Science.gov

Sample records for adaptive beamformer algorithm

  1. Stochastic Leader Gravitational Search Algorithm for Enhanced Adaptive Beamforming Technique

    PubMed Central

    Darzi, Soodabeh; Islam, Mohammad Tariqul; Tiong, Sieh Kiong; Kibria, Salehin; Singh, Mandeep

    2015-01-01

    In this paper, stochastic leader gravitational search algorithm (SL-GSA) based on randomized k is proposed. Standard GSA (SGSA) utilizes the best agents without any randomization, thus it is more prone to converge at suboptimal results. Initially, the new approach randomly choses k agents from the set of all agents to improve the global search ability. Gradually, the set of agents is reduced by eliminating the agents with the poorest performances to allow rapid convergence. The performance of the SL-GSA was analyzed for six well-known benchmark functions, and the results are compared with SGSA and some of its variants. Furthermore, the SL-GSA is applied to minimum variance distortionless response (MVDR) beamforming technique to ensure compatibility with real world optimization problems. The proposed algorithm demonstrates superior convergence rate and quality of solution for both real world problems and benchmark functions compared to original algorithm and other recent variants of SGSA. PMID:26552032

  2. A unified systolic array for adaptive beamforming

    SciTech Connect

    Bojanczyk, A.W.; Luk, F.T. )

    1990-04-01

    The authors present a new algorithm and systolic array for adaptive beamforming. The authors algorithm uses only orthogonal transformations and thus should have better numerical properties. The algorithm can be implemented on one single p {times} p triangular array of programmable processors that offers a throughput of one residual element per cycle.

  3. A Nonlinear Adaptive Beamforming Algorithm Based on Least Squares Support Vector Regression

    PubMed Central

    Wang, Lutao; Jin, Gang; Li, Zhengzhou; Xu, Hongbin

    2012-01-01

    To overcome the performance degradation in the presence of steering vector mismatches, strict restrictions on the number of available snapshots, and numerous interferences, a novel beamforming approach based on nonlinear least-square support vector regression machine (LS-SVR) is derived in this paper. In this approach, the conventional linearly constrained minimum variance cost function used by minimum variance distortionless response (MVDR) beamformer is replaced by a squared-loss function to increase robustness in complex scenarios and provide additional control over the sidelobe level. Gaussian kernels are also used to obtain better generalization capacity. This novel approach has two highlights, one is a recursive regression procedure to estimate the weight vectors on real-time, the other is a sparse model with novelty criterion to reduce the final size of the beamformer. The analysis and simulation tests show that the proposed approach offers better noise suppression capability and achieve near optimal signal-to-interference-and-noise ratio (SINR) with a low computational burden, as compared to other recently proposed robust beamforming techniques.

  4. Adaptive beamforming for array signal processing in aeroacoustic measurements.

    PubMed

    Huang, Xun; Bai, Long; Vinogradov, Igor; Peers, Edward

    2012-03-01

    Phased microphone arrays have become an important tool in the localization of noise sources for aeroacoustic applications. In most practical aerospace cases the conventional beamforming algorithm of the delay-and-sum type has been adopted. Conventional beamforming cannot take advantage of knowledge of the noise field, and thus has poorer resolution in the presence of noise and interference. Adaptive beamforming has been used for more than three decades to address these issues and has already achieved various degrees of success in areas of communication and sonar. In this work an adaptive beamforming algorithm designed specifically for aeroacoustic applications is discussed and applied to practical experimental data. It shows that the adaptive beamforming method could save significant amounts of post-processing time for a deconvolution method. For example, the adaptive beamforming method is able to reduce the DAMAS computation time by at least 60% for the practical case considered in this work. Therefore, adaptive beamforming can be considered as a promising signal processing method for aeroacoustic measurements.

  5. Null Steering of Adaptive Beamforming Using Linear Constraint Minimum Variance Assisted by Particle Swarm Optimization, Dynamic Mutated Artificial Immune System, and Gravitational Search Algorithm

    PubMed Central

    Sieh Kiong, Tiong; Tariqul Islam, Mohammad; Ismail, Mahamod; Salem, Balasem

    2014-01-01

    Linear constraint minimum variance (LCMV) is one of the adaptive beamforming techniques that is commonly applied to cancel interfering signals and steer or produce a strong beam to the desired signal through its computed weight vectors. However, weights computed by LCMV usually are not able to form the radiation beam towards the target user precisely and not good enough to reduce the interference by placing null at the interference sources. It is difficult to improve and optimize the LCMV beamforming technique through conventional empirical approach. To provide a solution to this problem, artificial intelligence (AI) technique is explored in order to enhance the LCMV beamforming ability. In this paper, particle swarm optimization (PSO), dynamic mutated artificial immune system (DM-AIS), and gravitational search algorithm (GSA) are incorporated into the existing LCMV technique in order to improve the weights of LCMV. The simulation result demonstrates that received signal to interference and noise ratio (SINR) of target user can be significantly improved by the integration of PSO, DM-AIS, and GSA in LCMV through the suppression of interference in undesired direction. Furthermore, the proposed GSA can be applied as a more effective technique in LCMV beamforming optimization as compared to the PSO technique. The algorithms were implemented using Matlab program. PMID:25147859

  6. Null steering of adaptive beamforming using linear constraint minimum variance assisted by particle swarm optimization, dynamic mutated artificial immune system, and gravitational search algorithm.

    PubMed

    Darzi, Soodabeh; Kiong, Tiong Sieh; Islam, Mohammad Tariqul; Ismail, Mahamod; Kibria, Salehin; Salem, Balasem

    2014-01-01

    Linear constraint minimum variance (LCMV) is one of the adaptive beamforming techniques that is commonly applied to cancel interfering signals and steer or produce a strong beam to the desired signal through its computed weight vectors. However, weights computed by LCMV usually are not able to form the radiation beam towards the target user precisely and not good enough to reduce the interference by placing null at the interference sources. It is difficult to improve and optimize the LCMV beamforming technique through conventional empirical approach. To provide a solution to this problem, artificial intelligence (AI) technique is explored in order to enhance the LCMV beamforming ability. In this paper, particle swarm optimization (PSO), dynamic mutated artificial immune system (DM-AIS), and gravitational search algorithm (GSA) are incorporated into the existing LCMV technique in order to improve the weights of LCMV. The simulation result demonstrates that received signal to interference and noise ratio (SINR) of target user can be significantly improved by the integration of PSO, DM-AIS, and GSA in LCMV through the suppression of interference in undesired direction. Furthermore, the proposed GSA can be applied as a more effective technique in LCMV beamforming optimization as compared to the PSO technique. The algorithms were implemented using Matlab program.

  7. A recurrent neural network for adaptive beamforming and array correction.

    PubMed

    Che, Hangjun; Li, Chuandong; He, Xing; Huang, Tingwen

    2016-08-01

    In this paper, a recurrent neural network (RNN) is proposed for solving adaptive beamforming problem. In order to minimize sidelobe interference, the problem is described as a convex optimization problem based on linear array model. RNN is designed to optimize system's weight values in the feasible region which is derived from arrays' state and plane wave's information. The new algorithm is proven to be stable and converge to optimal solution in the sense of Lyapunov. So as to verify new algorithm's performance, we apply it to beamforming under array mismatch situation. Comparing with other optimization algorithms, simulations suggest that RNN has strong ability to search for exact solutions under the condition of large scale constraints.

  8. A beamforming algorithm for bistatic SAR image formation.

    SciTech Connect

    Yocky, David Alan; Wahl, Daniel Eugene; Jakowatz, Charles V., Jr.

    2010-03-01

    Beamforming is a methodology for collection-mode-independent SAR image formation. It is essentially equivalent to backprojection. The authors have in previous papers developed this idea and discussed the advantages and disadvantages of the approach to monostatic SAR image formation vis--vis the more standard and time-tested polar formatting algorithm (PFA). In this paper we show that beamforming for bistatic SAR imaging leads again to a very simple image formation algorithm that requires a minimal number of lines of code and that allows the image to be directly formed onto a three-dimensional surface model, thus automatically creating an orthorectified image. The same disadvantage of beamforming applied to monostatic SAR imaging applies to the bistatic case, however, in that the execution time for the beamforming algorithm is quite long compared to that of PFA. Fast versions of beamforming do exist to help alleviate this issue. Results of image reconstructions from phase history data are presented.

  9. The Subarray MVDR Beamformer: A Space-Time Adaptive Processor Applied to Active Sonar

    NASA Astrophysics Data System (ADS)

    Bezanson, Leverett Guidroz

    The research for this thesis was mainly performed at the NATO Underwater Research Center, now named the Center for Maritime Research and Experimentation (CMRE). The purpose of the research was to improve the detection of underwater targets in the littoral ocean when using active sonar. Currently these detections are being made by towed line arrays using a delay and sum beamformer for bearing measurements and noise suppression. This method of beamforming has can suffer from reverberation that commonly is present in the littoral environment. A proposed solution is to use an adaptive beamformer which can attenuate reverberation and increase the bearing resolution. The adaptive beamforming algorithms have existed for a long time and typically are not used in the active case due to limited amount of observable data that is needed for adaptation. This deficiency is caused by the conflicting requirements for high Doppler resolution for target detection and small time windows for building up full-rank covariance estimates. The algorithms also are sensitive to bearing estimate errors that commonly occur in active sonar systems. Recently it has been proposed to overcome these limitations through the use of reduced beamspace adaptive beamforming. The Subarray MVDR beamformer is analyzed, both against simulated data and against experimental data collected by CMRE during the GLINT/NGAS11 experiment in 2011. Simulation results indicate that the Subarray MVDR beamformer rejects interfering signals that are not effectively attenuated by conventional beamforming. The application of the Subarray MVDR beamformer to the experimental data shows that the Doppler spread of the reverberation ridge is reduced, and the bearing resolution improved. The signal to noise ratio is calculated at the target location and also shows improvement. These calculated and observed performance metrics indicate an improvement of detection in reverberation noise.

  10. The delay multiply and sum beamforming algorithm in ultrasound B-mode medical imaging.

    PubMed

    Matrone, Giulia; Savoia, Alessandro Stuart; Caliano, Giosue; Magenes, Giovanni

    2015-04-01

    Most of ultrasound medical imaging systems currently on the market implement standard Delay and Sum (DAS) beamforming to form B-mode images. However, image resolution and contrast achievable with DAS are limited by the aperture size and by the operating frequency. For this reason, different beamformers have been presented in the literature that are mainly based on adaptive algorithms, which allow achieving higher performance at the cost of an increased computational complexity. In this paper, we propose the use of an alternative nonlinear beamforming algorithm for medical ultrasound imaging, which is called Delay Multiply and Sum (DMAS) and that was originally conceived for a RADAR microwave system for breast cancer detection. We modify the DMAS beamformer and test its performance on both simulated and experimentally collected linear-scan data, by comparing the Point Spread Functions, beampatterns, synthetic phantom and in vivo carotid artery images obtained with standard DAS and with the proposed algorithm. Results show that the DMAS beamformer outperforms DAS in both simulated and experimental trials and that the main improvement brought about by this new method is a significantly higher contrast resolution (i.e., narrower main lobe and lower side lobes), which turns out into an increased dynamic range and better quality of B-mode images.

  11. Directional hearing aid using hybrid adaptive beamformer (HAB) and binaural ITE array

    NASA Astrophysics Data System (ADS)

    Shaw, Scott T.; Larow, Andy J.; Gibian, Gary L.; Sherlock, Laguinn P.; Schulein, Robert

    2002-05-01

    A directional hearing aid algorithm called the Hybrid Adaptive Beamformer (HAB), developed for NIH/NIA, can be applied to many different microphone array configurations. In this project the HAB algorithm was applied to a new array employing in-the-ear microphones at each ear (HAB-ITE), to see if previous HAB performance could be achieved with a more cosmetically acceptable package. With diotic output, the average benefit in threshold SNR was 10.9 dB for three HoH and 11.7 dB for five normal-hearing subjects. These results are slightly better than previous results of equivalent tests with a 3-in. array. With an innovative binaural fitting, a small benefit beyond that provided by diotic adaptive beamforming was observed: 12.5 dB for HoH and 13.3 dB for normal-hearing subjects, a 1.6 dB improvement over the diotic presentation. Subjectively, the binaural fitting preserved binaural hearing abilities, giving the user a sense of space, and providing left-right localization. Thus the goal of creating an adaptive beamformer that simultaneously provides excellent noise reduction and binaural hearing was achieved. Further work remains before the HAB-ITE can be incorporated into a real product, optimizing binaural adaptive beamforming, and integrating the concept with other technologies to produce a viable product prototype. [Work supported by NIH/NIDCD.

  12. Adaptive near-field beamforming techniques for sound source imaging.

    PubMed

    Cho, Yong Thung; Roan, Michael J

    2009-02-01

    Phased array signal processing techniques such as beamforming have a long history in applications such as sonar for detection and localization of far-field sound sources. Two sometimes competing challenges arise in any type of spatial processing; these are to minimize contributions from directions other than the look direction and minimize the width of the main lobe. To tackle this problem a large body of work has been devoted to the development of adaptive procedures that attempt to minimize side lobe contributions to the spatial processor output. In this paper, two adaptive beamforming procedures-minimum variance distorsionless response and weight optimization to minimize maximum side lobes--are modified for use in source visualization applications to estimate beamforming pressure and intensity using near-field pressure measurements. These adaptive techniques are compared to a fixed near-field focusing technique (both techniques use near-field beamforming weightings focusing at source locations estimated based on spherical wave array manifold vectors with spatial windows). Sound source resolution accuracies of near-field imaging procedures with different weighting strategies are compared using numerical simulations both in anechoic and reverberant environments with random measurement noise. Also, experimental results are given for near-field sound pressure measurements of an enclosed loudspeaker.

  13. Microwave Photonic Filters for Interference Cancellation and Adaptive Beamforming

    NASA Astrophysics Data System (ADS)

    Chang, John

    beamformer. The solution is two-part. A novel highly-scalable photonic beamformer is first proposed and experimentally verified. A "blind" search algorithm called the guided accelerated random search (GARS) algorithm is then shown. A maximum cancellation of 37 dB is achieved within 50 iterations, a real-world time of 1-3 seconds, while the presence of a signal of interest (SOI) is maintained.

  14. A comparison between temporal and subband minimum variance adaptive beamforming

    NASA Astrophysics Data System (ADS)

    Diamantis, Konstantinos; Voxen, Iben H.; Greenaway, Alan H.; Anderson, Tom; Jensen, Jørgen A.; Sboros, Vassilis

    2014-03-01

    This paper compares the performance between temporal and subband Minimum Variance (MV) beamformers for medical ultrasound imaging. Both adaptive methods provide an optimized set of apodization weights but are implemented in the time and frequency domains respectively. Their performance is evaluated with simulated synthetic aperture data obtained from Field II and is quantified by the Full-Width-Half-Maximum (FWHM), the Peak-Side-Lobe level (PSL) and the contrast level. From a point phantom, a full sequence of 128 emissions with one transducer element transmitting and all 128 elements receiving each time, provides a FWHM of 0.03 mm (0.14λ) for both implementations at a depth of 40 mm. This value is more than 20 times lower than the one achieved by conventional beamforming. The corresponding values of PSL are -58 dB and -63 dB for time and frequency domain MV beamformers, while a value no lower than -50 dB can be obtained from either Boxcar or Hanning weights. Interestingly, a single emission with central element #64 as the transmitting aperture provides results comparable to the full sequence. The values of FWHM are 0.04 mm and 0.03 mm and those of PSL are -42 dB and -46 dB for temporal and subband approaches. From a cyst phantom and for 128 emissions, the contrast level is calculated at -54 dB and -63 dB respectively at the same depth, with the initial shape of the cyst being preserved in contrast to conventional beamforming. The difference between the two adaptive beamformers is less significant in the case of a single emission, with the contrast level being estimated at -42 dB for the time domain and -43 dB for the frequency domain implementation. For the estimation of a single MV weight of a low resolution image formed by a single emission, 0.44 * 109 calculations per second are required for the temporal approach. The same numbers for the subband approach are 0.62 * 109 for the point and 1.33 * 109 for the cyst phantom. The comparison demonstrates similar

  15. Iterative Robust Capon Beamforming with Adaptively Updated Array Steering Vector Mismatch Levels

    PubMed Central

    Sun, Liguo

    2014-01-01

    The performance of the conventional adaptive beamformer is sensitive to the array steering vector (ASV) mismatch. And the output signal-to interference and noise ratio (SINR) suffers deterioration, especially in the presence of large direction of arrival (DOA) error. To improve the robustness of traditional approach, we propose a new approach to iteratively search the ASV of the desired signal based on the robust capon beamformer (RCB) with adaptively updated uncertainty levels, which are derived in the form of quadratically constrained quadratic programming (QCQP) problem based on the subspace projection theory. The estimated levels in this iterative beamformer present the trend of decreasing. Additionally, other array imperfections also degrade the performance of beamformer in practice. To cover several kinds of mismatches together, the adaptive flat ellipsoid models are introduced in our method as tight as possible. In the simulations, our beamformer is compared with other methods and its excellent performance is demonstrated via the numerical examples. PMID:27355008

  16. An Experience Oriented-Convergence Improved Gravitational Search Algorithm for Minimum Variance Distortionless Response Beamforming Optimum

    PubMed Central

    Darzi, Soodabeh; Tiong, Sieh Kiong; Tariqul Islam, Mohammad; Rezai Soleymanpour, Hassan; Kibria, Salehin

    2016-01-01

    An experience oriented-convergence improved gravitational search algorithm (ECGSA) based on two new modifications, searching through the best experiments and using of a dynamic gravitational damping coefficient (α), is introduced in this paper. ECGSA saves its best fitness function evaluations and uses those as the agents’ positions in searching process. In this way, the optimal found trajectories are retained and the search starts from these trajectories, which allow the algorithm to avoid the local optimums. Also, the agents can move faster in search space to obtain better exploration during the first stage of the searching process and they can converge rapidly to the optimal solution at the final stage of the search process by means of the proposed dynamic gravitational damping coefficient. The performance of ECGSA has been evaluated by applying it to eight standard benchmark functions along with six complicated composite test functions. It is also applied to adaptive beamforming problem as a practical issue to improve the weight vectors computed by minimum variance distortionless response (MVDR) beamforming technique. The results of implementation of the proposed algorithm are compared with some well-known heuristic methods and verified the proposed method in both reaching to optimal solutions and robustness. PMID:27399904

  17. An Experience Oriented-Convergence Improved Gravitational Search Algorithm for Minimum Variance Distortionless Response Beamforming Optimum.

    PubMed

    Darzi, Soodabeh; Tiong, Sieh Kiong; Tariqul Islam, Mohammad; Rezai Soleymanpour, Hassan; Kibria, Salehin

    2016-01-01

    An experience oriented-convergence improved gravitational search algorithm (ECGSA) based on two new modifications, searching through the best experiments and using of a dynamic gravitational damping coefficient (α), is introduced in this paper. ECGSA saves its best fitness function evaluations and uses those as the agents' positions in searching process. In this way, the optimal found trajectories are retained and the search starts from these trajectories, which allow the algorithm to avoid the local optimums. Also, the agents can move faster in search space to obtain better exploration during the first stage of the searching process and they can converge rapidly to the optimal solution at the final stage of the search process by means of the proposed dynamic gravitational damping coefficient. The performance of ECGSA has been evaluated by applying it to eight standard benchmark functions along with six complicated composite test functions. It is also applied to adaptive beamforming problem as a practical issue to improve the weight vectors computed by minimum variance distortionless response (MVDR) beamforming technique. The results of implementation of the proposed algorithm are compared with some well-known heuristic methods and verified the proposed method in both reaching to optimal solutions and robustness. PMID:27399904

  18. Adaptive digital beamforming for a CDMA mobile communications payload

    NASA Technical Reports Server (NTRS)

    Munoz-Garcia, Samuel G.; Ruiz, Javier Benedicto

    1993-01-01

    In recent years, Spread-Spectrum Code Division Multiple Access (CDMA) has become a very popular access scheme for mobile communications due to a variety of reasons: excellent performance in multipath environments, high scope for frequency reuse, graceful degradation near saturation, etc. In this way, a CDMA system can support simultaneous digital communication among a large community of relatively uncoordinated users sharing a given frequency band. Nevertheless, there are also important problems associated with the use of CDMA. First, in a conventional CDMA scheme, the signature sequences of asynchronous users are not orthogonal and, as the number of active users increases, the self-noise generated by the mutual interference between users considerably degrades the performance, particularly in the return link. Furthermore, when there is a large disparity in received powers - due to differences in slant range or atmospheric attenuation - the non-zero cross-correlation between the signals gives rise to the so-called near-far problem. This leads to an inefficient utilization of the satellite resources and, consequently, to a drastic reduction in capacity. Several techniques were proposed to overcome this problem, such as Synchronized CDMA - in which the signature sequences of the different users are quasi-orthogonal - and power control. At the expense of increased network complexity and user coordination, these techniques enable the system capacity to be restored by equitably sharing the satellite resources among the users. An alternative solution is presented based upon the use of time-reference adaptive digital beamforming on board the satellite. This technique enables a high number of independently steered beams to be generated from a single phased array antenna, which automatically track the desired user signal and null the unwanted interference source. In order to use a time-reference adaptive antenna in a communications system, the main challenge is to obtain a

  19. Adaptive beamforming in a CDMA mobile satellite communications system

    NASA Technical Reports Server (NTRS)

    Munoz-Garcia, Samuel G.

    1993-01-01

    Code-Division Multiple-Access (CDMA) stands out as a strong contender for the choice of multiple access scheme in these future mobile communication systems. This is due to a variety of reasons such as the excellent performance in multipath environments, high scope for frequency reuse and graceful degradation near saturation. However, the capacity of CDMA is limited by the self-interference between the transmissions of the different users in the network. Moreover, the disparity between the received power levels gives rise to the near-far problem, this is, weak signals are severely degraded by the transmissions from other users. In this paper, the use of time-reference adaptive digital beamforming on board the satellite is proposed as a means to overcome the problems associated with CDMA. This technique enables a high number of independently steered beams to be generated from a single phased array antenna, which automatically track the desired user signal and null the unwanted interference sources. Since CDMA is interference limited, the interference protection provided by the antenna converts directly and linearly into an increase in capacity. Furthermore, the proposed concept allows the near-far effect to be mitigated without requiring a tight coordination of the users in terms of power control. A payload architecture will be presented that illustrates the practical implementation of this concept. This digital payload architecture shows that with the advent of high performance CMOS digital processing, the on-board implementation of complex DSP techniques -in particular digital beamforming- has become possible, being most attractive for Mobile Satellite Communications.

  20. Evaluation of a portable two-microphone adaptive beamforming speech processor with cochlear implant patients.

    PubMed

    van Hoesel, R J; Clark, G M

    1995-04-01

    A two-microphone noise reduction technique was tested with four cochlear implant patients. The noise reduction technique, known as adaptive beamforming (ABF), used signals from only two microphones--one behind each ear--to attenuate sounds not arriving from the direction directly in front of the patient. The algorithm was implemented in a portable digital signal processor, and was compared with a strategy in which the two microphone signals were simply added together (two-microphone broadside strategy). Tests with the four patients were conducted in a soundproof booth with target speech arriving from in front of the patient and multitalker babble noise arriving at 90 deg to the left. Results at 0-dB signal-to-noise level (S/N) showed large improvements in speech intelligibility for all patients, when compared to the two-microphone broadside strategy. Precautions were taken to avoid cancellation of the target speech, and, accordingly, subjective tests showed no deterioration in performance for the adaptive beamformer in quiet. Physical measurement of the directional characteristics of the ABF was made with the microphones placed behind the ears of a KEMAR manikin and in the same acoustic environment as used with the patients. Results showed directional gain of approximately 10 dB when the angle of incidence for interfering noise was shifted more than 20 to 30 deg from directly in front of or behind the manikin.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Joint Robust Transmit/Receive Adaptive Beamforming for MIMO Radar Using Probability-Constrained Optimization

    NASA Astrophysics Data System (ADS)

    Zhang, Weiyu; Vorobyov, Sergiy A.

    2016-01-01

    A joint robust transmit/receive adaptive beamforming for multiple-input multipleoutput (MIMO) radar based on probability-constrained optimization approach is developed in the case of Gaussian and arbitrary distributed mismatch present in both the transmit and receive signal steering vectors. A tight lower bound of the probability constraint is also derived by using duality theory. The formulated probability-constrained robust beamforming problem is nonconvex and NP-hard. However, we reformulate its cost function into a bi-quadratic function while the probability constraint splits into transmit and receive parts. Then, a block coordinate descent method based on second-order cone programming is developed to address the biconvex problem. Simulation results show an improved robustness of the proposed beamforming method as compared to the worst-case and other existing state-of-the-art joint transmit/receive robust adaptive beamforming methods for MIMO radar.

  2. Research on algorithms for adaptive antenna arrays

    NASA Astrophysics Data System (ADS)

    Widrow, B.; Newman, W.; Gooch, R.; Duvall, K.; Shur, D.

    1981-08-01

    The fundamental efficiency of adaptive algorithms is analyzed. It is found that noise in the adaptive weights increases with convergence speed. This causes loss in mean-square-error performance. Efficiency is considered from the point of view of misadjustment versus speed of convergence. A new version of the LMS algorithm based on Newton's method is analyzed and shown to make maximally efficient use of real-time input data. The performance of this algorithm is not affected by eigenvalue disparity. Practical algorithms can be devised that closely approximate Newton's method. In certain cases, the steepest descent version of LMS performs as well as Newton's method. The efficiency of adaptive algorithms with nonstationary input environments is analyzed where signals, jammers, and background noises can be of a transient and nonstationary nature. A new adaptive filtering method for broadband adaptive beamforming is described which uses both poles and zeros in the adaptive signal filtering paths from the antenna elements to the final array output.

  3. Artifact removal algorithms for stroke detection using a multistatic MIST beamforming algorithm.

    PubMed

    Ricci, E; Di Domenico, S; Cianca, E; Rossi, T

    2015-01-01

    Microwave imaging (MWI) has been recently proved as a promising imaging modality for low-complexity, low-cost and fast brain imaging tools, which could play a fundamental role to efficiently manage emergencies related to stroke and hemorrhages. This paper focuses on the UWB radar imaging approach and in particular on the processing algorithms of the backscattered signals. Assuming the use of the multistatic version of the MIST (Microwave Imaging Space-Time) beamforming algorithm, developed by Hagness et al. for the early detection of breast cancer, the paper proposes and compares two artifact removal algorithms. Artifacts removal is an essential step of any UWB radar imaging system and currently considered artifact removal algorithms have been shown not to be effective in the specific scenario of brain imaging. First of all, the paper proposes modifications of a known artifact removal algorithm. These modifications are shown to be effective to achieve good localization accuracy and lower false positives. However, the main contribution is the proposal of an artifact removal algorithm based on statistical methods, which allows to achieve even better performance but with much lower computational complexity.

  4. Artifact removal algorithms for stroke detection using a multistatic MIST beamforming algorithm.

    PubMed

    Ricci, E; Di Domenico, S; Cianca, E; Rossi, T

    2015-01-01

    Microwave imaging (MWI) has been recently proved as a promising imaging modality for low-complexity, low-cost and fast brain imaging tools, which could play a fundamental role to efficiently manage emergencies related to stroke and hemorrhages. This paper focuses on the UWB radar imaging approach and in particular on the processing algorithms of the backscattered signals. Assuming the use of the multistatic version of the MIST (Microwave Imaging Space-Time) beamforming algorithm, developed by Hagness et al. for the early detection of breast cancer, the paper proposes and compares two artifact removal algorithms. Artifacts removal is an essential step of any UWB radar imaging system and currently considered artifact removal algorithms have been shown not to be effective in the specific scenario of brain imaging. First of all, the paper proposes modifications of a known artifact removal algorithm. These modifications are shown to be effective to achieve good localization accuracy and lower false positives. However, the main contribution is the proposal of an artifact removal algorithm based on statistical methods, which allows to achieve even better performance but with much lower computational complexity. PMID:26736661

  5. Transmission mode adaptive beamforming for planar phased arrays and its application to 3D ultrasonic transcranial imaging

    NASA Astrophysics Data System (ADS)

    Shapoori, Kiyanoosh; Sadler, Jeffrey; Wydra, Adrian; Malyarenko, Eugene; Sinclair, Anthony; Maev, Roman G.

    2013-03-01

    A new adaptive beamforming method for accurately focusing ultrasound behind highly scattering layers of human skull and its application to 3D transcranial imaging via small-aperture planar phased arrays are reported. Due to its undulating, inhomogeneous, porous, and highly attenuative structure, human skull bone severely distorts ultrasonic beams produced by conventional focusing methods in both imaging and therapeutic applications. Strong acoustical mismatch between the skull and brain tissues, in addition to the skull's undulating topology across the active area of a planar ultrasonic probe, could cause multiple reflections and unpredictable refraction during beamforming and imaging processes. Such effects could significantly deflect the probe's beam from the intended focal point. Presented here is a theoretical basis and simulation results of an adaptive beamforming method that compensates for the latter effects in transmission mode, accompanied by experimental verification. The probe is a custom-designed 2 MHz, 256-element matrix array with 0.45 mm element size and 0.1mm kerf. Through its small footprint, it is possible to accurately measure the profile of the skull segment in contact with the probe and feed the results into our ray tracing program. The latter calculates the new time delay patterns adapted to the geometrical and acoustical properties of the skull phantom segment in contact with the probe. The time delay patterns correct for the refraction at the skull-brain boundary and bring the distorted beam back to its intended focus. The algorithms were implemented on the ultrasound open-platform ULA-OP (developed at the University of Florence).

  6. Low velocity impact localization system using FBG array and MVDR beamforming algorithm

    NASA Astrophysics Data System (ADS)

    Sai, Yaozhang; Jiang, Mingshun; Sui, Qingmei; Jia, Lei; Lu, Shizeng

    2015-12-01

    This paper proposes an impact localization system based on the fiber Bragg grating (FBG) array and minimum variance distortionless response (MVDR) beamforming algorithm. The linear FBG array, which contains seven FBG sensors, is used for detecting impact signals. Morlet wavelet transform is applied for extracting narrow-band signals of impact signals. According to the MVDR beamforming algorithm, the system realizes single-impact and multi-impact localizations. The localization system is verified on a 500 mm×500 mm×2 mm carbon fiber reinforced polymer (CFRP) plate for single-impact and multi-impact localizations. The average locating error and the maximum locating error are 6.8 mm and 9.9 mm, respectively.

  7. Synthetic-aperture based photoacoustic re-beamforming (SPARE) approach using beamformed ultrasound data

    PubMed Central

    Zhang, Haichong K.; Bell, Muyinatu A. Lediju; Guo, Xiaoyu; Kang, Hyun Jae; Boctor, Emad M.

    2016-01-01

    Photoacoustic (PA) imaging has been developed for various clinical and pre-clinical applications, and acquiring pre-beamformed channel data is necessary to reconstruct these images. However, accessing these pre-beamformed channel data requires custom hardware to enable parallel beamforming, and is available for a limited number of research ultrasound platforms. To broaden the impact of clinical PA imaging, our goal is to devise a new PA reconstruction approach that uses ultrasound post-beamformed radio frequency (RF) data rather than raw channel data, because this type of data is readily available in both clinical and research ultrasound systems. In our proposed Synthetic-aperture based photoacoustic re-beamforming (SPARE) approach, post-beamformed RF data from a clinical ultrasound scanner are considered as input data for an adaptive synthetic aperture beamforming algorithm. When receive focusing is applied prior to obtaining these data, the focal point is considered as a virtual element, and synthetic aperture beamforming is implemented assuming that the photoacoustic signals are received at the virtual element. The resolution and SNR obtained with the proposed method were compared to that obtained with conventional delay-and-sum beamforming with 99.87% and 91.56% agreement, respectively. In addition, we experimentally demonstrated feasibility with a pulsed laser diode setup. Results indicate that the post-beamformed RF data from any commercially available ultrasound platform can potentially be used to create PA images. PMID:27570697

  8. Synthetic-aperture based photoacoustic re-beamforming (SPARE) approach using beamformed ultrasound data.

    PubMed

    Zhang, Haichong K; Bell, Muyinatu A Lediju; Guo, Xiaoyu; Kang, Hyun Jae; Boctor, Emad M

    2016-08-01

    Photoacoustic (PA) imaging has been developed for various clinical and pre-clinical applications, and acquiring pre-beamformed channel data is necessary to reconstruct these images. However, accessing these pre-beamformed channel data requires custom hardware to enable parallel beamforming, and is available for a limited number of research ultrasound platforms. To broaden the impact of clinical PA imaging, our goal is to devise a new PA reconstruction approach that uses ultrasound post-beamformed radio frequency (RF) data rather than raw channel data, because this type of data is readily available in both clinical and research ultrasound systems. In our proposed Synthetic-aperture based photoacoustic re-beamforming (SPARE) approach, post-beamformed RF data from a clinical ultrasound scanner are considered as input data for an adaptive synthetic aperture beamforming algorithm. When receive focusing is applied prior to obtaining these data, the focal point is considered as a virtual element, and synthetic aperture beamforming is implemented assuming that the photoacoustic signals are received at the virtual element. The resolution and SNR obtained with the proposed method were compared to that obtained with conventional delay-and-sum beamforming with 99.87% and 91.56% agreement, respectively. In addition, we experimentally demonstrated feasibility with a pulsed laser diode setup. Results indicate that the post-beamformed RF data from any commercially available ultrasound platform can potentially be used to create PA images. PMID:27570697

  9. FPGA implementation of robust Capon beamformer

    NASA Astrophysics Data System (ADS)

    Guan, Xin; Zmuda, Henry; Li, Jian; Du, Lin; Sheplak, Mark

    2012-03-01

    The Capon Beamforming algorithm is an optimal spatial filtering algorithm used in various signal processing applications where excellent interference rejection performance is required, such as Radar and Sonar systems, Smart Antenna systems for wireless communications. Its lack of robustness, however, means that it is vulnerable to array calibration errors and other model errors. To overcome this problem, numerous robust Capon Beamforming algorithms have been proposed, which are much more promising for practical applications. In this paper, an FPGA implementation of a robust Capon Beamforming algorithm is investigated and presented. This realization takes an array output with 4 channels, computes the complex-valued adaptive weight vectors for beamforming with an 18 bit fixed-point representation and runs at a 100 MHz clock on Xilinx V4 FPGA. This work will be applied in our medical imaging project for breast cancer detection.

  10. Considerations for autofocus of spotlight-mode SAR imagery created using a beamforming algorithm.

    SciTech Connect

    Wahl, Daniel Eugene; Jakowatz, Charles V., Jr.

    2008-10-01

    In recent papers the authors discussed the advantages of forming spotlight-mode SAR imagery from phase history data via a technique that is rooted in the principles of phased-array beamforming, which is closely related to back-projection. The application of a traditional autofocus algorithm, such as Phase Gradient Autofocus (PGA), requires some care in this situation. Specifically, a stated advantage of beamforming is that it easily allows for reconstruction of the SAR image onto an arbitrary imaging grid. One very useful grid, for example, is a Cartesian grid in the ground plane. Autofocus via PGA for such an image, however, cannot be performed in a straightforward manner, because in PGA a Fourier transform relationship is required between the image domain and the range-compressed phase history, and this is not the case for such an imaging grid. In this paper we propose a strategy for performing autofocus in this situation, and discuss its limitations. We demonstrate the algorithm on synthetic phase errors applied to real SAR imagery.

  11. An Ultrasonic-Adaptive Beamforming Method and Its Application for Trans-skull Imaging of Certain Types of Head Injuries; Part I: Transmission Mode.

    PubMed

    Shapoori, Kiyanoosh; Sadler, Jeff; Wydra, Adrian; Malyarenko, Eugene V; Sinclair, Anthony N; Maev, Roman Gr

    2015-05-01

    A new adaptive beamforming algorithm for imaging via small-aperture 1-D ultrasonic-phased arrays through composite layered structures is reported. Such structures cause acoustic phase aberration and wave refraction at undulating interfaces and can lead to significant distortion of an ultrasonic field pattern produced by conventional beamforming techniques. This distortion takes the form of defocusing the ultrasonic field transmitted through the barrier and causes loss of resolution and overall degradation of image quality. To compensate for the phase aberration and the refractional effects, we developed and examined an adaptive beamforming algorithm for small-aperture linear-phased arrays. After accurately assessing the barrier's local geometry and sound speed, the method calculates a new timing scheme to refocus the distorted beam at its original location. As a tentative application, implementation of this method for trans-skull imaging of certain types of head injuries through human skull is discussed. Simulation and laboratory results of applying the method on skull-mimicking phantoms are presented. Correction of up to 2.5 cm focal point displacement at up to 10 cm depth under our skull phantom is demonstrated. Quantitative assessment of the method in a variety of temporal focusing scenarios is also reported. Overall temporal deviation on the order of a few nanoseconds was observed between the simulated and experimental results. The single-point adaptive focusing results demonstrate strong potential of our approach for diagnostic imaging through intact human skull. The algorithms were implemented on an ultrasound advanced open-platform controlling 64 active elements on a 128-element phased array. PMID:25423646

  12. An Ultrasonic-Adaptive Beamforming Method and Its Application for Trans-skull Imaging of Certain Types of Head Injuries; Part I: Transmission Mode.

    PubMed

    Shapoori, Kiyanoosh; Sadler, Jeff; Wydra, Adrian; Malyarenko, Eugene V; Sinclair, Anthony N; Maev, Roman Gr

    2015-05-01

    A new adaptive beamforming algorithm for imaging via small-aperture 1-D ultrasonic-phased arrays through composite layered structures is reported. Such structures cause acoustic phase aberration and wave refraction at undulating interfaces and can lead to significant distortion of an ultrasonic field pattern produced by conventional beamforming techniques. This distortion takes the form of defocusing the ultrasonic field transmitted through the barrier and causes loss of resolution and overall degradation of image quality. To compensate for the phase aberration and the refractional effects, we developed and examined an adaptive beamforming algorithm for small-aperture linear-phased arrays. After accurately assessing the barrier's local geometry and sound speed, the method calculates a new timing scheme to refocus the distorted beam at its original location. As a tentative application, implementation of this method for trans-skull imaging of certain types of head injuries through human skull is discussed. Simulation and laboratory results of applying the method on skull-mimicking phantoms are presented. Correction of up to 2.5 cm focal point displacement at up to 10 cm depth under our skull phantom is demonstrated. Quantitative assessment of the method in a variety of temporal focusing scenarios is also reported. Overall temporal deviation on the order of a few nanoseconds was observed between the simulated and experimental results. The single-point adaptive focusing results demonstrate strong potential of our approach for diagnostic imaging through intact human skull. The algorithms were implemented on an ultrasound advanced open-platform controlling 64 active elements on a 128-element phased array.

  13. Adaptive continuous twisting algorithm

    NASA Astrophysics Data System (ADS)

    Moreno, Jaime A.; Negrete, Daniel Y.; Torres-González, Victor; Fridman, Leonid

    2016-09-01

    In this paper, an adaptive continuous twisting algorithm (ACTA) is presented. For double integrator, ACTA produces a continuous control signal ensuring finite time convergence of the states to zero. Moreover, the control signal generated by ACTA compensates the Lipschitz perturbation in finite time, i.e. its value converges to the opposite value of the perturbation. ACTA also keeps its convergence properties, even in the case that the upper bound of the derivative of the perturbation exists, but it is unknown.

  14. Adaptive beamforming at very low frequencies in spatially coherent, cluttered noise environments with low signal-to-noise ratio and finite-averaging times

    PubMed

    Nuttall; Wilson

    2000-11-01

    Realistic simulations with spatially coherent noise have been run in order to compare the performance of adaptive beamforming (ABF), inverse beamforming (IBF), and conventional beamforming (CBF) for the case of finite-averaging times, where the actual spatial coherence of the acoustic field, or covariance matrix, is not known a priori, but must be estimated. These estimation errors cause large errors in the ABF estimate of the directionality of the acoustic field, partly because ABF is a highly nonlinear algorithm. In addition, it is shown that ABF is fundamentally limited in its suppression capability at very low frequency (VLF), based on the sidelobe level of the conventional beampattern in the direction of the noise interferer [G. L. Mohnkern, "Effects of Errors and Limitations on Interference Suppression," NOSC Technical Document 1478, Naval Ocean Systems Center (1989)]. The simulations include a low-level plane wave signal of interest, a stronger noise plane wave interferer, and spatially random background noise. Both IBF and ABF performed significantly better than CBF, and IBF's performance was slightly better than ABF's performance. The performances of IBF and the ABF algorithm, the minimum variance distortionless response (MVDR) [A. H. Nuttall and D. W. Hyde, "Unified Approach to Optimum and Suboptimum Processing for Arrays," USL Report Number 992, Naval Underwater Systems Center, New London, CT (22 April 1969)] were recently compared independently [J. S. D. Solomon, A. J. Knight, and M. V. Greening, "Sonar Array Signal Processing for Sparse Linear Arrays," Defense Science and Technology Organization (DSTO) Technical Report (June 1999)] using measured data, with the result that IBF outperformed MVDR. This result is significant because MVDR requires orders of magnitude more processing power than IBF or CBF.

  15. Array model interpolation and subband iterative adaptive filters applied to beamforming-based acoustic echo cancellation.

    PubMed

    Bai, Mingsian R; Chi, Li-Wen; Liang, Li-Huang; Lo, Yi-Yang

    2016-02-01

    In this paper, an evolutionary exposition is given in regard to the enhancing strategies for acoustic echo cancellers (AECs). A fixed beamformer (FBF) is utilized to focus on the near-end speaker while suppressing the echo from the far end. In reality, the array steering vector could differ considerably from the ideal freefield plane wave model. Therefore, an experimental procedure is developed to interpolate a practical array model from the measured frequency responses. Subband (SB) filtering with polyphase implementation is exploited to accelerate the cancellation process. Generalized sidelobe canceller (GSC) composed of an FBF and an adaptive blocking module is combined with AEC to maximize cancellation performance. Another enhancement is an internal iteration (IIT) procedure that enables efficient convergence in the adaptive SB filters within a sample time. Objective tests in terms of echo return loss enhancement (ERLE), perceptual evaluation of speech quality (PESQ), word recognition rate for automatic speech recognition (ASR), and subjective listening tests are conducted to validate the proposed AEC approaches. The results show that the GSC-SB-AEC-IIT approach has attained the highest ERLE without speech quality degradation, even in double-talk scenarios. PMID:26936567

  16. Non-parametric permutation thresholding for adaptive nonlinear beamformer analysis on MEG revealed oscillatory neuronal dynamics in human brain.

    PubMed

    Ishii, Ryouhei; Canuet, Leonides; Aoki, Yasunori; Ikeda, Shunichiro; Hata, Masahiro; Iwase, Masao; Takeda, Masatoshi

    2013-01-01

    Adaptive nonlinear beamformer technique for analyzing magnetoencephalography (MEG) data has been proved to be powerful tool for both brain research and clinical applications. A general method of analyzing multiple subject data with a formal statistical treatment for the group data has been developed and applied for various types of MEG data. Our latest application of this method was frontal midline theta rhythm (Fmθ), which indicates focused attention and appears widely distributed over medial prefrontal areas in EEG recordings. To localize cortical generators of the magnetic counterpart of Fmθ precisely and identify cortical sources and underlying neural activity associated with mental calculation processing (i.e., arithmetic subtraction), we applied adaptive nonlinear beamformer and permutation analysis on MEG data. As a result, it was indicated that Fmθ is generated in the dorsal anterior cingulate and adjacent medial prefrontal cortex. Gamma event-related synchronization is as an index of activation in right parietal regions subserving mental subtraction associated with basic numerical processing and number-based spatial attention. Gamma desynchronization appeared in the right lateral prefrontal cortex, likely representing a mechanism to interrupt neural activity that can interfere with the ongoing cognitive task. We suggest that the combination of adaptive nonlinear beamformer and permutation analysis on MEG data is quite powerful tool to reveal the oscillatory neuronal dynamics in human brain. PMID:24110810

  17. A Diagonal-Steering-Based Binaural Beamforming Algorithm Incorporating a Diagonal Speech Localizer for Persons With Bilateral Hearing Impairment.

    PubMed

    Lee, Jun Chang; Nam, Kyoung Won; Jang, Dong Pyo; Kim, In Young

    2015-12-01

    Previously suggested diagonal-steering algorithms for binaural hearing support devices have commonly assumed that the direction of the speech signal is known in advance, which is not always the case in many real circumstances. In this study, a new diagonal-steering-based binaural speech localization (BSL) algorithm is proposed, and the performances of the BSL algorithm and the binaural beamforming algorithm, which integrates the BSL and diagonal-steering algorithms, were evaluated using actual speech-in-noise signals in several simulated listening scenarios. Testing sounds were recorded in a KEMAR mannequin setup and two objective indices, improvements in signal-to-noise ratio (SNRi ) and segmental SNR (segSNRi ), were utilized for performance evaluation. Experimental results demonstrated that the accuracy of the BSL was in the 90-100% range when input SNR was -10 to +5 dB range. The average differences between the γ-adjusted and γ-fixed diagonal-steering algorithms (for -15 to +5 dB input SNR) in the talking in the restaurant scenario were 0.203-0.937 dB for SNRi and 0.052-0.437 dB for segSNRi , and in the listening while car driving scenario, the differences were 0.387-0.835 dB for SNRi and 0.259-1.175 dB for segSNRi . In addition, the average difference between the BSL-turned-on and the BSL-turned-off cases for the binaural beamforming algorithm in the listening while car driving scenario was 1.631-4.246 dB for SNRi and 0.574-2.784 dB for segSNRi . In all testing conditions, the γ-adjusted diagonal-steering and BSL algorithm improved the values of the indices more than the conventional algorithms. The binaural beamforming algorithm, which integrates the proposed BSL and diagonal-steering algorithm, is expected to improve the performance of the binaural hearing support devices in noisy situations.

  18. Quasi-multistatic MIST beamforming for the early detection of breast cancer.

    PubMed

    O'Halloran, Martin; Jones, Edward; Glavin, Martin

    2010-04-01

    Microwave imaging via space-time (MIST) beamforming has been shown to be one of the most promising imaging modalities for detecting small malignant breast tumors. This paper outlines two modifications to the MIST system developed by Hagness for the early detection of breast cancer, resulting in a quasi-multistatic MIST beamformer (multi-MIST). Multistatic MIST beamforming involves illuminating the breast with an ultrawideband (UWB) signal from one antenna while collecting the reflections at an array of antennas, as opposed to traditional monostatic MIST beamforming where only the transmitting antenna records the reflections from the breast. In order to process the multistatic data, traditional data-adaptive artifact removal algorithms have to be modified to accommodate signals from all antennas. Also, the MIST beamforming algorithm, which spatially focuses the signal and compensates for frequency-dependent propagation effects, has to be modified. The algorithms are tested on a 2-D anatomically accurate finite-difference time-domain model of the breast. The multi-MIST beamformer described here is shown to offer an improved signal to clutter ratio when compared to the traditional monostatic MIST beamformer.

  19. Cubit Adaptive Meshing Algorithm Library

    2004-09-01

    CAMAL (Cubit adaptive meshing algorithm library) is a software component library for mesh generation. CAMAL 2.0 includes components for triangle, quad and tetrahedral meshing. A simple Application Programmers Interface (API) takes a discrete boundary definition and CAMAL computes a quality interior unstructured grid. The triangle and quad algorithms may also import a geometric definition of a surface on which to define the grid. CAMAL’s triangle meshing uses a 3D space advancing front method, the quadmore » meshing algorithm is based upon Sandia’s patented paving algorithm and the tetrahedral meshing algorithm employs the GHS3D-Tetmesh component developed by INRIA, France.« less

  20. Adaptive protection algorithm and system

    DOEpatents

    Hedrick, Paul [Pittsburgh, PA; Toms, Helen L [Irwin, PA; Miller, Roger M [Mars, PA

    2009-04-28

    An adaptive protection algorithm and system for protecting electrical distribution systems traces the flow of power through a distribution system, assigns a value (or rank) to each circuit breaker in the system and then determines the appropriate trip set points based on the assigned rank.

  1. PHASED ARRAY FEED CALIBRATION, BEAMFORMING, AND IMAGING

    SciTech Connect

    Landon, Jonathan; Elmer, Michael; Waldron, Jacob; Jones, David; Stemmons, Alan; Jeffs, Brian D.; Warnick, Karl F.; Richard Fisher, J.; Norrod, Roger D.

    2010-03-15

    Phased array feeds (PAFs) for reflector antennas offer the potential for increased reflector field of view and faster survey speeds. To address some of the development challenges that remain for scientifically useful PAFs, including calibration and beamforming algorithms, sensitivity optimization, and demonstration of wide field of view imaging, we report experimental results from a 19 element room temperature L-band PAF mounted on the Green Bank 20 Meter Telescope. Formed beams achieved an aperture efficiency of 69% and a system noise temperature of 66 K. Radio camera images of several sky regions are presented. We investigate the noise performance and sensitivity of the system as a function of elevation angle with statistically optimal beamforming and demonstrate cancelation of radio frequency interference sources with adaptive spatial filtering.

  2. Streamlining algorithms for complete adaptation

    NASA Technical Reports Server (NTRS)

    Erickson, J. C., Jr. (Editor); Chevallier, J. P.; Goodyer, Michael J.; Hornung, Hans G.; Mignosi, Andre; Sears, William R.; Smith, J.; Wedemeyer, Erich H.

    1990-01-01

    For purposes of the adaptive-wall algorithms to be described, the modern era is considered to have begun with the simultaneous, independent recognition of the concept of matching an experimental inner flow across an interface to a computed outer flow by Chevallier, Ferri, Goodyer, Lissaman, Rubbert, and Sears. Fundamental investigations of the adaptive-wall matching concept by means of numerical simulations and theoretical considerations are described. An overview of the development and operation of 2D adaptive-wall facilities from about 1970 until the present is given, followed by similar material for 3D adaptive-wall facilities from approximately 1978 until the present. A general formulation of adaptation strategy is presented, with a theoretical basis for adaptation followed by 2D flexible, impermeable-wall applications; 2D ventilated-wall applications; 3D flexible, impermeable-wall applications; and 3D ventilated-wall applications. Representative experimental and 3D results are given, with 2D, followed by a discussion of limitations and open questions.

  3. Comparison between beamforming and super resolution imaging algorithms for non-destructive evaluation

    SciTech Connect

    Fan, Chengguang; Drinkwater, Bruce W.

    2014-02-18

    In this paper the performance of total focusing method is compared with the widely used time-reversal MUSIC super resolution technique. The algorithms are tested with simulated and experimental ultrasonic array data, each containing different noise levels. The simulated time domain signals allow the effects of array geometry, frequency, scatterer location, scatterer size, scatterer separation and random noise to be carefully controlled. The performance of the imaging algorithms is evaluated in terms of resolution and sensitivity to random noise. It is shown that for the low noise situation, time-reversal MUSIC provides enhanced lateral resolution when compared to the total focusing method. However, for higher noise levels, the total focusing method shows robustness, whilst the performance of time-reversal MUSIC is significantly degraded.

  4. Comparison between beamforming and super resolution imaging algorithms for non-destructive evaluation

    NASA Astrophysics Data System (ADS)

    Fan, Chengguang; Drinkwater, Bruce W.

    2014-02-01

    In this paper the performance of total focusing method is compared with the widely used time-reversal MUSIC super resolution technique. The algorithms are tested with simulated and experimental ultrasonic array data, each containing different noise levels. The simulated time domain signals allow the effects of array geometry, frequency, scatterer location, scatterer size, scatterer separation and random noise to be carefully controlled. The performance of the imaging algorithms is evaluated in terms of resolution and sensitivity to random noise. It is shown that for the low noise situation, time-reversal MUSIC provides enhanced lateral resolution when compared to the total focusing method. However, for higher noise levels, the total focusing method shows robustness, whilst the performance of time-reversal MUSIC is significantly degraded.

  5. Hierarchical beamformer and cross-talk reduction in electroneurography

    NASA Astrophysics Data System (ADS)

    Calvetti, Daniela; Wodlinger, Brian; Durand, Dominique M.; Somersalo, Erkki

    2011-10-01

    Electroneurography (ENG) is a method of recording neural activity within nerves. Using nerve electrodes with multiple contacts the activation patterns of individual neuronal fascicles can be estimated by measuring the surface voltages induced by the intraneural activity. The information about neuronal activation can be used for functional electric stimulation (FES) of patients suffering from spinal chord injury, or to control a robotic prosthetic limb of an amputee. However, the ENG signal estimation is a severely ill-posed inverse problem due to uncertainties in the model, low resolution due to limitations of the data, geometric constraints and the difficulty in separating the signal from biological and exogenous noise. In this paper, a reduced computational model for the forward problem is proposed, and the ENG problem is addressed by using beamformer techniques. Furthermore, we show that using a hierarchical statistical model, it is possible to develop an adaptive beamformer algorithm that estimates directly the source variances rather than the voltage source itself. The advantage of this new algorithm, e.g., over a traditional adaptive beamformer algorithm, is that it allows a very stable noise reduction by averaging over a time window. In addition, a new projection technique for separating sources and reducing cross-talk between different fascicle signals is proposed. The algorithms are tested on a computer model of realistic nerve geometry and time series signals.

  6. An adaptive algorithm for noise rejection.

    PubMed

    Lovelace, D E; Knoebel, S B

    1978-01-01

    An adaptive algorithm for the rejection of noise artifact in 24-hour ambulatory electrocardiographic recordings is described. The algorithm is based on increased amplitude distortion or increased frequency of fluctuations associated with an episode of noise artifact. The results of application of the noise rejection algorithm on a high noise population of test tapes are discussed.

  7. Photoacoustic image reconstruction from ultrasound post-beamformed B-mode image

    NASA Astrophysics Data System (ADS)

    Zhang, Haichong K.; Guo, Xiaoyu; Kang, Hyun Jae; Boctor, Emad M.

    2016-03-01

    A requirement to reconstruct photoacoustic (PA) image is to have a synchronized channel data acquisition with laser firing. Unfortunately, most clinical ultrasound (US) systems don't offer an interface to obtain synchronized channel data. To broaden the impact of clinical PA imaging, we propose a PA image reconstruction algorithm utilizing US B-mode image, which is readily available from clinical scanners. US B-mode image involves a series of signal processing including beamforming, followed by envelope detection, and end with log compression. Yet, it will be defocused when PA signals are input due to incorrect delay function. Our approach is to reverse the order of image processing steps and recover the original US post-beamformed radio-frequency (RF) data, in which a synthetic aperture based PA rebeamforming algorithm can be further applied. Taking B-mode image as the input, we firstly recovered US postbeamformed RF data by applying log decompression and convoluting an acoustic impulse response to combine carrier frequency information. Then, the US post-beamformed RF data is utilized as pre-beamformed RF data for the adaptive PA beamforming algorithm, and the new delay function is applied by taking into account that the focus depth in US beamforming is at the half depth of the PA case. The feasibility of the proposed method was validated through simulation, and was experimentally demonstrated using an acoustic point source. The point source was successfully beamformed from a US B-mode image, and the full with at the half maximum of the point improved 3.97 times. Comparing this result to the ground-truth reconstruction using channel data, the FWHM was slightly degraded with 1.28 times caused by information loss during envelope detection and convolution of the RF information.

  8. QPSO-based adaptive DNA computing algorithm.

    PubMed

    Karakose, Mehmet; Cigdem, Ugur

    2013-01-01

    DNA (deoxyribonucleic acid) computing that is a new computation model based on DNA molecules for information storage has been increasingly used for optimization and data analysis in recent years. However, DNA computing algorithm has some limitations in terms of convergence speed, adaptability, and effectiveness. In this paper, a new approach for improvement of DNA computing is proposed. This new approach aims to perform DNA computing algorithm with adaptive parameters towards the desired goal using quantum-behaved particle swarm optimization (QPSO). Some contributions provided by the proposed QPSO based on adaptive DNA computing algorithm are as follows: (1) parameters of population size, crossover rate, maximum number of operations, enzyme and virus mutation rate, and fitness function of DNA computing algorithm are simultaneously tuned for adaptive process, (2) adaptive algorithm is performed using QPSO algorithm for goal-driven progress, faster operation, and flexibility in data, and (3) numerical realization of DNA computing algorithm with proposed approach is implemented in system identification. Two experiments with different systems were carried out to evaluate the performance of the proposed approach with comparative results. Experimental results obtained with Matlab and FPGA demonstrate ability to provide effective optimization, considerable convergence speed, and high accuracy according to DNA computing algorithm.

  9. Adaptive sensor fusion using genetic algorithms

    SciTech Connect

    Fitzgerald, D.S.; Adams, D.G.

    1994-08-01

    Past attempts at sensor fusion have used some form of Boolean logic to combine the sensor information. As an alteniative, an adaptive ``fuzzy`` sensor fusion technique is described in this paper. This technique exploits the robust capabilities of fuzzy logic in the decision process as well as the optimization features of the genetic algorithm. This paper presents a brief background on fuzzy logic and genetic algorithms and how they are used in an online implementation of adaptive sensor fusion.

  10. A beamformer post-filter for cochlear implant noise reduction.

    PubMed

    Hersbach, Adam A; Grayden, David B; Fallon, James B; McDermott, Hugh J

    2013-04-01

    Cochlear implant users have limited ability to understand speech in noisy conditions. Signal processing methods to address this issue that use multiple microphones typically use beamforming to perform noise reduction. However, the effectiveness of the beamformer is diminished as the number of interfering noises increases and the acoustic environment becomes more diffuse. A multi-microphone noise reduction algorithm that aims to address this issue is presented in this study. The algorithm uses spatial filtering to estimate the signal-to-noise ratio (SNR) and attenuates time-frequency elements that have poor SNR. The algorithm was evaluated by measuring intelligibility of speech embedded in 4-talker babble where the interfering talkers were spatially separated and changed location during the test. Twelve cochlear implant users took part in the evaluation, which demonstrated a significant mean improvement of 4.6 dB (standard error 0.4, P < 0.001) in speech reception threshold compared to an adaptive beamformer. The results suggest that a substantial improvement in performance can be gained for cochlear implant users in noisy environments where the noise is spatially separated from the target speech.

  11. AIDA: Adaptive Image Deconvolution Algorithm

    NASA Astrophysics Data System (ADS)

    Hom, Erik; Haase, Sebastian; Marchis, Franck

    2013-10-01

    AIDA is an implementation and extension of the MISTRAL myopic deconvolution method developed by Mugnier et al. (2004) (see J. Opt. Soc. Am. A 21:1841-1854). The MISTRAL approach has been shown to yield object reconstructions with excellent edge preservation and photometric precision when used to process astronomical images. AIDA improves upon the original MISTRAL implementation. AIDA, written in Python, can deconvolve multiple frame data and three-dimensional image stacks encountered in adaptive optics and light microscopic imaging.

  12. Adaptive link selection algorithms for distributed estimation

    NASA Astrophysics Data System (ADS)

    Xu, Songcen; de Lamare, Rodrigo C.; Poor, H. Vincent

    2015-12-01

    This paper presents adaptive link selection algorithms for distributed estimation and considers their application to wireless sensor networks and smart grids. In particular, exhaustive search-based least mean squares (LMS) / recursive least squares (RLS) link selection algorithms and sparsity-inspired LMS / RLS link selection algorithms that can exploit the topology of networks with poor-quality links are considered. The proposed link selection algorithms are then analyzed in terms of their stability, steady-state, and tracking performance and computational complexity. In comparison with the existing centralized or distributed estimation strategies, the key features of the proposed algorithms are as follows: (1) more accurate estimates and faster convergence speed can be obtained and (2) the network is equipped with the ability of link selection that can circumvent link failures and improve the estimation performance. The performance of the proposed algorithms for distributed estimation is illustrated via simulations in applications of wireless sensor networks and smart grids.

  13. Cross-correlation beamforming

    NASA Astrophysics Data System (ADS)

    Ruigrok, Elmer; Gibbons, Steven; Wapenaar, Kees

    2016-10-01

    An areal distribution of sensors can be used for estimating the direction of incoming waves through beamforming. Beamforming may be implemented as a phase-shifting and stacking of data recorded on the different sensors (i.e., conventional beamforming). Alternatively, beamforming can be applied to cross-correlations between the waveforms on the different sensors. We derive a kernel for beamforming cross-correlated data and call it cross-correlation beamforming (CCBF). We point out that CCBF has slightly better resolution and aliasing characteristics than conventional beamforming. When auto-correlations are added to CCBF, the array response functions are the same as for conventional beamforming. We show numerically that CCBF is more resilient to non-coherent noise. Furthermore, we illustrate that with CCBF individual receiver-pairs can be removed to improve mapping to the slowness domain. An additional flexibility of CCBF is that cross-correlations can be time-windowed prior to beamforming, e.g., to remove the directionality of a scattered wavefield. The observations on synthetic data are confirmed with field data from the SPITS array (Svalbard). Both when beamforming an earthquake arrival and when beamforming ambient noise, CCBF focuses more of the energy to a central beam. Overall, the main advantage of CCBF is noise suppression and its flexibility to remove station pairs that deteriorate the signal-related beampower.

  14. Adaptive cuckoo search algorithm for unconstrained optimization.

    PubMed

    Ong, Pauline

    2014-01-01

    Modification of the intensification and diversification approaches in the recently developed cuckoo search algorithm (CSA) is performed. The alteration involves the implementation of adaptive step size adjustment strategy, and thus enabling faster convergence to the global optimal solutions. The feasibility of the proposed algorithm is validated against benchmark optimization functions, where the obtained results demonstrate a marked improvement over the standard CSA, in all the cases. PMID:25298971

  15. Adaptive cuckoo search algorithm for unconstrained optimization.

    PubMed

    Ong, Pauline

    2014-01-01

    Modification of the intensification and diversification approaches in the recently developed cuckoo search algorithm (CSA) is performed. The alteration involves the implementation of adaptive step size adjustment strategy, and thus enabling faster convergence to the global optimal solutions. The feasibility of the proposed algorithm is validated against benchmark optimization functions, where the obtained results demonstrate a marked improvement over the standard CSA, in all the cases.

  16. An Eye-adapted Beamforming for Axial B-scans Free from Crystalline Lens Aberration: In vitro and ex vivo Results with a 20 MHz Linear Array

    NASA Astrophysics Data System (ADS)

    Matéo, Tony; Mofid, Yassine; Grégoire, Jean-Marc; Ossant, Frédéric

    In ophtalmic ultrasonography, axial B-scans are seriously deteriorated owing to the presence of the crystalline lens. This strongly aberrating medium affects both spatial and contrast resolution and causes important distortions. To deal with this issue, an adapted beamforming (BF) has been developed and experimented with a 20 MHz linear array working with a custom US research scanner. The adapted BF computes focusing delays that compensate for crystalline phase aberration, including refraction effects. This BF was tested in vitro by imaging a wire phantom through an eye phantom consisting of a synthetic gelatin lens, shaped according to the unaccommodated state of an adult human crystalline lens, anatomically set up in an appropriate liquid (turpentine) to approach the in vivo velocity ratio. Both image quality and fidelity from the adapted BF were assessed and compared with conventional delay-and-sum BF over the aberrating medium. Results showed 2-fold improvement of the lateral resolution, greater sensitivity and 90% reduction of the spatial error (from 758 μm to 76 μm) with adapted BF compared to conventional BF. Finally, promising first ex vivo axial B-scans of a human eye are presented.

  17. Genetic algorithms in adaptive fuzzy control

    NASA Technical Reports Server (NTRS)

    Karr, C. Lucas; Harper, Tony R.

    1992-01-01

    Researchers at the U.S. Bureau of Mines have developed adaptive process control systems in which genetic algorithms (GA's) are used to augment fuzzy logic controllers (FLC's). GA's are search algorithms that rapidly locate near-optimum solutions to a wide spectrum of problems by modeling the search procedures of natural genetics. FLC's are rule based systems that efficiently manipulate a problem environment by modeling the 'rule-of-thumb' strategy used in human decision making. Together, GA's and FLC's possess the capabilities necessary to produce powerful, efficient, and robust adaptive control systems. To perform efficiently, such control systems require a control element to manipulate the problem environment, an analysis element to recognize changes in the problem environment, and a learning element to adjust fuzzy membership functions in response to the changes in the problem environment. Details of an overall adaptive control system are discussed. A specific computer-simulated chemical system is used to demonstrate the ideas presented.

  18. Wireless visible light communication technology using optical beamforming

    NASA Astrophysics Data System (ADS)

    Kim, Sung-Man; Kim, Seong-Min

    2013-10-01

    We propose and demonstrate a new wireless visible light communication (VLC) technology using optical beamforming to improve signal-to-noise ratio (SNR) and transmission distance. Optical beamforming is a technology that can focus light-emitting diode (LED) light on a desired target device. Our experimental results show that SNR can be improved by 12 dB and transmission distance can be almost doubled by using optical beamforming. We can also control the modulation depth of the optical beamforming if we want to use the LED light as illumination at the same time. We also propose an algorithm to direct the beam to the target device automatically.

  19. A task-based analytical framework for ultrasonic beamformer comparison.

    PubMed

    Nguyen, Nghia Q; Prager, Richard W; Insana, Michael F

    2016-08-01

    A task-based approach is employed to develop an analytical framework for ultrasound beamformer design and evaluation. In this approach, a Bayesian ideal-observer provides an idealized starting point and a way to measure information loss in practical beamformer designs. Different approximations of this ideal strategy are shown to lead to popular beamformers in the literature, including the matched filter, minimum variance (MV), and Wiener filter (WF) beamformers. Analysis of the approximations indicates that the WF beamformer should outperform the MV approach, especially in low echo signal-to-noise conditions. The beamformers are applied to five typical tasks from the BIRADS lexicon. Their performance is evaluated based on ability to discriminate idealized malignant and benign features. The numerical results show the advantages of the WF over the MV technique in general; although performance varies predictably in some contrast-limited tasks because of the model modifications required for the MV algorithm to avoid ill-conditioning. PMID:27586736

  20. Adaptive computation algorithm for RBF neural network.

    PubMed

    Han, Hong-Gui; Qiao, Jun-Fei

    2012-02-01

    A novel learning algorithm is proposed for nonlinear modelling and identification using radial basis function neural networks. The proposed method simplifies neural network training through the use of an adaptive computation algorithm (ACA). In addition, the convergence of the ACA is analyzed by the Lyapunov criterion. The proposed algorithm offers two important advantages. First, the model performance can be significantly improved through ACA, and the modelling error is uniformly ultimately bounded. Secondly, the proposed ACA can reduce computational cost and accelerate the training speed. The proposed method is then employed to model classical nonlinear system with limit cycle and to identify nonlinear dynamic system, exhibiting the effectiveness of the proposed algorithm. Computational complexity analysis and simulation results demonstrate its effectiveness.

  1. A parallel adaptive mesh refinement algorithm

    NASA Technical Reports Server (NTRS)

    Quirk, James J.; Hanebutte, Ulf R.

    1993-01-01

    Over recent years, Adaptive Mesh Refinement (AMR) algorithms which dynamically match the local resolution of the computational grid to the numerical solution being sought have emerged as powerful tools for solving problems that contain disparate length and time scales. In particular, several workers have demonstrated the effectiveness of employing an adaptive, block-structured hierarchical grid system for simulations of complex shock wave phenomena. Unfortunately, from the parallel algorithm developer's viewpoint, this class of scheme is quite involved; these schemes cannot be distilled down to a small kernel upon which various parallelizing strategies may be tested. However, because of their block-structured nature such schemes are inherently parallel, so all is not lost. In this paper we describe the method by which Quirk's AMR algorithm has been parallelized. This method is built upon just a few simple message passing routines and so it may be implemented across a broad class of MIMD machines. Moreover, the method of parallelization is such that the original serial code is left virtually intact, and so we are left with just a single product to support. The importance of this fact should not be underestimated given the size and complexity of the original algorithm.

  2. Fully implicit adaptive mesh refinement MHD algorithm

    NASA Astrophysics Data System (ADS)

    Philip, Bobby

    2005-10-01

    In the macroscopic simulation of plasmas, the numerical modeler is faced with the challenge of dealing with multiple time and length scales. The former results in stiffness due to the presence of very fast waves. The latter requires one to resolve the localized features that the system develops. Traditional approaches based on explicit time integration techniques and fixed meshes are not suitable for this challenge, as such approaches prevent the modeler from using realistic plasma parameters to keep the computation feasible. We propose here a novel approach, based on implicit methods and structured adaptive mesh refinement (SAMR). Our emphasis is on both accuracy and scalability with the number of degrees of freedom. To our knowledge, a scalable, fully implicit AMR algorithm has not been accomplished before for MHD. As a proof-of-principle, we focus on the reduced resistive MHD model as a basic MHD model paradigm, which is truly multiscale. The approach taken here is to adapt mature physics-based technologyootnotetextL. Chac'on et al., J. Comput. Phys. 178 (1), 15- 36 (2002) to AMR grids, and employ AMR-aware multilevel techniques (such as fast adaptive composite --FAC-- algorithms) for scalability. We will demonstrate that the concept is indeed feasible, featuring optimal scalability under grid refinement. Results of fully-implicit, dynamically-adaptive AMR simulations will be presented on a variety of problems.

  3. Adaptive path planning: Algorithm and analysis

    SciTech Connect

    Chen, Pang C.

    1993-03-01

    Path planning has to be fast to support real-time robot programming. Unfortunately, current planning techniques are still too slow to be effective, as they often require several minutes, if not hours of computation. To alleviate this problem, we present a learning algorithm that uses past experience to enhance future performance. The algorithm relies on an existing path planner to provide solutions to difficult tasks. From these solutions, an evolving sparse network of useful subgoals is learned to support faster planning. The algorithm is suitable for both stationary and incrementally-changing environments. To analyze our algorithm, we use a previously developed stochastic model that quantifies experience utility. Using this model, we characterize the situations in which the adaptive planner is useful, and provide quantitative bounds to predict its behavior. The results are demonstrated with problems in manipulator planning. Our algorithm and analysis are sufficiently general that they may also be applied to task planning or other planning domains in which experience is useful.

  4. Photoacoustic reconstruction using beamformed RF data: a synthetic aperture imaging approach

    NASA Astrophysics Data System (ADS)

    Zhang, Haichong K.; Guo, Xiaoyu; Kang, Hyun Jae; Boctor, Emad M.

    2015-03-01

    Photoacoustic (PA) imaging is becoming an important tool for various clinical and pre-clinical applications. Acquiring pre-beamformed channel ultrasound data is essential to reconstruct PA images. Accessing these pre-beamformed channel data requires custom hardware to allow parallel beam-forming, and is available for only few research ultrasound platforms. However, post-beamformed radio frequency (RF) data is readily available in real-time and in several clinical and research ultrasound platforms. To broaden the impact of clinical PA imaging, our goal is to devise new PA reconstruction approach based on these post-beamformed RF data. In this paper, we propose to generate PA image by using a single receive focus beamformed RF data. These beamformed RF data are considered as pre-beamformed input data to a synthetic aperture beamforming algorithm, where the focal point per received RF line is a virtual element. The image resolution is determined by the fixed focusing depth as well as the aperture size used in fixed focusing. In addition, the signal-to-noise (SNR) improvement is expected because beamforming is performed twice with different noise distribution. The performance of the proposed method is analyzed through simulation, the practical feasibility is validated experimentally. The results indicate that the post-beamformed RF data has potential to be re-beamformed to a PA image using the proposed synthetic aperture beamformer.

