Science.gov

Sample records for adaptive cellular stress

  1. The Inhibitor of Apoptosis (IAPs) in Adaptive Response to Cellular Stress.

    PubMed

    Marivin, Arthur; Berthelet, Jean; Plenchette, Stéphanie; Dubrez, Laurence

    2012-10-10

    Cells are constantly exposed to endogenous and exogenous cellular injuries. They cope with stressful stimuli by adapting their metabolism and activating various "guardian molecules." These pro-survival factors protect essential cell constituents, prevent cell death, and possibly repair cellular damages. The Inhibitor of Apoptosis (IAPs) proteins display both anti-apoptotic and pro-survival properties and their expression can be induced by a variety of cellular stress such as hypoxia, endoplasmic reticular stress and DNA damage. Thus, IAPs can confer tolerance to cellular stress. This review presents the anti-apoptotic and survival functions of IAPs and their role in the adaptive response to cellular stress. The involvement of IAPs in human physiology and diseases in connection with a breakdown of cellular homeostasis will be discussed.

  2. The Inhibitor of Apoptosis (IAPs) in Adaptive Response to Cellular Stress

    PubMed Central

    Marivin, Arthur; Berthelet, Jean; Plenchette, Stéphanie; Dubrez, Laurence

    2012-01-01

    Cells are constantly exposed to endogenous and exogenous cellular injuries. They cope with stressful stimuli by adapting their metabolism and activating various “guardian molecules.” These pro-survival factors protect essential cell constituents, prevent cell death, and possibly repair cellular damages. The Inhibitor of Apoptosis (IAPs) proteins display both anti-apoptotic and pro-survival properties and their expression can be induced by a variety of cellular stress such as hypoxia, endoplasmic reticular stress and DNA damage. Thus, IAPs can confer tolerance to cellular stress. This review presents the anti-apoptotic and survival functions of IAPs and their role in the adaptive response to cellular stress. The involvement of IAPs in human physiology and diseases in connection with a breakdown of cellular homeostasis will be discussed. PMID:24710527

  3. Adaptive Cellular Stress Pathways as Therapeutic Targets of Dietary Phytochemicals: Focus on the Nervous System

    PubMed Central

    Jo, Dong-Gyu; Park, Daeui; Chung, Hae Young

    2014-01-01

    During the past 5 decades, it has been widely promulgated that the chemicals in plants that are good for health act as direct scavengers of free radicals. Here we review evidence that favors a different hypothesis for the health benefits of plant consumption, namely, that some phytochemicals exert disease-preventive and therapeutic actions by engaging one or more adaptive cellular response pathways in cells. The evolutionary basis for the latter mechanism is grounded in the fact that plants produce natural antifeedant/noxious chemicals that discourage insects and other organisms from eating them. However, in the amounts typically consumed by humans, the phytochemicals activate one or more conserved adaptive cellular stress response pathways and thereby enhance the ability of cells to resist injury and disease. Examplesof such pathways include those involving the transcription factors nuclear factor erythroid 2-related factor 2, nuclear factor-κB, hypoxia-inducible factor 1α, peroxisome proliferator-activated receptor γ, and forkhead box subgroup O, as well as the production and action of trophic factors and hormones. Translational research to develop interventions that target these pathways may lead to new classes of therapeutic agents that act by stimulating adaptive stress response pathways to bolster endogenous defenses against tissue injury and disease. Because neurons are particularly sensitive to potentially noxious phytochemicals, we focus on the nervous system but also include findings from other cell types in which actions of phytochemicals on specific signal transduction pathways have been more thoroughly studied. PMID:24958636

  4. Adaptive cellular stress pathways as therapeutic targets of dietary phytochemicals: focus on the nervous system.

    PubMed

    Lee, Jaewon; Jo, Dong-Gyu; Park, Daeui; Chung, Hae Young; Mattson, Mark P

    2014-07-01

    During the past 5 decades, it has been widely promulgated that the chemicals in plants that are good for health act as direct scavengers of free radicals. Here we review evidence that favors a different hypothesis for the health benefits of plant consumption, namely, that some phytochemicals exert disease-preventive and therapeutic actions by engaging one or more adaptive cellular response pathways in cells. The evolutionary basis for the latter mechanism is grounded in the fact that plants produce natural antifeedant/noxious chemicals that discourage insects and other organisms from eating them. However, in the amounts typically consumed by humans, the phytochemicals activate one or more conserved adaptive cellular stress response pathways and thereby enhance the ability of cells to resist injury and disease. Examplesof such pathways include those involving the transcription factors nuclear factor erythroid 2-related factor 2, nuclear factor-κB, hypoxia-inducible factor 1α, peroxisome proliferator-activated receptor γ, and forkhead box subgroup O, as well as the production and action of trophic factors and hormones. Translational research to develop interventions that target these pathways may lead to new classes of therapeutic agents that act by stimulating adaptive stress response pathways to bolster endogenous defenses against tissue injury and disease. Because neurons are particularly sensitive to potentially noxious phytochemicals, we focus on the nervous system but also include findings from other cell types in which actions of phytochemicals on specific signal transduction pathways have been more thoroughly studied. PMID:24958636

  5. Adaptive Posttranslational Control in Cellular Stress Response Pathways and Its Relationship to Toxicity Testing and Safety Assessment.

    PubMed

    Zhang, Qiang; Bhattacharya, Sudin; Pi, Jingbo; Clewell, Rebecca A; Carmichael, Paul L; Andersen, Melvin E

    2015-10-01

    Although transcriptional induction of stress genes constitutes a major cellular defense program against a variety of stressors, posttranslational control directly regulating the activities of preexisting stress proteins provides a faster-acting alternative response. We propose that posttranslational control is a general adaptive mechanism operating in many stress pathways. Here with the aid of computational models, we first show that posttranslational control fulfills two roles: (1) handling small, transient stresses quickly and (2) stabilizing the negative feedback transcriptional network. We then review the posttranslational control pathways for major stress responses-oxidative stress, metal stress, hyperosmotic stress, DNA damage, heat shock, and hypoxia. Posttranslational regulation of stress protein activities occurs by reversible covalent modifications, allosteric or non-allosteric enzymatic regulations, and physically induced protein structural changes. Acting in feedback or feedforward networks, posttranslational control may establish a threshold level of cellular stress. Sub-threshold stresses are handled adequately by posttranslational control without invoking gene transcription. With supra-threshold stress levels, cellular homeostasis cannot be maintained and transcriptional induction of stress genes and other gene programs, eg, those regulating cell metabolism, proliferation, and apoptosis, takes place. The loss of homeostasis with consequent changes in cellular function may lead to adverse cellular outcomes. Overall, posttranslational and transcriptional control pathways constitute a stratified cellular defense system, handling stresses coherently across time and intensity. As cell-based assays become a focus for chemical testing anchored on toxicity pathways, examination of proteomic and metabolomic changes as a result of posttranslational control occurring in the absence of transcriptomic alterations deserves more attention.

  6. Adaptive Posttranslational Control in Cellular Stress Response Pathways and Its Relationship to Toxicity Testing and Safety Assessment

    PubMed Central

    Zhang, Qiang; Bhattacharya, Sudin; Pi, Jingbo; Clewell, Rebecca A.; Carmichael, Paul L.; Andersen, Melvin E.

    2015-01-01

    Although transcriptional induction of stress genes constitutes a major cellular defense program against a variety of stressors, posttranslational control directly regulating the activities of preexisting stress proteins provides a faster-acting alternative response. We propose that posttranslational control is a general adaptive mechanism operating in many stress pathways. Here with the aid of computational models, we first show that posttranslational control fulfills two roles: (1) handling small, transient stresses quickly and (2) stabilizing the negative feedback transcriptional network. We then review the posttranslational control pathways for major stress responses—oxidative stress, metal stress, hyperosmotic stress, DNA damage, heat shock, and hypoxia. Posttranslational regulation of stress protein activities occurs by reversible covalent modifications, allosteric or non-allosteric enzymatic regulations, and physically induced protein structural changes. Acting in feedback or feedforward networks, posttranslational control may establish a threshold level of cellular stress. Sub-threshold stresses are handled adequately by posttranslational control without invoking gene transcription. With supra-threshold stress levels, cellular homeostasis cannot be maintained and transcriptional induction of stress genes and other gene programs, eg, those regulating cell metabolism, proliferation, and apoptosis, takes place. The loss of homeostasis with consequent changes in cellular function may lead to adverse cellular outcomes. Overall, posttranslational and transcriptional control pathways constitute a stratified cellular defense system, handling stresses coherently across time and intensity. As cell-based assays become a focus for chemical testing anchored on toxicity pathways, examination of proteomic and metabolomic changes as a result of posttranslational control occurring in the absence of transcriptomic alterations deserves more attention. PMID:26408567

  7. NFAT5 in cellular adaptation to hypertonic stress - regulations and functional significance.

    PubMed

    Cheung, Chris Yk; Ko, Ben Cb

    2013-01-01

    The Nuclear Factor of Activated T Cells-5 (NFAT5), also known as OREBP or TonEBP, is a member of the nuclear factors of the activated T cells family of transcription factors. It is also the only known tonicity-regulated transcription factor in mammals. NFAT5 was initially known for its role in the hypertonic kidney inner medulla for orchestrating a genetic program to restore the cellular homeostasis. Emerging evidence, however, suggests that NFAT5 might play a more diverse functional role, including a pivotal role in blood pressure regulation and the development of autoimmune diseases. Despite the growing significance of NFAT5 in physiology and diseases, our understanding of how its activity is regulated remains very limited. Furthermore, how changes in tonicities are converted into functional outputs via NFAT5 remains elusive. Therefore, this review aims to summarize our current knowledge on the functional roles of NFAT5 in osmotic stress adaptation and the signaling pathways that regulate its activity. PMID:23618372

  8. [Cellular adaptation and cancerogenesis].

    PubMed

    La Torre, F; Silpigni, A; Tomasello, R; Picone, G S; La Torre, I; Aragona, M

    1998-06-01

    The paper describes the main adaptive mechanisms involved in the carcinogenic process. As a result of the action of carcinogenic agents (physical, chemical, biological), and in relation to the functional status of the affected cells, a number of systems are triggered off: detoxification and conjugation systems, the metabolisation of the said agents, DNA repairing enzymes, increased shock proteins (HSP), the induction of clonal proliferation. All these systems are valuable to the survival of the body and the species and culminate in the apoptosis of damaged cells as the last attempt at adaptation of a social kind for the good of the body. When these compensation mechanisms prove ineffective, imprecise or are exceeded by cell adaptive capacity, the resulting structural and functional alterations trigger off (induction) a very long process which often lasts between one and two thirds of the body's life, in various stages, multistep and multifactorial: this neoplastic transformation leads to a purposeless, egoistic, anarchic proliferation of cells which wish to survive at all costs, even to the detriment of the body of which they form part. Following the exhaustion of cell adaptive defences, there is an accumulation of additional genetic alterations (promotion and progression), the cells become manifestly neoplastic and continue their egoistic adaptation, according to the laws of natural selection: the cells which survive are those which adapt best to the hostile environment of the host's body, which are unaffected by proliferation control mechanisms (contact inhibition, differentiation factors, apoptosis, etc.), which make the best of the growth factors present in their microenvironment, which accomplish the so-called decathlon of the metastatization process, namely acquiring new capacities which can overcome the basal membrane, invade tissues to which they are attracted and continue to proliferate. Manifestly neoplastic cells become not self at a later stage

  9. Adaptive stochastic cellular automata: Applications

    NASA Astrophysics Data System (ADS)

    Qian, S.; Lee, Y. C.; Jones, R. D.; Barnes, C. W.; Flake, G. W.; O'Rourke, M. K.; Lee, K.; Chen, H. H.; Sun, G. Z.; Zhang, Y. Q.; Chen, D.; Giles, C. L.

    1990-09-01

    The stochastic learning cellular automata model has been applied to the problem of controlling unstable systems. Two example unstable systems studied are controlled by an adaptive stochastic cellular automata algorithm with an adaptive critic. The reinforcement learning algorithm and the architecture of the stochastic CA controller are presented. Learning to balance a single pole is discussed in detail. Balancing an inverted double pendulum highlights the power of the stochastic CA approach. The stochastic CA model is compared to conventional adaptive control and artificial neural network approaches.

  10. Activation of autophagy via Ca2+-dependent AMPK/mTOR pathway in rat notochordal cells is a cellular adaptation under hyperosmotic stress

    PubMed Central

    Jiang, Li-Bo; Cao, Lu; Yin, Xiao-Fan; Yasen, Miersalijiang; Yishake, Mumingjiang; Dong, Jian; Li, Xi-Lei

    2015-01-01

    Nucleus pulposus (NP) cells experience hyperosmotic stress in spinal discs; however, how these cells can survive in the hostile microenvironment remains unclear. Autophagy has been suggested to maintain cellular homeostasis under different stresses by degrading the cytoplasmic proteins and organelles. Here, we explored whether autophagy is a cellular adaptation in rat notochordal cells under hyperosmotic stress. Hyperosmotic stress was found to activate autophagy in a dose- and time-dependent manner. SQSTM1/P62 expression was decreased as the autophagy level increased. Transient Ca2+ influx from intracellular stores and extracellular space was stimulated by hyperosmotic stress. Activation of AMPK and inhibition of p70S6K were observed under hyperosmotic conditions. However, intercellular Ca2+ chelation inhibited the increase of LC3-II and partly reversed the decrease of p70S6K. Hyperosmotic stress decreased cell viability and promoted apoptosis. Inhibition of autophagy led to SQSTM1/P62 accumulation, reduced cell viability, and accelerated apoptosis in notochordal cells under this condition. These evidences suggest that autophagy induction via the Ca2+-dependent AMPK/mTOR pathway might occur as an adaptation mechanism for notochordal cells under hyperosmotic stress. Thus, activating autophagy might be a promising approach to improve viability of notochordal cells in intervertebral discs. PMID:25590373

  11. Impact of Heat Stress on Cellular and Transcriptional Adaptation of Mammary Epithelial Cells in Riverine Buffalo (Bubalus Bubalis)

    PubMed Central

    Kapila, Neha; Sharma, Ankita; Kishore, Amit; Sodhi, Monika; Tripathi, Pawan K.; Mohanty, Ashok K.

    2016-01-01

    The present study aims to identify the heat responsive genes and biological pathways in heat stressed buffalo mammary epithelial cells (MECs). The primary mammary epithelial cells of riverine buffalo were exposed to thermal stress at 42°C for one hour. The cells were subsequently allowed to recover at 37°C and harvested at different time intervals (30 min to 48 h) along with control samples (un-stressed). In order to assess the impact of heat stress in buffalo MECs, several in-vitro cellular parameters (lactate dehydrogenase activity, cell proliferation assay, cellular viability, cell death and apoptosis) and transcriptional studies were conducted. The heat stress resulted in overall decrease in cell viability and cell proliferation of MECs while induction of cellular apoptosis and necrosis. The transcriptomic profile of heat stressed MECs was generated using Agilent 44 K bovine oligonucleotide array and at cutoff criteria of ≥3-or ≤3 fold change, a total of 153 genes were observed to be upregulated while 8 genes were down regulated across all time points post heat stress. The genes that were specifically up-regulated or down-regulated were identified as heat responsive genes. The upregulated genes in heat stressed MECs belonged to heat shock family viz., HSPA6, HSPB8, DNAJB2, HSPA1A. Along with HSPs, genes like BOLA, MRPL55, PFKFB3, PSMC2, ENDODD1, ARID5A, and SENP3 were also upregulated. Microarray data revealed that the heat responsive genes belonged to different functional classes viz., chaperons; immune responsive; cell proliferation and metabolism related. Gene ontology analysis revealed enrichment of several biological processes like; cellular process, metabolic process, response to stimulus, biological regulation, immune system processes and signaling. The transcriptome analysis data was further validated by RT-qPCR studies. Several HSP (HSP40, HSP60, HSP70, HSP90, and HSPB1), apoptotic (Bax and Bcl2), immune (IL6, TNFα and NF-kβ) and oxidative

  12. Regulated cell death and adaptive stress responses.

    PubMed

    Galluzzi, Lorenzo; Bravo-San Pedro, José Manuel; Kepp, Oliver; Kroemer, Guido

    2016-06-01

    Eukaryotic cells react to potentially dangerous perturbations of the intracellular or extracellular microenvironment by activating rapid (transcription-independent) mechanisms that attempt to restore homeostasis. If such perturbations persist, cells may still try to cope with stress by activating delayed and robust (transcription-dependent) adaptive systems, or they may actively engage in cellular suicide. This regulated form of cell death can manifest with various morphological, biochemical and immunological correlates, and constitutes an ultimate attempt of stressed cells to maintain organismal homeostasis. Here, we dissect the general organization of adaptive cellular responses to stress, their intimate connection with regulated cell death, and how the latter operates for the preservation of organismal homeostasis.

  13. Regulation of autophagy in oxygen-dependent cellular stress.

    PubMed

    Ryter, Stefan W; Choi, Augustine M K

    2013-01-01

    Oxidative stress caused by supraphysiological production of reactive oxygen species (ROS), can cause cellular injury associated with protein and lipid oxidation, DNA damage, and mitochondrial dysfunction. The cellular responses triggered by oxidative stress include the altered regulation of signaling pathways that culminate in the regulation of cell survival or cell death pathways. Recent studies suggest that autophagy, a cellular homeostatic process that governs the turnover of damaged organelles and proteins, may represent a general cellular and tissue response to oxidative stress. The autophagic pathway involves the encapsulation of substrates in double-membraned vesicles, which are subsequently delivered to the lysosome for enzymatic degradation and recycling of metabolic precursors. Autophagy may play multifunctional roles in cellular adaptation to stress, by maintaining mitochondrial integrity, and removing damaged proteins. Additionally, autophagy may play important roles in the regulation of inflammation and immune function. Modulation of the autophagic pathway has been reported in cell culture models of oxidative stress, including altered states of oxygen tension (i.e., hypoxia, hyperoxia), and exposure to oxidants. Furthermore, proteins that regulate autophagy may be subject to redox regulation. The heme oxygenase- 1 (HO)-1 enzyme system may have a role in the regulation of autophagy. Recent studies suggest that carbon monoxide (CO), a reaction product of HO activity which can alter mitochondrial function, may induce autophagy in cultured epithelial cells. In conclusion, current research suggests a central role for autophagy as a mammalian oxidative stress response and its interrelationship to other stress defense systems. PMID:23092322

  14. Plant adaptation to drought stress

    PubMed Central

    Basu, Supratim; Ramegowda, Venkategowda; Kumar, Anuj; Pereira, Andy

    2016-01-01

    Plants in their natural habitats adapt to drought stress in the environment through a variety of mechanisms, ranging from transient responses to low soil moisture to major survival mechanisms of escape by early flowering in absence of seasonal rainfall. However, crop plants selected by humans to yield products such as grain, vegetable, or fruit in favorable environments with high inputs of water and fertilizer are expected to yield an economic product in response to inputs. Crop plants selected for their economic yield need to survive drought stress through mechanisms that maintain crop yield. Studies on model plants for their survival under stress do not, therefore, always translate to yield of crop plants under stress, and different aspects of drought stress response need to be emphasized. The crop plant model rice ( Oryza sativa) is used here as an example to highlight mechanisms and genes for adaptation of crop plants to drought stress. PMID:27441087

  15. Plant adaptation to drought stress.

    PubMed

    Basu, Supratim; Ramegowda, Venkategowda; Kumar, Anuj; Pereira, Andy

    2016-01-01

    Plants in their natural habitats adapt to drought stress in the environment through a variety of mechanisms, ranging from transient responses to low soil moisture to major survival mechanisms of escape by early flowering in absence of seasonal rainfall. However, crop plants selected by humans to yield products such as grain, vegetable, or fruit in favorable environments with high inputs of water and fertilizer are expected to yield an economic product in response to inputs. Crop plants selected for their economic yield need to survive drought stress through mechanisms that maintain crop yield. Studies on model plants for their survival under stress do not, therefore, always translate to yield of crop plants under stress, and different aspects of drought stress response need to be emphasized. The crop plant model rice ( Oryza sativa) is used here as an example to highlight mechanisms and genes for adaptation of crop plants to drought stress. PMID:27441087

  16. Dynamics of active cellular response under stress

    NASA Astrophysics Data System (ADS)

    de, Rumi; Zemel, Assaf; Safran, Samuel

    2008-03-01

    Forces exerted by and on adherent cells are important for many physiological processes such as wound healing and tissue formation. In addition, recent experiments have shown that stem cell differentiation is controlled, at least in part, by the elasticity of the surrounding matrix. Using a simple theoretical model that includes the forces due to both the mechanosensitive nature of cells and the elastic response of the matrix, we predict the dynamics of orientation of cells. The model predicts many features observed in measurements of cellular forces and orientation including the increase with time of the forces generated by cells in the absence of applied stress and the consequent decrease of the force in the presence of quasi-static stresses. We also explain the puzzling observation of parallel alignment of cells for static and quasi-static stresses and of nearly perpendicular alignment for dynamically varying stresses. In addition, we predict the response of the cellular orientation to a sinusoidally varying applied stress as a function of frequency. The dependence of the cell orientation angle on the Poisson ratio of the surrounding material can be used to distinguish systems in which cell activity is controlled by stress from those where cell activity is controlled by strain. Reference: Nature Physics, vol. 3, pp 655 (2007).

  17. Hormesis and adaptive cellular control systems

    EPA Science Inventory

    Hormetic dose response occurs for many endpoints associated with exposures of biological organisms to environmental stressors. Cell-based U- or inverted U-shaped responses may derive from common processes involved in activation of adaptive responses required to protect cells from...

  18. Symbiosis-induced adaptation to oxidative stress.

    PubMed

    Richier, Sophie; Furla, Paola; Plantivaux, Amandine; Merle, Pierre-Laurent; Allemand, Denis

    2005-01-01

    Cnidarians in symbiosis with photosynthetic protists must withstand daily hyperoxic/anoxic transitions within their host cells. Comparative studies between symbiotic (Anemonia viridis) and non-symbiotic (Actinia schmidti) sea anemones show striking differences in their response to oxidative stress. First, the basal expression of SOD is very different. Symbiotic animal cells have a higher isoform diversity (number and classes) and a higher activity than the non-symbiotic cells. Second, the symbiotic animal cells of A. viridis also maintain unaltered basal values for cellular damage when exposed to experimental hyperoxia (100% O(2)) or to experimental thermal stress (elevated temperature +7 degrees C above ambient). Under such conditions, A. schmidti modifies its SOD activity significantly. Electrophoretic patterns diversify, global activities diminish and cell damage biomarkers increase. These data suggest symbiotic cells adapt to stress while non-symbiotic cells remain acutely sensitive. In addition to being toxic, high O(2) partial pressure (P(O(2))) may also constitute a preconditioning step for symbiotic animal cells, leading to an adaptation to the hyperoxic condition and, thus, to oxidative stress. Furthermore, in aposymbiotic animal cells of A. viridis, repression of some animal SOD isoforms is observed. Meanwhile, in cultured symbionts, new activity bands are induced, suggesting that the host might protect its zooxanthellae in hospite. Similar results have been observed in other symbiotic organisms, such as the sea anemone Aiptasia pulchella and the scleractinian coral Stylophora pistillata. Molecular or physical interactions between the two symbiotic partners may explain such variations in SOD activity and might confer oxidative stress tolerance to the animal host. PMID:15634847

  19. Symbiosis-induced adaptation to oxidative stress.

    PubMed

    Richier, Sophie; Furla, Paola; Plantivaux, Amandine; Merle, Pierre-Laurent; Allemand, Denis

    2005-01-01

    Cnidarians in symbiosis with photosynthetic protists must withstand daily hyperoxic/anoxic transitions within their host cells. Comparative studies between symbiotic (Anemonia viridis) and non-symbiotic (Actinia schmidti) sea anemones show striking differences in their response to oxidative stress. First, the basal expression of SOD is very different. Symbiotic animal cells have a higher isoform diversity (number and classes) and a higher activity than the non-symbiotic cells. Second, the symbiotic animal cells of A. viridis also maintain unaltered basal values for cellular damage when exposed to experimental hyperoxia (100% O(2)) or to experimental thermal stress (elevated temperature +7 degrees C above ambient). Under such conditions, A. schmidti modifies its SOD activity significantly. Electrophoretic patterns diversify, global activities diminish and cell damage biomarkers increase. These data suggest symbiotic cells adapt to stress while non-symbiotic cells remain acutely sensitive. In addition to being toxic, high O(2) partial pressure (P(O(2))) may also constitute a preconditioning step for symbiotic animal cells, leading to an adaptation to the hyperoxic condition and, thus, to oxidative stress. Furthermore, in aposymbiotic animal cells of A. viridis, repression of some animal SOD isoforms is observed. Meanwhile, in cultured symbionts, new activity bands are induced, suggesting that the host might protect its zooxanthellae in hospite. Similar results have been observed in other symbiotic organisms, such as the sea anemone Aiptasia pulchella and the scleractinian coral Stylophora pistillata. Molecular or physical interactions between the two symbiotic partners may explain such variations in SOD activity and might confer oxidative stress tolerance to the animal host.

  20. ATM couples replication stress and metabolic reprogramming during cellular senescence

    PubMed Central

    Aird, Katherine M.; Worth, Andrew J.; Snyder, Nathaniel W.; Lee, Joyce V.; Sivanand, Sharanya; Liu, Qin; Blair, Ian A.; Wellen, Kathryn E.; Zhang, Rugang

    2015-01-01

    Summary Replication stress induced by nucleotide deficiency plays an important role in cancer initiation. Replication stress in primary cells typically activates the cellular senescence tumor suppression mechanism. Senescence bypass correlates with development of cancer, a disease characterized by metabolic reprogramming. However, the role of metabolic reprogramming in cellular response to replication stress is unknown. Here we report that ATM plays a central role in regulating cellular response to replication stress by shifting cellular metabolism. ATM inactivation bypasses senescence induced by replication stress triggered by nucleotide deficiency. This was due to restoration of dNTP levels through both upregulation of the pentose phosphate pathway via increased G6PD activity and enhanced glucose and glutamine consumption. These phenotypes were mediated by a coordinated suppression of p53 and upregulation of c-MYC downstream of ATM inactivation. Our data indicate that ATM status couples replication stress and metabolic reprogramming during senescence. PMID:25937285

  1. DAMPs and autophagy: cellular adaptation to injury and unscheduled cell death.

    PubMed

    Zhang, Qiuhong; Kang, Rui; Zeh, Herbert J; Lotze, Michael T; Tang, Daolin

    2013-04-01

    Autophagy is a lysosome-mediated catabolic process involving the degradation of intracellular contents (e.g., proteins and organelles) as well as invading microbes (e.g., parasites, bacteria and viruses). Multiple forms of cellular stress can stimulate this pathway, including nutritional imbalances, oxygen deprivation, immunological response, genetic defects, chromosomal anomalies and cytotoxic stress. Damage-associated molecular pattern molecules (DAMPs) are released by stressed cells undergoing autophagy or injury, and act as endogenous danger signals to regulate the subsequent inflammatory and immune response. A complex relationship exists between DAMPs and autophagy in cellular adaption to injury and unscheduled cell death. Since both autophagy and DAMPs are important for pathogenesis of human disease, it is crucial to understand how they interplay to sustain homeostasis in stressful or dangerous environments. PMID:23388380

  2. Cellular Adaptation Facilitates Sparse and Reliable Coding in Sensory Pathways

    PubMed Central

    Farkhooi, Farzad; Froese, Anja; Muller, Eilif; Menzel, Randolf; Nawrot, Martin P.

    2013-01-01

    Most neurons in peripheral sensory pathways initially respond vigorously when a preferred stimulus is presented, but adapt as stimulation continues. It is unclear how this phenomenon affects stimulus coding in the later stages of sensory processing. Here, we show that a temporally sparse and reliable stimulus representation develops naturally in sequential stages of a sensory network with adapting neurons. As a modeling framework we employ a mean-field approach together with an adaptive population density treatment, accompanied by numerical simulations of spiking neural networks. We find that cellular adaptation plays a critical role in the dynamic reduction of the trial-by-trial variability of cortical spike responses by transiently suppressing self-generated fast fluctuations in the cortical balanced network. This provides an explanation for a widespread cortical phenomenon by a simple mechanism. We further show that in the insect olfactory system cellular adaptation is sufficient to explain the emergence of the temporally sparse and reliable stimulus representation in the mushroom body. Our results reveal a generic, biophysically plausible mechanism that can explain the emergence of a temporally sparse and reliable stimulus representation within a sequential processing architecture. PMID:24098101

  3. Acidosis induces reprogramming of cellular metabolism to mitigate oxidative stress

    PubMed Central

    2013-01-01

    Background A variety of oncogenic and environmental factors alter tumor metabolism to serve the distinct cellular biosynthetic and bioenergetic needs present during oncogenesis. Extracellular acidosis is a common microenvironmental stress in solid tumors, but little is known about its metabolic influence, particularly when present in the absence of hypoxia. In order to characterize the extent of tumor cell metabolic adaptations to acidosis, we employed stable isotope tracers to examine how acidosis impacts glucose, glutamine, and palmitate metabolism in breast cancer cells exposed to extracellular acidosis. Results Acidosis increased both glutaminolysis and fatty acid β-oxidation, which contribute metabolic intermediates to drive the tricarboxylic acid cycle (TCA cycle) and ATP generation. Acidosis also led to a decoupling of glutaminolysis and novel glutathione (GSH) synthesis by repressing GCLC/GCLM expression. We further found that acidosis redirects glucose away from lactate production and towards the oxidative branch of the pentose phosphate pathway (PPP). These changes all serve to increase nicotinamide adenine dinucleotide phosphate (NADPH) production and counter the increase in reactive oxygen species (ROS) present under acidosis. The reduced novel GSH synthesis under acidosis may explain the increased demand for NADPH to recycle existing pools of GSH. Interestingly, acidosis also disconnected novel ribose synthesis from the oxidative PPP, seemingly to reroute PPP metabolites to the TCA cycle. Finally, we found that acidosis activates p53, which contributes to both the enhanced PPP and increased glutaminolysis, at least in part, through the induction of G6PD and GLS2 genes. Conclusions Acidosis alters the cellular metabolism of several major metabolites, which induces a significant degree of metabolic inflexibility. Cells exposed to acidosis largely rely upon mitochondrial metabolism for energy generation to the extent that metabolic intermediates are

  4. Cellular Stress Response to Engineered Nanoparticles: Effect of Size, Surface Coating, and Cellular Uptake

    EPA Science Inventory

    CELLULAR STRESS RESPONSE TO ENGINEERED NANOPARTICLES: EFFECT OF SIZE, SURFACE COATING, AND CELLULAR UPTAKE RY Prasad 1, JK McGee2, MG Killius1 D Ackerman2, CF Blackman2 DM DeMarini2 , SO Simmons2 1 Student Services Contractor, US EPA, RTP, NC 2 US EPA, RTP, NC The num...

  5. Dynamic involvement of ATG5 in cellular stress responses

    PubMed Central

    Lin, H H; Lin, S-M; Chung, Y; Vonderfecht, S; Camden, J M; Flodby, P; Borok, Z; Limesand, K H; Mizushima, N; Ann, D K

    2014-01-01

    Autophagy maintains cell and tissue homeostasis through catabolic degradation. To better delineate the in vivo function for autophagy in adaptive responses to tissue injury, we examined the impact of compromised autophagy in mouse submandibular glands (SMGs) subjected to main excretory duct ligation. Blocking outflow from exocrine glands causes glandular atrophy by increased ductal pressure. Atg5f/−;Aqp5-Cre mice with salivary acinar-specific knockout (KO) of autophagy essential gene Atg5 were generated. While duct ligation induced autophagy and the expression of inflammatory mediators, SMGs in Atg5f/−;Aqp5-Cre mice, before ligation, already expressed higher levels of proinflammatory cytokine and Cdkn1a/p21 messages. Extended ligation period resulted in the caspase-3 activation and acinar cell death, which was delayed by Atg5 knockout. Moreover, expression of a set of senescence-associated secretory phenotype (SASP) factors was elevated in the post-ligated glands. Dysregulation of cell-cycle inhibitor CDKN1A/p21 and activation of senescence-associated β-galactosidase were detected in the stressed SMG duct cells. These senescence markers peaked at day 3 after ligation and partially resolved by day 7 in post-ligated SMGs of wild-type (WT) mice, but not in KO mice. The role of autophagy-related 5 (ATG5)-dependent autophagy in regulating the tempo, duration and magnitude of cellular stress responses in vivo was corroborated by in vitro studies using MEFs lacking ATG5 or autophagy-related 7 (ATG7) and autophagy inhibitors. Collectively, our results highlight the role of ATG5 in the dynamic regulation of ligation-induced cellular senescence and apoptosis, and suggest the involvement of autophagy resolution in salivary repair. PMID:25341032

  6. Adaptation and Sensitization to Proteotoxic Stress

    PubMed Central

    Leak, Rehana K.

