Sample records for adaptive beam shaping

  1. Adaptive beam shaping for improving the power coupling of a two-Cassegrain-telescope

    NASA Astrophysics Data System (ADS)

    Ma, Haotong; Hu, Haojun; Xie, Wenke; Zhao, Haichuan; Xu, Xiaojun; Chen, Jinbao

    2013-08-01

    We demonstrate the adaptive beam shaping for improving the power coupling of a two-Cassegrain-telescope based on the stochastic parallel gradient descent (SPGD) algorithm and dual phase only liquid crystal spatial light modulators (LC-SLMs). Adaptive pre-compensation the wavefront of projected laser beam at the transmitter telescope is chosen to improve the power coupling efficiency. One phase only LC-SLM adaptively optimizes phase distribution of the projected laser beam and the other generates turbulence phase screen. The intensity distributions of the dark hollow beam after passing through the turbulent atmosphere with and without adaptive beam shaping are analyzed in detail. The influence of propagation distance and aperture size of the Cassegrain-telescope on coupling efficiency are investigated theoretically and experimentally. These studies show that the power coupling can be significantly improved by adaptive beam shaping. The technique can be used in optical communication, deep space optical communication and relay mirror.

  2. Adaptive electron beam shaping using a photoemission gun and spatial light modulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maxson, Jared; Lee, Hyeri; Bartnik, Adam C.

    The need for precisely defined beam shapes in photoelectron sources has been well established. In this paper, we use a spatial light modulator and simple shaping algorithm to create arbitrary, detailed transverse laser shapes with high fidelity. We transmit this shaped laser to the photocathode of a high voltage dc gun. Using beam currents where space charge is negligible, and using an imaging solenoid and fluorescent viewscreen, we show that the resultant beam shape preserves these detailed features with similar fidelity. Next, instead of transmitting a shaped laser profile, we use an active feedback on the unshaped electron beam imagemore » to create equally accurate and detailed shapes. We demonstrate that this electron beam feedback has the added advantage of correcting for electron optical aberrations, yielding shapes without skew. The method may serve to provide precisely defined electron beams for low current target experiments, space-charge dominated beam commissioning, as well as for online adaptive correction of photocathode quantum efficiency degradation.« less

  3. Adaptive electron beam shaping using a photoemission gun and spatial light modulator

    NASA Astrophysics Data System (ADS)

    Maxson, Jared; Lee, Hyeri; Bartnik, Adam C.; Kiefer, Jacob; Bazarov, Ivan

    2015-02-01

    The need for precisely defined beam shapes in photoelectron sources has been well established. In this paper, we use a spatial light modulator and simple shaping algorithm to create arbitrary, detailed transverse laser shapes with high fidelity. We transmit this shaped laser to the photocathode of a high voltage dc gun. Using beam currents where space charge is negligible, and using an imaging solenoid and fluorescent viewscreen, we show that the resultant beam shape preserves these detailed features with similar fidelity. Next, instead of transmitting a shaped laser profile, we use an active feedback on the unshaped electron beam image to create equally accurate and detailed shapes. We demonstrate that this electron beam feedback has the added advantage of correcting for electron optical aberrations, yielding shapes without skew. The method may serve to provide precisely defined electron beams for low current target experiments, space-charge dominated beam commissioning, as well as for online adaptive correction of photocathode quantum efficiency degradation.

  4. Adaptive electron beam shaping using a photoemission gun and spatial light modulator

    DOE PAGES

    Maxson, Jared; Lee, Hyeri; Bartnik, Adam C.; ...

    2015-02-01

    The need for precisely defined beam shapes in photoelectron sources has been well established. In this paper, we use a spatial light modulator and simple shaping algorithm to create arbitrary, detailed transverse laser shapes with high fidelity. We transmit this shaped laser to the photocathode of a high voltage dc gun. Using beam currents where space charge is negligible, and using an imaging solenoid and fluorescent viewscreen, we show that the resultant beam shape preserves these detailed features with similar fidelity. Next, instead of transmitting a shaped laser profile, we use an active feedback on the unshaped electron beam imagemore » to create equally accurate and detailed shapes. We demonstrate that this electron beam feedback has the added advantage of correcting for electron optical aberrations, yielding shapes without skew. The method may serve to provide precisely defined electron beams for low current target experiments, space-charge dominated beam commissioning, as well as for online adaptive correction of photocathode quantum efficiency degradation.« less

  5. Adaptive slit beam shaping for direct laser written waveguides.

    PubMed

    Salter, P S; Jesacher, A; Spring, J B; Metcalf, B J; Thomas-Peter, N; Simmonds, R D; Langford, N K; Walmsley, I A; Booth, M J

    2012-02-15

    We demonstrate an improved method for fabricating optical waveguides in bulk materials by means of femtosecond laser writing. We use an LC spatial light modulator (SLM) to shape the beam focus by generating adaptive slit illumination in the pupil of the objective lens. A diffraction grating is applied in a strip across the SLM to simulate a slit, with the first diffracted order mapped onto the pupil plane of the objective lens while the zeroth order is blocked. This technique enables real-time control of the beam-shaping parameters during writing, facilitating the fabrication of more complicated structures than is possible using nonadaptive methods. Waveguides are demonstrated in fused silica with a coupling loss to single-mode fibers in the range of 0.2 to 0.5 dB and propagation loss <0.4 dB/cm.

  6. Adaptive beam shaping by controlled thermal lensing in optical elements

    NASA Astrophysics Data System (ADS)

    Arain, Muzammil A.; Quetschke, Volker; Gleason, Joseph; Williams, Luke F.; Rakhmanov, Malik; Lee, Jinho; Cruz, Rachel J.; Mueller, Guido; Tanner, D. B.; Reitze, David. H.

    2007-04-01

    We describe an adaptive optical system for use as a tunable focusing element. The system provides adaptive beam shaping via controlled thermal lensing in the optical elements. The system is agile, remotely controllable, touch free, and vacuum compatible; it offers a wide dynamic range, aberration-free focal length tuning, and can provide both positive and negative lensing effects. Focusing is obtained through dynamic heating of an optical element by an external pump beam. The system is especially suitable for use in interferometric gravitational wave interferometers employing high laser power, allowing for in situ control of the laser modal properties and compensation for thermal lensing of the primary laser. Using CO2 laser heating of fused-silica substrates, we demonstrate a focal length variable from infinity to 4.0 m, with a slope of 0.082 diopter/W of absorbed heat. For on-axis operation, no higher-order modes are introduced by the adaptive optical element. Theoretical modeling of the induced optical path change and predicted thermal lens agrees well with measurement.

  7. Adaptive beam shaping by controlled thermal lensing in optical elements.

    PubMed

    Arain, Muzammil A; Quetschke, Volker; Gleason, Joseph; Williams, Luke F; Rakhmanov, Malik; Lee, Jinho; Cruz, Rachel J; Mueller, Guido; Tanner, D B; Reitze, David H

    2007-04-20

    We describe an adaptive optical system for use as a tunable focusing element. The system provides adaptive beam shaping via controlled thermal lensing in the optical elements. The system is agile, remotely controllable, touch free, and vacuum compatible; it offers a wide dynamic range, aberration-free focal length tuning, and can provide both positive and negative lensing effects. Focusing is obtained through dynamic heating of an optical element by an external pump beam. The system is especially suitable for use in interferometric gravitational wave interferometers employing high laser power, allowing for in situ control of the laser modal properties and compensation for thermal lensing of the primary laser. Using CO(2) laser heating of fused-silica substrates, we demonstrate a focal length variable from infinity to 4.0 m, with a slope of 0.082 diopter/W of absorbed heat. For on-axis operation, no higher-order modes are introduced by the adaptive optical element. Theoretical modeling of the induced optical path change and predicted thermal lens agrees well with measurement.

  8. Beam shaping for laser-based adaptive optics in astronomy.

    PubMed

    Béchet, Clémentine; Guesalaga, Andrés; Neichel, Benoit; Fesquet, Vincent; González-Núñez, Héctor; Zúñiga, Sebastián; Escarate, Pedro; Guzman, Dani

    2014-06-02

    The availability and performance of laser-based adaptive optics (AO) systems are strongly dependent on the power and quality of the laser beam before being projected to the sky. Frequent and time-consuming alignment procedures are usually required in the laser systems with free-space optics to optimize the beam. Despite these procedures, significant distortions of the laser beam have been observed during the first two years of operation of the Gemini South multi-conjugate adaptive optics system (GeMS). A beam shaping concept with two deformable mirrors is investigated in order to provide automated optimization of the laser quality for astronomical AO. This study aims at demonstrating the correction of quasi-static aberrations of the laser, in both amplitude and phase, testing a prototype of this two-deformable mirror concept on GeMS. The paper presents the results of the preparatory study before the experimental phase. An algorithm to control amplitude and phase correction, based on phase retrieval techniques, is presented with a novel unwrapping method. Its performance is assessed via numerical simulations, using aberrations measured at GeMS as reference. The results predict effective amplitude and phase correction of the laser distortions with about 120 actuators per mirror and a separation of 1.4 m between the mirrors. The spot size is estimated to be reduced by up to 15% thanks to the correction. In terms of AO noise level, this has the same benefit as increasing the photon flux by 40%.

  9. Beam shaping as an enabler for new applications

    NASA Astrophysics Data System (ADS)

    Guertler, Yvonne; Kahmann, Max; Havrilla, David

    2017-02-01

    For many years, laser beam shaping has enabled users to achieve optimized process results as well as manage challenging applications. The latest advancements in industrial lasers and processing optics have taken this a step further as users are able to adapt the beam shape to meet specific application requirements in a very flexible way. TRUMPF has developed a wide range of experience in creating beam profiles at the work piece for optimized material processing. This technology is based on the physical model of wave optics and can be used with ultra short pulse lasers as well as multi-kW cw lasers. Basically, the beam shape can be adapted in all three dimensions in space, which allows maximum flexibility. Besides adaption of intensity profile, even multi-spot geometries can be produced. This approach is very cost efficient, because a standard laser source and (in the case of cw lasers) a standard fiber can be used without any special modifications. Based on this innovative beam shaping technology, TRUMPF has developed new and optimized processes. Two of the most recent application developments using these techniques are cutting glass and synthetic sapphire with ultra-short pulse lasers and enhanced brazing of hot dip zinc coated steel for automotive applications. Both developments lead to more efficient and flexible production processes, enabled by laser technology and open the door to new opportunities. They also indicate the potential of beam shaping techniques since they can be applied to both single-mode laser sources (TOP Cleave) and multi-mode laser sources (brazing).

  10. Finite Element Analysis of Adaptive-Stiffening and Shape-Control SMA Hybrid Composites

    NASA Technical Reports Server (NTRS)

    Gao, Xiujie; Burton, Deborah; Turner, Travis L.; Brinson, Catherine

    2005-01-01

    Shape memory alloy hybrid composites with adaptive-stiffening or morphing functions are simulated using finite element analysis. The composite structure is a laminated fiber-polymer composite beam with embedded SMA ribbons at various positions with respect to the neutral axis of the beam. Adaptive stiffening or morphing is activated via selective resistance heating of the SMA ribbons or uniform thermal loads on the beam. The thermomechanical behavior of these composites was simulated in ABAQUS using user-defined SMA elements. The examples demonstrate the usefulness of the methods for the design and simulation of SMA hybrid composites. Keywords: shape memory alloys, Nitinol, ABAQUS, finite element analysis, post-buckling control, shape control, deflection control, adaptive stiffening, morphing, constitutive modeling, user element

  11. Diffractive beam shaping for enhanced laser polymer welding

    NASA Astrophysics Data System (ADS)

    Rauschenberger, J.; Vogler, D.; Raab, C.; Gubler, U.

    2015-03-01

    Laser welding of polymers increasingly finds application in a large number of industries such as medical technology, automotive, consumer electronics, textiles or packaging. More and more, it replaces other welding technologies for polymers, e. g. hot-plate, vibration or ultrasonic welding. At the same rate, demands on the quality of the weld, the flexibility of the production system and on processing speed have increased. Traditionally, diode lasers were employed for plastic welding with flat-top beam profiles. With the advent of fiber lasers with excellent beam quality, the possibility to modify and optimize the beam profile by beam-shaping elements has opened. Diffractive optical elements (DOE) can play a crucial role in optimizing the laser intensity profile towards the optimal M-shape beam for enhanced weld seam quality. We present results on significantly improved weld seam width constancy and enlarged process windows compared to Gaussian or flat-top beam profiles. Configurations in which the laser beam diameter and shape can be adapted and optimized without changing or aligning the laser, fiber-optic cable or optical head are shown.

  12. Beam shaping in high-power laser systems with using refractive beam shapers

    NASA Astrophysics Data System (ADS)

    Laskin, Alexander; Laskin, Vadim

    2012-06-01

    Beam Shaping of the spatial (transverse) profile of laser beams is highly desirable by building optical systems of high-power lasers as well in various applications with these lasers. Pumping of the crystals of Ti:Sapphire lasers by the laser radiation with uniform (flattop) intensity profile improves performance of these ultrashort pulse high-power lasers in terms of achievable efficiency, peak-power and stability, output beam profile. Specifications of the solid-state lasers built according to MOPA configuration can be also improved when radiation of the master oscillator is homogenized and then is amplified by the power amplifier. Features of building these high power lasers require that a beam shaping solution should be capable to work with single mode and multimode beams, provide flattop and super-Gauss intensity distributions, the consistency and divergence of a beam after the intensity re-distribution should be conserved and low absorption provided. These specific conditions are perfectly fulfilled by the refractive field mapping beam shapers due to their unique features: almost lossless intensity profile transformation, low output divergence, high transmittance and flatness of output beam profile, extended depth of field, adaptability to real intensity profiles of TEM00 and multimode laser sources. Combining of the refractive field mapping beam shapers with other optical components, like beam-expanders, relay imaging lenses, anamorphic optics makes it possible to generate the laser spots of necessary shape, size and intensity distribution. There are plenty of applications of high-power lasers where beam shaping bring benefits: irradiating photocathode of Free Electron Lasers (FEL), material ablation, micromachining, annealing in display making techniques, cladding, heat treating and others. This paper will describe some design basics of refractive beam shapers of the field mapping type, with emphasis on the features important for building and applications

  13. Laser Beam Shaping

    NASA Astrophysics Data System (ADS)

    Aït-Ameur, Kamel; Passilly, Nicolas; de Saint Denis, R.; Fromager, Michaël

    2008-09-01

    We consider the promising properties of very simple Diffractive Optical Elements (DOE) for reshaping the intensity profile of a laser beam. The first type of DOE that we have considered is a phase aperture which consists in a transparent plate with a circular relief introducing a π phase shift in the central region of the incident beam. The phase aperture is able to convert a Gaussian beam into a super-Gaussian, a ring-shaped or a doughnut profile. The second DOE that has been considered is an adjustable axicon able to transform a Gaussian laser beam into a dark hollow beam or a Bessel-Gauss beam. The desired conical geometry is obtained from a deformable mirror formed by a 2 inches, 0.25mm thick silicon wafer supported by a standard 2 inches optical mount. To achieve the adequate deformation a small metallic ball pushes the back of the mirror wafer. The realized shape is monitored with a Shack-Hartmann wave-front sensor and it is shown that conical shape cannot be achieved. Nevertheless, recorded wave fronts exhibit important third order spherical aberration able to achieve beam profile transformation as conical lenses.

  14. Shaping propagation invariant laser beams

    NASA Astrophysics Data System (ADS)

    Soskind, Michael; Soskind, Rose; Soskind, Yakov

    2015-11-01

    Propagation-invariant structured laser beams possess several unique properties and play an important role in various photonics applications. The majority of propagation invariant beams are produced in the form of laser modes emanating from stable laser cavities. Therefore, their spatial structure is limited by the intracavity mode formation. We show that several types of anamorphic optical systems (AOSs) can be effectively employed to shape laser beams into a variety of propagation invariant structured fields with different shapes and phase distributions. We present a propagation matrix approach for designing AOSs and defining mode-matching conditions required for preserving propagation invariance of the output shaped fields. The propagation matrix approach was selected, as it provides a more straightforward approach in designing AOSs for shaping propagation-invariant laser beams than the alternative technique based on the Gouy phase evolution, especially in the case of multielement AOSs. Several practical configurations of optical systems that are suitable for shaping input laser beams into a diverse variety of structured propagation invariant laser beams are also presented. The laser beam shaping approach was applied by modeling propagation characteristics of several input laser beam types, including Hermite-Gaussian, Laguerre-Gaussian, and Ince-Gaussian structured field distributions. The influence of the Ince-Gaussian beam semifocal separation parameter and the azimuthal orientation between the input laser beams and the AOSs onto the resulting shape of the propagation invariant laser beams is presented as well.

  15. Application specific beam profiles: new surface and thin-film refinement processes using beam shaping technologies

    NASA Astrophysics Data System (ADS)

    Hauschild, Dirk

    2017-02-01

    Today, the use of laser photons for materials processing is a key technology in nearly all industries. Most of the applications use circular beam shapes with Gaussian intensity distribution that is given by the resonator of the laser or by the power delivery via optical fibre. These beam shapes can be typically used for material removal with cutting or drilling and for selective removal of material layers with ablation processes. In addition to the removal of materials, it is possible to modify and improve the material properties in case the dose of laser photons and the resulting light-material interaction addresses a defined window of energy and dwell-time. These process windows have typically dwell-times between µs and s because of using sintering, melting, thermal diffusion or photon induced chemical and physical reaction mechanisms. Using beam shaping technologies the laser beam profiles can be adapted to the material properties and time-temperature and the space-temperature envelopes can be modified to enable selective annealing or crystallization of layers or surfaces. Especially the control of the process energy inside the beam and at its edges opens a large area of laser applications that can be addressed only with an optimized spatial and angular beam profile with down to sub-percent intensity variation used in e.g. immersion lithography tools with ArF laser sources. LIMO will present examples for new beam shapes and related material refinement processes even on large surfaces and give an overview about new mechanisms in laser material processing for current and coming industrial applications.

  16. Ion-optical studies for a range adaptation method in ion beam therapy using a static wedge degrader combined with magnetic beam deflection.

    PubMed

    Chaudhri, Naved; Saito, Nami; Bert, Christoph; Franczak, Bernhard; Steidl, Peter; Durante, Marco; Rietzel, Eike; Schardt, Dieter

    2010-06-21

    Fast radiological range adaptation of the ion beam is essential when target motion is mitigated by beam tracking using scanned ion beams for dose delivery. Electromagnetically controlled deflection of a well-focused ion beam on a small static wedge degrader positioned between two dipole magnets, inside the beam delivery system, has been considered as a fast range adaptation method. The principle of the range adaptation method was tested in experiments and Monte Carlo simulations for the therapy beam line at the GSI Helmholtz Centre for Heavy Ions Research. Based on the simulations, ion optical settings of beam deflection and realignment of the adapted beam were experimentally applied to the beam line, and additional tuning was manually performed. Different degrader shapes were employed for the energy adaptation. Measured and simulated beam profiles, i.e. lateral distribution and range in water at isocentre, were analysed and compared with the therapy beam values for beam scanning. Deflected beam positions of up to +/-28 mm on degrader were performed which resulted in a range adaptation of up to +/-15 mm water equivalence (WE). The maximum deviation between the measured adapted range from the nominal range adaptation was below 0.4 mm WE. In experiments, the width of the adapted beam at the isocentre was adjustable between 5 and 11 mm full width at half maximum. The results demonstrate the feasibility/proof of the proposed range adaptation method for beam tracking from the beam quality point of view.

  17. Phase and amplitude beam shaping with two deformable mirrors implementing input plane and Fourier plane phase modifications.

    PubMed

    Wu, Chensheng; Ko, Jonathan; Rzasa, John R; Paulson, Daniel A; Davis, Christopher C

    2018-03-20

    We find that ideas in optical image encryption can be very useful for adaptive optics in achieving simultaneous phase and amplitude shaping of a laser beam. An adaptive optics system with simultaneous phase and amplitude shaping ability is very desirable for atmospheric turbulence compensation. Atmospheric turbulence-induced beam distortions can jeopardize the effectiveness of optical power delivery for directed-energy systems and optical information delivery for free-space optical communication systems. In this paper, a prototype adaptive optics system is proposed based on a famous image encryption structure. The major change is to replace the two random phase plates at the input plane and Fourier plane of the encryption system, respectively, with two deformable mirrors that perform on-demand phase modulations. A Gaussian beam is used as an input to replace the conventional image input. We show through theory, simulation, and experiments that the slightly modified image encryption system can be used to achieve arbitrary phase and amplitude beam shaping within the limits of stroke range and influence function of the deformable mirrors. In application, the proposed technique can be used to perform mode conversion between optical beams, generate structured light signals for imaging and scanning, and compensate atmospheric turbulence-induced phase and amplitude beam distortions.

  18. Novel Programmable Shape Memory Polystyrene Film: A Thermally Induced Beam-power Splitter.

    PubMed

    Li, Peng; Han, Yu; Wang, Wenxin; Liu, Yanju; Jin, Peng; Leng, Jinsong

    2017-03-09

    Micro/nanophotonic structures that are capable of optical wave-front shaping are implemented in optical waveguides and passive optical devices to alter the phase of the light propagating through them. The beam division directions and beam power distribution depend on the design of the micro/nanostructures. The ultimate potential of advanced micro/nanophotonic structures is limited by their structurally rigid, functional singleness and not tunable against external impact. Here, we propose a thermally induced optical beam-power splitter concept based on a shape memory polystyrene film with programmable micropatterns. The smooth film exhibits excellent transparency with a transmittance of 95% in the visible spectrum and optical stability during a continuous heating process up to 90 °C. By patterning double sided shape memory polystyrene film into erasable and switchable micro-groove gratings, the transmission light switches from one designed light divided directions and beam-power distribution to another because of the optical diffraction effect of the shape changing micro gratings during the whole thermal activated recovery process. The experimental and theoretical results demonstrate a proof-of-principle of the beam-power splitter. Our results can be adapted to further extend the applications of micro/nanophotonic devices and implement new features in the nanophotonics.

  19. Novel Programmable Shape Memory Polystyrene Film: A Thermally Induced Beam-power Splitter

    PubMed Central

    Li, Peng; Han, Yu; Wang, Wenxin; Liu, Yanju; Jin, Peng; Leng, Jinsong

    2017-01-01

    Micro/nanophotonic structures that are capable of optical wave-front shaping are implemented in optical waveguides and passive optical devices to alter the phase of the light propagating through them. The beam division directions and beam power distribution depend on the design of the micro/nanostructures. The ultimate potential of advanced micro/nanophotonic structures is limited by their structurally rigid, functional singleness and not tunable against external impact. Here, we propose a thermally induced optical beam-power splitter concept based on a shape memory polystyrene film with programmable micropatterns. The smooth film exhibits excellent transparency with a transmittance of 95% in the visible spectrum and optical stability during a continuous heating process up to 90 °C. By patterning double sided shape memory polystyrene film into erasable and switchable micro-groove gratings, the transmission light switches from one designed light divided directions and beam-power distribution to another because of the optical diffraction effect of the shape changing micro gratings during the whole thermal activated recovery process. The experimental and theoretical results demonstrate a proof-of-principle of the beam-power splitter. Our results can be adapted to further extend the applications of micro/nanophotonic devices and implement new features in the nanophotonics. PMID:28276500

  20. Novel Programmable Shape Memory Polystyrene Film: A Thermally Induced Beam-power Splitter

    NASA Astrophysics Data System (ADS)

    Li, Peng; Han, Yu; Wang, Wenxin; Liu, Yanju; Jin, Peng; Leng, Jinsong

    2017-03-01

    Micro/nanophotonic structures that are capable of optical wave-front shaping are implemented in optical waveguides and passive optical devices to alter the phase of the light propagating through them. The beam division directions and beam power distribution depend on the design of the micro/nanostructures. The ultimate potential of advanced micro/nanophotonic structures is limited by their structurally rigid, functional singleness and not tunable against external impact. Here, we propose a thermally induced optical beam-power splitter concept based on a shape memory polystyrene film with programmable micropatterns. The smooth film exhibits excellent transparency with a transmittance of 95% in the visible spectrum and optical stability during a continuous heating process up to 90 °C. By patterning double sided shape memory polystyrene film into erasable and switchable micro-groove gratings, the transmission light switches from one designed light divided directions and beam-power distribution to another because of the optical diffraction effect of the shape changing micro gratings during the whole thermal activated recovery process. The experimental and theoretical results demonstrate a proof-of-principle of the beam-power splitter. Our results can be adapted to further extend the applications of micro/nanophotonic devices and implement new features in the nanophotonics.

  1. Shape control of NITINOL-reinforced composite beams

    NASA Astrophysics Data System (ADS)

    Baz, Amr M.; Chen, Tung-Huei; Ro, Jeng-Jong

    1994-05-01

    The shape of composite beams is controlled by sets of flat strips of a shape memory nickel-titanium alloy (NITINOL). A mathematical model is developed to describe the behavior of this class of SMART composites. The model describes the interaction between the elastic characteristics of the composite beams and the thermally- induced shape memory effect of the NITINOL strips. The effect of various activation strategies of the NITINOL strips on the shape of the composite beams is determined. The theoretical predictions of the model are validated experimentally using a fiberglass composite beam made of 8 plies of unidirectional BASF 5216 prepregs which are 9.75-cm wide and 21.20 cm long. The beams are provided with four NITINOL-55 strips which are 1.2 mm thick and 1.25 cm wide. The time response characteristics of the beam are monitored and compared with the corresponding theoretical characteristics. Close agreement is obtained between the theoretical predictions and the experimental results. The obtained results suggest the potential of the NITINOL strips in controlling the shape of composite beams without compromising their structural stiffness.

  2. Robust and adjustable C-shaped electron vortex beams

    NASA Astrophysics Data System (ADS)

    Mousley, M.; Thirunavukkarasu, G.; Babiker, M.; Yuan, J.

    2017-06-01

    Wavefront engineering is an important quantum technology, often applied to the production of states carrying orbital angular momentum (OAM). Here, we demonstrate the design and production of robust C-shaped beam states carrying OAM, in which the usual doughnut-shaped transverse intensity structure of the vortex beam contains an adjustable gap. We find that the presence of the vortex lines in the core of the beam is crucial for maintaining the stability of the C-shape structure during beam propagation. The topological charge of the vortex core controls mainly the size of the C-shape, while its opening angle is related to the presence of vortex-anti-vortex loops. We demonstrate the generation and characterisation of C-shaped electron vortex beams, although the result is equally applicable to other quantum waves. C-shaped electron vortex beams have potential applications in nanoscale fabrication of planar split-ring structures and three-dimensional chiral structures as well as depth sensing and magnetic field determination through rotation of the gap in the C-shape.

  3. Electron beam machining using rotating and shaped beam power distribution

    DOEpatents

    Elmer, John W.; O'Brien, Dennis W.

    1996-01-01

    An apparatus and method for electron beam (EB) machining (drilling, cutting and welding) that uses conventional EB guns, power supplies, and welding machine technology without the need for fast bias pulsing technology. The invention involves a magnetic lensing (EB optics) system and electronic controls to: 1) concurrently bend, focus, shape, scan, and rotate the beam to protect the EB gun and to create a desired effective power-density distribution, and 2) rotate or scan this shaped beam in a controlled way. The shaped beam power-density distribution can be measured using a tomographic imaging system. For example, the EB apparatus of this invention has the ability to drill holes in metal having a diameter up to 1000 .mu.m (1 mm or larger), compared to the 250 .mu.m diameter of laser drilling.

  4. Electron beam machining using rotating and shaped beam power distribution

    DOEpatents

    Elmer, J.W.; O`Brien, D.W.

    1996-07-09

    An apparatus and method are disclosed for electron beam (EB) machining (drilling, cutting and welding) that uses conventional EB guns, power supplies, and welding machine technology without the need for fast bias pulsing technology. The invention involves a magnetic lensing (EB optics) system and electronic controls to: (1) concurrently bend, focus, shape, scan, and rotate the beam to protect the EB gun and to create a desired effective power-density distribution, and (2) rotate or scan this shaped beam in a controlled way. The shaped beam power-density distribution can be measured using a tomographic imaging system. For example, the EB apparatus of this invention has the ability to drill holes in metal having a diameter up to 1,000 {micro}m (1 mm or larger), compared to the 250 {micro}m diameter of laser drilling. 5 figs.

  5. Improvement of Galilean refractive beam shaping system for accurately generating near-diffraction-limited flattop beam with arbitrary beam size.

    PubMed

    Ma, Haotong; Liu, Zejin; Jiang, Pengzhi; Xu, Xiaojun; Du, Shaojun

    2011-07-04

    We propose and demonstrate the improvement of conventional Galilean refractive beam shaping system for accurately generating near-diffraction-limited flattop beam with arbitrary beam size. Based on the detailed study of the refractive beam shaping system, we found that the conventional Galilean beam shaper can only work well for the magnifying beam shaping. Taking the transformation of input beam with Gaussian irradiance distribution into target beam with high order Fermi-Dirac flattop profile as an example, the shaper can only work well at the condition that the size of input and target beam meets R(0) ≥ 1.3 w(0). For the improvement, the shaper is regarded as the combination of magnifying and demagnifying beam shaping system. The surface and phase distributions of the improved Galilean beam shaping system are derived based on Geometric and Fourier Optics. By using the improved Galilean beam shaper, the accurate transformation of input beam with Gaussian irradiance distribution into target beam with flattop irradiance distribution is realized. The irradiance distribution of the output beam is coincident with that of the target beam and the corresponding phase distribution is maintained. The propagation performance of the output beam is greatly improved. Studies of the influences of beam size and beam order on the improved Galilean beam shaping system show that restriction of beam size has been greatly reduced. This improvement can also be used to redistribute the input beam with complicated irradiance distribution into output beam with complicated irradiance distribution.

  6. Laser beam shaping design based on micromirror array

    NASA Astrophysics Data System (ADS)

    Fang, Han; Su, Bida; Liu, Jiaguo; Fan, Xiaoli; Jing, Wang

    2017-10-01

    In the practical application of the laser, it is necessary to use the laser beam shaping technology to shape the output beam of laser device to the uniform light intensity distribution. The shaping divergent optical system of compound eye integrator way is composed of beam expanding mirror group and lens array. Its working principle is to expand the output laser to a certain size of caliber, and then divide the beam with lens array into multiple sub beam, where the lens unit of lens array can control the divergence angle of sub beam through the design of focal length, with mutual superposition of the sub beam in far field, to make up for the nonuniformity of beam, so that the radiant exitance on the radiated surface may become uniform. In this paper, we use a reflective microlens array to realize the laser beam shaping. By through of the practical optical path model established, the ray tracing is carried out and the simulation results for single-mode Gaussian beam with noise circumstance is provided. The analysis results show that the laser beam shaping under different inputs can be effectively realized by use of microlens array. All the energy is within the signal window, with a high energy efficiency of more than 90%; The measured surface has a better uniformity, and the uniformity is better than 99.5% at 150m.

  7. Optical fiber designs for beam shaping

    NASA Astrophysics Data System (ADS)

    Farley, Kevin; Conroy, Michael; Wang, Chih-Hao; Abramczyk, Jaroslaw; Campbell, Stuart; Oulundsen, George; Tankala, Kanishka

    2014-03-01

    A large number of power delivery applications for optical fibers require beams with very specific output intensity profiles; in particular applications that require a focused high intensity beam typically image the near field (NF) intensity distribution at the exit surface of an optical fiber. In this work we discuss optical fiber designs that shape the output beam profile to more closely correspond to what is required in many real world industrial applications. Specifically we present results demonstrating the ability to transform Gaussian beams to shapes required for industrial applications and how that relates to system parameters such as beam product parameter (BPP) values. We report on the how different waveguide structures perform in the NF and show results on how to achieve flat-top with circular outputs.

  8. 21 CFR 892.5710 - Radiation therapy beam-shaping block.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Radiation therapy beam-shaping block. 892.5710... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5710 Radiation therapy beam-shaping block. (a) Identification. A radiation therapy beam-shaping block is a device made of a highly...

  9. 21 CFR 892.5710 - Radiation therapy beam-shaping block.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Radiation therapy beam-shaping block. 892.5710... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5710 Radiation therapy beam-shaping block. (a) Identification. A radiation therapy beam-shaping block is a device made of a highly...

  10. 21 CFR 892.5710 - Radiation therapy beam-shaping block.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Radiation therapy beam-shaping block. 892.5710... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5710 Radiation therapy beam-shaping block. (a) Identification. A radiation therapy beam-shaping block is a device made of a highly...

  11. 21 CFR 892.5710 - Radiation therapy beam-shaping block.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Radiation therapy beam-shaping block. 892.5710... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5710 Radiation therapy beam-shaping block. (a) Identification. A radiation therapy beam-shaping block is a device made of a highly...

  12. ELECTRON BEAM SHAPING AND ITS APPLICATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halavanau, Aliaksei

    Transverse and longitudinal electron beam shaping is a crucial part of high-brightness electron accelerator operations. In this dissertation, we report on the corresponding beam dynamics research conducted at Fermilab Accelerator Science and Technology facility (FAST) and Argonne Wakeeld Accelerator (AWA). We demonstrate an experimental method for spatial laser and electron beam shaping using microlens arrays (MLAs) at a photoinjector facility. Such a setup was built at AWA and resulted in transverse emittance reduction by a factor of 2. We present transverse emittance partitioning methods that were recently employed at FAST facility. A strongly coupled electron beam was generated in anmore » axial magnetic eld and accelerated in 1.3 GHz SRF cavities to 34 MeV. It was then decoupled in Round-To-Flat beam transformer and beams with emittance asymmetry ratio of 100 were generated. We introduce the new methods of measuring electron beam canonical angular momentum, beam transformer optimization and beam image analysis. We also describe a potential longitudinal space-charge amplier setup for FAST high-energy beamline. As an outcome, a broadband partially coherent radiation in the UV range could be generated.« less

  13. Dynamic laser beam shaping for material processing using hybrid holograms

    NASA Astrophysics Data System (ADS)

    Liu, Dun; Wang, Yutao; Zhai, Zhongsheng; Fang, Zheng; Tao, Qing; Perrie, Walter; Edwarson, Stuart P.; Dearden, Geoff

    2018-06-01

    A high quality, dynamic laser beam shaping method is demonstrated by displaying a series of hybrid holograms onto a spatial light modulator (SLM), while each one of the holograms consists of a binary grating and a geometric mask. A diffraction effect around the shaped beam has been significantly reduced. Beam profiles of arbitrary shape, such as square, ring, triangle, pentagon and hexagon, can be conveniently obtained by loading the corresponding holograms on the SLM. The shaped beam can be reconstructed in the range of 0.5 mm at the image plane. Ablation on a polished stainless steel sample at the image plane are consistent with the beam shape at the diffraction near-field. The ±1st order and higher order beams can be completely removed when the grating period is smaller than 160 μm. The local energy ratio of the shaped beam observed by the CCD camera is up to 77.67%. Dynamic processing at 25 Hz using different shapes has also been achieved.

  14. Beam shaping with vectorial vortex beams under low numerical aperture illumination condition

    NASA Astrophysics Data System (ADS)

    Dai, Jianning; Zhan, Qiwen

    2008-08-01

    In this paper we propose and demonstrate a novel beam shaping method using vectorial vortex beam. A vectorial vortex beam is laser beam with polarization singularity in the beam cross section. This type of beams can be decomposed into two orthogonally polarized components. Each of the polarized components could have different vortex characteristics, and consequently, different intensity distribution when focused by lens. Beam shaping in the far field can be achieved by adjusting the relative weighing of these two components. As one example, we study the vectorial vortex that consists of a linearly polarized Gaussian component and a vortex component polarized orthogonally. When such a vectorial vortex beam is focus by low NA lens, the Gaussian component gives rise to a focal intensity distribution with a solid centre while the vortex component gives rise to a donut distribution with hollow dark center. The shape of the focus can be continuously varied by continuously adjusting the relative weight of the two components. Under appropriate conditions, flat top focusing can be obtained. We experimentally demonstrate the creation of such beams with a liquid crystal spatial light modulator. Flattop focus obtained by vectorial vortex beams with topological charge of +1 has been obtained.

  15. Beam shaping for cosmetic hair removal

    NASA Astrophysics Data System (ADS)

    Lizotte, Todd E.; Tuttle, Tracie

    2007-09-01

    Beam shaping has the potential to provide comfort to people who require or seek laser based cosmetic skin procedures. Of immediate interest is the procedure of aesthetic hair removal. Hair removal is performed using a variety of wavelengths from 480 to 1200 nm by means of filtered Xenon flash lamps (pulsed light) or 810 nm diode lasers. These wavelengths are considered the most efficient means available for hair removal applications, but current systems use simple reflector designs and plane filter windows to direct the light to the surface being exposed. Laser hair removal is achieved when these wavelengths at sufficient energy levels are applied to the epidermis. The laser energy is absorbed by the melanin (pigment) in the hair and hair follicle which in turn is transformed into heat. This heat creates the coagulation process, which causes the removal of the hair and prevents growth of new hair [1]. This paper outlines a technique of beam shaping that can be applied to a non-contact based hair removal system. Several features of the beam shaping technique including beam uniformity and heat dispersion across its operational treatment area will be analyzed. A beam shaper design and its fundamental testing will be discussed in detail.

  16. Beam shaping to provide round and square-shaped beams in optical systems of high-power lasers

    NASA Astrophysics Data System (ADS)

    Laskin, Alexander; Laskin, Vadim

    2016-05-01

    Optical systems of modern high-power lasers require control of irradiance distribution: round or square-shaped flat-top or super-Gaussian irradiance profiles are optimum for amplification in MOPA lasers and for thermal load management while pumping of crystals of solid-state ultra-short pulse lasers to control heat and minimize its impact on the laser power and beam quality while maximizing overall laser efficiency, variable profiles are also important in irradiating of photocathode of Free Electron lasers (FEL). It is suggested to solve the task of irradiance re-distribution using field mapping refractive beam shapers like piShaper. The operational principle of these devices presumes transformation of laser beam intensity from Gaussian to flat-top one with high flatness of output wavefront, saving of beam consistency, providing collimated output beam of low divergence, high transmittance, extended depth of field, negligible residual wave aberration, and achromatic design provides capability to work with ultra-short pulse lasers having broad spectrum. Using the same piShaper device it is possible to realize beams with flat-top, inverse Gauss or super Gauss irradiance distribution by simple variation of input beam diameter, and the beam shape can be round or square with soft edges. This paper will describe some design basics of refractive beam shapers of the field mapping type and optical layouts of their applying in optical systems of high-power lasers. Examples of real implementations and experimental results will be presented as well.

  17. Beam shaping with vortex beam generated by liquid crystal spatial light modulator

    NASA Astrophysics Data System (ADS)

    Gao, Yue; Liu, Ke; Sun, Zeng-yu; Guo, Lei; Gan, Yu

    2015-02-01

    An optical vortex is a beam of light with phase varying in a corkscrew-like manner along its direction of propagation and so has a helical wavefront. When such a vectorial vortex beam and the Gaussian beam with orthogonal polarization are focused by low NA lens, the Gaussian component causes a focal intensity distribution with a solid center and the vortex component causes a donut distribution with hollow dark center. The shape of the focus can be continuously varied by continuously adjusting the relative weight of the two components. Flat top focusing can be obtained under appropriate conditions. It is demonstrated through experiments with a liquid crystal spatial light modulator in such a beam, that flattop focus can be obtained by vectorial vortex beams with topological charge of +1 to achieve beam shaping vortex.

  18. Beam Shaping for CARS Measurements in Turbulent Environments

    NASA Technical Reports Server (NTRS)

    Magnotti, Gaetano; Cutler, Andrew D.; Danehy, Paul M.

    2010-01-01

    This paper describes a new technique to mitigate the effect of beam steering on CARS measurements in turbulent, variable density environments. The new approach combines Planar BOXCARS phase-matching with elliptical shaping of one of the beams to generate a signal insensitive to beam steering, while keeping the same spatial resolution. Numerical and experimental results are provided to demonstrate the effectiveness of this approach. One set of experiments investigated the effect of beam shaping in the presence of a controlled and well quantified displacement of the beams at the focal plane. Another set of experiments, more qualitative, proved the effectiveness of the technique in the presence of severe beam steering due to turbulence.

  19. Concept for image-guided vitreo-retinal fs-laser surgery: adaptive optics and optical coherence tomography for laser beam shaping and positioning

    NASA Astrophysics Data System (ADS)

    Matthias, Ben; Brockmann, Dorothee; Hansen, Anja; Horke, Konstanze; Knoop, Gesche; Gewohn, Timo; Zabic, Miroslav; Krüger, Alexander; Ripken, Tammo

    2015-03-01

    Fs-lasers are well established in ophthalmic surgery as high precision tools for corneal flap cutting during laser in situ keratomileusis (LASIK) and increasingly utilized for cutting the crystalline lens, e.g. in assisting cataract surgery. For addressing eye structures beyond the cornea, an intraoperative depth resolved imaging is crucial to the safety and success of the surgical procedure due to interindividual anatomical disparities. Extending the field of application even deeper to the posterior eye segment, individual eye aberrations cannot be neglected anymore and surgery with fs-laser is impaired by focus degradation. Our demonstrated concept for image-guided vitreo-retinal fs-laser surgery combines adaptive optics (AO) for spatial beam shaping and optical coherence tomography (OCT) for focus positioning guidance. The laboratory setup comprises an adaptive optics assisted 800 nm fs-laser system and is extended by a Fourier domain optical coherence tomography system. Phantom structures are targeted, which mimic tractional epiretinal membranes in front of excised porcine retina within an eye model. AO and OCT are set up to share the same scanning and focusing optics. A Hartmann-Shack sensor is employed for aberration measurement and a deformable mirror for aberration correction. By means of adaptive optics the threshold energy for laser induced optical breakdown is lowered and cutting precision is increased. 3D OCT imaging of typical ocular tissue structures is achieved with sufficient resolution and the images can be used for orientation of the fs-laser beam. We present targeted dissection of the phantom structures and its evaluation regarding retinal damage.

  20. Optimization of natural frequencies of a slender beam shaped in a linear combination of its mode shapes

    NASA Astrophysics Data System (ADS)

    Silva, Guilherme Augusto Lopes da; Nicoletti, Rodrigo

    2017-06-01

    This work focuses on the placement of natural frequencies of beams to desired frequency regions. More specifically, we investigate the effects of combining mode shapes to shape a beam to change its natural frequencies, both numerically and experimentally. First, we present a parametric analysis of a shaped beam and we analyze the resultant effects for different boundary conditions and mode shapes. Second, we present an optimization procedure to find the optimum shape of the beam for desired natural frequencies. In this case, we adopt the Nelder-Mead simplex search method, which allows a broad search of the optimum shape in the solution domain. Finally, the obtained results are verified experimentally for a clamped-clamped beam in three different optimization runs. Results show that the method is effective in placing natural frequencies at desired values (experimental results lie within a 10% error to the expected theoretical ones). However, the beam must be axially constrained to have the natural frequencies changed.

  1. Alternative Shapes and Shaping Techniques for Enhanced Transformer Ratios in Beam Driven Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemery, F.; Piot, P.

    The transformer ration of collinear beam-driven techniques can be significantly improved by shaping the current profile of the drive bunch. To date, several current shapes have been proposed to increase the transformer ratio and produce quasi-uniform energy loss within the drive bunch. Some of these tailoring techniques are possible as a results of recent beam-dynamics advances, e.g., transverse-to-longitudinal emittance exchanger. In ths paper, we propose an alternative class of longitudinal shapes that enable high transformer ratio and uniform energy loss across the drive bunch. We also suggest a simple method based on photocathode-laser shaping and passive shaping in wakefield structuremore » to realize shape close to the theoretically optimized current profiles.« less

  2. Finite Element Analysis of Adaptive-Stiffening and Shape-Control SMA Hybrid Composites

    NASA Technical Reports Server (NTRS)

    Gao, Xiu-Jie; Turner, Travis L.; Burton, Deborah; Brinson, L. Catherine

    2005-01-01

    The usage of shape memory materials has extended rapidly to many fields, including medical devices, actuators, composites, structures and MEMS devices. For these various applications, shape memory alloys (SMAs) are available in various forms: bulk, wire, ribbon, thin film, and porous. In this work, the focus is on SMA hybrid composites with adaptive-stiffening or morphing functions. These composites are created by using SMA ribbons or wires embedded in a polymeric based composite panel/beam. Adaptive stiffening or morphing is activated via selective resistance heating or uniform thermal loads. To simulate the thermomechanical behavior of these composites, a SMA model was implemented using ABAQUS user element interface and finite element simulations of the systems were studied. Several examples are presented which show that the implemented model can be a very useful design and simulation tool for SMA hybrid composites.

  3. Multistable wireless micro-actuator based on antagonistic pre-shaped double beams

    NASA Astrophysics Data System (ADS)

    Liu, X.; Lamarque, F.; Doré, E.; Pouille, P.

    2015-07-01

    This paper presents a monolithic multistable micro-actuator based on antagonistic pre-shaped double beams. The designed micro-actuator is formed by two rows of bistable micro-actuators providing four stable positions. The bistable mechanism for each row is a pair of antagonistic pre-shaped beams. This bistable mechanism has an easier pre-load operation compared to the pre-compressed bistable beams method. Furthermore, it solves the asymmetrical force output problem of parallel pre-shaped bistable double beams. At the same time, the geometrical limit is lower than parallel pre-shaped bistable double beams, which ensures a smaller stroke of the micro-actuator with the same dimensions. The designed micro-actuator is fabricated using laser cutting machine on medium density fiberboard (MDF). The bistability and merits of antagonistic pre-shaped double beams are experimentally validated. Finally, a contactless actuation test is performed using 660 nm wavelength laser heating shape memory alloy (SMA) active elements.

  4. Experimental evaluation of shape memory alloy actuation technique in adaptive antenna design concepts

    NASA Astrophysics Data System (ADS)

    Kefauver, W. Neill; Carpenter, Bernie F.

    1994-09-01

    Creation of an antenna system that could autonomously adapt contours of reflecting surfaces to compensate for structural loads induced by a variable environment would maximize performance of space-based communication systems. Design of such a system requires the comprehensive development and integration of advanced actuator, sensor, and control technologies. As an initial step in this process, a test has been performed to assess the use of a shape memory alloy as a potential actuation technique. For this test, an existing, offset, cassegrain antenna system was retrofit with a subreflector equipped with shape memory alloy actuators for surface contour control. The impacts that the actuators had on both the subreflector contour and the antenna system patterns were measured. The results of this study indicate the potential for using shape memory alloy actuation techniques to adaptively control antenna performance; both variations in gain and beam steering capabilities were demonstrated. Future development effort is required to evolve this potential into a useful technology for satellite applications.

  5. Experimental evaluation of shape memory alloy actuation technique in adaptive antenna design concepts

    NASA Technical Reports Server (NTRS)

    Kefauver, W. Neill; Carpenter, Bernie F.

    1994-01-01

    Creation of an antenna system that could autonomously adapt contours of reflecting surfaces to compensate for structural loads induced by a variable environment would maximize performance of space-based communication systems. Design of such a system requires the comprehensive development and integration of advanced actuator, sensor, and control technologies. As an initial step in this process, a test has been performed to assess the use of a shape memory alloy as a potential actuation technique. For this test, an existing, offset, cassegrain antenna system was retrofit with a subreflector equipped with shape memory alloy actuators for surface contour control. The impacts that the actuators had on both the subreflector contour and the antenna system patterns were measured. The results of this study indicate the potential for using shape memory alloy actuation techniques to adaptively control antenna performance; both variations in gain and beam steering capabilities were demonstrated. Future development effort is required to evolve this potential into a useful technology for satellite applications.

  6. Laser beam shaping for biomedical microscopy techniques

    NASA Astrophysics Data System (ADS)

    Laskin, Alexander; Kaiser, Peter; Laskin, Vadim; Ostrun, Aleksei

    2016-04-01

    Uniform illumination of a working field is very important in optical systems of confocal microscopy and various implementations of fluorescence microscopy like TIR, SSIM, STORM, PALM to enhance performance of these laser-based research techniques. Widely used TEM00 laser sources are characterized by essentially non-uniform Gaussian intensity profile which leads usually to non-uniform intensity distribution in a microscope working field or in a field of microlenses array of a confocal microscope optical system, this non-uniform illumination results in instability of measuring procedure and reducing precision of quantitative measurements. Therefore transformation of typical Gaussian distribution of a TEM00 laser to flat-top (top hat) profile is an actual technical task, it is solved by applying beam shaping optics. Due to high demands to optical image quality the mentioned techniques have specific requirements to a uniform laser beam: flatness of phase front and extended depth of field, - from this point of view the microscopy techniques are similar to holography and interferometry. There are different refractive and diffractive beam shaping approaches used in laser industrial and scientific applications, but only few of them are capable to fulfil the optimum conditions for beam quality required in discussed microscopy techniques. We suggest applying refractive field mapping beam shapers πShaper, which operational principle presumes almost lossless transformation of Gaussian to flat-top beam with flatness of output wavefront, conserving of beam consistency, providing collimated low divergent output beam, high transmittance, extended depth of field, negligible wave aberration, and achromatic design provides capability to work with several lasers with different wavelengths simultaneously. The main function of a beam shaper is transformation of laser intensity profile, further beam transformation to provide optimum for a particular technique spot size and shape has to

  7. Hollow Gaussian beam generated by beam shaping with phase-only liquid crystal spatial light modulator

    NASA Astrophysics Data System (ADS)

    Nie, Yongming; Li, Xiujian; Qi, Junli; Ma, Haotong; Liao, Jiali; Yang, Jiankun; Hu, Wenhua

    2012-03-01

    Based on the refractive beam shaping system, the transformation of a quasi-Gaussian beam into a dark hollow Gaussian beam by a phase-only liquid crystal spatial light modulator (LC-SLM) is proposed. According to the energy conservation and constant optical path principle, the phase distribution of the aspheric lens and the phase-only LC-SLM can modulate the wave-front properly to generate the hollow beam. The numerical simulation results indicate that, the dark hollow intensity distribution of the output shaped beam can be maintained well for a certain propagation distance during which the dark region will not decrease whereas the ideal hollow Gaussian beam will do. By designing the phase modulation profile, which loaded into the LC-SLM carefully, the experimental results indicate that the dark hollow intensity distribution of the output shaped beam can be maintained well even at a distance much more than 550 mm from the LC-SLM, which agree with the numerical simulation results.

  8. 21 CFR 892.5710 - Radiation therapy beam-shaping block.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radiation therapy beam-shaping block. 892.5710 Section 892.5710 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5710 Radiation therapy beam-shaping...

  9. Tailored laser beam shaping for efficient and accurate microstructuring

    NASA Astrophysics Data System (ADS)

    Häfner, T.; Strauß, J.; Roider, C.; Heberle, J.; Schmidt, M.

    2018-02-01

    Large-area processing with high material removal rates by ultrashort pulsed (USP) lasers is coming into focus by the development of high-power USP laser systems. However, currently the bottleneck for high-rate production is given by slow and inefficient beam manipulation. On the one hand, slow beam deflection with regard to high pulse repetition rates leads to heat accumulation and shielding effects, on the other hand, a conventional focus cannot provide the optimum fluence due to the Gaussian intensity profile. In this paper, we emphasize on two approaches of dynamic laser beam shaping with liquid crystal on silicon spatial light modulation and acousto-optic beam shaping. Advantages and limitations of dynamic laser beam shaping with regard to USP laser material processing and methods for reducing the influence of speckle are discussed. Additionally, the influence of optics induced aberrations on speckle characteristics is evaluated. Laser material processing results are presented correlating the achieved structure quality with the simulated and measured beam quality. Experimental and analytical investigations show a certain fluence dependence of the necessary number of alternative holograms to realize homogeneous microstructures.

  10. An analysis of stepped trapezoidal-shaped microcantilever beams for MEMS-based devices

    NASA Astrophysics Data System (ADS)

    Ashok, Akarapu; Gangele, Aparna; Pal, Prem; Pandey, Ashok Kumar

    2018-07-01

    Microcantilever beams are the most widely used mechanical elements in the design and fabrication of MEMS/NEMS-based sensors and actuators. In this work, we have proposed a new microcantilever beam design based on a stepped trapezoidal-shaped microcantilever. Single-, double-, triple- and quadruple-stepped trapezoidal-shaped microcantilever beams along with conventional rectangular-shaped microcantilever beams were analysed experimentally, numerically and analytically. The microcantilever beams were fabricated from silicon dioxide material using wet bulk micromachining in 25 wt% TMAH. The length, width and thickness of the microcantilever beams were fixed at 200, 40 and 0.96 µm, respectively. A laser vibrometer was utilized to measure the resonance frequency and Q-factor of the microcantilever beams in vacuum as well as in ambient conditions. Furthermore, finite element analysis software, ANSYS, was employed to numerically analyse the resonance frequency, maximum deflection and torsional end rotation of all the microcantilever beam designs. The analytical and numerical resonance frequencies are found to be in good agreement with the experimental resonance frequencies. In the stepped trapezoidal-shaped microcantilever beams with an increasing number of steps, the Q-factor, maximum deflection and torsional end rotation were improved, whereas the resonance frequency was slightly reduced. Nevertheless, the resonance frequency is higher than the basic rectangular-shaped microcantilever beam. The observed quality factor, maximum deflection and torsional end rotation for a quadruple-stepped trapezoidal-shaped microcantilever are 38%, 41% and 52%, respectively, which are higher than those of conventional rectangular-shaped microcantilever beams. Furthermore, for an applied concentrated mass of 1 picogram on the cantilever surface, a greater shift in frequency is obtained for all the stepped trapezoidal-shaped microcantilever beam designs compared to the conventional

  11. Active Beam Shaping System and Method Using Sequential Deformable Mirrors

    NASA Technical Reports Server (NTRS)

    Pueyo, Laurent A. (Inventor); Norman, Colin A. (Inventor)

    2015-01-01

    An active optical beam shaping system includes a first deformable mirror arranged to at least partially intercept an entrance beam of light and to provide a first reflected beam of light, a second deformable mirror arranged to at least partially intercept the first reflected beam of light from the first deformable mirror and to provide a second reflected beam of light, and a signal processing and control system configured to communicate with the first and second deformable mirrors. The first deformable mirror, the second deformable mirror and the signal processing and control system together provide a large amplitude light modulation range to provide an actively shaped optical beam.

  12. Adaptive array antenna for satellite cellular and direct broadcast communications

    NASA Technical Reports Server (NTRS)

    Horton, Charles R.; Abend, Kenneth

    1993-01-01

    Adaptive phased-array antennas provide cost-effective implementation of large, light weight apertures with high directivity and precise beamshape control. Adaptive self-calibration allows for relaxation of all mechanical tolerances across the aperture and electrical component tolerances, providing high performance with a low-cost, lightweight array, even in the presence of large physical distortions. Beam-shape is programmable and adaptable to changes in technical and operational requirements. Adaptive digital beam-forming eliminates uplink contention by allowing a single electronically steerable antenna to service a large number of receivers with beams which adaptively focus on one source while eliminating interference from others. A large, adaptively calibrated and fully programmable aperture can also provide precise beam shape control for power-efficient direct broadcast from space. Advanced adaptive digital beamforming technologies are described for: (1) electronic compensation of aperture distortion, (2) multiple receiver adaptive space-time processing, and (3) downlink beam-shape control. Cost considerations for space-based array applications are also discussed.

  13. Extension of Ko Straight-Beam Displacement Theory to Deformed Shape Predictions of Slender Curved Structures

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Fleischer, Van Tran

    2011-01-01

    The Ko displacement theory originally developed for shape predictions of straight beams is extended to shape predictions of curved beams. The surface strains needed for shape predictions were analytically generated from finite-element nodal stress outputs. With the aid of finite-element displacement outputs, mathematical functional forms for curvature-effect correction terms are established and incorporated into straight-beam deflection equations for shape predictions of both cantilever and two-point supported curved beams. The newly established deflection equations for cantilever curved beams could provide quite accurate shape predictions for different cantilever curved beams, including the quarter-circle cantilever beam. Furthermore, the newly formulated deflection equations for two-point supported curved beams could provide accurate shape predictions for a range of two-point supported curved beams, including the full-circular ring. Accuracy of the newly developed curved-beam deflection equations is validated through shape prediction analysis of curved beams embedded in the windward shallow spherical shell of a generic crew exploration vehicle. A single-point collocation method for optimization of shape predictions is discussed in detail

  14. Meta-q-plate for complex beam shaping

    PubMed Central

    Ji, Wei; Lee, Chun-Hong; Chen, Peng; Hu, Wei; Ming, Yang; Zhang, Lijian; Lin, Tsung-Hsien; Chigrinov, Vladimir; Lu, Yan-Qing

    2016-01-01

    Optical beam shaping plays a key role in optics and photonics. In this work, meta-q-plate featured by arbitrarily space-variant optical axes is proposed and demonstrated via liquid crystal photoalignment based on a polarization-sensitive alignment agent and a dynamic micro-lithography system. Meta-q-plates with multiple-, azimuthally/radially variant topological charges and initial azimuthal angles are fabricated. Accordingly, complex beams with elliptical, asymmetrical, multi-ringed and hurricane transverse profiles are generated, making the manipulation of optical vortex up to an unprecedented flexibility. The evolution, handedness and Michelson interferogram of the hurricane one are theoretically analysed and experimentally verified. The design facilitates the manipulation of polarization and spatial degrees of freedom of light in a point-to-point manner. The realization of meta-q-plate drastically enhances the capability of beam shaping and may pave a bright way towards optical manipulations, OAM based informatics, quantum optics and other fields. PMID:27149897

  15. Meta-q-plate for complex beam shaping.

    PubMed

    Ji, Wei; Lee, Chun-Hong; Chen, Peng; Hu, Wei; Ming, Yang; Zhang, Lijian; Lin, Tsung-Hsien; Chigrinov, Vladimir; Lu, Yan-Qing

    2016-05-06

    Optical beam shaping plays a key role in optics and photonics. In this work, meta-q-plate featured by arbitrarily space-variant optical axes is proposed and demonstrated via liquid crystal photoalignment based on a polarization-sensitive alignment agent and a dynamic micro-lithography system. Meta-q-plates with multiple-, azimuthally/radially variant topological charges and initial azimuthal angles are fabricated. Accordingly, complex beams with elliptical, asymmetrical, multi-ringed and hurricane transverse profiles are generated, making the manipulation of optical vortex up to an unprecedented flexibility. The evolution, handedness and Michelson interferogram of the hurricane one are theoretically analysed and experimentally verified. The design facilitates the manipulation of polarization and spatial degrees of freedom of light in a point-to-point manner. The realization of meta-q-plate drastically enhances the capability of beam shaping and may pave a bright way towards optical manipulations, OAM based informatics, quantum optics and other fields.

  16. Shaping non-diffracting beams with a digital micromirror device

    NASA Astrophysics Data System (ADS)

    Ren, Yu-Xuan; Fang, Zhao-Xiang; Lu, Rong-De

    2016-02-01

    The micromechanical digital micromirror device (DMD) performs as a spatial light modulator to shape the light wavefront. Different from the liquid crystal devices, which use the birefringence to modulate the light wave, the DMD regulates the wavefront through an amplitude modulation with the digitally controlled mirrors switched on and off. The advantages of such device are the fast speed, polarization insensitivity, and the broadband modulation ability. The fast switching ability for the DMD not only enables the shaping of static light mode, but also could dynamically compensate for the wavefront distortion due to scattering medium. We have employed such device to create the higher order modes, including the Laguerre-Gaussian, Hermite-Gaussian, as well as Mathieu modes. There exists another kind of beam with shape-preservation against propagation, and self-healing against obstacles. Representative modes are the Bessel modes, Airy modes, and the Pearcey modes. Since the DMD modulates the light intensity, a series of algorithms are developed to calculate proper amplitude hologram for shaping the light. The quasi-continuous gray scale images could imitate the continuous amplitude hologram, while the binary amplitude modulation is another means to create the modulation pattern for a steady light field. We demonstrate the generation of the non-diffracting beams with the binary amplitude modulation via the DMD, and successfully created the non-diffracting Bessel beam, Airy beam, and the Pearcey beam. We have characterized the non-diffracting modes through propagation measurements as well as the self-healing measurements.

  17. Multi-focus beam shaping of high power multimode lasers

    NASA Astrophysics Data System (ADS)

    Laskin, Alexander; Volpp, Joerg; Laskin, Vadim; Ostrun, Aleksei

    2017-08-01

    Beam shaping of powerful multimode fiber lasers, fiber-coupled solid-state and diode lasers is of great importance for improvements of industrial laser applications. Welding, cladding with millimetre scale working spots benefit from "inverseGauss" intensity profiles; performance of thick metal sheet cutting, deep penetration welding can be enhanced when distributing the laser energy along the optical axis as more efficient usage of laser energy, higher edge quality and reduction of the heat affected zone can be achieved. Building of beam shaping optics for multimode lasers encounters physical limitations due to the low beam spatial coherence of multimode fiber-coupled lasers resulting in big Beam Parameter Products (BPP) or M² values. The laser radiation emerging from a multimode fiber presents a mixture of wavefronts. The fiber end can be considered as a light source which optical properties are intermediate between a Lambertian source and a single mode laser beam. Imaging of the fiber end, using a collimator and a focusing objective, is a robust and widely used beam delivery approach. Beam shaping solutions are suggested in form of optics combining fiber end imaging and geometrical separation of focused spots either perpendicular to or along the optical axis. Thus, energy of high power lasers is distributed among multiple foci. In order to provide reliable operation with multi-kW lasers and avoid damages the optics are designed as refractive elements with smooth optical surfaces. The paper presents descriptions of multi-focus optics as well as examples of intensity profile measurements of beam caustics and application results.

  18. Beam shape coefficients calculation for an elliptical Gaussian beam with 1-dimensional quadrature and localized approximation methods

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Shen, Jianqi

    2018-06-01

    The use of a shaped beam for applications relying on light scattering depends much on the ability to evaluate the beam shape coefficients (BSC) effectively. Numerical techniques for evaluating the BSCs of a shaped beam, such as the quadrature, the localized approximation (LA), the integral localized approximation (ILA) methods, have been developed within the framework of generalized Lorenz-Mie theory (GLMT). The quadrature methods usually employ the 2-/3-dimensional integrations. In this work, the expressions of the BSCs for an elliptical Gaussian beam (EGB) are simplified into the 1-dimensional integral so as to speed up the numerical computation. Numerical results of BSCs are used to reconstruct the beam field and the fidelity of the reconstructed field to the given beam field is estimated. It is demonstrated that the proposed method is much faster than the 2-dimensional integrations and it can acquire more accurate results than the LA method. Limitations of the quadrature method and also the LA method in the numerical calculation are analyzed in detail.

  19. Design a freeform microlens array module for any arbitrary-shape collimated beam shaping and color mixing

    NASA Astrophysics Data System (ADS)

    Chen, Enguo; Wu, Rengmao; Guo, Tailiang

    2014-06-01

    Collimated beam shaping with freeform surface usually employs a predefined mapping to tailor one or multiple freeform surfaces. Limitation on those designs is that the source, the freeform optics and the target are in fixed one-to-one correspondence with each other. To overcome this drawback, this paper presents a kind of freeform microlens array module integrated with an ultra-thin freeform microlens array and a condenser lens to reshape any arbitrary-shape collimated beam into a prescribed uniform rectangular illumination and achieve color mixing. The design theory is explicitly given, and some key issues are addressed. Several different application examples are given, and the target is obtained with high uniformity and energy efficiency. This freeform microlens array module, which shows better flexibility and practicality than the regular designs, can be used not only to reshape any arbitrary-shape collimated beam (or a collimated beam integrated with several sub-collimated beams), but also most importantly to achieve color mixing. With excellent optical performance and ultra-compact volume, this optical module together with the design theory can be further introduced into other applications and will have a huge market potential in the near future.

  20. Shaping the beam profile of a partially coherent beam by a phase aperture

    NASA Astrophysics Data System (ADS)

    Wu, Gaofeng; Cai, Yangjian; Chen, Jun

    2011-08-01

    By use of a tensor method, an analytical formula for a partially coherent Gaussian Schell-model (GSM) beam truncated by a circular phase aperture propagating through a paraxial ABCD optical system is derived. The propagation properties of a GSM beam truncated by a circular phase aperture in free space are studied numerically. It is found that the circular phase aperture can be used to shape the beam profile of a GSM beam and generate partially coherent dark hollow or flat-topped beam, which is useful in many applications, e.g., optical trapping, free-space optical communication, and material thermal processing. The propagation factor of a GSM beam truncated by a circular phase aperture is also analyzed.

  1. Rapid and efficient formation of propagation invariant shaped laser beams.

    PubMed

    Chriki, Ronen; Barach, Gilad; Tradosnky, Chene; Smartsev, Slava; Pal, Vishwa; Friesem, Asher A; Davidson, Nir

    2018-02-19

    A rapid and efficient all-optical method for forming propagation invariant shaped beams by exploiting the optical feedback of a laser cavity is presented. The method is based on the modified degenerate cavity laser (MDCL), which is a highly incoherent cavity laser. The MDCL has a very large number of degrees of freedom (320,000 modes in our system) that can be coupled and controlled, and allows direct access to both the real space and Fourier space of the laser beam. By inserting amplitude masks into the cavity, constraints can be imposed on the laser in order to obtain minimal loss solutions that would optimally lead to a superposition of Bessel-Gauss beams forming a desired shaped beam. The resulting beam maintains its transverse intensity distribution for relatively long propagation distances.

  2. Phase Adaptation and Correction by Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Tiziani, Hans J.

    2010-04-01

    Adaptive optical elements and systems for imaging or laser beam propagation are used for some time in particular in astronomy, where the image quality is degraded by atmospheric turbulence. In astronomical telescopes a deformable mirror is frequently used to compensate wavefront-errors due to deformations of the large mirror, vibrations as well as turbulence and hence to increase the image quality. In the last few years interesting elements like Spatial Light Modulators, SLM's, such as photorefractive crystals, liquid crystals and micro mirrors and membrane mirrors were introduced. The development of liquid crystals and micro mirrors was driven by data projectors as consumer products. They contain typically a matrix of individually addressable pixels of liquid crystals and flip mirrors respectively or more recently piston mirrors for special applications. Pixel sizes are in the order of a few microns and therefore also appropriate as active diffractive elements in digital holography or miniature masks. Although liquid crystals are mainly optimized for intensity modulation; they can be used for phase modulation. Adaptive optics is a technology for beam shaping and wavefront adaptation. The application of spatial light modulators for wavefront adaptation and correction and defect analysis as well as sensing will be discussed. Dynamic digital holograms are generated with liquid crystal devices (LCD) and used for wavefront correction as well as for beam shaping and phase manipulation, for instance. Furthermore, adaptive optics is very useful to extend the measuring range of wavefront sensors and for the wavefront adaptation in order to measure and compare the shape of high precision aspherical surfaces.

  3. Finishing of additively manufactured titanium alloy by shape adaptive grinding (SAG)

    NASA Astrophysics Data System (ADS)

    Beaucamp, Anthony T.; Namba, Yoshiharu; Charlton, Phillip; Jain, Samyak; Graziano, Arthur A.

    2015-06-01

    In recent years, rapid prototyping of titanium alloy components for medical and aeronautics application has become viable thanks to advances in technologies such as electron beam melting (EBM) and selective laser sintering (SLS). However, for many applications the high surface roughness generated by additive manufacturing techniques demands a post-finishing operation to improve the surface quality prior to usage. In this paper, the novel shape adaptive grinding process has been applied to finishing titanium alloy (Ti6Al4V) additively manufactured by EBM and SLS. It is shown that the micro-structured surface layer resulting from the melting process can be removed, and the surface can then be smoothed down to less than 10 nm Ra (starting from 4-5 μm Ra) using only three different diamond grit sizes. This paper also demonstrates application of the technology to freeform shapes, and documents the dimensional accuracy of finished artifacts.

  4. Longitudinal bunch shaping of picosecond high-charge MeV electron beams

    DOE PAGES

    Beaudoin, B. L.; Thangaraj, J. C. T.; Edstrom, Jr., D.; ...

    2016-10-20

    With ever increasing demands for intensities in modern accelerators, the understanding of space-charge effects becomes crucial. Herein are presented measurements of optically shaped picosecond-long electron beams in a superconducting L-band linac over a wide range of charges, from 0.2 nC to 3.4 nC. At low charges, the shape of the electron beam is preserved, while at higher charge densities, modulations on the beam convert to energy modulations. Here, energy profile measurements using a spectrometer and time profile measurements using a streak camera reveal the dynamics of longitudinal space-charge on MeV-scale electron beams.

