; Crettenand, Florent; Millet, Grégoire P; Seifert, Ludovic; Komar, John; Aminian, Kamiar

    2013-01-01

    This study introduces a novel approach for automatic temporal phase detection and inter-arm coordination estimation in front-crawl swimming using inertial measurement units (IMUs). We examined the validity of our method by comparison against a video-based system. Three waterproofed IMUs (composed of 3D accelerometer, 3D gyroscope) were placed on both forearms and the sacrum of the swimmer. We used two underwater video cameras in side and frontal views as our reference system. Two independent operators performed the video analysis. To test our methodology, seven well-trained swimmers performed three 300 m trials in a 50 m indoor pool. Each trial was in a different coordination mode quantified by the index of coordination. We detected different phases of the arm stroke by employing orientation estimation techniques and a new adaptive change detection algorithm on inertial signals. The difference of 0.2 ± 3.9% between our estimation and video-based system in assessment of the index of coordination was comparable to experienced operators' difference (1.1 ± 3.6%). The 95% limits of agreement of the difference between the two systems in estimation of the temporal phases were always less than 7.9% of the cycle duration. The inertial system offers an automatic easy-to-use system with timely feedback for the study of swimming. PMID:23560703

  18. Systematic Approach for Validation of X-Ray Automatic Defect Recognition Systems

    SciTech Connect

    Navalgund, Megha; Venkatachalam, Rajashekar; Asati, Mahesh; Venugopal, Manoharan

    2007-03-21

    With the advent of digital radiography, there has been a gradual shift from operators viewing images to find defects to totally automated defect recognition (ADR) systems. This has resulted in reduced operator subjectivity, reduced operator fatigue, and increased productivity. These automated defect recognition solutions are based on reference or non-reference based approaches or a combination of both. There exists some amount of uncertainty or reluctance to accept automated systems in view of no systematic quantified metrics available on performance of these ADR systems in comparison to human operators. This paper describes the metrics that one could follow to quantify the performance of ADR systems such as detectability for different defect types and sizes, accuracy, false call rate, robustness to various noise levels etc., As it might be difficult to have images with defects of various sizes, shapes, contrast and noise levels, a methodology to generate images with simulated defects with variability's in parameters such as size, shape, contrast to noise ratio etc., is demonstrated. This can be used to generate probability of detection estimates for different defect types and geometries. This will result in establishing confidence limits for ADR systems and can be used to judge if it would meet specific customer requirement. This would facilitate increase in the acceptability of ADR systems over current manual defect recognition systems for applications in various industries such as Castings, Oil and Gas, Aviation etc.

  19. Massively parallel network architectures for automatic recognition of visual speech signals. Final technical report

    SciTech Connect

    Sejnowski, T.J.; Goldstein, M.

    1990-01-01

    This research sought to produce a massively-parallel network architecture that could interpret speech signals from video recordings of human talkers. This report summarizes the project's results: (1) A corpus of video recordings from two human speakers was analyzed with image processing techniques and used as the data for this study; (2) We demonstrated that a feed forward network could be trained to categorize vowels from these talkers. The performance was comparable to that of the nearest neighbors techniques and to trained humans on the same data; (3) We developed a novel approach to sensory fusion by training a network to transform from facial images to short-time spectral amplitude envelopes. This information can be used to increase the signal-to-noise ratio and hence the performance of acoustic speech recognition systems in noisy environments; (4) We explored the use of recurrent networks to perform the same mapping for continuous speech. Results of this project demonstrate the feasibility of adding a visual speech recognition component to enhance existing speech recognition systems. Such a combined system could be used in noisy environments, such as cockpits, where improved communication is needed. This demonstration of presymbolic fusion of visual and acoustic speech signals is consistent with our current understanding of human speech perception.

  20. Optical implementation of a feature-based neural network with application to automatic target recognition

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin; Stoner, William W.

    1993-01-01

    An optical neural network based on the neocognitron paradigm is introduced. A novel aspect of the architecture design is shift-invariant multichannel Fourier optical correlation within each processing layer. Multilayer processing is achieved by feeding back the ouput of the feature correlator interatively to the input spatial light modulator and by updating the Fourier filters. By training the neural net with characteristic features extracted from the target images, successful pattern recognition with intraclass fault tolerance and interclass discrimination is achieved. A detailed system description is provided. Experimental demonstrations of a two-layer neural network for space-object discrimination is also presented.

  1. An automatic speech recognition system with speaker-independent identification support

    NASA Astrophysics Data System (ADS)

    Caranica, Alexandru; Burileanu, Corneliu

    2015-02-01

    The novelty of this work relies on the application of an open source research software toolkit (CMU Sphinx) to train, build and evaluate a speech recognition system, with speaker-independent support, for voice-controlled hardware applications. Moreover, we propose to use the trained acoustic model to successfully decode offline voice commands on embedded hardware, such as an ARMv6 low-cost SoC, Raspberry PI. This type of single-board computer, mainly used for educational and research activities, can serve as a proof-of-concept software and hardware stack for low cost voice automation systems.

  2. Automatic target recognition using a feature-based optical neural network

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin

    1992-01-01

    An optical neural network based upon the Neocognitron paradigm (K. Fukushima et al. 1983) is introduced. A novel aspect of the architectural design is shift-invariant multichannel Fourier optical correlation within each processing layer. Multilayer processing is achieved by iteratively feeding back the output of the feature correlator to the input spatial light modulator and updating the Fourier filters. By training the neural net with characteristic features extracted from the target images, successful pattern recognition with intra-class fault tolerance and inter-class discrimination is achieved. A detailed system description is provided. Experimental demonstration of a two-layer neural network for space objects discrimination is also presented.

  3. Automatic recognition of coronal type II radio bursts: The ARBIS 2 method and first observations

    NASA Astrophysics Data System (ADS)

    Lobzin, Vasili; Cairns, Iver; Robinson, Peter; Steward, Graham; Patterson, Garth

    Major space weather events such as solar flares and coronal mass ejections are usually accompa-nied by solar radio bursts, which can potentially be used for real-time space weather forecasts. Type II radio bursts are produced near the local plasma frequency and its harmonic by fast electrons accelerated by a shock wave moving through the corona and solar wind with a typi-cal speed of 1000 km s-1 . The coronal bursts have dynamic spectra with frequency gradually falling with time and durations of several minutes. We present a new method developed to de-tect type II coronal radio bursts automatically and describe its implementation in an extended Automated Radio Burst Identification System (ARBIS 2). Preliminary tests of the method with spectra obtained in 2002 show that the performance of the current implementation is quite high, ˜ 80%, while the probability of false positives is reasonably low, with one false positive per 100-200 hr for high solar activity and less than one false event per 10000 hr for low solar activity periods. The first automatically detected coronal type II radio bursts are also presented. ARBIS 2 is now operational with IPS Radio and Space Services, providing email alerts and event lists internationally.

  4. Automatic classification of sulcal regions of the human brain cortex using pattern recognition

    NASA Astrophysics Data System (ADS)

    Behnke, Kirsten J.; Rettmann, Maryam E.; Pham, Dzung L.; Shen, Dinggang; Resnick, Susan M.; Davatzikos, Christos; Prince, Jerry L.

    2003-05-01

    Parcellation of the cortex has received a great deal of attention in magnetic resonance (MR) image analysis, but its usefulness has been limited by time-consuming algorithms that require manual labeling. An automatic labeling scheme is necessary to accurately and consistently parcellate a large number of brains. The large variation of cortical folding patterns makes automatic labeling a challenging problem, which cannot be solved by deformable atlas registration alone. In this work, an automated classification scheme that consists of a mix of both atlas driven and data driven methods is proposed to label the sulcal regions, which are defined as the gray matter regions of the cortical surface surrounding each sulcus. The premise for this algorithm is that sulcal regions can be classified according to the pattern of anatomical features (e.g. supramarginal gyrus, cuneus, etc.) associated with each region. Using a nearest-neighbor approach, a sulcal region is classified as being in the same class as the sulcus from a set of training data which has the nearest pattern of anatomical features. Using just one subject as training data, the algorithm correctly labeled 83% of the regions that make up the main sulci of the cortex.

  5. Adaptive Recognition of Phonemes from Speaker - Connected-Speech Using Alisa.

    NASA Astrophysics Data System (ADS)

    Osella, Stephen Albert

    The purpose of this dissertation research is to investigate a novel approach to automatic speech recognition (ASR). The successes that have been achieved in ASR have relied heavily on the use of a language grammar, which significantly constrains the ASR process. By using grammar to provide most of the recognition ability, the ASR system does not have to be as accurate at the low-level recognition stage. The ALISA Phonetic Transcriber (APT) algorithm is proposed as a way to improve ASR by enhancing the lowest -level recognition stage. The objective of the APT algorithm is to classify speech frames (a short sequence of speech signal samples) into a small set of phoneme classes. The APT algorithm constructs the mapping from speech frames to phoneme labels through a multi-layer feedforward process. A design principle of APT is that final decisions are delayed as long as possible. Instead of attempting to optimize the decision making at each processing level individually, each level generates a list of candidate solutions that are passed on to the next level of processing. The later processing levels use these candidate solutions to resolve ambiguities. The scope of this dissertation is the design of the APT algorithm up to the speech-frame classification stage. In future research, the APT algorithm will be extended to the word recognition stage. In particular, the APT algorithm could serve as the front-end stage to a Hidden Markov Model (HMM) based word recognition system. In such a configuration, the APT algorithm would provide the HMM with the requisite phoneme state-probability estimates. To date, the APT algorithm has been tested with the TIMIT and NTIMIT speech databases. The APT algorithm has been trained and tested on the SX and SI sentence texts using both male and female speakers. Results indicate better performance than those results obtained using a neural network based speech-frame classifier. The performance of the APT algorithm has been evaluated for

  6. An automatic locally-adaptive method to estimate heavily-tailed breakthrough curves from particle distributions

    NASA Astrophysics Data System (ADS)

    Pedretti, Daniele; Fernàndez-Garcia, Daniel

    2013-09-01

    Particle tracking methods to simulate solute transport deal with the issue of having to reconstruct smooth concentrations from a limited number of particles. This is an error-prone process that typically leads to large fluctuations in the determined late-time behavior of breakthrough curves (BTCs). Kernel density estimators (KDE) can be used to automatically reconstruct smooth BTCs from a small number of particles. The kernel approach incorporates the uncertainty associated with subsampling a large population by equipping each particle with a probability density function. Two broad classes of KDE methods can be distinguished depending on the parametrization of this function: global and adaptive methods. This paper shows that each method is likely to estimate a specific portion of the BTCs. Although global methods offer a valid approach to estimate early-time behavior and peak of BTCs, they exhibit important fluctuations at the tails where fewer particles exist. In contrast, locally adaptive methods improve tail estimation while oversmoothing both early-time and peak concentrations. Therefore a new method is proposed combining the strength of both KDE approaches. The proposed approach is universal and only needs one parameter (α) which slightly depends on the shape of the BTCs. Results show that, for the tested cases, heavily-tailed BTCs are properly reconstructed with α ≈ 0.5 .

  7. Automatic detection of cone photoreceptors in split detector adaptive optics scanning light ophthalmoscope images

    PubMed Central

    Cunefare, David; Cooper, Robert F.; Higgins, Brian; Katz, David F.; Dubra, Alfredo; Carroll, Joseph; Farsiu, Sina

    2016-01-01

    Quantitative analysis of the cone photoreceptor mosaic in the living retina is potentially useful for early diagnosis and prognosis of many ocular diseases. Non-confocal split detector based adaptive optics scanning light ophthalmoscope (AOSLO) imaging reveals the cone photoreceptor inner segment mosaics often not visualized on confocal AOSLO imaging. Despite recent advances in automated cone segmentation algorithms for confocal AOSLO imagery, quantitative analysis of split detector AOSLO images is currently a time-consuming manual process. In this paper, we present the fully automatic adaptive filtering and local detection (AFLD) method for detecting cones in split detector AOSLO images. We validated our algorithm on 80 images from 10 subjects, showing an overall mean Dice’s coefficient of 0.95 (standard deviation 0.03), when comparing our AFLD algorithm to an expert grader. This is comparable to the inter-observer Dice’s coefficient of 0.94 (standard deviation 0.04). To the best of our knowledge, this is the first validated, fully-automated segmentation method which has been applied to split detector AOSLO images. PMID:27231641

  8. Automatic detection of cone photoreceptors in split detector adaptive optics scanning light ophthalmoscope images.

    PubMed

    Cunefare, David; Cooper, Robert F; Higgins, Brian; Katz, David F; Dubra, Alfredo; Carroll, Joseph; Farsiu, Sina

    2016-05-01

    Quantitative analysis of the cone photoreceptor mosaic in the living retina is potentially useful for early diagnosis and prognosis of many ocular diseases. Non-confocal split detector based adaptive optics scanning light ophthalmoscope (AOSLO) imaging reveals the cone photoreceptor inner segment mosaics often not visualized on confocal AOSLO imaging. Despite recent advances in automated cone segmentation algorithms for confocal AOSLO imagery, quantitative analysis of split detector AOSLO images is currently a time-consuming manual process. In this paper, we present the fully automatic adaptive filtering and local detection (AFLD) method for detecting cones in split detector AOSLO images. We validated our algorithm on 80 images from 10 subjects, showing an overall mean Dice's coefficient of 0.95 (standard deviation 0.03), when comparing our AFLD algorithm to an expert grader. This is comparable to the inter-observer Dice's coefficient of 0.94 (standard deviation 0.04). To the best of our knowledge, this is the first validated, fully-automated segmentation method which has been applied to split detector AOSLO images. PMID:27231641

  9. Domain-elongation NMR spectroscopy yields new insights into RNA dynamics and adaptive recognition.

    PubMed

    Zhang, Qi; Al-Hashimi, Hashim M

    2009-11-01

    By simplifying the interpretation of nuclear magnetic resonance spin relaxation and residual dipolar couplings data, recent developments involving the elongation of RNA helices are providing new atomic insights into the dynamical properties that allow RNA structures to change functionally and adaptively. Domain elongation, in concert with spin relaxation measurements, has allowed the detailed characterization of a hierarchical network of local and collective motional modes occurring at nanosecond timescale that mirror the structural rearrangements that take place following adaptive recognition. The combination of domain elongation with residual dipolar coupling measurements has allowed the experimental three-dimensional visualization of very large amplitude rigid-body helix motions in HIV-1 transactivation response element (TAR) that trace out a highly choreographed trajectory in which the helices twist and bend in a correlated manner. The dynamic trajectory allows unbound TAR to sample many of its ligand bound conformations, indicating that adaptive recognition occurs by "conformational selection" rather than "induced fit." These studies suggest that intrinsic flexibility plays essential roles directing RNA conformational changes along specific pathways. PMID:19776156

  10. Divergent adaptation of tRNA recognition by Methanococcus jannaschii prolyl-tRNA synthetase.

    PubMed

    Burke, B; Lipman, R S; Shiba, K; Musier-Forsyth, K; Hou, Y M

    2001-06-01

    Analysis of prolyl-tRNA synthetase (ProRS) across all three taxonomic domains (Eubacteria, Eucarya, and Archaea) reveals that the sequences are divided into two distinct groups. Recent studies show that Escherichia coli ProRS, a member of the "prokaryotic-like" group, recognizes specific tRNA bases at both the acceptor and anticodon ends, whereas human ProRS, a member of the "eukaryotic-like" group, recognizes nucleotide bases primarily in the anticodon. The archaeal Methanococcus jannaschii ProRS is a member of the eukaryotic-like group, although its tRNA(Pro) possesses prokaryotic features in the acceptor stem. We show here that, in some respects, recognition of tRNA(Pro) by M. jannaschii ProRS parallels that of human, with a strong emphasis on the anticodon and only weak recognition of the acceptor stem. However, our data also indicate differences in the details of the anticodon recognition between these two eukaryotic-like synthetases. Although the human enzyme places a stronger emphasis on G35, the M. jannaschii enzyme places a stronger emphasis on G36, a feature that is shared by E. coli ProRS. These results, interpreted in the context of an extensive sequence alignment, provide evidence of divergent adaptation by M. jannaschii ProRS; recognition of the tRNA acceptor end is eukaryotic-like, whereas the details of the anticodon recognition are prokaryotic-like. This divergence may be a reflection of the unusual dual function of this enzyme, which catalyzes specific aminoacylation with proline as well as with cysteine. PMID:11342535

  11. Automatic Entity Recognition and Typing from Massive Text Corpora: A Phrase and Network Mining Approach

    PubMed Central

    Ren, Xiang; El-Kishky, Ahmed; Wang, Chi; Han, Jiawei

    2015-01-01

    In today’s computerized and information-based society, we are soaked with vast amounts of text data, ranging from news articles, scientific publications, product reviews, to a wide range of textual information from social media. To unlock the value of these unstructured text data from various domains, it is of great importance to gain an understanding of entities and their relationships. In this tutorial, we introduce data-driven methods to recognize typed entities of interest in massive, domain-specific text corpora. These methods can automatically identify token spans as entity mentions in documents and label their types (e.g., people, product, food) in a scalable way. We demonstrate on real datasets including news articles and tweets how these typed entities aid in knowledge discovery and management. PMID:26705508

  12. Automatic Recognition of Aggressive Behavior in Pigs Using a Kinect Depth Sensor

    PubMed Central

    Lee, Jonguk; Jin, Long; Park, Daihee; Chung, Yongwha

    2016-01-01

    Aggression among pigs adversely affects economic returns and animal welfare in intensive pigsties. In this study, we developed a non-invasive, inexpensive, automatic monitoring prototype system that uses a Kinect depth sensor to recognize aggressive behavior in a commercial pigpen. The method begins by extracting activity features from the Kinect depth information obtained in a pigsty. The detection and classification module, which employs two binary-classifier support vector machines in a hierarchical manner, detects aggressive activity, and classifies it into aggressive sub-types such as head-to-head (or body) knocking and chasing. Our experimental results showed that this method is effective for detecting aggressive pig behaviors in terms of both cost-effectiveness (using a low-cost Kinect depth sensor) and accuracy (detection and classification accuracies over 95.7% and 90.2%, respectively), either as a standalone solution or to complement existing methods. PMID:27144572

  13. Automatic Recognition of Aggressive Behavior in Pigs Using a Kinect Depth Sensor.

    PubMed

    Lee, Jonguk; Jin, Long; Park, Daihee; Chung, Yongwha

    2016-01-01

    Aggression among pigs adversely affects economic returns and animal welfare in intensive pigsties. In this study, we developed a non-invasive, inexpensive, automatic monitoring prototype system that uses a Kinect depth sensor to recognize aggressive behavior in a commercial pigpen. The method begins by extracting activity features from the Kinect depth information obtained in a pigsty. The detection and classification module, which employs two binary-classifier support vector machines in a hierarchical manner, detects aggressive activity, and classifies it into aggressive sub-types such as head-to-head (or body) knocking and chasing. Our experimental results showed that this method is effective for detecting aggressive pig behaviors in terms of both cost-effectiveness (using a low-cost Kinect depth sensor) and accuracy (detection and classification accuracies over 95.7% and 90.2%, respectively), either as a standalone solution or to complement existing methods. PMID:27144572

  14. Automatic recognition of disorders, findings, pharmaceuticals and body structures from clinical text: an annotation and machine learning study.

    PubMed

    Skeppstedt, Maria; Kvist, Maria; Nilsson, Gunnar H; Dalianis, Hercules

    2014-06-01

    Automatic recognition of clinical entities in the narrative text of health records is useful for constructing applications for documentation of patient care, as well as for secondary usage in the form of medical knowledge extraction. There are a number of named entity recognition studies on English clinical text, but less work has been carried out on clinical text in other languages. This study was performed on Swedish health records, and focused on four entities that are highly relevant for constructing a patient overview and for medical hypothesis generation, namely the entities: Disorder, Finding, Pharmaceutical Drug and Body Structure. The study had two aims: to explore how well named entity recognition methods previously applied to English clinical text perform on similar texts written in Swedish; and to evaluate whether it is meaningful to divide the more general category Medical Problem, which has been used in a number of previous studies, into the two more granular entities, Disorder and Finding. Clinical notes from a Swedish internal medicine emergency unit were annotated for the four selected entity categories, and the inter-annotator agreement between two pairs of annotators was measured, resulting in an average F-score of 0.79 for Disorder, 0.66 for Finding, 0.90 for Pharmaceutical Drug and 0.80 for Body Structure. A subset of the developed corpus was thereafter used for finding suitable features for training a conditional random fields model. Finally, a new model was trained on this subset, using the best features and settings, and its ability to generalise to held-out data was evaluated. This final model obtained an F-score of 0.81 for Disorder, 0.69 for Finding, 0.88 for Pharmaceutical Drug, 0.85 for Body Structure and 0.78 for the combined category Disorder+Finding. The obtained results, which are in line with or slightly lower than those for similar studies on English clinical text, many of them conducted using a larger training data set, show that

  15. Scene segmentation from motion in multispectral imagery to aid automatic human gait recognition

    NASA Astrophysics Data System (ADS)

    Pearce, Daniel; Harvey, Christophe; Day, Simon; Goffredo, Michela

    2007-10-01

    Primarily focused at military and security environments where there is a need to identify humans covertly and remotely; this paper outlines how recovering human gait biometrics from a multi-spectral imaging system can overcome the failings of traditional biometrics to fulfil those needs. With the intention of aiding single camera human gait recognition, an algorithm was developed to accurately segment a walking human from multi-spectral imagery. 16-band imagery from the image replicating imaging spectrometer (IRIS) camera system is used to overcome some of the common problems associated with standard change detection techniques. Fusing the concepts of scene segmentation by spectral characterisation and background subtraction by image differencing gives a uniquely robust approach. This paper presents the results of real trials with human subjects and a prototype IRIS camera system, and compares performance to typical broadband camera systems.

  16. Automatic Segmentation and Online virtualCT in Head-and-Neck Adaptive Radiation Therapy

    SciTech Connect

    Peroni, Marta; Ciardo, Delia; Spadea, Maria Francesca; Riboldi, Marco; Comi, Stefania; Alterio, Daniela; Baroni, Guido; Orecchia, Roberto

    2012-11-01

    Purpose: The purpose of this work was to develop and validate an efficient and automatic strategy to generate online virtual computed tomography (CT) scans for adaptive radiation therapy (ART) in head-and-neck (HN) cancer treatment. Method: We retrospectively analyzed 20 patients, treated with intensity modulated radiation therapy (IMRT), for an HN malignancy. Different anatomical structures were considered: mandible, parotid glands, and nodal gross tumor volume (nGTV). We generated 28 virtualCT scans by means of nonrigid registration of simulation computed tomography (CTsim) and cone beam CT images (CBCTs), acquired for patient setup. We validated our approach by considering the real replanning CT (CTrepl) as ground truth. We computed the Dice coefficient (DSC), center of mass (COM) distance, and root mean square error (RMSE) between correspondent points located on the automatically segmented structures on CBCT and virtualCT. Results: Residual deformation between CTrepl and CBCT was below one voxel. Median DSC was around 0.8 for mandible and parotid glands, but only 0.55 for nGTV, because of the fairly homogeneous surrounding soft tissues and of its small volume. Median COM distance and RMSE were comparable with image resolution. No significant correlation between RMSE and initial or final deformation was found. Conclusion: The analysis provides evidence that deformable image registration may contribute significantly in reducing the need of full CT-based replanning in HN radiation therapy by supporting swift and objective decision-making in clinical practice. Further work is needed to strengthen algorithm potential in nGTV localization.

  17. Automatic treatment plan re-optimization for adaptive radiotherapy guided with the initial plan DVHs

    NASA Astrophysics Data System (ADS)

    Li, Nan; Zarepisheh, Masoud; Uribe-Sanchez, Andres; Moore, Kevin; Tian, Zhen; Zhen, Xin; Jiang Graves, Yan; Gautier, Quentin; Mell, Loren; Zhou, Linghong; Jia, Xun; Jiang, Steve

    2013-12-01

    Adaptive radiation therapy (ART) can reduce normal tissue toxicity and/or improve tumor control through treatment adaptations based on the current patient anatomy. Developing an efficient and effective re-planning algorithm is an important step toward the clinical realization of ART. For the re-planning process, manual trial-and-error approach to fine-tune planning parameters is time-consuming and is usually considered unpractical, especially for online ART. It is desirable to automate this step to yield a plan of acceptable quality with minimal interventions. In ART, prior information in the original plan is available, such as dose-volume histogram (DVH), which can be employed to facilitate the automatic re-planning process. The goal of this work is to develop an automatic re-planning algorithm to generate a plan with similar, or possibly better, DVH curves compared with the clinically delivered original plan. Specifically, our algorithm iterates the following two loops. An inner loop is the traditional fluence map optimization, in which we optimize a quadratic objective function penalizing the deviation of the dose received by each voxel from its prescribed or threshold dose with a set of fixed voxel weighting factors. In outer loop, the voxel weighting factors in the objective function are adjusted according to the deviation of the current DVH curves from those in the original plan. The process is repeated until the DVH curves are acceptable or maximum iteration step is reached. The whole algorithm is implemented on GPU for high efficiency. The feasibility of our algorithm has been demonstrated with three head-and-neck cancer IMRT cases, each having an initial planning CT scan and another treatment CT scan acquired in the middle of treatment course. Compared with the DVH curves in the original plan, the DVH curves in the resulting plan using our algorithm with 30 iterations are better for almost all structures. The re-optimization process takes about 30 s using

  18. Automatic treatment plan re-optimization for adaptive radiotherapy guided with the initial plan DVHs.

    PubMed

    Li, Nan; Zarepisheh, Masoud; Uribe-Sanchez, Andres; Moore, Kevin; Tian, Zhen; Zhen, Xin; Graves, Yan Jiang; Gautier, Quentin; Mell, Loren; Zhou, Linghong; Jia, Xun; Jiang, Steve

    2013-12-21

    Adaptive radiation therapy (ART) can reduce normal tissue toxicity and/or improve tumor control through treatment adaptations based on the current patient anatomy. Developing an efficient and effective re-planning algorithm is an important step toward the clinical realization of ART. For the re-planning process, manual trial-and-error approach to fine-tune planning parameters is time-consuming and is usually considered unpractical, especially for online ART. It is desirable to automate this step to yield a plan of acceptable quality with minimal interventions. In ART, prior information in the original plan is available, such as dose-volume histogram (DVH), which can be employed to facilitate the automatic re-planning process. The goal of this work is to develop an automatic re-planning algorithm to generate a plan with similar, or possibly better, DVH curves compared with the clinically delivered original plan. Specifically, our algorithm iterates the following two loops. An inner loop is the traditional fluence map optimization, in which we optimize a quadratic objective function penalizing the deviation of the dose received by each voxel from its prescribed or threshold dose with a set of fixed voxel weighting factors. In outer loop, the voxel weighting factors in the objective function are adjusted according to the deviation of the current DVH curves from those in the original plan. The process is repeated until the DVH curves are acceptable or maximum iteration step is reached. The whole algorithm is implemented on GPU for high efficiency. The feasibility of our algorithm has been demonstrated with three head-and-neck cancer IMRT cases, each having an initial planning CT scan and another treatment CT scan acquired in the middle of treatment course. Compared with the DVH curves in the original plan, the DVH curves in the resulting plan using our algorithm with 30 iterations are better for almost all structures. The re-optimization process takes about 30 s using

  19. A Star Recognition Method Based on the Adaptive Ant Colony Algorithm for Star Sensors

    PubMed Central

    Quan, Wei; Fang, Jiancheng

    2010-01-01

    A new star recognition method based on the Adaptive Ant Colony (AAC) algorithm has been developed to increase the star recognition speed and success rate for star sensors. This method draws circles, with the center of each one being a bright star point and the radius being a special angular distance, and uses the parallel processing ability of the AAC algorithm to calculate the angular distance of any pair of star points in the circle. The angular distance of two star points in the circle is solved as the path of the AAC algorithm, and the path optimization feature of the AAC is employed to search for the optimal (shortest) path in the circle. This optimal path is used to recognize the stellar map and enhance the recognition success rate and speed. The experimental results show that when the position error is about 50″, the identification success rate of this method is 98% while the Delaunay identification method is only 94%. The identification time of this method is up to 50 ms. PMID:22294908

  20. Toward fast feature adaptation and localization for real-time face recognition systems

    NASA Astrophysics Data System (ADS)

    Zuo, Fei; de With, Peter H.

    2003-06-01

    In a home environment, video surveillance employing face detection and recognition is attractive for new applications. Facial feature (e.g. eyes and mouth) localization in the face is an essential task for face recognition because it constitutes an indispensable step for face geometry normalization. This paper presents a new and efficient feature localization approach for real-time personal surveillance applications with low-quality images. The proposed approach consists of three major steps: (1) self-adaptive iris tracing, which is preceded by a trace-point selection process with multiple initializations to overcome the local convergence problem, (2) eye structure verification using an eye template with limited deformation freedom, and (3) eye-pair selection based on a combination of metrics. We have tested our facial feature localization method on about 100 randomly selected face images from the AR database and 30 face images downloaded from the Internet. The results show that our approach achieves a correct detection rate of 96%. Since our eye-selection technique does not involve time-consuming deformation processes, it yields relatively fast processing. The proposed algorithm has been successfully applied to a real-time home video surveillance system and proven to be an effective and computationally efficient face normalization method preceding the face recognition.

  1. A star recognition method based on the Adaptive Ant Colony algorithm for star sensors.

    PubMed

    Quan, Wei; Fang, Jiancheng

    2010-01-01

    A new star recognition method based on the Adaptive Ant Colony (AAC) algorithm has been developed to increase the star recognition speed and success rate for star sensors. This method draws circles, with the center of each one being a bright star point and the radius being a special angular distance, and uses the parallel processing ability of the AAC algorithm to calculate the angular distance of any pair of star points in the circle. The angular distance of two star points in the circle is solved as the path of the AAC algorithm, and the path optimization feature of the AAC is employed to search for the optimal (shortest) path in the circle. This optimal path is used to recognize the stellar map and enhance the recognition success rate and speed. The experimental results show that when the position error is about 50″, the identification success rate of this method is 98% while the Delaunay identification method is only 94%. The identification time of this method is up to 50 ms. PMID:22294908

  2. An automatic method for arterial pulse waveform recognition using KNN and SVM classifiers.

    PubMed

    Pereira, Tânia; Paiva, Joana S; Correia, Carlos; Cardoso, João

    2016-07-01

    The measurement and analysis of the arterial pulse waveform (APW) are the means for cardiovascular risk assessment. Optical sensors represent an attractive instrumental solution to APW assessment due to their truly non-contact nature that makes the measurement of the skin surface displacement possible, especially at the carotid artery site. In this work, an automatic method to extract and classify the acquired data of APW signals and noise segments was proposed. Two classifiers were implemented: k-nearest neighbours and support vector machine (SVM), and a comparative study was made, considering widely used performance metrics. This work represents a wide study in feature creation for APW. A pool of 37 features was extracted and split in different subsets: amplitude features, time domain statistics, wavelet features, cross-correlation features and frequency domain statistics. The support vector machine recursive feature elimination was implemented for feature selection in order to identify the most relevant feature. The best result (0.952 accuracy) in discrimination between signals and noise was obtained for the SVM classifier with an optimal feature subset . PMID:26403299

  3. Automatic recognition of Cenozoic calcareous nannofossils: a reliable tool for paleoceanographic studies

    NASA Astrophysics Data System (ADS)

    Barbarin, N.; Beaufort, L.; Gally, Y.; Buchet, N.; Ermini, M.

    2012-12-01

    Calcareous nannofossils are microscopic-scaled plates (mainly coccoliths) produced by marine phytoplankton. They are abundant in marine sediment, diversified through geologic time and sensitive to climatic/environmental changes. That's why they are often used in biostratigraphy and (paleo-)oceanographic/climatic reconstructions. We propose recent improvements on an automated system called SYRACO which is based essentially on artificial neural networks. Originally able to recognized around ten species from the Upper Pleistocene, this new system is now trained to recognize thousand of species from the Upper Eocene to actual species. It is now based on the use of several neural networks on a large database combined with a morphometric approach from statistical classifications. This new system is able to keep at least 90% of the nannofossils in a sample and filter out around 84% of the non-nannofossils. Moreover we added a special neural network coupled with macro for Florisphaera profunda, an important species in paleoceanography, which is difficult to indentify by neural network. As examples, we present applications nannofossil assemblage composition in core-tops of the Indian Ocean compared with human counts and in a core retrieved in the Gulf of Papua. These results show a very good correlation between human and automatic counts and a precise paleoceanogrphic dynamics.

  4. Complete automatic target cuer/recognition system for tactical forward-looking infrared images

    NASA Astrophysics Data System (ADS)

    Ernisse, Brian E.; Rogers, Steven K.; DeSimio, Martin P.; Raines, Richard A.

    1997-09-01

    A complete forward-looking IR (FLIR) automatic target cuer/recognizer (ATC/R) is presented. The data used for development and testing of this ATC/R are first generation FLIR images collected using a F-15E. The database contains thousands of images with various mission profiles and target arrangements. The specific target of interest is a mobile missile launcher, the primary target. The goal is to locate all vehicles (secondary targets) within a scene and identify the primary targets. The system developed and tested includes an image segmenter, region cluster algorithm, feature extractor, and classifier. Conventional image processing algorithms in conjunction with neural network techniques are used to form a complete ATC/R system. The conventional techniques include hit/miss filtering, difference of Gaussian filtering, and region clustering. A neural network (multilayer perceptron) is used for classification. These algorithms are developed, tested and then combined into a functional ATC/R system. Overall primary target detection rate (cuer) is 84% with a 69% primary target identification (recognizer) rate at ranges relevant to munitions release. Furthermore, the false alarm rate (a nontarget cued as a target) in only 2.3 per scene. The research is being completed with a 10 flight test profile using third generation FLIR images.