    2014-01-01

    Although severe stress can elicit toxicity, mild stress often elicits adaptations. Here we review the literature on stress-induced adaptations versus stress sensitization in models of neurodegenerative diseases. We also describe our recent findings that chronic proteotoxic stress can elicit adaptations if the dose is low but that high-dose proteotoxic stress sensitizes cells to subsequent challenges. In these experiments, long-term, low-dose proteasome inhibition elicited protection in a superoxide dismutase-dependent manner. In contrast, acute, high-dose proteotoxic stress sensitized cells to subsequent proteotoxic challenges by eliciting catastrophic loss of glutathione. However, even in the latter model of synergistic toxicity, several defensive proteins were upregulated by severe proteotoxicity. This led us to wonder whether high-dose proteotoxic stress can elicit protection against subsequent challenges in astrocytes, a cell type well known for their resilience. In support of this new hypothesis, we found that the astrocytes that survived severe proteotoxicity became harder to kill. The adaptive mechanism was glutathione dependent. If these findings can be generalized to the human brain, similar endogenous adaptations may help explain why neurodegenerative diseases are so delayed in appearance and so slow to progress. In contrast, sensitization to severe stress may explain why defenses eventually collapse in vulnerable neurons. PMID:24659932

  7. Stress-induced mutagenesis and complex adaptation

    PubMed Central

    Ram, Yoav; Hadany, Lilach

    2014-01-01

    Because mutations are mostly deleterious, mutation rates should be reduced by natural selection. However, mutations also provide the raw material for adaptation. Therefore, evolutionary theory suggests that the mutation rate must balance between adaptability—the ability to adapt—and adaptedness—the ability to remain adapted. We model an asexual population crossing a fitness valley and analyse the rate of complex adaptation with and without stress-induced mutagenesis (SIM)—the increase of mutation rates in response to stress or maladaptation. We show that SIM increases the rate of complex adaptation without reducing the population mean fitness, thus breaking the evolutionary trade-off between adaptability and adaptedness. Our theoretical results support the hypothesis that SIM promotes adaptation and provide quantitative predictions of the rate of complex adaptation with different mutational strategies. PMID:25143032

  8. Cellular Stress Responses Elicited by Engineered Nanomaterials

    EPA Science Inventory

    Engineered nanomaterials are being incorporated continuously into consumer products, resulting in increased human exposures. The study of engineered nanomaterials has focused largely on oxidative stress and inflammation endpoints without further investigation of underlying pathwa...

  9. Kinetic Adaptations of Myosins for Their Diverse Cellular Functions.

    PubMed

    Heissler, Sarah M; Sellers, James R

    2016-08-01

    Members of the myosin superfamily are involved in all aspects of eukaryotic life. Their function ranges from the transport of organelles and cargos to the generation of membrane tension, and the contraction of muscle. The diversity of physiological functions is remarkable, given that all enzymatically active myosins follow a conserved mechanoenzymatic cycle in which the hydrolysis of ATP to ADP and inorganic phosphate is coupled to either actin-based transport or tethering of actin to defined cellular compartments. Kinetic capacities and limitations of a myosin are determined by the extent to which actin can accelerate the hydrolysis of ATP and the release of the hydrolysis products and are indispensably linked to its physiological tasks. This review focuses on kinetic competencies that - together with structural adaptations - result in myosins with unique mechanoenzymatic properties targeted to their diverse cellular functions.

  10. Dynamical theory of active cellular response to external stress

    NASA Astrophysics Data System (ADS)

    de, Rumi; Safran, Samuel A.

    2008-09-01

    We present a comprehensive, theoretical treatment of the orientational response to external stress of active, contractile cells embedded in a gel-like elastic medium. The theory includes both the forces that arise from the deformation of the matrix as well as forces due to the internal regulation of the stress fibers and focal adhesions of the cell. We calculate the time-dependent response of both the magnitude and the direction of the elastic dipole that characterizes the active forces exerted by the cell, for various situations. For static or quasistatic external stress, cells orient parallel to the stress while for high frequency dynamic external stress, cells orient nearly perpendicular. Both numerical and analytical calculations of these effects are presented. In addition we predict the relaxation time for the cellular response for both slowly and rapidly varying external stresses; several characteristic scaling regimes for the relaxation time as a function of applied frequency are predicted. We also treat the case of cells for which the regulation of the stress fibers and focal adhesions is controlled by strain (instead of stress) and show that the predicted dependence of the cellular orientation on the Poisson ratio of the matrix can differentiate strain vs stress regulation of cellular response.

  11. Dynamical theory of active cellular response to external stress.

    PubMed

    De, Rumi; Safran, Samuel A

    2008-09-01

    We present a comprehensive, theoretical treatment of the orientational response to external stress of active, contractile cells embedded in a gel-like elastic medium. The theory includes both the forces that arise from the deformation of the matrix as well as forces due to the internal regulation of the stress fibers and focal adhesions of the cell. We calculate the time-dependent response of both the magnitude and the direction of the elastic dipole that characterizes the active forces exerted by the cell, for various situations. For static or quasistatic external stress, cells orient parallel to the stress while for high frequency dynamic external stress, cells orient nearly perpendicular. Both numerical and analytical calculations of these effects are presented. In addition we predict the relaxation time for the cellular response for both slowly and rapidly varying external stresses; several characteristic scaling regimes for the relaxation time as a function of applied frequency are predicted. We also treat the case of cells for which the regulation of the stress fibers and focal adhesions is controlled by strain (instead of stress) and show that the predicted dependence of the cellular orientation on the Poisson ratio of the matrix can differentiate strain vs stress regulation of cellular response.

  12. Cellular and molecular aspects of plant adaptation to microgravity

    NASA Astrophysics Data System (ADS)

    Kordyum, Elizabeth; Kozeko, Liudmyla

    2016-07-01

    Elucidation of the range and mechanisms of the biological effects of microgravity is one of the urgent fundamental tasks of space and gravitational biology. The absence of forbidding on plant growth and development in orbital flight allows studying different aspects of plant adaptation to this factor that is directly connected with development of the technologies of bioregenerative life-support systems. Microgravity belongs to the environmental factors which cause adaptive reactions at the cellular and molecular levels in the range of physiological responses in the framework of genetically determined program of ontogenesis. It is known that cells of a multicellular organism not only take part in reactions of the organism but also carry out processes that maintain their integrity. In light of these principles, the problem of identification of biochemical, physiological and structural patterns that can have adaptive significance at the cellular and molecular levels in real and simulated microgravity is considered. It is pointed that plant cell responses in microgravity and under clinorotation vary according to growth phase, physiological state, and taxonomic position of the object. At the same time, the responses have, to some degree, a similar character reflecting the changes in the cell organelle functional load. The maintenance of the plasmalemma fluidity at the certain level, an activation of both the antioxidant system and expression of HSP genes, especially HSP70, under increasing reactive oxygen species, lipid peroxidation intensity and alteration in protein homeostasis, are a strategic paradigm of rapid (primary) cell adaptation to microgravity. In this sense, biological membranes, especially plasmalemma, and their properties and functions may be considered as the most sensitive indicators of the influence of gravity or altered gravity on a cell. The plasmalemma lipid bilayer is a border between the cell internal content and environment, so it is a mediator

  13. Cellular and molecular aspects of plant adaptation to microgravity

    NASA Astrophysics Data System (ADS)

    Kordyum, Elizabeth; Kozeko, Liudmyla

    2016-07-01

    Elucidation of the range and mechanisms of the biological effects of microgravity is one of the urgent fundamental tasks of space and gravitational biology. The absence of forbidding on plant growth and development in orbital flight allows studying different aspects of plant adaptation to this factor that is directly connected with development of the technologies of bioregenerative life-support systems. Microgravity belongs to the environmental factors which cause adaptive reactions at the cellular and molecular levels in the range of physiological responses in the framework of genetically determined program of ontogenesis. It is known that cells of a multicellular organism not only take part in reactions of the organism but also carry out processes that maintain their integrity. In light of these principles, the problem of identification of biochemical, physiological and structural patterns that can have adaptive significance at the cellular and molecular levels in real and simulated microgravity is considered. It is pointed that plant cell responses in microgravity and under clinorotation vary according to growth phase, physiological state, and taxonomic position of the object. At the same time, the responses have, to some degree, a similar character reflecting the changes in the cell organelle functional load. The maintenance of the plasmalemma fluidity at the certain level, an activation of both the antioxidant system and expression of HSP genes, especially HSP70, under increasing reactive oxygen species, lipid peroxidation intensity and alteration in protein homeostasis, are a strategic paradigm of rapid (primary) cell adaptation to microgravity. In this sense, biological membranes, especially plasmalemma, and their properties and functions may be considered as the most sensitive indicators of the influence of gravity or altered gravity on a cell. The plasmalemma lipid bilayer is a border between the cell internal content and environment, so it is a mediator

  14. [Changes of cellular zinc content during stress].

    PubMed

    Ieshchenko, Iu V

    2009-01-01

    It was shown by using elaborated method of cell zinc quantitative determination that phase alterations in cell zinc content occurs during stress. Zinc accumulation in cells in the first phase was accompanied by the increase of blood corticosterone and corticotropine levels. A decrease of zinc concentrations in cells in second phase was accompanied by a decrease in the levels of these hormones. Zinc deficiency in cells was observed after adrenalectomy and insular apparatus function removal. Cell zinc deficiency correction was achieved in the first phase by adrenaline and prednisolone injections and in second one--by insuline administration. Positive correlation of the changes of zinc content in hippocampus and blood corticotropine level indicates possible functional connection between hippocampus and hypophysis. PMID:20095387

  15. Stress, genomic adaptation, and the evolutionary trade-off

    PubMed Central

    Horne, Steven D.; Chowdhury, Saroj K.; Heng, Henry H. Q.

    2014-01-01

    Cells are constantly exposed to various internal and external stresses. The importance of cellular stress and its implication to disease conditions have become popular research topics. Many ongoing investigations focus on the sources of stress, their specific molecular mechanisms and interactions, especially regarding their contributions to many common and complex diseases through defined molecular pathways. Numerous molecular mechanisms have been linked to endoplasmic reticulum stress along with many unexpected findings, drastically increasing the complexity of our molecular understanding and challenging how to apply individual mechanism-based knowledge in the clinic. A newly emergent genome theory searches for the synthesis of a general evolutionary mechanism that unifies different types of stress and functional relationships from a genome-defined system point of view. Herein, we discuss the evolutionary relationship between stress and somatic cell adaptation under physiological, pathological, and somatic cell survival conditions, the multiple meanings to achieve adaptation and its potential trade-off. In particular, we purposely defocus from specific stresses and mechanisms by redirecting attention toward studying underlying general mechanisms. PMID:24795754

  16. Stress, genomic adaptation, and the evolutionary trade-off.

    PubMed

    Horne, Steven D; Chowdhury, Saroj K; Heng, Henry H Q

    2014-01-01

    Cells are constantly exposed to various internal and external stresses. The importance of cellular stress and its implication to disease conditions have become popular research topics. Many ongoing investigations focus on the sources of stress, their specific molecular mechanisms and interactions, especially regarding their contributions to many common and complex diseases through defined molecular pathways. Numerous molecular mechanisms have been linked to endoplasmic reticulum stress along with many unexpected findings, drastically increasing the complexity of our molecular understanding and challenging how to apply individual mechanism-based knowledge in the clinic. A newly emergent genome theory searches for the synthesis of a general evolutionary mechanism that unifies different types of stress and functional relationships from a genome-defined system point of view. Herein, we discuss the evolutionary relationship between stress and somatic cell adaptation under physiological, pathological, and somatic cell survival conditions, the multiple meanings to achieve adaptation and its potential trade-off. In particular, we purposely defocus from specific stresses and mechanisms by redirecting attention toward studying underlying general mechanisms.

  17. Cellular and genetic adaptation in low-gravity environments.

    PubMed

    Sundaresan, Alamelu; Pellis, Neal R

    2009-04-01

    Genetic response suites in human lymphocytes in response to microgravity are important to identify and study further to augment physiological adaptation to new milieus. Human peripheral blood from normal donors was used to isolate peripheral blood mononuclear cells. Blood traverses through most organs and hence is a suitable overall physiological predictor. The cells were cultured in 1g (T flask) and modeled microgravity for 24 and 72 h. Cell samples were collected and subjected to gene array analysis. Data were collected and subjected to a two-way analysis of variance. Different groups of genes related to the immune response, cardiovascular system, and stress response were then analyzed. These three groups focused on human adaptation to new environments. Many molecules related to T cell activation and second messengers, located both in the cell membrane and cytoplasm, were significantly altered (positive or negative regulation) in modeled microgravity. Cardiovascular biomarker expression and stress response gene expression also presented an aberrant response in analog microgravity. Previous findings in our laboratory showed lymphocyte activation and locomotion to be significantly suppressed in microgravity. Further analysis at the protein levels of genes involved in these responses could lead to development of prophylactic and countermeasure steps to augment human physiology for long-term space travel. Detailed results from the genetic analyses are presented in this study, including differential responses in stress response genes, cardiovascular and atherogenic genes, and T cell activation genes.

  18. A balanced JA/ABA status may correlate with adaptation to osmotic stress in Vitis cells.

    PubMed

    Ismail, Ahmed; Seo, Mitsunori; Takebayashi, Yumiko; Kamiya, Yuji; Nick, Peter

    2015-08-01

    Water-related stress is considered a major type of plant stress. Osmotic stress, in particular, represents the common part of all water-related stresses. Therefore, plants have evolved different adaptive mechanisms to cope with osmotic-related disturbances. In the current work, two grapevine cell lines that differ in their osmotic adaptability, Vitis rupestris and Vitis riparia, were investigated under mannitol-induced osmotic stress. To dissect signals that lead to adaptability from those related to sensitivity, osmotic-triggered responses with respect to jasmonic acid (JA) and its active form JA-Ile, abscisic acid (ABA), and stilbene compounds, as well as the expression of their related genes were observed. In addition, the transcript levels of the cellular homeostasis gene NHX1 were examined. The data are discussed with a hypothesis suggesting that a balance of JA and ABA status might correlate with cellular responses, either guiding cells to sensitivity or to progress toward adaptation. PMID:26277753

  19. Cellular Stress Responses: Cell Survival and Cell Death

    PubMed Central

    Fulda, Simone; Gorman, Adrienne M.; Hori, Osamu; Samali, Afshin

    2010-01-01

    Cells can respond to stress in various ways ranging from the activation of survival pathways to the initiation of cell death that eventually eliminates damaged cells. Whether cells mount a protective or destructive stress response depends to a large extent on the nature and duration of the stress as well as the cell type. Also, there is often the interplay between these responses that ultimately determines the fate of the stressed cell. The mechanism by which a cell dies (i.e., apoptosis, necrosis, pyroptosis, or autophagic cell death) depends on various exogenous factors as well as the cell's ability to handle the stress to which it is exposed. The implications of cellular stress responses to human physiology and diseases are manifold and will be discussed in this review in the context of some major world health issues such as diabetes, Parkinson's disease, myocardial infarction, and cancer. PMID:20182529

  20. Silymarin Suppresses Cellular Inflammation By Inducing Reparative Stress Signaling

    PubMed Central

    Lovelace, Erica S.; Wagoner, Jessica; MacDonald, James; Bammler, Theo; Bruckner, Jacob; Brownell, Jessica; Beyer, Richard; Zink, Erika M.; Kim, Young-Mo; Kyle, Jennifer E.; Webb-Robertson, Bobbie-Jo; Waters, Katrina M.; Metz, Thomas O.; Farin, Federico; Oberlies, Nicholas H.; Polyak, Stephen J.

    2016-01-01

    Silymarin, a characterized extract of the seeds of milk thistle (Silybum marianum), suppresses cellular inflammation. To define how this occurs, transcriptional profiling, metabolomics, and signaling studies were performed in human liver and T cell lines. Cellular stress and metabolic pathways were modulated within 4 h of silymarin treatment: activation of Activating Transcription Factor 4 (ATF-4) and adenosine monophosphate protein kinase (AMPK) and inhibition of mammalian target of rapamycin (mTOR) signaling, the latter being associated with induction of DNA-damage-inducible transcript 4 (DDIT4). Metabolomics analyses revealed silymarin suppression of glycolytic, tricarboxylic acid (TCA) cycle, and amino acid metabolism. Anti-inflammatory effects arose with prolonged (i.e. 24 h) silymarin exposure, with suppression of multiple pro-inflammatory mRNAs and signaling pathways including nuclear factor kappa B (NF-κB) and forkhead box O (FOXO). Studies with murine knock out cells revealed that silymarin inhibition of both mTOR and NF-κB was partially AMPK dependent, while silymarin inhibition of mTOR required DDIT4. Other natural products induced similar stress responses, which correlated with their ability to suppress inflammation. Thus, natural products activate stress and repair responses that culminate in an anti-inflammatory cellular phenotype. Natural products like silymarin may be useful as tools to define how metabolic, stress, and repair pathways regulate cellular inflammation. PMID:26186142

  1. Stress-induced rearrangements of cellular networks: Consequences for protection and drug design.

    PubMed

    Szalay, Máté S; Kovács, István A; Korcsmáros, Tamás; Böde, Csaba; Csermely, Péter

    2007-07-31

    The complexity of the cells can be described and understood by a number of networks such as protein-protein interaction, cytoskeletal, organelle, signalling, gene transcription and metabolic networks. All these networks are highly dynamic producing continuous rearrangements in their links, hubs, network-skeleton and modules. Here we describe the adaptation of cellular networks after various forms of stress causing perturbations, congestions and network damage. Chronic stress decreases link-density, decouples or even quarantines modules, and induces an increased competition between network hubs and bridges. Extremely long or strong stress may induce a topological phase transition in the respective cellular networks, which switches the cell to a completely different mode of cellular function. We summarize our initial knowledge on network restoration after stress including the role of molecular chaperones in this process. Finally, we discuss the implications of stress-induced network rearrangements in diseases and ageing, and propose therapeutic approaches both to increase the robustness and help the repair of cellular networks. PMID:17433306

  2. Neural control of chronic stress adaptation

    PubMed Central

    Herman, James P.

    2013-01-01

    Stress initiates adaptive processes that allow the organism to physiologically cope with prolonged or intermittent exposure to real or perceived threats. A major component of this response is repeated activation of glucocorticoid secretion by the hypothalamo-pituitary-adrenocortical (HPA) axis, which promotes redistribution of energy in a wide range of organ systems, including the brain. Prolonged or cumulative increases in glucocorticoid secretion can reduce benefits afforded by enhanced stress reactivity and eventually become maladaptive. The long-term impact of stress is kept in check by the process of habituation, which reduces HPA axis responses upon repeated exposure to homotypic stressors and likely limits deleterious actions of prolonged glucocorticoid secretion. Habituation is regulated by limbic stress-regulatory sites, and is at least in part glucocorticoid feedback-dependent. Chronic stress also sensitizes reactivity to new stimuli. While sensitization may be important in maintaining response flexibility in response to new threats, it may also add to the cumulative impact of glucocorticoids on the brain and body. Finally, unpredictable or severe stress exposure may cause long-term and lasting dysregulation of the HPA axis, likely due to altered limbic control of stress effector pathways. Stress-related disorders, such as depression and PTSD, are accompanied by glucocorticoid imbalances and structural/ functional alterations in limbic circuits that resemble those seen following chronic stress, suggesting that inappropriate processing of stressful information may be part of the pathological process. PMID:23964212

  3. Interplay between Inflammation and Cellular Stress Triggered by Flaviviridae Viruses

    PubMed Central

    Valadão, Ana L. C.; Aguiar, Renato S.; de Arruda, Luciana B.

    2016-01-01

    The Flaviviridae family comprises several human pathogens, including Dengue, Zika, Yellow Fever, West Nile, Japanese Encephalitis viruses, and Hepatitis C Virus. Those are enveloped, single-stranded positive sense RNA viruses, which replicate mostly in intracellular compartments associated to endoplasmic reticulum (ER) and Golgi complex. Virus replication results in abundant viral RNAs and proteins, which are recognized by cellular mechanisms evolved to prevent virus infection, resulting in inflammation and stress responses. Virus RNA molecules are sensed by Toll-like receptors (TLRs), RIG-I-like receptors (RIG-I and MDA5) and RNA-dependent protein kinases (PKR), inducing the production of inflammatory mediators and interferons. Simultaneously, the synthesis of virus RNA and proteins are distinguished in different compartments such as mitochondria, ER and cytoplasmic granules, triggering intracellular stress pathways, including oxidative stress, unfolded protein response pathway, and stress granules assembly. Here, we review the new findings that connect the inflammatory pathways to cellular stress sensors and the strategies of Flaviviridae members to counteract these cellular mechanisms and escape immune response. PMID:27610098

  4. Interplay between Inflammation and Cellular Stress Triggered by Flaviviridae Viruses.

    PubMed

    Valadão, Ana L C; Aguiar, Renato S; de Arruda, Luciana B

    2016-01-01

    The Flaviviridae family comprises several human pathogens, including Dengue, Zika, Yellow Fever, West Nile, Japanese Encephalitis viruses, and Hepatitis C Virus. Those are enveloped, single-stranded positive sense RNA viruses, which replicate mostly in intracellular compartments associated to endoplasmic reticulum (ER) and Golgi complex. Virus replication results in abundant viral RNAs and proteins, which are recognized by cellular mechanisms evolved to prevent virus infection, resulting in inflammation and stress responses. Virus RNA molecules are sensed by Toll-like receptors (TLRs), RIG-I-like receptors (RIG-I and MDA5) and RNA-dependent protein kinases (PKR), inducing the production of inflammatory mediators and interferons. Simultaneously, the synthesis of virus RNA and proteins are distinguished in different compartments such as mitochondria, ER and cytoplasmic granules, triggering intracellular stress pathways, including oxidative stress, unfolded protein response pathway, and stress granules assembly. Here, we review the new findings that connect the inflammatory pathways to cellular stress sensors and the strategies of Flaviviridae members to counteract these cellular mechanisms and escape immune response. PMID:27610098

  5. Interplay between Inflammation and Cellular Stress Triggered by Flaviviridae Viruses

    PubMed Central

    Valadão, Ana L. C.; Aguiar, Renato S.; de Arruda, Luciana B.

    2016-01-01

    The Flaviviridae family comprises several human pathogens, including Dengue, Zika, Yellow Fever, West Nile, Japanese Encephalitis viruses, and Hepatitis C Virus. Those are enveloped, single-stranded positive sense RNA viruses, which replicate mostly in intracellular compartments associated to endoplasmic reticulum (ER) and Golgi complex. Virus replication results in abundant viral RNAs and proteins, which are recognized by cellular mechanisms evolved to prevent virus infection, resulting in inflammation and stress responses. Virus RNA molecules are sensed by Toll-like receptors (TLRs), RIG-I-like receptors (RIG-I and MDA5) and RNA-dependent protein kinases (PKR), inducing the production of inflammatory mediators and interferons. Simultaneously, the synthesis of virus RNA and proteins are distinguished in different compartments such as mitochondria, ER and cytoplasmic granules, triggering intracellular stress pathways, including oxidative stress, unfolded protein response pathway, and stress granules assembly. Here, we review the new findings that connect the inflammatory pathways to cellular stress sensors and the strategies of Flaviviridae members to counteract these cellular mechanisms and escape immune response.

  6. Etiology of GVHD: alloreactivity or impaired cellular adaptation?

    PubMed

    Manjili, Masoud H; Toor, Amir A

    2014-01-01

    According to the self-nonself model of immunity, allogeneic T cells are considered as major cause of graft versus host disease (GVHD) following allogeneic stem cell transplantation (SCT). On the other hand, the danger model of immunity suggests that transplant-associated recipient tissue injury rather than donor-derived alloreactive T cells is the main cause of GVHD. What has been less appreciated are the early, both conditioning-dependent and conditioning-independent, events that impair homeostatic cellular adaptations and host-protective immune responses leading to the development of tissue-specific GVHD. The notion of gut injury precipitating in GVHD has been acknowledged by clinicians, with the shift to reduced intensity-conditioning regimens that prevent acute tissue injury and are less disruptive of tissue adaptation to T cell attack. Also, the role of host-protective immune response against pathogens in preventing GVHD has been shown by the lack of severe GVHD in germ free mice as well as an impaired anti-viral immune response during chronic GVHD. This article provides a brief review of the literature on GVHD and suggests that transplant-induced dysregulation of the protective immune response in the recipient of SCT is more important than allogeneic T cells in causing GVHD. PMID:25296238

  7. Altruism, cheating, and anticheater adaptations in cellular slime molds.

    PubMed

    Hudson, Richard Ellis; Aukema, Juliann Eve; Rispe, Claude; Roze, Denis

    2002-07-01

    Cellular slime molds (CSMs) possess a remarkable life cycle that encompasses an extreme act of altruism. CSM cells live as individual amoebae until starved, then aggregate and ultimately transform themselves into a multicellular fruiting body. This fruiting body consists of stalk cells (altruists that eventually die) and spores (the beneficiaries of this sacrifice). Altruistic systems such as this are vulnerable to cheaters, which are individuals unrelated to the altruists that obtain the benefits provided by them without reciprocating. Here, we investigate two forces that can maintain CSM altruism despite cheating: kin selection and anticheater adaptations. First, we present new kinship-based models based on CSM developmental biology to evaluate the efficacy of kin selection. These models show that stalk-making genotypes can still be maintained when aggregations are initiated by multiple "founder" spores, provided that spores of stalkless fruiting bodies have low rates of dispersal and dispersal success is a concave function of stalk height. Second, we review proposals that several features of CSM development, such as the chemical suppression of the redifferentiation of prestalk cells into prespores, act as anticheater adaptations.

  8. Aneuploidy-induced cellular stresses limit autophagic degradation

    PubMed Central

    Santaguida, Stefano; Vasile, Eliza; White, Eileen; Amon, Angelika

    2015-01-01

    An unbalanced karyotype, a condition known as aneuploidy, has a profound impact on cellular physiology and is a hallmark of cancer. Aneuploid cells experience a number of stresses that are caused by aneuploidy-induced proteomic changes. How the aneuploidy-associated stresses affect cells and whether cells respond to them are only beginning to be understood. Here we show that autophagosomal cargo such as protein aggregates accumulate within lysosomes in aneuploid cells. This causes a lysosomal stress response. Aneuploid cells activate the transcription factor TFEB, a master regulator of autophagic and lysosomal gene expression, thereby increasing the expression of genes needed for autophagy-mediated protein degradation. Accumulation of autophagic cargo within the lysosome and activation of TFEB-responsive genes are also observed in cells in which proteasome function is inhibited, suggesting that proteotoxic stress causes TFEB activation. Our results reveal a TFEB-mediated lysosomal stress response as a universal feature of the aneuploid state. PMID:26404941

  9. HCV Causes Chronic Endoplasmic Reticulum Stress Leading to Adaptation and Interference with the Unfolded Protein Response

    PubMed Central

    Merquiol, Emmanuelle; Uzi, Dotan; Mueller, Tobias; Goldenberg, Daniel; Nahmias, Yaakov; Xavier, Ramnik J.

    2011-01-01

    Background The endoplasmic reticulum (ER) is the cellular site for protein folding. ER stress occurs when protein folding capacity is exceeded. This stress induces a cyto-protective signaling cascades termed the unfolded protein response (UPR) aimed at restoring homeostasis. While acute ER stress is lethal, chronic sub-lethal ER stress causes cells to adapt by attenuation of UPR activation. Hepatitis C virus (HCV), a major human pathogen, was shown to cause ER stress, however it is unclear whether HCV induces chronic ER stress, and if so whether adaptation mechanisms are initiated. We wanted to characterize the kinetics of HCV-induced ER stress during infection and assess adaptation mechanisms and their significance. Methods and Findings The HuH7.5.1 cellular system and HCV-transgenic (HCV-Tg) mice were used to characterize HCV-induced ER stress/UPR pathway activation and adaptation. HCV induced a wave of acute ER stress peaking 2–5 days post-infection, which rapidly subsided thereafter. UPR pathways were activated including IRE1 and EIF2α phosphorylation, ATF6 cleavage and XBP-1 splicing. Downstream target genes including GADD34, ERdj4, p58ipk, ATF3 and ATF4 were upregulated. CHOP, a UPR regulated protein was activated and translocated to the nucleus. Remarkably, UPR activity did not return to baseline but remained elevated for up to 14 days post infection suggesting that chronic ER stress is induced. At this time, cells adapted to ER stress and were less responsive to further drug-induced ER stress. Similar results were obtained in HCV-Tg mice. Suppression of HCV by Interferon-α 2a treatment, restored UPR responsiveness to ER stress tolerant cells. Conclusions Our study shows, for the first time, that HCV induces adaptation to chronic ER stress which was reversed upon viral suppression. These finding represent a novel viral mechanism to manipulate cellular response pathways. PMID:21949742

  10. Cellular stress response pathways and ageing: intricate molecular relationships

    PubMed Central

    Kourtis, Nikos; Tavernarakis, Nektarios

    2011-01-01

    Ageing is driven by the inexorable and stochastic accumulation of damage in biomolecules vital for proper cellular function. Although this process is fundamentally haphazard and uncontrollable, senescent decline and ageing is broadly influenced by genetic and extrinsic factors. Numerous gene mutations and treatments have been shown to extend the lifespan of diverse organisms ranging from the unicellular Saccharomyces cerevisiae to primates. It is becoming increasingly apparent that most such interventions ultimately interface with cellular stress response mechanisms, suggesting that longevity is intimately related to the ability of the organism to effectively cope with both intrinsic and extrinsic stress. Here, we survey the molecular mechanisms that link ageing to main stress response pathways, and mediate age-related changes in the effectiveness of the response to stress. We also discuss how each pathway contributes to modulate the ageing process. A better understanding of the dynamics and reciprocal interplay between stress responses and ageing is critical for the development of novel therapeutic strategies that exploit endogenous stress combat pathways against age-associated pathologies. PMID:21587205

  11. Systemic Cold Stress Adaptation of Chlamydomonas reinhardtii*

    PubMed Central

    Valledor, Luis; Furuhashi, Takeshi; Hanak, Anne-Mette; Weckwerth, Wolfram

    2013-01-01

    Chlamydomonas reinhardtii is one of the most important model organisms nowadays phylogenetically situated between higher plants and animals (Merchant et al. 2007). Stress adaptation of this unicellular model algae is in the focus because of its relevance to biomass and biofuel production. Here, we have studied cold stress adaptation of C. reinhardtii hitherto not described for this algae whereas intensively studied in higher plants. Toward this goal, high throughput mass spectrometry was employed to integrate proteome, metabolome, physiological and cell-morphological changes during a time-course from 0 to 120 h. These data were complemented with RT-qPCR for target genes involved in central metabolism, signaling, and lipid biosynthesis. Using this approach dynamics in central metabolism were linked to cold-stress dependent sugar and autophagy pathways as well as novel genes in C. reinhardtii such as CKIN1, CKIN2 and a hitherto functionally not annotated protein named CKIN3. Cold stress affected extensively the physiology and the organization of the cell. Gluconeogenesis and starch biosynthesis pathways are activated leading to a pronounced starch and sugar accumulation. Quantitative lipid profiles indicate a sharp decrease in the lipophilic fraction and an increase in polyunsaturated fatty acids suggesting this as a mechanism of maintaining membrane fluidity. The proteome is completely remodeled during cold stress: specific candidates of the ribosome and the spliceosome indicate altered biosynthesis and degradation of proteins important for adaptation to low temperatures. Specific proteasome degradation may be mediated by the observed cold-specific changes in the ubiquitinylation system. Sparse partial least squares regression analysis was applied for protein correlation network analysis using proteins as predictors and Fv/Fm, FW, total lipids, and starch as responses. We applied also Granger causality analysis and revealed correlations between proteins and

  12. Cellular stress response and innate immune signaling: integrating pathways in host defense and inflammation

    PubMed Central

    Muralidharan, Sujatha; Mandrekar, Pranoti

    2013-01-01

    Extensive research in the past decade has identified innate immune recognition receptors and intracellular signaling pathways that culminate in inflammatory responses. Besides its role in cytoprotection, the importance of cell stress in inflammation and host defense against pathogens is emerging. Recent studies have shown that proteins in cellular stress responses, including the heat shock response, ER stress response, and DNA damage response, interact with and regulate signaling intermediates involved in the activation of innate and adaptive immune responses. The effect of such regulation by cell stress proteins may dictate the inflammatory profile of the immune response during infection and disease. In this review, we describe the regulation of innate immune cell activation by cell stress pathways, present detailed descriptions of the types of stress response proteins and their crosstalk with immune signaling intermediates that are essential in host defense, and illustrate the relevance of these interactions in diseases characteristic of aberrant immune responses, such as chronic inflammatory diseases, autoimmune disorders, and cancer. Understanding the crosstalk between cellular stress proteins and immune signaling may have translational implications for designing more effective regimens to treat immune disorders. PMID:23990626

  13. Silymarin Suppresses Cellular Inflammation By Inducing Reparative Stress Signaling

    SciTech Connect

    Lovelace, Erica S.; Wagoner, Jessica; MacDonald, James; Bammler, Theo; Bruckner, Jacob; Brownell, Jessica; Beyer, Richard; Zink, Erika M.; Kim, Young-Mo; Kyle, Jennifer E.; Webb-Robertson, Bobbie-Jo M.; Waters, Katrina M.; Metz, Thomas O.; Farin, Federico; Oberlies, Nicholas H.; Polyak, Steve

    2015-08-28

    Silymarin (SM), a natural product, is touted as a liver protectant and preventer of both chronic inflammation and diseases. To define how SM elicits these effects at a systems level, we performed transcriptional profiling, metabolomics, and signaling studies in human liver and T cell lines. Multiple pathways associated with cellular stress and metabolism were modulated by SM treatment within 0.5 to four hours: activation of Activating Transcription Factor 4 (ATF-4) and adenosine monophosphate protein kinase (AMPK) and inhibition of mammalian target of rapamycin (mTOR) signaling, the latter being associated with induction of DNA-damage-inducible transcript 4 (DDIT4). Metabolomics analyses revealed suppression of glycolytic, TCA cycle, and amino acid metabolism by SM treatment. Antiinflammatory effects arose with prolonged (i.e. 24 hours) SM exposure, with suppression of multiple proinflammatory mRNAs and nuclear factor kappa B (NF-κB) and forkhead box O (FOXO) signaling. Studies with murine knock out cells revealed that SM inhibition of both mTOR and NF-κB was partially AMPK dependent, while SM inhibition of the mTOR pathway in part required DDIT4. Thus, SM activates stress and repair responses that culminate in an anti-inflammatory phenotype. Other natural products induced similar stress responses, which correlated with their ability to suppress inflammation. Therefore, natural products like SM may be useful as tools to define how metabolic, stress, and repair pathways regulate cellular inflammation.