  5. Static shape control for adaptive wings

    NASA Astrophysics Data System (ADS)

    Austin, Fred; Rossi, Michael J.; van Nostrand, William; Knowles, Gareth; Jameson, Antony

    1994-09-01

    A theoretical method was developed and experimentally validated, to control the static shape of flexible structures by employing internal translational actuators. A finite element model of the structure, without the actuators present, is employed to obtain the multiple-input, multiple-output control-system gain matrices for actuator-load control as well as actuator-displacement control. The method is applied to the quasistatic problem of maintaining an optimum-wing cross section during various transonic-cruise flight conditions to obtain significant reductions in the shock-induced drag. Only small, potentially achievable, adaptive modifications to the profile are required. The adaptive-wing concept employs actuators as truss elements of active ribs to reshape the wing cross section by deforming the structure. Finite element analyses of an adaptive-rib model verify the controlled-structure theory. Experiments on the model were conducted, and arbitrarily selected deformed shapes were accurately achieved.

  6. Uncoordinated MAC for Adaptive Multi Beam Directional Networks: Analysis and Evaluation

    DTIC Science & Technology

    2016-08-01

    control (MAC) policies for emerging systems that are equipped with fully digital antenna arrays which are capable of adaptive multi-beam directional...Adaptive Beam- forming, Multibeam, Directional Networking, Random Access, Smart Antennas I. INTRODUCTION Fully digital beamforming antenna arrays that...are capable of adaptive multi-beam communications are quickly becoming a reality. These antenna arrays allow users to form multiple simultaneous

  7. Piezoelectric energy harvesting from an L-shaped beam-mass structure

    NASA Astrophysics Data System (ADS)

    Erturk, Alper; Renno, Jamil M.; Inman, Daniel J.

    2008-03-01

    Cantilevered piezoelectric harvesters have been extensively considered in the energy harvesting literature. Mostly, a traditional cantilevered beam with one or more piezoceramic layers is located on a vibrating host structure. Motion of the host structure results in vibrations of the harvester beam and that yields an alternating voltage output. As an alternative to classical cantilevered beams, this paper presents a novel harvesting device; a flexible L-shaped beam-mass structure that can be tuned to have a two-to-one internal resonance to a primary resonance ω II ≅ 2ω I which is not possible for classical cantilevers). The L-shaped structure has been well investigated in the literature of nonlinear dynamics since the two-to-one internal resonance, along with the consideration of quadratic nonlinearities, may yield modal energy exchange (for excitation frequency ω≅ ω Ior the so-called saturation phenomenon (for ω≅ω II). As a part of our ongoing research on piezoelectric energy harvesting, we are investigating the possibility of improving the electrical outputs in energy harvesting by employing these features of the L-shaped structure. This paper aims to introduce the idea, describes the important features of the L-shaped harvester configuration and develops a linear distributed parameter model for predicting the electromechanically coupled response. In addition, this work proposes a direct application of the L-shaped piezoelectric energy harvester configuration for use as landing gears in unmanned air vehicle applications.

  8. Laser beam control device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, H.L.

    1976-01-06

    The shutter and beam expander for diverting the output of a high power laser into an absorption body comprises a onepiece metallic structure having a convex spherically shaped portion adapted to be moved into the beam path for simultaneously reflecting and expanding the beam into energy absorption material.

  9. Adaptive Beam Loading Compensation in Room Temperature Bunching Cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edelen, J. P.; Chase, B. E.; Cullerton, E.

    In this paper we present the design, simulation, and proof of principle results of an optimization based adaptive feedforward algorithm for beam-loading compensation in a high impedance room temperature cavity. We begin with an overview of prior developments in beam loading compensation. Then we discuss different techniques for adaptive beam loading compensation and why the use of Newton?s Method is of interest for this application. This is followed by simulation and initial experimental results of this method.

  10. Beam shaping for laser initiated optical primers

    NASA Astrophysics Data System (ADS)

    Lizotte, Todd E.

    2008-08-01

    Remington was one of the first firearm manufacturing companies to file a patent for laser initiated firearms, in 1969. Nearly 40 years later, the development of laser initiated firearms has not become a mainstream technology in the civilian market. Requiring a battery is definitely a short coming, so it is easy to see how such a concept would be problematic. Having a firearm operate reliably and the delivery of laser energy in an efficient manner to ignite the shock-sensitive explosive primer mixtures is a tall task indeed. There has been considerable research on optical element based methods of transferring or compressing laser energy to ignite primer charges, including windows, laser chip primers and various lens shaped windows to focus the laser energy. The focusing of laser light needs to achieve igniting temperatures upwards of >400°C. Many of the patent filings covering this type of technology discuss simple approaches where a single point of light might be sufficient to perform this task. Alternatively a multi-point method might provide better performance, especially for mission critical applications, such as precision military firearms. This paper covers initial design and performance test of the laser beam shaping optics to create simultaneous multiple point ignition locations and a circumferential intense ring for igniting primer charge compounds. A simple initial test of the ring beam shaping technique was evaluated on a standard large caliber primer to determine its effectiveness on igniting the primer material. Several tests were conducted to gauge the feasibility of laser beam shaping, including optic fabrication and mounting on a cartridge, optic durability and functional ignition performance. Initial data will be presented, including testing of optically elements and empirical primer ignition / burn analysis.

  11. A line scanned light-sheet microscope with phase shaped self-reconstructing beams.

    PubMed

    Fahrbach, Florian O; Rohrbach, Alexander

    2010-11-08

    We recently demonstrated that Microscopy with Self-Reconstructing Beams (MISERB) increases both image quality and penetration depth of illumination beams in strongly scattering media. Based on the concept of line scanned light-sheet microscopy, we present an add-on module to a standard inverted microscope using a scanned beam that is shaped in phase and amplitude by a spatial light modulator. We explain technical details of the setup as well as of the holograms for the creation, positioning and scaling of static light-sheets, Gaussian beams and Bessel beams. The comparison of images from identical sample areas illuminated by different beams allows a precise assessment of the interconnection between beam shape and image quality. The superior propagation ability of Bessel beams through inhomogeneous media is demonstrated by measurements on various scattering media.

  12. Modeling and optimization of shape memory-superelastic antagonistic beam assembly

    NASA Astrophysics Data System (ADS)

    Tabesh, Majid; Elahinia, Mohammad H.

    2010-04-01

    Superelasticity (SE), shape memory effect (SM), high damping capacity, corrosion resistance, and biocompatibility are the properties of NiTi that makes the alloy ideal for biomedical devices. In this work, the 1D model developed by Brinson was modified to capture the shape memory effect, superelasticity and hysteresis behavior, as well as partial transformation in both positive and negative directions. This model was combined with the Euler beam equation which, by approximation, considers 1D compression and tension stress-strain relationships in different layers of a 3D beam assembly cross-section. A shape memory-superelastic NiTi antagonistic beam assembly was simulated with this model. This wire-tube assembly is designed to enhance the performance of the pedicle screws in osteoporotic bones. For the purpose of this study, an objective design is pursued aiming at optimizing the dimensions and initial configurations of the SMA wire-tube assembly.

  13. Effect of axial load on mode shapes and frequencies of beams

    NASA Technical Reports Server (NTRS)

    Shaker, F. J.

    1975-01-01

    An investigation of the effect of axial load on the natural frequencies and mode shapes of uniform beams and of a cantilevered beam with a concentrated mass at the tip is presented. Characteristic equations which yield the frequencies and mode shape functions for the various cases are given. The solutions to these equations are presented by a series of graphs so that frequency as a function of axial load can readily be determined. The effect of axial load on the mode shapes are also depicted by another series of graphs.

  14. TU-CD-207-10: Dedicated Cone-Beam Breast CT: Design of a 3-D Beam-Shaping Filter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vedantham, S; Shi, L; Karellas, A

    2015-06-15

    Purpose: To design a 3 -D beam-shaping filter for cone-beam breast CT for equalizing x-ray photon fluence incident on the detector along both fan and cone angle directions. Methods: The 3-D beam-shaping filter was designed as the sum of two filters: a bow-tie filter assuming cylindrical breast and a 3D difference filter equivalent to the difference in projected thickness between the cylinder and the real breast. Both filters were designed with breast-equivalent material and converted to Al for the targeted x-ray spectrum. The bow-tie was designed for the largest diameter cylindrical breast by determining the fan-angle dependent path-length and themore » filter thickness needed to equalize the fluence. A total of 23,760 projections (180 projections of 132 binary breast CT volumes) were averaged, scaled for the largest breast, and subtracted from the projection of the largest diameter cylindrical breast to provide the 3D difference filter. The 3 -D beam shaping filter was obtained by summing the two filters. Numerical simulations with semi-ellipsoidal breasts of 10–18 cm diameter (chest-wall to nipple length=0.75 x diameter) were conducted to evaluate beam equalization. Results: The proposed 3-D beam-shaping filter showed a 140% -300% improvement in equalizing the photon fluence along the chest-wall to nipple (cone-angle) direction compared to a bow-tie filter. The improvement over bow-tie filter was larger for breasts with longer chest-wall to nipple length. Along the radial (fan-angle) direction, the performance of the 3-D beam shaping filter was marginally better than the bow-tie filter, with 4%-10% improvement in equalizing the photon fluence. For a ray traversing the chest-wall diameter of the breast, the filter transmission ratio was >0.95. Conclusion: The 3-D beam shaping filter provided substantial advantage over bow-tie filter in equalizing the photon fluence along the cone-angle direction. In conjunction with a 2-axis positioner, the filter can

  15. Reversible wavefront shaping between Gaussian and Airy beams by mimicking gravitational field

    NASA Astrophysics Data System (ADS)

    Wang, Xiangyang; Liu, Hui; Sheng, Chong; Zhu, Shining

    2018-02-01

    In this paper, we experimentally demonstrate reversible wavefront shaping through mimicking gravitational field. A gradient-index micro-structured optical waveguide with special refractive index profile was constructed whose effective index satisfying a gravitational field profile. Inside the waveguide, an incident broad Gaussian beam is firstly transformed into an accelerating beam, and the generated accelerating beam is gradually changed back to a Gaussian beam afterwards. To validate our experiment, we performed full-wave continuum simulations that agree with the experimental results. Furthermore, a theoretical model was established to describe the evolution of the laser beam based on Landau’s method, showing that the accelerating beam behaves like the Airy beam in the small range in which the linear potential approaches zero. To our knowledge, such a reversible wavefront shaping technique has not been reported before.

  16. A method for generating double-ring-shaped vector beams

    NASA Astrophysics Data System (ADS)

    Huan, Chen; Xiao-Hui, Ling; Zhi-Hong, Chen; Qian-Guang, Li; Hao, Lv; Hua-Qing, Yu; Xu-Nong, Yi

    2016-07-01

    We propose a method for generating double-ring-shaped vector beams. A step phase introduced by a spatial light modulator (SLM) first makes the incident laser beam have a nodal cycle. This phase is dynamic in nature because it depends on the optical length. Then a Pancharatnam-Berry phase (PBP) optical element is used to manipulate the local polarization of the optical field by modulating the geometric phase. The experimental results show that this scheme can effectively create double-ring-shaped vector beams. It provides much greater flexibility to manipulate the phase and polarization by simultaneously modulating the dynamic and the geometric phases. Project supported by the National Natural Science Foundation of China (Grant No. 11547017), the Hubei Engineering University Research Foundation, China (Grant No. z2014001), and the Natural Science Foundation of Hubei Province, China (Grant No. 2014CFB578).

  17. Precision Control of the Electron Longitudinal Bunch Shape Using an Emittance-Exchange Beam Line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ha, Gwanghui; Cho, Moo -Hyun; Namkung, W.

    2017-03-09

    Here, we report on the experimental generation of relativistic electron bunches with a tunable longitudinal bunch shape. A longitudinal bunch-shaping (LBS) beam line, consisting of a transverse mask followed by a transverse-to-longitudinal emittance exchange (EEX) beam line, is used to tailor the longitudinal bunch shape (or current profile) of the electron bunch. The mask shapes the bunch’s horizontal profile, and the EEX beam line converts it to a corresponding longitudinal profile. The Argonne wakefield accelerator rf photoinjector delivers electron bunches into a LBS beam line to generate a variety of longitudinal bunch shapes. The quality of the longitudinal bunch shapemore » is limited by various perturbations in the exchange process. We develop a simple method, based on the incident slope of the bunch, to significantly suppress the perturbations.« less

  18. Beam shaping optics to enhance performance of interferometry techniques in grating manufacture

    NASA Astrophysics Data System (ADS)

    Laskin, Alexander; Laskin, Vadim; Ostrun, Aleksei

    2018-02-01

    Improving of industrial holographic and interferometry techniques is of great importance in interference lithography, computer-generated holography, holographic data storage, interferometry recording of Bragg gratings as well as gratings of various types in semiconductor industry. Performance of mentioned techniques is essentially enhanced by providing a light beam with flat phase front and flat-top irradiance distribution. Therefore, transformation of Gaussian distribution of a TEM00 laser to flat-top (top hat, uniform) distribution is an important optical task. There are different refractive and diffractive beam shaping approaches used in laser industrial and scientific applications, but only few of them are capable to fulfil the optimum conditions for beam quality demanding holography and interferometry. As a solution it is suggested to apply refractive field mapping beam shaping optics πShaper, which operational principle presumes almost lossless transformation of Gaussian to flat-top beam with flatness of output wavefront, conserving of beam consistency, providing collimated low divergent output beam, high transmittance, extended depth of field, negligible wave aberration, and achromatic design provides capability to work with several lasers with different wavelengths simultaneously. High optical quality of resulting flat-top beam allows applying additional optical components to build various imaging optical systems for variation of beam size and shape to fulfil requirements of a particular application. This paper will describe design basics of refractive beam shapers and optical layouts of their applying in holography and laser interference lithography. Examples of real implementations and experimental results will be presented as well.

  19. Adaptive Shape Kernel-Based Mean Shift Tracker in Robot Vision System

    PubMed Central

    2016-01-01

    This paper proposes an adaptive shape kernel-based mean shift tracker using a single static camera for the robot vision system. The question that we address in this paper is how to construct such a kernel shape that is adaptive to the object shape. We perform nonlinear manifold learning technique to obtain the low-dimensional shape space which is trained by training data with the same view as the tracking video. The proposed kernel searches the shape in the low-dimensional shape space obtained by nonlinear manifold learning technique and constructs the adaptive kernel shape in the high-dimensional shape space. It can improve mean shift tracker performance to track object position and object contour and avoid the background clutter. In the experimental part, we take the walking human as example to validate that our method is accurate and robust to track human position and describe human contour. PMID:27379165

  20. The Researches on I-beam of different web’s shapes

    NASA Astrophysics Data System (ADS)

    Shuang, Chao; Zhou, Dong Hua

    2018-05-01

    When the ratio of height to thickness of girder web is relatively high, generally the local stability of web is enhanced by setting up stiffeners. But setting up stiffeners not only increase the use of material, but also increases the welding work. Therefore, the web can be processed into trapezoid, curve, triangles and rectangle to improve its stability. In order to study the mechanical behavior of the web with different shapes and its local stable bearing capacity, the finite element analysis software ANSYS was used to analyze the six I-beam, and the stress characteristics under different web forms were obtained. The results show that the local stability bearing capacity of the I-beam is improved, especially the shape of the trapezoidal web and the shape of the curved web have a significant effect on the local stability of the I-beam. Finally, based on the study of the local stability of the trapezoidal web and the curved web, the influence of their geometrical dimensions on the local stable bearing capacity is also studied.

  1. Effects of laser beam propagation and saturation on the spatial shape of sodium laser guide stars.

    PubMed

    Marc, Fabien; Guillet de Chatellus, Hugues; Pique, Jean-Paul

    2009-03-30

    The possibility to produce diffraction-limited images by large telescopes through Adaptive Optics is closely linked to the precision of measurement of the position of the guide star on the wavefront sensor. In the case of laser guide stars, many parameters can lead to a strong distortion on the shape of the LGS spot. Here we study the influence of both the saturation of the sodium layer excited by different types of lasers, the spatial quality of the laser mode at the ground and the influence of the atmospheric turbulence on the upward propagation of the laser beam. Both shape and intensity of the LGS spot are found to depend strongly on these three effects with important consequences on the precision on the wavefront analysis.

  2. Minimal-effort planning of active alignment processes for beam-shaping optics

    NASA Astrophysics Data System (ADS)

    Haag, Sebastian; Schranner, Matthias; Müller, Tobias; Zontar, Daniel; Schlette, Christian; Losch, Daniel; Brecher, Christian; Roßmann, Jürgen

    2015-03-01

    In science and industry, the alignment of beam-shaping optics is usually a manual procedure. Many industrial applications utilizing beam-shaping optical systems require more scalable production solutions and therefore effort has been invested in research regarding the automation of optics assembly. In previous works, the authors and other researchers have proven the feasibility of automated alignment of beam-shaping optics such as collimation lenses or homogenization optics. Nevertheless, the planning efforts as well as additional knowledge from the fields of automation and control required for such alignment processes are immense. This paper presents a novel approach of planning active alignment processes of beam-shaping optics with the focus of minimizing the planning efforts for active alignment. The approach utilizes optical simulation and the genetic programming paradigm from computer science for automatically extracting features from a simulated data basis with a high correlation coefficient regarding the individual degrees of freedom of alignment. The strategy is capable of finding active alignment strategies that can be executed by an automated assembly system. The paper presents a tool making the algorithm available to end-users and it discusses the results of planning the active alignment of the well-known assembly of a fast-axis collimator. The paper concludes with an outlook on the transferability to other use cases such as application specific intensity distributions which will benefit from reduced planning efforts.

  3. Laser Beam Steering/shaping for Free Space Optical Communication

    NASA Technical Reports Server (NTRS)

    Wang, Xinghua; Wang, Bin; Bos, Philip J.; Anderson, James E.; Pouch, John; Miranda, Felix; McManamon, Paul F.

    2004-01-01

    The 2-D Optical Phased Array (OPA) antenna based on a Liquid Crystal On Silicon (LCoS) device can be considered for use in free space optical communication as an active beam controlling device. Several examples of the functionality of the device include: beam steering in the horizontal and elevation direction; high resolution wavefront compensation in a large telescope; and beam shaping with the computer generated kinoform. Various issues related to the diffraction efficiency, steering range, steering accuracy as well as the magnitude of wavefront compensation are discussed.

  4. Irwin's conjecture: Crack shape adaptability in transversely isotropic solids

    NASA Astrophysics Data System (ADS)

    Laubie, Hadrien; Ulm, Franz-Josef

    2014-08-01

    The planar crack propagation problem of a flat elliptical crack embedded in a brittle elastic anisotropic solid is investigated. We introduce the concept of crack shape adaptability: the ability of three-dimensional planar cracks to shape with the mechanical properties of a cracked body. A criterion based on the principle of maximum dissipation is suggested in order to determine the most stable elliptical shape. This criterion is applied to the specific case of vertical cracks in transversely isotropic solids. It is shown that contrary to the isotropic case, the circular shape (i.e. penny-shaped cracks) is not the most stable one. Upon propagation, the crack first grows non-self-similarly before it reaches a stable shape. This stable shape can be approximated by an ellipse of an aspect ratio that varies with the degree of elastic anisotropy. By way of example, we apply the so-derived crack shape adaptability criterion to shale materials. For this class of materials it is shown that once the stable shape is reached, the crack propagates at a higher rate in the horizontal direction than in the vertical direction. We also comment on the possible implications of these findings for hydraulic fracturing operations.

  5. Optimum shape control of flexible beams by piezo-electric actuators

    NASA Technical Reports Server (NTRS)

    Baz, A.; Poh, S.

    1987-01-01

    The utilization of piezoelectric actuators in controlling the static deformation and shape of flexible beams is examined. An optimum design procedure is presented to enable the selection of the optimal location, thickness and excitation voltage of the piezoelectric actuators in a way that would minimize the deflection of the beam to which these actuators are bonded. Numerical examples are presented to illustrate the application of the developed optimization procedure in minimizing structural deformation of beams using ceramic and polymeric piezoelectric actuators bonded to the beams with a typical bonding agent. The obtained results emphasize the importance of the devised rational produce in designing beam-actuator systems with minimal elastic distortions.

  6. Optimization of shape control of a cantilever beam using dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Liu, Chong; Mao, Boyong; Huang, Gangting; Wu, Qichen; Xie, Shilin; Xu, Minglong

    2018-05-01

    Dielectric elastomer (DE) is a kind of smart soft material that has many advantages such as large deformation, fast response, lightweight and easy synthesis. These features make dielectric elastomer a suitable material for actuators. This article focuses on the shape control of a cantilever beam by using dielectric elastomer actuators. The shape control equation in finite element formulation of the cantilever beam partially covered with dielectric elastomer actuators is derived based on the constitutive equation of dielectric elastomer material by using Hamilton principle. The actuating forces produced by dielectric elastomer actuators depend on the number of layers, the position and the actuation voltage of dielectric elastomer actuators. First, effects of these factors on the shape control accuracy when one pair or multiple pairs of actuators are employed are simulated, respectively. The simulation results demonstrate that increasing the number of actuators or the number of layers can improve the control effect and reduce the actuation voltages effectively. Second, to achieve the optimal shape control effect, the position of the actuators and the drive voltages are all determined using a genetic algorithm. The robustness of the genetic algorithm is analyzed. Moreover, the implications of using one pair and multiple pairs of actuators to drive the cantilever beam to the expected shape are investigated. The results demonstrate that a small number of actuators with optimal placement and optimal voltage values can achieve the shape control of the beam effectively. Finally, a preliminary experimental verification of the control effect is carried out, which shows the correctness of the theoretical method.

  7. Vector vortex beam generation with dolphin-shaped cell meta-surface.

    PubMed

    Yang, Zhuo; Kuang, Deng-Feng; Cheng, Fang

    2017-09-18

    We present a dolphin-shaped cell meta-surface, which is a combination of dolphin-shaped metallic cells and dielectric substrate, for vector vortex beam generation with the illumination of linearly polarized light. Surface plasmon polaritons are excited at the boundary of the metallic cells, then guided by the metallic structures, and finally squeezed to the tips to form highly localized strong electromagnetic fields, which generate the intensity of vector vortex beams at z component. Synchronously, the abrupt phase change produced by the meta-surface is utilized to explain the vortex phase generated by elements. The new kind of structure can be utilized for communication, bioscience, and materiality.

  8. Precision shape modification of nanodevices with a low-energy electron beam

    DOEpatents

    Zettl, Alex; Yuzvinsky, Thomas David; Fennimore, Adam

    2010-03-09

    Methods of shape modifying a nanodevice by contacting it with a low-energy focused electron beam are disclosed here. In one embodiment, a nanodevice may be permanently reformed to a different geometry through an application of a deforming force and a low-energy focused electron beam. With the addition of an assist gas, material may be removed from the nanodevice through application of the low-energy focused electron beam. The independent methods of shape modification and material removal may be used either individually or simultaneously. Precision cuts with accuracies as high as 10 nm may be achieved through the use of precision low-energy Scanning Electron Microscope scan beams. These methods may be used in an automated system to produce nanodevices of very precise dimensions. These methods may be used to produce nanodevices of carbon-based, silicon-based, or other compositions by varying the assist gas.

  9. Optical Manipulation with Plasmonic Beam Shaping Antenna Structures

    DOE PAGES

    Jun, Young Chul; Brener, Igal

    2012-01-01

    Near-field optical trapping of objects using plasmonic antenna structures has recently attracted great attention. However, metal nanostructures also provide a compact platform for general wavefront engineering of intermediate and far-field beams. Here, we analyze optical forces generated by plasmonic beam shaping antenna structures and show that they can be used for general optical manipulation such as guiding of a dielectric particle along a linear or curved trajectory. This removes the need for bulky diffractive optical components and facilitates the integration of optical force manipulation into a highly functional, compact system.

  10. Measurement and Prediction of the Thermomechanical Response of Shape Memory Alloy Hybrid Composite Beams

    NASA Technical Reports Server (NTRS)

    Davis, Brian; Turner, Travis L.; Seelecke, Stefan

    2008-01-01

    An experimental and numerical investigation into the static and dynamic responses of shape memory alloy hybrid composite (SMAHC) beams is performed to provide quantitative validation of a recently commercialized numerical analysis/design tool for SMAHC structures. The SMAHC beam specimens consist of a composite matrix with embedded pre-strained SMA actuators, which act against the mechanical boundaries of the structure when thermally activated to adaptively stiffen the structure. Numerical results are produced from the numerical model as implemented into the commercial finite element code ABAQUS. A rigorous experimental investigation is undertaken to acquire high fidelity measurements including infrared thermography and projection moire interferometry for full-field temperature and displacement measurements, respectively. High fidelity numerical results are also obtained from the numerical model and include measured parameters, such as geometric imperfection and thermal load. Excellent agreement is achieved between the predicted and measured results of the static and dynamic thermomechanical response, thereby providing quantitative validation of the numerical tool.

  11. Removal of central obscuration and spider arm effects with beam-shaping coronagraphy

    NASA Astrophysics Data System (ADS)

    Abe, L.; Murakami, N.; Nishikawa, J.; Tamura, M.

    2006-05-01

    This paper describes a method for removing the effect of a centrally obscured aperture with additional spider arms in arbitrary geometrical configurations. The proposed method is based on a two-stage process where the light beam is first shaped to remove the central obscuration and spider arms, in order to feed a second, highly efficient coronagraph. The beam-shaping stage is a combination of a diffraction mask in the first focal plane and a complex amplitude filter located in the conjugate pupil. This paper specifically describes the case of using Lyot occulting masks and circular phase-shifting masks as diffracting components. The basic principle of the method is given along with an analytical description and numerical simulations. Substantial improvement in the performance of high-contrast coronagraphs can be obtained with this method, even if the beam-shaping filter is not perfectly manufactured.

  12. New vistas in refractive laser beam shaping with an analytic design approach

    NASA Astrophysics Data System (ADS)

    Duerr, Fabian; Thienpont, Hugo

    2014-05-01

    Many commercial, medical and scientific applications of the laser have been developed since its invention. Some of these applications require a specific beam irradiance distribution to ensure optimal performance. Often, it is possible to apply geometrical methods to design laser beam shapers. This common design approach is based on the ray mapping between the input plane and the output beam. Geometric ray mapping designs with two plano-aspheric lenses have been thoroughly studied in the past. Even though analytic expressions for various ray mapping functions do exist, the surface profiles of the lenses are still calculated numerically. In this work, we present an alternative novel design approach that allows direct calculation of the rotational symmetric lens profiles described by analytic functions. Starting from the example of a basic beam expander, a set of functional differential equations is derived from Fermat's principle. This formalism allows calculating the exact lens profiles described by Taylor series coefficients up to very high orders. To demonstrate the versatility of this new approach, two further cases are solved: a Gaussian to at-top irradiance beam shaping system, and a beam shaping system that generates a more complex dark-hollow Gaussian (donut-like) irradiance profile with zero intensity in the on-axis region. The presented ray tracing results confirm the high accuracy of all calculated solutions and indicate the potential of this design approach for refractive beam shaping applications.

  13. Shape control of an adaptive wing for transonic drag reduction

    NASA Astrophysics Data System (ADS)

    Austin, Fred; Van Nostrand, William C.

    1995-05-01

    Theory and experiments to control the static shape of flexible structures by employing internal translational actuators are summarized and plants to extend the work to adaptive wings are presented. Significant reductions in the shock-induced drag are achievable during transonic- cruise by small adaptive modifications to the wing cross-sectional profile. Actuators are employed as truss elements of active ribs to deform the wing cross section. An adaptive-rib model was constructed, and experiments validated the shape-control theory. Plans for future development under an ARPA/AFWAL contract include payoff assessments of the method on an actual aircraft, the development of inchworm TERFENOL-D actuators, and the development of a method to optimize the wing cross-sectional shapes by direct-drag measurements.

  14. Multi-shaped beam: development status and update on lithography results

    NASA Astrophysics Data System (ADS)

    Slodowski, Matthias; Doering, Hans-Joachim; Dorl, Wolfgang; Stolberg, Ines A.

    2011-04-01

    According to the ITRS [1] photo mask is a significant challenge for the 22nm technology node requirements and beyond. Mask making capability and cost escalation continue to be critical for future lithography progress. On the technological side mask specifications and complexity have increased more quickly than the half-pitch requirements on the wafer designated by the roadmap due to advanced optical proximity correction and double patterning demands. From the economical perspective mask costs have significantly increased each generation, in which mask writing represents a major portion. The availability of a multi-electron-beam lithography system for mask write application is considered a potential solution to overcome these challenges [2, 3]. In this paper an update of the development status of a full-package high-throughput multi electron-beam writer, called Multi Shaped Beam (MSB), will be presented. Lithography performance results, which are most relevant for mask writing applications, will be disclosed. The MSB technology is an evolutionary development of the matured single Variable Shaped Beam (VSB) technology. An arrangement of Multi Deflection Arrays (MDA) allows operation with multiple shaped beams of variable size, which can be deflected and controlled individually [4]. This evolutionary MSB approach is associated with a lower level of risk and a relatively short time to implementation compared to the known revolutionary concepts [3, 5, 6]. Lithography performance is demonstrated through exposed pattern. Further details of the substrate positioning platform performance will be disclosed. It will become apparent that the MSB operational mode enables lithography on the same and higher performance level compared to single VSB and that there are no specific additional lithography challenges existing beside those which have already been addressed [1].

  15. Axicons, prisms and integrators: searching for simple laser beam shaping solutions

    NASA Astrophysics Data System (ADS)

    Lizotte, Todd

    2010-08-01

    Over the last thirty five years there have been many papers presented at numerous conferences and published within a host of optical journals. What is presented in many cases is either too exotic or technically challenging in practical application terms and it could be said both are testaments to the imagination of engineers and researchers. For many brute force laser processing applications such as paint stripping, large area ablation or general skiving of flex circuits, the opportunity to use a beam shaper that is inexpensive is a welcomed tool. Shaping the laser beam for less demanding applications, provides for a more uniform removal rate and increases the overall quality of the part being processed. It is a well known fact customers like their parts to look good. Many times, complex optical beam shaping techniques are considered because no one is aware of the historical solutions that have been lost to the ages. These complex solutions can range in price from 10,000 to 60,000 and require many months to design and fabricate. This paper will provide an overview of various beam shaping techniques that are both elegant and simple in concept and design. Optical techniques using axicons, prisms and reflective integrators will be discussed in an overview format.

  16. Laser beam shaping for studying thermally induced damage

    NASA Astrophysics Data System (ADS)

    Masina, Bathusile N.; Bodkin, Richard; Mwakikunga, Bonex; Forbes, Andrew

    2011-10-01

    This paper presents an implementation of a laser beam shaping system for both heating a diamond tool and measuring the resulting temperature optically. The influence the initial laser parameters have on the resultant temperature profiles is shown experimentally and theoretically. A CO2 laser beam was used as the source to raise the temperature of the diamond tool and the resultant temperature was measured by using the blackbody principle. We have successfully transformed a Gaussian beam profile into a flat-top beam profile by using a diffractive optical element as a phase element in conjunction with a Fourier transforming lens. In this paper, we have successfully demonstrated temperature profiles across the diamond tool surface using two laser beam profiles and two optical setups, thus allowing a study of temperature influences with and without thermal stress. The generation of such temperature profiles on the diamond tool in the laboratory is important in the study of changes that occur in diamond tools, particularly the reduced efficiency of such tools in applications where extreme heating due to friction is expected.

  17. Investigating the case of human nose shape and climate adaptation

    PubMed Central

    Zaidi, Arslan A.; Claes, Peter; McEcoy, Brian; Shriver, Mark D.

    2017-01-01

    The evolutionary reasons for variation in nose shape across human populations have been subject to continuing debate. An import function of the nose and nasal cavity is to condition inspired air before it reaches the lower respiratory tract. For this reason, it is thought the observed differences in nose shape among populations are not simply the result of genetic drift, but may be adaptations to climate. To address the question of whether local adaptation to climate is responsible for nose shape divergence across populations, we use Qst–Fst comparisons to show that nares width and alar base width are more differentiated across populations than expected under genetic drift alone. To test whether this differentiation is due to climate adaptation, we compared the spatial distribution of these variables with the global distribution of temperature, absolute humidity, and relative humidity. We find that width of the nares is correlated with temperature and absolute humidity, but not with relative humidity. We conclude that some aspects of nose shape may indeed have been driven by local adaptation to climate. However, we think that this is a simplified explanation of a very complex evolutionary history, which possibly also involved other non-neutral forces such as sexual selection. PMID:28301464

  18. Investigating the case of human nose shape and climate adaptation.

    PubMed

    Zaidi, Arslan A; Mattern, Brooke C; Claes, Peter; McEvoy, Brian; Hughes, Cris; Shriver, Mark D

    2017-03-01

    The evolutionary reasons for variation in nose shape across human populations have been subject to continuing debate. An import function of the nose and nasal cavity is to condition inspired air before it reaches the lower respiratory tract. For this reason, it is thought the observed differences in nose shape among populations are not simply the result of genetic drift, but may be adaptations to climate. To address the question of whether local adaptation to climate is responsible for nose shape divergence across populations, we use Qst-Fst comparisons to show that nares width and alar base width are more differentiated across populations than expected under genetic drift alone. To test whether this differentiation is due to climate adaptation, we compared the spatial distribution of these variables with the global distribution of temperature, absolute humidity, and relative humidity. We find that width of the nares is correlated with temperature and absolute humidity, but not with relative humidity. We conclude that some aspects of nose shape may indeed have been driven by local adaptation to climate. However, we think that this is a simplified explanation of a very complex evolutionary history, which possibly also involved other non-neutral forces such as sexual selection.

  19. Neutron-beam-shaping assembly for boron neutron-capture therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaidi, L.; Kashaeva, E. A.; Lezhnin, S. I.

    A neutron-beam-shaping assembly consisting of a moderator, a reflector, and an absorber is used to form a therapeutic neutron beam for the boron neutron-capture therapy of malignant tumors at accelerator neutron sources. A new structure of the moderator and reflector is proposed in the present article, and the results of a numerical simulation of the neutron spectrum and of the absorbed dose in a modified Snyder head phantom are presented. The application of a composite moderator and of a composite reflector and the implementation of neutron production at the proton energy of 2.3MeV are shown to permit obtaining a high-qualitymore » therapeutic neutron beam.« less

  20. Networked Airborne Communications Using Adaptive Multi Beam Directional Links

    DTIC Science & Technology

    2016-03-05

    Networked Airborne Communications Using Adaptive Multi-Beam Directional Links R. Bruce MacLeod Member, IEEE, and Adam Margetts Member, IEEE MIT...provide new techniques for increasing throughput in airborne adaptive directional net- works. By adaptive directional linking, we mean systems that can...techniques can dramatically increase the capacity in airborne networks. Advances in digital array technology are beginning to put these gains within reach

  1. Interference and Shaping in Sensorimotor Adaptations with Rewards

    PubMed Central

    Darshan, Ran; Leblois, Arthur; Hansel, David

    2014-01-01

    When a perturbation is applied in a sensorimotor transformation task, subjects can adapt and maintain performance by either relying on sensory feedback, or, in the absence of such feedback, on information provided by rewards. For example, in a classical rotation task where movement endpoints must be rotated to reach a fixed target, human subjects can successfully adapt their reaching movements solely on the basis of binary rewards, although this proves much more difficult than with visual feedback. Here, we investigate such a reward-driven sensorimotor adaptation process in a minimal computational model of the task. The key assumption of the model is that synaptic plasticity is gated by the reward. We study how the learning dynamics depend on the target size, the movement variability, the rotation angle and the number of targets. We show that when the movement is perturbed for multiple targets, the adaptation process for the different targets can interfere destructively or constructively depending on the similarities between the sensory stimuli (the targets) and the overlap in their neuronal representations. Destructive interferences can result in a drastic slowdown of the adaptation. As a result of interference, the time to adapt varies non-linearly with the number of targets. Our analysis shows that these interferences are weaker if the reward varies smoothly with the subject's performance instead of being binary. We demonstrate how shaping the reward or shaping the task can accelerate the adaptation dramatically by reducing the destructive interferences. We argue that experimentally investigating the dynamics of reward-driven sensorimotor adaptation for more than one sensory stimulus can shed light on the underlying learning rules. PMID:24415925

  2. High efficiency and high-energy intra-cavity beam shaping laser

    NASA Astrophysics Data System (ADS)

    Yang, Hailong; Meng, Junqing; Chen, Weibiao

    2015-09-01

    We present a technology of intra-cavity laser beam shaping with theory and experiment to obtain a flat-top-like beam with high-pulse energy. A radial birefringent element (RBE) was used in a crossed Porro prism polarization output coupling resonator to modulate the phase delay radially. The reflectively of a polarizer used as an output mirror was variable radially. A flat-top-like beam with 72.5 mJ, 11 ns at 20 Hz was achieved by a side-pumped Nd:YAG zigzag slab laser, and the optical-to-optical conversion efficiency was 17.3%.

  3. Improved safety of retinal photocoagulation with a shaped beam and modulated pulse

    NASA Astrophysics Data System (ADS)

    Sramek, Christopher; Brown, Jefferson; Paulus, Yannis M.; Nomoto, Hiroyuki; Palanker, Daniel

    2010-02-01

    Shorter pulse durations help confine thermal damage during retinal photocoagulation, decrease treatment time and minimize pain. However, safe therapeutic window (the ratio of threshold powers for rupture and mild coagulation) decreases with shorter exposures. A ring-shaped beam enables safer photocoagulation than conventional beams by reducing the maximum temperature in the center of the spot. Similarly, a temporal pulse modulation decreasing its power over time improves safety by maintaining constant temperature for a significant portion of the pulse. Optimization of the beam and pulse shapes was performed using a computational model. In vivo experiments were performed to verify the predicted improvement. With each of these approaches, the pulse duration can be decreased by a factor of two, from 20 ms down to 10 ms while maintaining the same therapeutic window.

  4. Measurement and prediction of the thermomechanical response of shape memory alloy hybrid composite beams

    NASA Astrophysics Data System (ADS)

    Davis, Brian; Turner, Travis L.; Seelecke, Stefan

    2005-05-01

    Previous work at NASA Langley Research Center (LaRC) involved fabrication and testing of composite beams with embedded, pre-strained shape memory alloy (SMA) ribbons within the beam structures. That study also provided comparison of experimental results with numerical predictions from a research code making use of a new thermoelastic model for shape memory alloy hybrid composite (SMAHC) structures. The previous work showed qualitative validation of the numerical model. However, deficiencies in the experimental-numerical correlation were noted and hypotheses for the discrepancies were given for further investigation. The goal of this work is to refine the experimental measurement and numerical modeling approaches in order to better understand the discrepancies, improve the correlation between prediction and measurement, and provide rigorous quantitative validation of the numerical analysis/design tool. The experimental investigation is refined by a more thorough test procedure and incorporation of higher fidelity measurements such as infrared thermography and projection moire interferometry. The numerical results are produced by a recently commercialized version of the constitutive model as implemented in ABAQUS and are refined by incorporation of additional measured parameters such as geometric imperfection. Thermal buckling, post-buckling, and random responses to thermal and inertial (base acceleration) loads are studied. The results demonstrate the effectiveness of SMAHC structures in controlling static and dynamic responses by adaptive stiffening. Excellent agreement is achieved between the predicted and measured results of the static and dynamic thermomechanical response, thereby providing quantitative validation of the numerical tool.

  5. Measurement and Prediction of the Thermomechanical Response of Shape Memory Alloy Hybrid Composite Beams

    NASA Technical Reports Server (NTRS)

    Davis, Brian; Turner, Travis L.; Seelecke, Stefan

    2005-01-01

    Previous work at NASA Langley Research Center (LaRC) involved fabrication and testing of composite beams with embedded, pre-strained shape memory alloy (SMA) ribbons within the beam structures. That study also provided comparison of experimental results with numerical predictions from a research code making use of a new thermoelastic model for shape memory alloy hybrid composite (SMAHC) structures. The previous work showed qualitative validation of the numerical model. However, deficiencies in the experimental-numerical correlation were noted and hypotheses for the discrepancies were given for further investigation. The goal of this work is to refine the experimental measurement and numerical modeling approaches in order to better understand the discrepancies, improve the correlation between prediction and measurement, and provide rigorous quantitative validation of the numerical analysis/design tool. The experimental investigation is refined by a more thorough test procedure and incorporation of higher fidelity measurements such as infrared thermography and projection moire interferometry. The numerical results are produced by a recently commercialized version of the constitutive model as implemented in ABAQUS and are refined by incorporation of additional measured parameters such as geometric imperfection. Thermal buckling, post-buckling, and random responses to thermal and inertial (base acceleration) loads are studied. The results demonstrate the effectiveness of SMAHC structures in controlling static and dynamic responses by adaptive stiffening. Excellent agreement is achieved between the predicted and measured results of the static and dynamic thermomechanical response, thereby providing quantitative validation of the numerical tool.

  6. Beam shaping to improve the free-electron laser performance at the Linac Coherent Light Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Y.; Bane, K. L. F.; Colocho, W.

    2016-10-27

    A new operating mode has been developed for the Linac Coherent Light Source (LCLS) in which we shape the longitudinal phase space of the electron beam. This mode of operation is realized using a horizontal collimator located in the middle of the first bunch compressor to truncate the head and tail of the beam. With this method, the electron beam longitudinal phase space and current profile are reshaped, and improvement in lasing performance can be realized. As a result, we present experimental studies at the LCLS of the beam shaping effects on the free-electron laser performance.

  7. Speckle-metric-optimization-based adaptive optics for laser beam projection and coherent beam combining.

    PubMed

    Vorontsov, Mikhail; Weyrauch, Thomas; Lachinova, Svetlana; Gatz, Micah; Carhart, Gary

    2012-07-15

    Maximization of a projected laser beam's power density at a remotely located extended object (speckle target) can be achieved by using an adaptive optics (AO) technique based on sensing and optimization of the target-return speckle field's statistical characteristics, referred to here as speckle metrics (SM). SM AO was demonstrated in a target-in-the-loop coherent beam combining experiment using a bistatic laser beam projection system composed of a coherent fiber-array transmitter and a power-in-the-bucket receiver. SM sensing utilized a 50 MHz rate dithering of the projected beam that provided a stair-mode approximation of the outgoing combined beam's wavefront tip and tilt with subaperture piston phases. Fiber-integrated phase shifters were used for both the dithering and SM optimization with stochastic parallel gradient descent control.

  8. Optimization of Compton Source Performance through Electron Beam Shaping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malyzhenkov, Alexander; Yampolsky, Nikolai

    2016-09-26

    We investigate a novel scheme for significantly increasing the brightness of x-ray light sources based on inverse Compton scattering (ICS) - scattering laser pulses off relativistic electron beams. The brightness of ICS sources is limited by the electron beam quality since electrons traveling at different angles, and/or having different energies, produce photons with different energies. Therefore, the spectral brightness of the source is defined by the 6d electron phase space shape and size, as well as laser beam parameters. The peak brightness of the ICS source can be maximized then if the electron phase space is transformed in a waymore » so that all electrons scatter off the x-ray photons of same frequency in the same direction, arriving to the observer at the same time. We describe the x-ray photon beam quality through the Wigner function (6d photon phase space distribution) and derive it for the ICS source when the electron and laser rms matrices are arbitrary.« less

  9. Modeling of a reinforced concrete beam using shape memory alloy as reinforcement bars

    NASA Astrophysics Data System (ADS)

    Bajoria, Kamal M.; Kaduskar, Shreya S.

    2017-04-01

    In this paper the structural behavior of reinforced concrete (RC) beams with smart rebars under three point loading system has been numerically studied, using Finite Element Method. The material used in this study is Superelastic Shape Memory Alloy (SE SMA) which contains nickel and titanium. Shape memory alloys (SMAs) are a unique class of materials which have ability to undergo large deformation and also regain their un-deformed shape by removal of stress or by heating. In this study, a uniaxial SMA model is able to reproduce the pseudo-elastic behavior for the reinforcing SMA wires. Finite element simulation is developed in order to study the load-deflection behavior of smart concrete beams subjected to three-point bending tests.

  10. Fully utilizing high power diode lasers by synergizing diode laser light sources and beam shaping micro-optics

    NASA Astrophysics Data System (ADS)

    Fan, Yingmin; Wang, Jingwei; Cai, Lei; Mitra, Thomas; Hauschild, Dirk; Zah, Chung-En; Liu, Xingsheng

    2018-02-01

    High power diode lasers (HPDLs) offer the highest wall-plug efficiency, highest specific power (power-to-weight ratio), arguably the lowest cost and highest reliability among all laser types. However, the poor beam quality of commercially HPDLs is the main bottleneck limiting their direct applications requiring high brightness at least in one dimension. In order to expand the applications of HPDLs, beam shaping and optical design are essential. In this work, we report the recent progresses on maximizing applications of HPDLs by synergizing diode laser light source and beam shaping micro-optics. Successful examples of matching of diode laser light sources and beam shaping micro-optics driving new applications are presented.

  11. Beam shaping by using small-aperture SLM and DM in a high power laser

    NASA Astrophysics Data System (ADS)

    Li, Sensen; Lu, Zhiwei; Du, Pengyuan; Wang, Yulei; Ding, Lei; Yan, Xiusheng

    2018-03-01

    High-power laser plays an important role in many fields, such as directed energy weapon, optoelectronic contermeasures, inertial confinement fusion, industrial processing and scientific research. The uniform nearfield and wavefront are the important part of the beam quality for high power lasers, which is conducive to maintaining the high spatial beam quality in propagation. We demonstrate experimentally that the spatial intensity and wavefront distribution at the output is well compensated in the complex high-power solid-state laser system by using the small-aperture spatial light modulator (SLM) and deformable mirror (DM) in the front stage. The experimental setup is a hundred-Joule-level Nd:glass laser system operating at three wavelengths at 1053 nm (1ω), 527 nm (2ω) and 351 nm (3ω) with 3 ns pulse duration with the final output beam aperture of 60 mm. While the clear arperture of the electrically addressable SLM is less than 20 mm and the effective diameter of the 52-actuators DM is about 15 mm. In the beam shaping system, the key point is that the two front-stage beam shaping devices needs to precompensate the gain nonuniform and wavefront distortion of the laser system. The details of the iterative algorithm for improving the beam quality are presented. Experimental results show that output nearfield and wavefont are both nearly flat-topped with the nearfield modulation of 1.26:1 and wavefront peak-to-valley value of 0.29 λ at 1053nm after beam shaping.

  12. Numerical model for an epoxy beam reinforced with superelastic shape memory alloy wires

    NASA Astrophysics Data System (ADS)

    Viet, N. V.; Zaki, W.; Umer, R.

    2018-03-01

    We present a numerical solution for a smart composite beam consisting of an epoxy matrix reinforced with unidirectional superelastic shape memory alloy (SMA) fibers with uniform circular cross section. The beam is loaded by a tip load, which is then removed resulting in shape recovery due to superelasticity of the SMA wires. The analysis is carried out considering a representative volume element (RVE) of the beam consisting of one SMA wire embedded in epoxy. The analytical model is developed for a superelastic SMA/epoxy composite beam subjected to a complete loading cycle in bending. Using the proposed model, the moment-curvature profile, martensite volume fraction variation, and axial stress are determined. The results are validated against three-dimensional finite element analysis (3D FEA) for the same conditions. The proposed work is a contribution toward better understanding of the bending behavior of superelastic SMA-reinforced composites.

  13. 3D beam shape estimation based on distributed coaxial cable interferometric sensor

    NASA Astrophysics Data System (ADS)

    Cheng, Baokai; Zhu, Wenge; Liu, Jie; Yuan, Lei; Xiao, Hai

    2017-03-01

    We present a coaxial cable interferometer based distributed sensing system for 3D beam shape estimation. By making a series of reflectors on a coaxial cable, multiple Fabry-Perot cavities are created on it. Two cables are mounted on the beam at proper locations, and a vector network analyzer (VNA) is connected to them to obtain the complex reflection signal, which is used to calculate the strain distribution of the beam in horizontal and vertical planes. With 6 GHz swept bandwidth on the VNA, the spatial resolution for distributed strain measurement is 0.1 m, and the sensitivity is 3.768 MHz mɛ -1 at the interferogram dip near 3.3 GHz. Using displacement-strain transformation, the shape of the beam is reconstructed. With only two modified cables and a VNA, this system is easy to implement and manage. Comparing to optical fiber based sensor systems, the coaxial cable sensors have the advantage of large strain and robustness, making this system suitable for structure health monitoring applications.

  14. Automatic online adaptive radiation therapy techniques for targets with significant shape change: a feasibility study.

    PubMed

    Court, Laurence E; Tishler, Roy B; Petit, Joshua; Cormack, Robert; Chin, Lee

    2006-05-21

    This work looks at the feasibility of an online adaptive radiation therapy concept that would detect the daily position and shape of the patient, and would then correct the daily treatment to account for any changes compared with planning position. In particular, it looks at the possibility of developing algorithms to correct for large complicated shape change. For co-planar beams, the dose in an axial plane is approximately associated with the positions of a single multi-leaf collimator (MLC) pair. We start with a primary plan, and automatically generate several secondary plans with gantry angles offset by regular increments. MLC sequences for each plan are calculated keeping monitor units (MUs) and number of segments constant for a given beam (fluences are different). Bulk registration (3D) of planning and daily CT images gives global shifts. Slice-by-slice (2D) registration gives local shifts and rotations about the longitudinal axis for each axial slice. The daily MLC sequence is then created for each axial slice/MLC leaf pair combination, by taking the MLC positions from the pre-calculated plan with the nearest rotation, and shifting using a beam's-eye-view calculation to account for local linear shifts. A planning study was carried out using two head and neck region MR images of a healthy volunteer which were contoured to simulate a base-of-tongue treatment: one with the head straight (used to simulate the planning image) and the other with the head tilted to the left (the daily image). Head and neck treatment was chosen to evaluate this technique because of its challenging nature, with varying internal and external contours, and multiple degrees of freedom. Shape change was significant: on a slice-by-slice basis, local rotations in the daily image varied from 2 to 31 degrees, and local shifts ranged from -0.2 to 0.5 cm and -0.4 to 0.0 cm in right-left and posterior-anterior directions, respectively. The adapted treatment gave reasonable target coverage (100

  15. Amplitude and phase beam shaping for highest sensitivity in sidewall angle detection.

    PubMed

    Cisotto, Luca; Paul Urbach, H

    2017-01-01

    In integrated circuits manufacturing, specific structures are used as tools to evaluate the quality of the lithographic process, and the shape of these structures is often described by a few parameters, of which in particular the sidewall angle suffers from considerable inaccuracies. Using scalar diffraction theory, we investigate whether a properly shaped cylindrically focused probing beam could increase the ability to detect tiny changes in this angle in the case of a cliff-like structure, modeled as a phase object. This paper describes the theoretical formulation used to calculate the optimized beam and compares its performance with the case of a focused plane wave.

  16. Adaptive Shape Functions and Internal Mesh Adaptation for Modelling Progressive Failure in Adhesively Bonded Joints

    NASA Technical Reports Server (NTRS)

    Stapleton, Scott; Gries, Thomas; Waas, Anthony M.; Pineda, Evan J.

    2014-01-01

    Enhanced finite elements are elements with an embedded analytical solution that can capture detailed local fields, enabling more efficient, mesh independent finite element analysis. The shape functions are determined based on the analytical model rather than prescribed. This method was applied to adhesively bonded joints to model joint behavior with one element through the thickness. This study demonstrates two methods of maintaining the fidelity of such elements during adhesive non-linearity and cracking without increasing the mesh needed for an accurate solution. The first method uses adaptive shape functions, where the shape functions are recalculated at each load step based on the softening of the adhesive. The second method is internal mesh adaption, where cracking of the adhesive within an element is captured by further discretizing the element internally to represent the partially cracked geometry. By keeping mesh adaptations within an element, a finer mesh can be used during the analysis without affecting the global finite element model mesh. Examples are shown which highlight when each method is most effective in reducing the number of elements needed to capture adhesive nonlinearity and cracking. These methods are validated against analogous finite element models utilizing cohesive zone elements.

  17. Toward Space-like Photometric Precision from the Ground with Beam-shaping Diffusers

    NASA Astrophysics Data System (ADS)

    Stefansson, Gudmundur; Mahadevan, Suvrath; Hebb, Leslie; Wisniewski, John; Huehnerhoff, Joseph; Morris, Brett; Halverson, Sam; Zhao, Ming; Wright, Jason; O'rourke, Joseph; Knutson, Heather; Hawley, Suzanne; Kanodia, Shubham; Li, Yiting; Hagen, Lea M. Z.; Liu, Leo J.; Beatty, Thomas; Bender, Chad; Robertson, Paul; Dembicky, Jack; Gray, Candace; Ketzeback, William; McMillan, Russet; Rudyk, Theodore

    2017-10-01

    We demonstrate a path to hitherto unachievable differential photometric precisions from the ground, both in the optical and near-infrared (NIR), using custom-fabricated beam-shaping diffusers produced using specialized nanofabrication techniques. Such diffusers mold the focal plane image of a star into a broad and stable top-hat shape, minimizing photometric errors due to non-uniform pixel response, atmospheric seeing effects, imperfect guiding, and telescope-induced variable aberrations seen in defocusing. This PSF reshaping significantly increases the achievable dynamic range of our observations, increasing our observing efficiency and thus better averages over scintillation. Diffusers work in both collimated and converging beams. We present diffuser-assisted optical observations demonstrating {62}-16+26 ppm precision in 30 minute bins on a nearby bright star 16 Cygni A (V = 5.95) using the ARC 3.5 m telescope—within a factor of ˜2 of Kepler's photometric precision on the same star. We also show a transit of WASP-85-Ab (V = 11.2) and TRES-3b (V = 12.4), where the residuals bin down to {180}-41+66 ppm in 30 minute bins for WASP-85-Ab—a factor of ˜4 of the precision achieved by the K2 mission on this target—and to 101 ppm for TRES-3b. In the NIR, where diffusers may provide even more significant improvements over the current state of the art, our preliminary tests demonstrated {137}-36+64 ppm precision for a K S = 10.8 star on the 200 inch Hale Telescope. These photometric precisions match or surpass the expected photometric precisions of TESS for the same magnitude range. This technology is inexpensive, scalable, easily adaptable, and can have an important and immediate impact on the observations of transits and secondary eclipses of exoplanets.

  18. Phylogeny and adaptation shape the teeth of insular mice

    PubMed Central

    Ledevin, Ronan; Chevret, Pascale; Ganem, Guila; Britton-Davidian, Janice; Hardouin, Emilie A.; Chapuis, Jean-Louis; Pisanu, Benoit; da Luz Mathias, Maria; Schlager, Stefan; Auffray, Jean-Christophe; Renaud, Sabrina

    2016-01-01

    By accompanying human travels since prehistorical times, the house mouse dispersed widely throughout the world, and colonized many islands. The origin of the travellers determined the phylogenetic source of the insular mice, which encountered diverse ecological and environmental conditions on the various islands. Insular mice are thus an exceptional model to disentangle the relative role of phylogeny, ecology and climate in evolution. Molar shape is known to vary according to phylogeny and to respond to adaptation. Using for the first time a three-dimensional geometric morphometric approach, compared with a classical two-dimensional quantification, the relative effects of size variation, phylogeny, climate and ecology were investigated on molar shape diversity across a variety of islands. Phylogeny emerged as the factor of prime importance in shaping the molar. Changes in competition level, mostly driven by the presence or absence of the wood mouse on the different islands, appeared as the second most important effect. Climate and size differences accounted for slight shape variation. This evidences a balanced role of random differentiation related to history of colonization, and of adaptation possibly related to resource exploitation. PMID:26842576

  19. Phylogeny and adaptation shape the teeth of insular mice.

    PubMed

    Ledevin, Ronan; Chevret, Pascale; Ganem, Guila; Britton-Davidian, Janice; Hardouin, Emilie A; Chapuis, Jean-Louis; Pisanu, Benoit; da Luz Mathias, Maria; Schlager, Stefan; Auffray, Jean-Christophe; Renaud, Sabrina

    2016-02-10

    By accompanying human travels since prehistorical times, the house mouse dispersed widely throughout the world, and colonized many islands. The origin of the travellers determined the phylogenetic source of the insular mice, which encountered diverse ecological and environmental conditions on the various islands. Insular mice are thus an exceptional model to disentangle the relative role of phylogeny, ecology and climate in evolution. Molar shape is known to vary according to phylogeny and to respond to adaptation. Using for the first time a three-dimensional geometric morphometric approach, compared with a classical two-dimensional quantification, the relative effects of size variation, phylogeny, climate and ecology were investigated on molar shape diversity across a variety of islands. Phylogeny emerged as the factor of prime importance in shaping the molar. Changes in competition level, mostly driven by the presence or absence of the wood mouse on the different islands, appeared as the second most important effect. Climate and size differences accounted for slight shape variation. This evidences a balanced role of random differentiation related to history of colonization, and of adaptation possibly related to resource exploitation. © 2016 The Author(s).

  20. Spectral and spatial shaping of a laser-produced ion beam for radiation-biology experiments

    NASA Astrophysics Data System (ADS)

    Pommarel, L.; Vauzour, B.; Mégnin-Chanet, F.; Bayart, E.; Delmas, O.; Goudjil, F.; Nauraye, C.; Letellier, V.; Pouzoulet, F.; Schillaci, F.; Romano, F.; Scuderi, V.; Cirrone, G. A. P.; Deutsch, E.; Flacco, A.; Malka, V.

    2017-03-01

    The study of radiation biology on laser-based accelerators is most interesting due to the unique irradiation conditions they can produce, in terms of peak current and duration of the irradiation. In this paper we present the implementation of a beam transport system to transport and shape the proton beam generated by laser-target interaction for in vitro irradiation of biological samples. A set of four permanent magnet quadrupoles is used to transport and focus the beam, efficiently shaping the spectrum and providing a large and relatively uniform irradiation surface. Real time, absolutely calibrated, dosimetry is installed on the beam line, to enable shot-to-shot control of dose deposition in the irradiated volume. Preliminary results of cell sample irradiation are presented to validate the robustness of the full system.

  1. Shape Morphing Adaptive Radiator Technology (SMART) for Variable Heat Rejection

    NASA Technical Reports Server (NTRS)

    Erickson, Lisa

    2016-01-01

    The proposed technology leverages the temperature dependent phase change of shape memory alloys (SMAs) to drive the shape of a flexible radiator panel. The opening/closing of the radiator panel, as a function of temperature, passively adapts the radiator's rate of heat rejection in response to a vehicle's needs.

  2. Gaussian beam profile shaping apparatus, method therefor and evaluation thereof

    DOEpatents

    Dickey, Fred M.; Holswade, Scott C.; Romero, Louis A.

    1999-01-01

    A method and apparatus maps a Gaussian beam into a beam with a uniform irradiance profile by exploiting the Fourier transform properties of lenses. A phase element imparts a design phase onto an input beam and the output optical field from a lens is then the Fourier transform of the input beam and the phase function from the phase element. The phase element is selected in accordance with a dimensionless parameter which is dependent upon the radius of the incoming beam, the desired spot shape, the focal length of the lens and the wavelength of the input beam. This dimensionless parameter can also be used to evaluate the quality of a system. In order to control the radius of the incoming beam, optics such as a telescope can be employed. The size of the target spot and the focal length can be altered by exchanging the transform lens, but the dimensionless parameter will remain the same. The quality of the system, and hence the value of the dimensionless parameter, can be altered by exchanging the phase element. The dimensionless parameter provides design guidance, system evaluation, and indication as to how to improve a given system.

  3. Gaussian beam profile shaping apparatus, method therefore and evaluation thereof

    DOEpatents

    Dickey, F.M.; Holswade, S.C.; Romero, L.A.

    1999-01-26

    A method and apparatus maps a Gaussian beam into a beam with a uniform irradiance profile by exploiting the Fourier transform properties of lenses. A phase element imparts a design phase onto an input beam and the output optical field from a lens is then the Fourier transform of the input beam and the phase function from the phase element. The phase element is selected in accordance with a dimensionless parameter which is dependent upon the radius of the incoming beam, the desired spot shape, the focal length of the lens and the wavelength of the input beam. This dimensionless parameter can also be used to evaluate the quality of a system. In order to control the radius of the incoming beam, optics such as a telescope can be employed. The size of the target spot and the focal length can be altered by exchanging the transform lens, but the dimensionless parameter will remain the same. The quality of the system, and hence the value of the dimensionless parameter, can be altered by exchanging the phase element. The dimensionless parameter provides design guidance, system evaluation, and indication as to how to improve a given system. 27 figs.

  4. Leakage of power from dipole to higher multipoles due to non-symmetric beam shape of the CMB missions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Santanu; Souradeep, Tarun, E-mail: santanud@iucaa.ernet.in, E-mail: tarun@iucaa.ernet.in

    2015-05-01

    A number of studies of WMAP and Planck claimed the low multipole (specially quadrupole) power deficiency in CMB power spectrum. Anomaly in the orientations of the low multipoles have also been claimed. There is a possibility that the power deficiency at low multipoles may not be of primordial origin and is only an observation artifact coming from the scan procedure adapted in the WMAP or Planck satellites. Therefore, it is always important to investigate all the observational artifacts that can mimic them. The CMB dipole which is much higher than the quadrupole can leak to the higher multipoles due tomore » the non-symmetric beam shape of the WMAP or Planck. We observe that a non-negligible amount of power from the dipole can get transferred to the quadrupole and the higher multipoles due to the non-symmetric beam shapes and contaminate the observed measurements. The orientation of the quadrupole generated by this power transfer is surprisingly very close to the quadrupole observed from the WMAP and Planck maps. However, our analysis shows that the orientation of the quadrupole can not be explained using only the dipole power leakage. In this paper we calculate the amount of quadrupole power leakage for different WMAP bands. For Planck we present the results in terms of upper limits on asymmetric beam parameters that can lead to significant amount of power leakage.« less

  5. Leveraging Internal Viscous Flow to Extend the Capabilities of Beam-Shaped Soft Robotic Actuators.

    PubMed

    Matia, Yoav; Elimelech, Tsah; Gat, Amir D

    2017-06-01

    Elastic deformation of beam-shaped structures due to embedded fluidic networks (EFNs) is mainly studied in the context of soft actuators and soft robotic applications. Currently, the effects of viscosity are not examined in such configurations. In this work, we introduce an internal viscous flow and present the extended range of actuation modes enabled by viscosity. We analyze the interaction between elastic deflection of a slender beam and viscous flow in a long serpentine channel embedded within the beam. The embedded network is positioned asymmetrically with regard to the neutral plane and thus pressure within the channel creates a local moment deforming the beam. Under assumptions of creeping flow and small deflections, we obtain a fourth-order integro-differential equation governing the time-dependent deflection field. This relation enables the design of complex time-varying deformation patterns of beams with EFNs. Leveraging viscosity allows to extend the capabilities of beam-shaped actuators such as creation of inertia-like standing and moving wave solutions in configurations with negligible inertia and limiting deformation to a small section of the actuator. The results are illustrated experimentally.

  6. Research on relation between bending stress and characteristic frequency of H-shaped beam by free vibration deflection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshida, Tsutomu; Watanabe, Takeshi

    2014-05-27

    In order to investigate a relation between a bending stress and a characteristic frequency of a beam, 4-point loading which had constant moment region was conducted to a beam with H shape configuration experimentally and numerically. H-shaped beam has many characteristic deformation modes. Axial tensile stress in the beam made its characteristic frequency higher, and compressive stress lower. In the experiment, some characteristic frequencies got higher by a bending stress, and the others stayed in a small frequency fluctuation. The distinction is anticipated as a capability to measure a bending stress of a beam by its characteristic frequencies.

  7. Generic method for automatic bladder segmentation on cone beam CT using a patient-specific bladder shape model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schoot, A. J. A. J. van de, E-mail: a.j.schootvande@amc.uva.nl; Schooneveldt, G.; Wognum, S.

    Purpose: The aim of this study is to develop and validate a generic method for automatic bladder segmentation on cone beam computed tomography (CBCT), independent of gender and treatment position (prone or supine), using only pretreatment imaging data. Methods: Data of 20 patients, treated for tumors in the pelvic region with the entire bladder visible on CT and CBCT, were divided into four equally sized groups based on gender and treatment position. The full and empty bladder contour, that can be acquired with pretreatment CT imaging, were used to generate a patient-specific bladder shape model. This model was used tomore » guide the segmentation process on CBCT. To obtain the bladder segmentation, the reference bladder contour was deformed iteratively by maximizing the cross-correlation between directional grey value gradients over the reference and CBCT bladder edge. To overcome incorrect segmentations caused by CBCT image artifacts, automatic adaptations were implemented. Moreover, locally incorrect segmentations could be adapted manually. After each adapted segmentation, the bladder shape model was expanded and new shape patterns were calculated for following segmentations. All available CBCTs were used to validate the segmentation algorithm. The bladder segmentations were validated by comparison with the manual delineations and the segmentation performance was quantified using the Dice similarity coefficient (DSC), surface distance error (SDE) and SD of contour-to-contour distances. Also, bladder volumes obtained by manual delineations and segmentations were compared using a Bland-Altman error analysis. Results: The mean DSC, mean SDE, and mean SD of contour-to-contour distances between segmentations and manual delineations were 0.87, 0.27 cm and 0.22 cm (female, prone), 0.85, 0.28 cm and 0.22 cm (female, supine), 0.89, 0.21 cm and 0.17 cm (male, supine) and 0.88, 0.23 cm and 0.17 cm (male, prone), respectively. Manual local adaptations improved the

  8. Single-lobed frequency-dependent beam shape in an echolocating false killer whale (Pseudorca crassidens).

    PubMed

    Kloepper, Laura N; Nachtigall, Paul E; Quintos, Christopher; Vlachos, Stephanie A

    2012-01-01

    Recent studies indicate some odontocetes may produce echolocation beams with a dual-lobed vertical structure. The shape of the odontocete echolocation beam was further investigated in a false killer whale performing an echolocation discrimination task. Clicks were recorded with an array of 16 hydrophones and frequency-dependent amplitude plots were constructed to assess beam shape. The majority of the echolocation clicks were single-lobed in structure with most energy located between 20 and 80 kHz. These data indicate the false killer whale does not produce a dual-lobed structure, as has been shown in bottlenose dolphins, which may be a function of lowered frequencies in the emitted signal due to hearing loss. © 2012 Acoustical Society of America.

  9. Adaptive Filter Techniques for Optical Beam Jitter Control and Target Tracking

    DTIC Science & Technology

    2008-12-01

    OPTICAL BEAM JITTER CONTROL AND TARGET TRACKING Michael J. Beerer Civilian, United States Air Force B.S., University of California Irvine, 2006...TECHNIQUES FOR OPTICAL BEAM JITTER CONTROL AND TARGET TRACKING by Michael J. Beerer December 2008 Thesis Advisor: Brij N. Agrawal Co...DATE December 2008 3. REPORT TYPE AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE Adaptive Filter Techniques for Optical Beam Jitter

  10. The analysis and large-angle control of a flexible beam using an adaptive truss

    NASA Technical Reports Server (NTRS)

    Warrington, Thomas J.; Clark, William W.; Robertshaw, Harry H.; Horner, C. Garnett

    1991-01-01

    This preliminary study of an adaptive truss slewing problem investigates the static positioning of an adaptive truss at slewed orientations and the dynamic vibrations of an attached flexible beam. A nonlinear model of an adaptive truss and flexible beam is derived. Linear control laws are developed and simulated for various truss configurations. Results show the linear control laws developed at a slewed configuration perform best at that configuration.

  11. Laser beam projection with adaptive array of fiber collimators. II. Analysis of atmospheric compensation efficiency.

    PubMed

    Lachinova, Svetlana L; Vorontsov, Mikhail A

    2008-08-01

    We analyze the potential efficiency of laser beam projection onto a remote object in atmosphere with incoherent and coherent phase-locked conformal-beam director systems composed of an adaptive array of fiber collimators. Adaptive optics compensation of turbulence-induced phase aberrations in these systems is performed at each fiber collimator. Our analysis is based on a derived expression for the atmospheric-averaged value of the mean square residual phase error as well as direct numerical simulations. Operation of both conformal-beam projection systems is compared for various adaptive system configurations characterized by the number of fiber collimators, the adaptive compensation resolution, and atmospheric turbulence conditions.