  5. Algorithms for adaptive nonlinear pattern recognition

    NASA Astrophysics Data System (ADS)

    Schmalz, Mark S.; Ritter, Gerhard X.; Hayden, Eric; Key, Gary

    2011-09-01

    In Bayesian pattern recognition research, static classifiers have featured prominently in the literature. A static classifier is essentially based on a static model of input statistics, thereby assuming input ergodicity that is not realistic in practice. Classical Bayesian approaches attempt to circumvent the limitations of static classifiers, which can include brittleness and narrow coverage, by training extensively on a data set that is assumed to cover more than the subtense of expected input. Such assumptions are not realistic for more complex pattern classification tasks, for example, object detection using pattern classification applied to the output of computer vision filters. In contrast, we have developed a two step process, that can render the majority of static classifiers adaptive, such that the tracking of input nonergodicities is supported. Firstly, we developed operations that dynamically insert (or resp. delete) training patterns into (resp. from) the classifier's pattern database, without requiring that the classifier's internal representation of its training database be completely recomputed. Secondly, we developed and applied a pattern replacement algorithm that uses the aforementioned pattern insertion/deletion operations. This algorithm is designed to optimize the pattern database for a given set of performance measures, thereby supporting closed-loop, performance-directed optimization. This paper presents theory and algorithmic approaches for the efficient computation of adaptive linear and nonlinear pattern recognition operators that use our pattern insertion/deletion technology - in particular, tabular nearest-neighbor encoding (TNE) and lattice associative memories (LAMs). Of particular interest is the classification of nonergodic datastreams that have noise corruption with time-varying statistics. The TNE and LAM based classifiers discussed herein have been successfully applied to the computation of object classification in hyperspectral

  6. Beamforming in noninvasive brain-computer interfaces.

    PubMed

    Grosse-Wentrup, Moritz; Liefhold, Christian; Gramann, Klaus; Buss, Martin

    2009-04-01

    Spatial filtering (SF) constitutes an integral part of building EEG-based brain-computer interfaces (BCIs). Algorithms frequently used for SF, such as common spatial patterns (CSPs) and independent component analysis, require labeled training data for identifying filters that provide information on a subject's intention, which renders these algorithms susceptible to overfitting on artifactual EEG components. In this study, beamforming is employed to construct spatial filters that extract EEG sources originating within predefined regions of interest within the brain. In this way, neurophysiological knowledge on which brain regions are relevant for a certain experimental paradigm can be utilized to construct unsupervised spatial filters that are robust against artifactual EEG components. Beamforming is experimentally compared with CSP and Laplacian spatial filtering (LP) in a two-class motor-imagery paradigm. It is demonstrated that beamforming outperforms CSP and LP on noisy datasets, while CSP and beamforming perform almost equally well on datasets with few artifactual trials. It is concluded that beamforming constitutes an alternative method for SF that might be particularly useful for BCIs used in clinical settings, i.e., in an environment where artifact-free datasets are difficult to obtain.

  7. Adaptive Trajectory Prediction Algorithm for Climbing Flights

    NASA Technical Reports Server (NTRS)

    Schultz, Charles Alexander; Thipphavong, David P.; Erzberger, Heinz

    2012-01-01

    Aircraft climb trajectories are difficult to predict, and large errors in these predictions reduce the potential operational benefits of some advanced features for NextGen. The algorithm described in this paper improves climb trajectory prediction accuracy by adjusting trajectory predictions based on observed track data. It utilizes rate-of-climb and airspeed measurements derived from position data to dynamically adjust the aircraft weight modeled for trajectory predictions. In simulations with weight uncertainty, the algorithm is able to adapt to within 3 percent of the actual gross weight within two minutes of the initial adaptation. The root-mean-square of altitude errors for five-minute predictions was reduced by 73 percent. Conflict detection performance also improved, with a 15 percent reduction in missed alerts and a 10 percent reduction in false alerts. In a simulation with climb speed capture intent and weight uncertainty, the algorithm improved climb trajectory prediction accuracy by up to 30 percent and conflict detection performance, reducing missed and false alerts by up to 10 percent.

  8. Adaptive snakes using the EM algorithm.

    PubMed

    Nascimento, Jacinto C; Marques, Jorge S

    2005-11-01

    Deformable models (e.g., snakes) perform poorly in many image analysis problems. The contour model is attracted by edge points detected in the image. However, many edge points do not belong to the object contour, preventing the active contour from converging toward the object boundary. A new algorithm is proposed in this paper to overcome this difficulty. The algorithm is based on two key ideas. First, edge points are associated in strokes. Second, each stroke is classified as valid (inlier) or invalid (outlier) and a confidence degree is associated to each stroke. The expectation maximization algorithm is used to update the confidence degrees and to estimate the object contour. It is shown that this is equivalent to the use of an adaptive potential function which varies during the optimization process. Valid strokes receive high confidence degrees while confidence degrees of invalid strokes tend to zero during the optimization process. Experimental results are presented to illustrate the performance of the proposed algorithm in the presence of clutter, showing a remarkable robustness.

  9. Effect of atmospherics on beamforming accuracy

    NASA Technical Reports Server (NTRS)

    Alexander, Richard M.

    1990-01-01

    Two mathematical representations of noise due to atmospheric turbulence are presented. These representations are derived and used in computer simulations of the Bartlett Estimate implementation of beamforming. Beamforming is an array processing technique employing an array of acoustic sensors used to determine the bearing of an acoustic source. Atmospheric wind conditions introduce noise into the beamformer output. Consequently, the accuracy of the process is degraded and the bearing of the acoustic source is falsely indicated or impossible to determine. The two representations of noise presented here are intended to quantify the effects of mean wind passing over the array of sensors and to correct for these effects. The first noise model is an idealized case. The effect of the mean wind is incorporated as a change in the propagation velocity of the acoustic wave. This yields an effective phase shift applied to each term of the spatial correlation matrix in the Bartlett Estimate. The resultant error caused by this model can be corrected in closed form in the beamforming algorithm. The second noise model acts to change the true direction of propagation at the beginning of the beamforming process. A closed form correction for this model is not available. Efforts to derive effective means to reduce the contributions of the noise have not been successful. In either case, the maximum error introduced by the wind is a beam shift of approximately three degrees. That is, the bearing of the acoustic source is indicated at a point a few degrees from the true bearing location. These effects are not quite as pronounced as those seen in experimental results. Sidelobes are false indications of acoustic sources in the beamformer output away from the true bearing angle. The sidelobes that are observed in experimental results are not caused by these noise models. The effects of mean wind passing over the sensor array as modeled here do not alter the beamformer output as

  10. An environment-adaptive management algorithm for hearing-support devices incorporating listening situation and noise type classifiers.

    PubMed

    Yook, Sunhyun; Nam, Kyoung Won; Kim, Heepyung; Hong, Sung Hwa; Jang, Dong Pyo; Kim, In Young

    2015-04-01

    In order to provide more consistent sound intelligibility for the hearing-impaired person, regardless of environment, it is necessary to adjust the setting of the hearing-support (HS) device to accommodate various environmental circumstances. In this study, a fully automatic HS device management algorithm that can adapt to various environmental situations is proposed; it is composed of a listening-situation classifier, a noise-type classifier, an adaptive noise-reduction algorithm, and a management algorithm that can selectively turn on/off one or more of the three basic algorithms-beamforming, noise-reduction, and feedback cancellation-and can also adjust internal gains and parameters of the wide-dynamic-range compression (WDRC) and noise-reduction (NR) algorithms in accordance with variations in environmental situations. Experimental results demonstrated that the implemented algorithms can classify both listening situation and ambient noise type situations with high accuracies (92.8-96.4% and 90.9-99.4%, respectively), and the gains and parameters of the WDRC and NR algorithms were successfully adjusted according to variations in environmental situation. The average values of signal-to-noise ratio (SNR), frequency-weighted segmental SNR, Perceptual Evaluation of Speech Quality, and mean opinion test scores of 10 normal-hearing volunteers of the adaptive multiband spectral subtraction (MBSS) algorithm were improved by 1.74 dB, 2.11 dB, 0.49, and 0.68, respectively, compared to the conventional fixed-parameter MBSS algorithm. These results indicate that the proposed environment-adaptive management algorithm can be applied to HS devices to improve sound intelligibility for hearing-impaired individuals in various acoustic environments. PMID:25284135

  11. An environment-adaptive management algorithm for hearing-support devices incorporating listening situation and noise type classifiers.

    PubMed

    Yook, Sunhyun; Nam, Kyoung Won; Kim, Heepyung; Hong, Sung Hwa; Jang, Dong Pyo; Kim, In Young

    2015-04-01

    In order to provide more consistent sound intelligibility for the hearing-impaired person, regardless of environment, it is necessary to adjust the setting of the hearing-support (HS) device to accommodate various environmental circumstances. In this study, a fully automatic HS device management algorithm that can adapt to various environmental situations is proposed; it is composed of a listening-situation classifier, a noise-type classifier, an adaptive noise-reduction algorithm, and a management algorithm that can selectively turn on/off one or more of the three basic algorithms-beamforming, noise-reduction, and feedback cancellation-and can also adjust internal gains and parameters of the wide-dynamic-range compression (WDRC) and noise-reduction (NR) algorithms in accordance with variations in environmental situations. Experimental results demonstrated that the implemented algorithms can classify both listening situation and ambient noise type situations with high accuracies (92.8-96.4% and 90.9-99.4%, respectively), and the gains and parameters of the WDRC and NR algorithms were successfully adjusted according to variations in environmental situation. The average values of signal-to-noise ratio (SNR), frequency-weighted segmental SNR, Perceptual Evaluation of Speech Quality, and mean opinion test scores of 10 normal-hearing volunteers of the adaptive multiband spectral subtraction (MBSS) algorithm were improved by 1.74 dB, 2.11 dB, 0.49, and 0.68, respectively, compared to the conventional fixed-parameter MBSS algorithm. These results indicate that the proposed environment-adaptive management algorithm can be applied to HS devices to improve sound intelligibility for hearing-impaired individuals in various acoustic environments.

  12. Fronthaul Compression and Transmit Beamforming Optimization for Multi-Antenna Uplink C-RAN

    NASA Astrophysics Data System (ADS)

    Zhou, Yuhan; Yu, Wei

    2016-08-01

    This paper considers the joint fronthaul compression and transmit beamforming design for the uplink cloud radio access network (C-RAN), in which multi-antenna user terminals communicate with a cloud-computing based centralized processor (CP) through multi-antenna base-stations (BSs) serving as relay nodes. A compress-and-forward relaying strategy, named the VMAC scheme, is employed, in which the BSs can either perform single-user compression or Wyner-Ziv coding to quantize the received signals and send the quantization bits to the CP via capacity-limited fronthaul links; the CP performs successive decoding with either successive interference cancellation (SIC) receiver or linear minimum-mean-square-error (MMSE) receiver. Under this setup, this paper investigates the joint optimization of the transmit beamformers at the users and the quantization noise covariance matrices at the BSs for maximizing the network utility. A novel weighted minimum-mean-square-error successive convex approximation (WMMSE-SCA) algorithm is first proposed for maximizing the weighted sum rate under the user transmit power and fronthaul capacity constraints with single-user compression. Assuming a heuristic decompression order, the proposed algorithm is then adapted for optimizing the transmit beamforming and fronthaul compression under Wyner-Ziv coding. This paper also proposes a low-complexity separate design consisting of optimizing transmit beamformers for the Gaussian vector multiple-access channel along with per-antenna quantizers with uniform quantization noise levels across the antennas at each BS. Numerical results show that with optimized beamforming and fronthaul compression, C-RAN can significantly outperform conventional cellular networks. Furthermore, the low complexity separate design already performs very close to the optimized joint design in regime of practical interest.

  13. Acoustic emission beamforming for enhanced damage detection

    NASA Astrophysics Data System (ADS)

    McLaskey, Gregory C.; Glaser, Steven D.; Grosse, Christian U.

    2008-03-01

    As civil infrastructure ages, the early detection of damage in a structure becomes increasingly important for both life safety and economic reasons. This paper describes the analysis procedures used for beamforming acoustic emission techniques as well as the promising results of preliminary experimental tests on a concrete bridge deck. The method of acoustic emission offers a tool for detecting damage, such as cracking, as it occurs on or in a structure. In order to gain meaningful information from acoustic emission analyses, the damage must be localized. Current acoustic emission systems with localization capabilities are very costly and difficult to install. Sensors must be placed throughout the structure to ensure that the damage is encompassed by the array. Beamforming offers a promising solution to these problems and permits the use of wireless sensor networks for acoustic emission analyses. Using the beamforming technique, the azmuthal direction of the location of the damage may be estimated by the stress waves impinging upon a small diameter array (e.g. 30mm) of acoustic emission sensors. Additional signal discrimination may be gained via array processing techniques such as the VESPA process. The beamforming approach requires no arrival time information and is based on very simple delay and sum beamforming algorithms which can be easily implemented on a wireless sensor or mote.

  14. Synaptic dynamics: linear model and adaptation algorithm.

    PubMed

    Yousefi, Ali; Dibazar, Alireza A; Berger, Theodore W

    2014-08-01

    In this research, temporal processing in brain neural circuitries is addressed by a dynamic model of synaptic connections in which the synapse model accounts for both pre- and post-synaptic processes determining its temporal dynamics and strength. Neurons, which are excited by the post-synaptic potentials of hundred of the synapses, build the computational engine capable of processing dynamic neural stimuli. Temporal dynamics in neural models with dynamic synapses will be analyzed, and learning algorithms for synaptic adaptation of neural networks with hundreds of synaptic connections are proposed. The paper starts by introducing a linear approximate model for the temporal dynamics of synaptic transmission. The proposed linear model substantially simplifies the analysis and training of spiking neural networks. Furthermore, it is capable of replicating the synaptic response of the non-linear facilitation-depression model with an accuracy better than 92.5%. In the second part of the paper, a supervised spike-in-spike-out learning rule for synaptic adaptation in dynamic synapse neural networks (DSNN) is proposed. The proposed learning rule is a biologically plausible process, and it is capable of simultaneously adjusting both pre- and post-synaptic components of individual synapses. The last section of the paper starts with presenting the rigorous analysis of the learning algorithm in a system identification task with hundreds of synaptic connections which confirms the learning algorithm's accuracy, repeatability and scalability. The DSNN is utilized to predict the spiking activity of cortical neurons and pattern recognition tasks. The DSNN model is demonstrated to be a generative model capable of producing different cortical neuron spiking patterns and CA1 Pyramidal neurons recordings. A single-layer DSNN classifier on a benchmark pattern recognition task outperforms a 2-Layer Neural Network and GMM classifiers while having fewer numbers of free parameters and

  15. MLEM algorithm adaptation for improved SPECT scintimammography

    NASA Astrophysics Data System (ADS)

    Krol, Andrzej; Feiglin, David H.; Lee, Wei; Kunniyur, Vikram R.; Gangal, Kedar R.; Coman, Ioana L.; Lipson, Edward D.; Karczewski, Deborah A.; Thomas, F. Deaver

    2005-04-01

    Standard MLEM and OSEM algorithms used in SPECT Tc-99m sestamibi scintimammography produce hot-spot artifacts (HSA) at the image support peripheries. We investigated a suitable adaptation of MLEM and OSEM algorithms needed to reduce HSA. Patients with suspicious breast lesions were administered 10 mCi of Tc-99m sestamibi and SPECT scans were acquired for patients in prone position with uncompressed breasts. In addition, to simulate breast lesions, some patients were imaged with a number of breast skin markers each containing 1 mCi of Tc-99m. In order to reduce HSA in reconstruction, we removed from the backprojection step the rays that traverse the periphery of the support region on the way to a detector bin, when their path length through this region was shorter than some critical length. Such very short paths result in a very low projection counts contributed to the detector bin, and consequently to overestimation of the activity in the peripheral voxels in the backprojection step-thus creating HSA. We analyzed the breast-lesion contrast and suppression of HSA in the images reconstructed using standard and modified MLEM and OSEM algorithms vs. critical path length (CPL). For CPL >= 0.01 pixel size, we observed improved breast-lesion contrast and lower noise in the reconstructed images, and a very significant reduction of HSA in the maximum intensity projection (MIP) images.

  16. Adaptive Numerical Algorithms in Space Weather Modeling

    NASA Technical Reports Server (NTRS)

    Toth, Gabor; vanderHolst, Bart; Sokolov, Igor V.; DeZeeuw, Darren; Gombosi, Tamas I.; Fang, Fang; Manchester, Ward B.; Meng, Xing; Nakib, Dalal; Powell, Kenneth G.; Stout, Quentin F.; Glocer, Alex; Ma, Ying-Juan; Opher, Merav

    2010-01-01

    Space weather describes the various processes in the Sun-Earth system that present danger to human health and technology. The goal of space weather forecasting is to provide an opportunity to mitigate these negative effects. Physics-based space weather modeling is characterized by disparate temporal and spatial scales as well as by different physics in different domains. A multi-physics system can be modeled by a software framework comprising of several components. Each component corresponds to a physics domain, and each component is represented by one or more numerical models. The publicly available Space Weather Modeling Framework (SWMF) can execute and couple together several components distributed over a parallel machine in a flexible and efficient manner. The framework also allows resolving disparate spatial and temporal scales with independent spatial and temporal discretizations in the various models. Several of the computationally most expensive domains of the framework are modeled by the Block-Adaptive Tree Solar wind Roe Upwind Scheme (BATS-R-US) code that can solve various forms of the magnetohydrodynamics (MHD) equations, including Hall, semi-relativistic, multi-species and multi-fluid MHD, anisotropic pressure, radiative transport and heat conduction. Modeling disparate scales within BATS-R-US is achieved by a block-adaptive mesh both in Cartesian and generalized coordinates. Most recently we have created a new core for BATS-R-US: the Block-Adaptive Tree Library (BATL) that provides a general toolkit for creating, load balancing and message passing in a 1, 2 or 3 dimensional block-adaptive grid. We describe the algorithms of BATL and demonstrate its efficiency and scaling properties for various problems. BATS-R-US uses several time-integration schemes to address multiple time-scales: explicit time stepping with fixed or local time steps, partially steady-state evolution, point-implicit, semi-implicit, explicit/implicit, and fully implicit numerical

  17. Adaptive numerical algorithms in space weather modeling

    NASA Astrophysics Data System (ADS)

    Tóth, Gábor; van der Holst, Bart; Sokolov, Igor V.; De Zeeuw, Darren L.; Gombosi, Tamas I.; Fang, Fang; Manchester, Ward B.; Meng, Xing; Najib, Dalal; Powell, Kenneth G.; Stout, Quentin F.; Glocer, Alex; Ma, Ying-Juan; Opher, Merav

    2012-02-01

    Space weather describes the various processes in the Sun-Earth system that present danger to human health and technology. The goal of space weather forecasting is to provide an opportunity to mitigate these negative effects. Physics-based space weather modeling is characterized by disparate temporal and spatial scales as well as by different relevant physics in different domains. A multi-physics system can be modeled by a software framework comprising several components. Each component corresponds to a physics domain, and each component is represented by one or more numerical models. The publicly available Space Weather Modeling Framework (SWMF) can execute and couple together several components distributed over a parallel machine in a flexible and efficient manner. The framework also allows resolving disparate spatial and temporal scales with independent spatial and temporal discretizations in the various models. Several of the computationally most expensive domains of the framework are modeled by the Block-Adaptive Tree Solarwind Roe-type Upwind Scheme (BATS-R-US) code that can solve various forms of the magnetohydrodynamic (MHD) equations, including Hall, semi-relativistic, multi-species and multi-fluid MHD, anisotropic pressure, radiative transport and heat conduction. Modeling disparate scales within BATS-R-US is achieved by a block-adaptive mesh both in Cartesian and generalized coordinates. Most recently we have created a new core for BATS-R-US: the Block-Adaptive Tree Library (BATL) that provides a general toolkit for creating, load balancing and message passing in a 1, 2 or 3 dimensional block-adaptive grid. We describe the algorithms of BATL and demonstrate its efficiency and scaling properties for various problems. BATS-R-US uses several time-integration schemes to address multiple time-scales: explicit time stepping with fixed or local time steps, partially steady-state evolution, point-implicit, semi-implicit, explicit/implicit, and fully implicit

  18. AIDA: An Adaptive Image Deconvolution Algorithm

    NASA Astrophysics Data System (ADS)

    Hom, Erik; Marchis, F.; Lee, T. K.; Haase, S.; Agard, D. A.; Sedat, J. W.

    2007-10-01

    We recently described an adaptive image deconvolution algorithm (AIDA) for myopic deconvolution of multi-frame and three-dimensional data acquired through astronomical and microscopic imaging [Hom et al., J. Opt. Soc. Am. A 24, 1580 (2007)]. AIDA is a reimplementation and extension of the MISTRAL method developed by Mugnier and co-workers and shown to yield object reconstructions with excellent edge preservation and photometric precision [J. Opt. Soc. Am. A 21, 1841 (2004)]. Written in Numerical Python with calls to a robust constrained conjugate gradient method, AIDA has significantly improved run times over the original MISTRAL implementation. AIDA includes a scheme to automatically balance maximum-likelihood estimation and object regularization, which significantly decreases the amount of time and effort needed to generate satisfactory reconstructions. Here, we present a gallery of results demonstrating the effectiveness of AIDA in processing planetary science images acquired using adaptive-optics systems. Offered as an open-source alternative to MISTRAL, AIDA is available for download and further development at: http://msg.ucsf.edu/AIDA. This work was supported in part by the W. M. Keck Observatory, the National Institutes of Health, NASA, the National Science Foundation Science and Technology Center for Adaptive Optics at UC-Santa Cruz, and the Howard Hughes Medical Institute.

  19. An Adaptive Path Planning Algorithm for Cooperating Unmanned Air Vehicles

    SciTech Connect

    Cunningham, C.T.; Roberts, R.S.

    2000-09-12

    An adaptive path planning algorithm is presented for cooperating Unmanned Air Vehicles (UAVs) that are used to deploy and operate land-based sensor networks. The algorithm employs a global cost function to generate paths for the UAVs, and adapts the paths to exceptions that might occur. Examples are provided of the paths and adaptation.

  20. Adaptive path planning algorithm for cooperating unmanned air vehicles

    SciTech Connect

    Cunningham, C T; Roberts, R S

    2001-02-08

    An adaptive path planning algorithm is presented for cooperating Unmanned Air Vehicles (UAVs) that are used to deploy and operate land-based sensor networks. The algorithm employs a global cost function to generate paths for the UAVs, and adapts the paths to exceptions that might occur. Examples are provided of the paths and adaptation.

  1. An SDR-Based Real-Time Testbed for GNSS Adaptive Array Anti-Jamming Algorithms Accelerated by GPU.

    PubMed

    Xu, Hailong; Cui, Xiaowei; Lu, Mingquan

    2016-01-01

    Nowadays, software-defined radio (SDR) has become a common approach to evaluate new algorithms. However, in the field of Global Navigation Satellite System (GNSS) adaptive array anti-jamming, previous work has been limited due to the high computational power demanded by adaptive algorithms, and often lack flexibility and configurability. In this paper, the design and implementation of an SDR-based real-time testbed for GNSS adaptive array anti-jamming accelerated by a Graphics Processing Unit (GPU) are documented. This testbed highlights itself as a feature-rich and extendible platform with great flexibility and configurability, as well as high computational performance. Both Space-Time Adaptive Processing (STAP) and Space-Frequency Adaptive Processing (SFAP) are implemented with a wide range of parameters. Raw data from as many as eight antenna elements can be processed in real-time in either an adaptive nulling or beamforming mode. To fully take advantage of the parallelism resource provided by the GPU, a batched method in programming is proposed. Tests and experiments are conducted to evaluate both the computational and anti-jamming performance. This platform can be used for research and prototyping, as well as a real product in certain applications. PMID:26978363

  2. An SDR-Based Real-Time Testbed for GNSS Adaptive Array Anti-Jamming Algorithms Accelerated by GPU.

    PubMed

    Xu, Hailong; Cui, Xiaowei; Lu, Mingquan

    2016-03-11

    Nowadays, software-defined radio (SDR) has become a common approach to evaluate new algorithms. However, in the field of Global Navigation Satellite System (GNSS) adaptive array anti-jamming, previous work has been limited due to the high computational power demanded by adaptive algorithms, and often lack flexibility and configurability. In this paper, the design and implementation of an SDR-based real-time testbed for GNSS adaptive array anti-jamming accelerated by a Graphics Processing Unit (GPU) are documented. This testbed highlights itself as a feature-rich and extendible platform with great flexibility and configurability, as well as high computational performance. Both Space-Time Adaptive Processing (STAP) and Space-Frequency Adaptive Processing (SFAP) are implemented with a wide range of parameters. Raw data from as many as eight antenna elements can be processed in real-time in either an adaptive nulling or beamforming mode. To fully take advantage of the parallelism resource provided by the GPU, a batched method in programming is proposed. Tests and experiments are conducted to evaluate both the computational and anti-jamming performance. This platform can be used for research and prototyping, as well as a real product in certain applications.

  3. An SDR-Based Real-Time Testbed for GNSS Adaptive Array Anti-Jamming Algorithms Accelerated by GPU

    PubMed Central

    Xu, Hailong; Cui, Xiaowei; Lu, Mingquan

    2016-01-01

    Nowadays, software-defined radio (SDR) has become a common approach to evaluate new algorithms. However, in the field of Global Navigation Satellite System (GNSS) adaptive array anti-jamming, previous work has been limited due to the high computational power demanded by adaptive algorithms, and often lack flexibility and configurability. In this paper, the design and implementation of an SDR-based real-time testbed for GNSS adaptive array anti-jamming accelerated by a Graphics Processing Unit (GPU) are documented. This testbed highlights itself as a feature-rich and extendible platform with great flexibility and configurability, as well as high computational performance. Both Space-Time Adaptive Processing (STAP) and Space-Frequency Adaptive Processing (SFAP) are implemented with a wide range of parameters. Raw data from as many as eight antenna elements can be processed in real-time in either an adaptive nulling or beamforming mode. To fully take advantage of the parallelism resource provided by the GPU, a batched method in programming is proposed. Tests and experiments are conducted to evaluate both the computational and anti-jamming performance. This platform can be used for research and prototyping, as well as a real product in certain applications. PMID:26978363

  4. Blind source separation for robot audition using fixed HRTF beamforming

    NASA Astrophysics Data System (ADS)

    Maazaoui, Mounira; Abed-Meraim, Karim; Grenier, Yves

    2012-12-01

    In this article, we present a two-stage blind source separation (BSS) algorithm for robot audition. The first stage consists in a fixed beamforming preprocessing to reduce the reverberation and the environmental noise. Since we are in a robot audition context, the manifold of the sensor array in this case is hard to model due to the presence of the head of the robot, so we use pre-measured head related transfer functions (HRTFs) to estimate the beamforming filters. The use of the HRTF to estimate the beamformers allows to capture the effect of the head on the manifold of the microphone array. The second stage is a BSS algorithm based on a sparsity criterion which is the minimization of the l 1 norm of the sources. We present different configuration of our algorithm and we show that it has promising results and that the fixed beamforming preprocessing improves the separation results.

  5. Adaptive RED algorithm based on minority game

    NASA Astrophysics Data System (ADS)

    Wei, Jiaolong; Lei, Ling; Qian, Jingjing

    2007-11-01

    With more and more applications appearing and the technology developing in the Internet, only relying on terminal system can not satisfy the complicated demand of QoS network. Router mechanisms must be participated into protecting responsive flows from the non-responsive. Routers mainly use active queue management mechanism (AQM) to avoid congestion. In the point of interaction between the routers, the paper applies minority game to describe the interaction of the users and observes the affection on the length of average queue. The parameters α, β of ARED being hard to confirm, adaptive RED based on minority game can depict the interactions of main body and amend the parameter α, β of ARED to the best. Adaptive RED based on minority game optimizes ARED and realizes the smoothness of average queue length. At the same time, this paper extends the network simulator plat - NS by adding new elements. Simulation has been implemented and the results show that new algorithm can reach the anticipative objects.

  6. An adaptive algorithm for motion compensated color image coding

    NASA Technical Reports Server (NTRS)

    Kwatra, Subhash C.; Whyte, Wayne A.; Lin, Chow-Ming

    1987-01-01

    This paper presents an adaptive algorithm for motion compensated color image coding. The algorithm can be used for video teleconferencing or broadcast signals. Activity segmentation is used to reduce the bit rate and a variable stage search is conducted to save computations. The adaptive algorithm is compared with the nonadaptive algorithm and it is shown that with approximately 60 percent savings in computing the motion vector and 33 percent additional compression, the performance of the adaptive algorithm is similar to the nonadaptive algorithm. The adaptive algorithm results also show improvement of up to 1 bit/pel over interframe DPCM coding with nonuniform quantization. The test pictures used for this study were recorded directly from broadcast video in color.

  7. An Adaptive Unified Differential Evolution Algorithm for Global Optimization

    SciTech Connect

    Qiang, Ji; Mitchell, Chad

    2014-11-03

    In this paper, we propose a new adaptive unified differential evolution algorithm for single-objective global optimization. Instead of the multiple mutation strate- gies proposed in conventional differential evolution algorithms, this algorithm employs a single equation unifying multiple strategies into one expression. It has the virtue of mathematical simplicity and also provides users the flexibility for broader exploration of the space of mutation operators. By making all control parameters in the proposed algorithm self-adaptively evolve during the process of optimization, it frees the application users from the burden of choosing appro- priate control parameters and also improves the performance of the algorithm. In numerical tests using thirteen basic unimodal and multimodal functions, the proposed adaptive unified algorithm shows promising performance in compari- son to several conventional differential evolution algorithms.

  8. Adaptive DNA Computing Algorithm by Using PCR and Restriction Enzyme

    NASA Astrophysics Data System (ADS)

    Kon, Yuji; Yabe, Kaoru; Rajaee, Nordiana; Ono, Osamu

    In this paper, we introduce an adaptive DNA computing algorithm by using polymerase chain reaction (PCR) and restriction enzyme. The adaptive algorithm is designed based on Adleman-Lipton paradigm[3] of DNA computing. In this work, however, unlike the Adleman- Lipton architecture a cutting operation has been introduced to the algorithm and the mechanism in which the molecules used by computation were feedback to the next cycle devised. Moreover, the amplification by PCR is performed in the molecule used by feedback and the difference concentration arisen in the base sequence can be used again. By this operation the molecules which serve as a solution candidate can be reduced down and the optimal solution is carried out in the shortest path problem. The validity of the proposed adaptive algorithm is considered with the logical simulation and finally we go on to propose applying adaptive algorithm to the chemical experiment which used the actual DNA molecules for solving an optimal network problem.

  9. Beamforming in an acoustic shadow

    NASA Technical Reports Server (NTRS)

    Havelock, David; Stinson, Michael; Daigle, Gilles

    1993-01-01

    The sound field deep within an acoustic shadow region is less well understood than that outside the shadow region. Signal levels are substantially lower within the shadow, but beamforming difficulties arise for other reasons such as loss of spatial coherence. Based on analysis of JAPE-91 data, and other data, three types of characteristic signals within acoustic shadow regions are identified. These signal types may correspond to different, intermittent signal propagation conditions. Detection and classification algorithms might take advantage of the signal characteristics. Frequency coherence is also discussed. The extent of coherence across frequencies is shown to be limited, causing difficulties for source classification based on harmonic amplitude relationships. Discussions emphasize short-term characteristics on the order of one second. A video presentation on frequency coherence shows the similarity, in the presence of atmospheric turbulence, between the received signal from a stable set of harmonics generated by a loudspeaker and that received from a helicopter hovering behind a hill.

  10. Adaptive Routing Algorithm in Wireless Communication Networks Using Evolutionary Algorithm

    NASA Astrophysics Data System (ADS)

    Yan, Xuesong; Wu, Qinghua; Cai, Zhihua

    At present, mobile communications traffic routing designs are complicated because there are more systems inter-connecting to one another. For example, Mobile Communication in the wireless communication networks has two routing design conditions to consider, i.e. the circuit switching and the packet switching. The problem in the Packet Switching routing design is its use of high-speed transmission link and its dynamic routing nature. In this paper, Evolutionary Algorithms is used to determine the best solution and the shortest communication paths. We developed a Genetic Optimization Process that can help network planners solving the best solutions or the best paths of routing table in wireless communication networks are easily and quickly. From the experiment results can be noted that the evolutionary algorithm not only gets good solutions, but also a more predictable running time when compared to sequential genetic algorithm.

  11. Adaptive path planning: Algorithm and analysis

    SciTech Connect

    Chen, Pang C.

    1995-03-01

    To address the need for a fast path planner, we present a learning algorithm that improves path planning by using past experience to enhance future performance. The algorithm relies on an existing path planner to provide solutions difficult tasks. From these solutions, an evolving sparse work of useful robot configurations is learned to support faster planning. More generally, the algorithm provides a framework in which a slow but effective planner may be improved both cost-wise and capability-wise by a faster but less effective planner coupled with experience. We analyze algorithm by formalizing the concept of improvability and deriving conditions under which a planner can be improved within the framework. The analysis is based on two stochastic models, one pessimistic (on task complexity), the other randomized (on experience utility). Using these models, we derive quantitative bounds to predict the learning behavior. We use these estimation tools to characterize the situations in which the algorithm is useful and to provide bounds on the training time. In particular, we show how to predict the maximum achievable speedup. Additionally, our analysis techniques are elementary and should be useful for studying other types of probabilistic learning as well.

  12. An adaptive inverse kinematics algorithm for robot manipulators

    NASA Technical Reports Server (NTRS)

    Colbaugh, R.; Glass, K.; Seraji, H.

    1990-01-01

    An adaptive algorithm for solving the inverse kinematics problem for robot manipulators is presented. The algorithm is derived using model reference adaptive control (MRAC) theory and is computationally efficient for online applications. The scheme requires no a priori knowledge of the kinematics of the robot if Cartesian end-effector sensing is available, and it requires knowledge of only the forward kinematics if joint position sensing is used. Computer simulation results are given for the redundant seven-DOF robotics research arm, demonstrating that the proposed algorithm yields accurate joint angle trajectories for a given end-effector position/orientation trajectory.

  13. Back-propagation beamformer design for motion estimation in echocardiography.

    PubMed

    Guo, Xinxin; Liebgott, Hervé; Friboulet, Denis

    2015-07-01

    Transverse oscillation (TO) techniques have shown their potential for improving the accuracy of local motion estimation in the transverse direction (i.e., the direction perpendicular to the beam axis). The conventional design of TOs in linear geometry, which is based on the Fraunhofer approximation, relates point spread function (PSF) and apodization function through a Fourier transform. Motivated by the adaptation of TOs in echocardiography, we propose a specific beamforming approach based on back-propagation (BP) to build TOs in sector-shaped geometry. Numerical simulations and experimental data give a comparison between proposed and conventional beamforming for TOs. The accuracy is first quantified by comparing the generated and theoretical PSF using the root mean square error (RMSE) and shows that BP-based beamforming approximates the desired TOs more closely than the conventional approach. Motion estimation is then evaluated. The axial and lateral displacements are within the range [0-0.6] mm and [0°-6.4°], respectively, which correspond to 0.8 times the axial (0.73 mm) and lateral (8°) wavelengths. The result shows that the proposed method yields a clear improvement for lateral displacements, by reducing the error by 28.6% compared with Fourier transform-based beamforming, while maintaining the same error for axial motion estimation. Experimental measurements are discussed to complete this study and confirm that BP-based beamforming leads to better controlled TO images than conventional Fourier-based beamforming.

  14. Low complex subspace minimum variance beamformer for medical ultrasound imaging.

    PubMed

    Deylami, Ali Mohades; Asl, Babak Mohammadzadeh

    2016-03-01

    Minimum variance (MV) beamformer enhances the resolution and contrast in the medical ultrasound imaging at the expense of higher computational complexity with respect to the non-adaptive delay-and-sum beamformer. The major complexity arises from the estimation of the L×L array covariance matrix using spatial averaging, which is required to more accurate estimation of the covariance matrix of correlated signals, and inversion of it, which is required for calculating the MV weight vector which are as high as O(L(2)) and O(L(3)), respectively. Reducing the number of array elements decreases the computational complexity but degrades the imaging resolution. In this paper, we propose a subspace MV beamformer which preserves the advantages of the MV beamformer with lower complexity. The subspace MV neglects some rows of the array covariance matrix instead of reducing the array size. If we keep η rows of the array covariance matrix which leads to a thin non-square matrix, the weight vector of the subspace beamformer can be achieved in the same way as the MV obtains its weight vector with lower complexity as high as O(η(2)L). More calculations would be saved because an η×L covariance matrix must be estimated instead of a L×L. We simulated a wire targets phantom and a cyst phantom to evaluate the performance of the proposed beamformer. The results indicate that we can keep about 16 from 43 rows of the array covariance matrix which reduces the order of complexity to 14% while the image resolution is still comparable to that of the standard MV beamformer. We also applied the proposed method to an experimental RF data and showed that the subspace MV beamformer performs like the standard MV with lower computational complexity.

  15. Adaptively resizing populations: Algorithm, analysis, and first results

    NASA Technical Reports Server (NTRS)

    Smith, Robert E.; Smuda, Ellen

    1993-01-01

    Deciding on an appropriate population size for a given Genetic Algorithm (GA) application can often be critical to the algorithm's success. Too small, and the GA can fall victim to sampling error, affecting the efficacy of its search. Too large, and the GA wastes computational resources. Although advice exists for sizing GA populations, much of this advice involves theoretical aspects that are not accessible to the novice user. An algorithm for adaptively resizing GA populations is suggested. This algorithm is based on recent theoretical developments that relate population size to schema fitness variance. The suggested algorithm is developed theoretically, and simulated with expected value equations. The algorithm is then tested on a problem where population sizing can mislead the GA. The work presented suggests that the population sizing algorithm may be a viable way to eliminate the population sizing decision from the application of GA's.

  16. A novel hybrid self-adaptive bat algorithm.

    PubMed

    Fister, Iztok; Fong, Simon; Brest, Janez; Fister, Iztok

    2014-01-01

    Nature-inspired algorithms attract many researchers worldwide for solving the hardest optimization problems. One of the newest members of this extensive family is the bat algorithm. To date, many variants of this algorithm have emerged for solving continuous as well as combinatorial problems. One of the more promising variants, a self-adaptive bat algorithm, has recently been proposed that enables a self-adaptation of its control parameters. In this paper, we have hybridized this algorithm using different DE strategies and applied these as a local search heuristics for improving the current best solution directing the swarm of a solution towards the better regions within a search space. The results of exhaustive experiments were promising and have encouraged us to invest more efforts into developing in this direction.

  17. A Novel Hybrid Self-Adaptive Bat Algorithm

    PubMed Central

    Fister, Iztok; Brest, Janez

    2014-01-01

    Nature-inspired algorithms attract many researchers worldwide for solving the hardest optimization problems. One of the newest members of this extensive family is the bat algorithm. To date, many variants of this algorithm have emerged for solving continuous as well as combinatorial problems. One of the more promising variants, a self-adaptive bat algorithm, has recently been proposed that enables a self-adaptation of its control parameters. In this paper, we have hybridized this algorithm using different DE strategies and applied these as a local search heuristics for improving the current best solution directing the swarm of a solution towards the better regions within a search space. The results of exhaustive experiments were promising and have encouraged us to invest more efforts into developing in this direction. PMID:25187904

  18. An adaptive algorithm for low contrast infrared image enhancement

    NASA Astrophysics Data System (ADS)

    Liu, Sheng-dong; Peng, Cheng-yuan; Wang, Ming-jia; Wu, Zhi-guo; Liu, Jia-qi

    2013-08-01

    An adaptive infrared image enhancement algorithm for low contrast is proposed in this paper, to deal with the problem that conventional image enhancement algorithm is not able to effective identify the interesting region when dynamic range is large in image. This algorithm begin with the human visual perception characteristics, take account of the global adaptive image enhancement and local feature boost, not only the contrast of image is raised, but also the texture of picture is more distinct. Firstly, the global image dynamic range is adjusted from the overall, the dynamic range of original image and display grayscale form corresponding relationship, the gray scale of bright object is raised and the the gray scale of dark target is reduced at the same time, to improve the overall image contrast. Secondly, the corresponding filtering algorithm is used on the current point and its neighborhood pixels to extract image texture information, to adjust the brightness of the current point in order to enhance the local contrast of the image. The algorithm overcomes the default that the outline is easy to vague in traditional edge detection algorithm, and ensure the distinctness of texture detail in image enhancement. Lastly, we normalize the global luminance adjustment image and the local brightness adjustment image, to ensure a smooth transition of image details. A lot of experiments is made to compare the algorithm proposed in this paper with other convention image enhancement algorithm, and two groups of vague IR image are taken in experiment. Experiments show that: the contrast ratio of the picture is boosted after handled by histogram equalization algorithm, but the detail of the picture is not clear, the detail of the picture can be distinguished after handled by the Retinex algorithm. The image after deal with by self-adaptive enhancement algorithm proposed in this paper becomes clear in details, and the image contrast is markedly improved in compared with Retinex

  19. GPU-Powered Coherent Beamforming

    NASA Astrophysics Data System (ADS)

    Magro, A.; Adami, K. Zarb; Hickish, J.

    2015-03-01

    Graphics processing units (GPU)-based beamforming is a relatively unexplored area in radio astronomy, possibly due to the assumption that any such system will be severely limited by the PCIe bandwidth required to transfer data to the GPU. We have developed a CUDA-based GPU implementation of a coherent beamformer, specifically designed and optimized for deployment at the BEST-2 array which can generate an arbitrary number of synthesized beams for a wide range of parameters. It achieves ˜1.3 TFLOPs on an NVIDIA Tesla K20, approximately 10x faster than an optimized, multithreaded CPU implementation. This kernel has been integrated into two real-time, GPU-based time-domain software pipelines deployed at the BEST-2 array in Medicina: a standalone beamforming pipeline and a transient detection pipeline. We present performance benchmarks for the beamforming kernel as well as the transient detection pipeline with beamforming capabilities as well as results of test observation.

  20. Adaptive image contrast enhancement algorithm for point-based rendering

    NASA Astrophysics Data System (ADS)

    Xu, Shaoping; Liu, Xiaoping P.

    2015-03-01

    Surgical simulation is a major application in computer graphics and virtual reality, and most of the existing work indicates that interactive real-time cutting simulation of soft tissue is a fundamental but challenging research problem in virtual surgery simulation systems. More specifically, it is difficult to achieve a fast enough graphic update rate (at least 30 Hz) on commodity PC hardware by utilizing traditional triangle-based rendering algorithms. In recent years, point-based rendering (PBR) has been shown to offer the potential to outperform the traditional triangle-based rendering in speed when it is applied to highly complex soft tissue cutting models. Nevertheless, the PBR algorithms are still limited in visual quality due to inherent contrast distortion. We propose an adaptive image contrast enhancement algorithm as a postprocessing module for PBR, providing high visual rendering quality as well as acceptable rendering efficiency. Our approach is based on a perceptible image quality technique with automatic parameter selection, resulting in a visual quality comparable to existing conventional PBR algorithms. Experimental results show that our adaptive image contrast enhancement algorithm produces encouraging results both visually and numerically compared to representative algorithms, and experiments conducted on the latest hardware demonstrate that the proposed PBR framework with the postprocessing module is superior to the conventional PBR algorithm and that the proposed contrast enhancement algorithm can be utilized in (or compatible with) various variants of the conventional PBR algorithm.

  1. Terahertz plasmonic Bessel beamformer

    SciTech Connect

    Monnai, Yasuaki; Shinoda, Hiroyuki; Jahn, David; Koch, Martin; Withayachumnankul, Withawat

    2015-01-12

    We experimentally demonstrate terahertz Bessel beamforming based on the concept of plasmonics. The proposed planar structure is made of concentric metallic grooves with a subwavelength spacing that couple to a point source to create tightly confined surface waves or spoof surface plasmon polaritons. Concentric scatterers periodically incorporated at a wavelength scale allow for launching the surface waves into free space to define a Bessel beam. The Bessel beam defined at 0.29 THz has been characterized through terahertz time-domain spectroscopy. This approach is capable of generating Bessel beams with planar structures as opposed to bulky axicon lenses and can be readily integrated with solid-state terahertz sources.

  2. Adaptive-mesh algorithms for computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Powell, Kenneth G.; Roe, Philip L.; Quirk, James

    1993-01-01

    The basic goal of adaptive-mesh algorithms is to distribute computational resources wisely by increasing the resolution of 'important' regions of the flow and decreasing the resolution of regions that are less important. While this goal is one that is worthwhile, implementing schemes that have this degree of sophistication remains more of an art than a science. In this paper, the basic pieces of adaptive-mesh algorithms are described and some of the possible ways to implement them are discussed and compared. These basic pieces are the data structure to be used, the generation of an initial mesh, the criterion to be used to adapt the mesh to the solution, and the flow-solver algorithm on the resulting mesh. Each of these is discussed, with particular emphasis on methods suitable for the computation of compressible flows.

  3. A Bayesian Adaptive Basis Algorithm for Single Particle Reconstruction

    PubMed Central

    Kucukelbir, Alp; Sigworth, Fred J.; Tagare, Hemant D.

    2012-01-01

    Traditional single particle reconstruction methods use either the Fourier or the delta function basis to represent the particle density map. This paper proposes a more flexible algorithm that adaptively chooses the basis based on the data. Because the basis adapts to the data, the reconstruction resolution and signal-to-noise ratio (SNR) is improved compared to a reconstruction with a fixed basis. Moreover, the algorithm automatically masks the particle, thereby separating it from the background. This eliminates the need for ad-hoc filtering or masking in the refinement loop. The algorithm is formulated in a Bayesian maximum-a-posteriori framework and uses an efficient optimization algorithm for the maximization. Evaluations using simulated and actual cryogenic electron microscopy data show resolution and SNR improvements as well as the effective masking of particle from background. PMID:22564910

  4. Adaptive NUC algorithm for uncooled IRFPA based on neural networks

    NASA Astrophysics Data System (ADS)

    Liu, Ziji; Jiang, Yadong; Lv, Jian; Zhu, Hongbin

    2010-10-01

    With developments in uncooled infrared plane array (UFPA) technology, many new advanced uncooled infrared sensors are used in defensive weapons, scientific research, industry and commercial applications. A major difference in imaging techniques between infrared IRFPA imaging system and a visible CCD camera is that, IRFPA need nonuniformity correction and dead pixel compensation, we usually called it infrared image pre-processing. Two-point or multi-point correction algorithms based on calibration commonly used may correct the non-uniformity of IRFPAs, but they are limited by pixel linearity and instability. Therefore, adaptive non-uniformity correction techniques are developed. Two of these adaptive non-uniformity correction algorithms are mostly discussed, one is based on temporal high-pass filter, and another is based on neural network. In this paper, a new NUC algorithm based on improved neural networks is introduced, and involves the compare result between improved neural networks and other adaptive correction techniques. A lot of different will discussed in different angle, like correction effects, calculation efficiency, hardware implementation and so on. According to the result and discussion, it could be concluding that the adaptive algorithm offers improved performance compared to traditional calibration mode techniques. This new algorithm not only provides better sensitivity, but also increases the system dynamic range. As the sensor application expended, it will be very useful in future infrared imaging systems.

  5. Adaptive improved natural gradient algorithm for blind source separation.

    PubMed

    Liu, Jian-Qiang; Feng, Da-Zheng; Zhang, Wei-Wei

    2009-03-01

    We propose an adaptive improved natural gradient algorithm for blind separation of independent sources. First, inspired by the well-known backpropagation algorithm, we incorporate a momentum term into the natural gradient learning process to accelerate the convergence rate and improve the stability. Then an estimation function for the adaptation of the separation model is obtained to adaptively control a step-size parameter and a momentum factor. The proposed natural gradient algorithm with variable step-size parameter and variable momentum factor is therefore particularly well suited to blind source separation in a time-varying environment, such as an abruptly changing mixing matrix or signal power. The expected improvement in the convergence speed, stability, and tracking ability of the proposed algorithm is demonstrated by extensive simulation results in both time-invariant and time-varying environments. The ability of the proposed algorithm to separate extremely weak or badly scaled sources is also verified. In addition, simulation results show that the proposed algorithm is suitable for separating mixtures of many sources (e.g., the number of sources is 10) in the complete case.

  6. Data-adaptive algorithms for calling alleles in repeat polymorphisms.

    PubMed

    Stoughton, R; Bumgarner, R; Frederick, W J; McIndoe, R A

    1997-01-01

    Data-adaptive algorithms are presented for separating overlapping signatures of heterozygotic allele pairs in electrophoresis data. Application is demonstrated for human microsatellite CA-repeat polymorphisms in LiCor 4000 and ABI 373 data. The algorithms allow overlapping alleles to be called correctly in almost every case where a trained observer could do so, and provide a fast automated objective alternative to human reading of the gels. The algorithm also supplies an indication of confidence level which can be used to flag marginal cases for verification by eye, or as input to later stages of statistical analysis. PMID:9059812

  7. Adaptive clustering algorithm for community detection in complex networks.

    PubMed

    Ye, Zhenqing; Hu, Songnian; Yu, Jun

    2008-10-01

    Community structure is common in various real-world networks; methods or algorithms for detecting such communities in complex networks have attracted great attention in recent years. We introduced a different adaptive clustering algorithm capable of extracting modules from complex networks with considerable accuracy and robustness. In this approach, each node in a network acts as an autonomous agent demonstrating flocking behavior where vertices always travel toward their preferable neighboring groups. An optimal modular structure can emerge from a collection of these active nodes during a self-organization process where vertices constantly regroup. In addition, we show that our algorithm appears advantageous over other competing methods (e.g., the Newman-fast algorithm) through intensive evaluation. The applications in three real-world networks demonstrate the superiority of our algorithm to find communities that are parallel with the appropriate organization in reality. PMID:18999501

  8. An Adaptive Tradeoff Algorithm for Multi-issue SLA Negotiation

    NASA Astrophysics Data System (ADS)

    Son, Seokho; Sim, Kwang Mong

    Since participants in a Cloud may be independent bodies, mechanisms are necessary for resolving different preferences in leasing Cloud services. Whereas there are currently mechanisms that support service-level agreement negotiation, there is little or no negotiation support for concurrent price and timeslot for Cloud service reservations. For the concurrent price and timeslot negotiation, a tradeoff algorithm to generate and evaluate a proposal which consists of price and timeslot proposal is necessary. The contribution of this work is thus to design an adaptive tradeoff algorithm for multi-issue negotiation mechanism. The tradeoff algorithm referred to as "adaptive burst mode" is especially designed to increase negotiation speed and total utility and to reduce computational load by adaptively generating concurrent set of proposals. The empirical results obtained from simulations carried out using a testbed suggest that due to the concurrent price and timeslot negotiation mechanism with adaptive tradeoff algorithm: 1) both agents achieve the best performance in terms of negotiation speed and utility; 2) the number of evaluations of each proposal is comparatively lower than previous scheme (burst-N).

  9. Adaptation algorithms for 2-D feedforward neural networks.

    PubMed

    Kaczorek, T

    1995-01-01

    The generalized weight adaptation algorithms presented by J.G. Kuschewski et al. (1993) and by S.H. Zak and H.J. Sira-Ramirez (1990) are extended for 2-D madaline and 2-D two-layer feedforward neural nets (FNNs).

  10. An Adaptive Immune Genetic Algorithm for Edge Detection

    NASA Astrophysics Data System (ADS)

    Li, Ying; Bai, Bendu; Zhang, Yanning

    An adaptive immune genetic algorithm (AIGA) based on cost minimization technique method for edge detection is proposed. The proposed AIGA recommends the use of adaptive probabilities of crossover, mutation and immune operation, and a geometric annealing schedule in immune operator to realize the twin goals of maintaining diversity in the population and sustaining the fast convergence rate in solving the complex problems such as edge detection. Furthermore, AIGA can effectively exploit some prior knowledge and information of the local edge structure in the edge image to make vaccines, which results in much better local search ability of AIGA than that of the canonical genetic algorithm. Experimental results on gray-scale images show the proposed algorithm perform well in terms of quality of the final edge image, rate of convergence and robustness to noise.

  11. Flight data processing with the F-8 adaptive algorithm

    NASA Technical Reports Server (NTRS)

    Hartmann, G.; Stein, G.; Petersen, K.

    1977-01-01

    An explicit adaptive control algorithm based on maximum likelihood estimation of parameters has been designed for NASA's DFBW F-8 aircraft. To avoid iterative calculations, the algorithm uses parallel channels of Kalman filters operating at fixed locations in parameter space. This algorithm has been implemented in NASA/DFRC's Remotely Augmented Vehicle (RAV) facility. Real-time sensor outputs (rate gyro, accelerometer and surface position) are telemetered to a ground computer which sends new gain values to an on-board system. Ground test data and flight records were used to establish design values of noise statistics and to verify the ground-based adaptive software. The software and its performance evaluation based on flight data are described

  12. Smart Antenna UKM Testbed for Digital Beamforming System

    NASA Astrophysics Data System (ADS)

    Islam, Mohammad Tariqul; Misran, Norbahiah; Yatim, Baharudin

    2009-12-01

    A new design of smart antenna testbed developed at UKM for digital beamforming purpose is proposed. The smart antenna UKM testbed developed based on modular design employing two novel designs of L-probe fed inverted hybrid E-H (LIEH) array antenna and software reconfigurable digital beamforming system (DBS). The antenna is developed based on using the novel LIEH microstrip patch element design arranged into [InlineEquation not available: see fulltext.] uniform linear array antenna. An interface board is designed to interface to the ADC board with the RF front-end receiver. The modular concept of the system provides the capability to test the antenna hardware, beamforming unit, and beamforming algorithm in an independent manner, thus allowing the smart antenna system to be developed and tested in parallel, hence reduces the design time. The DBS was developed using a high-performance [InlineEquation not available: see fulltext.] floating-point DSP board and a 4-channel RF front-end receiver developed in-house. An interface board is designed to interface to the ADC board with the RF front-end receiver. A four-element receiving array testbed at 1.88-2.22 GHz frequency is constructed, and digital beamforming on this testbed is successfully demonstrated.

  13. Guided wave phased array beamforming and imaging in composite plates.

    PubMed

    Yu, Lingyu; Tian, Zhenhua

    2016-05-01

    This paper describes phased array beamforming using guided waves in anisotropic composite plates. A generic phased array algorithm is presented, in which direction dependent guided wave parameters and the energy skew effect are considered. This beamforming at an angular direction is achieved based on the classic delay-and-sum principle by applying phase delays to signals received at array elements and adding up the delayed signals. The phase delays are determined with the goal to maximize the array output at the desired direction and minimize it otherwise. For array characterization, the beam pattern of rectangular grid arrays in composite plates is derived. In addition to the beam pattern, the beamforming factor in terms of wavenumber distribution is defined to provide intrinsic explanations for phased array beamforming. The beamforming and damage detection in a composite plate are demonstrated using rectangular grid arrays made by a non-contact scanning laser Doppler vibrometer. Detection images of the composite plate with multiple surface defects at various directions are obtained. The results show that the guided wave phased array method is a potential effective method for rapid inspection of large composite structures.

  14. Adaptive Process Control with Fuzzy Logic and Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Karr, C. L.

    1993-01-01

    Researchers at the U.S. Bureau of Mines have developed adaptive process control systems in which genetic algorithms (GA's) are used to augment fuzzy logic controllers (FLC's). GA's are search algorithms that rapidly locate near-optimum solutions to a wide spectrum of problems by modeling the search procedures of natural genetics. FLC's are rule based systems that efficiently manipulate a problem environment by modeling the 'rule-of-thumb' strategy used in human decision-making. Together, GA's and FLC's possess the capabilities necessary to produce powerful, efficient, and robust adaptive control systems. To perform efficiently, such control systems require a control element to manipulate the problem environment, an analysis element to recognize changes in the problem environment, and a learning element to adjust to the changes in the problem environment. Details of an overall adaptive control system are discussed. A specific laboratory acid-base pH system is used to demonstrate the ideas presented.

  15. Adaptive process control using fuzzy logic and genetic algorithms

    NASA Technical Reports Server (NTRS)

    Karr, C. L.

    1993-01-01

    Researchers at the U.S. Bureau of Mines have developed adaptive process control systems in which genetic algorithms (GA's) are used to augment fuzzy logic controllers (FLC's). GA's are search algorithms that rapidly locate near-optimum solutions to a wide spectrum of problems by modeling the search procedures of natural genetics. FLC's are rule based systems that efficiently manipulate a problem environment by modeling the 'rule-of-thumb' strategy used in human decision making. Together, GA's and FLC's possess the capabilities necessary to produce powerful, efficient, and robust adaptive control systems. To perform efficiently, such control systems require a control element to manipulate the problem environment, and a learning element to adjust to the changes in the problem environment. Details of an overall adaptive control system are discussed. A specific laboratory acid-base pH system is used to demonstrate the ideas presented.

  16. A new adaptive GMRES algorithm for achieving high accuracy

    SciTech Connect

    Sosonkina, M.; Watson, L.T.; Kapania, R.K.; Walker, H.F.

    1996-12-31

    GMRES(k) is widely used for solving nonsymmetric linear systems. However, it is inadequate either when it converges only for k close to the problem size or when numerical error in the modified Gram-Schmidt process used in the GMRES orthogonalization phase dramatically affects the algorithm performance. An adaptive version of GMRES (k) which tunes the restart value k based on criteria estimating the GMRES convergence rate for the given problem is proposed here. The essence of the adaptive GMRES strategy is to adapt the parameter k to the problem, similar in spirit to how a variable order ODE algorithm tunes the order k. With FORTRAN 90, which provides pointers and dynamic memory management, dealing with the variable storage requirements implied by varying k is not too difficult. The parameter k can be both increased and decreased-an increase-only strategy is described next followed by pseudocode.

  17. Adaptive bad pixel correction algorithm for IRFPA based on PCNN

    NASA Astrophysics Data System (ADS)

    Leng, Hanbing; Zhou, Zuofeng; Cao, Jianzhong; Yi, Bo; Yan, Aqi; Zhang, Jian

    2013-10-01

    Bad pixels and response non-uniformity are the primary obstacles when IRFPA is used in different thermal imaging systems. The bad pixels of IRFPA include fixed bad pixels and random bad pixels. The former is caused by material or manufacture defect and their positions are always fixed, the latter is caused by temperature drift and their positions are always changing. Traditional radiometric calibration-based bad pixel detection and compensation algorithm is only valid to the fixed bad pixels. Scene-based bad pixel correction algorithm is the effective way to eliminate these two kinds of bad pixels. Currently, the most used scene-based bad pixel correction algorithm is based on adaptive median filter (AMF). In this algorithm, bad pixels are regarded as image noise and then be replaced by filtered value. However, missed correction and false correction often happens when AMF is used to handle complex infrared scenes. To solve this problem, a new adaptive bad pixel correction algorithm based on pulse coupled neural networks (PCNN) is proposed. Potential bad pixels are detected by PCNN in the first step, then image sequences are used periodically to confirm the real bad pixels and exclude the false one, finally bad pixels are replaced by the filtered result. With the real infrared images obtained from a camera, the experiment results show the effectiveness of the proposed algorithm.

  18. Adaptive Flocking of Robot Swarms: Algorithms and Properties

    NASA Astrophysics Data System (ADS)

    Lee, Geunho; Chong, Nak Young

    This paper presents a distributed approach for adaptive flocking of swarms of mobile robots that enables to navigate autonomously in complex environments populated with obstacles. Based on the observation of the swimming behavior of a school of fish, we propose an integrated algorithm that allows a swarm of robots to navigate in a coordinated manner, split into multiple swarms, or merge with other swarms according to the environment conditions. We prove the convergence of the proposed algorithm using Lyapunov stability theory. We also verify the effectiveness of the algorithm through extensive simulations, where a swarm of robots repeats the process of splitting and merging while passing around multiple stationary and moving obstacles. The simulation results show that the proposed algorithm is scalable, and robust to variations in the sensing capability of individual robots.

  19. Beamforming-Enhanced Inverse Scattering for Microwave Breast Imaging

    PubMed Central

    Burfeindt, Matthew J.; Shea, Jacob D.; Van Veen, Barry D.; Hagness, Susan C.

    2015-01-01

    We present a focal-beamforming-enhanced formulation of the distorted Born iterative method (DBIM) for microwave breast imaging. Incorporating beamforming into the imaging algorithm has the potential to mitigate the effect of noise on the image reconstruction. We apply the focal-beamforming-enhanced DBIM algorithm to simulated array measurements from two MRI-derived, anatomically realistic numerical breast phantoms and compare its performance to that of the DBIM formulated with two non-focal schemes. The first scheme simply averages scattered field data from reciprocal antenna pairs while the second scheme discards reciprocal pairs. Images of the dielectric properties are reconstructed for signal-to-noise ratios (SNR) ranging from 35 dB down to 0 dB. We show that, for low SNR, the focal beamforming algorithm creates reconstructions that are of higher fidelity with respect to the exact dielectric profiles of the phantoms as compared to reconstructions created using the non-focal schemes. At high SNR, the focal and non-focal reconstructions are of comparable quality. PMID:26663930

  20. An adaptive grid algorithm for one-dimensional nonlinear equations

    NASA Technical Reports Server (NTRS)

    Gutierrez, William E.; Hills, Richard G.

    1990-01-01

    Richards' equation, which models the flow of liquid through unsaturated porous media, is highly nonlinear and difficult to solve. Step gradients in the field variables require the use of fine grids and small time step sizes. The numerical instabilities caused by the nonlinearities often require the use of iterative methods such as Picard or Newton interation. These difficulties result in large CPU requirements in solving Richards equation. With this in mind, adaptive and multigrid methods are investigated for use with nonlinear equations such as Richards' equation. Attention is focused on one-dimensional transient problems. To investigate the use of multigrid and adaptive grid methods, a series of problems are studied. First, a multigrid program is developed and used to solve an ordinary differential equation, demonstrating the efficiency with which low and high frequency errors are smoothed out. The multigrid algorithm and an adaptive grid algorithm is used to solve one-dimensional transient partial differential equations, such as the diffusive and convective-diffusion equations. The performance of these programs are compared to that of the Gauss-Seidel and tridiagonal methods. The adaptive and multigrid schemes outperformed the Gauss-Seidel algorithm, but were not as fast as the tridiagonal method. The adaptive grid scheme solved the problems slightly faster than the multigrid method. To solve nonlinear problems, Picard iterations are introduced into the adaptive grid and tridiagonal methods. Burgers' equation is used as a test problem for the two algorithms. Both methods obtain solutions of comparable accuracy for similar time increments. For the Burgers' equation, the adaptive grid method finds the solution approximately three times faster than the tridiagonal method. Finally, both schemes are used to solve the water content formulation of the Richards' equation. For this problem, the adaptive grid method obtains a more accurate solution in fewer work units and

  1. Adaptive sensor array algorithm for structural health monitoring of helmet

    NASA Astrophysics Data System (ADS)

    Zou, Xiaotian; Tian, Ye; Wu, Nan; Sun, Kai; Wang, Xingwei

    2011-04-01

    The adaptive neural network is a standard technique used in nonlinear system estimation and learning applications for dynamic models. In this paper, we introduced an adaptive sensor fusion algorithm for a helmet structure health monitoring system. The helmet structure health monitoring system is used to study the effects of ballistic/blast events on the helmet and human skull. Installed inside the helmet system, there is an optical fiber pressure sensors array. After implementing the adaptive estimation algorithm into helmet system, a dynamic model for the sensor array has been developed. The dynamic response characteristics of the sensor network are estimated from the pressure data by applying an adaptive control algorithm using artificial neural network. With the estimated parameters and position data from the dynamic model, the pressure distribution of the whole helmet can be calculated following the Bazier Surface interpolation method. The distribution pattern inside the helmet will be very helpful for improving helmet design to provide better protection to soldiers from head injuries.

  2. Efficient implementation of the adaptive scale pixel decomposition algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Bhatnagar, S.; Rau, U.; Zhang, M.

    2016-08-01

    Context. Most popular algorithms in use to remove the effects of a telescope's point spread function (PSF) in radio astronomy are variants of the CLEAN algorithm. Most of these algorithms model the sky brightness using the delta-function basis, which results in undesired artefacts when used to image extended emission. The adaptive scale pixel decomposition (Asp-Clean) algorithm models the sky brightness on a scale-sensitive basis and thus gives a significantly better imaging performance when imaging fields that contain both resolved and unresolved emission. Aims: However, the runtime cost of Asp-Clean is higher than that of scale-insensitive algorithms. In this paper, we identify the most expensive step in the original Asp-Clean algorithm and present an efficient implementation of it, which significantly reduces the computational cost while keeping the imaging performance comparable to the original algorithm. The PSF sidelobe levels of modern wide-band telescopes are significantly reduced, allowing us to make approximations to reduce the computational cost, which in turn allows for the deconvolution of larger images on reasonable timescales. Methods: As in the original algorithm, scales in the image are estimated through function fitting. Here we introduce an analytical method to model extended emission, and a modified method for estimating the initial values used for the fitting procedure, which ultimately leads to a lower computational cost. Results: The new implementation was tested with simulated EVLA data and the imaging performance compared well with the original Asp-Clean algorithm. Tests show that the current algorithm can recover features at different scales with lower computational cost.

  3. An adaptive mesh refinement algorithm for the discrete ordinates method

    SciTech Connect

    Jessee, J.P.; Fiveland, W.A.; Howell, L.H.; Colella, P.; Pember, R.B.

    1996-03-01

    The discrete ordinates form of the radiative transport equation (RTE) is spatially discretized and solved using an adaptive mesh refinement (AMR) algorithm. This technique permits the local grid refinement to minimize spatial discretization error of the RTE. An error estimator is applied to define regions for local grid refinement; overlapping refined grids are recursively placed in these regions; and the RTE is then solved over the entire domain. The procedure continues until the spatial discretization error has been reduced to a sufficient level. The following aspects of the algorithm are discussed: error estimation, grid generation, communication between refined levels, and solution sequencing. This initial formulation employs the step scheme, and is valid for absorbing and isotopically scattering media in two-dimensional enclosures. The utility of the algorithm is tested by comparing the convergence characteristics and accuracy to those of the standard single-grid algorithm for several benchmark cases. The AMR algorithm provides a reduction in memory requirements and maintains the convergence characteristics of the standard single-grid algorithm; however, the cases illustrate that efficiency gains of the AMR algorithm will not be fully realized until three-dimensional geometries are considered.

  4. Fast frequency acquisition via adaptive least squares algorithm

    NASA Technical Reports Server (NTRS)

    Kumar, R.

    1986-01-01

    A new least squares algorithm is proposed and investigated for fast frequency and phase acquisition of sinusoids in the presence of noise. This algorithm is a special case of more general, adaptive parameter-estimation techniques. The advantages of the algorithms are their conceptual simplicity, flexibility and applicability to general situations. For example, the frequency to be acquired can be time varying, and the noise can be nonGaussian, nonstationary and colored. As the proposed algorithm can be made recursive in the number of observations, it is not necessary to have a priori knowledge of the received signal-to-noise ratio or to specify the measurement time. This would be required for batch processing techniques, such as the fast Fourier transform (FFT). The proposed algorithm improves the frequency estimate on a recursive basis as more and more observations are obtained. When the algorithm is applied in real time, it has the extra advantage that the observations need not be stored. The algorithm also yields a real time confidence measure as to the accuracy of the estimator.

  5. PHURBAS: AN ADAPTIVE, LAGRANGIAN, MESHLESS, MAGNETOHYDRODYNAMICS CODE. I. ALGORITHM

    SciTech Connect

    Maron, Jason L.; McNally, Colin P.; Mac Low, Mordecai-Mark E-mail: cmcnally@amnh.org

    2012-05-01

    We present an algorithm for simulating the equations of ideal magnetohydrodynamics and other systems of differential equations on an unstructured set of points represented by sample particles. Local, third-order, least-squares, polynomial interpolations (Moving Least Squares interpolations) are calculated from the field values of neighboring particles to obtain field values and spatial derivatives at the particle position. Field values and particle positions are advanced in time with a second-order predictor-corrector scheme. The particles move with the fluid, so the time step is not limited by the Eulerian Courant-Friedrichs-Lewy condition. Full spatial adaptivity is implemented to ensure the particles fill the computational volume, which gives the algorithm substantial flexibility and power. A target resolution is specified for each point in space, with particles being added and deleted as needed to meet this target. Particle addition and deletion is based on a local void and clump detection algorithm. Dynamic artificial viscosity fields provide stability to the integration. The resulting algorithm provides a robust solution for modeling flows that require Lagrangian or adaptive discretizations to resolve. This paper derives and documents the Phurbas algorithm as implemented in Phurbas version 1.1. A following paper presents the implementation and test problem results.

  6. Landsat ecosystem disturbance adaptive processing system (LEDAPS) algorithm description

    USGS Publications Warehouse

    Schmidt, Gail; Jenkerson, Calli; Masek, Jeffrey; Vermote, Eric; Gao, Feng

    2013-01-01

    The Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) software was originally developed by the National Aeronautics and Space Administration–Goddard Space Flight Center and the University of Maryland to produce top-of-atmosphere reflectance from LandsatThematic Mapper and Enhanced Thematic Mapper Plus Level 1 digital numbers and to apply atmospheric corrections to generate a surface-reflectance product.The U.S. Geological Survey (USGS) has adopted the LEDAPS algorithm for producing the Landsat Surface Reflectance Climate Data Record.This report discusses the LEDAPS algorithm, which was implemented by the USGS.

  7. [Adaptive algorithm for automatic measurement of retinal vascular diameter].

    PubMed

    Münch, K; Vilser, W; Senff, I

    1995-11-01

    A new adaptive computer-aided method for the measurement of blood vessel diameters has been developed. Within areas of interest in the image, the algorithm detects, line-wise, the edges of the vessels, which are then used for image-wise approximation and noise filtration. A high level of adaptivity with respect to numerous measuring parameters ensures its use in a wide range of applications. Thus, it has been shown to significantly improve clinically relevant reproducibility in the area of follow-up observations. The standard deviation for vessel diameter was (2.2 +/- 0.7)% in the case of arteries and (1.8 +/- 0.5)% in the case of veins. Testing the algorithm in images of poor quality revealed its high level of reliability and sensitivity.

  8. An adaptive phase alignment algorithm for cartesian feedback loops

    NASA Astrophysics Data System (ADS)

    Gimeno-Martin, A.; Pardo-Martin, J.; Ortega-Gonzalez, F.