  14. Platinum nanozymes recover cellular ROS homeostasis in an oxidative stress-mediated disease model

    NASA Astrophysics Data System (ADS)

    Moglianetti, Mauro; de Luca, Elisa; Pedone, Deborah; Marotta, Roberto; Catelani, Tiziano; Sartori, Barbara; Amenitsch, Heinz; Retta, Saverio Francesco; Pompa, Pier Paolo

    2016-02-01

    In recent years, the use of nanomaterials as biomimetic enzymes has attracted great interest. In this work, we show the potential of biocompatible platinum nanoparticles (Pt NPs) as antioxidant nanozymes, which combine abundant cellular internalization and efficient scavenging activity of cellular reactive oxygen species (ROS), thus simultaneously integrating the functions of nanocarriers and antioxidant drugs. Careful toxicity assessment and intracellular tracking of Pt NPs proved their cytocompatibility and high cellular uptake, with compartmentalization within the endo/lysosomal vesicles. We have demonstrated that Pt NPs possess strong and broad antioxidant properties, acting as superoxide dismutase, catalase, and peroxidase enzymes, with similar or even superior performance than natural enzymes, along with higher adaptability to the changes in environmental conditions. We then exploited their potent activity as radical scavenging materials in a cellular model of an oxidative stress-related disorder, namely human Cerebral Cavernous Malformation (CCM) disease, which is associated with a significant increase in intracellular ROS levels. Noteworthily, we found that Pt nanozymes can efficiently reduce ROS levels, completely restoring the cellular physiological homeostasis.In recent years, the use of nanomaterials as biomimetic enzymes has attracted great interest. In this work, we show the potential of biocompatible platinum nanoparticles (Pt NPs) as antioxidant nanozymes, which combine abundant cellular internalization and efficient scavenging activity of cellular reactive oxygen species (ROS), thus simultaneously integrating the functions of nanocarriers and antioxidant drugs. Careful toxicity assessment and intracellular tracking of Pt NPs proved their cytocompatibility and high cellular uptake, with compartmentalization within the endo/lysosomal vesicles. We have demonstrated that Pt NPs possess strong and broad antioxidant properties, acting as superoxide

  15. The role of time delay in adaptive cellular negative feedback systems.

    PubMed

    Lapytsko, Anastasiya; Schaber, Jörg

    2016-06-01

    Adaptation in cellular systems is often mediated by negative feedbacks, which usually come with certain time delays causing several characteristic response patterns including an overdamped response, damped or sustained oscillations. Here, we analyse generic two-dimensional delay differential equations with delayed negative feedback describing the dynamics of biochemical adaptive signal-response networks. We derive explicit thresholds and boundaries showing how time delay determines characteristic response patterns of these networks. Applying our theoretical analyses to concrete data we show that adaptation to osmotic stress in yeast is optimal in the sense of minimizing adaptation time without causing oscillatory behaviour, i.e., a critically damped response. In addition, our framework demonstrates that a slight increase of time delay in the NF-κB system might induce a switch from damped to sustained oscillatory behaviour. Thus, we demonstrate how delay differential equations can be used to explicitly study the delay in biochemical negative feedback systems. Our analysis also provides insight into how time delay may tune biological signal-response patterns and control the systems behaviour.

  16. The Adaptive Calibration Model of stress responsivity

    PubMed Central

    Ellis, Bruce J.; Shirtcliff, Elizabeth A.

    2010-01-01

    This paper presents the Adaptive Calibration Model (ACM), an evolutionary-developmental theory of individual differences in the functioning of the stress response system. The stress response system has three main biological functions: (1) to coordinate the organism’s allostatic response to physical and psychosocial challenges; (2) to encode and filter information about the organism’s social and physical environment, mediating the organism’s openness to environmental inputs; and (3) to regulate the organism’s physiology and behavior in a broad range of fitness-relevant areas including defensive behaviors, competitive risk-taking, learning, attachment, affiliation and reproductive functioning. The information encoded by the system during development feeds back on the long-term calibration of the system itself, resulting in adaptive patterns of responsivity and individual differences in behavior. Drawing on evolutionary life history theory, we build a model of the development of stress responsivity across life stages, describe four prototypical responsivity patterns, and discuss the emergence and meaning of sex differences. The ACM extends the theory of biological sensitivity to context (BSC) and provides an integrative framework for future research in the field. PMID:21145350

  17. Cellular redox regulation, signaling, and stress response in plants.

    PubMed

    Shigeoka, Shigeru; Maruta, Takanori

    2014-01-01

    Cellular and organellar redox states, which are characterized by the balance between oxidant and antioxidant pool sizes, play signaling roles in the regulation of gene expression and protein function in a wide variety of plant physiological processes including stress acclimation. Reactive oxygen species (ROS) and ascorbic acid (AsA) are the most abundant oxidants and antioxidants, respectively, in plant cells; therefore, the metabolism of these redox compounds must be strictly and spatiotemporally controlled. In this review, we provided an overview of our previous studies as well as recent advances in (1) the molecular mechanisms and regulation of AsA biosynthesis, (2) the molecular and genetic properties of ascorbate peroxidases, and (3) stress acclimation via ROS-derived oxidative/redox signaling pathways, and discussed future perspectives in this field.

  18. Regulation of myokine expression: Role of exercise and cellular stress.

    PubMed

    Ost, Mario; Coleman, Verena; Kasch, Juliane; Klaus, Susanne

    2016-09-01

    Exercise training is well known to improve physical fitness and to combat chronic diseases and aging related disorders. Part of this is thought to be mediated by myokines, muscle derived secretory proteins (mainly cytokines) that elicit auto/paracrine but also endocrine effects on organs such as liver, adipose tissue, and bone. Today, several hundred potential myokines have been identified most of them not exclusive to muscle cells. Strenuous exercise is associated with increased production of free radicals and reactive oxidant species (ROS) as well as endoplasmic reticulum (ER)-stress which at an excessive level can lead to muscle damage and cell death. On the other hand, transient elevations in oxidative and ER-stress are thought to be necessary for adaptive improvements by regular exercise through a hormesis action termed mitohormesis since mitochondria are essential for the generation of energy and tightly connected to ER- and oxidative stress. Exercise induced myokines have been identified by various in vivo and in vitro approaches and accumulating evidence suggests that ROS and ER-stress linked pathways are involved in myokine induction. For example, interleukin (IL)-6, the prototypic exercise myokine is also induced by oxidative and ER-stress. Exercise induced expression of some myokines such as irisin and meteorin-like is linked to the transcription factor PGC-1α and apparently not related to ER-stress whereas typical ER-stress induced cytokines such as FGF-21 and GDF-15 are not exercise myokines under normal physiological conditions. Recent technological advances have led to the identification of numerous potential new myokines but for most of them regulation by oxidative and ER-stress still needs to be unraveled.

  19. Activation of the hypothalamic-pituitary-adrenal stress axis induces cellular oxidative stress

    PubMed Central

    Spiers, Jereme G.; Chen, Hsiao-Jou Cortina; Sernia, Conrad; Lavidis, Nickolas A.

    2015-01-01

    Glucocorticoids released from the adrenal gland in response to stress-induced activation of the hypothalamic-pituitary-adrenal (HPA) axis induce activity in the cellular reduction-oxidation (redox) system. The redox system is a ubiquitous chemical mechanism allowing the transfer of electrons between donor/acceptors and target molecules during oxidative phosphorylation while simultaneously maintaining the overall cellular environment in a reduced state. The objective of this review is to present an overview of the current literature discussing the link between HPA axis-derived glucocorticoids and increased oxidative stress, particularly focussing on the redox changes observed in the hippocampus following glucocorticoid exposure. PMID:25646076

  20. Distinct 5′ UTRs regulate XIAP expression under normal growth conditions and during cellular stress

    PubMed Central

    Riley, Alura; Jordan, Lindsay E.; Holcik, Martin

    2010-01-01

    X-chromosome linked inhibitor of apoptosis, XIAP, is cellular caspase inhibitor and a key regulator of apoptosis. We and others have previously shown that XIAP expression is regulated primarily at the level of protein synthesis; the 5′ untranslated region (UTR) of XIAP mRNA contains an Internal Ribosome Entry Site (IRES) that supports cap-independent expression of XIAP protein during conditions of pathophysiological stress, such as serum deprivation or gamma irradiation. Here, we show that XIAP is encoded by two distinct mRNAs that differ in their 5′ UTRs. We further show that the dominant, shorter, 5′ UTR promotes a basal level of XIAP expression under normal growth conditions. In contrast, the less abundant longer 5′ UTR contains an IRES and supports cap-independent translation during stress. Our data suggest that the combination of alternate regulatory regions and distinct translational initiation modes is critical in maintaining XIAP levels in response to cellular stress and may represent a general mechanism of cellular adaptation. PMID:20385593

  1. Cellular respiration: the nexus of stress, condition, and ornamentation.

    PubMed

    Hill, Geoffrey E

    2014-10-01

    A fundamental hypothesis for the evolution and maintenance of ornamental traits is that ornaments convey information to choosing females about the quality of prospective mates. A diverse array of ornaments (e.g., colors, morphological features, and behaviors) has been associated with a wide range of measures of individual quality, but decades of study of such indicator traits have failed to produce general mechanisms of honest signaling. Here, I propose that efficiency of cellular respiration, as a product of mitochondrial function, underlies the associations between ornamentation and performance for a broad range of traits across taxa. A large biomedical literature documents the fundamental biochemical links between oxidative phosphorylation (OXPHOS) and the production of reactive oxygen species (ROS), the process of metabolism, the function of the immune system, the synthesis of proteins, and the development and function of the nervous system. The production of virtually all ornaments whose expressions have been demonstrated to be condition-dependent is directly affected by the efficiency of cellular respiration, suggesting that the signaling of respiratory efficiency may be the primary function of such traits. Furthermore, the production of ornaments links to stress-response systems, including particularly the neuroendocrine system, through mitochondrial function, thereby makes ornamental traits effective signals of the capacity to withstand environmental perturbations. The identification of a unifying mechanism of honest signaling holds the potential to connect many heretofore-disparate fields of study related to stress and ornamentation, including neuroendocrinology, respiratory physiology, metabolic physiology, and immunology. PMID:24791751

  2. Ubiquitin-proteasome pathway and cellular responses to oxidative stress

    PubMed Central

    Taylor, Allen

    2011-01-01

    The ubiquitin-proteasome pathway (UPP) is the primary cytosolic proteolytic machinery for the selective degradation of various forms of damaged proteins. Thus, the UPP is an important protein quality control mechanism. In the canonical UPP, both ubiquitin and the 26S proteasome are involved. Substrate proteins of the canonical UPP are first tagged by multiple ubiquitin molecules and then degraded by the 26S proteasome. However, in non-canonical UPP, proteins can be degraded by the 26S or the 20S proteasome without being ubiquitinated. It is clear that a proteasome is responsible for selective degradation of oxidized proteins, but the extent to which ubiquitination is involved in this process remains a subject of debate. While many publications suggest that the 20S proteasome degrades oxidized proteins independent of ubiquitin, there is also solid evidence indicating that ubiquitin and ubiquitination are involved in degradation of some forms of oxidized proteins. A fully functional UPP is required for cells to cope with oxidative stress and the activity of the UPP is also modulated by cellular redox status. Mild or transient oxidative stress up-regulates the ubiquitination system and proteasome activity in cells and tissues and transiently enhances intracellular proteolysis. Severe or sustained oxidative stress impairs the function of the UPP and decreases intracellular proteolysis. Both the ubiquitin conjugation enzymes and the proteasome can be inactivated by sustained oxidative stress, especially the 26S proteasome. Differential susceptibilities of the ubiquitin conjugation enzymes and the 26S proteasome to oxidative damage lead to an accumulation of ubiquitin conjugates in cells in response to mild oxidative stress. Thus, increased levels of ubiquitin conjugates in cells appear to be an indicator of mild oxidative stress. PMID:21530648

  3. Cellular Memory of Acquired Stress Resistance in Saccharomyces cerevisiae

    PubMed Central

    Guan, Qiaoning; Haroon, Suraiya; Bravo, Diego González; Will, Jessica L.; Gasch, Audrey P.

    2012-01-01

    Cellular memory of past experiences has been observed in several organisms and across a variety of experiences, including bacteria “remembering” prior nutritional status and amoeba “learning” to anticipate future environmental conditions. Here, we show that Saccharomyces cerevisiae maintains a multifaceted memory of prior stress exposure. We previously demonstrated that yeast cells exposed to a mild dose of salt acquire subsequent tolerance to severe doses of H2O2. We set out to characterize the retention of acquired tolerance and in the process uncovered two distinct aspects of cellular memory. First, we found that H2O2 resistance persisted for four to five generations after cells were removed from the prior salt treatment and was transmitted to daughter cells that never directly experienced the pretreatment. Maintenance of this memory did not require nascent protein synthesis after the initial salt pretreatment, but rather required long-lived cytosolic catalase Ctt1p that was synthesized during salt exposure and then distributed to daughter cells during subsequent cell divisions. In addition to and separable from the memory of H2O2 resistance, these cells also displayed a faster gene-expression response to subsequent stress at >1000 genes, representing transcriptional memory. The faster gene-expression response requires the nuclear pore component Nup42p and serves an important function by facilitating faster reacquisition of H2O2 tolerance after a second cycle of salt exposure. Memory of prior stress exposure likely provides a significant advantage to microbial populations living in ever-changing environments. PMID:22851651

  4. Cellular memory of acquired stress resistance in Saccharomyces cerevisiae.

    PubMed

    Guan, Qiaoning; Haroon, Suraiya; Bravo, Diego González; Will, Jessica L; Gasch, Audrey P

    2012-10-01

    Cellular memory of past experiences has been observed in several organisms and across a variety of experiences, including bacteria "remembering" prior nutritional status and amoeba "learning" to anticipate future environmental conditions. Here, we show that Saccharomyces cerevisiae maintains a multifaceted memory of prior stress exposure. We previously demonstrated that yeast cells exposed to a mild dose of salt acquire subsequent tolerance to severe doses of H(2)O(2). We set out to characterize the retention of acquired tolerance and in the process uncovered two distinct aspects of cellular memory. First, we found that H(2)O(2) resistance persisted for four to five generations after cells were removed from the prior salt treatment and was transmitted to daughter cells that never directly experienced the pretreatment. Maintenance of this memory did not require nascent protein synthesis after the initial salt pretreatment, but rather required long-lived cytosolic catalase Ctt1p that was synthesized during salt exposure and then distributed to daughter cells during subsequent cell divisions. In addition to and separable from the memory of H(2)O(2) resistance, these cells also displayed a faster gene-expression response to subsequent stress at >1000 genes, representing transcriptional memory. The faster gene-expression response requires the nuclear pore component Nup42p and serves an important function by facilitating faster reacquisition of H(2)O(2) tolerance after a second cycle of salt exposure. Memory of prior stress exposure likely provides a significant advantage to microbial populations living in ever-changing environments. PMID:22851651

  5. Adaptive array antenna for satellite cellular and direct broadcast communications

    NASA Technical Reports Server (NTRS)

    Horton, Charles R.; Abend, Kenneth

    1993-01-01

    Adaptive phased-array antennas provide cost-effective implementation of large, light weight apertures with high directivity and precise beamshape control. Adaptive self-calibration allows for relaxation of all mechanical tolerances across the aperture and electrical component tolerances, providing high performance with a low-cost, lightweight array, even in the presence of large physical distortions. Beam-shape is programmable and adaptable to changes in technical and operational requirements. Adaptive digital beam-forming eliminates uplink contention by allowing a single electronically steerable antenna to service a large number of receivers with beams which adaptively focus on one source while eliminating interference from others. A large, adaptively calibrated and fully programmable aperture can also provide precise beam shape control for power-efficient direct broadcast from space. Advanced adaptive digital beamforming technologies are described for: (1) electronic compensation of aperture distortion, (2) multiple receiver adaptive space-time processing, and (3) downlink beam-shape control. Cost considerations for space-based array applications are also discussed.

  6. Adaptation in Bacillus cereus: From Stress to Disease

    PubMed Central

    Duport, Catherine; Jobin, Michel; Schmitt, Philippe

    2016-01-01

    Bacillus cereus is a food-borne pathogen that causes diarrheal disease in humans. After ingestion, B. cereus experiences in the human gastro-intestinal tract abiotic physical variables encountered in food, such as acidic pH in the stomach and changing oxygen conditions in the human intestine. B. cereus responds to environmental changing conditions (stress) by reversibly adjusting its physiology to maximize resource utilization while maintaining structural and genetic integrity by repairing and minimizing damage to cellular infrastructure. As reviewed in this article, B. cereus adapts to acidic pH and changing oxygen conditions through diverse regulatory mechanisms and then exploits its metabolic flexibility to grow and produce enterotoxins. We then focus on the intricate link between metabolism, redox homeostasis, and enterotoxins, which are recognized as important contributors of food-borne disease. PMID:27757102

  7. Pairing of heterochromatin in response to cellular stress

    SciTech Connect

    Abdel-Halim, H.I.; Mullenders, L.H.F. . E-mail: L.Mullenders@lumc.nl; Boei, J.J.W.A.

    2006-07-01

    We previously reported that exposure of human cells to DNA-damaging agents (X-rays and mitomycin C (MMC)) induces pairing of the homologous paracentromeric heterochromatin of chromosome 9 (9q12-13). Here, we show that UV irradiation and also heat shock treatment of human cells lead to similar effects. Since the various agents induce very different types and frequencies of damage to cellular constituents, the data suggest a general stress response as the underlying mechanism. Moreover, local UV irradiation experiments revealed that pairing of heterochromatin is an event that can be triggered without induction of DNA damage in the heterochromatic sequences. The repair deficient xeroderma pigmentosum cells (group F) previously shown to fail pairing after MMC displayed elevated pairing after heat shock treatment but not after UV exposure. Taken together, the present results indicate that pairing of heterochromatin following exposure to DNA-damaging agents is initiated by a general stress response and that the sensing of stress or the maintenance of the paired status of the heterochromatin might be dependent on DNA repair.

  8. MOF maintains transcriptional programs regulating cellular stress response.

    PubMed

    Sheikh, B N; Bechtel-Walz, W; Lucci, J; Karpiuk, O; Hild, I; Hartleben, B; Vornweg, J; Helmstädter, M; Sahyoun, A H; Bhardwaj, V; Stehle, T; Diehl, S; Kretz, O; Voss, A K; Thomas, T; Manke, T; Huber, T B; Akhtar, A

    2016-05-01

    MOF (MYST1, KAT8) is the major H4K16 lysine acetyltransferase (KAT) in Drosophila and mammals and is essential for embryonic development. However, little is known regarding the role of MOF in specific cell lineages. Here we analyze the differential role of MOF in proliferating and terminally differentiated tissues at steady state and under stress conditions. In proliferating cells, MOF directly binds and maintains the expression of genes required for cell cycle progression. In contrast, MOF is dispensable for terminally differentiated, postmitotic glomerular podocytes under physiological conditions. However, in response to injury, MOF is absolutely critical for podocyte maintenance in vivo. Consistently, we detect defective nuclear, endoplasmic reticulum and Golgi structures, as well as presence of multivesicular bodies in vivo in podocytes lacking Mof following injury. Undertaking genome-wide expression analysis of podocytes, we uncover several MOF-regulated pathways required for stress response. We find that MOF, along with the members of the non-specific lethal but not the male-specific lethal complex, directly binds to genes encoding the lysosome, endocytosis and vacuole pathways, which are known regulators of podocyte maintenance. Thus, our work identifies MOF as a key regulator of cellular stress response in glomerular podocytes. PMID:26387537

  9. MOF maintains transcriptional programs regulating cellular stress response

    PubMed Central

    Sheikh, B N; Bechtel-Walz, W; Lucci, J; Karpiuk, O; Hild, I; Hartleben, B; Vornweg, J; Helmstädter, M; Sahyoun, A H; Bhardwaj, V; Stehle, T; Diehl, S; Kretz, O; Voss, A K; Thomas, T; Manke, T; Huber, T B; Akhtar, A

    2016-01-01

    MOF (MYST1, KAT8) is the major H4K16 lysine acetyltransferase (KAT) in Drosophila and mammals and is essential for embryonic development. However, little is known regarding the role of MOF in specific cell lineages. Here we analyze the differential role of MOF in proliferating and terminally differentiated tissues at steady state and under stress conditions. In proliferating cells, MOF directly binds and maintains the expression of genes required for cell cycle progression. In contrast, MOF is dispensable for terminally differentiated, postmitotic glomerular podocytes under physiological conditions. However, in response to injury, MOF is absolutely critical for podocyte maintenance in vivo. Consistently, we detect defective nuclear, endoplasmic reticulum and Golgi structures, as well as presence of multivesicular bodies in vivo in podocytes lacking Mof following injury. Undertaking genome-wide expression analysis of podocytes, we uncover several MOF-regulated pathways required for stress response. We find that MOF, along with the members of the non-specific lethal but not the male-specific lethal complex, directly binds to genes encoding the lysosome, endocytosis and vacuole pathways, which are known regulators of podocyte maintenance. Thus, our work identifies MOF as a key regulator of cellular stress response in glomerular podocytes. PMID:26387537

  10. Mitochondria, Energetics, Epigenetics, and Cellular Responses to Stress

    PubMed Central

    McAllister, Kimberly; Worth, Leroy; Haugen, Astrid C.; Meyer, Joel N.; Domann, Frederick E.; Van Houten, Bennett; Mostoslavsky, Raul; Bultman, Scott J.; Baccarelli, Andrea A.; Begley, Thomas J.; Sobol, Robert W.; Hirschey, Matthew D.; Ideker, Trey; Santos, Janine H.; Copeland, William C.; Tice, Raymond R.; Balshaw, David M.; Tyson, Frederick L.

    2014-01-01

    Background: Cells respond to environmental stressors through several key pathways, including response to reactive oxygen species (ROS), nutrient and ATP sensing, DNA damage response (DDR), and epigenetic alterations. Mitochondria play a central role in these pathways not only through energetics and ATP production but also through metabolites generated in the tricarboxylic acid cycle, as well as mitochondria–nuclear signaling related to mitochondria morphology, biogenesis, fission/fusion, mitophagy, apoptosis, and epigenetic regulation. Objectives: We investigated the concept of bidirectional interactions between mitochondria and cellular pathways in response to environmental stress with a focus on epigenetic regulation, and we examined DNA repair and DDR pathways as examples of biological processes that respond to exogenous insults through changes in homeostasis and altered mitochondrial function. Methods: The National Institute of Environmental Health Sciences sponsored the Workshop on Mitochondria, Energetics, Epigenetics, Environment, and DNA Damage Response on 25–26 March 2013. Here, we summarize key points and ideas emerging from this meeting. Discussion: A more comprehensive understanding of signaling mechanisms (cross-talk) between the mitochondria and nucleus is central to elucidating the integration of mitochondrial functions with other cellular response pathways in modulating the effects of environmental agents. Recent studies have highlighted the importance of mitochondrial functions in epigenetic regulation and DDR with environmental stress. Development and application of novel technologies, enhanced experimental models, and a systems-type research approach will help to discern how environmentally induced mitochondrial dysfunction affects key mechanistic pathways. Conclusions: Understanding mitochondria–cell signaling will provide insight into individual responses to environmental hazards, improving prediction of hazard and susceptibility to

  11. Costs, benefits and redundant mechanisms of adaption to chronic low-dose stress in yeast

    PubMed Central

    Markiewicz-Potoczny, Marta; Lydall, David

    2016-01-01

    ABSTRACT All organisms live in changeable, stressful environments. It has been reported that exposure to low-dose stresses or poisons can improve fitness. However, examining the effects of chronic low-dose chemical exposure is challenging. To address this issue we used temperature sensitive mutations affecting the yeast cell division cycle to induce low-dose stress for 40 generation times, or more. We examined cdc13-1 mutants, defective in telomere function, and cdc15-2 mutants, defective in mitotic kinase activity. We found that each stress induced similar adaptive responses. Stress-exposed cells became resistant to higher levels of stress but less fit, in comparison with unstressed cells, in conditions of low stress. The costs and benefits of adaptation to chronic stress were reversible. In the cdc13-1 context we tested the effects of Rad9, a central player in the response to telomere defects, Exo1, a nuclease that degrades defective telomeres, and Msn2 and Msn4, 2 transcription factors that contribute to the environmental stress response. We also observed, as expected, that Rad9 and Exo1 modulated the response of cells to stress. In addition we observed that adaptation to stress could still occur in these contexts, with associated costs and benefits. We conclude that functionally redundant cellular networks control the adaptive responses to low dose chronic stress. Our data suggests that if organisms adapt to low dose stress it is helpful if stress continues or increases but harmful should stress levels reduce. PMID:27628486

  12. Tumor suppressor BTG1 promotes PRMT1-mediated ATF4 function in response to cellular stress

    PubMed Central

    Tijchon, Esther; van Ingen Schenau, Dorette; van Emst, Liesbeth; Levers, Marloes; Palit, Sander A.L.; Rodenbach, Caroline; Poelmans, Geert; Hoogerbrugge, Peter M.; Shan, Jixiu; Kilberg, Michael S.; Scheijen, Blanca; van Leeuwen, Frank N.

    2016-01-01

    Cancer cells are frequently exposed to physiological stress conditions such as hypoxia and nutrient limitation. Escape from stress-induced apoptosis is one of the mechanisms used by malignant cells to survive unfavorable conditions. B-cell Translocation Gene 1 (BTG1) is a tumor suppressor that is frequently deleted in acute lymphoblastic leukemia and recurrently mutated in diffuse large B cell lymphoma. Moreover, low BTG1 expression levels have been linked to poor outcome in several solid tumors. How loss of BTG1 function contributes to tumor progression is not well understood. Here, using Btg1 knockout mice, we demonstrate that loss of Btg1 provides a survival advantage to primary mouse embryonic fibroblasts (MEFs) under stress conditions. This pro-survival effect involves regulation of Activating Transcription Factor 4 (ATF4), a key mediator of cellular stress responses. We show that BTG1 interacts with ATF4 and positively modulates its activity by recruiting the protein arginine methyl transferase PRMT1 to methylate ATF4 on arginine residue 239. We further extend these findings to B-cell progenitors, by showing that loss of Btg1 expression enhances stress adaptation of mouse bone marrow-derived B cell progenitors. In conclusion, we have identified the BTG1/PRMT1 complex as a new modifier of ATF4 mediated stress responses. PMID:26657730

  13. Evolution of adaptation mechanisms: Adaptation energy, stress, and oscillating death.

    PubMed

    Gorban, Alexander N; Tyukina, Tatiana A; Smirnova, Elena V; Pokidysheva, Lyudmila I

    2016-09-21

    In 1938, Selye proposed the notion of adaptation energy and published 'Experimental evidence supporting the conception of adaptation energy.' Adaptation of an animal to different factors appears as the spending of one resource. Adaptation energy is a hypothetical extensive quantity spent for adaptation. This term causes much debate when one takes it literally, as a physical quantity, i.e. a sort of energy. The controversial points of view impede the systematic use of the notion of adaptation energy despite experimental evidence. Nevertheless, the response to many harmful factors often has general non-specific form and we suggest that the mechanisms of physiological adaptation admit a very general and nonspecific description. We aim to demonstrate that Selye׳s adaptation energy is the cornerstone of the top-down approach to modelling of non-specific adaptation processes. We analyze Selye׳s axioms of adaptation energy together with Goldstone׳s modifications and propose a series of models for interpretation of these axioms. Adaptation energy is considered as an internal coordinate on the 'dominant path' in the model of adaptation. The phenomena of 'oscillating death' and 'oscillating remission' are predicted on the base of the dynamical models of adaptation. Natural selection plays a key role in the evolution of mechanisms of physiological adaptation. We use the fitness optimization approach to study of the distribution of resources for neutralization of harmful factors, during adaptation to a multifactor environment, and analyze the optimal strategies for different systems of factors.

  14. Placental ABC transporters, cellular toxicity and stress in pregnancy.

    PubMed

    Aye, Irving L M H; Keelan, Jeffrey A

    2013-04-25

    The human placenta, in addition to its roles as a nutrient transfer and endocrine organ, functions as a selective barrier to protect the fetus against the harmful effects of exogenous and endogenous toxins. Members of the ATP-binding cassette (ABC) family of transport proteins limit the entry of xenobiotics into the fetal circulation via vectorial efflux from the placenta to the maternal circulation. Several members of the ABC family, including proteins from the ABCA, ABCB, ABCC and ABCG subfamilies, have been shown to be functional in the placenta with clinically significant roles in xenobiotic efflux. However, recent findings suggest that these transporters also protect placental tissue by preventing the cellular accumulation of cytotoxic compounds such as lipids, sterols and their derivatives. Such protective functions are likely to be particularly important in pregnancies complicated by inflammatory or oxidative stress, where the generation of toxic metabolites is enhanced. For example, ABC transporters have been shown to protect against the harmful effects of hypoxia and oxidative stress through increased expression and efflux of oxysterols and glutathione conjugated xenobiotics. However, this protective capacity may be diminished in response to the same stressors. Several studies in primary human trophoblast cells and animal models have demonstrated decreased expression and activity of placental ABC transporters with inflammatory, oxidative or metabolic stress. Several clinical studies in pregnancies complicated by inflammatory conditions such as preeclampsia and gestational diabetes support these findings, although further studies are required to determine the clinical relevance of the relationships between placental ABC transporter expression and activity, and placental function in stressed pregnancies. Such studies are necessary to fully understand the consequences of pregnancy disorders on placental function and viability in order to optimise pregnancy

  15. Cellular Stress Responses, The Hormesis Paradigm, and Vitagenes: Novel Targets for Therapeutic Intervention in Neurodegenerative Disorders

    PubMed Central

    Cornelius, Carolin; Dinkova-Kostova, Albena T.; Calabrese, Edward J.; Mattson, Mark P.