  12. High-speed femtosecond laser beam shaping based on binary holography using a digital micromirror device.

    PubMed

    Cheng, Jiyi; Gu, Chenglin; Zhang, Dapeng; Chen, Shih-Chi

    2015-11-01

    In this Letter, we present a digital micromirror device (DMD)-based ultrafast beam shaper, i.e., DUBS. To our knowledge, the DUBS is the first binary laser beam shaper that can generate high-resolution (1140×912 pixels) arbitrary beam modes for femtosecond lasers at a rate of 4.2 kHz; the resolution and pattern rate are limited by the DMD. In the DUBS, the spectrum of the input pulsed laser is first angularly dispersed by a transmission grating and subsequently imaged to a DMD with beam modulation patterns; the transmission grating and a high-reflectivity mirror together compensate the angular dispersion introduced by the DMD. The mode of the output beam is monitored by a CCD camera. In the experiments, the DUBS is programmed to generate four different beam modes, including an Airy beam, Bessel beam, Laguerre-Gaussian (LG) beam, and a custom-designed "peace-dove" beam via the principle of binary holography. To verify the high shaping rate, the Airy beam and LG beam are generated alternately at 4.2 kHz, i.e., the maximum pattern rate of our DMD. The overall efficiency of the DUBS is measured to be 4.7%. With the high-speed and high-resolution beam-shaping capability, the DUBS may find important applications in nonlinear microscopy, optical manipulation, and microscale/nanoscale laser machining, etc.

  13. Latest developments on fibered MOPA in mJ range with hollow-core fiber beam delivery and fiber beam shaping used as seeder for large scale laser facilities (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Gleyze, Jean-François; Scol, Florent; Perrin, Arnaud; Gouriou, Pierre; Valentin, Constance; Bouwmans, Géraud; Hugonnot, Emmanuel

    2017-05-01

    ) fibers. The comparison between the different fibers will be presented in the conference. Fiber spatial beam shaping Spatial beam shaping (top-hat profile) is mandatory to optimize the energy extraction in free-space amplifier. It would be very interesting to obtain a flat-top beam in an all-fiber way. Accordingly, we have design and realize a large mode area single-mode top-hat fiber able to deliver a coherent top-hat beam. This fiber, with larger MFD adapted to mJ pulse, will be implemented to perform the spatial beam shaping from coherent Gaussian profile to coherent top-hat intensity profile in the mJ range. In conclusion, we will present an all-fiber MOPA built to fulfil stringent requirements for large scale laser facility seeding. We have already achieved 750 µJ with 10 ns square pulses. Transport of high peak power pulses over 17 m in a hollow-core fiber has been achieved and points out FM to AM conversion management issues. Moreover, spatial beam shaping is obtained by using specifically designed single-mode fibers. Various optimizations are currently under progress and will be presented.

  14. Computational model for behavior shaping as an adaptive health intervention strategy.

    PubMed

    Berardi, Vincent; Carretero-González, Ricardo; Klepeis, Neil E; Ghanipoor Machiani, Sahar; Jahangiri, Arash; Bellettiere, John; Hovell, Melbourne

    2018-03-01

    Adaptive behavioral interventions that automatically adjust in real-time to participants' changing behavior, environmental contexts, and individual history are becoming more feasible as the use of real-time sensing technology expands. This development is expected to improve shortcomings associated with traditional behavioral interventions, such as the reliance on imprecise intervention procedures and limited/short-lived effects. JITAI adaptation strategies often lack a theoretical foundation. Increasing the theoretical fidelity of a trial has been shown to increase effectiveness. This research explores the use of shaping, a well-known process from behavioral theory for engendering or maintaining a target behavior, as a JITAI adaptation strategy. A computational model of behavior dynamics and operant conditioning was modified to incorporate the construct of behavior shaping by adding the ability to vary, over time, the range of behaviors that were reinforced when emitted. Digital experiments were performed with this updated model for a range of parameters in order to identify the behavior shaping features that optimally generated target behavior. Narrowing the range of reinforced behaviors continuously in time led to better outcomes compared with a discrete narrowing of the reinforcement window. Rapid narrowing followed by more moderate decreases in window size was more effective in generating target behavior than the inverse scenario. The computational shaping model represents an effective tool for investigating JITAI adaptation strategies. Model parameters must now be translated from the digital domain to real-world experiments so that model findings can be validated.

  15. Shape anomaly detection under strong measurement noise: An analytical approach to adaptive thresholding

    NASA Astrophysics Data System (ADS)

    Krasichkov, Alexander S.; Grigoriev, Eugene B.; Bogachev, Mikhail I.; Nifontov, Eugene M.

    2015-10-01

    We suggest an analytical approach to the adaptive thresholding in a shape anomaly detection problem. We find an analytical expression for the distribution of the cosine similarity score between a reference shape and an observational shape hindered by strong measurement noise that depends solely on the noise level and is independent of the particular shape analyzed. The analytical treatment is also confirmed by computer simulations and shows nearly perfect agreement. Using this analytical solution, we suggest an improved shape anomaly detection approach based on adaptive thresholding. We validate the noise robustness of our approach using typical shapes of normal and pathological electrocardiogram cycles hindered by additive white noise. We show explicitly that under high noise levels our approach considerably outperforms the conventional tactic that does not take into account variations in the noise level.

  16. System for generating shaped optical pulses and measuring optical pulses using spectral beam deflection (SBD)

    DOEpatents

    Skupsky, Stanley; Kessler, Terrance J.; Letzring, Samuel A.

    1993-01-01

    A temporally shaped or modified optical output pulse is generated from a bandwidth-encoded optical input pulse in a system in which the input pulse is in the form of a beam which is spectrally spread into components contained within the bandwidth, followed by deflection of the spectrally spread beam (SBD) thereby spatially mapping the components in correspondence with the temporal input pulse profile in the focal plane of a lens, and by spatially selective attenuation of selected components in that focal plane. The shaped or modified optical output pulse is then reconstructed from the attenuated spectral components. The pulse-shaping system is particularly useful for generating optical pulses of selected temporal shape over a wide range of pulse duration, such pulses finding application in the fields of optical communication, optical recording and data storage, atomic and molecular spectroscopy and laser fusion. An optical streak camera is also provided which uses SBD to display the beam intensity in the focal plane as a function of time during the input pulse.

  17. System for generating shaped optical pulses and measuring optical pulses using spectral beam deflection (SBD)

    DOEpatents

    Skupsky, S.; Kessler, T.J.; Letzring, S.A.

    1993-11-16

    A temporally shaped or modified optical output pulse is generated from a bandwidth-encoded optical input pulse in a system in which the input pulse is in the form of a beam which is spectrally spread into components contained within the bandwidth, followed by deflection of the spectrally spread beam (SBD) thereby spatially mapping the components in correspondence with the temporal input pulse profile in the focal plane of a lens, and by spatially selective attenuation of selected components in that focal plane. The shaped or modified optical output pulse is then reconstructed from the attenuated spectral components. The pulse-shaping system is particularly useful for generating optical pulses of selected temporal shape over a wide range of pulse duration, such pulses finding application in the fields of optical communication, optical recording and data storage, atomic and molecular spectroscopy and laser fusion. An optical streak camera is also provided which uses SBD to display the beam intensity in the focal plane as a function of time during the input pulse. 10 figures.

  18. Beam shaping of light sources using circular photonic crystal funnel

    NASA Astrophysics Data System (ADS)

    Kumar, Mrityunjay; Kumar, Mithun; Dinesh Kumar, V.

    2012-10-01

    A novel two-dimensional circular photonic crystal (CPC) structure with a sectorial opening for shaping the beam of light sources was designed and investigated. When combined with light sources, the structure acts like an antenna emitting a directional beam which could be advantageously used in several nanophotonic applications. Using the two-dimensional finite-difference time-domain (2D FDTD) method, we examined the effects of geometrical parameters of the structure on the directional and transmission properties of emitted radiation. Further, we examined the transmitting and receiving properties of a pair of identical structures as a function of distance between them.

  19. Preliminary results of a prototype C-shaped PET designed for an in-beam PET system

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Il; Chung, Yong Hyun; Lee, Kisung; Kim, Kyeong Min; Kim, Yongkwon; Joung, Jinhun

    2016-06-01

    Positron emission tomography (PET) can be utilized in particle beam therapy to verify the dose distribution of the target volume as well as the accuracy of the treatment. We present an in-beam PET scanner that can be integrated into a particle beam therapy system. The proposed PET scanner consisted of 14 detector modules arranged in a C-shape to avoid blockage of the particle beam line by the detector modules. Each detector module was composed of a 9×9 array of 4.0 mm×4.0 mm×20.0 mm LYSO crystals optically coupled to four 29-mm-diameter PMTs using the photomultiplier-quadrant-sharing (PQS) technique. In this study, a Geant4 Application for Tomographic Emission (GATE) simulation study was conducted to design a C-shaped PET scanner and then experimental evaluation of the proposed design was performed. The spatial resolution and sensitivity were measured according to NEMA NU2-2007 standards and were 6.1 mm and 5.61 cps/kBq, respectively, which is in good agreement with our simulation, with an error rate of 12.0%. Taken together, our results demonstrate the feasibility of the proposed C-shaped in-beam PET system, which we expect will be useful for measuring dose distribution in particle therapy.

  20. Load carrying capacity of RCC beams by replacing steel reinforcement bars with shape memory alloy bars

    NASA Astrophysics Data System (ADS)

    Bajoria, Kamal M.; Kaduskar, Shreya S.

    2016-04-01

    In this paper the structural behavior of reinforced concrete (RC) beams with smart rebars under two point loading system has been numerically studied, using Finite Element Method. The material used in this study is Super-elastic Shape Memory Alloys (SE SMAs) which contains nickel and titanium. In this study, different quantities of steel and SMA rebars have been used for reinforcement and the behavior of these models under two point bending loading system is studied. A comparison of load carrying capacity for the model between steel reinforced concrete beam and the beam reinforced with S.M.A and steel are performed. The results show that RC beams reinforced with combination of shape memory alloy and steel show better performance.

  1. Adaptive shaping of cortical response selectivity in the vibrissa pathway

    PubMed Central

    Zheng, He J. V.; Wang, Qi

    2015-01-01

    One embodiment of context-dependent sensory processing is bottom-up adaptation, where persistent stimuli decrease neuronal firing rate over hundreds of milliseconds. Adaptation is not, however, simply the fatigue of the sensory pathway, but shapes the information flow and selectivity to stimulus features. Adaptation enhances spatial discriminability (distinguishing stimulus location) while degrading detectability (reporting presence of the stimulus), for both the ideal observer of the cortex and awake, behaving animals. However, how the dynamics of the adaptation shape the cortical response and this detection and discrimination tradeoff is unknown, as is to what degree this phenomenon occurs on a continuum as opposed to a switching of processing modes. Using voltage-sensitive dye imaging in anesthetized rats to capture the temporal and spatial characteristics of the cortical response to tactile inputs, we showed that the suppression of the cortical response, in both magnitude and spatial spread, is continuously modulated by the increasing amount of energy in the adapting stimulus, which is nonuniquely determined by its frequency and velocity. Single-trial ideal observer analysis demonstrated a tradeoff between detectability and spatial discriminability up to a moderate amount of adaptation, which corresponds to the frequency range in natural whisking. This was accompanied by a decrease in both detectability and discriminability with high-energy adaptation, which indicates a more complex coupling between detection and discrimination than a simple switching of modes. Taken together, the results suggest that adaptation operates on a continuum and modulates the tradeoff between detectability and discriminability that has implications for information processing in ethological contexts. PMID:25787959

  2. Adaptive shaping of the behavioural and neuroendocrine phenotype during adolescence

    PubMed Central

    Kaiser, Sylvia; Hennessy, Michael B.; Sachser, Norbert

    2017-01-01

    Environmental conditions during early life can adaptively shape the phenotype for the prevailing environment. Recently, it has been suggested that adolescence represents an additional temporal window for adaptive developmental plasticity, though supporting evidence is scarce. Previous work has shown that male guinea pigs living in large mixed-sex colonies develop a low-aggressive phenotype as part of a queuing strategy that is adaptive for integrating into large unfamiliar colonies. By contrast, males living in pairs during adolescence become highly aggressive towards strangers. Here, we tested whether the high-aggressive phenotype is adaptive under conditions of low population density, namely when directly competing with a single opponent for access to females. For that purpose, we established groups of one pair-housed male (PM), one colony-housed male (CM) and two females. PMs directed more aggression towards the male competitor and more courtship and mating towards females than did CMs. In consequence, PMs attained the dominant position in most cases and sired significantly more offspring. Moreover, they showed distinctly higher testosterone concentrations and elevated cortisol levels, which probably promoted enhanced aggressiveness while mobilizing necessary energy. Taken together, our results provide the clearest evidence to date for adaptive shaping of the phenotype by environmental influences during adolescence. PMID:28202817

  3. Shape Adaptive, Robust Iris Feature Extraction from Noisy Iris Images

    PubMed Central

    Ghodrati, Hamed; Dehghani, Mohammad Javad; Danyali, Habibolah

    2013-01-01

    In the current iris recognition systems, noise removing step is only used to detect noisy parts of the iris region and features extracted from there will be excluded in matching step. Whereas depending on the filter structure used in feature extraction, the noisy parts may influence relevant features. To the best of our knowledge, the effect of noise factors on feature extraction has not been considered in the previous works. This paper investigates the effect of shape adaptive wavelet transform and shape adaptive Gabor-wavelet for feature extraction on the iris recognition performance. In addition, an effective noise-removing approach is proposed in this paper. The contribution is to detect eyelashes and reflections by calculating appropriate thresholds by a procedure called statistical decision making. The eyelids are segmented by parabolic Hough transform in normalized iris image to decrease computational burden through omitting rotation term. The iris is localized by an accurate and fast algorithm based on coarse-to-fine strategy. The principle of mask code generation is to assign the noisy bits in an iris code in order to exclude them in matching step is presented in details. An experimental result shows that by using the shape adaptive Gabor-wavelet technique there is an improvement on the accuracy of recognition rate. PMID:24696801

  4. Shape adaptive, robust iris feature extraction from noisy iris images.

    PubMed

    Ghodrati, Hamed; Dehghani, Mohammad Javad; Danyali, Habibolah

    2013-10-01

    In the current iris recognition systems, noise removing step is only used to detect noisy parts of the iris region and features extracted from there will be excluded in matching step. Whereas depending on the filter structure used in feature extraction, the noisy parts may influence relevant features. To the best of our knowledge, the effect of noise factors on feature extraction has not been considered in the previous works. This paper investigates the effect of shape adaptive wavelet transform and shape adaptive Gabor-wavelet for feature extraction on the iris recognition performance. In addition, an effective noise-removing approach is proposed in this paper. The contribution is to detect eyelashes and reflections by calculating appropriate thresholds by a procedure called statistical decision making. The eyelids are segmented by parabolic Hough transform in normalized iris image to decrease computational burden through omitting rotation term. The iris is localized by an accurate and fast algorithm based on coarse-to-fine strategy. The principle of mask code generation is to assign the noisy bits in an iris code in order to exclude them in matching step is presented in details. An experimental result shows that by using the shape adaptive Gabor-wavelet technique there is an improvement on the accuracy of recognition rate.

  5. Conservatism and Adaptability during Squirrel Radiation: What Is Mandible Shape Telling Us?

    PubMed Central

    Casanovas-Vilar, Isaac; van Dam, Jan

    2013-01-01

    Both functional adaptation and phylogeny shape the morphology of taxa within clades. Herein we explore these two factors in an integrated way by analyzing shape and size variation in the mandible of extant squirrels using landmark-based geometric morphometrics in combination with a comparative phylogenetic analysis. Dietary specialization and locomotion were found to be reliable predictors of mandible shape, with the prediction by locomotion probably reflecting the underlying diet. In addition a weak but significant allometric effect could be demonstrated. Our results found a strong phylogenetic signal in the family as a whole as well as in the main clades, which is in agreement with the general notion of squirrels being a conservative group. This fact does not preclude functional explanations for mandible shape, but rather indicates that ancient adaptations kept a prominent role, with most genera having diverged little from their ancestral clade morphologies. Nevertheless, certain groups have evolved conspicuous adaptations that allow them to specialize on unique dietary resources. Such adaptations mostly occurred in the Callosciurinae and probably reflect their radiation into the numerous ecological niches of the tropical and subtropical forests of Southeastern Asia. Our dietary reconstruction for the oldest known fossil squirrels (Eocene, 36 million years ago) show a specialization on nuts and seeds, implying that the development from protrogomorphous to sciuromorphous skulls was not necessarily related to a change in diet. PMID:23593456

  6. Shape Morphing Adaptive Radiator Technology (SMART) Updates to Techport Entry

    NASA Technical Reports Server (NTRS)

    Erickson, Lisa; Bertagne, Christopher; Hartl, Darren; Witcomb, John; Cognata, Thomas

    2017-01-01

    The Shape-Morphing Adaptive Radiator Technology (SMART) project builds off the FY16 research effort that developed a flexible composite radiator panel and demonstrated its ability to actuate from SMA's attached to it. The proposed FY17 Shape-Morphing Adaptive Radiator Technology (SMART) project's goal is to 1) develop a practical radiator design with shape memory alloys (SMAs) bonded to the radiator's panel, and 2) build a multi-panel radiator prototype for subsequent system level thermal vacuum tests. The morphing radiator employs SMA materials to passively change its shape to adapt its rate of heat rejection to vehicle requirements. Conceptually, the radiator panel has a naturally closed position (like a cylinder) in a cold environment. Whenever the radiator's temperature gradually rises, SMA's affixed to the face sheet will pull the face sheet open a commensurate amount - increasing the radiators view to space and causing it to reject more heat. In a vehicle, the radiator's variable heat rejection capabilities would reduce the number of additional heat rejection devices in a vehicle's thermal control system. This technology aims to help achieve the required maximum to minimum heat rejection ratio required for manned space vehicles to adopt a lighter, simpler, single loop thermal control architecture (ATCS). Single loop architectures are viewed as an attractive means to reduce mass and complexity over traditional dual-loop solutions. However, fluids generally considered safe enough to flow within crewed cabins (e.g. propylene glycol-water mixtures) have much higher freezing points and viscosities than those used in the external sides of dual loop ATCSs (e.g. Ammonia and HFE7000).

  7. The shape of contention: adaptation, history, and contingency in ungulate mandibles.

    PubMed

    Raia, Pasquale; Carotenuto, Francesco; Meloro, Carlo; Piras, Paolo; Pushkina, Diana

    2010-05-01

    Mandibles and teeth of ungulates have been extensively studied to discern the functional significance of their design. Grazing ungulates have deeper mandibles, longer coronoid processes, flatter incisor arcades, and more hypsodont molars in comparison to browsers. If the functional significance of both mandible and teeth shapes is well-established, it remains uncertain to what extent mandible shapes are really adapted to grazing, meaning that they evolved either to serve their current biological function or just as a structural requirement to accommodate higher crowned molars. Here, we address this question by studying the contribution of phylogeny, hypsodonty, and body size to mandibular shape variation. The mandible shape appeared to be significantly influenced by hypsodonty but not by body size. Interestingly, hypsodonty-related changes influenced the tooth row in artiodactyls and perissodactyls significantly but in the opposite directions, which is ultimately related to their different digestive strategies. Yet, we obtained a strong phylogenetic effect in perissodactyls, suggesting that their mandible shape should be strongly inherited. The strength of this effect was not significant within artiodactyls (where hypsodonty explained much more variance in mandible shape). Digestive strategy is deemed to interplay with hypsodonty to produce different paths of adaptation to particular diets in ungulates.

  8. Demonstration of Current Profile Shaping using Double Dog-Leg Emittance Exchange Beam Line at Argonne Wakefield Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ha, Gwanghui; Cho, Moo-Hyun; Conde, Manoel

    Emittance exchange (EEX) based longitudinal current profile shaping is the one of the promising current profile shaping technique. This method can generate high quality arbitrary current profiles under the ideal conditions. The double dog-leg EEX beam line was recently installed at the Argonne Wakefield Accelerator (AWA) to explore the shaping capability and confirm the quality of this method. To demonstrate the arbitrary current profile generation, several different transverse masks are applied to generate different final current profiles. The phase space slopes and the charge of incoming beam are varied to observe and suppress the aberrations on the ideal profile. Wemore » present current profile shaping results, aberrations on the shaped profile, and its suppression.« less

  9. Acceleration of on-axis and ring-shaped electron beams in wakefields driven by Laguerre-Gaussian pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Guo-Bo; Key Laboratory for Laser Plasmas; Chen, Min, E-mail: minchen@sjtu.edu.cn, E-mail: yanyunma@126.com

    2016-03-14

    The acceleration of electron beams with multiple transverse structures in wakefields driven by Laguerre-Gaussian pulses has been studied through three-dimensional (3D) particle-in-cell simulations. Under different laser-plasma conditions, the wakefield shows different transverse structures. In general cases, the wakefield shows a donut-like structure and it accelerates the ring-shaped hollow electron beam. When a lower plasma density or a smaller laser spot size is used, besides the donut-like wakefield, a central bell-like wakefield can also be excited. The wake sets in the center of the donut-like wake. In this case, both a central on-axis electron beam and a ring-shaped electron beam aremore » simultaneously accelerated. Further, reducing the plasma density or laser spot size leads to an on-axis electron beam acceleration only. The research is beneficial for some potential applications requiring special pulse beam structures, such as positron acceleration and collimation.« less

  10. Development of bunch shape monitor for high-intensity beam on the China ADS proton LINAC Injector II

    NASA Astrophysics Data System (ADS)

    Zhu, Guangyu; Wu, Junxia; Du, Ze; Zhang, Yong; Xue, Zongheng; Xie, Hongming; Wei, Yuan; Jing, Long; Jia, Huan

    2018-05-01

    The development, performance, and testing of the longitudinal bunch shape monitor, namely, the Fast Faraday Cup (FFC), are presented in this paper. The FFC is an invasive instrument controlled by a stepper motor, and its principle of operation is based on a strip line structure. The longitudinal bunch shape was determined by sampling a small part of the beam hitting the strip line through a 1-mm hole. The rise time of the detector reached 24 ps. To accommodate experiments that utilize high-intensity beams, the materials of the bunch shape monitor were chosen to sustain high temperatures. Water cooling was also integrated in the detector system to enhance heat transfer and prevent thermal damage. We also present an analysis of the heating caused by the beam. The bunch shape monitor has been installed and commissioned at the China ADS proton LINAC Injector II.

  11. Active Vibration Control of Elastic Beam by Means of Shape Memory Alloy Layers

    NASA Technical Reports Server (NTRS)

    Chen, Q.; Levy, C.

    1996-01-01

    The mathematical model of a flexible beam covered with shape memory alloy (SMA) layers is presented. The SMA layers are used as actuators, which are capable of changing their elastic modulus and recovery stress, thus changing the natural frequency of, and adjusting the excitation to, the vibrating beam. The frequency factor variation as a function of SMA Young's modulus, SMA layer thickness and beam thickness is discussed. Also control of the beam employing an optimal linear control law is evaluated. The control results indicate how the system reacts to various levels of excitation input through the non-homogeneous recovery shear term of the governing differential equation.

  12. Error in the determination of the deformed shape of prismatic beams using the double integration of curvature

    NASA Astrophysics Data System (ADS)

    Sigurdardottir, Dorotea H.; Stearns, Jett; Glisic, Branko

    2017-07-01

    The deformed shape is a consequence of loading the structure and it is defined by the shape of the centroid line of the beam after deformation. The deformed shape is a universal parameter of beam-like structures. It is correlated with the curvature of the cross-section; therefore, any unusual behavior that affects the curvature is reflected through the deformed shape. Excessive deformations cause user discomfort, damage to adjacent structural members, and may ultimately lead to issues in structural safety. However, direct long-term monitoring of the deformed shape in real-life settings is challenging, and an alternative is indirect determination of the deformed shape based on curvature monitoring. The challenge of the latter is an accurate evaluation of error in the deformed shape determination, which is directly correlated with the number of sensors needed to achieve the desired accuracy. The aim of this paper is to study the deformed shape evaluated by numerical double integration of the monitored curvature distribution along the beam, and create a method to predict the associated errors and suggest the number of sensors needed to achieve the desired accuracy. The error due to the accuracy in the curvature measurement is evaluated within the scope of this work. Additionally, the error due to the numerical integration is evaluated. This error depends on the load case (i.e., the shape of the curvature diagram), the magnitude of curvature, and the density of the sensor network. The method is tested on a laboratory specimen and a real structure. In a laboratory setting, the double integration is in excellent agreement with the beam theory solution which was within the predicted error limits of the numerical integration. Consistent results are also achieved on a real structure—Streicker Bridge on Princeton University campus.

  13. Surface-active element effects on the shape of GTA, laser, and electron-beam welds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heiple, C.R.; Roper, J.R.; Stagner, R.T.

    1983-03-01

    Laser and electron-beam welds were passed across selenium-doped zones in 21-6-9 stainless steel. The depth/width (d/w) ratio of a defocused laser weld with a weld pool shape similar to a GTA weld increased by over 200% in a zone where 66 ppm selenium had been added. Smaller increases were observed in selenium-doped zones for a moderately defocused electron beam weld with a higher d/w ratio in undoped base metal. When laser or electron beam weld penetration was by a keyhole mechanism, no change in d/w ratio occurred in selenium-doped zones. The results confirm the surface-tension-driven fluid-flow model for the effectmore » of minor elements on GTA weld pool shape. Other experimental evidence bearing on the effect of minor elements on GTA weld penetration is summarized.« less

  14. Estimating the vibration level of an L-shaped beam using power flow techniques

    NASA Technical Reports Server (NTRS)

    Cuschieri, J. M.; Mccollum, M.; Rassineux, J. L.; Gilbert, T.

    1986-01-01

    The response of one component of an L-shaped beam, with point force excitation on the other component, is estimated using the power flow method. The transmitted power from the source component to the receiver component is expressed in terms of the transfer and input mobilities at the excitation point and the joint. The response is estimated both in narrow frequency bands, using the exact geometry of the beams, and as a frequency averaged response using infinite beam models. The results using this power flow technique are compared to the results obtained using finite element analysis (FEA) of the L-shaped beam for the low frequency response and to results obtained using statistical energy analysis (SEA) for the high frequencies. The agreement between the FEA results and the power flow method results at low frequencies is very good. SEA results are in terms of frequency averaged levels and these are in perfect agreement with the results obtained using the infinite beam models in the power flow method. The narrow frequency band results from the power flow method also converge to the SEA results at high frequencies. The advantage of the power flow method is that detail of the response can be retained while reducing computation time, which will allow the narrow frequency band analysis of the response to be extended to higher frequencies.

  15. Diffraction of Nondiverging Bessel Beams by Fork-Shaped and Rectilinear Grating

    NASA Astrophysics Data System (ADS)

    Janicijevic, Ljiljana; Topuzoski, Suzana

    2007-04-01

    We present an investigation about Fresnel diffraction of Bessel beams, propagating as nondiverging within a distance Ln, with or without phase singularities, by rectilinear and fork-shaped gratings. The common general transmission function of these gratings is defined and specialized for three different cases: binary amplitude gratings, amplitude holograms and their phase versions. Solving the Fresnel diffraction integral in cylindrical coordinates, we obtain analytical expressions for the diffracted wave amplitude for all types of proposed gratings, and make conclusions about the existence of phase singularities and corresponding topological charges in the created by the gratings beams of different diffraction orders.

  16. Adaptive step-size algorithm for Fourier beam-propagation method with absorbing boundary layer of auto-determined width.

    PubMed

    Learn, R; Feigenbaum, E

    2016-06-01

    Two algorithms that enhance the utility of the absorbing boundary layer are presented, mainly in the framework of the Fourier beam-propagation method. One is an automated boundary layer width selector that chooses a near-optimal boundary size based on the initial beam shape. The second algorithm adjusts the propagation step sizes based on the beam shape at the beginning of each step in order to reduce aliasing artifacts.

  17. Adaptive step-size algorithm for Fourier beam-propagation method with absorbing boundary layer of auto-determined width

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Learn, R.; Feigenbaum, E.

    Two algorithms that enhance the utility of the absorbing boundary layer are presented, mainly in the framework of the Fourier beam-propagation method. One is an automated boundary layer width selector that chooses a near-optimal boundary size based on the initial beam shape. Furthermore, the second algorithm adjusts the propagation step sizes based on the beam shape at the beginning of each step in order to reduce aliasing artifacts.

  18. Adaptive step-size algorithm for Fourier beam-propagation method with absorbing boundary layer of auto-determined width

    DOE PAGES

    Learn, R.; Feigenbaum, E.

    2016-05-27

    Two algorithms that enhance the utility of the absorbing boundary layer are presented, mainly in the framework of the Fourier beam-propagation method. One is an automated boundary layer width selector that chooses a near-optimal boundary size based on the initial beam shape. Furthermore, the second algorithm adjusts the propagation step sizes based on the beam shape at the beginning of each step in order to reduce aliasing artifacts.

  19. Improving the fiber coupling efficiency for DARWIN by loss-less shaping of the receive beams

    NASA Astrophysics Data System (ADS)

    Voland, Ch.; Weigel, Th.; Dreischer, Th.; Wallner, O.; Ergenzinger, K.; Ries, H.; Jetter, R.; Vosteen, A.

    2017-11-01

    For the DARWIN mission the extremely low planet signal levels require an optical instrument design with utmost efficiency to guarantee the required science performance. By shaping the transverse amplitude and phase distributions of the receive beams, the singlemode fibre coupling efficiency can be increased to almost 100%, thus allowing for a gain of more than 20% compared to conventional designs. We show that the use of "tailored freeform surfaces" for purpose of beam shaping dramatically reduces the coupling degradations, which otherwise result from mode mismatch between the Airy pattern of the image and the fibre mode, and therefore allows for achieving a performance close to the physical limitations. We present an application of tailored surfaces for building a beam shaping optics that shall enhance fibre coupling performance as core part of a space based interferometer in the future DARWIN mission and present performance predictions by wave-optical simulations. We assess the feasibility of manufacturing the corresponding tailored surfaces and describe the proof of concept demonstrator we use for experimental performance verification.

  20. Generation of Homogeneous and Patterned Electron Beams using a Microlens Array Laser-Shaping Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halavanau, Aliaksei; Edstrom, Dean; Gai, Wei

    2016-06-01

    In photocathodes the achievable electron-beam parameters are controlled by the laser used to trigger the photoemission process. Non-ideal laser distribution hampers the final beam quality. Laser inhomogeneities, for instance, can be "amplified" by space-charge force and result in fragmented electron beams. To overcome this limitation laser shaping methods are routinely employed. In the present paper we demonstrate the use of simple microlens arrays to dramatically improve the transverse uniformity. We also show that this arrangement can be used to produce transversely-patterned electron beams. Our experiments are carried out at the Argonne Wakefield Accelerator facility.

  1. Active shape control of composite blades using shape memory actuation

    NASA Astrophysics Data System (ADS)

    Chandra, Ramesh

    2001-10-01

    This paper presents active shape control of composite beams using shape memory actuation. Shape memory alloy (SMA) bender elements trained to memorize bending shape were used to induce bending and twisting deformations in composite beams. Bending-torsion coupled graphite-epoxy and kevlar-epoxy composite beams with Teflon inserts were manufactured using an autoclave-molding technique. Teflon inserts were replaced by trained SMA bender elements. Composite beams with SMA bender elements were activated by heating these using electrical resistive heating and the bending and twisting deformations of the beams were measured using a mirror and laser system. The structural response of the composite beams activated by SMA elements was predicted using the Vlasov theory, where these beams were modeled as open sections with many branches. The bending moment induced by a SMA bender element was calculated from its experimentally determined memorized shape. The bending, torsion, and bending-torsion coupling stiffness coefficients of these beams were obtained using analytical formulation of an open-section composite beam with many branches (Vlasov theory).

  2. Proton beam shaped by “particle lens” formed by laser-driven hot electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhai, S. H.; Shen, B. F., E-mail: bfshen@mail.shcnc.ac.cn, E-mail: wwpvin@hotmail.com, E-mail: yqgu@caep.cn; Wang, W. P., E-mail: bfshen@mail.shcnc.ac.cn, E-mail: wwpvin@hotmail.com, E-mail: yqgu@caep.cn

    2016-05-23

    Two-dimensional tailoring of a proton beam is realized by a “particle lens” in our experiment. A large quantity of electrons, generated by an intense femtosecond laser irradiating a polymer target, produces an electric field strong enough to change the trajectory and distribution of energetic protons flying through the electron area. The experiment shows that a strip pattern of the proton beam appears when hot electrons initially converge inside the plastic plate. Then the shape of the proton beam changes to a “fountain-like” pattern when these hot electrons diffuse after propagating a distance.

  3. Adaptive beamlet-based finite-size pencil beam dose calculation for independent verification of IMRT and VMAT.

    PubMed

    Park, Justin C; Li, Jonathan G; Arhjoul, Lahcen; Yan, Guanghua; Lu, Bo; Fan, Qiyong; Liu, Chihray

    2015-04-01

    The use of sophisticated dose calculation procedure in modern radiation therapy treatment planning is inevitable in order to account for complex treatment fields created by multileaf collimators (MLCs). As a consequence, independent volumetric dose verification is time consuming, which affects the efficiency of clinical workflow. In this study, the authors present an efficient adaptive beamlet-based finite-size pencil beam (AB-FSPB) dose calculation algorithm that minimizes the computational procedure while preserving the accuracy. The computational time of finite-size pencil beam (FSPB) algorithm is proportional to the number of infinitesimal and identical beamlets that constitute an arbitrary field shape. In AB-FSPB, dose distribution from each beamlet is mathematically modeled such that the sizes of beamlets to represent an arbitrary field shape no longer need to be infinitesimal nor identical. As a result, it is possible to represent an arbitrary field shape with combinations of different sized and minimal number of beamlets. In addition, the authors included the model parameters to consider MLC for its rounded edge and transmission. Root mean square error (RMSE) between treatment planning system and conventional FSPB on a 10 × 10 cm(2) square field using 10 × 10, 2.5 × 2.5, and 0.5 × 0.5 cm(2) beamlet sizes were 4.90%, 3.19%, and 2.87%, respectively, compared with RMSE of 1.10%, 1.11%, and 1.14% for AB-FSPB. This finding holds true for a larger square field size of 25 × 25 cm(2), where RMSE for 25 × 25, 2.5 × 2.5, and 0.5 × 0.5 cm(2) beamlet sizes were 5.41%, 4.76%, and 3.54% in FSPB, respectively, compared with RMSE of 0.86%, 0.83%, and 0.88% for AB-FSPB. It was found that AB-FSPB could successfully account for the MLC transmissions without major discrepancy. The algorithm was also graphical processing unit (GPU) compatible to maximize its computational speed. For an intensity modulated radiation therapy (∼12 segments) and a volumetric modulated arc

  4. Noseleaf furrows in a horseshoe bat act as resonance cavities shaping the biosonar beam.

    PubMed

    Zhuang, Qiao; Müller, Rolf

    2006-11-24

    Horseshoe bats emit their ultrasonic biosonar pulses through nostrils surrounded by intricately shaped protuberances (noseleaves). While these noseleaves have been hypothesized to affect the sonar beam, their physical function has never been analyzed. Using numerical methods, we show that conspicuous furrows in the noseleaf act as resonance cavities shaping the sonar beam. This demonstrates that (a) animals can use resonances in external, half-open cavities to direct sound emissions, (b) structural detail in the faces of bats can have acoustic effects even if it is not adjacent to the emission sites, and (c) specializations in the biosonar system of horseshoe bats allow for differential processing of subbands of the pulse in the acoustic domain.

  5. Beam shaping assembly optimization for (7)Li(p,n)(7)Be accelerator based BNCT.

    PubMed

    Minsky, D M; Kreiner, A J

    2014-06-01

    Within the framework of accelerator-based BNCT, a project to develop a folded Tandem-ElectroStatic-Quadrupole accelerator is under way at the Atomic Energy Commission of Argentina. The proposed accelerator is conceived to deliver a proton beam of 30mA at about 2.5MeV. In this work we explore a Beam Shaping Assembly (BSA) design based on the (7)Li(p,n)(7)Be neutron production reaction to obtain neutron beams to treat deep seated tumors. © 2013 Elsevier Ltd. All rights reserved.

  6. Implementation of a SVWP-based laser beam shaping technique for generation of 100-mJ-level picosecond pulses.

    PubMed

    Adamonis, J; Aleknavičius, A; Michailovas, K; Balickas, S; Petrauskienė, V; Gertus, T; Michailovas, A

    2016-10-01

    We present implementation of the energy-efficient and flexible laser beam shaping technique in a high-power and high-energy laser amplifier system. The beam shaping is based on a spatially variable wave plate (SVWP) fabricated by femtosecond laser nanostructuring of glass. We reshaped the initially Gaussian beam into a super-Gaussian (SG) of the 12th order with efficiency of about 50%. The 12th order of the SG beam provided the best compromise between large fill factor, low diffraction on the edges of the active media, and moderate intensity distribution modification during free-space propagation. We obtained 150 mJ pulses of 532 nm radiation. High-energy, pulse duration of 85 ps and the nearly flat-top spatial profile of the beam make it ideal for pumping optical parametric chirped pulse amplification systems.

  7. SU-F-J-197: A Novel Intra-Beam Range Detection and Adaptation Strategy for Particle Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, M; Jiang, S; Shao, Y

    2016-06-15

    Purpose: In-vivo range detection/verification is crucial in particle therapy for effective and safe delivery. The state-of-art techniques are not sufficient for in-vivo on-line range verification due to conflicts among patient dose, signal statistics and imaging time. We propose a novel intra-beam range detection and adaptation strategy for particle therapy. Methods: This strategy uses the planned mid-range spots as probing beams without adding extra radiation to patients. Such choice of probing beams ensures the Bragg peaks to remain inside the tumor even with significant range variation from the plan. It offers sufficient signal statistics for in-beam positron emission tomography (PET) duemore » to high positron activity of therapeutic dose. The probing beam signal can be acquired and reconstructed using in-beam PET that allows for delineation of the Bragg peaks and detection of range shift with ease of detection enabled by single-layered spots. If the detected range shift is within a pre-defined tolerance, the remaining spots will be delivered as the original plan. Otherwise, a fast re-optimization using range-shifted beamlets and accounting for the probing beam dose is applied to consider the tradeoffs posed by the online anatomy. Simulated planning and delivery studies were used to demonstrate the effectiveness of the proposed techniques. Results: Simulations with online range variations due to shifts of various foreign objects into the beam path showed successful delineation of the Bragg peaks as a result of delivering probing beams. Without on-line delivery adaptation, dose distribution was significantly distorted. In contrast, delivery adaptation incorporating detected range shift recovered well the planned dose. Conclusion: The proposed intra-beam range detection and adaptation utilizing the planned mid-range spots as probing beams, which illuminate the beam range with strong and accurate PET signals, is a safe, practical, yet effective approach to

  8. Adaptive optics compensation of orbital angular momentum beams with a modified Gerchberg-Saxton-based phase retrieval algorithm

    NASA Astrophysics Data System (ADS)

    Chang, Huan; Yin, Xiao-li; Cui, Xiao-zhou; Zhang, Zhi-chao; Ma, Jian-xin; Wu, Guo-hua; Zhang, Li-jia; Xin, Xiang-jun

    2017-12-01

    Practical orbital angular momentum (OAM)-based free-space optical (FSO) communications commonly experience serious performance degradation and crosstalk due to atmospheric turbulence. In this paper, we propose a wave-front sensorless adaptive optics (WSAO) system with a modified Gerchberg-Saxton (GS)-based phase retrieval algorithm to correct distorted OAM beams. We use the spatial phase perturbation (SPP) GS algorithm with a distorted probe Gaussian beam as the only input. The principle and parameter selections of the algorithm are analyzed, and the performance of the algorithm is discussed. The simulation results show that the proposed adaptive optics (AO) system can significantly compensate for distorted OAM beams in single-channel or multiplexed OAM systems, which provides new insights into adaptive correction systems using OAM beams.

  9. Integrated optical design for highly dynamic laser beam shaping with membrane deformable mirrors

    NASA Astrophysics Data System (ADS)

    Pütsch, Oliver; Stollenwerk, Jochen; Loosen, Peter

    2017-02-01

    The utilization of membrane deformable mirrors has raised its importance in laser materials processing since they enable the generation of highly spatial and temporal dynamic intensity distributions for a wide field of applications. To take full advantage of these devices for beam shaping, the huge amount of degrees of freedom has to be considered and optimized already within the early stage of the optical design. Since the functionality of commercial available ray-tracing software has been mainly specialized on geometric dependencies and their optimization within constraints, the complex system characteristics of deformable mirrors cannot be sufficiently taken into account yet. The main reasons are the electromechanical interdependencies of electrostatic membrane deformable mirrors, namely saturation and mechanical clamping, that result in non-linear deformation. This motivates the development of an integrative design methodology. The functionality of the ray-tracing program ZEMAX is extended with a model of an electrostatic membrane mirror. This model is based on experimentally determined influence functions. Furthermore, software routines are derived and integrated that allow for the compilation of optimization criteria for the most relevant analytically describable beam shaping problems. In this way, internal optimization routines can be applied for computing the appropriate membrane deflection of the deformable mirror as well as for the parametrization of static optical components. The experimental verification of simulated intensity distributions demonstrates that the beam shaping properties can be predicted with a high degree of reliability and precision.

  10. Into the development of a model to assess beam shaping and polarization control effects on laser cutting

    NASA Astrophysics Data System (ADS)

    Rodrigues, Gonçalo C.; Duflou, Joost R.

    2018-02-01

    This paper offers an in-depth look into beam shaping and polarization control as two of the most promising techniques for improving industrial laser cutting of metal sheets. An assessment model is developed for the study of such effects. It is built upon several modifications to models as available in literature in order to evaluate the potential of a wide range of considered concepts. This includes different kinds of beam shaping (achieved by extra-cavity optical elements or asymmetric diode staking) and polarization control techniques (linear, cross, radial, azimuthal). A fully mathematical description and solution procedure are provided. Three case studies for direct diode lasers follow, containing both experimental data and parametric studies. In the first case study, linear polarization is analyzed for any given angle between the cutting direction and the electrical field. In the second case several polarization strategies are compared for similar cut conditions, evaluating, for example, the minimum number of spatial divisions of a segmented polarized laser beam to achieve a target performance. A novel strategy, based on a 12-division linear-to-radial polarization converter with an axis misalignment and capable of improving cutting efficiency with more than 60%, is proposed. The last case study reveals different insights in beam shaping techniques, with an example of a beam shape optimization path for a 30% improvement in cutting efficiency. The proposed techniques are not limited to this type of laser source, neither is the model dedicated to these specific case studies. Limitations of the model and opportunities are further discussed.

  11. Refractive laser beam shaping by means of a functional differential equation based design approach.

    PubMed

    Duerr, Fabian; Thienpont, Hugo

    2014-04-07

    Many laser applications require specific irradiance distributions to ensure optimal performance. Geometric optical design methods based on numerical calculation of two plano-aspheric lenses have been thoroughly studied in the past. In this work, we present an alternative new design approach based on functional differential equations that allows direct calculation of the rotational symmetric lens profiles described by two-point Taylor polynomials. The formalism is used to design a Gaussian to flat-top irradiance beam shaping system but also to generate a more complex dark-hollow Gaussian (donut-like) irradiance distribution with zero intensity in the on-axis region. The presented ray tracing results confirm the high accuracy of both calculated solutions and emphasize the potential of this design approach for refractive beam shaping applications.

  12. Behaviour of smart reinforced concrete beam with super elastic shape memory alloy subjected to monotonic loading

    NASA Astrophysics Data System (ADS)

    Hamid, Nubailah Abd; Ibrahim, Azmi; Adnan, Azlan; Ismail, Muhammad Hussain

    2018-05-01

    This paper discusses the superelastic behavior of shape memory alloy, NiTi when used as reinforcement in concrete beams. The ability of NiTi to recover and reduce permanent deformations of concrete beams was investigated. Small-scale concrete beams, with NiTi reinforcement were experimentally investigated under monotonic loads. The behaviour of simply supported reinforced concrete (RC) beams hybrid with NiTi rebars and the control beam subject to monotonic loads were experimentally investigated. This paper is to highlight the ability of the SMA bars to recover and reduce permanent deformations of concrete flexural members. The size of the control beam is 125 mm × 270 mm × 1000 mm with 3 numbers of 12 mm diameter bars as main reinforcement for compression and 3 numbers of 12 mm bars as tension or hanger bars while 6 mm diameter at 100 mm c/c used as shear reinforcement bars for control beam respectively. While, the minimal provision of 200mm using the 12.7mm of superelastic Shape Memory Alloys were employed to replace the steel rebar at the critical region of the beam. In conclusion, the contribution of the SMA bar in combination with high-strength steel to the conventional reinforcement showed that the SMA beam has exhibited an improve performance in term of better crack recovery and deformation. Therefore the usage of hybrid NiTi with the steel can substantially diminish the risk of the earthquake and also can reduce the associated cost aftermath.

  13. Polarized millijoule fiber laser system with high beam quality and pulse shaping ability

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Tian, Xiaocheng; Xu, Dangpeng; Zhou, Dandan; Zong, Zhaoyu; Li, Hongxun; Fan, Mengqiu; Huang, Zhihua; Zhu, Na; Su, Jingqin; Zhu, Qihua; Jing, Feng

    2017-05-01

    The coherent amplification network (CAN) aims at developing a laser system based on the coherent combination of multiple laser beams, which are produced through a network of high beam quality optical fiber amplifiers. The scalability of the CAN laser facilitates the development of many novel applications, such as fiber-based acceleration, orbital debris removal and inertial confinement fusion energy. According to the requirements of CAN and the front end of high-power laser facilities, a millijoule polarized fiber laser system was studied in this paper. Using polarization maintaining Ytterbium-fiber laser system as the seed, and 10-μm core Yb-doped fiber amplifier as the first power amplifier and 40-μm core polarizing (PZ) photonic crystal fiber (PCF) as the second power amplifier, the all-fiber laser system outputs 1.06-mJ energy at 10 ns and diffraction limited mode quality. Using 85-μm rod-type PCF as the third power amplifiers, 2.5-mJ energy at 10-ns pulse width was obtained with better than 500:1 peak-to-foot pulse shaping ability and fundamental mode beam quality. The energy fluctuation of the system is 1.3% rms with 1-mJ output in one hour. When using phase-modulated pulse as the seed, the frequency modulation to amplitude modulation (FM-to-AM) conversion ratio of the system is better than 5%. This fiber laser system has the advantages of high beam quality, high beam shaping ability, good stability, small volume and free of maintenance, which can be used in many applications.

  14. InN island shape and its dependence on growth condition of molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Cao, Y. G.; Xie, M. H.; Liu, Y.; Ng, Y. F.; Wu, H. S.; Tong, S. Y.

    2003-12-01

    During molecular-beam epitaxy of InN films on GaN(0001) surface, three-dimensional (3D) islands are observed following an initial wetting layer formation. Depending on deposition condition, the 3D islands take different shapes. Pyramidal islands form when excess nitrogen fluxes are used, whereas pillar-shaped islands are obtained when excess indium fluxes are employed. The pillar-shaped islands are identified to represent the equilibrium shape, whereas the pyramidal ones are limited by kinetics. As the size of islands increases, their aspect ratio shows a decreasing trend, which is attributed to a gradual relaxation of strain in the layer by defects.

  15. MR-guided adaptive focusing of therapeutic ultrasound beams in the human head

    PubMed Central

    Marsac, Laurent; Chauvet, Dorian; Larrat, Benoît; Pernot, Mathieu; Robert, B.; Fink, Mathias; Boch, Anne-Laure; Aubry, Jean-François; Tanter, Mickaël

    2012-01-01

    Purpose This study aims to demonstrate, using human cadavers the feasibility of energy-based adaptive focusing of ultrasonic waves using Magnetic Resonance Acoustic Radiation Force Imaging (MR-ARFI) in the framework of non-invasive transcranial High Intensity Focused Ultrasound (HIFU) therapy. Methods Energy-based adaptive focusing techniques were recently proposed in order to achieve aberration correction. We evaluate this method on a clinical brain HIFU system composed of 512 ultrasonic elements positioned inside a full body 1.5 T clinical Magnetic Resonance (MR) imaging system. Cadaver heads were mounted onto a clinical Leksell stereotactic frame. The ultrasonic wave intensity at the chosen location was indirectly estimated by the MR system measuring the local tissue displacement induced by the acoustic radiation force of the ultrasound (US) beams. For aberration correction, a set of spatially encoded ultrasonic waves was transmitted from the ultrasonic array and the resulting local displacements were estimated with the MR-ARFI sequence for each emitted beam. A non-iterative inversion process was then performed in order to estimate the spatial phase aberrations induced by the cadaver skull. The procedure was first evaluated and optimized in a calf brain using a numerical aberrator mimicking human skull aberrations. The full method was then demonstrated using a fresh human cadaver head. Results The corrected beam resulting from the direct inversion process was found to focus at the targeted location with an acoustic intensity 2.2 times higher than the conventional non corrected beam. In addition, this corrected beam was found to give an acoustic intensity 1.5 times higher than the focusing pattern obtained with an aberration correction using transcranial acoustic simulation based on X-ray computed tomography (CT) scans. Conclusion The proposed technique achieved near optimal focusing in an intact human head for the first time. These findings confirm the strong

  16. Design of a shape adaptive airfoil actuated by a Shape Memory Alloy strip for airplane tail

    NASA Astrophysics Data System (ADS)

    Shirzadeh, R.; Raissi Charmacani, K.; Tabesh, M.

    2011-04-01

    Of the factors that mainly affect the efficiency of the wing during a special flow regime, the shape of its airfoil cross section is the most significant. Airfoils are generally designed for a specific flight condition and, therefore, are not fully optimized in all flight conditions. It is very desirable to have an airfoil with the ability to change its shape based on the current regime. Shape memory alloy (SMA) actuators activate in response to changes in the temperature and can recover their original configuration after being deformed. This study presents the development of a method to control the shape of an airfoil using SMA actuators. To predict the thermomechanical behaviors of an SMA thin strip, 3D incremental formulation of the SMA constitutive model is implemented in FEA software package ABAQUS. The interactions between the airfoil structure and SMA thin strip actuator are investigated. Also, the aerodynamic performance of a standard airfoil with a plain flap is compared with an adaptive airfoil.

  17. Unveiling the photonic spin Hall effect of freely propagating fan-shaped cylindrical vector vortex beams.

    PubMed

    Zhang, Yi; Li, Peng; Liu, Sheng; Zhao, Jianlin

    2015-10-01

    An intriguing photonic spin Hall effect (SHE) for a freely propagating fan-shaped cylindrical vector (CV) vortex beam in a paraxial situation is theoretically and experimentally studied. A developed model to describe this kind of photonic SHE is proposed based on angular spectrum diffraction theory. With this model, the close dependences of spin-dependent splitting on the azimuthal order of polarization, the topological charge of the spiral phase, and the propagation distance are accurately revealed. Furthermore, it is demonstrated that the asymmetric spin-dependent splitting of a fan-shaped CV beam can be consciously managed, even with a constant azimuthal order of polarization. Such a controllable photonic SHE is experimentally verified by measuring the Stokes parameters.

  18. New Insights into Shape Memory Alloy Bimorph Actuators Formed by Electron Beam Evaporation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Hao; Nykypanchuk, Dmytro

    In order to create shape memory alloy (SMA) bimorph microactuators with high-precision features, a novel fabrication process combined with electron beam (E-beam) evaporation, lift-off resist and isotropic XeF2 dry etching method was developed. To examine the effect of E-beam deposition and annealing process on nitinol (NiTi) characteristics, the NiTi thin film samples with different deposition rate and overflow conditions during annealing process were investigated. With the characterizations using scanning electron microscope and x-ray diffraction, the results indicated that low E-beam deposition rate and argon employed annealing process could benefit the formation of NiTi crystalline structure. In addition, SMA bimorph microactuatorsmore » with high-precision features as small as 5 microns were successfully fabricated. Furthermore, the thermomechanical performance was experimentally verified and compared with finite element analysis simulation results.« less

  19. Effect of the influence function of deformable mirrors on laser beam shaping.

    PubMed

    González-Núñez, Héctor; Béchet, Clémentine; Ayancán, Boris; Neichel, Benoit; Guesalaga, Andrés

    2017-02-20

    The continuous membrane stiffness of a deformable mirror propagates the deformation of the actuators beyond their neighbors. When phase-retrieval algorithms are used to determine the desired shape of these mirrors, this cross-coupling-also known as influence function (IF)-is generally disregarded. We study this problem via simulations and bench tests for different target shapes to gain further insight into the phenomenon. Sound modeling of the IF effect is achieved as highlighted by the concurrence between the modeled and experimental results. In addition, we observe that the actuators IF is a key parameter that determines the accuracy of the output light pattern. Finally, it is shown that in some cases it is possible to achieve better shaping by modifying the input irradiance of the phase-retrieval algorithm. The results obtained from this analysis open the door to further improvements in this type of beam-shaping systems.

  20. Investigation of FPGA-Based Real-Time Adaptive Digital Pulse Shaping for High-Count-Rate Applications

    NASA Astrophysics Data System (ADS)

    Saxena, Shefali; Hawari, Ayman I.

    2017-07-01

    Digital signal processing techniques have been widely used in radiation spectrometry to provide improved stability and performance with compact physical size over the traditional analog signal processing. In this paper, field-programmable gate array (FPGA)-based adaptive digital pulse shaping techniques are investigated for real-time signal processing. National Instruments (NI) NI 5761 14-bit, 250-MS/s adaptor module is used for digitizing high-purity germanium (HPGe) detector's preamplifier pulses. Digital pulse processing algorithms are implemented on the NI PXIe-7975R reconfigurable FPGA (Kintex-7) using the LabVIEW FPGA module. Based on the time separation between successive input pulses, the adaptive shaping algorithm selects the optimum shaping parameters (rise time and flattop time of trapezoid-shaping filter) for each incoming signal. A digital Sallen-Key low-pass filter is implemented to enhance signal-to-noise ratio and reduce baseline drifting in trapezoid shaping. A recursive trapezoid-shaping filter algorithm is employed for pole-zero compensation of exponentially decayed (with two-decay constants) preamplifier pulses of an HPGe detector. It allows extraction of pulse height information at the beginning of each pulse, thereby reducing the pulse pileup and increasing throughput. The algorithms for RC-CR2 timing filter, baseline restoration, pile-up rejection, and pulse height determination are digitally implemented for radiation spectroscopy. Traditionally, at high-count-rate conditions, a shorter shaping time is preferred to achieve high throughput, which deteriorates energy resolution. In this paper, experimental results are presented for varying count-rate and pulse shaping conditions. Using adaptive shaping, increased throughput is accepted while preserving the energy resolution observed using the longer shaping times.

  1. Brain shape convergence in the adaptive radiation of New World monkeys

    PubMed Central

    Aristide, Leandro; dos Reis, Sergio Furtado; Machado, Alessandra C.; Lima, Inaya; Lopes, Ricardo T.; Perez, S. Ivan

    2016-01-01

    Primates constitute one of the most diverse mammalian clades, and a notable feature of their diversification is the evolution of brain morphology. However, the evolutionary processes and ecological factors behind these changes are largely unknown. In this work, we investigate brain shape diversification of New World monkeys during their adaptive radiation in relation to different ecological dimensions. Our results reveal that brain diversification in this clade can be explained by invoking a model of adaptive peak shifts to unique and shared optima, defined by a multidimensional ecological niche hypothesis. Particularly, we show that the evolution of convergent brain phenotypes may be related to ecological factors associated with group size (e.g., social complexity). Together, our results highlight the complexity of brain evolution and the ecological significance of brain shape changes during the evolutionary diversification of a primate clade. PMID:26858427

  2. Simulation of electrostatic turbulence in the plasma sheet boundary layer with electron currents and bean-shaped ion beams

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Frank, L. A.; Huang, C. Y.

    1988-01-01

    Plasma data from ISEE-1 show the presence of electron currents as well as energetic ion beams in the plasma sheet boundary layer. Broadband electrostatic noise and low-frequency electromagnetic bursts are detected in the plasma sheet boundary layer, especially in the presence of strong ion flows, currents, and steep spacial gradients in the fluxes of few-keV electrons and ions. Particle simulations have been performed to investigate electrostatic turbulence driven by a cold electron beam and/or ion beams with a bean-shaped velocity distribution. The simulation results show that the counterstreaming ion beams as well as the counterstreaming of the cold electron beam and the ion beam excite ion acoustic waves with a given Doppler-shifted real frequency. However, the effect of the bean-shaped ion velocity distributions reduces the growth rates of ion acoustic instability. The simulation results also show that the slowing down of the ion bean is larger at the larger perpendicular velocity. The wave spectra of the electric fields at some points of the simulations show turbulence generated by growing waves.

  3. Optical analysis of time-averaged multiscale Bessel beams generated by a tunable acoustic gradient index of refraction lens.

    PubMed

    McLeod, Euan; Arnold, Craig B

    2008-07-10

    Current methods for generating Bessel beams are limited to fixed beam sizes or, in the case of conventional adaptive optics, relatively long switching times between beam shapes. We analyze the multiscale Bessel beams created using an alternative rapidly switchable device: a tunable acoustic gradient index (TAG) lens. The shape of the beams and their nondiffracting, self-healing characteristics are studied experimentally and explained theoretically using both geometric and Fourier optics. By adjusting the electrical driving signal, we can tune the ring spacings, the size of the central spot, and the working distance of the lens. The results presented here will enable researchers to employ dynamic Bessel beams generated by TAG lenses.

  4. End-pumped Nd:YVO4 laser with reduced thermal lensing via the use of a ring-shaped pump beam.

    PubMed

    Lin, Di; Andrew Clarkson, W

    2017-08-01

    A simple approach for alleviating thermal lensing in end-pumped solid-state lasers using a pump beam with a ring-shaped intensity distribution to decrease the radial temperature gradient is described. This scheme has been implemented in a diode-end-pumped Nd:YVO 4 laser yielding 14 W of TEM 00 output at 1.064 μm with a corresponding slope efficiency of 53% and a beam propagation factor (M 2 ) of 1.08 limited by available pump power. By comparison, the same laser design with a conventional quasi-top-hat pump beam profile of approximately equal radial extent yielded only 9 W of output before the power rolled over due to thermal lensing. Further investigation with the aid of a probe beam revealed that the thermal lens power was ∼30% smaller for the ring-shaped pump beam compared to the quasi-top-hat beam. The implications for further power scaling in end-pumped laser configurations are considered.

  5. Adaptive feature selection using v-shaped binary particle swarm optimization.

    PubMed

    Teng, Xuyang; Dong, Hongbin; Zhou, Xiurong

    2017-01-01

    Feature selection is an important preprocessing method in machine learning and data mining. This process can be used not only to reduce the amount of data to be analyzed but also to build models with stronger interpretability based on fewer features. Traditional feature selection methods evaluate the dependency and redundancy of features separately, which leads to a lack of measurement of their combined effect. Moreover, a greedy search considers only the optimization of the current round and thus cannot be a global search. To evaluate the combined effect of different subsets in the entire feature space, an adaptive feature selection method based on V-shaped binary particle swarm optimization is proposed. In this method, the fitness function is constructed using the correlation information entropy. Feature subsets are regarded as individuals in a population, and the feature space is searched using V-shaped binary particle swarm optimization. The above procedure overcomes the hard constraint on the number of features, enables the combined evaluation of each subset as a whole, and improves the search ability of conventional binary particle swarm optimization. The proposed algorithm is an adaptive method with respect to the number of feature subsets. The experimental results show the advantages of optimizing the feature subsets using the V-shaped transfer function and confirm the effectiveness and efficiency of the feature subsets obtained under different classifiers.

  6. Adaptive feature selection using v-shaped binary particle swarm optimization

    PubMed Central

    Dong, Hongbin; Zhou, Xiurong

    2017-01-01

    Feature selection is an important preprocessing method in machine learning and data mining. This process can be used not only to reduce the amount of data to be analyzed but also to build models with stronger interpretability based on fewer features. Traditional feature selection methods evaluate the dependency and redundancy of features separately, which leads to a lack of measurement of their combined effect. Moreover, a greedy search considers only the optimization of the current round and thus cannot be a global search. To evaluate the combined effect of different subsets in the entire feature space, an adaptive feature selection method based on V-shaped binary particle swarm optimization is proposed. In this method, the fitness function is constructed using the correlation information entropy. Feature subsets are regarded as individuals in a population, and the feature space is searched using V-shaped binary particle swarm optimization. The above procedure overcomes the hard constraint on the number of features, enables the combined evaluation of each subset as a whole, and improves the search ability of conventional binary particle swarm optimization. The proposed algorithm is an adaptive method with respect to the number of feature subsets. The experimental results show the advantages of optimizing the feature subsets using the V-shaped transfer function and confirm the effectiveness and efficiency of the feature subsets obtained under different classifiers. PMID:28358850

  7. Adaptive beam tracking and steering via electrowetting-controlled liquid prism

    NASA Astrophysics Data System (ADS)

    Cheng, Jiangtao; Chen, Chung-Lung

    2011-11-01

    We report an electrowetting-controlled optofluidic system for adaptive beam tracking and agile steering. With two immiscible fluids in a transparent cell, we can actively control the contact angle along the fluid-fluid-solid tri-junction line and hence the orientation of the fluid-fluid interface via electrowetting. The naturally formed meniscus between the two liquids can function as an optical prism. We have fabricated a liquid prism module with an aperture size of 10 mm × 10mm. With 1 wt. % KCl and 1 wt. % Sodium Dodecyl Sulfate added into deionized water, the orientation of the water-silicone oil interface has been modulated between -26° and 26° that can deflect and steer beam within the incidence angle of 0°-15°. The wide-range beam tracking and steering enables the liquid prism work as an electrowetting solar cell.

  8. Experiment on a three-beam adaptive array for EHF frequency-hopped signals using a fast algorithm, phase-D

    NASA Astrophysics Data System (ADS)

    Yen, J. L.; Kremer, P.; Amin, N.; Fung, J.

    1989-05-01

    The Department of National Defence (Canada) has been conducting studies into multi-beam adaptive arrays for extremely high frequency (EHF) frequency hopped signals. A three-beam 43 GHz adaptive antenna and a beam control processor is under development. An interactive software package for the operation of the array, capable of applying different control algorithms is being written. A maximum signal to jammer plus noise ratio (SJNR) was found to provide superior performance in preventing degradation of user signals in the presence of nearby jammers. A new fast algorithm using a modified conjugate gradient approach was found to be a very efficient way to implement anti-jamming arrays based on maximum SJNR criterion. The present study was intended to refine and simplify this algorithm and to implement the algorithm on an experimental array for real-time evaluation of anti-jamming performance. A three-beam adaptive array was used. A simulation package was used in the evaluation of multi-beam systems using more than three beams and different user-jammer scenarios. An attempt to further reduce the computation burden through continued analysis of maximum SJNR met with limited success. A method to acquire and track an incoming laser beam is proposed.

  9. Overview of Alternative Bunching and Current-shaping Techniques for Low-Energy Electron Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piot, Philippe

    2015-12-01

    Techniques to bunch or shape an electron beam at low energies (E <15 MeV) have important implications toward the realization of table-top radiation sources [1] or to the design of compact multi-user free-electron lasers[2]. This paper provides an overview of alternative methods recently developed including techniques such as wakefield-based bunching, space-charge-driven microbunching via wave-breaking [3], ab-initio shaping of the electron-emission process [4], and phase space exchangers. Practical applications of some of these methods to foreseen free-electron-laser configurations are also briefly discussed [5].

  10. Light beam shaping and homogenization (LSBH) by irregular microlens structure for medical applications

    NASA Astrophysics Data System (ADS)

    Semchishen, Vladimir A.; Mrochen, Michael; Seminogov, Vladimir N.; Panchenko, Vladislav Y.; Seiler, Theo

    1998-04-01

    Purpose: The increasing interest in a homogeneous Gaussian light beam profile for applications in ophthalmology e.g. photorefractive keratectomy (PRK) requests simple optical systems with low energy losses. Therefore, we developed the Light Shaping Beam Homogenizer (LSBH) working from UV up to mid-IR. Method: The irregular microlenses structure on a quartz surface was fabricated by using photolithography, chemical etching and chemical polishing processes. This created a three dimensional structure on the quartz substrate characterized in case of a Gaussian beam by random law distribution of individual irregularities tilts. The LSBH was realized for the 193 nm and the 2.94 micrometer wavelengths. Simulation results obtained by 3-D analysis for an arbitrary incident light beam were compared to experimental results. Results: The correlation to a numerical Gaussian fit is better than 94% with high uniformity for an incident beam with an intensity modulation of nearly 100%. In the far field the cross section of the beam shows always rotation symmetry. Transmittance and damage threshold of the LSBH are only dependent on the substrate characteristics. Conclusions: considering our experimental and simulation results it is possible to control the angular distribution of the beam intensity after LSBH with higher efficiency compared to diffraction or holographic optical elements.

  11. Measurement of Jovian decametric Io-related source location and beam shape

    NASA Technical Reports Server (NTRS)

    Maeda, K.; Carr, T. D.

    1992-01-01

    The paper presents new information on the locations of the Io-related sources A and C (i.e., Io-A and Io-C) and on the shapes of their emission beams on the basis of measurements of the Jovian decametric activity that was recorded by Voyager 1 and 2. In two instances, the same dynamic spectral arc event in the recorded data of the two spacecraft was recorded, providing in each case an opportunity to observe the same emission beam over a wide range of frequencies from two considerably different directions. The propagation-corrected centroid times of each of the Voyager-1 arcs are found to be coincident with those of the corresponding Voyager-2 arc in a particular frequency range, but not at other frequencies. The hypothesis that emission beams are in the form of thin, almost conical sheets, the cone opening angle decreasing with increasing frequency, is confirmed. It is demonstrated that both the Io-A and Io-C sources were located near the northern foot of the magnetic flux tube that was connected to Io.

  12. Adaptive free-space optical communications through turbulence using self-healing Bessel beams

    PubMed Central

    Li, Shuhui; Wang, Jian

    2017-01-01

    We present a scheme to realize obstruction- and turbulence-tolerant free-space orbital angular momentum (OAM) multiplexing link by using self-healing Bessel beams accompanied by adaptive compensation techniques. Compensation of multiple 16-ary quadrature amplitude modulation (16-QAM) data carrying Bessel beams through emulated atmospheric turbulence and obstructions is demonstrated. The obtained experimental results indicate that the compensation scheme can effectively reduce the inter-channel crosstalk, improve the bit-error rate (BER) performance, and recuperate the nondiffracting property of Bessel beams. The proposed scheme might be used in future high-capacity OAM links which are affected by atmospheric turbulence and obstructions. PMID:28230076

  13. Seed Pubescence and Shape Modulate Adaptive Responses to Fire Cues

    PubMed Central

    Gómez-González, Susana; Ojeda, Fernando; Torres-Morales, Patricio; Palma, Jazmín E.

    2016-01-01

    Post-fire recruitment by seeds is regarded as an adaptive response in fire-prone ecosystems. Nevertheless, little is known about which heritable seed traits are functional to the main signals of fire (heat and smoke), thus having the potential to evolve. Here, we explored whether three seed traits (pubescence, dormancy and shape) and fire regime modulate seed response to fire cues(heat and smoke). As a model study system, we used Helenium aromaticum (Asteraceae), a native annual forb from the Chilean matorral, where fires are anthropogenic. We related seed trait values with fitness responses (germination and survival) after exposure to heat-shock and smoke experimental treatments on seeds from 10 H. aromaticum wild populations. We performed a phenotypic selection experiment to examine the relationship of seed traits with post-treatment fitness within a population (adaptive hypothesis). We then explored whether fire frequency in natural habitats was associated with trait expression across populations, and with germination and survival responses to experimental fire-cues. We found that populations subjected to higher fire frequency had, in average, more rounded and pubescent seeds than populations from rarely burned areas. Populations with more rounded and pubescent seeds were more resistant to 80°C heat-shock and smoke treatments.There was correlated selection on seed traits: pubescent-rounded or glabrouscent-elongated seeds had the highest probability of germinating after heat-shock treatments. Seed pubescence and shape in H. aromaticum are heritable traits that modulate adaptive responses to fire. Our results provide new insights into the process of plant adaptation to fire and highlight the relevance of human-made fires as a strong evolutionary agent in the Anthropocene. PMID:27438267

  14. Seed Pubescence and Shape Modulate Adaptive Responses to Fire Cues.

    PubMed

    Gómez-González, Susana; Ojeda, Fernando; Torres-Morales, Patricio; Palma, Jazmín E

    2016-01-01

    Post-fire recruitment by seeds is regarded as an adaptive response in fire-prone ecosystems. Nevertheless, little is known about which heritable seed traits are functional to the main signals of fire (heat and smoke), thus having the potential to evolve. Here, we explored whether three seed traits (pubescence, dormancy and shape) and fire regime modulate seed response to fire cues(heat and smoke). As a model study system, we used Helenium aromaticum (Asteraceae), a native annual forb from the Chilean matorral, where fires are anthropogenic. We related seed trait values with fitness responses (germination and survival) after exposure to heat-shock and smoke experimental treatments on seeds from 10 H. aromaticum wild populations. We performed a phenotypic selection experiment to examine the relationship of seed traits with post-treatment fitness within a population (adaptive hypothesis). We then explored whether fire frequency in natural habitats was associated with trait expression across populations, and with germination and survival responses to experimental fire-cues. We found that populations subjected to higher fire frequency had, in average, more rounded and pubescent seeds than populations from rarely burned areas. Populations with more rounded and pubescent seeds were more resistant to 80°C heat-shock and smoke treatments.There was correlated selection on seed traits: pubescent-rounded or glabrouscent-elongated seeds had the highest probability of germinating after heat-shock treatments. Seed pubescence and shape in H. aromaticum are heritable traits that modulate adaptive responses to fire. Our results provide new insights into the process of plant adaptation to fire and highlight the relevance of human-made fires as a strong evolutionary agent in the Anthropocene.