    2010-01-01

    An adaptive algorithm to correct phase misalignments in Cartesian feedback linearization loops for power amplifiers has been presented. It yields an error smaller than 0.035 rad between forward and feedback loop signals once convergence is reached. Because this algorithm enables a feedback system to process forward and feedback samples belonging to almost the same algorithm iteration, it is suitable to improve the performance not only of power amplifiers but also any other digital feedback system for communications systems and circuits such as all digital phase locked loops. Synchronizing forward and feedback paths of Cartesian feedback loops takes a small period of time after the system starts up. The phase alignment algorithm needs to converge before the feedback Cartesian loop can start its ideal behavior. However, once the steady state is reached, both paths can be considered synchronized, and the Cartesian feedback loop will only depend on the loop parameters (open-loop gain, loop bandwidth, etc.). It means that the linearization process will also depend only on these parameters since the misalignment effect disappears. Therefore, this algorithm relieves the power amplifier linearizer circuit design of any task required for solving phase misalignment effects inherent to Cartesian feedback systems. Furthermore, when a feedback Cartesian loop has to be designed, the designer can consider that forward and feedback paths are synchronized, since the phase alignment algorithm will do this task. This will reduce the simulation complexity. Then, all efforts are applied to determining the suitable loop parameters that will make the linearization process more efficient.

  9. An efficient sampling algorithm with adaptations for Bayesian variable selection.

    PubMed

    Araki, Takamitsu; Ikeda, Kazushi; Akaho, Shotaro

    2015-01-01

    In Bayesian variable selection, indicator model selection (IMS) is a class of well-known sampling algorithms, which has been used in various models. The IMS is a class of methods that uses pseudo-priors and it contains specific methods such as Gibbs variable selection (GVS) and Kuo and Mallick's (KM) method. However, the efficiency of the IMS strongly depends on the parameters of a proposal distribution and the pseudo-priors. Specifically, the GVS determines their parameters based on a pilot run for a full model and the KM method sets their parameters as those of priors, which often leads to slow mixings of them. In this paper, we propose an algorithm that adapts the parameters of the IMS during running. The parameters obtained on the fly provide an appropriate proposal distribution and pseudo-priors, which improve the mixing of the algorithm. We also prove the convergence theorem of the proposed algorithm, and confirm that the algorithm is more efficient than the conventional algorithms by experiments of the Bayesian variable selection.

  10. Adaptive Load-Balancing Algorithms Using Symmetric Broadcast Networks

    NASA Technical Reports Server (NTRS)

    Das, Sajal K.; Biswas, Rupak; Chancellor, Marisa K. (Technical Monitor)

    1997-01-01

    In a distributed-computing environment, it is important to ensure that the processor workloads are adequately balanced. Among numerous load-balancing algorithms, a unique approach due to Dam and Prasad defines a symmetric broadcast network (SBN) that provides a robust communication pattern among the processors in a topology-independent manner. In this paper, we propose and analyze three novel SBN-based load-balancing algorithms, and implement them on an SP2. A thorough experimental study with Poisson-distributed synthetic loads demonstrates that these algorithms are very effective in balancing system load while minimizing processor idle time. They also compare favorably with several other existing load-balancing techniques. Additional experiments performed with real data demonstrate that the SBN approach is effective in adaptive computational science and engineering applications where dynamic load balancing is extremely crucial.

  11. A kernel adaptive algorithm for quaternion-valued inputs.

    PubMed

    Paul, Thomas K; Ogunfunmi, Tokunbo

    2015-10-01

    The use of quaternion data can provide benefit in applications like robotics and image recognition, and particularly for performing transforms in 3-D space. Here, we describe a kernel adaptive algorithm for quaternions. A least mean square (LMS)-based method was used, resulting in the derivation of the quaternion kernel LMS (Quat-KLMS) algorithm. Deriving this algorithm required describing the idea of a quaternion reproducing kernel Hilbert space (RKHS), as well as kernel functions suitable with quaternions. A modified HR calculus for Hilbert spaces was used to find the gradient of cost functions defined on a quaternion RKHS. In addition, the use of widely linear (or augmented) filtering is proposed to improve performance. The benefit of the Quat-KLMS and widely linear forms in learning nonlinear transformations of quaternion data are illustrated with simulations. PMID:25594982

  12. Ultrasonic Multipath and Beamforming Clutter Reduction: A Chirp Model Approach

    PubMed Central

    Byram, Brett; Jakovljevic, Marko

    2014-01-01

    In vivo ultrasonic imaging with transducer arrays suffers from image degradation due to beamforming limitations, which includes diffraction limited beamforming as well as beamforming degradation due to tissue inhomogeneity. Additionally, based on recent studies, multipath scattering also causes significant image degradation. To reduce degradation from both sources, we propose a model-based, signal decomposition scheme. The proposed algorithm identifies spatial frequency signatures to decompose received wavefronts into their most significant scattering sources. Scattering sources originating from a region of interest are used to reconstruct decluttered wavefronts, which are beamformed into decluttered radio frequency (RF) scan lines or A-lines. To test the algorithm, ultrasound system channel data were acquired during liver scans from 8 patients. Multiple data sets were acquired from each patient, with 55 total data sets, 43 of which had identifiable hypoechoic regions on normal B-mode images. The data sets with identifiable hypoechoic regions were analyzed. The results show the decluttered B-mode images have an average improvement in contrast over normal images of 7.3±4.6 dB. The CNR changed little on average between normal and decluttered B-mode, −0.4±5.9 dB. The in vivo speckle SNR decreased; the change was −0.65±0.28. Phantom speckle SNR also decreased but only by −0.40±0.03. PMID:24569248

  13. Analysis of hypersonic aircraft inlets using flow adaptive mesh algorithms

    NASA Astrophysics Data System (ADS)

    Neaves, Michael Dean

    The numerical investigation into the dynamics of unsteady inlet flowfields is applied to a three-dimensional scramjet inlet-isolator-diffuser geometry designed for hypersonic type applications. The Reynolds-Averaged Navier-Stokes equations are integrated in time using a subiterating, time-accurate implicit algorithm. Inviscid fluxes are calculated using the Low Diffusion Flux Splitting Scheme of Edwards. A modified version of the dynamic solution-adaptive point movement algorithm of Benson and McRae is used in a coupled mode to dynamically resolve the features of the flow by enhancing the spatial accuracy of the simulations. The unsteady mesh terms are incorporated into the flow solver via the inviscid fluxes. The dynamic solution-adaptive grid algorithm of Benson and McRae is modified to improve orthogonality at the boundaries to ensure accurate application of boundary conditions and properly resolve turbulent boundary layers. Shock tube simulations are performed to ascertain the effectiveness of the algorithm for unsteady flow situations on fixed and moving grids. Unstarts due to a combustor and freestream angle of attack perturbations are simulated in a three-dimensional inlet-isolator-diffuser configuration.

  14. An adaptive gyroscope-based algorithm for temporal gait analysis.

    PubMed

    Greene, Barry R; McGrath, Denise; O'Neill, Ross; O'Donovan, Karol J; Burns, Adrian; Caulfield, Brian

    2010-12-01

    Body-worn kinematic sensors have been widely proposed as the optimal solution for portable, low cost, ambulatory monitoring of gait. This study aims to evaluate an adaptive gyroscope-based algorithm for automated temporal gait analysis using body-worn wireless gyroscopes. Gyroscope data from nine healthy adult subjects performing four walks at four different speeds were then compared against data acquired simultaneously using two force plates and an optical motion capture system. Data from a poliomyelitis patient, exhibiting pathological gait walking with and without the aid of a crutch, were also compared to the force plate. Results show that the mean true error between the adaptive gyroscope algorithm and force plate was -4.5 ± 14.4 ms and 43.4 ± 6.0 ms for IC and TC points, respectively, in healthy subjects. Similarly, the mean true error when data from the polio patient were compared against the force plate was -75.61 ± 27.53 ms and 99.20 ± 46.00 ms for IC and TC points, respectively. A comparison of the present algorithm against temporal gait parameters derived from an optical motion analysis system showed good agreement for nine healthy subjects at four speeds. These results show that the algorithm reported here could constitute the basis of a robust, portable, low-cost system for ambulatory monitoring of gait.

  15. Data-adaptive Shrinkage via the Hyperpenalized EM Algorithm

    PubMed Central

    Boonstra, Philip S.; Taylor, Jeremy M. G.; Mukherjee, Bhramar

    2015-01-01

    We propose an extension of the expectation-maximization (EM) algorithm, called the hyperpenalized EM (HEM) algorithm, that maximizes a penalized log-likelihood, for which some data are missing or unavailable, using a data-adaptive estimate of the penalty parameter. This is potentially useful in applications for which the analyst is unable or unwilling to choose a single value of a penalty parameter but instead can posit a plausible range of values. The HEM algorithm is conceptually straightforward and also very effective, and we demonstrate its utility in the analysis of a genomic data set. Gene expression measurements and clinical covariates were used to predict survival time. However, many survival times are censored, and some observations only contain expression measurements derived from a different assay, which together constitute a difficult missing data problem. It is desired to shrink the genomic contribution in a data-adaptive way. The HEM algorithm successfully handles both the missing data and shrinkage aspects of the problem. PMID:26834856

  16. Discrete-time minimal control synthesis adaptive algorithm

    NASA Astrophysics Data System (ADS)

    di Bernardo, M.; di Gennaro, F.; Olm, J. M.; Santini, S.

    2010-12-01

    This article proposes a discrete-time Minimal Control Synthesis (MCS) algorithm for a class of single-input single-output discrete-time systems written in controllable canonical form. As it happens with the continuous-time MCS strategy, the algorithm arises from the family of hyperstability-based discrete-time model reference adaptive controllers introduced in (Landau, Y. (1979), Adaptive Control: The Model Reference Approach, New York: Marcel Dekker, Inc.) and is able to ensure tracking of the states of a given reference model with minimal knowledge about the plant. The control design shows robustness to parameter uncertainties, slow parameter variation and matched disturbances. Furthermore, it is proved that the proposed discrete-time MCS algorithm can be used to control discretised continuous-time plants with the same performance features. Contrary to previous discrete-time implementations of the continuous-time MCS algorithm, here a formal proof of asymptotic stability is given for generic n-dimensional plants in controllable canonical form. The theoretical approach is validated by means of simulation results.

  17. Adaptive firefly algorithm: parameter analysis and its application.

    PubMed

    Cheung, Ngaam J; Ding, Xue-Ming; Shen, Hong-Bin

    2014-01-01

    As a nature-inspired search algorithm, firefly algorithm (FA) has several control parameters, which may have great effects on its performance. In this study, we investigate the parameter selection and adaptation strategies in a modified firefly algorithm - adaptive firefly algorithm (AdaFa). There are three strategies in AdaFa including (1) a distance-based light absorption coefficient; (2) a gray coefficient enhancing fireflies to share difference information from attractive ones efficiently; and (3) five different dynamic strategies for the randomization parameter. Promising selections of parameters in the strategies are analyzed to guarantee the efficient performance of AdaFa. AdaFa is validated over widely used benchmark functions, and the numerical experiments and statistical tests yield useful conclusions on the strategies and the parameter selections affecting the performance of AdaFa. When applied to the real-world problem - protein tertiary structure prediction, the results demonstrated improved variants can rebuild the tertiary structure with the average root mean square deviation less than 0.4Å and 1.5Å from the native constrains with noise free and 10% Gaussian white noise. PMID:25397812

  18. Adaptive firefly algorithm: parameter analysis and its application.

    PubMed

    Cheung, Ngaam J; Ding, Xue-Ming; Shen, Hong-Bin

    2014-01-01

    As a nature-inspired search algorithm, firefly algorithm (FA) has several control parameters, which may have great effects on its performance. In this study, we investigate the parameter selection and adaptation strategies in a modified firefly algorithm - adaptive firefly algorithm (AdaFa). There are three strategies in AdaFa including (1) a distance-based light absorption coefficient; (2) a gray coefficient enhancing fireflies to share difference information from attractive ones efficiently; and (3) five different dynamic strategies for the randomization parameter. Promising selections of parameters in the strategies are analyzed to guarantee the efficient performance of AdaFa. AdaFa is validated over widely used benchmark functions, and the numerical experiments and statistical tests yield useful conclusions on the strategies and the parameter selections affecting the performance of AdaFa. When applied to the real-world problem - protein tertiary structure prediction, the results demonstrated improved variants can rebuild the tertiary structure with the average root mean square deviation less than 0.4Å and 1.5Å from the native constrains with noise free and 10% Gaussian white noise.

  19. Generalized pattern search algorithms with adaptive precision function evaluations

    SciTech Connect

    Polak, Elijah; Wetter, Michael

    2003-05-14

    In the literature on generalized pattern search algorithms, convergence to a stationary point of a once continuously differentiable cost function is established under the assumption that the cost function can be evaluated exactly. However, there is a large class of engineering problems where the numerical evaluation of the cost function involves the solution of systems of differential algebraic equations. Since the termination criteria of the numerical solvers often depend on the design parameters, computer code for solving these systems usually defines a numerical approximation to the cost function that is discontinuous with respect to the design parameters. Standard generalized pattern search algorithms have been applied heuristically to such problems, but no convergence properties have been stated. In this paper we extend a class of generalized pattern search algorithms to a form that uses adaptive precision approximations to the cost function. These numerical approximations need not define a continuous function. Our algorithms can be used for solving linearly constrained problems with cost functions that are at least locally Lipschitz continuous. Assuming that the cost function is smooth, we prove that our algorithms converge to a stationary point. Under the weaker assumption that the cost function is only locally Lipschitz continuous, we show that our algorithms converge to points at which the Clarke generalized directional derivatives are nonnegative in predefined directions. An important feature of our adaptive precision scheme is the use of coarse approximations in the early iterations, with the approximation precision controlled by a test. Such an approach leads to substantial time savings in minimizing computationally expensive functions.

  20. A local adaptive discretization algorithm for Smoothed Particle Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Spreng, Fabian; Schnabel, Dirk; Mueller, Alexandra; Eberhard, Peter

    2014-06-01

    In this paper, an extension to the Smoothed Particle Hydrodynamics (SPH) method is proposed that allows for an adaptation of the discretization level of a simulated continuum at runtime. By combining a local adaptive refinement technique with a newly developed coarsening algorithm, one is able to improve the accuracy of the simulation results while reducing the required computational cost at the same time. For this purpose, the number of particles is, on the one hand, adaptively increased in critical areas of a simulation model. Typically, these are areas that show a relatively low particle density and high gradients in stress or temperature. On the other hand, the number of SPH particles is decreased for domains with a high particle density and low gradients. Besides a brief introduction to the basic principle of the SPH discretization method, the extensions to the original formulation providing such a local adaptive refinement and coarsening of the modeled structure are presented in this paper. After having introduced its theoretical background, the applicability of the enhanced formulation, as well as the benefit gained from the adaptive model discretization, is demonstrated in the context of four different simulation scenarios focusing on solid continua. While presenting the results found for these examples, several properties of the proposed adaptive technique are discussed, e.g. the conservation of momentum as well as the existing correlation between the chosen refinement and coarsening patterns and the observed quality of the results.

  1. Adaptive Mesh Refinement Algorithms for Parallel Unstructured Finite Element Codes

    SciTech Connect

    Parsons, I D; Solberg, J M

    2006-02-03

    This project produced algorithms for and software implementations of adaptive mesh refinement (AMR) methods for solving practical solid and thermal mechanics problems on multiprocessor parallel computers using unstructured finite element meshes. The overall goal is to provide computational solutions that are accurate to some prescribed tolerance, and adaptivity is the correct path toward this goal. These new tools will enable analysts to conduct more reliable simulations at reduced cost, both in terms of analyst and computer time. Previous academic research in the field of adaptive mesh refinement has produced a voluminous literature focused on error estimators and demonstration problems; relatively little progress has been made on producing efficient implementations suitable for large-scale problem solving on state-of-the-art computer systems. Research issues that were considered include: effective error estimators for nonlinear structural mechanics; local meshing at irregular geometric boundaries; and constructing efficient software for parallel computing environments.

  2. G/SPLINES: A hybrid of Friedman's Multivariate Adaptive Regression Splines (MARS) algorithm with Holland's genetic algorithm

    NASA Technical Reports Server (NTRS)

    Rogers, David

    1991-01-01

    G/SPLINES are a hybrid of Friedman's Multivariable Adaptive Regression Splines (MARS) algorithm with Holland's Genetic Algorithm. In this hybrid, the incremental search is replaced by a genetic search. The G/SPLINE algorithm exhibits performance comparable to that of the MARS algorithm, requires fewer least squares computations, and allows significantly larger problems to be considered.

  3. Simulation of detection and beamforming with acoustical ground sensors

    NASA Astrophysics Data System (ADS)

    Wilson, D. Keith; Sadler, Brian M.; Pham, Tien

    2002-08-01

    An interactive platform has been developed for simulating the detection and direction-finding performance of battlefield acoustic ground sensors. The simulations use the Acoustic Battlefield Aid (ABFA) as a computational engine to determine the signal propagation and resulting frequency-domain signal characteristics at the receiving sensor array. There are three components to the propagation predictions: the transmission loss (signal attenuation from target to sensor), signal saturation (degree of signal randomization), and signal coherence across the beamforming array. The transmission loss is predicted with a parabolic solution to the wave equation that accounts for sound refraction and ground interactions; signal saturation and coherence are predicted from the theory for line-of-sight wave propagation through turbulence. Based on these calculations, random frequency-domain signal samples are generated. The signal samples are then mixed with noise and fed to the selected detection or beamforming algorithm. After averaging over a number of trials, results are overlaid on a terrain map to show the sensor coverage. Currently available algorithms include the Neyman-Pearson criterion and Bayes risk minimization for detection, and the conventional, MVDR, and MUSIC beamformers. Users can readily add their own algorithms through a 'plug-in' interface. The interface requires only a text file listing the algorithm parameters and defaults, and a Matlab routine or Windows dynamic link library that implements the algorithm.

  4. Analysis of adaptive algorithms for an integrated communication network

    NASA Technical Reports Server (NTRS)

    Reed, Daniel A.; Barr, Matthew; Chong-Kwon, Kim

    1985-01-01

    Techniques were examined that trade communication bandwidth for decreased transmission delays. When the network is lightly used, these schemes attempt to use additional network resources to decrease communication delays. As the network utilization rises, the schemes degrade gracefully, still providing service but with minimal use of the network. Because the schemes use a combination of circuit and packet switching, they should respond to variations in the types and amounts of network traffic. Also, a combination of circuit and packet switching to support the widely varying traffic demands imposed on an integrated network was investigated. The packet switched component is best suited to bursty traffic where some delays in delivery are acceptable. The circuit switched component is reserved for traffic that must meet real time constraints. Selected packet routing algorithms that might be used in an integrated network were simulated. An integrated traffic places widely varying workload demands on a network. Adaptive algorithms were identified, ones that respond to both the transient and evolutionary changes that arise in integrated networks. A new algorithm was developed, hybrid weighted routing, that adapts to workload changes.

  5. Statistical behaviour of adaptive multilevel splitting algorithms in simple models

    SciTech Connect

    Rolland, Joran Simonnet, Eric

    2015-02-15

    Adaptive multilevel splitting algorithms have been introduced rather recently for estimating tail distributions in a fast and efficient way. In particular, they can be used for computing the so-called reactive trajectories corresponding to direct transitions from one metastable state to another. The algorithm is based on successive selection–mutation steps performed on the system in a controlled way. It has two intrinsic parameters, the number of particles/trajectories and the reaction coordinate used for discriminating good or bad trajectories. We investigate first the convergence in law of the algorithm as a function of the timestep for several simple stochastic models. Second, we consider the average duration of reactive trajectories for which no theoretical predictions exist. The most important aspect of this work concerns some systems with two degrees of freedom. They are studied in detail as a function of the reaction coordinate in the asymptotic regime where the number of trajectories goes to infinity. We show that during phase transitions, the statistics of the algorithm deviate significatively from known theoretical results when using non-optimal reaction coordinates. In this case, the variance of the algorithm is peaking at the transition and the convergence of the algorithm can be much slower than the usual expected central limit behaviour. The duration of trajectories is affected as well. Moreover, reactive trajectories do not correspond to the most probable ones. Such behaviour disappears when using the optimal reaction coordinate called committor as predicted by the theory. We finally investigate a three-state Markov chain which reproduces this phenomenon and show logarithmic convergence of the trajectory durations.

  6. Adaptivity and smart algorithms for fluid-structure interaction

    NASA Technical Reports Server (NTRS)

    Oden, J. Tinsley

    1990-01-01

    This paper reviews new approaches in CFD which have the potential for significantly increasing current capabilities of modeling complex flow phenomena and of treating difficult problems in fluid-structure interaction. These approaches are based on the notions of adaptive methods and smart algorithms, which use instantaneous measures of the quality and other features of the numerical flowfields as a basis for making changes in the structure of the computational grid and of algorithms designed to function on the grid. The application of these new techniques to several problem classes are addressed, including problems with moving boundaries, fluid-structure interaction in high-speed turbine flows, flow in domains with receding boundaries, and related problems.

  7. Characterization of atmospheric contaminant sources using adaptive evolutionary algorithms

    NASA Astrophysics Data System (ADS)

    Cervone, Guido; Franzese, Pasquale; Grajdeanu, Adrian

    2010-10-01

    The characteristics of an unknown source of emissions in the atmosphere are identified using an Adaptive Evolutionary Strategy (AES) methodology based on ground concentration measurements and a Gaussian plume model. The AES methodology selects an initial set of source characteristics including position, size, mass emission rate, and wind direction, from which a forward dispersion simulation is performed. The error between the simulated concentrations from the tentative source and the observed ground measurements is calculated. Then the AES algorithm prescribes the next tentative set of source characteristics. The iteration proceeds towards minimum error, corresponding to convergence towards the real source. The proposed methodology was used to identify the source characteristics of 12 releases from the Prairie Grass field experiment of dispersion, two for each atmospheric stability class, ranging from very unstable to stable atmosphere. The AES algorithm was found to have advantages over a simple canonical ES and a Monte Carlo (MC) method which were used as benchmarks.

  8. Multi-user cognitive radio network resource allocation based on the adaptive niche immune genetic algorithm

    NASA Astrophysics Data System (ADS)

    Zu, Yun-Xiao; Zhou, Jie

    2012-01-01

    Multi-user cognitive radio network resource allocation based on the adaptive niche immune genetic algorithm is proposed, and a fitness function is provided. Simulations are conducted using the adaptive niche immune genetic algorithm, the simulated annealing algorithm, the quantum genetic algorithm and the simple genetic algorithm, respectively. The results show that the adaptive niche immune genetic algorithm performs better than the other three algorithms in terms of the multi-user cognitive radio network resource allocation, and has quick convergence speed and strong global searching capability, which effectively reduces the system power consumption and bit error rate.

  9. Fully implicit adaptive mesh refinement algorithm for reduced MHD

    NASA Astrophysics Data System (ADS)

    Philip, Bobby; Pernice, Michael; Chacon, Luis

    2006-10-01

    In the macroscopic simulation of plasmas, the numerical modeler is faced with the challenge of dealing with multiple time and length scales. Traditional approaches based on explicit time integration techniques and fixed meshes are not suitable for this challenge, as such approaches prevent the modeler from using realistic plasma parameters to keep the computation feasible. We propose here a novel approach, based on implicit methods and structured adaptive mesh refinement (SAMR). Our emphasis is on both accuracy and scalability with the number of degrees of freedom. As a proof-of-principle, we focus on the reduced resistive MHD model as a basic MHD model paradigm, which is truly multiscale. The approach taken here is to adapt mature physics-based technology to AMR grids, and employ AMR-aware multilevel techniques (such as fast adaptive composite grid --FAC-- algorithms) for scalability. We demonstrate that the concept is indeed feasible, featuring near-optimal scalability under grid refinement. Results of fully-implicit, dynamically-adaptive AMR simulations in challenging dissipation regimes will be presented on a variety of problems that benefit from this capability, including tearing modes, the island coalescence instability, and the tilt mode instability. L. Chac'on et al., J. Comput. Phys. 178 (1), 15- 36 (2002) B. Philip, M. Pernice, and L. Chac'on, Lecture Notes in Computational Science and Engineering, accepted (2006)

  10. Path Planning Algorithms for the Adaptive Sensor Fleet

    NASA Technical Reports Server (NTRS)

    Stoneking, Eric; Hosler, Jeff

    2005-01-01

    The Adaptive Sensor Fleet (ASF) is a general purpose fleet management and planning system being developed by NASA in coordination with NOAA. The current mission of ASF is to provide the capability for autonomous cooperative survey and sampling of dynamic oceanographic phenomena such as current systems and algae blooms. Each ASF vessel is a software model that represents a real world platform that carries a variety of sensors. The OASIS platform will provide the first physical vessel, outfitted with the systems and payloads necessary to execute the oceanographic observations described in this paper. The ASF architecture is being designed for extensibility to accommodate heterogenous fleet elements, and is not limited to using the OASIS platform to acquire data. This paper describes the path planning algorithms developed for the acquisition phase of a typical ASF task. Given a polygonal target region to be surveyed, the region is subdivided according to the number of vessels in the fleet. The subdivision algorithm seeks a solution in which all subregions have equal area and minimum mean radius. Once the subregions are defined, a dynamic programming method is used to find a minimum-time path for each vessel from its initial position to its assigned region. This path plan includes the effects of water currents as well as avoidance of known obstacles. A fleet-level planning algorithm then shuffles the individual vessel assignments to find the overall solution which puts all vessels in their assigned regions in the minimum time. This shuffle algorithm may be described as a process of elimination on the sorted list of permutations of a cost matrix. All these path planning algorithms are facilitated by discretizing the region of interest onto a hexagonal tiling.

  11. A low power, area efficient fpga based beamforming technique for 1-D CMUT arrays.

    PubMed

    Joseph, Bastin; Joseph, Jose; Vanjari, Siva Rama Krishna

    2015-08-01

    A low power area efficient digital beamformer targeting low frequency (2MHz) 1-D linear Capacitive Micromachined Ultrasonic Transducer (CMUT) array is developed. While designing the beamforming logic, the symmetry of the CMUT array is well exploited to reduce the area and power consumption. The proposed method is verified in Matlab by clocking an Arbitrary Waveform Generator(AWG). The architecture is successfully implemented in Xilinx Spartan 3E FPGA kit to check its functionality. The beamforming logic is implemented for 8, 16, 32, and 64 element CMUTs targeting Application Specific Integrated Circuit (ASIC) platform at Vdd 1.62V for UMC 90nm technology. It is observed that the proposed architecture consumes significantly lesser power and area (1.2895 mW power and 47134.4 μm(2) area for a 64 element digital beamforming circuit) compared to the conventional square root based algorithm.

  12. A low power, area efficient fpga based beamforming technique for 1-D CMUT arrays.

    PubMed

    Joseph, Bastin; Joseph, Jose; Vanjari, Siva Rama Krishna

    2015-08-01

    A low power area efficient digital beamformer targeting low frequency (2MHz) 1-D linear Capacitive Micromachined Ultrasonic Transducer (CMUT) array is developed. While designing the beamforming logic, the symmetry of the CMUT array is well exploited to reduce the area and power consumption. The proposed method is verified in Matlab by clocking an Arbitrary Waveform Generator(AWG). The architecture is successfully implemented in Xilinx Spartan 3E FPGA kit to check its functionality. The beamforming logic is implemented for 8, 16, 32, and 64 element CMUTs targeting Application Specific Integrated Circuit (ASIC) platform at Vdd 1.62V for UMC 90nm technology. It is observed that the proposed architecture consumes significantly lesser power and area (1.2895 mW power and 47134.4 μm(2) area for a 64 element digital beamforming circuit) compared to the conventional square root based algorithm. PMID:26737263

  13. A novel adaptive multi-resolution combined watermarking algorithm

    NASA Astrophysics Data System (ADS)

    Feng, Gui; Lin, QiWei

    2008-04-01

    The rapid development of IT and WWW technique, causing person frequently confronts with various kinds of authorized identification problem, especially the copyright problem of digital products. The digital watermarking technique was emerged as one kind of solutions. The balance between robustness and imperceptibility is always the object sought by related researchers. In order to settle the problem of robustness and imperceptibility, a novel adaptive multi-resolution combined digital image watermarking algorithm was proposed in this paper. In the proposed algorithm, we first decompose the watermark into several sub-bands, and according to its significance to embed the sub-band to different DWT coefficient of the carrier image. While embedding, the HVS was considered. So under the precondition of keeping the quality of image, the larger capacity of watermark can be embedding. The experimental results have shown that the proposed algorithm has better performance in the aspects of robustness and security. And with the same visual quality, the technique has larger capacity. So the unification of robustness and imperceptibility was achieved.

  14. An adaptive correspondence algorithm for modeling scenes with strong interreflections.

    PubMed

    Xu, Yi; Aliaga, Daniel G

    2009-01-01

    Modeling real-world scenes, beyond diffuse objects, plays an important role in computer graphics, virtual reality, and other commercial applications. One active approach is projecting binary patterns in order to obtain correspondence and reconstruct a densely sampled 3D model. In such structured-light systems, determining whether a pixel is directly illuminated by the projector is essential to decoding the patterns. When a scene has abundant indirect light, this process is especially difficult. In this paper, we present a robust pixel classification algorithm for this purpose. Our method correctly establishes the lower and upper bounds of the possible intensity values of an illuminated pixel and of a non-illuminated pixel. Based on the two intervals, our method classifies a pixel by determining whether its intensity is within one interval but not in the other. Our method performs better than standard method due to the fact that it avoids gross errors during decoding process caused by strong inter-reflections. For the remaining uncertain pixels, we apply an iterative algorithm to reduce the inter-reflection within the scene. Thus, more points can be decoded and reconstructed after each iteration. Moreover, the iterative algorithm is carried out in an adaptive fashion for fast convergence.

  15. Minimum Variance Distortionless Response Beamformer with Enhanced Nulling Level Control via Dynamic Mutated Artificial Immune System

    PubMed Central

    Kiong, Tiong Sieh; Salem, S. Balasem; Paw, Johnny Koh Siaw; Sankar, K. Prajindra

    2014-01-01

    In smart antenna applications, the adaptive beamforming technique is used to cancel interfering signals (placing nulls) and produce or steer a strong beam toward the target signal according to the calculated weight vectors. Minimum variance distortionless response (MVDR) beamforming is capable of determining the weight vectors for beam steering; however, its nulling level on the interference sources remains unsatisfactory. Beamforming can be considered as an optimization problem, such that optimal weight vector should be obtained through computation. Hence, in this paper, a new dynamic mutated artificial immune system (DM-AIS) is proposed to enhance MVDR beamforming for controlling the null steering of interference and increase the signal to interference noise ratio (SINR) for wanted signals. PMID:25003136

  16. A Competency-Based Guided-Learning Algorithm Applied on Adaptively Guiding E-Learning

    ERIC Educational Resources Information Center

    Hsu, Wei-Chih; Li, Cheng-Hsiu

    2015-01-01

    This paper presents a new algorithm called competency-based guided-learning algorithm (CBGLA), which can be applied on adaptively guiding e-learning. Computational process analysis and mathematical derivation of competency-based learning (CBL) were used to develop the CBGLA. The proposed algorithm could generate an effective adaptively guiding…

  17. Non-linear, adaptive array processing for acoustic interference suppression.

    PubMed

    Hoppe, Elizabeth; Roan, Michael

    2009-06-01

    A method is introduced where blind source separation of acoustical sources is combined with spatial processing to remove non-Gaussian, broadband interferers from space-time displays such as bearing track recorder displays. This differs from most standard techniques such as generalized sidelobe cancellers in that the separation of signals is not done spatially. The algorithm performance is compared to adaptive beamforming techniques such as minimum variance distortionless response beamforming. Simulations and experiments using two acoustic sources were used to verify the performance of the algorithm. Simulations were also used to determine the effectiveness of the algorithm under various signal to interference, signal to noise, and array geometry conditions. A voice activity detection algorithm was used to benchmark the performance of the source isolation.

  18. Region Adaptive Color Demosaicing Algorithm Using Color Constancy

    NASA Astrophysics Data System (ADS)

    Kim, Chang Won; Oh, Hyun Mook; Yoo, Du Sic; Kang, Moon Gi

    2010-12-01

    This paper proposes a novel way of combining color demosaicing and the auto white balance (AWB) method, which are important parts of image processing. Performance of the AWB is generally affected by demosaicing results because most AWB algorithms are performed posterior to color demosaicing. In this paper, in order to increase the performance and efficiency of the AWB algorithm, the color constancy problem is examined during the color demosaicing step. Initial estimates of the directional luminance and chrominance values are defined for estimating edge direction and calculating the AWB gain. In order to prevent color failure in conventional edge-based AWB methods, we propose a modified edge-based AWB method that used a predefined achromatic region. The estimation of edge direction is performed region adaptively by using the local statistics of the initial estimates of the luminance and chrominance information. Simulated and real Bayer color filter array (CFA) data are used to evaluate the performance of the proposed method. When compared to conventional methods, the proposed method shows significant improvements in terms of visual and numerical criteria.

  19. A wavelet packet adaptive filtering algorithm for enhancing manatee vocalizations.

    PubMed

    Gur, M Berke; Niezrecki, Christopher

    2011-04-01

    Approximately a quarter of all West Indian manatee (Trichechus manatus latirostris) mortalities are attributed to collisions with watercraft. A boater warning system based on the passive acoustic detection of manatee vocalizations is one possible solution to reduce manatee-watercraft collisions. The success of such a warning system depends on effective enhancement of the vocalization signals in the presence of high levels of background noise, in particular, noise emitted from watercraft. Recent research has indicated that wavelet domain pre-processing of the noisy vocalizations is capable of significantly improving the detection ranges of passive acoustic vocalization detectors. In this paper, an adaptive denoising procedure, implemented on the wavelet packet transform coefficients obtained from the noisy vocalization signals, is investigated. The proposed denoising algorithm is shown to improve the manatee detection ranges by a factor ranging from two (minimum) to sixteen (maximum) compared to high-pass filtering alone, when evaluated using real manatee vocalization and background noise signals of varying signal-to-noise ratios (SNR). Furthermore, the proposed method is also shown to outperform a previously suggested feedback adaptive line enhancer (FALE) filter on average 3.4 dB in terms of noise suppression and 0.6 dB in terms of waveform preservation.

  20. Design of infrasound-detection system via adaptive LMSTDE algorithm

    NASA Technical Reports Server (NTRS)

    Khalaf, C. S.; Stoughton, J. W.

    1984-01-01

    A proposed solution to an aviation safety problem is based on passive detection of turbulent weather phenomena through their infrasonic emission. This thesis describes a system design that is adequate for detection and bearing evaluation of infrasounds. An array of four sensors, with the appropriate hardware, is used for the detection part. Bearing evaluation is based on estimates of time delays between sensor outputs. The generalized cross correlation (GCC), as the conventional time-delay estimation (TDE) method, is first reviewed. An adaptive TDE approach, using the least mean square (LMS) algorithm, is then discussed. A comparison between the two techniques is made and the advantages of the adaptive approach are listed. The behavior of the GCC, as a Roth processor, is examined for the anticipated signals. It is shown that the Roth processor has the desired effect of sharpening the peak of the correlation function. It is also shown that the LMSTDE technique is an equivalent implementation of the Roth processor in the time domain. A LMSTDE lead-lag model, with a variable stability coefficient and a convergence criterion, is designed.

  1. A wavelet packet adaptive filtering algorithm for enhancing manatee vocalizations.

    PubMed

    Gur, M Berke; Niezrecki, Christopher

    2011-04-01

    Approximately a quarter of all West Indian manatee (Trichechus manatus latirostris) mortalities are attributed to collisions with watercraft. A boater warning system based on the passive acoustic detection of manatee vocalizations is one possible solution to reduce manatee-watercraft collisions. The success of such a warning system depends on effective enhancement of the vocalization signals in the presence of high levels of background noise, in particular, noise emitted from watercraft. Recent research has indicated that wavelet domain pre-processing of the noisy vocalizations is capable of significantly improving the detection ranges of passive acoustic vocalization detectors. In this paper, an adaptive denoising procedure, implemented on the wavelet packet transform coefficients obtained from the noisy vocalization signals, is investigated. The proposed denoising algorithm is shown to improve the manatee detection ranges by a factor ranging from two (minimum) to sixteen (maximum) compared to high-pass filtering alone, when evaluated using real manatee vocalization and background noise signals of varying signal-to-noise ratios (SNR). Furthermore, the proposed method is also shown to outperform a previously suggested feedback adaptive line enhancer (FALE) filter on average 3.4 dB in terms of noise suppression and 0.6 dB in terms of waveform preservation. PMID:21476661

  2. The Adaptive Analysis of Visual Cognition using Genetic Algorithms

    PubMed Central

    Cook, Robert G.; Qadri, Muhammad A. J.

    2014-01-01

    Two experiments used a novel, open-ended, and adaptive test procedure to examine visual cognition in animals. Using a genetic algorithm, a pigeon was tested repeatedly from a variety of different initial conditions for its solution to an intermediate brightness search task. On each trial, the animal had to accurately locate and peck a target element of intermediate brightness from among a variable number of surrounding darker and lighter distractor elements. Displays were generated from six parametric variables, or genes (distractor number, element size, shape, spacing, target brightness, distractor brightness). Display composition changed over time, or evolved, as a function of the bird’s differential accuracy within the population of values for each gene. Testing three randomized initial conditions and one set of controlled initial conditions, element size and number of distractors were identified as the most important factors controlling search accuracy, with distractor brightness, element shape, and spacing making secondary contributions. The resulting changes in this multidimensional stimulus space suggested the existence of a set of conditions that the bird repeatedly converged upon regardless of initial conditions. This psychological “attractor” represents the cumulative action of the cognitive operations used by the pigeon in solving and performing this search task. The results are discussed regarding their implications for visual cognition in pigeons and the usefulness of adaptive, subject-driven experimentation for investigating human and animal cognition more generally. PMID:24000905

  3. Self-adaptive algorithm for segmenting skin regions

    NASA Astrophysics Data System (ADS)

    Kawulok, Michal; Kawulok, Jolanta; Nalepa, Jakub; Smolka, Bogdan

    2014-12-01

    In this paper, we introduce a new self-adaptive algorithm for segmenting human skin regions in color images. Skin detection and segmentation is an active research topic, and many solutions have been proposed so far, especially concerning skin tone modeling in various color spaces. Such models are used for pixel-based classification, but its accuracy is limited due to high variance and low specificity of human skin color. In many works, skin model adaptation and spatial analysis were reported to improve the final segmentation outcome; however, little attention has been paid so far to the possibilities of combining these two improvement directions. Our contribution lies in learning a local skin color model on the fly, which is subsequently applied to the image to determine the seeds for the spatial analysis. Furthermore, we also take advantage of textural features for computing local propagation costs that are used in the distance transform. The results of an extensive experimental study confirmed that the new method is highly competitive, especially for extracting the hand regions in color images.

  4. Accounting for microsaccadic artifacts in the EEG using independent component analysis and beamforming.

    PubMed

    Craddock, Matt; Martinovic, Jasna; Müller, Matthias M

    2016-04-01

    Neuronal activity in the gamma-band range was long considered a marker of object representation. However, scalp-recorded EEG activity in this range is contaminated by a miniature saccade-related muscle artifact. Independent component analysis (ICA) has been proposed as a method of removal of such artifacts. Alternatively, beamforming, a source analysis method in which potential sources of activity across the whole brain are scanned independently through the use of adaptive spatial filters, offers a promising method of accounting for the artifact without relying on its explicit removal. We present here the application of ICA-based correction to a previously published dataset. Then, using beamforming, we examine the effect of ICA correction on the scalp-recorded EEG signal and the extent to which genuine activity is recoverable before and after ICA correction. We find that beamforming attributes much of the scalp-recorded gamma-band signal before correction to deep frontal sources, likely the eye muscles, which generate the artifact related to each miniature saccade. Beamforming confirms that what is removed by ICA is predominantly this artifactual signal, and that what remains after correction plausibly originates in the visual cortex. Thus, beamforming allows researchers to confirm whether their removal procedures successfully removed the artifact. Our results demonstrate that ICA-based correction brings about general improvements in signal-to-noise ratio suggesting it should be used along with, rather than be replaced by, beamforming.

  5. Beamforming Tradeoffs for Initial UE Discovery in Millimeter-Wave MIMO Systems

    NASA Astrophysics Data System (ADS)

    Raghavan, Vasanthan; Cezanne, Juergen; Subramanian, Sundar; Sampath, Ashwin; Koymen, Ozge

    2016-04-01

    Millimeter-wave MIMO systems have gained increasing traction towards the goal of meeting the high data-rate requirements in next-generation wireless systems. The focus of this work is on low-complexity beamforming approaches for initial UE discovery in such systems. Towards this goal, we first note the structure of the optimal beamformer with per-antenna gain and phase control and the structure of good beamformers with per-antenna phase-only control. Learning these beamforming structures in mmW systems is fraught with considerable complexities such as the need for a non-broadcast system design, the sensitivity of the beamformer approximants to small path length changes, etc. To overcome these issues, we establish a physical interpretation between these beamformer structures and the angles of departure/arrival of the dominant path(s). This physical interpretation provides a theoretical underpinning to the emerging interest on directional beamforming approaches that are less sensitive to small path length changes. While classical approaches for direction learning such as MUSIC have been well-understood, they suffer from many practical difficulties in a mmW context such as a non-broadcast system design and high computational complexity. A simpler broadcast solution for mmW systems is the adaptation of directional codebooks for beamforming at the two ends. We establish fundamental limits for the best beam broadening codebooks and propose a construction motivated by a virtual subarray architecture that is within a couple of dB of the best tradeoff curve at all useful beam broadening factors. We finally provide the received SNR loss-UE discovery latency tradeoff with the proposed constructions. Our results show that users with a reasonable link margin can be quickly discovered by the proposed design with a smooth roll-off in performance as the link margin deteriorates.

  6. Evaluating Knowledge Structure-Based Adaptive Testing Algorithms and System Development

    ERIC Educational Resources Information Center

    Wu, Huey-Min; Kuo, Bor-Chen; Yang, Jinn-Min

    2012-01-01

    In recent years, many computerized test systems have been developed for diagnosing students' learning profiles. Nevertheless, it remains a challenging issue to find an adaptive testing algorithm to both shorten testing time and precisely diagnose the knowledge status of students. In order to find a suitable algorithm, four adaptive testing…

  7. Efficient true-time-delay adaptive array processing

    NASA Astrophysics Data System (ADS)

    Wagner, Kelvin H.; Kraut, Shawn; Griffiths, Lloyd J.; Weaver, Samuel P.; Weverka, Robert T.; Sarto, Anthony W.

    1996-11-01

    We present a novel and efficient approach to true-time-delay (TTD) beamforming for large adaptive phased arrays with N elements, for application in radar, sonar, and communication. This broadband and efficient adaptive method for time-delay array processing algorithm decreases the number of tapped delay lines required for N-element arrays form N to only 2, producing an enormous savings in optical hardware, especially for large arrays. This new adaptive system provides the full NM degrees of freedom of a conventional N element time delay beamformer with M taps, each, enabling it to fully and optimally adapt to an arbitrary complex spatio-temporal signal environment that can contain broadband signals, noise, and narrowband and broadband jammers, all of which can arrive from arbitrary angles onto an arbitrarily shaped array. The photonic implementation of this algorithm uses index gratings produce in the volume of photorefractive crystals as the adaptive weights in a TTD beamforming network, 1 or 2 acousto-optic devices for signal injection, and 1 or 2 time-delay-and- integrate detectors for signal extraction. This approach achieves significant reduction in hardware complexity when compared to systems employing discrete RF hardware for the weights or when compared to alternative optical systems that typically use N channel acousto-optic deflectors.

  8. Multi-element array signal reconstruction with adaptive least-squares algorithms

    NASA Technical Reports Server (NTRS)

    Kumar, R.

    1992-01-01

    Two versions of the adaptive least-squares algorithm are presented for combining signals from multiple feeds placed in the focal plane of a mechanical antenna whose reflector surface is distorted due to various deformations. Coherent signal combining techniques based on the adaptive least-squares algorithm are examined for nearly optimally and adaptively combining the outputs of the feeds. The performance of the two versions is evaluated by simulations. It is demonstrated for the example considered that both of the adaptive least-squares algorithms are capable of offsetting most of the loss in the antenna gain incurred due to reflector surface deformations.

  9. Parameter estimation for chaotic systems using a hybrid adaptive cuckoo search with simulated annealing algorithm

    NASA Astrophysics Data System (ADS)

    Sheng, Zheng; Wang, Jun; Zhou, Shudao; Zhou, Bihua

    2014-03-01

    This paper introduces a novel hybrid optimization algorithm to establish the parameters of chaotic systems. In order to deal with the weaknesses of the traditional cuckoo search algorithm, the proposed adaptive cuckoo search with simulated annealing algorithm is presented, which incorporates the adaptive parameters adjusting operation and the simulated annealing operation in the cuckoo search algorithm. Normally, the parameters of the cuckoo search algorithm are kept constant that may result in decreasing the efficiency of the algorithm. For the purpose of balancing and enhancing the accuracy and convergence rate of the cuckoo search algorithm, the adaptive operation is presented to tune the parameters properly. Besides, the local search capability of cuckoo search algorithm is relatively weak that may decrease the quality of optimization. So the simulated annealing operation is merged into the cuckoo search algorithm to enhance the local search ability and improve the accuracy and reliability of the results. The functionality of the proposed hybrid algorithm is investigated through the Lorenz chaotic system under the noiseless and noise condition, respectively. The numerical results demonstrate that the method can estimate parameters efficiently and accurately in the noiseless and noise condition. Finally, the results are compared with the traditional cuckoo search algorithm, genetic algorithm, and particle swarm optimization algorithm. Simulation results demonstrate the effectiveness and superior performance of the proposed algorithm.

  10. Parameter estimation for chaotic systems using a hybrid adaptive cuckoo search with simulated annealing algorithm.

    PubMed

    Sheng, Zheng; Wang, Jun; Zhou, Shudao; Zhou, Bihua

    2014-03-01

    This paper introduces a novel hybrid optimization algorithm to establish the parameters of chaotic systems. In order to deal with the weaknesses of the traditional cuckoo search algorithm, the proposed adaptive cuckoo search with simulated annealing algorithm is presented, which incorporates the adaptive parameters adjusting operation and the simulated annealing operation in the cuckoo search algorithm. Normally, the parameters of the cuckoo search algorithm are kept constant that may result in decreasing the efficiency of the algorithm. For the purpose of balancing and enhancing the accuracy and convergence rate of the cuckoo search algorithm, the adaptive operation is presented to tune the parameters properly. Besides, the local search capability of cuckoo search algorithm is relatively weak that may decrease the quality of optimization. So the simulated annealing operation is merged into the cuckoo search algorithm to enhance the local search ability and improve the accuracy and reliability of the results. The functionality of the proposed hybrid algorithm is investigated through the Lorenz chaotic system under the noiseless and noise condition, respectively. The numerical results demonstrate that the method can estimate parameters efficiently and accurately in the noiseless and noise condition. Finally, the results are compared with the traditional cuckoo search algorithm, genetic algorithm, and particle swarm optimization algorithm. Simulation results demonstrate the effectiveness and superior performance of the proposed algorithm.

  11. Parameter estimation for chaotic systems using a hybrid adaptive cuckoo search with simulated annealing algorithm.

    PubMed

    Sheng, Zheng; Wang, Jun; Zhou, Shudao; Zhou, Bihua

    2014-03-01

    This paper introduces a novel hybrid optimization algorithm to establish the parameters of chaotic systems. In order to deal with the weaknesses of the traditional cuckoo search algorithm, the proposed adaptive cuckoo search with simulated annealing algorithm is presented, which incorporates the adaptive parameters adjusting operation and the simulated annealing operation in the cuckoo search algorithm. Normally, the parameters of the cuckoo search algorithm are kept constant that may result in decreasing the efficiency of the algorithm. For the purpose of balancing and enhancing the accuracy and convergence rate of the cuckoo search algorithm, the adaptive operation is presented to tune the parameters properly. Besides, the local search capability of cuckoo search algorithm is relatively weak that may decrease the quality of optimization. So the simulated annealing operation is merged into the cuckoo search algorithm to enhance the local search ability and improve the accuracy and reliability of the results. The functionality of the proposed hybrid algorithm is investigated through the Lorenz chaotic system under the noiseless and noise condition, respectively. The numerical results demonstrate that the method can estimate parameters efficiently and accurately in the noiseless and noise condition. Finally, the results are compared with the traditional cuckoo search algorithm, genetic algorithm, and particle swarm optimization algorithm. Simulation results demonstrate the effectiveness and superior performance of the proposed algorithm. PMID:24697395

  12. Parameter estimation for chaotic systems using a hybrid adaptive cuckoo search with simulated annealing algorithm

    SciTech Connect

    Sheng, Zheng; Wang, Jun; Zhou, Bihua; Zhou, Shudao

    2014-03-15

    This paper introduces a novel hybrid optimization algorithm to establish the parameters of chaotic systems. In order to deal with the weaknesses of the traditional cuckoo search algorithm, the proposed adaptive cuckoo search with simulated annealing algorithm is presented, which incorporates the adaptive parameters adjusting operation and the simulated annealing operation in the cuckoo search algorithm. Normally, the parameters of the cuckoo search algorithm are kept constant that may result in decreasing the efficiency of the algorithm. For the purpose of balancing and enhancing the accuracy and convergence rate of the cuckoo search algorithm, the adaptive operation is presented to tune the parameters properly. Besides, the local search capability of cuckoo search algorithm is relatively weak that may decrease the quality of optimization. So the simulated annealing operation is merged into the cuckoo search algorithm to enhance the local search ability and improve the accuracy and reliability of the results. The functionality of the proposed hybrid algorithm is investigated through the Lorenz chaotic system under the noiseless and noise condition, respectively. The numerical results demonstrate that the method can estimate parameters efficiently and accurately in the noiseless and noise condition. Finally, the results are compared with the traditional cuckoo search algorithm, genetic algorithm, and particle swarm optimization algorithm. Simulation results demonstrate the effectiveness and superior performance of the proposed algorithm.

  13. The "Juggler" algorithm: a hybrid deformable image registration algorithm for adaptive radiotherapy

    NASA Astrophysics Data System (ADS)

    Xia, Junyi; Chen, Yunmei; Samant, Sanjiv S.

    2007-03-01

    Fast deformable registration can potentially facilitate the clinical implementation of adaptive radiation therapy (ART), which allows for daily organ deformations not accounted for in radiotherapy treatment planning, which typically utilizes a static organ model, to be incorporated into the fractionated treatment. Existing deformable registration algorithms typically utilize a specific diffusion model, and require a large number of iterations to achieve convergence. This limits the online applications of deformable image registration for clinical radiotherapy, such as daily patient setup variations involving organ deformation, where high registration precision is required. We propose a hybrid algorithm, the "Juggler", based on a multi-diffusion model to achieve fast convergence. The Juggler achieves fast convergence by applying two different diffusion models: i) one being optimized quickly for matching high gradient features, i.e. bony anatomies; and ii) the other being optimized for further matching low gradient features, i.e. soft tissue. The regulation of these 2 competing criteria is achieved using a threshold of a similarity measure, such as cross correlation or mutual information. A multi-resolution scheme was applied for faster convergence involving large deformations. Comparisons of the Juggler algorithm were carried out with demons method, accelerated demons method, and free-form deformable registration using 4D CT lung imaging from 5 patients. Based on comparisons of difference images and similarity measure computations, the Juggler produced a superior registration result. It achieved the desired convergence within 30 iterations, and typically required <90sec to register two 3D image sets of size 256×256×40 using a 3.2 GHz PC. This hybrid registration strategy successfully incorporates the benefits of different diffusion models into a single unified model.

  14. An Adaptable Power System with Software Control Algorithm

    NASA Technical Reports Server (NTRS)

    Castell, Karen; Bay, Mike; Hernandez-Pellerano, Amri; Ha, Kong

    1998-01-01

    A low cost, flexible and modular spacecraft power system design was developed in response to a call for an architecture that could accommodate multiple missions in the small to medium load range. Three upcoming satellites will use this design, with one launch date in 1999 and two in the year 2000. The design consists of modular hardware that can be scaled up or down, without additional cost, to suit missions in the 200 to 600 Watt orbital average load range. The design will be applied to satellite orbits that are circular, polar elliptical and a libration point orbit. Mission unique adaptations are accomplished in software and firmware. In designing this advanced, adaptable power system, the major goals were reduction in weight volume and cost. This power system design represents reductions in weight of 78 percent, volume of 86 percent and cost of 65 percent from previous comparable systems. The efforts to miniaturize the electronics without sacrificing performance has created streamlined power electronics with control functions residing in the system microprocessor. The power system design can handle any battery size up to 50 Amp-hour and any battery technology. The three current implementations will use both nickel cadmium and nickel hydrogen batteries ranging in size from 21 to 50 Amp-hours. Multiple batteries can be used by adding another battery module. Any solar cell technology can be used and various array layouts can be incorporated with no change in Power System Electronics (PSE) hardware. Other features of the design are the standardized interfaces between cards and subsystems and immunity to radiation effects up to 30 krad Total Ionizing Dose (TID) and 35 Mev/cm(exp 2)-kg for Single Event Effects (SEE). The control algorithm for the power system resides in a radiation-hardened microprocessor. A table driven software design allows for flexibility in mission specific requirements. By storing critical power system constants in memory, modifying the system

  15. Beamformer for simultaneous magnetoencephalography and electroencephalography analysis

    NASA Astrophysics Data System (ADS)

    Ko, Seokha; Jun, Sung Chan

    2010-05-01

    We proposed the beamformer for simultaneous magnetoencephalography (MEG)/electroencephalography (EEG) analysis which has the synergy effects such as high spatial resolution, low localization bias and robustness for orientation of brain sources. Through Monte Carlo simulation study, it was found that the localization performance of our proposed beamformer was far superior to those of MEG-only and EEG-only. For the given specific sensor geometry (160 MEG, 50 EEG sensors), we investigated comparative localization performance of our proposed beamformer over various weighting factors of MEG data, while weighting factor of EEG keeps fixed. Furthermore, we demonstrated its capability for simulated two dipole problem and empirical somatosensory median nerve stimulation data.

  16. Estimating Position of Mobile Robots From Omnidirectional Vision Using an Adaptive Algorithm.

    PubMed

    Li, Luyang; Liu, Yun-Hui; Wang, Kai; Fang, Mu

    2015-08-01

    This paper presents a novel and simple adaptive algorithm for estimating the position of a mobile robot with high accuracy in an unknown and unstructured environment by fusing images of an omnidirectional vision system with measurements of odometry and inertial sensors. Based on a new derivation where the omnidirectional projection can be linearly parameterized by the positions of the robot and natural feature points, we propose a novel adaptive algorithm, which is similar to the Slotine-Li algorithm in model-based adaptive control, to estimate the robot's position by using the tracked feature points in image sequence, the robot's velocity, and orientation angles measured by odometry and inertial sensors. It is proved that the adaptive algorithm leads to global exponential convergence of the position estimation errors to zero. Simulations and real-world experiments are performed to demonstrate the performance of the proposed algorithm. PMID:25265622

  17. New Approach for IIR Adaptive Lattice Filter Structure Using Simultaneous Perturbation Algorithm

    NASA Astrophysics Data System (ADS)

    Martinez, Jorge Ivan Medina; Nakano, Kazushi; Higuchi, Kohji

    Adaptive infinite impulse response (IIR), or recursive, filters are less attractive mainly because of the stability and the difficulties associated with their adaptive algorithms. Therefore, in this paper the adaptive IIR lattice filters are studied in order to devise algorithms that preserve the stability of the corresponding direct-form schemes. We analyze the local properties of stationary points, a transformation achieving this goal is suggested, which gives algorithms that can be efficiently implemented. Application to the Steiglitz-McBride (SM) and Simple Hyperstable Adaptive Recursive Filter (SHARF) algorithms is presented. Also a modified version of Simultaneous Perturbation Stochastic Approximation (SPSA) is presented in order to get the coefficients in a lattice form more efficiently and with a lower computational cost and complexity. The results are compared with previous lattice versions of these algorithms. These previous lattice versions may fail to preserve the stability of stationary points.

  18. Estimating Position of Mobile Robots From Omnidirectional Vision Using an Adaptive Algorithm.

    PubMed

    Li, Luyang; Liu, Yun-Hui; Wang, Kai; Fang, Mu

    2015-08-01

    This paper presents a novel and simple adaptive algorithm for estimating the position of a mobile robot with high accuracy in an unknown and unstructured environment by fusing images of an omnidirectional vision system with measurements of odometry and inertial sensors. Based on a new derivation where the omnidirectional projection can be linearly parameterized by the positions of the robot and natural feature points, we propose a novel adaptive algorithm, which is similar to the Slotine-Li algorithm in model-based adaptive control, to estimate the robot's position by using the tracked feature points in image sequence, the robot's velocity, and orientation angles measured by odometry and inertial sensors. It is proved that the adaptive algorithm leads to global exponential convergence of the position estimation errors to zero. Simulations and real-world experiments are performed to demonstrate the performance of the proposed algorithm.

  19. Vectorizable algorithms for adaptive schemes for rapid analysis of SSME flows

    NASA Technical Reports Server (NTRS)

    Oden, J. Tinsley

    1987-01-01

    An initial study into vectorizable algorithms for use in adaptive schemes for various types of boundary value problems is described. The focus is on two key aspects of adaptive computational methods which are crucial in the use of such methods (for complex flow simulations such as those in the Space Shuttle Main Engine): the adaptive scheme itself and the applicability of element-by-element matrix computations in a vectorizable format for rapid calculations in adaptive mesh procedures.

  20. An Adaptive Digital Image Watermarking Algorithm Based on Morphological Haar Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Huang, Xiaosheng; Zhao, Sujuan

    At present, much more of the wavelet-based digital watermarking algorithms are based on linear wavelet transform and fewer on non-linear wavelet transform. In this paper, we propose an adaptive digital image watermarking algorithm based on non-linear wavelet transform--Morphological Haar Wavelet Transform. In the algorithm, the original image and the watermark image are decomposed with multi-scale morphological wavelet transform respectively. Then the watermark information is adaptively embedded into the original image in different resolutions, combining the features of Human Visual System (HVS). The experimental results show that our method is more robust and effective than the ordinary wavelet transform algorithms.

  1. Comparative study of adaptive-noise-cancellation algorithms for intrusion detection systems

    SciTech Connect

    Claassen, J.P.; Patterson, M.M.

    1981-01-01

    Some intrusion detection systems are susceptible to nonstationary noise resulting in frequent nuisance alarms and poor detection when the noise is present. Adaptive inverse filtering for single channel systems and adaptive noise cancellation for two channel systems have both demonstrated good potential in removing correlated noise components prior detection. For such noise susceptible systems the suitability of a noise reduction algorithm must be established in a trade-off study weighing algorithm complexity against performance. The performance characteristics of several distinct classes of algorithms are established through comparative computer studies using real signals. The relative merits of the different algorithms are discussed in the light of the nature of intruder and noise signals.

  2. Antenna beamforming using optical processing

    NASA Technical Reports Server (NTRS)

    Anderson, L. P., Jr.; Boldissar, F.; Chang, D. C. D.

    1987-01-01

    This work concerns itself with the analytical investigation into the feasibility of optical processor based beamforming for microwave array antennas. The primary focus is on systems utilizing the 20 and 30 GHz communications band and a transmit configuration exclusively to serve this band. A mathematical model is developed for computation of candidate design configurations. The model is capable of determination of the necessary design parameters required for both spatial aspects of the microwave footprint (beam) formation as well as transmitted signal quality. Computed example beams transmitted from geosynchronous orbit are presented to demonstrate network capabilities. A comprehensive device/component survey is also conducted in parallel to determine the feasibility of breadboarding a transmit processor. Recommendations are made for the configuration of such a processor and the components which would comprise such a network.

  3. Binocular self-calibration performed via adaptive genetic algorithm based on laser line imaging

    NASA Astrophysics Data System (ADS)

    Apolinar Muñoz Rodríguez, J.; Mejía Alanís, Francisco Carlos

    2016-07-01

    An accurate technique to perform binocular self-calibration by means of an adaptive genetic algorithm based on a laser line is presented. In this calibration, the genetic algorithm computes the vision parameters through simulated binary crossover (SBX). To carry it out, the genetic algorithm constructs an objective function from the binocular geometry of the laser line projection. Then, the SBX minimizes the objective function via chromosomes recombination. In this algorithm, the adaptive procedure determines the search space via line position to obtain the minimum convergence. Thus, the chromosomes of vision parameters provide the minimization. The approach of the proposed adaptive genetic algorithm is to calibrate and recalibrate the binocular setup without references and physical measurements. This procedure leads to improve the traditional genetic algorithms, which calibrate the vision parameters by means of references and an unknown search space. It is because the proposed adaptive algorithm avoids errors produced by the missing of references. Additionally, the three-dimensional vision is carried out based on the laser line position and vision parameters. The contribution of the proposed algorithm is corroborated by an evaluation of accuracy of binocular calibration, which is performed via traditional genetic algorithms.

  4. A novel algorithm for real-time adaptive signal detection and identification

    SciTech Connect

    Sleefe, G.E.; Ladd, M.D.; Gallegos, D.E.; Sicking, C.W.; Erteza, I.A.

    1998-04-01

    This paper describes a novel digital signal processing algorithm for adaptively detecting and identifying signals buried in noise. The algorithm continually computes and updates the long-term statistics and spectral characteristics of the background noise. Using this noise model, a set of adaptive thresholds and matched digital filters are implemented to enhance and detect signals that are buried in the noise. The algorithm furthermore automatically suppresses coherent noise sources and adapts to time-varying signal conditions. Signal detection is performed in both the time-domain and the frequency-domain, thereby permitting the detection of both broad-band transients and narrow-band signals. The detection algorithm also provides for the computation of important signal features such as amplitude, timing, and phase information. Signal identification is achieved through a combination of frequency-domain template matching and spectral peak picking. The algorithm described herein is well suited for real-time implementation on digital signal processing hardware. This paper presents the theory of the adaptive algorithm, provides an algorithmic block diagram, and demonstrate its implementation and performance with real-world data. The computational efficiency of the algorithm is demonstrated through benchmarks on specific DSP hardware. The applications for this algorithm, which range from vibration analysis to real-time image processing, are also discussed.

  5. Waveguide invariant focusing for broadband beamforming in an oceanic waveguide.

    PubMed

    Tao, Hailiang; Krolik, Jeffrey L

    2008-03-01

    The performance of broadband sonar array processing can degrade significantly in shallow-water environments when interference becomes angularly spread due to multipath propagation. Particularly for towed line arrays near endfire, elevation angle spreading of multipath interference often results in masking of weaker sources of interest. While adaptive beamforming in a series of narrow frequency bands can suppress coherent multipath interference, this approach requires long observation times to estimate the required narrowband covariance matrices. To form wideband covariance matrices which can be estimated with less observation time, plane-wave focusing methods have been used to avoid interference covariance matrix rank inflation. This paper extends wideband focusing to the case of coherent multipath interference. The approach presented here, called waveguide invariant focusing (WIF), exploits a robust relationship for the frequency dependence of horizontal wave number differences. Unlike matched-field methods, WIF does not model multipath wave fronts but rather makes the interference appear to occupy the same rank-one subspace across frequency. This permits formation of wideband covariance matrices without interference rank inflation. Simulation experiments in a realistic ocean environment indicate that adaptive beamforming using WIF covariance matrices can provide a significant array gain improvement over conventional adaptive methods with limited observation time.

  6. Three component microseism analysis in Australia from deconvolution enhanced beamforming

    NASA Astrophysics Data System (ADS)

    Gal, Martin; Reading, Anya; Ellingsen, Simon; Koper, Keith; Burlacu, Relu; Tkalčić, Hrvoje; Gibbons, Steven

    2016-04-01

    Ocean induced microseisms in the range 2-10 seconds are generated in deep oceans and near coastal regions as body and surface waves. The generation of these waves can take place over an extended area and in a variety of geographical locations at the same time. It is therefore common to observe multiple arrivals with a variety of slowness vectors which leads to the desire to measure multiple arrivals accurately. We present a deconvolution enhanced direction of arrival algorithm, for single and 3 component arrays, based on CLEAN. The algorithm iteratively removes sidelobe contributions in the power spectrum, therefore improves the signal-to-noise ratio of weaker sources. The power level on each component (vertical, radial and transverse) can be accurately estimated as the beamformer decomposes the power spectrum into point sources. We first apply the CLEAN aided beamformer to synthetic data to show its performance under known conditions and then evaluate real (observed) data from a range of arrays with apertures between 10 and 70 km (ASAR, WRA and NORSAR) to showcase the improvement in resolution. We further give a detailed analysis of the 3 component wavefield in Australia including source locations, power levels, phase ratios, etc. by two spiral arrays (PSAR and SQspa). For PSAR the analysis is carried out in the frequency range 0.35-1Hz. We find LQ, Lg and fundamental and higher mode Rg wave phases. Additionally, we also observe the Sn phase. This is the first time this has been achieved through beamforming on microseism noise and underlines the potential for extra seismological information that can be extracted using the new implementation of CLEAN. The fundamental mode Rg waves are dominant in power for low frequencies and show equal power levels with LQ towards higher frequencies. Generation locations between Rg and LQ are mildly correlated for low frequencies and uncorrelated for higher frequencies. Results from SQspa will discuss lower frequencies around the

  7. Adaptive Load-Balancing Algorithms using Symmetric Broadcast Networks

    NASA Technical Reports Server (NTRS)

    Das, Sajal K.; Harvey, Daniel J.; Biswas, Rupak; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    In a distributed computing environment, it is important to ensure that the processor workloads are adequately balanced, Among numerous load-balancing algorithms, a unique approach due to Das and Prasad defines a symmetric broadcast network (SBN) that provides a robust communication pattern among the processors in a topology-independent manner. In this paper, we propose and analyze three efficient SBN-based dynamic load-balancing algorithms, and implement them on an SGI Origin2000. A thorough experimental study with Poisson distributed synthetic loads demonstrates that our algorithms are effective in balancing system load. By optimizing completion time and idle time, the proposed algorithms are shown to compare favorably with several existing approaches.

  8. Efficient Algorithm for Optimizing Adaptive Quantum Metrology Processes

    NASA Astrophysics Data System (ADS)

    Hentschel, Alexander; Sanders, Barry C.

    2011-12-01

    Quantum-enhanced metrology infers an unknown quantity with accuracy beyond the standard quantum limit (SQL). Feedback-based metrological techniques are promising for beating the SQL but devising the feedback procedures is difficult and inefficient. Here we introduce an efficient self-learning swarm-intelligence algorithm for devising feedback-based quantum metrological procedures. Our algorithm can be trained with simulated or real-world trials and accommodates experimental imperfections, losses, and decoherence.

  9. Efficient algorithm for optimizing adaptive quantum metrology processes.

    PubMed

    Hentschel, Alexander; Sanders, Barry C

    2011-12-01

    Quantum-enhanced metrology infers an unknown quantity with accuracy beyond the standard quantum limit (SQL). Feedback-based metrological techniques are promising for beating the SQL but devising the feedback procedures is difficult and inefficient. Here we introduce an efficient self-learning swarm-intelligence algorithm for devising feedback-based quantum metrological procedures. Our algorithm can be trained with simulated or real-world trials and accommodates experimental imperfections, losses, and decoherence.

  10. Inversion for Refractivity Parameters Using a Dynamic Adaptive Cuckoo Search with Crossover Operator Algorithm.

    PubMed

    Zhang, Zhihua; Sheng, Zheng; Shi, Hanqing; Fan, Zhiqiang

    2016-01-01

    Using the RFC technique to estimate refractivity parameters is a complex nonlinear optimization problem. In this paper, an improved cuckoo search (CS) algorithm is proposed to deal with this problem. To enhance the performance of the CS algorithm, a parameter dynamic adaptive operation and crossover operation were integrated into the standard CS (DACS-CO). Rechenberg's 1/5 criteria combined with learning factor were used to control the parameter dynamic adaptive adjusting process. The crossover operation of genetic algorithm was utilized to guarantee the population diversity. The new hybrid algorithm has better local search ability and contributes to superior performance. To verify the ability of the DACS-CO algorithm to estimate atmospheric refractivity parameters, the simulation data and real radar clutter data are both implemented. The numerical experiments demonstrate that the DACS-CO algorithm can provide an effective method for near-real-time estimation of the atmospheric refractivity profile from radar clutter. PMID:27212938

  11. Inversion for Refractivity Parameters Using a Dynamic Adaptive Cuckoo Search with Crossover Operator Algorithm.

    PubMed

    Zhang, Zhihua; Sheng, Zheng; Shi, Hanqing; Fan, Zhiqiang

    2016-01-01

    Using the RFC technique to estimate refractivity parameters is a complex nonlinear optimization problem. In this paper, an improved cuckoo search (CS) algorithm is proposed to deal with this problem. To enhance the performance of the CS algorithm, a parameter dynamic adaptive operation and crossover operation were integrated into the standard CS (DACS-CO). Rechenberg's 1/5 criteria combined with learning factor were used to control the parameter dynamic adaptive adjusting process. The crossover operation of genetic algorithm was utilized to guarantee the population diversity. The new hybrid algorithm has better local search ability and contributes to superior performance. To verify the ability of the DACS-CO algorithm to estimate atmospheric refractivity parameters, the simulation data and real radar clutter data are both implemented. The numerical experiments demonstrate that the DACS-CO algorithm can provide an effective method for near-real-time estimation of the atmospheric refractivity profile from radar clutter.

  12. Inversion for Refractivity Parameters Using a Dynamic Adaptive Cuckoo Search with Crossover Operator Algorithm

    PubMed Central

    Zhang, Zhihua; Sheng, Zheng; Shi, Hanqing; Fan, Zhiqiang

    2016-01-01

    Using the RFC technique to estimate refractivity parameters is a complex nonlinear optimization problem. In this paper, an improved cuckoo search (CS) algorithm is proposed to deal with this problem. To enhance the performance of the CS algorithm, a parameter dynamic adaptive operation and crossover operation were integrated into the standard CS (DACS-CO). Rechenberg's 1/5 criteria combined with learning factor were used to control the parameter dynamic adaptive adjusting process. The crossover operation of genetic algorithm was utilized to guarantee the population diversity. The new hybrid algorithm has better local search ability and contributes to superior performance. To verify the ability of the DACS-CO algorithm to estimate atmospheric refractivity parameters, the simulation data and real radar clutter data are both implemented. The numerical experiments demonstrate that the DACS-CO algorithm can provide an effective method for near-real-time estimation of the atmospheric refractivity profile from radar clutter. PMID:27212938

  13. Assessing the Reliability of Computer Adaptive Testing Branching Algorithms Using HyperCAT.

    ERIC Educational Resources Information Center

    Shermis, Mark D.; And Others

    The reliability of four branching algorithms commonly used in computer adaptive testing (CAT) was examined. These algorithms were: (1) maximum likelihood (MLE); (2) Bayesian; (3) modal Bayesian; and (4) crossover. Sixty-eight undergraduate college students were randomly assigned to one of the four conditions using the HyperCard-based CAT program,…

  14. SIMULATION OF DISPERSION OF A POWER PLANT PLUME USING AN ADAPTIVE GRID ALGORITHM. (R827028)

    EPA Science Inventory

    A new dynamic adaptive grid algorithm has been developed for use in air quality modeling. This algorithm uses a higher order numerical scheme––the piecewise parabolic method (PPM)––for computing advective solution fields; a weight function capable o...