    2010-01-01

    Abstract Despite the capacity of chaperones and other homeostatic components to restore folding equilibrium, cells appear poorly adapted for chronic oxidative stress that increases in cancer and in metabolic and neurodegenerative diseases. Modulation of endogenous cellular defense mechanisms represents an innovative approach to therapeutic intervention in diseases causing chronic tissue damage, such as in neurodegeneration. This article introduces the concept of hormesis and its applications to the field of neuroprotection. It is argued that the hormetic dose response provides the central underpinning of neuroprotective responses, providing a framework for explaining the common quantitative features of their dose–response relationships, their mechanistic foundations, and their relationship to the concept of biological plasticity, as well as providing a key insight for improving the accuracy of the therapeutic dose of pharmaceutical agents within the highly heterogeneous human population. This article describes in mechanistic detail how hormetic dose responses are mediated for endogenous cellular defense pathways, including sirtuin and Nrf2 and related pathways that integrate adaptive stress responses in the prevention of neurodegenerative diseases. Particular attention is given to the emerging role of nitric oxide, carbon monoxide, and hydrogen sulfide gases in hormetic-based neuroprotection and their relationship to membrane radical dynamics and mitochondrial redox signaling. Antioxid. Redox Signal. 13, 1763–1811. PMID:20446769

  16. Antioxidant responses and cellular adjustments to oxidative stress

    PubMed Central

    Espinosa-Diez, Cristina; Miguel, Verónica; Mennerich, Daniela; Kietzmann, Thomas; Sánchez-Pérez, Patricia; Cadenas, Susana; Lamas, Santiago

    2015-01-01

    Redox biological reactions are now accepted to bear the Janus faceted feature of promoting both physiological signaling responses and pathophysiological cues. Endogenous antioxidant molecules participate in both scenarios. This review focuses on the role of crucial cellular nucleophiles, such as glutathione, and their capacity to interact with oxidants and to establish networks with other critical enzymes such as peroxiredoxins. We discuss the importance of the Nrf2-Keap1 pathway as an example of a transcriptional antioxidant response and we summarize transcriptional routes related to redox activation. As examples of pathophysiological cellular and tissular settings where antioxidant responses are major players we highlight endoplasmic reticulum stress and ischemia reperfusion. Topologically confined redox-mediated post-translational modifications of thiols are considered important molecular mechanisms mediating many antioxidant responses, whereas redox-sensitive microRNAs have emerged as key players in the posttranscriptional regulation of redox-mediated gene expression. Understanding such mechanisms may provide the basis for antioxidant-based therapeutic interventions in redox-related diseases. PMID:26233704

  17. Oxidative Stress, Redox Regulation and Diseases of Cellular Differentiation

    PubMed Central

    Ye, Zhi-Wei; Zhang, Jie; Townsend, Danyelle M.; Tew, Kenneth D.

    2015-01-01

    Background Within cells, there is a narrow concentration threshold that governs whether reactive oxygen species (ROS) induce toxicity or act as second messengers. Scope of review We discuss current understanding of how ROS arise, facilitate cell signaling, cause toxicities and disease related to abnormal cell differentiation and those (primarily) sulfur based pathways that provide nucleophilicity to offset these effects. Primary conclusions Cellular redox homeostasis mediates a plethora of cellular pathways that determine life and death events. For example, ROS intersect with GSH based enzyme pathways to influence cell differentiation, a process integral to normal hematopoiesis, but also affecting a number of diverse cell differentiation related human diseases. Recent attempts to manage such pathologies have focused on intervening in some of these pathways, with the consequence that differentiation therapy targeting redox homeostasis has provided a platform for drug discovery and development. General Significance The balance between electrophilic oxidative stress and protective biomolecular nucleophiles predisposes the evolution of modern life forms. Imbalances of the two can produce aberrant redox homeostasis with resultant pathologies. Understanding the pathways involved provides opportunities to consider interventional strategies. PMID:25445706

  18. Thioredoxin-dependent Redox Regulation of Cellular Signaling and Stress Response through Reversible Oxidation of Methionines

    SciTech Connect

    Bigelow, Diana J.; Squier, Thomas C.

    2011-06-01

    Generation of reactive oxygen species (ROS) is a common feature of many forms of stress to which plants are exposed. Successful adaptation to changing environmental conditions requires sensitive sensors of ROS such as protein-bound methionines that are converted to their corresponding methionine sulfoxides, which in turn can influence cellular signaling pathways. Such a signaling protein is calmodulin, which represents an early and central point in calcium signaling pathways important to stress response in plants. We describe recent work elucidating fundamental mechanisms of reversible methionine oxidation within calmodulin, including the sensitivity of individual methionines within plant and animal calmodulin to ROS, the structural and functional consequences of their oxidation, and the interactions of oxidized calmodulin with methionine sulfoxide reductase enzymes.

  19. In vivo cellular visualization of the human retina using optical coherence tomography and adaptive optics

    SciTech Connect

    Olivier, S S; Jones, S M; Chen, D C; Zawadzki, R J; Choi, S S; Laut, S P; Werner, J S

    2006-01-05

    Optical coherence tomography (OCT) sees the human retina sharply with adaptive optics. In vivo cellular visualization of the human retina at micrometer-scale resolution is possible by enhancing Fourier-domain optical-coherence tomography with adaptive optics, which compensate for the eye's optical aberrations.

  20. Functional and cellular adaptations of rodent skeletal muscle to weightlessness

    NASA Technical Reports Server (NTRS)

    Caiozzo, Vincent J.; Haddad, Fadia; Baker, Michael J.; Baldwin, Kenneth M.

    1995-01-01

    This paper describes the affects of microgravity upon three key cellular levels (functional, protein, and mRNA) that are linked to one another. It is clear that at each of these levels, microgravity produces rapid and substantial alterations. One of the key challenges facing the life science community is the development of effective countermeasures that prevent the loss of muscle function as described in this paper. The development of optimal countermeasures, however, awaits a clearer understanding of events occurring at the levels of transcription, translation, and degradation.

  1. Molecular and cellular neurocardiology: development, and cellular and molecular adaptations to heart disease.

    PubMed

    Habecker, Beth A; Anderson, Mark E; Birren, Susan J; Fukuda, Keiichi; Herring, Neil; Hoover, Donald B; Kanazawa, Hideaki; Paterson, David J; Ripplinger, Crystal M

    2016-07-15

    The nervous system and cardiovascular system develop in concert and are functionally interconnected in both health and disease. This white paper focuses on the cellular and molecular mechanisms that underlie neural-cardiac interactions during development, during normal physiological function in the mature system, and during pathological remodelling in cardiovascular disease. The content on each subject was contributed by experts, and we hope that this will provide a useful resource for newcomers to neurocardiology as well as aficionados. PMID:27060296

  2. Molecular and cellular neurocardiology: development, and cellular and molecular adaptations to heart disease.

    PubMed

    Habecker, Beth A; Anderson, Mark E; Birren, Susan J; Fukuda, Keiichi; Herring, Neil; Hoover, Donald B; Kanazawa, Hideaki; Paterson, David J; Ripplinger, Crystal M

    2016-07-15

    The nervous system and cardiovascular system develop in concert and are functionally interconnected in both health and disease. This white paper focuses on the cellular and molecular mechanisms that underlie neural-cardiac interactions during development, during normal physiological function in the mature system, and during pathological remodelling in cardiovascular disease. The content on each subject was contributed by experts, and we hope that this will provide a useful resource for newcomers to neurocardiology as well as aficionados.

  3. Exposure to stressful environments - Strategy of adaptive responses

    NASA Technical Reports Server (NTRS)

    Farhi, Leon E.

    1991-01-01

    Stresses such as hypoxia, water lack, and heat exposure can produce strains in more than a single organ system, in turn stimulating the body to adapt in multiple ways. Nevertheless, a general strategy of the various adaptive responses emerges when the challenges are divided into three groups: (1) conditions that affect the supply of essential molecules, (2) stresses that prevent the body from regulating properly the output of waste products such as CO2 and heat, and (3) environments that disrupt body transport systems. Problems may arise when there is a conflict between two stresses requiring conflicting adaptive changes. An alternative to adaptation, creation of microenvironment, is often favored by the animal.

  4. RNA biology and the adaptation of Cryptococcus neoformans to host temperature and stress.

    PubMed

    Bloom, Amanda L M; Panepinto, John C

    2014-01-01

    Cryptococcus neoformans is an environmental fungus that can cause severe disease in humans. C. neoformans encounters a multitude of stresses within the human host to which it must adapt in order to survive and proliferate. Upon stressful changes in the external milieu, C. neoformans must reprogram its gene expression to properly respond to and combat stress in order to maintain homeostasis. Several studies have investigated the changes that occur in response to these stresses to begin to unravel the mechanisms of adaptation in this organism. Here, we review studies that have explored stress-induced changes in gene expression with a focus on host temperature adaptation. We compare global messenger RNA (mRNA) expression data compiled from several studies and identify patterns that suggest that orchestrated, transient responses occur. We also utilize the available expression data to explore the possibility of a common stress response that may contribute to cellular protection against a variety of stresses in C. neoformans. In addition, we review studies that have revealed the significance of post-transcriptional mechanisms of mRNA regulation in response to stress, and discuss how these processes may contribute to adaptation and virulence.

  5. An Asynchronous Cellular Automata-Based Adaptive Illumination Facility

    NASA Astrophysics Data System (ADS)

    Bandini, Stefania; Bonomi, Andrea; Vizzari, Giuseppe; Acconci, Vito

    The term Ambient Intelligence refers to electronic environments that are sensitive and responsive to the presence of people; in the described scenario the environment itself is endowed with a set of sensors (to perceive humans or other physical entities such as dogs, bicycles, etc.), interacting with a set of actuators (lights) that choose their actions (i.e. state of illumination) in an attempt improve the overall experience of these users. The model for the interaction and action of sensors and actuators is an asynchronous Cellular Automata (CA) with memory, supporting a self-organization of the system as a response to the presence and movements of people inside it. The paper will introduce the model, as well as an ad hoc user interface for the specification of the relevant parameters of the CA transition rule that determines the overall system behaviour.

  6. Cellular mechanisms underlying oxidative stress in human exercise.

    PubMed

    Jackson, Malcolm J; Vasilaki, Aphrodite; McArdle, Anne

    2016-09-01

    A relative increase in oxidation of lipids, proteins and DNA has been recognised to occur in the circulation and tissues of exercising humans and animals since the late 1970s and throughout the ensuing 40 years a great deal of work has been undertaken to elucidate the potential source(s) of this exercise-induced "oxidative stress". Specific aspects of physical exercise (e.g. contractile activity, relative hypoxia, hyperaemia) may theoretically induce increased generation of reactive oxygen species in a number of potential tissues, but data strongly indicate that contractile activity of skeletal muscle predominates as the source of oxidants and contributes to local oxidation and that of extracellular biomaterials. Taken together with the relatively large mass of muscle compared with other tissues and cells it appears that muscle fibres are the major contributor to the relative increase in whole body "oxidative stress" during some forms of exercise. The sub-cellular sources of this increased oxidation have also been the subject of considerable research with early studies predominantly indicating that muscle mitochondria were the likely increased source of oxidants, such as hydrogen peroxide, but assessments of the relative concentrations of hydrogen peroxide in skeletal muscle fibres at rest and during contractile activity do not support this possibility. In contrast, several recent studies have identified NADPH oxidase enzymes in skeletal muscle that appear to play a signalling role in physiological responses exercise and together with xanthine oxidase enzymes may contribute to the relative increase in whole body oxidation. A fuller understanding of the relative roles of these sources and the function(s) of the species generated appears increasingly important in attempts to harness the beneficial effects of exercise for maintenance of health in aging and a variety of chronic conditions.

  7. Cellular stress conditions are reflected in the protein and RNA content of endothelial cell-derived exosomes

    PubMed Central

    de Jong, Olivier G.; Verhaar, Marianne C.; Chen, Yong; Vader, Pieter; Gremmels, Hendrik; Posthuma, George; Schiffelers, Raymond M.; Gucek, Marjan; van Balkom, Bas W.M.

    2012-01-01

    Background The healthy vascular endothelium, which forms the barrier between blood and the surrounding tissues, is known to efficiently respond to stress signals like hypoxia and inflammation by adaptation of cellular physiology and the secretion of (soluble) growth factors and cytokines. Exosomes are potent mediators of intercellular communication. Their content consists of RNA and proteins from the cell of origin, and thus depends on the condition of these cells at the time of exosome biogenesis. It has been suggested that exosomes protect their target cells from cellular stress through the transfer of RNA and proteins. We hypothesized that endothelium-derived exosomes are involved in the endothelial response to cellular stress, and that exosome RNA and protein content reflect the effects of cellular stress induced by hypoxia, inflammation or hyperglycemia. Methods We exposed cultured endothelial cells to different types of cellular stress (hypoxia, TNF-α-induced activation, high glucose and mannose concentrations) and compared mRNA and protein content of exosomes produced by these cells by microarray analysis and a quantitative proteomics approach. Results We identified 1,354 proteins and 1,992 mRNAs in endothelial cell-derived exosomes. Several proteins and mRNAs showed altered abundances after exposure of their producing cells to cellular stress, which were confirmed by immunoblot or qPCR analysis. Conclusion Our data show that hypoxia and endothelial activation are reflected in RNA and protein exosome composition, and that exposure to high sugar concentrations alters exosome protein composition only to a minor extend, and does not affect exosome RNA composition. PMID:24009886

  8. Adaptation to different types of stress converge on mitochondrial metabolism.

    PubMed

    Lahtvee, Petri-Jaan; Kumar, Rahul; Hallström, Björn M; Nielsen, Jens

    2016-08-01

    Yeast cell factories encounter physical and chemical stresses when used for industrial production of fuels and chemicals. These stresses reduce productivity and increase bioprocess costs. Understanding the mechanisms of the stress response is essential for improving cellular robustness in platform strains. We investigated the three most commonly encountered industrial stresses for yeast (ethanol, salt, and temperature) to identify the mechanisms of general and stress-specific responses under chemostat conditions in which specific growth rate-dependent changes are eliminated. By applying systems-level analysis, we found that most stress responses converge on mitochondrial processes. Our analysis revealed that stress-specific factors differ between applied stresses; however, they are underpinned by an increased ATP demand. We found that when ATP demand increases to high levels, respiration cannot provide sufficient ATP, leading to onset of respirofermentative metabolism. Although stress-specific factors increase ATP demand for cellular growth under stressful conditions, increased ATP demand for cellular maintenance underpins a general stress response and is responsible for the onset of overflow metabolism.

  9. Adaptation to different types of stress converge on mitochondrial metabolism

    PubMed Central

    Lahtvee, Petri-Jaan; Kumar, Rahul; Hallström, Björn M.; Nielsen, Jens

    2016-01-01

    Yeast cell factories encounter physical and chemical stresses when used for industrial production of fuels and chemicals. These stresses reduce productivity and increase bioprocess costs. Understanding the mechanisms of the stress response is essential for improving cellular robustness in platform strains. We investigated the three most commonly encountered industrial stresses for yeast (ethanol, salt, and temperature) to identify the mechanisms of general and stress-specific responses under chemostat conditions in which specific growth rate–dependent changes are eliminated. By applying systems-level analysis, we found that most stress responses converge on mitochondrial processes. Our analysis revealed that stress-specific factors differ between applied stresses; however, they are underpinned by an increased ATP demand. We found that when ATP demand increases to high levels, respiration cannot provide sufficient ATP, leading to onset of respirofermentative metabolism. Although stress-specific factors increase ATP demand for cellular growth under stressful conditions, increased ATP demand for cellular maintenance underpins a general stress response and is responsible for the onset of overflow metabolism. PMID:27307591

  10. Stress and Adaptation in Later Life.

    ERIC Educational Resources Information Center

    Palmore, Erdman; And Others

    1979-01-01

    Effects of major life events, and of types of resources, on the physical and social-psychological adaptation of participants in a longitudinal study were examined. Medical events had the most impact on physical adaptation but had little impact on social-psychological adaptation. Retirement had the most negative social-psychological effects.…

  11. Contaminant loading in remote Arctic lakes affects cellular stress-related proteins expression in feral charr.

    USGS Publications Warehouse

    Wiseman, Steve; Jorgensen, Even H.; Maule, Alec G.; Vijayan, Mathilakath M.

    2011-01-01

    The remote Arctic lakes on Bjornoya Island, Norway, offer a unique opportunity to study possible affect of lifelong contaminant exposure in wild populations of landlocked Arctic charr (Salvelinus alpinus). This is because Lake Ellasjoen has persistent organic pollutant (POP) levels that are significantly greater than in the nearby Lake Oyangen. We examined whether this differential contaminant loading was reflected in the expression of protein markers of exposure and effect in the native fish. We assessed the expressions of cellular stress markers, including cytochrome P4501A (Cyp1A), heat shock protein 70 (hsp70), and glucocorticoid receptor (GR) in feral charr from the two lakes. The average polychlorinated biphenyl (PCB) load in the charr liver from Ellasjoen was approximately 25-fold higher than in individuals from Oyangen. Liver Cyp1A protein expression was significantly higher in individuals from Ellasjoen compared with Oyangen, confirming differential PCB exposure. There was no significant difference in hsp70 protein expression in charr liver between the two lakes. However, brain hsp70 protein expression was significantly elevated in charr from Ellasjoen compared with Oyangen. Also, liver GR protein expression was significantly higher in the Ellasjoen charr compared with Oyangen charr. Taken together, our results suggest changes to cellular stress-related protein expression as a possible adaptation to chronic-contaminant exposure in feral charr in the Norwegian high-Arctic.

  12. An intestinal microRNA modulates the homeostatic adaptation to chronic oxidative stress in C. elegans

    PubMed Central

    Kato, Masaomi; Kashem, Mohammed Abul; Cheng, Chao

    2016-01-01

    Adaptation to an environmental or metabolic perturbation is a feature of the evolutionary process. Recent insights into microRNA function suggest that microRNAs serve as key players in a robust adaptive response against stress in animals through their capacity to fine-tune gene expression. However, it remains largely unclear how a microRNA-modulated downstream mechanism contributes to the process of homeostatic adaptation. Here we show that loss of an intestinally expressed microRNA gene, mir-60, in the nematode C. elegans promotes an adaptive response to chronic – a mild and long-term – oxidative stress exposure. The pathway involved appears to be unique since the canonical stress-responsive factors, such as DAF-16/FOXO, are dispensable for mir-60 loss to enhance oxidative stress resistance. Gene expression profiles revealed that genes encoding lysosomal proteases and those involved in xenobiotic metabolism and pathogen defense responses are up-regulated by the loss of mir-60. Detailed genetic studies and computational microRNA target prediction suggest that endocytosis components and a bZip transcription factor gene zip-10, which functions in innate immune response, are directly modulated by miR-60 in the intestine. Our findings suggest that the mir-60 loss facilitates adaptive response against chronic oxidative stress by ensuring the maintenance of cellular homeostasis. PMID:27623524

  13. Carbon dioxide enrichment alleviates heat stress by improving cellular redox homeostasis through an ABA-independent process in tomato plants.

    PubMed

    Li, X; Ahammed, G J; Zhang, Y Q; Zhang, G Q; Sun, Z H; Zhou, J; Zhou, Y H; Xia, X J; Yu, J Q; Shi, K

    2015-01-01

    Plant responses to elevated CO₂ and high temperature are critically regulated through a complex network of phytohormones and redox homeostasis. However, the involvement of abscisic acid (ABA) in plant adaptation to heat stress under elevated CO₂ conditions has not been thoroughly studied. This study investigated the interactive effects of elevated CO₂ (800 μmol·mol(-1) ) and heat stress (42 °C for 24 h) on the endogenous level of ABA and the cellular redox state of two genotypes of tomato with different ABA biosynthesis capacities. Heat stress significantly decreased maximum photochemical efficiency of PSII (Fv/Fm) and leaf water potential, but also increased levels of malondialdehyde (MDA) and electrolyte leakage (EL) in both genotypes. Heat-induced damage was more severe in the ABA-deficient mutant notabilis (not) than in its parental cultivar Ailsa Craig (Ailsa), suggesting that a certain level of endogenous ABA is required to minimise the heat-induced oxidative damage to the photosynthetic apparatus. Irrespective of genotype, the enrichment of CO₂ remarkably stimulated Fv/Fm, MDA and EL in heat-stressed plants towards enhanced tolerance. In addition, elevated CO₂ significantly strengthened the antioxidant capacity of heat-stressed tomato seedlings towards a reduced cellular redox state for a prolonged period, thereby mitigating oxidative stress. However, elevated CO₂ and heat stress did not alter the endogenous level of ABA or the expression of its biosynthetic gene NCED2 in either genotype, indicating that ABA is not involved in elevated CO₂ -induced heat stress alleviation. The results of this study suggest that elevated CO₂ alleviated heat stress through efficient regulation of the cellular redox poise in an ABA-independent manner in tomato plants.

  14. Genetic erosion impedes adaptive responses to stressful environments

    PubMed Central

    Bijlsma, R; Loeschcke, Volker

    2012-01-01

    Biodiversity is increasingly subjected to human-induced changes of the environment. To persist, populations continually have to adapt to these often stressful changes including pollution and climate change. Genetic erosion in small populations, owing to fragmentation of natural habitats, is expected to obstruct such adaptive responses: (i) genetic drift will cause a decrease in the level of adaptive genetic variation, thereby limiting evolutionary responses; (ii) inbreeding and the concomitant inbreeding depression will reduce individual fitness and, consequently, the tolerance of populations to environmental stress. Importantly, inbreeding generally increases the sensitivity of a population to stress, thereby increasing the amount of inbreeding depression. As adaptation to stress is most often accompanied by increased mortality (cost of selection), the increase in the ‘cost of inbreeding’ under stress is expected to severely hamper evolutionary adaptive processes. Inbreeding thus plays a pivotal role in this process and is expected to limit the probability of genetically eroded populations to successfully adapt to stressful environmental conditions. Consequently, the dynamics of small fragmented populations may differ considerably from large nonfragmented populations. The resilience of fragmented populations to changing and deteriorating environments is expected to be greatly decreased. Alleviating inbreeding depression, therefore, is crucial to ensure population persistence. PMID:25568035

  15. Exercise reduces cellular stress related to skeletal muscle insulin resistance.

    PubMed

    de Matos, Mariana Aguiar; Ottone, Vinícius de Oliveira; Duarte, Tamiris Campos; Sampaio, Pâmela Fiche da Matta; Costa, Karine Beatriz; Fonseca, Cheyenne Alves; Neves, Miguel Pontes Correa; Schneider, Suzanne Maria; Moseley, Pope; Coimbra, Cândido Celso; Magalhães, Flávio de Castro; Rocha-Vieira, Etel; Amorim, Fabiano Trigueiro

    2014-03-01

    This study sought to evaluate the effects of a single session of exercise on the expression of Hsp70, of c-jun N-terminal kinase (JNK), and insulin receptor substrate 1 serine 612 (IRS(ser612)) phosphorylation in the skeletal muscle of obese and obese insulin-resistant patients. Twenty-seven volunteers were divided into three experimental groups (eutrophic insulin-sensitive, obese insulin-sensitive, and obese insulin-resistant) according to their body mass index and the presence of insulin resistance. The volunteers performed 60 min of aerobic exercise on a cycle ergometer at 60 % of peak oxygen consumption. M. vastus lateralis samples were obtained before and after exercise. The protein expressions were evaluated by Western blot. Our findings show that compared with paired eutrophic controls, obese subjects have higher basal levels of p-JNK (100 ± 23 % vs. 227 ± 67 %, p = 0.03) and p-IRS-1(ser612) (100 ± 23 % vs. 340 ± 67 %, p < 0.001) and reduced HSP70 (100 ± 16 % vs. 63 ± 12 %, p < 0.001). The presence of insulin resistance results in a further increase in p-JNK (460 ± 107 %, p < 0.001) and a decrease in Hsp70 (46 ± 5 %, p = 0.006), but p-IRS-1(ser612) levels did not differ from obese subjects (312 ± 73 %, p > 0.05). Exercise reduced p-JNK in obese insulin-resistant subjects (328 ± 33 %, p = 0.001), but not in controls or obese subjects. Furthermore, exercise reduced p-IRS-1(ser612) for both obese (122 ± 44 %) and obese insulin-resistant (185 ± 36 %) subjects. A main effect of exercise was observed in HSP70 (p = 0.007). We demonstrated that a single session of exercise promotes changes that characterize a reduction in cellular stress that may contribute to exercise-induced increase in insulin sensitivity.

  16. Stress adaptation in a pathogenic fungus

    PubMed Central

    Brown, Alistair J. P.; Budge, Susan; Kaloriti, Despoina; Tillmann, Anna; Jacobsen, Mette D.; Yin, Zhikang; Ene, Iuliana V.; Bohovych, Iryna; Sandai, Doblin; Kastora, Stavroula; Potrykus, Joanna; Ballou, Elizabeth R.; Childers, Delma S.; Shahana, Shahida; Leach, Michelle D.

    2014-01-01

    Candida albicans is a major fungal pathogen of humans. This yeast is carried by many individuals as a harmless commensal, but when immune defences are perturbed it causes mucosal infections (thrush). Additionally, when the immune system becomes severely compromised, C. albicans often causes life-threatening systemic infections. A battery of virulence factors and fitness attributes promote the pathogenicity of C. albicans. Fitness attributes include robust responses to local environmental stresses, the inactivation of which attenuates virulence. Stress signalling pathways in C. albicans include evolutionarily conserved modules. However, there has been rewiring of some stress regulatory circuitry such that the roles of a number of regulators in C. albicans have diverged relative to the benign model yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe. This reflects the specific evolution of C. albicans as an opportunistic pathogen obligately associated with warm-blooded animals, compared with other yeasts that are found across diverse environmental niches. Our understanding of C. albicans stress signalling is based primarily on the in vitro responses of glucose-grown cells to individual stresses. However, in vivo this pathogen occupies complex and dynamic host niches characterised by alternative carbon sources and simultaneous exposure to combinations of stresses (rather than individual stresses). It has become apparent that changes in carbon source strongly influence stress resistance, and that some combinatorial stresses exert non-additive effects upon C. albicans. These effects, which are relevant to fungus–host interactions during disease progression, are mediated by multiple mechanisms that include signalling and chemical crosstalk, stress pathway interference and a biological transistor. PMID:24353214

  17. Exposure to Stressful Environments: Strategy of Adaptive Responses

    NASA Technical Reports Server (NTRS)

    Farhi, Leon E.

    1991-01-01

    Any new natural environment may generate a number of stresses (such as hypoxia, water lack, and heat exposure), each of which can produce strains in more than a single organ system. Every strain may in turn stimulate the body to adapt in multiple ways. Nevertheless, a general strategy of the various adaptive responses emerges when the challenges are divided into three groups. The first category includes conditions that affect the supply of essential molecules, while the second is made up by those stresses that prevent the body from regulating properly the output of waste products, such as CO2 and heat. In both classes, there is a small number of responses, similar in principle, regardless of the specific situation. The third unit is created by environments that disrupt body transport systems. Problems may arise when there is a conflict between two stresses requiring conflicting adaptive changes. An alternative to adaptation, creation of micro-environment, is often favored by the animal.

  18. Induction of the cellular stress response in Chironomus (Diptera)

    SciTech Connect

    Pardalis, G.; Hudson, L.A.; Ciborowski, J.J.H.; Day, K.E.; Robinson, R.D.; Solomon, K.R.

    1995-12-31

    The accumulation of stress or heat shock proteins is involved in the protection and defense of a cell from environmentally induced damage. Under stressful conditions, cytoplasmic stress protein 70 migrates to the nucleus where it assists in the restoration of the nucleolar function. The authors have demonstrated a dose-response relationship between incidence of decreased nucleolar size in chironomid salivary glands and degree of sediment contamination. Reduced nucleolar size is indicative of reduced nucleolar function. The relationship between nucleolus size and stress protein accumulation is being explored. They are conducting experiments on chironomids to characterize the response elicited by heat shock and PAH exposure in the laboratory to determine if the simultaneous action of more than one stressor can significantly alter the stress response. Simultaneous studies are being conducted to validate these biomarkers in mesocosm caging experiments. Aspects of the response will be useful as biomarkers of general stress.

  19. Cellular differentiation hierarchies in normal and culture-adapted human embryonic stem cells.

    PubMed

    Enver, Tariq; Soneji, Shamit; Joshi, Chirag; Brown, John; Iborra, Francisco; Orntoft, Torben; Thykjaer, Thomas; Maltby, Edna; Smith, Kath; Abu Dawud, Raed; Jones, Mark; Matin, Maryam; Gokhale, Paul; Draper, Jonathan; Andrews, Peter W

    2005-11-01

    Human embryonic stem cell (HESC) lines vary in their characteristics and behaviour not only because they are derived from genetically outbred populations, but also because they may undergo progressive adaptation upon long-term culture in vitro. Such adaptation may reflect selection of variants with altered propensity for survival and retention of an undifferentiated phenotype. Elucidating the mechanisms involved will be important for understanding normal self-renewal and commitment to differentiation and for validating the safety of HESC-based therapy. We have investigated this process of adaptation at the cellular and molecular levels through a comparison of early passage (normal) and late passage (adapted) sublines of a single HESC line, H7. To account for spontaneous differentiation that occurs in HESC cultures, we sorted cells for SSEA3, which marks undifferentiated HESC. We show that the gene expression programmes of the adapted cells partially reflected their aberrant karyotype, but also resulted from a failure in X-inactivation, emphasizing the importance in adaptation of karyotypically silent epigenetic changes. On the basis of growth potential, ability to re-initiate ES cultures and global transcription profiles, we propose a cellular differentiation hierarchy for maintenance cultures of HESC: normal SSEA3+ cells represent pluripotent stem cells. Normal SSEA3- cells have exited this compartment, but retain multilineage differentiation potential. However, adapted SSEA3+ and SSEA3- cells co-segregate within the stem cell territory, implying that adaptation reflects an alteration in the balance between self-renewal and differentiation. As this balance is also an essential feature of cancer, the mechanisms of culture adaptation may mirror those of oncogenesis and tumour progression. PMID:16159889

  20. Aldehyde Dehydrogenases in Cellular Responses to Oxidative/electrophilic Stress

    PubMed Central

    Singh, Surendra; Brocker, Chad; Koppaka, Vindhya; Ying, Chen; Jackson, Brian; Matsumoto, Akiko; Thompson, David C.; Vasiliou, Vasilis

    2013-01-01

    Reactive oxygen species (ROS) are continuously generated within living systems and the inability to manage ROS load leads to elevated oxidative stress and cell damage. Oxidative stress is coupled to the oxidative degradation of lipid membranes, also known as lipid peroxidation. This process generates over 200 types of aldehydes, many of which are highly reactive and toxic. Aldehyde dehydrogenases (ALDHs) metabolize endogenous and exogenous aldehydes and thereby mitigate oxidative/electrophilic stress in prokaryotic and eukaryotic organisms. ALDHs are found throughout the evolutionary gamut, from single celled organisms to complex multicellular species. Not surprisingly, many ALDHs in evolutionarily distant, and seemingly unrelated, species perform similar functions, including protection against a variety of environmental stressors like dehydration and ultraviolet radiation. The ability to act as an ‘aldehyde scavenger’ during lipid peroxidation is another ostensibly universal ALDH function found across species. Up-regulation of ALDHs is a stress response in bacteria (environmental and chemical stress), plants (dehydration, salinity and oxidative stress), yeast (ethanol exposure and oxidative stress), Caenorhabditis elegans (lipid peroxidation) and mammals (oxidative stress and lipid peroxidation). Recent studies have also identified ALDH activity as an important feature of cancer stem cells. In these cells, ALDH expression helps abrogate oxidative stress and imparts resistance against chemotherapeutic agents such as oxazaphosphorine, taxane and platinum drugs. The ALDH superfamily represents a fundamentally important class of enzymes that significantly contributes to the management of electrophilic/oxidative stress within living systems. Mutations in various ALDHs are associated with a variety of pathological conditions in humans, underscoring the fundamental importance of these enzymes in physiological and pathological processes. PMID:23195683

  1. Aldehyde dehydrogenases in cellular responses to oxidative/electrophilic stress.

    PubMed

    Singh, Surendra; Brocker, Chad; Koppaka, Vindhya; Chen, Ying; Jackson, Brian C; Matsumoto, Akiko; Thompson, David C; Vasiliou, Vasilis

    2013-03-01

    Reactive oxygen species (ROS) are continuously generated within living systems and the inability to manage ROS load leads to elevated oxidative stress and cell damage. Oxidative stress is coupled to the oxidative degradation of lipid membranes, also known as lipid peroxidation. This process generates over 200 types of aldehydes, many of which are highly reactive and toxic. Aldehyde dehydrogenases (ALDHs) metabolize endogenous and exogenous aldehydes and thereby mitigate oxidative/electrophilic stress in prokaryotic and eukaryotic organisms. ALDHs are found throughout the evolutionary gamut, from single-celled organisms to complex multicellular species. Not surprisingly, many ALDHs in evolutionarily distant, and seemingly unrelated, species perform similar functions, including protection against a variety of environmental stressors such as dehydration and ultraviolet radiation. The ability to act as an "aldehyde scavenger" during lipid peroxidation is another ostensibly universal ALDH function found across species. Upregulation of ALDHs is a stress response in bacteria (environmental and chemical stress), plants (dehydration, salinity, and oxidative stress), yeast (ethanol exposure and oxidative stress), Caenorhabditis elegans (lipid peroxidation), and mammals (oxidative stress and lipid peroxidation). Recent studies have also identified ALDH activity as an important feature of cancer stem cells. In these cells, ALDH expression helps abrogate oxidative stress and imparts resistance against chemotherapeutic agents such as oxazaphosphorine, taxane, and platinum drugs. The ALDH superfamily represents a fundamentally important class of enzymes that contributes significantly to the management of electrophilic/oxidative stress within living systems. Mutations in various ALDHs are associated with a variety of pathological conditions in humans, highlighting the fundamental importance of these enzymes in physiological and pathological processes. PMID:23195683

  2. Sex differences in molecular and cellular substrates of stress.

    PubMed

    Bangasser, Debra A; Valentino, Rita J

    2012-07-01

    Women are twice as likely as men to suffer from stress-related psychiatric disorders, like unipolar depression and post-traumatic stress disorder. Although the underlying neural mechanisms are not well characterized, the pivotal role of stress in the onset and severity of these diseases has led to the idea that sex differences in stress responses account for this sex bias. Corticotropin-releasing factor (CRF) orchestrates stress responses by acting both as a neurohormone to initiate the hypothalamic-pituitary-adrenal (HPA) axis and as a neuromodulator in the brain. One target of CRF modulation is the locus coeruleus (LC)-norepinephrine system, which coordinates arousal components of the stress response. Hypersecretion of CRF and dysregulation of targets downstream from CRF, such as the HPA axis and LC-norepinephrine system, are characteristic features of many stress-related psychiatric diseases, suggesting a causal role for CRF and its targets in the development of these disorders. This review will describe sex differences in CRF and the LC-norepinephrine system that can increase stress sensitivity in females, making them vulnerable to stress-related disorders. Evidence for gonadal hormone regulation of hypothalamic CRF is discussed as an effect that can lead to increased HPA axis activity in females. Sex differences in the structure of LC neurons that create the potential for hyperarousal in response to emotional stimuli are described. Finally, sex differences at the molecular level of the CRF(1) receptor that make the LC-norepinephrine system more reactive in females are reviewed. The implications of these sex differences for the treatment of stress-related psychiatric disorders also will be discussed.