  15. WE-AB-209-08: Novel Beam-Specific Adaptive Margins for Reducing Organ-At-Risk Doses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsang, H; Kamerling, CP; Ziegenhein, P

    2016-06-15

    Purpose: Current practice of using 3D margins in radiotherapy with high-energy photon beams provides larger-than-required target coverage. According to the photon depth-dose curve, target displacements in beam direction result in minute changes in dose delivered. We exploit this behavior by generating margins on a per-beam basis which simultaneously account for the relative distance of the target and adjacent organs-at-risk (OARs). Methods: For each beam, we consider only geometrical uncertainties of the target location perpendicular to beam direction. By weighting voxels based on its proximity to an OAR, we generate adaptive margins that yield similar overall target coverage probability and reducedmore » OAR dose-burden, at the expense of increased target volume. Three IMRT plans, using 3D margins and 2D per-beam margins with and without adaptation, were generated for five prostate patients with a prescription dose Dpres of 78Gy in 2Gy fractions using identical optimisation constraints. Systematic uncertainties of 1.1, 1.1, 1.5mm in the LR, SI, and AP directions, respectively, and 0.9, 1.1, 1.0mm for the random uncertainties, were assumed. A verification tool was employed to simulate the effects of systematic and random errors using a population size of 50,000. The fraction of the population that satisfies or violates a given DVH constraint was used for comparison. Results: We observe similar target coverage across all plans, with at least 97.5% of the population meeting the D98%>95%Dpres constraint. When looking at the probability of the population receiving D5<70Gy for the rectum, we observed median absolute increases of 23.61% (range, 2.15%–27.85%) and 6.97% (range, 0.65%–17.76%) using per-beam margins with and without adaptation, respectively, relative to using 3D margins. Conclusion: We observed sufficient and similar target coverage using per-beam margins. By adapting each per-beam margin away from an OAR, we can further reduce OAR dose without

  16. Optical apparatus using liquid crystals for shaping the spatial intensity of optical beams having designated wavelengths

    DOEpatents

    Jacobs, S.D.; Cerqua, K.A.

    1987-07-14

    The spatial intensity profile of an optical beam of designated wavelengths, such as a laser beam, is shaped (the beam is apodized) by means of cholesteric liquid crystals of opposite chirality disposed successively along the path of the beam. The crystals have curved surfaces, which may be defined by a lens which defines the thickness of the liquid crystal fluid gap in a liquid crystal cell, so as to vary the selective reflection of the designated wavelength across the aperture of the beam. In this way, a soft aperture is provided. By using tandem cell pairs having liquid crystals of opposite chirality, but of different pitch, and with lenses of different curvature, beams of different wavelengths which are projected colinearly along the path may be individually tailored in spatial intensity profile. 11 figs.

  17. Optical apparatus using liquid crystals for shaping the spatial intensity of optical beams having designated wavelengths

    DOEpatents

    Jacobs, Stephen D.; Cerqua, Kathleen A.

    1987-01-01

    The spatial intensity profile of an optical beam of designated wavelengths, such as a laser beam, is shaped (the beam is apodized) by means of cholesteric liquid crystals of opposite chirality disposed successively along the path of the beam. The crystals have curved surfaces, which may be defined by a lens which defines the thickness of the liquid crystal fluid gap in a liquid crystal cell, so as to vary the selective reflection of the designated wavelength across the aperture of the beam. In this way, a soft aperture is provided. By using tandem cell pairs having liquid crystals of opposite chirality, but of different pitch, and with lenses of different curvature, beams of different wavelengths which are projected colinearly along the path may be individually tailored in spatial intensity profile.

  18. Plasma Charge Current for Controlling and Monitoring Electron Beam Welding with Beam Oscillation

    PubMed Central

    Trushnikov, Dmitriy; Belenkiy, Vladimir; Shchavlev, Valeriy; Piskunov, Anatoliy; Abdullin, Aleksandr; Mladenov, Georgy

    2012-01-01

    Electron beam welding (EBW) shows certain problems with the control of focus regime. The electron beam focus can be controlled in electron-beam welding based on the parameters of a secondary signal. In this case, the parameters like secondary emissions and focus coil current have extreme relationships. There are two values of focus coil current which provide equal value signal parameters. Therefore, adaptive systems of electron beam focus control use low-frequency scanning of focus, which substantially limits the operation speed of these systems and has a negative effect on weld joint quality. The purpose of this study is to develop a method for operational control of the electron beam focus during welding in the deep penetration mode. The method uses the plasma charge current signal as an additional informational parameter. This parameter allows identification of the electron beam focus regime in electron-beam welding without application of additional low-frequency scanning of focus. It can be used for working out operational electron beam control methods focusing exactly on the welding. In addition, use of this parameter allows one to observe the shape of the keyhole during the welding process. PMID:23242276

  19. Plasma charge current for controlling and monitoring electron beam welding with beam oscillation.

    PubMed

    Trushnikov, Dmitriy; Belenkiy, Vladimir; Shchavlev, Valeriy; Piskunov, Anatoliy; Abdullin, Aleksandr; Mladenov, Georgy

    2012-12-14

    Electron beam welding (EBW) shows certain problems with the control of focus regime. The electron beam focus can be controlled in electron-beam welding based on the parameters of a secondary signal. In this case, the parameters like secondary emissions and focus coil current have extreme relationships. There are two values of focus coil current which provide equal value signal parameters. Therefore, adaptive systems of electron beam focus control use low-frequency scanning of focus, which substantially limits the operation speed of these systems and has a negative effect on weld joint quality. The purpose of this study is to develop a method for operational control of the electron beam focus during welding in the deep penetration mode. The method uses the plasma charge current signal as an additional informational parameter. This parameter allows identification of the electron beam focus regime in electron-beam welding without application of additional low-frequency scanning of focus. It can be used for working out operational electron beam control methods focusing exactly on the welding. In addition, use of this parameter allows one to observe the shape of the keyhole during the welding process.

  20. Thermomechanical Characterization and Modeling of Superelastic Shape Memory Alloy Beams and Frames

    NASA Astrophysics Data System (ADS)

    Watkins, Ryan

    Of existing applications, the majority of shape memory alloy (SMA) devices consist of beam (orthodontic wire, eye glasses frames, catheter guide wires) and framed structures (cardiovascular stents, vena cava filters). Although uniaxial tension data is often sufficient to model basic beam behavior (which has been the main focus of the research community), the tension-compression asymmetry and complex phase transformation behavior of SMAs suggests more information is necessary to properly model higher complexity states of loading. In this work, SMA beams are experimentally characterized under general loading conditions (including tension, compression, pure bending, and buckling); furthermore, a model is developed with respect to general beam deformation based on the relevant phenomena observed in the experimental characterization. Stress induced phase transformation within superelastic SMA beams is shown to depend on not only the loading mode, but also kinematic constraints imposed by beam geometry (such as beam cross-section and length). In the cases of tension and pure bending, the structural behavior is unstable and corresponds to phase transformation localization and propagation. This unstable behavior is the result of a local level up--down--up stress/strain response in tension, which is measured here using a novel composite-based experimental technique. In addition to unstable phase transformation, intriguing post-buckling straightening is observed in short SMA columns during monotonic loading (termed unbuckling here). Based on this phenomenological understanding of SMA beam behavior, a trilinear based material law is developed in the context of a Shanley column model and is found to capture many of the relevant features of column buckling, including the experimentally observed unbuckling behavior. Due to the success of this model, it is generalized within the context of beam theory and, in conjunction with Bloch wave stability analysis, is used to model and

  1. Controlling the Laser Guide Star power density distribution at Sodium layer by combining Pre-correction and Beam-shaping

    NASA Astrophysics Data System (ADS)

    Huang, Jian; Wei, Kai; Jin, Kai; Li, Min; Zhang, YuDong

    2018-06-01

    The Sodium laser guide star (LGS) plays a key role in modern astronomical Adaptive Optics Systems (AOSs). The spot size and photon return of the Sodium LGS depend strongly on the laser power density distribution at the Sodium layer and thus affect the performance of the AOS. The power density distribution is degraded by turbulence in the uplink path, launch system aberrations, the beam quality of the laser, and so forth. Even without any aberrations, the TE00 Gaussian type is still not the optimal power density distribution to obtain the best balance between the measurement error and temporal error. To optimize and control the LGS power density distribution at the Sodium layer to an expected distribution type, a method that combines pre-correction and beam-shaping is proposed. A typical result shows that under strong turbulence (Fried parameter (r0) of 5 cm) and for a quasi-continuous wave Sodium laser (power (P) of 15 W), in the best case, our method can effectively optimize the distribution from the Gaussian type to the "top-hat" type and enhance the photon return flux of the Sodium LGS; at the same time, the total error of the AOS is decreased by 36% with our technique for a high power laser and poor seeing.

  2. Adaptive beam tracking and steering via electrowetting-controlled liquid prism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, JT; Chen, CL

    2011-11-07

    We report an electrowetting-controlled optofluidic system for adaptive beam tracking and agile steering. With two immiscible fluids in a transparent cell, we can actively control the contact angle along the fluid-fluid-solid tri-junction line and hence the orientation of the fluid-fluid interface via electrowetting. The naturally formed meniscus between the two liquids can function as an optical prism. We have fabricated a liquid prism module with an aperture size of 10 mm -10mm. With 1 wt.% KCl and 1 wt.% Sodium Dodecyl Sulfate added into deionized water, the orientation of the water-silicone oil interface has been modulated between -26 degrees andmore » 26 degrees that can deflect and steer beam within the incidence angle of 0 degrees-15 degrees. The wide-range beam tracking and steering enables the liquid prism work as an electrowetting solar cell. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3660578]« less

  3. Single-grain growth in Si film by chevron-shaped cw laser beam scanning

    NASA Astrophysics Data System (ADS)

    Yeh, Wenchang; Yamazaki, Satoki; Ishimoto, Akihisa; Morito, Shigekazu

    2016-02-01

    A single grain with a length of 450 µm and a width of 5-6 µm was grown in a 60 nm Si film on SiO2 by scanning a chevron-shaped cw laser beam, which was formed by passing a linear laser beam through a novel one-sided Dove prism. The crystal did not have any dominant orientations in both the growth and normal directions. The orientation rotated about the transverse direction at a rate of 0.47-0.51°/µm in the forward direction, which suggests that the lattice constant at the film surface was 0.049-0.053% larger than that at the film bottom.

  4. Shape memory alloy actuated adaptive exhaust nozzle for jet engine

    NASA Technical Reports Server (NTRS)

    Ma, Ning (Inventor); Song, Gangbing (Inventor)

    2009-01-01

    The proposed adaptive exhaust nozzle features an innovative use of the shape memory alloy (SMA) actuators for actively control of the opening area of the exhaust nozzle for jet engines. The SMA actuators remotely control the opening area of the exhaust nozzle through a set of mechanism. An important advantage of using SMA actuators is the reduction of weight of the actuator system for variable area exhaust nozzle. Another advantage is that the SMA actuator can be activated using the heat from the exhaust and eliminate the need of other energy source. A prototype has been designed and fabricated. The functionality of the proposed SMA actuated adaptive exhaust nozzle is verified in the open-loop tests.

  5. Low Temperature Shape Memory Alloys for Adaptive, Autonomous Systems Project

    NASA Technical Reports Server (NTRS)

    Falker, John; Zeitlin, Nancy; Williams, Martha; Benafan, Othmane; Fesmire, James

    2015-01-01

    The objective of this joint activity between Kennedy Space Center (KSC) and Glenn Research Center (GRC) is to develop and evaluate the applicability of 2-way SMAs in proof-of-concept, low-temperature adaptive autonomous systems. As part of this low technology readiness (TRL) activity, we will develop and train low-temperature novel, 2-way shape memory alloys (SMAs) with actuation temperatures ranging from 0 C to 150 C. These experimental alloys will also be preliminary tested to evaluate their performance parameters and transformation (actuation) temperatures in low- temperature or cryogenic adaptive proof-of-concept systems. The challenge will be in the development, design, and training of the alloys for 2-way actuation at those temperatures.

  6. Multi-resonant wideband energy harvester based on a folded asymmetric M-shaped cantilever

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Meng; Mao, Haiyang; Li, Zhigang

    2015-07-15

    This article reports a compact wideband piezoelectric vibration energy harvester consisting of three proof masses and an asymmetric M-shaped cantilever. The M-shaped beam comprises a main beam and two folded and dimension varied auxiliary beams interconnected through the proof mass at the end of the main cantilever. Such an arrangement constitutes a three degree-of-freedom vibrating body, which can tune the resonant frequencies of its first three orders close enough to obtain a utility wide bandwidth. The finite element simulation results and the experimental results are well matched. The operation bandwidth comprises three adjacent voltage peaks on account of the frequencymore » interval shortening mechanism. The result shows that the proposed piezoelectric energy harvester could be efficient and adaptive in practical vibration circumstance based on multiple resonant modes.« less

  7. Simulation of electrostatic turbulence in the plasma sheet boundary layer with electron currents and bean-shaped ion beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishikawa, K.; Frank, L.A.; Huang, C.Y.

    Plasma data from ISEE 1 show the presence of electron currents as well as energetic ion beams in the plasma sheet boundary layer. Broadband electrostatic noise and low-frequency electromagnetic bursts are detected in the plasma sheet boundary layer, especially in the presence of strong ion flows, currents, and steep spacial gradients in the fluxes of few-keV electrons and ions. Particle simulations have been performed to investigate electrostatic turbulence driven by a cold electron beam and/or ion beams with a bean-shaped velocity distribution. The simulation results show that the counterstreaming ion beams as well as the counterstreaming of the cold electronmore » beam and the ion beam excite ion acoustic waves with the Doppler-shifted real frequency ..omega..approx. = +- k/sub parallel/(c/sub s/-V/sub i//sub //sub parallel/). However, the effect of the bean-shaped ion velocity distributions reduces the growth rates of ion acoustic instability. The simulation results also show that the slowing down of the ion beam is larger at the larger perpendicular velocity. The wave spectra of the electric fields at some points for simulations show turbulence generated by growing waves. The frequency of these spectra ranges from ..cap omega../sub i/ to ..omega../sub p//sub e/, which is in qualitative agreement with the satellite data. copyright American Geophysical Union 1988« less

  8. Hard real-time beam scheduler enables adaptive images in multi-probe systems

    NASA Astrophysics Data System (ADS)

    Tobias, Richard J.

    2014-03-01

    Real-time embedded-system concepts were adapted to allow an imaging system to responsively control the firing of multiple probes. Large-volume, operator-independent (LVOI) imaging would increase the diagnostic utility of ultrasound. An obstacle to this innovation is the inability of current systems to drive multiple transducers dynamically. Commercial systems schedule scanning with static lists of beams to be fired and processed; here we allow an imager to adapt to changing beam schedule demands, as an intelligent response to incoming image data. An example of scheduling changes is demonstrated with a flexible duplex mode two-transducer application mimicking LVOI imaging. Embedded-system concepts allow an imager to responsively control the firing of multiple probes. Operating systems use powerful dynamic scheduling algorithms, such as fixed priority preemptive scheduling. Even real-time operating systems lack the timing constraints required for ultrasound. Particularly for Doppler modes, events must be scheduled with sub-nanosecond precision, and acquired data is useless without this requirement. A successful scheduler needs unique characteristics. To get close to what would be needed in LVOI imaging, we show two transducers scanning different parts of a subjects leg. When one transducer notices flow in a region where their scans overlap, the system reschedules the other transducer to start flow mode and alter its beams to get a view of the observed vessel and produce a flow measurement. The second transducer does this in a focused region only. This demonstrates key attributes of a successful LVOI system, such as robustness against obstructions and adaptive self-correction.

  9. Excitation and tailoring of diffractive spin-wave beams in NiFe using nonuniform microwave antennas

    NASA Astrophysics Data System (ADS)

    Körner, H. S.; Stigloher, J.; Back, C. H.

    2017-09-01

    We experimentally demonstrate by time-resolved scanning magneto-optical Kerr microscopy the possibility to locally excite multiple spin-wave beams in the dipolar-dominated regime in metallic NiFe films. For this purpose we employ differently shaped nonuniform microwave antennas consisting of several coplanar waveguide sections different in size, thereby adapting an approach for the generation of spin-wave beams in the exchange-dominated regime suggested by Gruszecki et al. [Sci. Rep. 6, 22367 (2016), 10.1038/srep22367]. The occurring spin-wave beams are diffractive and we show that the width of the beam and its widening as it propagates can be tailored by the shape and the length of the nonuniformity. Moreover, the propagation direction of the diffractive beams can be manipulated by changing the bias field direction.

  10. Experiment on a three-beam adaptive array for EHF frequency-hopped signals using a fast algorithm, phase E

    NASA Astrophysics Data System (ADS)

    Yen, J. L.; Kremer, P.; Fung, J.

    1990-05-01

    The Department of National Defence (Canada) has been conducting studies into multi-beam adaptive arrays for extremely high frequency (EHF) frequency hopped signals. A three-beam 43 GHz adaptive antenna and a beam control processor is under development. An interactive software package for the operation of the array, capable of applying different control algorithms is being written. A maximum signal to jammer plus noise ratio (SJNR) has been found to provide superior performance in preventing degradation of user signals in the presence of nearby jammers. A new fast algorithm using a modified conjugate gradient approach has been found to be a very efficient way to implement anti-jamming arrays based on maximum SJNR criterion. The present study was intended to refine and simplify this algorithm and to implement the algorithm on an experimental array for real-time evaluation of anti-jamming performance. A three-beam adaptive array was used. A simulation package was used in the evaluation of multi-beam systems using more than three beams and different user-jammer scenarios. An attempt to further reduce the computation burden through further analysis of maximum SJNR met with limited success. The investigation of a new angle detector for spatial tracking in heterodyne laser space communications was completed.

  11. Beam shaping of laser diode radiation by waveguides with arbitrary cladding geometry written with fs-laser radiation.

    PubMed

    Beckmann, Dennis; Schnitzler, Daniel; Schaefer, Dagmar; Gottmann, Jens; Kelbassa, Ingomar

    2011-12-05

    Waveguides with arbitrary cross sections are written in the volume of Al(2)O(3)-crystals using tightly focused femtosecond laser radiation. Utilizing a scanning system with large numerical aperture, complex cladding geometries are realized with a precision around 0.5 µm and a scanning speed up to 100 mm/s. Individual beam and mode shaping of laser diode radiation is demonstrated by varying the design of the waveguide cladding. The influence of the writing parameters on the waveguide properties are investigated resulting in a numerical aperture of the waveguides in the range of 0.1. This direct laser writing technique enables optical devices which could possibly replace bulky beam shaping setups with an integrated solution.

  12. Evaluation of fiber’s misorientation effect on compliance and load carry capacity of shaped composite beams

    NASA Astrophysics Data System (ADS)

    Polilov, A. N.; Tatus’, N. A.

    2018-04-01

    The goal of this paper is analysis of design methods for composite beams and plates with curvilinear fiber trajectories. The novelty of this approach is determined by the fact that traditional composite materials are typically formed using prepregs with rectilinear fibers only. The results application area is associated with design process for shaped composite structure element by using of biomechanical principles. One of the related problems is the evaluation of fiber’s misorientation effect on stiffness and load carry capacity of shaped composite element with curvilinear fiber trajectories. Equistrong beam with constant cross-section area is considered as example, and it can be produced by unidirectional fiber bunch forming, impregnated with polymer matrix. Effective elastic modulus evaluation methods for structures with curvilinear fiber trajectories are validated. Misorientation angle range (up to 5o) when material with required accuracy can be considered as homogeneous, neglecting fiber misorientation, is determined. It is shown that for the beams with height-to-width ratio small enough it is possible to consider 2D misorientation only.

  13. Beam shaping in high-power broad-area quantum cascade lasers using optical feedback.

    PubMed

    Ferré, Simon; Jumpertz, Louise; Carras, Mathieu; Ferreira, Robson; Grillot, Frédéric

    2017-03-13

    Broad-area quantum cascade lasers with high output powers are highly desirable sources for various applications including infrared countermeasures. However, such structures suffer from strongly deteriorated beam quality due to multimode behavior, diffraction of light and self-focusing. Quantum cascade lasers presenting high performances in terms of power and heat-load dissipation are reported and their response to a nonlinear control based on optical feedback is studied. Applying optical feedback enables to efficiently tailor its near-field beam profile. The different cavity modes are sequentially excited by shifting the feedback mirror angle. Further control of the near-field profile is demonstrated using spatial filtering. The impact of an inhomogeneous gain as well as the influence of the cavity width are investigated. Compared to existing technologies, that are complex and costly, beam shaping with optical feedback is a more flexible solution to obtain high-quality mid-infrared sources.

  14. Beam shaping in high-power broad-area quantum cascade lasers using optical feedback

    PubMed Central

    Ferré, Simon; Jumpertz, Louise; Carras, Mathieu; Ferreira, Robson; Grillot, Frédéric

    2017-01-01

    Broad-area quantum cascade lasers with high output powers are highly desirable sources for various applications including infrared countermeasures. However, such structures suffer from strongly deteriorated beam quality due to multimode behavior, diffraction of light and self-focusing. Quantum cascade lasers presenting high performances in terms of power and heat-load dissipation are reported and their response to a nonlinear control based on optical feedback is studied. Applying optical feedback enables to efficiently tailor its near-field beam profile. The different cavity modes are sequentially excited by shifting the feedback mirror angle. Further control of the near-field profile is demonstrated using spatial filtering. The impact of an inhomogeneous gain as well as the influence of the cavity width are investigated. Compared to existing technologies, that are complex and costly, beam shaping with optical feedback is a more flexible solution to obtain high-quality mid-infrared sources. PMID:28287175

  15. Hard X-ray nanofocusing using adaptive focusing optics based on piezoelectric deformable mirrors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goto, Takumi; Nakamori, Hiroki; Sano, Yasuhisa

    2015-04-15

    An adaptive Kirkpatrick–Baez mirror focusing optics based on piezoelectric deformable mirrors was constructed at SPring-8 and its focusing performance characteristics were demonstrated. By adjusting the voltages applied to the deformable mirrors, the shape errors (compared to a target elliptical shape) were finely corrected on the basis of the mirror shape determined using the pencil-beam method, which is a type of at-wavelength figure metrology in the X-ray region. The mirror shapes were controlled with a peak-to-valley height accuracy of 2.5 nm. A focused beam with an intensity profile having a full width at half maximum of 110 × 65 nm (Vmore » × H) was achieved at an X-ray energy of 10 keV.« less

  16. Worldwide Prevalence of Mandibular Second Molar C-Shaped Morphologies Evaluated by Cone-Beam Computed Tomography.

    PubMed

    von Zuben, Murilo; Martins, Jorge N R; Berti, Luiza; Cassim, Imran; Flynn, Daniel; Gonzalez, Jose Antonio; Gu, Yongchun; Kottoor, Jojo; Monroe, Adam; Rosas Aguilar, Rubén; Marques, Miguel Seruca; Ginjeira, António

    2017-09-01

    The aim of this study was to evaluate and compare the C-shaped mandibular second molar prevalence in different regions around the world with the aid of cone-beam computed tomography technology. Nine field observers from 9 different geographic regions were calibrated. A total of 400 samples were collected in each region. The prevalence of C-shaped anatomy was calculated. The number of roots and the configuration of the C-shaped canals at 3 different axial levels were also evaluated. The z-test was used to analyze the difference between the means of each independent group. Intrarater reliability was also tested. A total of 3600 teeth from 2735 patients were included in this research; 499 teeth presented C-shaped root canal configuration, representing a global prevalence of 13.9%. China had a prevalence of 44.0%, which was significantly higher than any other region. The C-shape prevalence in women was 16.5%, which was significantly higher than the 10.4% prevalence found in men. No difference between sides (37 or 47) was evident in the global sample. Cone-beam computed tomography is a valuable tool to evaluate the C-shaped root canal configuration in vivo. In the present study, China presented the highest prevalence of C-shaped mandibular second molars when compared with other regions. Women exhibited a higher prevalence than men. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  17. Shaping plasmon beams via the controlled illumination of finite-size plasmonic crystals

    PubMed Central

    Bouillard, J.-S.; Segovia, P.; Dickson, W.; Wurtz, G. A.; Zayats, A. V.

    2014-01-01

    Plasmonic crystals provide many passive and active optical functionalities, including enhanced sensing, optical nonlinearities, light extraction from LEDs and coupling to and from subwavelength waveguides. Here we study, both experimentally and numerically, the coherent control of SPP beam excitation in finite size plasmonic crystals under focussed illumination. The correct combination of the illuminating spot size, its position relative to the plasmonic crystal, wavelength and polarisation enables the efficient shaping and directionality of SPP beam launching. We show that under strongly focussed illumination, the illuminated part of the crystal acts as an antenna, launching surface plasmon waves which are subsequently filtered by the surrounding periodic lattice. Changing the illumination conditions provides rich opportunities to engineer the SPP emission pattern. This offers an alternative technique to actively modulate and control plasmonic signals, either via micro- and nano-electromechanical switches or with electro- and all-optical beam steering which have direct implications for the development of new integrated nanophotonic devices, such as plasmonic couplers and switches and on-chip signal demultiplexing. This approach can be generalised to all kinds of surface waves, either for the coupling and discrimination of light in planar dielectric waveguides or the generation and control of non-diffractive SPP beams. PMID:25429786

  18. A Method for Producing a Shaped Contour Radiation Pattern Using a Single Shaped Reflector and a Single Feed

    NASA Technical Reports Server (NTRS)

    Cherrette, A. R.; Lee, S. W.; Acosta, R. J.

    1988-01-01

    Eliminating the corporate feed network in shaped contour beam antennas will reduce the expense, weight, and RF loss of the antenna system. One way of producing a shaped contour beam without using a feed network is to use a single shaped reflector with a single feed element. For a prescribed contour beam and feed, an optimization method for designing the reflector shape is given. As a design example, a shaped reflector is designed to produce a continental U.S. coverage (CONUS) beam. The RF performance of the shaped reflector is then verified by physical optics.

  19. Rare ecomorphological convergence on a complex adaptive landscape: Body size and diet mediate evolution of jaw shape in squirrels (Sciuridae).

    PubMed

    Zelditch, Miriam Leah; Ye, Ji; Mitchell, Jonathan S; Swiderski, Donald L

    2017-03-01

    Convergence is widely regarded as compelling evidence for adaptation, often being portrayed as evidence that phenotypic outcomes are predictable from ecology, overriding contingencies of history. However, repeated outcomes may be very rare unless adaptive landscapes are simple, structured by strong ecological and functional constraints. One such constraint may be a limitation on body size because performance often scales with size, allowing species to adapt to challenging functions by modifying only size. When size is constrained, species might adapt by changing shape; convergent shapes may therefore be common when size is limiting and functions are challenging. We examine the roles of size and diet as determinants of jaw shape in Sciuridae. As expected, size and diet have significant interdependent effects on jaw shape and ecomorphological convergence is rare, typically involving demanding diets and limiting sizes. More surprising is morphological without ecological convergence, which is equally common between and within dietary classes. Those cases, like rare ecomorphological convergence, may be consequences of evolving on an adaptive landscape shaped by many-to-many relationships between ecology and function, many-to-one relationships between form and performance, and one-to-many relationships between functionally versatile morphologies and ecology. On complex adaptive landscapes, ecological selection can yield different outcomes. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  20. Fully automatic segmentation of arbitrarily shaped fiducial markers in cone-beam CT projections

    NASA Astrophysics Data System (ADS)

    Bertholet, J.; Wan, H.; Toftegaard, J.; Schmidt, M. L.; Chotard, F.; Parikh, P. J.; Poulsen, P. R.

    2017-02-01

    Radio-opaque fiducial markers of different shapes are often implanted in or near abdominal or thoracic tumors to act as surrogates for the tumor position during radiotherapy. They can be used for real-time treatment adaptation, but this requires a robust, automatic segmentation method able to handle arbitrarily shaped markers in a rotational imaging geometry such as cone-beam computed tomography (CBCT) projection images and intra-treatment images. In this study, we propose a fully automatic dynamic programming (DP) assisted template-based (TB) segmentation method. Based on an initial DP segmentation, the DPTB algorithm generates and uses a 3D marker model to create 2D templates at any projection angle. The 2D templates are used to segment the marker position as the position with highest normalized cross-correlation in a search area centered at the DP segmented position. The accuracy of the DP algorithm and the new DPTB algorithm was quantified as the 2D segmentation error (pixels) compared to a manual ground truth segmentation for 97 markers in the projection images of CBCT scans of 40 patients. Also the fraction of wrong segmentations, defined as 2D errors larger than 5 pixels, was calculated. The mean 2D segmentation error of DP was reduced from 4.1 pixels to 3.0 pixels by DPTB, while the fraction of wrong segmentations was reduced from 17.4% to 6.8%. DPTB allowed rejection of uncertain segmentations as deemed by a low normalized cross-correlation coefficient and contrast-to-noise ratio. For a rejection rate of 9.97%, the sensitivity in detecting wrong segmentations was 67% and the specificity was 94%. The accepted segmentations had a mean segmentation error of 1.8 pixels and 2.5% wrong segmentations.

  1. Vibrational behavior of adaptive aircraft wing structures modelled as composite thin-walled beams

    NASA Technical Reports Server (NTRS)

    Song, O.; Librescu, L.; Rogers, C. A.

    1992-01-01

    The vibrational behavior of cantilevered aircraft wings modeled as thin-walled beams and incorporating piezoelectric effects is studied. Based on the converse piezoelectric effect, the system of piezoelectric actuators conveniently located on the wing yield the control of its associated vertical and lateral bending eigenfrequencies. The possibility revealed by this study enabling one to increase adaptively the eigenfrequencies of thin-walled cantilevered beams could play a significant role in the control of the dynamic response and flutter of wing and rotor blade structures.

  2. A simulation study of a C-shaped in-beam PET system for dose verification in carbon ion therapy

    NASA Astrophysics Data System (ADS)

    Jung An, Su; Beak, Cheol-Ha; Lee, Kisung; Hyun Chung, Yong

    2013-01-01

    The application of hadrons such as carbon ions is being developed for the treatment of cancer. The effectiveness of such a technique is due to the eligibility of charged particles in delivering most of their energy near the end of the range, called the Bragg peak. However, accurate verification of dose delivery is required since misalignment of the hadron beam can cause serious damage to normal tissue. PET scanners can be utilized to track the carbon beam to the tumor by imaging the trail of the hadron-induced positron emitters in the irradiated volume. In this study, we designed and evaluated (through Monte Carlo simulations) an in-beam PET scanner for monitoring patient dose in carbon beam therapy. A C-shaped PET and a partial-ring PET were designed to avoid interference between the PET detectors and the therapeutic carbon beam delivery. Their performance was compared with that of a full-ring PET scanner. The C-shaped, partial-ring, and full-ring scanners consisted of 14, 12, and 16 detector modules, respectively, with a 30.2 cm inner diameter for brain imaging. Each detector module was composed of a 13×13 array of 4.0 mm×4.0 mm×20.0 mm LYSO crystals and four round 25.4 mm diameter PMTs. To estimate the production yield of positron emitters such as 10C, 11C, and 15O, a cylindrical PMMA phantom (diameter, 20 cm; thickness, 20 cm) was irradiated with 170, 290, and 350 AMeV 12C beams using the GATE code. Phantom images of the three types of scanner were evaluated by comparing the longitudinal profile of the positron emitters, measured along the carbon beam as it passed a simulated positron emitter distribution. The results demonstrated that the development of a C-shaped PET scanner to characterize carbon dose distribution for therapy planning is feasible.

  3. SU-E-T-295: Simultaneous Beam Sampling and Aperture Shape Optimization for Station Parameter Optimized Radiation Therapy (SPORT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zarepisheh, M; Li, R; Xing, L

    Purpose: Station Parameter Optimized Radiation Therapy (SPORT) was recently proposed to fully utilize the technical capability of emerging digital LINACs, in which the station parameters of a delivery system, (such as aperture shape and weight, couch position/angle, gantry/collimator angle) are optimized altogether. SPORT promises to deliver unprecedented radiation dose distributions efficiently, yet there does not exist any optimization algorithm to implement it. The purpose of this work is to propose an optimization algorithm to simultaneously optimize the beam sampling and aperture shapes. Methods: We build a mathematical model whose variables are beam angles (including non-coplanar and/or even nonisocentric beams) andmore » aperture shapes. To solve the resulting large scale optimization problem, we devise an exact, convergent and fast optimization algorithm by integrating three advanced optimization techniques named column generation, gradient method, and pattern search. Column generation is used to find a good set of aperture shapes as an initial solution by adding apertures sequentially. Then we apply the gradient method to iteratively improve the current solution by reshaping the aperture shapes and updating the beam angles toward the gradient. Algorithm continues by pattern search method to explore the part of the search space that cannot be reached by the gradient method. Results: The proposed technique is applied to a series of patient cases and significantly improves the plan quality. In a head-and-neck case, for example, the left parotid gland mean-dose, brainstem max-dose, spinal cord max-dose, and mandible mean-dose are reduced by 10%, 7%, 24% and 12% respectively, compared to the conventional VMAT plan while maintaining the same PTV coverage. Conclusion: Combined use of column generation, gradient search and pattern search algorithms provide an effective way to optimize simultaneously the large collection of station parameters and significantly

  4. Truss beam having convex-curved rods, shear web panels, and self-aligning adapters

    NASA Technical Reports Server (NTRS)

    Fernandez, Ian M. (Inventor)

    2013-01-01

    A truss beam comprised of a plurality of joined convex-curved rods with self-aligning adapters (SAA) adhesively attached at each end of the truss beam is disclosed. Shear web panels are attached to adjacent pairs of rods, providing buckling resistance for the truss beam. The rods are disposed adjacent to each other, centered around a common longitudinal axis, and oriented so that adjacent rod ends converge to at least one virtual convergence point on the common longitudinal axis, with the rods' curvature designed to increase prevent buckling for the truss beam. Each SAA has longitudinal bores that provide self-aligning of the rods in the SAA, the self-aligning feature enabling creation of strong adhesive bonds between each SAA and the rods. In certain embodiments of the present invention, pultruded unidirectional carbon fiber rods are coupled with carbon fiber shear web panels and metal SAA(s), resulting in a lightweight, low-cost but strong truss beam that is highly resistant to buckling.

  5. Synthesis of multiple shaped beam antenna patterns

    NASA Technical Reports Server (NTRS)

    Stutzman, W. L.; Coffey, E. L.

    1973-01-01

    Results are presented of research into the problem of finding an excitation of a given antenna such that the desired radiation pattern is approximated to within acceptable limits. This is to be done in such a fashion that boundary conditions involving hardware limitations may be inserted into the problem. The intended application is synthesis of multiple shaped beam antennas. Since this is perhaps the most difficult synthesis problem an antenna engineer is likely to encounter, the approach taken was to include as a by-product capability for synthesizing simpler patterns. The synthesis technique has been almost totally computerized. The class of antennas which may be synthesized with the computer program are those which may be represented as planar (continuous or discrete) current distributions. The technique is not limited in this sense and could indeed by extended to include, for example, the synthesis of conformal arrays or current distributions on the surface of reflectors. The antenna types which the program is set up to synthesize are: line source, rectangular aperture, circular aperture, linear array, rectangular array, and arbitrary planar array.

  6. High-resolution computational ghost imaging and ghost diffraction through turbulence via a beam-shaping method

    NASA Astrophysics Data System (ADS)

    Luo, Chun-Ling; Zhuo, Ling-Qing

    2017-01-01

    Imaging through atmospheric turbulence is a topic with a long history and grand challenges still exist in the remote sensing and astro observation fields. In this letter, we try to propose a simple scheme to improve the resolution of imaging through turbulence based on the computational ghost imaging (CGI) and computational ghost diffraction (CGD) setup via the laser beam shaping techniques. A unified theory of CGI and CGD through turbulence with the multi-Gaussian shaped incoherent source is developed, and numerical examples are given to see clearly the effects of the system parameters to CGI and CGD. Our results show that the atmospheric effect to the CGI and CGD system is closely related to the propagation distance between the source and the object. In addition, by properly increasing the beam order of the multi-Gaussian source, we can improve the resolution of CGI and CGD through turbulence relative to the commonly used Gaussian source. Therefore our results may find applications in remote sensing and astro observation.

  7. Toroidal midplane neutral beam armor and plasma limiter

    DOEpatents

    Kugel, Henry W.; Hand Jr, Samuel W.; Ksayian, Haig

    1986-02-04

    For use in a tokamak fusion reactor having a midplane magnetic coil on the inner wall of an evacuated toriodal chamber within which a neutral beam heated, fusing plasma is magnetically confined, a neutral beam armor shield and plasma limiter is provided on the inner wall of the toroidal chamber to shield the midplane coil from neutral beam shine-thru and plasma deposition. The armor shield/plasma limiter forms a semicircular enclosure around the midplane coil with the outer surface of the armor shield/plasma limiter shaped to match, as closely as practical, the inner limiting magnetic flux surface of the toroidally confined, indented, bean-shaped plasma. The armor shield/plasma limiter includes a plurality of semicircular graphite plates each having a pair of coupled upper and lower sections with each plate positioned in intimate contact with an adjacent plate on each side thereof so as to form a closed, planar structure around the entire outer periphery of the circular midplane coil. The upper and lower plate sections are adapted for coupling to heat sensing thermocouples and to a circulating water conduit system for cooling the armor shield/plasma limiter.The inner center portion of each graphite plate is adapted to receive and enclose a section of a circular diagnostic magnetic flux loop so as to minimize the power from the plasma confinement chamber incident upon the flux loop.

  8. Toroidal midplane neutral beam armor and plasma limiter

    DOEpatents

    Kugel, Henry W.; Hand, Jr, Samuel W.; Ksayian, Haig

    1986-01-01

    For use in a tokamak fusion reactor having a midplane magnetic coil on the inner wall of an evacuated toriodal chamber within which a neutral beam heated, fusing plasma is magnetically confined, a neutral beam armor shield and plasma limiter is provided on the inner wall of the toroidal chamber to shield the midplane coil from neutral beam shine-thru and plasma deposition. The armor shield/plasma limiter forms a semicircular enclosure around the midplane coil with the outer surface of the armor shield/plasma limiter shaped to match, as closely as practical, the inner limiting magnetic flux surface of the toroidally confined, indented, bean-shaped plasma. The armor shield/plasma limiter includes a plurality of semicircular graphite plates each having a pair of coupled upper and lower sections with each plate positioned in intimate contact with an adjacent plate on each side thereof so as to form a closed, planar structure around the entire outer periphery of the circular midplane coil. The upper and lower plate sections are adapted for coupling to heat sensing thermocouples and to a circulating water conduit system for cooling the armor shield/plasma limiter.The inner center portion of each graphite plate is adapted to receive and enclose a section of a circular diagnostic magnetic flux loop so as to minimize the power from the plasma confinement chamber incident upon the flux loop.

  9. Technical Note: A fast online adaptive replanning method for VMAT using flattening filter free beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ates, Ozgur; Ahunbay, Ergun E.; Li, X. Allen, E-mail: ali@mcw.edu

    Purpose: To develop a fast replanning algorithm based on segment aperture morphing (SAM) for online replanning of volumetric modulated arc therapy (VMAT) with flattening filter free (FFF) beams. Methods: A software tool was developed to interface with a VMAT research planning system, which enables the input and output of beam and machine parameters of VMAT plans. The SAM algorithm was used to modify multileaf collimator positions for each segment aperture based on the changes of the target from the planning (CT/MR) to daily image [CT/CBCT/magnetic resonance imaging (MRI)]. The leaf travel distance was controlled for large shifts to prevent themore » increase of VMAT delivery time. The SAM algorithm was tested for 11 patient cases including prostate, pancreatic, and lung cancers. For each daily image set, three types of VMAT plans, image-guided radiation therapy (IGRT) repositioning, SAM adaptive, and full-scope reoptimization plans, were generated and compared. Results: The SAM adaptive plans were found to have improved the plan quality in target and/or critical organs when compared to the IGRT repositioning plans and were comparable to the reoptimization plans based on the data of planning target volume (PTV)-V100 (volume covered by 100% of prescription dose). For the cases studied, the average PTV-V100 was 98.85% ± 1.13%, 97.61% ± 1.45%, and 92.84% ± 1.61% with FFF beams for the reoptimization, SAM adaptive, and repositioning plans, respectively. The execution of the SAM algorithm takes less than 10 s using 16-CPU (2.6 GHz dual core) hardware. Conclusions: The SAM algorithm can generate adaptive VMAT plans using FFF beams with comparable plan qualities as those from the full-scope reoptimization plans based on daily CT/CBCT/MRI and can be used for online replanning to address interfractional variations.« less

  10. Analytical model for a laminated shape memory alloy beam with piezoelectric layers

    NASA Astrophysics Data System (ADS)

    Viet, N. V.; Zaki, W.; Umer, R.

    2018-03-01

    We propose an analytical model for a laminated beam consisting of a superelastic shape memory alloy (SMA) core layer bonded to two piezoelectric layers on its top and bottom surfaces. The model accounts for forward and reverse phase transformation between austenite and martensite during a full isothermal loading-unloading cycle starting a full austenite in the SMA layer. In particular, the laminated composite beam has a rectangular cross section and is fixed at one end while the other end is subjected to a concentrated transverse force acting at the tip. The moment-curvature relation is analytically derived. The generated electric displacement output from the piezoelectric layers is then determined using the linear piezoelectric theory. The results are compared to 3D simulations using finite element analysis (FEA). The comparison shows good agreement in terms of electric displacement, in general, throughout the loading cycle.

  11. Sub-second pencil beam dose calculation on GPU for adaptive proton therapy

    NASA Astrophysics Data System (ADS)

    da Silva, Joakim; Ansorge, Richard; Jena, Rajesh

    2015-06-01

    Although proton therapy delivered using scanned pencil beams has the potential to produce better dose conformity than conventional radiotherapy, the created dose distributions are more sensitive to anatomical changes and patient motion. Therefore, the introduction of adaptive treatment techniques where the dose can be monitored as it is being delivered is highly desirable. We present a GPU-based dose calculation engine relying on the widely used pencil beam algorithm, developed for on-line dose calculation. The calculation engine was implemented from scratch, with each step of the algorithm parallelized and adapted to run efficiently on the GPU architecture. To ensure fast calculation, it employs several application-specific modifications and simplifications, and a fast scatter-based implementation of the computationally expensive kernel superposition step. The calculation time for a skull base treatment plan using two beam directions was 0.22 s on an Nvidia Tesla K40 GPU, whereas a test case of a cubic target in water from the literature took 0.14 s to calculate. The accuracy of the patient dose distributions was assessed by calculating the γ-index with respect to a gold standard Monte Carlo simulation. The passing rates were 99.2% and 96.7%, respectively, for the 3%/3 mm and 2%/2 mm criteria, matching those produced by a clinical treatment planning system.

  12. Sub-second pencil beam dose calculation on GPU for adaptive proton therapy.

    PubMed

    da Silva, Joakim; Ansorge, Richard; Jena, Rajesh

    2015-06-21

    Although proton therapy delivered using scanned pencil beams has the potential to produce better dose conformity than conventional radiotherapy, the created dose distributions are more sensitive to anatomical changes and patient motion. Therefore, the introduction of adaptive treatment techniques where the dose can be monitored as it is being delivered is highly desirable. We present a GPU-based dose calculation engine relying on the widely used pencil beam algorithm, developed for on-line dose calculation. The calculation engine was implemented from scratch, with each step of the algorithm parallelized and adapted to run efficiently on the GPU architecture. To ensure fast calculation, it employs several application-specific modifications and simplifications, and a fast scatter-based implementation of the computationally expensive kernel superposition step. The calculation time for a skull base treatment plan using two beam directions was 0.22 s on an Nvidia Tesla K40 GPU, whereas a test case of a cubic target in water from the literature took 0.14 s to calculate. The accuracy of the patient dose distributions was assessed by calculating the γ-index with respect to a gold standard Monte Carlo simulation. The passing rates were 99.2% and 96.7%, respectively, for the 3%/3 mm and 2%/2 mm criteria, matching those produced by a clinical treatment planning system.

  13. Simulation of alternate hohlraum shapes for improved inner beam propagation in indirectly-driven ICF implosions

    NASA Astrophysics Data System (ADS)

    Robey, H. F.; Berzak Hopkins, L. F.

    2017-10-01

    Recent indirectly-driven ICF experiments performed on the National Ignition Facility have shown that the propagation of the inner beam cones is impeded late in the laser pulse by the growth of a gold bubble, which is initiated at the location where the outer beams hit the hohlraum wall and which expands radially inward into the hohlraum as the implosion progresses. Late in time, this gold bubble intercepts a significant portion of the inner beams reducing the available energy reaching the waist of the hohlraum and affecting the implosion symmetry. Integrated hohlraum simulations of alternate hohlraum shapes using HYDRA are performed to explore options for reducing the impact of the gold bubble on inner beam propagation. The simulations are based on recent NIF implosions using High-Density Carbon (HDC) ablators, which have shown good performance, but which could benefit from improved inner beam propagation. This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344.

  14. Trapping two types of particles using a double-ring-shaped radially polarized beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Yaoju; Ding Biaofeng; Suyama, Taikei

    An optical-trap method based on the illumination of a double-ring-shaped radially polarized beam (R-TEM{sub 11}*) is proposed. The numerical results based on the vector diffraction theory show that a highly focused R-TEM{sub 11}* beam not only can produce a bright spot but also can form an optical cage in the focal region by changing the truncation parameter {beta}, defined as the ratio of the radius of the aperture to the waist of the beam. The radiation forces acting on Rayleigh particles are calculated by using the Rayleigh scattering theory. The bright spot generated by the R-TEM{sub 11}* beam with amore » {beta} value close to 2 can three-dimensionally trap a particle with a refractive index larger than that of the ambient. An optical cage or three-dimensional dark spot generated by the R-TEM{sub 11}* beam with a {beta} value close to 1.3 can three-dimensionally trap a particle with refractive index smaller than that of the ambient. Because the adjustment of the truncation parameter can be actualized by simply changing the radius of a circular aperture inserted in the front of the lens, only one optical-trap system in the present method can be used to three-dimensionally trap two types of particles with different refractive indices.« less

  15. Beam shaping assembly of a D-T neutron source for BNCT and its dosimetry simulation in deeply-seated tumor

    NASA Astrophysics Data System (ADS)

    Faghihi, F.; Khalili, S.

    2013-08-01

    This article involves two aims for BNCT. First case includes a beam shaping assembly estimation for a D-T neutron source to find epi-thermal neutrons which are the goal in the BNCT. Second issue is the percent depth dose calculation in the adult Snyder head phantom. Monte-Carlo simulations and verification of a suggested beam shaping assembly (including internal neutron multiplier, moderator, filter, external neutron multiplier, collimator, and reflector dimensions) for thermalizing a D-T neutron source as well as increasing neutron flux are carried out and our results are given herein. Finally, we have simulated its corresponding doses for treatment planning of a deeply-seated tumor.

  16. Adaptive slab laser beam quality improvement using a weighted least-squares reconstruction algorithm.

    PubMed

    Chen, Shanqiu; Dong, LiZhi; Chen, XiaoJun; Tan, Yi; Liu, Wenjin; Wang, Shuai; Yang, Ping; Xu, Bing; Ye, YuTang

    2016-04-10

    Adaptive optics is an important technology for improving beam quality in solid-state slab lasers. However, there are uncorrectable aberrations in partial areas of the beam. In the criterion of the conventional least-squares reconstruction method, it makes the zones with small aberrations nonsensitive and hinders this zone from being further corrected. In this paper, a weighted least-squares reconstruction method is proposed to improve the relative sensitivity of zones with small aberrations and to further improve beam quality. Relatively small weights are applied to the zones with large residual aberrations. Comparisons of results show that peak intensity in the far field improved from 1242 analog digital units (ADU) to 2248 ADU, and beam quality β improved from 2.5 to 2.0. This indicates the weighted least-squares method has better performance than the least-squares reconstruction method when there are large zonal uncorrectable aberrations in the slab laser system.

  17. Large Deflection of Ideal Pseudo-Elastic Shape Memory Alloy Cantilever Beam

    NASA Astrophysics Data System (ADS)

    Cui, Shitang; Hu, Liming; Yan, Jun

    This paper deals with the large deflections of pseudo-elastic shape memory alloy cantilever beams subjected to a concentrated load at the free end. Because of the large deflections, geometry nonlinearity arises and this analysis employs the nonlinear bending theory. The exact expression of curvature is used in the moment-curvature relationship. As a vertical force at the tip of cantilever, curvature and bending moment distribution expressions are deduced. The curvature changed distinctly when the surface material undergoes phase transformation. The length of phase transformation region was affected greatly with the force at the free end.

  18. All-in-One Shape-Adaptive Self-Charging Power Package for Wearable Electronics.

    PubMed

    Guo, Hengyu; Yeh, Min-Hsin; Lai, Ying-Chih; Zi, Yunlong; Wu, Changsheng; Wen, Zhen; Hu, Chenguo; Wang, Zhong Lin

    2016-11-22

    Recently, a self-charging power unit consisting of an energy harvesting device and an energy storage device set the foundation for building a self-powered wearable system. However, the flexibility of the power unit working under extremely complex deformations (e.g., stretching, twisting, and bending) becomes a key issue. Here, we present a prototype of an all-in-one shape-adaptive self-charging power unit that can be used for scavenging random body motion energy under complex mechanical deformations and then directly storing it in a supercapacitor unit to build up a self-powered system for wearable electronics. A kirigami paper based supercapacitor (KP-SC) was designed to work as the flexible energy storage device (stretchability up to 215%). An ultrastretchable and shape-adaptive silicone rubber triboelectric nanogenerator (SR-TENG) was utilized as the flexible energy harvesting device. By combining them with a rectifier, a stretchable, twistable, and bendable, self-charging power package was achieved for sustainably driving wearable electronics. This work provides a potential platform for the flexible self-powered systems.

  19. Adaptive positive position feedback control with a feedforward compensator of a magnetostrictive beam for vibration suppression

    NASA Astrophysics Data System (ADS)

    Bian, Leixiang; Zhu, Wei

    2018-07-01

    In this paper, a Fe–Ga alloy magnetostrictive beam is designed as an actuator to restrain the vibration of a supported mass. Dynamic modeling of the system based on the transfer matrix method of multibody system is first shown, and then a hybrid controller is developed to achieve vibration control. The proposed vibration controller combines a multi-mode adaptive positive position feedback (APPF) with a feedforward compensator. In the APPF control, an adaptive natural frequency estimator based on the recursive least-square method is developed to be used. In the feedforward compensator, the hysteresis of the magnetostrictive beam is linearized based on a Bouc–Wen model. The further remarkable vibration suppression capability of the proposed hybrid controller is demonstrated experimentally and compared with the positive position feedback controller. Experiment results show that the proposed controller is applicable to the magnetostrictive beam for improving vibration control effectiveness.

  20. Treatment planning capability assessment of a beam shaping assembly for accelerator-based BNCT.

    PubMed

    Herrera, M S; González, S J; Burlon, A A; Minsky, D M; Kreiner, A J

    2011-12-01

    Within the frame of an ongoing project to develop a folded Tandem-Electrostatic-Quadrupole accelerator facility for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT) a theoretical study was performed to assess the treatment planning capability of different configurations of an optimized beam shaping assembly for such a facility. In particular this study aims at evaluating treatment plans for a clinical case of Glioblastoma. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Optical components of adaptive systems for improving laser beam quality

    NASA Astrophysics Data System (ADS)

    Malakhov, Yuri I.; Atuchin, Victor V.; Kudryashov, Aleksis V.; Starikov, Fedor A.

    2008-10-01

    The short overview is given of optical equipment developed within the ISTC activity for adaptive systems of new generation allowing for correction of high-power laser beams carrying optical vortices onto the phase surface. They are the kinoform many-level optical elements of new generation, namely, special spiral phase plates and ordered rasters of microlenses, i.e. lenslet arrays, as well as the wide-aperture Hartmann-Shack sensors and bimorph deformable piezoceramics- based mirrors with various grids of control elements.

  2. Hardware demonstration of flexible beam control

    NASA Technical Reports Server (NTRS)

    Schaechter, D. B.

    1980-01-01

    An experiment employing a pinned-free flexible beam has been constructed to demonstrate and verify several facets of the control of flexible structures. The desired features of the experiment are to demonstrate active shape control, active dynamic control, adaptive control, various control law design approaches, and associated hardware requirements and mechanization difficulties. This paper contains the analytical work performed in support of the facility development, the final design specifications, control law synthesis, and some preliminary results.

  3. Experimental and Simulated Characterization of a Beam Shaping Assembly for Accelerator- Based Boron Neutron Capture Therapy (AB-BNCT)

    NASA Astrophysics Data System (ADS)

    Burlon, Alejandro A.; Girola, Santiago; Valda, Alejandro A.; Minsky, Daniel M.; Kreiner, Andrés J.

    2010-08-01

    In the frame of the construction of a Tandem Electrostatic Quadrupole Accelerator facility devoted to the Accelerator-Based Boron Neutron Capture Therapy, a Beam Shaping Assembly has been characterized by means of Monte-Carlo simulations and measurements. The neutrons were generated via the 7Li(p, n)7Be reaction by irradiating a thick LiF target with a 2.3 MeV proton beam delivered by the TANDAR accelerator at CNEA. The emerging neutron flux was measured by means of activation foils while the beam quality and directionality was evaluated by means of Monte Carlo simulations. The parameters show compliance with those suggested by IAEA. Finally, an improvement adding a beam collimator has been evaluated.

  4. GMTIFS: the adaptive optics beam steering mirror for the GMT integral-field spectrograph

    NASA Astrophysics Data System (ADS)

    Davies, J.; Bloxham, G.; Boz, R.; Bundy, D.; Espeland, B.; Fordham, B.; Hart, J.; Herrald, N.; Nielsen, J.; Sharp, R.; Vaccarella, A.; Vest, C.; Young, P. J.

    2016-07-01

    To achieve the high adaptive optics sky coverage necessary to allow the GMT Integral-Field Spectrograph (GMTIFS) to access key scientific targets, the on-instrument adaptive-optics wavefront-sensing (OIWFS) system must patrol the full 180 arcsecond diameter guide field passed to the instrument. The OIWFS uses a diffraction limited guide star as the fundamental pointing reference for the instrument. During an observation the offset between the science target and the guide star will change due to sources such as flexure, differential refraction and non-sidereal tracking rates. GMTIFS uses a beam steering mirror to set the initial offset between science target and guide star and also to correct for changes in offset. In order to reduce image motion from beam steering errors to those comparable to the AO system in the most stringent case, the beam steering mirror is set a requirement of less than 1 milliarcsecond RMS. This corresponds to a dynamic range for both actuators and sensors of better than 1/180,000. The GMTIFS beam steering mirror uses piezo-walk actuators and a combination of eddy current sensors and interferometric sensors to achieve this dynamic range and control. While the sensors are rated for cryogenic operation, the actuators are not. We report on the results of prototype testing of single actuators, with the sensors, on the bench and in a cryogenic environment. Specific failures of the system are explained and suspected reasons for them. A modified test jig is used to investigate the option of heating the actuator and we report the improved results. In addition to individual component testing, we built and tested a complete beam steering mirror assembly. Testing was conducted with a point source microscope, however controlling environmental conditions to less than 1 micron was challenging. The assembly testing investigated acquisition accuracy and if there was any un-sensed hysteresis in the system. Finally we present the revised beam steering mirror

  5. Fast adaptive optical system for the high-power laser beam correction in atmosphere

    NASA Astrophysics Data System (ADS)

    Kudryashov, Alexis; Lylova, Anna; Samarkin, Vadim; Sheldakova, Julia; Alexandrov, Alexander

    2017-09-01

    Key elements of the fast adaptive optical system (AOS), having correction frequency of 1400 Hz, for atmospheric turbulence compensation, are described in this paper. A water-cooled bimorph deformable mirror with 46 electrodes, as well as stacked actuator deformable mirror with 81 piezoactuators and 2000 Hz Shack-Hartmann wavefront sensor were considered to be used to control the light beam. The parameters of the turbulence at the 1.2 km path of the light propagation were measured and analyzed. The key parameters for such an adaptive system were worked out.

  6. Wavefront control in adaptive microscopy using Shack-Hartmann sensors with arbitrarily shaped pupils.

    PubMed

    Dong, Bing; Booth, Martin J

    2018-01-22

    In adaptive optical microscopy of thick biological tissue, strong scattering and aberrations can change the effective pupil shape by rendering some Shack-Hartmann spots unusable. The change of pupil shape leads to a change of wavefront reconstruction or control matrix that should be updated accordingly. Modified slope and modal wavefront control methods based on measurements of a Shack-Hartmann wavefront sensor are proposed to accommodate an arbitrarily shaped pupil. Furthermore, we present partial wavefront control methods that remove specific aberration modes like tip, tilt and defocus from the control loop. The proposed control methods were investigated and compared by simulation using experimentally obtained aberration data. The performance was then tested experimentally through closed-loop aberration corrections using an obscured pupil.

  7. Numerical analysis of dynamic behavior of pre-stressed shape memory alloy concrete beam-column joints

    NASA Astrophysics Data System (ADS)

    Yan, S.; Xiao, Z. F.; Lin, M. Y.; Niu, J.

    2018-04-01

    Beam-column joints are important parts of a main frame structure. Mechanical properties of beam-column joints have a great influence on dynamic performances of the frame structure. Shape memory alloy (SMA) as a new type of intelligent metal materials has wide applications in civil engineering. The paper aims at proposing a novel beam-column joint reinforced with pre-stressed SMA tendons to increase its dynamic performance. Based on the finite element analysis (FEA) software ABAQUS, a numerical simulation for 6 beam-column scaled models considering different SMA reinforcement ratios and pre-stress levels was performed, focusing on bearing capacities, energy-dissipation and self-centering capacities, etc. These models were numerically tested under a pseudo-static load on the beam end, companying a constant vertical compressive load on the top of the column. The numerical results show that the proposed SMA-reinforced joint has a significantly increased bearing capacity and a good self-centering capability after unloading even though the energy-dissipation capacity becomes smaller due the less residual deformation. The concept and mechanism of the novel joint can be used as an important reference for civil engineering applications.

  8. Novel adaptive fiber-optics collimator for coherent beam combination.

    PubMed

    Zhi, Dong; Ma, Pengfei; Ma, Yanxing; Wang, Xiaolin; Zhou, Pu; Si, Lei

    2014-12-15

    In this manuscript, we experimentally validate a novel design of adaptive fiber-optics collimator (AFOC), which utilizes two levers to enlarge the movable range of the fiber end cap. The enlargement of the range makes the new AFOC possible to compensate the end-cap/tilt aberration in fiber laser beam combining system. The new AFOC based on flexible hinges and levers was fabricated and the performance of the new AFOC was tested carefully, including its control range, frequency response and control accuracy. Coherent beam combination (CBC) of two 5-W fiber amplifiers array with simultaneously end-cap/tilt control and phase-locking control was implemented successfully with the novel AFOC. Experimental results show that the average normalized power in the bucket (PIB) value increases from 0.311 to 0.934 with active phasing and tilt aberration compensation simultaneously, and with both controls on, the fringe contrast improves to more than 82% from 0% for the case with both control off. This work presents a promising structure for tilt aberration control in high power CBC system.

  9. A multi-damages identification method for cantilever beam based on mode shape curvatures and Kriging surrogate model

    NASA Astrophysics Data System (ADS)

    Xie, Fengle; Jiang, Zhansi; Jiang, Hui

    2018-05-01

    This paper presents a multi-damages identification method for Cantilever Beam. First, the damage location is identified by using the mode shape curvatures. Second, samples of varying damage severities at the damage location and their corresponding natural frequencies are used to construct the initial Kriging surrogate model. Then a particle swarm optimization (PSO) algorithm is employed to identify the damage severities based on Kriging surrogate model. The simulation study of a double-damaged cantilever beam demonstrated that the proposed method is effective.

  10. General shape optimization capability

    NASA Technical Reports Server (NTRS)

    Chargin, Mladen K.; Raasch, Ingo; Bruns, Rudolf; Deuermeyer, Dawson

    1991-01-01

    A method is described for calculating shape sensitivities, within MSC/NASTRAN, in a simple manner without resort to external programs. The method uses natural design variables to define the shape changes in a given structure. Once the shape sensitivities are obtained, the shape optimization process is carried out in a manner similar to property optimization processes. The capability of this method is illustrated by two examples: the shape optimization of a cantilever beam with holes, loaded by a point load at the free end (with the shape of the holes and the thickness of the beam selected as the design variables), and the shape optimization of a connecting rod subjected to several different loading and boundary conditions.

  11. Development of Underwater Laser Scaling Adapter

    NASA Astrophysics Data System (ADS)

    Bluss, Kaspars

    2012-12-01

    In this paper the developed laser scaling adapter is presented. The scaling adapter is equipped with a twin laser unit where the two parallel laser beams are projected onto any target giving an exact indication of scale. The body of the laser scaling adapter is made of Teflon, the density of which is approximately two times the water density. The development involved multiple challenges - numerical hydrodynamic calculations for choosing an appropriate shape which would reduce the effects of turbulence, an accurate sealing of the power supply and the laser diodes, and others. The precision is estimated by the partial derivation method. Both experimental and theoretical data conclude the overall precision error to be in the 1% margin. This paper presents the development steps of such an underwater laser scaling adapter for a remotely operated vehicle (ROV).

  12. Damage identification of beam structures using free response shapes obtained by use of a continuously scanning laser Doppler vibrometer system

    NASA Astrophysics Data System (ADS)

    Xu, Y. F.; Chen, Da-Ming; Zhu, W. D.

    2017-08-01

    Spatially dense operating deflection shapes and mode shapes can be rapidly obtained by use of a continuously scanning laser Doppler vibrometer (CSLDV) system, which sweeps its laser spot over a vibrating structure surface. This paper introduces a new type of vibration shapes called a free response shape (FRS) that can be obtained by use of a CSLDV system, and a new damage identification methodology using FRSs is developed for beam structures. An analytical expression of FRSs of a damped beam structure is derived, and FRSs from the analytical expression compare well with those from a finite element model. In the damage identification methodology, a free-response damage index (FRDI) is proposed, and damage regions can be identified near neighborhoods with consistently high values of FRDIs associated with different modes; an auxiliary FRDI is defined to assist identification of the neighborhoods. A FRDI associated with a mode consists of differences between curvatures of FRSs associated with the mode in a number of half-scan periods of a CSLDV system and those from polynomials that fit the FRSs with properly determined orders. A convergence index is proposed to determine the proper order of a polynomial fit. One advantage of the methodology is that the FRDI does not require any baseline information of an undamaged beam structure, if it is geometrically smooth and made of materials that have no stiffness and mass discontinuities. Another advantage is that FRDIs associated with multiple modes can be obtained using free response of a beam structure measured by a CSLDV system in one scan. The number of half-scan periods for calculation of the FRDI associated with a mode can be determined by use of the short-time Fourier transform. The proposed methodology was numerically and experimentally applied to identify damage in beam structures; effects of the scan frequency of a CSLDV system on qualities of obtained FRSs were experimentally investigated.

  13. Cranial shape evolution in adaptive radiations of birds: comparative morphometrics of Darwin's finches and Hawaiian honeycreepers

    PubMed Central

    Tokita, Masayoshi; Yano, Wataru; James, Helen F.

    2017-01-01

    Adaptive radiation is the rapid evolution of morphologically and ecologically diverse species from a single ancestor. The two classic examples of adaptive radiation are Darwin's finches and the Hawaiian honeycreepers, which evolved remarkable levels of adaptive cranial morphological variation. To gain new insights into the nature of their diversification, we performed comparative three-dimensional geometric morphometric analyses based on X-ray microcomputed tomography (µCT) scanning of dried cranial skeletons. We show that cranial shapes in both Hawaiian honeycreepers and Coerebinae (Darwin's finches and their close relatives) are much more diverse than in their respective outgroups, but Hawaiian honeycreepers as a group display the highest diversity and disparity of all other bird groups studied. We also report a significant contribution of allometry to skull shape variation, and distinct patterns of evolutionary change in skull morphology in the two lineages of songbirds that underwent adaptive radiation on oceanic islands. These findings help to better understand the nature of adaptive radiations in general and provide a foundation for future investigations on the developmental and molecular mechanisms underlying diversification of these morphologically distinguished groups of birds. This article is part of the themed issue ‘Evo-devo in the genomics era, and the origins of morphological diversity’. PMID:27994122

  14. Investigation of the Thermomechanical Response of Shape Memory Alloy Hybrid Composite Beams

    NASA Technical Reports Server (NTRS)

    Davis, Brian A.

    2005-01-01

    Previous work at NASA Langley Research Center (LaRC) involved fabrication and testing of composite beams with embedded, pre-strained shape memory alloy (SMA) ribbons. That study also provided comparison of experimental results with numerical predictions from a research code making use of a new thermoelastic model for shape memory alloy hybrid composite (SMAHC) structures. The previous work showed qualitative validation of the numerical model. However, deficiencies in the experimental-numerical correlation were noted and hypotheses for the discrepancies were given for further investigation. The goal of this work is to refine the experimental measurement and numerical modeling approaches in order to better understand the discrepancies, improve the correlation between prediction and measurement, and provide rigorous quantitative validation of the numerical model. Thermal buckling, post-buckling, and random responses to thermal and inertial (base acceleration) loads are studied. Excellent agreement is achieved between the predicted and measured results, thereby quantitatively validating the numerical tool.

  15. Nonlinear discrete-time multirate adaptive control of non-linear vibrations of smart beams

    NASA Astrophysics Data System (ADS)

    Georgiou, Georgios; Foutsitzi, Georgia A.; Stavroulakis, Georgios E.

    2018-06-01

    The nonlinear adaptive digital control of a smart piezoelectric beam is considered. It is shown that in the case of a sampled-data context, a multirate control strategy provides an appropriate framework in order to achieve vibration regulation, ensuring the stability of the whole control system. Under parametric uncertainties in the model parameters (damping ratios, frequencies, levels of non linearities and cross coupling, control input parameters), the scheme is completed with an adaptation law deduced from hyperstability concepts. This results in the asymptotic satisfaction of the control objectives at the sampling instants. Simulation results are presented.

  16. Generation of dark hollow beam via coherent combination based on adaptive optics.

    PubMed

    Zheng, Yi; Wang, Xiaohua; Shen, Feng; Li, Xinyang

    2010-12-20

    A novel method for generating a dark hollow beam (DHB) is proposed and studied both theoretically and experimentally. A coherent combination technique for laser arrays is implemented based on adaptive optics (AO). A beam arraying structure and an active segmented mirror are designed and described. Piston errors are extracted by a zero-order interference detection system with the help of a custom-made photo-detectors array. An algorithm called the extremum approach is adopted to calculate feedback control signals. A dynamic piston error is imported by LiNbO3 to test the capability of the AO servo. In a closed loop the stable and clear DHB is obtained. The experimental results confirm the feasibility of the concept.