  15. SIMULATION OF DISPERSION OF A POWER PLANT PLUME USING AN ADAPTIVE GRID ALGORITHM

    EPA Science Inventory

    A new dynamic adaptive grid algorithm has been developed for use in air quality modeling. This algorithm uses a higher order numerical scheme?the piecewise parabolic method (PPM)?for computing advective solution fields; a weight function capable of promoting grid node clustering ...

  16. SIMULATION OF A REACTING POLLUTANT PUFF USING AN ADAPTIVE GRID ALGORITHM

    EPA Science Inventory

    A new dynamic solution adaptive grid algorithm DSAGA-PPM, has been developed for use in air quality modeling. In this paper, this algorithm is described and evaluated with a test problem. Cone-shaped distributions of various chemical species undergoing chemical reactions are rota...

  17. Research of adaptive threshold edge detection algorithm based on statistics canny operator

    NASA Astrophysics Data System (ADS)

    Xu, Jian; Wang, Huaisuo; Huang, Hua

    2015-12-01

    The traditional Canny operator cannot get the optimal threshold in different scene, on this foundation, an improved Canny edge detection algorithm based on adaptive threshold is proposed. The result of the experiment pictures indicate that the improved algorithm can get responsible threshold, and has the better accuracy and precision in the edge detection.

  18. Adaptive algorithm for cloud cover estimation from all-sky images over the sea

    NASA Astrophysics Data System (ADS)

    Krinitskiy, M. A.; Sinitsyn, A. V.

    2016-05-01

    A new algorithm for cloud cover estimation has been formulated and developed based on the synthetic control index, called the grayness rate index, and an additional algorithm step of adaptive filtering of the Mie scattering contribution. A setup for automated cloud cover estimation has been designed, assembled, and tested under field conditions. The results shows a significant advantage of the new algorithm over currently commonly used procedures.

  19. Parallelization of an Adaptive Multigrid Algorithm for Fast Solution of Finite Element Structural Problems

    SciTech Connect

    Crane, N K; Parsons, I D; Hjelmstad, K D

    2002-03-21

    Adaptive mesh refinement selectively subdivides the elements of a coarse user supplied mesh to produce a fine mesh with reduced discretization error. Effective use of adaptive mesh refinement coupled with an a posteriori error estimator can produce a mesh that solves a problem to a given discretization error using far fewer elements than uniform refinement. A geometric multigrid solver uses increasingly finer discretizations of the same geometry to produce a very fast and numerically scalable solution to a set of linear equations. Adaptive mesh refinement is a natural method for creating the different meshes required by the multigrid solver. This paper describes the implementation of a scalable adaptive multigrid method on a distributed memory parallel computer. Results are presented that demonstrate the parallel performance of the methodology by solving a linear elastic rocket fuel deformation problem on an SGI Origin 3000. Two challenges must be met when implementing adaptive multigrid algorithms on massively parallel computing platforms. First, although the fine mesh for which the solution is desired may be large and scaled to the number of processors, the multigrid algorithm must also operate on much smaller fixed-size data sets on the coarse levels. Second, the mesh must be repartitioned as it is adapted to maintain good load balancing. In an adaptive multigrid algorithm, separate mesh levels may require separate partitioning, further complicating the load balance problem. This paper shows that, when the proper optimizations are made, parallel adaptive multigrid algorithms perform well on machines with several hundreds of processors.

  20. Mean-shift tracking algorithm based on adaptive fusion of multi-feature

    NASA Astrophysics Data System (ADS)

    Yang, Kai; Xiao, Yanghui; Wang, Ende; Feng, Junhui

    2015-10-01

    The classic mean-shift tracking algorithm has achieved success in the field of computer vision because of its speediness and efficiency. However, classic mean-shift tracking algorithm would fail to track in some complicated conditions such as some parts of the target are occluded, little color difference between the target and background exists, or sudden change of illumination and so on. In order to solve the problems, an improved algorithm is proposed based on the mean-shift tracking algorithm and adaptive fusion of features. Color, edges and corners of the target are used to describe the target in the feature space, and a method for measuring the discrimination of various features is presented to make feature selection adaptive. Then the improved mean-shift tracking algorithm is introduced based on the fusion of various features. For the purpose of solving the problem that mean-shift tracking algorithm with the single color feature is vulnerable to sudden change of illumination, we eliminate the effects by the fusion of affine illumination model and color feature space which ensures the correctness and stability of target tracking in that condition. Using a group of videos to test the proposed algorithm, the results show that the tracking correctness and stability of this algorithm are better than the mean-shift tracking algorithm with single feature space. Furthermore the proposed algorithm is more robust than the classic algorithm in the conditions of occlusion, target similar with background or illumination change.

  1. Improving GPU-accelerated adaptive IDW interpolation algorithm using fast kNN search.

    PubMed

    Mei, Gang; Xu, Nengxiong; Xu, Liangliang

    2016-01-01

    This paper presents an efficient parallel Adaptive Inverse Distance Weighting (AIDW) interpolation algorithm on modern Graphics Processing Unit (GPU). The presented algorithm is an improvement of our previous GPU-accelerated AIDW algorithm by adopting fast k-nearest neighbors (kNN) search. In AIDW, it needs to find several nearest neighboring data points for each interpolated point to adaptively determine the power parameter; and then the desired prediction value of the interpolated point is obtained by weighted interpolating using the power parameter. In this work, we develop a fast kNN search approach based on the space-partitioning data structure, even grid, to improve the previous GPU-accelerated AIDW algorithm. The improved algorithm is composed of the stages of kNN search and weighted interpolating. To evaluate the performance of the improved algorithm, we perform five groups of experimental tests. The experimental results indicate: (1) the improved algorithm can achieve a speedup of up to 1017 over the corresponding serial algorithm; (2) the improved algorithm is at least two times faster than our previous GPU-accelerated AIDW algorithm; and (3) the utilization of fast kNN search can significantly improve the computational efficiency of the entire GPU-accelerated AIDW algorithm. PMID:27610308

  2. Improving GPU-accelerated adaptive IDW interpolation algorithm using fast kNN search.

    PubMed

    Mei, Gang; Xu, Nengxiong; Xu, Liangliang

    2016-01-01

    This paper presents an efficient parallel Adaptive Inverse Distance Weighting (AIDW) interpolation algorithm on modern Graphics Processing Unit (GPU). The presented algorithm is an improvement of our previous GPU-accelerated AIDW algorithm by adopting fast k-nearest neighbors (kNN) search. In AIDW, it needs to find several nearest neighboring data points for each interpolated point to adaptively determine the power parameter; and then the desired prediction value of the interpolated point is obtained by weighted interpolating using the power parameter. In this work, we develop a fast kNN search approach based on the space-partitioning data structure, even grid, to improve the previous GPU-accelerated AIDW algorithm. The improved algorithm is composed of the stages of kNN search and weighted interpolating. To evaluate the performance of the improved algorithm, we perform five groups of experimental tests. The experimental results indicate: (1) the improved algorithm can achieve a speedup of up to 1017 over the corresponding serial algorithm; (2) the improved algorithm is at least two times faster than our previous GPU-accelerated AIDW algorithm; and (3) the utilization of fast kNN search can significantly improve the computational efficiency of the entire GPU-accelerated AIDW algorithm.

  3. Establishing a Dynamic Self-Adaptation Learning Algorithm of the BP Neural Network and Its Applications

    NASA Astrophysics Data System (ADS)

    Li, Xiaofeng; Xiang, Suying; Zhu, Pengfei; Wu, Min

    2015-12-01

    In order to avoid the inherent deficiencies of the traditional BP neural network, such as slow convergence speed, that easily leading to local minima, poor generalization ability and difficulty in determining the network structure, the dynamic self-adaptive learning algorithm of the BP neural network is put forward to improve the function of the BP neural network. The new algorithm combines the merit of principal component analysis, particle swarm optimization, correlation analysis and self-adaptive model, hence can effectively solve the problems of selecting structural parameters, initial connection weights and thresholds and learning rates of the BP neural network. This new algorithm not only reduces the human intervention, optimizes the topological structures of BP neural networks and improves the network generalization ability, but also accelerates the convergence speed of a network, avoids trapping into local minima, and enhances network adaptation ability and prediction ability. The dynamic self-adaptive learning algorithm of the BP neural network is used to forecast the total retail sale of consumer goods of Sichuan Province, China. Empirical results indicate that the new algorithm is superior to the traditional BP network algorithm in predicting accuracy and time consumption, which shows the feasibility and effectiveness of the new algorithm.

  4. Formulation and implementation of nonstationary adaptive estimation algorithm with applications to air-data reconstruction

    NASA Technical Reports Server (NTRS)

    Whitmore, S. A.

    1985-01-01

    The dynamics model and data sources used to perform air-data reconstruction are discussed, as well as the Kalman filter. The need for adaptive determination of the noise statistics of the process is indicated. The filter innovations are presented as a means of developing the adaptive criterion, which is based on the true mean and covariance of the filter innovations. A method for the numerical approximation of the mean and covariance of the filter innovations is presented. The algorithm as developed is applied to air-data reconstruction for the space shuttle, and data obtained from the third landing are presented. To verify the performance of the adaptive algorithm, the reconstruction is also performed using a constant covariance Kalman filter. The results of the reconstructions are compared, and the adaptive algorithm exhibits better performance.

  5. Simple and Effective Algorithms: Computer-Adaptive Testing.

    ERIC Educational Resources Information Center

    Linacre, John Michael

    Computer-adaptive testing (CAT) allows improved security, greater scoring accuracy, shorter testing periods, quicker availability of results, and reduced guessing and other undesirable test behavior. Simple approaches can be applied by the classroom teacher, or other content specialist, who possesses simple computer equipment and elementary…

  6. Adaptive inpainting algorithm based on DCT induced wavelet regularization.

    PubMed

    Li, Yan-Ran; Shen, Lixin; Suter, Bruce W

    2013-02-01

    In this paper, we propose an image inpainting optimization model whose objective function is a smoothed l(1) norm of the weighted nondecimated discrete cosine transform (DCT) coefficients of the underlying image. By identifying the objective function of the proposed model as a sum of a differentiable term and a nondifferentiable term, we present a basic algorithm inspired by Beck and Teboulle's recent work on the model. Based on this basic algorithm, we propose an automatic way to determine the weights involved in the model and update them in each iteration. The DCT as an orthogonal transform is used in various applications. We view the rows of a DCT matrix as the filters associated with a multiresolution analysis. Nondecimated wavelet transforms with these filters are explored in order to analyze the images to be inpainted. Our numerical experiments verify that under the proposed framework, the filters from a DCT matrix demonstrate promise for the task of image inpainting.

  7. An adaptive grid-based all hexahedral meshing algorithm based on 2-refinement.

    SciTech Connect

    Edgel, Jared; Benzley, Steven E.; Owen, Steven James

    2010-08-01

    Most adaptive mesh generation algorithms employ a 3-refinement method. This method, although easy to employ, provides a mesh that is often too coarse in some areas and over refined in other areas. Because this method generates 27 new hexes in place of a single hex, there is little control on mesh density. This paper presents an adaptive all-hexahedral grid-based meshing algorithm that employs a 2-refinement method. 2-refinement is based on dividing the hex to be refined into eight new hexes. This method allows a greater control on mesh density when compared to a 3-refinement procedure. This adaptive all-hexahedral meshing algorithm provides a mesh that is efficient for analysis by providing a high element density in specific locations and a reduced mesh density in other areas. In addition, this tool can be effectively used for inside-out hexahedral grid based schemes, using Cartesian structured grids for the base mesh, which have shown great promise in accommodating automatic all-hexahedral algorithms. This adaptive all-hexahedral grid-based meshing algorithm employs a 2-refinement insertion method. This allows greater control on mesh density when compared to 3-refinement methods. This algorithm uses a two layer transition zone to increase element quality and keeps transitions from lower to higher mesh densities smooth. Templates were introduced to allow both convex and concave refinement.

  8. Simulation of Biochemical Pathway Adaptability Using Evolutionary Algorithms

    SciTech Connect

    Bosl, W J

    2005-01-26

    The systems approach to genomics seeks quantitative and predictive descriptions of cells and organisms. However, both the theoretical and experimental methods necessary for such studies still need to be developed. We are far from understanding even the simplest collective behavior of biomolecules, cells or organisms. A key aspect to all biological problems, including environmental microbiology, evolution of infectious diseases, and the adaptation of cancer cells is the evolvability of genomes. This is particularly important for Genomes to Life missions, which tend to focus on the prospect of engineering microorganisms to achieve desired goals in environmental remediation and climate change mitigation, and energy production. All of these will require quantitative tools for understanding the evolvability of organisms. Laboratory biodefense goals will need quantitative tools for predicting complicated host-pathogen interactions and finding counter-measures. In this project, we seek to develop methods to simulate how external and internal signals cause the genetic apparatus to adapt and organize to produce complex biochemical systems to achieve survival. This project is specifically directed toward building a computational methodology for simulating the adaptability of genomes. This project investigated the feasibility of using a novel quantitative approach to studying the adaptability of genomes and biochemical pathways. This effort was intended to be the preliminary part of a larger, long-term effort between key leaders in computational and systems biology at Harvard University and LLNL, with Dr. Bosl as the lead PI. Scientific goals for the long-term project include the development and testing of new hypotheses to explain the observed adaptability of yeast biochemical pathways when the myosin-II gene is deleted and the development of a novel data-driven evolutionary computation as a way to connect exploratory computational simulation with hypothesis

  9. Adaptive merit function in SPGD algorithm for beam combining

    NASA Astrophysics Data System (ADS)

    Yang, Guo-qing; Liu, Li-sheng; Jiang, Zhen-hua; Wang, Ting-feng; Guo, Jin

    2016-09-01

    The beam pointing is the most crucial issue for beam combining to achieve high energy laser output. In order to meet the turbulence situation, a beam pointing method that cooperates with the stochastic parallel gradient descent (SPGD) algorithm is proposed. The power-in-the-bucket ( PIB) is chosen as the merit function, and its radius changes gradually during the correction process. The linear radius and the exponential radius are simulated. The results show that the exponential radius has great promise for beam pointing.

  10. Sequential Insertion Heuristic with Adaptive Bee Colony Optimisation Algorithm for Vehicle Routing Problem with Time Windows.

    PubMed

    Jawarneh, Sana; Abdullah, Salwani

    2015-01-01

    This paper presents a bee colony optimisation (BCO) algorithm to tackle the vehicle routing problem with time window (VRPTW). The VRPTW involves recovering an ideal set of routes for a fleet of vehicles serving a defined number of customers. The BCO algorithm is a population-based algorithm that mimics the social communication patterns of honeybees in solving problems. The performance of the BCO algorithm is dependent on its parameters, so the online (self-adaptive) parameter tuning strategy is used to improve its effectiveness and robustness. Compared with the basic BCO, the adaptive BCO performs better. Diversification is crucial to the performance of the population-based algorithm, but the initial population in the BCO algorithm is generated using a greedy heuristic, which has insufficient diversification. Therefore the ways in which the sequential insertion heuristic (SIH) for the initial population drives the population toward improved solutions are examined. Experimental comparisons indicate that the proposed adaptive BCO-SIH algorithm works well across all instances and is able to obtain 11 best results in comparison with the best-known results in the literature when tested on Solomon's 56 VRPTW 100 customer instances. Also, a statistical test shows that there is a significant difference between the results.

  11. Sequential Insertion Heuristic with Adaptive Bee Colony Optimisation Algorithm for Vehicle Routing Problem with Time Windows.

    PubMed

    Jawarneh, Sana; Abdullah, Salwani

    2015-01-01

    This paper presents a bee colony optimisation (BCO) algorithm to tackle the vehicle routing problem with time window (VRPTW). The VRPTW involves recovering an ideal set of routes for a fleet of vehicles serving a defined number of customers. The BCO algorithm is a population-based algorithm that mimics the social communication patterns of honeybees in solving problems. The performance of the BCO algorithm is dependent on its parameters, so the online (self-adaptive) parameter tuning strategy is used to improve its effectiveness and robustness. Compared with the basic BCO, the adaptive BCO performs better. Diversification is crucial to the performance of the population-based algorithm, but the initial population in the BCO algorithm is generated using a greedy heuristic, which has insufficient diversification. Therefore the ways in which the sequential insertion heuristic (SIH) for the initial population drives the population toward improved solutions are examined. Experimental comparisons indicate that the proposed adaptive BCO-SIH algorithm works well across all instances and is able to obtain 11 best results in comparison with the best-known results in the literature when tested on Solomon's 56 VRPTW 100 customer instances. Also, a statistical test shows that there is a significant difference between the results. PMID:26132158

  12. Sequential Insertion Heuristic with Adaptive Bee Colony Optimisation Algorithm for Vehicle Routing Problem with Time Windows

    PubMed Central

    Jawarneh, Sana; Abdullah, Salwani

    2015-01-01

    This paper presents a bee colony optimisation (BCO) algorithm to tackle the vehicle routing problem with time window (VRPTW). The VRPTW involves recovering an ideal set of routes for a fleet of vehicles serving a defined number of customers. The BCO algorithm is a population-based algorithm that mimics the social communication patterns of honeybees in solving problems. The performance of the BCO algorithm is dependent on its parameters, so the online (self-adaptive) parameter tuning strategy is used to improve its effectiveness and robustness. Compared with the basic BCO, the adaptive BCO performs better. Diversification is crucial to the performance of the population-based algorithm, but the initial population in the BCO algorithm is generated using a greedy heuristic, which has insufficient diversification. Therefore the ways in which the sequential insertion heuristic (SIH) for the initial population drives the population toward improved solutions are examined. Experimental comparisons indicate that the proposed adaptive BCO-SIH algorithm works well across all instances and is able to obtain 11 best results in comparison with the best-known results in the literature when tested on Solomon’s 56 VRPTW 100 customer instances. Also, a statistical test shows that there is a significant difference between the results. PMID:26132158

  13. Adaptive Sampling Algorithms for Probabilistic Risk Assessment of Nuclear Simulations

    SciTech Connect

    Diego Mandelli; Dan Maljovec; Bei Wang; Valerio Pascucci; Peer-Timo Bremer

    2013-09-01

    Nuclear simulations are often computationally expensive, time-consuming, and high-dimensional with respect to the number of input parameters. Thus exploring the space of all possible simulation outcomes is infeasible using finite computing resources. During simulation-based probabilistic risk analysis, it is important to discover the relationship between a potentially large number of input parameters and the output of a simulation using as few simulation trials as possible. This is a typical context for performing adaptive sampling where a few observations are obtained from the simulation, a surrogate model is built to represent the simulation space, and new samples are selected based on the model constructed. The surrogate model is then updated based on the simulation results of the sampled points. In this way, we attempt to gain the most information possible with a small number of carefully selected sampled points, limiting the number of expensive trials needed to understand features of the simulation space. We analyze the specific use case of identifying the limit surface, i.e., the boundaries in the simulation space between system failure and system success. In this study, we explore several techniques for adaptively sampling the parameter space in order to reconstruct the limit surface. We focus on several adaptive sampling schemes. First, we seek to learn a global model of the entire simulation space using prediction models or neighborhood graphs and extract the limit surface as an iso-surface of the global model. Second, we estimate the limit surface by sampling in the neighborhood of the current estimate based on topological segmentations obtained locally. Our techniques draw inspirations from topological structure known as the Morse-Smale complex. We highlight the advantages and disadvantages of using a global prediction model versus local topological view of the simulation space, comparing several different strategies for adaptive sampling in both

  14. Beamforming Based Full-Duplex for Millimeter-Wave Communication.

    PubMed

    Liu, Xiao; Xiao, Zhenyu; Bai, Lin; Choi, Jinho; Xia, Pengfei; Xia, Xiang-Gen

    2016-01-01

    In this paper, we study beamforming based full-duplex (FD) systems in millimeter-wave (mmWave) communications. A joint transmission and reception (Tx/Rx) beamforming problem is formulated to maximize the achievable rate by mitigating self-interference (SI). Since the optimal solution is difficult to find due to the non-convexity of the objective function, suboptimal schemes are proposed in this paper. A low-complexity algorithm, which iteratively maximizes signal power while suppressing SI, is proposed and its convergence is proven. Moreover, two closed-form solutions, which do not require iterations, are also derived under minimum-mean-square-error (MMSE), zero-forcing (ZF), and maximum-ratio transmission (MRT) criteria. Performance evaluations show that the proposed iterative scheme converges fast (within only two iterations on average) and approaches an upper-bound performance, while the two closed-form solutions also achieve appealing performances, although there are noticeable differences from the upper bound depending on channel conditions. Interestingly, these three schemes show different robustness against the geometry of Tx/Rx antenna arrays and channel estimation errors. PMID:27455256

  15. Beamforming Based Full-Duplex for Millimeter-Wave Communication.

    PubMed

    Liu, Xiao; Xiao, Zhenyu; Bai, Lin; Choi, Jinho; Xia, Pengfei; Xia, Xiang-Gen

    2016-01-01

    In this paper, we study beamforming based full-duplex (FD) systems in millimeter-wave (mmWave) communications. A joint transmission and reception (Tx/Rx) beamforming problem is formulated to maximize the achievable rate by mitigating self-interference (SI). Since the optimal solution is difficult to find due to the non-convexity of the objective function, suboptimal schemes are proposed in this paper. A low-complexity algorithm, which iteratively maximizes signal power while suppressing SI, is proposed and its convergence is proven. Moreover, two closed-form solutions, which do not require iterations, are also derived under minimum-mean-square-error (MMSE), zero-forcing (ZF), and maximum-ratio transmission (MRT) criteria. Performance evaluations show that the proposed iterative scheme converges fast (within only two iterations on average) and approaches an upper-bound performance, while the two closed-form solutions also achieve appealing performances, although there are noticeable differences from the upper bound depending on channel conditions. Interestingly, these three schemes show different robustness against the geometry of Tx/Rx antenna arrays and channel estimation errors.

  16. Beamforming Based Full-Duplex for Millimeter-Wave Communication

    PubMed Central

    Liu, Xiao; Xiao, Zhenyu; Bai, Lin; Choi, Jinho; Xia, Pengfei; Xia, Xiang-Gen

    2016-01-01

    In this paper, we study beamforming based full-duplex (FD) systems in millimeter-wave (mmWave) communications. A joint transmission and reception (Tx/Rx) beamforming problem is formulated to maximize the achievable rate by mitigating self-interference (SI). Since the optimal solution is difficult to find due to the non-convexity of the objective function, suboptimal schemes are proposed in this paper. A low-complexity algorithm, which iteratively maximizes signal power while suppressing SI, is proposed and its convergence is proven. Moreover, two closed-form solutions, which do not require iterations, are also derived under minimum-mean-square-error (MMSE), zero-forcing (ZF), and maximum-ratio transmission (MRT) criteria. Performance evaluations show that the proposed iterative scheme converges fast (within only two iterations on average) and approaches an upper-bound performance, while the two closed-form solutions also achieve appealing performances, although there are noticeable differences from the upper bound depending on channel conditions. Interestingly, these three schemes show different robustness against the geometry of Tx/Rx antenna arrays and channel estimation errors. PMID:27455256

  17. A geometry-based adaptive unstructured grid generation algorithm for complex geological media

    NASA Astrophysics Data System (ADS)

    Bahrainian, Seyed Saied; Dezfuli, Alireza Daneh

    2014-07-01

    In this paper a novel unstructured grid generation algorithm is presented that considers the effect of geological features and well locations in grid resolution. The proposed grid generation algorithm presents a strategy for definition and construction of an initial grid based on the geological model, geometry adaptation of geological features, and grid resolution control. The algorithm is applied to seismotectonic map of the Masjed-i-Soleiman reservoir. Comparison of grid results with the “Triangle” program shows a more suitable permeability contrast. Immiscible two-phase flow solutions are presented for a fractured porous media test case using different grid resolutions. Adapted grid on the fracture geometry gave identical results with that of a fine grid. The adapted grid employed 88.2% less CPU time when compared to the solutions obtained by the fine grid.

  18. An adaptive numeric predictor-corrector guidance algorithm for atmospheric entry vehicles

    NASA Astrophysics Data System (ADS)

    Spratlin, Kenneth Milton

    1987-05-01

    An adaptive numeric predictor-corrector guidance is developed for atmospheric entry vehicles which utilize lift to achieve maximum footprint capability. Applicability of the guidance design to vehicles with a wide range of performance capabilities is desired so as to reduce the need for algorithm redesign with each new vehicle. Adaptability is desired to minimize mission-specific analysis and planning. The guidance algorithm motivation and design are presented. Performance is assessed for application of the algorithm to the NASA Entry Research Vehicle (ERV). The dispersions the guidance must be designed to handle are presented. The achievable operational footprint for expected worst-case dispersions is presented. The algorithm performs excellently for the expected dispersions and captures most of the achievable footprint.

  19. Detection of Human Impacts by an Adaptive Energy-Based Anisotropic Algorithm

    PubMed Central

    Prado-Velasco, Manuel; Ortiz Marín, Rafael; del Rio Cidoncha, Gloria

    2013-01-01

    Boosted by health consequences and the cost of falls in the elderly, this work develops and tests a novel algorithm and methodology to detect human impacts that will act as triggers of a two-layer fall monitor. The two main requirements demanded by socio-healthcare providers—unobtrusiveness and reliability—defined the objectives of the research. We have demonstrated that a very agile, adaptive, and energy-based anisotropic algorithm can provide 100% sensitivity and 78% specificity, in the task of detecting impacts under demanding laboratory conditions. The algorithm works together with an unsupervised real-time learning technique that addresses the adaptive capability, and this is also presented. The work demonstrates the robustness and reliability of our new algorithm, which will be the basis of a smart falling monitor. This is shown in this work to underline the relevance of the results. PMID:24157505

  20. Performance study of LMS based adaptive algorithms for unknown system identification

    SciTech Connect

    Javed, Shazia; Ahmad, Noor Atinah

    2014-07-10

    Adaptive filtering techniques have gained much popularity in the modeling of unknown system identification problem. These techniques can be classified as either iterative or direct. Iterative techniques include stochastic descent method and its improved versions in affine space. In this paper we present a comparative study of the least mean square (LMS) algorithm and some improved versions of LMS, more precisely the normalized LMS (NLMS), LMS-Newton, transform domain LMS (TDLMS) and affine projection algorithm (APA). The performance evaluation of these algorithms is carried out using adaptive system identification (ASI) model with random input signals, in which the unknown (measured) signal is assumed to be contaminated by output noise. Simulation results are recorded to compare the performance in terms of convergence speed, robustness, misalignment, and their sensitivity to the spectral properties of input signals. Main objective of this comparative study is to observe the effects of fast convergence rate of improved versions of LMS algorithms on their robustness and misalignment.

  1. Performance study of LMS based adaptive algorithms for unknown system identification

    NASA Astrophysics Data System (ADS)

    Javed, Shazia; Ahmad, Noor Atinah

    2014-07-01

    Adaptive filtering techniques have gained much popularity in the modeling of unknown system identification problem. These techniques can be classified as either iterative or direct. Iterative techniques include stochastic descent method and its improved versions in affine space. In this paper we present a comparative study of the least mean square (LMS) algorithm and some improved versions of LMS, more precisely the normalized LMS (NLMS), LMS-Newton, transform domain LMS (TDLMS) and affine projection algorithm (APA). The performance evaluation of these algorithms is carried out using adaptive system identification (ASI) model with random input signals, in which the unknown (measured) signal is assumed to be contaminated by output noise. Simulation results are recorded to compare the performance in terms of convergence speed, robustness, misalignment, and their sensitivity to the spectral properties of input signals. Main objective of this comparative study is to observe the effects of fast convergence rate of improved versions of LMS algorithms on their robustness and misalignment.

  2. A novel pseudoderivative-based mutation operator for real-coded adaptive genetic algorithms

    PubMed Central

    Kanwal, Maxinder S; Ramesh, Avinash S; Huang, Lauren A

    2013-01-01

    Recent development of large databases, especially those in genetics and proteomics, is pushing the development of novel computational algorithms that implement rapid and accurate search strategies. One successful approach has been to use artificial intelligence and methods, including pattern recognition (e.g. neural networks) and optimization techniques (e.g. genetic algorithms). The focus of this paper is on optimizing the design of genetic algorithms by using an adaptive mutation rate that is derived from comparing the fitness values of successive generations. We propose a novel pseudoderivative-based mutation rate operator designed to allow a genetic algorithm to escape local optima and successfully continue to the global optimum. Once proven successful, this algorithm can be implemented to solve real problems in neurology and bioinformatics. As a first step towards this goal, we tested our algorithm on two 3-dimensional surfaces with multiple local optima, but only one global optimum, as well as on the N-queens problem, an applied problem in which the function that maps the curve is implicit. For all tests, the adaptive mutation rate allowed the genetic algorithm to find the global optimal solution, performing significantly better than other search methods, including genetic algorithms that implement fixed mutation rates. PMID:24627784

  3. Adaptive control and noise suppression by a variable-gain gradient algorithm

    NASA Technical Reports Server (NTRS)

    Merhav, S. J.; Mehta, R. S.

    1987-01-01

    An adaptive control system based on normalized LMS filters is investigated. The finite impulse response of the nonparametric controller is adaptively estimated using a given reference model. Specifically, the following issues are addressed: The stability of the closed loop system is analyzed and heuristically established. Next, the adaptation process is studied for piecewise constant plant parameters. It is shown that by introducing a variable-gain in the gradient algorithm, a substantial reduction in the LMS adaptation rate can be achieved. Finally, process noise at the plant output generally causes a biased estimate of the controller. By introducing a noise suppression scheme, this bias can be substantially reduced and the response of the adapted system becomes very close to that of the reference model. Extensive computer simulations validate these and demonstrate assertions that the system can rapidly adapt to random jumps in plant parameters.

  4. Adaptation algorithms for satellite communication systems equipped with hybrid reflector antennas

    NASA Astrophysics Data System (ADS)

    Kartsan, I. N.; Zelenkov, P. V.; Tyapkin, V. N.; Dmitriev, D. D.; Goncharov, A. E.

    2015-10-01

    This paper reviews adaptation algorithms influenced by active interferences in satellite communication systems. A multi-beam antenna is suggested as an adaptive system; it is built on the basis of a hybrid reflector antenna with a 19-element array feed element, which incorporates a modified algorithm for radiation pattern synthesis used for suppressing targeted interferences. As a criterion for this synthesis, antenna gains are used at fixed points. As a result, the size of the objective function and time required for the synthesis can be significantly limited.

  5. Quadratic adaptive algorithm for solving cardiac action potential models.

    PubMed

    Chen, Min-Hung; Chen, Po-Yuan; Luo, Ching-Hsing

    2016-10-01

    An adaptive integration method is proposed for computing cardiac action potential models accurately and efficiently. Time steps are adaptively chosen by solving a quadratic formula involving the first and second derivatives of the membrane action potential. To improve the numerical accuracy, we devise an extremum-locator (el) function to predict the local extremum when approaching the peak amplitude of the action potential. In addition, the time step restriction (tsr) technique is designed to limit the increase in time steps, and thus prevent the membrane potential from changing abruptly. The performance of the proposed method is tested using the Luo-Rudy phase 1 (LR1), dynamic (LR2), and human O'Hara-Rudy dynamic (ORd) ventricular action potential models, and the Courtemanche atrial model incorporating a Markov sodium channel model. Numerical experiments demonstrate that the action potential generated using the proposed method is more accurate than that using the traditional Hybrid method, especially near the peak region. The traditional Hybrid method may choose large time steps near to the peak region, and sometimes causes the action potential to become distorted. In contrast, the proposed new method chooses very fine time steps in the peak region, but large time steps in the smooth region, and the profiles are smoother and closer to the reference solution. In the test on the stiff Markov ionic channel model, the Hybrid blows up if the allowable time step is set to be greater than 0.1ms. In contrast, our method can adjust the time step size automatically, and is stable. Overall, the proposed method is more accurate than and as efficient as the traditional Hybrid method, especially for the human ORd model. The proposed method shows improvement for action potentials with a non-smooth morphology, and it needs further investigation to determine whether the method is helpful during propagation of the action potential. PMID:27639239

  6. Comparison of adaptive algorithms for the control of tonal disturbances in mechanical systems

    NASA Astrophysics Data System (ADS)

    Zilletti, M.; Elliott, S. J.; Cheer, J.

    2016-09-01

    This paper presents a study on the performance of adaptive control algorithms designed to reduce the vibration of mechanical systems excited by a harmonic disturbance. The mechanical system consists of a mass suspended on a spring and a damper. The system is equipped with a force actuator in parallel with the suspension. The control signal driving the actuator is generated by adjusting the amplitude and phase of a sinusoidal reference signal at the same frequency as the excitation. An adaptive feedforward control algorithm is used to adapt the amplitude and phase of the control signal, to minimise the mean square velocity of the mass. Two adaptation strategies are considered in which the control signal is either updated after each period of the oscillation or at every time sample. The first strategy is traditionally used in vibration control in helicopters for example; the second strategy is normally referred to as the filtered-x least mean square algorithm and is often used to control engine noise in cars. The two adaptation strategies are compared through a parametric study, which investigates the influence of the properties of both the mechanical system and the control system on the convergence speed of the two algorithms.

  7. Classical and adaptive control algorithms for the solar array pointing system of the Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Ianculescu, G. D.; Klop, J. J.

    1992-01-01

    Classical and adaptive control algorithms for the solar array pointing system of the Space Station Freedom are designed using a continuous rigid body model of the solar array gimbal assembly containing both linear and nonlinear dynamics due to various friction components. The robustness of the design solution is examined by performing a series of sensitivity analysis studies. Adaptive control strategies are examined in order to compensate for the unfavorable effect of static nonlinearities, such as dead-zone uncertainties.

  8. Advances in Digital Calibration Techniques Enabling Real-Time Beamforming SweepSAR Architectures

    NASA Technical Reports Server (NTRS)

    Hoffman, James P.; Perkovic, Dragana; Ghaemi, Hirad; Horst, Stephen; Shaffer, Scott; Veilleux, Louise

    2013-01-01

    Real-time digital beamforming, combined with lightweight, large aperture reflectors, enable SweepSAR architectures, which promise significant increases in instrument capability for solid earth and biomass remote sensing. These new instrument concepts require new methods for calibrating the multiple channels, which are combined on-board, in real-time. The benefit of this effort is that it enables a new class of lightweight radar architecture, Digital Beamforming with SweepSAR, providing significantly larger swath coverage than conventional SAR architectures for reduced mass and cost. This paper will review the on-going development of the digital calibration architecture for digital beamforming radar instrument, such as the proposed Earth Radar Mission's DESDynI (Deformation, Ecosystem Structure, and Dynamics of Ice) instrument. This proposed instrument's baseline design employs SweepSAR digital beamforming and requires digital calibration. We will review the overall concepts and status of the system architecture, algorithm development, and the digital calibration testbed currently being developed. We will present results from a preliminary hardware demonstration. We will also discuss the challenges and opportunities specific to this novel architecture.

  9. Evaluation of an adaptive filtering algorithm for CT cardiac imaging with EKG modulated tube current

    NASA Astrophysics Data System (ADS)

    Li, Jianying; Hsieh, Jiang; Mohr, Kelly; Okerlund, Darin

    2005-04-01

    We have developed an adaptive filtering algorithm for cardiac CT scans with EKG-modulated tube current to optimize resolution and noise for different cardiac phases and to provide safety net for cases where end-systole phase is used for coronary imaging. This algorithm has been evaluated using patient cardiac CT scans where lower tube currents are used for the systolic phases. In this paper, we present the evaluation results. The results demonstrated that with the use of the proposed algorithm, we could improve image quality for all cardiac phases, while providing greater noise and streak artifact reduction for systole phases where lower CT dose were used.

  10. Adaptive randomized algorithms for analysis and design of control systems under uncertain environments

    NASA Astrophysics Data System (ADS)

    Chen, Xinjia

    2015-05-01

    We consider the general problem of analysis and design of control systems in the presence of uncertainties. We treat uncertainties that affect a control system as random variables. The performance of the system is measured by the expectation of some derived random variables, which are typically bounded. We develop adaptive sequential randomized algorithms for estimating and optimizing the expectation of such bounded random variables with guaranteed accuracy and confidence level. These algorithms can be applied to overcome the conservatism and computational complexity in the analysis and design of controllers to be used in uncertain environments. We develop methods for investigating the optimality and computational complexity of such algorithms.

  11. Adaptive algorithm for active control of high-amplitude acoustic field in resonator

    NASA Astrophysics Data System (ADS)

    Červenka, M.; Bednařík, M.; Koníček, P.

    2008-06-01

    This work is concerned with suppression of nonlinear effects in piston-driven acoustic resonators by means of two-frequency driving technique. An iterative adaptive algorithm is proposed to calculate parameters of the driving signal in order that amplitude of the second harmonics of the acoustic pressure is minimized. Functionality of the algorithm is verified firstly by means of numerical model and secondly, it is used in real computer-controlled experiment. The numerical and experimental results show that the proposed algorithm can be successfully used for generation of high-amplitude shock-free acoustic field in resonators.

  12. Multiobjective Image Color Quantization Algorithm Based on Self-Adaptive Hybrid Differential Evolution

    PubMed Central

    Xia, Xuewen

    2016-01-01

    In recent years, some researchers considered image color quantization as a single-objective problem and applied heuristic algorithms to solve it. This paper establishes a multiobjective image color quantization model with intracluster distance and intercluster separation as its objectives. Inspired by a multipopulation idea, a multiobjective image color quantization algorithm based on self-adaptive hybrid differential evolution (MoDE-CIQ) is then proposed to solve this model. Two numerical experiments on four common test images are conducted to analyze the effectiveness and competitiveness of the multiobjective model and the proposed algorithm. PMID:27738423

  13. An Adaptive Weighting Algorithm for Interpolating the Soil Potassium Content

    PubMed Central

    Liu, Wei; Du, Peijun; Zhao, Zhuowen; Zhang, Lianpeng

    2016-01-01

    The concept of spatial interpolation is important in the soil sciences. However, the use of a single global interpolation model is often limited by certain conditions (e.g., terrain complexity), which leads to distorted interpolation results. Here we present a method of adaptive weighting combined environmental variables for soil properties interpolation (AW-SP) to improve accuracy. Using various environmental variables, AW-SP was used to interpolate soil potassium content in Qinghai Lake Basin. To evaluate AW-SP performance, we compared it with that of inverse distance weighting (IDW), ordinary kriging, and OK combined with different environmental variables. The experimental results showed that the methods combined with environmental variables did not always improve prediction accuracy even if there was a strong correlation between the soil properties and environmental variables. However, compared with IDW, OK, and OK combined with different environmental variables, AW-SP is more stable and has lower mean absolute and root mean square errors. Furthermore, the AW-SP maps provided improved details of soil potassium content and provided clearer boundaries to its spatial distribution. In conclusion, AW-SP can not only reduce prediction errors, it also accounts for the distribution and contributions of environmental variables, making the spatial interpolation of soil potassium content more reasonable. PMID:27051998

  14. An Adaptive Weighting Algorithm for Interpolating the Soil Potassium Content

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Du, Peijun; Zhao, Zhuowen; Zhang, Lianpeng

    2016-04-01

    The concept of spatial interpolation is important in the soil sciences. However, the use of a single global interpolation model is often limited by certain conditions (e.g., terrain complexity), which leads to distorted interpolation results. Here we present a method of adaptive weighting combined environmental variables for soil properties interpolation (AW-SP) to improve accuracy. Using various environmental variables, AW-SP was used to interpolate soil potassium content in Qinghai Lake Basin. To evaluate AW-SP performance, we compared it with that of inverse distance weighting (IDW), ordinary kriging, and OK combined with different environmental variables. The experimental results showed that the methods combined with environmental variables did not always improve prediction accuracy even if there was a strong correlation between the soil properties and environmental variables. However, compared with IDW, OK, and OK combined with different environmental variables, AW-SP is more stable and has lower mean absolute and root mean square errors. Furthermore, the AW-SP maps provided improved details of soil potassium content and provided clearer boundaries to its spatial distribution. In conclusion, AW-SP can not only reduce prediction errors, it also accounts for the distribution and contributions of environmental variables, making the spatial interpolation of soil potassium content more reasonable.

  15. Adaptive motion artifact reducing algorithm for wrist photoplethysmography application

    NASA Astrophysics Data System (ADS)

    Zhao, Jingwei; Wang, Guijin; Shi, Chenbo

    2016-04-01

    Photoplethysmography (PPG) technology is widely used in wearable heart pulse rate monitoring. It might reveal the potential risks of heart condition and cardiopulmonary function by detecting the cardiac rhythms in physical exercise. However the quality of wrist photoelectric signal is very sensitive to motion artifact since the thicker tissues and the fewer amount of capillaries. Therefore, motion artifact is the major factor that impede the heart rate measurement in the high intensity exercising. One accelerometer and three channels of light with different wavelengths are used in this research to analyze the coupled form of motion artifact. A novel approach is proposed to separate the pulse signal from motion artifact by exploiting their mixing ratio in different optical paths. There are four major steps of our method: preprocessing, motion artifact estimation, adaptive filtering and heart rate calculation. Five healthy young men are participated in the experiment. The speeder in the treadmill is configured as 12km/h, and all subjects would run for 3-10 minutes by swinging the arms naturally. The final result is compared with chest strap. The average of mean square error (MSE) is less than 3 beats per minute (BPM/min). Proposed method performed well in intense physical exercise and shows the great robustness to individuals with different running style and posture.

  16. An adaptive ant colony system algorithm for continuous-space optimization problems.

    PubMed

    Li, Yan-jun; Wu, Tie-jun

    2003-01-01

    Ant colony algorithms comprise a novel category of evolutionary computation methods for optimization problems, especially for sequencing-type combinatorial optimization problems. An adaptive ant colony algorithm is proposed in this paper to tackle continuous-space optimization problems, using a new objective-function-based heuristic pheromone assignment approach for pheromone update to filtrate solution candidates. Global optimal solutions can be reached more rapidly by self-adjusting the path searching behaviors of the ants according to objective values. The performance of the proposed algorithm is compared with a basic ant colony algorithm and a Square Quadratic Programming approach in solving two benchmark problems with multiple extremes. The results indicated that the efficiency and reliability of the proposed algorithm were greatly improved. PMID:12656341

  17. Modified fast frequency acquisition via adaptive least squares algorithm

    NASA Technical Reports Server (NTRS)

    Kumar, Rajendra (Inventor)

    1992-01-01

    A method and the associated apparatus for estimating the amplitude, frequency, and phase of a signal of interest are presented. The method comprises the following steps: (1) inputting the signal of interest; (2) generating a reference signal with adjustable amplitude, frequency and phase at an output thereof; (3) mixing the signal of interest with the reference signal and a signal 90 deg out of phase with the reference signal to provide a pair of quadrature sample signals comprising respectively a difference between the signal of interest and the reference signal and a difference between the signal of interest and the signal 90 deg out of phase with the reference signal; (4) using the pair of quadrature sample signals to compute estimates of the amplitude, frequency, and phase of an error signal comprising the difference between the signal of interest and the reference signal employing a least squares estimation; (5) adjusting the amplitude, frequency, and phase of the reference signal from the numerically controlled oscillator in a manner which drives the error signal towards zero; and (6) outputting the estimates of the amplitude, frequency, and phase of the error signal in combination with the reference signal to produce a best estimate of the amplitude, frequency, and phase of the signal of interest. The preferred method includes the step of providing the error signal as a real time confidence measure as to the accuracy of the estimates wherein the closer the error signal is to zero, the higher the probability that the estimates are accurate. A matrix in the estimation algorithm provides an estimate of the variance of the estimation error.

  18. STAR adaptation of QR algorithm. [program for solving over-determined systems of linear equations

    NASA Technical Reports Server (NTRS)

    Shah, S. N.

    1981-01-01

    The QR algorithm used on a serial computer and executed on the Control Data Corporation 6000 Computer was adapted to execute efficiently on the Control Data STAR-100 computer. How the scalar program was adapted for the STAR-100 and why these adaptations yielded an efficient STAR program is described. Program listings of the old scalar version and the vectorized SL/1 version are presented in the appendices. Execution times for the two versions applied to the same system of linear equations, are compared.

  19. Identification of robust adaptation gene regulatory network parameters using an improved particle swarm optimization algorithm.

    PubMed

    Huang, X N; Ren, H P

    2016-01-01

    Robust adaptation is a critical ability of gene regulatory network (GRN) to survive in a fluctuating environment, which represents the system responding to an input stimulus rapidly and then returning to its pre-stimulus steady state timely. In this paper, the GRN is modeled using the Michaelis-Menten rate equations, which are highly nonlinear differential equations containing 12 undetermined parameters. The robust adaption is quantitatively described by two conflicting indices. To identify the parameter sets in order to confer the GRNs with robust adaptation is a multi-variable, multi-objective, and multi-peak optimization problem, which is difficult to acquire satisfactory solutions especially high-quality solutions. A new best-neighbor particle swarm optimization algorithm is proposed to implement this task. The proposed algorithm employs a Latin hypercube sampling method to generate the initial population. The particle crossover operation and elitist preservation strategy are also used in the proposed algorithm. The simulation results revealed that the proposed algorithm could identify multiple solutions in one time running. Moreover, it demonstrated a superior performance as compared to the previous methods in the sense of detecting more high-quality solutions within an acceptable time. The proposed methodology, owing to its universality and simplicity, is useful for providing the guidance to design GRN with superior robust adaptation. PMID:27323043

  20. New hybrid adaptive neuro-fuzzy algorithms for manipulator control with uncertainties- comparative study.

    PubMed

    Alavandar, Srinivasan; Nigam, M J

    2009-10-01

    Control of an industrial robot includes nonlinearities, uncertainties and external perturbations that should be considered in the design of control laws. In this paper, some new hybrid adaptive neuro-fuzzy control algorithms (ANFIS) have been proposed for manipulator control with uncertainties. These hybrid controllers consist of adaptive neuro-fuzzy controllers and conventional controllers. The outputs of these controllers are applied to produce the final actuation signal based on current position and velocity errors. Numerical simulation using the dynamic model of six DOF puma robot arm with uncertainties shows the effectiveness of the approach in trajectory tracking problems. Performance indices of RMS error, maximum error are used for comparison. It is observed that the hybrid adaptive neuro-fuzzy controllers perform better than only conventional/adaptive controllers and in particular hybrid controller structure consisting of adaptive neuro-fuzzy controller and critically damped inverse dynamics controller.

  1. Design of scheduling and rate-adaptation algorithms for adaptive HTTP streaming

    NASA Astrophysics Data System (ADS)

    Hesse, Stephan

    2013-09-01

    In adaptive HTTP streaming model, the HTTP server stores multiple representations of media content, encoded at different rates. It is the function of a streaming client to select and retrieve segments of appropriate representations to enable continuous media playback under varying network conditions. In this paper we describe design of a control mechanism enabling such a selection and retrieval of media data during streaming session. We also describe the architecture of a streaming client for adaptive HTTP streaming and provide simulation data illustrating the effectiveness of the proposed control mechanism for handling bandwidth fluctuations typical for TCP traffic.

  2. Fast Adapting Ensemble: A New Algorithm for Mining Data Streams with Concept Drift

    PubMed Central

    Ortíz Díaz, Agustín; Ramos-Jiménez, Gonzalo; Frías Blanco, Isvani; Caballero Mota, Yailé; Morales-Bueno, Rafael

    2015-01-01

    The treatment of large data streams in the presence of concept drifts is one of the main challenges in the field of data mining, particularly when the algorithms have to deal with concepts that disappear and then reappear. This paper presents a new algorithm, called Fast Adapting Ensemble (FAE), which adapts very quickly to both abrupt and gradual concept drifts, and has been specifically designed to deal with recurring concepts. FAE processes the learning examples in blocks of the same size, but it does not have to wait for the batch to be complete in order to adapt its base classification mechanism. FAE incorporates a drift detector to improve the handling of abrupt concept drifts and stores a set of inactive classifiers that represent old concepts, which are activated very quickly when these concepts reappear. We compare our new algorithm with various well-known learning algorithms, taking into account, common benchmark datasets. The experiments show promising results from the proposed algorithm (regarding accuracy and runtime), handling different types of concept drifts. PMID:25879051

  3. Commonalities and differences among vectorized beamformers in electromagnetic source imaging.

    PubMed

    Huang, M X; Shih, J J; Lee, R R; Harrington, D L; Thoma, R J; Weisend, M P; Hanlon, F; Paulson, K M; Li, T; Martin, K; Millers, G A; Canive, J M

    2004-01-01

    A number of beamformers have been introduced to localize neuronal activity using magnetoencephalography (MEG) and electroencephalography (EEG). However, currently available information about the major aspects of existing beamformers is incomplete. In the present study, detailed analyses are performed to study the commonalities and differences among vectorized versions of existing beamformers in both theory and practice. In addition, a novel beamformer based on higher-order covariance analysis is introduced. Theoretical formulas are provided on all major aspects of each beamformer; to examine their performance, computer simulations with different levels of correlation and signal-to-noise ratio are studied. Then, an empirical data set of human MEG median-nerve responses with a large number of neuronal generators is analyzed using the different beamformers. The results show substantial differences among existing MEG/EEG beamformers in their ways of describing the spatial map of neuronal activity. Differences in performance are observed among existing beamformers in terms of their spatial resolution, false-positive background activity, and robustness to highly correlated signals. Superior performance is obtained using our novel beamformer with higher-order covariance analysis in simulated data. Excellent agreement is also found between the results of our beamformer and the known neurophysiology of the median-nerve MEG response.

  4. Adaptive switching detection algorithm for iterative-MIMO systems to enable power savings

    NASA Astrophysics Data System (ADS)

    Tadza, N.; Laurenson, D.; Thompson, J. S.

    2014-11-01

    This paper attempts to tackle one of the challenges faced in soft input soft output Multiple Input Multiple Output (MIMO) detection systems, which is to achieve optimal error rate performance with minimal power consumption. This is realized by proposing a new algorithm design that comprises multiple thresholds within the detector that, in real time, specify the receiver behavior according to the current channel in both slow and fast fading conditions, giving it adaptivity. This adaptivity enables energy savings within the system since the receiver chooses whether to accept or to reject the transmission, according to the success rate of detecting thresholds. The thresholds are calculated using the mutual information of the instantaneous channel conditions between the transmitting and receiving antennas of iterative-MIMO systems. In addition, the power saving technique, Dynamic Voltage and Frequency Scaling, helps to reduce the circuit power demands of the adaptive algorithm. This adaptivity has the potential to save up to 30% of the total energy when it is implemented on Xilinx®Virtex-5 simulation hardware. Results indicate the benefits of having this "intelligence" in the adaptive algorithm due to the promising performance-complexity tradeoff parameters in both software and hardware codesign simulation.

  5. A High Fuel Consumption Efficiency Management Scheme for PHEVs Using an Adaptive Genetic Algorithm

    PubMed Central

    Lee, Wah Ching; Tsang, Kim Fung; Chi, Hao Ran; Hung, Faan Hei; Wu, Chung Kit; Chui, Kwok Tai; Lau, Wing Hong; Leung, Yat Wah

    2015-01-01

    A high fuel efficiency management scheme for plug-in hybrid electric vehicles (PHEVs) has been developed. In order to achieve fuel consumption reduction, an adaptive genetic algorithm scheme has been designed to adaptively manage the energy resource usage. The objective function of the genetic algorithm is implemented by designing a fuzzy logic controller which closely monitors and resembles the driving conditions and environment of PHEVs, thus trading off between petrol versus electricity for optimal driving efficiency. Comparison between calculated results and publicized data shows that the achieved efficiency of the fuzzified genetic algorithm is better by 10% than existing schemes. The developed scheme, if fully adopted, would help reduce over 600 tons of CO2 emissions worldwide every day. PMID:25587974

  6. A source reconstruction algorithm based on adaptive hp-FEM for bioluminescence tomography.

    PubMed

    Han, Runqiang; Liang, Jimin; Qu, Xiaochao; Hou, Yanbin; Ren, Nunu; Mao, Jingjing; Tian, Jie

    2009-08-17

    As a novel modality of molecular imaging, bioluminescence tomography (BLT) is used to in vivo observe and measure the biological process at cellular and molecular level in small animals. The core issue of BLT is to determine the distribution of internal bioluminescent sources from optical measurements on external surface. In this paper, a new algorithm is presented for BLT source reconstruction based on adaptive hp-finite element method. Using adaptive mesh refinement strategy and intelligent permissible source region, we can obtain more accurate information about the location and density of sources, with the robustness, stability and efficiency improved. Numerical simulations and physical experiment were both conducted to verify the performance of the proposed algorithm, where the optical data on phantom surface were obtained via Monte Carlo simulation and CCD camera detection, respectively. The results represent the merits and potential of our algorithm for BLT source reconstruction.

  7. A high fuel consumption efficiency management scheme for PHEVs using an adaptive genetic algorithm.

    PubMed

    Lee, Wah Ching; Tsang, Kim Fung; Chi, Hao Ran; Hung, Faan Hei; Wu, Chung Kit; Chui, Kwok Tai; Lau, Wing Hong; Leung, Yat Wah

    2015-01-01

    A high fuel efficiency management scheme for plug-in hybrid electric vehicles (PHEVs) has been developed. In order to achieve fuel consumption reduction, an adaptive genetic algorithm scheme has been designed to adaptively manage the energy resource usage. The objective function of the genetic algorithm is implemented by designing a fuzzy logic controller which closely monitors and resembles the driving conditions and environment of PHEVs, thus trading off between petrol versus electricity for optimal driving efficiency. Comparison between calculated results and publicized data shows that the achieved efficiency of the fuzzified genetic algorithm is better by 10% than existing schemes. The developed scheme, if fully adopted, would help reduce over 600 tons of CO2 emissions worldwide every day.

  8. Optimized adaptation algorithm for HEVC/H.265 dynamic adaptive streaming over HTTP using variable segment duration

    NASA Astrophysics Data System (ADS)

    Irondi, Iheanyi; Wang, Qi; Grecos, Christos

    2016-04-01

    Adaptive video streaming using HTTP has become popular in recent years for commercial video delivery. The recent MPEG-DASH standard allows interoperability and adaptability between servers and clients from different vendors. The delivery of the MPD (Media Presentation Description) files in DASH and the DASH client behaviours are beyond the scope of the DASH standard. However, the different adaptation algorithms employed by the clients do affect the overall performance of the system and users' QoE (Quality of Experience), hence the need for research in this field. Moreover, standard DASH delivery is based on fixed segments of the video. However, there is no standard segment duration for DASH where various fixed segment durations have been employed by different commercial solutions and researchers with their own individual merits. Most recently, the use of variable segment duration in DASH has emerged but only a few preliminary studies without practical implementation exist. In addition, such a technique requires a DASH client to be aware of segment duration variations, and this requirement and the corresponding implications on the DASH system design have not been investigated. This paper proposes a segment-duration-aware bandwidth estimation and next-segment selection adaptation strategy for DASH. Firstly, an MPD file extension scheme to support variable segment duration is proposed and implemented in a realistic hardware testbed. The scheme is tested on a DASH client, and the tests and analysis have led to an insight on the time to download next segment and the buffer behaviour when fetching and switching between segments of different playback durations. Issues like sustained buffering when switching between segments of different durations and slow response to changing network conditions are highlighted and investigated. An enhanced adaptation algorithm is then proposed to accurately estimate the bandwidth and precisely determine the time to download the next

  9. A self-adaptive genetic algorithm to estimate JA model parameters considering minor loops

    NASA Astrophysics Data System (ADS)

    Lu, Hai-liang; Wen, Xi-shan; Lan, Lei; An, Yun-zhu; Li, Xiao-ping

    2015-01-01

    A self-adaptive genetic algorithm for estimating Jiles-Atherton (JA) magnetic hysteresis model parameters is presented. The fitness function is established based on the distances between equidistant key points of normalized hysteresis loops. Linearity function and logarithm function are both adopted to code the five parameters of JA model. Roulette wheel selection is used and the selection pressure is adjusted adaptively by deducting a proportional which depends on current generation common value. The Crossover operator is established by combining arithmetic crossover and multipoint crossover. Nonuniform mutation is improved by adjusting the mutation ratio adaptively. The algorithm is used to estimate the parameters of one kind of silicon-steel sheet's hysteresis loops, and the results are in good agreement with published data.

  10. Enhanced detectability of small objects in correlated clutter using an improved 2-D adaptive lattice algorithm.

    PubMed

    Ffrench, P A; Zeidler, J H; Ku, W H

    1997-01-01

    Two-dimensional (2-D) adaptive filtering is a technique that can be applied to many image processing applications. This paper will focus on the development of an improved 2-D adaptive lattice algorithm (2-D AL) and its application to the removal of correlated clutter to enhance the detectability of small objects in images. The two improvements proposed here are increased flexibility in the calculation of the reflection coefficients and a 2-D method to update the correlations used in the 2-D AL algorithm. The 2-D AL algorithm is shown to predict correlated clutter in image data and the resulting filter is compared with an ideal Wiener-Hopf filter. The results of the clutter removal will be compared to previously published ones for a 2-D least mean square (LMS) algorithm. 2-D AL is better able to predict spatially varying clutter than the 2-D LMS algorithm, since it converges faster to new image properties. Examples of these improvements are shown for a spatially varying 2-D sinusoid in white noise and simulated clouds. The 2-D LMS and 2-D AL algorithms are also shown to enhance a mammogram image for the detection of small microcalcifications and stellate lesions.

  11. Maximal use of minimal libraries through the adaptive substituent reordering algorithm.

    PubMed

    Liang, Fan; Feng, Xiao-jiang; Lowry, Michael; Rabitz, Herschel

    2005-03-31

    This paper describes an adaptive algorithm for interpolation over a library of molecules subjected to synthesis and property assaying. Starting with a coarse sampling of the library compounds, the algorithm finds the optimal substituent orderings on all of the functionalized scaffold sites to allow for accurate property interpolation over all remaining compounds in the full library space. A previous paper introduced the concept of substituent reordering and a smoothness-based criterion to search for optimal orderings (Shenvi, N.; Geremia, J. M.; Rabitz, H. J. Phys. Chem. A 2003, 107, 2066). Here, we propose a data-driven root-mean-squared (RMS) criteria and a combined RMS/smoothness criteria as alternative methods for the discovery of optimal substituent orderings. Error propagation from the property measurements of the sampled compounds is determined to provide confidence intervals on the interpolated molecular property values, and a substituent rescaling technique is introduced to manage poorly designed/sampled libraries. Finally, various factors are explored that can influence the applicability and interpolation quality of the algorithm. An adaptive methodology is proposed to iteratively and efficiently use laboratory experiments to optimize these algorithmic factors, so that the accuracy of property predictions is maximized. The enhanced algorithm is tested on copolymer and transition metal complex libraries, and the results demonstrate the capability of the algorithm to accurately interpolate various properties of both molecular libraries.

  12. Beamforming of Joint Polarization-Space Matched Filtering for Conformal Array

    PubMed Central

    Liu, Lutao; Jiang, Yilin; Tian, Zuoxi

    2013-01-01

    Due to the polarization mismatch of the antenna, the received signal suffers from energy loss. The conventional beamforming algorithms could not be applied to the conformal array because of the varying curvature. In order to overcome the energy loss of the received signal, a novel joint polarization-space matched filtering algorithm for cylindrical conformal array is proposed. First, the snapshot data model of the conformal polarization sensitive array is analyzed. Second, the analytical expression of polarization sensitive array beamforming is derived. Linearly constrained minimum variance (LCMV) beamforming technique is facilitated for the cylindrical conformal array. Third, the idea of joint polarization-space matched filtering is presented, and the principle of joint polarization-space matched filtering is discussed in detail. Theoretical analysis and computer simulation results verify that the conformal polarization sensitive array is more robust than the ordinary conformal array. The proposed algorithm can improve the performance when signal and interference are too close. It can enhance the signal-to-noise ratio (SNR) by adjusting the polarization of the elements of the conformal array, which matches the polarization of the incident signal. PMID:24501582

  13. Beamforming of joint polarization-space matched filtering for conformal array.

    PubMed

    Liu, Lutao; Jiang, Yilin; Wan, Liangtian; Tian, Zuoxi

    2013-01-01

    Due to the polarization mismatch of the antenna, the received signal suffers from energy loss. The conventional beamforming algorithms could not be applied to the conformal array because of the varying curvature. In order to overcome the energy loss of the received signal, a novel joint polarization-space matched filtering algorithm for cylindrical conformal array is proposed. First, the snapshot data model of the conformal polarization sensitive array is analyzed. Second, the analytical expression of polarization sensitive array beamforming is derived. Linearly constrained minimum variance (LCMV) beamforming technique is facilitated for the cylindrical conformal array. Third, the idea of joint polarization-space matched filtering is presented, and the principle of joint polarization-space matched filtering is discussed in detail. Theoretical analysis and computer simulation results verify that the conformal polarization sensitive array is more robust than the ordinary conformal array. The proposed algorithm can improve the performance when signal and interference are too close. It can enhance the signal-to-noise ratio (SNR) by adjusting the polarization of the elements of the conformal array, which matches the polarization of the incident signal.

  14. A self adaptive hybrid enhanced artificial bee colony algorithm for continuous optimization problems.

    PubMed

    Shan, Hai; Yasuda, Toshiyuki; Ohkura, Kazuhiro

    2015-06-01

    The artificial bee colony (ABC) algorithm is one of popular swarm intelligence algorithms that inspired by the foraging behavior of honeybee colonies. To improve the convergence ability, search speed of finding the best solution and control the balance between exploration and exploitation using this approach, we propose a self adaptive hybrid enhanced ABC algorithm in this paper. To evaluate the performance of standard ABC, best-so-far ABC (BsfABC), incremental ABC (IABC), and the proposed ABC algorithms, we implemented numerical optimization problems based on the IEEE Congress on Evolutionary Computation (CEC) 2014 test suite. Our experimental results show the comparative performance of standard ABC, BsfABC, IABC, and the proposed ABC algorithms. According to the results, we conclude that the proposed ABC algorithm is competitive to those state-of-the-art modified ABC algorithms such as BsfABC and IABC algorithms based on the benchmark problems defined by CEC 2014 test suite with dimension sizes of 10, 30, and 50, respectively.

  15. A self adaptive hybrid enhanced artificial bee colony algorithm for continuous optimization problems.

    PubMed

    Shan, Hai; Yasuda, Toshiyuki; Ohkura, Kazuhiro

    2015-06-01

    The artificial bee colony (ABC) algorithm is one of popular swarm intelligence algorithms that inspired by the foraging behavior of honeybee colonies. To improve the convergence ability, search speed of finding the best solution and control the balance between exploration and exploitation using this approach, we propose a self adaptive hybrid enhanced ABC algorithm in this paper. To evaluate the performance of standard ABC, best-so-far ABC (BsfABC), incremental ABC (IABC), and the proposed ABC algorithms, we implemented numerical optimization problems based on the IEEE Congress on Evolutionary Computation (CEC) 2014 test suite. Our experimental results show the comparative performance of standard ABC, BsfABC, IABC, and the proposed ABC algorithms. According to the results, we conclude that the proposed ABC algorithm is competitive to those state-of-the-art modified ABC algorithms such as BsfABC and IABC algorithms based on the benchmark problems defined by CEC 2014 test suite with dimension sizes of 10, 30, and 50, respectively. PMID:25982071

  16. An improved cooperative adaptive cruise control (CACC) algorithm considering invalid communication

    NASA Astrophysics Data System (ADS)

    Wang, Pangwei; Wang, Yunpeng; Yu, Guizhen; Tang, Tieqiao

    2014-05-01

    For the Cooperative Adaptive Cruise Control (CACC) Algorithm, existing research studies mainly focus on how inter-vehicle communication can be used to develop CACC controller, the influence of the communication delays and lags of the actuators to the string stability. However, whether the string stability can be guaranteed when inter-vehicle communication is invalid partially has hardly been considered. This paper presents an improved CACC algorithm based on the sliding mode control theory and analyses the range of CACC controller parameters to maintain string stability. A dynamic model of vehicle spacing deviation in a platoon is then established, and the string stability conditions under improved CACC are analyzed. Unlike the traditional CACC algorithms, the proposed algorithm can ensure the functionality of the CACC system even if inter-vehicle communication is partially invalid. Finally, this paper establishes a platoon of five vehicles to simulate the improved CACC algorithm in MATLAB/Simulink, and the simulation results demonstrate that the improved CACC algorithm can maintain the string stability of a CACC platoon through adjusting the controller parameters and enlarging the spacing to prevent accidents. With guaranteed string stability, the proposed CACC algorithm can prevent oscillation of vehicle spacing and reduce chain collision accidents under real-world circumstances. This research proposes an improved CACC algorithm, which can guarantee the string stability when inter-vehicle communication is invalid.

  17. Transform Domain Robust Variable Step Size Griffiths' Adaptive Algorithm for Noise Cancellation in ECG

    NASA Astrophysics Data System (ADS)

    Hegde, Veena; Deekshit, Ravishankar; Satyanarayana, P. S.

    2011-12-01

    The electrocardiogram (ECG) is widely used for diagnosis of heart diseases. Good quality of ECG is utilized by physicians for interpretation and identification of physiological and pathological phenomena. However, in real situations, ECG recordings are often corrupted by artifacts or noise. Noise severely limits the utility of the recorded ECG and thus needs to be removed, for better clinical evaluation. In the present paper a new noise cancellation technique is proposed for removal of random noise like muscle artifact from ECG signal. A transform domain robust variable step size Griffiths' LMS algorithm (TVGLMS) is proposed for noise cancellation. For the TVGLMS, the robust variable step size has been achieved by using the Griffiths' gradient which uses cross-correlation between the desired signal contaminated with observation or random noise and the input. The algorithm is discrete cosine transform (DCT) based and uses symmetric property of the signal to represent the signal in frequency domain with lesser number of frequency coefficients when compared to that of discrete Fourier transform (DFT). The algorithm is implemented for adaptive line enhancer (ALE) filter which extracts the ECG signal in a noisy environment using LMS filter adaptation. The proposed algorithm is found to have better convergence error/misadjustment when compared to that of ordinary transform domain LMS (TLMS) algorithm, both in the presence of white/colored observation noise. The reduction in convergence error achieved by the new algorithm with desired signal decomposition is found to be lower than that obtained without decomposition. The experimental results indicate that the proposed method is better than traditional adaptive filter using LMS algorithm in the aspects of retaining geometrical characteristics of ECG signal.

  18. Active control of passive acoustic fields: passive synthetic aperture/Doppler beamforming with data from an autonomous vehicle.

    PubMed

    D'Spain, Gerald L; Terrill, Eric; Chadwell, C David; Smith, Jerome A; Lynch, Stephen D

    2006-12-01

    The maneuverability of autonomous underwater vehicles (AUVs) equipped with hull-mounted arrays provides the opportunity to actively modify received acoustic fields to optimize extraction of information. This paper uses ocean acoustic data collected by an AUV-mounted two-dimensional hydrophone array, with overall dimension one-tenth wavelength at 200-500 Hz, to demonstrate aspects of this control through vehicle motion. Source localization is performed using Doppler shifts measured at a set of receiver velocities by both single elements and a physical array. Results show that a source in the presence of a 10-dB higher-level interferer having exactly the same frequency content (as measured by a stationary receiver) is properly localized and that white-noise-constrained adaptive beamforming applied to the physical aperture data in combination with Doppler beamforming provides greater spatial resolution than physical-aperture-alone beamforming and significantly lower sidelobes than single element Doppler beamforming. A new broadband beamformer that adjusts for variations in vehicle velocity on a sample by sample basis is demonstrated with data collected during a high-acceleration maneuver. The importance of including the cost of energy expenditure in determining optimal vehicle motion is demonstrated through simulation, further illustrating how the vehicle characteristics are an integral part of the signal/array processing structure.

  19. Active control of passive acoustic fields: passive synthetic aperture/Doppler beamforming with data from an autonomous vehicle.

    PubMed

    D'Spain, Gerald L; Terrill, Eric; Chadwell, C David; Smith, Jerome A; Lynch, Stephen D

    2006-12-01

    The maneuverability of autonomous underwater vehicles (AUVs) equipped with hull-mounted arrays provides the opportunity to actively modify received acoustic fields to optimize extraction of information. This paper uses ocean acoustic data collected by an AUV-mounted two-dimensional hydrophone array, with overall dimension one-tenth wavelength at 200-500 Hz, to demonstrate aspects of this control through vehicle motion. Source localization is performed using Doppler shifts measured at a set of receiver velocities by both single elements and a physical array. Results show that a source in the presence of a 10-dB higher-level interferer having exactly the same frequency content (as measured by a stationary receiver) is properly localized and that white-noise-constrained adaptive beamforming applied to the physical aperture data in combination with Doppler beamforming provides greater spatial resolution than physical-aperture-alone beamforming and significantly lower sidelobes than single element Doppler beamforming. A new broadband beamformer that adjusts for variations in vehicle velocity on a sample by sample basis is demonstrated with data collected during a high-acceleration maneuver. The importance of including the cost of energy expenditure in determining optimal vehicle motion is demonstrated through simulation, further illustrating how the vehicle characteristics are an integral part of the signal/array processing structure. PMID:17225392

  20. Genetic algorithm approach for adaptive power and subcarrier allocation in multi-user OFDM systems

    NASA Astrophysics Data System (ADS)

    Reddy, Y. B.; Naraghi-Pour, Mort

    2007-04-01

    In this paper, a novel genetic algorithm application is proposed for adaptive power and subcarrier allocation in multi-user Orthogonal Frequency Division Multiplexing (OFDM) systems. To test the application, a simple genetic algorithm was implemented in MATLAB language. With the goal of minimizing the overall transmit power while ensuring the fulfillment of each user's rate and bit error rate (BER) requirements, the proposed algorithm acquires the needed allocation through genetic search. The simulations were tested for BER 0.1 to 0.00001, data rate of 256 bit per OFDM block and chromosome length of 128. The results show that genetic algorithm outperforms the results in [3] in subcarrier allocation. The convergence of GA model with 8 users and 128 subcarriers performs better in power requirement compared to that in [4] but converges more slowly.

  1. Self-adaptive predictor-corrector algorithm for static nonlinear structural analysis

    NASA Technical Reports Server (NTRS)

    Padovan, J.