  5. Automatic Recognition of Coronal Type II Radio Bursts: The Method for ARBIS 2

    NASA Astrophysics Data System (ADS)

    Lobzin, V.; Cairns, I. H.; Robinson, P. A.; Steward, G.; Paterson, G.

    2009-12-01

    The major space weather events like solar flares and coronal mass ejections are usually accompanied by solar radio bursts, which can be used for a real-time space weather forecast. Type II radio bursts are produced near the local electron plasma frequency and near its harmonic by fast electrons accelerated by a shock wave moving through the corona and solar wind with a typical speed of ~1000 km/s. These bursts have dynamic spectra with frequency gradually falling with time (~0.25 MHz s-1), the duration of the coronal burst being several minutes. This paper presents a new method developed to detect coronal radio bursts automatically and describes its implementation in an Automated Radio Burst Identification System (ARBIS 2). The central idea of the implementation is to use the Hough transform for more objective detection of the type II bursts. Preliminary tests of the method with the use of the spectra obtained in 2002 show that the performance of the current implementation is quite high, ~80%, while the probability of false positives is reasonably low, 0.004-0.010 false positives per hour. Prospects for improvements are discussed.

  6. CRISPR Recognition Tool (CRT): a tool for automatic detection ofclustered regularly interspaced palindromic repeats

    SciTech Connect

    Bland, Charles; Ramsey, Teresa L.; Sabree, Fareedah; Lowe,Micheal; Brown, Kyndall; Kyrpides, Nikos C.; Hugenholtz, Philip

    2007-05-01

    Clustered Regularly Interspaced Palindromic Repeats (CRISPRs) are a novel type of direct repeat found in a wide range of bacteria and archaea. CRISPRs are beginning to attract attention because of their proposed mechanism; that is, defending their hosts against invading extrachromosomal elements such as viruses. Existing repeat detection tools do a poor job of identifying CRISPRs due to the presence of unique spacer sequences separating the repeats. In this study, a new tool, CRT, is introduced that rapidly and accurately identifies CRISPRs in large DNA strings, such as genomes and metagenomes. CRT was compared to CRISPR detection tools, Patscan and Pilercr. In terms of correctness, CRT was shown to be very reliable, demonstrating significant improvements over Patscan for measures precision, recall and quality. When compared to Pilercr, CRT showed improved performance for recall and quality. In terms of speed, CRT also demonstrated superior performance, especially for genomes containing large numbers of repeats. In this paper a new tool was introduced for the automatic detection of CRISPR elements. This tool, CRT, was shown to be a significant improvement over the current techniques for CRISPR identification. CRT's approach to detecting repetitive sequences is straightforward. It uses a simple sequential scan of a DNA sequence and detects repeats directly without any major conversion or preprocessing of the input. This leads to a program that is easy to describe and understand; yet it is very accurate, fast and memory efficient, being O(n) in space and O(nm/l) in time.

  7. New approach for automatic recognition of melanoma in profilometry: optimized feature selection using genetic algorithms

    NASA Astrophysics Data System (ADS)

    Handels, Heinz; Ross, Th; Kreusch, J.; Wolff, H. H.; Poeppl, S. J.

    1998-06-01

    A new approach to computer supported recognition of melanoma and naevocytic naevi based on high resolution skin surface profiles is presented. Profiles are generated by sampling an area of 4 X 4 mm2 at a resolution of 125 sample points per mm with a laser profilometer at a vertical resolution of 0.1 micrometers . With image analysis algorithms Haralick's texture parameters, Fourier features and features based on fractal analysis are extracted. In order to improve classification performance, a subsequent feature selection process is applied to determine the best possible subset of features. Genetic algorithms are optimized for the feature selection process, and results of different approaches are compared. As quality measure for feature subsets, the error rate of the nearest neighbor classifier estimated with the leaving-one-out method is used. In comparison to heuristic strategies and greedy algorithms, genetic algorithms show the best results for the feature selection problem. After feature selection, several architectures of feed forward neural networks with error back-propagation are evaluated. Classification performance of the neural classifier is optimized using different topologies, learning parameters and pruning algorithms. The best neural classifier achieved an error rate of 4.5% and was found after network pruning. The best result in all with an error rate of 2.3% was obtained with the nearest neighbor classifier.

  8. Estimation of Phoneme-Specific HMM Topologies for the Automatic Recognition of Dysarthric Speech

    PubMed Central

    2013-01-01

    Dysarthria is a frequently occurring motor speech disorder which can be caused by neurological trauma, cerebral palsy, or degenerative neurological diseases. Because dysarthria affects phonation, articulation, and prosody, spoken communication of dysarthric speakers gets seriously restricted, affecting their quality of life and confidence. Assistive technology has led to the development of speech applications to improve the spoken communication of dysarthric speakers. In this field, this paper presents an approach to improve the accuracy of HMM-based speech recognition systems. Because phonatory dysfunction is a main characteristic of dysarthric speech, the phonemes of a dysarthric speaker are affected at different levels. Thus, the approach consists in finding the most suitable type of HMM topology (Bakis, Ergodic) for each phoneme in the speaker's phonetic repertoire. The topology is further refined with a suitable number of states and Gaussian mixture components for acoustic modelling. This represents a difference when compared with studies where a single topology is assumed for all phonemes. Finding the suitable parameters (topology and mixtures components) is performed with a Genetic Algorithm (GA). Experiments with a well-known dysarthric speech database showed statistically significant improvements of the proposed approach when compared with the single topology approach, even for speakers with severe dysarthria. PMID:24222784

  9. Estimation of phoneme-specific HMM topologies for the automatic recognition of dysarthric speech.

    PubMed

    Caballero-Morales, Santiago-Omar

    2013-01-01

    Dysarthria is a frequently occurring motor speech disorder which can be caused by neurological trauma, cerebral palsy, or degenerative neurological diseases. Because dysarthria affects phonation, articulation, and prosody, spoken communication of dysarthric speakers gets seriously restricted, affecting their quality of life and confidence. Assistive technology has led to the development of speech applications to improve the spoken communication of dysarthric speakers. In this field, this paper presents an approach to improve the accuracy of HMM-based speech recognition systems. Because phonatory dysfunction is a main characteristic of dysarthric speech, the phonemes of a dysarthric speaker are affected at different levels. Thus, the approach consists in finding the most suitable type of HMM topology (Bakis, Ergodic) for each phoneme in the speaker's phonetic repertoire. The topology is further refined with a suitable number of states and Gaussian mixture components for acoustic modelling. This represents a difference when compared with studies where a single topology is assumed for all phonemes. Finding the suitable parameters (topology and mixtures components) is performed with a Genetic Algorithm (GA). Experiments with a well-known dysarthric speech database showed statistically significant improvements of the proposed approach when compared with the single topology approach, even for speakers with severe dysarthria. PMID:24222784

  10. A self-adapting heuristic for automatically constructing terrain appreciation exercises

    NASA Astrophysics Data System (ADS)

    Nanda, S.; Lickteig, C. L.; Schaefer, P. S.

    2008-04-01

    Appreciating terrain is a key to success in both symmetric and asymmetric forms of warfare. Training to enable Soldiers to master this vital skill has traditionally required their translocation to a selected number of areas, each affording a desired set of topographical features, albeit with limited breadth of variety. As a result, the use of such methods has proved to be costly and time consuming. To counter this, new computer-aided training applications permit users to rapidly generate and complete training exercises in geo-specific open and urban environments rendered by high-fidelity image generation engines. The latter method is not only cost-efficient, but allows any given exercise and its conditions to be duplicated or systematically varied over time. However, even such computer-aided applications have shortcomings. One of the principal ones is that they usually require all training exercises to be painstakingly constructed by a subject matter expert. Furthermore, exercise difficulty is usually subjectively assessed and frequently ignored thereafter. As a result, such applications lack the ability to grow and adapt to the skill level and learning curve of each trainee. In this paper, we present a heuristic that automatically constructs exercises for identifying key terrain. Each exercise is created and administered in a unique iteration, with its level of difficulty tailored to the trainee's ability based on the correctness of that trainee's responses in prior iterations.

  11. Adaptive optics system for fast automatic control of laser beam jitters in air

    NASA Astrophysics Data System (ADS)

    Grasso, Salvatore; Acernese, Fausto; Romano, Rocco; Barone, Fabrizio

    2010-04-01

    Adaptive Optics (AO) Systems can operate fast automatic control of laser beam jitters for several applications of basic research as well as for the improvement of industrial and medical devices. We here present our theoretical and experimental research showing the opportunity of suppressing laser beam geometrical fluctuations of higher order Hermite Gauss modes in interferometric Gravitational Waves (GW) antennas. This in turn allows to significantly reduce the noise that originates from the coupling of the laser source oscillations with the interferometer asymmetries and introduces the concrete possibility of overcoming the sensitivity limit of the GW antennas actually set at 10-23 1 Hz value. We have carried out the feasibility study of a novel AO System which performs effective laser jitters suppression in the 200 Hz bandwidth. It extracts the wavefront error signals in terms of Hermite Gauss (HG) coefficients and performs the wavefront correction using the Zernike polynomials. An experimental Prototype of the AO System has been implemented and tested in our laboratory at the University of Salerno and the results we have achieved fully confirm effectiveness and robustness of the control upon first and second order laser beam geometrical fluctuations, in good accordance with GW antennas requirements. Above all, we have measured 60 dB reduction of astigmatism and defocus modes at low frequency below 1 Hz and 20 dB reduction in the 200 Hz bandwidth.

  12. Automatic adaptive parameterization in local phase feature-based bone segmentation in ultrasound.

    PubMed

    Hacihaliloglu, Ilker; Abugharbieh, Rafeef; Hodgson, Antony J; Rohling, Robert N

    2011-10-01

    Intensity-invariant local phase features based on Log-Gabor filters have been recently shown to produce highly accurate localizations of bone surfaces from three-dimensional (3-D) ultrasound. A key challenge, however, remains in the proper selection of filter parameters, whose values have so far been chosen empirically and kept fixed for a given image. Since Log-Gabor filter responses widely change when varying the filter parameters, actual parameter selection can significantly affect the quality of extracted features. This article presents a novel method for contextual parameter selection that autonomously adapts to image content. Our technique automatically selects the scale, bandwidth and orientation parameters of Log-Gabor filters for optimizing local phase symmetry. The proposed approach incorporates principle curvature computed from the Hessian matrix and directional filter banks in a phase scale-space framework. Evaluations performed on carefully designed in vitro experiments demonstrate 35% improvement in accuracy of bone surface localization compared with empirically-set parameterization results. Results from a pilot in vivo study on human subjects, scanned in the operating room, show similar improvements. PMID:21821346

  13. Automatic recognition of fin and blue whale calls for real-time monitoring in the St. Lawrence.

    PubMed

    Mouy, Xavier; Bahoura, Mohammed; Simard, Yvan

    2009-12-01

    Monitoring blue and fin whales summering in the St. Lawrence Estuary with passive acoustics requires call recognition algorithms that can cope with the heavy shipping noise of the St. Lawrence Seaway and with multipath propagation characteristics that generate overlapping copies of the calls. In this paper, the performance of three time-frequency methods aiming at such automatic detection and classification is tested on more than 2000 calls and compared at several levels of signal-to-noise ratio using typical recordings collected in this area. For all methods, image processing techniques are used to reduce the noise in the spectrogram. The first approach consists in matching the spectrogram with binary time-frequency templates of the calls (coincidence of spectrograms). The second approach is based on the extraction of the frequency contours of the calls and their classification using dynamic time warping (DTW) and the vector quantization (VQ) algorithms. The coincidence of spectrograms was the fastest method and performed better for blue whale A and B calls. VQ detected more 20 Hz fin whale calls but with a higher false alarm rate. DTW and VQ outperformed for the more variable blue whale D calls. PMID:20000904

  14. Nonlinear spectro-temporal features based on a cochlear model for automatic speech recognition in a noisy situation.

    PubMed

    Choi, Yong-Sun; Lee, Soo-Young

    2013-09-01

    A nonlinear speech feature extraction algorithm was developed by modeling human cochlear functions, and demonstrated as a noise-robust front-end for speech recognition systems. The algorithm was based on a model of the Organ of Corti in the human cochlea with such features as such as basilar membrane (BM), outer hair cells (OHCs), and inner hair cells (IHCs). Frequency-dependent nonlinear compression and amplification of OHCs were modeled by lateral inhibition to enhance spectral contrasts. In particular, the compression coefficients had frequency dependency based on the psychoacoustic evidence. Spectral subtraction and temporal adaptation were applied in the time-frame domain. With long-term and short-term adaptation characteristics, these factors remove stationary or slowly varying components and amplify the temporal changes such as onset or offset. The proposed features were evaluated with a noisy speech database and showed better performance than the baseline methods such as mel-frequency cepstral coefficients (MFCCs) and RASTA-PLP in unknown noisy conditions. PMID:23558292

  15. I Hear You Eat and Speak: Automatic Recognition of Eating Condition and Food Type, Use-Cases, and Impact on ASR Performance

    PubMed Central

    Hantke, Simone; Weninger, Felix; Kurle, Richard; Ringeval, Fabien; Batliner, Anton; Mousa, Amr El-Desoky; Schuller, Björn

    2016-01-01

    We propose a new recognition task in the area of computational paralinguistics: automatic recognition of eating conditions in speech, i. e., whether people are eating while speaking, and what they are eating. To this end, we introduce the audio-visual iHEARu-EAT database featuring 1.6 k utterances of 30 subjects (mean age: 26.1 years, standard deviation: 2.66 years, gender balanced, German speakers), six types of food (Apple, Nectarine, Banana, Haribo Smurfs, Biscuit, and Crisps), and read as well as spontaneous speech, which is made publicly available for research purposes. We start with demonstrating that for automatic speech recognition (ASR), it pays off to know whether speakers are eating or not. We also propose automatic classification both by brute-forcing of low-level acoustic features as well as higher-level features related to intelligibility, obtained from an Automatic Speech Recogniser. Prediction of the eating condition was performed with a Support Vector Machine (SVM) classifier employed in a leave-one-speaker-out evaluation framework. Results show that the binary prediction of eating condition (i. e., eating or not eating) can be easily solved independently of the speaking condition; the obtained average recalls are all above 90%. Low-level acoustic features provide the best performance on spontaneous speech, which reaches up to 62.3% average recall for multi-way classification of the eating condition, i. e., discriminating the six types of food, as well as not eating. The early fusion of features related to intelligibility with the brute-forced acoustic feature set improves the performance on read speech, reaching a 66.4% average recall for the multi-way classification task. Analysing features and classifier errors leads to a suitable ordinal scale for eating conditions, on which automatic regression can be performed with up to 56.2% determination coefficient. PMID:27176486

  16. I Hear You Eat and Speak: Automatic Recognition of Eating Condition and Food Type, Use-Cases, and Impact on ASR Performance.

    PubMed

    Hantke, Simone; Weninger, Felix; Kurle, Richard; Ringeval, Fabien; Batliner, Anton; Mousa, Amr El-Desoky; Schuller, Björn

    2016-01-01

    We propose a new recognition task in the area of computational paralinguistics: automatic recognition of eating conditions in speech, i. e., whether people are eating while speaking, and what they are eating. To this end, we introduce the audio-visual iHEARu-EAT database featuring 1.6 k utterances of 30 subjects (mean age: 26.1 years, standard deviation: 2.66 years, gender balanced, German speakers), six types of food (Apple, Nectarine, Banana, Haribo Smurfs, Biscuit, and Crisps), and read as well as spontaneous speech, which is made publicly available for research purposes. We start with demonstrating that for automatic speech recognition (ASR), it pays off to know whether speakers are eating or not. We also propose automatic classification both by brute-forcing of low-level acoustic features as well as higher-level features related to intelligibility, obtained from an Automatic Speech Recogniser. Prediction of the eating condition was performed with a Support Vector Machine (SVM) classifier employed in a leave-one-speaker-out evaluation framework. Results show that the binary prediction of eating condition (i. e., eating or not eating) can be easily solved independently of the speaking condition; the obtained average recalls are all above 90%. Low-level acoustic features provide the best performance on spontaneous speech, which reaches up to 62.3% average recall for multi-way classification of the eating condition, i. e., discriminating the six types of food, as well as not eating. The early fusion of features related to intelligibility with the brute-forced acoustic feature set improves the performance on read speech, reaching a 66.4% average recall for the multi-way classification task. Analysing features and classifier errors leads to a suitable ordinal scale for eating conditions, on which automatic regression can be performed with up to 56.2% determination coefficient. PMID:27176486

  17. Recognition of Extracellular Bacteria by NLRs and Its Role in the Development of Adaptive Immunity

    PubMed Central

    Ferrand, Jonathan; Ferrero, Richard Louis

    2013-01-01

    Innate immune recognition of bacteria is the first requirement for mounting an effective immune response able to control infection. Over the previous decade, the general paradigm was that extracellular bacteria were only sensed by cell surface-expressed Toll-like receptors (TLRs), whereas cytoplasmic sensors, including members of the Nod-like receptor (NLR) family, were specific to pathogens capable of breaching the host cell membrane. It has become apparent, however, that intracellular innate immune molecules, such as the NLRs, play key roles in the sensing of not only intracellular, but also extracellular bacterial pathogens or their components. In this review, we will discuss the various mechanisms used by bacteria to activate NLR signaling in host cells. These mechanisms include bacterial secretion systems, pore-forming toxins, and outer membrane vesicles. We will then focus on the influence of NLR activation on the development of adaptive immune responses in different cell types. PMID:24155747

  18. Handwritten digit recognition by adaptive-subspace self-organizing map (ASSOM).

    PubMed

    Zhang, B; Fu, M; Yan, H; Jabri, M A

    1999-01-01

    The adaptive-subspace self-organizing map (ASSOM) proposed by Kohonen is a recent development in self-organizing map (SOM) computation. In this paper, we propose a method to realize ASSOM using a neural learning algorithm in nonlinear autoencoder networks. Our method has the advantage of numerical stability. We have applied our ASSOM model to build a modular classification system for handwritten digit recognition. Ten ASSOM modules are used to capture different features in the ten classes of digits. When a test digit is presented to all the modules, each module provides a reconstructed pattern and the system outputs a class label by comparing the ten reconstruction errors. Our experiments show promising results. For relatively small size modules, the classification accuracy reaches 99.3% on the training set and over 97% on the testing set. PMID:18252591

  19. Comparison of different automatic adaptive threshold selection techniques for estimating discharge from river width

    NASA Astrophysics Data System (ADS)

    Elmi, Omid; Javad Tourian, Mohammad; Sneeuw, Nico

    2015-04-01

    The importance of river discharge monitoring is critical for e.g., water resource planning, climate change, hazard monitoring. River discharge has been measured at in situ gauges for more than a century. Despite various attempts, some basins are still ungauged. Moreover, a reduction in the number of worldwide gauging stations increases the interest to employ remote sensing data for river discharge monitoring. Finding an empirical relationship between simultaneous in situ measurements of discharge and river widths derived from satellite imagery has been introduced as a straightforward remote sensing alternative. Classifying water and land in an image is the primary task for defining the river width. Water appears dark in the near infrared and infrared bands in satellite images. As a result low values in the histogram usually represent the water content. In this way, applying a threshold on the image histogram and separating into two different classes is one of the most efficient techniques to build a water mask. Beside its simple definition, finding the appropriate threshold value in each image is the most critical issue. The threshold is variable due to changes in the water level, river extent, atmosphere, sunlight radiation, onboard calibration of the satellite over time. These complexities in water body classification are the main source of error in river width estimation. In this study, we are looking for the most efficient adaptive threshold algorithm to estimate the river discharge. To do this, all cloud free MODIS images coincident with the in situ measurement are collected. Next a number of automatic threshold selection techniques are employed to generate different dynamic water masks. Then, for each of them a separate empirical relationship between river widths and discharge measurements are determined. Through these empirical relationships, we estimate river discharge at the gauge and then validate our results against in situ measurements and also

  20. Toward Design of an Environment-Aware Adaptive Locomotion-Mode-Recognition System

    PubMed Central

    Du, Lin; Zhang, Fan; Liu, Ming

    2013-01-01

    In this study, we aimed to improve the performance of a locomotion-mode-recognition system based on neuromuscular-mechanical fusion by introducing additional information about the walking environment. Linear-discriminant-analysis-based classifiers were first designed to identify a lower limb prosthesis user’s locomotion mode based on electromyographic signals recorded from residual leg muscles and ground reaction forces measured from the prosthetic pylon. Nine transfemoral amputees who wore a passive hydraulic knee or powered prosthetic knee participated in this study. Information about the walking terrain was simulated and modeled as prior probability based on the principle of maximum entropy and integrated into the discriminant functions of the classifier. When the correct prior knowledge of walking terrain was simulated, the classification accuracy for each locomotion mode significantly increased and no task transitions were missed. In addition, simulated incorrect prior knowledge did not significantly reduce system performance, indicating that our design is robust against noisy and imperfect prior information. Furthermore, these observations were independent of the type of prosthesis applied. The promising results in this study may assist the further development of an environment-aware adaptive system for locomotion-mode recognition for powered lower limb prostheses or orthoses. PMID:22996721

  1. Recognition of human emotion using sensor agent robot for interactive and adaptive living spaces

    NASA Astrophysics Data System (ADS)

    Murata, Sozo; Mita, Akira

    2011-04-01

    Safer, more comfortable and energy-efficient living spaces are always demanded. However, most buildings are designed based on prescribed scenarios so that they do not act on abrupt changes of environments. We propose "Biofication of Living Spaces" that has functions of learning occupants' lifestyles and taking actions based on collected information. By doing so, we can incorporate the high adaptability to the building. Our goal is to make living spaces more "comfortable". However, human beings have emotion that implies the meaning of "comfortable" depends on each individual. Therefore our study focuses on recognition of human emotion. We suggest using robots as sensor agents. By using robots equipped with various sensors, they can interact with occupants and environment. We use a sensor agent robot called "e-bio". In this research, we construct a human tracking system and identified emotions of residents using their walking information. We focus on the influences of illuminance and sound. We classified emotions by calculating the distance of the mapped points in comfortable and uncomfortable spaces with parametric eigen space method, in which parameters are determined by a mapping of tracks in the space. As a method of pattern recognition, a weighted k-nearest neighbor is used. Experiments considering illuminance and sound environments, illustrates good correlation between emotion and environments.

  2. Toward design of an environment-aware adaptive locomotion-mode-recognition system.

    PubMed

    Du, Lin; Zhang, Fan; Liu, Ming; Huang, He

    2012-10-01

    In this study, we aimed to improve the performance of a locomotion-mode-recognition system based on neuromuscular-mechanical fusion by introducing additional information about the walking environment. Linear-discriminant-analysis-based classifiers were first designed to identify a lower limb prosthesis user's locomotion mode based on electromyographic signals recorded from residual leg muscles and ground reaction forces measured from the prosthetic pylon. Nine transfemoral amputees who wore a passive hydraulic knee or powered prosthetic knee participated in this study. Information about the walking terrain was simulated and modeled as prior probability based on the principle of maximum entropy and integrated into the discriminant functions of the classifier. When the correct prior knowledge of walking terrain was simulated, the classification accuracy for each locomotion mode significantly increased and no task transitions were missed. In addition, simulated incorrect prior knowledge did not significantly reduce system performance, indicating that our design is robust against noisy and imperfect prior information. Furthermore, these observations were independent of the type of prosthesis applied. The promising results in this study may assist the further development of an environment-aware adaptive system for locomotion-mode recognition for powered lower limb prostheses or orthoses. PMID:22996721

  3. The adaptation of GDL motion recognition system to sport and rehabilitation techniques analysis.

    PubMed

    Hachaj, Tomasz; Ogiela, Marek R

    2016-06-01

    The main novelty of this paper is presenting the adaptation of Gesture Description Language (GDL) methodology to sport and rehabilitation data analysis and classification. In this paper we showed that Lua language can be successfully used for adaptation of the GDL classifier to those tasks. The newly applied scripting language allows easily extension and integration of classifier with other software technologies and applications. The obtained execution speed allows using the methodology in the real-time motion capture data processing where capturing frequency differs from 100 Hz to even 500 Hz depending on number of features or classes to be calculated and recognized. Due to this fact the proposed methodology can be used to the high-end motion capture system. We anticipate that using novel, efficient and effective method will highly help both sport trainers and physiotherapist in they practice. The proposed approach can be directly applied to motion capture data kinematics analysis (evaluation of motion without regard to the forces that cause that motion). The ability to apply pattern recognition methods for GDL description can be utilized in virtual reality environment and used for sport training or rehabilitation treatment. PMID:27106581

  4. Rapid Word Recognition as a Measure of Word-Level Automaticity and Its Relation to Other Measures of Reading

    ERIC Educational Resources Information Center

    Frye, Elizabeth M.; Gosky, Ross

    2012-01-01

    The present study investigated the relationship between rapid recognition of individual words (Word Recognition Test) and two measures of contextual reading: (1) grade-level Passage Reading Test (IRI passage) and (2) performance on standardized STAR Reading Test. To establish if time of presentation on the word recognition test was a factor in…

  5. Feasibility of the adaptive and automatic presentation of tasks (ADAPT) system for rehabilitation of upper extremity function post-stroke

    PubMed Central

    2011-01-01

    Background Current guidelines for rehabilitation of arm and hand function after stroke recommend that motor training focus on realistic tasks that require reaching and manipulation and engage the patient intensively, actively, and adaptively. Here, we investigated the feasibility of a novel robotic task-practice system, ADAPT, designed in accordance with such guidelines. At each trial, ADAPT selects a functional task according to a training schedule and with difficulty based on previous performance. Once the task is selected, the robot picks up and presents the corresponding tool, simulates the dynamics of the tasks, and the patient interacts with the tool to perform the task. Methods Five participants with chronic stroke with mild to moderate impairments (> 9 months post-stroke; Fugl-Meyer arm score 49.2 ± 5.6) practiced four functional tasks (selected out of six in a pre-test) with ADAPT for about one and half hour and 144 trials in a pseudo-random schedule of 3-trial blocks per task. Results No adverse events occurred and ADAPT successfully presented the six functional tasks without human intervention for a total of 900 trials. Qualitative analysis of trajectories showed that ADAPT simulated the desired task dynamics adequately, and participants reported good, although not excellent, task fidelity. During training, the adaptive difficulty algorithm progressively increased task difficulty leading towards an optimal challenge point based on performance; difficulty was then continuously adjusted to keep performance around the challenge point. Furthermore, the time to complete all trained tasks decreased significantly from pretest to one-hour post-test. Finally, post-training questionnaires demonstrated positive patient acceptance of ADAPT. Conclusions ADAPT successfully provided adaptive progressive training for multiple functional tasks based on participant's performance. Our encouraging results establish the feasibility of ADAPT; its efficacy will next be tested

  6. Feature-specific imaging: Extensions to adaptive object recognition and active illumination based scene reconstruction

    NASA Astrophysics Data System (ADS)

    Baheti, Pawan K.

    Computational imaging (CI) systems are hybrid imagers in which the optical and post-processing sub-systems are jointly optimized to maximize the task-specific performance. In this dissertation we consider a form of CI system that measures the linear projections (i.e., features) of the scene optically, and it is commonly referred to as feature-specific imaging (FSI). Most of the previous work on FSI has been concerned with image reconstruction. Previous FSI techniques have also been non-adaptive and restricted to the use of ambient illumination. We consider two novel extensions of the FSI system in this work. We first present an adaptive feature-specific imaging (AFSI) system and consider its application to a face-recognition task. The proposed system makes use of previous measurements to adapt the projection basis at each step. We present both statistical and information-theoretic adaptation mechanisms for the AFSI system. The sequential hypothesis testing framework is used to determine the number of measurements required for achieving a specified misclassification probability. We demonstrate that AFSI system requires significantly fewer measurements than static-FSI (SFSI) and conventional imaging at low signal-to-noise ratio (SNR). We also show a trade-off, in terms of average detection time, between measurement SNR and adaptation advantage. Experimental results validating the AFSI system are presented. Next we present a FSI system based on the use of structured light. Feature measurements are obtained by projecting spatially structured illumination onto an object and collecting all of the reflected light onto a single photodetector. We refer to this system as feature-specific structured imaging (FSSI). Principal component features are used to define the illumination patterns. The optimal LMMSE operator is used to generate object estimates from the measurements. We demonstrate that this new imaging approach reduces imager complexity and provides improved image

  7. Galectins as self/non-self recognition receptors in innate and adaptive immunity: an unresolved paradox

    PubMed Central

    Vasta, Gerardo R.; Ahmed, Hafiz; Nita-Lazar, Mihai; Banerjee, Aditi; Pasek, Marta; Shridhar, Surekha; Guha, Prasun; Fernández-Robledo, José A.

    2012-01-01

    Galectins are characterized by their binding affinity for β-galactosides, a unique binding site sequence motif, and wide taxonomic distribution and structural conservation in vertebrates, invertebrates, protista, and fungi. Since their initial description, galectins were considered to bind endogenous (“self”) glycans and mediate developmental processes and cancer. In the past few years, however, numerous studies have described the diverse effects of galectins on cells involved in both innate and adaptive immune responses, and the mechanistic aspects of their regulatory roles in immune homeostasis. More recently, however, evidence has accumulated to suggest that galectins also bind exogenous (“non-self”) glycans on the surface of potentially pathogenic microbes, parasites, and fungi, suggesting that galectins can function as pattern recognition receptors (PRRs) in innate immunity. Thus, a perplexing paradox arises by the fact that galectins also recognize lactosamine-containing glycans on the host cell surface during developmental processes and regulation of immune responses. According to the currently accepted model for non-self recognition, PRRs recognize pathogens via highly conserved microbial surface molecules of wide distribution such as LPS or peptidoglycan (pathogen-associated molecular patterns; PAMPs), which are absent in the host. Hence, this would not apply to galectins, which apparently bind similar self/non-self molecular patterns on host and microbial cells. This paradox underscores first, an oversimplification in the use of the PRR/PAMP terminology. Second, and most importantly, it reveals significant gaps in our knowledge about the diversity of the host galectin repertoire, and the subcellular targeting, localization, and secretion. Furthermore, our knowledge about the structural and biophysical aspects of their interactions with the host and microbial carbohydrate moieties is fragmentary, and warrants further investigation. PMID:22811679

  8. A Rapid Model Adaptation Technique for Emotional Speech Recognition with Style Estimation Based on Multiple-Regression HMM

    NASA Astrophysics Data System (ADS)

    Ijima, Yusuke; Nose, Takashi; Tachibana, Makoto; Kobayashi, Takao

    In this paper, we propose a rapid model adaptation technique for emotional speech recognition which enables us to extract paralinguistic information as well as linguistic information contained in speech signals. This technique is based on style estimation and style adaptation using a multiple-regression HMM (MRHMM). In the MRHMM, the mean parameters of the output probability density function are controlled by a low-dimensional parameter vector, called a style vector, which corresponds to a set of the explanatory variables of the multiple regression. The recognition process consists of two stages. In the first stage, the style vector that represents the emotional expression category and the intensity of its expressiveness for the input speech is estimated on a sentence-by-sentence basis. Next, the acoustic models are adapted using the estimated style vector, and then standard HMM-based speech recognition is performed in the second stage. We assess the performance of the proposed technique in the recognition of simulated emotional speech uttered by both professional narrators and non-professional speakers.

  9. The Role of Higher Level Adaptive Coding Mechanisms in the Development of Face Recognition

    ERIC Educational Resources Information Center

    Pimperton, Hannah; Pellicano, Elizabeth; Jeffery, Linda; Rhodes, Gillian

    2009-01-01

    DevDevelopmental improvements in face identity recognition ability are widely documented, but the source of children's immaturity in face recognition remains unclear. Differences in the way in which children and adults visually represent faces might underlie immaturities in face recognition. Recent evidence of a face identity aftereffect (FIAE),…

  10. Covariate shift adaptation in EMG pattern recognition for prosthetic device control.

    PubMed

    Vidovic, Marina M-C; Paredes, Liliana P; Han-Jeong Hwang; Amsüss, Sebastian; Pahl, Jaspar; Hahne, Janne M; Graimann, Bernhard; Farina, Dario; Müller, Klaus-Robert

    2014-01-01

    Ensuring robustness of myocontrol algorithms for prosthetic devices is an important challenge. Robustness needs to be maintained under nonstationarities, e.g. due to electrode shifts after donning and doffing, sweating, additional weight or varying arm positions. Such nonstationary behavior changes the signal distributions - a scenario often referred to as covariate shift. This circumstance causes a significant decrease in classification accuracy in daily life applications. Re-training is possible but it is time consuming since it requires a large number of trials. In this paper, we propose to adapt the EMG classifier by a small calibration set only, which is able to capture the relevant aspects of the nonstationarities, but requires re-training data of only very short duration. We tested this strategy on signals acquired across 5 days in able-bodied individuals. The results showed that an estimator that shrinks the training model parameters towards the calibration set parameters significantly increased the classifier performance across different testing days. Even when using only one trial per class as re-training data for each day, the classification accuracy remained > 92% over five days. These results indicate that the proposed methodology can be a practical means for improving robustness in pattern recognition methods for myocontrol. PMID:25570960

  11. Recognition of user's activity for adaptive cooperative assistance in robotic surgery.

    PubMed

    Nessi, Federico; Beretta, Elisa; Ferrigno, Giancarlo; De Momi, Elena

    2015-01-01

    During hands-on robotic surgery it is advisable to know how and when to provide the surgeon with different assistance levels with respect to the current performed activity. Gesteme-based on-line classification requires the definition of a complete set of primitives and the observation of large signal percentage. In this work an on-line, gesteme-free activity recognition method is addressed. The algorithm models the guidance forces and the resulting trajectory of the manipulator with 26 low-level components of a Gaussian Mixture Model (GMM). Temporal switching among the components is modeled with a Hidden Markov Model (HMM). Tests are performed in a simplified scenario over a pool of 5 non-surgeon users. Classification accuracy resulted higher than 89% after the observation of a 300 ms-long signal. Future work will address the use of the current detected activity to on-line trigger different strategies to control the manipulator and adapt the level of assistance. PMID:26737482

  12. Structural Basis for Conserved Regulation and Adaptation of the Signal Recognition Particle Targeting Complex.

    PubMed

    Wild, Klemens; Bange, Gert; Motiejunas, Domantas; Kribelbauer, Judith; Hendricks, Astrid; Segnitz, Bernd; Wade, Rebecca C; Sinning, Irmgard

    2016-07-17

    The signal recognition particle (SRP) is a ribonucleoprotein complex with a key role in targeting and insertion of membrane proteins. The two SRP GTPases, SRP54 (Ffh in bacteria) and FtsY (SRα in eukaryotes), form the core of the targeting complex (TC) regulating the SRP cycle. The architecture of the TC and its stimulation by RNA has been described for the bacterial SRP system while this information is lacking for other domains of life. Here, we present the crystal structures of the GTPase heterodimers of archaeal (Sulfolobus solfataricus), eukaryotic (Homo sapiens), and chloroplast (Arabidopsis thaliana) SRP systems. The comprehensive structural comparison combined with Brownian dynamics simulations of TC formation allows for the description of the general blueprint and of specific adaptations of the quasi-symmetric heterodimer. Our work defines conserved external nucleotide-binding sites for SRP GTPase activation by RNA. Structural analyses of the GDP-bound, post-hydrolysis states reveal a conserved, magnesium-sensitive switch within the I-box. Overall, we provide a general model for SRP cycle regulation by RNA. PMID:27241309

  13. The Neural Correlates of Everyday Recognition Memory

    ERIC Educational Resources Information Center

    Milton, F.; Muhlert, N.; Butler, C. R.; Benattayallah, A.; Zeman, A. Z.