  17. Three-dimensional piezoelectric vibration energy harvester using spiral-shaped beam with triple operating frequencies

    NASA Astrophysics Data System (ADS)

    Zhao, Nian; Yang, Jin; Yu, Qiangmo; Zhao, Jiangxin; Liu, Jun; Wen, Yumei; Li, Ping

    2016-01-01

    This work has demonstrated a novel piezoelectric energy harvester without a complex structure and appended component that is capable of scavenging vibration energy from arbitrary directions with multiple resonant frequencies. In this harvester, a spiral-shaped elastic thin beam instead of a traditional thin cantilever beam was adopted to absorb external vibration with arbitrary direction in three-dimensional (3D) spaces owing to its ability to bend flexibly and stretch along arbitrary direction. Furthermore, multiple modes in the elastic thin beam contribute to a possibility to widen the working bandwidth with multiple resonant frequencies. The experimental results show that the harvester was capable of scavenging the vibration energy in 3D arbitrary directions; they also exhibited triple power peaks at about 16 Hz, 21 Hz, and 28 Hz with the powers of 330 μW, 313 μW, and 6 μW, respectively. In addition, human walking and water wave energies were successfully converted into electricity, proving that our harvester was practical to scavenge the time-variant or multi-directional vibration energies in our daily life.

  18. Effect of laser beam on temperature distribution on artificial cylindrical shaped hard tissue bones

    NASA Astrophysics Data System (ADS)

    Al-Akhras, M.-Ali H.; Qaseer, Mohammad-Khair; Albiss, B. A.; Gezawa, Umar S.

    2018-02-01

    Samples from fresh lamb chest bones were made in cylindrical shapes to study the time variation of temperature T as functions of the cylindrical radius and depth when its front surface exposed to a laser beam of 110Mw power and 642nm wavelength. The laser beam was directed at the center of the front surface of the horizontal cylinder. The measurements were done in vacuum and at atmospheric pressure. Our data reveal the linear variation of T with time, followed by a gradual increase before it reaches a plateau value at higher time. This sort of behavior independent of the radius or the depth where the temperature was measured. Moreover, the maximum variation occurs on the front surface where the laser beam was hitting and diminishes gradually with depth deep inside the cylinder. Data at atmospheric pressure showed less changes in temperature. The temperature distribution in bone due to laser irradiation is very important for a rational use of laser therapy as well as in the surgery to minimizes the thermal tissue damage.

  19. Three-dimensional piezoelectric vibration energy harvester using spiral-shaped beam with triple operating frequencies.

    PubMed

    Zhao, Nian; Yang, Jin; Yu, Qiangmo; Zhao, Jiangxin; Liu, Jun; Wen, Yumei; Li, Ping

    2016-01-01

    This work has demonstrated a novel piezoelectric energy harvester without a complex structure and appended component that is capable of scavenging vibration energy from arbitrary directions with multiple resonant frequencies. In this harvester, a spiral-shaped elastic thin beam instead of a traditional thin cantilever beam was adopted to absorb external vibration with arbitrary direction in three-dimensional (3D) spaces owing to its ability to bend flexibly and stretch along arbitrary direction. Furthermore, multiple modes in the elastic thin beam contribute to a possibility to widen the working bandwidth with multiple resonant frequencies. The experimental results show that the harvester was capable of scavenging the vibration energy in 3D arbitrary directions; they also exhibited triple power peaks at about 16 Hz, 21 Hz, and 28 Hz with the powers of 330 μW, 313 μW, and 6 μW, respectively. In addition, human walking and water wave energies were successfully converted into electricity, proving that our harvester was practical to scavenge the time-variant or multi-directional vibration energies in our daily life.

  20. Thermal deformation of cryogenically cooled silicon crystals under intense X-ray beams: measurement and finite-element predictions of the surface shape

    PubMed Central

    Zhang, Lin; Sánchez del Río, Manuel; Monaco, Giulio; Detlefs, Carsten; Roth, Thomas; Chumakov, Aleksandr I.; Glatzel, Pieter

    2013-01-01

    X-ray crystal monochromators exposed to white-beam X-rays in third-generation synchrotron light sources are subject to thermal deformations that must be minimized using an adequate cooling system. A new approach was used to measure the crystal shape profile and slope of several cryogenically cooled (liquid nitrogen) silicon monochromators as a function of beam power in situ and under heat load. The method utilizes multiple angular scans across the Bragg peak (rocking curve) at various vertical positions of a narrow-gap slit downstream from the monochromator. When increasing the beam power, the surface of the liquid-nitrogen-cooled silicon crystal deforms from a concave shape at low heat load to a convex shape at high heat load, passing through an approximately flat shape at intermediate heat load. Finite-element analysis is used to calculate the crystal thermal deformations. The simulated crystal profiles and slopes are in excellent agreement with experiments. The parameters used in simulations, such as material properties, absorbed power distribution on the crystal and cooling boundary conditions, are described in detail as they are fundamental for obtaining accurate results. PMID:23765298

  1. Coherent superposition of propagation-invariant laser beams

    NASA Astrophysics Data System (ADS)

    Soskind, R.; Soskind, M.; Soskind, Y. G.

    2012-10-01

    The coherent superposition of propagation-invariant laser beams represents an important beam-shaping technique, and results in new beam shapes which retain the unique property of propagation invariance. Propagation-invariant laser beam shapes depend on the order of the propagating beam, and include Hermite-Gaussian and Laguerre-Gaussian beams, as well as the recently introduced Ince-Gaussian beams which additionally depend on the beam ellipticity parameter. While the superposition of Hermite-Gaussian and Laguerre-Gaussian beams has been discussed in the past, the coherent superposition of Ince-Gaussian laser beams has not received significant attention in literature. In this paper, we present the formation of propagation-invariant laser beams based on the coherent superposition of Hermite-Gaussian, Laguerre-Gaussian, and Ince-Gaussian beams of different orders. We also show the resulting field distributions of the superimposed Ince-Gaussian laser beams as a function of the ellipticity parameter. By changing the beam ellipticity parameter, we compare the various shapes of the superimposed propagation-invariant laser beams transitioning from Laguerre-Gaussian beams at one ellipticity extreme to Hermite-Gaussian beams at the other extreme.

  2. Optimization of the beam shaping assembly in the D-D neutron generators-based BNCT using the response matrix method.

    PubMed

    Kasesaz, Y; Khalafi, H; Rahmani, F

    2013-12-01

    Optimization of the Beam Shaping Assembly (BSA) has been performed using the MCNP4C Monte Carlo code to shape the 2.45 MeV neutrons that are produced in the D-D neutron generator. Optimal design of the BSA has been chosen by considering in-air figures of merit (FOM) which consists of 70 cm Fluental as a moderator, 30 cm Pb as a reflector, 2mm (6)Li as a thermal neutron filter and 2mm Pb as a gamma filter. The neutron beam can be evaluated by in-phantom parameters, from which therapeutic gain can be derived. Direct evaluation of both set of FOMs (in-air and in-phantom) is very time consuming. In this paper a Response Matrix (RM) method has been suggested to reduce the computing time. This method is based on considering the neutron spectrum at the beam exit and calculating contribution of various dose components in phantom to calculate the Response Matrix. Results show good agreement between direct calculation and the RM method. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Noise-shaping gradient descent-based online adaptation algorithms for digital calibration of analog circuits.

    PubMed

    Chakrabartty, Shantanu; Shaga, Ravi K; Aono, Kenji

    2013-04-01

    Analog circuits that are calibrated using digital-to-analog converters (DACs) use a digital signal processor-based algorithm for real-time adaptation and programming of system parameters. In this paper, we first show that this conventional framework for adaptation yields suboptimal calibration properties because of artifacts introduced by quantization noise. We then propose a novel online stochastic optimization algorithm called noise-shaping or ΣΔ gradient descent, which can shape the quantization noise out of the frequency regions spanning the parameter adaptation trajectories. As a result, the proposed algorithms demonstrate superior parameter search properties compared to floating-point gradient methods and better convergence properties than conventional quantized gradient-methods. In the second part of this paper, we apply the ΣΔ gradient descent algorithm to two examples of real-time digital calibration: 1) balancing and tracking of bias currents, and 2) frequency calibration of a band-pass Gm-C biquad filter biased in weak inversion. For each of these examples, the circuits have been prototyped in a 0.5-μm complementary metal-oxide-semiconductor process, and we demonstrate that the proposed algorithm is able to find the optimal solution even in the presence of spurious local minima, which are introduced by the nonlinear and non-monotonic response of calibration DACs.

  4. Radio frequency source of a weakly expanding wedge-shaped xenon ion beam for contactless removal of large-sized space debris objects.

    PubMed

    Balashov, Victor; Cherkasova, Maria; Kruglov, Kirill; Kudriavtsev, Arseny; Masherov, Pavel; Mogulkin, Andrey; Obukhov, Vladimir; Riaby, Valentin; Svotina, Victoria

    2017-08-01

    A theoretical-experimental research has been carried out to determine the characteristics of a radio frequency (RF) ion source for the generation of a weakly expanding wedge-shaped xenon ion beam. Such ion beam geometry is of interest as a prototype of an on-board ion injector for contactless "ion shepherding" by service spacecraft to remove large space debris objects from geostationary orbits. The wedge shape of the ion beam increases its range. The device described herein comprises an inductive gas discharge chamber and a slit-type three-electrode ion extraction grid (IEG) unit. Calculations of accelerating cell geometries and ion trajectories determined the dependence of beam expansion half-angle on normalized perveance based on the measurements of the spatial distributions of the xenon plasma parameters at the IEG entrance for a xenon flow rate q ≈ 0.2 mg/s and an incident RF power P in ≤ 250 W at a driving frequency f = 2 MHz. Experimental studies showed that the ion beam, circular at the IEG exit, accepted the elliptical form at the distance of 580 mm with half-angle of beam expansion across IEG slits about 2°-3° and close to 0° along them. Thus, the obtained result proved the possibility of creating a new-generation on-board ion injector that could be used in spacecrafts for removal of debris.

  5. Vertical Load Induced with Twisted File Adaptive System during Canal Shaping.

    PubMed

    Jamleh, Ahmed; Alfouzan, Khalid

    2016-12-01

    To evaluate the vertical load induced with the Twisted File Adaptive (TFA; SybronEndo, Orange, CA) system during canal shaping of extracted teeth by comparing it with the Twisted File (TF, SybronEndo), ProTaper Next (PTN; Dentsply Maillefer, Ballaigues, Switzerland), and ProTaper Universal (PTU, Dentsply Maillefer) systems. Fifty-two root canals were shaped using the TFA, TF, PTN, or PTU systems (n = 13 for each system). They were shaped gently according to the manufacturers' instructions. During canal shaping, vertical loads were recorded and shown in 2 directions, apically and coronally directed loads. The vertical peak loads of 3 instrumentation stages were used for comparison. The effects of rotary systems on the mean positive and negative peak loads were analyzed statistically using the Kruskal-Wallis and Mann-Whitney tests at a confidence level of 95%. The overall pattern of the instantaneous loads appeared to increase with the use of successive instruments within the system. During canal shaping in all groups, the apically and coronally directed peak loads ranged from 0.84-7.55 N and 2.16-2.79 N, respectively. There were significant differences in both peak loads among the tested systems at each instrumentation stage. TFA had the lowest apically directed peak loads. In terms of coronally directed peak loads, the TFA and TF had a significantly lower amount of loads developed with their instruments than PTN and PTU. The choice of instrument system had an influence on the loads developed during canal shaping. TFA instruments were associated favorably with the lowest values of peak loads followed by TF, PTN, and PTU. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  6. Internal field distribution of a radially inhomogeneous droplet illuminated by an arbitrary shaped beam

    NASA Astrophysics Data System (ADS)

    Wang, Jia Jie; Wriedt, Thomas; Han, Yi Ping; Mädler, Lutz; Jiao, Yong Chang

    2018-05-01

    Light scattering of a radially inhomogeneous droplet, which is modeled by a multilayered sphere, is investigated within the framework of Generalized Lorenz-Mie Theory (GLMT), with particular efforts devoted to the analysis of the internal field distribution in the cases of shaped beam illumination. To circumvent numerical difficulties in the computation of internal field for an absorbing/non-absorbing droplet with pretty large size parameter, a recursive algorithm is proposed by reformulation of the equations for the expansion coefficients. Two approaches are proposed for the prediction of the internal field distribution, namely a rigorous method and an approximation method. The developed computer code is tested to be stable in a wide range of size parameters. Numerical computations are implemented to simulate the internal field distributions of a radially inhomogeneous droplet illuminated by a focused Gaussian beam.

  7. Finite element analysis of smart reinforced concrete beam with super elastic shape memory alloy subjected to static loading for seismic mitigation

    NASA Astrophysics Data System (ADS)

    Hamid, Nubailah Abd; Ismail, Muhammad Hussain; Ibrahim, Azmi; Adnan, Azlan

    2018-05-01

    Reinforced concrete beam has been among major applications in construction nowadays. However, the application of nickel titanium alloy as a replacement for steel rebar in reinforced concrete beam is a new approach nowadays despite of their ability to undergo large deformations and return to their undeformed shape by removal of stresses. In this paper, the response of simply supported reinforced concrete (RC) beams with smart rebars, control beam subjected to static load has been numerically studied, and highlighted, using finite element method (FEM) where the material employed in this study is the superelastic shape memory alloys (SESMA). The SESMA is a unique alloy that has the ability to undergo large deformations and return to their undeformed shape by removal of stresses. The size of the analysed beam is 125 mm × 270 mm × 2800 mm with 2 numbers of 12 mm diameter bars as main reinforcement for compression and 12 numbers of 12 as tension or hanger bars while 6 mm diameter at 100 mm c/c used as shear reinforcement bars respectively. The concrete was modelled using solid 65 element (in ANSYS) and rebars were modelled using beam 188 elements (in ANSYS). The result for reinforced concrete with nickel titanium alloy rebar is compared with the result obtained for reinforced concrete beam with steel rebar in term of flexural behavior, load displacement relationship, crack behaviour and failure modes for various loading conditions starting from 10kN to 100kN using 3D FE modelling in ANSYS v 15. The response and result obtained from the 3D finite element analysis used in this study is load-displacement curves, residual displacements, Von-Misses, strain and stiffness are suitable for the corresponding result showed a satisfactory performance in the structural analysis. Resultant displacement, Von-Mises stress and maximum strain were influenced by the factors of the material properties, load increments and the mesh size. Nickel titanium alloy was superior to the

  8. Large deflection angle, high-power adaptive fiber optics collimator with preserved near-diffraction-limited beam quality.

    PubMed

    Zhi, Dong; Ma, Yanxing; Chen, Zilun; Wang, Xiaolin; Zhou, Pu; Si, Lei

    2016-05-15

    We report on the development of a monolithic adaptive fiber optics collimator, with a large deflection angle and preserved near-diffraction-limited beam quality, that has been tested at a maximal output power at the 300 W level. Additionally, a new measurement method of beam quality (M2 factor) is developed. Experimental results show that the deflection angle of the collimated beam is in the range of 0-0.27 mrad in the X direction and 0-0.19 mrad in the Y direction. The effective working frequency of the device is about 710 Hz. By employing the new measurement method of the M2 factor, we calculate that the beam quality is Mx2=1.35 and My2=1.24, which is in agreement with the result from the beam propagation analyzer and is preserved well with the increasing output power.

  9. Simultaneous beam sampling and aperture shape optimization for SPORT.

    PubMed

    Zarepisheh, Masoud; Li, Ruijiang; Ye, Yinyu; Xing, Lei

    2015-02-01

    Station parameter optimized radiation therapy (SPORT) was recently proposed to fully utilize the technical capability of emerging digital linear accelerators, in which the station parameters of a delivery system, such as aperture shape and weight, couch position/angle, gantry/collimator angle, can be optimized simultaneously. SPORT promises to deliver remarkable radiation dose distributions in an efficient manner, yet there exists no optimization algorithm for its implementation. The purpose of this work is to develop an algorithm to simultaneously optimize the beam sampling and aperture shapes. The authors build a mathematical model with the fundamental station point parameters as the decision variables. To solve the resulting large-scale optimization problem, the authors devise an effective algorithm by integrating three advanced optimization techniques: column generation, subgradient method, and pattern search. Column generation adds the most beneficial stations sequentially until the plan quality improvement saturates and provides a good starting point for the subsequent optimization. It also adds the new stations during the algorithm if beneficial. For each update resulted from column generation, the subgradient method improves the selected stations locally by reshaping the apertures and updating the beam angles toward a descent subgradient direction. The algorithm continues to improve the selected stations locally and globally by a pattern search algorithm to explore the part of search space not reachable by the subgradient method. By combining these three techniques together, all plausible combinations of station parameters are searched efficiently to yield the optimal solution. A SPORT optimization framework with seamlessly integration of three complementary algorithms, column generation, subgradient method, and pattern search, was established. The proposed technique was applied to two previously treated clinical cases: a head and neck and a prostate case

  10. Simultaneous beam sampling and aperture shape optimization for SPORT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zarepisheh, Masoud; Li, Ruijiang; Xing, Lei, E-mail: Lei@stanford.edu

    Purpose: Station parameter optimized radiation therapy (SPORT) was recently proposed to fully utilize the technical capability of emerging digital linear accelerators, in which the station parameters of a delivery system, such as aperture shape and weight, couch position/angle, gantry/collimator angle, can be optimized simultaneously. SPORT promises to deliver remarkable radiation dose distributions in an efficient manner, yet there exists no optimization algorithm for its implementation. The purpose of this work is to develop an algorithm to simultaneously optimize the beam sampling and aperture shapes. Methods: The authors build a mathematical model with the fundamental station point parameters as the decisionmore » variables. To solve the resulting large-scale optimization problem, the authors devise an effective algorithm by integrating three advanced optimization techniques: column generation, subgradient method, and pattern search. Column generation adds the most beneficial stations sequentially until the plan quality improvement saturates and provides a good starting point for the subsequent optimization. It also adds the new stations during the algorithm if beneficial. For each update resulted from column generation, the subgradient method improves the selected stations locally by reshaping the apertures and updating the beam angles toward a descent subgradient direction. The algorithm continues to improve the selected stations locally and globally by a pattern search algorithm to explore the part of search space not reachable by the subgradient method. By combining these three techniques together, all plausible combinations of station parameters are searched efficiently to yield the optimal solution. Results: A SPORT optimization framework with seamlessly integration of three complementary algorithms, column generation, subgradient method, and pattern search, was established. The proposed technique was applied to two previously treated clinical cases: a

  11. Analysis and experimental demonstration of conformal adaptive phase-locked fiber array for laser communications and beam projection applications

    NASA Astrophysics Data System (ADS)

    Liu, Ling

    The primary goal of this research is the analysis, development, and experimental demonstration of an adaptive phase-locked fiber array system for free-space optical communications and laser beam projection applications. To our knowledge, the developed adaptive phase-locked system composed of three fiber collimators (subapertures) with tip-tilt wavefront phase control at each subaperture represents the first reported fiber array system that implements both phase-locking control and adaptive wavefront tip-tilt control capabilities. This research has also resulted in the following innovations: (a) The first experimental demonstration of a phase-locked fiber array with tip-tilt wave-front aberration compensation at each fiber collimator; (b) Development and demonstration of the fastest currently reported stochastic parallel gradient descent (SPGD) system capable of operation at 180,000 iterations per second; (c) The first experimental demonstration of a laser communication link based on a phase-locked fiber array; (d) The first successful experimental demonstration of turbulence and jitter-induced phase distortion compensation in a phase-locked fiber array optical system; (e) The first demonstration of laser beam projection onto an extended target with a randomly rough surface using a conformal adaptive fiber array system. Fiber array optical systems, the subject of this study, can overcome some of the draw-backs of conventional monolithic large-aperture transmitter/receiver optical systems that are usually heavy, bulky, and expensive. The primary experimental challenges in the development of the adaptive phased-locked fiber-array included precise (<5 microrad) alignment of the fiber collimators and development of fast (100kHz-class) phase-locking and wavefront tip-tilt control systems. The precise alignment of the fiber collimator array is achieved through a specially developed initial coarse alignment tool based on high precision piezoelectric picomotors and a

  12. Generation of helical Ince-Gaussian beams: beam-shaping with a liquid crystal display

    NASA Astrophysics Data System (ADS)

    Davis, Jeffrey A.; Bentley, Joel B.; Bandres, Miguel A.; Gutiérrez-Vega, Julio C.

    2006-08-01

    We review the three types of laser beams - Hermite-Gaussian (HG), Laguerre-Gaussian (LG) and the newly discovered Ince-Gaussian (IG) beams. We discuss the helical forms of the LG and IG beams that consist of linear combinations of the even and odd solutions and form a number of vortices that are useful for optical trapping applications. We discuss how to generate these beams by encoding the desired amplitude and phase onto a single parallel-aligned liquid crystal display (LCD). We introduce a novel interference technique where we generate both the object and reference beams using a single LCD and show the vortex interference patterns.

  13. MO-FG-CAMPUS-IeP2-01: Characterization of Beam Shaping Filters and Photon Spectra From HVL Profiles in CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bujila, R; Royal Institute of Technology, Stockholm; Kull, L

    Purpose: Advanced dosimetry in CT (e.g. the Monte Carlo method) requires an accurate characterization of the shaped filter and radiation quality used during a scan. The purpose of this work was to develop a method where half value layer (HVL) profiles along shaped filters could be made. From the HVL profiles the beam shaping properties and effective photon spectrum for a particular scan can be inferred. Methods: A measurement rig was developed to allow determinations of the HVL under a scatter-free narrow-beam geometry and constant focal spot to ionization chamber distance for different fan angles. For each fan angle themore » HVL is obtained by fitting the transmission of radiation through different thicknesses of an Al absorber (type 1100) using an appropriate model. The effective Al thickness of shaped filters and effective photon spectra are estimated using a model of photon emission from a Tungsten anode. This method is used to obtain the effective photon spectra and effective Al thickness of shaped filters for a CT scanner recently introduced to the market. Results: This study resulted in a set of effective photon spectra (central ray) for each kVp along with effective Al thicknesses of the different shaped filters. The effective photon spectra and effective Al thicknesses of shaped filters were used to obtain numerically approximated HVL profiles and compared to measured HVL profiles (mean absolute percentage error = 0.02). The central axis HVL found in the vendor’s technical documentation were compared to approximated HVL values (mean absolute percentage error = 0.03). Conclusion: This work has resulted in a unique method of measuring HVL profiles along shaped filters in CT. Further the effective photon spectra and the effective Al thicknesses of shaped filters that were obtained can be incorporated into Monte Carlo simulations.« less

  14. A novel hybrid algorithm for the design of the phase diffractive optical elements for beam shaping

    NASA Astrophysics Data System (ADS)

    Jiang, Wenbo; Wang, Jun; Dong, Xiucheng

    2013-02-01

    In this paper, a novel hybrid algorithm for the design of a phase diffractive optical elements (PDOE) is proposed. It combines the genetic algorithm (GA) with the transformable scale BFGS (Broyden, Fletcher, Goldfarb, Shanno) algorithm, the penalty function was used in the cost function definition. The novel hybrid algorithm has the global merits of the genetic algorithm as well as the local improvement capabilities of the transformable scale BFGS algorithm. We designed the PDOE using the conventional simulated annealing algorithm and the novel hybrid algorithm. To compare the performance of two algorithms, three indexes of the diffractive efficiency, uniformity error and the signal-to-noise ratio are considered in numerical simulation. The results show that the novel hybrid algorithm has good convergence property and good stability. As an application example, the PDOE was used for the Gaussian beam shaping; high diffractive efficiency, low uniformity error and high signal-to-noise were obtained. The PDOE can be used for high quality beam shaping such as inertial confinement fusion (ICF), excimer laser lithography, fiber coupling laser diode array, laser welding, etc. It shows wide application value.

  15. Multiview road sign detection via self-adaptive color model and shape context matching

    NASA Astrophysics Data System (ADS)

    Liu, Chunsheng; Chang, Faliang; Liu, Chengyun

    2016-09-01

    The multiview appearance of road signs in uncontrolled environments has made the detection of road signs a challenging problem in computer vision. We propose a road sign detection method to detect multiview road signs. This method is based on several algorithms, including the classical cascaded detector, the self-adaptive weighted Gaussian color model (SW-Gaussian model), and a shape context matching method. The classical cascaded detector is used to detect the frontal road signs in video sequences and obtain the parameters for the SW-Gaussian model. The proposed SW-Gaussian model combines the two-dimensional Gaussian model and the normalized red channel together, which can largely enhance the contrast between the red signs and background. The proposed shape context matching method can match shapes with big noise, which is utilized to detect road signs in different directions. The experimental results show that compared with previous detection methods, the proposed multiview detection method can reach higher detection rate in detecting signs with different directions.

  16. Maritime Adaptive Optics Beam Control

    DTIC Science & Technology

    2010-09-01

    Liquid Crystal LMS Least Mean Square MIMO Multiple- Input Multiple-Output MMDM Micromachined Membrane Deformable Mirror MSE Mean Square Error...determine how the beam is distorted, a control computer to calculate the correction to be applied, and a corrective element, usually a deformable mirror ...during this research, an overview of the system modification is provided here. Using additional mirrors and reflecting the beam to and from an

  17. Adaptive projection intensity adjustment for avoiding saturation in three-dimensional shape measurement

    NASA Astrophysics Data System (ADS)

    Chen, Chao; Gao, Nan; Wang, Xiangjun; Zhang, Zonghua

    2018-03-01

    Phase-based fringe projection methods have been commonly used for three-dimensional (3D) measurements. However, image saturation results in incorrect intensities in captured fringe pattern images, leading to phase and measurement errors. Existing solutions are complex. This paper proposes an adaptive projection intensity adjustment method to avoid image saturation and maintain good fringe modulation in measuring objects with a high range of surface reflectivities. The adapted fringe patterns are created using only one prior step of fringe-pattern projection and image capture. First, a set of phase-shifted fringe patterns with maximum projection intensity value of 255 and a uniform gray level pattern are projected onto the surface of an object. The patterns are reflected from and deformed by the object surface and captured by a digital camera. The best projection intensities corresponding to each saturated-pixel clusters are determined by fitting a polynomial function to transform captured intensities to projected intensities. Subsequently, the adapted fringe patterns are constructed using the best projection intensities at projector pixel coordinate. Finally, the adapted fringe patterns are projected for phase recovery and 3D shape calculation. The experimental results demonstrate that the proposed method achieves high measurement accuracy even for objects with a high range of surface reflectivities.

  18. Compensation for the orbital angular momentum of a vortex beam in turbulent atmosphere by adaptive optics

    NASA Astrophysics Data System (ADS)

    Li, Nan; Chu, Xiuxiang; Zhang, Pengfei; Feng, Xiaoxing; Fan, ChengYu; Qiao, Chunhong

    2018-01-01

    A method which can be used to compensate for a distorted orbital angular momentum and wavefront of a beam in atmospheric turbulence, simultaneously, has been proposed. To confirm the validity of the method, an experimental setup for up-link propagation of a vortex beam in a turbulent atmosphere has been simulated. Simulation results show that both of the distorted orbital angular momentum and the distorted wavefront of a beam due to turbulence can be compensated by an adaptive optics system with the help of a cooperative beacon at satellite. However, when the number of the lenslet of wavefront sensor (WFS) and the actuators of the deform mirror (DM) is small, satisfactory results cannot be obtained.

  19. Shaping symmetric Airy beam through binary amplitude modulation for ultralong needle focus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Zhao-Xiang; Gong, Lei; Ren, Yu-Xuan, E-mail: yxren@ustc.edu.cn

    Needle-like electromagnetic field has various advantages for the applications in high-resolution imaging, Raman spectroscopy, as well as long-distance optical transportation. The realization of such field often requires high numerical aperture (NA) objective lens and the transmission masks. We demonstrate an ultralong needle-like focus in the optical range produced with an ordinary lens. This is achieved by focusing a symmetric Airy beam (SAB) generated via binary spectral modulation with a digital micromirror device. Such amplitude modulation technique is able to shape traditional Airy beams, SABs, as well as the dynamic transition modes between the one-dimensional and two-dimensional (2D) symmetric Airy modes.more » The created 2D SAB was characterized through measurement of the propagating fields with one of the four main lobes blocked by an opaque mask. The 2D SAB was verified to exhibit self-healing property against propagation with the obstructed major lobe reconstructed after a certain distance. We further produced an elongated focal line by concentrating the SAB via lenses with different NAs and achieved an ultralong longitudinal needle focus. The produced long needle focus will be applied in optical, chemical, and biological sciences.« less

  20. Spatial shaping for generating arbitrary optical dipole traps for ultracold degenerate gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jeffrey G., E-mail: jglee@umd.edu; Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742; Hill, W. T., E-mail: wth@umd.edu

    2014-10-15

    We present two spatial-shaping approaches – phase and amplitude – for creating two-dimensional optical dipole potentials for ultracold neutral atoms. When combined with an attractive or repulsive Gaussian sheet formed by an astigmatically focused beam, atoms are trapped in three dimensions resulting in planar confinement with an arbitrary network of potentials – a free-space atom chip. The first approach utilizes an adaptation of the generalized phase-contrast technique to convert a phase structure embedded in a beam after traversing a phase mask, to an identical intensity profile in the image plane. Phase masks, and a requisite phase-contrast filter, can be chemicallymore » etched into optical material (e.g., fused silica) or implemented with spatial light modulators; etching provides the highest quality while spatial light modulators enable prototyping and realtime structure modification. This approach was demonstrated on an ensemble of thermal atoms. Amplitude shaping is possible when the potential structure is made as an opaque mask in the path of a dipole trap beam, followed by imaging the shadow onto the plane of the atoms. While much more lossy, this very simple and inexpensive approach can produce dipole potentials suitable for containing degenerate gases. High-quality amplitude masks can be produced with standard photolithography techniques. Amplitude shaping was demonstrated on a Bose-Einstein condensate.« less

  1. Why do shape aftereffects increase with eccentricity?

    PubMed

    Gheorghiu, Elena; Kingdom, Frederick A A; Bell, Jason; Gurnsey, Rick

    2011-12-20

    Studies have shown that spatial aftereffects increase with eccentricity. Here, we demonstrate that the shape-frequency and shape-amplitude aftereffects, which describe the perceived shifts in the shape of a sinusoidal-shaped contour following adaptation to a slightly different sinusoidal-shaped contour, also increase with eccentricity. Why does this happen? We first demonstrate that the perceptual shift increases with eccentricity for stimuli of fixed sizes. These shifts are not attenuated by variations in stimulus size; in fact, at each eccentricity the degree of perceptual shift is scale-independent. This scale independence is specific to the aftereffect because basic discrimination thresholds (in the absence of adaptation) decrease as size increases. Structural aspects of the displays were found to have a modest effect on the degree of perceptual shift; the degree of adaptation depends modestly on distance between stimuli during adaptation and post-adaptation testing. There were similar temporal rates of decline of adaptation across the visual field and higher post-adaptation discrimination thresholds in the periphery than in the center. The observed results are consistent with greater sensitivity reduction in adapted mechanisms following adaptation in the periphery or an eccentricity-dependent increase in the bandwidth of the shape-frequency- and shape-amplitude-selective mechanisms.

  2. Shaping ability of reciproc and TF adaptive systems in severely curved canals of rapid microCT-based prototyping molar replicas.

    PubMed

    Ordinola-Zapata, Ronald; Bramante, Clovis Monteiro; Duarte, Marco Antonio Húngaro; Cavenago, Bruno Cavalini; Jaramillo, David; Versiani, Marco Aurélio

    2014-01-01

    To evaluate the shaping ability of Reciproc and Twisted-File Adaptive systems in rapid prototyping replicas. Two mandibular molars showing S-shaped and 62-degree curvatures in the mesial root were scanned by using a microcomputed tomography (μCT) system. The data were exported in the stereolitograhic format and 20 samples of each molar were printed at 16 µm resolution. The mesial canals of 10 replicas of each specimen were prepared with each system. Transportation was measured by overlapping radiographs taken before and after preparation and resin thickness after instrumentation was measured by μCT. Both systems maintained the original shape of the apical third in both anatomies (P>0.05). Overall, considering the resin thickness in the 62-degree replicas, no statistical difference was found between the systems (P>0.05). In the S-shaped curvature replica, Reciproc significantly decreased the thickness of the resin walls in comparison with TF Adaptive. The evaluated systems were able to maintain the original shape at the apical third of severely curved mesial canals of molar replicas.

  3. Shaping ability of Reciproc and TF Adaptive systems in severely curved canals of rapid microCT-based prototyping molar replicas

    PubMed Central

    ORDINOLA-ZAPATA, Ronald; BRAMANTE, Clovis Monteiro; DUARTE, Marco Antonio Húngaro; CAVENAGO, Bruno Cavalini; JARAMILLO, David; VERSIANI, Marco Aurélio

    2014-01-01

    Objective: To evaluate the shaping ability of Reciproc and Twisted-File Adaptive systems in rapid prototyping replicas. Material and Methods: Two mandibular molars showing S-shaped and 62-degree curvatures in the mesial root were scanned by using a microcomputed tomography (μCT) system. The data were exported in the stereolitograhic format and 20 samples of each molar were printed at 16 µm resolution. The mesial canals of 10 replicas of each specimen were prepared with each system. Transportation was measured by overlapping radiographs taken before and after preparation and resin thickness after instrumentation was measured by μCT. Results: Both systems maintained the original shape of the apical third in both anatomies (P>0.05). Overall, considering the resin thickness in the 62-degree replicas, no statistical difference was found between the systems (P>0.05). In the S-shaped curvature replica, Reciproc significantly decreased the thickness of the resin walls in comparison with TF Adaptive. Conclusions: The evaluated systems were able to maintain the original shape at the apical third of severely curved mesial canals of molar replicas. PMID:24918662

  4. Use of beam deflection to control an electron beam wire deposition process

    NASA Technical Reports Server (NTRS)

    Taminger, Karen M. (Inventor); Hofmeister, William H. (Inventor); Hafley, Robert A. (Inventor)

    2013-01-01

    A method for controlling an electron beam process wherein a wire is melted and deposited on a substrate as a molten pool comprises generating the electron beam with a complex raster pattern, and directing the beam onto an outer surface of the wire to thereby control a location of the wire with respect to the molten pool. Directing the beam selectively heats the outer surface of the wire and maintains the position of the wire with respect to the molten pool. An apparatus for controlling an electron beam process includes a beam gun adapted for generating the electron beam, and a controller adapted for providing the electron beam with a complex raster pattern and for directing the electron beam onto an outer surface of the wire to control a location of the wire with respect to the molten pool.

  5. Strut Shaping of 34m Beam Waveguide Antenna for Reductions in Near-Field RF and Noise Temperature

    NASA Technical Reports Server (NTRS)

    Khayatian, Behrouz; Hoppe, Daniel J.; Britcliffe, Michael J.; Gama, Eric

    2012-01-01

    Strut shaping of NASA's Deep Space Network (DSN) 34m Beam Waveguide (BWG) antenna has been implemented to reduce near-field RF exposure while improving the antenna noise temperature. Strut shaping was achieved by introducing an RF shield that does not compromise the structural integrity of the existing antenna. Reduction in the RF near-field level will compensate for the planned transmit power increase of the antenna from 20 kW to 80 kW while satisfying safety requirements for RF exposure. Measured antenna noise temperature was also improved by as much as 1.5 K for the low elevation angles and 0.5 K in other areas.

  6. Flat profile laser beam shaper

    DOEpatents

    Johnson, Todd R.

    2017-09-12

    A system for shaping a beam comprises an emitter for emitting coherent electromagnetic radiation. Birefringent displacers are configured between the emitter and a target wherein the at least two birefringent displacers split the coherent electromagnetic radiation into a plurality of coherent parallel beams of electromagnetic radiation thereby producing a shaped wave front of the coherent parallel beams of electromagnetic radiation.

  7. Speech understanding in background noise with the two-microphone adaptive beamformer BEAM in the Nucleus Freedom Cochlear Implant System.

    PubMed

    Spriet, Ann; Van Deun, Lieselot; Eftaxiadis, Kyriaky; Laneau, Johan; Moonen, Marc; van Dijk, Bas; van Wieringen, Astrid; Wouters, Jan

    2007-02-01

    This paper evaluates the benefit of the two-microphone adaptive beamformer BEAM in the Nucleus Freedom cochlear implant (CI) system for speech understanding in background noise by CI users. A double-blind evaluation of the two-microphone adaptive beamformer BEAM and a hardware directional microphone was carried out with five adult Nucleus CI users. The test procedure consisted of a pre- and post-test in the lab and a 2-wk trial period at home. In the pre- and post-test, the speech reception threshold (SRT) with sentences and the percentage correct phoneme scores for CVC words were measured in quiet and background noise at different signal-to-noise ratios. Performance was assessed for two different noise configurations (with a single noise source and with three noise sources) and two different noise materials (stationary speech-weighted noise and multitalker babble). During the 2-wk trial period at home, the CI users evaluated the noise reduction performance in different listening conditions by means of the SSQ questionnaire. In addition to the perceptual evaluation, the noise reduction performance of the beamformer was measured physically as a function of the direction of the noise source. Significant improvements of both the SRT in noise (average improvement of 5-16 dB) and the percentage correct phoneme scores (average improvement of 10-41%) were observed with BEAM compared to the standard hardware directional microphone. In addition, the SSQ questionnaire and subjective evaluation in controlled and real-life scenarios suggested a possible preference for the beamformer in noisy environments. The evaluation demonstrates that the adaptive noise reduction algorithm BEAM in the Nucleus Freedom CI-system may significantly increase the speech perception by cochlear implantees in noisy listening conditions. This is the first monolateral (adaptive) noise reduction strategy actually implemented in a mainstream commercial CI.

  8. High-speed pulse-shape generator, pulse multiplexer

    DOEpatents

    Burkhart, Scott C.

    2002-01-01

    The invention combines arbitrary amplitude high-speed pulses for precision pulse shaping for the National Ignition Facility (NIF). The circuitry combines arbitrary height pulses which are generated by replicating scaled versions of a trigger pulse and summing them delayed in time on a pulse line. The combined electrical pulses are connected to an electro-optic modulator which modulates a laser beam. The circuit can also be adapted to combine multiple channels of high speed data into a single train of electrical pulses which generates the optical pulses for very high speed optical communication. The invention has application in laser pulse shaping for inertial confinement fusion, in optical data links for computers, telecommunications, and in laser pulse shaping for atomic excitation studies. The invention can be used to effect at least a 10.times. increase in all fiber communication lines. It allows a greatly increased data transfer rate between high-performance computers. The invention is inexpensive enough to bring high-speed video and data services to homes through a super modem.

  9. GaN nanowires with pentagon shape cross-section by ammonia-source molecular beam epitaxy

    DOE PAGES

    Lin, Yong; Leung, Benjamin; Li, Qiming; ...

    2015-07-14

    In this study, ammonia-based molecular beam epitaxy (NH 3-MBE) was used to grow catalyst-assisted GaN nanowires on (11¯02) r-plane sapphire substrates. Dislocation free [112¯0] oriented nanowires are formed with pentagon shape cross-section, instead of the usual triangular shape facet configuration. Specifically, the cross-section is the result of the additional two nonpolar {101¯0} side facets, which appear due to a decrease in relative growth rate of the {101¯0} facets to the {101¯1} and {101¯1} facets under the growth regime in NH 3-MBE. Compared to GaN nanowires grown by Ni-catalyzed metal–organic chemical vapor deposition, the NH 3-MBE grown GaN nanowires show moremore » than an order of magnitude increase in band-edge to yellow luminescence intensity ratio, as measured by cathodoluminescence, indicating improved microstructural and optical properties.« less

  10. A disturbance observer-based adaptive control approach for flexure beam nano manipulators.

    PubMed

    Zhang, Yangming; Yan, Peng; Zhang, Zhen

    2016-01-01

    This paper presents a systematic modeling and control methodology for a two-dimensional flexure beam-based servo stage supporting micro/nano manipulations. Compared with conventional mechatronic systems, such systems have major control challenges including cross-axis coupling, dynamical uncertainties, as well as input saturations, which may have adverse effects on system performance unless effectively eliminated. A novel disturbance observer-based adaptive backstepping-like control approach is developed for high precision servo manipulation purposes, which effectively accommodates model uncertainties and coupling dynamics. An auxiliary system is also introduced, on top of the proposed control scheme, to compensate the input saturations. The proposed control architecture is deployed on a customized-designed nano manipulating system featured with a flexure beam structure and voice coil actuators (VCA). Real time experiments on various manipulating tasks, such as trajectory/contour tracking, demonstrate precision errors of less than 1%. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  11. A versatile setup using femtosecond adaptive spectroscopic techniques for coherent anti-Stokes Raman scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Yujie, E-mail: styojm@physics.tamu.edu; Voronine, Dmitri V.; Sokolov, Alexei V.

    2015-08-15

    We report a versatile setup based on the femtosecond adaptive spectroscopic techniques for coherent anti-Stokes Raman scattering. The setup uses a femtosecond Ti:Sapphire oscillator source and a folded 4f pulse shaper, in which the pulse shaping is carried out through conventional optical elements and does not require a spatial light modulator. Our setup is simple in alignment, and can be easily switched between the collinear single-beam and the noncollinear two-beam configurations. We demonstrate the capability for investigating both transparent and highly scattering samples by detecting transmitted and reflected signals, respectively.

  12. Relativistic electron beam generator

    DOEpatents

    Mooney, L.J.; Hyatt, H.M.

    1975-11-11

    A relativistic electron beam generator for laser media excitation is described. The device employs a diode type relativistic electron beam source having a cathode shape which provides a rectangular output beam with uniform current density.

  13. Shape control of structures with semi-definite stiffness matrices for adaptive wings

    NASA Astrophysics Data System (ADS)

    Austin, Fred; Van Nostrand, William C.; Rossi, Michael J.

    1993-09-01

    Maintaining an optimum-wing cross section during transonic cruise can dramatically reduce the shock-induced drag and can result in significant fuel savings and increased range. Our adaptive-wing concept employs actuators as truss elements of active ribs to reshape the wing cross section by deforming the structure. In our previous work, to derive the shape control- system gain matrix, we developed a procedure that requires the inverse of the stiffness matrix of the structure without the actuators. However, this method cannot be applied to designs where the actuators are required structural elements since the stiffness matrices are singular when the actuator are removed. Consequently, a new method was developed, where the order of the problem is reduced and only the inverse of a small nonsingular partition of the stiffness matrix is required to obtain the desired gain matrix. The procedure was experimentally validated by achieving desired shapes of a physical model of an aircraft-wing rib. The theory and test results are presented.

  14. Beam width and transmitter power adaptive to tracking system performance for free-space optical communication.

    PubMed

    Arnon, S; Rotman, S; Kopeika, N S

    1997-08-20

    The basic free-space optical communication system includes at least two satellites. To communicate between them, the transmitter satellite must track the beacon of the receiver satellite and point the information optical beam in its direction. Optical tracking and pointing systems for free space suffer during tracking from high-amplitude vibration because of background radiation from interstellar objects such as the Sun, Moon, Earth, and stars in the tracking field of view or the mechanical impact from satellite internal and external sources. The vibrations of beam pointing increase the bit error rate and jam communication between the two satellites. One way to overcome this problem is to increase the satellite receiver beacon power. However, this solution requires increased power consumption and weight, both of which are disadvantageous in satellite development. Considering these facts, we derive a mathematical model of a communication system that adapts optimally the transmitter beam width and the transmitted power to the tracking system performance. Based on this model, we investigate the performance of a communication system with discrete element optical phased array transmitter telescope gain. An example for a practical communication system between a Low Earth Orbit Satellite and a Geostationary Earth Orbit Satellite is presented. From the results of this research it can be seen that a four-element adaptive transmitter telescope is sufficient to compensate for vibration amplitude doubling. The benefits of the proposed model are less required transmitter power and improved communication system performance.

  15. Genome rearrangement shapes Prochlorococcus ecological adaptation.

    PubMed

    Yan, Wei; Wei, Shuzhen; Wang, Qiong; Xiao, Xilin; Zeng, Qinglu; Jiao, Nianzhi; Zhang, Rui

    2018-06-18

    Prochlorococcus is the most abundant and smallest known free-living photosynthetic microorganism and is a key player in marine ecosystems and biogeochemical cycles. Prochlorococcus can be broadly divided into high-light-adapted (HL) and low-light-adapted (LL) clades. In this study, we isolated two low-light-adapted I (LLI) strains from the western Pacific Ocean and obtained their genomic data. We reconstructed Prochlorococcus evolution based on genome rearrangement. Our results showed that genome rearrangement might have played an important role in Prochlorococcus evolution. We also found that the Prochlorococcus clades with streamlined genomes maintained relatively high synteny throughout most of their genomes, and several regions served as rearrangement hotspots. Backbone analysis showed that different clades shared a conserved backbone but also had clade-specific regions, and the genes in these regions were associated with ecological adaptations. Importance Prochlorococcus , the most abundant and smallest known free-living photosynthetic microorganism, play a key role in marine ecosystems and biogeochemical cycles. The Prochlorococcus genome evolution is a fundamental question related to how Prochlorococcus clades adapted to different ecological niches. Recent studies revealed that the gene gain and loss is crucial to the clade differentiation. The significance of our research is that we interpreted the Prochlorococcus genome evolution from the perspective of genome structure, and associated the genome rearrangement with the Prochlorococcus clade differentiation and subsequent ecological adaptation. Copyright © 2018 Yan et al.

  16. Development of Prior Image-based, High-Quality, Low-Dose Kilovoltage Cone Beam CT for Use in Adaptive Radiotherapy of Prostate Cancer

    DTIC Science & Technology

    2012-05-01

    employs kilovoltage (KV) cone- beam CT (CBCT) for guiding treatment. High quality CBCT images are important in achieving improved treatment effect...necessary for achieving successful adaptive RT. Kilovoltage cone-beam CT (CBCT) has shown its capability of yielding such images to guide the prostate cancer...study of low-dose intra-operative cone-beam CT for image- guided surgery,” Proc. SPIE, 7961, 79615P, 2011 10. X. Han, E. Pearson, J. Bian, S. Cho, E. Y

  17. Numerical simulation of electron beam welding with beam oscillations

    NASA Astrophysics Data System (ADS)

    Trushnikov, D. N.; Permyakov, G. L.

    2017-02-01

    This research examines the process of electron-beam welding in a keyhole mode with the use of beam oscillations. We study the impact of various beam oscillations and their parameters on the shape of the keyhole, the flow of heat and mass transfer processes and weld parameters to develop methodological recommendations. A numerical three-dimensional mathematical model of electron beam welding is presented. The model was developed on the basis of a heat conduction equation and a Navier-Stokes equation taking into account phase transitions at the interface of a solid and liquid phase and thermocapillary convection (Marangoni effect). The shape of the keyhole is determined based on experimental data on the parameters of the secondary signal by using the method of a synchronous accumulation. Calculations of thermal and hydrodynamic processes were carried out based on a computer cluster, using a simulation package COMSOL Multiphysics.

  18. SU-E-J-57: First Development of Adapting to Intrafraction Relative Motion Between Prostate and Pelvic Lymph Nodes Targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ge, Y; Colvill, E; O’Brien, R

    2015-06-15

    Purpose Large intrafraction relative motion of multiple targets is common in advanced head and neck, lung, abdominal, gynaecological and urological cancer, jeopardizing the treatment outcomes. The objective of this study is to develop a real-time adaptation strategy, for the first time, to accurately correct for the relative motion of multiple targets by reshaping the treatment field using the multi-leaf collimator (MLC). Methods The principle of tracking the simultaneously treated but differentially moving tumor targets is to determine the new aperture shape that conforms to the shifted targets. Three dimensional volumes representing the individual targets are projected to the beam’s eyemore » view. The leaf openings falling inside each 2D projection will be shifted according to the measured motion of each target to form the new aperture shape. Based on the updated beam shape, new leaf positions will be determined with optimized trade-off between the target underdose and healthy tissue overdose, and considerations of the physical constraints of the MLC. Taking a prostate cancer patient with pelvic lymph node involvement as an example, a preliminary dosimetric study was conducted to demonstrate the potential treatment improvement compared to the state-of- art adaptation technique which shifts the whole beam to track only one target. Results The world-first intrafraction adaptation system capable of reshaping the beam to correct for the relative motion of multiple targets has been developed. The dose in the static nodes and small bowel are closer to the planned distribution and the V45 of small bowel is decreased from 110cc to 75cc, corresponding to a 30% reduction by this technique compared to the state-of-art adaptation technique. Conclusion The developed adaptation system to correct for intrafraction relative motion of multiple targets will guarantee the tumour coverage and thus enable PTV margin reduction to minimize the high target dose to the adjacent

  19. Laser diode stack beam shaping for efficient and compact long-range laser illuminator design

    NASA Astrophysics Data System (ADS)

    Lutz, Y.; Poyet, J. M.

    2014-04-01

    Laser diode stacks are interesting laser sources for active imaging illuminators. They allow the accumulation of large amounts of energy in multi-pulse mode, which is best suited for long-range image recording. Even when the laser diode stacks are equipped with fast-axis collimation (FAC) and slow-axis collimation (SAC) micro-lenses, their beam parameter products BPP are not compatible with direct use in highly efficient and compact illuminators. This is particularly true when narrow divergences are required such as for long-range applications. A solution to overcome these difficulties is to enhance the poor slow-axis BPP by virtually restacking the laser diode stack. We present a beam shaping and homogenization method that is low-cost and efficient and has low alignment sensitivity. After conducting simulations, we have realized and characterized the illuminator. A compact long-range laser illuminator has been set up with a divergence of 3.5×2.6 mrad and a global efficiency of 81%. Here, a projection lens with a clear aperture of 62 mm and a focal length of 571 mm was used.

  20. Aberration-free aspherical lens shape for shortening the focal distance of an already convergent beam

    PubMed Central

    Sutter, John P.; Alianelli, Lucia

    2017-01-01

    The shapes of single lens surfaces capable of focusing divergent and collimated beams without aberration have already been calculated. However, nanofocusing compound refractive lenses (CRLs) require many consecutive lens surfaces. Here a theoretical example of an X-ray nanofocusing CRL with 48 consecutive surfaces is studied. The surfaces on the downstream end of this CRL accept X-rays that are already converging toward a focus, and refract them toward a new focal point that is closer to the surface. This case, so far missing from the literature, is treated here. The ideal surface for aberration-free focusing of a convergent incident beam is found by analytical computation and by ray tracing to be one sheet of a Cartesian oval. An ‘X-ray approximation’ of the Cartesian oval is worked out for the case of small change in index of refraction across the lens surface. The paraxial approximation of this surface is described. These results will assist the development of large-aperture CRLs for nanofocusing. PMID:29091055

  1. A novel design of beam shaping assembly to use D-T neutron generator for BNCT.

    PubMed

    Kasesaz, Yaser; Karimi, Marjan

    2016-12-01

    In order to use 14.1MeV neutrons produced by d-T neutron generators, two special and novel Beam Shaping Assemblies (BSA), including multi-layer and hexagonal lattice have been suggested and the effect of them has been investigated by MCNP4C Monte Carlo code. The results show that the proposed BSA can provide the qualified epithermal neutron beam for BNCT. The final epithermal neutron flux is about 6e9 n/cm2.s. The final proposed BSA has some different advantages: 1) it consists of usual and well-known materials (Pb, Al, Fluental and Cd); 2) it has a simple geometry; 3) it does not need any additional gamma filter; 4) it can provide high flux of epithermal neutrons. As this type of neutron source is under development in the world, it seems that they can be used clinically in a hospital considering the proposed BSA. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. An adaptive learning control system for large flexible structures

    NASA Technical Reports Server (NTRS)

    Thau, F. E.

    1985-01-01

    The objective of the research has been to study the design of adaptive/learning control systems for the control of large flexible structures. In the first activity an adaptive/learning control methodology for flexible space structures was investigated. The approach was based on using a modal model of the flexible structure dynamics and an output-error identification scheme to identify modal parameters. In the second activity, a least-squares identification scheme was proposed for estimating both modal parameters and modal-to-actuator and modal-to-sensor shape functions. The technique was applied to experimental data obtained from the NASA Langley beam experiment. In the third activity, a separable nonlinear least-squares approach was developed for estimating the number of excited modes, shape functions, modal parameters, and modal amplitude and velocity time functions for a flexible structure. In the final research activity, a dual-adaptive control strategy was developed for regulating the modal dynamics and identifying modal parameters of a flexible structure. A min-max approach was used for finding an input to provide modal parameter identification while not exceeding reasonable bounds on modal displacement.

  3. Adaptive Façade: Variant-Finding using Shape Grammar

    NASA Astrophysics Data System (ADS)

    Tomasowa, Riva; Utama Sjarifudin, Firza

    2017-12-01

    Modular façade construction has never been better since the birth of computer-aided manufacturing which bridges the modeling phase into the manufacturing phase for escalating the mass production. This comes to a result that the identity of a product or a building façade will commonly generate in the same way that the initial design was intended to. Rectifying the early model will then greatly impact the process later. The aim of this paper is to propose a way to solve these two challenges, without risking the manufacturing process, but more to explore the potential designs. Shape grammar is used to conceive more designs in the early stage, derived from the initial product - the modular adaptive façade system. The derivations are then tested through simulation to state the efficacy of the models. We find that the workflow somehow contributes to the better design and engineering process as well as the solution allows diversification in the façade expressions.

  4. X-ray luminescence computed tomography imaging based on X-ray distribution model and adaptively split Bregman method

    PubMed Central

    Chen, Dongmei; Zhu, Shouping; Cao, Xu; Zhao, Fengjun; Liang, Jimin

    2015-01-01

    X-ray luminescence computed tomography (XLCT) has become a promising imaging technology for biological application based on phosphor nanoparticles. There are mainly three kinds of XLCT imaging systems: pencil beam XLCT, narrow beam XLCT and cone beam XLCT. Narrow beam XLCT can be regarded as a balance between the pencil beam mode and the cone-beam mode in terms of imaging efficiency and image quality. The collimated X-ray beams are assumed to be parallel ones in the traditional narrow beam XLCT. However, we observe that the cone beam X-rays are collimated into X-ray beams with fan-shaped broadening instead of parallel ones in our prototype narrow beam XLCT. Hence we incorporate the distribution of the X-ray beams in the physical model and collected the optical data from only two perpendicular directions to further speed up the scanning time. Meanwhile we propose a depth related adaptive regularized split Bregman (DARSB) method in reconstruction. The simulation experiments show that the proposed physical model and method can achieve better results in the location error, dice coefficient, mean square error and the intensity error than the traditional split Bregman method and validate the feasibility of method. The phantom experiment can obtain the location error less than 1.1 mm and validate that the incorporation of fan-shaped X-ray beams in our model can achieve better results than the parallel X-rays. PMID:26203388

  5. Capacity achieving nonbinary LDPC coded non-uniform shaping modulation for adaptive optical communications.

    PubMed

    Lin, Changyu; Zou, Ding; Liu, Tao; Djordjevic, Ivan B

    2016-08-08

    A mutual information inspired nonbinary coded modulation design with non-uniform shaping is proposed. Instead of traditional power of two signal constellation sizes, we design 5-QAM, 7-QAM and 9-QAM constellations, which can be used in adaptive optical networks. The non-uniform shaping and LDPC code rate are jointly considered in the design, which results in a better performance scheme for the same SNR values. The matched nonbinary (NB) LDPC code is used for this scheme, which further improves the coding gain and the overall performance. We analyze both coding performance and system SNR performance. We show that the proposed NB LDPC-coded 9-QAM has more than 2dB gain in symbol SNR compared to traditional LDPC-coded star-8-QAM. On the other hand, the proposed NB LDPC-coded 5-QAM and 7-QAM have even better performance than LDPC-coded QPSK.

  6. Characterization of equipment for shaping and imaging hadron minibeams

    NASA Astrophysics Data System (ADS)

    Pugatch, V.; Brons, S.; Campbell, M.; Kovalchuk, O.; Llopart, X.; Martínez-Rovira, I.; Momot, Ie.; Okhrimenko, O.; Prezado, Y.; Sorokin, Yu.

    2017-11-01

    For the feasibility studies of spatially fractionated hadron therapy prototypes of the equipment for hadron minibeams shaping and monitoring have been designed, built and tested. The collimators design was based on Monte Carlo simulations (Gate v.6.2). Slit and matrix collimators were used for minibeams shaping. Gafchromic films, micropixel detectors Timepix in a hybrid as well as metal mode were tested for measuring hadrons intensity distribution in minibeams. An overall beam profile was measured by the metal microstrip detector. The performance of a mini-beams shaping and monitoring equipment was characterized exploring low energy protons at the KINR Tandem generator as well as high energy carbon and oxygen ion beams at HIT (Heidelberg). The results demonstrate reliable performance of the tested equipment for shaping and imaging hadron mini-beam structures.

  7. Intercostal high intensity focused ultrasound for liver ablation: The influence of beam shaping on sonication efficacy and near-field risks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greef, M. de, E-mail: m.degreef@umcutrecht.nl; Wijlemans, J. W.; Bartels, L. W.

    2015-08-15

    Purpose: One of the major issues in high intensity focused ultrasound ablation of abdominal lesions is obstruction of the ultrasound beam by the thoracic cage. Beam shaping strategies have been shown by several authors to increase focal point intensity while limiting rib exposure. However, as rib obstruction leaves only part of the aperture available for energy transmission, conserving total emitted acoustic power, the intensity in the near-field tissues inherently increases after beam shaping. Despite of effective rib sparing, those tissues are therefore subjected to increased risk of thermal damage. In this study, for a number of clinically representative intercostal sonicationmore » geometries, modeling clinically available hardware, the effect of beam shaping on both the exposure of the ribs and near-field to acoustic energy was evaluated and the implications for the volumetric ablation rate were addressed. Methods: A relationship between rib temperature rise and acoustic energy density was established by means of in vivo MR thermometry and simulations of the incident acoustic energy for the corresponding anatomies. This relationship was used for interpretation of rib exposure in subsequent numerical simulations in which rib spacing, focal point placement, and the focal point trajectory were varied. The time required to heat a targeted region to 65 °C was determined without and with the application of beam shaping. The required sonication time was used to calculate the acoustic energy density at the fat–muscle interface and at the surface of the ribs. At the fat–muscle interface, exposure was compared to available literature data and rib exposure was interpreted based on the earlier obtained relation between measured temperature rise and simulated acoustic energy density. To estimate the volumetric ablation rate, the cool-down time between periods of energy exposure was estimated using a time-averaged power limit of 100 kJ/h. Results: At the level of

  8. Modeling of the laser beam shape for high-power applications

    NASA Astrophysics Data System (ADS)

    Jabczyński, Jan K.; Kaskow, Mateusz; Gorajek, Lukasz; Kopczyński, Krzysztof; Zendzian, Waldemar

    2018-04-01

    Aperture losses and thermo-optic effects (TOE) inside optics as well as the effective beam width in far field should be taken into account in the analysis of the most appropriate laser beam profile for high-power applications. We have theoretically analyzed such a problem for a group of super-Gaussian beams taking first only diffraction limitations. Furthermore, we have investigated TOE on far-field parameters of such beams to determine the influence of absorption in optical elements on beam quality degradation. The best compromise gives the super-Gaussian profile of index p = 5, for which beam quality does not decrease noticeably and the thermo-optic higher order aberrations are compensated. The simplified formulas were derived for beam quality metrics (parameter M2 and Strehl ratio), which enable estimation of the influence of heat deposited in optics on degradation of beam quality. The method of dynamic compensation of such effect was proposed.

  9. Optical vortex beams: Generation, propagation and applications

    NASA Astrophysics Data System (ADS)

    Cheng, Wen

    An optical vortex (also known as a screw dislocation or phase singularity) is one type of optical singularity that has a spiral phase wave front around a singularity point where the phase is undefined. Optical vortex beams have a lot of applications in areas such as optical communications, LADAR (laser detection and ranging) system, optical tweezers, optical trapping and laser beam shaping. The concepts of optical vortex beams and methods of generation are briefly discussed. The properties of optical vortex beams propagating through atmospheric turbulence have been studied. A numerical modeling is developed and validated which has been applied to study the high order properties of optical vortex beams propagating though a turbulent atmosphere. The simulation results demonstrate the advantage that vectorial vortex beams may be more stable and maintain beam integrity better when they propagate through turbulent atmosphere. As one important application of optical vortex beams, the laser beam shaping is introduced and studied. We propose and demonstrate a method to generate a 2D flat-top beam profile using the second order full Poincare beams. Its applications in two-dimensional flat-top beam shaping with spatially variant polarization under low numerical aperture focusing have been studied both theoretically and experimentally. A novel compact flat-top beam shaper based on the proposed method has been designed, fabricated and tested. Experimental results show that high quality flat-top profile can be obtained with steep edge roll-off. The tolerance to different input beam sizes of the beam shaper is also verified in the experimental demonstration. The proposed and experimentally verified LC beam shaper has the potential to become a promising candidate for compact and low-cost flat-top beam shaping in areas such as laser processing/machining, lithography and medical treatment.

  10. Measurement of two-photon-absorption spectra through nonlinear fluorescence produced by a line-shaped excitation beam.

    PubMed

    Hasani, E; Parravicini, J; Tartara, L; Tomaselli, A; Tomassini, D

    2018-05-01

    We propose an innovative experimental approach to estimate the two-photon absorption (TPA) spectrum of a fluorescent material. Our method develops the standard indirect fluorescence-based method for the TPA measurement by employing a line-shaped excitation beam, generating a line-shaped fluorescence emission. Such a configuration, which requires a relatively high amount of optical power, permits to have a greatly increased fluorescence signal, thus avoiding the photon counterdetection devices usually used in these measurements, and allowing to employ detectors such as charge-coupled device (CCD) cameras. The method is finally tested on a fluorescent isothiocyanate sample, whose TPA spectrum, which is measured with the proposed technique, is compared with the TPA spectra reported in the literature, confirming the validity of our experimental approach. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.

  11. Adaptive x-ray threat detection using sequential hypotheses testing with fan-beam experimental data (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Thamvichai, Ratchaneekorn; Huang, Liang-Chih; Ashok, Amit; Gong, Qian; Coccarelli, David; Greenberg, Joel A.; Gehm, Michael E.; Neifeld, Mark A.

    2017-05-01

    We employ an adaptive measurement system, based on sequential hypotheses testing (SHT) framework, for detecting material-based threats using experimental data acquired on an X-ray experimental testbed system. This testbed employs 45-degree fan-beam geometry and 15 views over a 180-degree span to generate energy sensitive X-ray projection data. Using this testbed system, we acquire multiple view projection data for 200 bags. We consider an adaptive measurement design where the X-ray projection measurements are acquired in a sequential manner and the adaptation occurs through the choice of the optimal "next" source/view system parameter. Our analysis of such an adaptive measurement design using the experimental data demonstrates a 3x-7x reduction in the probability of error relative to a static measurement design. Here the static measurement design refers to the operational system baseline that corresponds to a sequential measurement using all the available sources/views. We also show that by using adaptive measurements it is possible to reduce the number of sources/views by nearly 50% compared a system that relies on static measurements.

  12. Improved Gaussian Beam-Scattering Algorithm

    NASA Technical Reports Server (NTRS)

    Lock, James A.

    1995-01-01

    The localized model of the beam-shape coefficients for Gaussian beam-scattering theory by a spherical particle provides a great simplification in the numerical implementation of the theory. We derive an alternative form for the localized coefficients that is more convenient for computer computations and that provides physical insight into the details of the scattering process. We construct a FORTRAN program for Gaussian beam scattering with the localized model and compare its computer run time on a personal computer with that of a traditional Mie scattering program and with three other published methods for computing Gaussian beam scattering. We show that the analytical form of the beam-shape coefficients makes evident the fact that the excitation rate of morphology-dependent resonances is greatly enhanced for far off-axis incidence of the Gaussian beam.

  13. Generation of an ultra-flexible focused top-hat beam profile with aspheres

    NASA Astrophysics Data System (ADS)

    Möhl, A.; Wickenhagen, S.; Fuchs, U.

    2017-02-01

    The demand for a uniform intensity distribution in the focal region of the working beam is growing steadily, especially in the field of laser material processing. To generate such a top-hat beam profile, it was shown in the past, that the use of refractive beam shaping solutions provides very good results. In this work, existing beam shaping knowledge is combined with an intelligent modular approach to create a new beam shaping solution, that simplifies both, handling and integration into existing set-ups. Furthermore, the present system enables not just a flattop intensity distribution, but even donut shaped beam profile without adding any further components to the system. Additionally, this beam shaping system is built and successfully tested. Some results of the characterization are presented.

  14. FMRI evidence of 'mirror' responses to geometric shapes.

    PubMed

    Press, Clare; Catmur, Caroline; Cook, Richard; Widmann, Hannah; Heyes, Cecilia; Bird, Geoffrey

    2012-01-01

    Mirror neurons may be a genetic adaptation for social interaction. Alternatively, the associative hypothesis proposes that the development of mirror neurons is driven by sensorimotor learning, and that, given suitable experience, mirror neurons will respond to any stimulus. This hypothesis was tested using fMRI adaptation to index populations of cells with mirror properties. After sensorimotor training, where geometric shapes were paired with hand actions, BOLD response was measured while human participants experienced runs of events in which shape observation alternated with action execution or observation. Adaptation from shapes to action execution, and critically, observation, occurred in ventral premotor cortex (PMv) and inferior parietal lobule (IPL). Adaptation from shapes to execution indicates that neuronal populations responding to the shapes had motor properties, while adaptation to observation demonstrates that these populations had mirror properties. These results indicate that sensorimotor training induced populations of cells with mirror properties in PMv and IPL to respond to the observation of arbitrary shapes. They suggest that the mirror system has not been shaped by evolution to respond in a mirror fashion to biological actions; instead, its development is mediated by stimulus-general processes of learning within a system adapted for visuomotor control.

  15. Controlled Aeroelastic Response and Airfoil Shaping Using Adaptive Materials and Integrated Systems

    NASA Technical Reports Server (NTRS)

    Pinkerton, Jennifer L.; McGowan, Anna-Maria R.; Moses, Robert W.; Scott, Robert C.; Heeg, Jennifer

    1996-01-01

    This paper presents an overview of several activities of the Aeroelasticity Branch at the NASA Langley Research Center in the area of applying adaptive materials and integrated systems for controlling both aircraft aeroelastic response and airfoil shape. The experimental results of four programs are discussed: the Piezoelectric Aeroelastic Response Tailoring Investigation (PARTI); the Adaptive Neural Control of Aeroelastic Response (ANCAR) program; the Actively Controlled Response of Buffet Affected Tails (ACROBAT) program; and the Airfoil THUNDER Testing to Ascertain Characteristics (ATTACH) project. The PARTI program demonstrated active flutter control and significant rcductions in aeroelastic response at dynamic pressures below flutter using piezoelectric actuators. The ANCAR program seeks to demonstrate the effectiveness of using neural networks to schedule flutter suppression control laws. Th,e ACROBAT program studied the effectiveness of a number of candidate actuators, including a rudder and piezoelectric actuators, to alleviate vertical tail buffeting. In the ATTACH project, the feasibility of using Thin-Layer Composite-Uimorph Piezoelectric Driver and Sensor (THUNDER) wafers to control airfoil aerodynamic characteristics was investigated. Plans for future applications are also discussed.

  16. X-ray beam-shaping via deformable mirrors: surface profile and point spread function computation for Gaussian beams using physical optics.

    PubMed

    Spiga, D

    2018-01-01

    X-ray mirrors with high focusing performances are commonly used in different sectors of science, such as X-ray astronomy, medical imaging and synchrotron/free-electron laser beamlines. While deformations of the mirror profile may cause degradation of the focus sharpness, a deliberate deformation of the mirror can be made to endow the focus with a desired size and distribution, via piezo actuators. The resulting profile can be characterized with suitable metrology tools and correlated with the expected optical quality via a wavefront propagation code or, sometimes, predicted using geometric optics. In the latter case and for the special class of profile deformations with monotonically increasing derivative, i.e. concave upwards, the point spread function (PSF) can even be predicted analytically. Moreover, under these assumptions, the relation can also be reversed: from the desired PSF the required profile deformation can be computed analytically, avoiding the use of trial-and-error search codes. However, the computation has been so far limited to geometric optics, which entailed some limitations: for example, mirror diffraction effects and the size of the coherent X-ray source were not considered. In this paper, the beam-shaping formalism in the framework of physical optics is reviewed, in the limit of small light wavelengths and in the case of Gaussian intensity wavefronts. Some examples of shaped profiles are also shown, aiming at turning a Gaussian intensity distribution into a top-hat one, and checks of the shaping performances computing the at-wavelength PSF by means of the WISE code are made.