    1981-01-01

    A multiphase selfadaptive predictor corrector type algorithm was developed. This algorithm enables the solution of highly nonlinear structural responses including kinematic, kinetic and material effects as well as pro/post buckling behavior. The strategy involves three main phases: (1) the use of a warpable hyperelliptic constraint surface which serves to upperbound dependent iterate excursions during successive incremental Newton Ramphson (INR) type iterations; (20 uses an energy constraint to scale the generation of successive iterates so as to maintain the appropriate form of local convergence behavior; (3) the use of quality of convergence checks which enable various self adaptive modifications of the algorithmic structure when necessary. The restructuring is achieved by tightening various conditioning parameters as well as switch to different algorithmic levels to improve the convergence process. The capabilities of the procedure to handle various types of static nonlinear structural behavior are illustrated.

  2. Error bounds of adaptive dynamic programming algorithms for solving undiscounted optimal control problems.

    PubMed

    Liu, Derong; Li, Hongliang; Wang, Ding

    2015-06-01

    In this paper, we establish error bounds of adaptive dynamic programming algorithms for solving undiscounted infinite-horizon optimal control problems of discrete-time deterministic nonlinear systems. We consider approximation errors in the update equations of both value function and control policy. We utilize a new assumption instead of the contraction assumption in discounted optimal control problems. We establish the error bounds for approximate value iteration based on a new error condition. Furthermore, we also establish the error bounds for approximate policy iteration and approximate optimistic policy iteration algorithms. It is shown that the iterative approximate value function can converge to a finite neighborhood of the optimal value function under some conditions. To implement the developed algorithms, critic and action neural networks are used to approximate the value function and control policy, respectively. Finally, a simulation example is given to demonstrate the effectiveness of the developed algorithms.

  3. Acoustic source identification using a Generalized Weighted Inverse Beamforming technique

    NASA Astrophysics Data System (ADS)

    Presezniak, Flavio; Zavala, Paulo A. G.; Steenackers, Gunther; Janssens, Karl; Arruda, Jose R. F.; Desmet, Wim; Guillaume, Patrick

    2012-10-01

    In the last years, acoustic source identification has gained special attention, mainly due to new environmental norms, urbanization problems and more demanding acoustic comfort expectation of consumers. From the current methods, beamforming techniques are of common use, since normally demands affordable data acquisition effort, while producing clear source identification in most of the applications. In order to improve the source identification quality, this work presents a method, based on the Generalized Inverse Beamforming, that uses a weighted pseudo-inverse approach and an optimization procedure, called Weighted Generalized Inverse Beamforming. To validate this method, a simple case of two compact sources in close vicinity in coherent radiation was investigated by numerical and experimental assessment. Weighted generalized inverse results are compared to the ones obtained by the conventional beamforming, MUltiple Signal Classification, and Generalized Inverse Beamforming. At the end, the advantages of the proposed method are outlined together with the computational effort increase compared to the Generalized Inverse Beamforming.

  4. A parallel second-order adaptive mesh algorithm for incompressible flow in porous media.

    PubMed

    Pau, George S H; Almgren, Ann S; Bell, John B; Lijewski, Michael J

    2009-11-28

    In this paper, we present a second-order accurate adaptive algorithm for solving multi-phase, incompressible flow in porous media. We assume a multi-phase form of Darcy's law with relative permeabilities given as a function of the phase saturation. The remaining equations express conservation of mass for the fluid constituents. In this setting, the total velocity, defined to be the sum of the phase velocities, is divergence free. The basic integration method is based on a total-velocity splitting approach in which we solve a second-order elliptic pressure equation to obtain a total velocity. This total velocity is then used to recast component conservation equations as nonlinear hyperbolic equations. Our approach to adaptive refinement uses a nested hierarchy of logically rectangular grids with simultaneous refinement of the grids in both space and time. The integration algorithm on the grid hierarchy is a recursive procedure in which coarse grids are advanced in time, fine grids are advanced multiple steps to reach the same time as the coarse grids and the data at different levels are then synchronized. The single-grid algorithm is described briefly, but the emphasis here is on the time-stepping procedure for the adaptive hierarchy. Numerical examples are presented to demonstrate the algorithm's accuracy and convergence properties and to illustrate the behaviour of the method.

  5. A Parallel Second-Order Adaptive Mesh Algorithm for Incompressible Flow in Porous Media

    SciTech Connect

    Pau, George Shu Heng; Almgren, Ann S.; Bell, John B.; Lijewski, Michael J.

    2008-04-01

    In this paper we present a second-order accurate adaptive algorithm for solving multiphase, incompressible flows in porous media. We assume a multiphase form of Darcy's law with relative permeabilities given as a function of the phase saturation. The remaining equations express conservation of mass for the fluid constituents. In this setting the total velocity, defined to be the sum of the phase velocities, is divergence-free. The basic integration method is based on a total-velocity splitting approach in which we solve a second-order elliptic pressure equation to obtain a total velocity. This total velocity is then used to recast component conservation equations as nonlinear hyperbolic equations. Our approach to adaptive refinement uses a nested hierarchy of logically rectangular grids with simultaneous refinement of the grids in both space and time. The integration algorithm on the grid hierarchy is a recursive procedure in which coarse grids are advanced in time, fine grids areadvanced multiple steps to reach the same time as the coarse grids and the data atdifferent levels are then synchronized. The single grid algorithm is described briefly,but the emphasis here is on the time-stepping procedure for the adaptive hierarchy. Numerical examples are presented to demonstrate the algorithm's accuracy and convergence properties and to illustrate the behavior of the method.

  6. An adaptive metamodel-based global optimization algorithm for black-box type problems

    NASA Astrophysics Data System (ADS)

    Jie, Haoxiang; Wu, Yizhong; Ding, Jianwan

    2015-11-01

    In this article, an adaptive metamodel-based global optimization (AMGO) algorithm is presented to solve unconstrained black-box problems. In the AMGO algorithm, a type of hybrid model composed of kriging and augmented radial basis function (RBF) is used as the surrogate model. The weight factors of hybrid model are adaptively selected in the optimization process. To balance the local and global search, a sub-optimization problem is constructed during each iteration to determine the new iterative points. As numerical experiments, six standard two-dimensional test functions are selected to show the distributions of iterative points. The AMGO algorithm is also tested on seven well-known benchmark optimization problems and contrasted with three representative metamodel-based optimization methods: efficient global optimization (EGO), GutmannRBF and hybrid and adaptive metamodel (HAM). The test results demonstrate the efficiency and robustness of the proposed method. The AMGO algorithm is finally applied to the structural design of the import and export chamber of a cycloid gear pump, achieving satisfactory results.

  7. A structured multi-block solution-adaptive mesh algorithm with mesh quality assessment

    NASA Technical Reports Server (NTRS)

    Ingram, Clint L.; Laflin, Kelly R.; Mcrae, D. Scott

    1995-01-01

    The dynamic solution adaptive grid algorithm, DSAGA3D, is extended to automatically adapt 2-D structured multi-block grids, including adaption of the block boundaries. The extension is general, requiring only input data concerning block structure, connectivity, and boundary conditions. Imbedded grid singular points are permitted, but must be prevented from moving in space. Solutions for workshop cases 1 and 2 are obtained on multi-block grids and illustrate both increased resolution of and alignment with the solution. A mesh quality assessment criteria is proposed to determine how well a given mesh resolves and aligns with the solution obtained upon it. The criteria is used to evaluate the grid quality for solutions of workshop case 6 obtained on both static and dynamically adapted grids. The results indicate that this criteria shows promise as a means of evaluating resolution.

  8. Algorithm for localized adaptive diffuse optical tomography and its application in bioluminescence tomography

    NASA Astrophysics Data System (ADS)

    Naser, Mohamed A.; Patterson, Michael S.; Wong, John W.

    2014-04-01

    A reconstruction algorithm for diffuse optical tomography based on diffusion theory and finite element method is described. The algorithm reconstructs the optical properties in a permissible domain or region-of-interest to reduce the number of unknowns. The algorithm can be used to reconstruct optical properties for a segmented object (where a CT-scan or MRI is available) or a non-segmented object. For the latter, an adaptive segmentation algorithm merges contiguous regions with similar optical properties thereby reducing the number of unknowns. In calculating the Jacobian matrix the algorithm uses an efficient direct method so the required time is comparable to that needed for a single forward calculation. The reconstructed optical properties using segmented, non-segmented, and adaptively segmented 3D mouse anatomy (MOBY) are used to perform bioluminescence tomography (BLT) for two simulated internal sources. The BLT results suggest that the accuracy of reconstruction of total source power obtained without the segmentation provided by an auxiliary imaging method such as x-ray CT is comparable to that obtained when using perfect segmentation.

  9. Parallel paving: An algorithm for generating distributed, adaptive, all-quadrilateral meshes on parallel computers

    SciTech Connect

    Lober, R.R.; Tautges, T.J.; Vaughan, C.T.

    1997-03-01

    Paving is an automated mesh generation algorithm which produces all-quadrilateral elements. It can additionally generate these elements in varying sizes such that the resulting mesh adapts to a function distribution, such as an error function. While powerful, conventional paving is a very serial algorithm in its operation. Parallel paving is the extension of serial paving into parallel environments to perform the same meshing functions as conventional paving only on distributed, discretized models. This extension allows large, adaptive, parallel finite element simulations to take advantage of paving`s meshing capabilities for h-remap remeshing. A significantly modified version of the CUBIT mesh generation code has been developed to host the parallel paving algorithm and demonstrate its capabilities on both two dimensional and three dimensional surface geometries and compare the resulting parallel produced meshes to conventionally paved meshes for mesh quality and algorithm performance. Sandia`s {open_quotes}tiling{close_quotes} dynamic load balancing code has also been extended to work with the paving algorithm to retain parallel efficiency as subdomains undergo iterative mesh refinement.

  10. Adaptive vector quantization of MR images using online k-means algorithm

    NASA Astrophysics Data System (ADS)

    Shademan, Azad; Zia, Mohammad A.

    2001-12-01

    The k-means algorithm is widely used to design image codecs using vector quantization (VQ). In this paper, we focus on an adaptive approach to implement a VQ technique using the online version of k-means algorithm, in which the size of the codebook is adapted continuously to the statistical behavior of the image. Based on the statistical analysis of the feature space, a set of thresholds are designed such that those codewords corresponding to the low-density clusters would be removed from the codebook and hence, resulting in a higher bit-rate efficiency. Applications of this approach would be in telemedicine, where sequences of highly correlated medical images, e.g. consecutive brain slices, are transmitted over a low bit-rate channel. We have applied this algorithm on magnetic resonance (MR) images and the simulation results on a sample sequence are given. The proposed method has been compared to the standard k-means algorithm in terms of PSNR, MSE, and elapsed time to complete the algorithm.

  11. Adaptive-mesh-based algorithm for fluorescence molecular tomography using an analytical solution.

    PubMed

    Wang, Daifa; Song, Xiaolei; Bai, Jing

    2007-07-23

    Fluorescence molecular tomography (FMT) has become an important method for in-vivo imaging of small animals. It has been widely used for tumor genesis, cancer detection, metastasis, drug discovery, and gene therapy. In this study, an algorithm for FMT is proposed to obtain accurate and fast reconstruction by combining an adaptive mesh refinement technique and an analytical solution of diffusion equation. Numerical studies have been performed on a parallel plate FMT system with matching fluid. The reconstructions obtained show that the algorithm is efficient in computation time, and they also maintain image quality.

  12. An adaptive inverse iteration algorithm using interpolating multiwavelets for structural eigenvalue problems

    NASA Astrophysics Data System (ADS)

    Wang, Youming; Chen, Xuefeng; He, Zhengjia

    2011-02-01

    Structural eigenvalues have been broadly applied in modal analysis, damage detection, vibration control, etc. In this paper, the interpolating multiwavelets are custom designed based on stable completion method to solve structural eigenvalue problems. The operator-orthogonality of interpolating multiwavelets gives rise to highly sparse multilevel stiffness and mass matrices of structural eigenvalue problems and permits the incremental computation of the eigenvalue solution in an efficient manner. An adaptive inverse iteration algorithm using the interpolating multiwavelets is presented to solve structural eigenvalue problems. Numerical examples validate the accuracy and efficiency of the proposed algorithm.

  13. Anticipation versus adaptation in Evolutionary Algorithms: The case of Non-Stationary Clustering

    NASA Astrophysics Data System (ADS)

    González, A. I.; Graña, M.; D'Anjou, A.; Torrealdea, F. J.

    1998-07-01

    From the technological point of view is usually more important to ensure the ability to react promptly to changing environmental conditions than to try to forecast them. Evolution Algorithms were proposed initially to drive the adaptation of complex systems to varying or uncertain environments. In the general setting, the adaptive-anticipatory dilemma reduces itself to the placement of the interaction with the environment in the computational schema. Adaptation consists of the estimation of the proper parameters from present data in order to react to a present environment situation. Anticipation consists of the estimation from present data in order to react to a future environment situation. This duality is expressed in the Evolutionary Computation paradigm by the precise location of the consideration of present data in the computation of the individuals fitness function. In this paper we consider several instances of Evolutionary Algorithms applied to precise problem and perform an experiment that test their response as anticipative and adaptive mechanisms. The non stationary problem considered is that of Non Stationary Clustering, more precisely the adaptive Color Quantization of image sequences. The experiment illustrates our ideas and gives some quantitative results that may support the proposition of the Evolutionary Computation paradigm for other tasks that require the interaction with a Non-Stationary environment.

  14. Genetic algorithm based adaptive neural network ensemble and its application in predicting carbon flux

    USGS Publications Warehouse

    Xue, Y.; Liu, S.; Hu, Y.; Yang, J.; Chen, Q.

    2007-01-01

    To improve the accuracy in prediction, Genetic Algorithm based Adaptive Neural Network Ensemble (GA-ANNE) is presented. Intersections are allowed between different training sets based on the fuzzy clustering analysis, which ensures the diversity as well as the accuracy of individual Neural Networks (NNs). Moreover, to improve the accuracy of the adaptive weights of individual NNs, GA is used to optimize the cluster centers. Empirical results in predicting carbon flux of Duke Forest reveal that GA-ANNE can predict the carbon flux more accurately than Radial Basis Function Neural Network (RBFNN), Bagging NN ensemble, and ANNE. ?? 2007 IEEE.

  15. Algorithme d'adaptation du filtre de Kalman aux variations soudaines de bruit

    NASA Astrophysics Data System (ADS)

    Canciu, Vintila

    This research targets the case of Kalman filtering as applied to linear time-invariant systems having unknown process noise covariance and measurement noise covariance matrices and addresses the problem represented by the incomplete a priori knowledge of these two filter initialization parameters. The goal of this research is to determine in realtime both the process covariance matrix and the noise covariance matrix in the context of adaptive Kalman filtering. The resultant filter, called evolutionary adaptive Kalman filter, is able to adapt to sudden noise variations and constitutes a hybrid solution for adaptive Kalman filtering based on metaheuristic algorithms. MATLAB/Simulink simulation using several processes and covariance matrices plus comparison with other filters was selected as validation method. The Cramer-Rae Lower Bound (CRLB) was used as performance criterion. The thesis begins with a description of the problem under consideration (the design of a Kalman filter that is able to adapt to sudden noise variations) followed by a typical application (INS-GPS integrated navigation system) and by a statistical analysis of publications related to adaptive Kalman filtering. Next, the thesis presents the current architectures of the adaptive Kalman filtering: the innovation adaptive estimator (IAE) and the multiple model adaptive estimator (MMAE). It briefly presents their formulation, their behavior, and the limit of their performances. The thesis continues with the architectural synthesis of the evolutionary adaptive Kalman filter. The steps involved in the solution of the problem under consideration is also presented: an analysis of Kalman filtering and sub-optimal filtering methods, a comparison of current adaptive Kalman and sub-optimal filtering methods, the emergence of evolutionary adaptive Kalman filter as an enrichment of sub-optimal filtering with the help of biological-inspired computational intelligence methods, and the step-by-step architectural

  16. Optimized Hyper Beamforming of Linear Antenna Arrays Using Collective Animal Behaviour

    PubMed Central

    Ram, Gopi; Mandal, Durbadal; Kar, Rajib; Ghoshal, Sakti Prasad

    2013-01-01

    A novel optimization technique which is developed on mimicking the collective animal behaviour (CAB) is applied for the optimal design of hyper beamforming of linear antenna arrays. Hyper beamforming is based on sum and difference beam patterns of the array, each raised to the power of a hyperbeam exponent parameter. The optimized hyperbeam is achieved by optimization of current excitation weights and uniform interelement spacing. As compared to conventional hyper beamforming of linear antenna array, real coded genetic algorithm (RGA), particle swarm optimization (PSO), and differential evolution (DE) applied to the hyper beam of the same array can achieve reduction in sidelobe level (SLL) and same or less first null beam width (FNBW), keeping the same value of hyperbeam exponent. Again, further reductions of sidelobe level (SLL) and first null beam width (FNBW) have been achieved by the proposed collective animal behaviour (CAB) algorithm. CAB finds near global optimal solution unlike RGA, PSO, and DE in the present problem. The above comparative optimization is illustrated through 10-, 14-, and 20-element linear antenna arrays to establish the optimization efficacy of CAB. PMID:23970843

  17. A DVH-guided IMRT optimization algorithm for automatic treatment planning and adaptive radiotherapy replanning

    SciTech Connect

    Zarepisheh, Masoud; Li, Nan; Long, Troy; Romeijn, H. Edwin; Tian, Zhen; Jia, Xun; Jiang, Steve B.

    2014-06-15

    Purpose: To develop a novel algorithm that incorporates prior treatment knowledge into intensity modulated radiation therapy optimization to facilitate automatic treatment planning and adaptive radiotherapy (ART) replanning. Methods: The algorithm automatically creates a treatment plan guided by the DVH curves of a reference plan that contains information on the clinician-approved dose-volume trade-offs among different targets/organs and among different portions of a DVH curve for an organ. In ART, the reference plan is the initial plan for the same patient, while for automatic treatment planning the reference plan is selected from a library of clinically approved and delivered plans of previously treated patients with similar medical conditions and geometry. The proposed algorithm employs a voxel-based optimization model and navigates the large voxel-based Pareto surface. The voxel weights are iteratively adjusted to approach a plan that is similar to the reference plan in terms of the DVHs. If the reference plan is feasible but not Pareto optimal, the algorithm generates a Pareto optimal plan with the DVHs better than the reference ones. If the reference plan is too restricting for the new geometry, the algorithm generates a Pareto plan with DVHs close to the reference ones. In both cases, the new plans have similar DVH trade-offs as the reference plans. Results: The algorithm was tested using three patient cases and found to be able to automatically adjust the voxel-weighting factors in order to generate a Pareto plan with similar DVH trade-offs as the reference plan. The algorithm has also been implemented on a GPU for high efficiency. Conclusions: A novel prior-knowledge-based optimization algorithm has been developed that automatically adjust the voxel weights and generate a clinical optimal plan at high efficiency. It is found that the new algorithm can significantly improve the plan quality and planning efficiency in ART replanning and automatic treatment

  18. Adjoint-Based Algorithms for Adaptation and Design Optimizations on Unstructured Grids

    NASA Technical Reports Server (NTRS)

    Nielsen, Eric J.

    2006-01-01

    Schemes based on discrete adjoint algorithms present several exciting opportunities for significantly advancing the current state of the art in computational fluid dynamics. Such methods provide an extremely efficient means for obtaining discretely consistent sensitivity information for hundreds of design variables, opening the door to rigorous, automated design optimization of complex aerospace configuration using the Navier-Stokes equation. Moreover, the discrete adjoint formulation provides a mathematically rigorous foundation for mesh adaptation and systematic reduction of spatial discretization error. Error estimates are also an inherent by-product of an adjoint-based approach, valuable information that is virtually non-existent in today's large-scale CFD simulations. An overview of the adjoint-based algorithm work at NASA Langley Research Center is presented, with examples demonstrating the potential impact on complex computational problems related to design optimization as well as mesh adaptation.

  19. An adaptive displacement estimation algorithm for improved reconstruction of thermal strain.

    PubMed

    Ding, Xuan; Dutta, Debaditya; Mahmoud, Ahmed M; Tillman, Bryan; Leers, Steven A; Kim, Kang

    2015-01-01

    Thermal strain imaging (TSI) can be used to differentiate between lipid and water-based tissues in atherosclerotic arteries. However, detecting small lipid pools in vivo requires accurate and robust displacement estimation over a wide range of displacement magnitudes. Phase-shift estimators such as Loupas' estimator and time-shift estimators such as normalized cross-correlation (NXcorr) are commonly used to track tissue displacements. However, Loupas' estimator is limited by phase-wrapping and NXcorr performs poorly when the SNR is low. In this paper, we present an adaptive displacement estimation algorithm that combines both Loupas' estimator and NXcorr. We evaluated this algorithm using computer simulations and an ex vivo human tissue sample. Using 1-D simulation studies, we showed that when the displacement magnitude induced by thermal strain was >λ/8 and the electronic system SNR was >25.5 dB, the NXcorr displacement estimate was less biased than the estimate found using Loupas' estimator. On the other hand, when the displacement magnitude was ≤λ/4 and the electronic system SNR was ≤25.5 dB, Loupas' estimator had less variance than NXcorr. We used these findings to design an adaptive displacement estimation algorithm. Computer simulations of TSI showed that the adaptive displacement estimator was less biased than either Loupas' estimator or NXcorr. Strain reconstructed from the adaptive displacement estimates improved the strain SNR by 43.7 to 350% and the spatial accuracy by 1.2 to 23.0% (P < 0.001). An ex vivo human tissue study provided results that were comparable to computer simulations. The results of this study showed that a novel displacement estimation algorithm, which combines two different displacement estimators, yielded improved displacement estimation and resulted in improved strain reconstruction.

  20. Spatio-temporal adaptation algorithm for two-dimensional reacting flows

    NASA Astrophysics Data System (ADS)

    Pervaiz, Mehtab M.; Baron, Judson R.

    1988-01-01

    A spatio-temporal adaptive algorithm for solving the unsteady Euler equations with chemical source terms is presented. Quadrilateral cells are used in two spatial dimensions which allow for embedded meshes tracking moving flow features with spatially varying time-steps which are multiples of global minimum time-steps. Blast wave interactions corresponding to a perfect gas (frozen) and a Lighthill dissociating gas (nonequilibrium) are considered for circular arc cascade and 90 degree bend duct geometries.

  1. An Adaptive Displacement Estimation Algorithm for Improved Reconstruction of Thermal Strain

    PubMed Central

    Ding, Xuan; Dutta, Debaditya; Mahmoud, Ahmed M.; Tillman, Bryan; Leers, Steven A.; Kim, Kang

    2014-01-01

    Thermal strain imaging (TSI) can be used to differentiate between lipid and water-based tissues in atherosclerotic arteries. However, detecting small lipid pools in vivo requires accurate and robust displacement estimation over a wide range of displacement magnitudes. Phase-shift estimators such as Loupas’ estimator and time-shift estimators like normalized cross-correlation (NXcorr) are commonly used to track tissue displacements. However, Loupas’ estimator is limited by phase-wrapping and NXcorr performs poorly when the signal-to-noise ratio (SNR) is low. In this paper, we present an adaptive displacement estimation algorithm that combines both Loupas’ estimator and NXcorr. We evaluated this algorithm using computer simulations and an ex-vivo human tissue sample. Using 1-D simulation studies, we showed that when the displacement magnitude induced by thermal strain was >λ/8 and the electronic system SNR was >25.5 dB, the NXcorr displacement estimate was less biased than the estimate found using Loupas’ estimator. On the other hand, when the displacement magnitude was ≤λ/4 and the electronic system SNR was ≤25.5 dB, Loupas’ estimator had less variance than NXcorr. We used these findings to design an adaptive displacement estimation algorithm. Computer simulations of TSI using Field II showed that the adaptive displacement estimator was less biased than either Loupas’ estimator or NXcorr. Strain reconstructed from the adaptive displacement estimates improved the strain SNR by 43.7–350% and the spatial accuracy by 1.2–23.0% (p < 0.001). An ex-vivo human tissue study provided results that were comparable to computer simulations. The results of this study showed that a novel displacement estimation algorithm, which combines two different displacement estimators, yielded improved displacement estimation and results in improved strain reconstruction. PMID:25585398

  2. Incrementing data quality of multi-frequency echograms using the Adaptive Wiener Filter (AWF) denoising algorithm

    NASA Astrophysics Data System (ADS)

    Peña, M.

    2016-10-01

    Achieving acceptable signal-to-noise ratio (SNR) can be difficult when working in sparsely populated waters and/or when species have low scattering such as fluid filled animals. The increasing use of higher frequencies and the study of deeper depths in fisheries acoustics, as well as the use of commercial vessels, is raising the need to employ good denoising algorithms. The use of a lower Sv threshold to remove noise or unwanted targets is not suitable in many cases and increases the relative background noise component in the echogram, demanding more effectiveness from denoising algorithms. The Adaptive Wiener Filter (AWF) denoising algorithm is presented in this study. The technique is based on the AWF commonly used in digital photography and video enhancement. The algorithm firstly increments the quality of the data with a variance-dependent smoothing, before estimating the noise level as the envelope of the Sv minima. The AWF denoising algorithm outperforms existing algorithms in the presence of gaussian, speckle and salt & pepper noise, although impulse noise needs to be previously removed. Cleaned echograms present homogenous echotraces with outlined edges.

  3. Adaptive local backlight dimming algorithm based on local histogram and image characteristics

    NASA Astrophysics Data System (ADS)

    Nadernejad, Ehsan; Burini, Nino; Korhonen, Jari; Forchhammer, Søren; Mantel, Claire

    2013-02-01

    Liquid Crystal Display (LCDs) with Light Emitting Diode (LED) backlight is a very popular display technology, used for instance in television sets, monitors and mobile phones. This paper presents a new backlight dimming algorithm that exploits the characteristics of the target image, such as the local histograms and the average pixel intensity of each backlight segment, to reduce the power consumption of the backlight and enhance image quality. The local histogram of the pixels within each backlight segment is calculated and, based on this average, an adaptive quantile value is extracted. A classification into three classes based on the average luminance value is performed and, depending on the image luminance class, the extracted information on the local histogram determines the corresponding backlight value. The proposed method has been applied on two modeled screens: one with a high resolution direct-lit backlight, and the other screen with 16 edge-lit backlight segments placed in two columns and eight rows. We have compared the proposed algorithm against several known backlight dimming algorithms by simulations; and the results show that the proposed algorithm provides better trade-off between power consumption and image quality preservation than the other algorithms representing the state of the art among feature based backlight algorithms.

  4. Phase-distortion correction based on stochastic parallel proportional-integral-derivative algorithm for high-resolution adaptive optics

    NASA Astrophysics Data System (ADS)

    Sun, Yang; Wu, Ke-nan; Gao, Hong; Jin, Yu-qi

    2015-02-01

    A novel optimization method, stochastic parallel proportional-integral-derivative (SPPID) algorithm, is proposed for high-resolution phase-distortion correction in wave-front sensorless adaptive optics (WSAO). To enhance the global search and self-adaptation of stochastic parallel gradient descent (SPGD) algorithm, residual error and its temporal integration of performance metric are added in to incremental control signal's calculation. On the basis of the maximum fitting rate between real wave-front and corrector, a goal value of metric is set as the reference. The residual error of the metric relative to reference is transformed into proportional and integration terms to produce adaptive step size updating law of SPGD algorithm. The adaptation of step size leads blind optimization to desired goal and helps escape from local extrema. Different from conventional proportional-integral -derivative (PID) algorithm, SPPID algorithm designs incremental control signal as PI-by-D for adaptive adjustment of control law in SPGD algorithm. Experiments of high-resolution phase-distortion correction in "frozen" turbulences based on influence function coefficients optimization were carried out respectively using 128-by-128 typed spatial light modulators, photo detector and control computer. Results revealed the presented algorithm offered better performance in both cases. The step size update based on residual error and its temporal integration was justified to resolve severe local lock-in problem of SPGD algorithm used in high -resolution adaptive optics.

  5. An adaptive image enhancement technique by combining cuckoo search and particle swarm optimization algorithm.

    PubMed

    Ye, Zhiwei; Wang, Mingwei; Hu, Zhengbing; Liu, Wei

    2015-01-01

    Image enhancement is an important procedure of image processing and analysis. This paper presents a new technique using a modified measure and blending of cuckoo search and particle swarm optimization (CS-PSO) for low contrast images to enhance image adaptively. In this way, contrast enhancement is obtained by global transformation of the input intensities; it employs incomplete Beta function as the transformation function and a novel criterion for measuring image quality considering three factors which are threshold, entropy value, and gray-level probability density of the image. The enhancement process is a nonlinear optimization problem with several constraints. CS-PSO is utilized to maximize the objective fitness criterion in order to enhance the contrast and detail in an image by adapting the parameters of a novel extension to a local enhancement technique. The performance of the proposed method has been compared with other existing techniques such as linear contrast stretching, histogram equalization, and evolutionary computing based image enhancement methods like backtracking search algorithm, differential search algorithm, genetic algorithm, and particle swarm optimization in terms of processing time and image quality. Experimental results demonstrate that the proposed method is robust and adaptive and exhibits the better performance than other methods involved in the paper. PMID:25784928

  6. An adaptive importance sampling algorithm for Bayesian inversion with multimodal distributions

    SciTech Connect

    Li, Weixuan; Lin, Guang

    2015-03-21

    Parametric uncertainties are encountered in the simulations of many physical systems, and may be reduced by an inverse modeling procedure that calibrates the simulation results to observations on the real system being simulated. Following Bayes’ rule, a general approach for inverse modeling problems is to sample from the posterior distribution of the uncertain model parameters given the observations. However, the large number of repetitive forward simulations required in the sampling process could pose a prohibitive computational burden. This difficulty is particularly challenging when the posterior is multimodal. We present in this paper an adaptive importance sampling algorithm to tackle these challenges. Two essential ingredients of the algorithm are: 1) a Gaussian mixture (GM) model adaptively constructed as the proposal distribution to approximate the possibly multimodal target posterior, and 2) a mixture of polynomial chaos (PC) expansions, built according to the GM proposal, as a surrogate model to alleviate the computational burden caused by computational-demanding forward model evaluations. In three illustrative examples, the proposed adaptive importance sampling algorithm demonstrates its capabilities of automatically finding a GM proposal with an appropriate number of modes for the specific problem under study, and obtaining a sample accurately and efficiently representing the posterior with limited number of forward simulations.

  7. An adaptive image enhancement technique by combining cuckoo search and particle swarm optimization algorithm.

    PubMed

    Ye, Zhiwei; Wang, Mingwei; Hu, Zhengbing; Liu, Wei

    2015-01-01

    Image enhancement is an important procedure of image processing and analysis. This paper presents a new technique using a modified measure and blending of cuckoo search and particle swarm optimization (CS-PSO) for low contrast images to enhance image adaptively. In this way, contrast enhancement is obtained by global transformation of the input intensities; it employs incomplete Beta function as the transformation function and a novel criterion for measuring image quality considering three factors which are threshold, entropy value, and gray-level probability density of the image. The enhancement process is a nonlinear optimization problem with several constraints. CS-PSO is utilized to maximize the objective fitness criterion in order to enhance the contrast and detail in an image by adapting the parameters of a novel extension to a local enhancement technique. The performance of the proposed method has been compared with other existing techniques such as linear contrast stretching, histogram equalization, and evolutionary computing based image enhancement methods like backtracking search algorithm, differential search algorithm, genetic algorithm, and particle swarm optimization in terms of processing time and image quality. Experimental results demonstrate that the proposed method is robust and adaptive and exhibits the better performance than other methods involved in the paper.

  8. An adaptive importance sampling algorithm for Bayesian inversion with multimodal distributions

    SciTech Connect

    Li, Weixuan; Lin, Guang

    2015-08-01

    Parametric uncertainties are encountered in the simulations of many physical systems, and may be reduced by an inverse modeling procedure that calibrates the simulation results to observations on the real system being simulated. Following Bayes' rule, a general approach for inverse modeling problems is to sample from the posterior distribution of the uncertain model parameters given the observations. However, the large number of repetitive forward simulations required in the sampling process could pose a prohibitive computational burden. This difficulty is particularly challenging when the posterior is multimodal. We present in this paper an adaptive importance sampling algorithm to tackle these challenges. Two essential ingredients of the algorithm are: 1) a Gaussian mixture (GM) model adaptively constructed as the proposal distribution to approximate the possibly multimodal target posterior, and 2) a mixture of polynomial chaos (PC) expansions, built according to the GM proposal, as a surrogate model to alleviate the computational burden caused by computational-demanding forward model evaluations. In three illustrative examples, the proposed adaptive importance sampling algorithm demonstrates its capabilities of automatically finding a GM proposal with an appropriate number of modes for the specific problem under study, and obtaining a sample accurately and efficiently representing the posterior with limited number of forward simulations.

  9. An Adaptive Image Enhancement Technique by Combining Cuckoo Search and Particle Swarm Optimization Algorithm

    PubMed Central

    Ye, Zhiwei; Wang, Mingwei; Hu, Zhengbing; Liu, Wei

    2015-01-01

    Image enhancement is an important procedure of image processing and analysis. This paper presents a new technique using a modified measure and blending of cuckoo search and particle swarm optimization (CS-PSO) for low contrast images to enhance image adaptively. In this way, contrast enhancement is obtained by global transformation of the input intensities; it employs incomplete Beta function as the transformation function and a novel criterion for measuring image quality considering three factors which are threshold, entropy value, and gray-level probability density of the image. The enhancement process is a nonlinear optimization problem with several constraints. CS-PSO is utilized to maximize the objective fitness criterion in order to enhance the contrast and detail in an image by adapting the parameters of a novel extension to a local enhancement technique. The performance of the proposed method has been compared with other existing techniques such as linear contrast stretching, histogram equalization, and evolutionary computing based image enhancement methods like backtracking search algorithm, differential search algorithm, genetic algorithm, and particle swarm optimization in terms of processing time and image quality. Experimental results demonstrate that the proposed method is robust and adaptive and exhibits the better performance than other methods involved in the paper. PMID:25784928

  10. An adaptive importance sampling algorithm for Bayesian inversion with multimodal distributions

    DOE PAGES

    Li, Weixuan; Lin, Guang

    2015-03-21

    Parametric uncertainties are encountered in the simulations of many physical systems, and may be reduced by an inverse modeling procedure that calibrates the simulation results to observations on the real system being simulated. Following Bayes’ rule, a general approach for inverse modeling problems is to sample from the posterior distribution of the uncertain model parameters given the observations. However, the large number of repetitive forward simulations required in the sampling process could pose a prohibitive computational burden. This difficulty is particularly challenging when the posterior is multimodal. We present in this paper an adaptive importance sampling algorithm to tackle thesemore » challenges. Two essential ingredients of the algorithm are: 1) a Gaussian mixture (GM) model adaptively constructed as the proposal distribution to approximate the possibly multimodal target posterior, and 2) a mixture of polynomial chaos (PC) expansions, built according to the GM proposal, as a surrogate model to alleviate the computational burden caused by computational-demanding forward model evaluations. In three illustrative examples, the proposed adaptive importance sampling algorithm demonstrates its capabilities of automatically finding a GM proposal with an appropriate number of modes for the specific problem under study, and obtaining a sample accurately and efficiently representing the posterior with limited number of forward simulations.« less

  11. Spin-adapted density matrix renormalization group algorithms for quantum chemistry

    NASA Astrophysics Data System (ADS)

    Sharma, Sandeep; Chan, Garnet Kin-Lic

    2012-03-01

    We extend the spin-adapted density matrix renormalization group (DMRG) algorithm of McCulloch and Gulacsi [Europhys. Lett. 57, 852 (2002)], 10.1209/epl/i2002-00393-0 to quantum chemical Hamiltonians. This involves using a quasi-density matrix, to ensure that the renormalized DMRG states are eigenfunctions of hat{S}^2, and the Wigner-Eckart theorem, to reduce overall storage and computational costs. We argue that the spin-adapted DMRG algorithm is most advantageous for low spin states. Consequently, we also implement a singlet-embedding strategy due to Tatsuaki [Phys. Rev. E 61, 3199 (2000)], 10.1103/PhysRevE.61.3199 where we target high spin states as a component of a larger fictitious singlet system. Finally, we present an efficient algorithm to calculate one- and two-body reduced density matrices from the spin-adapted wavefunctions. We evaluate our developments with benchmark calculations on transition metal system active space models. These include the Fe2S2, [Fe2S2(SCH3)4]2-, and Cr2 systems. In the case of Fe2S2, the spin-ladder spacing is on the microHartree scale, and here we show that we can target such very closely spaced states. In [Fe2S2(SCH3)4]2-, we calculate particle and spin correlation functions, to examine the role of sulfur bridging orbitals in the electronic structure. In Cr2 we demonstrate that spin-adaptation with the Wigner-Eckart theorem and using singlet embedding can yield up to an order of magnitude increase in computational efficiency. Overall, these calculations demonstrate the potential of using spin-adaptation to extend the range of DMRG calculations in complex transition metal problems.

  12. [An adaptive scaling hybrid algorithm for reduction of CT artifacts caused by metal objects].

    PubMed

    Chen, Yu; Luo, Hai; Zhou, He-qin

    2009-03-01

    A new adaptively hybrid filtering algorithm is proposed to reduce the artifacts caused by metal in CT image. Firstly, the method is used to preprocess the projection data of metal region and is reconstruct by filtered back projection (FBP) method. Then the expectation maximization algorithm (EM) is performed on the iterative original metal project data. Finally, a compensating procedure is applied to the reconstructed metal region. The simulation result has demonstrated that the proposed algorithm can remove the metal artifacts and keep the structure information of metal object effectively. It ensures that the tissues around the metal will not be distorted. The method is also computational efficient and effective for the CT images which contains several metal objects.

  13. An adaptive immune optimization algorithm with dynamic lattice searching operation for fast optimization of atomic clusters

    NASA Astrophysics Data System (ADS)

    Wu, Xia; Wu, Genhua

    2014-08-01

    Geometrical optimization of atomic clusters is performed by a development of adaptive immune optimization algorithm (AIOA) with dynamic lattice searching (DLS) operation (AIOA-DLS method). By a cycle of construction and searching of the dynamic lattice (DL), DLS algorithm rapidly makes the clusters more regular and greatly reduces the potential energy. DLS can thus be used as an operation acting on the new individuals after mutation operation in AIOA to improve the performance of the AIOA. The AIOA-DLS method combines the merit of evolutionary algorithm and idea of dynamic lattice. The performance of the proposed method is investigated in the optimization of Lennard-Jones clusters within 250 atoms and silver clusters described by many-body Gupta potential within 150 atoms. Results reported in the literature are reproduced, and the motif of Ag61 cluster is found to be stacking-fault face-centered cubic, whose energy is lower than that of previously obtained icosahedron.

  14. A biomimetic adaptive algorithm and low-power architecture for implantable neural decoders.

    PubMed

    Rapoport, Benjamin I; Wattanapanitch, Woradorn; Penagos, Hector L; Musallam, Sam; Andersen, Richard A; Sarpeshkar, Rahul

    2009-01-01

    Algorithmically and energetically efficient computational architectures that operate in real time are essential for clinically useful neural prosthetic devices. Such devices decode raw neural data to obtain direct control signals for external devices. They can also perform data compression and vastly reduce the bandwidth and consequently power expended in wireless transmission of raw data from implantable brain-machine interfaces. We describe a biomimetic algorithm and micropower analog circuit architecture for decoding neural cell ensemble signals. The decoding algorithm implements a continuous-time artificial neural network, using a bank of adaptive linear filters with kernels that emulate synaptic dynamics. The filters transform neural signal inputs into control-parameter outputs, and can be tuned automatically in an on-line learning process. We provide experimental validation of our system using neural data from thalamic head-direction cells in an awake behaving rat.

  15. A Biomimetic Adaptive Algorithm and Low-Power Architecture for Implantable Neural Decoders

    PubMed Central

    Rapoport, Benjamin I.; Wattanapanitch, Woradorn; Penagos, Hector L.; Musallam, Sam; Andersen, Richard A.; Sarpeshkar, Rahul

    2010-01-01

    Algorithmically and energetically efficient computational architectures that operate in real time are essential for clinically useful neural prosthetic devices. Such devices decode raw neural data to obtain direct control signals for external devices. They can also perform data compression and vastly reduce the bandwidth and consequently power expended in wireless transmission of raw data from implantable brain-machine interfaces. We describe a biomimetic algorithm and micropower analog circuit architecture for decoding neural cell ensemble signals. The decoding algorithm implements a continuous-time artificial neural network, using a bank of adaptive linear filters with kernels that emulate synaptic dynamics. The filters transform neural signal inputs into control-parameter outputs, and can be tuned automatically in an on-line learning process. We provide experimental validation of our system using neural data from thalamic head-direction cells in an awake behaving rat. PMID:19964345

  16. A family of variable step-size affine projection adaptive filter algorithms using statistics of channel impulse response

    NASA Astrophysics Data System (ADS)

    Shams Esfand Abadi, Mohammad; AbbasZadeh Arani, Seyed Ali Asghar

    2011-12-01

    This paper extends the recently introduced variable step-size (VSS) approach to the family of adaptive filter algorithms. This method uses prior knowledge of the channel impulse response statistic. Accordingly, optimal step-size vector is obtained by minimizing the mean-square deviation (MSD). The presented algorithms are the VSS affine projection algorithm (VSS-APA), the VSS selective partial update NLMS (VSS-SPU-NLMS), the VSS-SPU-APA, and the VSS selective regressor APA (VSS-SR-APA). In VSS-SPU adaptive algorithms the filter coefficients are partially updated which reduce the computational complexity. In VSS-SR-APA, the optimal selection of input regressors is performed during the adaptation. The presented algorithms have good convergence speed, low steady state mean square error (MSE), and low computational complexity features. We demonstrate the good performance of the proposed algorithms through several simulations in system identification scenario.

  17. An adaptive support driven reweighted L1-regularization algorithm for fluorescence molecular tomography.

    PubMed

    Shi, Junwei; Liu, Fei; Pu, Huangsheng; Zuo, Simin; Luo, Jianwen; Bai, Jing

    2014-11-01

    Fluorescence molecular tomography (FMT) is a promising in vivo functional imaging modality in preclinical study. When solving the ill-posed FMT inverse problem, L1 regularization can preserve the details and reduce the noise in the reconstruction results effectively. Moreover, compared with the regular L1 regularization, reweighted L1 regularization is recently reported to improve the performance. In order to realize the reweighted L1 regularization for FMT, an adaptive support driven reweighted L1-regularization (ASDR-L1) algorithm is proposed in this work. This algorithm has two integral parts: an adaptive support estimate and the iteratively updated weights. In the iteratively reweighted L1-minimization sub-problem, different weights are equivalent to different regularization parameters at different locations. Thus, ASDR-L1 can be considered as a kind of spatially variant regularization methods for FMT. Physical phantom and in vivo mouse experiments were performed to validate the proposed algorithm. The results demonstrate that the proposed reweighted L1-reguarization algorithm can significantly improve the performance in terms of relative quantitation and spatial resolution.

  18. Investigation of model based beamforming and Bayesian inversion signal processing methods for seismic localization of underground sources.

    PubMed

    Oh, Geok Lian; Brunskog, Jonas

    2014-08-01

    Techniques have been studied for the localization of an underground source with seismic interrogation signals. Much of the work has involved defining either a P-wave acoustic model or a dispersive surface wave model to the received signal and applying the time-delay processing technique and frequency-wavenumber processing to determine the location of the underground tunnel. Considering the case of determining the location of an underground tunnel, this paper proposed two physical models, the acoustic approximation ray tracing model and the finite difference time domain three-dimensional (3D) elastic wave model to represent the received seismic signal. Two localization algorithms, beamforming and Bayesian inversion, are developed for each physical model. The beam-forming algorithms implemented are the modified time-and-delay beamformer and the F-K beamformer. Inversion is posed as an optimization problem to estimate the unknown position variable using the described physical forward models. The proposed four methodologies are demonstrated and compared using seismic signals recorded by geophones set up on ground surface generated by a surface seismic excitation. The examples show that for field data, inversion for localization is most advantageous when the forward model completely describe all the elastic wave components as is the case of the FDTD 3D elastic model.

  19. Should the parameters of a BCI translation algorithm be continually adapted?

    PubMed

    McFarland, Dennis J; Sarnacki, William A; Wolpaw, Jonathan R

    2011-07-15

    People with or without motor disabilities can learn to control sensorimotor rhythms (SMRs) recorded from the scalp to move a computer cursor in one or more dimensions or can use the P300 event-related potential as a control signal to make discrete selections. Data collected from individuals using an SMR-based or P300-based BCI were evaluated offline to estimate the impact on performance of continually adapting the parameters of the translation algorithm during BCI operation. The performance of the SMR-based BCI was enhanced by adaptive updating of the feature weights or adaptive normalization of the features. In contrast, P300 performance did not benefit from either of these procedures. PMID:21571004

  20. A New Modified Artificial Bee Colony Algorithm with Exponential Function Adaptive Steps

    PubMed Central

    Mao, Wei; Li, Hao-ru

    2016-01-01

    As one of the most recent popular swarm intelligence techniques, artificial bee colony algorithm is poor at exploitation and has some defects such as slow search speed, poor population diversity, the stagnation in the working process, and being trapped into the local optimal solution. The purpose of this paper is to develop a new modified artificial bee colony algorithm in view of the initial population structure, subpopulation groups, step updating, and population elimination. Further, depending on opposition-based learning theory and the new modified algorithms, an improved S-type grouping method is proposed and the original way of roulette wheel selection is substituted through sensitivity-pheromone way. Then, an adaptive step with exponential functions is designed for replacing the original random step. Finally, based on the new test function versions CEC13, six benchmark functions with the dimensions D = 20 and D = 40 are chosen and applied in the experiments for analyzing and comparing the iteration speed and accuracy of the new modified algorithms. The experimental results show that the new modified algorithm has faster and more stable searching and can quickly increase poor population diversity and bring out the global optimal solutions. PMID:27293426

  1. Fast parallel MR image reconstruction via B1-based, adaptive restart, iterative soft thresholding algorithms (BARISTA).

    PubMed

    Muckley, Matthew J; Noll, Douglas C; Fessler, Jeffrey A

    2015-02-01

    Sparsity-promoting regularization is useful for combining compressed sensing assumptions with parallel MRI for reducing scan time while preserving image quality. Variable splitting algorithms are the current state-of-the-art algorithms for SENSE-type MR image reconstruction with sparsity-promoting regularization. These methods are very general and have been observed to work with almost any regularizer; however, the tuning of associated convergence parameters is a commonly-cited hindrance in their adoption. Conversely, majorize-minimize algorithms based on a single Lipschitz constant have been observed to be slow in shift-variant applications such as SENSE-type MR image reconstruction since the associated Lipschitz constants are loose bounds for the shift-variant behavior. This paper bridges the gap between the Lipschitz constant and the shift-variant aspects of SENSE-type MR imaging by introducing majorizing matrices in the range of the regularizer matrix. The proposed majorize-minimize methods (called BARISTA) converge faster than state-of-the-art variable splitting algorithms when combined with momentum acceleration and adaptive momentum restarting. Furthermore, the tuning parameters associated with the proposed methods are unitless convergence tolerances that are easier to choose than the constraint penalty parameters required by variable splitting algorithms.

  2. A New Modified Artificial Bee Colony Algorithm with Exponential Function Adaptive Steps.

    PubMed

    Mao, Wei; Lan, Heng-You; Li, Hao-Ru

    2016-01-01

    As one of the most recent popular swarm intelligence techniques, artificial bee colony algorithm is poor at exploitation and has some defects such as slow search speed, poor population diversity, the stagnation in the working process, and being trapped into the local optimal solution. The purpose of this paper is to develop a new modified artificial bee colony algorithm in view of the initial population structure, subpopulation groups, step updating, and population elimination. Further, depending on opposition-based learning theory and the new modified algorithms, an improved S-type grouping method is proposed and the original way of roulette wheel selection is substituted through sensitivity-pheromone way. Then, an adaptive step with exponential functions is designed for replacing the original random step. Finally, based on the new test function versions CEC13, six benchmark functions with the dimensions D = 20 and D = 40 are chosen and applied in the experiments for analyzing and comparing the iteration speed and accuracy of the new modified algorithms. The experimental results show that the new modified algorithm has faster and more stable searching and can quickly increase poor population diversity and bring out the global optimal solutions. PMID:27293426

  3. Fast Parallel MR Image Reconstruction via B1-based, Adaptive Restart, Iterative Soft Thresholding Algorithms (BARISTA)

    PubMed Central

    Noll, Douglas C.; Fessler, Jeffrey A.

    2014-01-01

    Sparsity-promoting regularization is useful for combining compressed sensing assumptions with parallel MRI for reducing scan time while preserving image quality. Variable splitting algorithms are the current state-of-the-art algorithms for SENSE-type MR image reconstruction with sparsity-promoting regularization. These methods are very general and have been observed to work with almost any regularizer; however, the tuning of associated convergence parameters is a commonly-cited hindrance in their adoption. Conversely, majorize-minimize algorithms based on a single Lipschitz constant have been observed to be slow in shift-variant applications such as SENSE-type MR image reconstruction since the associated Lipschitz constants are loose bounds for the shift-variant behavior. This paper bridges the gap between the Lipschitz constant and the shift-variant aspects of SENSE-type MR imaging by introducing majorizing matrices in the range of the regularizer matrix. The proposed majorize-minimize methods (called BARISTA) converge faster than state-of-the-art variable splitting algorithms when combined with momentum acceleration and adaptive momentum restarting. Furthermore, the tuning parameters associated with the proposed methods are unitless convergence tolerances that are easier to choose than the constraint penalty parameters required by variable splitting algorithms. PMID:25330484

  4. Nonlinear fitness space structure adaptation and principal component analysis in genetic algorithms: an application to x-ray reflectivity analysis

    NASA Astrophysics Data System (ADS)

    Tiilikainen, J.; Tilli, J.-M.; Bosund, V.; Mattila, M.; Hakkarainen, T.; Airaksinen, V.-M.; Lipsanen, H.

    2007-01-01

    Two novel genetic algorithms implementing principal component analysis and an adaptive nonlinear fitness-space-structure technique are presented and compared with conventional algorithms in x-ray reflectivity analysis. Principal component analysis based on Hessian or interparameter covariance matrices is used to rotate a coordinate frame. The nonlinear adaptation applies nonlinear estimates to reshape the probability distribution of the trial parameters. The simulated x-ray reflectivity of a realistic model of a periodic nanolaminate structure was used as a test case for the fitting algorithms. The novel methods had significantly faster convergence and less stagnation than conventional non-adaptive genetic algorithms. The covariance approach needs no additional curve calculations compared with conventional methods, and it had better convergence properties than the computationally expensive Hessian approach. These new algorithms can also be applied to other fitting problems where tight interparameter dependence is present.

  5. A comparison of two adaptive algorithms for the control of active engine mounts

    NASA Astrophysics Data System (ADS)

    Hillis, A. J.; Harrison, A. J. L.; Stoten, D. P.

    2005-08-01

    This paper describes work conducted in order to control automotive active engine mounts, consisting of a conventional passive mount and an internal electromagnetic actuator. Active engine mounts seek to cancel the oscillatory forces generated by the rotation of out-of-balance masses within the engine. The actuator generates a force dependent on a control signal from an algorithm implemented with a real-time DSP. The filtered-x least-mean-square (FXLMS) adaptive filter is used as a benchmark for comparison with a new implementation of the error-driven minimal controller synthesis (Er-MCSI) adaptive controller. Both algorithms are applied to an active mount fitted to a saloon car equipped with a four-cylinder turbo-diesel engine, and have no a priori knowledge of the system dynamics. The steady-state and transient performance of the two algorithms are compared and the relative merits of the two approaches are discussed. The Er-MCSI strategy offers significant computational advantages as it requires no cancellation path modelling. The Er-MCSI controller is found to perform in a fashion similar to the FXLMS filter—typically reducing chassis vibration by 50-90% under normal driving conditions.

  6. An Energy Aware Adaptive Sampling Algorithm for Energy Harvesting WSN with Energy Hungry Sensors.

    PubMed

    Srbinovski, Bruno; Magno, Michele; Edwards-Murphy, Fiona; Pakrashi, Vikram; Popovici, Emanuel

    2016-03-28

    Wireless sensor nodes have a limited power budget, though they are often expected to be functional in the field once deployed for extended periods of time. Therefore, minimization of energy consumption and energy harvesting technology in Wireless Sensor Networks (WSN) are key tools for maximizing network lifetime, and achieving self-sustainability. This paper proposes an energy aware Adaptive Sampling Algorithm (ASA) for WSN with power hungry sensors and harvesting capabilities, an energy management technique that can be implemented on any WSN platform with enough processing power to execute the proposed algorithm. An existing state-of-the-art ASA developed for wireless sensor networks with power hungry sensors is optimized and enhanced to adapt the sampling frequency according to the available energy of the node. The proposed algorithm is evaluated using two in-field testbeds that are supplied by two different energy harvesting sources (solar and wind). Simulation and comparison between the state-of-the-art ASA and the proposed energy aware ASA (EASA) in terms of energy durability are carried out using in-field measured harvested energy (using both wind and solar sources) and power hungry sensors (ultrasonic wind sensor and gas sensors). The simulation results demonstrate that using ASA in combination with an energy aware function on the nodes can drastically increase the lifetime of a WSN node and enable self-sustainability. In fact, the proposed EASA in conjunction with energy harvesting capability can lead towards perpetual WSN operation and significantly outperform the state-of-the-art ASA.

  7. Reconstruction of sparse-view X-ray computed tomography using adaptive iterative algorithms.

    PubMed

    Liu, Li; Lin, Weikai; Jin, Mingwu

    2015-01-01

    In this paper, we propose two reconstruction algorithms for sparse-view X-ray computed tomography (CT). Treating the reconstruction problems as data fidelity constrained total variation (TV) minimization, both algorithms adapt the alternate two-stage strategy: projection onto convex sets (POCS) for data fidelity and non-negativity constraints and steepest descent for TV minimization. The novelty of this work is to determine iterative parameters automatically from data, thus avoiding tedious manual parameter tuning. In TV minimization, the step sizes of steepest descent are adaptively adjusted according to the difference from POCS update in either the projection domain or the image domain, while the step size of algebraic reconstruction technique (ART) in POCS is determined based on the data noise level. In addition, projection errors are used to compare with the error bound to decide whether to perform ART so as to reduce computational costs. The performance of the proposed methods is studied and evaluated using both simulated and physical phantom data. Our methods with automatic parameter tuning achieve similar, if not better, reconstruction performance compared to a representative two-stage algorithm.

  8. Adaptive Inverse Hyperbolic Tangent Algorithm for Dynamic Contrast Adjustment in Displaying Scenes

    NASA Astrophysics Data System (ADS)

    Yu, Cheng-Yi; Ouyang, Yen-Chieh; Wang, Chuin-Mu; Chang, Chein-I.

    2010-12-01

    Contrast has a great influence on the quality of an image in human visual perception. A poorly illuminated environment can significantly affect the contrast ratio, producing an unexpected image. This paper proposes an Adaptive Inverse Hyperbolic Tangent (AIHT) algorithm to improve the display quality and contrast of a scene. Because digital cameras must maintain the shadow in a middle range of luminance that includes a main object such as a face, a gamma function is generally used for this purpose. However, this function has a severe weakness in that it decreases highlight contrast. To mitigate this problem, contrast enhancement algorithms have been designed to adjust contrast to tune human visual perception. The proposed AIHT determines the contrast levels of an original image as well as parameter space for different contrast types so that not only the original histogram shape features can be preserved, but also the contrast can be enhanced effectively. Experimental results show that the proposed algorithm is capable of enhancing the global contrast of the original image adaptively while extruding the details of objects simultaneously.

  9. Wireless indoor millimeter-wave beamforming array

    NASA Astrophysics Data System (ADS)

    Tao, Y. M.; Delisle, G. Y.

    1998-11-01

    A practical design of a compact integrated Rotman lens is presented, which will be used as a beamformer of multiple beam antenna arrays in wireless indoor communication network. An improved design equations of integrated Rotman lens is derived to calculate the lens contour and a non-circular focal arc is introduced in beam ports to minimize the phase aberrations on the aperture of array. A log-periodic electromagnetic coupling microstrip patch array is adopted as radiation elements. Both theoretical and experimental results show the designed multiple beam antenna has wide band width performance.

  10. Point focusing using loudspeaker arrays from the perspective of optimal beamforming.

    PubMed

    Bai, Mingsian R; Hsieh, Yu-Hao

    2015-06-01

    Sound focusing is to create a concentrated acoustic field in the region surrounded by a loudspeaker array. This problem was tackled in the previous research via the Helmholtz integral approach, brightness control, acoustic contrast control, etc. In this paper, the same problem was revisited from the perspective of beamforming. A source array model is reformulated in terms of the steering matrix between the source and the field points, which lends itself to the use of beamforming algorithms such as minimum variance distortionless response (MVDR) and linearly constrained minimum variance (LCMV) originally intended for sensor arrays. The beamforming methods are compared with the conventional methods in terms of beam pattern, directional index, and control effort. Objective tests are conducted to assess the audio quality by using perceptual evaluation of audio quality (PEAQ). Experiments of produced sound field and listening tests are conducted in a listening room, with results processed using analysis of variance and regression analysis. In contrast to the conventional energy-based methods, the results have shown that the proposed methods are phase-sensitive in light of the distortionless constraint in formulating the array filters, which helps enhance audio quality and focusing performance.

  11. Point focusing using loudspeaker arrays from the perspective of optimal beamforming.

    PubMed

    Bai, Mingsian R; Hsieh, Yu-Hao

    2015-06-01

    Sound focusing is to create a concentrated acoustic field in the region surrounded by a loudspeaker array. This problem was tackled in the previous research via the Helmholtz integral approach, brightness control, acoustic contrast control, etc. In this paper, the same problem was revisited from the perspective of beamforming. A source array model is reformulated in terms of the steering matrix between the source and the field points, which lends itself to the use of beamforming algorithms such as minimum variance distortionless response (MVDR) and linearly constrained minimum variance (LCMV) originally intended for sensor arrays. The beamforming methods are compared with the conventional methods in terms of beam pattern, directional index, and control effort. Objective tests are conducted to assess the audio quality by using perceptual evaluation of audio quality (PEAQ). Experiments of produced sound field and listening tests are conducted in a listening room, with results processed using analysis of variance and regression analysis. In contrast to the conventional energy-based methods, the results have shown that the proposed methods are phase-sensitive in light of the distortionless constraint in formulating the array filters, which helps enhance audio quality and focusing performance. PMID:26093429

  12. A sidelobe suppressing near-field beamforming approach for ultrasound array imaging.

    PubMed

    He, Zhengyao; Zheng, Fan; Ma, Yuanliang; Kim, Hyung Ham; Zhou, Qifa; Shung, K Kirk

    2015-05-01

    A method is proposed to suppress sidelobe level for near-field beamforming in ultrasound array imaging. An optimization problem is established, and the second-order cone algorithm is used to solve the problem to obtain the weight vector based on the near-field response vector of a transducer array. The weight vector calculation results show that the proposed method can be used to suppress the sidelobe level of the near-field beam pattern of a transducer array. Ultrasound images following the application of weight vector to the array of a wire phantom are obtained by simulation with the Field II program, and the images of a wire phantom and anechoic sphere phantom are obtained experimentally with a 64-element 26 MHz linear phased array. The experimental and simulation results agree well and show that the proposed method can achieve a much lower sidelobe level than the conventional delay and sum beamforming method. The wire phantom image is demonstrated to focus much better and the contrast of the anechoic sphere phantom image improved by applying the proposed beamforming method. PMID:25994706

  13. The Research of Solution to the Problems of Complex Task Scheduling Based on Self-adaptive Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Zhu, Li; He, Yongxiang; Xue, Haidong; Chen, Leichen

    Traditional genetic algorithms (GA) displays a disadvantage of early-constringency in dealing with scheduling problem. To improve the crossover operators and mutation operators self-adaptively, this paper proposes a self-adaptive GA at the target of multitask scheduling optimization under limited resources. The experiment results show that the proposed algorithm outperforms the traditional GA in evolutive ability to deal with complex task scheduling optimization.

  14. Using patient-specific phantoms to evaluate deformable image registration algorithms for adaptive radiation therapy.

    PubMed

    Stanley, Nick; Glide-Hurst, Carri; Kim, Jinkoo; Adams, Jeffrey; Li, Shunshan; Wen, Ning; Chetty, Indrin J; Zhong, Hualiang

    2013-11-04

    The quality of adaptive treatment planning depends on the accuracy of its underlying deformable image registration (DIR). The purpose of this study is to evaluate the performance of two DIR algorithms, B-spline-based deformable multipass (DMP) and deformable demons (Demons), implemented in a commercial software package. Evaluations were conducted using both computational and physical deformable phantoms. Based on a finite element method (FEM), a total of 11 computational models were developed from a set of CT images acquired from four lung and one prostate cancer patients. FEM generated displacement vector fields (DVF) were used to construct the lung and prostate image phantoms. Based on a fast-Fourier transform technique, image noise power spectrum was incorporated into the prostate image phantoms to create simulated CBCT images. The FEM-DVF served as a gold standard for verification of the two registration algorithms performed on these phantoms. The registration algorithms were also evaluated at the homologous points quantified in the CT images of a physical lung phantom. The results indicated that the mean errors of the DMP algorithm were in the range of 1.0 ~ 3.1 mm for the computational phantoms and 1.9 mm for the physical lung phantom. For the computational prostate phantoms, the corresponding mean error was 1.0-1.9 mm in the prostate, 1.9-2.4mm in the rectum, and 1.8-2.1 mm over the entire patient body. Sinusoidal errors induced by B-spline interpolations were observed in all the displacement profiles of the DMP registrations. Regions of large displacements were observed to have more registration errors. Patient-specific FEM models have been developed to evaluate the DIR algorithms implemented in the commercial software package. It has been found that the accuracy of these algorithms is patient dependent and related to various factors including tissue deformation magnitudes and image intensity gradients across the regions of interest. This may suggest that

  15. An adaptive multi-level simulation algorithm for stochastic biological systems

    SciTech Connect

    Lester, C. Giles, M. B.; Baker, R. E.; Yates, C. A.

    2015-01-14

    Discrete-state, continuous-time Markov models are widely used in the modeling of biochemical reaction networks. Their complexity often precludes analytic solution, and we rely on stochastic simulation algorithms (SSA) to estimate system statistics. The Gillespie algorithm is exact, but computationally costly as it simulates every single reaction. As such, approximate stochastic simulation algorithms such as the tau-leap algorithm are often used. Potentially computationally more efficient, the system statistics generated suffer from significant bias unless tau is relatively small, in which case the computational time can be comparable to that of the Gillespie algorithm. The multi-level method [Anderson and Higham, “Multi-level Monte Carlo for continuous time Markov chains, with applications in biochemical kinetics,” SIAM Multiscale Model. Simul. 10(1), 146–179 (2012)] tackles this problem. A base estimator is computed using many (cheap) sample paths at low accuracy. The bias inherent in this estimator is then reduced using a number of corrections. Each correction term is estimated using a collection of paired sample paths where one path of each pair is generated at a higher accuracy compared to the other (and so more expensive). By sharing random variables between these paired paths, the variance of each correction estimator can be reduced. This renders the multi-level method very efficient as only a relatively small number of paired paths are required to calculate each correction term. In the original multi-level method, each sample path is simulated using the tau-leap algorithm with a fixed value of τ. This approach can result in poor performance when the reaction activity of a system changes substantially over the timescale of interest. By introducing a novel adaptive time-stepping approach where τ is chosen according to the stochastic behaviour of each sample path, we extend the applicability of the multi-level method to such cases. We demonstrate the

  16. Adaptation of a Fast Optimal Interpolation Algorithm to the Mapping of Oceangraphic Data

    NASA Technical Reports Server (NTRS)

    Menemenlis, Dimitris; Fieguth, Paul; Wunsch, Carl; Willsky, Alan

    1997-01-01

    A fast, recently developed, multiscale optimal interpolation algorithm has been adapted to the mapping of hydrographic and other oceanographic data. This algorithm produces solution and error estimates which are consistent with those obtained from exact least squares methods, but at a small fraction of the computational cost. Problems whose solution would be completely impractical using exact least squares, that is, problems with tens or hundreds of thousands of measurements and estimation grid points, can easily be solved on a small workstation using the multiscale algorithm. In contrast to methods previously proposed for solving large least squares problems, our approach provides estimation error statistics while permitting long-range correlations, using all measurements, and permitting arbitrary measurement locations. The multiscale algorithm itself, published elsewhere, is not the focus of this paper. However, the algorithm requires statistical models having a very particular multiscale structure; it is the development of a class of multiscale statistical models, appropriate for oceanographic mapping problems, with which we concern ourselves in this paper. The approach is illustrated by mapping temperature in the northeastern Pacific. The number of hydrographic stations is kept deliberately small to show that multiscale and exact least squares results are comparable. A portion of the data were not used in the analysis; these data serve to test the multiscale estimates. A major advantage of the present approach is the ability to repeat the estimation procedure a large number of times for sensitivity studies, parameter estimation, and model testing. We have made available by anonymous Ftp a set of MATLAB-callable routines which implement the multiscale algorithm and the statistical models developed in this paper.

  17. An adaptive multi-level simulation algorithm for stochastic biological systems

    NASA Astrophysics Data System (ADS)

    Lester, C.; Yates, C. A.; Giles, M. B.; Baker, R. E.

    2015-01-01

    Discrete-state, continuous-time Markov models are widely used in the modeling of biochemical reaction networks. Their complexity often precludes analytic solution, and we rely on stochastic simulation algorithms (SSA) to estimate system statistics. The Gillespie algorithm is exact, but computationally costly as it simulates every single reaction. As such, approximate stochastic simulation algorithms such as the tau-leap algorithm are often used. Potentially computationally more efficient, the system statistics generated suffer from significant bias unless tau is relatively small, in which case the computational time can be comparable to that of the Gillespie algorithm. The multi-level method [Anderson and Higham, "Multi-level Monte Carlo for continuous time Markov chains, with applications in biochemical kinetics," SIAM Multiscale Model. Simul. 10(1), 146-179 (2012)] tackles this problem. A base estimator is computed using many (cheap) sample paths at low accuracy. The bias inherent in this estimator is then reduced using a number of corrections. Each correction term is estimated using a collection of paired sample paths where one path of each pair is generated at a higher accuracy compared to the other (and so more expensive). By sharing random variables between these paired paths, the variance of each correction estimator can be reduced. This renders the multi-level method very efficient as only a relatively small number of paired paths are required to calculate each correction term. In the original multi-level method, each sample path is simulated using the tau-leap algorithm with a fixed value of τ. This approach can result in poor performance when the reaction activity of a system changes substantially over the timescale of interest. By introducing a novel adaptive time-stepping approach where τ is chosen according to the stochastic behaviour of each sample path, we extend the applicability of the multi-level method to such cases. We demonstrate the

  18. Rainfall Estimation over the Nile Basin using an Adapted Version of the SCaMPR Algorithm

    NASA Astrophysics Data System (ADS)

    Habib, E. H.; Kuligowski, R. J.; Elshamy, M. E.; Ali, M. A.; Haile, A.; Amin, D.; Eldin, A.

    2011-12-01

    Management of Egypt's Aswan High Dam is critical not only for flood control on the Nile but also for ensuring adequate water supplies for most of Egypt since rainfall is scarce over the vast majority of its land area. However, reservoir inflow is driven by rainfall over Sudan, Ethiopia, Uganda, and several other countries from which routine rain gauge data are sparse. Satellite-derived estimates of rainfall offer a much more detailed and timely set of data to form a basis for decisions on the operation of the dam. A single-channel infrared algorithm is currently in operational use at the Egyptian Nile Forecast Center (NFC). This study reports on the adaptation of a multi-spectral, multi-instrument satellite rainfall estimation algorithm (Self-Calibrating Multivariate Precipitation Retrieval, SCaMPR) for operational application over the Nile Basin. The algorithm uses a set of rainfall predictors from multi-spectral Infrared cloud top observations and self-calibrates them to a set of predictands from Microwave (MW) rain rate estimates. For application over the Nile Basin, the SCaMPR algorithm uses multiple satellite IR channels recently available to NFC from the Spinning Enhanced Visible and Infrared Imager (SEVIRI). Microwave rain rates are acquired from multiple sources such as SSM/I, SSMIS, AMSU, AMSR-E, and TMI. The algorithm has two main steps: rain/no-rain separation using discriminant analysis, and rain rate estimation using stepwise linear regression. We test two modes of algorithm calibration: real-time calibration with continuous updates of coefficients with newly coming MW rain rates, and calibration using static coefficients that are derived from IR-MW data from past observations. We also compare the SCaMPR algorithm to other global-scale satellite rainfall algorithms (e.g., 'Tropical Rainfall Measuring Mission (TRMM) and other sources' (TRMM-3B42) product, and the National Oceanographic and Atmospheric Administration Climate Prediction Center (NOAA

  19. RZA-NLMF algorithm-based adaptive sparse sensing for realizing compressive sensing

    NASA Astrophysics Data System (ADS)

    Gui, Guan; Xu, Li; Adachi, Fumiyuki

    2014-12-01

    Nonlinear sparse sensing (NSS) techniques have been adopted for realizing compressive sensing in many applications such as radar imaging. Unlike the NSS, in this paper, we propose an adaptive sparse sensing (ASS) approach using the reweighted zero-attracting normalized least mean fourth (RZA-NLMF) algorithm which depends on several given parameters, i.e., reweighted factor, regularization parameter, and initial step size. First, based on the independent assumption, Cramer-Rao lower bound (CRLB) is derived as for the performance comparisons. In addition, reweighted factor selection method is proposed for achieving robust estimation performance. Finally, to verify the algorithm, Monte Carlo-based computer simulations are given to show that the ASS achieves much better mean square error (MSE) performance than the NSS.

  20. A parallel dynamic load balancing algorithm for 3-D adaptive unstructured grids

    NASA Technical Reports Server (NTRS)

    Vidwans, A.; Kallinderis, Y.; Venkatakrishnan, V.

    1993-01-01

    Adaptive local grid refinement and coarsening results in unequal distribution of workload among the processors of a parallel system. A novel method for balancing the load in cases of dynamically changing tetrahedral grids is developed. The approach employs local exchange of cells among processors in order to redistribute the load equally. An important part of the load balancing algorithm is the method employed by a processor to determine which cells within its subdomain are to be exchanged. Two such methods are presented and compared. The strategy for load balancing is based on the Divide-and-Conquer approach which leads to an efficient parallel algorithm. This method is implemented on a distributed-memory MIMD system.

  1. Fast intersections on nested tetrahedrons (FINT): An algorithm for adaptive finite element based distributed parameter estimation.