    2011-01-01

    We used a novel automatic camera, SenseCam, to create a recognition memory test for real-life events. Adapting a "Remember/Know" paradigm, we asked healthy undergraduates, who wore SenseCam for 2 days, in their everyday environments, to classify images as strongly or weakly remembered, strongly or weakly familiar or novel, while brain activation…

  14. A semi-automatic 2D-to-3D video conversion with adaptive key-frame selection

    NASA Astrophysics Data System (ADS)

    Ju, Kuanyu; Xiong, Hongkai

    2014-11-01

    To compensate the deficit of 3D content, 2D to 3D video conversion (2D-to-3D) has recently attracted more attention from both industrial and academic communities. The semi-automatic 2D-to-3D conversion which estimates corresponding depth of non-key-frames through key-frames is more desirable owing to its advantage of balancing labor cost and 3D effects. The location of key-frames plays a role on quality of depth propagation. This paper proposes a semi-automatic 2D-to-3D scheme with adaptive key-frame selection to keep temporal continuity more reliable and reduce the depth propagation errors caused by occlusion. The potential key-frames would be localized in terms of clustered color variation and motion intensity. The distance of key-frame interval is also taken into account to keep the accumulated propagation errors under control and guarantee minimal user interaction. Once their depth maps are aligned with user interaction, the non-key-frames depth maps would be automatically propagated by shifted bilateral filtering. Considering that depth of objects may change due to the objects motion or camera zoom in/out effect, a bi-directional depth propagation scheme is adopted where a non-key frame is interpolated from two adjacent key frames. The experimental results show that the proposed scheme has better performance than existing 2D-to-3D scheme with fixed key-frame interval.

  15. Adaptive pattern recognition by mini-max neural networks as a part of an intelligent processor

    NASA Technical Reports Server (NTRS)

    Szu, Harold H.

    1990-01-01

    In this decade and progressing into 21st Century, NASA will have missions including Space Station and the Earth related Planet Sciences. To support these missions, a high degree of sophistication in machine automation and an increasing amount of data processing throughput rate are necessary. Meeting these challenges requires intelligent machines, designed to support the necessary automations in a remote space and hazardous environment. There are two approaches to designing these intelligent machines. One of these is the knowledge-based expert system approach, namely AI. The other is a non-rule approach based on parallel and distributed computing for adaptive fault-tolerances, namely Neural or Natural Intelligence (NI). The union of AI and NI is the solution to the problem stated above. The NI segment of this unit extracts features automatically by applying Cauchy simulated annealing to a mini-max cost energy function. The feature discovered by NI can then be passed to the AI system for future processing, and vice versa. This passing increases reliability, for AI can follow the NI formulated algorithm exactly, and can provide the context knowledge base as the constraints of neurocomputing. The mini-max cost function that solves the unknown feature can furthermore give us a top-down architectural design of neural networks by means of Taylor series expansion of the cost function. A typical mini-max cost function consists of the sample variance of each class in the numerator, and separation of the center of each class in the denominator. Thus, when the total cost energy is minimized, the conflicting goals of intraclass clustering and interclass segregation are achieved simultaneously.

  16. Automatic recognition of seismic intensity based on RS and GIS: a case study in Wenchuan Ms8.0 earthquake of China.

    PubMed

    Zhang, Qiuwen; Zhang, Yan; Yang, Xiaohong; Su, Bin

    2014-01-01

    In recent years, earthquakes have frequently occurred all over the world, which caused huge casualties and economic losses. It is very necessary and urgent to obtain the seismic intensity map timely so as to master the distribution of the disaster and provide supports for quick earthquake relief. Compared with traditional methods of drawing seismic intensity map, which require many investigations in the field of earthquake area or are too dependent on the empirical formulas, spatial information technologies such as Remote Sensing (RS) and Geographical Information System (GIS) can provide fast and economical way to automatically recognize the seismic intensity. With the integrated application of RS and GIS, this paper proposes a RS/GIS-based approach for automatic recognition of seismic intensity, in which RS is used to retrieve and extract the information on damages caused by earthquake, and GIS is applied to manage and display the data of seismic intensity. The case study in Wenchuan Ms8.0 earthquake in China shows that the information on seismic intensity can be automatically extracted from remotely sensed images as quickly as possible after earthquake occurrence, and the Digital Intensity Model (DIM) can be used to visually query and display the distribution of seismic intensity. PMID:24688445

  17. A semantic approach to the efficient integration of interactive and automatic target recognition systems for the analysis of complex infrastructure from aerial imagery

    NASA Astrophysics Data System (ADS)

    Bauer, A.; Peinsipp-Byma, E.

    2008-04-01

    The analysis of complex infrastructure from aerial imagery, for instance a detailed analysis of an airfield, requires the interpreter, besides to be familiar with the sensor's imaging characteristics, to have a detailed understanding of the infrastructure domain. The required domain knowledge includes knowledge about the processes and functions involved in the operation of the infrastructure, the potential objects used to provide those functions and their spatial and functional interrelations. Since it is not possible yet to provide reliable automatic object recognition (AOR) for the analysis of such complex scenes, we developed systems to support a human interpreter with either interactive approaches, able to assist the interpreter with previously acquired expert knowledge about the domain in question, or AOR methods, capable of detecting, recognizing or analyzing certain classes of objects for certain sensors. We believe, to achieve an optimal result at the end of an interpretation process in terms of efficiency and effectivity, it is essential to integrate both interactive and automatic approaches to image interpretation. In this paper we present an approach inspired by the advancing semantic web technology to represent domain knowledge, the capabilities of available AOR modules and the image parameters in an explicit way. This enables us to seamlessly extend an interactive image interpretation environment with AOR modules in a way that we can automatically select suitable AOR methods for the current subtask, focus them on an appropriate area of interest and reintegrate their results into the environment.

  18. Length-adaptive graph search for automatic segmentation of pathological features in optical coherence tomography images

    NASA Astrophysics Data System (ADS)

    Keller, Brenton; Cunefare, David; Grewal, Dilraj S.; Mahmoud, Tamer H.; Izatt, Joseph A.; Farsiu, Sina

    2016-07-01

    We introduce a metric in graph search and demonstrate its application for segmenting retinal optical coherence tomography (OCT) images of macular pathology. Our proposed "adjusted mean arc length" (AMAL) metric is an adaptation of the lowest mean arc length search technique for automated OCT segmentation. We compare this method to Dijkstra's shortest path algorithm, which we utilized previously in our popular graph theory and dynamic programming segmentation technique. As an illustrative example, we show that AMAL-based length-adaptive segmentation outperforms the shortest path in delineating the retina/vitreous boundary of patients with full-thickness macular holes when compared with expert manual grading.

  19. An Approach for Automatic Generation of Adaptive Hypermedia in Education with Multilingual Knowledge Discovery Techniques

    ERIC Educational Resources Information Center

    Alfonseca, Enrique; Rodriguez, Pilar; Perez, Diana

    2007-01-01

    This work describes a framework that combines techniques from Adaptive Hypermedia and Natural Language processing in order to create, in a fully automated way, on-line information systems from linear texts in electronic format, such as textbooks. The process is divided into two steps: an "off-line" processing step, which analyses the source text,…

  20. Using Virtualization and Automatic Evaluation: Adapting Network Services Management Courses to the EHEA

    ERIC Educational Resources Information Center

    Ros, S.; Robles-Gomez, A.; Hernandez, R.; Caminero, A. C.; Pastor, R.

    2012-01-01

    This paper outlines the adaptation of a course on the management of network services in operating systems, called NetServicesOS, to the context of the new European Higher Education Area (EHEA). NetServicesOS is a mandatory course in one of the official graduate programs in the Faculty of Computer Science at the Universidad Nacional de Educacion a…

  1. Automatic Domain Adaptation of Word Sense Disambiguation Based on Sublanguage Semantic Schemata Applied to Clinical Narrative

    ERIC Educational Resources Information Center

    Patterson, Olga

    2012-01-01

    Domain adaptation of natural language processing systems is challenging because it requires human expertise. While manual effort is effective in creating a high quality knowledge base, it is expensive and time consuming. Clinical text adds another layer of complexity to the task due to privacy and confidentiality restrictions that hinder the…

  2. Large-Scale Assessment of a Fully Automatic Co-Adaptive Motor Imagery-Based Brain Computer Interface

    PubMed Central

    Acqualagna, Laura; Botrel, Loic; Vidaurre, Carmen; Kübler, Andrea; Blankertz, Benjamin

    2016-01-01

    In the last years Brain Computer Interface (BCI) technology has benefited from the development of sophisticated machine leaning methods that let the user operate the BCI after a few trials of calibration. One remarkable example is the recent development of co-adaptive techniques that proved to extend the use of BCIs also to people not able to achieve successful control with the standard BCI procedure. Especially for BCIs based on the modulation of the Sensorimotor Rhythm (SMR) these improvements are essential, since a not negligible percentage of users is unable to operate SMR-BCIs efficiently. In this study we evaluated for the first time a fully automatic co-adaptive BCI system on a large scale. A pool of 168 participants naive to BCIs operated the co-adaptive SMR-BCI in one single session. Different psychological interventions were performed prior the BCI session in order to investigate how motor coordination training and relaxation could influence BCI performance. A neurophysiological indicator based on the Power Spectral Density (PSD) was extracted by the recording of few minutes of resting state brain activity and tested as predictor of BCI performances. Results show that high accuracies in operating the BCI could be reached by the majority of the participants before the end of the session. BCI performances could be significantly predicted by the neurophysiological indicator, consolidating the validity of the model previously developed. Anyway, we still found about 22% of users with performance significantly lower than the threshold of efficient BCI control at the end of the session. Being the inter-subject variability still the major problem of BCI technology, we pointed out crucial issues for those who did not achieve sufficient control. Finally, we propose valid developments to move a step forward to the applicability of the promising co-adaptive methods. PMID:26891350

  3. Adaptive neuro-fuzzy inference systems for automatic detection of breast cancer.

    PubMed

    Ubeyli, Elif Derya

    2009-10-01

    This paper intends to an integrated view of implementing adaptive neuro-fuzzy inference system (ANFIS) for breast cancer detection. The Wisconsin breast cancer database contained records of patients with known diagnosis. The ANFIS classifiers learned how to differentiate a new case in the domain by given a training set of such records. The ANFIS classifier was used to detect the breast cancer when nine features defining breast cancer indications were used as inputs. The proposed ANFIS model combined the neural network adaptive capabilities and the fuzzy logic qualitative approach. Some conclusions concerning the impacts of features on the detection of breast cancer were obtained through analysis of the ANFIS. The performance of the ANFIS model was evaluated in terms of training performances and classification accuracies and the results confirmed that the proposed ANFIS model has potential in detecting the breast cancer. PMID:19827261

  4. Automatic Recognition of Complex Magnetic Regions on the Sun using GONG Magnetogram Images and Their Usefulness in Predicting Flares

    NASA Astrophysics Data System (ADS)

    Steward, G.; Lobzin, V.; Wilkinson, P. J.

    2010-12-01

    Global Oscillation Network Group (GONG) magnetograms can be used to automatically identify active regions associated with sunspots and flares by thresholding of line-of-sight component of the solar magnetic field. Once these regions are identified, they can be useful in predicting flare potential by locating strong-gradient polarity inversion lines (SPILs). To a trained eye, the inversion line analysis of an active region can be drawn on to estimate the flare probability. With this aim in mind, a well-known pixel shifting technique is used to automatically find the SPILs. Then a measure of curvature along the SPIL is calculated. By this means, a steepness of the gradient value is obtained and used as a proxy for the expected strength of the flare, while the curvature measured along the SPILs is related to the flare potential. The GONG magnetograms are produced 24 hours a day seven days a week providing an opportunity for near real-time flare warning capability. The techniques used to locate active regions are uncomplicated to implement and can also be used to identify regions of interest for an automatic analysis of H-alpha images.

  5. Effects of non-uniform windowing in a Rician-fading channel and simulation of adaptive automatic repeat request protocols

    NASA Astrophysics Data System (ADS)

    Kmiecik, Chris G.

    1990-06-01

    Two aspects of digital communication were investigated. In the first part, a Fast Fourier Transformation (FFT) based, M-ary frequency shift keying (FSK) receiver in a Rician-fading channel was analyzed to determine the benefits of non-uniform windowing of sampled received data. When a frequency offset occurs, non-uniform windowing provided better FFT magnitude separation. The improved dynamic range was balanced against a loss in detectability due to signal attenuation. With large frequency offset, the improved magnitude separation outweighed the loss in detectability. An analysis was carried out to determine what frequency deviation is necessary for non-uniform windowing to out-perform uniform windowing in a slow Rician-fading channel. Having established typical values of probability of bit errors, the second part of this thesis looked at improving throughput in a digital communications network by applying adaptive automatic repeat request (ARQ) protocols. The results of simulations of adaptive ARQ protocols with variable frame lengths is presented. By varying the frame length, improved throughput performance through all bit error rates was achieved.

  6. Semi-automatic medical image segmentation with adaptive local statistics in Conditional Random Fields framework.

    PubMed

    Hu, Yu-Chi J; Grossberg, Michael D; Mageras, Gikas S

    2008-01-01

    Planning radiotherapy and surgical procedures usually require onerous manual segmentation of anatomical structures from medical images. In this paper we present a semi-automatic and accurate segmentation method to dramatically reduce the time and effort required of expert users. This is accomplished by giving a user an intuitive graphical interface to indicate samples of target and non-target tissue by loosely drawing a few brush strokes on the image. We use these brush strokes to provide the statistical input for a Conditional Random Field (CRF) based segmentation. Since we extract purely statistical information from the user input, we eliminate the need of assumptions on boundary contrast previously used by many other methods, A new feature of our method is that the statistics on one image can be reused on related images without registration. To demonstrate this, we show that boundary statistics provided on a few 2D slices of volumetric medical data, can be propagated through the entire 3D stack of images without using the geometric correspondence between images. In addition, the image segmentation from the CRF can be formulated as a minimum s-t graph cut problem which has a solution that is both globally optimal and fast. The combination of a fast segmentation and minimal user input that is reusable, make this a powerful technique for the segmentation of medical images. PMID:19163362

  7. Fully automatized renal parenchyma volumetry using a support vector machine based recognition system for subject-specific probability map generation in native MR volume data

    NASA Astrophysics Data System (ADS)

    Gloger, Oliver; Tönnies, Klaus; Mensel, Birger; Völzke, Henry

    2015-11-01

    In epidemiological studies as well as in clinical practice the amount of produced medical image data strongly increased in the last decade. In this context organ segmentation in MR volume data gained increasing attention for medical applications. Especially in large-scale population-based studies organ volumetry is highly relevant requiring exact organ segmentation. Since manual segmentation is time-consuming and prone to reader variability, large-scale studies need automatized methods to perform organ segmentation. Fully automatic organ segmentation in native MR image data has proven to be a very challenging task. Imaging artifacts as well as inter- and intrasubject MR-intensity differences complicate the application of supervised learning strategies. Thus, we propose a modularized framework of a two-stepped probabilistic approach that generates subject-specific probability maps for renal parenchyma tissue, which are refined subsequently by using several, extended segmentation strategies. We present a three class-based support vector machine recognition system that incorporates Fourier descriptors as shape features to recognize and segment characteristic parenchyma parts. Probabilistic methods use the segmented characteristic parenchyma parts to generate high quality subject-specific parenchyma probability maps. Several refinement strategies including a final shape-based 3D level set segmentation technique are used in subsequent processing modules to segment renal parenchyma. Furthermore, our framework recognizes and excludes renal cysts from parenchymal volume, which is important to analyze renal functions. Volume errors and Dice coefficients show that our presented framework outperforms existing approaches.

  8. Fully automatized renal parenchyma volumetry using a support vector machine based recognition system for subject-specific probability map generation in native MR volume data.

    PubMed

    Gloger, Oliver; Tönnies, Klaus; Mensel, Birger; Völzke, Henry

    2015-11-21

    In epidemiological studies as well as in clinical practice the amount of produced medical image data strongly increased in the last decade. In this context organ segmentation in MR volume data gained increasing attention for medical applications. Especially in large-scale population-based studies organ volumetry is highly relevant requiring exact organ segmentation. Since manual segmentation is time-consuming and prone to reader variability, large-scale studies need automatized methods to perform organ segmentation. Fully automatic organ segmentation in native MR image data has proven to be a very challenging task. Imaging artifacts as well as inter- and intrasubject MR-intensity differences complicate the application of supervised learning strategies. Thus, we propose a modularized framework of a two-stepped probabilistic approach that generates subject-specific probability maps for renal parenchyma tissue, which are refined subsequently by using several, extended segmentation strategies. We present a three class-based support vector machine recognition system that incorporates Fourier descriptors as shape features to recognize and segment characteristic parenchyma parts. Probabilistic methods use the segmented characteristic parenchyma parts to generate high quality subject-specific parenchyma probability maps. Several refinement strategies including a final shape-based 3D level set segmentation technique are used in subsequent processing modules to segment renal parenchyma. Furthermore, our framework recognizes and excludes renal cysts from parenchymal volume, which is important to analyze renal functions. Volume errors and Dice coefficients show that our presented framework outperforms existing approaches. PMID:26509325

  9. Adapting histogram for automatic noise data removal in building interior point cloud data

    NASA Astrophysics Data System (ADS)

    Shukor, S. A. Abdul; Rushforth, E. J.

    2015-05-01

    3D point cloud data is now preferred by researchers to generate 3D models. These models can be used throughout a variety of applications including 3D building interior models. The rise of Building Information Modeling (BIM) for Architectural, Engineering, Construction (AEC) applications has given 3D interior modelling more attention recently. To generate a 3D model representing the building interior, a laser scanner is used to collect the point cloud data. However, this data often comes with noise. This is due to several factors including the surrounding objects, lighting and specifications of the laser scanner. This paper highlights on the usage of the histogram to remove the noise data. Histograms, used in statistics and probability, are regularly being used in a number of applications like image processing, where a histogram can represent the total number of pixels in an image at each intensity level. Here, histograms represent the number of points recorded at range distance intervals in various projections. As unwanted noise data has a sparser cloud density compared to the required data and is usually situated at a notable distance from the required data, noise data will have lower frequencies in the histogram. By defining the acceptable range using the average frequency, points below this range can be removed. This research has shown that these histograms have the capabilities to remove unwanted data from 3D point cloud data representing building interiors automatically. This feature will aid the process of data preprocessing in producing an ideal 3D model from the point cloud data.

  10. Three-dimensional electromagnetic model-based scattering center matching method for synthetic aperture radar automatic target recognition by combining spatial and attributed information

    NASA Astrophysics Data System (ADS)

    Ma, Conghui; Wen, Gongjian; Ding, Boyuan; Zhong, JinRong; Yang, Xiaoliang

    2016-01-01

    A three-dimensional electromagnetic model (3-D EM-model)-based scattering center matching method is developed for synthetic aperture radar automatic target recognition (ATR). 3-D EM-model provides a concise and physically relevant description of the target's electromagnetic scattering phenomenon through its scattering centers which makes it an ideal candidate for ATR. In our method, scatters of the 3-D EM-model are projected to the two-dimensional measurement plane to predict scatters' location and scattering intensity properties. Then the identical information is extracted for scatters in measured data. A two-stage iterative operation is applied to match the model-predicted scatters and the measured data-extracted scatters by combining spatial and attributed information. Based on the two scatter sets' matching information, a similarity measurement between model and measured data is obtained and recognition conclusion is made. Meanwhile, the target's configuration is reasoned with 3-D EM-model serving as a reference. In the end, data simulated by electromagnetic computation verified this method's validity.

  11. Automatic artifact suppression in simultaneous tDCS-EEG using adaptive filtering.

    PubMed

    Mancini, Matteo; Pellicciari, Maria Concetta; Brignani, Debora; Mauri, Piercarlo; De Marchis, Cristiano; Miniussi, Carlo; Conforto, Silvia

    2015-08-01

    Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation method that can be used in cognitive and clinical protocols in order to modulate neural activity. Although some macro effects are known, the underlying mechanisms are still not clear. tDCS in combination with electroencephalography (EEG) could help to understand these mechanisms from a neural point of view. However, simultaneous tDCS-EEG still remains challenging because of the artifacts that affect the recorded signals. In this paper, an automated artifact cancellation method based on adaptive filtering is proposed. Using independent component analysis (ICA), the artifacts were characterized using data from both a phantom and a group of healthy subjects. The resulting filter can successfully remove tDCS-related artifacts during anodal and cathodal stimulations. PMID:26736856

  12. Integrated approach to bandwidth reduction and mine detection in shallow water with reduced-dimension image compression and automatic target recognition algorithms

    NASA Astrophysics Data System (ADS)

    Shin, Frances B.; Kil, David H.; Dobeck, Gerald J.

    1997-07-01

    In distributed underwater signal processing for area surveillance and sanitization during regional conflicts, it is often necessary to transmit raw imagery data to a remote processing station for detection-report confirmation and more sophisticated automatic target recognition (ATR) processing. Because of he limited bandwidth available for transmission, image compression is of paramount importance. At the same time, preservation of useful information that contains essential signal attributes is crucial for effective mine detection and classification in shallow water. In this paper, we present an integrated processing strategy that combines image compression and ATR algorithms for superior detection performance while achieving maximal bandwidth reduction. Our reduced-dimension image compression algorithm comprises image-content classification for the subimage-specific transformation, principal component analysis for further dimension reduction, and vector quantization to obtain minimal information state. Next, using an integrated pattern recognition paradigm, our ATR algorithm optimally combines low-dimensional features and an appropriate classifier topology to extract maximum recognition performance from reconstructed images. Instead of assessing performance of the image compression algorithm in terms of commonly used peak signal-to-noise ratio or normalized mean-squared error criteria, we quantify our algorithm performance using a metric that reflects human and operational factors - ATR performance. Our preliminary analysis based on high-frequency sonar real data indicates that we can achieve a compression ratio of up to 57:1 with minimal sacrifice in PD and PFA. Furthermore, we discuss the concept of the classification Cramer-Rao bound in terms of data compression, sufficient statistics, and class separability to quantify the extent to which a classifier approximates the Bayes classifier.

  13. ROBIN: a platform for evaluating automatic target recognition algorithms: I. Overview of the project and presentation of the SAGEM DS competition

    NASA Astrophysics Data System (ADS)

    Duclos, D.; Lonnoy, J.; Guillerm, Q.; Jurie, F.; Herbin, S.; D'Angelo, E.

    2008-04-01

    The last five years have seen a renewal of Automatic Target Recognition applications, mainly because of the latest advances in machine learning techniques. In this context, large collections of image datasets are essential for training algorithms as well as for their evaluation. Indeed, the recent proliferation of recognition algorithms, generally applied to slightly different problems, make their comparisons through clean evaluation campaigns necessary. The ROBIN project tries to fulfil these two needs by putting unclassified datasets, ground truths, competitions and metrics for the evaluation of ATR algorithms at the disposition of the scientific community. The scope of this project includes single and multi-class generic target detection and generic target recognition, in military and security contexts. From our knowledge, it is the first time that a database of this importance (several hundred thousands of visible and infrared hand annotated images) has been publicly released. Funded by the French Ministry of Defence (DGA) and by the French Ministry of Research, ROBIN is one of the ten Techno-vision projects. Techno-vision is a large and ambitious government initiative for building evaluation means for computer vision technologies, for various application contexts. ROBIN's consortium includes major companies and research centres involved in Computer Vision R&D in the field of defence: Bertin Technologies, CNES, ECA, DGA, EADS, INRIA, ONERA, MBDA, SAGEM, THALES. This paper, which first gives an overview of the whole project, is focused on one of ROBIN's key competitions, the SAGEM Defence Security database. This dataset contains more than eight hundred ground and aerial infrared images of six different vehicles in cluttered scenes including distracters. Two different sets of data are available for each target. The first set includes different views of each vehicle at close range in a "simple" background, and can be used to train algorithms. The second set

  14. Speech recognition in reverberant and noisy environments employing multiple feature extractors and i-vector speaker adaptation

    NASA Astrophysics Data System (ADS)

    Alam, Md Jahangir; Gupta, Vishwa; Kenny, Patrick; Dumouchel, Pierre

    2015-12-01

    The REVERB challenge provides a common framework for the evaluation of feature extraction techniques in the presence of both reverberation and additive background noise. State-of-the-art speech recognition systems perform well in controlled environments, but their performance degrades in realistic acoustical conditions, especially in real as well as simulated reverberant environments. In this contribution, we utilize multiple feature extractors including the conventional mel-filterbank, multi-taper spectrum estimation-based mel-filterbank, robust mel and compressive gammachirp filterbank, iterative deconvolution-based dereverberated mel-filterbank, and maximum likelihood inverse filtering-based dereverberated mel-frequency cepstral coefficient features for speech recognition with multi-condition training data. In order to improve speech recognition performance, we combine their results using ROVER (Recognizer Output Voting Error Reduction). For two- and eight-channel tasks, to get benefited from the multi-channel data, we also use ROVER, instead of the multi-microphone signal processing method, to reduce word error rate by selecting the best scoring word at each channel. As in a previous work, we also apply i-vector-based speaker adaptation which was found effective. In speech recognition task, speaker adaptation tries to reduce mismatch between the training and test speakers. Speech recognition experiments are conducted on the REVERB challenge 2014 corpora using the Kaldi recognizer. In our experiments, we use both utterance-based batch processing and full batch processing. In the single-channel task, full batch processing reduced word error rate (WER) from 10.0 to 9.3 % on SimData as compared to utterance-based batch processing. Using full batch processing, we obtained an average WER of 9.0 and 23.4 % on the SimData and RealData, respectively, for the two-channel task, whereas for the eight-channel task on the SimData and RealData, the average WERs found were 8

  15. Development of an Adaptively Controlled Telescope with Star-Pattern Recognition Pointing

    NASA Astrophysics Data System (ADS)

    Sick, J. N.

    2003-12-01

    This paper describes the development of a 32-cm f/5 Newtonian telescope intended for use by amateur astronomers in producing scientifically useful observations through high-accuracy computer control. The telescope is designed to achieve a 10-arcsecond pointing accuracy through the use of a star-pattern recognition algorithm. This star-pattern recognition pointing algorithm allows pointing errors such as tube flexure and mount misalignment to be intuitively identified and corrected without the need for calibrating positional encoders. This star-pattern recognition algorithm is based on comparing the shapes of visible patterns of six stars in any given field of view to a pre-compiled catalog of star-patterns that is generated by a software package called Star Field Simulator. A second-generation algorithm is presented in this paper that features an empirical image appearance prediction system, which adds photometric measurements to the star-pattern recognition. This allows the effects of unresolvable clusters of stars, and the presence of non-stellar objects to be included in the star-pattern recognition process through the prediction of an object's pixel brightness and point spread function. Testing with pointing camera images has shown that star appearance on a CCD can be predicted with high accuracy. The telescope hardware features a unique fiberglass and metal composite construction technique for precision component placement. An innovative placement of the autoguiding camera at the Newtonian prime focus through an on-axis tracking platform is also featured. The telescope is controlled with real-time software, on a laptop computer, using modified Firewire video cameras to provide pointing and tracking data. To test the accuracy of the control algorithms and simulate the effects of errors from environmental and mechanical sources, a software application was written. Results from this and other tests have shown that this telescope can operate within the preset

  16. User adaptation in long-term, open-loop myoelectric training: implications for EMG pattern recognition in prosthesis control

    NASA Astrophysics Data System (ADS)

    He, Jiayuan; Zhang, Dingguo; Jiang, Ning; Sheng, Xinjun; Farina, Dario; Zhu, Xiangyang

    2015-08-01

    Objective. Recent studies have reported that the classification performance of electromyographic (EMG) signals degrades over time without proper classification retraining. This problem is relevant for the applications of EMG pattern recognition in the control of active prostheses. Approach. In this study we investigated the changes in EMG classification performance over 11 consecutive days in eight able-bodied subjects and two amputees. Main results. It was observed that, when the classifier was trained on data from one day and tested on data from the following day, the classification error decreased exponentially but plateaued after four days for able-bodied subjects and six to nine days for amputees. The between-day performance became gradually closer to the corresponding within-day performance. Significance. These results indicate that the relative changes in EMG signal features over time become progressively smaller when the number of days during which the subjects perform the pre-defined motions are increased. The performance of the motor tasks is thus more consistent over time, resulting in more repeatable EMG patterns, even if the subjects do not have any external feedback on their performance. The learning curves for both able-bodied subjects and subjects with limb deficiencies could be modeled as an exponential function. These results provide important insights into the user adaptation characteristics during practical long-term myoelectric control applications, with implications for the design of an adaptive pattern recognition system.

  17. Automatic Recognition of Coronal Type II Radio Bursts: The Automated Radio Burst Identification System Method and First Observations

    NASA Astrophysics Data System (ADS)

    Lobzin, Vasili V.; Cairns, Iver H.; Robinson, Peter A.; Steward, Graham; Patterson, Garth

    2010-02-01

    Major space weather events such as solar flares and coronal mass ejections are usually accompanied by solar radio bursts, which can potentially be used for real-time space weather forecasts. Type II radio bursts are produced near the local plasma frequency and its harmonic by fast electrons accelerated by a shock wave moving through the corona and solar wind with a typical speed of ~1000 km s-1. The coronal bursts have dynamic spectra with frequency gradually falling with time and durations of several minutes. This Letter presents a new method developed to detect type II coronal radio bursts automatically and describes its implementation in an extended Automated Radio Burst Identification System (ARBIS 2). Preliminary tests of the method with spectra obtained in 2002 show that the performance of the current implementation is quite high, ~80%, while the probability of false positives is reasonably low, with one false positive per 100-200 hr for high solar activity and less than one false event per 10000 hr for low solar activity periods. The first automatically detected coronal type II radio burst is also presented.

  18. Automatic recognition of type III solar radio bursts: Automated Radio Burst Identification System method and first observations

    NASA Astrophysics Data System (ADS)

    Lobzin, Vasili V.; Cairns, Iver H.; Robinson, Peter A.; Steward, Graham; Patterson, Garth

    2009-04-01

    Because of the rapidly increasing role of technology, including complicated electronic systems, spacecraft, etc., modern society has become more vulnerable to a set of extraterrestrial influences (space weather) and requires continuous observation and forecasts of space weather. The major space weather events like solar flares and coronal mass ejections are usually accompanied by solar radio bursts, which can be used for a real-time space weather forecast. Coronal type III radio bursts are produced near the local electron plasma frequency and near its harmonic by fast electrons ejected from the solar active regions and moving through the corona and solar wind. These bursts have dynamic spectra with frequency rapidly falling with time, the typical duration of the coronal burst being about 1-3 s. This paper presents a new method developed to detect coronal type III bursts automatically and its implementation in a new Automated Radio Burst Identification System. The central idea of the implementation is to use the Radon transform for more objective detection of the bursts as approximately straight lines in dynamic spectra. Preliminary tests of the method with the use of the spectra obtained during 13 days show that the performance of the current implementation is quite high, ˜84%, while no false positives are observed and 23 events not listed previously are found. Prospects for improvements are discussed. The first automatically detected coronal type III radio bursts are presented.