  17. Strut Shaping of 34m Beam Waveguide Antenna for Reductions in Near-Field RF and Noise Temeperature

    NASA Technical Reports Server (NTRS)

    Khayatian, Behrouz; Hoppe, Daniel J.; Britcliffe, Michael J.; Gama, Eric

    2012-01-01

    Struts shaping of the NASA's Deep Space Network (DSN) 34m Beam Waveguide (BWG) antenna has been implemented to reduce near-field RF exposure while improving the antenna noise temperature. Strut shaping was achieved by introducing an RF shield that does not compromise the structural integrity of the existing structure. Reduction in the RF near-field exposure will compensate for the planned transmit power increase of the antenna from 20 kW to 80 kW while satisfying safety requirements for RF exposure. Antenna noise temperature was also improved by as much as 1.5 K for the low elevation angles and 0.5 K in other areas. Both reductions of RF near-field exposure and antenna noise temperature were verified through measurements and agree very well with calculated results.

  18. Self-accelerating self-trapped nonlinear beams of Maxwell's equations.

    PubMed

    Kaminer, Ido; Nemirovsky, Jonathan; Segev, Mordechai

    2012-08-13

    We present shape-preserving self-accelerating beams of Maxwell's equations with optical nonlinearities. Such beams are exact solutions to Maxwell's equations with Kerr or saturable nonlinearity. The nonlinearity contributes to self-trapping and causes backscattering. Those effects, together with diffraction effects, work to maintain shape-preserving acceleration of the beam on a circular trajectory. The backscattered beam is found to be a key issue in the dynamics of such highly non-paraxial nonlinear beams. To study that, we develop two new techniques: projection operator separating the forward and backward waves, and reverse simulation. Finally, we discuss the possibility that such beams would reflect themselves through the nonlinear effect, to complete a 'U' shaped trajectory.

  19. Development and Beam-Shape Analysis of an Integrated Fiber-Optic Confocal Probe for High-Precision Central Thickness Measurement of Small-Radius Lenses

    PubMed Central

    Sutapun, Boonsong; Somboonkaew, Armote; Amarit, Ratthasart; Chanhorm, Sataporn

    2015-01-01

    This work describes a new design of a fiber-optic confocal probe suitable for measuring the central thicknesses of small-radius optical lenses or similar objects. The proposed confocal probe utilizes an integrated camera that functions as a shape-encoded position-sensing device. The confocal signal for thickness measurement and beam-shape data for off-axis measurement can be simultaneously acquired using the proposed probe. Placing the probe’s focal point off-center relative to a sample’s vertex produces a non-circular image at the camera’s image plane that closely resembles an ellipse for small displacements. We were able to precisely position the confocal probe’s focal point relative to the vertex point of a ball lens with a radius of 2.5 mm, with a lateral resolution of 1.2 µm. The reflected beam shape based on partial blocking by an aperture was analyzed and verified experimentally. The proposed confocal probe offers a low-cost, high-precision technique, an alternative to a high-cost three-dimensional surface profiler, for tight quality control of small optical lenses during the manufacturing process. PMID:25871720

  20. Impact of beam-beam effects on precision luminosity measurements at the ILC

    NASA Astrophysics Data System (ADS)

    Rimbault, C.; Bambade, P.; Mönig, K.; Schulte, D.

    2007-09-01

    In this paper, the impact of beam-beam effects on the precision luminosity measurement at the International Linear Collider is investigated quantitatively for the first time. GUINEA-PIG, a beam-beam interaction simulation tool, is adapted to treat the space charge effects affecting the Bhabha events used in this measurement. The biases due to the resulting changes in kinematics are evaluated for different center-of-mass energies and beam parameters.

  1. Beam profiles measured with thermoluminescent dosimeters

    NASA Technical Reports Server (NTRS)

    Lucks, H.; Marcowitz, S. M.; Wheeler, R. W.

    1969-01-01

    Beam profilometer, using thermoluminescent dosimeters, gives a quantitative and qualitative representation of the focus of an external protron beam of a synchrotron. The total number of particles in the beam, particle distribution, and the shape of the beam are determined.

  2. Fabrication and testing of SMA composite beam with shape control

    NASA Astrophysics Data System (ADS)

    Noolvi, Basavaraj; S, Raja; Nagaraj, Shanmukha; Mudradi, Varada Raj

    2017-07-01

    Smart materials are the advanced materials that have characteristics of sensing and actuation in response to the external stimuli like pressure, heat or electric charge etc. These materials can be integrated in to any structure to make it smart. From the different types of smart materials available, Shape Memory Alloy (SMA) is found to be more useful in designing new applications, which can offer more actuating speed, reduce the overall weight of the structure. The unique property of SMA is the ability to remember and recover from large strains of upto 8% without permanent deformation. Embedding the SMA wire/sheet in fiber-epoxy/flexible resin systems has many potential applications in Aerospace, Automobile, Medical, Robotics and various other fields. In this work the design, fabrication, and testing of smart SMA composite beam has been carried out. Two types of epoxy based resin systems namely LY 5210 resin system and EPOLAM 2063 resin system are used in fabricating the SMA composite specimens. An appropriate mould is designed and fabricated to retain the pre-strain of SMA wire during high temperature post curing of composite specimens. The specimens are fabricated using vacuum bag technique.

  3. Annular beam shaping system for advanced 3D laser brazing

    NASA Astrophysics Data System (ADS)

    Pütsch, Oliver; Stollenwerk, Jochen; Kogel-Hollacher, Markus; Traub, Martin

    2012-10-01

    As laser brazing benefits from advantages such as smooth joints and small heat-affected zones, it has become established as a joining technology that is widely used in the automotive industry. With the processing of complex-shaped geometries, recent developed brazing heads suffer, however, from the need for continuous reorientation of the optical system and/or limited accessibility due to lateral wire feeding. This motivates the development of a laser brazing head with coaxial wire feeding and enhanced functionality. An optical system is designed that allows to generate an annular intensity distribution in the working zone. The utilization of complex optical components avoids obscuration of the optical path by the wire feeding. The new design overcomes the disadvantages of the state-of-the-art brazing heads with lateral wire feeding and benefits from the independence of direction while processing complex geometries. To increase the robustness of the brazing process, the beam path also includes a seam tracking system, leading to a more challenging design of the whole optical train. This paper mainly discusses the concept and the optical design of the coaxial brazing head, and also presents the results obtained with a prototype and selected application results.

  4. Effects of beam irregularity on uniform scanning

    NASA Astrophysics Data System (ADS)

    Kim, Chang Hyeuk; Jang, Sea duk; Yang, Tae-Keun

    2016-09-01

    An active scanning beam delivery method has many advantages in particle beam applications. For the beam is to be successfully delivered to the target volume by using the active scanning technique, the dose uniformity must be considered and should be at least 2.5% in the case of therapy application. During beam irradiation, many beam parameters affect the 2-dimensional uniformity at the target layer. A basic assumption in the beam irradiation planning stage is that the shape of the beam is symmetric and follows a Gaussian distribution. In this study, a pure Gaussian-shaped beam distribution was distorted by adding parasitic Gaussian distribution. An appropriate uniform scanning condition was deduced by using a quantitative analysis based on the gamma value of the distorted beam and 2-dimensional uniformities.

  5. Application of a boundary element method to the study of dynamical torsion of beams

    NASA Technical Reports Server (NTRS)

    Czekajski, C.; Laroze, S.; Gay, D.

    1982-01-01

    During dynamic torsion of beam elements, consideration of nonuniform warping effects involves a more general technical formulation then that of Saint-Venant. Nonclassical torsion constants appear in addition to the well known torsional rigidity. The adaptation of the boundary integral element method to the calculation of these constants for general section shapes is described. The suitability of the formulation is investigated with some examples of thick as well as thin walled cross sections.

  6. Optimization of beam shaping assembly based on D-T neutron generator and dose evaluation for BNCT

    NASA Astrophysics Data System (ADS)

    Naeem, Hamza; Chen, Chaobin; Zheng, Huaqing; Song, Jing

    2017-04-01

    The feasibility of developing an epithermal neutron beam for a boron neutron capture therapy (BNCT) facility based on a high intensity D-T fusion neutron generator (HINEG) and using the Monte Carlo code SuperMC (Super Monte Carlo simulation program for nuclear and radiation process) is proposed in this study. The Monte Carlo code SuperMC is used to determine and optimize the final configuration of the beam shaping assembly (BSA). The optimal BSA design in a cylindrical geometry which consists of a natural uranium sphere (14 cm) as a neutron multiplier, AlF3 and TiF3 as moderators (20 cm each), Cd (1 mm) as a thermal neutron filter, Bi (5 cm) as a gamma shield, and Pb as a reflector and collimator to guide neutrons towards the exit window. The epithermal neutron beam flux of the proposed model is 5.73 × 109 n/cm2s, and other dosimetric parameters for the BNCT reported by IAEA-TECDOC-1223 have been verified. The phantom dose analysis shows that the designed BSA is accurate, efficient and suitable for BNCT applications. Thus, the Monte Carlo code SuperMC is concluded to be capable of simulating the BSA and the dose calculation for BNCT, and high epithermal flux can be achieved using proposed BSA.

  7. Partial-Wave Representations of Laser Beams for Use in Light-Scattering Calculations

    NASA Technical Reports Server (NTRS)

    Gouesbet, Gerard; Lock, James A.; Grehan, Gerard

    1995-01-01

    In the framework of generalized Lorenz-Mie theory, laser beams are described by sets of beam-shape coefficients. The modified localized approximation to evaluate these coefficients for a focused Gaussian beam is presented. A new description of Gaussian beams, called standard beams, is introduced. A comparison is made between the values of the beam-shape coefficients in the framework of the localized approximation and the beam-shape coefficients of standard beams. This comparison leads to new insights concerning the electromagnetic description of laser beams. The relevance of our discussion is enhanced by a demonstration that the localized approximation provides a very satisfactory description of top-hat beams as well.

  8. Improvement of uniformity of the negative ion beams by tent-shaped magnetic field in the JT-60 negative ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshida, Masafumi, E-mail: yoshida.masafumi@jaea.go.jp; Hanada, Masaya; Kojima, Atsushi

    2014-02-15

    Non-uniformity of the negative ion beams in the JT-60 negative ion source with the world-largest ion extraction area was improved by modifying the magnetic filter in the source from the plasma grid (PG) filter to a tent-shaped filter. The magnetic design via electron trajectory calculation showed that the tent-shaped filter was expected to suppress the localization of the primary electrons emitted from the filaments and created uniform plasma with positive ions and atoms of the parent particles for the negative ions. By modifying the magnetic filter to the tent-shaped filter, the uniformity defined as the deviation from the averaged beammore » intensity was reduced from 14% of the PG filter to ∼10% without a reduction of the negative ion production.« less

  9. Scatter correction for cone-beam computed tomography using self-adaptive scatter kernel superposition

    NASA Astrophysics Data System (ADS)

    Xie, Shi-Peng; Luo, Li-Min

    2012-06-01

    The authors propose a combined scatter reduction and correction method to improve image quality in cone beam computed tomography (CBCT). The scatter kernel superposition (SKS) method has been used occasionally in previous studies. However, this method differs in that a scatter detecting blocker (SDB) was used between the X-ray source and the tested object to model the self-adaptive scatter kernel. This study first evaluates the scatter kernel parameters using the SDB, and then isolates the scatter distribution based on the SKS. The quality of image can be improved by removing the scatter distribution. The results show that the method can effectively reduce the scatter artifacts, and increase the image quality. Our approach increases the image contrast and reduces the magnitude of cupping. The accuracy of the SKS technique can be significantly improved in our method by using a self-adaptive scatter kernel. This method is computationally efficient, easy to implement, and provides scatter correction using a single scan acquisition.

  10. Hypergeometric Gaussian beam and its propagation in turbulence

    NASA Astrophysics Data System (ADS)

    Eyyuboğlu, Halil Tanyer; Cai, Yangjian

    2012-10-01

    We study propagation characteristics of hypergeometric Gaussian beam in turbulence. In this context, we formulate the receiver plane intensity using extended Huygens-Fresnel integral. From the graphical results, it is seen that, after propagation, hypergeometric Gaussian will in general assume the shape of a dark hollow beam at topological charges other than zero. Increasing values of topological charge will make the beam broader with steeper walls. On the other hand, higher values of hollowness parameter will contract into a narrower shape. Raising the topological charge or the hollowness parameter individually will cause outer rings to appear. Both increased levels of turbulence and longer propagation distances will accelerate the beam evolution and help reach the final Gaussian shape sooner. At lower wavelengths, there will be less beam spreading.

  11. Morphological integration and pleiotropy in the adaptive body shape of the snail-feeding carabid beetle Damaster blaptoides.

    PubMed

    Konuma, Junji; Yamamoto, Satoshi; Sota, Teiji

    2014-12-01

    The snail-feeding carabid beetle Damaster blaptoides exhibits diverse head and thorax morphologies, and these morphotypes are linked with two alternative feeding behaviours. Stout-shaped beetles feed on snails by crushing the shells, whereas slender-shaped beetles consume snails by inserting their heads into the shells. A trade-off exists between these feeding strategies. Because intermediate-shaped beetles are less proficient in these two behaviours, stout-slender morphological divergence occurs between related species feeding on land snails. To examine the genetic basis of these morphotypes, we conducted morphological analyses and quantitative trait locus (QTL) mapping using backcross offspring between the stout and slender subspecies. The morphological analyses showed that the width and length of the beetle body parts were correlated with each other; in particular, the head width (HW) and thorax length (TL) were strongly negatively correlated. QTL mapping showed that QTLs for HW and TL are located in close proximity to one another on the longest linkage group and that they have positive and negative additive genetic effects. Our results suggest that the adaptive phenotypic sets of a wide head and short thorax and a narrow head and long thorax are based on the closeness of these QTLs. Morphological integration between the head and thorax may play an important role in the adaptive divergence of these beetles. © 2014 John Wiley & Sons Ltd.

  12. High-precision double-frequency interferometric measurement of the cornea shape

    NASA Astrophysics Data System (ADS)

    Molebny, Vasyl V.; Pallikaris, Ioannis G.; Naoumidis, Leonidas P.; Smirnov, Eugene M.; Ilchenko, Leonid M.; Goncharov, Vadym O.

    1996-11-01

    To measure the shape of the cornea and its declinations from the necessary values before and after PRK operation, s well as the shape of other spherical objects like artificial pupil, a technique was used of double-frequency dual-beam interferometry. The technique is based on determination of the optical path difference between two neighboring laser beams, reflected from the cornea or other surface under investigation. Knowing the distance between the beams on the investigated shape. The shape itself is reconstructed by along-line integration. To adjust the wavefront orientation of the laser beam to the spherical shape of the cornea or artificial pupil in the course of scanning, additional lens is involved. Signal-to-noise ratio is ameliorated excluding losses in the acousto-optic deflectors. Polarization selection is realized for choosing the signal needed for measurement. 2D image presentation is accompanied by convenient PC accessories, permitting precise cross-section measurements along selected directions. Sensitivity of the order of 10-2 micrometers is achieved.

  13. The I-Raum: A new shaped hohlraum for improved inner beam propagation in indirectly-driven ICF implosions on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Robey, H. F.; Berzak Hopkins, L.; Milovich, J. L.; Meezan, N. B.

    2018-01-01

    Recent work in indirectly-driven inertial confinement fusion implosions on the National Ignition Facility has indicated that late-time propagation of the inner cones of laser beams (23° and 30°) is impeded by the growth of a "bubble" of hohlraum wall material (Au or depleted uranium), which is initiated by and is located at the location where the higher-intensity outer beams (44° and 50°) hit the hohlraum wall. The absorption of the inner cone beams by this "bubble" reduces the laser energy reaching the hohlraum equator at late time driving an oblate or pancaked implosion, which limits implosion performance. In this article, we present the design of a new shaped hohlraum designed specifically to reduce the impact of this bubble by adding a recessed pocket at the location where the outer cones hit the hohlraum wall. This recessed pocket displaces the bubble radially outward, reducing the inward penetration of the bubble at all times throughout the implosion and increasing the time for inner beam propagation by approximately 1 ns. This increased laser propagation time allows one to drive a larger capsule, which absorbs more energy and is predicted to improve implosion performance. The new design is based on a recent National Ignition Facility shot, N170601, which produced a record neutron yield. The expansion rate and absorption of laser energy by the bubble is quantified for both cylindrical and shaped hohlraums, and the predicted performance is compared.

  14. Generation of electron Airy beams.

    PubMed

    Voloch-Bloch, Noa; Lereah, Yossi; Lilach, Yigal; Gover, Avraham; Arie, Ady

    2013-02-21

    Within the framework of quantum mechanics, a unique particle wave packet exists in the form of the Airy function. Its counterintuitive properties are revealed as it propagates in time or space: the quantum probability wave packet preserves its shape despite dispersion or diffraction and propagates along a parabolic caustic trajectory, even though no force is applied. This does not contradict Newton's laws of motion, because the wave packet centroid propagates along a straight line. Nearly 30 years later, this wave packet, known as an accelerating Airy beam, was realized in the optical domain; later it was generalized to an orthogonal and complete family of beams that propagate along parabolic trajectories, as well as to beams that propagate along arbitrary convex trajectories. Here we report the experimental generation and observation of the Airy beams of free electrons. These electron Airy beams were generated by diffraction of electrons through a nanoscale hologram, which imprinted on the electrons' wavefunction a cubic phase modulation in the transverse plane. The highest-intensity lobes of the generated beams indeed followed parabolic trajectories. We directly observed a non-spreading electron wavefunction that self-heals, restoring its original shape after passing an obstacle. This holographic generation of electron Airy beams opens up new avenues for steering electronic wave packets like their photonic counterparts, because the wave packets can be imprinted with arbitrary shapes or trajectories.

  15. Ni-Mn-Ga shape memory nanoactuation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohl, M., E-mail: manfred.kohl@kit.edu; Schmitt, M.; Krevet, B.

    2014-01-27

    To probe finite size effects in ferromagnetic shape memory nanoactuators, double-beam structures with minimum dimensions down to 100 nm are designed, fabricated, and characterized in-situ in a scanning electron microscope with respect to their coupled thermo-elastic and electro-thermal properties. Electrical resistance and mechanical beam bending tests demonstrate a reversible thermal shape memory effect down to 100 nm. Electro-thermal actuation involves large temperature gradients along the nanobeam in the order of 100 K/μm. We discuss the influence of surface and twin boundary energies and explain why free-standing nanoactuators behave differently compared to constrained geometries like films and nanocrystalline shape memory alloys.

  16. Ni-Mn-Ga shape memory nanoactuation

    NASA Astrophysics Data System (ADS)

    Kohl, M.; Schmitt, M.; Backen, A.; Schultz, L.; Krevet, B.; Fähler, S.

    2014-01-01

    To probe finite size effects in ferromagnetic shape memory nanoactuators, double-beam structures with minimum dimensions down to 100 nm are designed, fabricated, and characterized in-situ in a scanning electron microscope with respect to their coupled thermo-elastic and electro-thermal properties. Electrical resistance and mechanical beam bending tests demonstrate a reversible thermal shape memory effect down to 100 nm. Electro-thermal actuation involves large temperature gradients along the nanobeam in the order of 100 K/μm. We discuss the influence of surface and twin boundary energies and explain why free-standing nanoactuators behave differently compared to constrained geometries like films and nanocrystalline shape memory alloys.

  17. Rapidly accelerating Mathieu and Weber surface plasmon beams.

    PubMed

    Libster-Hershko, Ana; Epstein, Itai; Arie, Ady

    2014-09-19

    We report the generation of two types of self-accelerating surface plasmon beams which are solutions of the nonparaxial Helmholtz equation in two dimensions. These beams preserve their shape while propagating along either elliptic (Mathieu beam) or parabolic (Weber beam) trajectories. We show that owing to the nonparaxial nature of the Weber beam, it maintains its shape over a much larger distance along the parabolic trajectory, with respect to the corresponding solution of the paraxial equation-the Airy beam. Dynamic control of the trajectory is realized by translating the position of the illuminating free-space beam. Finally, the ability of these beams to self-heal after blocking obstacles is demonstrated as well.

  18. Measuring contact angle and meniscus shape with a reflected laser beam.

    PubMed

    Eibach, T F; Fell, D; Nguyen, H; Butt, H J; Auernhammer, G K

    2014-01-01

    Side-view imaging of the contact angle between an extended planar solid surface and a liquid is problematic. Even when aligning the view perfectly parallel to the contact line, focusing one point of the contact line is not possible. We describe a new measurement technique for determining contact angles with the reflection of a widened laser sheet on a moving contact line. We verified this new technique measuring the contact angle on a cylinder, rotating partially immersed in a liquid. A laser sheet is inclined under an angle φ to the unperturbed liquid surface and is reflected off the meniscus. Collected on a screen, the reflection image contains information to determine the contact angle. When dividing the laser sheet into an array of laser rays by placing a mesh into the beam path, the shape of the meniscus can be reconstructed from the reflection image. We verified the method by measuring the receding contact angle versus speed for aqueous cetyltrimethyl ammonium bromide solutions on a smooth hydrophobized as well as on a rough polystyrene surface.

  19. Measuring contact angle and meniscus shape with a reflected laser beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eibach, T. F.; Nguyen, H.; Butt, H. J.

    2014-01-15

    Side-view imaging of the contact angle between an extended planar solid surface and a liquid is problematic. Even when aligning the view perfectly parallel to the contact line, focusing one point of the contact line is not possible. We describe a new measurement technique for determining contact angles with the reflection of a widened laser sheet on a moving contact line. We verified this new technique measuring the contact angle on a cylinder, rotating partially immersed in a liquid. A laser sheet is inclined under an angle φ to the unperturbed liquid surface and is reflected off the meniscus. Collectedmore » on a screen, the reflection image contains information to determine the contact angle. When dividing the laser sheet into an array of laser rays by placing a mesh into the beam path, the shape of the meniscus can be reconstructed from the reflection image. We verified the method by measuring the receding contact angle versus speed for aqueous cetyltrimethyl ammonium bromide solutions on a smooth hydrophobized as well as on a rough polystyrene surface.« less

  20. Use of atmospheric backscattering for adaptive formation of the initial wave front of a laser beam by the method of aperture sensing

    NASA Astrophysics Data System (ADS)

    Gordeev, E. V.; Kuskov, V. V.; Razenkov, I. A.; Shesternin, A. N.

    2017-11-01

    The quality of adaptive suppression of initial aberrations of the wave front of a main laser beam with the use of the method of aperture sensing by the signal of atmospheric backscattering of the additional (sensing) laser radiation at a different wavelength has been studied experimentally. It is shown that wavefront distortions of the main laser beam were decreased significantly during the setup operation.

  1. Adaptive tuned vibration absorber based on magnetorheological elastomer-shape memory alloy composite

    NASA Astrophysics Data System (ADS)

    Kumbhar, Samir B.; Chavan, S. P.; Gawade, S. S.

    2018-02-01

    Shape memory alloy (SMA) is an attractive smart material which could be used as stiffness tuning element in adaptive tuned vibration absorber (ATVA). The sharp modulus change in SMA material during phase transformation creates difficulties for smooth tuning to track forcing frequency to minimize vibrations of primary system. However, high hysteresis damping at low temperature martensitic phase degrades performance of vibration absorber. This paper deals with the study of dynamic response of system in which SMA and magnetorheological elastomer (MRE) are combined together to act as a smart spring- mass-damper system in a tuned vibration absorber. This composite is used as two way stiffness tuning element in ATVA for smooth and continuous tuning and to minimize the adverse effect at low temperature by increasing equivalent stiffness. The stiffnesses of SMA element and MRE are varied respectively by changing temperature and strength of external magnetic field. The two way stiffness tuning ability and adaptivity have been demonstrated analytically and experimentally. The experimental results show good agreement with analytical results. The proposed composite is able to shift the stiffness consequently the natural frequency of primary system as well as reduce the vibration level of primary system by substantial mount.

  2. A Structural Approach to Establishing a Platform Chemistry for the Tunable, Bulk Electron Beam Cross-Linking of Shape Memory Polymer Systems

    PubMed Central

    Hearon, Keith; Besset, Celine J.; Lonnecker, Alexander T.; Ware, Taylor; Voit, Walter E.; Wilson, Thomas S.; Wooley, Karen L.; Maitland, Duncan J.

    2014-01-01

    The synthetic design and thermomechanical characterization of shape memory polymers (SMPs) built from a new polyurethane chemistry that enables facile, bulk and tunable cross-linking of low-molecular weight thermoplastics by electron beam irradiation is reported in this study. SMPs exhibit stimuli-induced geometry changes and are being proposed for applications in numerous fields. We have previously reported a polyurethane SMP system that exhibits the complex processing capabilities of thermoplastic polymers and the mechanical robustness and tunability of thermomechanical properties that are often characteristic of thermoset materials. These previously reported polyurethanes suffer practically because the thermoplastic molecular weights needed to achieve target cross-link densities severely limit high-throughput thermoplastic processing and because thermally unstable radiation-sensitizing additives must be used to achieve high enough cross-link densities to enable desired tunable shape memory behavior. In this study, we demonstrate the ability to manipulate cross-link density in low-molecular weight aliphatic thermoplastic polyurethane SMPs (Mw as low as ~1.5 kDa) without radiation-sensitizing additives by incorporating specific structural motifs into the thermoplastic polymer side chains that we hypothesized would significantly enhance susceptibility to e-beam cross-linking. A custom diol monomer was first synthesized and then implemented in the synthesis of neat thermoplastic polyurethane SMPs that were irradiated at doses ranging from 1 to 500 kGy. Dynamic mechanical analysis (DMA) demonstrated rubbery moduli to be tailorable between 0.1 and 55 MPa, and both DMA and sol/gel analysis results provided fundamental insight into our hypothesized mechanism of electron beam cross-linking, which enables controllable bulk cross-linking to be achieved in highly processable, low-molecular weight thermoplastic shape memory polymers without sensitizing additives. PMID

  3. Adaptive conversion of a high-order mode beam into a near-diffraction-limited beam.

    PubMed

    Zhao, Haichuan; Wang, Xiaolin; Ma, Haotong; Zhou, Pu; Ma, Yanxing; Xu, Xiaojun; Zhao, Yijun

    2011-08-01

    We present a new method for efficiently transforming a high-order mode beam into a nearly Gaussian beam with much higher beam quality. The method is based on modulation of phases of different lobes by stochastic parallel gradient descent algorithm and coherent addition after phase flattening. We demonstrate the method by transforming an LP11 mode into a nearly Gaussian beam. The experimental results reveal that the power in the diffraction-limited bucket in the far field is increased by more than a factor of 1.5.

  4. Adapting Shape Parameters for Cubic Bezier Curves

    NASA Technical Reports Server (NTRS)

    Isacoff, D.; Bailey, M. J.

    1985-01-01

    Bezier curves are an established tool in Computer Aided Geometric Design. One of the drawbacks of the Bezier method is that the curves often bear little resemblance to their control polygons. As a result, it becomes increasingly difficult to obtain anything but a rough outline of the desired shape. One possible solution is tomanipulate the curve itself instead of the control polygon. The standard cubic Bezier curve form has introduced into it two shape parameters, gamma 1 and 2. These parameters give the user the ability to manipulate the curve while the control polygon retains its original form, thereby providing a more intuitive feel for the necessary changes to the curve in order to achieve the desired shape.

  5. Treatment of absolute painful glaucoma with dynamic arcs using novalis shaped beam radiosurgery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonzalez-Olhovich, Irene; Celis, Miguel Angel; Larraga-Gutierrez, Jose

    2006-11-15

    Purpose: We assessed the effect of shaped beam conformal stereotactic radiosurgery (SRS) in 1 patient with chronic painful glaucoma in one eye refractory to medical treatment. Methods and Materials: Left eye ciliary body was targeted at 18 Gy (90% isodose curve) with a dedicated linear accelerator (Novalis, BrainLAB, Germany) SRS. Interval follow-up was performed weekly for the first month, and every 2 months until 1 year was completed with clinical examinations and intraocular pressure (IOP) measurements. Results: Ocular pain resolved at 6 weeks after SRS treatment. IOP decreased and normalized at 1 year. Conclusions: We present a case in whichmore » SRS appears to be an effective treatment of chronic refractory painful glaucoma. Further Phase I studies are needed to know the best parameters for radiation dose, tolerance of organs at risk, and pathophysiologic effects.« less

  6. Analysis of C-shaped root canal configuration in maxillary molars in a Korean population using cone-beam computed tomography

    PubMed Central

    Jo, Hyoung-Hoon; Min, Jeong-Bum

    2016-01-01

    Objectives The purpose of this study was to investigate the incidence of root fusion and C-shaped root canals in maxillary molars, and to classify the types of C-shaped canal by analyzing cone-beam computed tomography (CBCT) in a Korean population. Materials and Methods Digitized CBCT images from 911 subjects were obtained in Chosun University Dental Hospital between February 2010 and July 2012 for orthodontic treatment. Among them, a total of selected 3,553 data of maxillary molars were analyzed retrospectively. Tomography sections in the axial, coronal, and sagittal planes were displayed by PiViewstar and Rapidia MPR software (Infinitt Co.). The incidence and types of root fusion and C-shaped root canals were evaluated and the incidence between the first and the second molar was compared using Chi-square test. Results Root fusion was present in 3.2% of the first molars and 19.5% of the second molars, and fusion of mesiobuccal and palatal root was dominant. C-shaped root canals were present in 0.8% of the first molars and 2.7% of the second molars. The frequency of root fusion and C-shaped canal was significantly higher in the second molar than the first molar (p < 0.001). Conclusions In a Korean population, maxillary molars showed total 11.3% of root fusion and 1.8% of C-shaped root canals. Furthermore, root fusion and C-shaped root canals were seen more frequently in the maxillary second molars. PMID:26877991

  7. Radial carpet beams: A class of nondiffracting, accelerating, and self-healing beams

    NASA Astrophysics Data System (ADS)

    Rasouli, Saifollah; Khazaei, Ali Mohammad; Hebri, Davud

    2018-03-01

    Self-accelerating shape-invariant beams are attracting major attention, presenting applications in many areas such as laser manipulation and patterning, light-sheet microscopy, and plasma channels. Moreover, optical lattices are offering many applications, including quantum computation, quantum phase transition, spin-exchange interaction, and realization of magnetic fields. We report observation of a class of accelerating and self-healing beams which covers the features required by all the aforementioned applications. These beams are accelerating, shape invariant, and self-healing for more than several tens of meters, have numerous phase anomalies and unprecedented patterns, and can be feasibly tuned. Diffraction of a plane wave from radial phase gratings generates such beams, and due to their beauty and structural complexity we have called them "carpet" beams. By tuning the value of phase variations over the grating, the resulting carpet patterns are converted into two-dimensional optical lattices with polar symmetry. Furthermore, the number of spokes in the radial grating, phase variation amplitude, and wavelength of the impinging light beam can also be adjusted to obtain additional features. We believe that radial carpet beams and lattices might find more applications in optical micromanipulation, optical lithography, super-resolution imaging, lighting design, optical communication through atmosphere, etc.

  8. The adaptive parallel UKF inversion method for the shape of space objects based on the ground-based photometric data

    NASA Astrophysics Data System (ADS)

    Du, Xiaoping; Wang, Yang; Liu, Hao

    2018-04-01

    The space object in highly elliptical orbit is always presented as an image point on the ground-based imaging equipment so that it is difficult to resolve and identify the shape and attitude directly. In this paper a novel algorithm is presented for the estimation of spacecraft shape. The apparent magnitude model suitable for the inversion of object information such as shape and attitude is established based on the analysis of photometric characteristics. A parallel adaptive shape inversion algorithm based on UKF was designed after the achievement of dynamic equation of the nonlinear, Gaussian system involved with the influence of various dragging forces. The result of a simulation study demonstrate the viability and robustness of the new filter and its fast convergence rate. It realizes the inversion of combination shape with high accuracy, especially for the bus of cube and cylinder. Even though with sparse photometric data, it still can maintain a higher success rate of inversion.

  9. Beam splitter and method for generating equal optical path length beams

    DOEpatents

    Qian, Shinan; Takacs, Peter

    2003-08-26

    The present invention is a beam splitter for splitting an incident beam into first and second beams so that the first and second beams have a fixed separation and are parallel upon exiting. The beam splitter includes a first prism, a second prism, and a film located between the prisms. The first prism is defined by a first thickness and a first perimeter which has a first major base. The second prism is defined by a second thickness and a second perimeter which has a second major base. The film is located between the first major base and the second major base for splitting the incident beam into the first and second beams. The first and second perimeters are right angle trapezoidal shaped. The beam splitter is configured for generating equal optical path length beams.

  10. Adaptive control for accelerators

    DOEpatents

    Eaton, Lawrie E.; Jachim, Stephen P.; Natter, Eckard F.

    1991-01-01

    An adaptive feedforward control loop is provided to stabilize accelerator beam loading of the radio frequency field in an accelerator cavity during successive pulses of the beam into the cavity. A digital signal processor enables an adaptive algorithm to generate a feedforward error correcting signal functionally determined by the feedback error obtained by a beam pulse loading the cavity after the previous correcting signal was applied to the cavity. Each cavity feedforward correcting signal is successively stored in the digital processor and modified by the feedback error resulting from its application to generate the next feedforward error correcting signal. A feedforward error correcting signal is generated by the digital processor in advance of the beam pulse to enable a composite correcting signal and the beam pulse to arrive concurrently at the cavity.

  11. Prevalence of C-shaped canals in mandibular second and third molars in a central India population: A cone beam computed tomography analysis.

    PubMed

    Wadhwani, Shefali; Singh, Mahesh Pratap; Agarwal, Manish; Somasundaram, Pavithra; Rawtiya, Manjusha; Wadhwani, P K

    2017-01-01

    To evaluate the prevalence of C-shaped root canals in mandibular molars using cone beam computed tomography (CBCT) in a subpopulation of Central India. CBCT scans of patients from diagnostic imaging center were selected in accordance with the criteria given by Fan et al . (2004) for C-shaped canals. A total of 238 CBCT scans fulfilled the inclusion criteria and thereby divided into two groups: Group 1: Images showing C-shaped canal configuration in mandibular second molars. Group 2: Images showing C-shaped canal configuration in mandibular third molars. The frequency and distribution of canals and their configuration along with the position of lingual/buccal grooves in the images were evaluated, and the data was analyzed. CBCT evaluation showed that 9.7% of second molars and 8% of third molars had C-shaped canals. A prominent buccal groove was seen in these teeth. The data showed a significant difference ( P = 0.038) for the presence of such anatomy on the right side for mandibular third molars. The study showed a significant prevalence of C-shaped canal configuration in the subpopulation studied.

  12. Stationary Temperature Distribution in a Rotating Ring-Shaped Target

    NASA Astrophysics Data System (ADS)

    Kazarinov, N. Yu.; Gulbekyan, G. G.; Kazacha, V. I.

    2018-05-01

    For a rotating ring-shaped target irradiated by a heavy-ion beam, a differential equation for computing the stationary distribution of the temperature averaged over the cross section is derived. The ion-beam diameter is assumed to be equal to the ring width. Solving this equation allows one to obtain the stationary temperature distribution along the ring-shaped target depending on the ion-beam, target, and cooling-gas parameters. Predictions are obtained for the rotating target to be installed at the DC-280 cyclotron. For an existing rotating target irradiated by an ion beam, our predictions are compared with the measured temperature distribution.

  13. Integrated Plasma Control for Alternative Plasma Shape on EAST

    NASA Astrophysics Data System (ADS)

    Xiao, Bingjia

    2017-10-01

    To support long pulse plasma operation in high performance, a set of plasma control algorithms such as PEFIT real-time equilibrium reconstruction, radiation feedback, Beta and loop voltage feedback and quasi-snowflake shape f control have been implemented on EAST Plasma Control system (PCS) which was adapted from DIII-D PCS. PEFIT is a parallelized version of EFIT by using GPU with highest computation acceleration ratio up to 100 with respect to EFIT. It demonstrated high performance both in DIII-D data analysis and in the real-time shape control on EAST plasma either in normal or quasi-snowflake shape. Loop voltage has been successfully controlled by Low Hybrid Wave (LHW) while the plasma current is maintained by poloidal field coil set. Beta control has been also demonstrated by using LHW and it will be extended to other heating sources because the PCS interface is ready. Radiation feedback control has been achieved by Neon seeding by Super-Sonic Molecular Beam Injection (SMBI). For the plasma operation in quasi-snowflake, we have reached 20 s ELMy free high confinement non-inductive discharges with betap 2, H98 1.1 and plasma current 250 kA. EAST orals.

  14. The Influence of Inspection Angle, Wave Type and Beam Shape on Signal-to-Noise Ratios in Ultrasonic Pitch-Catch Inspections

    NASA Astrophysics Data System (ADS)

    Margetan, F. J.; Li, Anxiang; Thompson, R. B.

    2007-03-01

    Grain noise, which arises from the scattering of sound waves by microstructure, can limit the detection of small internal defects in metal components. Signal-to-noise (S/N) ratios for ultrasonic pitch/catch inspections are primarily determined by three factors: the scattering ability of the defect; the inherent noisiness of the microstructure (per unit volume); and finite-beam effects. An approximate single-scattering model has been formulated which contains terms representing each of these factors. In this paper the model is applied to a representative pitch/catch inspection problem, namely, the detection of a circular crack in a nickel cylinder. The object is to estimate S/N ratios for various choices of the inspection angle and sonic wave types, and to demonstrate how S/N is determined by the interplay of the defect, microstructure, and finite-beam factors. We also explore how S/N is influenced by the sizes, shapes, and orientations of the transmitter and receiver sound beams.

  15. Initial Trial using Embedded Fibre Bragg Gratings for Distributed Strain Monitoring in a Shape Adaptive Composite Foil

    DTIC Science & Technology

    2012-02-01

    available for interrogation. Although commercially available fibre Bragg grating ( FBG ) sensors have emerged in the marketplace over the past decade...the results from a preliminary trial investigating the feasibility of using embedded FBG arrays in a shape adaptive composite foil to characterise...The response from the FBG sensors was also monitored during fabrication of the foil during the resin infusion and curing stages of the process

  16. How Do Particle Shape and Internal Composition Affect Optical Properties of Atmospheric Dust: Studies of Individual Particles Based on Focused Ion-Beam Tomography

    NASA Astrophysics Data System (ADS)

    Conny, J. M.; Ortiz-Montalvo, D. L.

    2017-12-01

    In the remote sensing of atmospheric aerosols, coarse-mode dust particles are often modeled optically as a collection of spheroids. However, atmospheric particles rarely resemble simplified shapes such as spheroids. Moreover, individual particles often have a heterogenous composition and may not be sufficiently modeled as a single material. In this work, we determine the optical properties of dust particles based on 3-dimensional models of individual particles from focused ion-beam (FIB) tomography. We compare the optical properties of the actual particles with the particles as simplified shapes including one or more spheres, an ellipsoid, cube, rectangular prism, or tetrahedron. FIB tomography is performed with a scanning electron microscope equipped with an ion-beam column. The ion beam slices through the particle incrementally as the electron beam images each slice. Element maps of the particle may be acquired with energy-dispersive x-ray spectroscopy. The images and maps are used to create the 3-D spatial model, from which the discrete dipole approximation method is used to calculate extinction, single scattering albedo, asymmetry parameter, and the phase function. Models of urban dust show that shape is generally more important than accounting for composition heterogeneity. However, if a particle has material phases with widely-varying refractive indexes, a geometric model may be insufficient if it does not incorporate heterogeneity. Models of Asian dust show that geometric models generally exhibit lower extinction efficiencies than the actual particles suggesting that simplified models do not adequately account for particle surface roughness. Nevertheless, in most cases the extinction from the tetrahedron model comes closest to that of the actual particles suggesting that accounting for particle angularity is important. The phase function from the tetrahedron model is comparable to the ellipsoid model and generally close to the actual particle, particularly

  17. NK cells interactions with dendritic cells shape innate and adaptive immunity.

    PubMed

    Brilot, Fabienne; Strowig, Till; Munz, Christian

    2008-05-01

    While natural killer (NK) cells received their name from their ability to mediate spontaneous cytotoxicity, it has recently become clear that they require activation to target most transformed and infected cells. Dendritic cells (DCs) have been shown to mediate NK cell activation during innate immune responses. Surprisingly, this interaction was recently reported to be required to restrict infections by NK cells, and to take place in secondary lymphoid organs. Here we review these recent studies on NK cell interactions with DCs, discuss the molecular mechanisms underlying the cross-talk between these two innate lymphocyte populations, and out-line how DCs and NK cells synergize to enhance innate immunity against microbes and tumors as well as shape the adaptive immune system. Based on this better understanding, we propose that NK cells should be targeted for their protective functions and as an adjuvant during immunotherapy development.

  18. INDIRECT INTELLIGENT SLIDING MODE CONTROL OF A SHAPE MEMORY ALLOY ACTUATED FLEXIBLE BEAM USING HYSTERETIC RECURRENT NEURAL NETWORKS.

    PubMed

    Hannen, Jennifer C; Crews, John H; Buckner, Gregory D

    2012-08-01

    This paper introduces an indirect intelligent sliding mode controller (IISMC) for shape memory alloy (SMA) actuators, specifically a flexible beam deflected by a single offset SMA tendon. The controller manipulates applied voltage, which alters SMA tendon temperature to track reference bending angles. A hysteretic recurrent neural network (HRNN) captures the nonlinear, hysteretic relationship between SMA temperature and bending angle. The variable structure control strategy provides robustness to model uncertainties and parameter variations, while effectively compensating for system nonlinearities, achieving superior tracking compared to an optimized PI controller.

  19. Characterization of plasma parameters in shaped PBX-M discharges

    NASA Astrophysics Data System (ADS)

    England, A. C.; Bell, R. E.; Hirshman, S. P.; Kaita, R.; Kugel, H. W.; LeBlanc, B. L.; Lee, D. K.; Okabayashi, M.; Sun, Y.-C.; Takahashi, H.

    1997-09-01

    The Princeton Beta Experiment-Modification (PBX-M) was run both with elliptical and with bean-shaped plasmas during the 1992 and 1993 operating periods. Two deuterium-fed neutral beams were used for auxiliary heating, and during 1992 the average power was 0741-3335/39/9/008/img13. This will be referred to as the lower neutral-beam power (LNBP) period. As many as four deuterium-fed neutral beams were used during 1993, and the average power was 0741-3335/39/9/008/img14. This will be referred to as the medium neutral-beam power (MNBP) period. The neutron source strength, Sn, showed a scaling with injected power 0741-3335/39/9/008/img15, 0741-3335/39/9/008/img16 for both the LMBP and MNBP periods. A much wider range of shaping parameters was studied during the MNBP as compared with the LNBP period. A weak positive dependence on bean shaping was observed for the LNBP, and a stronger positive dependence on shaping was observed for MNBP, viz 0741-3335/39/9/008/img17. High values of Sn were obtained in bean-shaped plasmas for the highest values of 0741-3335/39/9/008/img18 at 0741-3335/39/9/008/img19 for the LNBP. For the MNBP the highest values of Sn and stored energy were obtained at 0741-3335/39/9/008/img19, and the highest values of 0741-3335/39/9/008/img18 were obtained at 0741-3335/39/9/008/img22. The achievement of high Sn is aided by high neutral-beam power, high toroidal field, strong shaping, high electron temperature, and broad profiles. The achievement of high 0741-3335/39/9/008/img18 is aided by low toroidal field, high density, less shaping, broad profiles, and access to the H-mode, viz 0741-3335/39/9/008/img24. The achievement of high 0741-3335/39/9/008/img25 is aided by strong shaping, high density, broad profiles, and access to the H-mode, viz 0741-3335/39/9/008/img26. Some comparisons with the previous higher neutral-beam (HNBP) period in 1989 are also made.

  20. Development of stereotactic radiosurgery using carbon beams (carbon-knife)

    NASA Astrophysics Data System (ADS)

    Keawsamur, Mintra; Matsumura, Akihiko; Souda, Hikaru; Kano, Yosuke; Torikoshi, Masami; Nakano, Takashi; Kanai, Tatsuaki

    2018-02-01

    The aim of this research is to develop a stereotactic-radiosurgery (SRS) technique using carbon beams to treat small intracranial lesions; we call this device the carbon knife. A 2D-scanning method is adapted to broaden a pencil beam to an appropriate size for an irradiation field. A Mitsubishi slow extraction using third order resonance through a rf acceleration system stabilized by a feed-forward scanning beam using steering magnets with a 290 MeV/u initial beam energy was used for this purpose. Ridge filters for spread-out Bragg peaks (SOBPs) with widths of 5 mm, 7.5 mm, and 10 mm were designed to include fluence-attenuation effects. The collimator, which defines field shape, was used to reduce the lateral penumbra. The lateral-penumbra width at the SOBP region was less than 2 mm for the carbon knife. The penumbras behaved almost the same when changing the air gap, but on the other hand, increasing the range-shifter thickness mostly broadened the lateral penumbra. The physical-dose rates were approximate 6 Gy s-1 and 4.5 Gy s-1 for the 10  ×  10 mm2 and 5  ×  5 mm2 collimators, respectively.

  1. Beam Shaped Single Mode Spiral Lasers

    DTIC Science & Technology

    2011-12-31

    θ// =30° in the plane of the cavity. The measured far-field profiles were in good agreement with simulations (C. Yan et al. Applied Physics Letters...gallery mode lasers with elliptical notched resonators The PI discovered that elliptical resonators with a notch at the boundary support in- plane ...model system, an in- plane beam divergence as small as 6 degrees with a peak optical power of ~ 5 mW at room temperature was been demonstrated. The

  2. Beam-Forming Concentrating Solar Thermal Array Power Systems

    NASA Technical Reports Server (NTRS)

    Hoppe, Daniel J. (Inventor); Cwik, Thomas A. (Inventor); Dimotakis, Paul E. (Inventor)

    2016-01-01

    The present invention relates to concentrating solar-power systems and, more particularly, beam-forming concentrating solar thermal array power systems. A solar thermal array power system is provided, including a plurality of solar concentrators arranged in pods. Each solar concentrator includes a solar collector, one or more beam-forming elements, and one or more beam-steering elements. The solar collector is dimensioned to collect and divert incoming rays of sunlight. The beam-forming elements intercept the diverted rays of sunlight, and are shaped to concentrate the rays of sunlight into a beam. The steering elements are shaped, dimensioned, positioned, and/or oriented to deflect the beam toward a beam output path. The beams from the concentrators are converted to heat at a receiver, and the heat may be temporarily stored or directly used to generate electricity.

  3. The biomechanics of zygomatic arch shape

    PubMed Central

    Smith, Amanda L.; Grosse, Ian R.

    2017-01-01

    Mammalian zygomatic arch shape is remarkably variable, ranging from nearly cylindrical to blade-like in cross section. Based on geometry, the arch can be hypothesized to be a sub-structural beam whose ability to resist deformation is related to cross sectional shape. We expect zygomatic arches with different cross sectional shapes to vary in the degree to which they resist local bending and torsion due to the contraction of the masseter muscle. A stiffer arch may lead to an increase in the relative proportion of applied muscle load being transmitted through the arch to other cranial regions, resulting in elevated cranial stress (and thus, strain). Here, we examine the mechanics of the zygomatic arch using a series of finite element modeling experiments in which the cross section of the arch of Pan troglodytes has been modified to conform to idealized shapes (cylindrical, elliptical, blade-like). We find that the shape of the zygomatic arch has local effects on stain that do not conform to beam theory. One exception is that possessing a blade-like arch leads to elevated strains at the postorbital zygomatic junction and just below the orbits. Furthermore, although modeling the arch as solid cortical bone did not have the effect of elevating strains in other parts of the face, as had been expected, it does have a small effect on stress associated with masseter contraction. These results are counterintuitive. Even though the arch has simple beam-like geometry, we fail to find a simple mechanical explanation for the diversity of arch shape. PMID:27870343

  4. Evaluation of mounting bolt loads for Space Shuttle Get Away Special (GAS) adapter beam

    NASA Technical Reports Server (NTRS)

    Talapatra, D. C.

    1983-01-01

    During the prototype vibration tests of the GAS adapter beam, significant impacting of the beam at its support points was observed. The cause of the impacting was traced to gaps under the mounting bolt heads. Because of the nonlinear nature of the response, it was difficult to evaluate the effects which Shuttle launch dynamics might have on the mounting bolt loads. A series of tests were conducted on an electrodynamic exciter in which the transient acceleration time histories, which had been measured during the Space Transportation System-1 (STS-1; Space Shuttle mission 1) launch, were simulated. The actual flight data had to be filtered and compensated so that it could be reproduced on the shaker without exceeding displacement and velocity limitations. Mounting bolt loads were measured directly by strain gages applied to the bolts. Various gap thicknesses and bolt torques were investigated. Although increased gap thickness resulted in greater accelerations due to impacting, the bolt loads were not significantly affected. This is attributed to the fact that impacting excited mostly higher frequency modes which do not have significant modal mass.

  5. Characterization of elliptic dark hollow beams

    NASA Astrophysics Data System (ADS)

    Gutiérrez-Vega, Julio C.

    2008-08-01

    A dark hollow beam (DHB) is designed in general as a ringed shaped light beam with a null intensity center on the beam axis. DHBs have interesting physical properties such as a helical wavefront, a center vortex singularity, doughnut-shaped transverse intensity distribution, they may carry and transfer orbital and spin angular momentum, and may also exhibit a nondiffracting behavior upon propagation. Most of the known theoretical models to describe DHBs consider axially symmetric transverse intensity distributions. However, in recent years there has been an increasing interest in developing models to describe DHBs with elliptic symmetry. DHBs with elliptic symmetry can be regarded as transition beams between circular and rectangular DHBs. For example, the high-order modes emitted from resonators with neither completely rectangular nor completely circular symmetry, but in between them, cannot be described by the known HermiteGaussian or LaguerreGaussian beams. In this work, we review the current state of research on elliptic DHBs, with particular emphasis in Mathieu and Ince-Gauss beams.

  6. Compression of Ultrafast Laser Beams

    DTIC Science & Technology

    2016-03-01

    Copyright 2003, AIP Publishing LLC. DOI: http://dx.doi.org/10.1063/1.1611998.) When designing the pulse shaper, the laser beam must completely fill the...for the design of future versions of this device. The easiest way to align the pulse shaper is to use the laser beam that will be shaped, without...Afterward, an ultrafast thin beam splitter is placed into the system after the diameter of the laser beam is reduced; this is done to monitor the beam

  7. A self-adaptive algorithm for traffic sign detection in motion image based on color and shape features

    NASA Astrophysics Data System (ADS)

    Zhang, Ka; Sheng, Yehua; Gong, Zhijun; Ye, Chun; Li, Yongqiang; Liang, Cheng

    2007-06-01

    As an important sub-system in intelligent transportation system (ITS), the detection and recognition of traffic signs from mobile images is becoming one of the hot spots in the international research field of ITS. Considering the problem of traffic sign automatic detection in motion images, a new self-adaptive algorithm for traffic sign detection based on color and shape features is proposed in this paper. Firstly, global statistical color features of different images are computed based on statistics theory. Secondly, some self-adaptive thresholds and special segmentation rules for image segmentation are designed according to these global color features. Then, for red, yellow and blue traffic signs, the color image is segmented to three binary images by these thresholds and rules. Thirdly, if the number of white pixels in the segmented binary image exceeds the filtering threshold, the binary image should be further filtered. Fourthly, the method of gray-value projection is used to confirm top, bottom, left and right boundaries for candidate regions of traffic signs in the segmented binary image. Lastly, if the shape feature of candidate region satisfies the need of real traffic sign, this candidate region is confirmed as the detected traffic sign region. The new algorithm is applied to actual motion images of natural scenes taken by a CCD camera of the mobile photogrammetry system in Nanjing at different time. The experimental results show that the algorithm is not only simple, robust and more adaptive to natural scene images, but also reliable and high-speed on real traffic sign detection.

  8. Prevalence of C-shaped canals in mandibular second and third molars in a central India population: A cone beam computed tomography analysis

    PubMed Central

    Wadhwani, Shefali; Singh, Mahesh Pratap; Agarwal, Manish; Somasundaram, Pavithra; Rawtiya, Manjusha; Wadhwani, P. K.

    2017-01-01

    Introduction: To evaluate the prevalence of C-shaped root canals in mandibular molars using cone beam computed tomography (CBCT) in a subpopulation of Central India. Materials and Methods: CBCT scans of patients from diagnostic imaging center were selected in accordance with the criteria given by Fan et al. (2004) for C-shaped canals. A total of 238 CBCT scans fulfilled the inclusion criteria and thereby divided into two groups: Group 1: Images showing C-shaped canal configuration in mandibular second molars. Group 2: Images showing C-shaped canal configuration in mandibular third molars. The frequency and distribution of canals and their configuration along with the position of lingual/buccal grooves in the images were evaluated, and the data was analyzed. Results: CBCT evaluation showed that 9.7% of second molars and 8% of third molars had C-shaped canals. A prominent buccal groove was seen in these teeth. The data showed a significant difference (P = 0.038) for the presence of such anatomy on the right side for mandibular third molars. Conclusion: The study showed a significant prevalence of C-shaped canal configuration in the subpopulation studied. PMID:29386785

  9. fMRI Evidence of ‘Mirror’ Responses to Geometric Shapes

    PubMed Central

    Press, Clare; Catmur, Caroline; Cook, Richard; Widmann, Hannah; Heyes, Cecilia; Bird, Geoffrey

    2012-01-01

    Mirror neurons may be a genetic adaptation for social interaction [1]. Alternatively, the associative hypothesis [2], [3] proposes that the development of mirror neurons is driven by sensorimotor learning, and that, given suitable experience, mirror neurons will respond to any stimulus. This hypothesis was tested using fMRI adaptation to index populations of cells with mirror properties. After sensorimotor training, where geometric shapes were paired with hand actions, BOLD response was measured while human participants experienced runs of events in which shape observation alternated with action execution or observation. Adaptation from shapes to action execution, and critically, observation, occurred in ventral premotor cortex (PMv) and inferior parietal lobule (IPL). Adaptation from shapes to execution indicates that neuronal populations responding to the shapes had motor properties, while adaptation to observation demonstrates that these populations had mirror properties. These results indicate that sensorimotor training induced populations of cells with mirror properties in PMv and IPL to respond to the observation of arbitrary shapes. They suggest that the mirror system has not been shaped by evolution to respond in a mirror fashion to biological actions; instead, its development is mediated by stimulus-general processes of learning within a system adapted for visuomotor control. PMID:23251653

  10. Production data from a Leica ZBA31H+ shaped e-beam mask writer located at the Photronics facility, Manchester, England

    NASA Astrophysics Data System (ADS)

    Johnson, Stephen; Loughran, Dominic; Osborne, Peter; Sixt, Pierre; Doering, Hans-Joachim

    1999-06-01

    The ZBA31H+) is a variable shaped spot, vector scan e- beam lithography system operating at 20 keV. The specified performance is designed to produce reticles to 250 nanometer design rules, and beyond. In November 98 the acceptance results of a newly installed Leica ZBA31H+), at Photonic Manchester, were presented in a paper at the VDE/VDI 15th European Conference on Mask Technology. This paper is a continuation of that work and presents data from a capability study carried out, on 4000 angstrom EBR9 HS31 resist. Analysis of: mean to target, uniformity, X/Y bias, isolated vs. dense linewidths, linearity, and registration performance of the tool is presented, and the effects of re- iterative develop on process capability compared. Theoretically, a shaped beam system has advantages over raster scan in terms of write time and edge definition capabilities. In this paper, comparative write times against an Etec Mebes 4500 system are included. The ZBA31H+) has to write very small polygons in order to image non-axial or non-45 degree features. The resulting effect on image quality and write time is investigated. In order to improve the fidelity of small OPC structures, Leica have investigated alternative writing strategies, and their results to data are presented here.

  11. FK506 binding protein 51 integrates pathways of adaptation: FKBP51 shapes the reactivity to environmental change.

    PubMed

    Rein, Theo

    2016-09-01

    This review portraits FK506 binding protein (FKBP) 51 as "reactivity protein" and collates recent publications to develop the concept of FKBP51 as contributor to different levels of adaptation. Adaptation is a fundamental process that enables unicellular and multicellular organisms to adjust their molecular circuits and structural conditions in reaction to environmental changes threatening their homeostasis. FKBP51 is known as chaperone and co-chaperone of heat shock protein (HSP) 90, thus involved in processes ensuring correct protein folding in response to proteotoxic stress. In mammals, FKBP51 both shapes the stress response and is calibrated by the stress levels through an ultrashort molecular feedback loop. More recently, it has been linked to several intracellular pathways related to the reactivity to drug exposure and stress. Through its role in autophagy and DNA methylation in particular it influences adaptive pathways, possibly also in a transgenerational fashion. Also see the video abstract here. © 2016 WILEY Periodicals, Inc.

  12. Applications of electron lenses: scraping of high-power beams, beam-beam compensation, and nonlinear optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stancari, Giulio

    Electron lenses are pulsed, magnetically confined electron beams whose current-density profile is shaped to obtain the desired effect on the circulating beam. Electron lenses were used in the Fermilab Tevatron collider for bunch-by-bunch compensation of long-range beam-beam tune shifts, for removal of uncaptured particles in the abort gap, for preliminary experiments on head-on beam-beam compensation, and for the demonstration of halo scraping with hollow electron beams. Electron lenses for beam-beam compensation are being commissioned in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL). Hollow electron beam collimation and halo control were studied as an option to complementmore » the collimation system for the upgrades of the Large Hadron Collider (LHC) at CERN; a conceptual design was recently completed. Because of their electric charge and the absence of materials close to the proton beam, electron lenses may also provide an alternative to wires for long-range beam-beam compensation in LHC luminosity upgrade scenarios with small crossing angles. At Fermilab, we are planning to install an electron lens in the Integrable Optics Test Accelerator (IOTA, a 40-m ring for 150-MeV electrons) as one of the proof-of-principle implementations of nonlinear integrable optics to achieve large tune spreads and more stable beams without loss of dynamic aperture.« less

  13. Building achromatic refractive beam shapers

    NASA Astrophysics Data System (ADS)

    Laskin, Alexander; Shealy, David

    2014-10-01

    Achromatic beam shapers can provide beam shaping in a certain spectral band and are very important for various laser techniques, such as, applications based on ultra-short pulse lasers with pulse width <100 fs, confocal microscopy, multicolour holography, life sciences fluorescence techniques, where several lasers in spectrum 405-650 nm are used simultaneously, for example 405-650 nm. Conditions of energy re-distribution and zero wave aberration are strictly fulfilled in ordinary plano-aspheric lens pair beam shapers for a definite wavelength only. Hence, these beam shapers work efficiently in relatively narrow, few nm spectrum. To provide acceptable beam quality for refractive beam shaping over a wide spectrum, an achromatizing design condition should be added. Consequently, the typical beam shaper design contains more than two-lenses, to avoid any damaging and other undesirable effects the lenses of beam shaper should be air-spaced. We suggest a two-step method of designing the beam shaper: 1) achromatizing of each plano-aspheric lens using a buried achromatizing surface ("chromatic radius"), then each beam shaper component presents a cemented doublet lens, 2) "splitting" the cemented lenses and realizing air-spaced lens design using optical systems design software. This method allows for using an achromatic design principle during the first step of the design, and then, refining the design by using optimization software. We shall present examples of this design procedure for an achromatic Keplerian beam shaper and for the design of an achromatic Galilean type of beam shaper. Experimental results of operation of refractive beam shapers will be presented as well.

  14. SU-F-T-183: Design of a Beam Shaping Assembly of a Compact DD-Based Boron Neutron Capture Therapy System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsieh, M; Liu, Y; Nie, L

    Purpose: To design a beam shaping assembly (BSA) to shape the 2.45-MeV neutrons produced by a deuterium-deuterium (DD) neutron generator and to optimize the beam output for boron neutron capture therapy of brain tumors Methods: MCNP is used for this simulation study. The simulation model consists of a neutron surface source that resembles an actual DD source and is surrounded by a BSA. The neutron source emits 2.45-MeV neutrons isotropically. The BSA is composed of a moderator, reflector, collimator and filter. Various types of materials and geometries are tested for each component to optimize the neutron output. Neutron characteristics aremore » measured with an 2×2×2-cm{sup 3} air-equivalent cylinder at the beam exit. The ideal BSA is determined by evaluating the in-air parameters, which include epithermal neutron per source neutron, fast neutron dose per epithermal neutron, and photon dose per epithermal neutron. The parameter values are compared to those recommended by the IAEA. Results: The ideal materials for reflector and thermal neutron filter were lead and cadmium, respectively. The thickness for reflector was 43 cm and for filter was 0.5 mm. At present, the best-performing moderator has 25 cm of AlF{sub 3} and 5 cm of MgF{sub 2}. This layout creates a neutron spectrum that has a peak at approximately 10 keV and produces 1.35E-4 epithermal neutrons per source neutron per cm{sup 2}. Additional neutron characteristics, fast neutrons per epithermal neutron and photon per epithermal neutron, are still under investigation. Conclusion: Working is ongoing to optimize the final layout of the BSA. The neutron spectrum at the beam exit window of the final configuration will have the maximum number of epithermal neutrons and limited photon and fast neutron contaminations within the recommended values by IAEA. Future studies will also include phantom experiments to validate the simulation results.« less

  15. Spatio-temporal shaping of photocathode laser pulses for linear electron accelerators

    NASA Astrophysics Data System (ADS)

    Mironov, S. Yu; Andrianov, A. V.; Gacheva, E. I.; Zelenogorskii, V. V.; Potemkin, A. K.; Khazanov, E. A.; Boonpornprasert, P.; Gross, M.; Good, J.; Isaev, I.; Kalantaryan, D.; Kozak, T.; Krasilnikov, M.; Qian, H.; Li, X.; Lishilin, O.; Melkumyan, D.; Oppelt, A.; Renier, Y.; Rublack, T.; Felber, M.; Huck, H.; Chen, Y.; Stephan, F.

    2017-10-01

    Methods for the spatio-temporal shaping of photocathode laser pulses for generating high brightness electron beams in modern linear accelerators are discussed. The possibility of forming triangular laser pulses and quasi-ellipsoidal structures is analyzed. The proposed setup for generating shaped laser pulses was realised at the Institute of Applied Physics (IAP) of the Russian Academy of Sciences (RAS). Currently, a prototype of the pulse-shaping laser system is installed at the Photo Injector Test facility at DESY, Zeuthen site (PITZ). Preliminary experiments on electron beam generation using ultraviolet laser pulses from this system were carried out at PITZ, in which electron bunches with a 0.5-nC charge and a transverse normalized emittance of 1.1 mm mrad were obtained. A new scheme for the three-dimensional shaping of laser beams using a volume Bragg profiled grating is proposed at IAP RAS and is currently being tested for further electron beam generation experiments at the PITZ photoinjector.

  16. Shape and Color Features for Object Recognition Search

    NASA Technical Reports Server (NTRS)

    Duong, Tuan A.; Duong, Vu A.; Stubberud, Allen R.

    2012-01-01

    A bio-inspired shape feature of an object of interest emulates the integration of the saccadic eye movement and horizontal layer in vertebrate retina for object recognition search where a single object can be used one at a time. The optimal computational model for shape-extraction-based principal component analysis (PCA) was also developed to reduce processing time and enable the real-time adaptive system capability. A color feature of the object is employed as color segmentation to empower the shape feature recognition to solve the object recognition in the heterogeneous environment where a single technique - shape or color - may expose its difficulties. To enable the effective system, an adaptive architecture and autonomous mechanism were developed to recognize and adapt the shape and color feature of the moving object. The bio-inspired object recognition based on bio-inspired shape and color can be effective to recognize a person of interest in the heterogeneous environment where the single technique exposed its difficulties to perform effective recognition. Moreover, this work also demonstrates the mechanism and architecture of the autonomous adaptive system to enable the realistic system for the practical use in the future.

  17. Transmission beam characteristics of a Risso's dolphin (Grampus griseus).

    PubMed

    Smith, Adam B; Kloepper, Laura N; Yang, Wei-Cheng; Huang, Wan-Hsiu; Jen, I-Fan; Rideout, Brendan P; Nachtigall, Paul E

    2016-01-01

    The echolocation system of the Risso's dolphin (Grampus griseus) remains poorly studied compared to other odontocete species. In this study, echolocation signals were recorded from a stationary Risso's dolphin with an array of 16 hydrophones and the two-dimensional beam shape was explored using frequency-dependent amplitude plots. Click source parameters were similar to those already described for this species. Centroid frequency of click signals increased with increasing sound pressure level, while the beamwidth decreased with increasing center frequency. Analysis revealed primarily single-lobed, and occasionally vertically dual-lobed, beam shapes. Overall beam directivity was found to be greater than that of the harbor porpoise, bottlenose dolphin, and a false killer whale. The relationship between frequency content, beam directivity, and head size for this Risso's dolphin deviated from the trend described for other species. These are the first reported measurements of echolocation beam shape and directivity in G. griseus.

  18. Investigation into the optimum beam shape and fluence for selective ablation of dental calculus at lambda = 400 nm.

    PubMed

    Schoenly, Joshua E; Seka, Wolf; Rechmann, Peter

    2010-01-01

    A frequency-doubled Ti:sapphire laser is shown to selectively ablate dental calculus. The optimal transverse shape of the laser beam, including its variability under water-cooling, is determined for selective ablation of dental calculus. Intensity profiles under various water-cooling conditions were optically observed. The 400-nm laser was coupled into a multimode optical fiber using an f = 2.5-cm lens and light-shaping diffuser. Water-cooling was supplied coaxially around the fiber. Five human tooth samples (four with calculus and one pristine) were irradiated perpendicular to the tooth surface while the tooth was moved back and forth at 0.3 mm/second, varying between 20 and 180 iterations. The teeth were imaged before and after irradiation using light microscopy with a flashing blue light-emitting diode (LED). An environmental scanning electron microscope imaged each tooth after irradiation. High-order super-Gaussian intensity profiles are observed at the output of a fiber coiled around a 4-in. diameter drum. Super-Gaussian beams have a more-homogenous fluence distribution than Gaussian beams and have a higher energy efficiency for selective ablation. Coaxial water-cooling does not noticeably distort the intensity distribution within 1 mm from the optical fiber. In contrast, lasers focused to a Gaussian cross section (< or =50-microm diameter) without fiber propagation and cooled by a water spray are heavily distorted and may lead to variable ablation. Calculus is preferentially ablated at high fluences (> or =2 J/cm(2)); below this fluence, stalling occurs because of photo-bleaching of the calculus. Healthy dental hard tissue is not removed at fluences < or =3 J/cm(2). Supplying laser light to a tooth using an optical fiber with coaxial water-cooling is determined to be the most appropriate method when selectively removing calculus with a frequency-doubled Ti:sapphire laser. Fluences over 2 J/cm(2) are required to remove calculus efficiently since photo

  19. Investigation Into the Optimum Beam Shape and Fluence for Selective Ablation of Dental Calculus at lambda = 400 nm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schoenly, J.E.; Seka. W.; Rechmann, P.