    PubMed

    Lee, Jae Hoon; Joshi, Amit; Sevick-Muraca, Eva M

    2008-01-01

    A variety of biomedical imaging techniques such as optical and fluorescence tomography, electrical impedance tomography, and ultrasound imaging can be cast as inverse problems, wherein image reconstruction involves the estimation of spatially distributed parameter(s) of the PDE system describing the physics of the imaging process. Finite element discretization of imaged domain with tetrahedral elements is a popular way of solving the forward and inverse imaging problems on complicated geometries. A dual-adaptive mesh-based approach wherein, one mesh is used for solving the forward imaging problem and the other mesh used for iteratively estimating the unknown distributed parameter, can result in high resolution image reconstruction at minimum computation effort, if both the meshes are allowed to adapt independently. Till date, no efficient method has been reported to identify and resolve intersection between tetrahedrons in independently refined or coarsened dual meshes. Herein, we report a fast and robust algorithm to identify and resolve intersection of tetrahedrons within nested dual meshes generated by 8-similar subtetrahedron subdivision scheme. The algorithm exploits finite element weight functions and gives rise to a set of weight functions on each vertex of disjoint tetrahedron pieces that completely cover up the intersection region of two tetrahedrons. The procedure enables fully adaptive tetrahedral finite elements by supporting independent refinement and coarsening of each individual mesh while preserving fast identification and resolution of intersection. The computational efficiency of the algorithm is demonstrated by diffuse photon density wave solutions obtained from a single- and a dual-mesh, and by reconstructing a fluorescent inclusion in simulated phantom from boundary frequency domain fluorescence measurements.

  2. Adaptive codebook selection schemes for image classification in correlated channels

    NASA Astrophysics Data System (ADS)

    Hu, Chia Chang; Liu, Xiang Lian; Liu, Kuan-Fu

    2015-09-01

    The multiple-input multiple-output (MIMO) system with the use of transmit and receive antenna arrays achieves diversity and array gains via transmit beamforming. Due to the absence of full channel state information (CSI) at the transmitter, the transmit beamforming vector can be quantized at the receiver and sent back to the transmitter by a low-rate feedback channel, called limited feedback beamforming. One of the key roles of Vector Quantization (VQ) is how to generate a good codebook such that the distortion between the original image and the reconstructed image is the minimized. In this paper, a novel adaptive codebook selection scheme for image classification is proposed with taking both spatial and temporal correlation inherent in the channel into consideration. The new codebook selection algorithm is developed to select two codebooks from the discrete Fourier transform (DFT) codebook, the generalized Lloyd algorithm (GLA) codebook and the Grassmannian codebook to be combined and used as candidates of the original image and the reconstructed image for image transmission. The channel is estimated and divided into four regions based on the spatial and temporal correlation of the channel and an appropriate codebook is assigned to each region. The proposed method can efficiently reduce the required information of feedback under the spatially and temporally correlated channels, where each region is adaptively. Simulation results show that in the case of temporally and spatially correlated channels, the bit-error-rate (BER) performance can be improved substantially by the proposed algorithm compared to the one with only single codebook.

  3. A baseline correction algorithm for Raman spectroscopy by adaptive knots B-spline

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Fan, Xian-guang; Xu, Ying-jie; Wang, Xiu-fen; He, Hao; Zuo, Yong

    2015-11-01

    The Raman spectroscopy technique is a powerful and non-invasive technique for molecular fingerprint detection which has been widely used in many areas, such as food safety, drug safety, and environmental testing. But Raman signals can be easily corrupted by a fluorescent background, therefore we presented a baseline correction algorithm to suppress the fluorescent background in this paper. In this algorithm, the background of the Raman signal was suppressed by fitting a curve called a baseline using a cyclic approximation method. Instead of the traditional polynomial fitting, we used the B-spline as the fitting algorithm due to its advantages of low-order and smoothness, which can avoid under-fitting and over-fitting effectively. In addition, we also presented an automatic adaptive knot generation method to replace traditional uniform knots. This algorithm can obtain the desired performance for most Raman spectra with varying baselines without any user input or preprocessing step. In the simulation, three kinds of fluorescent background lines were introduced to test the effectiveness of the proposed method. We showed that two real Raman spectra (parathion-methyl and colza oil) can be detected and their baselines were also corrected by the proposed method.

  4. An Adaptive Reputation-Based Algorithm for Grid Virtual Organization Formation

    NASA Astrophysics Data System (ADS)

    Cui, Yongrui; Li, Mingchu; Ren, Yizhi; Sakurai, Kouichi

    A novel adaptive reputation-based virtual organization formation is proposed. It restrains the bad performers effectively based on the consideration of the global experience of the evaluator and evaluates the direct trust relation between two grid nodes accurately by consulting the previous trust value rationally. It also consults and improves the reputation evaluation process in PathTrust model by taking account of the inter-organizational trust relationship and combines it with direct and recommended trust in a weighted way, which makes the algorithm more robust against collusion attacks. Additionally, the proposed algorithm considers the perspective of the VO creator and takes required VO services as one of the most important fine-grained evaluation criterion, which makes the algorithm more suitable for constructing VOs in grid environments that include autonomous organizations. Simulation results show that our algorithm restrains the bad performers and resists against fake transaction attacks and badmouth attacks effectively. It provides a clear advantage in the design of a VO infrastructure.

  5. An adaptive guidance algorithm for an aerodynamically assisted orbital plane change maneuver. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Blissit, J. A.

    1986-01-01

    Using analysis results from the post trajectory optimization program, an adaptive guidance algorithm is developed to compensate for density, aerodynamic and thrust perturbations during an atmospheric orbital plane change maneuver. The maneuver offers increased mission flexibility along with potential fuel savings for future reentry vehicles. Although designed to guide a proposed NASA Entry Research Vehicle, the algorithm is sufficiently generic for a range of future entry vehicles. The plane change analysis provides insight suggesting a straight-forward algorithm based on an optimized nominal command profile. Bank angle, angle of attack, and engine thrust level, ignition and cutoff times are modulated to adjust the vehicle's trajectory to achieve the desired end-conditions. A performance evaluation of the scheme demonstrates a capability to guide to within 0.05 degrees of the desired plane change and five nautical miles of the desired apogee altitude while maintaining heating constraints. The algorithm is tested under off-nominal conditions of + or -30% density biases, two density profile models, + or -15% aerodynamic uncertainty, and a 33% thrust loss and for various combinations of these conditions.

  6. Adaptive Fault Detection on Liquid Propulsion Systems with Virtual Sensors: Algorithms and Architectures

    NASA Technical Reports Server (NTRS)

    Matthews, Bryan L.; Srivastava, Ashok N.

    2010-01-01

    Prior to the launch of STS-119 NASA had completed a study of an issue in the flow control valve (FCV) in the Main Propulsion System of the Space Shuttle using an adaptive learning method known as Virtual Sensors. Virtual Sensors are a class of algorithms that estimate the value of a time series given other potentially nonlinearly correlated sensor readings. In the case presented here, the Virtual Sensors algorithm is based on an ensemble learning approach and takes sensor readings and control signals as input to estimate the pressure in a subsystem of the Main Propulsion System. Our results indicate that this method can detect faults in the FCV at the time when they occur. We use the standard deviation of the predictions of the ensemble as a measure of uncertainty in the estimate. This uncertainty estimate was crucial to understanding the nature and magnitude of transient characteristics during startup of the engine. This paper overviews the Virtual Sensors algorithm and discusses results on a comprehensive set of Shuttle missions and also discusses the architecture necessary for deploying such algorithms in a real-time, closed-loop system or a human-in-the-loop monitoring system. These results were presented at a Flight Readiness Review of the Space Shuttle in early 2009.

  7. A nonlinear model reference adaptive inverse control algorithm with pre-compensator

    NASA Astrophysics Data System (ADS)

    Xiao, Bin; Yang, Tie-Jun; Liu, Zhi-Gang

    2005-12-01

    In this paper, the reduced-order modeling (ROM) technology and its corresponding linear theory are expanded from the linear dynamic system to the nonlinear one, and H ∞ control theory is employed in the frequency domain to design some nonlinear system s pre-compensator in some special way. The adaptive model inverse control (AMIC) theory coping with nonlinear system is improved as well. Such is the model reference adaptive inverse control with pre-compensator (PCMRAIC). The aim of that algorithm is to construct a strategy of control as a whole. As a practical example of the application, the numerical simulation has been given on matlab software packages. The numerical result is given. The proposed strategy realizes the linearization control of nonlinear dynamic system. And it carries out a good performance to deal with the nonlinear system.

  8. A hybrid skull-stripping algorithm based on adaptive balloon snake models

    NASA Astrophysics Data System (ADS)

    Liu, Hung-Ting; Sheu, Tony W. H.; Chang, Herng-Hua

    2013-02-01

    Skull-stripping is one of the most important preprocessing steps in neuroimage analysis. We proposed a hybrid algorithm based on an adaptive balloon snake model to handle this challenging task. The proposed framework consists of two stages: first, the fuzzy possibilistic c-means (FPCM) is used for voxel clustering, which provides a labeled image for the snake contour initialization. In the second stage, the contour is initialized outside the brain surface based on the FPCM result and evolves under the guidance of the balloon snake model, which drives the contour with an adaptive inward normal force to capture the boundary of the brain. The similarity indices indicate that our method outperformed the BSE and BET methods in skull-stripping the MR image volumes in the IBSR data set. Experimental results show the effectiveness of this new scheme and potential applications in a wide variety of skull-stripping applications.

  9. Experimental Evaluation of a Braille-Reading-Inspired Finger Motion Adaptive Algorithm.

    PubMed

    Ulusoy, Melda; Sipahi, Rifat

    2016-01-01

    Braille reading is a complex process involving intricate finger-motion patterns and finger-rubbing actions across Braille letters for the stimulation of appropriate nerves. Although Braille reading is performed by smoothly moving the finger from left-to-right, research shows that even fluent reading requires right-to-left movements of the finger, known as "reversal". Reversals are crucial as they not only enhance stimulation of nerves for correctly reading the letters, but they also show one to re-read the letters that were missed in the first pass. Moreover, it is known that reversals can be performed as often as in every sentence and can start at any location in a sentence. Here, we report experimental results on the feasibility of an algorithm that can render a machine to automatically adapt to reversal gestures of one's finger. Through Braille-reading-analogous tasks, the algorithm is tested with thirty sighted subjects that volunteered in the study. We find that the finger motion adaptive algorithm (FMAA) is useful in achieving cooperation between human finger and the machine. In the presence of FMAA, subjects' performance metrics associated with the tasks have significantly improved as supported by statistical analysis. In light of these encouraging results, preliminary experiments are carried out with five blind subjects with the aim to put the algorithm to test. Results obtained from carefully designed experiments showed that subjects' Braille reading accuracy in the presence of FMAA was more favorable then when FMAA was turned off. Utilization of FMAA in future generation Braille reading devices thus holds strong promise.

  10. Experimental Evaluation of a Braille-Reading-Inspired Finger Motion Adaptive Algorithm

    PubMed Central

    2016-01-01

    Braille reading is a complex process involving intricate finger-motion patterns and finger-rubbing actions across Braille letters for the stimulation of appropriate nerves. Although Braille reading is performed by smoothly moving the finger from left-to-right, research shows that even fluent reading requires right-to-left movements of the finger, known as “reversal”. Reversals are crucial as they not only enhance stimulation of nerves for correctly reading the letters, but they also show one to re-read the letters that were missed in the first pass. Moreover, it is known that reversals can be performed as often as in every sentence and can start at any location in a sentence. Here, we report experimental results on the feasibility of an algorithm that can render a machine to automatically adapt to reversal gestures of one’s finger. Through Braille-reading-analogous tasks, the algorithm is tested with thirty sighted subjects that volunteered in the study. We find that the finger motion adaptive algorithm (FMAA) is useful in achieving cooperation between human finger and the machine. In the presence of FMAA, subjects’ performance metrics associated with the tasks have significantly improved as supported by statistical analysis. In light of these encouraging results, preliminary experiments are carried out with five blind subjects with the aim to put the algorithm to test. Results obtained from carefully designed experiments showed that subjects’ Braille reading accuracy in the presence of FMAA was more favorable then when FMAA was turned off. Utilization of FMAA in future generation Braille reading devices thus holds strong promise. PMID:26849058

  11. Control algorithms of liquid crystal phased arrays used as adaptive optic correctors

    NASA Astrophysics Data System (ADS)

    Dayton, David; Gonglewski, John; Browne, Stephen

    2006-08-01

    Multi-segment liquid crystal phased arrays have been demonstrated as adaptive optics elements for correction of atmospheric turbulence. High speed dual-frequency nematic liquid crystal has sufficient bandwidth to keep up with moderate atmospheric Greenwood frequencies. However the segmented piston correction only spatial nature of the devices requires novel approaches to control algorithms especially when used with Shack-Hartmann wave front sensors. In this presentation we explore approaches and their effects on closed loop Strehl ratios. A Zernike modal based approach has produced the best results. The presentation will contain results from experiments with a Meadowlark optics liquid crystal device.

  12. Seismoelectric beamforming imaging: a sensitivity analysis

    NASA Astrophysics Data System (ADS)

    El Khoury, P.; Revil, A.; Sava, P.

    2015-06-01

    The electrical current density generated by the propagation of a seismic wave at the interface characterized by a drop in electrical, hydraulic or mechanical properties produces an electrical field of electrokinetic nature. This field can be measured remotely with a signal-to-noise ratio depending on the background noise and signal attenuation. The seismoelectric beamforming approach is an emerging imaging technique based on scanning a porous material using appropriately delayed seismic sources. The idea is to focus the hydromechanical energy on a regular spatial grid and measure the converted electric field remotely at each focus time. This method can be used to image heterogeneities with a high definition and to provide structural information to classical geophysical methods. A numerical experiment is performed to investigate the resolution of the seismoelectric beamforming approach with respect to the main wavelength of the seismic waves. The 2-D model consists of a fictitious water-filled bucket in which a cylindrical sandstone core sample is set up vertically. The hydrophones/seismic sources are located on a 50-cm diameter circle in the bucket and the seismic energy is focused on the grid points in order to scan the medium and determine the geometry of the porous plug using the output electric potential image. We observe that the resolution of the method is given by a density of eight scanning points per wavelength. Additional numerical tests were also performed to see the impact of a wrong velocity model upon the seismoelectric map displaying the heterogeneities of the material.

  13. An Adaptive Defect Weighted Sampling Algorithm to Design Pseudoknotted RNA Secondary Structures

    PubMed Central

    Zandi, Kasra; Butler, Gregory; Kharma, Nawwaf

    2016-01-01

    Computational design of RNA sequences that fold into targeted secondary structures has many applications in biomedicine, nanotechnology and synthetic biology. An RNA molecule is made of different types of secondary structure elements and an important RNA element named pseudoknot plays a key role in stabilizing the functional form of the molecule. However, due to the computational complexities associated with characterizing pseudoknotted RNA structures, most of the existing RNA sequence designer algorithms generally ignore this important structural element and therefore limit their applications. In this paper we present a new algorithm to design RNA sequences for pseudoknotted secondary structures. We use NUPACK as the folding algorithm to compute the equilibrium characteristics of the pseudoknotted RNAs, and describe a new adaptive defect weighted sampling algorithm named Enzymer to design low ensemble defect RNA sequences for targeted secondary structures including pseudoknots. We used a biological data set of 201 pseudoknotted structures from the Pseudobase library to benchmark the performance of our algorithm. We compared the quality characteristics of the RNA sequences we designed by Enzymer with the results obtained from the state of the art MODENA and antaRNA. Our results show our method succeeds more frequently than MODENA and antaRNA do, and generates sequences that have lower ensemble defect, lower probability defect and higher thermostability. Finally by using Enzymer and by constraining the design to a naturally occurring and highly conserved Hammerhead motif, we designed 8 sequences for a pseudoknotted cis-acting Hammerhead ribozyme. Enzymer is available for download at https://bitbucket.org/casraz/enzymer. PMID:27499762

  14. An Adaptive Defect Weighted Sampling Algorithm to Design Pseudoknotted RNA Secondary Structures.

    PubMed

    Zandi, Kasra; Butler, Gregory; Kharma, Nawwaf

    2016-01-01

    Computational design of RNA sequences that fold into targeted secondary structures has many applications in biomedicine, nanotechnology and synthetic biology. An RNA molecule is made of different types of secondary structure elements and an important RNA element named pseudoknot plays a key role in stabilizing the functional form of the molecule. However, due to the computational complexities associated with characterizing pseudoknotted RNA structures, most of the existing RNA sequence designer algorithms generally ignore this important structural element and therefore limit their applications. In this paper we present a new algorithm to design RNA sequences for pseudoknotted secondary structures. We use NUPACK as the folding algorithm to compute the equilibrium characteristics of the pseudoknotted RNAs, and describe a new adaptive defect weighted sampling algorithm named Enzymer to design low ensemble defect RNA sequences for targeted secondary structures including pseudoknots. We used a biological data set of 201 pseudoknotted structures from the Pseudobase library to benchmark the performance of our algorithm. We compared the quality characteristics of the RNA sequences we designed by Enzymer with the results obtained from the state of the art MODENA and antaRNA. Our results show our method succeeds more frequently than MODENA and antaRNA do, and generates sequences that have lower ensemble defect, lower probability defect and higher thermostability. Finally by using Enzymer and by constraining the design to a naturally occurring and highly conserved Hammerhead motif, we designed 8 sequences for a pseudoknotted cis-acting Hammerhead ribozyme. Enzymer is available for download at https://bitbucket.org/casraz/enzymer. PMID:27499762

  15. An Adaptive Defect Weighted Sampling Algorithm to Design Pseudoknotted RNA Secondary Structures.

    PubMed

    Zandi, Kasra; Butler, Gregory; Kharma, Nawwaf

    2016-01-01

    Computational design of RNA sequences that fold into targeted secondary structures has many applications in biomedicine, nanotechnology and synthetic biology. An RNA molecule is made of different types of secondary structure elements and an important RNA element named pseudoknot plays a key role in stabilizing the functional form of the molecule. However, due to the computational complexities associated with characterizing pseudoknotted RNA structures, most of the existing RNA sequence designer algorithms generally ignore this important structural element and therefore limit their applications. In this paper we present a new algorithm to design RNA sequences for pseudoknotted secondary structures. We use NUPACK as the folding algorithm to compute the equilibrium characteristics of the pseudoknotted RNAs, and describe a new adaptive defect weighted sampling algorithm named Enzymer to design low ensemble defect RNA sequences for targeted secondary structures including pseudoknots. We used a biological data set of 201 pseudoknotted structures from the Pseudobase library to benchmark the performance of our algorithm. We compared the quality characteristics of the RNA sequences we designed by Enzymer with the results obtained from the state of the art MODENA and antaRNA. Our results show our method succeeds more frequently than MODENA and antaRNA do, and generates sequences that have lower ensemble defect, lower probability defect and higher thermostability. Finally by using Enzymer and by constraining the design to a naturally occurring and highly conserved Hammerhead motif, we designed 8 sequences for a pseudoknotted cis-acting Hammerhead ribozyme. Enzymer is available for download at https://bitbucket.org/casraz/enzymer.

  16. Beamforming and holography image formation methods: an analytic study.

    PubMed

    Solimene, Raffaele; Cuccaro, Antonio; Ruvio, Giuseppe; Tapia, Daniel Flores; O'Halloran, Martin

    2016-04-18

    Beamforming and holographic imaging procedures are widely used in many applications such as radar sensing, sonar, and in the area of microwave medical imaging. Nevertheless, an analytical comparison of the methods has not been done. In this paper, the Point Spread Functions pertaining to the two methods are analytically determined. This allows a formal comparison of the two techniques, and to easily highlight how the performance depends on the configuration parameters, including frequency range, number of scatterers, and data discretization. It is demonstrated that the beamforming and holography basically achieve the same resolution but beamforming requires a cheaper (less sensors) configuration.. PMID:27137336

  17. Beamforming and holography image formation methods: an analytic study.

    PubMed

    Solimene, Raffaele; Cuccaro, Antonio; Ruvio, Giuseppe; Tapia, Daniel Flores; O'Halloran, Martin

    2016-04-18

    Beamforming and holographic imaging procedures are widely used in many applications such as radar sensing, sonar, and in the area of microwave medical imaging. Nevertheless, an analytical comparison of the methods has not been done. In this paper, the Point Spread Functions pertaining to the two methods are analytically determined. This allows a formal comparison of the two techniques, and to easily highlight how the performance depends on the configuration parameters, including frequency range, number of scatterers, and data discretization. It is demonstrated that the beamforming and holography basically achieve the same resolution but beamforming requires a cheaper (less sensors) configuration..

  18. Adaptive ILC algorithms of nonlinear continuous systems with non-parametric uncertainties for non-repetitive trajectory tracking

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Dong; Lv, Mang-Mang; Ho, John K. L.

    2016-07-01

    In this article, two adaptive iterative learning control (ILC) algorithms are presented for nonlinear continuous systems with non-parametric uncertainties. Unlike general ILC techniques, the proposed adaptive ILC algorithms allow that both the initial error at each iteration and the reference trajectory are iteration-varying in the ILC process, and can achieve non-repetitive trajectory tracking beyond a small initial time interval. Compared to the neural network or fuzzy system-based adaptive ILC schemes and the classical ILC methods, in which the number of iterative variables is generally larger than or equal to the number of control inputs, the first adaptive ILC algorithm proposed in this paper uses just two iterative variables, while the second even uses a single iterative variable provided that some bound information on system dynamics is known. As a result, the memory space in real-time ILC implementations is greatly reduced.

  19. Clustering of tethered satellite system simulation data by an adaptive neuro-fuzzy algorithm

    NASA Technical Reports Server (NTRS)

    Mitra, Sunanda; Pemmaraju, Surya

    1992-01-01

    Recent developments in neuro-fuzzy systems indicate that the concepts of adaptive pattern recognition, when used to identify appropriate control actions corresponding to clusters of patterns representing system states in dynamic nonlinear control systems, may result in innovative designs. A modular, unsupervised neural network architecture, in which fuzzy learning rules have been embedded is used for on-line identification of similar states. The architecture and control rules involved in Adaptive Fuzzy Leader Clustering (AFLC) allow this system to be incorporated in control systems for identification of system states corresponding to specific control actions. We have used this algorithm to cluster the simulation data of Tethered Satellite System (TSS) to estimate the range of delta voltages necessary to maintain the desired length rate of the tether. The AFLC algorithm is capable of on-line estimation of the appropriate control voltages from the corresponding length error and length rate error without a priori knowledge of their membership functions and familarity with the behavior of the Tethered Satellite System.

  20. Strategies to overcome photobleaching in algorithm-based adaptive optics for nonlinear in-vivo imaging.

    PubMed

    Caroline Müllenbroich, M; McGhee, Ewan J; Wright, Amanda J; Anderson, Kurt I; Mathieson, Keith

    2014-01-01

    We have developed a nonlinear adaptive optics microscope utilizing a deformable membrane mirror (DMM) and demonstrated its use in compensating for system- and sample-induced aberrations. The optimum shape of the DMM was determined with a random search algorithm optimizing on either two photon fluorescence or second harmonic signals as merit factors. We present here several strategies to overcome photobleaching issues associated with lengthy optimization routines by adapting the search algorithm and the experimental methodology. Optimizations were performed on extrinsic fluorescent dyes, fluorescent beads loaded into organotypic tissue cultures and the intrinsic second harmonic signal of these cultures. We validate the approach of using these preoptimized mirror shapes to compile a robust look-up table that can be applied for imaging over several days and through a variety of tissues. In this way, the photon exposure to the fluorescent cells under investigation is limited to imaging. Using our look-up table approach, we show signal intensity improvement factors ranging from 1.7 to 4.1 in organotypic tissue cultures and freshly excised mouse tissue. Imaging zebrafish in vivo, we demonstrate signal improvement by a factor of 2. This methodology is easily reproducible and could be applied to many photon starved experiments, for example fluorescent life time imaging, or when photobleaching is a concern.

  1. An efficient self-adaptive model for chaotic image encryption algorithm

    NASA Astrophysics Data System (ADS)

    Huang, Xiaoling; Ye, Guodong

    2014-12-01

    In this paper, an efficient self-adaptive model for chaotic image encryption algorithm is proposed. With the help of the classical structure of permutation-diffusion and double simple two-dimensional chaotic systems, an efficient and fast encryption algorithm is designed. However, different from most of the existing methods which are found insecure upon chosen-plaintext or known-plaintext attack in the process of permutation or diffusion, the keystream generated in both operations of our method is dependent on the plain-image. Therefore, different plain-images will have different keystreams in both processes even just only a bit is changed in the plain-image. This design can solve the problem of fixed chaotic sequence produced by the same initial conditions but for different images. Moreover, the operation speed is high because complex mathematical methods, such as Runge-Kutta method, of solving the high-dimensional partial differential equations are avoided. Numerical experiments show that the proposed self-adaptive method can well resist against chosen-plaintext and known-plaintext attacks, and has high security and efficiency.

  2. Optical Cluster-Finding with an Adaptive Matched-Filter Technique: Algorithm and Comparison with Simulations

    SciTech Connect

    Dong, Feng; Pierpaoli, Elena; Gunn, James E.; Wechsler, Risa H.

    2007-10-29

    We present a modified adaptive matched filter algorithm designed to identify clusters of galaxies in wide-field imaging surveys such as the Sloan Digital Sky Survey. The cluster-finding technique is fully adaptive to imaging surveys with spectroscopic coverage, multicolor photometric redshifts, no redshift information at all, and any combination of these within one survey. It works with high efficiency in multi-band imaging surveys where photometric redshifts can be estimated with well-understood error distributions. Tests of the algorithm on realistic mock SDSS catalogs suggest that the detected sample is {approx} 85% complete and over 90% pure for clusters with masses above 1.0 x 10{sup 14}h{sup -1} M and redshifts up to z = 0.45. The errors of estimated cluster redshifts from maximum likelihood method are shown to be small (typically less that 0.01) over the whole redshift range with photometric redshift errors typical of those found in the Sloan survey. Inside the spherical radius corresponding to a galaxy overdensity of {Delta} = 200, we find the derived cluster richness {Lambda}{sub 200} a roughly linear indicator of its virial mass M{sub 200}, which well recovers the relation between total luminosity and cluster mass of the input simulation.

  3. Optimization and vibration suppression of adaptive composite panels using genetic algorithm and disturbance observer technique

    NASA Astrophysics Data System (ADS)

    Yan, Su; Ghasemi-Nejhad, Mehrdad N.

    2003-07-01

    In this paper, a model of the adaptive composite panel surfaces with piezoelectric patches is built using the Rayleigh-Ritz method based on the laminate theory. The interia and stiffness of the actuators are considered in the developed model. An optimal actuator location has been proved to be desirable since the piezoelectric actuators often have limitations of delivering large power oiutputs. Due to its effectiveness in seraching optimal design parameters and obtaining globally optimal solutions, the genetic algorithm has been applied to find optimal locations of piezoelectric actuators for the vibration control of a smart composite beam. In addition, the effects of population size, the crossover probability, and the mutation probability on the convergence of the genetic algorithm are investigated. Meanwhile, linear quadric regulator (LQR) and disturbance observer (DOB) are employed for the vibration suppression of the optimized adaptive composite beam (ACB). The experimental results show the robustness of the DOB, which can successfully suppress the vibrations of the cantilevered ACB according to the optimization results in an uncertain system.

  4. Adaptive filter design based on the LMS algorithm for delay elimination in TCR/FC compensators.

    PubMed

    Hooshmand, Rahmat Allah; Torabian Esfahani, Mahdi

    2011-04-01

    Thyristor controlled reactor with fixed capacitor (TCR/FC) compensators have the capability of compensating reactive power and improving power quality phenomena. Delay in the response of such compensators degrades their performance. In this paper, a new method based on adaptive filters (AF) is proposed in order to eliminate delay and increase the response of the TCR compensator. The algorithm designed for the adaptive filters is performed based on the least mean square (LMS) algorithm. In this design, instead of fixed capacitors, band-pass LC filters are used. To evaluate the filter, a TCR/FC compensator was used for nonlinear and time varying loads of electric arc furnaces (EAFs). These loads caused occurrence of power quality phenomena in the supplying system, such as voltage fluctuation and flicker, odd and even harmonics and unbalancing in voltage and current. The above design was implemented in a realistic system model of a steel complex. The simulation results show that applying the proposed control in the TCR/FC compensator efficiently eliminated delay in the response and improved the performance of the compensator in the power system.

  5. Adaptive filter design based on the LMS algorithm for delay elimination in TCR/FC compensators.

    PubMed

    Hooshmand, Rahmat Allah; Torabian Esfahani, Mahdi

    2011-04-01

    Thyristor controlled reactor with fixed capacitor (TCR/FC) compensators have the capability of compensating reactive power and improving power quality phenomena. Delay in the response of such compensators degrades their performance. In this paper, a new method based on adaptive filters (AF) is proposed in order to eliminate delay and increase the response of the TCR compensator. The algorithm designed for the adaptive filters is performed based on the least mean square (LMS) algorithm. In this design, instead of fixed capacitors, band-pass LC filters are used. To evaluate the filter, a TCR/FC compensator was used for nonlinear and time varying loads of electric arc furnaces (EAFs). These loads caused occurrence of power quality phenomena in the supplying system, such as voltage fluctuation and flicker, odd and even harmonics and unbalancing in voltage and current. The above design was implemented in a realistic system model of a steel complex. The simulation results show that applying the proposed control in the TCR/FC compensator efficiently eliminated delay in the response and improved the performance of the compensator in the power system. PMID:21193194

  6. A New Real-coded Genetic Algorithm with an Adaptive Mating Selection for UV-landscapes

    NASA Astrophysics Data System (ADS)

    Oshima, Dan; Miyamae, Atsushi; Nagata, Yuichi; Kobayashi, Shigenobu; Ono, Isao; Sakuma, Jun

    The purpose of this paper is to propose a new real-coded genetic algorithm (RCGA) named Networked Genetic Algorithm (NGA) that intends to find multiple optima simultaneously in deceptive globally multimodal landscapes. Most current techniques such as niching for finding multiple optima take into account big valley landscapes or non-deceptive globally multimodal landscapes but not deceptive ones called UV-landscapes. Adaptive Neighboring Search (ANS) is a promising approach for finding multiple optima in UV-landscapes. ANS utilizes a restricted mating scheme with a crossover-like mutation in order to find optima in deceptive globally multimodal landscapes. However, ANS has a fundamental problem that it does not find all the optima simultaneously in many cases. NGA overcomes the problem by an adaptive parent-selection scheme and an improved crossover-like mutation. We show the effectiveness of NGA over ANS in terms of the number of detected optima in a single run on Fletcher and Powell functions as benchmark problems that are known to have multiple optima, ill-scaledness, and UV-landscapes.

  7. Convergence study of various non-quadratic adaptive algorithms in the equalization of impulsive DS-CDMA channel

    NASA Astrophysics Data System (ADS)

    Jimaa, Shihab A.; Jadah, Mohamed E.

    2005-10-01

    This paper investigates the performance of using various non-quadratic adaptive algorithms in the adaptation of a non-linear receiver, coupled with a second-order phase tracking subsystem, for asynchronous DS-CDMA communication system impaired by double-spread multipath channel and Gaussian mixture impulsive noise. These algorithms are the lower order (where the power of the cost function is lower than 2), the least-mean mixed norm (where a mixed-norm function is introduced, which combines the LMS and the LMF functions), and the least mean square-fourth switching (where this algorithm switches between LMS and LMF depending on the value of the error). The non-linear receiver comprises feed-forward filter (FFF), feedback filter (FBF), and an equalizer/second order phase locked loop (PLL). The investigations study the effect of using the proposed algorithms on the performance of the non-linear receiver in terms of the mean-square error (MSE) and bit-error-rate (BER). Computer simulation results indicate that the least-mean mixed proposed receiver's algorithm gives the fastest convergence rate and similar BER performance, in comparison with the NLMS adaptive receiver. Furthermore, extensive computer simulation tests have been carried out to determine the optimum values of the step-size, the power of the cost function, and the adaptation parameter of the proposed algorithms. Results show that the optimum values of the step-size for the lower-order, least-mean square fourth, least-mean mixed norm, and the NLMS algorithms are 5x10 -4, 10 -6, 5x10 -4, and 0.01, respectively. The optimum value of the power of the lower-order algorithm is 1.9 and the optimum value of the adaptation parameter of the least-mean mixed algorithm is 0.9.

  8. Low-complexity user selection for rate maximization in MIMO broadcast channels with downlink beamforming.

    PubMed

    Castañeda, Eduardo; Silva, Adão; Samano-Robles, Ramiro; Gameiro, Atílio

    2014-01-01

    We present in this work a low-complexity algorithm to solve the sum rate maximization problem in multiuser MIMO broadcast channels with downlink beamforming. Our approach decouples the user selection problem from the resource allocation problem and its main goal is to create a set of quasiorthogonal users. The proposed algorithm exploits physical metrics of the wireless channels that can be easily computed in such a way that a null space projection power can be approximated efficiently. Based on the derived metrics we present a mathematical model that describes the dynamics of the user selection process which renders the user selection problem into an integer linear program. Numerical results show that our approach is highly efficient to form groups of quasiorthogonal users when compared to previously proposed algorithms in the literature. Our user selection algorithm achieves a large portion of the optimum user selection sum rate (90%) for a moderate number of active users.

  9. Self-adapting root-MUSIC algorithm and its real-valued formulation for acoustic vector sensor array

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Zhang, Guo-jun; Xue, Chen-yang; Zhang, Wen-dong; Xiong, Ji-jun

    2012-12-01

    In this paper, based on the root-MUSIC algorithm for acoustic pressure sensor array, a new self-adapting root-MUSIC algorithm for acoustic vector sensor array is proposed by self-adaptive selecting the lead orientation vector, and its real-valued formulation by Forward-Backward(FB) smoothing and real-valued inverse covariance matrix is also proposed, which can reduce the computational complexity and distinguish the coherent signals. The simulation experiment results show the better performance of two new algorithm with low Signal-to-Noise (SNR) in direction of arrival (DOA) estimation than traditional MUSIC algorithm, and the experiment results using MEMS vector hydrophone array in lake trails show the engineering practicability of two new algorithms.

  10. Online adaptive policy learning algorithm for H∞ state feedback control of unknown affine nonlinear discrete-time systems.

    PubMed

    Zhang, Huaguang; Qin, Chunbin; Jiang, Bin; Luo, Yanhong

    2014-12-01

    The problem of H∞ state feedback control of affine nonlinear discrete-time systems with unknown dynamics is investigated in this paper. An online adaptive policy learning algorithm (APLA) based on adaptive dynamic programming (ADP) is proposed for learning in real-time the solution to the Hamilton-Jacobi-Isaacs (HJI) equation, which appears in the H∞ control problem. In the proposed algorithm, three neural networks (NNs) are utilized to find suitable approximations of the optimal value function and the saddle point feedback control and disturbance policies. Novel weight updating laws are given to tune the critic, actor, and disturbance NNs simultaneously by using data generated in real-time along the system trajectories. Considering NN approximation errors, we provide the stability analysis of the proposed algorithm with Lyapunov approach. Moreover, the need of the system input dynamics for the proposed algorithm is relaxed by using a NN identification scheme. Finally, simulation examples show the effectiveness of the proposed algorithm. PMID:25095274

  11. MARGA: multispectral adaptive region growing algorithm for brain extraction on axial MRI.

    PubMed

    Roura, Eloy; Oliver, Arnau; Cabezas, Mariano; Vilanova, Joan C; Rovira, Alex; Ramió-Torrentà, Lluís; Lladó, Xavier

    2014-02-01

    Brain extraction, also known as skull stripping, is one of the most important preprocessing steps for many automatic brain image analysis. In this paper we present a new approach called Multispectral Adaptive Region Growing Algorithm (MARGA) to perform the skull stripping process. MARGA is based on a region growing (RG) algorithm which uses the complementary information provided by conventional magnetic resonance images (MRI) such as T1-weighted and T2-weighted to perform the brain segmentation. MARGA can be seen as an extension of the skull stripping method proposed by Park and Lee (2009) [1], enabling their use in both axial views and low quality images. Following the same idea, we first obtain seed regions that are then spread using a 2D RG algorithm which behaves differently in specific zones of the brain. This adaptation allows to deal with the fact that middle MRI slices have better image contrast between the brain and non-brain regions than superior and inferior brain slices where the contrast is smaller. MARGA is validated using three different databases: 10 simulated brains from the BrainWeb database; 2 data sets from the National Alliance for Medical Image Computing (NAMIC) database, the first one consisting in 10 normal brains and 10 brains of schizophrenic patients acquired with a 3T GE scanner, and the second one consisting in 5 brains from lupus patients acquired with a 3T Siemens scanner; and 10 brains of multiple sclerosis patients acquired with a 1.5T scanner. We have qualitatively and quantitatively compared MARGA with the well-known Brain Extraction Tool (BET), Brain Surface Extractor (BSE) and Statistical Parametric Mapping (SPM) approaches. The obtained results demonstrate the validity of MARGA, outperforming the results of those standard techniques. PMID:24380649

  12. An Energy Aware Adaptive Sampling Algorithm for Energy Harvesting WSN with Energy Hungry Sensors.

    PubMed

    Srbinovski, Bruno; Magno, Michele; Edwards-Murphy, Fiona; Pakrashi, Vikram; Popovici, Emanuel

    2016-01-01

    Wireless sensor nodes have a limited power budget, though they are often expected to be functional in the field once deployed for extended periods of time. Therefore, minimization of energy consumption and energy harvesting technology in Wireless Sensor Networks (WSN) are key tools for maximizing network lifetime, and achieving self-sustainability. This paper proposes an energy aware Adaptive Sampling Algorithm (ASA) for WSN with power hungry sensors and harvesting capabilities, an energy management technique that can be implemented on any WSN platform with enough processing power to execute the proposed algorithm. An existing state-of-the-art ASA developed for wireless sensor networks with power hungry sensors is optimized and enhanced to adapt the sampling frequency according to the available energy of the node. The proposed algorithm is evaluated using two in-field testbeds that are supplied by two different energy harvesting sources (solar and wind). Simulation and comparison between the state-of-the-art ASA and the proposed energy aware ASA (EASA) in terms of energy durability are carried out using in-field measured harvested energy (using both wind and solar sources) and power hungry sensors (ultrasonic wind sensor and gas sensors). The simulation results demonstrate that using ASA in combination with an energy aware function on the nodes can drastically increase the lifetime of a WSN node and enable self-sustainability. In fact, the proposed EASA in conjunction with energy harvesting capability can lead towards perpetual WSN operation and significantly outperform the state-of-the-art ASA. PMID:27043559

  13. An Energy Aware Adaptive Sampling Algorithm for Energy Harvesting WSN with Energy Hungry Sensors

    PubMed Central

    Srbinovski, Bruno; Magno, Michele; Edwards-Murphy, Fiona; Pakrashi, Vikram; Popovici, Emanuel

    2016-01-01

    Wireless sensor nodes have a limited power budget, though they are often expected to be functional in the field once deployed for extended periods of time. Therefore, minimization of energy consumption and energy harvesting technology in Wireless Sensor Networks (WSN) are key tools for maximizing network lifetime, and achieving self-sustainability. This paper proposes an energy aware Adaptive Sampling Algorithm (ASA) for WSN with power hungry sensors and harvesting capabilities, an energy management technique that can be implemented on any WSN platform with enough processing power to execute the proposed algorithm. An existing state-of-the-art ASA developed for wireless sensor networks with power hungry sensors is optimized and enhanced to adapt the sampling frequency according to the available energy of the node. The proposed algorithm is evaluated using two in-field testbeds that are supplied by two different energy harvesting sources (solar and wind). Simulation and comparison between the state-of-the-art ASA and the proposed energy aware ASA (EASA) in terms of energy durability are carried out using in-field measured harvested energy (using both wind and solar sources) and power hungry sensors (ultrasonic wind sensor and gas sensors). The simulation results demonstrate that using ASA in combination with an energy aware function on the nodes can drastically increase the lifetime of a WSN node and enable self-sustainability. In fact, the proposed EASA in conjunction with energy harvesting capability can lead towards perpetual WSN operation and significantly outperform the state-of-the-art ASA. PMID:27043559

  14. A local anisotropic adaptive algorithm for the solution of low-Mach transient combustion problems

    NASA Astrophysics Data System (ADS)

    Carpio, Jaime; Prieto, Juan Luis; Vera, Marcos

    2016-02-01

    A novel numerical algorithm for the simulation of transient combustion problems at low Mach and moderately high Reynolds numbers is presented. These problems are often characterized by the existence of a large disparity of length and time scales, resulting in the development of directional flow features, such as slender jets, boundary layers, mixing layers, or flame fronts. This makes local anisotropic adaptive techniques quite advantageous computationally. In this work we propose a local anisotropic refinement algorithm using, for the spatial discretization, unstructured triangular elements in a finite element framework. For the time integration, the problem is formulated in the context of semi-Lagrangian schemes, introducing the semi-Lagrange-Galerkin (SLG) technique as a better alternative to the classical semi-Lagrangian (SL) interpolation. The good performance of the numerical algorithm is illustrated by solving a canonical laminar combustion problem: the flame/vortex interaction. First, a premixed methane-air flame/vortex interaction with simplified transport and chemistry description (Test I) is considered. Results are found to be in excellent agreement with those in the literature, proving the superior performance of the SLG scheme when compared with the classical SL technique, and the advantage of using anisotropic adaptation instead of uniform meshes or isotropic mesh refinement. As a more realistic example, we then conduct simulations of non-premixed hydrogen-air flame/vortex interactions (Test II) using a more complex combustion model which involves state-of-the-art transport and chemical kinetics. In addition to the analysis of the numerical features, this second example allows us to perform a satisfactory comparison with experimental visualizations taken from the literature.

  15. An adaptive algorithm for the detection of microcalcifications in simulated low-dose mammography

    NASA Astrophysics Data System (ADS)

    Treiber, O.; Wanninger, F.; Führ, H.; Panzer, W.; Regulla, D.; Winkler, G.

    2003-02-01

    This paper uses the task of microcalcification detection as a benchmark problem to assess the potential for dose reduction in x-ray mammography. We present the results of a newly developed algorithm for detection of microcalcifications as a case study for a typical commercial film-screen system (Kodak Min-R 2000/2190). The first part of the paper deals with the simulation of dose reduction for film-screen mammography based on a physical model of the imaging process. Use of a more sensitive film-screen system is expected to result in additional smoothing of the image. We introduce two different models of that behaviour, called moderate and strong smoothing. We then present an adaptive, model-based microcalcification detection algorithm. Comparing detection results with ground-truth images obtained under the supervision of an expert radiologist allows us to establish the soundness of the detection algorithm. We measure the performance on the dose-reduced images in order to assess the loss of information due to dose reduction. It turns out that the smoothing behaviour has a strong influence on detection rates. For moderate smoothing, a dose reduction by 25% has no serious influence on the detection results, whereas a dose reduction by 50% already entails a marked deterioration of the performance. Strong smoothing generally leads to an unacceptable loss of image quality. The test results emphasize the impact of the more sensitive film-screen system and its characteristics on the problem of assessing the potential for dose reduction in film-screen mammography. The general approach presented in the paper can be adapted to fully digital mammography.

  16. Dimensionality Reduction in Complex Medical Data: Improved Self-Adaptive Niche Genetic Algorithm

    PubMed Central

    Zhu, Min; Xia, Jing; Yan, Molei; Cai, Guolong; Yan, Jing; Ning, Gangmin

    2015-01-01

    With the development of medical technology, more and more parameters are produced to describe the human physiological condition, forming high-dimensional clinical datasets. In clinical analysis, data are commonly utilized to establish mathematical models and carry out classification. High-dimensional clinical data will increase the complexity of classification, which is often utilized in the models, and thus reduce efficiency. The Niche Genetic Algorithm (NGA) is an excellent algorithm for dimensionality reduction. However, in the conventional NGA, the niche distance parameter is set in advance, which prevents it from adjusting to the environment. In this paper, an Improved Niche Genetic Algorithm (INGA) is introduced. It employs a self-adaptive niche-culling operation in the construction of the niche environment to improve the population diversity and prevent local optimal solutions. The INGA was verified in a stratification model for sepsis patients. The results show that, by applying INGA, the feature dimensionality of datasets was reduced from 77 to 10 and that the model achieved an accuracy of 92% in predicting 28-day death in sepsis patients, which is significantly higher than other methods. PMID:26649071

  17. A Self-adaptive Evolutionary Algorithm for Multi-objective Optimization

    NASA Astrophysics Data System (ADS)

    Cao, Ruifen; Li, Guoli; Wu, Yican

    Evolutionary algorithm has gained a worldwide popularity among multi-objective optimization. The paper proposes a self-adaptive evolutionary algorithm (called SEA) for multi-objective optimization. In the SEA, the probability of crossover and mutation,P c and P m , are varied depending on the fitness values of the solutions. Fitness assignment of SEA realizes the twin goals of maintaining diversity in the population and guiding the population to the true Pareto Front; fitness value of individual not only depends on improved density estimation but also depends on non-dominated rank. The density estimation can keep diversity in all instances including when scalars of all objectives are much different from each other. SEA is compared against the Non-dominated Sorting Genetic Algorithm (NSGA-II) on a set of test problems introduced by the MOEA community. Simulated results show that SEA is as effective as NSGA-II in most of test functions, but when scalar of objectives are much different from each other, SEA has better distribution of non-dominated solutions.

  18. Automatic classification of schizophrenia using resting-state functional language network via an adaptive learning algorithm

    NASA Astrophysics Data System (ADS)

    Zhu, Maohu; Jie, Nanfeng; Jiang, Tianzi

    2014-03-01

    A reliable and precise classification of schizophrenia is significant for its diagnosis and treatment of schizophrenia. Functional magnetic resonance imaging (fMRI) is a novel tool increasingly used in schizophrenia research. Recent advances in statistical learning theory have led to applying pattern classification algorithms to access the diagnostic value of functional brain networks, discovered from resting state fMRI data. The aim of this study was to propose an adaptive learning algorithm to distinguish schizophrenia patients from normal controls using resting-state functional language network. Furthermore, here the classification of schizophrenia was regarded as a sample selection problem where a sparse subset of samples was chosen from the labeled training set. Using these selected samples, which we call informative vectors, a classifier for the clinic diagnosis of schizophrenia was established. We experimentally demonstrated that the proposed algorithm incorporating resting-state functional language network achieved 83.6% leaveone- out accuracy on resting-state fMRI data of 27 schizophrenia patients and 28 normal controls. In contrast with KNearest- Neighbor (KNN), Support Vector Machine (SVM) and l1-norm, our method yielded better classification performance. Moreover, our results suggested that a dysfunction of resting-state functional language network plays an important role in the clinic diagnosis of schizophrenia.

  19. Dimensionality Reduction in Complex Medical Data: Improved Self-Adaptive Niche Genetic Algorithm.

    PubMed

    Zhu, Min; Xia, Jing; Yan, Molei; Cai, Guolong; Yan, Jing; Ning, Gangmin

    2015-01-01

    With the development of medical technology, more and more parameters are produced to describe the human physiological condition, forming high-dimensional clinical datasets. In clinical analysis, data are commonly utilized to establish mathematical models and carry out classification. High-dimensional clinical data will increase the complexity of classification, which is often utilized in the models, and thus reduce efficiency. The Niche Genetic Algorithm (NGA) is an excellent algorithm for dimensionality reduction. However, in the conventional NGA, the niche distance parameter is set in advance, which prevents it from adjusting to the environment. In this paper, an Improved Niche Genetic Algorithm (INGA) is introduced. It employs a self-adaptive niche-culling operation in the construction of the niche environment to improve the population diversity and prevent local optimal solutions. The INGA was verified in a stratification model for sepsis patients. The results show that, by applying INGA, the feature dimensionality of datasets was reduced from 77 to 10 and that the model achieved an accuracy of 92% in predicting 28-day death in sepsis patients, which is significantly higher than other methods.

  20. A new spectral variable selection pattern using competitive adaptive reweighted sampling combined with successive projections algorithm.

    PubMed

    Tang, Guo; Huang, Yue; Tian, Kuangda; Song, Xiangzhong; Yan, Hong; Hu, Jing; Xiong, Yanmei; Min, Shungeng

    2014-10-01

    The competitive adaptive reweighted sampling-successive projections algorithm (CARS-SPA) method was proposed as a novel variable selection approach to process multivariate calibration. The CARS was first used to select informative variables, and then SPA to refine the variables with minimum redundant information. The proposed method was applied to near-infrared (NIR) reflectance data of nicotine in tobacco lamina and NIR transmission data of active ingredient in pesticide formulation. As a result, fewer but more informative variables were selected by CARS-SPA than by direct CARS. In the system of pesticide formulation, a multiple linear regression (MLR) model using variables selected by CARS-SPA provided a better prediction than the full-range partial least-squares (PLS) model, successive projections algorithm (SPA) model and uninformative variables elimination-successive projections algorithm (UVE-SPA) processed model. The variable subsets selected by CARS-SPA included the spectral ranges with sufficient chemical information, whereas the uninformative variables were hardly selected.

  1. Using adaptive genetic algorithms in the design of morphological filters in textural image processing

    NASA Astrophysics Data System (ADS)

    Li, Wei; Haese-Coat, Veronique; Ronsin, Joseph

    1996-03-01

    An adaptive GA scheme is adopted for the optimal morphological filter design problem. The adaptive crossover and mutation rate which make the GA avoid premature and at the same time assure convergence of the program are successfully used in optimal morphological filter design procedure. In the string coding step, each string (chromosome) is composed of a structuring element coding chain concatenated with a filter sequence coding chain. In decoding step, each string is divided into 3 chains which then are decoded respectively into one structuring element with a size inferior to 5 by 5 and two concatenating morphological filter operators. The fitness function in GA is based on the mean-square-error (MSE) criterion. In string selection step, a stochastic tournament procedure is used to replace the simple roulette wheel program in order to accelerate the convergence. The final convergence of our algorithm is reached by a two step converging strategy. In presented applications of noise removal from texture images, it is found that with the optimized morphological filter sequences, the obtained MSE values are smaller than those using corresponding non-adaptive morphological filters, and the optimized shapes and orientations of structuring elements take approximately the same shapes and orientations as those of the image textons.

  2. Tensor dissimilarity based adaptive seeding algorithm for DT-MRI visualization with streamtubes

    NASA Astrophysics Data System (ADS)

    Weldeselassie, Yonas T.; Hamarneh, Ghassan; Weiskopf, Daniel

    2007-03-01

    In this paper, we propose an adaptive seeding strategy for visualization of diffusion tensor magnetic resonance imaging (DT-MRI) data using streamtubes. DT-MRI is a medical imaging modality that captures unique water diffusion properties and fiber orientation information of the imaged tissues. Visualizing DT-MRI data using streamtubes has the advantage that not only the anisotropic nature of the diffusion is visualized but also the underlying anatomy of biological structures is revealed. This makes streamtubes significant for the analysis of fibrous tissues in medical images. In order to avoid rendering multiple similar streamtubes, an adaptive seeding strategy is employed which takes into account similarity of tensors in a given region. The goal is to automate the process of generating seed points such that regions with dissimilar tensors are assigned more seed points compared to regions with similar tensors. The algorithm is based on tensor dissimilarity metrics that take into account both diffusion magnitudes and directions to optimize the seeding positions and density of streamtubes in order to reduce the visual clutter. Two recent advances in tensor calculus and tensor dissimilarity metrics are utilized: the Log-Euclidean and the J-divergence. Results show that adaptive seeding not only helps to cull unnecessary streamtubes that would obscure visualization but also do so without having to compute the culled streamtubes, which makes the visualization process faster.

  3. Digital Beamforming Synthetic Aperture Radar (DBSAR) Polarimetric Upgrade

    NASA Technical Reports Server (NTRS)

    Rincon, Rafael F.; Perrine, Martin; McLinden, Matthew; Valett, Susan

    2011-01-01

    The Digital Beamforming Synthetic Aperture Radar (DBSAR) is a state-of-the-art radar system developed at NASA/Goddard Space Flight Center for the development and implementation of digital beamforming radar techniques. DBSAR was recently upgraded to polarimetric operation in order to enhance its capability as a science instrument. Two polarimetric approaches were carried out which will be demonstrated in upcoming flight campaigns.

  4. Adaptive polarimetric sensing for optimum radar signature classification using a genetic search algorithm.

    PubMed

    Sadjadi, Firooz A

    2006-08-01

    An automated technique for adaptive radar polarimetric pattern classification is described. The approach is based on a genetic algorithm that uses a probabilistic pattern separation distance function and searches for those transmit and receive states of polarization sensing angles that optimize this function. Seven pattern separation distance functions--the Rayleigh quotient, the Bhattacharyya, divergence, Kolmogorov, Matusta, Kullback-Leibler distances, and the Bayesian probability of error--are used on real, fully polarimetric synthetic aperture radar target signatures. Each of these signatures is represented as functions of transmit and receive polarization ellipticity angles and the angle of polarization ellipse. The results indicate that, based on the majority of the distance functions used, there is a unique set of state of polarization angles whose use will lead to improved classification performance.

  5. Adaptive RSOV filter using the FELMS algorithm for nonlinear active noise control systems

    NASA Astrophysics Data System (ADS)

    Zhao, Haiquan; Zeng, Xiangping; He, Zhengyou; Li, Tianrui

    2013-01-01

    This paper presents a recursive second-order Volterra (RSOV) filter to solve the problems of signal saturation and other nonlinear distortions that occur in nonlinear active noise control systems (NANC) used for actual applications. Since this nonlinear filter based on an infinite impulse response (IIR) filter structure can model higher than second-order and third-order nonlinearities for systems where the nonlinearities are harmonically related, the RSOV filter is more effective in NANC systems with either a linear secondary path (LSP) or a nonlinear secondary path (NSP). Simulation results clearly show that the RSOV adaptive filter using the multichannel structure filtered-error least mean square (FELMS) algorithm can further greatly reduce the computational burdens and is more suitable to eliminate nonlinear distortions in NANC systems than a SOV filter, a bilinear filter and a third-order Volterra (TOV) filter.

  6. Non-equilibrium molecular dynamics simulation of nanojet injection with adaptive-spatial decomposition parallel algorithm.

    PubMed

    Shin, Hyun-Ho; Yoon, Woong-Sup

    2008-07-01

    An Adaptive-Spatial Decomposition parallel algorithm was developed to increase computation efficiency for molecular dynamics simulations of nano-fluids. Injection of a liquid argon jet with a scale of 17.6 molecular diameters was investigated. A solid annular platinum injector was also solved simultaneously with the liquid injectant by adopting a solid modeling technique which incorporates phantom atoms. The viscous heat was naturally discharged through the solids so the liquid boiling problem was avoided with no separate use of temperature controlling methods. Parametric investigations of injection speed, wall temperature, and injector length were made. A sudden pressure drop at the orifice exit causes flash boiling of the liquid departing the nozzle exit with strong evaporation on the surface of the liquids, while rendering a slender jet. The elevation of the injection speed and the wall temperature causes an activation of the surface evaporation concurrent with reduction in the jet breakup length and the drop size.

  7. Quantitative analysis of terahertz spectra for illicit drugs using adaptive-range micro-genetic algorithm

    NASA Astrophysics Data System (ADS)

    Chen, Yi; Ma, Yong; Lu, Zheng; Peng, Bei; Chen, Qin

    2011-08-01

    In the field of anti-illicit drug applications, many suspicious mixture samples might consist of various drug components—for example, a mixture of methamphetamine, heroin, and amoxicillin—which makes spectral identification very difficult. A terahertz spectroscopic quantitative analysis method using an adaptive range micro-genetic algorithm with a variable internal population (ARVIPɛμGA) has been proposed. Five mixture cases are discussed using ARVIPɛμGA driven quantitative terahertz spectroscopic analysis in this paper. The devised simulation results show agreement with the previous experimental results, which suggested that the proposed technique has potential applications for terahertz spectral identifications of drug mixture components. The results show agreement with the results obtained using other experimental and numerical techniques.

  8. Demonstration of the use of ADAPT to derive predictive maintenance algorithms for the KSC central heat plant

    NASA Technical Reports Server (NTRS)

    Hunter, H. E.

    1972-01-01

    The Avco Data Analysis and Prediction Techniques (ADAPT) were employed to determine laws capable of detecting failures in a heat plant up to three days in advance of the occurrence of the failure. The projected performance of algorithms yielded a detection probability of 90% with false alarm rates of the order of 1 per year for a sample rate of 1 per day with each detection, followed by 3 hourly samplings. This performance was verified on 173 independent test cases. The program also demonstrated diagnostic algorithms and the ability to predict the time of failure to approximately plus or minus 8 hours up to three days in advance of the failure. The ADAPT programs produce simple algorithms which have a unique possibility of a relatively low cost updating procedure. The algorithms were implemented on general purpose computers at Kennedy Space Flight Center and tested against current data.

  9. Flight Testing of the Space Launch System (SLS) Adaptive Augmenting Control (AAC) Algorithm on an F/A-18

    NASA Technical Reports Server (NTRS)

    Dennehy, Cornelius J.; VanZwieten, Tannen S.; Hanson, Curtis E.; Wall, John H.; Miller, Chris J.; Gilligan, Eric T.; Orr, Jeb S.

    2014-01-01

    The Marshall Space Flight Center (MSFC) Flight Mechanics and Analysis Division developed an adaptive augmenting control (AAC) algorithm for launch vehicles that improves robustness and performance on an as-needed basis by adapting a classical control algorithm to unexpected environments or variations in vehicle dynamics. This was baselined as part of the Space Launch System (SLS) flight control system. The NASA Engineering and Safety Center (NESC) was asked to partner with the SLS Program and the Space Technology Mission Directorate (STMD) Game Changing Development Program (GCDP) to flight test the AAC algorithm on a manned aircraft that can achieve a high level of dynamic similarity to a launch vehicle and raise the technology readiness of the algorithm early in the program. This document reports the outcome of the NESC assessment.

  10. A graph based algorithm for adaptable dynamic airspace configuration for NextGen

    NASA Astrophysics Data System (ADS)

    Savai, Mehernaz P.

    The National Airspace System (NAS) is a complicated large-scale aviation network, consisting of many static sectors wherein each sector is controlled by one or more controllers. The main purpose of the NAS is to enable safe and prompt air travel in the U.S. However, such static configuration of sectors will not be able to handle the continued growth of air travel which is projected to be more than double the current traffic by 2025. Under the initiative of the Next Generation of Air Transportation system (NextGen), the main objective of Adaptable Dynamic Airspace Configuration (ADAC) is that the sectors should change to the changing traffic so as to reduce the controller workload variance with time while increasing the throughput. Change in the resectorization should be such that there is a minimal increase in exchange of air traffic among controllers. The benefit of a new design (improvement in workload balance, etc.) should sufficiently exceed the transition cost, in order to deserve a change. This leads to the analysis of the concept of transition workload which is the cost associated with a transition from one sectorization to another. Given two airspace configurations, a transition workload metric which considers the air traffic as well as the geometry of the airspace is proposed. A solution to reduce this transition workload is also discussed. The algorithm is specifically designed to be implemented for the Dynamic Airspace Configuration (DAC) Algorithm. A graph model which accurately represents the air route structure and air traffic in the NAS is used to formulate the airspace configuration problem. In addition, a multilevel graph partitioning algorithm is developed for Dynamic Airspace Configuration which partitions the graph model of airspace with given user defined constraints and hence provides the user more flexibility and control over various partitions. In terms of air traffic management, vertices represent airports and waypoints. Some of the major

  11. Robust image transmission using a new joint source channel coding algorithm and dual adaptive OFDM

    NASA Astrophysics Data System (ADS)

    Farshchian, Masoud; Cho, Sungdae; Pearlman, William A.

    2004-01-01

    In this paper we consider the problem of robust image coding and packetization for the purpose of communications over slow fading frequency selective channels and channels with a shaped spectrum like those of digital subscribe lines (DSL). Towards this end, a novel and analytically based joint source channel coding (JSCC) algorithm to assign unequal error protection is presented. Under a block budget constraint, the image bitstream is de-multiplexed into two classes with different error responses. The algorithm assigns unequal error protection (UEP) in a way to minimize the expected mean square error (MSE) at the receiver while minimizing the probability of catastrophic failure. In order to minimize the expected mean square error at the receiver, the algorithm assigns unequal protection to the value bit class (VBC) stream. In order to minimizes the probability of catastrophic error which is a characteristic of progressive image coders, the algorithm assigns more protection to the location bit class (LBC) stream than the VBC stream. Besides having the advantage of being analytical and also numerically solvable, the algorithm is based on a new formula developed to estimate the distortion rate (D-R) curve for the VBC portion of SPIHT. The major advantage of our technique is that the worst case instantaneous minimum peak signal to noise ratio (PSNR) does not differ greatly from the averge MSE while this is not the case for the optimal single stream (UEP) system. Although both average PSNR of our method and the optimal single stream UEP are about the same, our scheme does not suffer erratic behavior because we have made the probability of catastrophic error arbitarily small. The coded image is sent via orthogonal frequency division multiplexing (OFDM) which is a known and increasing popular modulation scheme to combat ISI (Inter Symbol Interference) and impulsive noise. Using dual adaptive energy OFDM, we use the minimum energy necessary to send each bit stream at a

  12. A high precision phase reconstruction algorithm for multi-laser guide stars adaptive optics

    NASA Astrophysics Data System (ADS)

    He, Bin; Hu, Li-Fa; Li, Da-Yu; Xu, Huan-Yu; Zhang, Xing-Yun; Wang, Shao-Xin; Wang, Yu-Kun; Yang, Cheng-Liang; Cao, Zhao-Liang; Mu, Quan-Quan; Lu, Xing-Hai; Xuan, Li

    2016-09-01

    Adaptive optics (AO) systems are widespread and considered as an essential part of any large aperture telescope for obtaining a high resolution imaging at present. To enlarge the imaging field of view (FOV), multi-laser guide stars (LGSs) are currently being investigated and used for the large aperture optical telescopes. LGS measurement is necessary and pivotal to obtain the cumulative phase distortion along a target in the multi-LGSs AO system. We propose a high precision phase reconstruction algorithm to estimate the phase for a target with an uncertain turbulence profile based on the interpolation. By comparing with the conventional average method, the proposed method reduces the root mean square (RMS) error from 130 nm to 85 nm with a 30% reduction for narrow FOV. We confirm that such phase reconstruction algorithm is validated for both narrow field AO and wide field AO. Project supported by the National Natural Science Foundation of China (Grant Nos. 11174274, 11174279, 61205021, 11204299, 61475152, and 61405194) and State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences.

  13. A memory structure adapted simulated annealing algorithm for a green vehicle routing problem.

    PubMed

    Küçükoğlu, İlker; Ene, Seval; Aksoy, Aslı; Öztürk, Nursel

    2015-03-01

    Currently, reduction of carbon dioxide (CO2) emissions and fuel consumption has become a critical environmental problem and has attracted the attention of both academia and the industrial sector. Government regulations and customer demands are making environmental responsibility an increasingly important factor in overall supply chain operations. Within these operations, transportation has the most hazardous effects on the environment, i.e., CO2 emissions, fuel consumption, noise and toxic effects on the ecosystem. This study aims to construct vehicle routes with time windows that minimize the total fuel consumption and CO2 emissions. The green vehicle routing problem with time windows (G-VRPTW) is formulated using a mixed integer linear programming model. A memory structure adapted simulated annealing (MSA-SA) meta-heuristic algorithm is constructed due to the high complexity of the proposed problem and long solution times for practical applications. The proposed models are integrated with a fuel consumption and CO2 emissions calculation algorithm that considers the vehicle technical specifications, vehicle load, and transportation distance in a green supply chain environment. The proposed models are validated using well-known instances with different numbers of customers. The computational results indicate that the MSA-SA heuristic is capable of obtaining good G-VRPTW solutions within a reasonable amount of time by providing reductions in fuel consumption and CO2 emissions. PMID:25056743

  14. Heart Motion Prediction Based on Adaptive Estimation Algorithms for Robotic Assisted Beating Heart Surgery

    PubMed Central

    Tuna, E. Erdem; Franke, Timothy J.; Bebek, Özkan; Shiose, Akira; Fukamachi, Kiyotaka; Çavuşoğlu, M. Cenk

    2013-01-01

    Robotic assisted beating heart surgery aims to allow surgeons to operate on a beating heart without stabilizers as if the heart is stationary. The robot actively cancels heart motion by closely following a point of interest (POI) on the heart surface—a process called Active Relative Motion Canceling (ARMC). Due to the high bandwidth of the POI motion, it is necessary to supply the controller with an estimate of the immediate future of the POI motion over a prediction horizon in order to achieve sufficient tracking accuracy. In this paper, two least-square based prediction algorithms, using an adaptive filter to generate future position estimates, are implemented and studied. The first method assumes a linear system relation between the consecutive samples in the prediction horizon. On the contrary, the second method performs this parametrization independently for each point over the whole the horizon. The effects of predictor parameters and variations in heart rate on tracking performance are studied with constant and varying heart rate data. The predictors are evaluated using a 3 degrees of freedom test-bed and prerecorded in-vivo motion data. Then, the one-step prediction and tracking performances of the presented approaches are compared with an Extended Kalman Filter predictor. Finally, the essential features of the proposed prediction algorithms are summarized. PMID:23976889

  15. An Adaptive Multigrid Algorithm for Simulating Solid Tumor Growth Using Mixture Models

    PubMed Central

    Wise, S.M.; Lowengrub, J.S.; Cristini, V.

    2010-01-01

    In this paper we give the details of the numerical solution of a three-dimensional multispecies diffuse interface model of tumor growth, which was derived in (Wise et al., J. Theor. Biol. 253 (2008)) and used to study the development of glioma in (Frieboes et al., NeuroImage 37 (2007) and tumor invasion in (Bearer et al., Cancer Research, 69 (2009)) and (Frieboes et al., J. Theor. Biol. 264 (2010)). The model has a thermodynamic basis, is related to recently developed mixture models, and is capable of providing a detailed description of tumor progression. It utilizes a diffuse interface approach, whereby sharp tumor boundaries are replaced by narrow transition layers that arise due to differential adhesive forces among the cell-species. The model consists of fourth-order nonlinear advection-reaction-diffusion equations (of Cahn-Hilliard-type) for the cell-species coupled with reaction-diffusion equations for the substrate components. Numerical solution of the model is challenging because the equations are coupled, highly nonlinear, and numerically stiff. In this paper we describe a fully adaptive, nonlinear multigrid/finite difference method for efficiently solving the equations. We demonstrate the convergence of the algorithm and we present simulations of tumor growth in 2D and 3D that demonstrate the capabilities of the algorithm in accurately and efficiently simulating the progression of tumors with complex morphologies. PMID:21076663

  16. An Adaptive Multigrid Algorithm for Simulating Solid Tumor Growth Using Mixture Models.

    PubMed

    Wise, S M; Lowengrub, J S; Cristini, V

    2011-01-01

    In this paper we give the details of the numerical solution of a three-dimensional multispecies diffuse interface model of tumor growth, which was derived in (Wise et al., J. Theor. Biol. 253 (2008)) and used to study the development of glioma in (Frieboes et al., NeuroImage 37 (2007) and tumor invasion in (Bearer et al., Cancer Research, 69 (2009)) and (Frieboes et al., J. Theor. Biol. 264 (2010)). The model has a thermodynamic basis, is related to recently developed mixture models, and is capable of providing a detailed description of tumor progression. It utilizes a diffuse interface approach, whereby sharp tumor boundaries are replaced by narrow transition layers that arise due to differential adhesive forces among the cell-species. The model consists of fourth-order nonlinear advection-reaction-diffusion equations (of Cahn-Hilliard-type) for the cell-species coupled with reaction-diffusion equations for the substrate components. Numerical solution of the model is challenging because the equations are coupled, highly nonlinear, and numerically stiff. In this paper we describe a fully adaptive, nonlinear multigrid/finite difference method for efficiently solving the equations. We demonstrate the convergence of the algorithm and we present simulations of tumor growth in 2D and 3D that demonstrate the capabilities of the algorithm in accurately and efficiently simulating the progression of tumors with complex morphologies. PMID:21076663

  17. Refinement and evaluation of helicopter real-time self-adaptive active vibration controller algorithms

    NASA Technical Reports Server (NTRS)

    Davis, M. W.

    1984-01-01

    A Real-Time Self-Adaptive (RTSA) active vibration controller was used as the framework in developing a computer program for a generic controller that can be used to alleviate helicopter vibration. Based upon on-line identification of system parameters, the generic controller minimizes vibration in the fuselage by closed-loop implementation of higher harmonic control in the main rotor system. The new generic controller incorporates a set of improved algorithms that gives the capability to readily define many different configurations by selecting one of three different controller types (deterministic, cautious, and dual), one of two linear system models (local and global), and one or more of several methods of applying limits on control inputs (external and/or internal limits on higher harmonic pitch amplitude and rate). A helicopter rotor simulation analysis was used to evaluate the algorithms associated with the alternative controller types as applied to the four-bladed H-34 rotor mounted on the NASA Ames Rotor Test Apparatus (RTA) which represents the fuselage. After proper tuning all three controllers provide more effective vibration reduction and converge more quickly and smoothly with smaller control inputs than the initial RTSA controller (deterministic with external pitch-rate limiting). It is demonstrated that internal limiting of the control inputs a significantly improves the overall performance of the deterministic controller.

  18. Adaptive Algorithm for Soil Mosture Retrieval in Agricultural and Mountainous Areas with High Resolution ASAR Images

    NASA Astrophysics Data System (ADS)

    Notarnicola, C.; Paloscia, S.; Pettinato, S.; Preziosa, G.; Santi, E.; Ventura, B.

    2010-12-01

    In this paper, extensive data sets of SAR images and related ground truth on three areas characterized by very different surface features have been analyzed in order to understand the ENVISAT/ASAR responses to different soil, environmental and seasonal conditions. The comparison of the backscattering coefficients in dependence of soil moisture values for all the analyzed datasets indicates the same sensitivity to soil moisture variations but with different biases, which may depend on soil characteristics, vegetation presence and roughness effect. A further comparison with historical data collected on bare soils with comparable roughness at the same frequency, polarization and incidence angle, confirmed that the different surface features affect the bias of the relationship, while the backscattering sensitivity to the SMC remains quite constant. These different biases values have been used to determine an adaptive term to be added in the electromagnetic formulation of the backscattering responses from natural surfaces, obtained by using the Integral Equation Model (IEM). The simulated data from this model have been then used to train a neural network as inversion algorithm. The paper will present the results from this new technique in comparison to neural network and Bayesian algorithms trained on one area and then tested on the other ones.

  19. A high precision phase reconstruction algorithm for multi-laser guide stars adaptive optics

    NASA Astrophysics Data System (ADS)

    He, Bin; Hu, Li-Fa; Li, Da-Yu; Xu, Huan-Yu; Zhang, Xing-Yun; Wang, Shao-Xin; Wang, Yu-Kun; Yang, Cheng-Liang; Cao, Zhao-Liang; Mu, Quan-Quan; Lu, Xing-Hai; Xuan, Li

    2016-09-01

    Adaptive optics (AO) systems are widespread and considered as an essential part of any large aperture telescope for obtaining a high resolution imaging at present. To enlarge the imaging field of view (FOV), multi-laser guide stars (LGSs) are currently being investigated and used for the large aperture optical telescopes. LGS measurement is necessary and pivotal to obtain the cumulative phase distortion along a target in the multi-LGSs AO system. We propose a high precision phase reconstruction algorithm to estimate the phase for a target with an uncertain turbulence profile based on the interpolation. By comparing with the conventional average method, the proposed method reduces the root mean square (RMS) error from 130 nm to 85 nm with a 30% reduction for narrow FOV. We confirm that such phase reconstruction algorithm is validated for both narrow field AO and wide field AO. Project supported by the National Natural Science Foundation of China (Grant Nos. 11174274, 11174279, 61205021, 11204299, 61475152, and 61405194) and State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences.