  3. Aldehyde dehydrogenases in cellular responses to oxidative/electrophilic stress.

    PubMed

    Singh, Surendra; Brocker, Chad; Koppaka, Vindhya; Chen, Ying; Jackson, Brian C; Matsumoto, Akiko; Thompson, David C; Vasiliou, Vasilis

    2013-03-01

    Reactive oxygen species (ROS) are continuously generated within living systems and the inability to manage ROS load leads to elevated oxidative stress and cell damage. Oxidative stress is coupled to the oxidative degradation of lipid membranes, also known as lipid peroxidation. This process generates over 200 types of aldehydes, many of which are highly reactive and toxic. Aldehyde dehydrogenases (ALDHs) metabolize endogenous and exogenous aldehydes and thereby mitigate oxidative/electrophilic stress in prokaryotic and eukaryotic organisms. ALDHs are found throughout the evolutionary gamut, from single-celled organisms to complex multicellular species. Not surprisingly, many ALDHs in evolutionarily distant, and seemingly unrelated, species perform similar functions, including protection against a variety of environmental stressors such as dehydration and ultraviolet radiation. The ability to act as an "aldehyde scavenger" during lipid peroxidation is another ostensibly universal ALDH function found across species. Upregulation of ALDHs is a stress response in bacteria (environmental and chemical stress), plants (dehydration, salinity, and oxidative stress), yeast (ethanol exposure and oxidative stress), Caenorhabditis elegans (lipid peroxidation), and mammals (oxidative stress and lipid peroxidation). Recent studies have also identified ALDH activity as an important feature of cancer stem cells. In these cells, ALDH expression helps abrogate oxidative stress and imparts resistance against chemotherapeutic agents such as oxazaphosphorine, taxane, and platinum drugs. The ALDH superfamily represents a fundamentally important class of enzymes that contributes significantly to the management of electrophilic/oxidative stress within living systems. Mutations in various ALDHs are associated with a variety of pathological conditions in humans, highlighting the fundamental importance of these enzymes in physiological and pathological processes.

  4. Stress-directed adaptive mutations and evolution.

    PubMed

    Wright, Barbara E

    2004-05-01

    Comparative biochemistry demonstrates that the metabolites, complex biochemical networks, enzymes and regulatory mechanisms essential to all living cells are conserved in amazing detail throughout evolution. Thus, in order to evolve, an organism must overcome new adverse conditions without creating different but equally dangerous alterations in its ongoing successful metabolic relationship with its environment. Evidence suggests that stable long-term acquisitive evolution results from minor increases in mutation rates of genes related to a particular stress, with minimal disturbance to the balanced and resilient metabolism critical for responding to an unpredictable environment. Microorganisms have evolved specific biochemical feedback mechanisms that direct mutations to genes derepressed by starvation or other stressors in their environment. Transcription of the activated genes creates localized supercoiling and DNA secondary structures with unpaired bases vulnerable to mutation. The resulting mutants provide appropriate variants for selection by the stress involved, thus accelerating evolution with minimal random damage to the genome. This model has successfully predicted mutation frequencies in genes of E. coli and humans. Stressed cells observed in the laboratory over hundreds of generations accumulate mutations that also arise by this mechanism. When this occurs in repair-deficient mutator strains with high rates of random mutation, the specific stress-directed mutations are also enhanced.

  5. Stress Response and Perinatal Reprogramming: Unraveling (Mal)adaptive Strategies

    PubMed Central

    Musazzi, Laura; Marrocco, Jordan

    2016-01-01

    Environmental stressors induce coping strategies in the majority of individuals. The stress response, involving the activation of the hypothalamic-pituitary-adrenocortical axis and the consequent release of corticosteroid hormones, is indeed aimed at promoting metabolic, functional, and behavioral adaptations. However, behavioral stress is also associated with fast and long-lasting neurochemical, structural, and behavioral changes, leading to long-term remodeling of glutamate transmission, and increased susceptibility to neuropsychiatric disorders. Of note, early-life events, both in utero and during the early postnatal life, trigger reprogramming of the stress response, which is often associated with loss of stress resilience and ensuing neurobehavioral (mal)adaptations. Indeed, adverse experiences in early life are known to induce long-term stress-related neuropsychiatric disorders in vulnerable individuals. Here, we discuss recent findings about stress remodeling of excitatory neurotransmission and brain morphology in animal models of behavioral stress. These changes are likely driven by epigenetic factors that lie at the core of the stress-response reprogramming in individuals with a history of perinatal stress. We propose that reprogramming mechanisms may underlie the reorganization of excitatory neurotransmission in the short- and long-term response to stressful stimuli. PMID:27057367

  6. Acute heat stress induces oxidative stress and decreases adaptation in young white leghorn cockerels by downregulation of avian uncoupling protein.

    PubMed

    Mujahid, A; Akiba, Y; Toyomizu, M

    2007-02-01

    Reactive oxygen species-induced damage of cells and molecules is one of the mechanisms responsible for the decline in an animal's performance due to heat stress. Mitochondria are the main producers of cellular superoxide, a process that is sensitive to proton motive force, and this superoxide production can be decreased by mild uncoupling. We studied the effects of heat stress on the production of mitochondrial superoxide as well as heat stress effects on the expression of avian uncoupling protein (avUCP) and avian A nucleotide translocator (avANT) in skeletal muscles of chicks and young cockerels. Male White Leghorn (Julia) chicks at 16 d and cockerels at 87 d of age were exposed to acute heat stress, 34 degrees C for 18 h, or kept at moderate ambient temperature (25 and 21 degrees C, respectively). There was no difference in mitochondrial superoxide production between heat-exposed and control chicks, whereas significant differences were observed in the case of young cockerels. Greater substrate-independent superoxide production was found in muscle mitochondria from heat-stressed young cockerels. In chicks, neither avUCP nor avANT transcript expression was changed by heat exposure, whereas in young cockerels avUCP transcript was decreased, but avANT transcript level was not changed. Thus, in heat-stressed young cockerels, increased mitochondrial superoxide production was accompanied by downregulation of avUCP. Taken together, these results suggest that exposure of young cockerels to heat stress stimulates mitochondrial superoxide production, possibly via downregulation of avUCP. Chicks with persistent avUCP expression, on the other hand, are relatively better adapted to high temperature. It can be assumed that appropriate expression of avUCP may alleviate overproduction of mitochondrial superoxide and could help birds adapt to oxidative stress resulting from acute heat stress.

  7. Transcriptome and Proteome Dynamics of the Cellular Response of Shewanella oneidensis to Chromium Stress

    SciTech Connect

    Thompson, D.K.

    2005-04-18

    The overall goal of this DOE NABIR project is to characterize the molecular basis and regulation of hexavalent chromium [Cr(VI)] stress response and reduction by Shewanella oneidensis strain MR-1. Temporal genomic profiling and mass spectrometry-based proteomic analysis were employed to characterize the dynamic molecular response of S. oneidensis MR-1 to both acute and chronic Cr(VI) exposure. The acute stress response of aerobic, mid-exponential phase cells shocked to a final concentration of 1 mM potassium chromate (K2CrO4) was examined at post-exposure time intervals of 5, 30, 60, and 90 min relative to untreated cells. The transcriptome of mid-exponential cultures was also analyzed 30 min after shock doses of 0.3, 0.5, or 1 mM K{sub 2}CrO{sub 4}. The tonB1-exbB1-exbD1 genes comprising the TonB1 iron transport system were some of the most highly induced coding sequences (CDSs) after 90 min (up to {approx}240 fold), followed by other genes involved in heme transport, sulfate transport, and sulfur assimilation pathways. In addition, transcript levels for CDSs with annotated functions in DNA repair (dinP, recX, recA, recN) and detoxification processes (so3585, so3586) were substantially increased in Cr(VI)-exposed cells compared to untreated cells. By contrast, genes predicted to encode hydrogenases (HydA, HydB), oxidoreductases (SO0902-03-04, SO1911), iron-sulfur cluster binding proteins (SO4404), decaheme cytochrome c proteins (MtrA, OmcA, OmcB), and a number of LysR or TetR family transcriptional regulators were some of the most highly repressed CDSs following the 90-min shock period. Transcriptome profiles generated from MR-1 cells adapted to 0.3 mM Cr(VI) differed significantly from those characterizing cells exposed to acute Cr(VI) stress without adaptation. Parallel proteomic characterization of soluble protein and membrane protein fractions extracted from Cr(VI)-shocked and Cr(VI)-adapted MR-1 cells was performed using multidimensional HPLC-ESI-MS/MS (both

  8. Transcription Errors Induce Proteotoxic Stress and Shorten Cellular Lifespan

    PubMed Central

    Vermulst, Marc; Denney, Ashley S.; Lang, Michael J.; Hung, Chao-Wei; Moore, Stephanie; Mosely, M. Arthur; Thompson, J. Will; Madden, Victoria; Gauer, Jacob; Wolfe, Katie J.; Summers, Daniel W.; Schleit, Jennifer; Sutphin, George L.; Haroon, Suraiya; Holczbauer, Agnes; Caine, Joanne; Jorgenson, James; Cyr, Douglas; Kaeberlein, Matt; Strathern, Jeffrey N.; Duncan, Mara C.; Erie, Dorothy A.

    2015-01-01

    Transcription errors occur in all living cells; however, it is unknown how these errors affect cellular health. To answer this question, we monitored yeast cells that were genetically engineered to display error-prone transcription. We discovered that these cells suffer from a profound loss in proteostasis, which sensitizes them to the expression of genes that are associated with protein-folding diseases in humans; thus, transcription errors represent a new molecular mechanism by which cells can acquire disease. We further found that the error rate of transcription increases as cells age, suggesting that transcription errors affect proteostasis particularly in aging cells. Accordingly, transcription errors accelerate the aggregation of a peptide that is implicated in Alzheimer’s disease, and shorten the lifespan of cells. These experiments reveal a novel, basic biological process that directly affects cellular health and aging. PMID:26304740

  9. Direct detection of cellular adaptation to local cyclic stretching at the single cell level by atomic force microscopy.

    PubMed

    Watanabe-Nakayama, Takahiro; Machida, Shin-ichi; Harada, Ichiro; Sekiguchi, Hiroshi; Afrin, Rehana; Ikai, Atsushi

    2011-02-01

    The cellular response to external mechanical forces has important effects on numerous biological phenomena. The sequences of molecular events that underlie the observed changes in cellular properties have yet to be elucidated in detail. Here we have detected the responses of a cultured cell against locally applied cyclic stretching and compressive forces, after creating an artificial focal adhesion under a glass bead attached to the cantilever of an atomic force microscope. The cell tension initially increased in response to the tensile stress and then decreased within ∼1 min as a result of viscoelastic properties of the cell. This relaxation was followed by a gradual increase in tension extending over several minutes. The slow recovery of tension ceased after several cycles of force application. This tension-recovering activity was inhibited when cells were treated with cytochalasin D, an inhibitor of actin polymerization, or with (-)-blebbistatin, an inhibitor of myosin II ATPase activity, suggesting that the activity was driven by actin-myosin interaction. To our knowledge, this is the first quantitative analysis of cellular mechanical properties during the process of adaptation to locally applied cyclic external force. PMID:21281570

  10. Acid stress mediated adaptive divergence in ion channel function during embryogenesis in Rana arvalis

    PubMed Central

    Shu, Longfei; Laurila, Anssi; Räsänen, Katja

    2015-01-01

    Ion channels and pumps are responsible for ion flux in cells, and are key mechanisms mediating cellular function. Many environmental stressors, such as salinity and acidification, are known to severely disrupt ionic balance of organisms thereby challenging fitness of natural populations. Although ion channels can have several vital functions during early life-stages (e.g. embryogenesis), it is currently not known i) how developing embryos maintain proper intracellular conditions when exposed to environmental stress and ii) to what extent environmental stress can drive intra-specific divergence in ion channels. Here we studied the moor frog, Rana arvalis, from three divergent populations to investigate the role of different ion channels and pumps for embryonic survival under acid stress (pH 4 vs 7.5) and whether populations adapted to contrasting acidities differ in the relative role of different ion channel/pumps. We found that ion channels that mediate Ca2+ influx are essential for embryonic survival under acidic pH, and, intriguingly, that populations differ in calcium channel function. Our results suggest that adaptive divergence in embryonic acid stress tolerance of amphibians may in part be mediated by Ca2+ balance. We suggest that ion flux may mediate adaptive divergence of natural populations at early life-stages in the face of environmental stress. PMID:26381453

  11. Cellular Mechanisms of Oxidative Stress and Action in Melanoma

    PubMed Central

    Venza, Mario; Visalli, Maria; Beninati, Concetta; De Gaetano, Giuseppe Valerio; Teti, Diana; Venza, Isabella

    2015-01-01

    Most melanomas occur on the skin, but a small percentage of these life-threatening cancers affect other parts of the body, such as the eye and mucous membranes, including the mouth. Given that most melanomas are caused by ultraviolet radiation (UV) exposure, close attention has been paid to the impact of oxidative stress on these tumors. The possibility that key epigenetic enzymes cannot act on a DNA altered by oxidative stress has opened new perspectives. Therefore, much attention has been paid to the alteration of DNA methylation by oxidative stress. We review the current evidence about (i) the role of oxidative stress in melanoma initiation and progression; (ii) the mechanisms by which ROS influence the DNA methylation pattern of transformed melanocytes; (iii) the transformative potential of oxidative stress-induced changes in global and/or local gene methylation and expression; (iv) the employment of this epimutation as a biomarker for melanoma diagnosis, prognosis, and drug resistance evaluation; (v) the impact of this new knowledge in clinical practice for melanoma treatment. PMID:26064422

  12. Cellular Mechanisms of Oxidative Stress and Action in Melanoma.

    PubMed

    Venza, Mario; Visalli, Maria; Beninati, Concetta; De Gaetano, Giuseppe Valerio; Teti, Diana; Venza, Isabella

    2015-01-01

    Most melanomas occur on the skin, but a small percentage of these life-threatening cancers affect other parts of the body, such as the eye and mucous membranes, including the mouth. Given that most melanomas are caused by ultraviolet radiation (UV) exposure, close attention has been paid to the impact of oxidative stress on these tumors. The possibility that key epigenetic enzymes cannot act on a DNA altered by oxidative stress has opened new perspectives. Therefore, much attention has been paid to the alteration of DNA methylation by oxidative stress. We review the current evidence about (i) the role of oxidative stress in melanoma initiation and progression; (ii) the mechanisms by which ROS influence the DNA methylation pattern of transformed melanocytes; (iii) the transformative potential of oxidative stress-induced changes in global and/or local gene methylation and expression; (iv) the employment of this epimutation as a biomarker for melanoma diagnosis, prognosis, and drug resistance evaluation; (v) the impact of this new knowledge in clinical practice for melanoma treatment. PMID:26064422

  13. Cellular Mechanisms of Oxidative Stress and Action in Melanoma.

    PubMed

    Venza, Mario; Visalli, Maria; Beninati, Concetta; De Gaetano, Giuseppe Valerio; Teti, Diana; Venza, Isabella

    2015-01-01

    Most melanomas occur on the skin, but a small percentage of these life-threatening cancers affect other parts of the body, such as the eye and mucous membranes, including the mouth. Given that most melanomas are caused by ultraviolet radiation (UV) exposure, close attention has been paid to the impact of oxidative stress on these tumors. The possibility that key epigenetic enzymes cannot act on a DNA altered by oxidative stress has opened new perspectives. Therefore, much attention has been paid to the alteration of DNA methylation by oxidative stress. We review the current evidence about (i) the role of oxidative stress in melanoma initiation and progression; (ii) the mechanisms by which ROS influence the DNA methylation pattern of transformed melanocytes; (iii) the transformative potential of oxidative stress-induced changes in global and/or local gene methylation and expression; (iv) the employment of this epimutation as a biomarker for melanoma diagnosis, prognosis, and drug resistance evaluation; (v) the impact of this new knowledge in clinical practice for melanoma treatment.

  14. The cellular response to curvature-induced stress

    NASA Astrophysics Data System (ADS)

    Biton, Y. Y.; Safran, S. A.

    2009-12-01

    We present a theoretical model to explain recent observations of the orientational response of cells to unidirectional curvature. Experiments show that some cell types when plated on a rigid cylindrical surface tend to reorient their shape and stress fibers along the axis of the cylinder, while others align their stress fibers perpendicular to that axis. Our model focuses on the competition of the shear stress—that results from cell adhesion and active contractility—and the anisotropic bending stiffness of the stress fibers. We predict the cell orientation angle that results from the balance of these two forces in a mechanical equilibrium. The conditions under which the different experimental observations can be obtained are discussed in terms of the theory.

  15. Simple reminiscence: a stress-adaptation model of the phenomenon.

    PubMed

    Puentes, William J

    2002-01-01

    The phenomenon of Simple Reminiscence may play an important role in the individual's ability to adapt to anxiety-provoking stressors across the life span. However, a clearly articulated model of the underlying psychodynamics of the phenomenon has not been developed. In this paper, a proposed model of the phenomenon of Simple Reminiscence is presented. The important components of the model-developmental issues, triggers, uses, processes, and outcomes-are interpreted within the context of Peplau's conceptualization of stress and stress adaptation. Implications of the model for future empirical investigations of Simple Reminiscence are discussed.

  16. MAPK feedback encodes a switch and timer for tunable stress adaptation in yeast

    PubMed Central

    English, Justin G.; Shellhammer, James P.; Malahe, Michael; McCarter, Patrick C.; Elston, Timothy C.; Dohlman, Henrik G.

    2015-01-01

    Signaling pathways can behave as switches or rheostats, generating binary or graded responses to a given cell stimulus. We evaluated whether a single signaling pathway can simultaneously encode a switch and a rheostat. We found that the kinase Hog1 mediated a bifurcated cellular response: Activation and commitment to adaptation to osmotic stress are switch-like, whereas protein induction and the resolution of this commitment are graded. Through experimentation, bioinformatics analysis, and computational modeling, we determined that graded recovery is encoded through feedback phosphorylation and a gene induction program that is both temporally staggered and variable across the population. This switch-to-rheostat signaling mechanism represents a versatile stress adaptation system, wherein a broad range of inputs generate an “all-in” response that is later tuned to allow graded recovery of individual cells over time. PMID:25587192

  17. Effect of antioxidant supplementation on the adaptive response of human skin fibroblasts to UV-induced oxidative stress.

    PubMed

    Jones, S A; McArdle, F; Jack, C I; Jackson, M J

    1999-01-01

    The effect of supplementation with substances having antioxidant properties on the adaptive responses of human skin fibroblasts to UV-induced oxidative stress was studied in vitro. UVR was found to induce a substantial oxidative stress in fibroblasts, resulting in an increased release of superoxide anions and an increase in lipid peroxidation (shown by an elevated malonaldehyde content). Sub-lethal doses of UVR were also found to induce adaptive responses in the fibroblast antioxidant defences, with a transient rise in catalase and superoxide dismutase activities followed by a slower, large increase in cellular glutathione content. Supplementation of the fibroblasts with the antioxidants, Trolox (a water soluble analogue of alpha-tocopherol), ascorbic acid or beta-carotene, had differential effects on these responses. Trolox supplementation reduced the UVR-induced cellular oxidative stress and adaptive response in a predictable concentration-dependent manner. This was in contrast to ascorbic acid which increased superoxide release from fibroblasts. At low doses, ascorbate supplements also reduced the magnitude of the adaptive increases in catalase and superoxide dismutase activities and increase in glutathione content. Beta-carotene had a similar effect to ascorbic acid, reducing the extent of the adaptations to UVR at lower doses while simultaneously increasing superoxide release and malonaldehyde content. These in vitro data indicate that only the vitamin E analogue suppressed UVR-induced oxidative stress in a predictable manner and suggest that common dietary antioxidants may not be equally effective in reducing the potential deleterious effects of UVR-induced oxidative stress in skin.

  18. Correlating metrics of community structure with cellular indicators of stress in an Arkansas bayou

    SciTech Connect

    Schlenk, D.; Leus, J.; Lahyer, W.G.; Zhang, Y.S. ||

    1994-12-31

    A major disadvantage of using cellular indicators of stress or biomarkers to evaluate ecosystem health is the lack of a documented relationship between the cellular response and detrimental changes to an ecosystem. In an attempt to correlate ecosystem health with cellular stress, a Shannon-Weaver Index was constructed to assess fish species diversity at 13 sites in Bayou Barthalamew. With the exception of site 8, urban sites 1--4 possessed the lowest D-bar values than other sites on the Bayou. White Crappie (Pomoxis anularus), common grass carp (Cyprinus carpio) and large mouth bass (Micropteris salmoides) were sampled from each site, analyzed for expression of the cellular stress protein, metallothionein and compared with fish collected from another waterway of pristine nature. Initial findings from 3 sites indicated that metallothionein induction correlated with D-bar values (r{sup 2} = .985). Other stress proteins and cellular markers are currently being examined at the remaining sites in an attempt to correlate cellular effects and potential changes in species diversity.

  19. Beyond Adapting to Climate Change: Embedding Adaptation in Responses to Multiple Threats and Stresses

    SciTech Connect

    Wilbanks, Thomas J; Kates, Dr. Robert W.

    2010-01-01

    Climate change impacts are already being experienced in every region of the United States and every part of the world most severely in Arctic regions and adaptation is needed now. Although climate change adaptation research is still in its infancy, significant adaptation planning in the United States has already begun in a number of localities. This article seeks to broaden the adaptation effort by integrating it with broader frameworks of hazards research, sustainability science, and community and regional resilience. To extend the range of experience, we draw from ongoing case studies in the Southeastern United States and the environmental history of New Orleans to consider the multiple threats and stresses that all communities and regions experience. Embedding climate adaptation in responses to multiple threats and stresses helps us to understand climate change impacts, themselves often products of multiple stresses, to achieve community acceptance of needed adaptations as co-benefits of addressing multiple threats, and to mainstream the process of climate adaptation through the larger envelope of social relationships, communication channels, and broad-based awareness of needs for risk management that accompany community resilience.

  20. A Fluorescent Reporter of AMPK activity and Cellular Energy Stress

    PubMed Central

    Tsou, Peiling; Zheng, Bin; Hsu, Chia-Hsien; Sasaki, Atsuo T; Cantley, Lewis C.

    2011-01-01

    SUMMARY AMP-activated protein kinase (AMPK) is activated when the AMP/ATP ratio in cells is elevated due to energy stress. Here we describe a biosensor, AMPKAR, which exhibits enhanced fluorescence resonance energy transfer (FRET) in response to phosphorylation by AMPK, allowing spatio-temporal monitoring of AMPK activity in single cells. We show that this reporter responds to a variety of stimuli that are known to induce energy stress and that the response is dependent on AMPK α1 & α2 and on the upstream kinase, LKB1. Interestingly we found that AMPK activation is confined to the cytosol in response to energy stress but can be observed in both the cytosol and nucleus in response to calcium elevation. Finally, using this probe with U2OS cells in a microfluidics device, we observed a very high cell-to-cell variability in the amplitude and time course of AMPK activation and recovery in response to pulses of glucose deprivation. PMID:21459332

  1. A threshold of endogenous stress is required to engage cellular response to protect against mutagenesis.

    PubMed

    Saintigny, Yannick; Chevalier, François; Bravard, Anne; Dardillac, Elodie; Laurent, David; Hem, Sonia; Dépagne, Jordane; Radicella, J Pablo; Lopez, Bernard S

    2016-07-11

    Endogenous stress represents a major source of genome instability, but is in essence difficult to apprehend. Incorporation of labeled radionuclides into DNA constitutes a tractable model to analyze cellular responses to endogenous attacks. Here we show that incorporation of [(3)H]thymidine into CHO cells generates oxidative-induced mutagenesis, but, with a peak at low doses. Proteomic analysis showed that the cellular response differs between low and high levels of endogenous stress. In particular, these results confirmed the involvement of proteins implicated in redox homeostasis and DNA damage signaling pathways. Induced-mutagenesis was abolished by the anti-oxidant N-acetyl cysteine and plateaued, at high doses, upon exposure to L-buthionine sulfoximine, which represses cellular detoxification. The [(3)H]thymidine-induced mutation spectrum revealed mostly base substitutions, exhibiting a signature specific for low doses (GC > CG and AT > CG). Consistently, the enzymatic activity of the base excision repair protein APE-1 is induced at only medium or high doses. Collectively, the data reveal that a threshold of endogenous stress must be reached to trigger cellular detoxification and DNA repair programs; below this threshold, the consequences of endogenous stress escape cellular surveillance, leading to high levels of mutagenesis. Therefore, low doses of endogenous local stress can jeopardize genome integrity more efficiently than higher doses.

  2. A threshold of endogenous stress is required to engage cellular response to protect against mutagenesis

    PubMed Central

    Saintigny, Yannick; Chevalier, François; Bravard, Anne; Dardillac, Elodie; Laurent, David; Hem, Sonia; Dépagne, Jordane; Radicella, J. Pablo; Lopez, Bernard S.

    2016-01-01

    Endogenous stress represents a major source of genome instability, but is in essence difficult to apprehend. Incorporation of labeled radionuclides into DNA constitutes a tractable model to analyze cellular responses to endogenous attacks. Here we show that incorporation of [3H]thymidine into CHO cells generates oxidative-induced mutagenesis, but, with a peak at low doses. Proteomic analysis showed that the cellular response differs between low and high levels of endogenous stress. In particular, these results confirmed the involvement of proteins implicated in redox homeostasis and DNA damage signaling pathways. Induced-mutagenesis was abolished by the anti-oxidant N-acetyl cysteine and plateaued, at high doses, upon exposure to L-buthionine sulfoximine, which represses cellular detoxification. The [3H]thymidine-induced mutation spectrum revealed mostly base substitutions, exhibiting a signature specific for low doses (GC > CG and AT > CG). Consistently, the enzymatic activity of the base excision repair protein APE-1 is induced at only medium or high doses. Collectively, the data reveal that a threshold of endogenous stress must be reached to trigger cellular detoxification and DNA repair programs; below this threshold, the consequences of endogenous stress escape cellular surveillance, leading to high levels of mutagenesis. Therefore, low doses of endogenous local stress can jeopardize genome integrity more efficiently than higher doses. PMID:27406380

  3. Increased Service Delivery and Adaptation to Occupational Stress.

    ERIC Educational Resources Information Center

    Schnabel, John F.; Simoni, Joseph J.

    Effective response by community service agencies to clientele needs is an essential part of community development. A personnel screening instrument, a model for predicting different types of adaptation to occupational stress, is suggested as a means of increasing the responsiveness of service agencies to their local communities. Proposing the use…

  4. Adaptive Patterns of Stress Responsivity: A Preliminary Investigation

    ERIC Educational Resources Information Center

    Del Giudice, Marco; Hinnant, J. Benjamin; Ellis, Bruce J.; El-Sheikh, Mona

    2012-01-01

    The adaptive calibration model (ACM) is an evolutionary-developmental theory of individual differences in stress responsivity. In this article, we tested some key predictions of the ACM in a middle childhood sample (N = 256). Measures of autonomic nervous system activity across the sympathetic and parasympathetic branches validated the 4-pattern…

  5. Influence of temperature on alkali stress adaptation in Listeria monocytogenes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Listeria monocytogenes cells may induce alkali stress adaptation when exposed to sublethal concentrations of alkaline cleaners and sanitizers that may be frequently used in the food processing environment. In the present study, the effect of temperature on the induction and the stability of such alk...

  6. Adaptive and Pathogenic Responses to Stress by Stem Cells during Development.

    PubMed

    Mansouri, Ladan; Xie, Yufen; Rappolee, Daniel A

    2012-01-01

    Cellular stress is the basis of a dose-dependent continuum of responses leading to adaptive health or pathogenesis. For all cells, stress leads to reduction in macromolecular synthesis by shared pathways and tissue and stress-specific homeostatic mechanisms. For stem cells during embryonic, fetal, and placental development, higher exposures of stress lead to decreased anabolism, macromolecular synthesis and cell proliferation. Coupled with diminished stem cell proliferation is a stress-induced differentiation which generates minimal necessary function by producing more differentiated product/cell. This compensatory differentiation is accompanied by a second strategy to insure organismal survival as multipotent and pluripotent stem cells differentiate into the lineages in their repertoire. During stressed differentiation, the first lineage in the repertoire is increased and later lineages are suppressed, thus prioritized differentiation occurs. Compensatory and prioritized differentiation is regulated by at least two types of stress enzymes. AMP-activated protein kinase (AMPK) which mediates loss of nuclear potency factors and stress-activated protein kinase (SAPK) that does not. SAPK mediates an increase in the first essential lineage and decreases in later lineages in placental stem cells. The clinical significance of compensatory and prioritized differentiation is that stem cell pools are depleted and imbalanced differentiation leads to gestational diseases and long term postnatal pathologies.

  7. Adaptive and Pathogenic Responses to Stress by Stem Cells during Development

    PubMed Central

    Mansouri, Ladan; Xie, Yufen; Rappolee, Daniel A

    2012-01-01

    Cellular stress is the basis of a dose-dependent continuum of responses leading to adaptive health or pathogenesis. For all cells, stress leads to reduction in macromolecular synthesis by shared pathways and tissue and stress-specific homeostatic mechanisms. For stem cells during embryonic, fetal, and placental development, higher exposures of stress lead to decreased anabolism, macromolecular synthesis and cell proliferation. Coupled with diminished stem cell proliferation is a stress-induced differentiation which generates minimal necessary function by producing more differentiated product/cell. This compensatory differentiation is accompanied by a second strategy to insure organismal survival as multipotent and pluripotent stem cells differentiate into the lineages in their repertoire. During stressed differentiation, the first lineage in the repertoire is increased and later lineages are suppressed, thus prioritized differentiation occurs. Compensatory and prioritized differentiation is regulated by at least two types of stress enzymes. AMP-activated protein kinase (AMPK) which mediates loss of nuclear potency factors and stress-activated protein kinase (SAPK) that does not. SAPK mediates an increase in the first essential lineage and decreases in later lineages in placental stem cells. The clinical significance of compensatory and prioritized differentiation is that stem cell pools are depleted and imbalanced differentiation leads to gestational diseases and long term postnatal pathologies. PMID:24710551

  8. Plant Heat Adaptation: priming in response to heat stress

    PubMed Central

    Bäurle, Isabel

    2016-01-01

    Abiotic stress is a major threat to crop yield stability. Plants can be primed by heat stress, which enables them to subsequently survive temperatures that are lethal to a plant in the naïve state. This is a rapid response that has been known for many years and that is highly conserved across kingdoms. Interestingly, recent studies in Arabidopsis and rice show that this thermo-priming lasts for several days at normal growth temperatures and that it is an active process that is genetically separable from the priming itself. This is referred to as maintenance of acquired thermotolerance or heat stress memory. Such a memory conceivably has adaptive advantages under natural conditions, where heat stress often is chronic or recurring. In this review, I will focus on recent advances in the mechanistic understanding of heat stress memory. PMID:27134736

  9. The surface epithelium of teleostean fish gills. Cellular and junctional adaptations of the chloride cell in relation to salt adaptation

    PubMed Central

    1979-01-01

    Various species of teleostean fishes were adapted to fresh or salt water and their gill surface epithelium was examined using several techniques of electron microscopy. In both fresh and salt water the branchial epithelium is mostly covered by flat respiratory cells. They are characterized by unusual outer membrane fracture faces containing intramembranous particles and pits in various stages of ordered aggregation. Freeze fracture studies showed that the tight junctions between respiratory cells are made of several interconnecting strands, probably representing high resistance junctions. The organization of intramembranous elements and the morphological characteristics of the junctions do not vary in relation to the external salinity. Towards the base of the secondary gill lamellae, the layer of respiratory cells is interrupted by mitochondria-rich cells ("chloride cells"), also linked to respiratory cells by multistranded junctions. There is a fundamental reorganization of the chloride cells associated with salt water adaptation. In salt water young adjacent chloride cells send interdigitations into preexisting chloride cells. The apex of the seawater chloride cell is therefore part of a mosaic of sister cells linked to surrounding respiratory cells by multistranded junctions. The chloride cells are linked to each other by shallow junctions made of only one strand and permeable to lanthanum. It is therefore suggested that salt water adaptation triggers a cellular reorganization of the epithelium in such a way that leaky junctions (a low resistance pathway) appear at the apex of the chloride cells. Chloride cells are characterized by an extensive tubular reticulum which is an extension of the basolateral plasma membrane. It is made of repeating units and is the site of numerous ion pumps. The presence of shallow junctions in sea water-adapted fish makes it possible for the reticulum to contact the external milieu. In contrast in the freshwater-adapted fish the

  10. Preferential Osmolyte Accumulation: a Mechanism of Osmotic Stress Adaptation in Diazotrophic Bacteria

    PubMed Central

    Madkour, Magdy A.; Smith, Linda Tombras; Smith, Gary M.