    A frequency-doubled Ti:sapphire laser is shown to selectively ablate dental calculus. The optimal transverse shape of the laser beam, including its variability under water-cooling, is determined for selective ablation of dental calculus. Intensity profiles under various water-cooling conditions were optically observed. The 400-nm laser was coupled into a multimode optical fiber using an f = 2.5-cm lens and light-shaping diffuser. Water-cooling was supplied coaxially around the fiber. Five human tooth samples (four with calculus and one pristine) were irradiated perpendicular to the tooth surface while the tooth was moved back and forth at 0.3 mm/second, varying between 20 and 180more » iterations. The teeth were imaged before and after irradiation using light microscopy with a flashing blue light-emitting diode (LED). An environmental scanning electron microscope imaged each tooth after irradiation. High-order super-Gaussian intensity profiles are observed at the output of a fiber coiled around a 4-in. diameter drum. Super-Gaussian beams have a morehomogenous fluence distribution than Gaussian beams and have a higher energy efficiency for selective ablation. Coaxial water-cooling does not noticeably distort the intensity distribution within 1 mm from the optical fiber. In contrast, lasers focused to a Gaussian cross section (<=50-mm diameter) without fiber propagation and cooled by a water spray are heavily distorted and may lead to variable ablation. Calculus is preferentially ablated at high fluences (>= 2 J/cm^2); below this fluence, stalling occurs because of photo-bleaching of the calculus. Healthy dental hard tissue is not removed at fluences <=3 J/cm^2. Supplying laser light to a tooth using an optical fiber with coaxial water-cooling is determined to be the most appropriate method when selectively removing calculus with a frequency-doubled Ti:sapphire laser. Fluences over 2 J/cm^2 are required to remove calculus efficiently since photo-bleaching stalls

  20. The Biomechanics of Zygomatic Arch Shape.

    PubMed

    Smith, Amanda L; Grosse, Ian R

    2016-12-01

    Mammalian zygomatic arch shape is remarkably variable, ranging from nearly cylindrical to blade-like in cross section. Based on geometry, the arch can be hypothesized to be a sub-structural beam whose ability to resist deformation is related to cross sectional shape. We expect zygomatic arches with different cross sectional shapes to vary in the degree to which they resist local bending and torsion due to the contraction of the masseter muscle. A stiffer arch may lead to an increase in the relative proportion of applied muscle load being transmitted through the arch to other cranial regions, resulting in elevated cranial stress (and thus, strain). Here, we examine the mechanics of the zygomatic arch using a series of finite element modeling experiments in which the cross section of the arch of Pan troglodytes has been modified to conform to idealized shapes (cylindrical, elliptical, blade-like). We find that the shape of the zygomatic arch has local effects on stain that do not conform to beam theory. One exception is that possessing a blade-like arch leads to elevated strains at the postorbital zygomatic junction and just below the orbits. Furthermore, although modeling the arch as solid cortical bone did not have the effect of elevating strains in other parts of the face, as had been expected, it does have a small effect on stress associated with masseter contraction. These results are counterintuitive. Even though the arch has simple beam-like geometry, we fail to find a simple mechanical explanation for the diversity of arch shape. Anat Rec, 299:1734-1752, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. Additive Manufacturing of Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Van Humbeeck, Jan

    2018-04-01

    Selective Laser Melting (SLM) is an additive manufacturing production process, also called 3D printing, in which functional, complex parts are produced by selectively melting patterns in consecutive layers of powder with a laser beam. The pattern the laser beam is following is controlled by software that calculates the pattern by slicing a 3D CAD model of the part to be constructed. Apart from SLM, also other additive manufacturing techniques such as EBM (Electron Beam Melting), FDM (Fused Deposition Modelling), WAAM (Wire Arc Additive Manufacturing), LENS (Laser Engineered Net Shaping such as Laser Cladding) and binder jetting allow to construct complete parts layer upon layer. But since more experience of AM of shape memory alloys is collected by SLM, this paper will overview the potentials, limits and problems of producing NiTi parts by SLM.

  2. Enhancement of thermal blooming effect on free space propagation of high power CW laser beam

    NASA Astrophysics Data System (ADS)

    Kashef, Tamer M.; Mokhtar, Ayman M.; Ghoniemy, Samy A.

    2018-02-01

    In this paper, we present an enhanced model to predict the effect of thermal blooming and atmospheric turbulence, on high energy laser beams free space propagation. We introduce an implementation technique for the proposed mathematical models describing the effect of thermal blooming and atmospheric turbulence including wind blowing, and how it effect high power laser beam power, far field pattern, phase change effect and beam quality . An investigated model of adaptive optics was introduced to study how to improve the wave front and phase distortion caused by thermal blooming and atmospheric turbulence, the adaptive optics model with Actuator influence spacing 3 cm the that shows observed improvement in the Strehl ratio and in wave front and phase of the beam. These models was implemented using cooperative agents relying on GLAD software package. Without taking in consideration the effect of thermal blooming It was deduced that the beam at the source takes the Gaussian shape with uniform intensity distribution, we found that the beam converge on the required distance 4 km using converging optics, comparing to the laser beam under the effect of thermal blooming the far field pattern shows characteristic secondary blip and "sugar scoop" effect which is characteristic of thermal blooming. It was found that the thermal blooming causes the beam to steer many centimeters and to diverge beyond about 1.8 km than come to a focus at 4 km where the beam assumed to be focused on the required target. We assume that this target is moving at v = (4,-4) m/sec at distance 4 km and the wind is moving at v = (-10,-10) m/sec, it was found that the effect will be strongest when wind and target movement are at the same velocity. GLAD software is used to calculate the attenuation effects of the atmosphere as well as the phase perturbations due to temperature change in the air and effects caused as the beam crosses through the air due to wind and beam steering.

  3. Apodization of beams in an optical interferometer

    NASA Technical Reports Server (NTRS)

    Ames, Lawrence L. (Inventor); Dutta, Kalyan (Inventor)

    2006-01-01

    An interferometry apparatus comprises one or more beam generators, a detector, and a plurality of optical paths along which one or more beams of light propagate. Disposed along at least one of the optical paths is an apodization mask to shape one of the beams.

  4. Experimental Profiling of a Non-truncated Focused Gaussian Beam and Fine-tuning of the Quadratic Phase in the Fresnel Gaussian Shape Invariant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S., Juan Manuel Franco; Cywiak, Moises; Cywiak, David

    2015-06-24

    A homodyne profiler is used for recording the intensity distribution of focused non-truncated Gaussian beams. The spatial distributions are obtained at planes in the vicinity of the back-focal plane of a focusing lens placed at different distances from a He–Ne laser beam with a Gaussian intensity profile. Comparisons of the experimental data with those obtained from the analytical equations for an ideal focusing lens allow us to propose formulae to fine-tune the quadratic term in the Fresnel Gaussian shape invariant at each interface of the propagated field. Furthermore, we give analytical expressions to calculate adequately the propagation of the fieldmore » through an optical system.« less

  5. Characterization of the Li beam probe with a beam profile monitor on JETa)

    NASA Astrophysics Data System (ADS)

    Nedzelskiy, I. S.; Korotkov, A.; Brix, M.; Morgan, P.; Vince, J.; Jet Efda Contributors

    2010-10-01

    The lithium beam probe (LBP) is widely used for measurements of the electron density in the edge plasma of magnetically confined fusion experiments. The quality of LBP data strongly depends on the stability and profile shape of the beam. The main beam parameters are as follows: beam energy, beam intensity, beam profile, beam divergence, and the neutralization efficiency. For improved monitoring of the beam parameters, a beam profile monitor (BPM) from the National Electrostatics Corporation (NEC) has been installed in the Li beam line at JET. In the NEC BPM, a single grounded wire formed into a 45° segment of a helix is rotated by a motor about the axis of the helix. During each full revolution, the wire sweeps twice across the beam to give X and Y profiles. In this paper, we will describe the properties of the JET Li beam as measured with the BPM and demonstrate that it facilitates rapid optimization of the gun performance.

  6. Beam characteristics of energy-matched flattening filter free beams.

    PubMed

    Paynter, D; Weston, S J; Cosgrove, V P; Evans, J A; Thwaites, D I

    2014-05-01

    Flattening filter free (FFF) linear accelerators can increase treatment efficiency and plan quality. There are multiple methods of defining a FFF beam. The Elekta control system supports tuning of the delivered FFF beam energy to enable matching of the percentage depth-dose (PDD) of the flattened beam at 10 cm depth. This is compared to FFF beams where the linac control parameters are identical to those for the flattened beam. All beams were delivered on an Elekta Synergy accelerator with an Agility multi-leaf collimator installed and compared to the standard, flattened beam. The aim of this study is to compare "matched" FFF beams to both "unmatched" FFF beams and flattened beams to determine the benefits of matching beams. For the three modes of operation 6 MV flattened, 6 MV matched FFF, 6 MV unmatched FFF, 10 MV flattened, 10 MV matched FFF, and 10 MV unmatched FFF beam profiles were obtained using a plotting tank and were measured in steps of 0.1 mm in the penumbral region. Beam penumbra was defined as the distance between the 80% and 20% of the normalized dose when the inflection points of the unflattened and flattened profiles were normalized with the central axis dose of the flattened field set as 100%. PDD data was obtained at field sizes ranging from 3 cm × 3 cm to 40 cm × 40 cm. Radiation protection measurements were additionally performed to determine the head leakage and environmental monitoring through the maze and primary barriers. No significant change is made to the beam penumbra for FFF beams with and without PDD matching, the maximum change in penumbra for a 10 cm × 10 cm field was within the experimental error of the study. The changes in the profile shape with increasing field size are most significant for the matched FFF beam, and both FFF beams showed less profile shape variation with increasing depth when compared to flattened beams, due to consistency in beam energy spectra across the radiation field. The PDDs of the FFF beams showed

  7. Controlled supercontinua via spatial beam shaping

    NASA Astrophysics Data System (ADS)

    Zhdanova, Alexandra A.; Shen, Yujie; Thompson, Jonathan V.; Scully, Marlan O.; Yakovlev, Vladislav V.; Sokolov, Alexei V.

    2018-06-01

    Recently, optimization techniques have had a significant impact in a variety of fields, leading to a higher signal-to-noise and more streamlined techniques. We consider the possibility for using programmable phase-only spatial optimization of the pump beam to influence the supercontinuum generation process. Preliminary results show that significant broadening and rough control of the supercontinuum spectrum in the visible region are possible without loss of input energy. This serves as a proof-of-concept demonstration that spatial effects can controllably influence the supercontinuum spectrum, leading to possibilities for utilizing supercontinuum power more efficiently and achieving excellent spectral control.

  8. Adaptive online inverse control of a shape memory alloy wire actuator using a dynamic neural network

    NASA Astrophysics Data System (ADS)

    Mai, Huanhuan; Song, Gangbing; Liao, Xiaofeng

    2013-01-01

    Shape memory alloy (SMA) actuators exhibit severe hysteresis, a nonlinear behavior, which complicates control strategies and limits their applications. This paper presents a new approach to controlling an SMA actuator through an adaptive inverse model based controller that consists of a dynamic neural network (DNN) identifier, a copy dynamic neural network (CDNN) feedforward term and a proportional (P) feedback action. Unlike fixed hysteresis models used in most inverse controllers, the proposed one uses a DNN to identify online the relationship between the applied voltage to the actuator and the displacement (the inverse model). Even without a priori knowledge of the SMA hysteresis and without pre-training, the proposed controller can precisely control the SMA wire actuator in various tracking tasks by identifying online the inverse model of the SMA actuator. Experiments were conducted, and experimental results demonstrated real-time modeling capabilities of DNN and the performance of the adaptive inverse controller.

  9. Laser welding of polymers: phenomenological model for a quick and reliable process quality estimation considering beam shape influences

    NASA Astrophysics Data System (ADS)

    Timpe, Nathalie F.; Stuch, Julia; Scholl, Marcus; Russek, Ulrich A.

    2016-03-01

    This contribution presents a phenomenological, analytical model for laser welding of polymers which is suited for a quick process quality estimation for the practitioner. Besides material properties of the polymer and processing parameters like welding pressure, feed rate and laser power the model is based on a simple few parameter description of the size and shape of the laser power density distribution (PDD) in the processing zone. The model allows an estimation of the weld seam tensile strength. It is based on energy balance considerations within a thin sheet with the thickness of the optical penetration depth on the surface of the absorbing welding partner. The joining process itself is modelled by a phenomenological approach. The model reproduces the experimentally known process windows for the main process parameters correctly. Using the parameters describing the shape of the laser PDD the critical dependence of the process windows on the PDD shape will be predicted and compared with experiments. The adaption of the model to other laser manufacturing processes where the PDD influence can be modelled comparably will be discussed.

  10. Adaptive volumetric modulated arc treatment planning for esophageal cancers using cone beam computed tomography.

    PubMed

    Sriram, Padmanaban; Syamkumar, S A; Kumar, J Sam Deva; Prabakar, Sukumar; Dhanabalan, Rajasekaran; Vivekanandan, Nagarajan

    2012-10-01

    To assess the potential of cone beam CT (CBCT) derived adaptive RapidArc treatment for esophageal cancers in reducing the dose to organs at risk (OAR). Ten patients with esophageal cancer were CT scanned in free breathing pattern. The PTV is generated by adding a 3D margin of 1 cm to the CTV as per ICRU 62 recommendations. The double arc RapidArc plan (Clin_RA) was generated for the PTV. Patients were setup using kV orthogonal images and kV-CBCT scan was acquired daily during first week of therapy, then weekly. These images were exported to the Eclipse TPS. The adaptive CTV which includes tumor and involved nodes was delineated in each CBCT image set for the length of the PTV. The composite CTV from first week CBCT was generated using Boolean union operator and 5 mm margin was added circumferentially to generate adaptive PTV (PTV1). Adaptive RapidArc plan (Adap_RA) was generated. NTCP and DVH of the OARs of the two plans were compared. Similarly, PTV2 was generated from weekly CBCT. PTV2 was evaluated for the coverage of 95% isodose of Adap_RA plan. The PTV1 and PTV2 volumes covered by 95% isodose in adaptive plans were 93.51 ± 1.17% and 94.59 ± 1.43% respectively. The lung V(10Gy,)V(20Gy) and mean dose in Adap_RA plan was reduced by 17.43% (p = 0.0012), 34.64% (p = 0.0019) and 16.50% (p = 0.0002) respectively compared to Clin_RA. The Adap_RA plan reduces the heart D(35%) and mean dose by 17.35% (p = 0.0011) and 17.16% (p = 0.0012). No significant reduction in spinal cord and liver doses were observed. NTCP for the lung (0.42% vs. 0.08%) and heart (1.39% vs. 0.090%) was reduced significantly in adaptive plans. The adaptive re-planning strategy based on the first week CBCT dataset significantly reduces the doses and NTCP to OARs. Copyright © 2011 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  11. Further Development of Ko Displacement Theory for Deformed Shape Predictions of Nonuniform Aerospace Structures

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Fleischer, Van Tran

    2009-01-01

    The Ko displacement theory previously formulated for deformed shape predictions of nonuniform beam structures is further developed mathematically. The further-developed displacement equations are expressed explicitly in terms of geometrical parameters of the beam and bending strains at equally spaced strain-sensing stations along the multiplexed fiber-optic sensor line installed on the bottom surface of the beam. The bending strain data can then be input into the displacement equations for calculations of local slopes, deflections, and cross-sectional twist angles for generating the overall deformed shapes of the nonuniform beam. The further-developed displacement theory can also be applied to the deformed shape predictions of nonuniform two-point supported beams, nonuniform panels, nonuniform aircraft wings and fuselages, and so forth. The high degree of accuracy of the further-developed displacement theory for nonuniform beams is validated by finite-element analysis of various nonuniform beam structures. Such structures include tapered tubular beams, depth-tapered unswept and swept wing boxes, width-tapered wing boxes, and double-tapered wing boxes, all under combined bending and torsional loads. The Ko displacement theory, combined with the fiber-optic strain-sensing system, provide a powerful tool for in-flight deformed shape monitoring of unmanned aerospace vehicles by ground-based pilots to maintain safe flights.

  12. Neural adaptation to thin and fat bodies in the fusiform body area and middle occipital gyrus: an fMRI adaptation study.

    PubMed

    Hummel, Dennis; Rudolf, Anne K; Brandi, Marie-Luise; Untch, Karl-Heinz; Grabhorn, Ralph; Hampel, Harald; Mohr, Harald M

    2013-12-01

    Visual perception can be strongly biased due to exposure to specific stimuli in the environment, often causing neural adaptation and visual aftereffects. In this study, we investigated whether adaptation to certain body shapes biases the perception of the own body shape. Furthermore, we aimed to evoke neural adaptation to certain body shapes. Participants completed a behavioral experiment (n = 14) to rate manipulated pictures of their own bodies after adaptation to demonstratively thin or fat pictures of their own bodies. The same stimuli were used in a second experiment (n = 16) using functional magnetic resonance imaging (fMRI) adaptation. In the behavioral experiment, after adapting to a thin picture of the own body participants also judged a thinner than actual body picture to be the most realistic and vice versa, resembling a typical aftereffect. The fusiform body area (FBA) and the right middle occipital gyrus (rMOG) show neural adaptation to specific body shapes while the extrastriate body area (EBA) bilaterally does not. The rMOG cluster is highly selective for bodies and perhaps body parts. The findings of the behavioral experiment support the existence of a perceptual body shape aftereffect, resulting from a specific adaptation to thin and fat pictures of one's own body. The fMRI results imply that body shape adaptation occurs in the FBA and the rMOG. The role of the EBA in body shape processing remains unclear. The results are also discussed in the light of clinical body image disturbances. Copyright © 2012 Wiley Periodicals, Inc.

  13. Gyrator transform of Gaussian beams with phase difference and generation of hollow beam

    NASA Astrophysics Data System (ADS)

    Xiao, Zhiyu; Xia, Hui; Yu, Tao; Xie, Ding; Xie, Wenke

    2018-03-01

    The optical expression of Gaussian beams with phase difference, which is caused by gyrator transform (GT), has been obtained. The intensity and phase distribution of transform Gaussian beams are analyzed. It is found that the circular hollow vortex beam can be obtained by overlapping two GT Gaussian beams with π phase difference. The effect of parameters on the intensity and phase distributions of the hollow vortex beam are discussed. The results show that the shape of intensity distribution is significantly influenced by GT angle α and propagation distance z. The size of the hollow vortex beam can be adjusted by waist width ω 0. Compared with previously reported results, the work shows that the hollow vortex beam can be obtained without any model conversion of the light source.

  14. Gyrator transform of Gaussian beams with phase difference and generation of hollow beam

    NASA Astrophysics Data System (ADS)

    Xiao, Zhiyu; Xia, Hui; Yu, Tao; Xie, Ding; Xie, Wenke

    2018-06-01

    The optical expression of Gaussian beams with phase difference, which is caused by gyrator transform (GT), has been obtained. The intensity and phase distribution of transform Gaussian beams are analyzed. It is found that the circular hollow vortex beam can be obtained by overlapping two GT Gaussian beams with π phase difference. The effect of parameters on the intensity and phase distributions of the hollow vortex beam are discussed. The results show that the shape of intensity distribution is significantly influenced by GT angle α and propagation distance z. The size of the hollow vortex beam can be adjusted by waist width ω 0. Compared with previously reported results, the work shows that the hollow vortex beam can be obtained without any model conversion of the light source.

  15. Design of a beam shaping assembly and preliminary modelling of a treatment room for accelerator-based BNCT at CNEA.

    PubMed

    Burlon, A A; Girola, S; Valda, A A; Minsky, D M; Kreiner, A J; Sánchez, G

    2011-12-01

    This work reports on the characterisation of a neutron beam shaping assembly (BSA) prototype and on the preliminary modelling of a treatment room for BNCT within the framework of a research programme for the development and construction of an accelerator-based BNCT irradiation facility in Buenos Aires, Argentina. The BSA prototype constructed has been characterised by means of MCNP simulations as well as a set of experimental measurements performed at the Tandar accelerator at the National Atomic Energy Commission of Argentina. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Level crossing statistics for optical beam wander in a turbulent atmosphere with applications to ground-to-space laser communications.

    PubMed

    Yura, Harold T; Fields, Renny A

    2011-06-20

    Level crossing statistics is applied to the complex problem of atmospheric turbulence-induced beam wander for laser propagation from ground to space. A comprehensive estimate of the single-axis wander angle temporal autocorrelation function and the corresponding power spectrum is used to develop, for the first time to our knowledge, analytic expressions for the mean angular level crossing rate and the mean duration of such crossings. These results are based on an extension and generalization of a previous seminal analysis of the beam wander variance by Klyatskin and Kon. In the geometrical optics limit, we obtain an expression for the beam wander variance that is valid for both an arbitrarily shaped initial beam profile and transmitting aperture. It is shown that beam wander can disrupt bidirectional ground-to-space laser communication systems whose small apertures do not require adaptive optics to deliver uniform beams at their intended target receivers in space. The magnitude and rate of beam wander is estimated for turbulence profiles enveloping some practical laser communication deployment options and suggesting what level of beam wander effects must be mitigated to demonstrate effective bidirectional laser communication systems.

  17. Soft shape-adaptive gripping device made from artificial muscle

    NASA Astrophysics Data System (ADS)

    Hamburg, E.; Vunder, V.; Johanson, U.; Kaasik, F.; Aabloo, A.

    2016-04-01

    We report on a multifunctional four-finger gripper for soft robotics, suitable for performing delicate manipulation tasks. The gripping device is comprised of separately driven gripping and lifting mechanisms, both made from a separate single piece of smart material - ionic capacitive laminate (ICL) also known as artificial muscle. Compared to other similar devices the relatively high force output of the ICL material allows one to construct a device able to grab and lift objects exceeding multiple times its own weight. Due to flexible design of ICL grips, the device is able to adapt the complex shapes of different objects and allows grasping single or multiple objects simultaneously without damage. The performance of the gripper is evaluated in two different configurations: a) the ultimate grasping strength of the gripping hand; and b) the maximum lifting force of the lifting actuator. The ICL is composed of three main layers: a porous membrane consisting of non-ionic polymer poly(vinylidene fluoride-co-hexafluoropropene) (PVdF-HFP), ionic liquid 1-ethyl-3-methylimidazolium trifluoromethane-sulfonate (EMITFS), and a reinforcing layer of woven fiberglass cloth. Both sides of the membrane are coated with a carbonaceous electrode. The electrodes are additionally covered with thin gold layers, serving as current collectors. Device made of this material operates silently, requires low driving voltage (<3 V), and is suitable for performing tasks in open air environment.

  18. Improved Displacement Transfer Functions for Structure Deformed Shape Predictions Using Discretely Distributed Surface Strains

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Fleischer, Van Tran

    2012-01-01

    In the formulations of earlier Displacement Transfer Functions for structure shape predictions, the surface strain distributions, along a strain-sensing line, were represented with piecewise linear functions. To improve the shape-prediction accuracies, Improved Displacement Transfer Functions were formulated using piecewise nonlinear strain representations. Through discretization of an embedded beam (depth-wise cross section of a structure along a strain-sensing line) into multiple small domains, piecewise nonlinear functions were used to describe the surface strain distributions along the discretized embedded beam. Such piecewise approach enabled the piecewise integrations of the embedded beam curvature equations to yield slope and deflection equations in recursive forms. The resulting Improved Displacement Transfer Functions, written in summation forms, were expressed in terms of beam geometrical parameters and surface strains along the strain-sensing line. By feeding the surface strains into the Improved Displacement Transfer Functions, structural deflections could be calculated at multiple points for mapping out the overall structural deformed shapes for visual display. The shape-prediction accuracies of the Improved Displacement Transfer Functions were then examined in view of finite-element-calculated deflections using different tapered cantilever tubular beams. It was found that by using the piecewise nonlinear strain representations, the shape-prediction accuracies could be greatly improved, especially for highly-tapered cantilever tubular beams.

  19. Adaptive output-based command shaping for sway control of a 3D overhead crane with payload hoisting and wind disturbance

    NASA Astrophysics Data System (ADS)

    Abdullahi, Auwalu M.; Mohamed, Z.; Selamat, H.; Pota, Hemanshu R.; Zainal Abidin, M. S.; Ismail, F. S.; Haruna, A.

    2018-01-01

    Payload hoisting and wind disturbance during crane operations are among the challenging factors that affect a payload sway and thus, affect the crane's performance. This paper proposes a new online adaptive output-based command shaping (AOCS) technique for an effective payload sway reduction of an overhead crane under the influence of those effects. This technique enhances the previously developed output-based command shaping (OCS) which was effective only for a fixed system and without external disturbances. Unlike the conventional input shaping design technique which requires the system's natural frequency and damping ratio, the proposed technique is designed by using the output signal and thus, an online adaptive algorithm can be formulated. To test the effectiveness of the AOCS, experiments are carried out using a laboratory overhead crane with a payload hoisting in the presence of wind, and with different payloads. The superiority of the method is confirmed by 82% and 29% reductions in the overall sway and the maximum transient sway respectively, when compared to the OCS, and two robust input shapers namely Zero Vibration Derivative-Derivative and Extra-Insensitive shapers. Furthermore, the method demonstrates a uniform crane's performance under all conditions. It is envisaged that the proposed method can be very useful in designing an effective controller for a crane system with an unknown payload and under the influence of external disturbances.

  20. Shape memory polymer actuator and catheter

    DOEpatents

    Maitland, Duncan J.; Lee, Abraham P.; Schumann, Daniel L.; Matthews, Dennis L.; Decker, Derek E.; Jungreis, Charles A.

    2004-05-25

    An actuator system is provided for acting upon a material in a vessel. The system includes an optical fiber and a shape memory polymer material operatively connected to the optical fiber. The shape memory polymer material is adapted to move from a first shape for moving through said vessel to a second shape where it can act upon said material.

  1. Shape memory polymer actuator and catheter

    DOEpatents

    Maitland, Duncan J.; Lee, Abraham P.; Schumann, Daniel L.; Matthews, Dennis L.; Decker, Derek E.; Jungreis, Charles A.

    2007-11-06

    An actuator system is provided for acting upon a material in a vessel. The system includes an optical fiber and a shape memory polymer material operatively connected to the optical fiber. The shape memory polymer material is adapted to move from a first shape for moving through said vessel to a second shape where it can act upon said material.

  2. Sea urchin like shaped cdse nanoparticles grown in aqueous solutions via electron beam irradiation.

    PubMed

    Singh, Shalini; Guleria, Apurav; Rath, M C; Singh, A K; Adhikari, S; Sarkar, S K

    2013-08-01

    Cadmium selenide (CdSe) nanoparticles have been grown from an aqueous solutions containing equimolar ammoniated cadmium sulphate and sodium selenosulphate as precursors in presence of citric acid as a capping agent, via electron beam irradiation. The radiolytic processes occurring in the medium result in the formation of CdSe nanoparticles through the reactions mediated by hydrated electrons (e(aq)-). The dynamics of the formation of these nanoparticles was investigated by pulse radiolysis studies. The size of the primary nanoparticles as estimated from the absorption spectra recorded immediately was less than 3 nm. These nanoparticles exhibited strong excitonic absorption pattern and broad photoluminescence at room temperature, which has been attributed to the presence of surface states/defects. This has been confirmed by Raman spectral studies, where CdSe nanoparticles exhibited characteristic surface phonon modes at around 250 cm(-1). The photoluminescence lifetime decay measurements further supported the existence of surface defects on the as-grown CdSe nanoparticles. These nanoparticles were found to exist in the agglomerated form of sea urchin like shapes of uniform size of about 500 nm as revealed from TEM and SEM images. These sea urchin like shaped CdSe nanoparticles grown in this route were found to be very stable under the ambient conditions. We infer that citric acid influences the growth as well as stability of these nanoparticles. It is expected that these nanomaterials could find potential applications in the field of sensors, catalysis and photovoltaics.

  3. Curved singular beams for three-dimensional particle manipulation.

    PubMed

    Zhao, Juanying; Chremmos, Ioannis D; Song, Daohong; Christodoulides, Demetrios N; Efremidis, Nikolaos K; Chen, Zhigang

    2015-07-13

    For decades, singular beams carrying angular momentum have been a topic of considerable interest. Their intriguing applications are ubiquitous in a variety of fields, ranging from optical manipulation to photon entanglement, and from microscopy and coronagraphy to free-space communications, detection of rotating black holes, and even relativistic electrons and strong-field physics. In most applications, however, singular beams travel naturally along a straight line, expanding during linear propagation or breaking up in nonlinear media. Here, we design and demonstrate diffraction-resisting singular beams that travel along arbitrary trajectories in space. These curved beams not only maintain an invariant dark "hole" in the center but also preserve their angular momentum, exhibiting combined features of optical vortex, Bessel, and Airy beams. Furthermore, we observe three-dimensional spiraling of microparticles driven by such fine-shaped dynamical beams. Our findings may open up new avenues for shaped light in various applications.

  4. Shear Capacity of C-Shaped and L-Shaped Angle Shear Connectors.

    PubMed

    Tahmasbi, Farzad; Maleki, Shervin; Shariati, Mahdi; Ramli Sulong, N H; Tahir, M M

    2016-01-01

    This paper investigates the behaviour of C-shaped and L-shaped angle shear connectors embedded in solid concrete slabs. An effective finite element model is proposed to simulate the push out tests of these shear connectors that encompass nonlinear material behaviour, large displacement and damage plasticity. The finite element models are validated against test results. Parametric studies using this nonlinear model are performed to investigate the variations in concrete strength and connector dimensions. The finite element analyses also confirm the test results that increasing the length of shear connector increases their shear strength proportionately. It is observed that the maximum stress in L-shaped angle connectors takes place in the weld attachment to the beam, whereas in the C-shaped angle connectors, it is in the attached leg. The location of maximum concrete compressive damage is rendered in each case. Finally, a new equation for prediction of the shear capacity of C-shaped angle connectors is proposed.

  5. Shear Capacity of C-Shaped and L-Shaped Angle Shear Connectors

    PubMed Central

    Tahmasbi, Farzad; Maleki, Shervin; Shariati, Mahdi; Ramli Sulong, N. H.; Tahir, M. M.

    2016-01-01

    This paper investigates the behaviour of C-shaped and L-shaped angle shear connectors embedded in solid concrete slabs. An effective finite element model is proposed to simulate the push out tests of these shear connectors that encompass nonlinear material behaviour, large displacement and damage plasticity. The finite element models are validated against test results. Parametric studies using this nonlinear model are performed to investigate the variations in concrete strength and connector dimensions. The finite element analyses also confirm the test results that increasing the length of shear connector increases their shear strength proportionately. It is observed that the maximum stress in L-shaped angle connectors takes place in the weld attachment to the beam, whereas in the C-shaped angle connectors, it is in the attached leg. The location of maximum concrete compressive damage is rendered in each case. Finally, a new equation for prediction of the shear capacity of C-shaped angle connectors is proposed. PMID:27478894

  6. Theoretical explanation of the polarization-converting system achieved by beam shaping and combination technique and its performance under high power conditions

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Li, Xiao; Shang, YaPing; Xu, XiaoJun

    2015-10-01

    The fiber laser has very obvious advantages and broad applications in remote welding, 3D cutting and national defense compared with the traditional solid laser. But influenced by heat effect of gain medium, nonlinear effect, stress birefringence effect and other negative factors, it's very difficult to get high power linearly polarized laser just using a single laser. For these limitations a polarization-converting system is designed using beam shaping and combination technique which is able to transform naturally polarized laser to linearly polarized laser at real time to resolve difficulties of generating high-power linearly polarized laser from fiber lasers in this paper. The principle of the Gaussian beam changing into the hollow beam passing through two axicons and the combination of the Gaussian beam and the hollow beam is discussed. In the experimental verification the energy conversion efficiency reached 93.1% with a remarkable enhancement of the extinction ratio from 3% to 98% benefited from the high conversion efficiency of axicons and the system worked fine under high power conditions. The system also kept excellent far field divergence. The experiment phenomenon also agreed with the simulation quite well. The experiment proves that this polarization-converting system will not affect laser structure which controls easily and needs no feedback and controlling system with stable and reliable properties at the same time. It can absolutely be applied to the polarization-conversion of high power laser.

  7. A high resolution hand-held focused beam profiler

    NASA Astrophysics Data System (ADS)

    Zapata-Farfan, J.; Garduño-Mejía, J.; Rosete-Aguilar, M.; Ascanio, G.; Román-Moreno, C. J.

    2017-05-01

    The shape of a beam is important in any laser application and depending on the final implementation, there exists a preferred one which is defined by the irradiance distribution.1 The energy distribution (or laser beam profile) is an important parameter in a focused beam, for instance, in laser cut industry, where the beam shape determines the quality of the cut. In terms of alignment and focusing, the energy distribution also plays an important role since the system must be configured in order to reduce the aberration effects and achieve the highest intensity. Nowadays a beam profiler is used in both industry and research laboratories with the aim to characterize laser beams used in free-space communications, focusing and welding, among other systems. The purpose of the profile analyzers is to know the main parameters of the beam, to control its characteristics as uniformity, shape and beam size as a guide to align the focusing system. In this work is presented a high resolution hand-held and compact design of a beam profiler capable to measure at the focal plane, with covered range from 400 nm to 1000 nm. The detection is reached with a CMOS sensor sized in 3673.6 μm x 2738.4 μm which acquire a snap shot of the previously attenuated focused beam to avoid the sensor damage, the result is an image of beam intensity distribution, which is digitally processed with a RaspberryTMmodule gathering significant parameters such as beam waist, centroid, uniformity and also some aberrations. The profiler resolution is 1.4 μm and was probed and validated in three different focusing systems. The spot sizes measurements were compared with the Foucault knife-edge test.

  8. Avian egg shape: Form, function, and evolution.

    PubMed

    Stoddard, Mary Caswell; Yong, Ee Hou; Akkaynak, Derya; Sheard, Catherine; Tobias, Joseph A; Mahadevan, L

    2017-06-23

    Avian egg shape is generally explained as an adaptation to life history, yet we currently lack a global synthesis of how egg-shape differences arise and evolve. Here, we apply morphometric, mechanistic, and macroevolutionary analyses to the egg shapes of 1400 bird species. We characterize egg-shape diversity in terms of two biologically relevant variables, asymmetry and ellipticity, allowing us to quantify the observed morphologies in a two-dimensional morphospace. We then propose a simple mechanical model that explains the observed egg-shape diversity based on geometric and material properties of the egg membrane. Finally, using phylogenetic models, we show that egg shape correlates with flight ability on broad taxonomic scales, suggesting that adaptations for flight may have been critical drivers of egg-shape variation in birds. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  9. Evolution of opercle shape in cichlid fishes from Lake Tanganyika - adaptive trait interactions in extant and extinct species flocks.

    PubMed

    Wilson, Laura A B; Colombo, Marco; Sánchez-Villagra, Marcelo R; Salzburger, Walter

    2015-11-20

    Phenotype-environment correlations and the evolution of trait interactions in adaptive radiations have been widely studied to gain insight into the dynamics underpinning rapid species diversification. In this study we explore the phenotype-environment correlation and evolution of operculum shape in cichlid fishes using an outline-based geometric morphometric approach combined with stable isotope indicators of macrohabitat and trophic niche. We then apply our method to a sample of extinct saurichthyid fishes, a highly diverse and near globally distributed group of actinopterygians occurring throughout the Triassic, to assess the utility of extant data to inform our understanding of ecomorphological evolution in extinct species flocks. A series of comparative methods were used to analyze shape data for 54 extant species of cichlids (N = 416), and 6 extinct species of saurichthyids (N = 44). Results provide evidence for a relationship between operculum shape and feeding ecology, a concentration in shape evolution towards present along with evidence for convergence in form, and significant correlation between the major axes of shape change and measures of gut length and body elongation. The operculum is one of few features that can be compared in extant and extinct groups, enabling reconstruction of phenotype-environment interactions and modes of evolutionary diversification in deep time.

  10. Body size and shape misperception and visual adaptation: An overview of an emerging research paradigm.

    PubMed

    Challinor, Kirsten L; Mond, Jonathan; Stephen, Ian D; Mitchison, Deborah; Stevenson, Richard J; Hay, Phillipa; Brooks, Kevin R

    2017-12-01

    Although body size and shape misperception (BSSM) is a common feature of anorexia nervosa, bulimia nervosa and muscle dysmorphia, little is known about its underlying neural mechanisms. Recently, a new approach has emerged, based on the long-established non-invasive technique of perceptual adaptation, which allows for inferences about the structure of the neural apparatus responsible for alterations in visual appearance. Here, we describe several recent experimental examples of BSSM, wherein exposure to "extreme" body stimuli causes visual aftereffects of biased perception. The implications of these studies for our understanding of the neural and cognitive representation of human bodies, along with their implications for clinical practice are discussed.

  11. 0.25-μm lithography using a 50-kV shaped electron-beam vector scan system

    NASA Astrophysics Data System (ADS)

    Gesley, Mark A.; Mulera, Terry; Nurmi, C.; Radley, J.; Sagle, Allan L.; Standiford, Keith P.; Tan, Zoilo C. H.; Thomas, John R.; Veneklasen, Lee

    1995-05-01

    Performance data from a prototype 50 kV shaped electron-beam (e-beam) pattern generator is presented. This technology development is targeted towards 180-130 nm device design rules. It will be able to handle 1X NIST X-ray membranes, glass reduction reticles, and 4- to 8-inch wafers. The prototype system uses a planar stage adapted from the IBM EL-4 design. The electron optics is an 50 kV extension of the AEBLE%+TM) design. Lines and spaces of 0.12 micrometers with < 40 nm corner radius are resolved in 0.4 micrometers thick resist at 50 kV. This evolutionary platform will evolve further to include a new 100 kV column with telecentric deflection and a 21-bit (0.5 mm) major field for improved placement accuracy. A unique immersion shaper, faster data path electronics, and 15-bit (32 micrometers ) minor field deflection electronics will substantially increase the flash rate. To match its much finer address structure, the pattern generator figure word size will increase from 80 to 96 bits. The data path electronics uses field programmable gate array (FPGA) logic allowing writing strategy optimization via software reconfiguration. An advanced stage position control (ASPC) includes three-axis, (lambda) /1024 interferometry and a high bandwidth dynamic corrections processor (DCP). Along with its normal role of coordinate transformation and dynamic correction of deflection distortion, astigmatism, and defocus; the DCP improves accuracy by modifying deflection conditions and focus according to measured substrate height variations. It also enables yaw calibration and correction for Write-on-the FlyTM motion. The electronics incorporates JTAG components for built-in self- test (BIST), as well as syndrome checking to ensure data integrity. The design includes diagnostic capabilities from offsite as well as from the operator console. A combination of third-party software and an internal job preparation software system is used to fracture patterns. It handles tone reversal

  12. Generation of tunable radially polarized array beams by controllable coherence

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Zhang, Jipeng; Zhu, Shijun; Li, Zhenhua

    2017-05-01

    In this paper, a new method for converting a single radial polarization beam into an arbitrary radially polarized array (RPA) beam such as a radial or rectangular symmetry array in the focal plane by modulating a periodic correlation structure is introduced. The realizability conditions for such source and the beam condition for radiation generated by such source are derived. It is illustrated that both the amplitude and the polarization are controllable by means of initial correlation structure and coherence parameter. Furthermore, by designing the source correlation structure, a tunable NUST-shaped RPA beam is demonstrated, which can find widespread applications in micro-nano engineering. Such a method for generation of arbitrary vector array beams is useful in beam shaping and optical tweezers.

  13. SU-E-J-135: Feasibility of Using Quantitative Cone Beam CT for Proton Adaptive Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jingqian, W; Wang, Q; Zhang, X

    2015-06-15

    Purpose: To investigate the feasibility of using scatter corrected cone beam CT (CBCT) for proton adaptive planning. Methods: Phantom study was used to evaluate the CT number difference between the planning CT (pCT), quantitative CBCT (qCBCT) with scatter correction and calibrated Hounsfield units using adaptive scatter kernel superposition (ASKS) technique, and raw CBCT (rCBCT). After confirming the CT number accuracy, prostate patients, each with a pCT and several sets of weekly CBCT, were investigated for this study. Spot scanning proton treatment plans were independently generated on pCT, qCBCT and rCBCT. The treatment plans were then recalculated on all images. Dose-volume-histogrammore » (DVH) parameters and gamma analysis were used to compare between dose distributions. Results: Phantom study suggested that Hounsfield unit accuracy for different materials are within 20 HU for qCBCT and over 250 HU for rCBCT. For prostate patients, proton dose could be calculated accurately on qCBCT but not on rCBCT. When the original plan was recalculated on qCBCT, tumor coverage was maintained when anatomy was consistent with pCT. However, large dose variance was observed when patient anatomy change. Adaptive plan using qCBCT was able to recover tumor coverage and reduce dose to normal tissue. Conclusion: It is feasible to use qu antitative CBCT (qCBCT) with scatter correction and calibrated Hounsfield units for proton dose calculation and adaptive planning in proton therapy. Partly supported by Varian Medical Systems.« less

  14. Matched-filtering generalized phase contrast using LCoS pico-projectors for beam-forming.

    PubMed

    Bañas, Andrew; Palima, Darwin; Glückstad, Jesper

    2012-04-23

    We report on a new beam-forming system for generating high intensity programmable optical spikes using so-called matched-filtering Generalized Phase Contrast (mGPC) applying two consumer handheld pico-projectors. Such a system presents a low-cost alternative for optical trapping and manipulation, optical lattices and other beam-shaping applications usually implemented with high-end spatial light modulators. Portable pico-projectors based on liquid crystal on silicon (LCoS) devices are used as binary phase-only spatial light modulators by carefully setting the appropriate polarization of the laser illumination. The devices are subsequently placed into the object and Fourier plane of a standard 4f-setup according to the mGPC spatial filtering configuration. Having a reconfigurable spatial phase filter, instead of a fixed and fabricated one, allows the beam shaper to adapt to different input phase patterns suited for different requirements. Despite imperfections in these consumer pico-projectors, the mGPC approach tolerates phase aberrations that would have otherwise been hard to overcome by standard phase projection. © 2012 Optical Society of America

  15. Transient beam oscillation with a highly dynamic scanner for laser beam fusion cutting

    NASA Astrophysics Data System (ADS)

    Goppold, Cindy; Pinder, Thomas; Herwig, Patrick

    2016-02-01

    Sheet metals with thicknesses >8 mm have a distinct cutting performance. The free choice of the optical configuration composed of fiber diameter, collimation, and focal length offers many opportunities to influence the static beam geometry. Previous analysis points out the limitations of this method in the thick section area. Within the present study, an experimental investigation of fiber laser fusion cutting of 12 mm stainless steel was performed by means of dynamical beam oscillation. Two standard optical setups are combined with a highly dynamic galvano-driven scanner that achieves frequencies up to 4 kHz. Dependencies of the scanner parameter, the optical circumstances, and the conventional cutting parameters are discussed. The aim is to characterize the capabilities and challenges of the dynamic beam shaping in comparison to the state-of-the-art static beam shaping. Thus, the trials are evaluated by quality criteria of the cut edge as surface roughness and burr height, the feed rate, and the cut kerf geometry. The investigation emphasizes promising procedural possibilities for improvements of the cutting performance in the case of fiber laser fusion cutting of thick stainless steel by means of the application of a highly dynamic scanner.

  16. The interaction of neutral evolutionary processes with climatically-driven adaptive changes in the 3D shape of the human os coxae.

    PubMed

    Betti, Lia; von Cramon-Taubadel, Noreen; Manica, Andrea; Lycett, Stephen J

    2014-08-01

    Differences in the breadth of the pelvis among modern human populations and among extinct hominin species have often been interpreted in the light of thermoregulatory adaptation, whereby a larger pelvic girdle would help preserve body temperature in cold environments while a narrower pelvis would help dissipate heat in tropical climates. There is, however, a theoretical problem in interpreting a pattern of variation as evidence of selection without first accounting for the effects of neutral evolutionary processes (i.e., mutation, genetic drift and migration). Here, we analyse 3D configurations of 27 landmarks on the os coxae of 1494 modern human individuals representing 30 male and 23 female populations from five continents and a range of climatic conditions. We test for the effects of climate on the size and shape of the pelvic bone, while explicitly accounting for population history (i.e., geographically-mediated gene flow and genetic drift). We find that neutral processes account for a substantial proportion of shape variance in the human os coxae in both sexes. Beyond the neutral pattern due to population history, temperature is a significant predictor of shape and size variation in the os coxae, at least in males. The effect of climate on the shape of the pelvic bone, however, is comparatively limited, explaining only a small percentage of shape variation in males and females. In accordance with previous hypotheses, the size of the os coxae tends to increase with decreasing temperature, although the significance of the association is reduced when population history is taken into account. In conclusion, the shape and size of the human os coxae reflect both neutral evolutionary processes and climatically-driven adaptive changes. Neutral processes have a substantial effect on pelvic variation, suggesting such factors will need to be taken into account in future studies of human and fossil hominin coxal variation. Copyright © 2014 Elsevier Ltd. All rights

  17. A Computational Approach to Model Vascular Adaptation During Chronic Hemodialysis: Shape Optimization as a Substitute for Growth Modeling

    NASA Astrophysics Data System (ADS)

    Mahmoudzadeh Akherat, S. M. Javid; Boghosian, Michael; Cassel, Kevin; Hammes, Mary

    2015-11-01

    End-stage-renal disease patients depend on successful long-term hemodialysis via vascular access, commonly facilitated via a Brachiocephalic Fistula (BCF). The primary cause of BCF failure is Cephalic Arch Stenosis (CAS). It is believed that low Wall Shear Stress (WSS) regions, which occur because of the high flow rates through the natural bend in the cephalic vein, create hemodynamic circumstances that trigger the onset and development of Intimal Hyperplasia (IH) and subsequent CAS. IH is hypothesized to be a natural effort to reshape the vessel, aiming to bring the WSS values back to a physiologically acceptable range. We seek to explore the correlation between regions of low WSS and subsequent IH and CAS in patient-specific geometries. By utilizing a shape optimization framework, a method is proposed to predict cardiovascular adaptation that could potentially be an alternative to vascular growth and remodeling. Based on an objective functional that seeks to alter the vessel shape in such a way as to readjust the WSS to be within the normal physiological range, CFD and shape optimization are then coupled to investigate whether the optimal shape evolution is correlated with actual patient-specific geometries thereafter. Supported by the National Institute of Diabetes and Digestive and Kidney Diseases of the National Institutes of Health (R01 DK90769).

  18. Reversible adaptation to photoinduced shape switching by oligomer-macrocycle interconversion with component selection in a three-state constitutional dynamic system.

    PubMed

    Vantomme, Ghislaine; Lehn, Jean-Marie

    2014-12-01

    Light irradiation of the molecular photoswitch 1-E causes isomerization into the 1-Z configuration stabilized by an internal hydrogen bond. 1-E bears aldehyde groups allowing for dynamic covalent reaction with linear diamines. On photoinduced E/Z shape switching of 1 in presence of diamines, the system undergoes interconversion between two states, a non-cyclic oligomeric one and a macrocyclic one, corresponding respectively to the E and Z configurations of 1. With a mixture of linear α,ω-diamines, 1-E yields non-selective dynamic oligomers by random incorporation of diamine components. Photoswitching to the 1-Z form leads to constitutional adaptation with preferential formation of the macrocycle incorporating the best suited diamine, H2 N(CH2 )7 NH2 . In presence of metal cations, the E form switches from its unbound W shape to its coordinated U shape and yields the macrocycle resulting from the selective incorporation of the diamine H2 NCH2 CH2 OCH2 CH2 NH2 that contains an additional O coordination site. Taken together, the results obtained describe constitutional adaptation in a triple state system: an oligomeric one and two different macrocyclic ones generated in response to two orthogonal agents, a physical stimulus, light, or a chemical effector, metal cations. These three states present, towards the incorporation of diamine components, respectively no selection, photoselection and metalloselection. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Highly integrated optical phased arrays: photonic integrated circuits for optical beam shaping and beam steering

    NASA Astrophysics Data System (ADS)

    Heck, Martijn J. R.

    2017-01-01

    Technologies for efficient generation and fast scanning of narrow free-space laser beams find major applications in three-dimensional (3D) imaging and mapping, like Lidar for remote sensing and navigation, and secure free-space optical communications. The ultimate goal for such a system is to reduce its size, weight, and power consumption, so that it can be mounted on, e.g. drones and autonomous cars. Moreover, beam scanning should ideally be done at video frame rates, something that is beyond the capabilities of current opto-mechanical systems. Photonic integrated circuit (PIC) technology holds the promise of achieving low-cost, compact, robust and energy-efficient complex optical systems. PICs integrate, for example, lasers, modulators, detectors, and filters on a single piece of semiconductor, typically silicon or indium phosphide, much like electronic integrated circuits. This technology is maturing fast, driven by high-bandwidth communications applications, and mature fabrication facilities. State-of-the-art commercial PICs integrate hundreds of elements, and the integration of thousands of elements has been shown in the laboratory. Over the last few years, there has been a considerable research effort to integrate beam steering systems on a PIC, and various beam steering demonstrators based on optical phased arrays have been realized. Arrays of up to thousands of coherent emitters, including their phase and amplitude control, have been integrated, and various applications have been explored. In this review paper, I will present an overview of the state of the art of this technology and its opportunities, illustrated by recent breakthroughs.

  20. Curved Displacement Transfer Functions for Geometric Nonlinear Large Deformation Structure Shape Predictions

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Fleischer, Van Tran; Lung, Shun-Fat

    2017-01-01

    For shape predictions of structures under large geometrically nonlinear deformations, Curved Displacement Transfer Functions were formulated based on a curved displacement, traced by a material point from the undeformed position to deformed position. The embedded beam (depth-wise cross section of a structure along a surface strain-sensing line) was discretized into multiple small domains, with domain junctures matching the strain-sensing stations. Thus, the surface strain distribution could be described with a piecewise linear or a piecewise nonlinear function. The discretization approach enabled piecewise integrations of the embedded-beam curvature equations to yield the Curved Displacement Transfer Functions, expressed in terms of embedded beam geometrical parameters and surface strains. By entering the surface strain data into the Displacement Transfer Functions, deflections along each embedded beam can be calculated at multiple points for mapping the overall structural deformed shapes. Finite-element linear and nonlinear analyses of a tapered cantilever tubular beam were performed to generate linear and nonlinear surface strains and the associated deflections to be used for validation. The shape prediction accuracies were then determined by comparing the theoretical deflections with the finiteelement- generated deflections. The results show that the newly developed Curved Displacement Transfer Functions are very accurate for shape predictions of structures under large geometrically nonlinear deformations.

  1. Systems and methods of varying charged particle beam spot size

    DOEpatents

    Chen, Yu-Jiuan

    2014-09-02

    Methods and devices enable shaping of a charged particle beam. A modified dielectric wall accelerator includes a high gradient lens section and a main section. The high gradient lens section can be dynamically adjusted to establish the desired electric fields to minimize undesirable transverse defocusing fields at the entrance to the dielectric wall accelerator. Once a baseline setting with desirable output beam characteristic is established, the output beam can be dynamically modified to vary the output beam characteristics. The output beam can be modified by slightly adjusting the electric fields established across different sections of the modified dielectric wall accelerator. Additional control over the shape of the output beam can be excreted by introducing intentional timing de-synchronization offsets and producing an injected beam that is not fully matched to the entrance of the modified dielectric accelerator.

  2. Beam distribution reconstruction simulation for electron beam probe

    NASA Astrophysics Data System (ADS)

    Feng, Yong-Chun; Mao, Rui-Shi; Li, Peng; Kang, Xin-Cai; Yin, Yan; Liu, Tong; You, Yao-Yao; Chen, Yu-Cong; Zhao, Tie-Cheng; Xu, Zhi-Guo; Wang, Yan-Yu; Yuan, You-Jin

    2017-07-01

    An electron beam probe (EBP) is a detector which makes use of a low-intensity and low-energy electron beam to measure the transverse profile, bunch shape, beam neutralization and beam wake field of an intense beam with small dimensions. While it can be applied to many aspects, we limit our analysis to beam distribution reconstruction. This kind of detector is almost non-interceptive for all of the beam and does not disturb the machine environment. In this paper, we present the theoretical aspects behind this technique for beam distribution measurement and some simulation results of the detector involved. First, a method to obtain a parallel electron beam is introduced and a simulation code is developed. An EBP as a profile monitor for dense beams is then simulated using the fast scan method for various target beam profiles, including KV distribution, waterbag distribution, parabolic distribution, Gaussian distribution and halo distribution. Profile reconstruction from the deflected electron beam trajectory is implemented and compared with the actual profile, and the expected agreement is achieved. Furthermore, as well as fast scan, a slow scan, i.e. step-by-step scan, is considered, which lowers the requirement for hardware, i.e. Radio Frequency deflector. We calculate the three-dimensional electric field of a Gaussian distribution and simulate the electron motion in this field. In addition, a fast scan along the target beam direction and slow scan across the beam are also presented, and can provide a measurement of longitudinal distribution as well as transverse profile simultaneously. As an example, simulation results for the China Accelerator Driven Sub-critical System (CADS) and High Intensity Heavy Ion Accelerator Facility (HIAF) are given. Finally, a potential system design for an EBP is described.

  3. Coherent control of double deflected anomalous modes in ultrathin trapezoid-shaped slit metasurface.

    PubMed

    Zhu, Z; Liu, H; Wang, D; Li, Y X; Guan, C Y; Zhang, H; Shi, J H

    2016-11-22

    Coherent light-matter interaction in ultrathin metamaterials has been demonstrated to dynamically modulate intensity, polarization and propagation direction of light. The gradient metasurface with a transverse phase variation usually exhibits an anomalous refracted beam of light dictated by so-called generalized Snell's law. However, less attention has been paid to coherent control of the metasurface with multiple anomalous refracted beams. Here we propose an ultrathin gradient metasurface with single trapezoid-shaped slot antenna as its building block that allows one normal and two deflected transmitted beams. It is numerically demonstrated that such metasurface with multiple scattering modes can be coherently controlled to modulate output intensities by changing the relative phase difference between two counterpropagating coherent beams. Each mode can be coherently switched on/off and two deflected anomalous beams can be synchronously dictated by the phase difference. The coherent control effect in the trapezoid-shaped slit metasurface will offer a promising opportunity for multichannel signals modulation, multichannel sensing and wave front shaping.

  4. Coherent control of double deflected anomalous modes in ultrathin trapezoid-shaped slit metasurface

    PubMed Central

    Zhu, Z.; Liu, H.; Wang, D.; Li, Y. X.; Guan, C. Y.; Zhang, H.; Shi, J. H.

    2016-01-01

    Coherent light-matter interaction in ultrathin metamaterials has been demonstrated to dynamically modulate intensity, polarization and propagation direction of light. The gradient metasurface with a transverse phase variation usually exhibits an anomalous refracted beam of light dictated by so-called generalized Snell’s law. However, less attention has been paid to coherent control of the metasurface with multiple anomalous refracted beams. Here we propose an ultrathin gradient metasurface with single trapezoid-shaped slot antenna as its building block that allows one normal and two deflected transmitted beams. It is numerically demonstrated that such metasurface with multiple scattering modes can be coherently controlled to modulate output intensities by changing the relative phase difference between two counterpropagating coherent beams. Each mode can be coherently switched on/off and two deflected anomalous beams can be synchronously dictated by the phase difference. The coherent control effect in the trapezoid-shaped slit metasurface will offer a promising opportunity for multichannel signals modulation, multichannel sensing and wave front shaping. PMID:27874053

  5. Co-rotational thermo-mechanically coupled multi-field framework and finite element for the large displacement analysis of multi-layered shape memory alloy beam-like structures

    NASA Astrophysics Data System (ADS)

    Solomou, Alexandros G.; Machairas, Theodoros T.; Karakalas, Anargyros A.; Saravanos, Dimitris A.

    2017-06-01

    A thermo-mechanically coupled finite element (FE) for the simulation of multi-layered shape memory alloy (SMA) beams admitting large displacements and rotations (LDRs) is developed to capture the geometrically nonlinear effects which are present in many SMA applications. A generalized multi-field beam theory implementing a SMA constitutive model based on small strain theory, thermo-mechanically coupled governing equations and multi-field kinematic hypotheses combining first order shear deformation assumptions with a sixth order polynomial temperature field through the thickness of the beam section are extended to admit LDRs. The co-rotational formulation is adopted, where the motion of the beam is decomposed to rigid body motion and relative small deformation in the local frame. A new generalized multi-layered SMA FE is formulated. The nonlinear transient spatial discretized equations of motion of the SMA structure are synthesized and solved using the Newton-Raphson method combined with an implicit time integration scheme. Correlations of models incorporating the present beam FE with respective results of models incorporating plane stress SMA FEs, demonstrate excellent agreement of the predicted LDRs response, temperature and phase transformation fields, as well as, significant gains in computational time.

  6. Beam shaping assembly design of 7Li(p,n)7Be neutron source for boron neutron capture therapy of deep-seated tumor.

    PubMed

    Zaidi, L; Belgaid, M; Taskaev, S; Khelifi, R

    2018-05-31

    The development of a medical facility for boron neutron capture therapy at Budker Institute of Nuclear Physics is under way. The neutron source is based on a tandem accelerator with vacuum insulation and lithium target. The proposed accelerator is conceived to deliver a proton beam around 10 mA at 2.3 MeV proton beam. To deliver a therapeutic beam for treatment of deep-seated tumors a typical Beam Shaping Assembly (BSA) based on the source specifications has been explored. In this article, an optimized BSA based on the 7 Li(p,n) 7 Be neutron production reaction is proposed. To evaluate the performance of the designed beam in a phantom, the parameters and the dose profiles in tissues due to the irradiation have been considered. In the simulations, we considered a proton energy of 2.3 MeV, a current of 10 mA, and boron concentrations in tumor, healthy tissues and skin of 52.5 ppm, 15 ppm and 22.5 ppm, respectively. It is found that, for a maximum punctual healthy tissue dose seated to 11 RBE-Gy, a mean dose of 56.5 RBE Gy with a minimum of 52.2 RBE Gy can be delivered to a tumor in 40 min, where the therapeutic ratio is estimated to 5.38. All of these calculations were carried out using the Monte Carlo MCNP code. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Customized shaping of vibration modes by acoustic metamaterial synthesis

    NASA Astrophysics Data System (ADS)

    Xu, Jiawen; Li, Shilong; Tang, J.

    2018-04-01

    Acoustic metamaterials have attractive potential in elastic wave guiding and attenuation over specific frequency ranges. The vast majority of related investigations are on transient waves. In this research we focus on stationary wave manipulation, i.e., shaping of vibration modes. Periodically arranged piezoelectric transducers shunted with inductive circuits are integrated to a beam structure to form a finite-length metamaterial beam. We demonstrate for the first time that, under a given operating frequency of interest, we can facilitate a metamaterial design such that this frequency becomes a natural frequency of the integrated system. Moreover, the vibration mode corresponding to this natural frequency can be customized and shaped to realize tailored/localized response distribution. This is fundamentally different from previous practices of utilizing geometry modification and/or feedback control to achieve mode tailoring. The metamaterial design is built upon the combinatorial effects of the bandgap feature and the effective resonant cavity feature, both attributed to the dynamic characteristics of the metamaterial beam. Analytical investigations based on unit-cell dynamics and modal analysis of the metamaterial beam are presented to reveal the underlying mechanism. Case illustrations are validated by finite element analyses. Owing to the online tunability of circuitry integrated, the proposed mode shaping technique can be online adjusted to fit specific requirements. The customized shaping of vibration modes by acoustic metamaterial synthesis has potential applications in vibration suppression, sensing enhancement and energy harvesting.

  8. Synchronous characterization of semiconductor microcavity laser beam.

    PubMed

    Wang, T; Lippi, G L

    2015-06-01

    We report on a high-resolution double-channel imaging method used to synchronously map the intensity- and optical-frequency-distribution of a laser beam in the plane orthogonal to the propagation direction. The synchronous measurement allows us to show that the laser frequency is an inhomogeneous distribution below threshold, but that it becomes homogeneous across the fundamental Gaussian mode above threshold. The beam's tails deviations from the Gaussian shape, however, are accompanied by sizeable fluctuations in the laser wavelength, possibly deriving from manufacturing details and from the influence of spontaneous emission in the very low intensity wings. In addition to the synchronous spatial characterization, a temporal analysis at any given point in the beam cross section is carried out. Using this method, the beam homogeneity and spatial shape, energy density, energy center, and the defects-related spectrum can also be extracted from these high-resolution pictures.

  9. Structure of polarization singularities of a light beam at triple frequency generated in isotropic medium by singularly polarized beam.

    PubMed

    Grigoriev, K S; Ryzhikov, P S; Cherepetskaya, E B; Makarov, V A

    2017-10-16

    The components of electric field of the third harmonic beam, generated in isotropic medium with cubic nonlinearity by a monochromatic light beam carrying polarization singularity of an arbitrary type, are found analytically. The relation between C-points characteristics in the fundamental and signal beams are determined, as well as the impact of the phase mismatch on the shape of the C-lines.

  10. Metaoptics for Spectral and Spatial Beam Manipulation

    NASA Astrophysics Data System (ADS)

    Raghu Srimathi, Indumathi

    Laser beam combining and beam shaping are two important areas with applications in optical communications, high power lasers, and atmospheric propagation studies. In this dissertation, metaoptical elements have been developed for spectral and spatial beam shaping, and multiplexing. Beams carrying orbital angular momentum (OAM), referred to as optical vortices, have unique propagation properties. Optical vortex beams carrying different topological charges are orthogonal to each other and have low inter-modal crosstalk which allows for them to be (de)multiplexed. Efficient spatial (de)multiplexing of these beams have been carried out by using diffractive optical geometrical coordinate transformation elements. The spatial beam combining technique shown here is advantageous because the efficiency of the system is not dependent on the number of OAM states being combined. The system is capable of generating coaxially propagating beams in the far-field and the beams generated can either be incoherently or coherently multiplexed with applications in power scaling and dynamic intensity profile manipulations. Spectral beam combining can also be achieved with the coordinate transformation elements. The different wavelengths emitted by fiber sources can be spatially overlapped in the far-field plane and the generated beams are Bessel-Gauss in nature with enhanced depth of focus properties. Unique system responses and beam shapes in the far-field can be realized by controlling amplitude, phase, and polarization at the micro-scale. This has been achieved by spatially varying the structural parameters at the subwavelength scale and is analogous to local modification of material properties. With advancements in fabrication technology, it is possible to control not just the lithographic process, but also the deposition process. In this work, a unique combination of spatial structure variations in conjunction with the conformal coating properties of an atomic layer deposition tool

  11. Signal coupling to embedded pitch adapters in silicon sensors

    NASA Astrophysics Data System (ADS)

    Artuso, M.; Betancourt, C.; Bezshyiko, I.; Blusk, S.; Bruendler, R.; Bugiel, S.; Dasgupta, R.; Dendek, A.; Dey, B.; Ely, S.; Lionetto, F.; Petruzzo, M.; Polyakov, I.; Rudolph, M.; Schindler, H.; Steinkamp, O.; Stone, S.

    2018-01-01

    We have examined the effects of embedded pitch adapters on signal formation in n-substrate silicon microstrip sensors with data from beam tests and simulation. According to simulation, the presence of the pitch adapter metal layer changes the electric field inside the sensor, resulting in slowed signal formation on the nearby strips and a pick-up effect on the pitch adapter. This can result in an inefficiency to detect particles passing through the pitch adapter region. All these effects have been observed in the beam test data.

  12. An analytical model of a curved beam with a T shaped cross section

    NASA Astrophysics Data System (ADS)

    Hull, Andrew J.; Perez, Daniel; Cox, Donald L.

    2018-03-01

    This paper derives a comprehensive analytical dynamic model of a closed circular beam that has a T shaped cross section. The new model includes in-plane and out-of-plane vibrations derived using continuous media expressions which produces results that have a valid frequency range above those available from traditional lumped parameter models. The web is modeled using two-dimensional elasticity equations for in-plane motion and the classical flexural plate equation for out-of-plane motion. The flange is modeled using two sets of Donnell shell equations: one for the left side of the flange and one for the right side of the flange. The governing differential equations are solved with unknown wave propagation coefficients multiplied by spatial domain and time domain functions which are inserted into equilibrium and continuity equations at the intersection of the web and flange and into boundary conditions at the edges of the system resulting in 24 algebraic equations. These equations are solved to yield the wave propagation coefficients and this produces a solution to the displacement field in all three dimensions. An example problem is formulated and compared to results from finite element analysis.

  13. Spatial control of photoemitted electron beams using a microlens-array transverse-shaping technique

    DOE PAGES

    Halavanau, A.; Qiang, G.; Ha, G.; ...

    2017-10-26

    A transversely inhomogeneous laser distribution on the photocathode surface generally produces electron beams with degraded beam quality. In this paper, we explore the use of microlens arrays to dramatically improve the transverse uniformity of an ultraviolet drive-laser pulse used in a photoinjector. Here, we also demonstrate a capability of microlens arrays to generate transversely modulated electron beams and present an application of such a feature to diagnose the properties of a magnetized beam.

  14. Displacement Theories for In-Flight Deformed Shape Predictions of Aerospace Structures

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Richards, W. L.; Tran, Van t.

    2007-01-01

    Displacement theories are developed for a variety of structures with the goal of providing real-time shape predictions for aerospace vehicles during flight. These theories are initially developed for a cantilever beam to predict the deformed shapes of the Helios flying wing. The main structural configuration of the Helios wing is a cantilever wing tubular spar subjected to bending, torsion, and combined bending and torsion loading. The displacement equations that are formulated are expressed in terms of strains measured at multiple sensing stations equally spaced on the surface of the wing spar. Displacement theories for other structures, such as tapered cantilever beams, two-point supported beams, wing boxes, and plates also are developed. The accuracy of the displacement theories is successfully validated by finite-element analysis and classical beam theory using input-strains generated by finite-element analysis. The displacement equations and associated strain-sensing system (such as fiber optic sensors) create a powerful means for in-flight deformation monitoring of aerospace structures. This method serves multiple purposes for structural shape sensing, loads monitoring, and structural health monitoring. Ultimately, the calculated displacement data can be visually displayed to the ground-based pilot or used as input to the control system to actively control the shape of structures during flight.

  15. Numerical investigation of shape domain effect to its elasticity and surface energy using adaptive finite element method

    NASA Astrophysics Data System (ADS)

    Alfat, Sayahdin; Kimura, Masato; Firihu, Muhammad Zamrun; Rahmat

    2018-05-01

    In engineering area, investigation of shape effect in elastic materials was very important. It can lead changing elasticity and surface energy, and also increase of crack propagation in the material. A two-dimensional mathematical model was developed to investigation of elasticity and surface energy in elastic material by Adaptive Finite Element Method. Besides that, behavior of crack propagation has observed for every those materials. The government equations were based on a phase field approach in crack propagation model that developed by Takaishi-Kimura. This research has varied four shape domains where physical properties of materials were same (Young's modulus E = 70 GPa and Poisson's ratio ν = 0.334). Investigation assumptions were; (1) homogeneous and isotropic material, (2) there was not initial cracking at t = 0, (3) initial displacement was zero [u1, u2] = 0) at initial condition (t = 0), and (4) length of time simulation t = 5 with interval Δt = 0.005. Mode I/II or mixed mode crack propagation has been used for the numerical investigation. Results of this studies were very good and accurate to show changing energy and behavior of crack propagation. In the future time, this research can be developed to complex phenomena and domain. Furthermore, shape optimization can be investigation by the model.

  16. Screw-Shaped Light in Extended Electromagnetics

    NASA Astrophysics Data System (ADS)

    Lehnert, B.

    2005-01-01

    Twisted light beams have recently been observed for which the energy travels in a corkscrew-shaped path, spiralling around the beam's central axis. These discoveries are expected to become important to the development of new methods in the field of communication, as well as to the invention of new tools in microbiology. In this paper is shown that conventional theory based on Maxwell's equations cannot explain the basic features of twisted light. On the other hand an extended electromagnetic theory, based on a nonzero electric field divergence in the vacuum state, appears to be reconcilable with the main behaviour of the twisted light phenomena. The solutions and the set of modes being obtained from this extended theory are applicable both to models of high and low density photon beams and to those of individual photons, all having limited extensions in space and possessing an angular momentum (spin). Thereby beam models can be developed the intensity of which forms a ring-shaped cross-section, and individual photon models can be obtained which have the features of "needle radiation". However, within the limits of validity of the approximations made so far in the analysis, it is not clear whether the effective diameter of the individual photon models can be small enough to approach atomic dimensions.

  17. Compact D-D Neutron Source-Driven Subcritical Multiplier and Beam-Shaping Assembly for Boron Neutron Capture Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Francesco Ganda; Jasmina Vujic; Ehud Greenspan

    2010-12-01

    This work assesses the feasibility of using a small, safe, and inexpensive keff 0.98 subcritical fission assembly [subcritical neutron multiplier (SCM)] to amplify the treatment neutron beam intensity attainable from a compact deuterium-deuterium (D-D) fusion neutron source delivering [approximately]1012 n/s. The objective is to reduce the treatment time for deep-seated brain tumors to [approximately]1 h. The paper describes the optimal SCM design and two optimal beam-shaping assemblies (BSAs) - one designed to maximize the dose rate and the other designed to maximize the total dose that can be delivered to a deep-seated tumor. The neutron beam intensity amplification achieved withmore » the optimized SCM and BSA results in an increase in the treatment dose rate by a factor of 18: from 0.56 Gy/h without the SCM to 10.1 Gy/h. The entire SCM is encased in an aluminum structure. The total amount of 20% enriched uranium required for the SCM is 8.5 kg, and the cost (not including fabrication) is estimated to be less than $60,000. The SCM power level is estimated at 400 W when driven by a 1012 n/s D-D neutron source. This translates into consumption of only [approximately]0.6% of the initially loaded 235U atoms during 50 years of continuous operation and implies that the SCM could operate continuously for the entire lifetime of the facility without refueling. Cooling the SCM does not pose a challenge; it may be accomplished by natural circulation as the maximum heat flux is only 0.034 W/cm2.« less

  18. Solitonic characteristics of Airy beam nonlinear propagation

    NASA Astrophysics Data System (ADS)

    Bouchet, Thomas; Marsal, Nicolas; Sciamanna, Marc; Wolfersberger, Delphine

    2018-05-01

    We analyze the nonlinear propagation of a one-dimensional Airy beam. Under nonlinear focusing conditions, the Airy beam splits into a weak accelerating structure and a beam that has been named an "off-shooting soliton." Experimental measurements and numerical results related to the off-shooting Airy beam are compared to soliton theoretical profiles and a good agreement is found in terms of transverse shape, width, and amplitude. We identify the different parameters to generate an Airy beam off-shooting soliton and demonstrate that its profile is also preserved through propagation over long distances.