  19. Whole-book recognition.

    PubMed

    Xiu, Pingping; Baird, Henry S

    2012-12-01

    Whole-book recognition is a document image analysis strategy that operates on the complete set of a book's page images using automatic adaptation to improve accuracy. We describe an algorithm which expects to be initialized with approximate iconic and linguistic models--derived from (generally errorful) OCR results and (generally imperfect) dictionaries--and then, guided entirely by evidence internal to the test set, corrects the models which, in turn, yields higher recognition accuracy. The iconic model describes image formation and determines the behavior of a character-image classifier, and the linguistic model describes word-occurrence probabilities. Our algorithm detects "disagreements" between these two models by measuring cross entropy between 1) the posterior probability distribution of character classes (the recognition results resulting from image classification alone) and 2) the posterior probability distribution of word classes (the recognition results from image classification combined with linguistic constraints). We show how disagreements can identify candidates for model corrections at both the character and word levels. Some model corrections will reduce the error rate over the whole book, and these can be identified by comparing model disagreements, summed across the whole book, before and after the correction is applied. Experiments on passages up to 180 pages long show that when a candidate model adaptation reduces whole-book disagreement, it is also likely to correct recognition errors. Also, the longer the passage operated on by the algorithm, the more reliable this adaptation policy becomes, and the lower the error rate achieved. The best results occur when both the iconic and linguistic models mutually correct one another. We have observed recognition error rates driven down by nearly an order of magnitude fully automatically without supervision (or indeed without any user intervention or interaction). Improvement is nearly monotonic, and

  20. Automatic classification of schizophrenia using resting-state functional language network via an adaptive learning algorithm

    NASA Astrophysics Data System (ADS)

    Zhu, Maohu; Jie, Nanfeng; Jiang, Tianzi

    2014-03-01

    A reliable and precise classification of schizophrenia is significant for its diagnosis and treatment of schizophrenia. Functional magnetic resonance imaging (fMRI) is a novel tool increasingly used in schizophrenia research. Recent advances in statistical learning theory have led to applying pattern classification algorithms to access the diagnostic value of functional brain networks, discovered from resting state fMRI data. The aim of this study was to propose an adaptive learning algorithm to distinguish schizophrenia patients from normal controls using resting-state functional language network. Furthermore, here the classification of schizophrenia was regarded as a sample selection problem where a sparse subset of samples was chosen from the labeled training set. Using these selected samples, which we call informative vectors, a classifier for the clinic diagnosis of schizophrenia was established. We experimentally demonstrated that the proposed algorithm incorporating resting-state functional language network achieved 83.6% leaveone- out accuracy on resting-state fMRI data of 27 schizophrenia patients and 28 normal controls. In contrast with KNearest- Neighbor (KNN), Support Vector Machine (SVM) and l1-norm, our method yielded better classification performance. Moreover, our results suggested that a dysfunction of resting-state functional language network plays an important role in the clinic diagnosis of schizophrenia.

  1. Automatic mesh adaptivity for hybrid Monte Carlo/deterministic neutronics modeling of difficult shielding problems

    DOE PAGESBeta

    Ibrahim, Ahmad M.; Wilson, Paul P.H.; Sawan, Mohamed E.; Mosher, Scott W.; Peplow, Douglas E.; Wagner, John C.; Evans, Thomas M.; Grove, Robert E.

    2015-06-30

    The CADIS and FW-CADIS hybrid Monte Carlo/deterministic techniques dramatically increase the efficiency of neutronics modeling, but their use in the accurate design analysis of very large and geometrically complex nuclear systems has been limited by the large number of processors and memory requirements for their preliminary deterministic calculations and final Monte Carlo calculation. Three mesh adaptivity algorithms were developed to reduce the memory requirements of CADIS and FW-CADIS without sacrificing their efficiency improvement. First, a macromaterial approach enhances the fidelity of the deterministic models without changing the mesh. Second, a deterministic mesh refinement algorithm generates meshes that capture as muchmore » geometric detail as possible without exceeding a specified maximum number of mesh elements. Finally, a weight window coarsening algorithm decouples the weight window mesh and energy bins from the mesh and energy group structure of the deterministic calculations in order to remove the memory constraint of the weight window map from the deterministic mesh resolution. The three algorithms were used to enhance an FW-CADIS calculation of the prompt dose rate throughout the ITER experimental facility. Using these algorithms resulted in a 23.3% increase in the number of mesh tally elements in which the dose rates were calculated in a 10-day Monte Carlo calculation and, additionally, increased the efficiency of the Monte Carlo simulation by a factor of at least 3.4. The three algorithms enabled this difficult calculation to be accurately solved using an FW-CADIS simulation on a regular computer cluster, eliminating the need for a world-class super computer.« less

  2. Automatic mesh adaptivity for hybrid Monte Carlo/deterministic neutronics modeling of difficult shielding problems

    SciTech Connect

    Ibrahim, Ahmad M.; Wilson, Paul P.H.; Sawan, Mohamed E.; Mosher, Scott W.; Peplow, Douglas E.; Wagner, John C.; Evans, Thomas M.; Grove, Robert E.

    2015-06-30

    The CADIS and FW-CADIS hybrid Monte Carlo/deterministic techniques dramatically increase the efficiency of neutronics modeling, but their use in the accurate design analysis of very large and geometrically complex nuclear systems has been limited by the large number of processors and memory requirements for their preliminary deterministic calculations and final Monte Carlo calculation. Three mesh adaptivity algorithms were developed to reduce the memory requirements of CADIS and FW-CADIS without sacrificing their efficiency improvement. First, a macromaterial approach enhances the fidelity of the deterministic models without changing the mesh. Second, a deterministic mesh refinement algorithm generates meshes that capture as much geometric detail as possible without exceeding a specified maximum number of mesh elements. Finally, a weight window coarsening algorithm decouples the weight window mesh and energy bins from the mesh and energy group structure of the deterministic calculations in order to remove the memory constraint of the weight window map from the deterministic mesh resolution. The three algorithms were used to enhance an FW-CADIS calculation of the prompt dose rate throughout the ITER experimental facility. Using these algorithms resulted in a 23.3% increase in the number of mesh tally elements in which the dose rates were calculated in a 10-day Monte Carlo calculation and, additionally, increased the efficiency of the Monte Carlo simulation by a factor of at least 3.4. The three algorithms enabled this difficult calculation to be accurately solved using an FW-CADIS simulation on a regular computer cluster, eliminating the need for a world-class super computer.

  3. Structural interplay between germline and adaptive recognition determines TCR-peptide-MHC cross-reactivity

    PubMed Central

    Adams, Jarrett J.; Narayanan, Samanthi; Birnbaum, Michael E.; Sidhu, Sachdev S.; Blevins, Sydney J.; Gee, Marvin H.; Sibener, Leah V.; Baker, Brian M.; Kranz, David M.; Garcia, K. Christopher

    2015-01-01

    The T cell receptor - peptide-MHC interface is comprised of conserved and diverse regions, yet the relative contributions of each in shaping T cell recognition remain unclear. We isolated cross-reactive peptides with limited homology, allowing us to compare the structural properties of nine peptides for a single TCR-MHC pair. The TCR’s cross-reactivity is rooted in highly similar recognition of an apical ‘hotspot’ position in the peptide, while tolerating significant sequence variation at ancillary positions. Furthermore, we find a striking structural convergence onto a germline-mediated interaction between TCR CDR1α and the MHC α2 helix of twelve TCR-pMHC complexes. Our studies suggest that TCR-MHC germline-mediated constraints, together with a focus on a small peptide hotspot, may place limits on peptide antigen cross-reactivity. PMID:26523866

  4. Hearing-aid automatic gain control adapting to two sound sources in the environment, using three time constants

    NASA Astrophysics Data System (ADS)

    Nordqvist, Peter; Leijon, Arne

    2004-11-01

    A hearing aid AGC algorithm is presented that uses a richer representation of the sound environment than previous algorithms. The proposed algorithm is designed to (1) adapt slowly (in approximately 10 s) between different listening environments, e.g., when the user leaves a single talker lecture for a multi-babble coffee-break; (2) switch rapidly (about 100 ms) between different dominant sound sources within one listening situation, such as the change from the user's own voice to a distant speaker's voice in a quiet conference room; (3) instantly reduce gain for strong transient sounds and then quickly return to the previous gain setting; and (4) not change the gain in silent pauses but instead keep the gain setting of the previous sound source. An acoustic evaluation showed that the algorithm worked as intended. The algorithm was evaluated together with a reference algorithm in a pilot field test. When evaluated by nine users in a set of speech recognition tests, the algorithm showed similar results to the reference algorithm. .

  5. Real-Time Very Large-Scale Integration Recognition System with an On-Chip Adaptive K-Means Learning Algorithm

    NASA Astrophysics Data System (ADS)

    Hou, Zuoxun; Ma, Yitao; Zhu, Hongbo; Zheng, Nanning; Shibata, Tadashi

    2013-04-01

    A very large-scale integration (VLSI) recognition system equipped with an on-chip learning capability has been developed for real-time processing applications. This system can work in two functional modes of operation: adaptive K-means learning mode and recognition mode. In the adaptive K-means learning mode, the variance ratio criterion (VRC) has been employed to evaluate the quality of K-means classification results, and the evaluation algorithm has been implemented on the chip. As a result, it has become possible for the system to autonomously determine the optimum number of clusters (K). In the recognition mode, the nearest-neighbor search algorithm is very efficiently carried out by the fully parallel architecture employed in the chip. In both modes of operation, many hardware resources are shared and the functionality is flexibly altered by the system controller designed as a finite-state machine (FSM). The chip is implemented on Altera Cyclone II FPGA with 46K logic cells. Its operating clock is 25 MHz and the processing times for adaptive learning and recognition with 256 64-dimension feature vectors are about 0.42 ms and 4 µs, respectively. Both adaptive K-means learning and recognition functions have been verified by experiments using the image data from the COIL-100 (Columbia University Object Image Library) database.

  6. Single-trial EEG-based emotion recognition using kernel Eigen-emotion pattern and adaptive support vector machine.

    PubMed

    Liu, Yi-Hung; Wu, Chien-Te; Kao, Yung-Hwa; Chen, Ya-Ting

    2013-01-01

    Single-trial electroencephalography (EEG)-based emotion recognition enables us to perform fast and direct assessments of human emotional states. However, previous works suggest that a great improvement on the classification accuracy of valence and arousal levels is still needed. To address this, we propose a novel emotional EEG feature extraction method: kernel Eigen-emotion pattern (KEEP). An adaptive SVM is also proposed to deal with the problem of learning from imbalanced emotional EEG data sets. In this study, a set of pictures from IAPS are used for emotion induction. Results based on seven participants show that KEEP gives much better classification results than the widely-used EEG frequency band power features. Also, the adaptive SVM greatly improves classification performance of commonly-adopted SVM classifier. Combined use of KEEP and adaptive SVM can achieve high average valence and arousal classification rates of 73.42% and 73.57%. The highest classification rates for valence and arousal are 80% and 79%, respectively. The results are very promising. PMID:24110685

  7. Speech recognition and understanding

    SciTech Connect

    Vintsyuk, T.K.

    1983-05-01

    This article discusses the automatic processing of speech signals with the aim of finding a sequence of works (speech recognition) or a concept (speech understanding) being transmitted by the speech signal. The goal of the research is to develop an automatic typewriter that will automatically edit and type text under voice control. A dynamic programming method is proposed in which all possible class signals are stored, after which the presented signal is compared to all the stored signals during the recognition phase. Topics considered include element-by-element recognition of words of speech, learning speech recognition, phoneme-by-phoneme speech recognition, the recognition of connected speech, understanding connected speech, and prospects for designing speech recognition and understanding systems. An application of the composition dynamic programming method for the solution of basic problems in the recognition and understanding of speech is presented.

  8. Semi-automatic ground truth generation using unsupervised clustering and limited manual labeling: Application to handwritten character recognition

    PubMed Central

    Vajda, Szilárd; Rangoni, Yves; Cecotti, Hubert

    2015-01-01

    For training supervised classifiers to recognize different patterns, large data collections with accurate labels are necessary. In this paper, we propose a generic, semi-automatic labeling technique for large handwritten character collections. In order to speed up the creation of a large scale ground truth, the method combines unsupervised clustering and minimal expert knowledge. To exploit the potential discriminant complementarities across features, each character is projected into five different feature spaces. After clustering the images in each feature space, the human expert labels the cluster centers. Each data point inherits the label of its cluster’s center. A majority (or unanimity) vote decides the label of each character image. The amount of human involvement (labeling) is strictly controlled by the number of clusters – produced by the chosen clustering approach. To test the efficiency of the proposed approach, we have compared, and evaluated three state-of-the art clustering methods (k-means, self-organizing maps, and growing neural gas) on the MNIST digit data set, and a Lampung Indonesian character data set, respectively. Considering a k-nn classifier, we show that labeling manually only 1.3% (MNIST), and 3.2% (Lampung) of the training data, provides the same range of performance than a completely labeled data set would. PMID:25870463

  9. Semantic Network Adaptation Based on QoS Pattern Recognition for Multimedia Streams

    NASA Astrophysics Data System (ADS)

    Exposito, Ernesto; Gineste, Mathieu; Lamolle, Myriam; Gomez, Jorge

    This article proposes an ontology based pattern recognition methodology to compute and represent common QoS properties of the Application Data Units (ADU) of multimedia streams. The use of this ontology by mechanisms located at different layers of the communication architecture will allow implementing fine per-packet self-optimization of communication services regarding the actual application requirements. A case study showing how this methodology is used by error control mechanisms in the context of wireless networks is presented in order to demonstrate the feasibility and advantages of this approach.

  10. The contribution of discrete-trial naming and visual recognition to rapid automatized naming deficits of dyslexic children with and without a history of language delay

    PubMed Central

    Gasperini, Filippo; Brizzolara, Daniela; Cristofani, Paola; Casalini, Claudia; Chilosi, Anna Maria

    2014-01-01

    Children with Developmental Dyslexia (DD) are impaired in Rapid Automatized Naming (RAN) tasks, where subjects are asked to name arrays of high frequency items as quickly as possible. However the reasons why RAN speed discriminates DD from typical readers are not yet fully understood. Our study was aimed to identify some of the cognitive mechanisms underlying RAN-reading relationship by comparing one group of 32 children with DD with an age-matched control group of typical readers on a naming and a visual recognition task both using a discrete-trial methodology, in addition to a serial RAN task, all using the same stimuli (digits and colors). Results showed a significant slowness of DD children in both serial and discrete-trial naming (DN) tasks regardless of type of stimulus, but no difference between the two groups on the discrete-trial recognition task. Significant differences between DD and control participants in the RAN task disappeared when performance in the DN task was partialled out by covariance analysis for colors, but not for digits. The same pattern held in a subgroup of DD subjects with a history of early language delay (LD). By contrast, in a subsample of DD children without LD the RAN deficit was specific for digits and disappeared after slowness in DN was partialled out. Slowness in DN was more evident for LD than for noLD DD children. Overall, our results confirm previous evidence indicating a name-retrieval deficit as a cognitive impairment underlying RAN slowness in DD children. This deficit seems to be more marked in DD children with previous LD. Moreover, additional cognitive deficits specifically associated with serial RAN tasks have to be taken into account when explaining deficient RAN speed of these latter children. We suggest that partially different cognitive dysfunctions underpin superficially similar RAN impairments in different subgroups of DD subjects. PMID:25237301

  11. Multiresolution stroke sketch adaptive representation and neural network processing system for gray-level image recognition

    NASA Astrophysics Data System (ADS)

    Meystel, Alexander M.; Rybak, Ilya A.; Bhasin, Sanjay

    1992-11-01

    This paper describes a method for multiresolutional representation of gray-level images as hierarchial sets of strokes characterizing forms of objects with different degrees of generalization depending on the context of the image. This method transforms the original image into a hierarchical graph which allows for efficient coding in order to store, retrieve, and recognize the image. The method which is described is based upon finding the resolution levels for each image which minimizes the computations required. This becomes possible because of the use of a special image representation technique called Multiresolutional Attentional Representation for Recognition, based upon a feature which the authors call a stroke. This feature turns out to be efficient in the process of finding the appropriate system of resolutions and construction of the relational graph. Multiresolutional Attentional Representation for Recognition (MARR) is formed by a multi-layer neural network with recurrent inhibitory connections between neurons, the receptive fields of which are selectively tuned to detect the orientation of local contrasts in parts of the image with appropriate degree of generalization. This method simulates the 'coarse-to-fine' algorithm which an artist usually uses, making at attentional sketch of real images. The method, algorithms, and neural network architecture in this system can be used in many machine-vision systems with AI properties; in particular, robotic vision. We expect that systems with MARR can become a component of intelligent control systems for autonomous robots. Their architectures are mostly multiresolutional and match well with the multiple resolutions of the MARR structure.

  12. Automatic Recognition of Acute Myelogenous Leukemia in Blood Microscopic Images Using K-means Clustering and Support Vector Machine

    PubMed Central

    Kazemi, Fatemeh; Najafabadi, Tooraj Abbasian; Araabi, Babak Nadjar

    2016-01-01

    Acute myelogenous leukemia (AML) is a subtype of acute leukemia, which is characterized by the accumulation of myeloid blasts in the bone marrow. Careful microscopic examination of stained blood smear or bone marrow aspirate is still the most significant diagnostic methodology for initial AML screening and considered as the first step toward diagnosis. It is time-consuming and due to the elusive nature of the signs and symptoms of AML; wrong diagnosis may occur by pathologists. Therefore, the need for automation of leukemia detection has arisen. In this paper, an automatic technique for identification and detection of AML and its prevalent subtypes, i.e., M2–M5 is presented. At first, microscopic images are acquired from blood smears of patients with AML and normal cases. After applying image preprocessing, color segmentation strategy is applied for segmenting white blood cells from other blood components and then discriminative features, i.e., irregularity, nucleus-cytoplasm ratio, Hausdorff dimension, shape, color, and texture features are extracted from the entire nucleus in the whole images containing multiple nuclei. Images are classified to cancerous and noncancerous images by binary support vector machine (SVM) classifier with 10-fold cross validation technique. Classifier performance is evaluated by three parameters, i.e., sensitivity, specificity, and accuracy. Cancerous images are also classified into their prevalent subtypes by multi-SVM classifier. The results show that the proposed algorithm has achieved an acceptable performance for diagnosis of AML and its common subtypes. Therefore, it can be used as an assistant diagnostic tool for pathologists. PMID:27563575

  13. Automatic Recognition of Acute Myelogenous Leukemia in Blood Microscopic Images Using K-means Clustering and Support Vector Machine.

    PubMed

    Kazemi, Fatemeh; Najafabadi, Tooraj Abbasian; Araabi, Babak Nadjar

    2016-01-01

    Acute myelogenous leukemia (AML) is a subtype of acute leukemia, which is characterized by the accumulation of myeloid blasts in the bone marrow. Careful microscopic examination of stained blood smear or bone marrow aspirate is still the most significant diagnostic methodology for initial AML screening and considered as the first step toward diagnosis. It is time-consuming and due to the elusive nature of the signs and symptoms of AML; wrong diagnosis may occur by pathologists. Therefore, the need for automation of leukemia detection has arisen. In this paper, an automatic technique for identification and detection of AML and its prevalent subtypes, i.e., M2-M5 is presented. At first, microscopic images are acquired from blood smears of patients with AML and normal cases. After applying image preprocessing, color segmentation strategy is applied for segmenting white blood cells from other blood components and then discriminative features, i.e., irregularity, nucleus-cytoplasm ratio, Hausdorff dimension, shape, color, and texture features are extracted from the entire nucleus in the whole images containing multiple nuclei. Images are classified to cancerous and noncancerous images by binary support vector machine (SVM) classifier with 10-fold cross validation technique. Classifier performance is evaluated by three parameters, i.e., sensitivity, specificity, and accuracy. Cancerous images are also classified into their prevalent subtypes by multi-SVM classifier. The results show that the proposed algorithm has achieved an acceptable performance for diagnosis of AML and its common subtypes. Therefore, it can be used as an assistant diagnostic tool for pathologists. PMID:27563575

  14. Assessing hippocampal development and language in early childhood: Evidence from a new application of the Automatic Segmentation Adapter Tool.

    PubMed

    Lee, Joshua K; Nordahl, Christine W; Amaral, David G; Lee, Aaron; Solomon, Marjorie; Ghetti, Simona

    2015-11-01

    Volumetric assessments of the hippocampus and other brain structures during childhood provide useful indices of brain development and correlates of cognitive functioning in typically and atypically developing children. Automated methods such as FreeSurfer promise efficient and replicable segmentation, but may include errors which are avoided by trained manual tracers. A recently devised automated correction tool that uses a machine learning algorithm to remove systematic errors, the Automatic Segmentation Adapter Tool (ASAT), was capable of substantially improving the accuracy of FreeSurfer segmentations in an adult sample [Wang et al., 2011], but the utility of ASAT has not been examined in pediatric samples. In Study 1, the validity of FreeSurfer and ASAT corrected hippocampal segmentations were examined in 20 typically developing children and 20 children with autism spectrum disorder aged 2 and 3 years. We showed that while neither FreeSurfer nor ASAT accuracy differed by disorder or age, the accuracy of ASAT corrected segmentations were substantially better than FreeSurfer segmentations in every case, using as few as 10 training examples. In Study 2, we applied ASAT to 89 typically developing children aged 2 to 4 years to examine relations between hippocampal volume, age, sex, and expressive language. Girls had smaller hippocampi overall, and in left hippocampus this difference was larger in older than younger girls. Expressive language ability was greater in older children, and this difference was larger in those with larger hippocampi, bilaterally. Overall, this research shows that ASAT is highly reliable and useful to examinations relating behavior to hippocampal structure. PMID:26279309

  15. Development of an Adaptive Multi-Method Algorithm for Automatic Picking of First Arrival Times: Application to Near Surface Seismic Data

    NASA Astrophysics Data System (ADS)

    Khalaf, A.; Camerlynck, C. M.; Schneider, A. C.; Florsch, N.

    2015-12-01

    Accurate picking of first arrival times plays an important role in many seismic studies, particularly in seismic tomography and reservoirs or aquifers monitoring. Many techniques have been developed for picking first arrivals automatically or semi-automatically, but most of them were developed for seismological purposes which does not attain the accuracy objectives due to the complexity of near surface structures, and to usual low signal-to-noise ratio. We propose a new adaptive algorithm for near surface data based on three picking methods, combining multi-nested windows (MNW), Higher Order Statistics (HOS), and Akaike Information Criterion (AIC). They exploit the benefits of integrating many properties, which reveal the presence of first arrivals, to provide an efficient and robust first arrivals picking. This strategy mimics the human first-break picking, where at the beginning the global trend is defined. Then the exact first-breaks are searched in the vicinity of the now defined trend. In a multistage algorithm, three successive phases are launched, where each of them characterize a specific signal property. Within each phase, the potential picks and their error range are automatically estimated, and then used sequentially as leader in the following phase picking. The accuracy and robustness of the implemented algorithm are successfully validated on synthetic and real data which have special challenges for automatic pickers. The comparison of resulting P-wave arrival times with those picked manually, and other algorithms of automatic picking, demonstrated the reliable performance of the new scheme under different noisy conditions. All parameters of our multi-method algorithm are auto-adaptive thanks to the integration in series of each sub-algorithm results in the flow. Hence, it is nearly a parameter-free algorithm, which is straightforward to implement and demands low computational resources.

  16. Reptile Toll-like receptor 5 unveils adaptive evolution of bacterial flagellin recognition.

    PubMed

    Voogdt, Carlos G P; Bouwman, Lieneke I; Kik, Marja J L; Wagenaar, Jaap A; van Putten, Jos P M

    2016-01-01

    Toll-like receptors (TLR) are ancient innate immune receptors crucial for immune homeostasis and protection against infection. TLRs are present in mammals, birds, amphibians and fish but have not been functionally characterized in reptiles despite the central position of this animal class in vertebrate evolution. Here we report the cloning, characterization, and function of TLR5 of the reptile Anolis carolinensis (Green Anole lizard). The receptor (acTLR5) displays the typical TLR protein architecture with 22 extracellular leucine rich repeats flanked by a N- and C-terminal leucine rich repeat domain, a membrane-spanning region, and an intracellular TIR domain. The receptor is phylogenetically most similar to TLR5 of birds and most distant to fish TLR5. Transcript analysis revealed acTLR5 expression in multiple lizard tissues. Stimulation of acTLR5 with TLR ligands demonstrated unique responsiveness towards bacterial flagellin in both reptile and human cells. Comparison of acTLR5 and human TLR5 using purified flagellins revealed differential sensitivity to Pseudomonas but not Salmonella flagellin, indicating development of species-specific flagellin recognition during the divergent evolution of mammals and reptiles. Our discovery of reptile TLR5 fills the evolutionary gap regarding TLR conservation across vertebrates and provides novel insights in functional evolution of host-microbe interactions. PMID:26738735

  17. Reptile Toll-like receptor 5 unveils adaptive evolution of bacterial flagellin recognition

    PubMed Central

    Voogdt, Carlos G. P.; Bouwman, Lieneke I.; Kik, Marja J. L.; Wagenaar, Jaap A.; van Putten, Jos P. M.

    2016-01-01

    Toll-like receptors (TLR) are ancient innate immune receptors crucial for immune homeostasis and protection against infection. TLRs are present in mammals, birds, amphibians and fish but have not been functionally characterized in reptiles despite the central position of this animal class in vertebrate evolution. Here we report the cloning, characterization, and function of TLR5 of the reptile Anolis carolinensis (Green Anole lizard). The receptor (acTLR5) displays the typical TLR protein architecture with 22 extracellular leucine rich repeats flanked by a N- and C-terminal leucine rich repeat domain, a membrane-spanning region, and an intracellular TIR domain. The receptor is phylogenetically most similar to TLR5 of birds and most distant to fish TLR5. Transcript analysis revealed acTLR5 expression in multiple lizard tissues. Stimulation of acTLR5 with TLR ligands demonstrated unique responsiveness towards bacterial flagellin in both reptile and human cells. Comparison of acTLR5 and human TLR5 using purified flagellins revealed differential sensitivity to Pseudomonas but not Salmonella flagellin, indicating development of species-specific flagellin recognition during the divergent evolution of mammals and reptiles. Our discovery of reptile TLR5 fills the evolutionary gap regarding TLR conservation across vertebrates and provides novel insights in functional evolution of host-microbe interactions. PMID:26738735

  18. Adaptive fuzzy leader clustering of complex data sets in pattern recognition

    NASA Technical Reports Server (NTRS)

    Newton, Scott C.; Pemmaraju, Surya; Mitra, Sunanda

    1992-01-01

    A modular, unsupervised neural network architecture for clustering and classification of complex data sets is presented. The adaptive fuzzy leader clustering (AFLC) architecture is a hybrid neural-fuzzy system that learns on-line in a stable and efficient manner. The initial classification is performed in two stages: a simple competitive stage and a distance metric comparison stage. The cluster prototypes are then incrementally updated by relocating the centroid positions from fuzzy C-means system equations for the centroids and the membership values. The AFLC algorithm is applied to the Anderson Iris data and laser-luminescent fingerprint image data. It is concluded that the AFLC algorithm successfully classifies features extracted from real data, discrete or continuous.

  19. A novel method of target recognition based on 3D-color-space locally adaptive regression kernels model

    NASA Astrophysics Data System (ADS)

    Liu, Jiaqi; Han, Jing; Zhang, Yi; Bai, Lianfa

    2015-10-01

    Locally adaptive regression kernels model can describe the edge shape of images accurately and graphic trend of images integrally, but it did not consider images' color information while the color is an important element of an image. Therefore, we present a novel method of target recognition based on 3-D-color-space locally adaptive regression kernels model. Different from the general additional color information, this method directly calculate the local similarity features of 3-D data from the color image. The proposed method uses a few examples of an object as a query to detect generic objects with incompact, complex and changeable shapes. Our method involves three phases: First, calculating the novel color-space descriptors from the RGB color space of query image which measure the likeness of a voxel to its surroundings. Salient features which include spatial- dimensional and color -dimensional information are extracted from said descriptors, and simplifying them to construct a non-similar local structure feature set of the object class by principal components analysis (PCA). Second, we compare the salient features with analogous features from the target image. This comparison is done using a matrix generalization of the cosine similarity measure. Then the similar structures in the target image are obtained using local similarity structure statistical matching. Finally, we use the method of non-maxima suppression in the similarity image to extract the object position and mark the object in the test image. Experimental results demonstrate that our approach is effective and accurate in improving the ability to identify targets.

  20. Three-dimensional modeling of a thermal dendrite using the phase field method with automatic anisotropic and unstructured adaptive finite element meshing

    NASA Astrophysics Data System (ADS)

    Sarkis, C.; Silva, L.; Gandin, Ch-A.; Plapp, M.

    2016-03-01

    Dendritic growth is computed with automatic adaptation of an anisotropic and unstructured finite element mesh. The energy conservation equation is formulated for solid and liquid phases considering an interface balance that includes the Gibbs-Thomson effect. An equation for a diffuse interface is also developed by considering a phase field function with constant negative value in the liquid and constant positive value in the solid. Unknowns are the phase field function and a dimensionless temperature, as proposed by [1]. Linear finite element interpolation is used for both variables, and discretization stabilization techniques ensure convergence towards a correct non-oscillating solution. In order to perform quantitative computations of dendritic growth on a large domain, two additional numerical ingredients are necessary: automatic anisotropic unstructured adaptive meshing [2,[3] and parallel implementations [4], both made available with the numerical platform used (CimLib) based on C++ developments. Mesh adaptation is found to greatly reduce the number of degrees of freedom. Results of phase field simulations for dendritic solidification of a pure material in two and three dimensions are shown and compared with reference work [1]. Discussion on algorithm details and the CPU time will be outlined.

  1. A new method based on Adaptive Discrete Wavelet Entropy Energy and Neural Network Classifier (ADWEENN) for recognition of urine cells from microscopic images independent of rotation and scaling.

    PubMed

    Avci, Derya; Leblebicioglu, Mehmet Kemal; Poyraz, Mustafa; Dogantekin, Esin

    2014-02-01

    So far, analysis and classification of urine cells number has become an important topic for medical diagnosis of some diseases. Therefore, in this study, we suggest a new technique based on Adaptive Discrete Wavelet Entropy Energy and Neural Network Classifier (ADWEENN) for Recognition of Urine Cells from Microscopic Images Independent of Rotation and Scaling. Some digital image processing methods such as noise reduction, contrast enhancement, segmentation, and morphological process are used for feature extraction stage of this ADWEENN in this study. Nowadays, the image processing and pattern recognition topics have come into prominence. The image processing concludes operation and design of systems that recognize patterns in data sets. In the past years, very difficulty in classification of microscopic images was the deficiency of enough methods to characterize. Lately, it is seen that, multi-resolution image analysis methods such as Gabor filters, discrete wavelet decompositions are superior to other classic methods for analysis of these microscopic images. In this study, the structure of the ADWEENN method composes of four stages. These are preprocessing stage, feature extraction stage, classification stage and testing stage. The Discrete Wavelet Transform (DWT) and adaptive wavelet entropy and energy is used for adaptive feature extraction in feature extraction stage to strengthen the premium features of the Artificial Neural Network (ANN) classifier in this study. Efficiency of the developed ADWEENN method was tested showing that an avarage of 97.58% recognition succes was obtained. PMID:24493072

  2. An adaptive 3D region growing algorithm to automatically segment and identify thoracic aorta and its centerline using computed tomography angiography scans

    NASA Astrophysics Data System (ADS)

    Ferreira, F.; Dehmeshki, J.; Amin, H.; Dehkordi, M. E.; Belli, A.; Jouannic, A.; Qanadli, S.

    2010-03-01

    Thoracic Aortic Aneurysm (TAA) is a localized swelling of the thoracic aorta. The progressive growth of an aneurysm may eventually cause a rupture if not diagnosed or treated. This necessitates the need for an accurate measurement which in turn calls for the accurate segmentation of the aneurysm regions. Computer Aided Detection (CAD) is a tool to automatically detect and segment the TAA in the Computer tomography angiography (CTA) images. The fundamental major step of developing such a system is to develop a robust method for the detection of main vessel and measuring its diameters. In this paper we propose a novel adaptive method to simultaneously segment the thoracic aorta and to indentify its center line. For this purpose, an adaptive parametric 3D region growing is proposed in which its seed will be automatically selected through the detection of the celiac artery and the parameters of the method will be re-estimated while the region is growing thorough the aorta. At each phase of region growing the initial center line of aorta will also be identified and modified through the process. Thus the proposed method simultaneously detect aorta and identify its centerline. The method has been applied on CT images from 20 patients with good agreement with the visual assessment by two radiologists.

  3. Reconstruction of a probable ancestral form of conger eel galectins revealed their rapid adaptive evolution process for specific carbohydrate recognition.

    PubMed

    Konno, Ayumu; Ogawa, Tomohisa; Shirai, Tsuyoshi; Muramoto, Koji

    2007-11-01

    Recently, many cases of rapid adaptive evolution, which is characterized by the higher substitution rates of nonsynonymous substitutions to synonymous ones, have been identified in the various genes of venomous and biodefense proteins, including the conger eel galectins, congerins I and II (ConI and ConII). To understand the evolutionary process of congerins, we prepared a probable ancestral form, Con-anc, corresponding to the putative amino acid sequence at the divergence of ConI and ConII in phylogenetic tree with 76% and 61% sequence identities to the current proteins, respectively. Con-anc and ConII had comparable thermostability and similar carbohydrate specificities in general, whereas ConI was more thermostable and showed different carbohydrate specificities. Con-anc showed decreased specificity to oligosaccharides with alpha 2,3-sialyl galactose moieties. These suggest that ConI and ConII have evolved via accelerated evolution under significant selective pressure to increase the thermostability and to acquire the activity to bind to alpha2,3-sialyl galactose present in pathogenic bacteria, respectively. Furthermore, comparative mutagenesis analyses of Con-anc and congerins revealed the structural basis for specific recognition of ConII to alpha2,3-sialyl galactose moiety, and strong binding ability of ConI to oligosaccharides including lacto-N-biosyl (Galbeta1-3GlcNAc) or lacto-N-neobiosyl (Galbeta1-4GlcNAc) residues, respectively. Thus, protein engineering using a probable ancestral form presented here is a powerful approach not only to determine the evolutionary process but also to investigate the structure-activity relationships of proteins. PMID:17827170

  4. Methodology to automatically detect abnormal values of vital parameters in anesthesia time-series: Proposal for an adaptable algorithm.