    1990-01-01

    A common cellular mechanism of osmotic-stress adaptation is the intracellular accumulation of organic solutes (osmolytes). We investigated the mechanism of osmotic adaptation in the diazotrophic bacteria Azotobacter chroococcum, Azospirillum brasilense, and Klebsiella pneumoniae, which are adversely affected by high osmotic strength (i.e., soil salinity and/or drought). We used natural-abundance 13C nuclear magnetic resonance spectroscopy to identify all the osmolytes accumulating in these strains during osmotic stress generated by 0.5 M NaCl. Evidence is presented for the accumulation of trehalose and glutamate in Azotobacter chroococcum ZSM4, proline and glutamate in Azospirillum brasilense SHS6, and trehalose and proline in K. pneumoniae. Glycine betaine was accumulated in all strains grown in culture media containing yeast extract as the sole nitrogen source. Alternative nitrogen sources (e.g., NH4Cl or casamino acids) in the culture medium did not result in measurable glycine betaine accumulation. We suggest that the mechanism of osmotic adaptation in these organisms entails the accumulation of osmolytes in hyperosmotically stressed cells resulting from either enhanced uptake from the medium (of glycine betaine, proline, and glutamate) or increased net biosynthesis (of trehalose, proline, and glutamate) or both. The preferred osmolyte in Azotobacter chroococcum ZSM4 shifted from glutamate to trehalose as a consequence of a prolonged osmotic stress. Also, the dominant osmolyte in Azospirillum brasilense SHS6 shifted from glutamate to proline accumulation as the osmotic strength of the medium increased. PMID:16348295

  11. Endoplasmic reticulum stress as a novel cellular response to di (2-ethylhexyl) phthalate exposure.

    PubMed

    Peropadre, Ana; Fernández Freire, Paloma; Pérez Martín, José Manuel; Herrero, Óscar; Hazen, María José

    2015-12-25

    Di (2-ethylhexyl) phthalate is a high-production chemical widely used as a plasticizer for polyvinyl chloride products. Due to its ubiquitous presence in environmental compartments and the constant exposure of the general population through ingestion, inhalation, and dermal absorption, this compound has been subjected to extensive in vivo and in vitro toxicological studies. Despite the available information, research on the cytotoxicity of di (2-ethylhexyl) phthalate in mammalian cells is relatively limited.In this paper, an in vitro multi-parametric approach was used to provide further mechanistic data on the toxic activity of this chemical in Vero and HaCaT cells. Our results reveal that a 24 h exposure to di (2-ethylhexyl) phthalate causes, in both cell lines, an inhibition of cell proliferation that was linked to cell cycle delay at the G1 phase. Concomitantly, the tested compound induces mild endoplasmic reticulum stress which leads to an adaptive rather than a pro-apoptotic response in mammalian cells. These findings demonstrate that there are multiple potential cellular targets of di (2-ethylhexyl) phthalate-induced toxicity and the need to develop further experimental studies for the risk assessment of this ubiquitous plasticizer.

  12. Endoplasmic reticulum stress as a novel cellular response to di (2-ethylhexyl) phthalate exposure.

    PubMed

    Peropadre, Ana; Fernández Freire, Paloma; Pérez Martín, José Manuel; Herrero, Óscar; Hazen, María José

    2015-12-25

    Di (2-ethylhexyl) phthalate is a high-production chemical widely used as a plasticizer for polyvinyl chloride products. Due to its ubiquitous presence in environmental compartments and the constant exposure of the general population through ingestion, inhalation, and dermal absorption, this compound has been subjected to extensive in vivo and in vitro toxicological studies. Despite the available information, research on the cytotoxicity of di (2-ethylhexyl) phthalate in mammalian cells is relatively limited.In this paper, an in vitro multi-parametric approach was used to provide further mechanistic data on the toxic activity of this chemical in Vero and HaCaT cells. Our results reveal that a 24 h exposure to di (2-ethylhexyl) phthalate causes, in both cell lines, an inhibition of cell proliferation that was linked to cell cycle delay at the G1 phase. Concomitantly, the tested compound induces mild endoplasmic reticulum stress which leads to an adaptive rather than a pro-apoptotic response in mammalian cells. These findings demonstrate that there are multiple potential cellular targets of di (2-ethylhexyl) phthalate-induced toxicity and the need to develop further experimental studies for the risk assessment of this ubiquitous plasticizer. PMID:26514933

  13. Osmotic stress adaptation of Paracoccidioides lutzii, Pb01, monitored by proteomics.

    PubMed

    Rodrigues, Leandro Nascimento da Silva; Brito, Wesley de Almeida; Parente, Ana Flávia Alves; Weber, Simone Schneider; Bailão, Alexandre Melo; Casaletti, Luciana; Borges, Clayton Luiz; Soares, Célia Maria de Almeida

    2016-10-01

    The ability to respond to stressful conditions is essential for most living organisms. In pathogenic organisms, this response is required for effective transition from a saprophytic lifestyle to the establishment of pathogenic interactions within a susceptible host. Hyperosmotic stress has been used as a model to study signal transduction and seems to cause many cellular adaptations, including the alteration of protein expression and cellular volume as well as size regulation. In this work, we evaluated the proteomic profile of Paracoccidioides lutzii Pb01 yeast cells during osmotic stress induced by potassium chloride. We performed a high accuracy proteomic technique (NanoUPLC-MS(E)) to identify differentially expressed proteins during osmotic shock. The data describe an osmoadaptative response of this fungus when subjected to this treatment. Proteins involved in the synthesis of cell wall components were modulated, which suggested cell wall remodeling. In addition, alterations in the energy metabolism were observed. Furthermore, proteins involved in amino acid metabolism and hydrogen peroxide detoxification were modulated during osmotic stress. Our study suggests that P. lutzii Pb01. presents a vast osmoadaptative response that is composed of different proteins that act together to minimize the effects caused by osmotic stress. PMID:27496542

  14. Impaired endoplasmic reticulum stress response in bipolar disorder: cellular evidence of illness progression.

    PubMed

    Pfaffenseller, Bianca; Wollenhaupt-Aguiar, Bianca; Fries, Gabriel Rodrigo; Colpo, Gabriela Delevati; Burque, Renan Kubiachi; Bristot, Giovana; Ferrari, Pâmela; Ceresér, Keila Maria Mendes; Rosa, Adriane Ribeiro; Klamt, Fábio; Kapczinski, Flávio

    2014-09-01

    Bipolar disorder (BD) is a severe chronic psychiatric disorder that has been associated with cellular dysfunctions related to mitochondria, neurotrophin levels, and oxidative stress. Evidence has shown that endoplasmic reticulum (ER) stress may be a common pathway of the cellular changes described in BD. In the present study we assessed unfolded protein response (UPR) and the effects of this cellular process on lymphocytes from patients with BD. We also evaluated whether the stage of chronicity of BD was associated with changes in UPR parameters. Cultured lymphocytes from 30 patients with BD and 32 age- and sex-matched controls were treated with tunicamycin, an ER stressor, for 12 or 24 h to measure levels of UPR-related proteins (GRP78, eIF2α-P, and CHOP) using flow cytometry, and for 48 h to analyse ER stress-induced cell death. In healthy controls but not in patients we found an increase in levels of GRP78, eIF2α-P, and CHOP after ER stress induction. In addition, tunicamycin-induced cell death was significantly higher in patients compared to controls. More importantly, early-stage patients did not differ from controls while the late-stage patients showed an impaired ER stress response. Thus, dysfunction in ER-related stress response may be associated with decreased cellular resilience in BD and illness progression.

  15. C/EBPγ Is a Critical Regulator of Cellular Stress Response Networks through Heterodimerization with ATF4.

    PubMed

    Huggins, Christopher J; Mayekar, Manasi K; Martin, Nancy; Saylor, Karen L; Gonit, Mesfin; Jailwala, Parthav; Kasoji, Manjula; Haines, Diana C; Quiñones, Octavio A; Johnson, Peter F

    2015-12-14

    The integrated stress response (ISR) controls cellular adaptations to nutrient deprivation, redox imbalances, and endoplasmic reticulum (ER) stress. ISR genes are upregulated in stressed cells, primarily by the bZIP transcription factor ATF4 through its recruitment to cis-regulatory C/EBP:ATF response elements (CAREs) together with a dimeric partner of uncertain identity. Here, we show that C/EBPγ:ATF4 heterodimers, but not C/EBPβ:ATF4 dimers, are the predominant CARE-binding species in stressed cells. C/EBPγ and ATF4 associate with genomic CAREs in a mutually dependent manner and coregulate many ISR genes. In contrast, the C/EBP family members C/EBPβ and C/EBP homologous protein (CHOP) were largely dispensable for induction of stress genes. Cebpg(-/-) mouse embryonic fibroblasts (MEFs) proliferate poorly and exhibit oxidative stress due to reduced glutathione levels and impaired expression of several glutathione biosynthesis pathway genes. Cebpg(-/-) mice (C57BL/6 background) display reduced body size and microphthalmia, similar to ATF4-null animals. In addition, C/EBPγ-deficient newborns die from atelectasis and respiratory failure, which can be mitigated by in utero exposure to the antioxidant, N-acetyl-cysteine. Cebpg(-/-) mice on a mixed strain background showed improved viability but, upon aging, developed significantly fewer malignant solid tumors than WT animals. Our findings identify C/EBPγ as a novel antioxidant regulator and an obligatory ATF4 partner that controls redox homeostasis in normal and cancerous cells.

  16. KDM5 Interacts with Foxo to Modulate Cellular Levels of Oxidative Stress

    PubMed Central

    Liu, Xingyin; Greer, Christina; Secombe, Julie

    2014-01-01

    Increased cellular levels of oxidative stress are implicated in a large number of human diseases. Here we describe the transcription co-factor KDM5 (also known as Lid) as a new critical regulator of cellular redox state. Moreover, this occurs through a novel KDM5 activity whereby it alters the ability of the transcription factor Foxo to bind to DNA. Our microarray analyses of kdm5 mutants revealed a striking enrichment for genes required to regulate cellular levels of oxidative stress. Consistent with this, loss of kdm5 results in increased sensitivity to treatment with oxidizers, elevated levels of oxidized proteins, and increased mutation load. KDM5 activates oxidative stress resistance genes by interacting with Foxo to facilitate its recruitment to KDM5-Foxo co-regulated genes. Significantly, this occurs independently of KDM5's well-characterized demethylase activity. Instead, KDM5 interacts with the lysine deacetylase HDAC4 to promote Foxo deacetylation, which affects Foxo DNA binding. PMID:25329053

  17. Binge Ethanol and MDMA Combination Exacerbates Toxic Cardiac Effects by Inducing Cellular Stress.

    PubMed

    Navarro-Zaragoza, Javier; Ros-Simó, Clara; Milanés, María-Victoria; Valverde, Olga; Laorden, María-Luisa

    2015-01-01

    Binge drinking is a common pattern of ethanol consumption among young people. Binge drinkers are especially susceptible to brain damage when other substances are co-administered, in particular 3,4 methylendioxymethamphetamine (MDMA). The aim of the present work was to study the mechanisms implicated in the adaptive changes observed after administration of these drugs of abuse. So, we have evaluated the cardiac sympathetic activity and the expression and activation of heat shock protein 27 (HSP27), after voluntary binge ethanol consumption, alone and in combination with MDMA. Both parameters are markers of stressful situations and they could be modified inducing several alterations in different systems. Adolescent mice received MDMA, ethanol or both (ethanol plus MDMA). Drinking in the dark (DID) procedure was used as a model of binge. Noradrenaline (NA) turnover, tyrosine hydroxylase (TH), TH phosphorylated at serine 31 and HSP27 expression and its phosphorylation at serine 82 were evaluated in adolescent mice 48 h, 72 h, and 7 days after treatments in the left ventricle. NA and normetanephrine (NMN) were determined by high-performance liquid chromatography (HPLC); TH and HSP27 expression and phosphorylation were measured by quantitative blot immunollabeling using specific antibodies. Ethanol and MDMA co-administration increased NA turnover and TH expression and phosphorylation versus the consumption of each one of these drugs. In parallel with the described modifications in the cardiac sympathetic activity, our results showed that binge ethanol+MDMA exposure is associated with an increase in HSP27 expression and phosphorylation in the left ventricle, supporting the idea that the combination of both drugs exacerbates the cellular stress induced by ethanol or MDMA alone.

  18. Binge Ethanol and MDMA Combination Exacerbates Toxic Cardiac Effects by Inducing Cellular Stress

    PubMed Central

    Navarro-Zaragoza, Javier; Ros-Simó, Clara; Milanés, María-Victoria; Valverde, Olga; Laorden, María-Luisa

    2015-01-01

    Binge drinking is a common pattern of ethanol consumption among young people. Binge drinkers are especially susceptible to brain damage when other substances are co-administered, in particular 3,4 methylendioxymethamphetamine (MDMA). The aim of the present work was to study the mechanisms implicated in the adaptive changes observed after administration of these drugs of abuse. So, we have evaluated the cardiac sympathetic activity and the expression and activation of heat shock protein 27 (HSP27), after voluntary binge ethanol consumption, alone and in combination with MDMA. Both parameters are markers of stressful situations and they could be modified inducing several alterations in different systems. Adolescent mice received MDMA, ethanol or both (ethanol plus MDMA). Drinking in the dark (DID) procedure was used as a model of binge. Noradrenaline (NA) turnover, tyrosine hydroxylase (TH), TH phosphorylated at serine 31 and HSP27 expression and its phosphorylation at serine 82 were evaluated in adolescent mice 48 h, 72 h, and 7 days after treatments in the left ventricle. NA and normetanephrine (NMN) were determined by high-performance liquid chromatography (HPLC); TH and HSP27 expression and phosphorylation were measured by quantitative blot immunollabeling using specific antibodies. Ethanol and MDMA co-administration increased NA turnover and TH expression and phosphorylation versus the consumption of each one of these drugs. In parallel with the described modifications in the cardiac sympathetic activity, our results showed that binge ethanol+MDMA exposure is associated with an increase in HSP27 expression and phosphorylation in the left ventricle, supporting the idea that the combination of both drugs exacerbates the cellular stress induced by ethanol or MDMA alone. PMID:26509576

  19. Binge Ethanol and MDMA Combination Exacerbates Toxic Cardiac Effects by Inducing Cellular Stress.

    PubMed

    Navarro-Zaragoza, Javier; Ros-Simó, Clara; Milanés, María-Victoria; Valverde, Olga; Laorden, María-Luisa

    2015-01-01

    Binge drinking is a common pattern of ethanol consumption among young people. Binge drinkers are especially susceptible to brain damage when other substances are co-administered, in particular 3,4 methylendioxymethamphetamine (MDMA). The aim of the present work was to study the mechanisms implicated in the adaptive changes observed after administration of these drugs of abuse. So, we have evaluated the cardiac sympathetic activity and the expression and activation of heat shock protein 27 (HSP27), after voluntary binge ethanol consumption, alone and in combination with MDMA. Both parameters are markers of stressful situations and they could be modified inducing several alterations in different systems. Adolescent mice received MDMA, ethanol or both (ethanol plus MDMA). Drinking in the dark (DID) procedure was used as a model of binge. Noradrenaline (NA) turnover, tyrosine hydroxylase (TH), TH phosphorylated at serine 31 and HSP27 expression and its phosphorylation at serine 82 were evaluated in adolescent mice 48 h, 72 h, and 7 days after treatments in the left ventricle. NA and normetanephrine (NMN) were determined by high-performance liquid chromatography (HPLC); TH and HSP27 expression and phosphorylation were measured by quantitative blot immunollabeling using specific antibodies. Ethanol and MDMA co-administration increased NA turnover and TH expression and phosphorylation versus the consumption of each one of these drugs. In parallel with the described modifications in the cardiac sympathetic activity, our results showed that binge ethanol+MDMA exposure is associated with an increase in HSP27 expression and phosphorylation in the left ventricle, supporting the idea that the combination of both drugs exacerbates the cellular stress induced by ethanol or MDMA alone. PMID:26509576

  20. Integrative Model of Oxidative Stress Adaptation in the Fungal Pathogen Candida albicans

    PubMed Central

    Komalapriya, Chandrasekaran; Yin, Zhikang; Herrero-de-Dios, Carmen; Jacobsen, Mette D.; Belmonte, Rodrigo C.; Cameron, Gary; Haynes, Ken; Grebogi, Celso; de Moura, Alessandro P. S.; Gow, Neil A. R.; Thiel, Marco; Quinn, Janet

    2015-01-01

    The major fungal pathogen of humans, Candida albicans, mounts robust responses to oxidative stress that are critical for its virulence. These responses counteract the reactive oxygen species (ROS) that are generated by host immune cells in an attempt to kill the invading fungus. Knowledge of the dynamical processes that instigate C. albicans oxidative stress responses is required for a proper understanding of fungus-host interactions. Therefore, we have adopted an interdisciplinary approach to explore the dynamical responses of C. albicans to hydrogen peroxide (H2O2). Our deterministic mathematical model integrates two major oxidative stress signalling pathways (Cap1 and Hog1 pathways) with the three major antioxidant systems (catalase, glutathione and thioredoxin systems) and the pentose phosphate pathway, which provides reducing equivalents required for oxidative stress adaptation. The model encapsulates existing knowledge of these systems with new genomic, proteomic, transcriptomic, molecular and cellular datasets. Our integrative approach predicts the existence of alternative states for the key regulators Cap1 and Hog1, thereby suggesting novel regulatory behaviours during oxidative stress. The model reproduces both existing and new experimental observations under a variety of scenarios. Time- and dose-dependent predictions of the oxidative stress responses for both wild type and mutant cells have highlighted the different temporal contributions of the various antioxidant systems during oxidative stress adaptation, indicating that catalase plays a critical role immediately following stress imposition. This is the first model to encapsulate the dynamics of the transcriptional response alongside the redox kinetics of the major antioxidant systems during H2O2 stress in C. albicans. PMID:26368573

  1. Integrative Model of Oxidative Stress Adaptation in the Fungal Pathogen Candida albicans.

    PubMed

    Komalapriya, Chandrasekaran; Kaloriti, Despoina; Tillmann, Anna T; Yin, Zhikang; Herrero-de-Dios, Carmen; Jacobsen, Mette D; Belmonte, Rodrigo C; Cameron, Gary; Haynes, Ken; Grebogi, Celso; de Moura, Alessandro P S; Gow, Neil A R; Thiel, Marco; Quinn, Janet; Brown, Alistair J P; Romano, M Carmen

    2015-01-01

    The major fungal pathogen of humans, Candida albicans, mounts robust responses to oxidative stress that are critical for its virulence. These responses counteract the reactive oxygen species (ROS) that are generated by host immune cells in an attempt to kill the invading fungus. Knowledge of the dynamical processes that instigate C. albicans oxidative stress responses is required for a proper understanding of fungus-host interactions. Therefore, we have adopted an interdisciplinary approach to explore the dynamical responses of C. albicans to hydrogen peroxide (H2O2). Our deterministic mathematical model integrates two major oxidative stress signalling pathways (Cap1 and Hog1 pathways) with the three major antioxidant systems (catalase, glutathione and thioredoxin systems) and the pentose phosphate pathway, which provides reducing equivalents required for oxidative stress adaptation. The model encapsulates existing knowledge of these systems with new genomic, proteomic, transcriptomic, molecular and cellular datasets. Our integrative approach predicts the existence of alternative states for the key regulators Cap1 and Hog1, thereby suggesting novel regulatory behaviours during oxidative stress. The model reproduces both existing and new experimental observations under a variety of scenarios. Time- and dose-dependent predictions of the oxidative stress responses for both wild type and mutant cells have highlighted the different temporal contributions of the various antioxidant systems during oxidative stress adaptation, indicating that catalase plays a critical role immediately following stress imposition. This is the first model to encapsulate the dynamics of the transcriptional response alongside the redox kinetics of the major antioxidant systems during H2O2 stress in C. albicans. PMID:26368573

  2. Salt stress adaptation of Bacillus subtilis: a physiological proteomics approach.

    PubMed

    Höper, Dirk; Bernhardt, Jörg; Hecker, Michael

    2006-03-01

    The adaptation to osmotic stress is crucial for growth and survival of Bacillus subtilis in its natural ecosystem. Dual channel imaging and warping of 2-D protein gels were used to visualize global changes in the protein synthesis pattern of cells in response to osmotic stress (6% NaCl). Many vegetative enzymes were repressed in response to salt stress and derepressed after resumption of growth. The enzymes catalyzing the metabolic steps from glucose to 2-oxoglutarate, however, were almost constantly synthesized during salt stress despite the growth arrest. This indicates an enhanced need for the proline precursor glutamate. The synthesis of enzymes involved in sulfate assimilation and in the formation of Fe-S clusters was also induced, suggesting an enhanced need for the formation or repair of Fe-S clusters in response to salt stress. One of the most obvious changes in the protein synthesis profile can be followed by the very strong induction of the SigB regulon. Furthermore, members of the SigW regulon and of the PerR regulon, indicating oxidative stress after salt challenge, were also induced. This proteomic approach provides an overview of cell adaptation to an osmotic upshift in B. subtilis visualizing the most dramatic changes in the protein synthesis pattern.

  3. Can meditation slow rate of cellular aging? Cognitive stress, mindfulness, and telomeres.

    PubMed

    Epel, Elissa; Daubenmier, Jennifer; Moskowitz, Judith Tedlie; Folkman, Susan; Blackburn, Elizabeth

    2009-08-01

    Understanding the malleable determinants of cellular aging is critical to understanding human longevity. Telomeres may provide a pathway for exploring this question. Telomeres are the protective caps at the ends of chromosomes. The length of telomeres offers insight into mitotic cell and possibly organismal longevity. Telomere length has now been linked to chronic stress exposure and depression. This raises the question of mechanism: How might cellular aging be modulated by psychological functioning? We consider two psychological processes or states that are in opposition to one another-threat cognition and mindfulness-and their effects on cellular aging. Psychological stress cognitions, particularly appraisals of threat and ruminative thoughts, can lead to prolonged states of reactivity. In contrast, mindfulness meditation techniques appear to shift cognitive appraisals from threat to challenge, decrease ruminative thought, and reduce stress arousal. Mindfulness may also directly increase positive arousal states. We review data linking telomere length to cognitive stress and stress arousal and present new data linking cognitive appraisal to telomere length. Given the pattern of associations revealed so far, we propose that some forms of meditation may have salutary effects on telomere length by reducing cognitive stress and stress arousal and increasing positive states of mind and hormonal factors that may promote telomere maintenance. Aspects of this model are currently being tested in ongoing trials of mindfulness meditation.

  4. Can meditation slow rate of cellular aging? Cognitive stress, mindfulness, and telomeres

    PubMed Central

    Epel, Elissa; Daubenmier, Jennifer; Moskowitz, Judith T.; Folkman, Susan; Blackburn, Elizabeth

    2010-01-01

    Understanding the malleable determinants of cellular aging is critical to understanding human longevity. Telomeres may provide a pathway for exploring this question. Telomeres are the protective caps at the ends of chromosomes. The length of telomeres offers insight into mitotic cell and possibly organismal longevity. Telomere length has now been linked to chronic stress exposure and depression. This raises the question of how might cellular aging be modulated by psychological functioning. We consider two psychological processes or states that are in opposition to one another--threat cognition and mindfulness--and their effects on cellular aging. Psychological stress cognitions, particularly appraisals of threat and ruminative thoughts, can lead to prolonged states of reactivity. In contrast, mindfulness meditation techniques appear to shift cognitive appraisals from threat to challenge, decrease ruminative thought, and reduce stress arousal. Mindfulness may also directly increase positive arousal states. We review data linking telomere length to cognitive stress and stress arousal and present new data linking cognitive appraisal to telomere length. Given the pattern of associations revealed so far, we propose that some forms of meditation may have salutary effects on telomere length by reducing cognitive stress and stress arousal and increasing positive states of mind and hormonal factors that may promote telomere maintenance. Aspects of this model are currently being tested in ongoing trials of mindfulness meditation. PMID:19735238

  5. [Monocyte functional activity and nonspecific antiviral cellular resistance in adaptation to the conditions of eastern Siberia].

    PubMed

    Zhiburt, E B; Filev, L V; Boĭchak, M P; Volchek, I V; Iakovlev, G P

    1993-01-01

    Monocyte functional activity and antiviral cellular resistance were studied in the newcomers to the Baikal region from the European Russia. A total of 105 patients with acute respiratory diseases and 30 normal subjects were examined. 46 healthy residents of St. Petersburg made up the reference group. The process of adaptation was found to be associated with changes in the functional activity of the immunocompetent cells. The authors came to a conclusion on the principal role of viral injury of the monocytes in the development of acute bronchitis or pneumonia.

  6. Stress and adaptation responses to repeated acute acceleration.

    NASA Technical Reports Server (NTRS)

    Burton, R. R.; Smith, A. H.

    1972-01-01

    Study in which groups of adult male chickens (single-comb white leghorn) were exposed daily to acceleration (centrifugation) of 2 or 3 G for 10 min, 1, 4, 8, 12, 16, and 24 hr (continuously), or 0 time (controls). After approximately five months of this intermittent treatment (training), the birds were exposed to continuous accelerations of the same G force (intensity). The degree of stress and adaptation of each bird was determined by survival and relative lymphocyte count criteria. Intermittent training exposures of 2 G developed levels of adaptation in birds directly proportional to the duration of their daily exposure. Intermittent training periods at 3 G, however, produced a physiological deterioration in birds receiving daily exposures of 8 hr or more. Adaptive benefits were found only in the 1- and 4-hr-daily intermittent 3-G exposure groups. Exposure to 3 G produced an immediate stress response as indicated by a low relative lymphocyte count which returned to control (preexposed) values prior to the next daily acceleration period in the 10-min, 1-hr, and 4-hr groups. This daily recovery period from stress appeared to be necessary for adaptation as opposed to deterioration for the more severe environmental (3 G) alteration.

  7. IRES-mediated translation of cellular messenger RNA operates in eIF2α- independent manner during stress

    PubMed Central

    Thakor, Nehal; Holcik, Martin

    2012-01-01

    Physiological and pathophysiological stress attenuates global translation via phosphorylation of eIF2α. This in turn leads to the reprogramming of gene expression that is required for adaptive stress response. One class of cellular messenger RNAs whose translation was reported to be insensitive to eIF2α phosphorylation-mediated repression of translation is that harboring an Internal Ribosome Entry Site (IRES). IRES-mediated translation of several apoptosis-regulating genes increases in response to hypoxia, serum deprivation or gamma irradiation and promotes tumor cell survival and chemoresistance. However, the molecular mechanism that allows IRES-mediated translation to continue in an eIF2α-independent manner is not known. Here we have used the X-chromosome linked Inhibitor of Apoptosis, XIAP, IRES to address this question. Using toeprinting assay, western blot analysis and polysomal profiling we show that the XIAP IRES supports cap-independent translation when eIF2α is phosphorylated both in vitro and in vivo. During normal growth condition eIF2α-dependent translation on the IRES is preferred. However, IRES-mediated translation switches to eIF5B-dependent mode when eIF2α is phosphorylated as a consequence of cellular stress. PMID:21917851

  8. Respiratory Syncytial Virus and Cellular Stress Responses: Impact on Replication and Physiopathology

    PubMed Central

    Cervantes-Ortiz, Sandra L.; Zamorano Cuervo, Natalia; Grandvaux, Nathalie

    2016-01-01

    Human respiratory syncytial virus (RSV), a member of the Paramyxoviridae family, is a major cause of severe acute lower respiratory tract infection in infants, elderly and immunocompromised adults. Despite decades of research, a complete integrated picture of RSV-host interaction is still missing. Several cellular responses to stress are involved in the host-response to many virus infections. The endoplasmic reticulum stress induced by altered endoplasmic reticulum (ER) function leads to activation of the unfolded-protein response (UPR) to restore homeostasis. Formation of cytoplasmic stress granules containing translationally stalled mRNAs is a means to control protein translation. Production of reactive oxygen species is balanced by an antioxidant response to prevent oxidative stress and the resulting damages. In recent years, ongoing research has started to unveil specific regulatory interactions of RSV with these host cellular stress responses. Here, we discuss the latest findings regarding the mechanisms evolved by RSV to induce, subvert or manipulate the ER stress, the stress granule and oxidative stress responses. We summarize the evidence linking these stress responses with the regulation of RSV replication and the associated pathogenesis. PMID:27187445

  9. Respiratory Syncytial Virus and Cellular Stress Responses: Impact on Replication and Physiopathology.

    PubMed

    Cervantes-Ortiz, Sandra L; Zamorano Cuervo, Natalia; Grandvaux, Nathalie

    2016-01-01

    Human respiratory syncytial virus (RSV), a member of the Paramyxoviridae family, is a major cause of severe acute lower respiratory tract infection in infants, elderly and immunocompromised adults. Despite decades of research, a complete integrated picture of RSV-host interaction is still missing. Several cellular responses to stress are involved in the host-response to many virus infections. The endoplasmic reticulum stress induced by altered endoplasmic reticulum (ER) function leads to activation of the unfolded-protein response (UPR) to restore homeostasis. Formation of cytoplasmic stress granules containing translationally stalled mRNAs is a means to control protein translation. Production of reactive oxygen species is balanced by an antioxidant response to prevent oxidative stress and the resulting damages. In recent years, ongoing research has started to unveil specific regulatory interactions of RSV with these host cellular stress responses. Here, we discuss the latest findings regarding the mechanisms evolved by RSV to induce, subvert or manipulate the ER stress, the stress granule and oxidative stress responses. We summarize the evidence linking these stress responses with the regulation of RSV replication and the associated pathogenesis. PMID:27187445

  10. Scolopendin 2 leads to cellular stress response in Candida albicans.

    PubMed

    Lee, Heejeong; Hwang, Jae-Sam; Lee, Dong Gun

    2016-07-01

    Centipedes, a kind of arthropod, have been reported to produce antimicrobial peptides as part of an innate immune response. Scolopendin 2 (AGLQFPVGRIGRLLRK) is a novel antimicrobial peptide derived from the body of the centipede Scolopendra subspinipes mutilans by using RNA sequencing. To investigate the intracellular responses induced by scolopendin 2, reactive oxygen species (ROS) and glutathione accumulation and lipid peroxidation were monitored over sublethal and lethal doses. Intracellular ROS and antioxidant molecule levels were elevated and lipids were peroxidized at sublethal concentrations. Moreover, the Ca(2+) released from the endoplasmic reticulum accumulated in the cytosol and mitochondria. These stress responses were considered to be associated with yeast apoptosis. Candida albicans cells exposed to scolopendin 2 were identified using diagnostic markers of apoptotic response. Various responses such as phosphatidylserine externalization, chromatin condensation, and nuclear fragmentation were exhibited. Scolopendin 2 disrupted the mitochondrial membrane potential and activated metacaspase, which was mediated by cytochrome c release. In conclusion, treatment of C. albicans with scolopendin 2 induced the apoptotic response at sublethal doses, which in turn led to mitochondrial dysfunction, metacaspase activation, and cell death. The cationic antimicrobial peptide scolopendin 2 from the centipede is a potential antifungal peptide, triggering the apoptotic response. PMID:27207682

  11. Learning about stress: neural, endocrine and behavioral adaptations.

    PubMed

    McCarty, Richard

    2016-09-01

    In this review, nonassociative learning is advanced as an organizing principle to draw together findings from both sympathetic-adrenal medullary and hypothalamic-pituitary-adrenocortical (HPA) axis responses to chronic intermittent exposure to a variety of stressors. Studies of habituation, facilitation and sensitization of stress effector systems are reviewed and linked to an animal's prior experience with a given stressor, the intensity of the stressor and the appraisal by the animal of its ability to mobilize physiological systems to adapt to the stressor. Brain pathways that regulate physiological and behavioral responses to stress are discussed, especially in light of their regulation of nonassociative processes in chronic intermittent stress. These findings may have special relevance to various psychiatric diseases, including depression and post-traumatic stress disorder (PTSD). PMID:27294884

  12. Exercise-induced stress response as an adaptive tolerance strategy.

    PubMed Central

    Sonneborn, J S; Barbee, S A

    1998-01-01

    Interaction between the quality of the environment and the health of the exposed population determines the survival response of living organisms. The phenomenon of induced tolerance by exposure to threshold levels of stressors to stimulate natural defense mechanisms has potential therapeutic value. The paucity of information on predictability of individual response and information on the operative fundamental mechanisms limit applicability of the adaptive tolerance strategy. A potential biomarker of the stress response includes members of the stress-inducible ubiquitin gene family. Transcript sizes detected with Northern blot analysis identify different classes of ubiquitin gene family members and the intensity of the radioactive signal allows abundance determinations. Using moderate exercise as the stressor, significant increase (p < 0.028) in abundance of inducible polyubiquitin genes was found in human blood. Both the potential of exercise as a model system of a natural stress inducer and polyubiquitin as a biomarker of stress were established in these studies. Images Figure 1 Figure 2 PMID:9539026

  13. Learning about stress: neural, endocrine and behavioral adaptations.

    PubMed

    McCarty, Richard

    2016-09-01

    In this review, nonassociative learning is advanced as an organizing principle to draw together findings from both sympathetic-adrenal medullary and hypothalamic-pituitary-adrenocortical (HPA) axis responses to chronic intermittent exposure to a variety of stressors. Studies of habituation, facilitation and sensitization of stress effector systems are reviewed and linked to an animal's prior experience with a given stressor, the intensity of the stressor and the appraisal by the animal of its ability to mobilize physiological systems to adapt to the stressor. Brain pathways that regulate physiological and behavioral responses to stress are discussed, especially in light of their regulation of nonassociative processes in chronic intermittent stress. These findings may have special relevance to various psychiatric diseases, including depression and post-traumatic stress disorder (PTSD).