  20. A memory structure adapted simulated annealing algorithm for a green vehicle routing problem.

    PubMed

    Küçükoğlu, İlker; Ene, Seval; Aksoy, Aslı; Öztürk, Nursel

    2015-03-01

    Currently, reduction of carbon dioxide (CO2) emissions and fuel consumption has become a critical environmental problem and has attracted the attention of both academia and the industrial sector. Government regulations and customer demands are making environmental responsibility an increasingly important factor in overall supply chain operations. Within these operations, transportation has the most hazardous effects on the environment, i.e., CO2 emissions, fuel consumption, noise and toxic effects on the ecosystem. This study aims to construct vehicle routes with time windows that minimize the total fuel consumption and CO2 emissions. The green vehicle routing problem with time windows (G-VRPTW) is formulated using a mixed integer linear programming model. A memory structure adapted simulated annealing (MSA-SA) meta-heuristic algorithm is constructed due to the high complexity of the proposed problem and long solution times for practical applications. The proposed models are integrated with a fuel consumption and CO2 emissions calculation algorithm that considers the vehicle technical specifications, vehicle load, and transportation distance in a green supply chain environment. The proposed models are validated using well-known instances with different numbers of customers. The computational results indicate that the MSA-SA heuristic is capable of obtaining good G-VRPTW solutions within a reasonable amount of time by providing reductions in fuel consumption and CO2 emissions.

  1. Multiple Adaptive Neuro-Fuzzy Inference System with Automatic Features Extraction Algorithm for Cervical Cancer Recognition

    PubMed Central

    Subhi Al-batah, Mohammad; Mat Isa, Nor Ashidi; Klaib, Mohammad Fadel; Al-Betar, Mohammed Azmi

    2014-01-01

    To date, cancer of uterine cervix is still a leading cause of cancer-related deaths in women worldwide. The current methods (i.e., Pap smear and liquid-based cytology (LBC)) to screen for cervical cancer are time-consuming and dependent on the skill of the cytopathologist and thus are rather subjective. Therefore, this paper presents an intelligent computer vision system to assist pathologists in overcoming these problems and, consequently, produce more accurate results. The developed system consists of two stages. In the first stage, the automatic features extraction (AFE) algorithm is performed. In the second stage, a neuro-fuzzy model called multiple adaptive neuro-fuzzy inference system (MANFIS) is proposed for recognition process. The MANFIS contains a set of ANFIS models which are arranged in parallel combination to produce a model with multi-input-multioutput structure. The system is capable of classifying cervical cell image into three groups, namely, normal, low-grade squamous intraepithelial lesion (LSIL) and high-grade squamous intraepithelial lesion (HSIL). The experimental results prove the capability of the AFE algorithm to be as effective as the manual extraction by human experts, while the proposed MANFIS produces a good classification performance with 94.2% accuracy. PMID:24707316

  2. Multiple adaptive neuro-fuzzy inference system with automatic features extraction algorithm for cervical cancer recognition.

    PubMed

    Al-batah, Mohammad Subhi; Isa, Nor Ashidi Mat; Klaib, Mohammad Fadel; Al-Betar, Mohammed Azmi

    2014-01-01

    To date, cancer of uterine cervix is still a leading cause of cancer-related deaths in women worldwide. The current methods (i.e., Pap smear and liquid-based cytology (LBC)) to screen for cervical cancer are time-consuming and dependent on the skill of the cytopathologist and thus are rather subjective. Therefore, this paper presents an intelligent computer vision system to assist pathologists in overcoming these problems and, consequently, produce more accurate results. The developed system consists of two stages. In the first stage, the automatic features extraction (AFE) algorithm is performed. In the second stage, a neuro-fuzzy model called multiple adaptive neuro-fuzzy inference system (MANFIS) is proposed for recognition process. The MANFIS contains a set of ANFIS models which are arranged in parallel combination to produce a model with multi-input-multioutput structure. The system is capable of classifying cervical cell image into three groups, namely, normal, low-grade squamous intraepithelial lesion (LSIL) and high-grade squamous intraepithelial lesion (HSIL). The experimental results prove the capability of the AFE algorithm to be as effective as the manual extraction by human experts, while the proposed MANFIS produces a good classification performance with 94.2% accuracy. PMID:24707316

  3. Adaptation of the CVT algorithm for catheter optimization in high dose rate brachytherapy

    SciTech Connect

    Poulin, Eric; Fekete, Charles-Antoine Collins; Beaulieu, Luc; Létourneau, Mélanie; Fenster, Aaron; Pouliot, Jean

    2013-11-15

    Purpose: An innovative, simple, and fast method to optimize the number and position of catheters is presented for prostate and breast high dose rate (HDR) brachytherapy, both for arbitrary templates or template-free implants (such as robotic templates).Methods: Eight clinical cases were chosen randomly from a bank of patients, previously treated in our clinic to test our method. The 2D Centroidal Voronoi Tessellations (CVT) algorithm was adapted to distribute catheters uniformly in space, within the maximum external contour of the planning target volume. The catheters optimization procedure includes the inverse planning simulated annealing algorithm (IPSA). Complete treatment plans can then be generated from the algorithm for different number of catheters. The best plan is chosen from different dosimetry criteria and will automatically provide the number of catheters and their positions. After the CVT algorithm parameters were optimized for speed and dosimetric results, it was validated against prostate clinical cases, using clinically relevant dose parameters. The robustness to implantation error was also evaluated. Finally, the efficiency of the method was tested in breast interstitial HDR brachytherapy cases.Results: The effect of the number and locations of the catheters on prostate cancer patients was studied. Treatment plans with a better or equivalent dose distributions could be obtained with fewer catheters. A better or equal prostate V100 was obtained down to 12 catheters. Plans with nine or less catheters would not be clinically acceptable in terms of prostate V100 and D90. Implantation errors up to 3 mm were acceptable since no statistical difference was found when compared to 0 mm error (p > 0.05). No significant difference in dosimetric indices was observed for the different combination of parameters within the CVT algorithm. A linear relation was found between the number of random points and the optimization time of the CVT algorithm. Because the

  4. Application of an adaptive blade control algorithm to a gust alleviation system

    NASA Technical Reports Server (NTRS)

    Saito, S.

    1984-01-01

    The feasibility of an adaptive control system designed to alleviate helicopter gust induced vibration was analytically investigated for an articulated rotor system. This control system is based on discrete optimal control theory, and is composed of a set of measurements (oscillatory hub forces and moments), an identification system using a Kalman filter, a control system based on the minimization of the quadratic performance function, and a simulation system of the helicopter rotor. The gust models are step and sinusoidal vertical gusts. Control inputs are selected at the gust frequency, subharmonic frequency, and superharmonic frequency, and are superimposed on the basic collective and cyclic control inputs. The response to be reduced is selected to be that at the gust frequency because this is the dominant response compared with sub- and superharmonics. Numerical calculations show that the adaptive blade pitch control algorithm satisfactorily alleviates the hub gust response. Almost 100 percent reduction of the perturbation thrust response to a step gust and more than 50 percent reduction to a sinusoidal gust are achieved in the numerical simulations.

  5. Application of an adaptive blade control algorithm to a gust alleviation system

    NASA Technical Reports Server (NTRS)

    Saito, S.

    1983-01-01

    The feasibility of an adaptive control system designed to alleviate helicopter gust induced vibration was analytically investigated for an articulated rotor system. This control system is based on discrete optimal control theory, and is composed of a set of measurements (oscillatory hub forces and moments), an identification system using a Kalman filter, a control system based on the minimization of the quadratic performance function, and a simulation system of the helicopter rotor. The gust models are step and sinusoidal vertical gusts. Control inputs are selected at the gust frequency, subharmonic frequency, and superharmonic frequency, and are superimposed on the basic collective and cyclic control inputs. The response to be reduced is selected to be that at the gust frequency because this is the dominant response compared with sub- and superharmonics. Numerical calculations show that the adaptive blade pitch control algorithm satisfactorily alleviates the hub gust response. Almost 100% reduction of the perturbation thrust response to a step gust and more than 50% reduction to a sinusoidal gust are achieved in the numerical simulations.

  6. Enhancing artificial bee colony algorithm with self-adaptive searching strategy and artificial immune network operators for global optimization.

    PubMed

    Chen, Tinggui; Xiao, Renbin

    2014-01-01

    Artificial bee colony (ABC) algorithm, inspired by the intelligent foraging behavior of honey bees, was proposed by Karaboga. It has been shown to be superior to some conventional intelligent algorithms such as genetic algorithm (GA), artificial colony optimization (ACO), and particle swarm optimization (PSO). However, the ABC still has some limitations. For example, ABC can easily get trapped in the local optimum when handing in functions that have a narrow curving valley, a high eccentric ellipse, or complex multimodal functions. As a result, we proposed an enhanced ABC algorithm called EABC by introducing self-adaptive searching strategy and artificial immune network operators to improve the exploitation and exploration. The simulation results tested on a suite of unimodal or multimodal benchmark functions illustrate that the EABC algorithm outperforms ACO, PSO, and the basic ABC in most of the experiments. PMID:24772023

  7. Correlation Wave-Front Sensing Algorithms for Shack-Hartmann-Based Adaptive Optics using a Point Source

    SciTech Connect

    Poynee, L A

    2003-05-06

    Shack-Hartmann based Adaptive Optics system with a point-source reference normally use a wave-front sensing algorithm that estimates the centroid (center of mass) of the point-source image 'spot' to determine the wave-front slope. The centroiding algorithm suffers for several weaknesses. For a small number of pixels, the algorithm gain is dependent on spot size. The use of many pixels on the detector leads to significant propagation of read noise. Finally, background light or spot halo aberrations can skew results. In this paper an alternative algorithm that suffers from none of these problems is proposed: correlation of the spot with a ideal reference spot. The correlation method is derived and a theoretical analysis evaluates its performance in comparison with centroiding. Both simulation and data from real AO systems are used to illustrate the results. The correlation algorithm is more robust than centroiding, but requires more computation.

  8. Enhancing Artificial Bee Colony Algorithm with Self-Adaptive Searching Strategy and Artificial Immune Network Operators for Global Optimization

    PubMed Central

    Chen, Tinggui; Xiao, Renbin

    2014-01-01

    Artificial bee colony (ABC) algorithm, inspired by the intelligent foraging behavior of honey bees, was proposed by Karaboga. It has been shown to be superior to some conventional intelligent algorithms such as genetic algorithm (GA), artificial colony optimization (ACO), and particle swarm optimization (PSO). However, the ABC still has some limitations. For example, ABC can easily get trapped in the local optimum when handing in functions that have a narrow curving valley, a high eccentric ellipse, or complex multimodal functions. As a result, we proposed an enhanced ABC algorithm called EABC by introducing self-adaptive searching strategy and artificial immune network operators to improve the exploitation and exploration. The simulation results tested on a suite of unimodal or multimodal benchmark functions illustrate that the EABC algorithm outperforms ACO, PSO, and the basic ABC in most of the experiments. PMID:24772023

  9. Beamforming performance for a reconfigurable sparse array smart antenna system via multiple mobile robotic systems

    NASA Astrophysics Data System (ADS)

    Okamoto, Garret; Chen, Chih-Wei; Kitts, Christopher

    2010-04-01

    This paper describes and evaluates the beamforming performance for a flexible sparse array smart antenna system that can be reconfigured through the use of multiple mobile robots. Current robotic systems are limited because they cannot utilize beamforming due to their limited number of antennas and the high computational requirement of beamformers. The beamforming techniques used in this paper are unique because unlike current beamformers, the antennas in the sparse array are not connected together; instead, each robot has a single antenna. This work is made possible through breakthroughs by the authors on ultra-low computational complexity beamforming and multi-mobile robot cluster control. This new beamforming paradigm provides spatial reconfigurability of the array to control its location, size, inter-antenna spacing and geometry via multi-robot collaborative communications. Simulation results evaluate the effectiveness of smart antenna beamforming techniques when 1, 2, 3, 4, and 8 robots are utilized with and without interference signals present.

  10. Fast adaptive OFDM-PON over single fiber loopback transmission using dynamic rate adaptation-based algorithm for channel performance improvement

    NASA Astrophysics Data System (ADS)

    Kartiwa, Iwa; Jung, Sang-Min; Hong, Moon-Ki; Han, Sang-Kook

    2014-03-01

    In this paper, we propose a novel fast adaptive approach that was applied to an OFDM-PON 20-km single fiber loopback transmission system to improve channel performance in term of stabilized BER below 2 × 10-3 and higher throughput beyond 10 Gb/s. The upstream transmission is performed through light source-seeded modulation using 1-GHz RSOA at the ONU. Experimental results indicated that the dynamic rate adaptation algorithm based on greedy Levin-Campello could be an effective solution to mitigate channel instability and data rate degradation caused by the Rayleigh back scattering effect and inefficient resource subcarrier allocation.

  11. Adapting iterative algorithms for solving large sparse linear systems for efficient use on the CDC CYBER 205

    NASA Technical Reports Server (NTRS)

    Kincaid, D. R.; Young, D. M.

    1984-01-01

    Adapting and designing mathematical software to achieve optimum performance on the CYBER 205 is discussed. Comments and observations are made in light of recent work done on modifying the ITPACK software package and on writing new software for vector supercomputers. The goal was to develop very efficient vector algorithms and software for solving large sparse linear systems using iterative methods.

  12. EEG/ERP adaptive noise canceller design with controlled search space (CSS) approach in cuckoo and other optimization algorithms.

    PubMed

    Ahirwal, M K; Kumar, Anil; Singh, G K

    2013-01-01

    This paper explores the migration of adaptive filtering with swarm intelligence/evolutionary techniques employed in the field of electroencephalogram/event-related potential noise cancellation or extraction. A new approach is proposed in the form of controlled search space to stabilize the randomness of swarm intelligence techniques especially for the EEG signal. Swarm-based algorithms such as Particles Swarm Optimization, Artificial Bee Colony, and Cuckoo Optimization Algorithm with their variants are implemented to design optimized adaptive noise canceler. The proposed controlled search space technique is tested on each of the swarm intelligence techniques and is found to be more accurate and powerful. Adaptive noise canceler with traditional algorithms such as least-mean-square, normalized least-mean-square, and recursive least-mean-square algorithms are also implemented to compare the results. ERP signals such as simulated visual evoked potential, real visual evoked potential, and real sensorimotor evoked potential are used, due to their physiological importance in various EEG studies. Average computational time and shape measures of evolutionary techniques are observed 8.21E-01 sec and 1.73E-01, respectively. Though, traditional algorithms take negligible time consumption, but are unable to offer good shape preservation of ERP, noticed as average computational time and shape measure difference, 1.41E-02 sec and 2.60E+00, respectively.

  13. Wireless rake-receiver using adaptive filter with a family of partial update algorithms in noise cancellation applications

    NASA Astrophysics Data System (ADS)

    Fayadh, Rashid A.; Malek, F.; Fadhil, Hilal A.; Aldhaibani, Jaafar A.; Salman, M. K.; Abdullah, Farah Salwani

    2015-05-01

    For high data rate propagation in wireless ultra-wideband (UWB) communication systems, the inter-symbol interference (ISI), multiple-access interference (MAI), and multiple-users interference (MUI) are influencing the performance of the wireless systems. In this paper, the rake-receiver was presented with the spread signal by direct sequence spread spectrum (DS-SS) technique. The adaptive rake-receiver structure was shown with adjusting the receiver tap weights using least mean squares (LMS), normalized least mean squares (NLMS), and affine projection algorithms (APA) to support the weak signals by noise cancellation and mitigate the interferences. To minimize the data convergence speed and to reduce the computational complexity by the previous algorithms, a well-known approach of partial-updates (PU) adaptive filters were employed with algorithms, such as sequential-partial, periodic-partial, M-max-partial, and selective-partial updates (SPU) in the proposed system. The simulation results of bit error rate (BER) versus signal-to-noise ratio (SNR) are illustrated to show the performance of partial-update algorithms that have nearly comparable performance with the full update adaptive filters. Furthermore, the SPU-partial has closed performance to the full-NLMS and full-APA while the M-max-partial has closed performance to the full-LMS updates algorithms.

  14. Guided filter and adaptive learning rate based non-uniformity correction algorithm for infrared focal plane array

    NASA Astrophysics Data System (ADS)

    Sheng-Hui, Rong; Hui-Xin, Zhou; Han-Lin, Qin; Rui, Lai; Kun, Qian

    2016-05-01

    Imaging non-uniformity of infrared focal plane array (IRFPA) behaves as fixed-pattern noise superimposed on the image, which affects the imaging quality of infrared system seriously. In scene-based non-uniformity correction methods, the drawbacks of ghosting artifacts and image blurring affect the sensitivity of the IRFPA imaging system seriously and decrease the image quality visibly. This paper proposes an improved neural network non-uniformity correction method with adaptive learning rate. On the one hand, using guided filter, the proposed algorithm decreases the effect of ghosting artifacts. On the other hand, due to the inappropriate learning rate is the main reason of image blurring, the proposed algorithm utilizes an adaptive learning rate with a temporal domain factor to eliminate the effect of image blurring. In short, the proposed algorithm combines the merits of the guided filter and the adaptive learning rate. Several real and simulated infrared image sequences are utilized to verify the performance of the proposed algorithm. The experiment results indicate that the proposed algorithm can not only reduce the non-uniformity with less ghosting artifacts but also overcome the problems of image blurring in static areas.

  15. Lossless data compression for improving the performance of a GPU-based beamformer.

    PubMed

    Lok, U-Wai; Fan, Gang-Wei; Li, Pai-Chi

    2015-04-01

    The powerful parallel computation ability of a graphics processing unit (GPU) makes it feasible to perform dynamic receive beamforming However, a real time GPU-based beamformer requires high data rate to transfer radio-frequency (RF) data from hardware to software memory, as well as from central processing unit (CPU) to GPU memory. There are data compression methods (e.g. Joint Photographic Experts Group (JPEG)) available for the hardware front end to reduce data size, alleviating the data transfer requirement of the hardware interface. Nevertheless, the required decoding time may even be larger than the transmission time of its original data, in turn degrading the overall performance of the GPU-based beamformer. This article proposes and implements a lossless compression-decompression algorithm, which enables in parallel compression and decompression of data. By this means, the data transfer requirement of hardware interface and the transmission time of CPU to GPU data transfers are reduced, without sacrificing image quality. In simulation results, the compression ratio reached around 1.7. The encoder design of our lossless compression approach requires low hardware resources and reasonable latency in a field programmable gate array. In addition, the transmission time of transferring data from CPU to GPU with the parallel decoding process improved by threefold, as compared with transferring original uncompressed data. These results show that our proposed lossless compression plus parallel decoder approach not only mitigate the transmission bandwidth requirement to transfer data from hardware front end to software system but also reduce the transmission time for CPU to GPU data transfer.

  16. Techniques for detection and localization of weak hippocampal and medial frontal sources using beamformers in MEG.

    PubMed

    Mills, Travis; Lalancette, Marc; Moses, Sandra N; Taylor, Margot J; Quraan, Maher A

    2012-07-01

    Magnetoencephalography provides precise information about the temporal dynamics of brain activation and is an ideal tool for investigating rapid cognitive processing. However, in many cognitive paradigms visual stimuli are used, which evoke strong brain responses (typically 40-100 nAm in V1) that may impede the detection of weaker activations of interest. This is particularly a concern when beamformer algorithms are used for source analysis, due to artefacts such as "leakage" of activation from the primary visual sources into other regions. We have previously shown (Quraan et al. 2011) that we can effectively reduce leakage patterns and detect weak hippocampal sources by subtracting the functional images derived from the experimental task and a control task with similar stimulus parameters. In this study we assess the performance of three different subtraction techniques. In the first technique we follow the same post-localization subtraction procedures as in our previous work. In the second and third techniques, we subtract the sensor data obtained from the experimental and control paradigms prior to source localization. Using simulated signals embedded in real data, we show that when beamformers are used, subtraction prior to source localization allows for the detection of weaker sources and higher localization accuracy. The improvement in localization accuracy exceeded 10 mm at low signal-to-noise ratios, and sources down to below 5 nAm were detected. We applied our techniques to empirical data acquired with two different paradigms designed to evoke hippocampal and frontal activations, and demonstrated our ability to detect robust activations in both regions with substantial improvements over image subtraction. We conclude that removal of the common-mode dominant sources through data subtraction prior to localization further improves the beamformer's ability to project the n-channel sensor-space data to reveal weak sources of interest and allows more accurate

  17. Multiple and single snapshot compressive beamforming.

    PubMed

    Gerstoft, Peter; Xenaki, Angeliki; Mecklenbräuker, Christoph F

    2015-10-01

    For a sound field observed on a sensor array, compressive sensing (CS) reconstructs the direction of arrival (DOA) of multiple sources using a sparsity constraint. The DOA estimation is posed as an underdetermined problem by expressing the acoustic pressure at each sensor as a phase-lagged superposition of source amplitudes at all hypothetical DOAs. Regularizing with an ℓ1-norm constraint renders the problem solvable with convex optimization, and promoting sparsity gives high-resolution DOA maps. Here the sparse source distribution is derived using maximum a posteriori estimates for both single and multiple snapshots. CS does not require inversion of the data covariance matrix and thus works well even for a single snapshot where it gives higher resolution than conventional beamforming. For multiple snapshots, CS outperforms conventional high-resolution methods even with coherent arrivals and at low signal-to-noise ratio. The superior resolution of CS is demonstrated with vertical array data from the SWellEx96 experiment for coherent multi-paths. PMID:26520284

  18. Multi-session statistics on beamformed MEG data☆

    PubMed Central

    Luckhoo, Henry T.; Brookes, Matthew J.; Woolrich, Mark W.

    2014-01-01

    Beamforming has been widely adopted as a source reconstruction technique in the analysis of magnetoencephalography data. Most beamforming implementations incorporate a spatially-varying rescaling (which we term weights normalisation) to correct for the inherent depth bias in raw beamformer estimates. Here, we demonstrate that such rescaling can cause critical problems whenever analyses are performed over multiple sessions of separately beamformed data, for example when comparing effect sizes between different populations. Importantly, we show that the weights-normalised beamformer estimates of neural activity can even lead to a reversal in the inferred sign of the effect being measured. We instead recommend that no weights normalisation be carried out; any depth bias is instead accounted for in the calculation of multi-session (e.g. group) statistics. We demonstrate the severity of the weights normalisation confound with a 2-D simulation, and in real MEG data by performing a group statistical analysis to detect differences in alpha power in eyes-closed rest compared with continuous visual stimulation. PMID:24412400

  19. A novel kernel extreme learning machine algorithm based on self-adaptive artificial bee colony optimisation strategy

    NASA Astrophysics Data System (ADS)

    Ma, Chao; Ouyang, Jihong; Chen, Hui-Ling; Ji, Jin-Chao

    2016-04-01

    In this paper, we propose a novel learning algorithm, named SABC-MKELM, based on a kernel extreme learning machine (KELM) method for single-hidden-layer feedforward networks. In SABC-MKELM, the combination of Gaussian kernels is used as the activate function of KELM instead of simple fixed kernel learning, where the related parameters of kernels and the weights of kernels can be optimised by a novel self-adaptive artificial bee colony (SABC) approach simultaneously. SABC-MKELM outperforms six other state-of-the-art approaches in general, as it could effectively determine solution updating strategies and suitable parameters to produce a flexible kernel function involved in SABC. Simulations have demonstrated that the proposed algorithm not only self-adaptively determines suitable parameters and solution updating strategies learning from the previous experiences, but also achieves better generalisation performances than several related methods, and the results show good stability of the proposed algorithm.

  20. A Novel Clinical Decision Support System Using Improved Adaptive Genetic Algorithm for the Assessment of Fetal Well-Being

    PubMed Central

    Jambek, Asral Bahari; Neoh, Siew-Chin

    2015-01-01

    A novel clinical decision support system is proposed in this paper for evaluating the fetal well-being from the cardiotocogram (CTG) dataset through an Improved Adaptive Genetic Algorithm (IAGA) and Extreme Learning Machine (ELM). IAGA employs a new scaling technique (called sigma scaling) to avoid premature convergence and applies adaptive crossover and mutation techniques with masking concepts to enhance population diversity. Also, this search algorithm utilizes three different fitness functions (two single objective fitness functions and multi-objective fitness function) to assess its performance. The classification results unfold that promising classification accuracy of 94% is obtained with an optimal feature subset using IAGA. Also, the classification results are compared with those of other Feature Reduction techniques to substantiate its exhaustive search towards the global optimum. Besides, five other benchmark datasets are used to gauge the strength of the proposed IAGA algorithm. PMID:25793009

  1. Robust fundamental frequency estimation in sustained vowels: Detailed algorithmic comparisons and information fusion with adaptive Kalman filtering

    PubMed Central

    Tsanas, Athanasios; Zañartu, Matías; Little, Max A.; Fox, Cynthia; Ramig, Lorraine O.; Clifford, Gari D.

    2014-01-01

    There has been consistent interest among speech signal processing researchers in the accurate estimation of the fundamental frequency (F0) of speech signals. This study examines ten F0 estimation algorithms (some well-established and some proposed more recently) to determine which of these algorithms is, on average, better able to estimate F0 in the sustained vowel /a/. Moreover, a robust method for adaptively weighting the estimates of individual F0 estimation algorithms based on quality and performance measures is proposed, using an adaptive Kalman filter (KF) framework. The accuracy of the algorithms is validated using (a) a database of 117 synthetic realistic phonations obtained using a sophisticated physiological model of speech production and (b) a database of 65 recordings of human phonations where the glottal cycles are calculated from electroglottograph signals. On average, the sawtooth waveform inspired pitch estimator and the nearly defect-free algorithms provided the best individual F0 estimates, and the proposed KF approach resulted in a ∼16% improvement in accuracy over the best single F0 estimation algorithm. These findings may be useful in speech signal processing applications where sustained vowels are used to assess vocal quality, when very accurate F0 estimation is required. PMID:24815269

  2. Robust fundamental frequency estimation in sustained vowels: detailed algorithmic comparisons and information fusion with adaptive Kalman filtering.

    PubMed

    Tsanas, Athanasios; Zañartu, Matías; Little, Max A; Fox, Cynthia; Ramig, Lorraine O; Clifford, Gari D

    2014-05-01

    There has been consistent interest among speech signal processing researchers in the accurate estimation of the fundamental frequency (F(0)) of speech signals. This study examines ten F(0) estimation algorithms (some well-established and some proposed more recently) to determine which of these algorithms is, on average, better able to estimate F(0) in the sustained vowel /a/. Moreover, a robust method for adaptively weighting the estimates of individual F(0) estimation algorithms based on quality and performance measures is proposed, using an adaptive Kalman filter (KF) framework. The accuracy of the algorithms is validated using (a) a database of 117 synthetic realistic phonations obtained using a sophisticated physiological model of speech production and (b) a database of 65 recordings of human phonations where the glottal cycles are calculated from electroglottograph signals. On average, the sawtooth waveform inspired pitch estimator and the nearly defect-free algorithms provided the best individual F(0) estimates, and the proposed KF approach resulted in a ∼16% improvement in accuracy over the best single F(0) estimation algorithm. These findings may be useful in speech signal processing applications where sustained vowels are used to assess vocal quality, when very accurate F(0) estimation is required. PMID:24815269

  3. A Fast, Locally Adaptive, Interactive Retrieval Algorithm for the Analysis of DIAL Measurements

    NASA Astrophysics Data System (ADS)

    Samarov, D. V.; Rogers, R.; Hair, J. W.; Douglass, K. O.; Plusquellic, D.

    2010-12-01

    Differential absorption light detection and ranging (DIAL) is a laser-based tool which is used for remote, range-resolved measurement of particular gases in the atmosphere, such as carbon-dioxide and methane. In many instances it is of interest to study how these gases are distributed over a region such as a landfill, factory, or farm. While a single DIAL measurement only tells us about the distribution of a gas along a single path, a sequence of consecutive measurements provides us with information on how that gas is distributed over a region, making DIAL a natural choice for such studies. DIAL measurements present a number of interesting challenges; first, in order to convert the raw data to concentration it is necessary to estimate the derivative along the path of the measurement. Second, as the distribution of gases across a region can be highly heterogeneous it is important that the spatial nature of the measurements be taken into account. Finally, since it is common for the set of collected measurements to be quite large it is important for the method to be computationally efficient. Existing work based on Local Polynomial Regression (LPR) has been developed which addresses the first two issues, but the issue of computational speed remains an open problem. In addition to the latter, another desirable property is to allow user input into the algorithm. In this talk we present a novel method based on LPR which utilizes a variant of the RODEO algorithm to provide a fast, locally adaptive and interactive approach to the analysis of DIAL measurements. This methodology is motivated by and applied to several simulated examples and a study out of NASA Langley Research Center (LaRC) looking at the estimation of aerosol extinction in the atmosphere. A comparison study of our method against several other algorithms is also presented. References Chaudhuri, P., Marron, J.S., Scale-space view of curve estimation, Annals of Statistics 28 (2000) 408-428. Duong, T., Cowling

  4. Real-time MRI-guided hyperthermia treatment using a fast adaptive algorithm.

    PubMed

    Stakhursky, Vadim L; Arabe, Omar; Cheng, Kung-Shan; Macfall, James; Maccarini, Paolo; Craciunescu, Oana; Dewhirst, Mark; Stauffer, Paul; Das, Shiva K

    2009-04-01

    ratio of integral temperature in the tumor to integral temperature in normal tissue) by up to six-fold, compared to the first iteration. The integrated MR-HT treatment algorithm successfully steered the focus of heating into the desired target volume for both the simple homogeneous and the more challenging muscle equivalent phantom with tumor insert models of human extremity sarcomas after 16 and 2 iterations, correspondingly. The adaptive method for MR thermal image guided focal steering shows promise when tested in phantom experiments on a four-antenna phased array applicator.

  5. Multi-focus image fusion algorithm based on adaptive PCNN and wavelet transform

    NASA Astrophysics Data System (ADS)

    Wu, Zhi-guo; Wang, Ming-jia; Han, Guang-liang

    2011-08-01

    Being an efficient method of information fusion, image fusion has been used in many fields such as machine vision, medical diagnosis, military applications and remote sensing. In this paper, Pulse Coupled Neural Network (PCNN) is introduced in this research field for its interesting properties in image processing, including segmentation, target recognition et al. and a novel algorithm based on PCNN and Wavelet Transform for Multi-focus image fusion is proposed. First, the two original images are decomposed by wavelet transform. Then, based on the PCNN, a fusion rule in the Wavelet domain is given. This algorithm uses the wavelet coefficient in each frequency domain as the linking strength, so that its value can be chosen adaptively. Wavelet coefficients map to the range of image gray-scale. The output threshold function attenuates to minimum gray over time. Then all pixels of image get the ignition. So, the output of PCNN in each iteration time is ignition wavelet coefficients of threshold strength in different time. At this moment, the sequences of ignition of wavelet coefficients represent ignition timing of each neuron. The ignition timing of PCNN in each neuron is mapped to corresponding image gray-scale range, which is a picture of ignition timing mapping. Then it can judge the targets in the neuron are obvious features or not obvious. The fusion coefficients are decided by the compare-selection operator with the firing time gradient maps and the fusion image is reconstructed by wavelet inverse transform. Furthermore, by this algorithm, the threshold adjusting constant is estimated by appointed iteration number. Furthermore, In order to sufficient reflect order of the firing time, the threshold adjusting constant αΘ is estimated by appointed iteration number. So after the iteration achieved, each of the wavelet coefficient is activated. In order to verify the effectiveness of proposed rules, the experiments upon Multi-focus image are done. Moreover

  6. Vibration suppression in cutting tools using collocated piezoelectric sensors/actuators with an adaptive control algorithm

    SciTech Connect

    Radecki, Peter P; Farinholt, Kevin M; Park, Gyuhae; Bement, Matthew T

    2008-01-01

    The machining process is very important in many engineering applications. In high precision machining, surface finish is strongly correlated with vibrations and the dynamic interactions between the part and the cutting tool. Parameters affecting these vibrations and dynamic interactions, such as spindle speed, cut depth, feed rate, and the part's material properties can vary in real-time, resulting in unexpected or undesirable effects on the surface finish of the machining product. The focus of this research is the development of an improved machining process through the use of active vibration damping. The tool holder employs a high bandwidth piezoelectric actuator with an adaptive positive position feedback control algorithm for vibration and chatter suppression. In addition, instead of using external sensors, the proposed approach investigates the use of a collocated piezoelectric sensor for measuring the dynamic responses from machining processes. The performance of this method is evaluated by comparing the surface finishes obtained with active vibration control versus baseline uncontrolled cuts. Considerable improvement in surface finish (up to 50%) was observed for applications in modern day machining.

  7. Policy iteration adaptive dynamic programming algorithm for discrete-time nonlinear systems.

    PubMed

    Liu, Derong; Wei, Qinglai

    2014-03-01

    This paper is concerned with a new discrete-time policy iteration adaptive dynamic programming (ADP) method for solving the infinite horizon optimal control problem of nonlinear systems. The idea is to use an iterative ADP technique to obtain the iterative control law, which optimizes the iterative performance index function. The main contribution of this paper is to analyze the convergence and stability properties of policy iteration method for discrete-time nonlinear systems for the first time. It shows that the iterative performance index function is nonincreasingly convergent to the optimal solution of the Hamilton-Jacobi-Bellman equation. It is also proven that any of the iterative control laws can stabilize the nonlinear systems. Neural networks are used to approximate the performance index function and compute the optimal control law, respectively, for facilitating the implementation of the iterative ADP algorithm, where the convergence of the weight matrices is analyzed. Finally, the numerical results and analysis are presented to illustrate the performance of the developed method. PMID:24807455

  8. Intelligent Modeling Combining Adaptive Neuro Fuzzy Inference System and Genetic Algorithm for Optimizing Welding Process Parameters

    NASA Astrophysics Data System (ADS)

    Gowtham, K. N.; Vasudevan, M.; Maduraimuthu, V.; Jayakumar, T.

    2011-04-01

    Modified 9Cr-1Mo ferritic steel is used as a structural material for steam generator components of power plants. Generally, tungsten inert gas (TIG) welding is preferred for welding of these steels in which the depth of penetration achievable during autogenous welding is limited. Therefore, activated flux TIG (A-TIG) welding, a novel welding technique, has been developed in-house to increase the depth of penetration. In modified 9Cr-1Mo steel joints produced by the A-TIG welding process, weld bead width, depth of penetration, and heat-affected zone (HAZ) width play an important role in determining the mechanical properties as well as the performance of the weld joints during service. To obtain the desired weld bead geometry and HAZ width, it becomes important to set the welding process parameters. In this work, adaptative neuro fuzzy inference system is used to develop independent models correlating the welding process parameters like current, voltage, and torch speed with weld bead shape parameters like depth of penetration, bead width, and HAZ width. Then a genetic algorithm is employed to determine the optimum A-TIG welding process parameters to obtain the desired weld bead shape parameters and HAZ width.

  9. Beam-Forming Concentrating Solar Thermal Array Power Systems

    NASA Technical Reports Server (NTRS)

    Cwik, Thomas A. (Inventor); Dimotakis, Paul E. (Inventor); Hoppe, Daniel J. (Inventor)

    2016-01-01

    The present invention relates to concentrating solar-power systems and, more particularly, beam-forming concentrating solar thermal array power systems. A solar thermal array power system is provided, including a plurality of solar concentrators arranged in pods. Each solar concentrator includes a solar collector, one or more beam-forming elements, and one or more beam-steering elements. The solar collector is dimensioned to collect and divert incoming rays of sunlight. The beam-forming elements intercept the diverted rays of sunlight, and are shaped to concentrate the rays of sunlight into a beam. The steering elements are shaped, dimensioned, positioned, and/or oriented to deflect the beam toward a beam output path. The beams from the concentrators are converted to heat at a receiver, and the heat may be temporarily stored or directly used to generate electricity.

  10. Maximum contrast beamformer for electromagnetic mapping of brain activity.

    PubMed

    Chen, Yong-Sheng; Cheng, Chih-Yu; Hsieh, Jen-Chuen; Chen, Li-Fen

    2006-09-01

    Beamforming technique can be applied to map the neuronal activities from magnetoencephalographic/electroencephalographic (MEG/EEG) recordings. One of the major difficulties of the scalar-type MEG/EEG beamformer is the determination of accurate dipole orientation, which is essential to an effective spatial filter. This paper presents a new beamforming technique which exploits a maximum contrast criterion to maximize the ratio of the neuronal activity estimated in a specified active state to the activity estimated in a control state. This criterion leads to a closed-form solution of the dipole orientation. Experiments with simulation, phantom, and finger-lifting data clearly demonstrate the effectiveness, efficiency, and accuracy of the proposed method.

  11. Cascaded adaptive-mask algorithm for twin-image removal and its application to digital holograms of ice crystals.

    PubMed

    Raupach, Sebastian M F

    2009-01-10

    An iterative Gerchberg-Saxton-type algorithm with a support constraint for twin-image removal from reconstructed Gabor inline holograms of single plane objects is described. It is applied to simulated holograms and to holograms of ice crystals recorded in the laboratory and in atmospheric clouds in situ. The algorithm is characterized by a distinction between object and background region and an iterative adaption of the object mask. Applying the algorithm to recorded inline holograms of atmospheric objects, the twin-image artifacts are removed successfully, for the first time allowing for a proper access to the in situ phase information on atmospheric ice crystals. It is also demonstrated that, after application of the algorithm, previously indiscernible internal object features can become visible for large Fresnel numbers.

  12. Blind Adaptive Interference Suppression Based on Set-Membership Constrained Constant-Modulus Algorithms With Dynamic Bounds

    NASA Astrophysics Data System (ADS)

    de Lamare, Rodrigo C.; Diniz, Paulo S. R.

    2013-03-01

    This work presents blind constrained constant modulus (CCM) adaptive algorithms based on the set-membership filtering (SMF) concept and incorporates dynamic bounds {for interference suppression} applications. We develop stochastic gradient and recursive least squares type algorithms based on the CCM design criterion in accordance with the specifications of the SMF concept. We also propose a blind framework that includes channel and amplitude estimators that take into account parameter estimation dependency, multiple access interference (MAI) and inter-symbol interference (ISI) to address the important issue of bound specification in multiuser communications. A convergence and tracking analysis of the proposed algorithms is carried out along with the development of analytical expressions to predict their performance. Simulations for a number of scenarios of interest with a DS-CDMA system show that the proposed algorithms outperform previously reported techniques with a smaller number of parameter updates and a reduced risk of overbounding or underbounding.

  13. An efficient algorithm for the inverse problem in elasticity imaging by means of variational r-adaption.

    PubMed

    Arnold, Alexander; Bruhns, Otto T; Mosler, Jörn

    2011-07-21

    A novel finite element formulation suitable for computing efficiently the stiffness distribution in soft biological tissue is presented in this paper. For that purpose, the inverse problem of finite strain hyperelasticity is considered and solved iteratively. In line with Arnold et al (2010 Phys. Med. Biol. 55 2035), the computing time is effectively reduced by using adaptive finite element methods. In sharp contrast to previous approaches, the novel mesh adaption relies on an r-adaption (re-allocation of the nodes within the finite element triangulation). This method allows the detection of material interfaces between healthy and diseased tissue in a very effective manner. The evolution of the nodal positions is canonically driven by the same minimization principle characterizing the inverse problem of hyperelasticity. Consequently, the proposed mesh adaption is variationally consistent. Furthermore, it guarantees that the quality of the numerical solution is improved. Since the proposed r-adaption requires only a relatively coarse triangulation for detecting material interfaces, the underlying finite element spaces are usually not rich enough for predicting the deformation field sufficiently accurately (the forward problem). For this reason, the novel variational r-refinement is combined with the variational h-adaption (Arnold et al 2010) to obtain a variational hr-refinement algorithm. The resulting approach captures material interfaces well (by using r-adaption) and predicts a deformation field in good agreement with that observed experimentally (by using h-adaption).

  14. An efficient algorithm for the inverse problem in elasticity imaging by means of variational r-adaption

    NASA Astrophysics Data System (ADS)

    Arnold, Alexander; Bruhns, Otto T.; Mosler, Jörn

    2011-07-01

    A novel finite element formulation suitable for computing efficiently the stiffness distribution in soft biological tissue is presented in this paper. For that purpose, the inverse problem of finite strain hyperelasticity is considered and solved iteratively. In line with Arnold et al (2010 Phys. Med. Biol. 55 2035), the computing time is effectively reduced by using adaptive finite element methods. In sharp contrast to previous approaches, the novel mesh adaption relies on an r-adaption (re-allocation of the nodes within the finite element triangulation). This method allows the detection of material interfaces between healthy and diseased tissue in a very effective manner. The evolution of the nodal positions is canonically driven by the same minimization principle characterizing the inverse problem of hyperelasticity. Consequently, the proposed mesh adaption is variationally consistent. Furthermore, it guarantees that the quality of the numerical solution is improved. Since the proposed r-adaption requires only a relatively coarse triangulation for detecting material interfaces, the underlying finite element spaces are usually not rich enough for predicting the deformation field sufficiently accurately (the forward problem). For this reason, the novel variational r-refinement is combined with the variational h-adaption (Arnold et al 2010) to obtain a variational hr-refinement algorithm. The resulting approach captures material interfaces well (by using r-adaption) and predicts a deformation field in good agreement with that observed experimentally (by using h-adaption).

  15. True-time-delay photonic beamformer for an L-band phased array radar

    NASA Astrophysics Data System (ADS)

    Zmuda, Henry; Toughlian, Edward N.; Payson, Paul M.; Malowicki, John E.

    1995-10-01

    The problem of obtaining a true-time-delay photonic beamformer has recently been a topic of great interest. Many interesting and novel approaches to this problem have been studied. This paper examines the design, construction, and testing of a dynamic optical processor for the control of a 20-element phased array antenna operating at L-band (1.2-1.4 GHz). The approach taken here has several distinct advantages. The actual optical control is accomplished with a class of spatial light modulator known as a segmented mirror device (SMD). This allows for the possibility of controlling an extremely large number (tens of thousands) of antenna elements using integrated circuit technology. The SMD technology is driven by the HDTV and laser printer markets so ultimate cost reduction as well as technological improvements are expected. Optical splitting is efficiently accomplished using a diffractive optical element. This again has the potential for use in antenna array systems with a large number of radiating elements. The actual time delay is achieved using a single acousto-optic device for all the array elements. Acousto-optic device technologies offer sufficient delay as needed for a time steered array. The topological configuration is an optical heterodyne system, hence high, potentially millimeter wave center frequencies are possible by mixing two lasers of slightly differing frequencies. Finally, the entire system is spatially integrated into a 3D glass substrate. The integrated system provides the ruggedness needed in most applications and essentially eliminates the drift problems associated with free space optical systems. Though the system is presently being configured as a beamformer, it has the ability to operate as a general photonic signal processing element in an adaptive (reconfigurable) transversal frequency filter configuration. Such systems are widely applicable in jammer/noise canceling systems, broadband ISDN, and for spread spectrum secure communications

  16. Beamforming effects on generalized Nakagami imaging.

    PubMed

    Yu, Xue; Guo, Yuexin; Huang, Sheng-Min; Li, Meng-Lin; Lee, Wei-Ning

    2015-10-01

    Ultrasound tissue characterization is crucial for the detection of tissue abnormalities. Since the statistics of the backscattered ultrasound signals strongly depend on density and spatial arrangement of local scatterers, appropriate modeling of the backscattered signals may be capable of providing unique physiological information on local tissue properties. Among various techniques, the Nakagami imaging, realized in a window-based estimation scheme, has a good performance in assessing different scatterer statistics in tissues. However, inconsistent m values have been reported in literature and obtained only from a local tissue region, abating the reliability of Nakagami imaging in tissue characterization. The discrepancies in m values in relevant literature may stem from the nonuniformity of the ultrasound image resolution, which is often neglected. We therefore hypothesized that window-based Nakagami m estimation was highly associated with the regional spatial resolution of ultrasound imaging. To test this hypothesis, our study investigated the effect of beamforming methods, including synthetic aperture (SA), coherent plane wave compounding (CPWC), multi-focusing (MF), and single-focusing (SF), on window-based m parameter estimation from the perspective of the resolution cell. The statistics of m parameter distribution as a function of imaging depth were characterized by their mean, variance, and skewness. The phantom with a low scatterer density (16 scatterers mm(-3)) had significantly lower m values compared to the ones with high scatterer densities (32 and 64 scatterers mm(-3)). Results from the homogeneous phantom with 64 scatterers mm(-3) showed that SA, MF, and CPWC had relatively uniform lateral resolutions compared to SF and thus relatively constant m estimates at different imaging depths. Our findings suggest that an ultrasound imaging regime exhibiting invariant spatial resolution throughout the entire imaging field of view would be the most appropriate

  17. Prototype Parts of a Digital Beam-Forming Wide-Band Receiver

    NASA Technical Reports Server (NTRS)

    Kaplan, Steven B.; Pylov, Sergey V.; Pambianchi, Michael

    2003-01-01

    Some prototype parts of a digital beamforming (DBF) receiver that would operate at multigigahertz carrier frequencies have been developed. The beam-forming algorithm in a DBF receiver processes signals from multiple antenna elements with appropriate time delays and weighting factors chosen to enhance the reception of signals from a specific direction while suppressing signals from other directions. Such a receiver would be used in the directional reception of weak wideband signals -- for example, spread-spectrum signals from a low-power transmitter on an Earth-orbiting spacecraft or other distant source. The prototype parts include superconducting components on integrated-circuit chips, and a multichip module (MCM), within which the chips are to be packaged and connected via special inter-chip-communication circuits. The design and the underlying principle of operation are based on the use of the rapid single-flux quantum (RSFQ) family of logic circuits to obtain the required processing speed and signal-to-noise ratio. RSFQ circuits are superconducting circuits that exploit the Josephson effect. They are well suited for this application, having been proven to perform well in some circuits at frequencies above 100 GHz. In order to maintain the superconductivity needed for proper functioning of the RSFQ circuits, the MCM must be kept in a cryogenic environment during operation.

  18. Variable is better than invariable: sparse VSS-NLMS algorithms with application to adaptive MIMO channel estimation.

    PubMed

    Gui, Guan; Chen, Zhang-xin; Xu, Li; Wan, Qun; Huang, Jiyan; Adachi, Fumiyuki

    2014-01-01

    Channel estimation problem is one of the key technical issues in sparse frequency-selective fading multiple-input multiple-output (MIMO) communication systems using orthogonal frequency division multiplexing (OFDM) scheme. To estimate sparse MIMO channels, sparse invariable step-size normalized least mean square (ISS-NLMS) algorithms were applied to adaptive sparse channel estimation (ACSE). It is well known that step-size is a critical parameter which controls three aspects: algorithm stability, estimation performance, and computational cost. However, traditional methods are vulnerable to cause estimation performance loss because ISS cannot balance the three aspects simultaneously. In this paper, we propose two stable sparse variable step-size NLMS (VSS-NLMS) algorithms to improve the accuracy of MIMO channel estimators. First, ASCE is formulated in MIMO-OFDM systems. Second, different sparse penalties are introduced to VSS-NLMS algorithm for ASCE. In addition, difference between sparse ISS-NLMS algorithms and sparse VSS-NLMS ones is explained and their lower bounds are also derived. At last, to verify the effectiveness of the proposed algorithms for ASCE, several selected simulation results are shown to prove that the proposed sparse VSS-NLMS algorithms can achieve better estimation performance than the conventional methods via mean square error (MSE) and bit error rate (BER) metrics. PMID:25089286

  19. Variable is better than invariable: sparse VSS-NLMS algorithms with application to adaptive MIMO channel estimation.

    PubMed

    Gui, Guan; Chen, Zhang-xin; Xu, Li; Wan, Qun; Huang, Jiyan; Adachi, Fumiyuki

    2014-01-01

    Channel estimation problem is one of the key technical issues in sparse frequency-selective fading multiple-input multiple-output (MIMO) communication systems using orthogonal frequency division multiplexing (OFDM) scheme. To estimate sparse MIMO channels, sparse invariable step-size normalized least mean square (ISS-NLMS) algorithms were applied to adaptive sparse channel estimation (ACSE). It is well known that step-size is a critical parameter which controls three aspects: algorithm stability, estimation performance, and computational cost. However, traditional methods are vulnerable to cause estimation performance loss because ISS cannot balance the three aspects simultaneously. In this paper, we propose two stable sparse variable step-size NLMS (VSS-NLMS) algorithms to improve the accuracy of MIMO channel estimators. First, ASCE is formulated in MIMO-OFDM systems. Second, different sparse penalties are introduced to VSS-NLMS algorithm for ASCE. In addition, difference between sparse ISS-NLMS algorithms and sparse VSS-NLMS ones is explained and their lower bounds are also derived. At last, to verify the effectiveness of the proposed algorithms for ASCE, several selected simulation results are shown to prove that the proposed sparse VSS-NLMS algorithms can achieve better estimation performance than the conventional methods via mean square error (MSE) and bit error rate (BER) metrics.

  20. Variable Is Better Than Invariable: Sparse VSS-NLMS Algorithms with Application to Adaptive MIMO Channel Estimation

    PubMed Central

    Gui, Guan; Chen, Zhang-xin; Xu, Li; Wan, Qun; Huang, Jiyan; Adachi, Fumiyuki

    2014-01-01

    Channel estimation problem is one of the key technical issues in sparse frequency-selective fading multiple-input multiple-output (MIMO) communication systems using orthogonal frequency division multiplexing (OFDM) scheme. To estimate sparse MIMO channels, sparse invariable step-size normalized least mean square (ISS-NLMS) algorithms were applied to adaptive sparse channel estimation (ACSE). It is well known that step-size is a critical parameter which controls three aspects: algorithm stability, estimation performance, and computational cost. However, traditional methods are vulnerable to cause estimation performance loss because ISS cannot balance the three aspects simultaneously. In this paper, we propose two stable sparse variable step-size NLMS (VSS-NLMS) algorithms to improve the accuracy of MIMO channel estimators. First, ASCE is formulated in MIMO-OFDM systems. Second, different sparse penalties are introduced to VSS-NLMS algorithm for ASCE. In addition, difference between sparse ISS-NLMS algorithms and sparse VSS-NLMS ones is explained and their lower bounds are also derived. At last, to verify the effectiveness of the proposed algorithms for ASCE, several selected simulation results are shown to prove that the proposed sparse VSS-NLMS algorithms can achieve better estimation performance than the conventional methods via mean square error (MSE) and bit error rate (BER) metrics. PMID:25089286

  1. Development of a deformable dosimetric phantom to verify dose accumulation algorithms for adaptive radiotherapy

    PubMed Central

    Zhong, Hualiang; Adams, Jeffrey; Glide-Hurst, Carri; Zhang, Hualin; Li, Haisen; Chetty, Indrin J.

    2016-01-01

    Adaptive radiotherapy may improve treatment outcomes for lung cancer patients. Because of the lack of an effective tool for quality assurance, this therapeutic modality is not yet accepted in clinic. The purpose of this study is to develop a deformable physical phantom for validation of dose accumulation algorithms in regions with heterogeneous mass. A three-dimensional (3D) deformable phantom was developed containing a tissue-equivalent tumor and heterogeneous sponge inserts. Thermoluminescent dosimeters (TLDs) were placed at multiple locations in the phantom each time before dose measurement. Doses were measured with the phantom in both the static and deformed cases. The deformation of the phantom was actuated by a motor driven piston. 4D computed tomography images were acquired to calculate 3D doses at each phase using Pinnacle and EGSnrc/DOSXYZnrc. These images were registered using two registration software packages: VelocityAI and Elastix. With the resultant displacement vector fields (DVFs), the calculated 3D doses were accumulated using a mass-and energy congruent mapping method and compared to those measured by the TLDs at four typical locations. In the static case, TLD measurements agreed with all the algorithms by 1.8% at the center of the tumor volume and by 4.0% in the penumbra. In the deformable case, the phantom's deformation was reproduced within 1.1 mm. For the 3D dose calculated by Pinnacle, the total dose accumulated with the Elastix DVF agreed well to the TLD measurements with their differences <2.5% at four measured locations. When the VelocityAI DVF was used, their difference increased up to 11.8%. For the 3D dose calculated by EGSnrc/DOSXYZnrc, the total doses accumulated with the two DVFs were within 5.7% of the TLD measurements which are slightly over the rate of 5% for clinical acceptance. The detector-embedded deformable phantom allows radiation dose to be measured in a dynamic environment, similar to deforming lung tissues, supporting

  2. Development of a deformable dosimetric phantom to verify dose accumulation algorithms for adaptive radiotherapy.

    PubMed

    Zhong, Hualiang; Adams, Jeffrey; Glide-Hurst, Carri; Zhang, Hualin; Li, Haisen; Chetty, Indrin J

    2016-01-01

    Adaptive radiotherapy may improve treatment outcomes for lung cancer patients. Because of the lack of an effective tool for quality assurance, this therapeutic modality is not yet accepted in clinic. The purpose of this study is to develop a deformable physical phantom for validation of dose accumulation algorithms in regions with heterogeneous mass. A three-dimensional (3D) deformable phantom was developed containing a tissue-equivalent tumor and heterogeneous sponge inserts. Thermoluminescent dosimeters (TLDs) were placed at multiple locations in the phantom each time before dose measurement. Doses were measured with the phantom in both the static and deformed cases. The deformation of the phantom was actuated by a motor driven piston. 4D computed tomography images were acquired to calculate 3D doses at each phase using Pinnacle and EGSnrc/DOSXYZnrc. These images were registered using two registration software packages: VelocityAI and Elastix. With the resultant displacement vector fields (DVFs), the calculated 3D doses were accumulated using a mass-and energy congruent mapping method and compared to those measured by the TLDs at four typical locations. In the static case, TLD measurements agreed with all the algorithms by 1.8% at the center of the tumor volume and by 4.0% in the penumbra. In the deformable case, the phantom's deformation was reproduced within 1.1 mm. For the 3D dose calculated by Pinnacle, the total dose accumulated with the Elastix DVF agreed well to the TLD measurements with their differences <2.5% at four measured locations. When the VelocityAI DVF was used, their difference increased up to 11.8%. For the 3D dose calculated by EGSnrc/DOSXYZnrc, the total doses accumulated with the two DVFs were within 5.7% of the TLD measurements which are slightly over the rate of 5% for clinical acceptance. The detector-embedded deformable phantom allows radiation dose to be measured in a dynamic environment, similar to deforming lung tissues, supporting

  3. EMINIM: An Adaptive and Memory-Efficient Algorithm for Genotype Imputation

    PubMed Central

    Kang, Hyun Min; Zaitlen, Noah A.

    2010-01-01

    Abstract Genome-wide association studies have proven to be a highly successful method for identification of genetic loci for complex phenotypes in both humans and model organisms. These large scale studies rely on the collection of hundreds of thousands of single nucleotide polymorphisms (SNPs) across the genome. Standard high-throughput genotyping technologies capture only a fraction of the total genetic variation. Recent efforts have shown that it is possible to “impute” with high accuracy the genotypes of SNPs that are not collected in the study provided that they are present in a reference data set which contains both SNPs collected in the study as well as other SNPs. We here introduce a novel HMM based technique to solve the imputation problem that addresses several shortcomings of existing methods. First, our method is adaptive which lets it estimate population genetic parameters from the data and be applied to model organisms that have very different evolutionary histories. Compared to previous methods, our method is up to ten times more accurate on model organisms such as mouse. Second, our algorithm scales in memory usage in the number of collected markers as opposed to the number of known SNPs. This issue is very relevant due to the size of the reference data sets currently being generated. We compare our method over mouse and human data sets to existing methods, and show that each has either comparable or better performance and much lower memory usage. The method is available for download at http://genetics.cs.ucla.edu/eminim. PMID:20377463

  4. Adaptive Guidance and Control Algorithms applied to the X-38 Reentry Mission

    NASA Astrophysics Data System (ADS)

    Graesslin, M.; Wallner, E.; Burkhardt, J.; Schoettle, U.; Well, K. H.

    International Space Station's Crew Return/Rescue Vehicle (CRV) is planned to autonomously return the complete crew of 7 astronauts back to earth in case of an emergency. As prototype of such a vehicle, the X-38, is being developed and built by NASA with European participation. The X-38 is a lifting body with a hyper- sonic lift to drag ratio of about 0.9. In comparison to the Space Shuttle Orbiter, the X-38 has less aerodynamic manoeuvring capability and less actuators. Within the German technology programme TETRA (TEchnologies for future space TRAnsportation systems) contributing to the X-38 program, guidance and control algorithms have been developed and applied to the X-38 reentry mission. The adaptive guidance concept conceived combines an on-board closed-loop predictive guidance algorithm with flight load control that temporarily overrides the attitude commands of the predictive component if the corre- sponding load constraints are violated. The predictive guidance scheme combines an optimization step and a sequence of constraint restoration cycles. In order to satisfy on-board computation limitations the complete scheme is performed only during the exo-atmospheric flight coast phase. During the controlled atmospheric flight segment the task is reduced to a repeatedly solved targeting problem based on the initial optimal solution, thus omitting in-flight constraints. To keep the flight loads - especially the heat flux, which is in fact a major concern of the X-38 reentry flight - below their maximum admissible values, a flight path controller based on quadratic minimization techniques may override the predictive guidance command for a flight along the con- straint boundary. The attitude control algorithms developed are based on dynamic inversion. This methodology enables the designer to straightforwardly devise a controller structure from the system dynamics. The main ad- vantage of this approach with regard to reentry control design lies in the fact that

  5. Temporal-adaptive Euler/Navier-Stokes algorithm for unsteady aerodynamic analysis of airfoils using unstructured dynamic meshes

    NASA Technical Reports Server (NTRS)

    Kleb, William L.; Batina, John T.; Williams, Marc H.

    1990-01-01

    A temporal adaptive algorithm for the time-integration of the two-dimensional Euler or Navier-Stokes equations is presented. The flow solver involves an upwind flux-split spatial discretization for the convective terms and central differencing for the shear-stress and heat flux terms on an unstructured mesh of triangles. The temporal adaptive algorithm is a time-accurate integration procedure which allows flows with high spatial and temporal gradients to be computed efficiently by advancing each grid cell near its maximum allowable time step. Results indicate that an appreciable computational savings can be achieved for both inviscid and viscous unsteady airfoil problems using unstructured meshes without degrading spatial or temporal accuracy.

  6. AIDA: an adaptive image deconvolution algorithm with application to multi-frame and three-dimensional data

    PubMed Central

    Hom, Erik F. Y.; Marchis, Franck; Lee, Timothy K.; Haase, Sebastian; Agard, David A.; Sedat, John W.

    2011-01-01

    We describe an adaptive image deconvolution algorithm (AIDA) for myopic deconvolution of multi-frame and three-dimensional data acquired through astronomical and microscopic imaging. AIDA is a reimplementation and extension of the MISTRAL method developed by Mugnier and co-workers and shown to yield object reconstructions with excellent edge preservation and photometric precision [J. Opt. Soc. Am. A 21, 1841 (2004)]. Written in Numerical Python with calls to a robust constrained conjugate gradient method, AIDA has significantly improved run times over the original MISTRAL implementation. Included in AIDA is a scheme to automatically balance maximum-likelihood estimation and object regularization, which significantly decreases the amount of time and effort needed to generate satisfactory reconstructions. We validated AIDA using synthetic data spanning a broad range of signal-to-noise ratios and image types and demonstrated the algorithm to be effective for experimental data from adaptive optics–equipped telescope systems and wide-field microscopy. PMID:17491626

  7. NORSAR Final Scientific Report Adaptive Waveform Correlation Detectors for Arrays: Algorithms for Autonomous Calibration

    SciTech Connect

    Gibbons, S J; Ringdal, F; Harris, D B

    2009-04-16

    Correlation detection is a relatively new approach in seismology that offers significant advantages in increased sensitivity and event screening over standard energy detection algorithms. The basic concept is that a representative event waveform is used as a template (i.e. matched filter) that is correlated against a continuous, possibly multichannel, data stream to detect new occurrences of that same signal. These algorithms are therefore effective at detecting repeating events, such as explosions and aftershocks at a specific location. This final report summarizes the results of a three-year cooperative project undertaken by NORSAR and Lawrence Livermore National Laboratory. The overall objective has been to develop and test a new advanced, automatic approach to seismic detection using waveform correlation. The principal goal is to develop an adaptive processing algorithm. By this we mean that the detector is initiated using a basic set of reference ('master') events to be used in the correlation process, and then an automatic algorithm is applied successively to provide improved performance by extending the set of master events selectively and strategically. These additional master events are generated by an independent, conventional detection system. A periodic analyst review will then be applied to verify the performance and, if necessary, adjust and consolidate the master event set. A primary focus of this project has been the application of waveform correlation techniques to seismic arrays. The basic procedure is to perform correlation on the individual channels, and then stack the correlation traces using zero-delay beam forming. Array methods such as frequency-wavenumber analysis can be applied to this set of correlation traces to help guarantee the validity of detections and lower the detection threshold. In principle, the deployment of correlation detectors against seismically active regions could involve very large numbers of very specific detectors. To

  8. Square Kilometre Array Station Configuration Using Two-Stage Beamforming

    NASA Astrophysics Data System (ADS)

    Jiwani, Aziz; Colegate, Tim; Razavi-Ghods, Nima; Hall, Peter J.; Padhi, Shantanu; bij de Vaate, Jan Geralt

    2013-03-01

    The lowest frequency band (70-450 MHz) of the Square Kilometre Array (SKA) will consist of sparse aperture arrays grouped into geographically localised patches or stations. Signals from thousands of antennas in each station will be beamformed to produce station beams which form the inputs for the central correlator. Two-stage beamforming within stations can reduce SKA-low signal processing load and costs, but has not been previously explored for the irregular station layouts now favoured in radio astronomy arrays. This paper illustrates the effects of two-stage beamforming on sidelobes and effective area, for two representative station layouts (regular and irregular gridded tiles on an irregular station). The performance is compared with a single-stage, irregular station. The inner sidelobe levels do not change significantly between layouts, but the more distant sidelobes are affected by the tile layouts; regular tile creates diffuse, but regular, grating lobes. With very sparse arrays, the station effective area is similar between layouts. At lower frequencies, the regular tile significantly reduces effective area, hence sensitivity. The effective area is highest for a two-stage irregular station, but it requires a larger station extent than the other two layouts. Although there are cost benefits for stations with two-stage beamforming, we conclude that more accurate station modelling and SKA-low configuration specifications are required before design finalisation.

  9. Numerical analysis of biosonar beamforming mechanisms and strategies in bats.

    PubMed

    Müller, Rolf

    2010-09-01

    Beamforming is critical to the function of most sonar systems. The conspicuous noseleaf and pinna shapes in bats suggest that beamforming mechanisms based on diffraction of the outgoing and incoming ultrasonic waves play a major role in bat biosonar. Numerical methods can be used to investigate the relationships between baffle geometry, acoustic mechanisms, and resulting beampatterns. Key advantages of numerical approaches are: efficient, high-resolution estimation of beampatterns, spatially dense predictions of near-field amplitudes, and the malleability of the underlying shape representations. A numerical approach that combines near-field predictions based on a finite-element formulation for harmonic solutions to the Helmholtz equation with a free-field projection based on the Kirchhoff integral to obtain estimates of the far-field beampattern is reviewed. This method has been used to predict physical beamforming mechanisms such as frequency-dependent beamforming with half-open resonance cavities in the noseleaf of horseshoe bats and beam narrowing through extension of the pinna aperture with skin folds in false vampire bats. The fine structure of biosonar beampatterns is discussed for the case of the Chinese noctule and methods for assessing the spatial information conveyed by beampatterns are demonstrated for the brown long-eared bat.

  10. Numerical analysis of biosonar beamforming mechanisms and strategies in bats.

    PubMed

    Müller, Rolf

    2010-09-01

    Beamforming is critical to the function of most sonar systems. The conspicuous noseleaf and pinna shapes in bats suggest that beamforming mechanisms based on diffraction of the outgoing and incoming ultrasonic waves play a major role in bat biosonar. Numerical methods can be used to investigate the relationships between baffle geometry, acoustic mechanisms, and resulting beampatterns. Key advantages of numerical approaches are: efficient, high-resolution estimation of beampatterns, spatially dense predictions of near-field amplitudes, and the malleability of the underlying shape representations. A numerical approach that combines near-field predictions based on a finite-element formulation for harmonic solutions to the Helmholtz equation with a free-field projection based on the Kirchhoff integral to obtain estimates of the far-field beampattern is reviewed. This method has been used to predict physical beamforming mechanisms such as frequency-dependent beamforming with half-open resonance cavities in the noseleaf of horseshoe bats and beam narrowing through extension of the pinna aperture with skin folds in false vampire bats. The fine structure of biosonar beampatterns is discussed for the case of the Chinese noctule and methods for assessing the spatial information conveyed by beampatterns are demonstrated for the brown long-eared bat. PMID:20815475

  11. Model parameter adaption-based multi-model algorithm for extended object tracking using a random matrix.

    PubMed

    Li, Borui; Mu, Chundi; Han, Shuli; Bai, Tianming

    2014-01-01

    Traditional object tracking technology usually regards the target as a point source object. However, this approximation is no longer appropriate for tracking extended objects such as large targets and closely spaced group objects. Bayesian extended object tracking (EOT) using a random symmetrical positive definite (SPD) matrix is a very effective method to jointly estimate the kinematic state and physical extension of the target. The key issue in the application of this random matrix-based EOT approach is to model the physical extension and measurement noise accurately. Model parameter adaptive approaches for both extension dynamic and measurement noise are proposed in this study based on the properties of the SPD matrix to improve the performance of extension estimation. An interacting multi-model algorithm based on model parameter adaptive filter using random matrix is also presented. Simulation results demonstrate the effectiveness of the proposed adaptive approaches and multi-model algorithm. The estimation performance of physical extension is better than the other algorithms, especially when the target maneuvers. The kinematic state estimation error is lower than the others as well. PMID:24763252

  12. An Adaptive Compensation Algorithm for Temperature Drift of Micro-Electro-Mechanical Systems Gyroscopes Using a Strong Tracking Kalman Filter

    PubMed Central

    Feng, Yibo; Li, Xisheng; Zhang, Xiaojuan

    2015-01-01

    We present an adaptive algorithm for a system integrated with micro-electro-mechanical systems (MEMS) gyroscopes and a compass to eliminate the influence from the environment, compensate the temperature drift precisely, and improve the accuracy of the MEMS gyroscope. We use a simplified drift model and changing but appropriate model parameters to implement this algorithm. The model of MEMS gyroscope temperature drift is constructed mostly on the basis of the temperature sensitivity of the gyroscope. As the state variables of a strong tracking Kalman filter (STKF), the parameters of the temperature drift model can be calculated to adapt to the environment under the support of the compass. These parameters change intelligently with the environment to maintain the precision of the MEMS gyroscope in the changing temperature. The heading error is less than 0.6° in the static temperature experiment, and also is kept in the range from 5° to −2° in the dynamic outdoor experiment. This demonstrates that the proposed algorithm exhibits strong adaptability to a changing temperature, and performs significantly better than KF and MLR to compensate the temperature drift of a gyroscope and eliminate the influence of temperature variation. PMID:25985165

  13. A new adaptive algorithm for automated feature extraction in exponentially damped signals for health monitoring of smart structures

    NASA Astrophysics Data System (ADS)

    Qarib, Hossein; Adeli, Hojjat

    2015-12-01

    In this paper authors introduce a new adaptive signal processing technique for feature extraction and parameter estimation in noisy exponentially damped signals. The iterative 3-stage method is based on the adroit integration of the strengths of parametric and nonparametric methods such as multiple signal categorization, matrix pencil, and empirical mode decomposition algorithms. The first stage is a new adaptive filtration or noise removal scheme. The second stage is a hybrid parametric-nonparametric signal parameter estimation technique based on an output-only system identification technique. The third stage is optimization of estimated parameters using a combination of the primal-dual path-following interior point algorithm and genetic algorithm. The methodology is evaluated using a synthetic signal and a signal obtained experimentally from transverse vibrations of a steel cantilever beam. The method is successful in estimating the frequencies accurately. Further, it estimates the damping exponents. The proposed adaptive filtration method does not include any frequency domain manipulation. Consequently, the time domain signal is not affected as a result of frequency domain and inverse transformations.

  14. Model parameter adaption-based multi-model algorithm for extended object tracking using a random matrix.

    PubMed

    Li, Borui; Mu, Chundi; Han, Shuli; Bai, Tianming

    2014-04-24

    Traditional object tracking technology usually regards the target as a point source object. However, this approximation is no longer appropriate for tracking extended objects such as large targets and closely spaced group objects. Bayesian extended object tracking (EOT) using a random symmetrical positive definite (SPD) matrix is a very effective method to jointly estimate the kinematic state and physical extension of the target. The key issue in the application of this random matrix-based EOT approach is to model the physical extension and measurement noise accurately. Model parameter adaptive approaches for both extension dynamic and measurement noise are proposed in this study based on the properties of the SPD matrix to improve the performance of extension estimation. An interacting multi-model algorithm based on model parameter adaptive filter using random matrix is also presented. Simulation results demonstrate the effectiveness of the proposed adaptive approaches and multi-model algorithm. The estimation performance of physical extension is better than the other algorithms, especially when the target maneuvers. The kinematic state estimation error is lower than the others as well.

  15. A correction algorithm to simultaneously control dual deformable mirrors in a woofer-tweeter adaptive optics system

    PubMed Central

    Li, Chaohong; Sredar, Nripun; Ivers, Kevin M.; Queener, Hope; Porter, Jason

    2010-01-01

    We present a direct slope-based correction algorithm to simultaneously control two deformable mirrors (DMs) in a woofer-tweeter adaptive optics system. A global response matrix was derived from the response matrices of each deformable mirror and the voltages for both deformable mirrors were calculated simultaneously. This control algorithm was tested and compared with a 2-step sequential control method in five normal human eyes using an adaptive optics scanning laser ophthalmoscope. The mean residual total root-mean-square (RMS) wavefront errors across subjects after adaptive optics (AO) correction were 0.128 ± 0.025 μm and 0.107 ± 0.033 μm for simultaneous and 2-step control, respectively (7.75-mm pupil). The mean intensity of reflectance images acquired after AO convergence was slightly higher for 2-step control. Radially-averaged power spectra calculated from registered reflectance images were nearly identical for all subjects using simultaneous or 2-step control. The correction performance of our new simultaneous dual DM control algorithm is comparable to 2-step control, but is more efficient. This method can be applied to any woofer-tweeter AO system. PMID:20721058

  16. An adaptive compensation algorithm for temperature drift of micro-electro-mechanical systems gyroscopes using a strong tracking Kalman filter.