    PubMed

    Lamer, Antoine; Jeanne, Mathieu; Marcilly, Romaric; Kipnis, Eric; Schiro, Jessica; Logier, Régis; Tavernier, Benoît

    2016-06-01

    Abnormal values of vital parameters such as hypotension or tachycardia may occur during anesthesia and may be detected by analyzing time-series data collected during the procedure by the Anesthesia Information Management System. When crossed with other data from the Hospital Information System, abnormal values of vital parameters have been linked with postoperative morbidity and mortality. However, methods for the automatic detection of these events are poorly documented in the literature and differ between studies, making it difficult to reproduce results. In this paper, we propose a methodology for the automatic detection of abnormal values of vital parameters. This methodology uses an algorithm allowing the configuration of threshold values for any vital parameters as well as the management of missing data. Four examples illustrate the application of the algorithm, after which it is applied to three vital signs (heart rate, SpO2, and mean arterial pressure) to all 2014 anesthetic records at our institution. PMID:26817405

  5. Unvoiced Speech Recognition Using Tissue-Conductive Acoustic Sensor

    NASA Astrophysics Data System (ADS)

    Heracleous, Panikos; Kaino, Tomomi; Saruwatari, Hiroshi; Shikano, Kiyohiro

    2006-12-01

    We present the use of stethoscope and silicon NAM (nonaudible murmur) microphones in automatic speech recognition. NAM microphones are special acoustic sensors, which are attached behind the talker's ear and can capture not only normal (audible) speech, but also very quietly uttered speech (nonaudible murmur). As a result, NAM microphones can be applied in automatic speech recognition systems when privacy is desired in human-machine communication. Moreover, NAM microphones show robustness against noise and they might be used in special systems (speech recognition, speech transform, etc.) for sound-impaired people. Using adaptation techniques and a small amount of training data, we achieved for a 20 k dictation task a[InlineEquation not available: see fulltext.] word accuracy for nonaudible murmur recognition in a clean environment. In this paper, we also investigate nonaudible murmur recognition in noisy environments and the effect of the Lombard reflex on nonaudible murmur recognition. We also propose three methods to integrate audible speech and nonaudible murmur recognition using a stethoscope NAM microphone with very promising results.

  6. Adaptation.

    PubMed

    Broom, Donald M

    2006-01-01

    The term adaptation is used in biology in three different ways. It may refer to changes which occur at the cell and organ level, or at the individual level, or at the level of gene action and evolutionary processes. Adaptation by cells, especially nerve cells helps in: communication within the body, the distinguishing of stimuli, the avoidance of overload and the conservation of energy. The time course and complexity of these mechanisms varies. Adaptive characters of organisms, including adaptive behaviours, increase fitness so this adaptation is evolutionary. The major part of this paper concerns adaptation by individuals and its relationships to welfare. In complex animals, feed forward control is widely used. Individuals predict problems and adapt by acting before the environmental effect is substantial. Much of adaptation involves brain control and animals have a set of needs, located in the brain and acting largely via motivational mechanisms, to regulate life. Needs may be for resources but are also for actions and stimuli which are part of the mechanism which has evolved to obtain the resources. Hence pigs do not just need food but need to be able to carry out actions like rooting in earth or manipulating materials which are part of foraging behaviour. The welfare of an individual is its state as regards its attempts to cope with its environment. This state includes various adaptive mechanisms including feelings and those which cope with disease. The part of welfare which is concerned with coping with pathology is health. Disease, which implies some significant effect of pathology, always results in poor welfare. Welfare varies over a range from very good, when adaptation is effective and there are feelings of pleasure or contentment, to very poor. A key point concerning the concept of individual adaptation in relation to welfare is that welfare may be good or poor while adaptation is occurring. Some adaptation is very easy and energetically cheap and

  7. Automatic identification and removal of ocular artifacts in EEG--improved adaptive predictor filtering for portable applications.

    PubMed

    Zhao, Qinglin; Hu, Bin; Shi, Yujun; Li, Yang; Moore, Philip; Sun, Minghou; Peng, Hong

    2014-06-01

    Electroencephalogram (EEG) signals have a long history of use as a noninvasive approach to measure brain function. An essential component in EEG-based applications is the removal of Ocular Artifacts (OA) from the EEG signals. In this paper we propose a hybrid de-noising method combining Discrete Wavelet Transformation (DWT) and an Adaptive Predictor Filter (APF). A particularly novel feature of the proposed method is the use of the APF based on an adaptive autoregressive model for prediction of the waveform of signals in the ocular artifact zones. In our test, based on simulated data, the accuracy of noise removal in the proposed model was significantly increased when compared to existing methods including: Wavelet Packet Transform (WPT) and Independent Component Analysis (ICA), Discrete Wavelet Transform (DWT) and Adaptive Noise Cancellation (ANC). The results demonstrate that the proposed method achieved a lower mean square error and higher correlation between the original and corrected EEG. The proposed method has also been evaluated using data from calibration trials for the Online Predictive Tools for Intervention in Mental Illness (OPTIMI) project. The results of this evaluation indicate an improvement in performance in terms of the recovery of true EEG signals with EEG tracking and computational speed in the analysis. The proposed method is well suited to applications in portable environments where the constraints with respect to acceptable wearable sensor attachments usually dictate single channel devices. PMID:24802943

  8. A swarm-trained k-nearest prototypes adaptive classifier with automatic feature selection for interval data.

    PubMed

    Silva Filho, Telmo M; Souza, Renata M C R; Prudêncio, Ricardo B C

    2016-08-01

    Some complex data types are capable of modeling data variability and imprecision. These data types are studied in the symbolic data analysis field. One such data type is interval data, which represents ranges of values and is more versatile than classic point data for many domains. This paper proposes a new prototype-based classifier for interval data, trained by a swarm optimization method. Our work has two main contributions: a swarm method which is capable of performing both automatic selection of features and pruning of unused prototypes and a generalized weighted squared Euclidean distance for interval data. By discarding unnecessary features and prototypes, the proposed algorithm deals with typical limitations of prototype-based methods, such as the problem of prototype initialization. The proposed distance is useful for learning classes in interval datasets with different shapes, sizes and structures. When compared to other prototype-based methods, the proposed method achieves lower error rates in both synthetic and real interval datasets. PMID:27152933

  9. A Self-Adaptive Dynamic Recognition Model for Fatigue Driving Based on Multi-Source Information and Two Levels of Fusion

    PubMed Central

    Sun, Wei; Zhang, Xiaorui; Peeta, Srinivas; He, Xiaozheng; Li, Yongfu; Zhu, Senlai

    2015-01-01

    To improve the effectiveness and robustness of fatigue driving recognition, a self-adaptive dynamic recognition model is proposed that incorporates information from multiple sources and involves two sequential levels of fusion, constructed at the feature level and the decision level. Compared with existing models, the proposed model introduces a dynamic basic probability assignment (BPA) to the decision-level fusion such that the weight of each feature source can change dynamically with the real-time fatigue feature measurements. Further, the proposed model can combine the fatigue state at the previous time step in the decision-level fusion to improve the robustness of the fatigue driving recognition. An improved correction strategy of the BPA is also proposed to accommodate the decision conflict caused by external disturbances. Results from field experiments demonstrate that the effectiveness and robustness of the proposed model are better than those of models based on a single fatigue feature and/or single-source information fusion, especially when the most effective fatigue features are used in the proposed model. PMID:26393615

  10. A Self-Adaptive Dynamic Recognition Model for Fatigue Driving Based on Multi-Source Information and Two Levels of Fusion.

    PubMed

    Sun, Wei; Zhang, Xiaorui; Peeta, Srinivas; He, Xiaozheng; Li, Yongfu; Zhu, Senlai

    2015-01-01

    To improve the effectiveness and robustness of fatigue driving recognition, a self-adaptive dynamic recognition model is proposed that incorporates information from multiple sources and involves two sequential levels of fusion, constructed at the feature level and the decision level. Compared with existing models, the proposed model introduces a dynamic basic probability assignment (BPA) to the decision-level fusion such that the weight of each feature source can change dynamically with the real-time fatigue feature measurements. Further, the proposed model can combine the fatigue state at the previous time step in the decision-level fusion to improve the robustness of the fatigue driving recognition. An improved correction strategy of the BPA is also proposed to accommodate the decision conflict caused by external disturbances. Results from field experiments demonstrate that the effectiveness and robustness of the proposed model are better than those of models based on a single fatigue feature and/or single-source information fusion, especially when the most effective fatigue features are used in the proposed model. PMID:26393615

  11. Adapt

    NASA Astrophysics Data System (ADS)

    Bargatze, L. F.

    2015-12-01

    Active Data Archive Product Tracking (ADAPT) is a collection of software routines that permits one to generate XML metadata files to describe and register data products in support of the NASA Heliophysics Virtual Observatory VxO effort. ADAPT is also a philosophy. The ADAPT concept is to use any and all available metadata associated with scientific data to produce XML metadata descriptions in a consistent, uniform, and organized fashion to provide blanket access to the full complement of data stored on a targeted data server. In this poster, we present an application of ADAPT to describe all of the data products that are stored by using the Common Data File (CDF) format served out by the CDAWEB and SPDF data servers hosted at the NASA Goddard Space Flight Center. These data servers are the primary repositories for NASA Heliophysics data. For this purpose, the ADAPT routines have been used to generate data resource descriptions by using an XML schema named Space Physics Archive, Search, and Extract (SPASE). SPASE is the designated standard for documenting Heliophysics data products, as adopted by the Heliophysics Data and Model Consortium. The set of SPASE XML resource descriptions produced by ADAPT includes high-level descriptions of numerical data products, display data products, or catalogs and also includes low-level "Granule" descriptions. A SPASE Granule is effectively a universal access metadata resource; a Granule associates an individual data file (e.g. a CDF file) with a "parent" high-level data resource description, assigns a resource identifier to the file, and lists the corresponding assess URL(s). The CDAWEB and SPDF file systems were queried to provide the input required by the ADAPT software to create an initial set of SPASE metadata resource descriptions. Then, the CDAWEB and SPDF data repositories were queried subsequently on a nightly basis and the CDF file lists were checked for any changes such as the occurrence of new, modified, or deleted

  12. Method and System for Object Recognition Search

    NASA Technical Reports Server (NTRS)

    Duong, Tuan A. (Inventor); Duong, Vu A. (Inventor); Stubberud, Allen R. (Inventor)

    2012-01-01

    A method for object recognition using shape and color features of the object to be recognized. An adaptive architecture is used to recognize and adapt the shape and color features for moving objects to enable object recognition.

  13. Automatic recognition of T and teleseismic P waves by statistical analysis of their spectra: An application to continuous records of moored hydrophones

    NASA Astrophysics Data System (ADS)

    Sukhovich, Alexey; Irisson, Jean-Olivier; Perrot, Julie; Nolet, Guust

    2014-08-01

    A network of moored hydrophones is an effective way of monitoring seismicity of oceanic ridges since it allows detection and localization of underwater events by recording generated T waves. The high cost of ship time necessitates long periods (normally a year) of autonomous functioning of the hydrophones, which results in very large data sets. The preliminary but indispensable part of the data analysis consists of identifying all T wave signals. This process is extremely time consuming if it is done by a human operator who visually examines the entire database. We propose a new method for automatic signal discrimination based on the Gradient Boosted Decision Trees technique that uses the distribution of signal spectral power among different frequency bands as the discriminating characteristic. We have applied this method to automatically identify the types of acoustic signals in data collected by two moored hydrophones in the North Atlantic. We show that the method is capable of efficiently resolving the signals of seismic origin with a small percentage of wrong identifications and missed events: 1.2% and 0.5% for T waves and 14.5% and 2.8% for teleseismic P waves, respectively. In addition, good identification rates for signals of other types (iceberg and ship generated) are obtained. Our results indicate that the method can be successfully applied to automate the analysis of other (not necessarily acoustic) databases provided that enough information is available to describe statistical properties of the signals to be identified.

  14. Automatic recognizing of vocal fold disorders from glottis images.

    PubMed

    Huang, Chang-Chiun; Leu, Yi-Shing; Kuo, Chung-Feng Jeffrey; Chu, Wen-Lin; Chu, Yueng-Hsiang; Wu, Han-Cheng

    2014-09-01

    The laryngeal video stroboscope is an important instrument to test glottal diseases and read vocal fold images and voice quality for physician clinical diagnosis. This study is aimed to develop a medical system with functionality of automatic intelligent recognition of dynamic images. The static images of glottis opening to the largest extent and closing to the smallest extent were screened automatically using color space transformation and image preprocessing. The glottal area was also quantized. As the tongue base movements affected the position of laryngoscope and saliva would result in unclear images, this study used the gray scale adaptive entropy value to set the threshold in order to establish an elimination system. The proposed system can improve the effect of automatically captured images of glottis and achieve an accuracy rate of 96%. In addition, the glottal area and area segmentation threshold were calculated effectively. The glottis area segmentation was corrected, and the glottal area waveform pattern was drawn automatically to assist in vocal fold diagnosis. When developing the intelligent recognition system for vocal fold disorders, this study analyzed the characteristic values of four vocal fold patterns, namely, normal vocal fold, vocal fold paralysis, vocal fold polyp, and vocal fold cyst. It also used the support vector machine classifier to identify vocal fold disorders and achieved an identification accuracy rate of 98.75%. The results can serve as a very valuable reference for diagnosis. PMID:25313026

  15. U2AF65 adapts to diverse pre-mRNA splice sites through conformational selection of specific and promiscuous RNA recognition motifs.

    PubMed

    Jenkins, Jermaine L; Agrawal, Anant A; Gupta, Ankit; Green, Michael R; Kielkopf, Clara L

    2013-04-01

    Degenerate splice site sequences mark the intron boundaries of pre-mRNA transcripts in multicellular eukaryotes. The essential pre-mRNA splicing factor U2AF(65) is faced with the paradoxical tasks of accurately targeting polypyrimidine (Py) tracts preceding 3' splice sites while adapting to both cytidine and uridine nucleotides with nearly equivalent frequencies. To understand how U2AF(65) recognizes degenerate Py tracts, we determined six crystal structures of human U2AF(65) bound to cytidine-containing Py tracts. As deoxy-ribose backbones were required for co-crystallization with these Py tracts, we also determined two baseline structures of U2AF(65) bound to the deoxy-uridine counterparts and compared the original, RNA-bound structure. Local structural changes suggest that the N-terminal RNA recognition motif 1 (RRM1) is more promiscuous for cytosine-containing Py tracts than the C-terminal RRM2. These structural differences between the RRMs were reinforced by the specificities of wild-type and site-directed mutant U2AF(65) for region-dependent cytosine- and uracil-containing RNA sites. Small-angle X-ray scattering analyses further demonstrated that Py tract variations select distinct inter-RRM spacings from a pre-existing ensemble of U2AF(65) conformations. Our results highlight both local and global conformational selection as a means for universal 3' splice site recognition by U2AF(65). PMID:23376934

  16. Automatic recognition of complex magnetic regions on the Sun in GONG magnetogram images and prediction of flares: Techniques for the flare warning program Flarecast

    NASA Astrophysics Data System (ADS)

    Steward, Graham A.; Lobzin, Vasili V.; Wilkinson, Phil J.; Cairns, Iver H.; Robinson, Peter A.

    2011-11-01

    In the present paper, Global Oscillation Network Group (GONG) solar magnetograms are used to automatically identify active regions by thresholding the line-of-sight component of the solar magnetic field. The flare potential of the regions is predicted by locating strong-gradient polarity inversion lines (SPILs) and estimating their parameters. The parameters of interest are the length of the SPIL, a proxy for its curvature; the maximum west-east and south-north gradients of the magnetic field in its vicinity; and a sum of the magnetic field gradients, the summation being performed along the SPIL. Analysis for thresholding of one, two, and three parameters and the corresponding probabilities for correct prediction of flares are presented and compared. The probability for correct prediction of X-ray flares of class C or greater in a 24 h window exceeds 88%, while the probability of false alarms is less than 10% if the decision rule involves thresholding of three specific parameters. These parameters are the steepest south-north gradient of the magnetic field, the maximum curvature of the SPILs, and the length of the longest SPIL, all being calculated for the entire region rather than for a particular SPIL. The steepest south-north gradient of the magnetic field is also used to estimate the probabilities for a flare to belong to classes C, M, or X. These techniques are now implemented in the flare warning program Flarecast. The first automatically predicted M- and X-class flares are presented, and Flarecast is found to predict well the observed X-ray flares.

  17. Multi-source feature extraction and target recognition in wireless sensor networks based on adaptive distributed wavelet compression algorithms

    NASA Astrophysics Data System (ADS)

    Hortos, William S.

    2008-04-01

    Proposed distributed wavelet-based algorithms are a means to compress sensor data received at the nodes forming a wireless sensor network (WSN) by exchanging information between neighboring sensor nodes. Local collaboration among nodes compacts the measurements, yielding a reduced fused set with equivalent information at far fewer nodes. Nodes may be equipped with multiple sensor types, each capable of sensing distinct phenomena: thermal, humidity, chemical, voltage, or image signals with low or no frequency content as well as audio, seismic or video signals within defined frequency ranges. Compression of the multi-source data through wavelet-based methods, distributed at active nodes, reduces downstream processing and storage requirements along the paths to sink nodes; it also enables noise suppression and more energy-efficient query routing within the WSN. Targets are first detected by the multiple sensors; then wavelet compression and data fusion are applied to the target returns, followed by feature extraction from the reduced data; feature data are input to target recognition/classification routines; targets are tracked during their sojourns through the area monitored by the WSN. Algorithms to perform these tasks are implemented in a distributed manner, based on a partition of the WSN into clusters of nodes. In this work, a scheme of collaborative processing is applied for hierarchical data aggregation and decorrelation, based on the sensor data itself and any redundant information, enabled by a distributed, in-cluster wavelet transform with lifting that allows multiple levels of resolution. The wavelet-based compression algorithm significantly decreases RF bandwidth and other resource use in target processing tasks. Following wavelet compression, features are extracted. The objective of feature extraction is to maximize the probabilities of correct target classification based on multi-source sensor measurements, while minimizing the resource expenditures at

  18. Automatic Imitation

    ERIC Educational Resources Information Center

    Heyes, Cecilia

    2011-01-01

    "Automatic imitation" is a type of stimulus-response compatibility effect in which the topographical features of task-irrelevant action stimuli facilitate similar, and interfere with dissimilar, responses. This article reviews behavioral, neurophysiological, and neuroimaging research on automatic imitation, asking in what sense it is "automatic"…

  19. Automatic discourse connective detection in biomedical text

    PubMed Central

    Polepalli Ramesh, Balaji; Prasad, Rashmi; Miller, Tim; Harrington, Brian

    2012-01-01

    Objective Relation extraction in biomedical text mining systems has largely focused on identifying clause-level relations, but increasing sophistication demands the recognition of relations at discourse level. A first step in identifying discourse relations involves the detection of discourse connectives: words or phrases used in text to express discourse relations. In this study supervised machine-learning approaches were developed and evaluated for automatically identifying discourse connectives in biomedical text. Materials and Methods Two supervised machine-learning models (support vector machines and conditional random fields) were explored for identifying discourse connectives in biomedical literature. In-domain supervised machine-learning classifiers were trained on the Biomedical Discourse Relation Bank, an annotated corpus of discourse relations over 24 full-text biomedical articles (∼112 000 word tokens), a subset of the GENIA corpus. Novel domain adaptation techniques were also explored to leverage the larger open-domain Penn Discourse Treebank (∼1 million word tokens). The models were evaluated using the standard evaluation metrics of precision, recall and F1 scores. Results and Conclusion Supervised machine-learning approaches can automatically identify discourse connectives in biomedical text, and the novel domain adaptation techniques yielded the best performance: 0.761 F1 score. A demonstration version of the fully implemented classifier BioConn is available at: http://bioconn.askhermes.org. PMID:22744958

  20. Individual vocal signatures in barn owl nestlings: does individual recognition have an adaptive role in sibling vocal competition?

    PubMed

    Dreiss, A N; Ruppli, C A; Roulin, A

    2014-01-01

    To compete over limited parental resources, young animals communicate with their parents and siblings by producing honest vocal signals of need. Components of begging calls that are sensitive to food deprivation may honestly signal need, whereas other components may be associated with individual-specific attributes that do not change with time such as identity, sex, absolute age and hierarchy. In a sib-sib communication system where barn owl (Tyto alba) nestlings vocally negotiate priority access to food resources, we show that calls have individual signatures that are used by nestlings to recognize which siblings are motivated to compete, even if most vocalization features vary with hunger level. Nestlings were more identifiable when food-deprived than food-satiated, suggesting that vocal identity is emphasized when the benefit of winning a vocal contest is higher. In broods where siblings interact iteratively, we speculate that individual-specific signature permits siblings to verify that the most vocal individual in the absence of parents is the one that indeed perceived the food brought by parents. Individual recognition may also allow nestlings to associate identity with individual-specific characteristics such as position in the within-brood dominance hierarchy. Calls indeed revealed age hierarchy and to a lower extent sex and absolute age. Using a cross-fostering experimental design, we show that most acoustic features were related to the nest of origin (but not the nest of rearing), suggesting a genetic or an early developmental effect on the ontogeny of vocal signatures. To conclude, our study suggests that sibling competition has promoted the evolution of vocal behaviours that signal not only hunger level but also intrinsic individual characteristics such as identity, family, sex and age. PMID:24266879

  1. Evaluation of a Blood Glucose Monitoring System with Automatic High- and Low-Pattern Recognition Software in Insulin-Using Patients: Pattern Detection and Patient-Reported Insights

    PubMed Central

    Grady, Mike; Campbell, Denise; MacLeod, Kirsty; Srinivasan, Aparna

    2013-01-01

    Background This study aimed to evaluate the performance of a glucose pattern recognition tool incorporated in a blood glucose monitoring system (BGMS) and its association with clinical measures, and to assess user perception and understanding of the pattern messages they receive. Methods Participants had type 1 or type 2 diabetes mellitus and were self-adjusting insulin doses for ≥1 year. During a 4-week home testing period, participants performed ≥6 daily self-tests, adjusted their insulin regimen based on BGMS results, and recorded pattern messages in the logbook. Participants reflected on usability of the pattern tool in a questionnaire. Results Study participants (n = 101) received a mean ± standard deviation of 4.5 ± 1.9 pattern messages per week (3.6 ± 1.8 high glucose patterns and 0.9 ± 1.3 low glucose patterns). Most received ≥1 high (96.5%) and/or ≥1 low (46.0%) pattern message per week. The average number of high- and low-pattern messages per week was associated with higher and lower, respectively, baseline hemoglobin A1c (p < .01) and fasting plasma glucose (p < .05). Participants found high- and low-pattern messages clear and easy to understand (84.2% and 83.2%, respectively) and considered the frequency of low (82.0%) and high (63.4%) pattern messages about right. Overall, 71.3% of participants indicated they preferred to use a meter with pattern messages. Conclusions The on-device Pattern tool identified meaningful blood glucose patterns, highlighting potential opportunities for improving glycemic control in patients who self-adjust their insulin. PMID:23911178

  2. Range-adaptive standoff recognition of explosive fingerprints on solid surfaces using a supervised learning method and laser-induced breakdown spectroscopy.

    PubMed

    Gaona, Inmaculada; Serrano, Jorge; Moros, Javier; Laserna, J Javier

    2014-05-20

    The distance between the sensor and the target is a particularly critical factor for an issue as crucial as explosive residues recognition when a laser-assisted spectroscopic technique operates in a standoff configuration. Particularly for laser ablation, variations in operational range influence the induced plasmas as well as the sensitivity of their ensuing optical emissions, thereby confining the attributes used in sorting methods. Though efficient classification models based on optical emissions gathered under specific conditions have been developed, their successful performance on any variable information is limited. Hence, to test new information by a designed model, data must be acquired under operational conditions totally matching those used during modeling. Otherwise, the new expected scenario needs to be previously modeled. To facing both this restriction and this time-consuming mission, a novel strategy is proposed in this work. On the basis of machine learning methods, the strategy stems from a decision boundary function designed for a defined set of experimental conditions. Next, particular semisupervised models to the envisaged conditions are obtained adaptively on the basis of changes in laser fluence and light emission with variation of the sensor-to-target distance. Hence, the strategy requires only a little prior information, therefore ruling out the tedious and time-consuming process of modeling all the expected distant scenes. Residues of ordinary materials (olive oil, fuel oil, motor oils, gasoline, car wax and hand cream) hardly cause confusion in alerting the presence of an explosive (DNT, TNT, RDX, or PETN) when tested within a range from 30 to 50 m with varying laser irradiance between 8.2 and 1.3 GW cm(-2). With error rates of around 5%, the experimental assessments confirm that this semisupervised model suitably addresses the recognition of organic residues on aluminum surfaces under different operational conditions. PMID:24773280

  3. WE-A-17A-06: Evaluation of An Automatic Interstitial Catheter Digitization Algorithm That Reduces Treatment Planning Time and Provide Means for Adaptive Re-Planning in HDR Brachytherapy of Gynecologic Cancers

    SciTech Connect

    Dise, J; Liang, X; Lin, L; Teo, B

    2014-06-15

    Purpose: To evaluate an automatic interstitial catheter digitization algorithm that reduces treatment planning time and provide means for adaptive re-planning in HDR Brachytherapy of Gynecologic Cancers. Methods: The semi-automatic catheter digitization tool utilizes a region growing algorithm in conjunction with a spline model of the catheters. The CT images were first pre-processed to enhance the contrast between the catheters and soft tissue. Several seed locations were selected in each catheter for the region growing algorithm. The spline model of the catheters assisted in the region growing by preventing inter-catheter cross-over caused by air or metal artifacts. Source dwell positions from day one CT scans were applied to subsequent CTs and forward calculated using the automatically digitized catheter positions. This method was applied to 10 patients who had received HDR interstitial brachytherapy on an IRB approved image-guided radiation therapy protocol. The prescribed dose was 18.75 or 20 Gy delivered in 5 fractions, twice daily, over 3 consecutive days. Dosimetric comparisons were made between automatic and manual digitization on day two CTs. Results: The region growing algorithm, assisted by the spline model of the catheters, was able to digitize all catheters. The difference between automatic and manually digitized positions was 0.8±0.3 mm. The digitization time ranged from 34 minutes to 43 minutes with a mean digitization time of 37 minutes. The bulk of the time was spent on manual selection of initial seed positions and spline parameter adjustments. There was no significance difference in dosimetric parameters between the automatic and manually digitized plans. D90% to the CTV was 91.5±4.4% for the manual digitization versus 91.4±4.4% for the automatic digitization (p=0.56). Conclusion: A region growing algorithm was developed to semi-automatically digitize interstitial catheters in HDR brachytherapy using the Syed-Neblett template. This automatic

  4. Natural Language Processing: Word Recognition without Segmentation.

    ERIC Educational Resources Information Center

    Saeed, Khalid; Dardzinska, Agnieszka

    2001-01-01

    Discussion of automatic recognition of hand and machine-written cursive text using the Arabic alphabet focuses on an algorithm for word recognition. Describes results of testing words for recognition without segmentation and considers the algorithms' use for words of different fonts and for processing whole sentences. (Author/LRW)

  5. Deformable image registration based automatic CT-to-CT contour propagation for head and neck adaptive radiotherapy in the routine clinical setting

    SciTech Connect

    Kumarasiri, Akila Siddiqui, Farzan; Liu, Chang; Yechieli, Raphael; Shah, Mira; Pradhan, Deepak; Zhong, Hualiang; Chetty, Indrin J.; Kim, Jinkoo

    2014-12-15

    Purpose: To evaluate the clinical potential of deformable image registration (DIR)-based automatic propagation of physician-drawn contours from a planning CT to midtreatment CT images for head and neck (H and N) adaptive radiotherapy. Methods: Ten H and N patients, each with a planning CT (CT1) and a subsequent CT (CT2) taken approximately 3–4 week into treatment, were considered retrospectively. Clinically relevant organs and targets were manually delineated by a radiation oncologist on both sets of images. Four commercial DIR algorithms, two B-spline-based and two Demons-based, were used to deform CT1 and the relevant contour sets onto corresponding CT2 images. Agreement of the propagated contours with manually drawn contours on CT2 was visually rated by four radiation oncologists in a scale from 1 to 5, the volume overlap was quantified using Dice coefficients, and a distance analysis was done using center of mass (CoM) displacements and Hausdorff distances (HDs). Performance of these four commercial algorithms was validated using a parameter-optimized Elastix DIR algorithm. Results: All algorithms attained Dice coefficients of >0.85 for organs with clear boundaries and those with volumes >9 cm{sup 3}. Organs with volumes <3 cm{sup 3} and/or those with poorly defined boundaries showed Dice coefficients of ∼0.5–0.6. For the propagation of small organs (<3 cm{sup 3}), the B-spline-based algorithms showed higher mean Dice values (Dice = 0.60) than the Demons-based algorithms (Dice = 0.54). For the gross and planning target volumes, the respective mean Dice coefficients were 0.8 and 0.9. There was no statistically significant difference in the Dice coefficients, CoM, or HD among investigated DIR algorithms. The mean radiation oncologist visual scores of the four algorithms ranged from 3.2 to 3.8, which indicated that the quality of transferred contours was “clinically acceptable with minor modification or major modification in a small number of contours

  6. Image Quality and Radiation Dose of CT Coronary Angiography with Automatic Tube Current Modulation and Strong Adaptive Iterative Dose Reduction Three-Dimensional (AIDR3D)

    PubMed Central

    Shen, Hesong; Dai, Guochao; Luo, Mingyue; Duan, Chaijie; Cai, Wenli; Liang, Dan; Wang, Xinhua; Zhu, Dongyun; Li, Wenru; Qiu, Jianping

    2015-01-01

    Purpose To investigate image quality and radiation dose of CT coronary angiography (CTCA) scanned using automatic tube current modulation (ATCM) and reconstructed by strong adaptive iterative dose reduction three-dimensional (AIDR3D). Methods Eighty-four consecutive CTCA patients were collected for the study. All patients were scanned using ATCM and reconstructed with strong AIDR3D, standard AIDR3D and filtered back-projection (FBP) respectively. Two radiologists who were blinded to the patients' clinical data and reconstruction methods evaluated image quality. Quantitative image quality evaluation included image noise, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR). To evaluate image quality qualitatively, coronary artery is classified into 15 segments based on the modified guidelines of the American Heart Association. Qualitative image quality was evaluated using a 4-point scale. Radiation dose was calculated based on dose-length product. Results Compared with standard AIDR3D, strong AIDR3D had lower image noise, higher SNR and CNR, their differences were all statistically significant (P<0.05); compared with FBP, strong AIDR3D decreased image noise by 46.1%, increased SNR by 84.7%, and improved CNR by 82.2%, their differences were all statistically significant (P<0.05 or 0.001). Segments with diagnostic image quality for strong AIDR3D were 336 (100.0%), 486 (96.4%), and 394 (93.8%) in proximal, middle, and distal part respectively; whereas those for standard AIDR3D were 332 (98.8%), 472 (93.7%), 378 (90.0%), respectively; those for FBP were 217 (64.6%), 173 (34.3%), 114 (27.1%), respectively; total segments with diagnostic image quality in strong AIDR3D (1216, 96.5%) were higher than those of standard AIDR3D (1182, 93.8%) and FBP (504, 40.0%); the differences between strong AIDR3D and standard AIDR3D, strong AIDR3D and FBP were all statistically significant (P<0.05 or 0.001). The mean effective radiation dose was (2.55±1.21) mSv. Conclusion

  7. Natural and adaptive IgM antibodies in the recognition of tumor-associated antigens of breast cancer (Review)

    PubMed Central

    DÍAZ-ZARAGOZA, MARIANA; HERNÁNDEZ-ÁVILA, RICARDO; VIEDMA-RODRÍGUEZ, RUBÍ; ARENAS-ARANDA, DIEGO; OSTOA-SALOMA, PEDRO

    2015-01-01

    For early detection of cancer, education and screening are important, but the most critical factor is the development of early diagnostic tools. Methods that recognize the warning signs of cancer and take prompt action lead to an early diagnosis; simple tests can identify individuals in a healthy population who have the disease but have not developed symptoms. Early detection of cancer is significant and is one of the most promising approaches by which to reduce the growing cancer burden and guide curative treatment. The early diagnosis of patients with breast cancer is challenging, since it is the most common cancer in women worldwide. Despite the advent of mammography in screening for breast cancer, low-resource, low-cost alternative tools must be implemented to complement mammography findings. IgM is part of the first line of defense of an organism and is responsible for recognizing and eliminating infectious particles and removing transformed cells. Most studies on breast cancer have focused on the development of IgG-like molecules as biomarkers or as a treatment for the advanced stages of cancer, but autoantibodies (IgM) and tumor-associated antigens (proteins or carbohydrates with aberrant structures) have not been examined as early diagnostic tools for breast cancer. The present review summarizes the function of natural and adaptive IgM in eliminating cancer cells in the early stages of pathology and their value as early diagnostic tools. IgM, as a component of the immune system, is being used to identify tumor-associated antigens and tumor-associated carbohydrate antigens. PMID:26133558

  8. Neural networks: Alternatives to conventional techniques for automatic docking

    NASA Technical Reports Server (NTRS)

    Vinz, Bradley L.