  14. The concept of cellular "fight-or-flight" reaction to stress.

    PubMed

    Goligorsky, M S

    2001-04-01

    As animals respond to environmental stress with a set of default reactions described as the "fight-or-flight" response, so do epithelial and endothelial cells when they are confronting stressors in their microenvironment. This review will summarize a growing body of data suggesting the existence of a set of stereotypical cellular reactions to stress, provide some examples of diseases that are characterized by excessive flight reactions, describe the cellular mechanisms whereby the fight-or-flight reaction is accomplished, as well as cellular mechanisms triggering either fight or flight. It is proposed that cell-matrix adhesion is a sensitive indicator of the severity of stress. This indicator is interfaced with several default programs for cellular survival or death, thus dictating the fate of the cell. Some diagnostic and therapeutic applications of the concept, presently used and potentially useful, are outlined. The essential feature of this concept is its ability to categorize cellular events in terms of either type of default reaction, predict the details of each, and potentially exploit them clinically.

  15. Cellular stress responses, mitostress and carnitine insufficiencies as critical determinants in aging and neurodegenerative disorders: role of hormesis and vitagenes.

    PubMed

    Calabrese, Vittorio; Cornelius, Carolin; Stella, Anna Maria Giuffrida; Calabrese, Edward J

    2010-12-01

    The widely accepted oxidative stress theory of aging postulates that aging results from accumulation of oxidative damage. A prediction of this theory is that, among species, differential rates of aging may be apparent on the basis of intrinsic differences in oxidative damage accrual. Although widely accepted, there is a growing number of exceptions to this theory, most contingently related to genetic model organism investigations. Proteins are one of the prime targets for oxidative damage and cysteine residues are particularly sensitive to reversible and irreversible oxidation. The adaptation and survival of cells and organisms requires the ability to sense proteotoxic insults and to coordinate protective cellular stress response pathways and chaperone networks related to protein quality control and stability. The toxic effects that stem from the misassembly or aggregation of proteins or peptides, in any cell type, are collectively termed proteotoxicity. Despite the abundance and apparent capacity of chaperones and other components of homeostasis to restore folding equilibrium, the cell appears poorly adapted for chronic proteotoxic stress which increases in cancer, metabolic and neurodegenerative diseases. Pharmacological modulation of cellular stress response pathways has emerging implications for the treatment of human diseases, including neurodegenerative disorders, cardiovascular disease, and cancer. A critical key to successful medical intervention is getting the dose right. Achieving this goal can be extremely challenging due to human inter-individual variation as affected by age, gender, diet, exercise, genetic factors and health status. The nature of the dose response in and adjacent to the therapeutic zones, over the past decade has received considerable advances. The hormetic dose-response, challenging long-standing beliefs about the nature of the dose-response in a lowdose zone, has the potential to affect significantly the design of pre

  16. Extreme cellular adaptations and cell differentiation required by a cyanobacterium for carbonate excavation

    PubMed Central

    Guida, Brandon Scott; Garcia-Pichel, Ferran

    2016-01-01

    Some cyanobacteria, known as euendoliths, excavate and grow into calcium carbonates, with their activity leading to significant marine and terrestrial carbonate erosion and to deleterious effects on coral reef and bivalve ecology. Despite their environmental relevance, the mechanisms by which they can bore have remained elusive and paradoxical, in that, as oxygenic phototrophs, cyanobacteria tend to alkalinize their surroundings, which will encourage carbonate precipitation, not dissolution. Therefore, cyanobacteria must rely on unique adaptations to bore. Studies with the filamentous euendolith, Mastigocoleus testarum, indicated that excavation requires both cellular energy and transcellular calcium transport, mediated by P-type ATPases, but the cellular basis for this phenomenon remains obscure. We present evidence that excavation in M. testarum involves two unique cellular adaptations. Long-range calcium transport is based on active pumping at multiple cells along boring filaments, orchestrated by the preferential localization of calcium ATPases at one cell pole, in a ring pattern, facing the cross-walls, and by repeating this placement and polarity, a pattern that breaks at branching and apical cells. In addition, M. testarum differentiates specialized cells we call calcicytes, that which accumulate calcium at concentrations more than 500-fold those found in other cyanobacteria, concomitantly and drastically lowering photosynthetic pigments and enduring severe cytoplasmatic alkalinization. Calcicytes occur commonly, but not exclusively, in apical parts of the filaments distal to the excavation front. We suggest that calcicytes allow for fast calcium flow at low, nontoxic concentrations through undifferentiated cells by providing buffering storage for excess calcium before final excretion to the outside medium. PMID:27140633

  17. Curcumin enhances recovery of pancreatic islets from cellular stress induced inflammation and apoptosis in diabetic rats

    SciTech Connect

    Rashid, Kahkashan; Sil, Parames C.

    2015-02-01

    The phytochemical, curcumin, has been reported to play many beneficial roles. However, under diabetic conditions, the detail mechanism of its beneficial action in the glucose homeostasis regulatory organ, pancreas, is poorly understood. The present study has been designed and carried out to explore the role of curcumin in the pancreatic tissue of STZ induced and cellular stress mediated diabetes in eight weeks old male Wistar rats. Diabetes was induced with a single intraperitoneal dose of STZ (65 mg/kg body weight). Post to diabetes induction, animals were treated with curcumin at a dose of 100 mg/kg body weight for eight weeks. Underlying molecular and cellular mechanism was determined using various biochemical assays, DNA fragmentation, FACS, histology, immunoblotting and ELISA. Treatment with curcumin reduced blood glucose level, increased plasma insulin and mitigated oxidative stress related markers. In vivo and in vitro experimental results revealed increased levels of proinflammatory cytokines (TNF-α, IL1-β and IFN-γ), reduced level of cellular defense proteins (Nrf-2 and HO-1) and glucose transporter (GLUT-2) along with enhanced levels of signaling molecules of ER stress dependent and independent apoptosis (cleaved Caspase-12/9/8/3) in STZ administered group. Treatment with curcumin ameliorated all the adverse changes and helps the organ back to its normal physiology. Results suggest that curcumin protects pancreatic beta-cells by attenuating inflammatory responses, and inhibiting ER/mitochondrial dependent and independent pathways of apoptosis and crosstalk between them. This uniqueness and absence of any detectable adverse effect proposes the possibility of using this molecule as an effective protector in the cellular stress mediated diabetes mellitus. - Highlights: • STZ induced cellular stress plays a vital role in pancreatic dysfunction. • Cellular stress causes inflammation, pancreatic islet cell death and diabetes. • Deregulation of Nrf-2

  18. Integrated physiological mechanisms of exercise performance, adaptation, and maladaptation to heat stress.

    PubMed

    Sawka, Michael N; Leon, Lisa R; Montain, Scott J; Sonna, Larry A

    2011-10-01

    This article emphasizes significant recent advances regarding heat stress and its impact on exercise performance, adaptations, fluid electrolyte imbalances, and pathophysiology. During exercise-heat stress, the physiological burden of supporting high skin blood flow and high sweating rates can impose considerable cardiovascular strain and initiate a cascade of pathophysiological events leading to heat stroke. We examine the association between heat stress, particularly high skin temperature, on diminishing cardiovascular/aerobic reserves as well as increasing relative intensity and perceptual cues that degrade aerobic exercise performance. We discuss novel systemic (heat acclimation) and cellular (acquired thermal tolerance) adaptations that improve performance in hot and temperate environments and protect organs from heat stroke as well as other dissimilar stresses. We delineate how heat stroke evolves from gut underperfusion/ischemia causing endotoxin release or the release of mitochondrial DNA fragments in response to cell necrosis, to mediate a systemic inflammatory syndrome inducing coagulopathies, immune dysfunction, cytokine modulation, and multiorgan damage and failure. We discuss how an inflammatory response that induces simultaneous fever and/or prior exposure to a pathogen (e.g., viral infection) that deactivates molecular protective mechanisms interacts synergistically with the hyperthermia of exercise to perhaps explain heat stroke cases reported in low-risk populations performing routine activities. Importantly, we question the "traditional" notion that high core temperature is the critical mediator of exercise performance degradation and heat stroke. Published 2011. This article is a U.S. Government work and is in the public domain in the USA. PMID:23733692

  19. Bioanalytical evidence that chemicals in tattoo ink can induce adaptive stress responses.

    PubMed

    Neale, Peta A; Stalter, Daniel; Tang, Janet Y M; Escher, Beate I

    2015-10-15

    Tattooing is becoming increasingly popular, particularly amongst young people. However, tattoo inks contain a complex mixture of chemical impurities that may pose a long-term risk for human health. As a first step towards the risk assessment of these complex mixtures we propose to assess the toxicological hazard potential of tattoo ink chemicals with cell-based bioassays. Targeted modes of toxic action and cellular endpoints included cytotoxicity, genotoxicity and adaptive stress response pathways. The studied tattoo inks, which were extracted with hexane as a proxy for the bioavailable fraction, caused effects in all bioassays, with the red and yellow tattoo inks having the greatest response, particularly inducing genotoxicity and oxidative stress response endpoints. Chemical analysis revealed the presence of polycyclic aromatic hydrocarbons in the tested black tattoo ink at concentrations twice the recommended level. The detected polycyclic aromatic hydrocarbons only explained 0.06% of the oxidative stress response of the black tattoo ink, thus the majority of the effect was caused by unidentified components. The study indicates that currently available tattoo inks contain components that induce adaptive stress response pathways, but to evaluate the risk to human health further work is required to understand the toxicokinetics of tattoo ink chemicals in the body.

  20. Integrated physiological mechanisms of exercise performance, adaptation, and maladaptation to heat stress.

    PubMed

    Sawka, Michael N; Leon, Lisa R; Montain, Scott J; Sonna, Larry A

    2011-10-01

    This article emphasizes significant recent advances regarding heat stress and its impact on exercise performance, adaptations, fluid electrolyte imbalances, and pathophysiology. During exercise-heat stress, the physiological burden of supporting high skin blood flow and high sweating rates can impose considerable cardiovascular strain and initiate a cascade of pathophysiological events leading to heat stroke. We examine the association between heat stress, particularly high skin temperature, on diminishing cardiovascular/aerobic reserves as well as increasing relative intensity and perceptual cues that degrade aerobic exercise performance. We discuss novel systemic (heat acclimation) and cellular (acquired thermal tolerance) adaptations that improve performance in hot and temperate environments and protect organs from heat stroke as well as other dissimilar stresses. We delineate how heat stroke evolves from gut underperfusion/ischemia causing endotoxin release or the release of mitochondrial DNA fragments in response to cell necrosis, to mediate a systemic inflammatory syndrome inducing coagulopathies, immune dysfunction, cytokine modulation, and multiorgan damage and failure. We discuss how an inflammatory response that induces simultaneous fever and/or prior exposure to a pathogen (e.g., viral infection) that deactivates molecular protective mechanisms interacts synergistically with the hyperthermia of exercise to perhaps explain heat stroke cases reported in low-risk populations performing routine activities. Importantly, we question the "traditional" notion that high core temperature is the critical mediator of exercise performance degradation and heat stroke. Published 2011. This article is a U.S. Government work and is in the public domain in the USA.

  1. Mammalian phospholipid homeostasis: evidence that membrane curvature elastic stress drives homeoviscous adaptation in vivo.

    PubMed

    Dymond, Marcus K

    2016-08-01

    Several theories of phospholipid homeostasis have postulated that cells regulate the molecular composition of their bilayer membranes, such that a common biophysical membrane parameter is under homeostatic control. Two commonly cited theories are the intrinsic curvature hypothesis, which states that cells control membrane curvature elastic stress, and the theory of homeoviscous adaptation, which postulates cells control acyl chain packing order (membrane order). In this paper, we present evidence from data-driven modelling studies that these two theories correlate in vivo. We estimate the curvature elastic stress of mammalian cells to be 4-7 × 10(-12) N, a value high enough to suggest that in mammalian cells the preservation of membrane order arises through a mechanism where membrane curvature elastic stress is controlled. These results emerge from analysing the molecular contribution of individual phospholipids to both membrane order and curvature elastic stress in nearly 500 cellular compositionally diverse lipidomes. Our model suggests that the de novo synthesis of lipids is the dominant mechanism by which cells control curvature elastic stress and hence membrane order in vivo These results also suggest that cells can increase membrane curvature elastic stress disproportionately to membrane order by incorporating polyunsaturated fatty acids into lipids. PMID:27534697

  2. Imaging the cellular response to transient shear stress using time-resolved digital holography

    NASA Astrophysics Data System (ADS)

    Arita, Yoshihiko; Antkowiak, Maciej; Gunn-Moore, Frank; Dholakia, Kishan

    2014-02-01

    Shear stress has been recognized as one of the biophysical methods by which to permeabilize plasma membranes of cells. In particular, high pressure transient hydrodynamic flows created by laser-induced cavitation have been shown to lead to the uptake of fluorophores and plasmid DNA. While the mechanism and dynamics of cavitation have been extensively studied using a variety of time-resolved imaging techniques, the cellular response to the cavitation bubble and cavitation induced transient hydrodynamic flows has never been shown in detail. We use time-resolved quantitative phase microscopy to study cellular response to laser-induced cavitation bubbles. Laser-induced breakdown of an optically trapped polystyrene nanoparticle (500nm in diameter) irradiated with a single nanosecond laser pulse at 532nm creates transient shear stress to surrounding cells without causing cell lysis. A bi-directional transient displacement of cytoplasm is observed during expansion and collapse of the cavitation bubble. In some cases, cell deformation is only observable at the microsecond time scale without any permanent change in cell shape or optical thickness. On a time scale of seconds, the cellular response to shear stress and cytoplasm deformation typically leads to retraction of the cellular edge most exposed to the flow, rounding of the cell body and, in some cases, loss of cellular dry mass. These results give a new insight into the cellular response to laser-induced shear stress and related plasma membrane permeabilization. This study also demonstrates that laser-induced breakdown of an optically trapped nanoparticle offers localized cavitation (70 μm in diameter), which interacts with a single cell.

  3. miRNAs at the interface of cellular stress and disease.

    PubMed

    Emde, Anna; Hornstein, Eran

    2014-07-01

    microRNAs (miRNAs) are a family of small, non-coding RNAs, which provides broad silencing activity of mRNA targets in a sequence-dependent fashion. This review explores the hypothesis that the miRNA machinery is intimately linked with the cellular stress pathway and apparatus. Stress signaling potentially alters the function of the miRNA-bioprocessing core components and decompensates regulation. In addition, dysregulation of miRNA activity renders the cell more prone to stress and emerges as a new pathway for age-related insults and diseases, such as neurodegeneration.

  4. A signature microRNA expression profile for the cellular response to thermal stress

    NASA Astrophysics Data System (ADS)

    Wilmink, Gerald J.; Roth, Caleb C.; Ketchum, Norma; Ibey, Bennett L.; Waterworth, Angela; Suarez, Maria; Roach, William P.

    2009-02-01

    Recently, an extensive layer of intra-cellular signals was discovered that was previously undetected by genetic radar. It is now known that this layer consists primarily of a class of short noncoding RNA species that are referred to as microRNAs (miRNAs). MiRNAs regulate protein synthesis at the post-transcriptional level, and studies have shown that they are involved in many fundamental cellular processes. In this study, we hypothesized that miRNAs may be involved in cellular stress response mechanisms, and that cells exposed to thermal stress may exhibit a signature miRNA expression profile indicative of their functional involvement in such mechanisms. To test our hypothesis, human dermal fibroblasts were exposed to an established hyperthermic protocol, and the ensuing miRNA expression levels were evaluated 4 hr post-exposure using microRNA microarray gene chips. The microarray data shows that 123 miRNAs were differentially expressed in cells exposed to thermal stress. We collectively refer to these miRNAs as thermalregulated microRNAs (TRMs). Since miRNA research is in its infancy, it is interesting to note that only 27 of the 123 TRMs are currently annotated in the Sanger miRNA registry. Prior to publication, we plan to submit the remaining novel 96 miRNA gene sequences for proper naming. Computational and thermodynamic modeling algorithms were employed to identify putative mRNA targets for the TRMs, and these studies predict that TRMs regulate the mRNA expression of various proteins that are involved in the cellular stress response. Future empirical studies will be conducted to validate these theoretical predictions, and to further examine the specific role that TRMs play in the cellular stress response.

  5. Reciprocal Degradation of YME1L and OMA1 Adapts Mitochondrial Proteolytic Activity During Stress

    PubMed Central

    Rainbolt, T. Kelly; Lebeau, Justine; Puchades, Cristina; Wiseman, R. Luke

    2016-01-01

    SUMMARY The mitochondrial inner membrane proteases YME1L and OMA1 are critical regulators of essential mitochondrial functions including inner membrane proteostasis maintenance and mitochondrial dynamics. Here, we show that YME1L and OMA1 are reciprocally degraded in response to distinct types of cellular stress. OMA1 is degraded through a YME1L-dependent mechanism in response to toxic insults that depolarize the mitochondrial membrane. Alternatively, insults that depolarize mitochondria and deplete cellular ATP stabilize active OMA1 and promote YME1L degradation. We show that the differential degradation of YME1L and OMA1 alters their proteolytic processing of the dynamin-like GTPase OPA1, a critical regulator of mitochondrial inner membrane morphology, which influences the recovery of tubular mitochondria following membrane depolarization-induced fragmentation. Our results reveal the differential stress-induced degradation of YME1L and OMA1 as a mechanism to sensitively adapt mitochondrial inner membrane protease activity and function in response to distinct types of cellular insults. PMID:26923599

  6. Adrenocortical adaptation to chronic intermittent stress in hemispherectomized pigeon.

    PubMed

    Ramade, F; Bayle, J D

    1984-07-01

    Hemispherectomized pigeons were exposed daily to electrical footshocks delivered for 15 sec, at the same hour, for 8 weeks. Serial blood samples were obtained through a chronic vascular catheter. The adrenocortical response to chronic intermittent stress was measured kinetically at one week intervals. The initial response including several successive peaks of plasma corticosterone progressively adapted: Late peaks disappeared and only the first one subsisted 12-14 min after stressor application; this first peak diminished in magnitude; furthermore, an anticipatory peak occurred, starting 14 min before stress. In pigeons lesioned in the anterior dorsomedial thalamus, the only response to the stressor was of the single peak (12-14 min) type without any development of anticipatory conditioned response. This phenomenon was consistant all over the experimental period. Thalamic-hypothalamic interrelationships may be suggested to provide neuronal loops that underlie the long lasting, pulsatile repetitive components of the adrenocortical response to acute stress and also the adaptative process of such a response to chronic intermittent stress, including a conditioned, anticipatory endocrine activation. PMID:6505055

  7. Embryo as an active granular fluid: stress-coordinated cellular constriction chains

    NASA Astrophysics Data System (ADS)

    Gao, Guo-Jie Jason; Holcomb, Michael C.; Thomas, Jeffrey H.; Blawzdziewicz, Jerzy

    2016-10-01

    Mechanical stress plays an intricate role in gene expression in individual cells and sculpting of developing tissues. However, systematic methods of studying how mechanical stress and feedback help to harmonize cellular activities within a tissue have yet to be developed. Motivated by our observation of the cellular constriction chains (CCCs) during the initial phase of ventral furrow formation in the Drosophila melanogaster embryo, we propose an active granular fluid (AGF) model that provides valuable insights into cellular coordination in the apical constriction process. In our model, cells are treated as circular particles connected by a predefined force network, and they undergo a random constriction process in which the particle constriction probability P is a function of the stress exerted on the particle by its neighbors. We find that when P favors tensile stress, constricted particles tend to form chain-like structures. In contrast, constricted particles tend to form compact clusters when P favors compression. A remarkable similarity of constricted-particle chains and CCCs observed in vivo provides indirect evidence that tensile-stress feedback coordinates the apical constriction activity. Our particle-based AGF model will be useful in analyzing mechanical feedback effects in a wide variety of morphogenesis and organogenesis phenomena.

  8. An Arabidopsis WDR protein coordinates cellular networks involved in light, stress response and hormone signals.

    PubMed

    Chuang, Huey-Wen; Feng, Ji-Huan; Feng, Yung-Lin; Wei, Miam-Ju

    2015-12-01

    The WD-40 repeat (WDR) protein acts as a scaffold for protein interactions in various cellular events. An Arabidopsis WDR protein exhibited sequence similarity with human WDR26, a scaffolding protein implicated in H2O2-induced cell death in neural cells. The AtWDR26 transcript was induced by auxin, abscisic acid (ABA), ethylene (ET), osmostic stress and salinity. The expression of AtWDR26 was regulated by light, and seed germination of the AtWDR26 overexpression (OE) and seedling growth of the T-DNA knock-out (KO) exhibited altered sensitivity to light. Root growth of the OE seedlings increased tolerance to ZnSO4 and NaCl stresses and were hypersensitive to inhibition of osmotic stress. Seedlings of OE and KO altered sensitivities to multiple hormones. Transcriptome analysis of the transgenic plants overexpressing AtWDR26 showed that genes involved in the chloroplast-related metabolism constituted the largest group of the up-regulated genes. AtWDR26 overexpression up-regulated a large number of genes related to defense cellular events including biotic and abiotic stress response. Furthermore, several members of genes functioning in the regulation of Zn homeostasis, and hormone synthesis and perception of auxin and JA were strongly up-regulated in the transgenic plants. Our data provide physiological and transcriptional evidence for AtWDR26 role in hormone, light and abiotic stress cellular events.

  9. Embryo as an active granular fluid: stress-coordinated cellular constriction chains.

    PubMed

    Jason Gao, Guo-Jie; Holcomb, Michael C; Thomas, Jeffrey H; Blawzdziewicz, Jerzy

    2016-10-19

    Mechanical stress plays an intricate role in gene expression in individual cells and sculpting of developing tissues. However, systematic methods of studying how mechanical stress and feedback help to harmonize cellular activities within a tissue have yet to be developed. Motivated by our observation of the cellular constriction chains (CCCs) during the initial phase of ventral furrow formation in the Drosophila melanogaster embryo, we propose an active granular fluid (AGF) model that provides valuable insights into cellular coordination in the apical constriction process. In our model, cells are treated as circular particles connected by a predefined force network, and they undergo a random constriction process in which the particle constriction probability P is a function of the stress exerted on the particle by its neighbors. We find that when P favors tensile stress, constricted particles tend to form chain-like structures. In contrast, constricted particles tend to form compact clusters when P favors compression. A remarkable similarity of constricted-particle chains and CCCs observed in vivo provides indirect evidence that tensile-stress feedback coordinates the apical constriction activity. Our particle-based AGF model will be useful in analyzing mechanical feedback effects in a wide variety of morphogenesis and organogenesis phenomena. PMID:27545101

  10. On PAR with PARP: cellular stress signaling through poly(ADP-ribose) and PARP-1

    PubMed Central

    Luo, Xin; Kraus, W. Lee

    2012-01-01

    Cellular stress responses are mediated through a series of regulatory processes that occur at the genomic, transcriptional, post-transcriptional, translational, and post-translational levels. These responses require a complex network of sensors and effectors from multiple signaling pathways, including the abundant and ubiquitous nuclear enzyme poly(ADP-ribose) (PAR) polymerase-1 (PARP-1). PARP-1 functions at the center of cellular stress responses, where it processes diverse signals and, in response, directs cells to specific fates (e.g., DNA repair vs. cell death) based on the type and strength of the stress stimulus. Many of PARP-1's functions in stress response pathways are mediated by its regulated synthesis of PAR, a negatively charged polymer, using NAD+ as a donor of ADP-ribose units. Thus, PARP-1's functions are intimately tied to nuclear NAD+ metabolism and the broader metabolic profile of the cell. Recent studies in cell and animal models have highlighted the roles of PARP-1 and PAR in the response to a wide variety of extrinsic and intrinsic stress signals, including those initiated by oxidative, nitrosative, genotoxic, oncogenic, thermal, inflammatory, and metabolic stresses. These responses underlie pathological conditions, including cancer, inflammation-related diseases, and metabolic dysregulation. The development of PARP inhibitors is being pursued as a therapeutic approach to these conditions. In this review, we highlight the newest findings about PARP-1's role in stress responses in the context of the historical data. PMID:22391446

  11. Proteomic analysis of the SIRT6 interactome: novel links to genome maintenance and cellular stress signaling.

    PubMed

    Simeoni, Federica; Tasselli, Luisa; Tanaka, Shinji; Villanova, Lidia; Hayashi, Mayumi; Kubota, Kazuishi; Isono, Fujio; Garcia, Benjamin A; Michishita-Kioi, Eriko; Chua, Katrin F

    2013-01-01

    The chromatin regulatory factor SIRT6 plays pivotal roles in metabolism, tumor suppression, and aging biology. Despite the fundamental roles of SIRT6 in physiology and disease, only a handful of molecular and functional interactions of SIRT6 have been reported. Here, we characterize the SIRT6 interactome and identify 80+ novel SIRT6-interacting proteins. The discovery of these SIRT6-associations considerably expands knowledge of the SIRT6 interaction network, and suggests previously unknown functional interactions of SIRT6 in fundamental cellular processes. These include chromatin remodeling, mitotic chromosome segregation, protein homeostasis, and transcriptional elongation. Extended analysis of the SIRT6 interaction with G3BP1, a master stress response factor, uncovers an unexpected role and mechanism of SIRT6 in regulating stress granule assembly and cellular stress resistance.

  12. Adaptive mutation and amplification in Escherichia coli: two pathways of genome adaptation under stress.

    PubMed

    Hersh, Megan N; Ponder, Rebecca G; Hastings, P J; Rosenberg, Susan M

    2004-06-01

    The neo-Darwinists suggested that evolution is constant and gradual, and thus that genetic changes that drive evolution should be too. However, more recent understanding of phenomena called adaptive mutation in microbes indicates that mutation rates can be elevated in response to stress, producing beneficial and other mutations. We review evidence that, in Escherichia coli, two separate mechanisms of stress-induced genetic change occur that revert a lac frameshift allele allowing growth on lactose medium. First, compensatory frameshift ("point") mutations occur by a mechanism that includes DNA double-strand breaks and (we have suggested) their error-prone repair. Point mutation requires induction of the RpoS-dependent general stress response, and the SOS DNA damage response leading to upregulation of the error-prone DNA polymerase DinB (Pol IV), and occurs during a transient limitation of post-replicative mismatch repair activity. A second mechanism, adaptive amplification, entails amplification of the leaky lac allele to 20-50 tandem repeats. These provide sufficient beta-galactosidase activity for growth, thereby apparently deflecting cells from the point mutation pathway. Unlike point mutation, amplification neither occurs in hypermutating cells nor requires SOS or DinB, but like point mutation, amplification requires the RpoS-dependent stress response. Similar processes are being found in other bacterial systems and yeast. Stress-induced genetic changes may underlie much of microbial evolution, pathogenesis and antibiotic resistance, and also cancer formation, progression and drug resistance. PMID:15207867

  13. Redox Sensitivities of Global Cellular Cysteine Residues under Reductive and Oxidative Stress.

    PubMed

    Araki, Kazutaka; Kusano, Hidewo; Sasaki, Naoyuki; Tanaka, Riko; Hatta, Tomohisa; Fukui, Kazuhiko; Natsume, Tohru

    2016-08-01

    The protein cysteine residue is one of the amino acids most susceptible to oxidative modifications, frequently caused by oxidative stress. Several applications have enabled cysteine-targeted proteomics analysis with simultaneous detection and quantitation. In this study, we employed a quantitative approach using a set of iodoacetyl-based cysteine reactive isobaric tags (iodoTMT) and evaluated the transient cellular oxidation ratio of free and reversibly modified cysteine thiols under DTT and hydrogen peroxide (H2O2) treatments. DTT treatment (1 mM for 5 min) reduced most cysteine thiols, irrespective of their cellular localizations. It also caused some unique oxidative shifts, including for peroxiredoxin 2 (PRDX2), uroporphyrinogen decarboxylase (UROD), and thioredoxin (TXN), proteins reportedly affected by cellular reactive oxygen species production. Modest H2O2 treatment (50 μM for 5 min) did not cause global oxidations but instead had apparently reductive effects. Moreover, with H2O2, significant oxidative shifts were observed only in redox active proteins, like PRDX2, peroxiredoxin 1 (PRDX1), TXN, and glyceraldehyde 3-phosphate dehydrogenase (GAPDH). Overall, our quantitative data illustrated both H2O2- and reduction-mediated cellular responses, whereby while redox homeostasis is maintained, highly reactive thiols can potentiate the specific, rapid cellular signaling to counteract acute redox stress.

  14. Functional adaptation and phenotypic plasticity at the cellular and whole plant level.

    PubMed

    Niklas, Karl J

    2009-10-01

    The ability to adaptively alter morphological, anatomical, or physiological functional traits to local environmental variations using external environmental cues is especially well expressed by all terrestrial and most aquatic plants. A ubiquitous cue eliciting these plastic phenotypic responses is mechanical perturbation (MP), which can evoke dramatic differences in the size, shape, or mechanical properties of conspecifics. Current thinking posits that MP is part of a very ancient "stress-perception response system" that involves receptors located at the cell membrane/cell wall interface capable of responding to a broad spectrum of stress-inducing factors. This hypothesis is explored here from the perspective of cell wall evolution and the control of cell wall architecture by unicellular and multicellular plants. Among the conclusions that emerge from this exploration is the perspective that the plant cell is phenotypically plastic. PMID:19920346

  15. Plasma. beta. -endorphin and stress hormone levels during adaptation and stress

    SciTech Connect

    Lishmanov, Yu.B.; Trifonova, Zh.V.; Tsibin, A.N.; Maslova, L.V.; Dement'eva, L.A.

    1987-09-01

    This paper describes a comparative study of ..beta..-endorphin and stress hormone levels in the blood plasma of rats during stress and adaptation. Immunoreactive ..beta..-endorphin in the blood plasma was assayed by means of a kit after preliminary isolation of the ..beta..-endorphin fraction by affinity chromatography on sepharose; ACTH was assayed with a kit and cortisol, insulin, thyroxine and tri-iodothyronine by means of kits from Izotop. Determination of plasma levels of ..beta..-endorphin and other opioids could evidently be an important method of assessing the state of resistance of the organism to stress.

  16. SIRT1 associates with eIF2-alpha and regulates the cellular stress response

    PubMed Central

    Ghosh, Hiyaa Singhee; Reizis, Boris; Robbins, Paul D.