    PubMed

    Feng, Yibo; Li, Xisheng; Zhang, Xiaojuan

    2015-01-01

    We present an adaptive algorithm for a system integrated with micro-electro-mechanical systems (MEMS) gyroscopes and a compass to eliminate the influence from the environment, compensate the temperature drift precisely, and improve the accuracy of the MEMS gyroscope. We use a simplified drift model and changing but appropriate model parameters to implement this algorithm. The model of MEMS gyroscope temperature drift is constructed mostly on the basis of the temperature sensitivity of the gyroscope. As the state variables of a strong tracking Kalman filter (STKF), the parameters of the temperature drift model can be calculated to adapt to the environment under the support of the compass. These parameters change intelligently with the environment to maintain the precision of the MEMS gyroscope in the changing temperature. The heading error is less than 0.6° in the static temperature experiment, and also is kept in the range from 5° to -2° in the dynamic outdoor experiment. This demonstrates that the proposed algorithm exhibits strong adaptability to a changing temperature, and performs significantly better than KF and MLR to compensate the temperature drift of a gyroscope and eliminate the influence of temperature variation. PMID:25985165

  17. An adaptive compensation algorithm for temperature drift of micro-electro-mechanical systems gyroscopes using a strong tracking Kalman filter.

    PubMed

    Feng, Yibo; Li, Xisheng; Zhang, Xiaojuan

    2015-05-13

    We present an adaptive algorithm for a system integrated with micro-electro-mechanical systems (MEMS) gyroscopes and a compass to eliminate the influence from the environment, compensate the temperature drift precisely, and improve the accuracy of the MEMS gyroscope. We use a simplified drift model and changing but appropriate model parameters to implement this algorithm. The model of MEMS gyroscope temperature drift is constructed mostly on the basis of the temperature sensitivity of the gyroscope. As the state variables of a strong tracking Kalman filter (STKF), the parameters of the temperature drift model can be calculated to adapt to the environment under the support of the compass. These parameters change intelligently with the environment to maintain the precision of the MEMS gyroscope in the changing temperature. The heading error is less than 0.6° in the static temperature experiment, and also is kept in the range from 5° to -2° in the dynamic outdoor experiment. This demonstrates that the proposed algorithm exhibits strong adaptability to a changing temperature, and performs significantly better than KF and MLR to compensate the temperature drift of a gyroscope and eliminate the influence of temperature variation.

  18. On solving the 3-D phase field equations by employing a parallel-adaptive mesh refinement (Para-AMR) algorithm

    NASA Astrophysics Data System (ADS)

    Guo, Z.; Xiong, S. M.

    2015-05-01

    An algorithm comprising adaptive mesh refinement (AMR) and parallel (Para-) computing capabilities was developed to efficiently solve the coupled phase field equations in 3-D. The AMR was achieved based on a gradient criterion and the point clustering algorithm introduced by Berger (1991). To reduce the time for mesh generation, a dynamic regridding approach was developed based on the magnitude of the maximum phase advancing velocity. Local data at each computing process was then constructed and parallel computation was realized based on the hierarchical grid structure created during the AMR. Numerical tests and simulations on single and multi-dendrite growth were performed and results show that the proposed algorithm could shorten the computing time for 3-D phase field simulation for about two orders of magnitude and enable one to gain much more insight in understanding the underlying physics during dendrite growth in solidification.

  19. A proposed adaptive step size perturbation and observation maximum power point tracking algorithm based on photovoltaic system modeling

    NASA Astrophysics Data System (ADS)

    Huang, Yu

    Solar energy becomes one of the major alternative renewable energy options for its huge abundance and accessibility. Due to the intermittent nature, the high demand of Maximum Power Point Tracking (MPPT) techniques exists when a Photovoltaic (PV) system is used to extract energy from the sunlight. This thesis proposed an advanced Perturbation and Observation (P&O) algorithm aiming for relatively practical circumstances. Firstly, a practical PV system model is studied with determining the series and shunt resistances which are neglected in some research. Moreover, in this proposed algorithm, the duty ratio of a boost DC-DC converter is the object of the perturbation deploying input impedance conversion to achieve working voltage adjustment. Based on the control strategy, the adaptive duty ratio step size P&O algorithm is proposed with major modifications made for sharp insolation change as well as low insolation scenarios. Matlab/Simulink simulation for PV model, boost converter control strategy and various MPPT process is conducted step by step. The proposed adaptive P&O algorithm is validated by the simulation results and detail analysis of sharp insolation changes, low insolation condition and continuous insolation variation.

  20. Studying the Effect of Adaptive Momentum in Improving the Accuracy of Gradient Descent Back Propagation Algorithm on Classification Problems

    NASA Astrophysics Data System (ADS)

    Rehman, Muhammad Zubair; Nawi, Nazri Mohd.

    Despite being widely used in the practical problems around the world, Gradient Descent Back-propagation algorithm comes with problems like slow convergence and convergence to local minima. Previous researchers have suggested certain modifications to improve the convergence in gradient Descent Back-propagation algorithm such as careful selection of input weights and biases, learning rate, momentum, network topology, activation function and value for 'gain' in the activation function. This research proposed an algorithm for improving the working performance of back-propagation algorithm which is 'Gradient Descent with Adaptive Momentum (GDAM)' by keeping the gain value fixed during all network trials. The performance of GDAM is compared with 'Gradient Descent with fixed Momentum (GDM)' and 'Gradient Descent Method with Adaptive Gain (GDM-AG)'. The learning rate is fixed to 0.4 and maximum epochs are set to 3000 while sigmoid activation function is used for the experimentation. The results show that GDAM is a better approach than previous methods with an accuracy ratio of 1.0 for classification problems like Wine Quality, Mushroom and Thyroid disease.

  1. A feature extraction method of the particle swarm optimization algorithm based on adaptive inertia weight and chaos optimization for Brillouin scattering spectra

    NASA Astrophysics Data System (ADS)

    Zhang, Yanjun; Zhao, Yu; Fu, Xinghu; Xu, Jinrui

    2016-10-01

    A novel particle swarm optimization algorithm based on adaptive inertia weight and chaos optimization is proposed for extracting the features of Brillouin scattering spectra. Firstly, the adaptive inertia weight parameter of the velocity is introduced to the basic particle swarm algorithm. Based on the current iteration number of particles and the adaptation value, the algorithm can change the weight coefficient and adjust the iteration speed of searching space for particles, so the local optimization ability can be enhanced. Secondly, the logical self-mapping chaotic search is carried out by using the chaos optimization in particle swarm optimization algorithm, which makes the particle swarm optimization algorithm jump out of local optimum. The novel algorithm is compared with finite element analysis-Levenberg Marquardt algorithm, particle swarm optimization-Levenberg Marquardt algorithm and particle swarm optimization algorithm by changing the linewidth, the signal-to-noise ratio and the linear weight ratio of Brillouin scattering spectra. Then the algorithm is applied to the feature extraction of Brillouin scattering spectra in different temperatures. The simulation analysis and experimental results show that this algorithm has a high fitting degree and small Brillouin frequency shift error for different linewidth, SNR and linear weight ratio. Therefore, this algorithm can be applied to the distributed optical fiber sensing system based on Brillouin optical time domain reflection, which can effectively improve the accuracy of Brillouin frequency shift extraction.

  2. Computed Tomography Images De-noising using a Novel Two Stage Adaptive Algorithm

    PubMed Central

    Fadaee, Mojtaba; Shamsi, Mousa; Saberkari, Hamidreza; Sedaaghi, Mohammad Hossein

    2015-01-01

    In this paper, an optimal algorithm is presented for de-noising of medical images. The presented algorithm is based on improved version of local pixels grouping and principal component analysis. In local pixels grouping algorithm, blocks matching based on L2 norm method is utilized, which leads to matching performance improvement. To evaluate the performance of our proposed algorithm, peak signal to noise ratio (PSNR) and structural similarity (SSIM) evaluation criteria have been used, which are respectively according to the signal to noise ratio in the image and structural similarity of two images. The proposed algorithm has two de-noising and cleanup stages. The cleanup stage is carried out comparatively; meaning that it is alternately repeated until the two conditions based on PSNR and SSIM are established. Implementation results show that the presented algorithm has a significant superiority in de-noising. Furthermore, the quantities of SSIM and PSNR values are higher in comparison to other methods. PMID:26955565

  3. A dynamically adaptive multigrid algorithm for the incompressible Navier-Stokes equations: Validation and model problems

    NASA Technical Reports Server (NTRS)

    Thompson, C. P.; Leaf, G. K.; Vanrosendale, J.

    1991-01-01

    An algorithm is described for the solution of the laminar, incompressible Navier-Stokes equations. The basic algorithm is a multigrid based on a robust, box-based smoothing step. Its most important feature is the incorporation of automatic, dynamic mesh refinement. This algorithm supports generalized simple domains. The program is based on a standard staggered-grid formulation of the Navier-Stokes equations for robustness and efficiency. Special grid transfer operators were introduced at grid interfaces in the multigrid algorithm to ensure discrete mass conservation. Results are presented for three models: the driven-cavity, a backward-facing step, and a sudden expansion/contraction.

  4. Optimizing weather radar observations using an adaptive multiquadric surface fitting algorithm

    NASA Astrophysics Data System (ADS)

    Martens, Brecht; Cabus, Pieter; De Jongh, Inge; Verhoest, Niko

    2013-04-01

    .e. the observed scaling factors C(xα)) on a distance aαK by introducing an offset parameter K, which results in slightly different equations to calculate a and a0. The described technique is currently being used by the Flemish Environmental Agency in an online forecasting system of river discharges within Flanders (Belgium). However, rescaling the radar data using the described algorithm is not always giving rise to an improved weather radar product. Probably one of the main reasons is the parameters K and ? which are implemented as constants. It can be expected that, among others, depending on the characteristics of the rainfall, different values for the parameters should be used. Adaptation of the parameter values is achieved by an online calibration of K and ? at each time step (every 15 minutes), using validated rain gauge measurements as ground truth. Results demonstrate that rescaling radar images using optimized values for K and ? at each time step lead to a significant improvement of the rainfall estimation, which in turn will result in higher quality discharge predictions. Moreover, it is shown that calibrated values for K and ? can be obtained in near-real time. References Cole, S. J., and Moore, R. J. (2008). Hydrological modelling using raingauge- and radar-based estimators of areal rainfall. Journal of Hydrology, 358(3-4), 159-181. Hardy, R.L., (1971) Multiquadric equations of topography and other irregular surfaces, Journal of Geophysical Research, 76(8): 1905-1915. Moore, R. J., Watson, B. C., Jones, D. A. and Black, K. B. (1989). London weather radar local calibration study. Technical report, Institute of Hydrology.

  5. Characterization of adaptive statistical iterative reconstruction algorithm for dose reduction in CT: A pediatric oncology perspective

    SciTech Connect

    Brady, S. L.; Yee, B. S.; Kaufman, R. A.

    2012-09-15

    Purpose: This study demonstrates a means of implementing an adaptive statistical iterative reconstruction (ASiR Trade-Mark-Sign ) technique for dose reduction in computed tomography (CT) while maintaining similar noise levels in the reconstructed image. The effects of image quality and noise texture were assessed at all implementation levels of ASiR Trade-Mark-Sign . Empirically derived dose reduction limits were established for ASiR Trade-Mark-Sign for imaging of the trunk for a pediatric oncology population ranging from 1 yr old through adolescence/adulthood. Methods: Image quality was assessed using metrics established by the American College of Radiology (ACR) CT accreditation program. Each image quality metric was tested using the ACR CT phantom with 0%-100% ASiR Trade-Mark-Sign blended with filtered back projection (FBP) reconstructed images. Additionally, the noise power spectrum (NPS) was calculated for three common reconstruction filters of the trunk. The empirically derived limitations on ASiR Trade-Mark-Sign implementation for dose reduction were assessed using (1, 5, 10) yr old and adolescent/adult anthropomorphic phantoms. To assess dose reduction limits, the phantoms were scanned in increments of increased noise index (decrementing mA using automatic tube current modulation) balanced with ASiR Trade-Mark-Sign reconstruction to maintain noise equivalence of the 0% ASiR Trade-Mark-Sign image. Results: The ASiR Trade-Mark-Sign algorithm did not produce any unfavorable effects on image quality as assessed by ACR criteria. Conversely, low-contrast resolution was found to improve due to the reduction of noise in the reconstructed images. NPS calculations demonstrated that images with lower frequency noise had lower noise variance and coarser graininess at progressively higher percentages of ASiR Trade-Mark-Sign reconstruction; and in spite of the similar magnitudes of noise, the image reconstructed with 50% or more ASiR Trade-Mark-Sign presented a more

  6. An adaptive integrated algorithm for noninvasive fetal ECG separation and noise reduction based on ICA-EEMD-WS.

    PubMed

    Liu, Guangchen; Luan, Yihui

    2015-11-01

    High-resolution fetal electrocardiogram (FECG) plays an important role in assisting physicians to detect fetal changes in the womb and to make clinical decisions. However, in real situations, clear FECG is difficult to extract because it is usually overwhelmed by the dominant maternal ECG and other contaminated noise such as baseline wander, high-frequency noise. In this paper, we proposed a novel integrated adaptive algorithm based on independent component analysis (ICA), ensemble empirical mode decomposition (EEMD), and wavelet shrinkage (WS) denoising, denoted as ICA-EEMD-WS, for FECG separation and noise reduction. First, ICA algorithm was used to separate the mixed abdominal ECG signal and to obtain the noisy FECG. Second, the noise in FECG was reduced by a three-step integrated algorithm comprised of EEMD, useful subcomponents statistical inference and WS processing, and partial reconstruction for baseline wander reduction. Finally, we evaluate the proposed algorithm using simulated data sets. The results indicated that the proposed ICA-EEMD-WS outperformed the conventional algorithms in signal denoising. PMID:26429348

  7. DARAL: A Dynamic and Adaptive Routing Algorithm for Wireless Sensor Networks.

    PubMed

    Estévez, Francisco José; Glösekötter, Peter; González, Jesús

    2016-01-01

    The evolution of Smart City projects is pushing researchers and companies to develop more efficient embedded hardware and also more efficient communication technologies. These communication technologies are the focus of this work, presenting a new routing algorithm based on dynamically-allocated sub-networks and node roles. Among these features, our algorithm presents a fast set-up time, a reduced overhead and a hierarchical organization, which allows for the application of complex management techniques. This work presents a routing algorithm based on a dynamically-allocated hierarchical clustering, which uses the link quality indicator as a reference parameter, maximizing the network coverage and minimizing the control message overhead and the convergence time. The present work based its test scenario and analysis in the density measure, considered as a node degree. The routing algorithm is compared with some of the most well known routing algorithms for different scenario densities. PMID:27347962

  8. DARAL: A Dynamic and Adaptive Routing Algorithm for Wireless Sensor Networks

    PubMed Central

    Estévez, Francisco José; Glösekötter, Peter; González, Jesús

    2016-01-01

    The evolution of Smart City projects is pushing researchers and companies to develop more efficient embedded hardware and also more efficient communication technologies. These communication technologies are the focus of this work, presenting a new routing algorithm based on dynamically-allocated sub-networks and node roles. Among these features, our algorithm presents a fast set-up time, a reduced overhead and a hierarchical organization, which allows for the application of complex management techniques. This work presents a routing algorithm based on a dynamically-allocated hierarchical clustering, which uses the link quality indicator as a reference parameter, maximizing the network coverage and minimizing the control message overhead and the convergence time. The present work based its test scenario and analysis in the density measure, considered as a node degree. The routing algorithm is compared with some of the most well known routing algorithms for different scenario densities. PMID:27347962

  9. On the estimation algorithm used in adaptive performance optimization of turbofan engines

    NASA Technical Reports Server (NTRS)

    Espana, Martin D.; Gilyard, Glenn B.

    1993-01-01

    The performance seeking control algorithm is designed to continuously optimize the performance of propulsion systems. The performance seeking control algorithm uses a nominal model of the propulsion system and estimates, in flight, the engine deviation parameters characterizing the engine deviations with respect to nominal conditions. In practice, because of measurement biases and/or model uncertainties, the estimated engine deviation parameters may not reflect the engine's actual off-nominal condition. This factor has a necessary impact on the overall performance seeking control scheme exacerbated by the open-loop character of the algorithm. The effects produced by unknown measurement biases over the estimation algorithm are evaluated. This evaluation allows for identification of the most critical measurements for application of the performance seeking control algorithm to an F100 engine. An equivalence relation between the biases and engine deviation parameters stems from an observability study; therefore, it is undecided whether the estimated engine deviation parameters represent the actual engine deviation or whether they simply reflect the measurement biases. A new algorithm, based on the engine's (steady-state) optimization model, is proposed and tested with flight data. When compared with previous Kalman filter schemes, based on local engine dynamic models, the new algorithm is easier to design and tune and it reduces the computational burden of the onboard computer.

  10. Acceleration amplitude-phase regulation for electro-hydraulic servo shaking table based on LMS adaptive filtering algorithm

    NASA Astrophysics Data System (ADS)

    Yao, Jianjun; Di, Duotao; Jiang, Guilin; Gao, Shuang

    2012-10-01

    Electro-hydraulic servo shaking table usually requires good control performance for acceleration replication. The poles of the electro-hydraulic servo shaking table are placed by three-variable control method using pole placement theory. The system frequency band is thus extended and the system stability is also enhanced. The phase delay and amplitude attenuation phenomenon occurs in electro-hydraulic servo shaking table corresponding to an acceleration sinusoidal input. The method for phase delay and amplitude attenuation elimination based on LMS adaptive filtering algorithm is proposed here. The task is accomplished by adjusting the weights using LMS adaptive filtering algorithm when there exits phase delay and amplitude attenuation between the input and its corresponding acceleration response. The reference input is weighted in such a way that it makes the system output track the input efficiently. The weighted input signal is inputted to the control system such that the output phase delay and amplitude attenuation are all cancelled. The above concept is used as a basis for the development of amplitude-phase regulation (APR) algorithm. The method does not need to estimate the system model and has good real-time performance. Experimental results demonstrate the efficiency and validity of the proposed APR control scheme.

  11. A dynamic control algorithm based on physiological parameters and wearable interfaces for adaptive ventricular assist devices.

    PubMed

    Tortora, G; Fontana, R; Argiolas, S; Vatteroni, M; Dario, P; Trivella, M G

    2015-08-01

    In this work we present an innovative algorithm for the dynamic control of ventricular assist devices (VADs), based on the acquisition of continuous physiological and functional parameters such as heart rate, blood oxygenation, temperature, and patient movements. Such parameters are acquired by wearable devices (MagIC & Winpack) and sensors implanted close to the VAD. The aim of the proposed algorithm is to dynamically control the hydraulic power of the VAD as a function of the detected parameters, patient's activity and emotional status. In this way, the cardiac dynamics regulated by the proposed autoregulation control algorithm for sensorized VADs, thus providing new therapy approaches for heart failure. PMID:26737403

  12. A dynamic control algorithm based on physiological parameters and wearable interfaces for adaptive ventricular assist devices.

    PubMed

    Tortora, G; Fontana, R; Argiolas, S; Vatteroni, M; Dario, P; Trivella, M G

    2015-08-01

    In this work we present an innovative algorithm for the dynamic control of ventricular assist devices (VADs), based on the acquisition of continuous physiological and functional parameters such as heart rate, blood oxygenation, temperature, and patient movements. Such parameters are acquired by wearable devices (MagIC & Winpack) and sensors implanted close to the VAD. The aim of the proposed algorithm is to dynamically control the hydraulic power of the VAD as a function of the detected parameters, patient's activity and emotional status. In this way, the cardiac dynamics regulated by the proposed autoregulation control algorithm for sensorized VADs, thus providing new therapy approaches for heart failure.

  13. Adaptive Grouping Cloud Model Shuffled Frog Leaping Algorithm for Solving Continuous Optimization Problems.

    PubMed

    Liu, Haorui; Yi, Fengyan; Yang, Heli

    2016-01-01

    The shuffled frog leaping algorithm (SFLA) easily falls into local optimum when it solves multioptimum function optimization problem, which impacts the accuracy and convergence speed. Therefore this paper presents grouped SFLA for solving continuous optimization problems combined with the excellent characteristics of cloud model transformation between qualitative and quantitative research. The algorithm divides the definition domain into several groups and gives each group a set of frogs. Frogs of each region search in their memeplex, and in the search process the algorithm uses the "elite strategy" to update the location information of existing elite frogs through cloud model algorithm. This method narrows the searching space and it can effectively improve the situation of a local optimum; thus convergence speed and accuracy can be significantly improved. The results of computer simulation confirm this conclusion.

  14. Adaptive Grouping Cloud Model Shuffled Frog Leaping Algorithm for Solving Continuous Optimization Problems

    PubMed Central

    Liu, Haorui; Yi, Fengyan; Yang, Heli

    2016-01-01

    The shuffled frog leaping algorithm (SFLA) easily falls into local optimum when it solves multioptimum function optimization problem, which impacts the accuracy and convergence speed. Therefore this paper presents grouped SFLA for solving continuous optimization problems combined with the excellent characteristics of cloud model transformation between qualitative and quantitative research. The algorithm divides the definition domain into several groups and gives each group a set of frogs. Frogs of each region search in their memeplex, and in the search process the algorithm uses the “elite strategy” to update the location information of existing elite frogs through cloud model algorithm. This method narrows the searching space and it can effectively improve the situation of a local optimum; thus convergence speed and accuracy can be significantly improved. The results of computer simulation confirm this conclusion. PMID:26819584

  15. Adaptive passive fathometer processing.

    PubMed

    Siderius, Martin; Song, Heechun; Gerstoft, Peter; Hodgkiss, William S; Hursky, Paul; Harrison, Chris

    2010-04-01

    Recently, a technique has been developed to image seabed layers using the ocean ambient noise field as the sound source. This so called passive fathometer technique exploits the naturally occurring acoustic sounds generated on the sea-surface, primarily from breaking waves. The method is based on the cross-correlation of noise from the ocean surface with its echo from the seabed, which recovers travel times to significant seabed reflectors. To limit averaging time and make this practical, beamforming is used with a vertical array of hydrophones to reduce interference from horizontally propagating noise. The initial development used conventional beamforming, but significant improvements have been realized using adaptive techniques. In this paper, adaptive methods for this process are described and applied to several data sets to demonstrate improvements possible as compared to conventional processing.

  16. Higher-Order, Space-Time Adaptive Finite Volume Methods: Algorithms, Analysis and Applications

    SciTech Connect

    Minion, Michael

    2014-04-29

    The four main goals outlined in the proposal for this project were: 1. Investigate the use of higher-order (in space and time) finite-volume methods for fluid flow problems. 2. Explore the embedding of iterative temporal methods within traditional block-structured AMR algorithms. 3. Develop parallel in time methods for ODEs and PDEs. 4. Work collaboratively with the Center for Computational Sciences and Engineering (CCSE) at Lawrence Berkeley National Lab towards incorporating new algorithms within existing DOE application codes.

  17. Algorithms for adaptive control of two-arm flexible manipulators under uncertainty

    NASA Technical Reports Server (NTRS)

    Skowronski, J. M.

    1987-01-01

    A nonlinear extension of model reference adaptive control (MRAC) technique is used to guide a double arm nonlinearizable robot manipulator with flexible links, driven by actuators collocated with joints subject to uncertain payload and inertia. The objective is to track a given simple linear and rigid but compatible dynamical model in real, possible stipulated time and within stipulated degree of accuracy of convergence while avoiding collision of the arms. The objective is attained by a specified signal adaptive feedback controller and by adaptive laws, both given in closed form. A case of 4 DOF manipulator illustrates the technique.

  18. Adaptive algorithms of position and energy reconstruction in Anger-camera type detectors: experimental data processing in ANTS

    NASA Astrophysics Data System (ADS)

    Morozov, A.; Defendi, I.; Engels, R.; Fraga, F. A. F.; Fraga, M. M. F. R.; Gongadze, A.; Guerard, B.; Jurkovic, M.; Kemmerling, G.; Manzin, G.; Margato, L. M. S.; Niko, H.; Pereira, L.; Petrillo, C.; Peyaud, A.; Piscitelli, F.; Raspino, D.; Rhodes, N. J.; Sacchetti, F.; Schooneveld, E. M.; Solovov, V.; Van Esch, P.; Zeitelhack, K.

    2013-05-01

    The software package ANTS (Anger-camera type Neutron detector: Toolkit for Simulations), developed for simulation of Anger-type gaseous detectors for thermal neutron imaging was extended to include a module for experimental data processing. Data recorded with a sensor array containing up to 100 photomultiplier tubes (PMT) or silicon photomultipliers (SiPM) in a custom configuration can be loaded and the positions and energies of the events can be reconstructed using the Center-of-Gravity, Maximum Likelihood or Least Squares algorithm. A particular strength of the new module is the ability to reconstruct the light response functions and relative gains of the photomultipliers from flood field illumination data using adaptive algorithms. The performance of the module is demonstrated with simulated data generated in ANTS and experimental data recorded with a 19 PMT neutron detector. The package executables are publicly available at http://coimbra.lip.pt/~andrei/

  19. A MISO UCA beamforming dimmable LED system for indoor positioning.

    PubMed

    Taparugssanagorn, Attaphongse; Siwamogsatham, Siwaruk; Pomalaza-Ráez, Carlos

    2014-01-01

    The use of a multiple input single output (MISO) transmit beamforming system using dimmable light emitting arrays (LEAs) in the form of a uniform circular array (UCA) of transmitters is proposed in this paper. With this technique, visible light communications between a transmitter and a receiver (LED reader) can be achieved with excellent performance and the receiver's position can be estimated. A hexagonal lattice alignment of LED transmitters is deployed to reduce the coverage holes and the areas of overlapping radiation. As a result, the accuracy of the position estimation is better than when using a typical rectangular grid alignment. The dimming control is done with pulse width modulation (PWM) to obtain an optimal closed loop beamforming and minimum energy consumption with acceptable lighting. PMID:24481234

  20. A new adaptive self-tuning Fourier coefficients algorithm for periodic torque ripple minimization in permanent magnet synchronous motors (PMSM).

    PubMed

    Gómez-Espinosa, Alfonso; Hernández-Guzmán, Víctor M; Bandala-Sánchez, Manuel; Jiménez-Hernández, Hugo; Rivas-Araiza, Edgar A; Rodríguez-Reséndiz, Juvenal; Herrera-Ruíz, Gilberto

    2013-03-19

    A New Adaptive Self-Tuning Fourier Coefficients Algorithm for Periodic Torque Ripple Minimization in Permanent Magnet Synchronous Motors (PMSM) Torque ripple occurs in Permanent Magnet Synchronous Motors (PMSMs) due to the non-sinusoidal flux density distribution around the air-gap and variable magnetic reluctance of the air-gap due to the stator slots distribution. These torque ripples change periodically with rotor position and are apparent as speed variations, which degrade the PMSM drive performance, particularly at low speeds, because of low inertial filtering. In this paper, a new self-tuning algorithm is developed for determining the Fourier Series Controller coefficients with the aim of reducing the torque ripple in a PMSM, thus allowing for a smoother operation. This algorithm adjusts the controller parameters based on the component's harmonic distortion in time domain of the compensation signal. Experimental evaluation is performed on a DSP-controlled PMSM evaluation platform. Test results obtained validate the effectiveness of the proposed self-tuning algorithm, with the Fourier series expansion scheme, in reducing the torque ripple.

  1. A new adaptive self-tuning Fourier coefficients algorithm for periodic torque ripple minimization in permanent magnet synchronous motors (PMSM).

    PubMed

    Gómez-Espinosa, Alfonso; Hernández-Guzmán, Víctor M; Bandala-Sánchez, Manuel; Jiménez-Hernández, Hugo; Rivas-Araiza, Edgar A; Rodríguez-Reséndiz, Juvenal; Herrera-Ruíz, Gilberto

    2013-01-01

    A New Adaptive Self-Tuning Fourier Coefficients Algorithm for Periodic Torque Ripple Minimization in Permanent Magnet Synchronous Motors (PMSM) Torque ripple occurs in Permanent Magnet Synchronous Motors (PMSMs) due to the non-sinusoidal flux density distribution around the air-gap and variable magnetic reluctance of the air-gap due to the stator slots distribution. These torque ripples change periodically with rotor position and are apparent as speed variations, which degrade the PMSM drive performance, particularly at low speeds, because of low inertial filtering. In this paper, a new self-tuning algorithm is developed for determining the Fourier Series Controller coefficients with the aim of reducing the torque ripple in a PMSM, thus allowing for a smoother operation. This algorithm adjusts the controller parameters based on the component's harmonic distortion in time domain of the compensation signal. Experimental evaluation is performed on a DSP-controlled PMSM evaluation platform. Test results obtained validate the effectiveness of the proposed self-tuning algorithm, with the Fourier series expansion scheme, in reducing the torque ripple. PMID:23519345

  2. Segmentation of heterogeneous or small FDG PET positive tissue based on a 3D-locally adaptive random walk algorithm.

    PubMed

    Onoma, D P; Ruan, S; Thureau, S; Nkhali, L; Modzelewski, R; Monnehan, G A; Vera, P; Gardin, I

    2014-12-01

    A segmentation algorithm based on the random walk (RW) method, called 3D-LARW, has been developed to delineate small tumors or tumors with a heterogeneous distribution of FDG on PET images. Based on the original algorithm of RW [1], we propose an improved approach using new parameters depending on the Euclidean distance between two adjacent voxels instead of a fixed one and integrating probability densities of labels into the system of linear equations used in the RW. These improvements were evaluated and compared with the original RW method, a thresholding with a fixed value (40% of the maximum in the lesion), an adaptive thresholding algorithm on uniform spheres filled with FDG and FLAB method, on simulated heterogeneous spheres and on clinical data (14 patients). On these three different data, 3D-LARW has shown better segmentation results than the original RW algorithm and the three other methods. As expected, these improvements are more pronounced for the segmentation of small or tumors having heterogeneous FDG uptake.

  3. Adaptive implicit-explicit finite element algorithms for fluid mechanics problems

    NASA Technical Reports Server (NTRS)

    Tezduyar, T. E.; Liou, J.

    1988-01-01

    The adaptive implicit-explicit (AIE) approach is presented for the finite-element solution of various problems in computational fluid mechanics. In the AIE approach, the elements are dynamically (adaptively) arranged into differently treated groups. The differences in treatment could be based on considerations such as the cost efficiency, the type of spatial or temporal discretization employed, the choice of field equations, etc. Several numerical tests are performed to demonstrate that this approach can achieve substantial savings in CPU time and memory.

  4. DNApi: A De Novo Adapter Prediction Algorithm for Small RNA Sequencing Data

    PubMed Central

    Tsuji, Junko; Weng, Zhiping

    2016-01-01

    With the rapid accumulation of publicly available small RNA sequencing datasets, third-party meta-analysis across many datasets is becoming increasingly powerful. Although removing the 3´ adapter is an essential step for small RNA sequencing analysis, the adapter sequence information is not always available in the metadata. The information can be also erroneous even when it is available. In this study, we developed DNApi, a lightweight Python software package that predicts the 3´ adapter sequence de novo and provides the user with cleansed small RNA sequences ready for down stream analysis. Tested on 539 publicly available small RNA libraries accompanied with 3´ adapter sequences in their metadata, DNApi shows near-perfect accuracy (98.5%) with fast runtime (~2.85 seconds per library) and efficient memory usage (~43 MB on average). In addition to 3´ adapter prediction, it is also important to classify whether the input small RNA libraries were already processed, i.e. the 3´ adapters were removed. DNApi perfectly judged that given another batch of datasets, 192 publicly available processed libraries were “ready-to-map” small RNA sequence. DNApi is compatible with Python 2 and 3, and is available at https://github.com/jnktsj/DNApi. The 731 small RNA libraries used for DNApi evaluation were from human tissues and were carefully and manually collected. This study also provides readers with the curated datasets that can be integrated into their studies. PMID:27736901

  5. SIMULATING MAGNETOHYDRODYNAMICAL FLOW WITH CONSTRAINED TRANSPORT AND ADAPTIVE MESH REFINEMENT: ALGORITHMS AND TESTS OF THE AstroBEAR CODE

    SciTech Connect

    Cunningham, Andrew J.; Frank, Adam; Varniere, Peggy; Mitran, Sorin; Jones, Thomas W.

    2009-06-15

    A description is given of the algorithms implemented in the AstroBEAR adaptive mesh-refinement code for ideal magnetohydrodynamics. The code provides several high-resolution shock-capturing schemes which are constructed to maintain conserved quantities of the flow in a finite-volume sense. Divergence-free magnetic field topologies are maintained to machine precision by collating the components of the magnetic field on a cell-interface staggered grid and utilizing the constrained transport approach for integrating the induction equations. The maintenance of magnetic field topologies on adaptive grids is achieved using prolongation and restriction operators which preserve the divergence and curl of the magnetic field across collocated grids of different resolutions. The robustness and correctness of the code is demonstrated by comparing the numerical solution of various tests with analytical solutions or previously published numerical solutions obtained by other codes.

  6. Simulation of mid-infrared clutter rejection. 1: One-dimensional LMS spatial filter and adaptive threshold algorithms.

    PubMed

    Longmire, M S; Milton, A F; Takken, E H

    1982-11-01

    Several 1-D signal processing techniques have been evaluated by simulation with a digital computer using high-spatial-resolution (0.15 mrad) noise data gathered from back-lit clouds and uniform sky with a scanning data collection system operating in the 4.0-4.8-microm spectral band. Two ordinary bandpass filters and a least-mean-square (LMS) spatial filter were evaluated in combination with a fixed or adaptive threshold algorithm. The combination of a 1-D LMS filter and a 1-D adaptive threshold sensor was shown to reject extreme cloud clutter effectively and to provide nearly equal signal detection in a clear and cluttered sky, at least in systems whose NEI (noise equivalent irradiance) exceeds 1.5 x 10(-13) W/cm(2) and whose spatial resolution is better than 0.15 x 0.36 mrad. A summary gives highlights of the work, key numerical results, and conclusions.

  7. Novel adaptive playout algorithm for voice over IP applications and performance assessment over WANs

    NASA Astrophysics Data System (ADS)

    Hintoglu, Mustafa H.; Ergul, Faruk R.

    2001-07-01

    Special purpose hardware and application software have been developed to implement and test Voice over IP protocols. The hardware has interface units to which ISDN telephone sets can be connected. It has Ethernet and RS-232 interfaces for connections to LANs and controlling PCs. The software has modules which are specific to telephone operations and simulation activities. The simulator acts as a WAN environment, generating delays in delivering speech packets according to delay distribution specified. By using WAN simulator, different algorithms can be tested and their performances can be compared. The novel algorithm developed correlates silence periods with received voice packets and delays play out until confidence is established that a significant phrase or sentence is stored in the playout buffer. The performance of this approach has been found to be either superior or comparable to performances of existing algorithms tested. This new algorithm has the advantage that at least a complete phrase or sentence is played out, thereby increasing the intelligibility considerably. The penalty of having larger delays compared to published algorithms operating under bursty traffic conditions is compensated by higher quality of service offered. In the paper, details of developed system and obtained test results will be presented.

  8. Benefits of Acoustic Beamforming for Solving the Cocktail Party Problem

    PubMed Central

    Mason, Christine R.; Best, Virginia; Swaminathan, Jayaganesh

    2015-01-01

    The benefit provided to listeners with sensorineural hearing loss (SNHL) by an acoustic beamforming microphone array was determined in a speech-on-speech masking experiment. Normal-hearing controls were tested as well. For the SNHL listeners, prescription-determined gain was applied to the stimuli, and performance using the beamformer was compared with that obtained using bilateral amplification. The listener identified speech from a target talker located straight ahead (0° azimuth) in the presence of four competing talkers that were either colocated with, or spatially separated from, the target. The stimuli were spatialized using measured impulse responses and presented via earphones. In the spatially separated masker conditions, the four maskers were arranged symmetrically around the target at ±15° and ±30° or at ±45° and ±90°. Results revealed that masked speech reception thresholds for spatially separated maskers were higher (poorer) on average for the SNHL than for the normal-hearing listeners. For most SNHL listeners in the wider masker separation condition, lower thresholds were obtained through the microphone array than through bilateral amplification. Large intersubject differences were found in both listener groups. The best masked speech reception thresholds overall were found for a hybrid condition that combined natural and beamforming listening in order to preserve localization for broadband sources. PMID:26126896

  9. Differential sampling for fast frequency acquisition via adaptive extended least squares algorithm

    NASA Technical Reports Server (NTRS)

    Kumar, Rajendra

    1987-01-01

    This paper presents a differential signal model along with appropriate sampling techinques for least squares estimation of the frequency and frequency derivatives and possibly the phase and amplitude of a sinusoid received in the presence of noise. The proposed algorithm is recursive in mesurements and thus the computational requirement increases only linearly with the number of measurements. The dimension of the state vector in the proposed algorithm does not depend upon the number of measurements and is quite small, typically around four. This is an advantage when compared to previous algorithms wherein the dimension of the state vector increases monotonically with the product of the frequency uncertainty and the observation period. Such a computational simplification may possibly result in some loss of optimality. However, by applying the sampling techniques of the paper such a possible loss in optimality can made small.

  10. Three-dimensional localization of fluorescent spots with adapted MUSIC algorithm

    NASA Astrophysics Data System (ADS)

    Scholz, Bernhard; Pfister, Marcus

    2003-10-01

    We present a novel method, space-space MUSIC (MUltiple SIgnal Classification), to localize three-dimensionally focal fluorophore-tagged lesions activated subsequently by different laser source posi-tions from multi-sensor fluorescence data obtained from a single measurement plane. Matches between a signal subspace derived from the measured data and data from model spots allow 3D determination of the centers-of-gravity of fluorescence regions. Simulated spots in bounded, inho-mogeneous media could be localized accurately. The algorithm has shown to be robust against patient-dependent parameters, such as optical background parameters. The algorithm does also not consider medium boundaries.

  11. Irradiation of the prostate and pelvic lymph nodes with an adaptive algorithm

    SciTech Connect

    Hwang, A. B.; Chen, J.; Nguyen, T. B.; Gottschalk, A. G.; Roach, M. R. III; Pouliot, J.

    2012-02-15

    Purpose: The simultaneous treatment of pelvic lymph nodes and the prostate in radiotherapy for prostate cancer is complicated by the independent motion of these two target volumes. In this work, the authors study a method to adapt intensity modulated radiation therapy (IMRT) treatment plans so as to compensate for this motion by adaptively morphing the multileaf collimator apertures and adjusting the segment weights. Methods: The study used CT images, tumor volumes, and normal tissue contours from patients treated in our institution. An IMRT treatment plan was then created using direct aperture optimization to deliver 45 Gy to the pelvic lymph nodes and 50 Gy to the prostate and seminal vesicles. The prostate target volume was then shifted in either the anterior-posterior direction or in the superior-inferior direction. The treatment plan was adapted by adjusting the aperture shapes with or without re-optimizing the segment weighting. The dose to the target volumes was then determined for the adapted plan. Results: Without compensation for prostate motion, 1 cm shifts of the prostate resulted in an average decrease of 14% in D-95%. If the isocenter is simply shifted to match the prostate motion, the prostate receives the correct dose but the pelvic lymph nodes are underdosed by 14% {+-} 6%. The use of adaptive morphing (with or without segment weight optimization) reduces the average change in D-95% to less than 5% for both the pelvic lymph nodes and the prostate. Conclusions: Adaptive morphing with and without segment weight optimization can be used to compensate for the independent motion of the prostate and lymph nodes when combined with daily imaging or other methods to track the prostate motion. This method allows the delivery of the correct dose to both the prostate and lymph nodes with only small changes to the dose delivered to the target volumes.

  12. An intelligent computational algorithm based on neural network for spatial data mining in adaptability evaluation

    NASA Astrophysics Data System (ADS)

    Miao, Zuohua; Xu, Hong; Chen, Yong; Zeng, Xiangyang

    2009-10-01

    Back-propagation neural network model (BPNN) is an intelligent computational model based on stylebook learning. This model is different from traditional adaptability symbolic logic reasoning method based on knowledge and rules. At the same time, BPNN model has shortcoming such as: slowly convergence speed and partial minimum. During the process of adaptability evaluation, the factors were diverse, complicated and uncertain, so an effectual model should adopt the technique of data mining method and fuzzy logical technology. In this paper, the author ameliorated the backpropagation of BPNN and applied fuzzy logical theory for dynamic inference of fuzzy rules. Authors also give detail description on training and experiment process of the novel model.

  13. A Fuzzy Genetic Algorithm Approach to an Adaptive Information Retrieval Agent.

    ERIC Educational Resources Information Center

    Martin-Bautista, Maria J.; Vila, Maria-Amparo; Larsen, Henrik Legind

    1999-01-01

    Presents an approach to a Genetic Information Retrieval Agent Filter (GIRAF) that filters and ranks documents retrieved from the Internet according to users' preferences by using a Genetic Algorithm and fuzzy set theory to handle the imprecision of users' preferences and users' evaluation of the retrieved documents. (Author/LRW)

  14. The application of Firefly algorithm in an Adaptive Emergency Evacuation Centre Management (AEECM) for dynamic relocation of flood victims

    NASA Astrophysics Data System (ADS)

    ChePa, Noraziah; Hashim, Nor Laily; Yusof, Yuhanis; Hussain, Azham

    2016-08-01

    Flood evacuation centre is defined as a temporary location or area of people from disaster particularly flood as a rescue or precautionary measure. Gazetted evacuation centres are normally located at secure places which have small chances from being drowned by flood. However, due to extreme flood several evacuation centres in Kelantan were unexpectedly drowned. Currently, there is no study done on proposing a decision support aid to reallocate victims and resources of the evacuation centre when the situation getting worsens. Therefore, this study proposes a decision aid model to be utilized in realizing an adaptive emergency evacuation centre management system. This study undergoes two main phases; development of algorithm and models, and development of a web-based and mobile app. The proposed model operates using Firefly multi-objective optimization algorithm that creates an optimal schedule for the relocation of victims and resources for an evacuation centre. The proposed decision aid model and the adaptive system can be applied in supporting the National Security Council's respond mechanisms for handling disaster management level II (State level) especially in providing better management of the flood evacuating centres.

  15. Ultimately accurate SRAF replacement for practical phases using an adaptive search algorithm based on the optimal gradient method

    NASA Astrophysics Data System (ADS)

    Maeda, Shimon; Nosato, Hirokazu; Matsunawa, Tetsuaki; Miyairi, Masahiro; Nojima, Shigeki; Tanaka, Satoshi; Sakanashi, Hidenori; Murakawa, Masahiro; Saito, Tamaki; Higuchi, Tetsuya; Inoue, Soichi

    2010-04-01

    SRAF (Sub Resolution Assist Feature) technique has been widely used for DOF enhancement. Below 40nm design node, even in the case of using the SRAF technique, the resolution limit is approached due to the use of hyper NA imaging or low k1 lithography conditions especially for the contact layer. As a result, complex layout patterns or random patterns like logic data or intermediate pitch patterns become increasingly sensitive to photo-resist pattern fidelity. This means that the need for more accurate resolution technique is increasing in order to cope with lithographic patterning fidelity issues in low k1 lithography conditions. To face with these issues, new SRAF technique like model based SRAF using an interference map or inverse lithography technique has been proposed. But these approaches don't have enough assurance for accuracy or performance, because the ideal mask generated by these techniques is lost when switching to a manufacturable mask with Manhattan structures. As a result it might be very hard to put these things into practice and production flow. In this paper, we propose the novel method for extremely accurate SRAF placement using an adaptive search algorithm. In this method, the initial position of SRAF is generated by the traditional SRAF placement such as rule based SRAF, and it is adjusted by adaptive algorithm using the evaluation of lithography simulation. This method has three advantages which are preciseness, efficiency and industrial applicability. That is, firstly, the lithography simulation uses actual computational model considering process window, thus our proposed method can precisely adjust the SRAF positions, and consequently we can acquire the best SRAF positions. Secondly, because our adaptive algorithm is based on optimal gradient method, which is very simple algorithm and rectilinear search, the SRAF positions can be adjusted with high efficiency. Thirdly, our proposed method, which utilizes the traditional SRAF placement, is

  16. An analysis of the multiple model adaptive control algorithm. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Greene, C. S.

    1978-01-01

    Qualitative and quantitative aspects of the multiple model adaptive control method are detailed. The method represents a cascade of something which resembles a maximum a posteriori probability identifier (basically a bank of Kalman filters) and a bank of linear quadratic regulators. Major qualitative properties of the MMAC method are examined and principle reasons for unacceptable behavior are explored.

  17. Real time algorithm invariant to natural lighting with LBP techniques through an adaptive thresholding implemented in GPU processors

    NASA Astrophysics Data System (ADS)

    Orjuela-Vargas, S. A.; Triana-Martinez, J.; Yañez, J. P.; Philips, W.

    2014-03-01

    Video analysis in real time requires fast and efficient algorithms to extract relevant information from a considerable number, commonly 25, of frames per second. Furthermore, robust algorithms for outdoor visual scenes may retrieve correspondent features along the day where a challenge is to deal with lighting changes. Currently, Local Binary Pattern (LBP) techniques are widely used for extracting features due to their robustness to illumination changes and the low requirements for implementation. We propose to compute an automatic threshold based on the distribution of the intensity residuals resulting from the pairwise comparisons when using LBP techniques. The intensity residuals distribution can be modelled by a Generalized Gaussian Distribution (GGD). In this paper we compute the adaptive threshold using the parameters of the GGD. We present a CUDA implementation of our proposed algorithm. We use the LBPSYM technique. Our approach is tested on videos of four different urban scenes with mobilities captured during day and night. The extracted features can be used in a further step to determine patterns, identify objects or detect background. However, further research must be conducted for blurring correction since the scenes at night are commonly blurred due to artificial lighting.

  18. Broad-area search for targets in SAR imagery with context-adaptive algorithms

    NASA Astrophysics Data System (ADS)

    Patterson, Tim J.; Fairchild, Scott R.

    1996-06-01

    This paper describes an ATR system based on gray scale morphology which has proven very effective in performing broad area search for targets of interest. Gray scale morphology is used to extract several distinctive sets of features which combine intensity and spatial information. Results of direct comparisons with other algorithms are presented. In a series of tests which were scored independently the morphological approach has shown superior results. An automated training systems based on a combination of genetic algorithms and classification and regression trees is described. Further performance gains are expected by allowing context sensitive selection of parameter sets for the morphological processing. Context is acquired from the image using texture measures to identify the local clutter environment. The system is designed to be able to build new classifiers on the fly to match specific image to image variations.

  19. Optree: a learning-based adaptive watershed algorithm for neuron segmentation.

    PubMed

    Uzunbaş, Mustafa Gökhan; Chen, Chao; Metaxas, Dimitris

    2014-01-01

    We present a new algorithm for automatic and interactive segmentation of neuron structures from electron microscopy (EM) images. Our method selects a collection of nodes from the watershed mergng tree as the proposed segmentation. This is achieved by building a onditional random field (CRF) whose underlying graph is the merging tree. The maximum a posteriori (MAP) prediction of the CRF is the output segmentation. Our algorithm outperforms state-of-the-art methods. Both the inference and the training are very efficient as the graph is tree-structured. Furthermore, we develop an interactive segmentation framework which selects uncertain regions for a user to proofread. The uncertainty is measured by the marginals of the graphical model. Based on user corrections, our framework modifies the merging tree and thus improves the segmentation globally. PMID:25333106

  20. An adaptive prefilter algorithm for real-time cyclic security analysis

    SciTech Connect

    Harsan, H. |; Hadjsaid, N.; Pruvot, P.

    1995-12-31

    Security analysis is an important task in modern power system control centers. Security considerations must allow for both active power problems (thermal limits) and reactive power problems involving nodal voltages (isolation and stability limits). There is a definite need for new methods capable of ensuring that system security limits will not be exceeded when abnormal conditions arise, applicable in the real time environment. In this paper, a general algorithm for automating cyclic security analysis is discussed. The algorithm developed uses data obtained from previous security analysis and filters out non-dangerous contingencies with reduced computation time. The proposed method may be used to improve speed-up of existing contingency algorithms. Tests have been performed, on the French 225--400 kV grid containing 462 nodes and 855 branches. For this system 96 real states were analyzed over a 24-hour-period in 15-minute-steps. These states were recorded on 19 January 1994 on the French grid. The tests confirm that the approach is both applicable and accurate.

  1. Algorithms for adaptive stochastic control for a class of linear systems

    NASA Technical Reports Server (NTRS)

    Toda, M.; Patel, R. V.

    1977-01-01

    Control of linear, discrete time, stochastic systems with unknown control gain parameters is discussed. Two suboptimal adaptive control schemes are derived: one is based on underestimating future control and the other is based on overestimating future control. Both schemes require little on-line computation and incorporate in their control laws some information on estimation errors. The performance of these laws is studied by Monte Carlo simulations on a computer. Two single input, third order systems are considered, one stable and the other unstable, and the performance of the two adaptive control schemes is compared with that of the scheme based on enforced certainty equivalence and the scheme where the control gain parameters are known.

  2. The LDA beamformer: Optimal estimation of ERP source time series using linear discriminant analysis.

    PubMed

    Treder, Matthias S; Porbadnigk, Anne K; Shahbazi Avarvand, Forooz; Müller, Klaus-Robert; Blankertz, Benjamin

    2016-04-01

    We introduce a novel beamforming approach for estimating event-related potential (ERP) source time series based on regularized linear discriminant analysis (LDA). The optimization problems in LDA and linearly-constrained minimum-variance (LCMV) beamformers are formally equivalent. The approaches differ in that, in LCMV beamformers, the spatial patterns are derived from a source model, whereas in an LDA beamformer the spatial patterns are derived directly from the data (i.e., the ERP peak). Using a formal proof and MEG simulations, we show that the LDA beamformer is robust to correlated sources and offers a higher signal-to-noise ratio than the LCMV beamformer and PCA. As an application, we use EEG data from an oddball experiment to show how the LDA beamformer can be harnessed to detect single-trial ERP latencies and estimate connectivity between ERP sources. Concluding, the LDA beamformer optimally reconstructs ERP sources by maximizing the ERP signal-to-noise ratio. Hence, it is a highly suited tool for analyzing ERP source time series, particularly in EEG/MEG studies wherein a source model is not available.

  3. TRIM: A finite-volume MHD algorithm for an unstructured adaptive mesh

    SciTech Connect

    Schnack, D.D.; Lottati, I.; Mikic, Z.

    1995-07-01

    The authors describe TRIM, a MHD code which uses finite volume discretization of the MHD equations on an unstructured adaptive grid of triangles in the poloidal plane. They apply it to problems related to modeling tokamak toroidal plasmas. The toroidal direction is treated by a pseudospectral method. Care was taken to center variables appropriately on the mesh and to construct a self adjoint diffusion operator for cell centered variables.

  4. A 3-D adaptive mesh refinement algorithm for multimaterial gas dynamics

    SciTech Connect

    Puckett, E.G. ); Saltzman, J.S. )

    1991-08-12

    Adaptive Mesh Refinement (AMR) in conjunction with high order upwind finite difference methods has been used effectively on a variety of problems. In this paper we discuss an implementation of an AMR finite difference method that solves the equations of gas dynamics with two material species in three dimensions. An equation for the evolution of volume fractions augments the gas dynamics system. The material interface is preserved and tracked from the volume fractions using a piecewise linear reconstruction technique. 14 refs., 4 figs.

  5. The adaptive dynamic community detection algorithm based on the non-homogeneous random walking

    NASA Astrophysics Data System (ADS)

    Xin, Yu; Xie, Zhi-Qiang; Yang, Jing

    2016-05-01

    With the changing of the habit and custom, people's social activity tends to be changeable. It is required to have a community evolution analyzing method to mine the dynamic information in social network. For that, we design the random walking possibility function and the topology gain function to calculate the global influence matrix of the nodes. By the analysis of the global influence matrix, the clustering directions of the nodes can be obtained, thus the NRW (Non-Homogeneous Random Walk) method for detecting the static overlapping communities can be established. We design the ANRW (Adaptive Non-Homogeneous Random Walk) method via adapting the nodes impacted by the dynamic events based on the NRW. The ANRW combines the local community detection with dynamic adaptive adjustment to decrease the computational cost for ANRW. Furthermore, the ANRW treats the node as the calculating unity, thus the running manner of the ANRW is suitable to the parallel computing, which could meet the requirement of large dataset mining. Finally, by the experiment analysis, the efficiency of ANRW on dynamic community detection is verified.

  6. Near-lossless image compression by adaptive prediction: new developments and comparison of algorithms

    NASA Astrophysics Data System (ADS)

    Aiazzi, Bruno; Alparone, Luciano; Baronti, Stefano

    2003-01-01

    This paper describes state-of-the-art approaches to near-lossless image compression by adaptive causal DPCM and presents two advanced schemes based on crisp and fuzzy switching of predictors, respectively. The former relies on a linear-regression prediction in which a different predictor is employed for each image block. Such block-representative predictors are calculated from the original data set through an iterative relaxation-labeling procedure. Coding time are affordable thanks to fast convergence of training. Decoding is always performed in real time. The latter is still based on adaptive MMSE prediction in which a different predictor at each pixel position is achieved by blending a number of prototype predictors through adaptive weights calculated from the past decoded samples. Quantization error feedback loops are introduced into the basic lossless encoders to enable user-defined upper-bounded reconstruction errors. Both schemes exploit context modeling of prediction errors followed by arithmetic coding to enhance entropy coding performances. A thorough performance comparison on a wide test image set show the superiority of the proposed schemes over both up-to-date encoders in the literature and new/upcoming standards.

  7. A vehicle ABS adaptive sliding-mode control algorithm based on the vehicle velocity estimation and tyre/road friction coefficient estimations

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangwen; Xu, Yong; Pan, Ming; Ren, Fenghua

    2014-04-01

    A sliding-mode observer is designed to estimate the vehicle velocity with the measured vehicle acceleration, the wheel speeds and the braking torques. Based on the Burckhardt tyre model, the extended Kalman filter is designed to estimate the parameters of the Burckhardt model with the estimated vehicle velocity, the measured wheel speeds and the vehicle acceleration. According to the estimated parameters of the Burckhardt tyre model, the tyre/road friction coefficients and the optimal slip ratios are calculated. A vehicle adaptive sliding-mode control (SMC) algorithm is presented with the estimated vehicle velocity, the tyre/road friction coefficients and the optimal slip ratios. And the adjustment method of the sliding-mode gain factors is discussed. Based on the adaptive SMC algorithm, a vehicle's antilock braking system (ABS) control system model is built with the Simulink Toolbox. Under the single-road condition as well as the different road conditions, the performance of the vehicle ABS system is simulated with the vehicle velocity observer, the tyre/road friction coefficient estimator and the adaptive SMC algorithm. The results indicate that the estimated errors of the vehicle velocity and the tyre/road friction coefficients are acceptable and the vehicle ABS adaptive SMC algorithm is effective. So the proposed adaptive SMC algorithm can be used to control the vehicle ABS without the information of the vehicle velocity and the road conditions.

  8. Adapt

    NASA Astrophysics Data System (ADS)

    Bargatze, L. F.

    2015-12-01

    Active Data Archive Product Tracking (ADAPT) is a collection of software routines that permits one to generate XML metadata files to describe and register data products in support of the NASA Heliophysics Virtual Observatory VxO effort. ADAPT is also a philosophy. The ADAPT concept is to use any and all available metadata associated with scientific data to produce XML metadata descriptions in a consistent, uniform, and organized fashion to provide blanket access to the full complement of data stored on a targeted data server. In this poster, we present an application of ADAPT to describe all of the data products that are stored by using the Common Data File (CDF) format served out by the CDAWEB and SPDF data servers hosted at the NASA Goddard Space Flight Center. These data servers are the primary repositories for NASA Heliophysics data. For this purpose, the ADAPT routines have been used to generate data resource descriptions by using an XML schema named Space Physics Archive, Search, and Extract (SPASE). SPASE is the designated standard for documenting Heliophysics data products, as adopted by the Heliophysics Data and Model Consortium. The set of SPASE XML resource descriptions produced by ADAPT includes high-level descriptions of numerical data products, display data products, or catalogs and also includes low-level "Granule" descriptions. A SPASE Granule is effectively a universal access metadata resource; a Granule associates an individual data file (e.g. a CDF file) with a "parent" high-level data resource description, assigns a resource identifier to the file, and lists the corresponding assess URL(s). The CDAWEB and SPDF file systems were queried to provide the input required by the ADAPT software to create an initial set of SPASE metadata resource descriptions. Then, the CDAWEB and SPDF data repositories were queried subsequently on a nightly basis and the CDF file lists were checked for any changes such as the occurrence of new, modified, or deleted

  9. Toward adaptive radiotherapy for head and neck patients: Uncertainties in dose warping due to the choice of deformable registration algorithm

    SciTech Connect

    Veiga, Catarina Royle, Gary; Lourenço, Ana Mónica; Mouinuddin, Syed; Herk, Marcel van; Modat, Marc; Ourselin, Sébastien; McClelland, Jamie R.

    2015-02-15

    Purpose: The aims of this work were to evaluate the performance of several deformable image registration (DIR) algorithms implemented in our in-house software (NiftyReg) and the uncertainties inherent to using different algorithms for dose warping. Methods: The authors describe a DIR based adaptive radiotherapy workflow, using CT and cone-beam CT (CBCT) imaging. The transformations that mapped the anatomy between the two time points were obtained using four different DIR approaches available in NiftyReg. These included a standard unidirectional algorithm and more sophisticated bidirectional ones that encourage or ensure inverse consistency. The forward (CT-to-CBCT) deformation vector fields (DVFs) were used to propagate the CT Hounsfield units and structures to the daily geometry for “dose of the day” calculations, while the backward (CBCT-to-CT) DVFs were used to remap the dose of the day onto the planning CT (pCT). Data from five head and neck patients were used to evaluate the performance of each implementation based on geometrical matching, physical properties of the DVFs, and similarity between warped dose distributions. Geometrical matching was verified in terms of dice similarity coefficient (DSC), distance transform, false positives, and false negatives. The physical properties of the DVFs were assessed calculating the harmonic energy, determinant of the Jacobian, and inverse consistency error of the transformations. Dose distributions were displayed on the pCT dose space and compared using dose difference (DD), distance to dose difference, and dose volume histograms. Results: All the DIR algorithms gave similar results in terms of geometrical matching, with an average DSC of 0.85 ± 0.08, but the underlying properties of the DVFs varied in terms of smoothness and inverse consistency. When comparing the doses warped by different algorithms, we found a root mean square DD of 1.9% ± 0.8% of the prescribed dose (pD) and that an average of 9% ± 4% of

  10. Extended Adaptive Biasing Force Algorithm. An On-the-Fly Implementation for Accurate Free-Energy Calculations.

    PubMed

    Fu, Haohao; Shao, Xueguang; Chipot, Christophe; Cai, Wensheng

    2016-08-01

    Proper use of the adaptive biasing force (ABF) algorithm in free-energy calculations needs certain prerequisites to be met, namely, that the Jacobian for the metric transformation and its first derivative be available and the coarse variables be independent and fully decoupled from any holonomic constraint or geometric restraint, thereby limiting singularly the field of application of the approach. The extended ABF (eABF) algorithm circumvents these intrinsic limitations by applying the time-dependent bias onto a fictitious particle coupled to the coarse variable of interest by means of a stiff spring. However, with the current implementation of eABF in the popular molecular dynamics engine NAMD, a trajectory-based post-treatment is necessary to derive the underlying free-energy change. Usually, such a posthoc analysis leads to a decrease in the reliability of the free-energy estimates due to the inevitable loss of information, as well as to a drop in efficiency, which stems from substantial read-write accesses to file systems. We have developed a user-friendly, on-the-fly code for performing eABF simulations within NAMD. In the present contribution, this code is probed in eight illustrative examples. The performance of the algorithm is compared with traditional ABF, on the one hand, and the original eABF implementation combined with a posthoc analysis, on the other hand. Our results indicate that the on-the-fly eABF algorithm (i) supplies the correct free-energy landscape in those critical cases where the coarse variables at play are coupled to either each other or to geometric restraints or holonomic constraints, (ii) greatly improves the reliability of the free-energy change, compared to the outcome of a posthoc analysis, and (iii) represents a negligible additional computational effort compared to regular ABF. Moreover, in the proposed implementation, guidelines for choosing two parameters of the eABF algorithm, namely the stiffness of the spring and the mass

  11. Extended Adaptive Biasing Force Algorithm. An On-the-Fly Implementation for Accurate Free-Energy Calculations.

    PubMed

    Fu, Haohao; Shao, Xueguang; Chipot, Christophe; Cai, Wensheng

    2016-08-01

    Proper use of the adaptive biasing force (ABF) algorithm in free-energy calculations needs certain prerequisites to be met, namely, that the Jacobian for the metric transformation and its first derivative be available and the coarse variables be independent and fully decoupled from any holonomic constraint or geometric restraint, thereby limiting singularly the field of application of the approach. The extended ABF (eABF) algorithm circumvents these intrinsic limitations by applying the time-dependent bias onto a fictitious particle coupled to the coarse variable of interest by means of a stiff spring. However, with the current implementation of eABF in the popular molecular dynamics engine NAMD, a trajectory-based post-treatment is necessary to derive the underlying free-energy change. Usually, such a posthoc analysis leads to a decrease in the reliability of the free-energy estimates due to the inevitable loss of information, as well as to a drop in efficiency, which stems from substantial read-write accesses to file systems. We have developed a user-friendly, on-the-fly code for performing eABF simulations within NAMD. In the present contribution, this code is probed in eight illustrative examples. The performance of the algorithm is compared with traditional ABF, on the one hand, and the original eABF implementation combined with a posthoc analysis, on the other hand. Our results indicate that the on-the-fly eABF algorithm (i) supplies the correct free-energy landscape in those critical cases where the coarse variables at play are coupled to either each other or to geometric restraints or holonomic constraints, (ii) greatly improves the reliability of the free-energy change, compared to the outcome of a posthoc analysis, and (iii) represents a negligible additional computational effort compared to regular ABF. Moreover, in the proposed implementation, guidelines for choosing two parameters of the eABF algorithm, namely the stiffness of the spring and the mass

  12. Genetic optimisation of a plane array geometry for beamforming. Application to source localisation in a high speed train

    NASA Astrophysics Data System (ADS)

    Le Courtois, Florent; Thomas, Jean-Hugh; Poisson, Franck; Pascal, Jean-Claude

    2016-06-01

    Thanks to its easy implementation and robust performance, beamforming is applied for source localisation in several fields. Its effectiveness depends greatly on the array sensor configuration. This paper introduces a criterion to improve the array beampattern and increase the accuracy of sound source localisation. The beamwidth and the maximum sidelobe level are used to quantify the spatial variation of the beampattern through a new criterion. This criterion is shown to be useful, especially for the localisation of moving sources. A genetic algorithm is proposed for the optimisation of microphone placement. Statistical analysis of the optimised arrays provides original results on the algorithm performance and on the optimal microphone placement. An optimised array is tested to localise the sound sources of a high speed train. The results show an accurate separation.

  13. Broadband reconfigurable optical beam-forming systems

    NASA Astrophysics Data System (ADS)

    Toughlian, Edward N.; Zmuda, Henry; Carter, Charity A.

    1994-06-01

    It is shown that by applying spatial frequency dependent optical phase compensation in an optical heterodyne process, variable RF delay can be achieved over a prescribed frequency band. Experimental results that demonstrate the performance of the delay line with regard to both maximum delay and resolution over a broad bandwidth are presented. Additionally, a spatially integrated optical system is proposed for control of phased array antennas, providing mechanical stability, essentially eliminating the drift problems associated with free-space optical systems, and providing high packing density. This approach uses a class of SLM known as a deformable mirror device and leads to a steerable arbitrary antenna radiation pattern of the true time-delay type. Also considered is the ability to utilize the delay line as a general photonic signal processing element in an adaptive (reconfigurable) transversal frequency filter configuration. Such systems are widely applicable in jammer/noise canceling systems, broadband ISDN, spread spectrum secure communications and the like.

  14. An optimized ultrasound digital beamformer with dynamic focusing implemented on FPGA.

    PubMed

    Almekkawy, Mohamed; Xu, Jingwei; Chirala, Mohan

    2014-01-01

    We present a resource-optimized dynamic digital beamformer for an ultrasound system based on a field-programmable gate array (FPGA). A comprehensive 64-channel receive beamformer with full dynamic focusing is embedded in the Altera Arria V FPGA chip. To improve spatial and contrast resolution, full dynamic beamforming is implemented by a novel method with resource optimization. This was conceived using the implementation of the delay summation through a bulk (coarse) delay and fractional (fine) delay. The sampling frequency is 40 MHz and the beamformer includes a 240 MHz polyphase filter that enhances the temporal resolution of the system while relaxing the Analog-to-Digital converter (ADC) bandwidth requirement. The results indicate that our 64-channel dynamic beamformer architecture is amenable for a low power FPGA-based implementation in a portable ultrasound system.

  15. Photonic Beamformer Model Based on Analog Fiber-Optic Links’ Components

    NASA Astrophysics Data System (ADS)

    Volkov, V. A.; Gordeev, D. A.; Ivanov, S. I.; Lavrov, A. P.; Saenko, I. I.

    2016-08-01

    The model of photonic beamformer for wideband microwave phased array antenna is investigated. The main features of the photonic beamformer model based on true-time-delay technique, DWDM technology and fiber chromatic dispersion are briefly analyzed. The performance characteristics of the key components of photonic beamformer for phased array antenna in the receive mode are examined. The beamformer model composed of the components available on the market of fiber-optic analog communication links is designed and tentatively investigated. Experimental demonstration of the designed model beamforming features includes actual measurement of 5-element microwave linear array antenna far-field patterns in 6-16 GHz frequency range for antenna pattern steering up to 40°. The results of experimental testing show good accordance with the calculation estimates.

  16. An Adaptive Wavelet-Based Denoising Algorithm for Enhancing Speech in Non-stationary Noise Environment

    NASA Astrophysics Data System (ADS)

    Wang, Kun-Ching

    Traditional wavelet-based speech enhancement algorithms are ineffective in the presence of highly non-stationary noise because of the difficulties in the accurate estimation of the local noise spectrum. In this paper, a simple method of noise estimation employing the use of a voice activity detector is proposed. We can improve the output of a wavelet-based speech enhancement algorithm in the presence of random noise bursts according to the results of VAD decision. The noisy speech is first preprocessed using bark-scale wavelet packet decomposition (BSWPD) to convert a noisy signal into wavelet coefficients (WCs). It is found that the VAD using bark-scale spectral entropy, called as BS-Entropy, parameter is superior to other energy-based approach especially in variable noise-level. The wavelet coefficient threshold (WCT) of each subband is then temporally adjusted according to the result of VAD approach. In a speech-dominated frame, the speech is categorized into either a voiced frame or an unvoiced frame. A voiced frame possesses a strong tone-like spectrum in lower subbands, so that the WCs of lower-band must be reserved. On the contrary, the WCT tends to increase in lower-band if the speech is categorized as unvoiced. In a noise-dominated frame, the background noise can be almost completely removed by increasing the WCT. The objective and subjective experimental results are then used to evaluate the proposed system. The experiments show that this algorithm is valid on various noise conditions, especially for color noise and non-stationary noise conditions.

  17. Genetic algorithms

    NASA Technical Reports Server (NTRS)

    Wang, Lui; Bayer, Steven E.

    1991-01-01

    Genetic algorithms are mathematical, highly parallel, adaptive search procedures (i.e., problem solving methods) based loosely on the processes of natural genetics and Darwinian survival of the fittest. Basic genetic algorithms concepts are introduced, genetic algorithm applications are introduced, and results are presented from a project to develop a software tool that will enable the widespread use of genetic algorithm technology.

  18. An Adaptive Niching Genetic Algorithm using a niche size equalization mechanism

    NASA Astrophysics Data System (ADS)

    Nagata, Yuichi

    Niching GAs have been widely investigated to apply genetic algorithms (GAs) to multimodal function optimization problems. In this paper, we suggest a new niching GA that attempts to form niches, each consisting of an equal number of individuals. The proposed GA can be applied also to combinatorial optimization problems by defining a distance metric in the search space. We apply the proposed GA to the job-shop scheduling problem (JSP) and demonstrate that the proposed niching method enhances the ability to maintain niches and improve the performance of GAs.

  19. Execution time supports for adaptive scientific algorithms on distributed memory machines

    NASA Technical Reports Server (NTRS)

    Berryman, Harry; Saltz, Joel; Scroggs, Jeffrey

    1990-01-01

    Optimizations are considered that are required for efficient execution of code segments that consists of loops over distributed data structures. The PARTI (Parallel Automated Runtime Toolkit at ICASE) execution time primitives are designed to carry out these optimizations and can be used to implement a wide range of scientific algorithms on distributed memory machines. These primitives allow the user to control array mappings in a way that gives an appearance of shared memory. Computations can be based on a global index set. Primitives are used to carry out gather and scatter operations on distributed arrays. Communications patterns are derived at runtime, and the appropriate send and receive messages are automatically generated.

  20. An adaptive differential evolution algorithm with novel mutation and crossover strategies for global numerical optimization.

    PubMed

    Islam, Sk Minhazul; Das, Swagatam; Ghosh, Saurav; Roy, Subhrajit; Suganthan, Ponnuthurai Nagaratnam

    2012-04-01

    Differential evolution (DE) is one of the most powerful stochastic real parameter optimizers of current interest. In this paper, we propose a new mutation strategy, a fitness-induced parent selection scheme for the binomial crossover of DE, and a simple but effective scheme of adapting two of its most important control parameters with an objective of achieving improved performance. The new mutation operator, which we call DE/current-to-gr_best/1, is a variant of the classical DE/current-to-best/1 scheme. It uses the best of a group (whose size is q% of the population size) of randomly selected solutions from current generation to perturb the parent (target) vector, unlike DE/current-to-best/1 that always picks the best vector of the entire population to perturb the target vector. In our modified framework of recombination, a biased parent selection scheme has been incorporated by letting each mutant undergo the usual binomial crossover with one of the p top-ranked individuals from the current population and not with the target vector with the same index as used in all variants of DE. A DE variant obtained by integrating the proposed mutation, crossover, and parameter adaptation strategies with the classical DE framework (developed in 1995) is compared with two classical and four state-of-the-art adaptive DE variants over 25 standard numerical benchmarks taken from the IEEE Congress on Evolutionary Computation 2005 competition and special session on real parameter optimization. Our comparative study indicates that the proposed schemes improve the performance of DE by a large magnitude such that it becomes capable of enjoying statistical superiority over the state-of-the-art DE variants for a wide variety of test problems. Finally, we experimentally demonstrate that, if one or more of our proposed strategies are integrated with existing powerful DE variants such as jDE and JADE, their performances can also be enhanced.