  19. RF pulse shape control in the compact linear collider test facility

    NASA Astrophysics Data System (ADS)

    Kononenko, Oleksiy; Corsini, Roberto

    2018-07-01

    The Compact Linear Collider (CLIC) is a study for an electron-positron machine aiming at accelerating and colliding particles at the next energy frontier. The CLIC concept is based on the novel two-beam acceleration scheme, where a high-current low-energy drive beam generates RF in series of power extraction and transfer structures accelerating the low-current main beam. To compensate for the transient beam-loading and meet the energy spread specification requirements for the main linac, the RF pulse shape must be carefully optimized. This was recently modelled by varying the drive beam phase switch times in the sub-harmonic buncher so that, when combined, the drive beam modulation translates into the required voltage modulation of the accelerating pulse. In this paper, the control over the RF pulse shape with the phase switches, that is crucial for the success of the developed compensation model, is studied. The results on the experimental verification of this control method are presented and a good agreement with the numerical predictions is demonstrated. Implications for the CLIC beam-loading compensation model are also discussed.

  20. Self-Nulling Beam Combiner Using No External Phase Inverter

    NASA Technical Reports Server (NTRS)

    Bloemhof, Eric E.

    2010-01-01

    A self-nulling beam combiner is proposed that completely eliminates the phase inversion subsystem from the nulling interferometer, and instead uses the intrinsic phase shifts in the beam splitters. Simplifying the flight instrument in this way will be a valuable enhancement of mission reliability. The tighter tolerances on R = T (R being reflection and T being transmission coefficients) required by the self-nulling configuration actually impose no new constraints on the architecture, as two adaptive nullers must be situated between beam splitters to correct small errors in the coatings. The new feature is exploiting the natural phase shifts in beam combiners to achieve the 180 phase inversion necessary for nulling. The advantage over prior art is that an entire subsystem, the field-flipping optics, can be eliminated. For ultimate simplicity in the flight instrument, one might fabricate coatings to very high tolerances and dispense with the adaptive nullers altogether, with all their moving parts, along with the field flipper subsystem. A single adaptive nuller upstream of the beam combiner may be required to correct beam train errors (systematic noise), but in some circumstances phase chopping reduces these errors substantially, and there may be ways to further reduce the chop residuals. Though such coatings are beyond the current state of the art, the mechanical simplicity and robustness of a flight system without field flipper or adaptive nullers would perhaps justify considerable effort on coating fabrication.

  1. Cone beam computed tomography-derived adaptive radiotherapy for radical treatment of esophageal cancer.

    PubMed

    Hawkins, Maria A; Brooks, Corrinne; Hansen, Vibeke N; Aitken, Alexandra; Tait, Diana M

    2010-06-01

    To investigate the potential for reduction in normal tissue irradiation by creating a patient specific planning target volume (PTV) using cone beam computed tomography (CBCT) imaging acquired in the first week of radiotherapy for patients receiving radical radiotherapy. Patients receiving radical RT for carcinoma of the esophagus were investigated. The PTV is defined as CTV(tumor, nodes) plus esophagus outlined 3 to 5 cm cranio-caudally and a 1.5-cm circumferential margin is added (clinical plan). Prefraction CBCT are acquired on Days 1 to 4, then weekly. No correction for setup error made. The images are imported into the planning system. The tumor and esophagus for the length of the PTV are contoured on each CBCT and 5 mm margin is added. A composite volume (PTV1) is created using Week 1 composite CBCT volumes. The same process is repeated using CBCT Week 2 to 6 (PTV2). A new plan is created using PTV1 (adaptive plan). The coverage of the 95% isodose of PTV1 is evaluated on PTV2. Dose-volume histograms (DVH) for lungs, heart, and cord for two plans are compared. A total of 139 CBCT for 14 cases were analyzed. For the adaptive plan the coverage of the 95% prescription isodose for PTV1 = 95.6% +/- 4% and the PTV2 = 96.8% +/- 4.1% (t test, 0.19). Lungs V20 (15.6 Gy vs. 10.2 Gy) and heart mean dose (26.9 Gy vs. 20.7 Gy) were significantly smaller for the adaptive plan. A reduced planning volume can be constructed within the first week of treatment using CBCT. A single plan modification can be performed within the second week of treatment with considerable reduction in organ at risk dose. Copyright 2010 Elsevier Inc. All rights reserved.

  2. Mandibular second molar exhibiting a unique "Y-" and "J-" "shaped" root canal anatomy diagnosed using cone-beam computed tomographic scanning: A case report.

    PubMed

    Parashar, Saumya-Rajesh; Kowsky, R Dinesh; Natanasabapathy, Velmurugan

    2017-01-01

    This article aims to report a unique case with aberrant root canal anatomy exhibiting "Y-" and "J"-shaped canal pattern in a mandibular second molar. Anatomic complexities may pose challenges for endodontic treatment. Before performing endodontic treatment, the clinician should be aware of the internal anatomy of the tooth being treated and should recognize anatomic aberrations if present. Presence of unusual anatomy may call for modifications in treatment planning. This report describes in detail about a mandibular second molar tooth associated with two paramolar tubercles having a peculiar "Y-" and "J-"shaped canal anatomy detected with the aid of cone beam computed tomography, which has never been reported in the dental literature. The proposed treatment protocol for the endodontic management of the same has also been discussed.

  3. Controllable light capsules employing modified Bessel-Gauss beams

    PubMed Central

    Gong, Lei; Liu, Weiwei; Zhao, Qian; Ren, Yuxuan; Qiu, Xingze; Zhong, Mincheng; Li, Yinmei

    2016-01-01

    We report, in theory and experiment, on a novel class of controlled light capsules with nearly perfect darkness, directly employing intrinsic properties of modified Bessel-Gauss beams. These beams are able to naturally create three-dimensional bottle-shaped region during propagation as long as the parameters are properly chosen. Remarkably, the optical bottle can be controlled to demonstrate various geometries through tuning the beam parameters, thereby leading to an adjustable light capsule. We provide a detailed insight into the theoretical origin and characteristics of the light capsule derived from modified Bessel-Gauss beams. Moreover, a binary digital micromirror device (DMD) based scheme is first employed to shape the bottle beams by precise amplitude and phase manipulation. Further, we demonstrate their ability for optical trapping of core-shell magnetic microparticles, which play a particular role in biomedical research, with holographic optical tweezers. Therefore, our observations provide a new route for generating and controlling bottle beams and will widen the potentials for micromanipulation of absorbing particles, aerosols or even individual atoms. PMID:27388558

  4. An adaptive metamaterial beam with hybrid shunting circuits for extremely broadband control of flexural wave (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Chen, Yangyang; Huang, Guoliang

    2017-04-01

    A great deal of research has been devoted to controlling the dynamic behaviors of phononic crystals and metamaterials by directly tuning the frequency regions and/or widths of their inherent band gaps. Here, we present a novel approach to achieve extremely broadband flexural wave/vibration attenuation based on tunable local resonators made of piezoelectric stacks shunted by hybrid negative capacitance and negative inductance circuits with proof masses attached on a host beam. First, wave dispersion relations of the adaptive metamaterial beam are calculated analytically by using the transfer matrix method. The unique modulus tuning properties induced by the hybrid shunting circuits are then characterized conceptually, from which the frequency dependent modulus tuning curves of the piezoelectric stack located within wave attenuation frequency regions are quantitatively identified. As an example, a flexural wave high-pass band filter with a wave attenuation region from 0 to 23.0 kHz is demonstrated analytically and numerically by using the hybrid shunting circuit, in which the two electric components are connected in series. By changing the connection pattern to be parallel, another super wide wave attenuation region from 13.5 to 73.0 kHz is demonstrated to function as a low-pass filter at a subwavelength scale. The proposed adaptive metamaterial possesses a super wide band gap created both naturally and artificially. Therefore, it can be used for the transient wave mitigation at extremely broadband frequencies such as blast or impact loadings. We envision that the proposed design and approach can open many possibilities in broadband vibration and wave control.

  5. Ion beam-induced shaping of Ni nanoparticles embedded in a silica matrix: from spherical to prolate shape

    PubMed Central

    2011-01-01

    Present work reports the elongation of spherical Ni nanoparticles (NPs) parallel to each other, due to bombardment with 120 MeV Au+9 ions at a fluence of 5 × 1013 ions/cm2. The Ni NPs embedded in silica matrix have been prepared by atom beam sputtering technique and subsequent annealing. The elongation of Ni NPs due to interaction with Au+9 ions as investigated by cross-sectional transmission electron microscopy (TEM) shows a strong dependence on initial Ni particle size and is explained on the basis of thermal spike model. Irradiation induces a change from single crystalline nature of spherical particles to polycrystalline nature of elongated particles. Magnetization measurements indicate that changes in coercivity (Hc) and remanence ratio (Mr/Ms) are stronger in the ion beam direction due to the preferential easy axis of elongated particles in the beam direction. PMID:21711659

  6. Enhanced coherent terahertz beam with a photoconductive antenna containing a chaotic shape electrodes

    NASA Astrophysics Data System (ADS)

    Wu, Dong Ho; Kim, Christopher; Graber, Benjamin

    2014-03-01

    Photoconductive antenna is one of the most popular methods to produce a broadband terahertz beam. Our recent experiments indicate that a photoconductive antenna containing a pair of parallel micro-strip-line electrodes produces both incoherent and coherent terahertz beam. When we drive the antenna with a low bias voltage and a weak femto-second laser power, it produces mostly coherent terahertz beam. However, as the bias voltage and/or the femto-second laser power increase, the incoherent terahertz beam strength increases exponentially with the bias voltage.[1] When the bias voltage and/or the femto-second laser power exceeds critical values, heat associated with the incoherent beam eventually leads to a catastrophic antenna failure, resulting in a permanent damage on the antenna.[2] In order to improve our photoconductive antenna we have implemented a chaotic geometry in the photoconductive antenna's electrodes. Our experimental results show that the new antenna produces substantially more coherent terahertz beam and much less incoherent terahertz beam. We will present the details of our experimental results and discuss the merits of new antenna design. We will also examine some theory to understand our experimental results. Supported by DTRA.

  7. Mid-infrared beam splitter for ultrashort pulses.

    PubMed

    Somma, Carmine; Reimann, Klaus; Woerner, Michael; Kiel, Thomas; Busch, Kurt; Braun, Andreas; Matalla, Mathias; Ickert, Karina; Krüger, Olaf

    2017-08-01

    A design is presented for a beam splitter suitable for ultrashort pulses in the mid-infrared and terahertz spectral range consisting of a structured metal layer on a diamond substrate. Both the theory and experiment show that this beam splitter does not distort the temporal pulse shape.

  8. Multiple beam antenna system

    NASA Technical Reports Server (NTRS)

    Byrnes, P. J.

    1972-01-01

    Using a computer program which plots beams from antennas located on synchronous satellites onto the earth's surface, several circular and elliptical reflectors were analyzed for pattern coverage. The reflectors considered were circular paraboloid and elliptical shaped.

  9. Adaptive fractionated stereotactic Gamma Knife radiotherapy of meningioma using integrated stereotactic cone-beam-CT and adaptive re-planning (a-gkFSRT).

    PubMed

    Stieler, F; Wenz, F; Abo-Madyan, Y; Schweizer, B; Polednik, M; Herskind, C; Giordano, F A; Mai, S

    2016-11-01

    The Gamma Knife Icon (Elekta AB, Stockholm, Sweden) allows frameless stereotactic treatment using a combination of cone beam computer tomography (CBCT), a thermoplastic mask system, and an infrared-based high-definition motion management (HDMM) camera system for patient tracking during treatment. We report on the first patient with meningioma at the left petrous bone treated with adaptive fractionated stereotactic radiotherapy (a-gkFSRT). The first patient treated with Gamma Knife Icon at our institute received MR imaging for preplanning before treatment. For each treatment fraction, a daily CBCT was performed to verify the actual scull/tumor position. The system automatically adapted the planned shot positions to the daily position and recalculated the dose distribution (online adaptive planning). During treatment, the HDMM system recorded the intrafractional patient motion. Furthermore, the required times were recorded to define a clinical treatment slot. Total treatment time was around 20 min. Patient positioning needed 0.8 min, CBCT positioning plus acquisition 1.65 min, CT data processing and adaptive planning 2.66 min, and treatment 15.6 min. The differences for the five daily CBCTs compared to the reference are for rotation: -0.59 ± 0.49°/0.18 ± 0.20°/0.05 ± 0.36° and for translation: 0.94 ± 0.52 mm/-0.08 ± 0.08 mm/-1.13 ± 0.89 mm. Over all fractions, an intrafractional movement of 0.13 ± 0.04 mm was observed. The Gamma Knife Icon allows combining the accuracy of the stereotactic Gamma Knife system with the flexibility of fractionated treatment with the mask system and CBCT. Furthermore, the Icon system introduces a new online patient tracking system to the clinical routine. The interfractional accuracy of patient positioning was controlled with a thermoplastic mask and CBCT.

  10. Mutation of a cuticular protein, BmorCPR2, alters larval body shape and adaptability in silkworm, Bombyx mori.

    PubMed

    Qiao, Liang; Xiong, Gao; Wang, Ri-xin; He, Song-zhen; Chen, Jie; Tong, Xiao-ling; Hu, Hai; Li, Chun-lin; Gai, Ting-ting; Xin, Ya-qun; Liu, Xiao-fan; Chen, Bin; Xiang, Zhong-huai; Lu, Cheng; Dai, Fang-yin

    2014-04-01

    Cuticular proteins (CPs) are crucial components of the insect cuticle. Although numerous genes encoding cuticular proteins have been identified in known insect genomes to date, their functions in maintaining insect body shape and adaptability remain largely unknown. In the current study, positional cloning led to the identification of a gene encoding an RR1-type cuticular protein, BmorCPR2, highly expressed in larval chitin-rich tissues and at the mulberry leaf-eating stages, which is responsible for the silkworm stony mutant. In the Dazao-stony strain, the BmorCPR2 allele is a deletion mutation with significantly lower expression, compared to the wild-type Dazao strain. Dysfunctional BmorCPR2 in the stony mutant lost chitin binding ability, leading to reduced chitin content in larval cuticle, limitation of cuticle extension, abatement of cuticle tensile properties, and aberrant ratio between internodes and intersegmental folds. These variations induce a significant decrease in cuticle capacity to hold the growing internal organs in the larval development process, resulting in whole-body stiffness, tightness, and hardness, bulging intersegmental folds, and serious defects in larval adaptability. To our knowledge, this is the first study to report the corresponding phenotype of stony in insects caused by mutation of RR1-type cuticular protein. Our findings collectively shed light on the specific role of cuticular proteins in maintaining normal larval body shape and will aid in the development of pest control strategies for the management of Lepidoptera.

  11. Analysis of castellated steel beam with oval openings

    NASA Astrophysics Data System (ADS)

    Tudjono, S.; Sunarto; Han, A. L.

    2017-11-01

    A castellated steel beam is per definition a wide flange (WF) or I shaped steel profile with openings, to reduce self-weight and improve the effectiveness in terms of material use. Recently, extensive study on these castellated steel beams has been conducted, involving different shapes in web openings. The main goal of these research works was to evaluate and analyze its optimum opening sizes and shapes configuration. More in-depth research work to the behavior and the influence of holes to WF beams need to be conducted. In this paper, an oval shaped web opening is chosen as alternate. The study involves a modification in the variation of oval web openings both in the horizontally and vertically direction. An experimental and numerical study based on the finite element method conducted with the Abaqus/CAE 6.12 software is used to analyze the buckling behavior of the web. The obtained results from the experimental test specimens are in good agreement with the obtained results from the finite element analysis. Furthermore, the numerical model can be expanded to be used as analyzing tool in evaluating and studying the effect and influencing factors of a variation in opening’s parameters.

  12. Adaptive composites with embedded NiTiCu wires

    NASA Astrophysics Data System (ADS)

    Balta-Neumann, J. Antonio; Michaud, Veronique J.; Parlinska, Magdelena; Gotthardt, Rolf; Manson, Jan-Anders E.

    2001-07-01

    Adaptive composites have been produced by embedding prestrained shape memory alloy (SMA) wires into an epoxy matrix, reinforced with aramid fibers. These materials demonstrate attractive effects such as shape change or a shift in the vibration frequency upon activation. When heated above their transformation temperature, the wires' strain recovery is confined, and recovery stresses are generated. As a result, if the wires are placed along the neutral axis of a composite beam, a shift in resonance vibration frequency can be observed. To optimize the design of such composites, the matrix - SMA wire interfacial shear strength has been analyzed with the pull out testing technique. It is shown that the nature of the wire surface influences the interfacial shear strength, and that satisfactory results are obtained for SMA wires with a thin oxide layer. Composite samples consisting of two different types of pre- strained NiTiCu wires embedded in either pure epoxy matrix or Kevlar-epoxy matrix were produced. The recovery force and vibration response of composites were measured in a clamped-clamped configuration, to assess the effect of wire type and volume fraction. The results are highly reproducible in all cases with a narrow hysteresis loop, which makes NiTiCu wires good candidates for adaptive composites. The recovery forces increase with the volume fraction of the embedded wires, are higher when the wires are embedded in a low CTE matrix and, at a given temperature, are higher when the wire transformation temperature is lower.

  13. Micromirror structure actuated by TiNi shape memory thin films

    NASA Astrophysics Data System (ADS)

    Fu, Y. Q.; Luo, J. K.; Hu, M.; Du, H. J.; Flewitt, A. J.; Milne, W. I.

    2005-10-01

    TiNi films were deposited by co-sputtering TiNi and Ti targets. Results from differential scanning calorimetry and curvature measurement revealed martensitic transformation and shape memory effect upon heating and cooling. Two types of TiNi/Si micromirror structures with a Si mirror cap (40 µm thick) and TiNi/Si actuation beams were designed and fabricated. For the first design, a V-shaped cantilever based on the TiNi/Si bimorph structure was used as the actuation mechanism for the micromirror. In the second design, three elbow-shaped Si beams with TiNi electrodes were used as the arms to actuate the mirror. The TiNi/Si microbeams were flat at room temperature and bent up by applying voltage in the TiNi electrodes (due to phase transformation and shape memory effect), thus causing changes in angles of the micromirror.

  14. Adaptive modulations of martensites.

    PubMed

    Kaufmann, S; Rössler, U K; Heczko, O; Wuttig, M; Buschbeck, J; Schultz, L; Fähler, S

    2010-04-09

    Modulated phases occur in numerous functional materials like giant ferroelectrics and magnetic shape-memory alloys. To understand the origin of these phases, we employ and generalize the concept of adaptive martensite. As a starting point, we investigate the coexistence of austenite, adaptive 14M phase, and tetragonal martensite in Ni-Mn-Ga magnetic shape-memory alloy epitaxial films. We show that the modulated martensite can be constructed from nanotwinned variants of the tetragonal martensite phase. By combining the concept of adaptive martensite with branching of twin variants, we can explain key features of modulated phases from a microscopic view. This includes metastability, the sequence of 6M-10M-14M-NM intermartensitic transitions, and the magnetocrystalline anisotropy.

  15. Laser beam-profile impression and target thickness impact on laser-accelerated protons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schollmeier, M.; Harres, K.; Nuernberg, F.

    Experimental results on the influence of the laser focal spot shape onto the beam profile of laser-accelerated protons from gold foils are reported. The targets' microgrooved rear side, together with a stack of radiochromic films, allowed us to deduce the energy-dependent proton source-shape and size, respectively. The experiments show, that shape and size of the proton source depend only weakly on target thickness as well as shape of the laser focus, although they strongly influence the proton's intensity distribution. It was shown that the laser creates an electron beam that closely follows the laser beam topology, which is maintained duringmore » the propagation through the target. Protons are then accelerated from the rear side with an electron created electric field of a similar shape. Simulations with the Sheath-Accelerated Beam Ray-tracing for IoN Analysis code SABRINA, which calculates the proton distribution in the detector for a given laser-beam profile, show that the electron distribution during the transport through a thick target (50 {mu}m Au) is only modified due to multiple small angle scattering. Thin targets (10 {mu}m) show large source sizes of over 100 {mu}m diameter for 5 MeV protons, which cannot be explained by multiple scattering only and are most likely the result of refluxing electrons.« less

  16. First-and Second-Order Displacement Transfer Functions for Structural Shape Calculations Using Analytically Predicted Surface Strains

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Fleischer, Van Tran

    2012-01-01

    New first- and second-order displacement transfer functions have been developed for deformed shape calculations of nonuniform cross-sectional beam structures such as aircraft wings. The displacement transfer functions are expressed explicitly in terms of beam geometrical parameters and surface strains (uniaxial bending strains) obtained at equally spaced strain stations along the surface of the beam structure. By inputting the measured or analytically calculated surface strains into the displacement transfer functions, one could calculate local slopes, deflections, and cross-sectional twist angles of the nonuniform beam structure for mapping the overall structural deformed shapes for visual display. The accuracy of deformed shape calculations by the first- and second-order displacement transfer functions are determined by comparing these values to the analytically predicted values obtained from finite element analyses. This comparison shows that the new displacement transfer functions could quite accurately calculate the deformed shapes of tapered cantilever tubular beams with different tapered angles. The accuracy of the present displacement transfer functions also are compared to those of the previously developed displacement transfer functions.

  17. Mechanical beam isolator for high-power laser systems

    DOEpatents

    Post, Richard F.; Vann, Charles S.

    1998-01-01

    A mechanical beam isolator uses rod-shaped elements having a Gaussian configuration to interrupt the path of a beam of photons or particles when the time-scale of the needed interruption is of the order of a microsecond or less. One or more of these rods is mounted transversely to, and penetrates through, a rotating shaft supported by bearings. Owing to the Gaussian geometry of the rods, they are able to withstand much higher rotation speeds, without tensile failure, than rods having any other geometrical shape.

  18. Ion-beam nanopatterning: experimental results with chemically-assisted beam

    NASA Astrophysics Data System (ADS)

    Pochon, Sebastien C. R.

    2018-03-01

    The need for forming gratings (for example used in VR headsets) in materials such as SiO2 has seen a recent surge in the use of Ion beam etching techniques. However, when using an argon-only beam, the selectivity is limited as it is a physical process. Typically, gases such as CHF3, SF6, O2 and Cl2 can be added to argon in order to increase selectivity; depending on where the gas is injected, the process is known as Reactive Ion Beam Etching (RIBE) or Chemically Assisted Ion Beam Etching (CAIBE). The substrate holder can rotate in order to provide an axisymmetric etch rate profile. It can also be tilted over a range of angles to the beam direction. This enables control over the sidewall profile as well as radial uniformity optimisation. Ion beam directionality in conjunction with variable incident beam angle via platen angle setting enables profile control and feature shaping during nanopatterning. These hardware features unique to the Ion Beam etching methods can be used to create angled etch features. The CAIBE technique is also well suited to laser diode facet etch (for optoelectronic devices); these typically use III-V materials like InP. Here, we report on materials such as SiO2 etched without rotation and at a fixed platen angle allowing the formation of gratings and InP etched at a fixed angle with rotation allowing the formation of nanopillars and laser facets.

  19. Active vibration control for piezoelectricity cantilever beam: an adaptive feedforward control method

    NASA Astrophysics Data System (ADS)

    Zhu, Qiao; Yue, Jun-Zhou; Liu, Wei-Qun; Wang, Xu-Dong; Chen, Jun; Hu, Guang-Di

    2017-04-01

    This work is focused on the active vibration control of piezoelectric cantilever beam, where an adaptive feedforward controller (AFC) is utilized to reject the vibration with unknown multiple frequencies. First, the experiment setup and its mathematical model are introduced. Due to that the channel between the disturbance and the vibration output is unknown in practice, a concept of equivalent input disturbance (EID) is employed to put an equivalent disturbance into the input channel. In this situation, the vibration control can be achieved by setting the control input be the identified EID. Then, for the EID with known multiple frequencies, the AFC is introduced to perfectly reject the vibration but is sensitive to the frequencies. In order to accurately identify the unknown frequencies of EID in presence of the random disturbances and un-modeled nonlinear dynamics, the time-frequency-analysis (TFA) method is employed to precisely identify the unknown frequencies. Consequently, a TFA-based AFC algorithm is proposed to the active vibration control with unknown frequencies. Finally, four cases are given to illustrate the efficiency of the proposed TFA-based AFC algorithm by experiment.

  20. Application of Traditional and Nanostructure Materials for Medical Electron Beams Collimation: Numerical Simulation

    NASA Astrophysics Data System (ADS)

    Miloichikova, I. A.; Stuchebrov, S. G.; Zhaksybayeva, G. K.; Wagner, A. R.

    2015-11-01

    Nowadays, the commercial application of the electron accelerators grows in the industry, in the research investigations, in the medical diagnosis and treatment. In this regard, the electron beam profile modification in accordance with specific purposes is an actual task. In this paper the model of the TPU microtron extracted electron beam developed in the program “Computer Laboratory (PCLab)” is described. The internal beam divergence influence for the electron beam profile and depth dose distribution in the air is considered. The possibility of using the nanostructure materials for the electron beam formation was analyzed. The simulation data of the electron beam shape collimated by different materials (lead, corund- zirconia nanoceramic, gypsum) are shown. The collimator material influence for the electron beam profile and shape are analyzed.

  1. Tilt angle measurement with a Gaussian-shaped laser beam tracking

    NASA Astrophysics Data System (ADS)

    Šarbort, Martin; Řeřucha, Šimon; Jedlička, Petr; Lazar, Josef; Číp, Ondrej

    2014-05-01

    We have addressed the challenge to carry out the angular tilt stabilization of a laser guiding mirror which is intended to route a laser beam with a high energy density. Such an application requires good angular accuracy as well as large operating range, long term stability and absolute positioning. We have designed an instrument for such a high precision angular tilt measurement based on a triangulation method where a laser beam with Gaussian profile is reflected off the stabilized mirror and detected by an image sensor. As the angular deflection of the mirror causes a change of the beam spot position, the principal task is to measure the position on the image chip surface. We have employed a numerical analysis of the Gaussian intensity pattern which uses the nonlinear regression algorithm. The feasibility and performance of the method were tested by numeric modeling as well as experimentally. The experimental results indicate that the assembled instrument achieves a measurement error of 0.13 microradian in the range +/-0.65 degrees over the period of one hour. This corresponds to the dynamic range of 1:170 000.

  2. Probing the symmetry of the potential of localized surface plasmon resonances with phase-shaped electron beams.

    PubMed

    Guzzinati, Giulio; Béché, Armand; Lourenço-Martins, Hugo; Martin, Jérôme; Kociak, Mathieu; Verbeeck, Jo

    2017-04-12

    Plasmonics, the science and technology of the interaction of light with metallic objects, is fundamentally changing the way we can detect, generate and manipulate light. Although the field is progressing swiftly, thanks to the availability of nanoscale manufacturing and analysis methods, fundamental properties such as the plasmonic excitations' symmetries cannot be accessed directly, leading to a partial, sometimes incorrect, understanding of their properties. Here we overcome this limitation by deliberately shaping the wave function of an electron beam to match a plasmonic excitations' symmetry in a modified transmission electron microscope. We show experimentally and theoretically that this offers selective detection of specific plasmon modes within metallic nanoparticles, while excluding modes with other symmetries. This method resembles the widespread use of polarized light for the selective excitation of plasmon modes with the advantage of locally probing the response of individual plasmonic objects and a far wider range of symmetry selection criteria.

  3. Hollow sinh-Gaussian beams and their paraxial properties.

    PubMed

    Sun, Qiongge; Zhou, Keya; Fang, Guangyu; Zhang, Guoqiang; Liu, Zhengjun; Liu, Shutian

    2012-04-23

    A new mathematical model of dark-hollow beams, described as hollow sinh-Gaussian (HsG) beams, has been introduced. The intensity distributions of HsG beams are characterized by a single bright ring along the propagation whose size is determined by the order of beams; the shape of the ring can be controlled by beam width and this leads to the elliptical HsG beams. Propagation characteristics of HsG beams through an ABCD optical system have been researched, they can be regarded as superposition of a series of Hypergeometric-Gaussian (HyGG) beams. As a numerical example, the propagation characteristics of HsG beams in free space have been demonstrated graphically. © 2012 Optical Society of America

  4. Laser shape setting of superelastic nitinol wires: Functional properties and microstructure

    NASA Astrophysics Data System (ADS)

    Tuissi, Ausonio; Coduri, Mauro; Biffi, Carlo Alberto

    Shape setting is one of the most important steps in the production route of Nitinol Shape Memory Alloys (SMAs), as it can fix the functional properties, such as the shape memory effect and the superelasticity (SE). The conventional method for making the shape setting is performed at 400-500∘C in furnaces. In this work, a laser beam was adopted for performing straight shape setting on commercially available austenitic Nitinol thin wires. The laser beam, at different power levels, was moved along the wire length for inducing the functional performances. Calorimetric, pseudo-elastic and microstructural features of the laser annealed wires were studied through differential scanning calorimetry, tensile testing and high energy X-ray diffraction, respectively. It can be stated that the laser technology can induce SE in thin Nitinol wires: the wire performances can be modulated in function of the laser power and improved functional properties can be obtained.

  5. Structural aspects of cold-formed steel section designed as U-shape composite beam

    NASA Astrophysics Data System (ADS)

    Saggaff, Anis; Tahir, Mahmood Md.; Azimi, Mohammadamin; Alhajri, T. M.

    2017-11-01

    Composite beam construction usually associated with old-style Hot-Rolled Steel Section (HRSS) has proven to act much better in compare with Cold-Formed Steel Section (CFSS) sections due to thicker section. Due, it's getting popular to replace HRSS with CFSS in some aspects as a composite beam. The advantages such as lightweight, cost effective and easy to install have contributed to the apply CFSS as a preferred construction material for composite beam. There is a few technical data available regarding the application of the usage of CFSS as a composite system, despite the potentials use for residential and light-weight industrial constructions. This paper presents an experimental tests results which have been conducted using CFSS as composite beam. Composite action of CFSS arranged as double beam with Self-Compacting Concrete (SCC) slab are integrated together with bolted shear connectors were used. A full-scale test comprised of 3 proposed composite beam specimens with bolted shear connector spaced at 300 mm interval of grade 8.8 was using single nut with washer on flange of CFS, cast to the slab and loaded until failed. The test show that the bolted shear connector yielded better capacity of ultimate strength and ultimate moment for the proposed composite beam. It can be concluded that, bolted shear connectors of 16 mm in diameter performed better than the other diameter size of bolted shear connectors.

  6. Design optimization of a smooth headlamp reflector to SAE/DOT beam-shape requirements

    NASA Astrophysics Data System (ADS)

    Shatz, Narkis E.; Bortz, John C.; Dassanayake, Mahendra S.

    1999-10-01

    The optical design of Ford Motor Company's 1992 Mercury Grand Marquis headlamp utilized a Sylvania 9007 filament source, a paraboloidal reflector and an array of cylindrical lenses (flutes). It has been of interest to Ford to determine the practicality of closely reproducing the on- road beam pattern performance of this headlamp, with an alternate optical arrangement whereby the control of the beam would be achieved solely by means of the geometry of the surface of the reflector, subject to a requirement of smooth-surface continuity; replacing the outer lens with a clear plastic cover having no beam-forming function. To this end the far-field intensity distribution produced by the 9007 bulb was measured at the low-beam setting. These measurements were then used to develop a light-source model for use in ray tracing simulations of candidate reflector geometries. An objective function was developed to compare candidate beam patterns with the desired beam pattern. Functional forms for the 3D reflector geometry were developed with free parameters to be subsequently optimized. A solution was sought meeting the detailed US SAE/DOT constraints for minimum and maximum permissible levels of illumination in the different portions of the beam pattern. Simulated road scenes were generated by Ford Motor Company to compare the illumination properties of the new design with those of the original Grand Marquis headlamp.

  7. Dynamic behaviour of a rotating cracked beam

    NASA Astrophysics Data System (ADS)

    Yashar, Ahmed; Ghandchi-Tehrani, Maryam; Ferguson, Neil

    2016-09-01

    This paper presents a new approach to investigate and analyse the vibrational behaviour of cracked rotating cantilever beams, which can for example represent helicopter or wind turbine blades. The analytical Hamiltonian method is used in modelling the rotating beam and two numerical methods, the Rayleigh-Ritz and FEM, are used to study the natural frequencies and the mode shapes of the intact rotating beams. Subsequently, a crack is introduced into the FE model and simulations are performed to identify the modal characteristics for an open cracked rotating beam. The effect of various parameters such as non-dimensional rotating speed, hub ratio and slenderness ratio are investigated for both the intact and the cracked rotating beam, and in both directions of chordwise and flapwise motion. The veering phenomena in the natural frequencies as a function of the rotational speed and the buckling speed are considered with respect to the slenderness ratio. In addition, the mode shapes obtained for the flapwise vibration are compared using the modal assurance criterion (MAC). Finally, a new three dimensional design chart is produced, showing the effect of crack location and depth on the natural frequencies of the rotating beam. This chart will be subsequently important in identifying crack defects in rotating blades.

  8. Electrostatic dispersion lenses and ion beam dispersion methods

    DOEpatents

    Dahl, David A [Idaho Falls, ID; Appelhans, Anthony D [Idaho Falls, ID

    2010-12-28

    An EDL includes a case surface and at least one electrode surface. The EDL is configured to receive through the EDL a plurality of ion beams, to generate an electrostatic field between the one electrode surface and either the case surface or another electrode surface, and to increase the separation between the beams using the field. Other than an optional mid-plane intended to contain trajectories of the beams, the electrode surface or surfaces do not exhibit a plane of symmetry through which any beam received through the EDL must pass. In addition or in the alternative, the one electrode surface and either the case surface or the other electrode surface have geometries configured to shape the field to exhibit a less abrupt entrance and/or exit field transition in comparison to another electrostatic field shaped by two nested, one-quarter section, right cylindrical electrode surfaces with a constant gap width.

  9. Adaptation of the chevron-notch beam fracture toughness method to specimens harvested from diesel particulate filters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wereszczak, Andrew; Jadaan, Osama; Modugno, Max

    In this paper, the apparent fracture toughness of a porous cordierite ceramic was estimated using a large specimen whose geometry was inspired by the ASTM-C1421-standardized chevron-notch beam. In this paper, using the same combination of experiment and analysis used to develop the standardized chevron-notch test for small, monolithic ceramic bend bars, an apparent fracture toughness of 0.6 and 0.9 MPa√m were estimated for an unaged and aged cordierite diesel particulate filter structure, respectively. Finally, the effectiveness and simplicity of this adapted specimen geometry and test method lends itself to the evaluation of (macroscopic) apparent fracture toughness of an entire porous-ceramic,more » diesel particulate filter structure.« less

  10. Adaptation of the chevron-notch beam fracture toughness method to specimens harvested from diesel particulate filters

    DOE PAGES

    Wereszczak, Andrew; Jadaan, Osama; Modugno, Max; ...

    2017-01-18

    In this paper, the apparent fracture toughness of a porous cordierite ceramic was estimated using a large specimen whose geometry was inspired by the ASTM-C1421-standardized chevron-notch beam. In this paper, using the same combination of experiment and analysis used to develop the standardized chevron-notch test for small, monolithic ceramic bend bars, an apparent fracture toughness of 0.6 and 0.9 MPa√m were estimated for an unaged and aged cordierite diesel particulate filter structure, respectively. Finally, the effectiveness and simplicity of this adapted specimen geometry and test method lends itself to the evaluation of (macroscopic) apparent fracture toughness of an entire porous-ceramic,more » diesel particulate filter structure.« less

  11. Adaptive metal mirror for high-power CO2 lasers

    NASA Astrophysics Data System (ADS)

    Jarosch, Uwe-Klaus

    1996-08-01

    Spherical mirrors with a variable radius of curvature are used inside laser resonators as well as in the beam path between the laser and the workpiece. Commercially-available systems use piezoelectric actuators, or the pressure of the coolant, to deform the mirror surface. In both cases, the actuator and the cooling system influence each other. This interaction is avoided through the integration of the cooling system with the flexible mirror membrane. A multi- channel design leads to an optimized cooling effect, which is necessary for high power applications. The contour of the variable metal mirror depends on the mounting between the membrane and the mirror body and on the distribution of forces. Four cases of deformation can be distinguished for a circular elastic membrane. The realization of an adaptive metal mirror requires a technical compromise to be made. A mechanical construction is presented which combines an elastic hinge with the inlet and outlet of the coolant. For the deformation of the mirror membranes two actuators with different character of deformation are used. The superposition of the two deformations results in smaller deviations from the spherical surface shape than can be achieved using a single actuator. DC proportional magnets have been introduced as cheap and rigid actuators. The use of this adaptive mirror, either in a low pressure atmosphere of a gas laser resonator, or in an extra-cavity beam path is made possible through the use of a ventilation system.

  12. Statistical context shapes stimulus-specific adaptation in human auditory cortex

    PubMed Central

    Henry, Molly J.; Fromboluti, Elisa Kim; McAuley, J. Devin

    2015-01-01

    Stimulus-specific adaptation is the phenomenon whereby neural response magnitude decreases with repeated stimulation. Inconsistencies between recent nonhuman animal recordings and computational modeling suggest dynamic influences on stimulus-specific adaptation. The present human electroencephalography (EEG) study investigates the potential role of statistical context in dynamically modulating stimulus-specific adaptation by examining the auditory cortex-generated N1 and P2 components. As in previous studies of stimulus-specific adaptation, listeners were presented with oddball sequences in which the presentation of a repeated tone was infrequently interrupted by rare spectral changes taking on three different magnitudes. Critically, the statistical context varied with respect to the probability of small versus large spectral changes within oddball sequences (half of the time a small change was most probable; in the other half a large change was most probable). We observed larger N1 and P2 amplitudes (i.e., release from adaptation) for all spectral changes in the small-change compared with the large-change statistical context. The increase in response magnitude also held for responses to tones presented with high probability, indicating that statistical adaptation can overrule stimulus probability per se in its influence on neural responses. Computational modeling showed that the degree of coadaptation in auditory cortex changed depending on the statistical context, which in turn affected stimulus-specific adaptation. Thus the present data demonstrate that stimulus-specific adaptation in human auditory cortex critically depends on statistical context. Finally, the present results challenge the implicit assumption of stationarity of neural response magnitudes that governs the practice of isolating established deviant-detection responses such as the mismatch negativity. PMID:25652920

  13. Statistical context shapes stimulus-specific adaptation in human auditory cortex.

    PubMed

    Herrmann, Björn; Henry, Molly J; Fromboluti, Elisa Kim; McAuley, J Devin; Obleser, Jonas

    2015-04-01

    Stimulus-specific adaptation is the phenomenon whereby neural response magnitude decreases with repeated stimulation. Inconsistencies between recent nonhuman animal recordings and computational modeling suggest dynamic influences on stimulus-specific adaptation. The present human electroencephalography (EEG) study investigates the potential role of statistical context in dynamically modulating stimulus-specific adaptation by examining the auditory cortex-generated N1 and P2 components. As in previous studies of stimulus-specific adaptation, listeners were presented with oddball sequences in which the presentation of a repeated tone was infrequently interrupted by rare spectral changes taking on three different magnitudes. Critically, the statistical context varied with respect to the probability of small versus large spectral changes within oddball sequences (half of the time a small change was most probable; in the other half a large change was most probable). We observed larger N1 and P2 amplitudes (i.e., release from adaptation) for all spectral changes in the small-change compared with the large-change statistical context. The increase in response magnitude also held for responses to tones presented with high probability, indicating that statistical adaptation can overrule stimulus probability per se in its influence on neural responses. Computational modeling showed that the degree of coadaptation in auditory cortex changed depending on the statistical context, which in turn affected stimulus-specific adaptation. Thus the present data demonstrate that stimulus-specific adaptation in human auditory cortex critically depends on statistical context. Finally, the present results challenge the implicit assumption of stationarity of neural response magnitudes that governs the practice of isolating established deviant-detection responses such as the mismatch negativity. Copyright © 2015 the American Physiological Society.

  14. Bio-Inspired Methods for Producing Adaptive Beampatterns with Diffracting Baffle Shapes

    DTIC Science & Technology

    The diversity of local shape features and their role in shaping the functional/ultrasonic characteristics of the noseleaves and pinnae in bats have...have been used to recreate active deformations of the noseleaf shapes that some bat species show as part of their biosonar behaviors and put the

  15. A real-time beam-profile monitor for a PET cyclotron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoehr, C.; Uittenbosch, T.; Verzilov, V.

    2012-12-19

    Beam profiles in medical cyclotrons are traditionally measured using techniques that do not provide any information about short-term fluctuations of the beam shape or beam intensity. To overcome this, we have developed a real-time harp beam profile monitor which can withstand beam power in excess of 300 W. The monitor and electronics were constructed and applied toward a 13 MeV proton beam with current of up to 25 {mu}A. Herein are reported preliminary beam-profile measurement results.

  16. A real-time beam-profile monitor for a PET cyclotron

    NASA Astrophysics Data System (ADS)

    Hoehr, C.; Uittenbosch, T.; Verzilov, V.; English, W.; Buckley, K.; Gray, D.; Kellog, S.; Cameron, D.; Schaffer, P.

    2012-12-01

    Beam profiles in medical cyclotrons are traditionally measured using techniques that do not provide any information about short-term fluctuations of the beam shape or beam intensity. To overcome this, we have developed a real-time harp beam profile monitor which can withstand beam power in excess of 300 W. The monitor and electronics were constructed and applied toward a 13 MeV proton beam with current of up to 25 μA. Herein are reported preliminary beam-profile measurement results.

  17. Ku-band multiple beam antenna

    NASA Technical Reports Server (NTRS)

    Chen, C. C.; Franklin, C. F.

    1980-01-01

    The frequency reuse capability is demonstrated for a Ku-band multiple beam antenna which provides contiguous low sidelobe spot beams for point-to-point communications between any two points within the continental United States (CONUS), or regional coverage beams for direct broadcast systems. A spot beam antenna in the 14/21 GHz band which provides contiguous overlapping beams covering CONUS and two discrete beams covering Hawaii and Alaska were designed, developed, and tested. Two reflector antennas are required for providing contiguous coverage of CONUS. Each is comprised of one offset parabolic reflector, one flat polarization diplexer, and two separate planar array feeds. This antenna system provides contiguous spot beam coverage of CONUS, utilizing 15 beams. Also designed, developed and demonstrated was a shaped contoured beam antenna system which provides contiguous four time zone coverage of CONUS from a single offset parabolic reflector incorporating one flat polarization diplexer and two separate planar array feeds. The beams which illuminate the eastern time zone and the mountain time zone are horizontally polarized, while the beams which illuminate the central time zone and the pacific time zone are vertically polarized. Frequency reuse is achieved by amplitude and polarization isolation.

  18. Mechanical beam isolator for high-power laser systems

    DOEpatents

    Post, R.F.; Vann, C.S.

    1998-07-07

    A mechanical beam isolator uses rod-shaped elements having a Gaussian configuration to interrupt the path of a beam of photons or particles when the time-scale of the needed interruption is of the order of a microsecond or less. One or more of these rods is mounted transversely to, and penetrates through, a rotating shaft supported by bearings. Owing to the Gaussian geometry of the rods, they are able to withstand much higher rotation speeds, without tensile failure, than rods having any other geometrical shape. 3 figs.

  19. Adaptive x-ray optics development at AOA-Xinetics

    NASA Astrophysics Data System (ADS)

    Lillie, Charles F.; Cavaco, Jeff L.; Brooks, Audrey D.; Ezzo, Kevin; Pearson, David D.; Wellman, John A.

    2013-05-01

    Grazing-incidence optics for X-ray applications require extremely smooth surfaces with precise mirror figures to provide well focused beams and small image spot sizes for astronomical telescopes and laboratory test facilities. The required precision has traditionally been achieved by time-consuming grinding and polishing of thick substrates with frequent pauses for precise metrology to check the mirror figure. More recently, substrates with high quality surface finish and figures have become available at reasonable cost, and techniques have been developed to mechanically adjust the figure of these traditionally polished substrates for ground-based applications. The beam-bending techniques currently in use are mechanically complex, however, with little control over mid-spatial frequency errors. AOA-Xinetics has been developing been developing techniques for shaping grazing incidence optics with surface-normal and surface-parallel electrostrictive Lead magnesium niobate (PMN) actuators bonded to mirror substrates for several years. These actuators are highly reliable; exhibit little to no hysteresis, aging or creep; and can be closely spaced to correct low and mid-spatial frequency errors in a compact package. In this paper we discuss recent development of adaptive x-ray optics at AOA-Xinetics.

  20. Adaptive x-ray optics development at AOA-Xinetics

    NASA Astrophysics Data System (ADS)

    Lillie, Charles F.; Pearson, David D.; Cavaco, Jeffrey L.; Plinta, Audrey D.; Wellman, John A.

    2012-10-01

    Grazing-incidence optics for X-ray applications require extremely smooth surfaces with precise mirror figures to provide well focused beams and small image spot sizes for astronomical telescopes and laboratory test facilities. The required precision has traditionally been achieved by time-consuming grinding and polishing of thick substrates with frequent pauses for precise metrology to check the mirror figure. More recently, substrates with high quality surface finish and figures have become available at reasonable cost, and techniques have been developed to mechanically adjust the figure of these traditionally polished substrates for ground-based applications. The beam-bending techniques currently in use are mechanically complex, however, with little control over mid-spatial frequency errors. AOA-Xinetics has been developing been developing techniques for shaping grazing incidence optics with surface-normal and surface-parallel electrostrictive Lead magnesium niobate (PMN) actuators bonded to mirror substrates for several years. These actuators are highly reliable; exhibit little to no hysteresis, aging or creep; and can be closely spaced to correct low and mid-spatial frequency errors in a compact package. In this paper we discuss recent development of adaptive x-ray optics at AOAXinetics.

  1. Variable-Domain Displacement Transfer Functions for Converting Surface Strains into Deflections for Structural Deformed Shape Predictions

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Fleischer, Van Tran

    2015-01-01

    Variable-Domain Displacement Transfer Functions were formulated for shape predictions of complex wing structures, for which surface strain-sensing stations must be properly distributed to avoid jointed junctures, and must be increased in the high strain gradient region. Each embedded beam (depth-wise cross section of structure along a surface strain-sensing line) was discretized into small variable domains. Thus, the surface strain distribution can be described with a piecewise linear or a piecewise nonlinear function. Through discretization, the embedded beam curvature equation can be piece-wisely integrated to obtain the Variable-Domain Displacement Transfer Functions (for each embedded beam), which are expressed in terms of geometrical parameters of the embedded beam and the surface strains along the strain-sensing line. By inputting the surface strain data into the Displacement Transfer Functions, slopes and deflections along each embedded beam can be calculated for mapping out overall structural deformed shapes. A long tapered cantilever tubular beam was chosen for shape prediction analysis. The input surface strains were analytically generated from finite-element analysis. The shape prediction accuracies of the Variable- Domain Displacement Transfer Functions were then determined in light of the finite-element generated slopes and deflections, and were fofound to be comparable to the accuracies of the constant-domain Displacement Transfer Functions

  2. Adaptive elastic segmentation of brain MRI via shape-model-guided evolutionary programming.

    PubMed

    Pitiot, Alain; Toga, Arthur W; Thompson, Paul M

    2002-08-01

    This paper presents a fully automated segmentation method for medical images. The goal is to localize and parameterize a variety of types of structure in these images for subsequent quantitative analysis. We propose a new hybrid strategy that combines a general elastic template matching approach and an evolutionary heuristic. The evolutionary algorithm uses prior statistical information about the shape of the target structure to control the behavior of a number of deformable templates. Each template, modeled in the form of a B-spline, is warped in a potential field which is itself dynamically adapted. Such a hybrid scheme proves to be promising: by maintaining a population of templates, we cover a large domain of the solution space under the global guidance of the evolutionary heuristic, and thoroughly explore interesting areas. We address key issues of automated image segmentation systems. The potential fields are initially designed based on the spatial features of the edges in the input image, and are subjected to spatially adaptive diffusion to guarantee the deformation of the template. This also improves its global consistency and convergence speed. The deformation algorithm can modify the internal structure of the templates to allow a better match. We investigate in detail the preprocessing phase that the images undergo before they can be used more effectively in the iterative elastic matching procedure: a texture classifier, trained via linear discriminant analysis of a learning set, is used to enhance the contrast of the target structure with respect to surrounding tissues. We show how these techniques interact within a statistically driven evolutionary scheme to achieve a better tradeoff between template flexibility and sensitivity to noise and outliers. We focus on understanding the features of template matching that are most beneficial in terms of the achieved match. Examples from simulated and real image data are discussed, with considerations of

  3. Analytical study of beam handling and emittance control

    NASA Astrophysics Data System (ADS)

    Thompson, James R.; Sloan, M. L.

    1993-12-01

    The thrust of our research on beam handling and emittance control was to explore how one might design high current electron accelerators, with the preservation of high beam quality designed as the primary design consideration. We considered high current, induction linacs in the parameter class of the ETA/ATA accelerators at LLNL, but with improvements to the accelerator gap design and other features to permit a significant increase in the deliverable beam brightness. Our approach for beam quality control centered on the use of solenoidal magnetic focusing through such induction accelerators, together with gently-shaped (adiabatic) acceleration gaps. This approach offers several tools for the control of beam quality. The strength and axial variation in the solenoidal magnetic field may be designed, as may the length and shape of the acceleration gaps, the loading of the gaps, and the axial spacing from gap to gap. This research showed that each of these design features may individually be optimized to contribute to improved beam quality control, and by exploiting these features, it appears feasible to produce high current, high energy electron beams possessing breakthrough beam quality and brightness. Applications which have been technologically unachievable may for the first time become possible. One such application is the production of high performance free electron lasers at very short wavelengths, extending down to the optical (less than 1 micron) regime.

  4. High resolution energy analyzer for broad ion beam characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanarov, V.; Hayes, A.; Yevtukhov, R.

    2008-09-15

    Characterization of the ion energy distribution function (IEDF) of low energy high current density ion beams by conventional retarding field and deflection type energy analyzers is limited due to finite ion beam emittance and beam space charge spreading inside the analyzer. These deficiencies are, to a large extent, overcome with the recent development of the variable-focusing retarding field energy analyzer (RFEA), which has a cylindrical focusing electrode preceding the planar retarding grid. The principal concept of this analyzer is conversion of a divergent charged particle beam into a quasiparallel beam before analyzing it by the planar retarding field. This allowsmore » analysis of the beam particle total kinetic energy distribution with greatly improved energy resolution. Whereas this concept was first applied to analyze 5-10 keV pulsed electron beams, the present authors have adapted it to analyze the energy distribution of a low energy ({<=}1 KeV) broad ion beam. In this paper we describe the RFEA design, which was modified from the original, mainly as required by the specifics of broad ion beam energy analysis, and the device experimental characterization and modeling results. Among the modifications, an orifice electrode placed in front of the RFEA provides better spatial resolution of the broad ion beam ion optics emission region and reduces the beam plasma density in the vicinity of analyzer entry. An electron repeller grid placed in front of the RFEA collector was found critical for suppressing secondary electrons, both those incoming to the collector and those released from its surface, and improved energy spectrum measurement repeatability and accuracy. The use of finer mesh single- and double-grid retarding structures reduces the retarding grid lens effect and improves the analyzer energy resolution and accuracy of the measured spectrum mean energy. However, additional analyzer component and configuration improvements did not further change the

  5. Drive Beam Shaping and Witness Bunch Generation for the Plasma Wakefield Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    England, R. J.; Frederico, J.; Hogan, M. J.

    2010-11-04

    High transformer ratio operation of the plasma wake field accelerator requires a tailored drive beam current profile followed by a short witness bunch. We discuss techniques for generating the requisite dual bunches and for obtaining the desired drive beam profile, with emphasis on the FACET experiment at SLAC National Accelerator Laboratory.

  6. ISTC projects devoted to improving laser beam quality

    NASA Astrophysics Data System (ADS)

    Malakhov, Yu. I.

    2007-05-01

    Short overview is done about the activity of ISTC in a direction concerned with improving powerful laser beam quality by means of nonlinear and linear adaptive optics methods. Completed projects #0591 and #1929 resulted in the development of a stimulated Brillouin scattering (SBS) phase conjugation mirror of superhigh fidelity employing the kinoform optical elements (rasters of small lenses) of new generation designed for pulsed or pulse-periodic lasers with nanosecond scale pulse duration. Project #2631 is devoted to development of an adaptive optical system for phase registration and correction of laser beams with wave front vortices. The principles of operation of conventional adaptive systems are based on the assumption that the phase is a smooth continuous function in space. Therefore the solution of the Project tasks will assume a new step in adaptive optics.

  7. Signal acquisition and scale calibration for beam power density distribution of electron beam welding

    NASA Astrophysics Data System (ADS)

    Peng, Yong; Li, Hongqiang; Shen, Chunlong; Guo, Shun; Zhou, Qi; Wang, Kehong

    2017-06-01

    The power density distribution of electron beam welding (EBW) is a key factor to reflect the beam quality. The beam quality test system was designed for the actual beam power density distribution of high-voltage EBW. After the analysis of characteristics and phase relationship between the deflection control signal and the acquisition signal, the Post-Trigger mode was proposed for the signal acquisition meanwhile the same external clock source was shared by the control signal and the sampling clock. The power density distribution of beam cross-section was reconstructed using one-dimensional signal that was processed by median filtering, twice signal segmentation and spatial scale calibration. The diameter of beam cross-section was defined by amplitude method and integral method respectively. The measured diameter of integral definition is bigger than that of amplitude definition, but for the ideal distribution the former is smaller than the latter. The measured distribution without symmetrical shape is not concentrated compared to Gaussian distribution.

  8. Quasi-Bessel beams from asymmetric and astigmatic illumination sources.

    PubMed

    Müller, Angelina; Wapler, Matthias C; Schwarz, Ulrich T; Reisacher, Markus; Holc, Katarzyna; Ambacher, Oliver; Wallrabe, Ulrike

    2016-07-25

    We study the spatial intensity distribution and the self-reconstruction of quasi-Bessel beams produced from refractive axicon lenses with edge emitting laser diodes as asymmetric and astigmatic illumination sources. Comparing these to a symmetric mono-mode fiber source, we find that the asymmetry results in a transition of a quasi-Bessel beam into a bow-tie shaped pattern and eventually to a line shaped profile at a larger distance along the optical axis. Furthermore, we analytically estimate and discuss the effects of astigmatism, substrate modes and non-perfect axicons. We find a good agreement between experiment, simulation and analytic considerations. Results include the derivation of a maximal axicon angle related to astigmatism of the illuminating beam, impact of laser diode beam profile imperfections like substrate modes and a longitudinal oscillation of the core intensity and radius caused by a rounded axicon tip.

  9. Situating adaptation: How governance challenges and perceptions of uncertainty influence adaptation in the Rocky Mountains

    Treesearch

    Carina Wyborn; Laurie Yung; Daniel Murphy; Daniel R. Williams

    2015-01-01

    Adaptation is situated within multiple, interacting social, political, and economic forces. Adaptation pathways envision adaptation as a continual pathway of change and response embedded within this broader sociopolitical context. Pathways emphasize that current decisions are both informed by past actions and shape the landscape of future options. This research...

  10. Polyhedral shape model for terrain correction of gravity and gravity gradient data based on an adaptive mesh

    NASA Astrophysics Data System (ADS)

    Guo, Zhikui; Chen, Chao; Tao, Chunhui

    2016-04-01

    Since 2007, there are four China Da yang cruises (CDCs), which have been carried out to investigate polymetallic sulfides in the southwest Indian ridge (SWIR) and have acquired both gravity data and bathymetry data on the corresponding survey lines(Tao et al., 2014). Sandwell et al. (2014) published a new global marine gravity model including the free air gravity data and its first order vertical gradient (Vzz). Gravity data and its gradient can be used to extract unknown density structure information(e.g. crust thickness) under surface of the earth, but they contain all the mass effect under the observation point. Therefore, how to get accurate gravity and its gradient effect of the existing density structure (e.g. terrain) has been a key issue. Using the bathymetry data or ETOPO1 (http://www.ngdc.noaa.gov/mgg/global/global.html) model at a full resolution to calculate the terrain effect could spend too much computation time. We expect to develop an effective method that takes less time but can still yield the desired accuracy. In this study, a constant-density polyhedral model is used to calculate the gravity field and its vertical gradient, which is based on the work of Tsoulis (2012). According to gravity field attenuation with distance and variance of bathymetry, we present an adaptive mesh refinement and coarsening strategies to merge both global topography data and multi-beam bathymetry data. The local coarsening or size of mesh depends on user-defined accuracy and terrain variation (Davis et al., 2011). To depict terrain better, triangular surface element and rectangular surface element are used in fine and coarse mesh respectively. This strategy can also be applied to spherical coordinate in large region and global scale. Finally, we applied this method to calculate Bouguer gravity anomaly (BGA), mantle Bouguer anomaly(MBA) and their vertical gradient in SWIR. Further, we compared the result with previous results in the literature. Both synthetic model

  11. Shaping Laguerre-Gaussian laser modes with binary gratings using a digital micromirror device.

    PubMed

    Lerner, Vitaly; Shwa, David; Drori, Yehonathan; Katz, Nadav

    2012-12-01

    Laguerre-Gaussian (LG) beams are used in many research fields, including microscopy, laser cavity modes, and optical tweezing. We developed a holographic method to generate pure LG modes (amplitude and phase) with a binary amplitude-only digital micromirror device (DMD) as an alternative to the commonly used phase-only spatial light modulator. The advantages of such a DMD include very high frame rates, low cost, and high damage thresholds. We have shown that the propagating shaped beams are self-similar and their phase fronts are of helical shape as demanded. We estimate the purity of the resultant beams to be above 94%.

  12. A self-adaptive metamaterial beam with digitally controlled resonators for subwavelength broadband flexural wave attenuation

    NASA Astrophysics Data System (ADS)

    Li, Xiaopeng; Chen, Yangyang; Hu, Gengkai; Huang, Guoliang

    2018-04-01

    Designing lightweight materials and/or structures for broadband low-frequency noise/vibration mitigation is an issue of fundamental importance both practically and theoretically. In this paper, by leveraging the concept of frequency-dependent effective stiffness control, we numerically and experimentally demonstrate, for the first time, a self-adaptive metamaterial beam with digital circuit controlled mechanical resonators for strong and broadband flexural wave attenuation at subwavelength scales. The digital controllers that are capable of feedback control of piezoelectric shunts are integrated into mechanical resonators in the metamaterial, and the transfer function is semi-analytically determined to realize an effective bending stiffness in a quadratic function of the wave frequency for adaptive band gaps. The digital as well as analog control circuits as the backbone of the system are experimentally realized with the guarantee stability of the whole electromechanical system in whole frequency regions, which is the most challenging problem so far. Our experimental results are in good agreement with numerical predictions and demonstrate the strong wave attenuation in almost a three times larger frequency region over the bandwidth of a passive metamaterial. The proposed metamaterial could be applied in a range of applications in the design of elastic wave control devices.

  13. Terahertz adaptive optics with a deformable mirror.

    PubMed

    Brossard, Mathilde; Sauvage, Jean-François; Perrin, Mathias; Abraham, Emmanuel

    2018-04-01

    We report on the wavefront correction of a terahertz (THz) beam using adaptive optics, which requires both a wavefront sensor that is able to sense the optical aberrations, as well as a wavefront corrector. The wavefront sensor relies on a direct 2D electro-optic imaging system composed of a ZnTe crystal and a CMOS camera. By measuring the phase variation of the THz electric field in the crystal, we were able to minimize the geometrical aberrations of the beam, thanks to the action of a deformable mirror. This phase control will open the route to THz adaptive optics in order to optimize the THz beam quality for both practical and fundamental applications.

  14. Adapting High Brightness Relativistic Electron Beams for Ultrafast Science

    NASA Astrophysics Data System (ADS)

    Scoby, Cheyne Matthew

    This thesis explores the use of ultrashort bunches generated by a radiofrequency electron photoinjector driven by a femtosecond laser. Rf photoinjector technology has been developed to generate ultra high brightness beams for advanced accelerators and to drive advanced light source applications. The extremely good quality of the beams generated by this source has played a key role in the development of 4th generation light sources such as the Linac Coherent Light Source, thus opening the way to studies of materials science and biological systems with high temporal and spatial resolution. At the Pegasus Photoinjector Lab, we have developed the application of a BNL/SLAC/UCLA 1.6-cell rf photoinjector as a tool for ultrafast science in its own right. It is the aim of this work to explore the generation of ultrashort electron bunches, give descriptions of the novel ultrafast diagnostics developed to be able to characterize the electron bunch and synchronize it with a pump laser, and share some of the scientific results that were obtained with this technology at the UCLA Pegasus laboratory. This dissertation explains the requirements of the drive laser source and describes the principles of rf photoinjector design and operation necessary to produce electron bunches with an rms longitudinal length < 100 femtoseconds containing 107 - 108 electrons per bunch. In this condition, when the laser intensity is sufficiently high, multiphoton photoemission is demonstrated to be more efficient in terms of charge yield than single photon photoemission. When a short laser pulse hits the cathode the resulting beam dynamics are dominated by a strong space charge driven longitudinal expansion which leads to the creation of a nearly ideal uniformly filled ellipsoidal distribution. These beam distributions are characterized by linear space charge forces and hence by high peak brightness and small transverse emittances. This regime of operation of the RF photoinjector is also termed the

  15. Characterization of V-shaped defects in 4H-SiC homoepitaxial layers

    DOE PAGES

    Zhang, Lihua; Su, Dong; Kisslinger, Kim; ...

    2014-12-04

    Synchrotron white beam x-ray topography images show that faint needle-like surface morphological features observed on the Si-face of 4H-SiC homoepitaxial layers using Nomarski optical microscopy are associated with V shaped stacking faults in the epilayer. KOH etching of the V shaped defect reveals small oval pits connected by a shallow line which corresponding to the surface intersections of two partial dislocations and the stacking fault connecting them. Transmission electron microscopy (TEM) specimens from regions containing the V shaped defects were prepared using focused ion beam milling, and stacking sequences of (85), (50) and (63) are observed at the faulted regionmore » with high resolution TEM. In order to study the formation mechanism of V shaped defect, low dislocation density 4H-SiC substrates were chosen for epitaxial growth, and the corresponding regions before and after epitaxy growth are compared in SWBXT images. It is found that no defects in the substrate are directly associated with the formation of the V shaped defect. Simulation results of the contrast from the two partial dislocations associated with V shaped defect in synchrotron monochromatic beam x-ray topography reveals the opposite sign nature of their Burgers vectors. Therefore, a mechanism of 2D nucleation during epitaxy growth is postulated for the formation of the V shaped defect, which requires elimination of non-sequential 1/4[0001] bilayers from the original structure to create the observed faulted stacking sequence.« less

  16. Characterization of V-shaped defects in 4H-SiC homoepitaxial layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Lihua; Su, Dong; Kisslinger, Kim

    Synchrotron white beam x-ray topography images show that faint needle-like surface morphological features observed on the Si-face of 4H-SiC homoepitaxial layers using Nomarski optical microscopy are associated with V shaped stacking faults in the epilayer. KOH etching of the V shaped defect reveals small oval pits connected by a shallow line which corresponding to the surface intersections of two partial dislocations and the stacking fault connecting them. Transmission electron microscopy (TEM) specimens from regions containing the V shaped defects were prepared using focused ion beam milling, and stacking sequences of (85), (50) and (63) are observed at the faulted regionmore » with high resolution TEM. In order to study the formation mechanism of V shaped defect, low dislocation density 4H-SiC substrates were chosen for epitaxial growth, and the corresponding regions before and after epitaxy growth are compared in SWBXT images. It is found that no defects in the substrate are directly associated with the formation of the V shaped defect. Simulation results of the contrast from the two partial dislocations associated with V shaped defect in synchrotron monochromatic beam x-ray topography reveals the opposite sign nature of their Burgers vectors. Therefore, a mechanism of 2D nucleation during epitaxy growth is postulated for the formation of the V shaped defect, which requires elimination of non-sequential 1/4[0001] bilayers from the original structure to create the observed faulted stacking sequence.« less

  17. Damage Identification in Beam Structure using Spatial Continuous Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Janeliukstis, R.; Rucevskis, S.; Wesolowski, M.; Kovalovs, A.; Chate, A.

    2015-11-01

    In this paper the applicability of spatial continuous wavelet transform (CWT) technique for damage identification in the beam structure is analyzed by application of different types of wavelet functions and scaling factors. The proposed method uses exclusively mode shape data from the damaged structure. To examine limitations of the method and to ascertain its sensitivity to noisy experimental data, several sets of simulated data are analyzed. Simulated test cases include numerical mode shapes corrupted by different levels of random noise as well as mode shapes with different number of measurement points used for wavelet transform. A broad comparison of ability of different wavelet functions to detect and locate damage in beam structure is given. Effectiveness and robustness of the proposed algorithms are demonstrated experimentally on two aluminum beams containing single mill-cut damage. The modal frequencies and the corresponding mode shapes are obtained via finite element models for numerical simulations and by using a scanning laser vibrometer with PZT actuator as vibration excitation source for the experimental study.

  18. Probing the symmetry of the potential of localized surface plasmon resonances with phase-shaped electron beams

    PubMed Central

    Guzzinati, Giulio; Béché, Armand; Lourenço-Martins, Hugo; Martin, Jérôme; Kociak, Mathieu; Verbeeck, Jo

    2017-01-01

    Plasmonics, the science and technology of the interaction of light with metallic objects, is fundamentally changing the way we can detect, generate and manipulate light. Although the field is progressing swiftly, thanks to the availability of nanoscale manufacturing and analysis methods, fundamental properties such as the plasmonic excitations' symmetries cannot be accessed directly, leading to a partial, sometimes incorrect, understanding of their properties. Here we overcome this limitation by deliberately shaping the wave function of an electron beam to match a plasmonic excitations' symmetry in a modified transmission electron microscope. We show experimentally and theoretically that this offers selective detection of specific plasmon modes within metallic nanoparticles, while excluding modes with other symmetries. This method resembles the widespread use of polarized light for the selective excitation of plasmon modes with the advantage of locally probing the response of individual plasmonic objects and a far wider range of symmetry selection criteria. PMID:28401942

  19. Scanning properties of large dual-shaped offset and symmetric reflector antennas

    NASA Astrophysics Data System (ADS)

    Galindo-Israel, Victor; Veruttipong, Watt; Norrod, Roger D.; Imbriale, William A.

    1992-04-01

    Several characteristics of dual offset (DOSR) and symmetric shaped reflectors are examined. Among these is the amelioration of the added cost of manufacturing a shaped reflector antenna, particularly a doubly curved surface for the DOSR, if adjustable panels, which may be necessary for correction of gravity and wind distortions, are also used for improving gain by shaping. The scanning properties of shaped reflectors, both offset and circularly symmetric, are examined and compared to conic section scanning characteristics. Scanning of the pencil beam is obtained by lateral and axial translation of a single point-source feed. The feed is kept pointed toward the center of the subreflector. The effects of power spillover and aperture phase error as a function of beam scanning is examined for several different types of large reflector designs including DOSR, circularly symmetric large f/D and smaller f/D dual reflector antenna systems. It is graphically illustrated that the Abbe-sine condition for improving scanning of an optical system cannot, inherently, be satisfied in a dual-shaped reflector system shaped for high gain and low feed spillover.

  20. Underwater single beam circumferentially scanning detection system using range-gated receiver and adaptive filter

    NASA Astrophysics Data System (ADS)

    Tan, Yayun; Zhang, He; Zha, Bingting

    2017-09-01

    Underwater target detection and ranging in seawater are of interest in unmanned underwater vehicles. This study presents an underwater detection system that synchronously scans a collimated laser beam and a narrow field of view to circumferentially detect an underwater target. Hybrid methods of range-gated and variable step-size least mean squares (VSS-LMS) adaptive filter are proposed to suppress water backscattering. The range-gated receiver eliminates the backscattering of near-field water. The VSS-LMS filter extracts the target echo in the remaining backscattering and the constant fraction discriminator timing method is used to improve ranging accuracy. The optimal constant fraction is selected by analysing the jitter noise and slope of the target echo. The prototype of the underwater detection system is constructed and tested in coastal seawater, then the effectiveness of backscattering suppression and high-ranging accuracy is verified through experimental results and analysis discussed in this paper.