    1994-01-01

    Automatic docking of orbiting spacecraft is a crucial operation involving the identification of vehicle orientation as well as complex approach dynamics. The chaser spacecraft must be able to recognize the target spacecraft within a scene and achieve accurate closing maneuvers. In a video-based system, a target scene must be captured and transformed into a pattern of pixels. Successful recognition lies in the interpretation of this pattern. Due to their powerful pattern recognition capabilities, artificial neural networks offer a potential role in interpretation and automatic docking processes. Neural networks can reduce the computational time required by existing image processing and control software. In addition, neural networks are capable of recognizing and adapting to changes in their dynamic environment, enabling enhanced performance, redundancy, and fault tolerance. Most neural networks are robust to failure, capable of continued operation with a slight degradation in performance after minor failures. This paper discusses the particular automatic docking tasks neural networks can perform as viable alternatives to conventional techniques.

  9. Automatic speech recognition in severe environments

    NASA Astrophysics Data System (ADS)

    Human-machine interaction by voice was analyzed. The potential for improving the safety and effectiveness of its forces by making electronic and electromechanical devices directly responsive to the human voice and able to respond by voice is recognized. The benefits of this capability are noteworthy in situations where the individual is engaged in such hands/eyes-busy tasks as flying an airplane or operating a tank. Voice control of navigational displays, information files, and weapons systems could relieve the information loads on visual and manual channels.

  10. Distributed image processing for automatic target recognition

    NASA Astrophysics Data System (ADS)

    Cozien, Roger F.

    2001-02-01

    Our purpose is, in medium term, to detect in air images, characteristic shapes and objects such as airports, industrial plants, planes, tanks, trucks, . with great accuracy and low rate of mistakes. However, we also want to value whether the link between neural networks and multi-agents systems is relevant and effective. If it appears to be really effective, we hope to use this kind of technology in other fields. That would be an easy and convenient way to depict and to use the agents' knowledge which is distributed and fragmented. After a first phase of preliminary tests to know if agents are able to give relevant information to a neural network, we verify that only a few agents running on an image are enough to inform the network and let it generalize the agents' distributed and fragmented knowledge. In a second phase, we developed a distributed architecture allowing several multi-agents systems running at the same time on different computers with different images. All those agents send information to a "multi neural networks system" whose job is to identify the shapes detected by the agents. The name we gave to our project is Jarod.

  11. Automatic recognition of emotions from facial expressions

    NASA Astrophysics Data System (ADS)

    Xue, Henry; Gertner, Izidor

    2014-06-01

    In the human-computer interaction (HCI) process it is desirable to have an artificial intelligent (AI) system that can identify and categorize human emotions from facial expressions. Such systems can be used in security, in entertainment industries, and also to study visual perception, social interactions and disorders (e.g. schizophrenia and autism). In this work we survey and compare the performance of different feature extraction algorithms and classification schemes. We introduce a faster feature extraction method that resizes and applies a set of filters to the data images without sacrificing the accuracy. In addition, we have enhanced SVM to multiple dimensions while retaining the high accuracy rate of SVM. The algorithms were tested using the Japanese Female Facial Expression (JAFFE) Database and the Database of Faces (AT&T Faces).

  12. ART 2: self-organization of stable category recognition codes for analog input patterns.

    PubMed

    Carpenter, G A; Grossberg, S

    1987-12-01

    Adaptive resonance architectures are neural networks that self-organize stable pattern recognition codes in real-time in response to arbitrary sequences of input patterns. This article introduces ART 2, a class of adaptive resonance architectures which rapidly self-organize pattern recognition categories in response to arbitrary sequences of either analog or binary input patterns. In order to cope with arbitrary sequences of analog input patterns-ART 2 architectures embody solutions to a number of design principles, such as the stability-plasticity tradeoff, the search-direct access tradeoff, and the match-reset tradeoff. In these architectures, top-down learned expectation and matching mechanisms are critical in self-stabilizing the code learning process. A parallel search scheme updates itself adaptively as the learning process unfolds, and realizes a form of real-time hypothesis discovery, testing, learning, and recognition. After learning selfstabilizes, the search process is automatically disengaged. Thereafter input patterns directly access their recognition codes without any search. Thus recognition time for familiar inputs does not increase with the complexity of the learned code. A novel input pattern can directly access a category if it shares invariant properties with the set of familiar exemplars of that category. A parameter called the attentional vigilance parameter determines how fine the categories will be. If vigilance increases (decreases) due to environmental feedback, then the system automatically searches for and learns finer (coarser) recognition categories. Gain control parameters enable the architecture to suppress noise up to a prescribed level. The architecture's global design enables it to learn effectively despite the high degree of nonlinearity of such mechanisms. PMID:20523470

  13. Reverberant speech recognition exploiting clarity index estimation

    NASA Astrophysics Data System (ADS)

    Parada, Pablo Peso; Sharma, Dushyant; Naylor, Patrick A.; Waterschoot, Toon van

    2015-12-01

    We present single-channel approaches to robust automatic speech recognition (ASR) in reverberant environments based on non-intrusive estimation of the clarity index ( C 50). Our best performing method includes the estimated value of C 50 in the ASR feature vector and also uses C 50 to select the most suitable ASR acoustic model according to the reverberation level. We evaluate our method on the REVERB Challenge database employing two different C 50 estimators and show that our method outperforms the best baseline of the challenge achieved without unsupervised acoustic model adaptation, i.e. using multi-condition hidden Markov models (HMMs). Our approach achieves a 22.4 % relative word error rate reduction in comparison to the best baseline of the challenge.

  14. Automatic violence detection in digital movies

    NASA Astrophysics Data System (ADS)

    Fischer, Stephan

    1996-11-01

    Research on computer-based recognition of violence is scant. We are working on the automatic recognition of violence in digital movies, a first step towards the goal of a computer- assisted system capable of protecting children against TV programs containing a great deal of violence. In the video domain a collision detection and a model-mapping to locate human figures are run, while the creation and comparison of fingerprints to find certain events are run int he audio domain. This article centers on the recognition of fist- fights in the video domain and on the recognition of shots, explosions and cries in the audio domain.

  15. Automatic Stabilization

    NASA Technical Reports Server (NTRS)

    Haus, FR

    1936-01-01

    This report lays more stress on the principles underlying automatic piloting than on the means of applications. Mechanical details of servomotors and the mechanical release device necessary to assure instantaneous return of the controls to the pilot in case of malfunction are not included. Descriptions are provided of various commercial systems.

  16. Automatic warranties.

    PubMed

    Decker, R

    1987-10-01

    In addition to express warranties (those specifically made by the supplier in the contract) and implied warranties (those resulting from circumstances of the sale), there is one other classification of warranties that needs to be understood by hospital materials managers. These are sometimes known as automatic warranties. In the following dialogue, Doctor Decker develops these legal concepts. PMID:10284977

  17. Adaptive detection of missed text areas in OCR outputs: application to the automatic assessment of OCR quality in mass digitization projects

    NASA Astrophysics Data System (ADS)

    Ben Salah, Ahmed; Ragot, Nicolas; Paquet, Thierry

    2013-01-01

    The French National Library (BnF*) has launched many mass digitization projects in order to give access to its collection. The indexation of digital documents on Gallica (digital library of the BnF) is done through their textual content obtained thanks to service providers that use Optical Character Recognition softwares (OCR). OCR softwares have become increasingly complex systems composed of several subsystems dedicated to the analysis and the recognition of the elements in a page. However, the reliability of these systems is always an issue at stake. Indeed, in some cases, we can find errors in OCR outputs that occur because of an accumulation of several errors at different levels in the OCR process. One of the frequent errors in OCR outputs is the missed text components. The presence of such errors may lead to severe defects in digital libraries. In this paper, we investigate the detection of missed text components to control the OCR results from the collections of the French National Library. Our verification approach uses local information inside the pages based on Radon transform descriptors and Local Binary Patterns descriptors (LBP) coupled with OCR results to control their consistency. The experimental results show that our method detects 84.15% of the missed textual components, by comparing the OCR ALTO files outputs (produced by the service providers) to the images of the document.

  18. A face recognition embedded system

    NASA Astrophysics Data System (ADS)

    Pun, Kwok Ho; Moon, Yiu Sang; Tsang, Chi Chiu; Chow, Chun Tak; Chan, Siu Man

    2005-03-01

    This paper presents an experimental study of the implementation of a face recognition system in embedded systems. To investigate the feasibility and practicality of real time face recognition on such systems, a door access control system based on face recognition is built. Due to the limited computation power of embedded device, a semi-automatic scheme for face detection and eye location is proposed to solve these computationally hard problems. It is found that to achieve real time performance, optimization of the core face recognition module is needed. As a result, extensive profiling is done to pinpoint the execution hotspots in the system and optimization are carried out. After careful precision analysis, all slow floating point calculations are replaced with their fixed-point versions. Experimental results show that real time performance can be achieved without significant loss in recognition accuracy.

  19. Automatic translation among spoken languages

    NASA Astrophysics Data System (ADS)

    Walter, Sharon M.; Costigan, Kelly

    1994-02-01

    The Machine Aided Voice Translation (MAVT) system was developed in response to the shortage of experienced military field interrogators with both foreign language proficiency and interrogation skills. Combining speech recognition, machine translation, and speech generation technologies, the MAVT accepts an interrogator's spoken English question and translates it into spoken Spanish. The spoken Spanish response of the potential informant can then be translated into spoken English. Potential military and civilian applications for automatic spoken language translation technology are discussed in this paper.

  20. Automatic translation among spoken languages

    NASA Technical Reports Server (NTRS)

    Walter, Sharon M.; Costigan, Kelly

    1994-01-01

    The Machine Aided Voice Translation (MAVT) system was developed in response to the shortage of experienced military field interrogators with both foreign language proficiency and interrogation skills. Combining speech recognition, machine translation, and speech generation technologies, the MAVT accepts an interrogator's spoken English question and translates it into spoken Spanish. The spoken Spanish response of the potential informant can then be translated into spoken English. Potential military and civilian applications for automatic spoken language translation technology are discussed in this paper.

  1. A Dynamic Time Warping Approach to Real-Time Activity Recognition for Food Preparation

    NASA Astrophysics Data System (ADS)

    Pham, Cuong; Plötz, Thomas; Olivier, Patrick

    We present a dynamic time warping based activity recognition system for the analysis of low-level food preparation activities. Accelerometers embedded into kitchen utensils provide continuous sensor data streams while people are using them for cooking. The recognition framework analyzes frames of contiguous sensor readings in real-time with low latency. It thereby adapts to the idiosyncrasies of utensil use by automatically maintaining a template database. We demonstrate the effectiveness of the classification approach by a number of real-world practical experiments on a publically available dataset. The adaptive system shows superior performance compared to a static recognizer. Furthermore, we demonstrate the generalization capabilities of the system by gradually reducing the amount of training samples. The system achieves excellent classification results even if only a small number of training samples is available, which is especially relevant for real-world scenarios.

  2. Robust Tomato Recognition for Robotic Harvesting Using Feature Images Fusion

    PubMed Central

    Zhao, Yuanshen; Gong, Liang; Huang, Yixiang; Liu, Chengliang

    2016-01-01

    Automatic recognition of mature fruits in a complex agricultural environment is still a challenge for an autonomous harvesting robot due to various disturbances existing in the background of the image. The bottleneck to robust fruit recognition is reducing influence from two main disturbances: illumination and overlapping. In order to recognize the tomato in the tree canopy using a low-cost camera, a robust tomato recognition algorithm based on multiple feature images and image fusion was studied in this paper. Firstly, two novel feature images, the  a*-component image and the I-component image, were extracted from the L*a*b* color space and luminance, in-phase, quadrature-phase (YIQ) color space, respectively. Secondly, wavelet transformation was adopted to fuse the two feature images at the pixel level, which combined the feature information of the two source images. Thirdly, in order to segment the target tomato from the background, an adaptive threshold algorithm was used to get the optimal threshold. The final segmentation result was processed by morphology operation to reduce a small amount of noise. In the detection tests, 93% target tomatoes were recognized out of 200 overall samples. It indicates that the proposed tomato recognition method is available for robotic tomato harvesting in the uncontrolled environment with low cost. PMID:26840313

  3. Sensor agnostic object recognition using a map seeking circuit

    NASA Astrophysics Data System (ADS)

    Overman, Timothy L.; Hart, Michael

    2012-05-01

    Automatic object recognition capabilities are traditionally tuned to exploit the specific sensing modality they were designed to. Their successes (and shortcomings) are tied to object segmentation from the background, they typically require highly skilled personnel to train them, and they become cumbersome with the introduction of new objects. In this paper we describe a sensor independent algorithm based on the biologically inspired technology of map seeking circuits (MSC) which overcomes many of these obstacles. In particular, the MSC concept offers transparency in object recognition from a common interface to all sensor types, analogous to a USB device. It also provides a common core framework that is independent of the sensor and expandable to support high dimensionality decision spaces. Ease in training is assured by using commercially available 3D models from the video game community. The search time remains linear no matter how many objects are introduced, ensuring rapid object recognition. Here, we report results of an MSC algorithm applied to object recognition and pose estimation from high range resolution radar (1D), electrooptical imagery (2D), and LIDAR point clouds (3D) separately. By abstracting the sensor phenomenology from the underlying a prior knowledge base, MSC shows promise as an easily adaptable tool for incorporating additional sensor inputs.

  4. AUTOMATIC COUNTER

    DOEpatents

    Robinson, H.P.

    1960-06-01

    An automatic counter of alpha particle tracks recorded by a sensitive emulsion of a photographic plate is described. The counter includes a source of mcdulated dark-field illumination for developing light flashes from the recorded particle tracks as the photographic plate is automatically scanned in narrow strips. Photoelectric means convert the light flashes to proportional current pulses for application to an electronic counting circuit. Photoelectric means are further provided for developing a phase reference signal from the photographic plate in such a manner that signals arising from particle tracks not parallel to the edge of the plate are out of phase with the reference signal. The counting circuit includes provision for rejecting the out-of-phase signals resulting from unoriented tracks as well as signals resulting from spurious marks on the plate such as scratches, dust or grain clumpings, etc. The output of the circuit is hence indicative only of the tracks that would be counted by a human operator.

  5. Image quality and radiation reduction of 320-row area detector CT coronary angiography with optimal tube voltage selection and an automatic exposure control system: comparison with body mass index-adapted protocol.

    PubMed

    Lim, Jiyeon; Park, Eun-Ah; Lee, Whal; Shim, Hackjoon; Chung, Jin Wook

    2015-06-01

    To assess the image quality and radiation exposure of 320-row area detector computed tomography (320-ADCT) coronary angiography with optimal tube voltage selection with the guidance of an automatic exposure control system in comparison with a body mass index (BMI)-adapted protocol. Twenty-two patients (study group) underwent 320-ADCT coronary angiography using an automatic exposure control system with the target standard deviation value of 33 as the image quality index and the lowest possible tube voltage. For comparison, a sex- and BMI-matched group (control group, n = 22) using a BMI-adapted protocol was established. Images of both groups were reconstructed by an iterative reconstruction algorithm. For objective evaluation of the image quality, image noise, vessel density, signal to noise ratio (SNR), and contrast to noise ratio (CNR) were measured. Two blinded readers then subjectively graded the image quality using a four-point scale (1: nondiagnostic to 4: excellent). Radiation exposure was also measured. Although the study group tended to show higher image noise (14.1 ± 3.6 vs. 9.3 ± 2.2 HU, P = 0.111) and higher vessel density (665.5 ± 161 vs. 498 ± 143 HU, P = 0.430) than the control group, the differences were not significant. There was no significant difference between the two groups for SNR (52.5 ± 19.2 vs. 60.6 ± 21.8, P = 0.729), CNR (57.0 ± 19.8 vs. 67.8 ± 23.3, P = 0.531), or subjective image quality scores (3.47 ± 0.55 vs. 3.59 ± 0.56, P = 0.960). However, radiation exposure was significantly reduced by 42 % in the study group (1.9 ± 0.8 vs. 3.6 ± 0.4 mSv, P = 0.003). Optimal tube voltage selection with the guidance of an automatic exposure control system in 320-ADCT coronary angiography allows substantial radiation reduction without significant impairment of image quality, compared to the results obtained using a BMI-based protocol. PMID:25604967

  6. Presentation video retrieval using automatically recovered slide and spoken text

    NASA Astrophysics Data System (ADS)

    Cooper, Matthew

    2013-03-01

    Video is becoming a prevalent medium for e-learning. Lecture videos contain text information in both the presentation slides and lecturer's speech. This paper examines the relative utility of automatically recovered text from these sources for lecture video retrieval. To extract the visual information, we automatically detect slides within the videos and apply optical character recognition to obtain their text. Automatic speech recognition is used similarly to extract spoken text from the recorded audio. We perform controlled experiments with manually created ground truth for both the slide and spoken text from more than 60 hours of lecture video. We compare the automatically extracted slide and spoken text in terms of accuracy relative to ground truth, overlap with one another, and utility for video retrieval. Results reveal that automatically recovered slide text and spoken text contain different content with varying error profiles. Experiments demonstrate that automatically extracted slide text enables higher precision video retrieval than automatically recovered spoken text.

  7. Automatic water inventory, collecting, and dispensing unit

    NASA Technical Reports Server (NTRS)

    Hall, J. B., Jr.; Williams, E. F.

    1972-01-01

    Two cylindrical tanks with piston bladders and associated components for automatic filling and emptying use liquid inventory readout devices in control of water flow. Unit provides for adaptive water collection, storage, and dispensation in weightlessness environment.

  8. Body-wide anatomy recognition in PET/CT images

    NASA Astrophysics Data System (ADS)

    Wang, Huiqian; Udupa, Jayaram K.; Odhner, Dewey; Tong, Yubing; Zhao, Liming; Torigian, Drew A.

    2015-03-01

    With the rapid growth of positron emission tomography/computed tomography (PET/CT)-based medical applications, body-wide anatomy recognition on whole-body PET/CT images becomes crucial for quantifying body-wide disease burden. This, however, is a challenging problem and seldom studied due to unclear anatomy reference frame and low spatial resolution of PET images as well as low contrast and spatial resolution of the associated low-dose CT images. We previously developed an automatic anatomy recognition (AAR) system [15] whose applicability was demonstrated on diagnostic computed tomography (CT) and magnetic resonance (MR) images in different body regions on 35 objects. The aim of the present work is to investigate strategies for adapting the previous AAR system to low-dose CT and PET images toward automated body-wide disease quantification. Our adaptation of the previous AAR methodology to PET/CT images in this paper focuses on 16 objects in three body regions - thorax, abdomen, and pelvis - and consists of the following steps: collecting whole-body PET/CT images from existing patient image databases, delineating all objects in these images, modifying the previous hierarchical models built from diagnostic CT images to account for differences in appearance in low-dose CT and PET images, automatically locating objects in these images following object hierarchy, and evaluating performance. Our preliminary evaluations indicate that the performance of the AAR approach on low-dose CT images achieves object localization accuracy within about 2 voxels, which is comparable to the accuracies achieved on diagnostic contrast-enhanced CT images. Object recognition on low-dose CT images from PET/CT examinations without requiring diagnostic contrast-enhanced CT seems feasible.

  9. Generalization of Hindi OCR Using Adaptive Segmentation and Font Files

    NASA Astrophysics Data System (ADS)

    Agrawal, Mudit; Ma, Huanfeng; Doermann, David

    In this chapter, we describe an adaptive Indic OCR system implemented as part of a rapidly retargetable language tool effort and extend work found in [20, 2]. The system includes script identification, character segmentation, training sample creation, and character recognition. For script identification, Hindi words are identified in bilingual or multilingual document images using features of the Devanagari script and support vector machine (SVM). Identified words are then segmented into individual characters, using a font-model-based intelligent character segmentation and recognition system. Using characteristics of structurally similar TrueType fonts, our system automatically builds a model to be used for the segmentation and recognition of the new script, independent of glyph composition. The key is a reliance on known font attributes. In our recognition system three feature extraction methods are used to demonstrate the importance of appropriate features for classification. The methods are tested on both Latin and non-Latin scripts. Results show that the character-level recognition accuracy exceeds 92% for non-Latin and 96% for Latin text on degraded documents. This work is a step toward the recognition of scripts of low-density languages which typically do not warrant the development of commercial OCR, yet often have complete TrueType font descriptions.

  10. Automatic stabilization

    NASA Technical Reports Server (NTRS)

    Haus, FR

    1936-01-01

    This report concerns the study of automatic stabilizers and extends it to include the control of the three-control system of the airplane instead of just altitude control. Some of the topics discussed include lateral disturbed motion, static stability, the mathematical theory of lateral motion, and large angles of incidence. Various mechanisms and stabilizers are also discussed. The feeding of Diesel engines by injection pumps actuated by engine compression, achieves the required high speeds of injection readily and permits rigorous control of the combustible charge introduced into each cylinder and of the peak pressure in the resultant cycle.

  11. Robust speech recognition from binary masks.

    PubMed

    Narayanan, Arun; Wang, DeLiang

    2010-11-01

    Inspired by recent evidence that a binary pattern may provide sufficient information for human speech recognition, this letter proposes a fundamentally different approach to robust automatic speech recognition. Specifically, recognition is performed by classifying binary masks corresponding to a word utterance. The proposed method is evaluated using a subset of the TIDigits corpus to perform isolated digit recognition. Despite dramatic reduction of speech information encoded in a binary mask, the proposed system performs surprisingly well. The system is compared with a traditional HMM based approach and is shown to perform well under low SNR conditions. PMID:21110529

  12. Designing a Knowledge Base for Automatic Book Classification.

    ERIC Educational Resources Information Center

    Kim, Jeong-Hyen; Lee, Kyung-Ho

    2002-01-01

    Reports on the design of a knowledge base for an automatic classification in the library science field by using the facet classification principles of colon classification. Discusses inputting titles or key words into the computer to create class numbers through automatic subject recognition and processing title key words. (Author/LRW)

  13. Understanding Cognitive Development: Automaticity and the Early Years Child

    ERIC Educational Resources Information Center

    Gray, Colette

    2004-01-01

    In recent years a growing body of evidence has implicated deficits in the automaticity of fundamental facts such as word and number recognition in a range of disorders: including attention deficit hyperactivity disorder, dyslexia, apraxia and autism. Variously described as habits, fluency, chunking and over learning, automatic processes are best…

  14. Adaptive deformable model for mouth boundary detection

    NASA Astrophysics Data System (ADS)

    Mirhosseini, Ali R.; Yan, Hong; Lam, Kin-Man

    1998-03-01

    A new generalized algorithm is proposed to automatically extract a mouth boundary model form human face images. Such an algorithm can contribute to human face recognition and lip-reading-assisted speech recognition systems, in particular, and multimodal human computer interaction system, in general. The new model is an iterative algorithm based on a hierarchical model adaptation scheme using deformable templates, as a generalization of some of the previous works. The role of prior knowledge is essential for perceptual organization in the algorithm. The prior knowledge about the mouth shape is used to define and initialize a primary deformable mode. Each primary boundary curve of a mouth is formed on three control points, including two mouth corners, whose locations are optimized using a primary energy functional. This energy functional essentially captures the knowledge of the mouth shape to perceptually organize image information. The primary model is finely tuned in the second stage of optimization algorithm using a generalized secondary energy functional. Basically each boundary curve is finely tuned using more control points. The primary model is replaced by an adapted model if there is an increase in the secondary energy functional. The results indicate that the new model adaptation technique satisfactorily generalizes the mouth boundary model extraction in an automated fashion.

  15. Retina vascular network recognition

    NASA Astrophysics Data System (ADS)

    Tascini, Guido; Passerini, Giorgio; Puliti, Paolo; Zingaretti, Primo

    1993-09-01

    The analysis of morphological and structural modifications of the retina vascular network is an interesting investigation method in the study of diabetes and hypertension. Normally this analysis is carried out by qualitative evaluations, according to standardized criteria, though medical research attaches great importance to quantitative analysis of vessel color, shape and dimensions. The paper describes a system which automatically segments and recognizes the ocular fundus circulation and micro circulation network, and extracts a set of features related to morphometric aspects of vessels. For this class of images the classical segmentation methods seem weak. We propose a computer vision system in which segmentation and recognition phases are strictly connected. The system is hierarchically organized in four modules. Firstly the Image Enhancement Module (IEM) operates a set of custom image enhancements to remove blur and to prepare data for subsequent segmentation and recognition processes. Secondly the Papilla Border Analysis Module (PBAM) automatically recognizes number, position and local diameter of blood vessels departing from optical papilla. Then the Vessel Tracking Module (VTM) analyses vessels comparing the results of body and edge tracking and detects branches and crossings. Finally the Feature Extraction Module evaluates PBAM and VTM output data and extracts some numerical indexes. Used algorithms appear to be robust and have been successfully tested on various ocular fundus images.

  16. A reinforcement learning approach in rotated image recognition and its convergence analysis

    NASA Astrophysics Data System (ADS)

    Iftekharuddin, Khan M.; Li, Yaqin

    2006-08-01

    One of the major problems in automatic target recognition (ATR) involves the recognition of images in different orientations. In a classical training-testing setup for an ATR for rotated targets using neural networks, the recognition is inherently static, and the performance is largely dependent on the range of orientation angles in the training process. To alleviate this problem, we propose a reinforcement learning (RL) approach for the ATR of rotated images. The RL is implemented in an adaptive critic design (ACD) framework wherein the ACD is mainly composed of the neuro-dynamic programming of an action network and a critic network. The proposed RL provides an adaptive learning and object recognition ability without a priori training. Numerical simulations demonstrate that the proposed ACD-based ATR system can effectively recognize rotated target with the whole range of 180° rotation. Analytic characterization of the learning algorithm provides a sufficient condition for its asymptotic convergence. Finally, we obtain an upper bound for the estimation error of the cost-to-go function under the asymptotic convergence condition.

  17. Voice recognition.

    PubMed

    Mehta, Amit; McLoud, Theresa C

    2003-07-01

    Voice recognition represents one of the new technologies that are changing the practice of radiology. Thirty percent of radiology practices are either currently or plan to have voice recognition (VR) systems. VR software encompasses 4 core processes: spoken recognition of human speech, synthesis of human readable characters into speech, speaker identification and verification, and comprehension. Many software packages are available offering VR. All these packages should contain an interface with the radiology information system. The benefits include decreased turnaround time and cost savings. Its advantages include the transfer of secretarial duties to the radiologist with a result in decreased productivity. PMID:12867815

  18. Automatic transmission

    SciTech Connect

    Miura, M.; Inuzuka, T.

    1986-08-26

    1. An automatic transmission with four forward speeds and one reverse position, is described which consists of: an input shaft; an output member; first and second planetary gear sets each having a sun gear, a ring gear and a carrier supporting a pinion in mesh with the sun gear and ring gear; the carrier of the first gear set, the ring gear of the second gear set and the output member all being connected; the ring gear of the first gear set connected to the carrier of the second gear set; a first clutch means for selectively connecting the input shaft to the sun gear of the first gear set, including friction elements, a piston selectively engaging the friction elements and a fluid servo in which hydraulic fluid is selectively supplied to the piston; a second clutch means for selectively connecting the input shaft to the sun gear of the second gear set a third clutch means for selectively connecting the input shaft to the carrier of the second gear set including friction elements, a piston selectively engaging the friction elements and a fluid servo in which hydraulic fluid is selectively supplied to the piston; a first drive-establishing means for selectively preventing rotation of the ring gear of the first gear set and the carrier of the second gear set in only one direction and, alternatively, in any direction; a second drive-establishing means for selectively preventing rotation of the sun gear of the second gear set; and a drum being open to the first planetary gear set, with a cylindrical intermediate wall, an inner peripheral wall and outer peripheral wall and forming the hydraulic servos of the first and third clutch means between the intermediate wall and the inner peripheral wall and between the intermediate wall and the outer peripheral wall respectively.

  19. Toward automatic finite element analysis

    NASA Technical Reports Server (NTRS)

    Kela, Ajay; Perucchio, Renato; Voelcker, Herbert

    1987-01-01

    Two problems must be solved if the finite element method is to become a reliable and affordable blackbox engineering tool. Finite element meshes must be generated automatically from computer aided design databases and mesh analysis must be made self-adaptive. The experimental system described solves both problems in 2-D through spatial and analytical substructuring techniques that are now being extended into 3-D.

  20. Liver recognition based on statistical shape model in CT images

    NASA Astrophysics Data System (ADS)

    Xiang, Dehui; Jiang, Xueqing; Shi, Fei; Zhu, Weifang; Chen, Xinjian

    2016-03-01

    In this paper, an automatic method is proposed to recognize the liver on clinical 3D CT images. The proposed method effectively use statistical shape model of the liver. Our approach consist of three main parts: (1) model training, in which shape variability is detected using principal component analysis from the manual annotation; (2) model localization, in which a fast Euclidean distance transformation based method is able to localize the liver in CT images; (3) liver recognition, the initial mesh is locally and iteratively adapted to the liver boundary, which is constrained with the trained shape model. We validate our algorithm on a dataset which consists of 20 3D CT images obtained from different patients. The average ARVD was 8.99%, the average ASSD was 2.69mm, the average RMSD was 4.92mm, the average MSD was 28.841mm, and the average MSD was 13.31%.

  1. A Bayesian view on acoustic model-based techniques for robust speech recognition

    NASA Astrophysics Data System (ADS)

    Maas, Roland; Huemmer, Christian; Sehr, Armin; Kellermann, Walter

    2015-12-01

    This article provides a unifying Bayesian view on various approaches for acoustic model adaptation, missing feature, and uncertainty decoding that are well-known in the literature of robust automatic speech recognition. The representatives of these classes can often be deduced from a Bayesian network that extends the conventional hidden Markov models used in speech recognition. These extensions, in turn, can in many cases be motivated from an underlying observation model that relates clean and distorted feature vectors. By identifying and converting the observation models into a Bayesian network representation, we formulate the corresponding compensation rules. We thus summarize the various approaches as approximations or modifications of the same Bayesian decoding rule leading to a unified view on known derivations as well as to new formulations for certain approaches.

  2. Speech recognition based on pattern recognition techniques

    NASA Astrophysics Data System (ADS)

    Rabiner, Lawrence R.

    1990-05-01

    Algorithms for speech recognition can be characterized broadly as pattern recognition approaches and acoustic phonetic approaches. To date, the greatest degree of success in speech recognition has been obtained using pattern recognition paradigms. The use of pattern recognition techniques were applied to the problems of isolated word (or discrete utterance) recognition, connected word recognition, and continuous speech recognition. It is shown that understanding (and consequently the resulting recognizer performance) is best to the simplest recognition tasks and is considerably less well developed for large scale recognition systems.

  3. Photonic correlator pattern recognition: Application to autonomous docking

    NASA Technical Reports Server (NTRS)

    Sjolander, Gary W.

    1991-01-01

    Optical correlators for real-time automatic pattern recognition applications have recently become feasible due to advances in high speed devices and filter formulation concepts. The devices are discussed in the context of their use in autonomous docking.

  4. Automatic program debugging for intelligent tutoring systems

    SciTech Connect

    Murray, W.R.

    1986-01-01

    This thesis explores the process by which student programs can be automatically debugged in order to increase the instructional capabilities of these systems. This research presents a methodology and implementation for the diagnosis and correction of nontrivial recursive programs. In this approach, recursive programs are debugged by repairing induction proofs in the Boyer-Moore Logic. The potential of a program debugger to automatically debug widely varying novice programs in a nontrivial domain is proportional to its capabilities to reason about computational semantics. By increasing these reasoning capabilities a more powerful and robust system can result. This thesis supports these claims by examining related work in automated program debugging and by discussing the design, implementation, and evaluation of Talus, an automatic degugger for LISP programs. Talus relies on its abilities to reason about computational semantics to perform algorithm recognition, infer code teleology, and to automatically detect and correct nonsyntactic errors in student programs written in a restricted, but nontrivial, subset of LISP.

  5. Review of Medical Image Classification using the Adaptive Neuro-Fuzzy Inference System

    PubMed Central

    Hosseini, Monireh Sheikh; Zekri, Maryam

    2012-01-01

    Image classification is an issue that utilizes image processing, pattern recognition and classification methods. Automatic medical image classification is a progressive area in image classification, and it is expected to be more developed in the future. Because of this fact, automatic diagnosis can assist pathologists by providing second opinions and reducing their workload. This paper reviews the application of the adaptive neuro-fuzzy inference system (ANFIS) as a classifier in medical image classification during the past 16 years. ANFIS is a fuzzy inference system (FIS) implemented in the framework of an adaptive fuzzy neural network. It combines the explicit knowledge representation of an FIS with the learning power of artificial neural networks. The objective of ANFIS is to integrate the best features of fuzzy systems and neural networks. A brief comparison with other classifiers, main advantages and drawbacks of this classifier are investigated. PMID:23493054

  6. Visual adaptation dominates bimodal visual-motor action adaptation.

    PubMed

    de la Rosa, Stephan; Ferstl, Ylva; Bülthoff, Heinrich H

    2016-01-01

    A long standing debate revolves around the question whether visual action recognition primarily relies on visual or motor action information. Previous studies mainly examined the contribution of either visual or motor information to action recognition. Yet, the interaction of visual and motor action information is particularly important for understanding action recognition in social interactions, where humans often observe and execute actions at the same time. Here, we behaviourally examined the interaction of visual and motor action recognition processes when participants simultaneously observe and execute actions. We took advantage of behavioural action adaptation effects to investigate behavioural correlates of neural action recognition mechanisms. In line with previous results, we find that prolonged visual exposure (visual adaptation) and prolonged execution of the same action with closed eyes (non-visual motor adaptation) influence action recognition. However, when participants simultaneously adapted visually and motorically - akin to simultaneous execution and observation of actions in social interactions - adaptation effects were only modulated by visual but not motor adaptation. Action recognition, therefore, relies primarily on vision-based action recognition mechanisms in situations that require simultaneous action observation and execution, such as social interactions. The results suggest caution when associating social behaviour in social interactions with motor based information. PMID:27029781

  7. Visual adaptation dominates bimodal visual-motor action adaptation

    PubMed Central

    de la Rosa, Stephan; Ferstl, Ylva; Bülthoff, Heinrich H.

    2016-01-01

    A long standing debate revolves around the question whether visual action recognition primarily relies on visual or motor action information. Previous studies mainly examined the contribution of either visual or motor information to action recognition. Yet, the interaction of visual and motor action information is particularly important for understanding action recognition in social interactions, where humans often observe and execute actions at the same time. Here, we behaviourally examined the interaction of visual and motor action recognition processes when participants simultaneously observe and execute actions. We took advantage of behavioural action adaptation effects to investigate behavioural correlates of neural action recognition mechanisms. In line with previous results, we find that prolonged visual exposure (visual adaptation) and prolonged execution of the same action with closed eyes (non-visual motor adaptation) influence action recognition. However, when participants simultaneously adapted visually and motorically – akin to simultaneous execution and observation of actions in social interactions - adaptation effects were only modulated by visual but not motor adaptation. Action recognition, therefore, relies primarily on vision-based action recognition mechanisms in situations that require simultaneous action observation and execution, such as social interactions. The results suggest caution when associating social behaviour in social interactions with motor based information. PMID:27029781

  8. Workshop on Standards for Image Pattern Recognition. Computer Seience & Technology Series.

    ERIC Educational Resources Information Center

    Evans, John M. , Ed.; And Others

    Automatic image pattern recognition techniques have been successfully applied to improving productivity and quality in both manufacturing and service applications. Automatic Image Pattern Recognition Algorithms are often developed and tested using unique data bases for each specific application. Quantitative comparison of different approaches and…

  9. The neuroecology of competitor recognition.

    PubMed

    Grether, Gregory F

    2011-11-01

    Territorial animals can be expected to distinguish among the types of competitors and noncompetitors that they encounter on a regular basis, including prospective mates and rivals of their own species, but they may not correctly classify individuals of other species. Closely related species often have similar phenotypes and this can cause confusion when formerly allopatric populations first come into contact. Errors in recognizing competitors can have important ecological and evolutionary effects. I review what is known about the mechanisms of competitor recognition in animals generally, focusing on cases in which the targets of recognition include other species. Case studies include damselflies, ants, skinks, salamanders, reef fishes, and birds. In general, recognition systems consist of a phenotypic cue (e.g., chemical, color, song), a neural template against which cues are compared, a motor response (e.g., aggression), and sensory integration circuits for context dependency of the response (if any). Little is known about how competitor recognition systems work at the neural level, but inferences about specificity of cues and about sensory integration can be drawn from the responses of territory residents to simulated intruders. Competitor recognition often involves multiple cues in the same, or different, sensory modalities. The same cues and templates are often, but not always, used for intraspecific and interspecific recognition. Experiments have shown that imprinting on local cues is common, which may enable templates to track evolved changes in cues automatically. The dependence of aggression and tolerance on context is important even in the simplest systems. Species in which mechanisms of competitor recognition are best known offer untapped opportunities to examine how competitor-recognition systems evolve (e.g., by comparing allopatric and sympatric populations). Cues that are gene products (peptides, proteins) may provide insights into rates of evolution

  10. Voice reaction times with recognition for Commodore computers

    NASA Technical Reports Server (NTRS)

    Washburn, David A.; Putney, R. Thompson

    1990-01-01

    Hardware and software modifications are presented that allow for collection and recognition by a Commodore computer of spoken responses. Responses are timed with millisecond accuracy and automatically analyzed and scored. Accuracy data for this device from several experiments are presented. Potential applications and suggestions for improving recognition accuracy are also discussed.

  11. Features classification using support vector machine for a facial expression recognition system

    NASA Astrophysics Data System (ADS)

    Patil, Rajesh A.; Sahula, Vineet; Mandal, Atanendu S.

    2012-10-01

    A methodology for automatic facial expression recognition in image sequences is proposed, which makes use of the Candide wire frame model and an active appearance algorithm for tracking, and support vector machine (SVM) for classification. A face is detected automatically from the given image sequence and by adapting the Candide wire frame model properly on the first frame of face image sequence, facial features in the subsequent frames are tracked using an active appearance algorithm. The algorithm adapts the Candide wire frame model to the face in each of the frames and then automatically tracks the grid in consecutive video frames over time. We require that first frame of the image sequence corresponds to the neutral facial expression, while the last frame of the image sequence corresponds to greatest intensity of facial expression. The geometrical displacement of Candide wire frame nodes, defined as the difference of the node coordinates between the first and the greatest facial expression intensity frame, is used as an input to the SVM, which classify the facial expression into one of the classes viz happy, surprise, sadness, anger, disgust, and fear.

  12. Pronunciation Modeling for Large Vocabulary Speech Recognition

    ERIC Educational Resources Information Center

    Kantor, Arthur

    2010-01-01

    The large pronunciation variability of words in conversational speech is one of the major causes of low accuracy in automatic speech recognition (ASR). Many pronunciation modeling approaches have been developed to address this problem. Some explicitly manipulate the pronunciation dictionary as well as the set of the units used to define the…

  13. Complex Event Recognition Architecture

    NASA Technical Reports Server (NTRS)

    Fitzgerald, William A.; Firby, R. James

    2009-01-01

    Complex Event Recognition Architecture (CERA) is the name of a computational architecture, and software that implements the architecture, for recognizing complex event patterns that may be spread across multiple streams of input data. One of the main components of CERA is an intuitive event pattern language that simplifies what would otherwise be the complex, difficult tasks of creating logical descriptions of combinations of temporal events and defining rules for combining information from different sources over time. In this language, recognition patterns are defined in simple, declarative statements that combine point events from given input streams with those from other streams, using conjunction, disjunction, and negation. Patterns can be built on one another recursively to describe very rich, temporally extended combinations of events. Thereafter, a run-time matching algorithm in CERA efficiently matches these patterns against input data and signals when patterns are recognized. CERA can be used to monitor complex systems and to signal operators or initiate corrective actions when anomalous conditions are recognized. CERA can be run as a stand-alone monitoring system, or it can be integrated into a larger system to automatically trigger responses to changing environments or problematic situations.

  14. Automated inspection of micro-defect recognition system for color filter

    NASA Astrophysics Data System (ADS)

    Jeffrey Kuo, Chung-Feng; Peng, Kai-Ching; Wu, Han-Cheng; Wang, Ching-Chin

    2015-07-01

    This study focused on micro-defect recognition and classification in color filters. First, six types of defects were examined, namely grain, black matrix hole (BMH), indium tin oxide (ITO) defect, missing edge and shape (MES), highlights, and particle. Orthogonal projection was applied to locate each pixel in a test image. Then, an image comparison was performed to mark similar blocks on the test image. The block that best resembled the template was chosen as the new template (or matching adaptive template). Afterwards, image subtraction was applied to subtract the pixels at the same location in each block of the test image from the matching adaptive template. The control limit law employed logic operation to separate the defect from the background region. The complete defect structure was obtained by the morphology method. Next, feature values, including defect gray value, red, green, and blue (RGB) color components, and aspect ratio were obtained as the classifier input. The experimental results showed that defect recognition could be completed as fast as 0.154 s using the proposed recognition system and software. In micro-defect classification, back-propagation neural network (BPNN) and minimum distance classifier (MDC) served as the defect classification decision theories for the five acquired feature values. To validate the proposed system, this study used 41 defects as training samples, and treated the feature values of 307 test samples as the BPNN classifier inputs. The total recognition rate was 93.7%. When an MDC was used, the total recognition rate was 96.8%, indicating that the MDC method is feasible in applying automatic optical inspection technology to classify micro-defects of color filters. The proposed system is proven to successfully improve the production yield and lower costs.

  15. Knowledge Based 3d Building Model Recognition Using Convolutional Neural Networks from LIDAR and Aerial Imageries

    NASA Astrophysics Data System (ADS)

    Alidoost, F.; Arefi, H.

    2016-06-01

    In recent years, with the development of the high resolution data acquisition technologies, many different approaches and algorithms have been presented to extract the accurate and timely updated 3D models of buildings as a key element of city structures for numerous applications in urban mapping. In this paper, a novel and model-based approach is proposed for automatic recognition of buildings' roof models such as flat, gable, hip, and pyramid hip roof models based on deep structures for hierarchical learning of features that are extracted from both LiDAR and aerial ortho-photos. The main steps of this approach include building segmentation, feature extraction and learning, and finally building roof labeling in a supervised pre-trained Convolutional Neural Network (CNN) framework to have an automatic recognition system for various types of buildings over an urban area. In this framework, the height information provides invariant geometric features for convolutional neural network to localize the boundary of each individual roofs. CNN is a kind of feed-forward neural network with the multilayer perceptron concept which consists of a number of convolutional and subsampling layers in an adaptable structure and it is widely used in pattern recognition and object detection application. Since the training dataset is a small library of labeled models for different shapes of roofs, the computation time of learning can be decreased significantly using the pre-trained models. The experimental results highlight the effectiveness of the deep learning approach to detect and extract the pattern of buildings' roofs automatically considering the complementary nature of height and RGB information.

  16. Face Recognition: Canonical Mechanisms at Multiple Timescales.

    PubMed

    Giese, Martin A

    2016-07-11

    Adaptation is ubiquitous in the nervous system, and many possible computational roles have been discussed. A new functional imaging study suggests that, in face recognition, the learning of 'norm faces' and adaptation resulting in perceptual after-effects depend on the same mechanism. PMID:27404241

  17. Automatic discrimination of emotion from spoken Finnish.

    PubMed

    Toivanen, Juhani; Väyrynen, Eero; Seppänen, Tapio

    2004-01-01

    In this paper, experiments on the automatic discrimination of basic emotions from spoken Finnish are described. For the purpose of the study, a large emotional speech corpus of Finnish was collected; 14 professional actors acted as speakers, and simulated four primary emotions when reading out a semantically neutral text. More than 40 prosodic features were derived and automatically computed from the speech samples. Two application scenarios were tested: the first scenario was speaker-independent for a small domain of speakers while the second scenario was completely speaker-independent. Human listening experiments were conducted to assess the perceptual adequacy of the emotional speech samples. Statistical classification experiments indicated that, with the optimal combination of prosodic feature vectors, automatic emotion discrimination performance close to human emotion recognition ability was achievable. PMID:16038449

  18. Facial Action Recognition Combining Heterogeneous Features via Multikernel Learning.

    PubMed

    Senechal, T; Rapp, V; Salam, H; Seguier, R; Bailly, K; Prevost, L

    2012-08-01

    This paper presents our response to the first international challenge on facial emotion recognition and analysis. We propose to combine different types of features to automatically detect action units (AUs) in facial images. We use one multikernel support vector machine (SVM) for each AU we want to detect. The first kernel matrix is computed using local Gabor binary pattern histograms and a histogram intersection kernel. The second kernel matrix is computed from active appearance model coefficients and a radial basis function kernel. During the training step, we combine these two types of features using the recently proposed SimpleMKL algorithm. SVM outputs are then averaged to exploit temporal information in the sequence. To evaluate our system, we perform deep experimentation on several key issues: influence of features and kernel function in histogram-based SVM approaches, influence of spatially independent information versus geometric local appearance information and benefits of combining both, sensitivity to training data, and interest of temporal context adaptation. We also compare our results with those of the other participants and try to explain why our method had the best performance during the facial expression recognition and analysis challenge. PMID:22623430

  19. Operational efficiency: Automatic ascent flight design

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Major objectives, milestones, key contacts, major accomplishments, technology issues, and candidate programs of the automatic ascent flight design are outlined. Topics discussed include: advanced avionics concepts; advanced training concepts; telerobotics/telepresence; integrated command and control; advanced software integration; atmospheric adaptive guidance; and health status and monitoring concept. This presentation is represented by viewgraphs only.

  20. Apparatus enables automatic microanalysis of body fluids

    NASA Technical Reports Server (NTRS)

    Soffen, G. A.; Stuart, J. L.

    1966-01-01

    Apparatus will automatically and quantitatively determine body fluid constituents which are amenable to analysis by fluorometry or colorimetry. The results of the tests are displayed as percentages of full scale deflection on a strip-chart recorder. The apparatus can also be adapted for microanalysis of various other fluids.

  1. Portable machine welding head automatically controls arc

    NASA Technical Reports Server (NTRS)

    Oleksiak, C. E.; Robb, M. A.

    1967-01-01

    Portable weld tool makes weld repairs out-of-station and on the side opposite the original weld. It provides full automatic control of the arc voltage, current, wire feed, and electrode travel speed in all welding attitudes. The device is readily adaptable to commercially available straight polarity dc weld packs.

  2. Automatic Welding System

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Robotic welding has been of interest to industrial firms because it offers higher productivity at lower cost than manual welding. There are some systems with automated arc guidance available, but they have disadvantages, such as limitations on types of materials or types of seams that can be welded; susceptibility to stray electrical signals; restricted field of view; or tendency to contaminate the weld seam. Wanting to overcome these disadvantages, Marshall Space Flight Center, aided by Hayes International Corporation, developed system that uses closed-circuit TV signals for automatic guidance of the welding torch. NASA granted license to Combined Technologies, Inc. for commercial application of the technology. They developed a refined and improved arc guidance system. CTI in turn, licensed the Merrick Corporation, also of Nashville, for marketing and manufacturing of the new system, called the CT2 Optical Trucker. CT2 is a non-contracting system that offers adaptability to broader range of welding jobs and provides greater reliability in high speed operation. It is extremely accurate and can travel at high speed of up to 150 inches per minute.

  3. Learning and Domain Adaptation

    NASA Astrophysics Data System (ADS)

    Mansour, Yishay

    Domain adaptation is a fundamental learning problem where one wishes to use labeled data from one or several source domains to learn a hypothesis performing well on a different, yet related, domain for which no labeled data is available. This generalization across domains is a very significant challenge for many machine learning applications and arises in a variety of natural settings, including NLP tasks (document classification, sentiment analysis, etc.), speech recognition (speakers and noise or environment adaptation) and face recognition (different lighting conditions, different population composition).

  4. Covert face recognition without prosopagnosia.

    PubMed

    Ellis, H D; Young, A W; Koenken, G

    1993-01-01

    An experiment is reported where subjects were presented with familiar or unfamiliar faces for supraliminal durations or for durations individually assessed as being below the threshold for recognition. Their electrodermal responses to each stimulus were measured and the results showed higher peak amplitude skin conductance responses for familiar than for unfamiliar faces, regardless of whether they had been displayed supraliminally or subliminally. A parallel is drawn between elevated skin conductance responses to subliminal stimuli and findings of covert recognition of familiar faces in prosopagnosic patients, some of whom show increased electrodermal activity (EDA) to previously familiar faces. The supraliminal presentation data also served to replicate similar work by Tranel et al (1985). The results are considered alongside other data indicating the relation between non-conscious, "automatic" aspects of normal visual information processing and abilities which can be found to be preserved without awareness after brain injury. PMID:24487927

  5. Recognition intent and visual word recognition.

    PubMed

    Wang, Man-Ying; Ching, Chi-Le

    2009-03-01

    This study adopted a change detection task to investigate whether and how recognition intent affects the construction of orthographic representation in visual word recognition. Chinese readers (Experiment 1-1) and nonreaders (Experiment 1-2) detected color changes in radical components of Chinese characters. Explicit recognition demand was imposed in Experiment 2 by an additional recognition task. When the recognition was implicit, a bias favoring the radical location informative of character identity was found in Chinese readers (Experiment 1-1), but not nonreaders (Experiment 1-2). With explicit recognition demands, the effect of radical location interacted with radical function and word frequency (Experiment 2). An estimate of identification performance under implicit recognition was derived in Experiment 3. These findings reflect the joint influence of recognition intent and orthographic regularity in shaping readers' orthographic representation. The implication for the role of visual attention in word recognition was also discussed. PMID:19036609

  6. Low-resolution gait recognition.

    PubMed

    Zhang, Junping; Pu, Jian; Chen, Changyou; Fleischer, Rudolf

    2010-08-01

    Unlike other biometric authentication methods, gait recognition is noninvasive and effective from a distance. However, the performance of gait recognition will suffer in the low-resolution (LR) case. Furthermore, when gait sequences are projected onto a nonoptimal low-dimensional subspace to reduce the data complexity, the performance of gait recognition will also decline. To deal with these two issues, we propose a new algorithm called superresolution with manifold sampling and backprojection (SRMS), which learns the high-resolution (HR) counterparts of LR test images from a collection of HR/LR training gait image patch pairs. Then, we incorporate SRMS into a new algorithm called multilinear tensor-based learning without tuning parameters (MTP) for LR gait recognition. Our contributions include the following: 1) With manifold sampling, the redundancy of gait image patches is remarkably decreased; thus, the superresolution procedure is more efficient and reasonable. 2) Backprojection guarantees that the learned HR gait images and the corresponding LR gait images can be more consistent. 3) The optimal subspace dimension for dimension reduction is automatically determined without introducing extra parameters. 4) Theoretical analysis of the algorithm shows that MTP converges. Experiments on the USF human gait database and the CASIA gait database show the increased efficiency of the proposed algorithm, compared with previous algorithms. PMID:20199936

  7. Automatic Command Sequence Generation

    NASA Technical Reports Server (NTRS)

    Fisher, Forest; Gladded, Roy; Khanampompan, Teerapat

    2007-01-01

    Automatic Sequence Generator (Autogen) Version 3.0 software automatically generates command sequences for the Mars Reconnaissance Orbiter (MRO) and several other JPL spacecraft operated by the multi-mission support team. Autogen uses standard JPL sequencing tools like APGEN, ASP, SEQGEN, and the DOM database to automate the generation of uplink command products, Spacecraft Command Message Format (SCMF) files, and the corresponding ground command products, DSN Keywords Files (DKF). Autogen supports all the major multi-mission mission phases including the cruise, aerobraking, mapping/science, and relay mission phases. Autogen is a Perl script, which functions within the mission operations UNIX environment. It consists of two parts: a set of model files and the autogen Perl script. Autogen encodes the behaviors of the system into a model and encodes algorithms for context sensitive customizations of the modeled behaviors. The model includes knowledge of different mission phases and how the resultant command products must differ for these phases. The executable software portion of Autogen, automates the setup and use of APGEN for constructing a spacecraft activity sequence file (SASF). The setup includes file retrieval through the DOM (Distributed Object Manager), an object database used to store project files. This step retrieves all the needed input files for generating the command products. Depending on the mission phase, Autogen also uses the ASP (Automated Sequence Processor) and SEQGEN to generate the command product sent to the spacecraft. Autogen also provides the means for customizing sequences through the use of configuration files. By automating the majority of the sequencing generation process, Autogen eliminates many sequence generation errors commonly introduced by manually constructing spacecraft command sequences. Through the layering of commands into the sequence by a series of scheduling algorithms, users are able to rapidly and reliably construct the

  8. Recognition Tunneling

    PubMed Central

    Lindsay, Stuart; He, Jin; Sankey, Otto; Hapala, Prokop; Jelinek, Pavel; Zhang, Peiming; Chang, Shuai; Huang, Shuo

    2010-01-01

    Single molecules in a tunnel junction can now be interrogated reliably using chemically-functionalized electrodes. Monitoring stochastic bonding fluctuations between a ligand bound to one electrode and its target bound to a second electrode (“tethered molecule-pair” configuration) gives insight into the nature of the intermolecular bonding at a single molecule-pair level, and defines the requirements for reproducible tunneling data. Simulations show that there is an instability in the tunnel gap at large currents, and this results in a multiplicity of contacts with a corresponding spread in the measured currents. At small currents (i.e. large gaps) the gap is stable, and functionalizing a pair of electrodes with recognition reagents (the “free analyte” configuration) can generate a distinct tunneling signal when an analyte molecule is trapped in the gap. This opens up a new interface between chemistry and electronics with immediate implications for rapid sequencing of single DNA molecules. PMID:20522930

  9. Metacognitive Awareness and Adaptive Recognition Biases

    ERIC Educational Resources Information Center

    Selmeczy, Diana; Dobbins, Ian G.

    2013-01-01

    Prior literature has primarily focused on the negative influences of misleading external sources on memory judgments. This study investigated whether participants can capitalize on generally reliable recommendations in order to improve their net performance; the focus was on potential roles for metacognitive monitoring (i.e., knowledge about one's…

  10. An anatomy of automatism.

    PubMed

    Mackay, R D

    2015-07-01

    The automatism defence has been described as a quagmire of law and as presenting an intractable problem. Why is this so? This paper will analyse and explore the current legal position on automatism. In so doing, it will identify the problems which the case law has created, including the distinction between sane and insane automatism and the status of the 'external factor doctrine', and comment briefly on recent reform proposals. PMID:26378105

  11. Automatic crack propagation tracking

    NASA Technical Reports Server (NTRS)

    Shephard, M. S.; Weidner, T. J.; Yehia, N. A. B.; Burd, G. S.

    1985-01-01

    A finite element based approach to fully automatic crack propagation tracking is presented. The procedure presented combines fully automatic mesh generation with linear fracture mechanics techniques in a geometrically based finite element code capable of automatically tracking cracks in two-dimensional domains. The automatic mesh generator employs the modified-quadtree technique. Crack propagation increment and direction are predicted using a modified maximum dilatational strain energy density criterion employing the numerical results obtained by meshes of quadratic displacement and singular crack tip finite elements. Example problems are included to demonstrate the procedure.

  12. Automatic differentiation bibliography

    SciTech Connect

    Corliss, G.F.

    1992-07-01

    This is a bibliography of work related to automatic differentiation. Automatic differentiation is a technique for the fast, accurate propagation of derivative values using the chain rule. It is neither symbolic nor numeric. Automatic differentiation is a fundamental tool for scientific computation, with applications in optimization, nonlinear equations, nonlinear least squares approximation, stiff ordinary differential equation, partial differential equations, continuation methods, and sensitivity analysis. This report is an updated version of the bibliography which originally appeared in Automatic Differentiation of Algorithms: Theory, Implementation, and Application.

  13. Convolution neural networks for ship type recognition

    NASA Astrophysics Data System (ADS)

    Rainey, Katie; Reeder, John D.; Corelli, Alexander G.

    2016-05-01

    Algorithms to automatically recognize ship type from satellite imagery are desired for numerous maritime applications. This task is difficult, and example imagery accurately labeled with ship type is hard to obtain. Convolutional neural networks (CNNs) have shown promise in image recognition settings, but many of these applications rely on the availability of thousands of example images for training. This work attempts to under- stand for which types of ship recognition tasks CNNs might be well suited. We report the results of baseline experiments applying a CNN to several ship type classification tasks, and discuss many of the considerations that must be made in approaching this problem.

  14. Prosody's Contribution to Fluency: An Examination of the Theory of Automatic Information Processing

    ERIC Educational Resources Information Center

    Schrauben, Julie E.

    2010-01-01

    LaBerge and Samuels' (1974) theory of automatic information processing in reading offers a model that explains how and where the processing of information occurs and the degree to which processing of information occurs. These processes are dependent upon two criteria: accurate word decoding and automatic word recognition. However, LaBerge and…

  15. Automatic Dryers--Components and Operations; Appliance Repair--Intermediate: 9025.01.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    Designed to familiarize the student with the components and operations of automatic gas and electric dryers, this course outlines the principles of drying and how they relate to the automatic dryer. Instruction centers upon the functions and operations of dryer components and the recognition and identification of various component malfunctions,…

  16. Investigating Prompt Difficulty in an Automatically Scored Speaking Performance Assessment

    ERIC Educational Resources Information Center

    Cox, Troy L.

    2013-01-01

    Speaking assessments for second language learners have traditionally been expensive to administer because of the cost of rating the speech samples. To reduce the cost, many researchers are investigating the potential of using automatic speech recognition (ASR) as a means to score examinee responses to open-ended prompts. This study examined the…

  17. Digital automatic gain control

    NASA Technical Reports Server (NTRS)

    Uzdy, Z.

    1980-01-01

    Performance analysis, used to evaluated fitness of several circuits to digital automatic gain control (AGC), indicates that digital integrator employing coherent amplitude detector (CAD) is best device suited for application. Circuit reduces gain error to half that of conventional analog AGC while making it possible to automatically modify response of receiver to match incoming signal conditions.

  18. Automatic Differentiation Package

    2007-03-01

    Sacado is an automatic differentiation package for C++ codes using operator overloading and C++ templating. Sacado provide forward, reverse, and Taylor polynomial automatic differentiation classes and utilities for incorporating these classes into C++ codes. Users can compute derivatives of computations arising in engineering and scientific applications, including nonlinear equation solving, time integration, sensitivity analysis, stability analysis, optimization and uncertainity quantification.

  19. Using Workflows to Explore and Optimise Named Entity Recognition for Chemistry

    PubMed Central

    Kolluru, BalaKrishna; Hawizy, Lezan; Murray-Rust, Peter; Tsujii, Junichi; Ananiadou, Sophia

    2011-01-01

    Chemistry text mining tools should be interoperable and adaptable regardless of system-level implementation, installation or even programming issues. We aim to abstract the functionality of these tools from the underlying implementation via reconfigurable workflows for automatically identifying chemical names. To achieve this, we refactored an established named entity recogniser (in the chemistry domain), OSCAR and studied the impact of each component on the net performance. We developed two reconfigurable workflows from OSCAR using an interoperable text mining framework, U-Compare. These workflows can be altered using the drag-&-drop mechanism of the graphical user interface of U-Compare. These workflows also provide a platform to study the relationship between text mining components such as tokenisation and named entity recognition (using maximum entropy Markov model (MEMM) and pattern recognition based classifiers). Results indicate that, for chemistry in particular, eliminating noise generated by tokenisation techniques lead to a slightly better performance than others, in terms of named entity recognition (NER) accuracy. Poor tokenisation translates into poorer input to the classifier components which in turn leads to an increase in Type I or Type II errors, thus, lowering the overall performance. On the Sciborg corpus, the workflow based system, which uses a new tokeniser whilst retaining the same MEMM component, increases the F-score from 82.35% to 84.44%. On the PubMed corpus, it recorded an F-score of 84.84% as against 84.23% by OSCAR. PMID:21633495

  20. Learning Spatio-Temporal Representations for Action Recognition: A Genetic Programming Approach.

    PubMed

    Liu, Li; Shao, Ling; Li, Xuelong; Lu, Ke

    2016-01-01

    Extracting discriminative and robust features from video sequences is the first and most critical step in human action recognition. In this paper, instead of using handcrafted features, we automatically learn spatio-temporal motion features for action recognition. This is achieved via an evolutionary method, i.e., genetic programming (GP), which evolves the motion feature descriptor on a population of primitive 3D operators (e.g., 3D-Gabor and wavelet). In this way, the scale and shift invariant features can be effectively extracted from both color and optical flow sequences. We intend to learn data adaptive descriptors for different datasets with multiple layers, which makes fully use of the knowledge to mimic the physical structure of the human visual cortex for action recognition and simultaneously reduce the GP searching space to effectively accelerate the convergence of optimal solutions. In our evolutionary architecture, the average cross-validation classification error, which is calculated by an support-vector-machine classifier on the training set, is adopted as the evaluation criterion for the GP fitness function. After the entire evolution procedure finishes, the best-so-far solution selected by GP is regarded as the (near-)optimal action descriptor obtained. The GP-evolving feature extraction method is evaluated on four popular action datasets, namely KTH, HMDB51, UCF YouTube, and Hollywood2. Experimental results show that our method significantly outperforms other types of features, either hand-designed or machine-learned. PMID:25700480

  1. Novel approaches to improve iris recognition system performance based on local quality evaluation and feature fusion.

    PubMed

    Chen, Ying; Liu, Yuanning; Zhu, Xiaodong; Chen, Huiling; He, Fei; Pang, Yutong

    2014-01-01

    For building a new iris template, this paper proposes a strategy to fuse different portions of iris based on machine learning method to evaluate local quality of iris. There are three novelties compared to previous work. Firstly, the normalized segmented iris is divided into multitracks and then each track is estimated individually to analyze the recognition accuracy rate (RAR). Secondly, six local quality evaluation parameters are adopted to analyze texture information of each track. Besides, particle swarm optimization (PSO) is employed to get the weights of these evaluation parameters and corresponding weighted coefficients of different tracks. Finally, all tracks' information is fused according to the weights of different tracks. The experimental results based on subsets of three public and one private iris image databases demonstrate three contributions of this paper. (1) Our experimental results prove that partial iris image cannot completely replace the entire iris image for iris recognition system in several ways. (2) The proposed quality evaluation algorithm is a self-adaptive algorithm, and it can automatically optimize the parameters according to iris image samples' own characteristics. (3) Our feature information fusion strategy can effectively improve the performance of iris recognition system. PMID:24693243

  2. Novel Approaches to Improve Iris Recognition System Performance Based on Local Quality Evaluation and Feature Fusion

    PubMed Central

    2014-01-01

    For building a new iris template, this paper proposes a strategy to fuse different portions of iris based on machine learning method to evaluate local quality of iris. There are three novelties compared to previous work. Firstly, the normalized segmented iris is divided into multitracks and then each track is estimated individually to analyze the recognition accuracy rate (RAR). Secondly, six local quality evaluation parameters are adopted to analyze texture information of each track. Besides, particle swarm optimization (PSO) is employed to get the weights of these evaluation parameters and corresponding weighted coefficients of different tracks. Finally, all tracks' information is fused according to the weights of different tracks. The experimental results based on subsets of three public and one private iris image databases demonstrate three contributions of this paper. (1) Our experimental results prove that partial iris image cannot completely replace the entire iris image for iris recognition system in several ways. (2) The proposed quality evaluation algorithm is a self-adaptive algorithm, and it can automatically optimize the parameters according to iris image samples' own characteristics. (3) Our feature information fusion strategy can effectively improve the performance of iris recognition system. PMID:24693243

  3. Towards behaviour-recognition-based video surveillance

    NASA Astrophysics Data System (ADS)

    Gong, Shaogang

    2004-12-01

    We present the latest results on learnable stochastic temporal models for automatic event and behaviour recognition in CCTV surveillance video. We introduce a novel approach to modelling and recognising complex activities involving simultaneous movement of multiple objects. Our approach differs from most previous work in that the visual understanding of activity is based on visual event detection and reasoning instead of object tracking and trajectory matching. Dynamic probabilistic graph models are exploited for modelling the temporal relationships among a set of different object temporal events. Typical applications of this technology include automatic semantic video content analysis, profiling and indexing of salient event and behaviour captured in CCTV video, and the early recognition of atypical behaviour in scenes where such behaviour could lead to a threat to safety.

  4. Semantic pyramids for gender and action recognition.

    PubMed

    Khan, Fahad Shahbaz; van de Weijer, Joost; Anwer, Rao Muhammad; Felsberg, Michael; Gatta, Carlo

    2014-08-01

    Person description is a challenging problem in computer vision. We investigated two major aspects of person description: 1) gender and 2) action recognition in still images. Most state-of-the-art approaches for gender and action recognition rely on the description of a single body part, such as face or full-body. However, relying on a single body part is suboptimal due to significant variations in scale, viewpoint, and pose in real-world images. This paper proposes a semantic pyramid approach for pose normalization. Our approach is fully automatic and based on combining information from full-body, upper-body, and face regions for gender and action recognition in still images. The proposed approach does not require any annotations for upper-body and face of a person. Instead, we rely on pretrained state-of-the-art upper-body and face detectors to automatically extract semantic information of a person. Given multiple bounding boxes from each body part detector, we then propose a simple method to select the best candidate bounding box, which is used for feature extraction. Finally, the extracted features from the full-body, upper-body, and face regions are combined into a single representation for classification. To validate the proposed approach for gender recognition, experiments are performed on three large data sets namely: 1) human attribute; 2) head-shoulder; and 3) proxemics. For action recognition, we perform experiments on four data sets most used for benchmarking action recognition in still images: 1) Sports; 2) Willow; 3) PASCAL VOC 2010; and 4) Stanford-40. Our experiments clearly demonstrate that the proposed approach, despite its simplicity, outperforms state-of-the-art methods for gender and action recognition. PMID:24956369

  5. Transformation invariant on-line target recognition.

    PubMed

    Iftekharuddin, Khan M

    2011-06-01

    Transformation invariant automatic target recognition (ATR) has been an active research area due to its widespread applications in defense, robotics, medical imaging and geographic scene analysis. The primary goal for this paper is to obtain an on-line ATR system for targets in presence of image transformations, such as rotation, translation, scale and occlusion as well as resolution changes. We investigate biologically inspired adaptive critic design (ACD) neural network (NN) models for on-line learning of such transformations. We further exploit reinforcement learning (RL) in ACD framework to obtain transformation invariant ATR. We exploit two ACD designs, such as heuristic dynamic programming (HDP) and dual heuristic dynamic programming (DHP) to obtain transformation invariant ATR. We obtain extensive statistical evaluations of proposed on-line ATR networks using both simulated image transformations and real benchmark facial image database, UMIST, with pose variations. Our simulations show promising results for learning transformations in simulated images and authenticating out-of plane rotated face images. Comparing the two on-line ATR designs, HDP outperforms DHP in learning capability and robustness and is more tolerant to noise. The computational time involved in HDP is also less than that of DHP. On the other hand, DHP achieves a 100% success rate more frequently than HDP for individual targets, and the residual critic error in DHP is generally smaller than that of HDP. Mathematical analyses of both our RL-based on-line ATR designs are also obtained to provide a sufficient condition for asymptotic convergence in a statistical average sense. PMID:21571610

  6. Phonematic recognition by linear prediction: Experiment

    NASA Astrophysics Data System (ADS)

    Miclet, L.; Grenier, Y.; Leroux, J.

    The recognition of speech signals analyzed by linear prediction is introduced. The principle of the channel adapted vocoder (CAV) is outlined. The learning of each channel model and adaptation to the speaker are discussed. A method stemming from the canonical analysis of correlations is given. This allows, starting with the CAV of one speaker, the calculation of that of another. The projection function is learned from a series of key words pronounced by both speakers. The reconstruction of phonemes can be explained by recognition factors arising from the vocoder. Automata associated with the channels are used for local smoothing and series of segments are treated in order to produce a phonemic lattice.

  7. Epileptic activity recognition in EEG recording

    NASA Astrophysics Data System (ADS)

    Diambra, L.; de Figueiredo, J. C. Bastos; Malta, C. P.

    1999-12-01

    We apply Approximate Entropy (ApEn) algorithm in order to recognize epileptic activity in electroencephalogram recordings. ApEn is a recently developed statistical quantity for quantifying regularity and complexity. Our approach is illustrated regarding different types of epileptic activity. In all segments associated with epileptic activity analyzed here the complexity of the signal measured by ApEn drops abruptly. This fact can be useful for automatic recognition and detection of epileptic seizures.

  8. Securing iris recognition systems against masquerade attacks

    NASA Astrophysics Data System (ADS)

    Galbally, Javier; Gomez-Barrero, Marta; Ross, Arun; Fierrez, Julian; Ortega-Garcia, Javier

    2013-05-01

    A novel two-stage protection scheme for automatic iris recognition systems against masquerade attacks carried out with synthetically reconstructed iris images is presented. The method uses different characteristics of real iris images to differentiate them from the synthetic ones, thereby addressing important security flaws detected in state-of-the-art commercial systems. Experiments are carried out on the publicly available Biosecure Database and demonstrate the efficacy of the proposed security enhancing approach.

  9. Interactive training for handwriting recognition in historical document collections

    NASA Astrophysics Data System (ADS)

    Kennard, Douglas J.; Barrett, William A.

    2007-01-01

    We present a method of interactive training for handwriting recognition in collections of documents. As the user transcribes (labels) the words in the training set, words are automatically skipped if they appear to match words that are already transcribed. By reducing the amount of redundant training, better coverage of the data is achieved, resulting in more accurate recognition. Using word-level features for training and recognition in a collection of George Washington's manuscripts, the recognition ratio is approximately 2%-8% higher after training with our interactive method than after training the same number of words sequentially. Using our approach, less training is required to achieve an equivalent recognition ratio. A slight improvement in recognition ratio is also observed when using our method on a second data set, which consists of several pages from a diary written by Jennie Leavitt Smith.

  10. A road sign detection and recognition system for mobile devices

    NASA Astrophysics Data System (ADS)

    Xiong, Bo; Izmirli, Ozgur

    2012-01-01

    We present an automatic road sign detection and recognition service system for mobile devices. The system is based on a client-server architecture which allows mobile users to take pictures of road signs and request detection and recognition service from a centralized server for processing. The preprocessing, detection and recognition take place at the server end and consequently, the result is sent back to the mobile device. For road sign detection, we use particular color features calculated from the input image. Recognition is implemented using a neural network based on normalized color histogram features. We report on the effects of various parameters on recognition accuracy. Our results demonstrate that the system can provide an efficient framework for locale-dependent road sign recognition with multilingual support.

  11. Automated alignment system for optical wireless communication systems using image recognition.

    PubMed

    Brandl, Paul; Weiss, Alexander; Zimmermann, Horst

    2014-07-01

    In this Letter, we describe the realization of a tracked line-of-sight optical wireless communication system for indoor data distribution. We built a laser-based transmitter with adaptive focus and ray steering by a microelectromechanical systems mirror. To execute the alignment procedure, we used a CMOS image sensor at the transmitter side and developed an algorithm for image recognition to localize the receiver's position. The receiver is based on a self-developed optoelectronic integrated chip with low requirements on the receiver optics to make the system economically attractive. With this system, we were able to set up the communication link automatically without any back channel and to perform error-free (bit error rate <10⁻⁹) data transmission over a distance of 3.5 m with a data rate of 3 Gbit/s. PMID:24978803

  12. Semiconductor yield improvements through automatic defect classification

    SciTech Connect

    Gleason, S.; Kulkarni, A.

    1995-09-30

    Automatic detection of defects during the fabrication of semiconductor wafers is largely automated, but the classification of those defects is still performed manually by technicians. Projections by semiconductor manufacturers predict that with larger wafer sizes and smaller line width technology the number of defects to be manually classified will increase exponentially. This cooperative research and development agreement (CRADA) between Martin Marietta Energy Systems (MMES) and KLA Instruments developed concepts, algorithms and systems to automate the classification of wafer defects to decrease inspection time, improve the reliability of defect classification, and hence increase process throughput and yield. Image analysis, feature extraction, pattern recognition and classification schemes were developed that are now being used as research tools for future products and are being integrated into the KLA line of wafer inspection hardware. An automatic defect classification software research tool was developed and delivered to the CRADA partner to facilitate continuation of this research beyond the end of the partnership.

  13. Automatic human action recognition in a scene from visual inputs

    NASA Astrophysics Data System (ADS)

    Bouma, Henri; Hanckmann, Patrick; Marck, Jan-Willem; Penning, Leo; den Hollander, Richard; ten Hove, Johan-Martijn; van den Broek, Sebastiaan; Schutte, Klamer; Burghouts, Gertjan

    2012-06-01

    Surveillance is normally performed by humans, since it requires visual intelligence. However, this can be dull and dangerous, especially for military operations. Therefore, unmanned autonomous visual-intelligence systems are desired. In this paper, we present a novel system that can recognize human actions, which are relevant to detect operationally significant activity. Central to the system is a break-down of high-level perceptual concepts (verbs) in simpler observable events. The system is trained on 3482 videos and evaluated on 2589 videos from the DARPA Mind's Eye program, with for each video human annotations indicating the presence or absence of 48 different actions. The results show that our system reaches good performance approaching the human average response.

  14. Automatic Recognition of Cosmic Rays at Deep Impact CCDs

    NASA Astrophysics Data System (ADS)

    Ipatov, S. I.; A'Hearn, M. F.; Deep Impact Team

    2005-12-01

    The number of cosmic rays on images made by different cameras (HRI VIS, MRI VIS, ITS VIS, HRI IR) during the flight of Deep Impact to Comet Tempel 1 was studied for out-of peak and in the peak (during a flare) of solar activity. Both dark images, which contain only cosmic rays, and normal sky images were considered. We analyzed the work of several programs (imgclean, crfind, and di_crrej) written by several authors and deleting cosmic rays from one image. These programs run well in many cases, but usually they do not work well with raw images, some of the programs have problems with infra-red images and with long (oblique entry) rays, and they delete pixels near the edge of a comet. For infra-red images, imgclean has less problems than other two programs. We have developed an algorithm which allows one to recognize most (but not all) cosmic rays using only one CCD image and which works both with raw and calibrated images. In some cases (e.g. for deleting cosmic rays near a bright star), it works better than the above programs, but for many calibrated images it has no advantages. After the work of our program, pixels of deleted cosmic rays look like neighboring pixels. Crfind and di_crrej only find pixels corresponding to cosmic rays. Analysis of different dark and usual visual images showed that for exposure time t>4 seconds most objects on an image consist of not more than 4 pixels and these objects are caused mainly by hits of cosmic rays. Glitches of large rays have a linear form in contrast to the more circular form for stars. We considered that an object is a ray if the ratio tpix/(dx2+dy^2)<0.17 (where dx and dy are maximum differences of coordinates x and y of an object, respectively, increased by 1; tpix is the number of pixels constituting the object). For most HRI and MRI visual images made during low solar activity at t>4 s, the number Nsc of objects on image per second per square centimeter of CCD was about 2-4, both for dark and usual images, and mainly there were no rays consisting of more than 2t pixels, where t is the exposure time in seconds. For t=30 s there were about 150, 100, 50, and 40 objects consisted of 1, 2, 3, and 4 pixels, respectively, on one dark image, and about 170-200, 110-150, 40-60, 40-50 objects on a typical sky image. At high solar activity, Nsc sometimes exceeded 10. The ratio of the number of cosmic rays consisting of n pixels obtained at high solar activity to that at low solar activity was greater for greater n, e.g., it was about 1-2 for n=1 and about 4-10 at n=5. At 0.004

  15. Algorithm For Automatic Road Recognition On Digitized Map Images

    NASA Astrophysics Data System (ADS)

    Zhu, Zhipu; Kim, Yongmin

    1989-09-01

    This paper presents an algorithm to detect road lines on digitized map images. This algorithm detects road lines based on object shape (line thickness) and gray level values. The road detection process is accomplished in two steps: road line extraction and road tracking. The road line extraction consists of level slicing, morphological filtering, and connected component analysis. The road tracking routine is capable of connecting broken road lines caused by the overlapping of text labels. The algorithm has been implemented on an IBM PC/AT-based image processing system and applied to various map images.

  16. Automatic recognition and scoring of olympic rhythmic gymnastic movements.

    PubMed

    Díaz-Pereira, M Pino; Gómez-Conde, Iván; Escalona, Merly; Olivieri, David N

    2014-04-01

    We describe a conceptually simple algorithm for assigning judgement scores to rhythmic gymnastic movements, which could improve scoring objectivity and reduce judgemental bias during competitions. Our method, implemented as a real-time computer vision software, takes a video shot or a live performance video stream as input and extracts detailed velocity field information from body movements, transforming them into specialized spatio-temporal image templates. The collection of such images over time, when projected into a velocity covariance eigenspace, trace out unique but similar trajectories for a particular gymnastic movement type. By comparing separate executions of the same atomic gymnastic routine, our method assigns a quality judgement score that is related to the distance between the respective spatio-temporal trajectories. For several standard gymnastic movements, the method accurately assigns scores that are comparable to those assigned by expert judges. We also describe our rhythmic gymnastic video shot database, which we have made freely available to the human movement research community. The database can be obtained at http://www.milegroup.net/apps/gymdb/. PMID:24502991

  17. Sensitivity based segmentation and identification in automatic speech recognition

    NASA Astrophysics Data System (ADS)

    Absher, R.

    1984-03-01

    This research program continued an investigation of sensitivity analysis, and its use in the segmentation and identification of the phonetic units of speech, that was initiated during the 1982 Summer Faculty Research Program. The elements of the sensitivity matrix, which express the relative change in each pole of the speech model to a relative change in each coefficient of the characteristic equation, were evaluated for an expanded set of data which consisted of six vowels contained in single words spoken in a simple carrier phrase by five males with differing dialects. The objectives were to evaluate the sensitivity matrix, interpret its changes during the production of the vowels, and to evaluate inter-speaker variations. It was determined that the sensitivity analysis (1) serves to segment the vowel interval, (2) provides a measure of when a vowel is on target, and (3) should provide sufficient information to identify each particular vowel. Based on the results presented, sensitivity analysis should result in more accurate segmentation and identification of phonemes and should provide a practicable framework for incorporation of acoustic-phonetic variance as well as time and talker normalization.

  18. Automatic solar panel recognition and defect detection using infrared imaging

    NASA Astrophysics Data System (ADS)

    Gao, Xiang; Munson, Eric; Abousleman, Glen P.; Si, Jennie

    2015-05-01

    Failure-free operation of solar panels is of fundamental importance for modern commercial solar power plants. To achieve higher power generation efficiency and longer panel life, a simple and reliable panel evaluation method is required. By using thermal infrared imaging, anomalies can be detected without having to incorporate expensive electrical detection circuitry. In this paper, we propose a solar panel defect detection system, which automates the inspection process and mitigates the need for manual panel inspection in a large solar farm. Infrared video sequences of each array of solar panels are first collected by an infrared camera mounted to a moving cart, which is driven from array to array in a solar farm. The image processing algorithm segments the solar panels from the background in real time, with only the height of the array (specified as the number of rows of panels in the array) being given as prior information to aid in the segmentation process. In order to "count" the number the panels within any given array, frame-to frame panel association is established using optical flow. Local anomalies in a single panel such as hotspots and cracks will be immediately detected and labeled as soon as the panel is recognized in the field of view. After the data from an entire array is collected, hot panels are detected using DBSCAN clustering. On real-world test data containing over 12,000 solar panels, over 98% of all panels are recognized and correctly counted, with 92% of all types of defects being identified by the system.

  19. Automatic Recognition of Breathing Route During Sleep Using Snoring Sounds

    NASA Astrophysics Data System (ADS)

    Mikami, Tsuyoshi; Kojima, Yohichiro

    This letter classifies snoring sounds into three breathing routes (oral, nasal, and oronasal) with discriminant analysis of the power spectra and k-nearest neighbor method. It is necessary to recognize breathing route during snoring, because oral snoring is a typical symptom of sleep apnea but we cannot know our own breathing and snoring condition during sleep. As a result, about 98.8% classification rate is obtained by using leave-one-out test for performance evaluation.

  20. Automatic identification of biological microorganisms using three-dimensional complex morphology.

    PubMed

    Yeom, Seokwon; Javidi, Bahram

    2006-01-01

    We propose automated identification of microorganisms using three-dimensional (3-D) complex morphology. This 3-D complex morphology pattern includes the complex amplitude (magnitude and phase) of computationally reconstructed holographic images at arbitrary depths. Microscope-based single-exposure on-line (SEOL) digital holography records and reconstructs holographic images of the biological microorganisms. The 3-D automatic recognition is processed by segmentation, feature extraction by Gabor-based wavelets, automatic feature vector selection by graph matching, training rules, and a decision process. Graph matching combined with Gabor feature vectors measures the similarity of complex geometrical shapes between a reference microorganism and unknown biological samples. Automatic selection of the training data is proposed to achieve a fully automatic recognition system. Preliminary experimental results are presented for 3-D image recognition of Sphacelaria alga and Tribonema aequale alga. PMID:16674207

  1. Face Recognition in Humans and Machines

    NASA Astrophysics Data System (ADS)

    O'Toole, Alice; Tistarelli, Massimo

    The study of human face recognition by psychologists and neuroscientists has run parallel to the development of automatic face recognition technologies by computer scientists and engineers. In both cases, there are analogous steps of data acquisition, image processing, and the formation of representations that can support the complex and diverse tasks we accomplish with faces. These processes can be understood and compared in the context of their neural and computational implementations. In this chapter, we present the essential elements of face recognition by humans and machines, taking a perspective that spans psychological, neural, and computational approaches. From the human side, we overview the methods and techniques used in the neurobiology of face recognition, the underlying neural architecture of the system, the role of visual attention, and the nature of the representations that emerges. From the computational side, we discuss face recognition technologies and the strategies they use to overcome challenges to robust operation over viewing parameters. Finally, we conclude the chapter with a look at some recent studies that compare human and machine performances at face recognition.

  2. Robust coarticulatory modeling for continuous speech recognition

    NASA Astrophysics Data System (ADS)

    Schwartz, R.; Chow, Y. L.; Dunham, M. O.; Kimball, O.; Krasner, M.; Kubala, F.; Makhoul, J.; Price, P.; Roucos, S.

    1986-10-01

    The purpose of this project is to perform research into algorithms for the automatic recognition of individual sounds or phonemes in continuous speech. The algorithms developed should be appropriate for understanding large-vocabulary continuous speech input and are to be made available to the Strategic Computing Program for incorporation in a complete word recognition system. This report describes process to date in developing phonetic models that are appropriate for continuous speech recognition. In continuous speech, the acoustic realization of each phoneme depends heavily on the preceding and following phonemes: a process known as coarticulation. Thus, while there are relatively few phonemes in English (on the order of fifty or so), the number of possible different accoustic realizations is in the thousands. Therefore, to develop high-accuracy recognition algorithms, one may need to develop literally thousands of relatively distance phonetic models to represent the various phonetic context adequately. Developing a large number of models usually necessitates having a large amount of speech to provide reliable estimates of the model parameters. The major contributions of this work are the development of: (1) A simple but powerful formalism for modeling phonemes in context; (2) Robust training methods for the reliable estimation of model parameters by utilizing the available speech training data in a maximally effective way; and (3) Efficient search strategies for phonetic recognition while maintaining high recognition accuracy.

  3. Automatic Parametric Testing Of Integrated Circuits

    NASA Technical Reports Server (NTRS)

    Jennings, Glenn A.; Pina, Cesar A.

    1989-01-01

    Computer program for parametric testing saves time and effort in research and development of integrated circuits. Software system automatically assembles various types of test structures and lays them out on silicon chip, generates sequency of test instructions, and interprets test data. Employs self-programming software; needs minimum of human intervention. Adapted to needs of different laboratories and readily accommodates new test structures. Program codes designed to be adaptable to most computers and test equipment now in use. Written in high-level languages to enhance transportability.

  4. Automatic amino acid analyzer

    NASA Technical Reports Server (NTRS)

    Berdahl, B. J.; Carle, G. C.; Oyama, V. I.

    1971-01-01

    Analyzer operates unattended or up to 15 hours. It has an automatic sample injection system and can be programmed. All fluid-flow valve switching is accomplished pneumatically from miniature three-way solenoid pilot valves.

  5. Automatic Payroll Deposit System.

    ERIC Educational Resources Information Center

    Davidson, D. B.

    1979-01-01

    The Automatic Payroll Deposit System in Yakima, Washington's Public School District No. 7, directly transmits each employee's salary amount for each pay period to a bank or other financial institution. (Author/MLF)

  6. Automatic switching matrix

    DOEpatents

    Schlecht, Martin F.; Kassakian, John G.; Caloggero, Anthony J.; Rhodes, Bruce; Otten, David; Rasmussen, Neil

    1982-01-01

    An automatic switching matrix that includes an apertured matrix board containing a matrix of wires that can be interconnected at each aperture. Each aperture has associated therewith a conductive pin which, when fully inserted into the associated aperture, effects electrical connection between the wires within that particular aperture. Means is provided for automatically inserting the pins in a determined pattern and for removing all the pins to permit other interconnecting patterns.

  7. Computer-assisted counting of retinal cells by automatic segmentation after TV denoising

    PubMed Central

    2013-01-01

    Background Quantitative evaluation of mosaics of photoreceptors and neurons is essential in studies on development, aging and degeneration of the retina. Manual counting of samples is a time consuming procedure while attempts to automatization are subject to various restrictions from biological and preparation variability leading to both over- and underestimation of cell numbers. Here we present an adaptive algorithm to overcome many of these problems. Digital micrographs were obtained from cone photoreceptor mosaics visualized by anti-opsin immuno-cytochemistry in retinal wholemounts from a variety of mammalian species including primates. Segmentation of photoreceptors (from background, debris, blood vessels, other cell types) was performed by a procedure based on Rudin-Osher-Fatemi total variation (TV) denoising. Once 3 parameters are manually adjusted based on a sample, similarly structured images can be batch processed. The module is implemented in MATLAB and fully documented online. Results The object recognition procedure was tested on samples with a typical range of signal and background variations. We obtained results with error ratios of less than 10% in 16 of 18 samples and a mean error of less than 6% compared to manual counts. Conclusions The presented method provides a traceable module for automated acquisition of retinal cell density data. Remaining errors, including addition of background items, splitting or merging of objects might be further reduced by introduction of additional parameters. The module may be integrated into extended environments with features such as 3D-acquisition and recognition. PMID:24138794

  8. [Study on the automatic parameters identification of water pipe network model].

    PubMed

    Jia, Hai-Feng; Zhao, Qi-Feng

    2010-01-01

    Based on the problems analysis on development and application of water pipe network model, the model parameters automatic identification is regarded as a kernel bottleneck of model's application in water supply enterprise. The methodology of water pipe network model parameters automatic identification based on GIS and SCADA database is proposed. Then the kernel algorithm of model parameters automatic identification is studied, RSA (Regionalized Sensitivity Analysis) is used for automatic recognition of sensitive parameters, and MCS (Monte-Carlo Sampling) is used for automatic identification of parameters, the detail technical route based on RSA and MCS is presented. The module of water pipe network model parameters automatic identification is developed. At last, selected a typical water pipe network as a case, the case study on water pipe network model parameters automatic identification is conducted and the satisfied results are achieved. PMID:20329520

  9. Speech-in-Speech Recognition: A Training Study

    ERIC Educational Resources Information Center

    Van Engen, Kristin J.

    2012-01-01

    This study aims to identify aspects of speech-in-noise recognition that are susceptible to training, focusing on whether listeners can learn to adapt to target talkers ("tune in") and learn to better cope with various maskers ("tune out") after short-term training. Listeners received training on English sentence recognition in speech-shaped noise…

  10. Severity-Based Adaptation with Limited Data for ASR to Aid Dysarthric Speakers

    PubMed Central

    Mustafa, Mumtaz Begum; Salim, Siti Salwah; Mohamed, Noraini; Al-Qatab, Bassam; Siong, Chng Eng

    2014-01-01

    Automatic speech recognition (ASR) is currently used in many assistive technologies, such as helping individuals with speech impairment in their communication ability. One challenge in ASR for speech-impaired individuals is the difficulty in obtaining a good speech database of impaired speakers for building an effective speech acoustic model. Because there are very few existing databases of impaired speech, which are also limited in size, the obvious solution to build a speech acoustic model of impaired speech is by employing adaptation techniques. However, issues that have not been addressed in existing studies in the area of adaptation for speech impairment are as follows: (1) identifying the most effective adaptation technique for impaired speech; and (2) the use of suitable source models to build an effective impaired-speech acoustic model. This research investigates the above-mentioned two issues on dysarthria, a type of speech impairment affecting millions of people. We applied both unimpaired and impaired speech as the source model with well-known adaptation techniques like the maximum likelihood linear regression (MLLR) and the constrained-MLLR(C-MLLR). The recognition accuracy of each impaired speech acoustic model is measured in terms of word error rate (WER), with further assessments, including phoneme insertion, substitution and deletion rates. Unimpaired speech when combined with limited high-quality speech-impaired data improves performance of ASR systems in recognising severely impaired dysarthric speech. The C-MLLR adaptation technique was also found to be better than MLLR in recognising mildly and moderately impaired speech based on the statistical analysis of the WER. It was found that phoneme substitution was the biggest contributing factor in WER in dysarthric speech for all levels of severity. The results show that the speech acoustic models derived from suitable adaptation techniques improve the performance of ASR systems in recognising

  11. Severity-based adaptation with limited data for ASR to aid dysarthric speakers.

    PubMed

    Mustafa, Mumtaz Begum; Salim, Siti Salwah; Mohamed, Noraini; Al-Qatab, Bassam; Siong, Chng Eng

    2014-01-01

    Automatic speech recognition (ASR) is currently used in many assistive technologies, such as helping individuals with speech impairment in their communication ability. One challenge in ASR for speech-impaired individuals is the difficulty in obtaining a good speech database of impaired speakers for building an effective speech acoustic model. Because there are very few existing databases of impaired speech, which are also limited in size, the obvious solution to build a speech acoustic model of impaired speech is by employing adaptation techniques. However, issues that have not been addressed in existing studies in the area of adaptation for speech impairment are as follows: (1) identifying the most effective adaptation technique for impaired speech; and (2) the use of suitable source models to build an effective impaired-speech acoustic model. This research investigates the above-mentioned two issues on dysarthria, a type of speech impairment affecting millions of people. We applied both unimpaired and impaired speech as the source model with well-known adaptation techniques like the maximum likelihood linear regression (MLLR) and the constrained-MLLR(C-MLLR). The recognition accuracy of each impaired speech acoustic model is measured in terms of word error rate (WER), with further assessments, including phoneme insertion, substitution and deletion rates. Unimpaired speech when combined with limited high-quality speech-impaired data improves performance of ASR systems in recognising severely impaired dysarthric speech. The C-MLLR adaptation technique was also found to be better than MLLR in recognising mildly and moderately impaired speech based on the statistical analysis of the WER. It was found that phoneme substitution was the biggest contributing factor in WER in dysarthric speech for all levels of severity. The results show that the speech acoustic models derived from suitable adaptation techniques improve the performance of ASR systems in recognising

  12. Pupil dilation during recognition memory: Isolating unexpected recognition from judgment uncertainty.

    PubMed

    Mill, Ravi D; O'Connor, Akira R; Dobbins, Ian G

    2016-09-01

    Optimally discriminating familiar from novel stimuli demands a decision-making process informed by prior expectations. Here we demonstrate that pupillary dilation (PD) responses during recognition memory decisions are modulated by expectations, and more specifically, that pupil dilation increases for unexpected compared to expected recognition. Furthermore, multi-level modeling demonstrated that the time course of the dilation during each individual trial contains separable early and late dilation components, with the early amplitude capturing unexpected recognition, and the later trailing slope reflecting general judgment uncertainty or effort. This is the first demonstration that the early dilation response during recognition is dependent upon observer expectations and that separate recognition expectation and judgment uncertainty components are present in the dilation time course of every trial. The findings provide novel insights into adaptive memory-linked orienting mechanisms as well as the general cognitive underpinnings of the pupillary index of autonomic nervous system activity. PMID:27253862

  13. Selective Gammatone Envelope Feature for Robust Sound Event Recognition

    NASA Astrophysics Data System (ADS)

    Leng, Yi Ren; Tran, Huy Dat; Kitaoka, Norihide; Li, Haizhou

    Conventional features for Automatic Speech Recognition and Sound Event Recognition such as Mel-Frequency Cepstral Coefficients (MFCCs) have been shown to perform poorly in noisy conditions. We introduce an auditory feature based on the gammatone filterbank, the Selective Gammatone Envelope Feature (SGEF), for Robust Sound Event Recognition where channel selection and the filterbank envelope is used to reduce the effect of noise for specific noise environments. In the experiments with Hidden Markov Model (HMM) recognizers, we shall show that our feature outperforms MFCCs significantly in four different noisy environments at various signal-to-noise ratios.

  14. Antigen Recognition By Variable Lymphocyte Receptors

    SciTech Connect

    Han, B.W.; Herrin, B.R.; Cooper, M.D.; Wilson, I.A.

    2009-05-18

    Variable lymphocyte receptors (VLRs) rather than antibodies play the primary role in recognition of antigens in the adaptive immune system of jawless vertebrates. Combinatorial assembly of leucine-rich repeat (LRR) gene segments achieves the required repertoire for antigen recognition. We have determined a crystal structure for a VLR-antigen complex, VLR RBC36 in complex with the H-antigen trisaccharide from human blood type O erythrocytes, at 1.67 angstrom resolution. RBC36 binds the H-trisaccharide on the concave surface of the LRR modules of the solenoid structure where three key hydrophilic residues, multiple van der Waals interactions, and the highly variable insert of the carboxyl-terminal LRR module determine antigen recognition and specificity. The concave surface assembled from the most highly variable regions of the LRRs, along with diversity in the sequence and length of the highly variable insert, can account for the recognition of diverse antigens by VLRs.

  15. The recognition heuristic: a review of theory and tests.

    PubMed

    Pachur, Thorsten; Todd, Peter M; Gigerenzer, Gerd; Schooler, Lael J; Goldstein, Daniel G

    2011-01-01

    The recognition heuristic is a prime example of how, by exploiting a match between mind and environment, a simple mental strategy can lead to efficient decision making. The proposal of the heuristic initiated a debate about the processes underlying the use of recognition in decision making. We review research addressing four key aspects of the recognition heuristic: (a) that recognition is often an ecologically valid cue; (b) that people often follow recognition when making inferences; (c) that recognition supersedes further cue knowledge; (d) that its use can produce the less-is-more effect - the phenomenon that lesser states of recognition knowledge can lead to more accurate inferences than more complete states. After we contrast the recognition heuristic to other related concepts, including availability and fluency, we carve out, from the existing findings, some boundary conditions of the use of the recognition heuristic as well as key questions for future research. Moreover, we summarize developments concerning the connection of the recognition heuristic with memory models. We suggest that the recognition heuristic is used adaptively and that, compared to other cues, recognition seems to have a special status in decision making. Finally, we discuss how systematic ignorance is exploited in other cognitive mechanisms (e.g., estimation and preference). PMID:21779266

  16. The Recognition Heuristic: A Review of Theory and Tests

    PubMed Central

    Pachur, Thorsten; Todd, Peter M.; Gigerenzer, Gerd; Schooler, Lael J.; Goldstein, Daniel G.

    2011-01-01

    The recognition heuristic is a prime example of how, by exploiting a match between mind and environment, a simple mental strategy can lead to efficient decision making. The proposal of the heuristic initiated a debate about the processes underlying the use of recognition in decision making. We review research addressing four key aspects of the recognition heuristic: (a) that recognition is often an ecologically valid cue; (b) that people often follow recognition when making inferences; (c) that recognition supersedes further cue knowledge; (d) that its use can produce the less-is-more effect – the phenomenon that lesser states of recognition knowledge can lead to more accurate inferences than more complete states. After we contrast the recognition heuristic to other related concepts, including availability and fluency, we carve out, from the existing findings, some boundary conditions of the use of the recognition heuristic as well as key questions for future research. Moreover, we summarize developments concerning the connection of the recognition heuristic with memory models. We suggest that the recognition heuristic is used adaptively and that, compared to other cues, recognition seems to have a special status in decision making. Finally, we discuss how systematic ignorance is exploited in other cognitive mechanisms (e.g., estimation and preference). PMID:21779266

  17. Adaptive feature extraction expert

    SciTech Connect

    Yuschik, M.

    1983-01-01

    The identification of discriminatory features places an upper bound on the recognition rate of any automatic speech recognition (ASR) system. One way to structure the extraction of features is to construct an expert system which applies a set of rules to identify particular properties of the speech patterns. However, these patterns vary for an individual speaker and from speaker to speaker so that another expert is actually needed to learn the new variations. The author investigates the problem by using sets of discriminatory features that are suggested by a feature generation expert, improves the selectivity of these features with a training expert, and finally develops a minimally spanning feature set with a statistical selection expert. 12 references.

  18. Practical vision based degraded text recognition system

    NASA Astrophysics Data System (ADS)

    Mohammad, Khader; Agaian, Sos; Saleh, Hani

    2011-02-01

    Rapid growth and progress in the medical, industrial, security and technology fields means more and more consideration for the use of camera based optical character recognition (OCR) Applying OCR to scanned documents is quite mature, and there are many commercial and research products available on this topic. These products achieve acceptable recognition accuracy and reasonable processing times especially with trained software, and constrained text characteristics. Even though the application space for OCR is huge, it is quite challenging to design a single system that is capable of performing automatic OCR for text embedded in an image irrespective of the application. Challenges for OCR systems include; images are taken under natural real world conditions, Surface curvature, text orientation, font, size, lighting conditions, and noise. These and many other conditions make it extremely difficult to achieve reasonable character recognition. Performance for conventional OCR systems drops dramatically as the degradation level of the text image quality increases. In this paper, a new recognition method is proposed to recognize solid or dotted line degraded characters. The degraded text string is localized and segmented using a new algorithm. The new method was implemented and tested using a development framework system that is capable of performing OCR on camera captured images. The framework allows parameter tuning of the image-processing algorithm based on a training set of camera-captured text images. Novel methods were used for enhancement, text localization and the segmentation algorithm which enables building a custom system that is capable of performing automatic OCR which can be used for different applications. The developed framework system includes: new image enhancement, filtering, and segmentation techniques which enabled higher recognition accuracies, faster processing time, and lower energy consumption, compared with the best state of the art published

  19. Image characterization and target recognition in the surf zone environment

    NASA Astrophysics Data System (ADS)

    Nevis, Andrew J.

    1996-05-01

    The surf zone environment represents a very difficult challenge for electro-optic surveillance programs. Data from these programs have been shown to contain dense clutter from vegetation, biological factors (fish), and man-made objects, and is further complicated by the water to land transition which has a significant impact on target signal-to-noise ratios (SNR). Also, targets can be geometrically warped from the sea surface and by occlusion from sand and breaking waves. The Program Executive Office Mine Warfare (PMO-210) recently sponsored a test under the Magic Lantern Adaptation (MLA) program to collect surf zone data. Analysis of the data revealed a dilemma for automatic target recognition algorithms; threshold target features high enough to reduce high false alarm rates from land clutter or low enough to detect and classify underwater targets. Land image typically have high SNR clutter with crisp edges while underwater images have lower SNR clutter with blurred edges. In an attempt to help distinguish between land and underwater images, target feature thresholds were made to vary as a function of the SNR of image features within images and as a function of a measure of the edge crispness of the image features. The feasibility of varying target feature thresholds to reduce false alarm rates was demonstrated on a target recognition program using a small set of MLA data. Four features were developed based on expected target shape and resolution: a contrast difference measure between circular targets and their local backgrounds, a signal-to-noise ratio, a normalized correlation, and a target circularity measure. Results showed a target probability of detection and classification (Pdc) of 50 - 78% with false alarms per frame of less than 4%.

  20. Script recognition--a review.

    PubMed

    Ghosh, Debashis; Dube, Tulika; Shivaprasad, Adamane P

    2010-12-01

    A variety of different scripts are used in writing languages throughout the world. In a multiscript, multilingual environment, it is essential to know the script used in writing a document before an appropriate character recognition and document analysis algorithm can be chosen. In view of this, several methods for automatic script identification have been developed so far. They mainly belong to two broad categories-structure-based and visual-appearance-based techniques. This survey report gives an overview of the different script identification methodologies under each of these categories. Methods for script identification in online data and video-texts are also presented. It is noted that the research in this field is relatively thin and still more research is to be done, particularly in the case of handwritten documents. PMID:20975114