    2011-01-01

    SIRT1 is a NAD+ dependent protein deacetylase known to increase longevity in model organisms. SIRT1 regulates cellular response to oxidative and/or genotoxic stress by regulating proteins such as p53 and FOXO. The eukaryotic initiation factor-2, eIF2, plays a critical role in the integrated stress response pathway. Under cellular stress, phosphorylation of the alpha subunit of eIF2 is essential for immediate shut-off of translation and activation of stress response genes. Here we demonstrate that SIRT1 interacts with eIF2α. Loss of SIRT1 results in increased phosphorylation of eIF2α. However, the downstream stress induced signaling pathway is compromised in SIRT1-deficient cells, indicated by delayed expression of the downstream target genes CHOP and GADD34 and a slower post-stress translation recovery. Finally, SIRT1 co-immunoprecipitates with mediators of eIF2α dephosphorylation, GADD34 and CreP, suggesting a role for SIRT1 in the negative feedback regulation of eIF2α phosphorylation. PMID:22355666

  17. TDP-43 associates with stalled ribosomes and contributes to cell survival during cellular stress.

    PubMed

    Higashi, Shinji; Kabuta, Tomohiro; Nagai, Yoshitaka; Tsuchiya, Yukihiro; Akiyama, Haruhiko; Wada, Keiji

    2013-07-01

    TAR DNA-binding protein 43 (TDP-43) has emerged as an important contributor to amyotrophic lateral sclerosis and frontotemporal lobar degeneration. To understand the physiological roles of TDP-43 in the complex translational regulation mechanisms, we exposed cultured cells to oxidative stress induced by sodium arsenite (ARS) for different periods of time, leading to non-lethal or sublethal injury. Polysome profile analysis revealed that ARS-induced stress caused the association of TDP-43 with stalled ribosomes via binding to mRNA, which was not found under the steady-state condition. When the cells were exposed to short-term/non-lethal stress, TDP-43 associating with ribosomes localized to stress granules (SGs); this association was transient because it was immediately dissolved by the removal of the stress. In contrast, when the cells were exposed to long-term/sublethal stress, TDP-43 was excluded from SGs and shifted to the heavy fractions independent of any binding to mRNA. In these severely stressed cells, biochemical alterations of TDP-43, such as increased insolubility and disulfide bond formation, were irreversible. TDP-43 was finally phosphorylated via the ARS-induced c-jun N-terminal kinase pathway. In TDP-43-silenced cells, stalled mRNA and poly (A)(+) RNA stability was disturbed and cytotoxicity increased under sublethal stress. Thus, TDP-43 associates with stalled ribosomes and contributes to cell survival during cellular stress.

  18. Mitochondrial Mg2+ homeostasis decides cellular energy metabolism and vulnerability to stress

    PubMed Central

    Yamanaka, Ryu; Tabata, Sho; Shindo, Yutaka; Hotta, Kohji; Suzuki, Koji; Soga, Tomoyoshi; Oka, Kotaro

    2016-01-01

    Cellular energy production processes are composed of many Mg2+ dependent enzymatic reactions. In fact, dysregulation of Mg2+ homeostasis is involved in various cellular malfunctions and diseases. Recently, mitochondria, energy-producing organelles, have been known as major intracellular Mg2+ stores. Several biological stimuli alter mitochondrial Mg2+ concentration by intracellular redistribution. However, in living cells, whether mitochondrial Mg2+ alteration affect cellular energy metabolism remains unclear. Mg2+ transporter of mitochondrial inner membrane MRS2 is an essential component of mitochondrial Mg2+ uptake system. Here, we comprehensively analyzed intracellular Mg2+ levels and energy metabolism in Mrs2 knockdown (KD) cells using fluorescence imaging and metabolome analysis. Dysregulation of mitochondrial Mg2+ homeostasis disrupted ATP production via shift of mitochondrial energy metabolism and morphology. Moreover, Mrs2 KD sensitized cellular tolerance against cellular stress. These results indicate regulation of mitochondrial Mg2+ via MRS2 critically decides cellular energy status and cell vulnerability via regulation of mitochondrial Mg2+ level in response to physiological stimuli. PMID:27458051

  19. Mitochondrial Mg(2+) homeostasis decides cellular energy metabolism and vulnerability to stress.

    PubMed

    Yamanaka, Ryu; Tabata, Sho; Shindo, Yutaka; Hotta, Kohji; Suzuki, Koji; Soga, Tomoyoshi; Oka, Kotaro

    2016-01-01

    Cellular energy production processes are composed of many Mg(2+) dependent enzymatic reactions. In fact, dysregulation of Mg(2+) homeostasis is involved in various cellular malfunctions and diseases. Recently, mitochondria, energy-producing organelles, have been known as major intracellular Mg(2+) stores. Several biological stimuli alter mitochondrial Mg(2+) concentration by intracellular redistribution. However, in living cells, whether mitochondrial Mg(2+) alteration affect cellular energy metabolism remains unclear. Mg(2+) transporter of mitochondrial inner membrane MRS2 is an essential component of mitochondrial Mg(2+) uptake system. Here, we comprehensively analyzed intracellular Mg(2+) levels and energy metabolism in Mrs2 knockdown (KD) cells using fluorescence imaging and metabolome analysis. Dysregulation of mitochondrial Mg(2+) homeostasis disrupted ATP production via shift of mitochondrial energy metabolism and morphology. Moreover, Mrs2 KD sensitized cellular tolerance against cellular stress. These results indicate regulation of mitochondrial Mg(2+) via MRS2 critically decides cellular energy status and cell vulnerability via regulation of mitochondrial Mg(2+) level in response to physiological stimuli. PMID:27458051

  20. An adaptability limit to climate change due to heat stress.

    PubMed

    Sherwood, Steven C; Huber, Matthew

    2010-05-25

    Despite the uncertainty in future climate-change impacts, it is often assumed that humans would be able to adapt to any possible warming. Here we argue that heat stress imposes a robust upper limit to such adaptation. Peak heat stress, quantified by the wet-bulb temperature T(W), is surprisingly similar across diverse climates today. T(W) never exceeds 31 degrees C. Any exceedence of 35 degrees C for extended periods should induce hyperthermia in humans and other mammals, as dissipation of metabolic heat becomes impossible. While this never happens now, it would begin to occur with global-mean warming of about 7 degrees C, calling the habitability of some regions into question. With 11-12 degrees C warming, such regions would spread to encompass the majority of the human population as currently distributed. Eventual warmings of 12 degrees C are possible from fossil fuel burning. One implication is that recent estimates of the costs of unmitigated climate change are too low unless the range of possible warming can somehow be narrowed. Heat stress also may help explain trends in the mammalian fossil record.

  1. Adaptive Benefits of Storage Strategy and Dual AMPK/TOR Signaling in Metabolic Stress Response

    PubMed Central

    Pfeuty, Benjamin; Thommen, Quentin

    2016-01-01

    Cellular metabolism must ensure that supply of nutrient meets the biosynthetic and bioenergetic needs. Cells have therefore developed sophisticated signaling and regulatory pathways in order to cope with dynamic fluctuations of both resource and demand and to regulate accordingly diverse anabolic and catabolic processes. Intriguingly, these pathways are organized around a relatively small number of regulatory hubs, such as the highly conserved AMPK and TOR kinase families in eukaryotic cells. Here, the global metabolic adaptations upon dynamic environment are investigated using a prototypical model of regulated metabolism. In this model, the optimal enzyme profiles as well as the underlying regulatory architecture are identified by combining perturbation and evolutionary methods. The results reveal the existence of distinct classes of adaptive strategies, which differ in the management of storage reserve depending on the intensity of the stress and in the regulation of ATP-producing reaction depending on the nature of the stress. The regulatory architecture that optimally implements these adaptive features is characterized by a crosstalk between two specialized signaling pathways, which bears close similarities with the sensing and regulatory properties of AMPK and TOR pathways. PMID:27505075

  2. Adaptive Benefits of Storage Strategy and Dual AMPK/TOR Signaling in Metabolic Stress Response.

    PubMed

    Pfeuty, Benjamin; Thommen, Quentin

    2016-01-01

    Cellular metabolism must ensure that supply of nutrient meets the biosynthetic and bioenergetic needs. Cells have therefore developed sophisticated signaling and regulatory pathways in order to cope with dynamic fluctuations of both resource and demand and to regulate accordingly diverse anabolic and catabolic processes. Intriguingly, these pathways are organized around a relatively small number of regulatory hubs, such as the highly conserved AMPK and TOR kinase families in eukaryotic cells. Here, the global metabolic adaptations upon dynamic environment are investigated using a prototypical model of regulated metabolism. In this model, the optimal enzyme profiles as well as the underlying regulatory architecture are identified by combining perturbation and evolutionary methods. The results reveal the existence of distinct classes of adaptive strategies, which differ in the management of storage reserve depending on the intensity of the stress and in the regulation of ATP-producing reaction depending on the nature of the stress. The regulatory architecture that optimally implements these adaptive features is characterized by a crosstalk between two specialized signaling pathways, which bears close similarities with the sensing and regulatory properties of AMPK and TOR pathways. PMID:27505075

  3. Stress tolerance in plants via habitat-adapted symbiosis

    USGS Publications Warehouse

    Rodriguez, R.J.; Henson, J.; Van Volkenburgh, E.; Hoy, M.; Wright, L.; Beckwith, F.; Kim, Y.-O.; Redman, R.S.

    2008-01-01

    We demonstrate that native grass species from coastal and geothermal habitats require symbiotic fungal endophytes for salt and heat tolerance, respectively. Symbiotically conferred stress tolerance is a habitat-specific phenomenon with geothermal endophytes conferring heat but not salt tolerance, and coastal endophytes conferring salt but not heat tolerance. The same fungal species isolated from plants in habitats devoid of salt or heat stress did not confer these stress tolerances. Moreover, fungal endophytes from agricultural crops conferred disease resistance and not salt or heat tolerance. We define habitat-specific, symbiotically-conferred stress tolerance as habitat-adapted symbiosis and hypothesize that it is responsible for the establishment of plants in high-stress habitats. The agricultural, coastal and geothermal plant endophytes also colonized tomato (a model eudicot) and conferred disease, salt and heat tolerance, respectively. In addition, the coastal plant endophyte colonized rice (a model monocot) and conferred salt tolerance. These endophytes have a broad host range encompassing both monocots and eudicots. Interestingly, the endophytes also conferred drought tolerance to plants regardless of the habitat of origin. Abiotic stress tolerance correlated either with a decrease in water consumption or reactive oxygen sensitivity/generation but not to increased osmolyte production. The ability of fungal endophytes to confer stress tolerance to plants may provide a novel strategy for mitigating the impacts of global climate change on agricultural and native plant communities.The ISME Journal (2008) 2, 404-416; doi:10.1038/ismej.2007.106; published online 7 February 2008. ?? 2008 International Society for Microbial Ecology All rights reserved.

  4. Motion Adaptive Vertical Handoff in Cellular/WLAN Heterogeneous Wireless Network

    PubMed Central

    Ma, Lin; Xu, Yubin; Fu, Yunhai

    2014-01-01

    In heterogeneous wireless network, vertical handoff plays an important role for guaranteeing quality of service and overall performance of network. Conventional vertical handoff trigger schemes are mostly developed from horizontal handoff in homogeneous cellular network. Basically, they can be summarized as hysteresis-based and dwelling-timer-based algorithms, which are reliable on avoiding unnecessary handoff caused by the terminals dwelling at the edge of WLAN coverage. However, the coverage of WLAN is much smaller compared with cellular network, while the motion types of terminals can be various in a typical outdoor scenario. As a result, traditional algorithms are less effective in avoiding unnecessary handoff triggered by vehicle-borne terminals with various speeds. Besides that, hysteresis and dwelling-timer thresholds usually need to be modified to satisfy different channel environments. For solving this problem, a vertical handoff algorithm based on Q-learning is proposed in this paper. Q-learning can provide the decider with self-adaptive ability for handling the terminals' handoff requests with different motion types and channel conditions. Meanwhile, Neural Fuzzy Inference System (NFIS) is embedded to retain a continuous perception of the state space. Simulation results verify that the proposed algorithm can achieve lower unnecessary handoff probability compared with the other two conventional algorithms. PMID:24741347

  5. C/EBPγ Is a Critical Regulator of Cellular Stress Response Networks through Heterodimerization with ATF4

    PubMed Central

    Huggins, Christopher J.; Mayekar, Manasi K.; Martin, Nancy; Saylor, Karen L.; Gonit, Mesfin; Jailwala, Parthav; Kasoji, Manjula; Haines, Diana C.; Quiñones, Octavio A.

    2015-01-01

    The integrated stress response (ISR) controls cellular adaptations to nutrient deprivation, redox imbalances, and endoplasmic reticulum (ER) stress. ISR genes are upregulated in stressed cells, primarily by the bZIP transcription factor ATF4 through its recruitment to cis-regulatory C/EBP:ATF response elements (CAREs) together with a dimeric partner of uncertain identity. Here, we show that C/EBPγ:ATF4 heterodimers, but not C/EBPβ:ATF4 dimers, are the predominant CARE-binding species in stressed cells. C/EBPγ and ATF4 associate with genomic CAREs in a mutually dependent manner and coregulate many ISR genes. In contrast, the C/EBP family members C/EBPβ and C/EBP homologous protein (CHOP) were largely dispensable for induction of stress genes. Cebpg−/− mouse embryonic fibroblasts (MEFs) proliferate poorly and exhibit oxidative stress due to reduced glutathione levels and impaired expression of several glutathione biosynthesis pathway genes. Cebpg−/− mice (C57BL/6 background) display reduced body size and microphthalmia, similar to ATF4-null animals. In addition, C/EBPγ-deficient newborns die from atelectasis and respiratory failure, which can be mitigated by in utero exposure to the antioxidant, N-acetyl-cysteine. Cebpg−/− mice on a mixed strain background showed improved viability but, upon aging, developed significantly fewer malignant solid tumors than WT animals. Our findings identify C/EBPγ as a novel antioxidant regulator and an obligatory ATF4 partner that controls redox homeostasis in normal and cancerous cells. PMID:26667036

  6. Adaptation of maize source leaf metabolism to stress related disturbances in carbon, nitrogen and phosphorus balance

    PubMed Central

    2013-01-01

    Background Abiotic stress causes disturbances in the cellular homeostasis. Re-adjustment of balance in carbon, nitrogen and phosphorus metabolism therefore plays a central role in stress adaptation. However, it is currently unknown which parts of the primary cell metabolism follow common patterns under different stress conditions and which represent specific responses. Results To address these questions, changes in transcriptome, metabolome and ionome were analyzed in maize source leaves from plants suffering low temperature, low nitrogen (N) and low phosphorus (P) stress. The selection of maize as study object provided data directly from an important crop species and the so far underexplored C4 metabolism. Growth retardation was comparable under all tested stress conditions. The only primary metabolic pathway responding similar to all stresses was nitrate assimilation, which was down-regulated. The largest group of commonly regulated transcripts followed the expression pattern: down under low temperature and low N, but up under low P. Several members of this transcript cluster could be connected to P metabolism and correlated negatively to different phosphate concentration in the leaf tissue. Accumulation of starch under low temperature and low N stress, but decrease in starch levels under low P conditions indicated that only low P treated leaves suffered carbon starvation. Conclusions Maize employs very different strategies to manage N and P metabolism under stress. While nitrate assimilation was regulated depending on demand by growth processes, phosphate concentrations changed depending on availability, thus building up reserves under excess conditions. Carbon and energy metabolism of the C4 maize leaves were particularly sensitive to P starvation. PMID:23822863

  7. Interrelations between hydraulic and mechanical stress adaptations in woody plants.

    PubMed

    Christensen-Dalsgaard, Karen K; Ennos, A Roland; Fournier, Meriem

    2008-07-01

    The fields of plant water relations and plant biomechanics have traditionally been studied separately even though often the same tissues are responsible for water transport and mechanical support. There is now increasing evidence that hydraulic and mechanical adaptations may influence one another. We studied the changes in the hydraulic and mechanical properties of the wood along lateral roots of two species of buttressed trees. In these roots, the mechanical contstraints quantified by strain measurements are known to decrease distally. Further, we investigated the effect of mechanical loading on the vessel anatomy in these and four other species of tropical trees. We found that as the strain decreased, the wood became progressively less stiff and strong but the conductivity increased exponentially. This was reflected in that adaptations towards re-enforcing mechanically loaded areas resulted in xylem with fewer and smaller vessels. In addition a controlled growth experiment on three tree species showed that drought adaptation may results in plants with stronger and stiffer tissue. Our results indicate that hydraulic and mechanical stress adaptations may be interrelated, and so support recent studied suggesting that physiological responses are complex balances rather than pure optimisations.

  8. Restraint stress delays endometrial adaptive remodeling during mouse embryo implantation.

    PubMed

    Liu, Guanhui; Dong, Yulan; Wang, Zixu; Cao, Jing; Chen, Yaoxing

    2015-01-01

    In mice, previously, we showed that restraint stress reduces the number of embryo implantation sites in the endometrium. Here, we hypothesized that the uterine microenvironment is altered by restraint stress and consequently is suboptimal for embryo implantation. On embryonic day 1 (E1), 60 of 154 pregnant CD1 mice underwent restraint stress (4 h), repeated daily to E3, E5 or E7 (n = 10 mice per group). Restraint stress decreased food intake and suppressed body weight gain on E3, E5 and E7. Restraint stress decreased the actual and relative weight (percent body weight) of uterus and ovary on E5 (by 14.9%, p = 0.03; 16.1%, p = 0.004) and E7 (by 16.8%, p = 0.03; 20.0%, p = 0.01). Morphologically, restraint stress decreased relative endometrial area (by 8.94-18.8%, p = 0.003-0.021) and uterine gland area (by 30.6%, p < 0.01 on E3 and 44.5%, p < 0.01 on E5). Immunohistochemistry showed that restraint stress decreased microvessel density (by 12.9-70.5%, p < 0.01) and vascular endothelial growth factor expression (by 14.6-45.9%, p = 0.007-0.02). Restraint stress decreased by 32.4-39.8% (p = 0.002-0.01) the mean optical density ratio for proliferating cell nuclear antigen/terminal deoxynucleotidyl transferase dUTP nick end labeling. Methyl thiazolyl tetrazolium assay showed a dose-dependent decrease in proliferative activity of endometrial stromal cells (from 52 of 154 pregnant E5 control mice) incubated with H2O2 (100-1000 μM) in vitro. These findings supported the hypothesis that restraint stress negatively influences endometrial adaptive remodeling via an oxidative stress pathway, which resulted in fewer implantation sites.

  9. Growing Up Or Growing Old? Cellular Aging Linked With Testosterone Reactivity To Stress In Youth

    PubMed Central

    Drury, Stacy S.; Shirtcliff, Elizabeth A.; Shachet, Andrew; Phan, Jenny; Mabile, Emily; Brett, Zoë H.; Wren, Michael; Esteves, Kyle; Theall, Katherine P.

    2014-01-01

    Background Given the established relation between testosterone and aging in older adults, we tested whether buccal telomere length (TL), an established cellular biomarker of aging, was associated with testosterone levels in youth. Methods Children, mean age 10.2 years, were recruited from the greater New Orleans area and salivary testosterone was measured during both an acute stressor and diurnally. Buccal TL was measured using monochrome multiplex quantitative real-time PCR (MMQ-PCR). Testosterone and telomere length data was available on 77 individuals. The association between buccal TL and testosterone was tested using multivariate Generalized Estimating Equations (GEE) to account for clustering of children within families. Results Greater peak testosterone levels (β=-0.87, p < 0.01) and slower recovery (β=-0.56, p < 0.01) and reactivity (β = -1.22, p < 0.01) following a social stressor were significantly associated with shorter buccal TL after controlling for parental age at conception, child age, sex, sociodemographic factors and puberty. No association was initially present between diurnal measurements of testosterone or morning basal testosterone levels and buccal TL. Sex significantly moderated the relation between testosterone reactivity and buccal TL. Conclusions The association between testosterone and buccal TL supports gonadal maturation as a developmentally sensitive biomarker of aging within youth. As stress levels of testosterone were significantly associated with buccal TL, these findings are consistent with the growing literature linking stress exposure and accelerated maturation. The lack of association of diurnal testosterone or morning basal levels with buccal TL bolsters the notion of a shared stress-related maturational mechanism between cellular stress and the hypothalamic pituitary gonadal (HPG) axis. These data provide novel evidence supporting the interaction of aging, physiologic stress and cellular processes as an underlying

  10. Proteomic and cellular views of Arthrospira sp. PCC 8005 adaptation to nitrogen depletion.

    PubMed

    Deschoenmaeker, Frédéric; Facchini, Raphaël; Leroy, Baptiste; Badri, Hanène; Zhang, C-C; Wattiez, Ruddy

    2014-06-01

    Cyanobacteria are photosynthetic prokaryotes that play a crucial role in the Earth's nitrogen and carbon cycles. Nitrogen availability is one of the most important factors in cyanobacterial growth. Interestingly, filamentous non-diazotrophic cyanobacteria, such as Arthrospira sp. PCC 8005, have developed survival strategies that enable them to adapt to nitrogen deprivation. Metabolic studies recently demonstrated a substantial synthesis and accumulation of glycogen derived from amino acids during nitrogen starvation. Nevertheless, the regulatory mechanism of this adaptation is poorly understood. To the best of our knowledge, this study is the first proteomic and cellular analysis of Arthrospira sp. PCC 8005 under nitrogen depletion. Label-free differential proteomic analysis indicated the global carbon and nitrogen reprogramming of the cells during nitrogen depletion as characterized by an upregulation of glycogen synthesis and the use of endogenous nitrogen sources. The degradation of proteins and cyanophycin provided endogenous nitrogen when exogenous nitrogen was limited. Moreover, formamides, cyanates and urea were also potential endogenous nitrogen sources. The transporters of some amino acids and alternative nitrogen sources such as ammonium permease 1 were induced under nitrogen depletion. Intriguingly, although Arthrospira is a non-diazotrophic cyanobacterium, we observed the upregulation of HetR and HglK proteins, which are involved in heterocyst differentiation. Moreover, after a long period without nitrate, only a few highly fluorescent cells in each trichome were observed, and they might be involved in the long-term survival mechanism of this non-diazotrophic cyanobacterium under nitrogen deprivation. PMID:24648480

  11. Progression of Cellular Adaptations in Medial Prefrontal and Orbitofrontal Cortex in Response to Repeated Amphetamine

    PubMed Central

    Homayoun, Houman; Moghaddam, Bita

    2010-01-01

    Recent theories on addiction implicate adaptive changes in prefrontal cortex (PFC) neurons in reinforcing and psychotomimetic properties of psychostimulants, yet little is known about how neuronal responses to these drugs change over time. Here we describe electrophysiological evidence for a progressive and sustained change in the response of PFC neurons to amphetamine during repeated exposure. In spontaneously behaving rats and in rats engaged in an instrumental responding task, we followed the activity of medial PFC (mPFC) and orbitofrontal cortex (OFC) neurons during daily exposure to amphetamine and after a post-withdrawal challenge. Repeated amphetamine increased the number of responsive neurons and the magnitude of responses and modified spontaneous burst patterns. These changes were apparent after a few exposures to amphetamine, were amplified after withdrawal, and were region specific in that repeated amphetamine increasingly produced inhibitory responses in mPFC and excitatory responses in OFC. In behaviorally engaged animals, the gradual enhancement in mPFC inhibition and OFC overactivation correlated with a progressive impairment of instrumental responding. Furthermore, these changes were evident predominately in neurons that displayed phasic responses during task-related events. These rapid-onset and sustained cellular adaptations suggest that even limited exposure to psychostimulants may reduce the influence of mPFC neurons on behavior while at the same time exaggerating information encoded by OFC neurons. PMID:16885216

  12. Actin-Based Transport Adapts Polarity Domain Size to Local Cellular Curvature.

    PubMed

    Bonazzi, Daria; Haupt, Armin; Tanimoto, Hirokazu; Delacour, Delphine; Salort, Delphine; Minc, Nicolas

    2015-10-19

    Intracellular structures and organelles such as the nucleus, the centrosome, or the mitotic spindle typically scale their size to cell size [1]. Similarly, cortical polarity domains built around the active form of conserved Rho-GTPases, such as Cdc42p, exhibit widths that may range over two orders of magnitudes in cells with different sizes and shapes [2-6]. The establishment of such domains typically involves positive feedback loops based on reaction-diffusion and/or actin-mediated vesicle transport [3, 7, 8]. How these elements may adapt polarity domain size to cellular geometry is not known. Here, by tracking the width of successive oscillating Cdc42-GTP domains in fission yeast spores [9], we find that domain width scales with local cell-surface radii of curvature over an 8-fold range, independently of absolute cell volume, surface, or Cdc42-GTP concentration. This local scaling requires formin-nucleated cortical actin cables and the fusion of secretory vesicles transported along these cables with the membrane. These data suggest that reaction-diffusion may set a minimal domain size and that secretory vesicle transport along actin cables may dilute and extend polarity domains to adapt their size to local cell-surface curvature. This work reveals that actin networks may act as micrometric curvature sensors and uncovers a generic morphogenetic principle for how polarity domains define their size according to cell morphologies. PMID:26441355

  13. Actin-Based Transport Adapts Polarity Domain Size to Local Cellular Curvature.

    PubMed

    Bonazzi, Daria; Haupt, Armin; Tanimoto, Hirokazu; Delacour, Delphine; Salort, Delphine; Minc, Nicolas

    2015-10-19

    Intracellular structures and organelles such as the nucleus, the centrosome, or the mitotic spindle typically scale their size to cell size [1]. Similarly, cortical polarity domains built around the active form of conserved Rho-GTPases, such as Cdc42p, exhibit widths that may range over two orders of magnitudes in cells with different sizes and shapes [2-6]. The establishment of such domains typically involves positive feedback loops based on reaction-diffusion and/or actin-mediated vesicle transport [3, 7, 8]. How these elements may adapt polarity domain size to cellular geometry is not known. Here, by tracking the width of successive oscillating Cdc42-GTP domains in fission yeast spores [9], we find that domain width scales with local cell-surface radii of curvature over an 8-fold range, independently of absolute cell volume, surface, or Cdc42-GTP concentration. This local scaling requires formin-nucleated cortical actin cables and the fusion of secretory vesicles transported along these cables with the membrane. These data suggest that reaction-diffusion may set a minimal domain size and that secretory vesicle transport along actin cables may dilute and extend polarity domains to adapt their size to local cell-surface curvature. This work reveals that actin networks may act as micrometric curvature sensors and uncovers a generic morphogenetic principle for how polarity domains define their size according to cell morphologies.

  14. Protein arginylation regulates cellular stress response by stabilizing HSP70 and HSP40 transcripts

    PubMed Central

    Deka, Kamalakshi; Singh, Archana; Chakraborty, Surajit; Mukhopadhyay, Rupak; Saha, Sougata

    2016-01-01

    ATE1-mediated post-translational addition of arginine to a protein has been shown to regulate activity, interaction, and stability of the protein substrates. Arginylation has been linked to many different stress conditions, namely ER stress, cytosolic misfolded protein stress, and nitrosative stress. However, clear understanding about the effect of arginylation in cellular stress responses is yet to emerge. In this study, we investigated the role of arginylation in heat-stress response. Our findings suggest that Ate1 knock out (KO) cells are more susceptible to heat stress compared with its wild-type counterparts due to the induction of apoptosis in KO cells. Gene expression analysis of inducible heat-shock proteins (HSP70.1, HSP70.3, and HSP40) showed induction of these genes in KO cells early in the heat shock, but were drastically diminished at the later period of heat shock. Further analysis revealed that loss of ATE1 drastically reduced the stability of all three HSP mRNAs. These phenotypes were greatly restored by overexpression of Ate1 in KO cells. Our findings show that arginylation plays a protective role during heat stress by regulating HSP gene expression and mRNA stability. PMID:27752365

  15. On the adaptive significance of stress-induced immunosuppression.

    PubMed Central

    Råberg, L; Grahn, M; Hasselquist, D; Svensson, E

    1998-01-01

    We approach the field of stress immunology from an ecological point of view and ask: why should a heavy physical workload, for example as a result of a high reproductive effort, compromise immune function? We argue that immunosuppression by neuroendocrine mechanisms, such as stress hormones, during heavy physical workload is adaptive, and consider two different ultimate explanations of such immunosuppression. First, several authors have suggested that the immune system is suppressed to reallocate resources to other metabolic demands. In our view, this hypothesis assumes that considerable amounts of energy or nutrients can be saved by suppressing the immune system; however, this assumption requires further investigation. Second, we suggest an alternative explanation based on the idea that the immune system is tightly regulated by neuroendocrine mechanisms to avoid hyperactivation and ensuing autoimmune responses. We hypothesize that the risk of autoimmune responses increases during heavy physical workload and that the immune system is suppressed to counteract this. PMID:9753786

  16. Bacterial economics: adaptation to stress conditions via stage-wise changes in the response mechanism.

    PubMed

    Baranyi, J; Metris, A; George, S M

    2015-02-01

    Common features of microbial adaptation are analysed with mathematical models and extended to stress conditions when the bacterial population declines before growing again. A parallel is drawn between bacterial and human communities in terms of non-mutation-based adaptation (acclimation) to stress. For a case study, the behaviour of Escherichia coli under osmotic stress, is detailed. It is suggested that stress modelling adaptation should be the focus of further developments in predictive food microbiology.

  17. Thermal stress and cellular signaling processes in hemocytes of native (Mytilus californianus) and invasive (M. galloprovincialis) mussels: cell cycle regulation and DNA repair.

    PubMed

    Yao, Cui-Luan; Somero, George N

    2013-06-01

    In a previous study using hemocytes from native and invasive congeners of Mytilus (Mytilus californianus and Mytilus galloprovincialis, respectively) we showed that DNA damage and cell signaling transduction processes related to the cellular stress response and apoptosis were induced by acute temperature stress. The present study extends this work by examining effects of acute heat- and cold stress on total hemocyte counts (THCs) and expression of key regulatory molecules involved in responding to stress: tumor suppressor factor (p53), cell cycle arrest activator (p21), and a DNA base excision repair enzyme (apurinic/apyrimidinic endonuclease (APE)). Hyperthermia (28 °C, 32 °C) led to significant decreases of THCs in both species. The extent of decrease in THC was temperature-, time-, and species-dependent; lower THC values were found in M. californianus, the more cold-adapted species. Western blot analyses of hemocyte extracts with antibodies specific for p53 protein, several site-specific phosphorylation states of p53, p21 protein, and APE indicated that heat- and cold (2 °C) stress induced a time-dependent activation of stress-related proteins in response to DNA damage; these stress-induced changes could govern cell cycle arrest or DNA damage repair. Our results show that the downstream regulatory response to temperature-induced cell damage may play an important role in deciding cellular fate following heat- and cold stress. Compared to M. californianus, the more warm-adapted M. galloprovincialis appears to have a higher temperature tolerance due to a lesser reduction in THC, faster signaling activation and transduction, and stronger DNA repair ability following heat stress.

  18. Glucocorticoids Protect Against the Delayed Behavioral and Cellular Effects of Acute Stress on the Amygdala

    PubMed Central

    Rao, Rajnish P.; Anilkumar, Shobha; McEwen, Bruce; Chattarji, Sumantra

    2013-01-01

    Background A single episode of acute immobilization stress has previously been shown to trigger a delayed onset of anxiety-like behavior and spinogenesis in the basolateral amygdala (BLA) of rats. Spurred on by a seemingly paradoxical observation in which even a modest increase in corticosterone (CORT), caused by a single vehicle injection before stress, could dampen the delayed effects of stress, we hypothesized a protective role for glucocorticoids against stress. Methods We tested this hypothesis by analyzing how manipulations in CORT levels modulate delayed increase in anxiety-like behavior of rats on the elevated plus-maze 10 days after acute stress. We also investigated the cellular correlates of different levels of anxiety under different CORT conditions by quantifying spine density on Golgi-stained BLA principal neurons. Results CORT in drinking water for 12 hours preceding acute stress prevented delayed increase in anxiety rather than exacerbating it. Conversely, vehicle injection failed to prevent the anxiogenic effect of stress in bilaterally adrenalectomized rats. However, when CORT was restored in adrenalectomized rats by injection, the delayed anxiogenic effect of stress was once again blocked. Finally, high and low anxiety states were accompanied by high and low levels of BLA spine density. Conclusions Our findings suggest that the presence of elevated levels of CORT at the time of acute stress confers protection against the delayed enhancing effect of stress on BLA synaptic connectivity and anxiety-like behavior. These observations are consistent with clinical reports on the protective effects of glucocorticoids against the development of posttraumatic symptoms triggered by traumatic stress. PMID:22572034

  19. Adaptation to extreme stress: post-traumatic stress disorder, neuropeptide Y and metabolic syndrome.

    PubMed

    Rasmusson, Ann M; Schnurr, Paula P; Zukowska, Zofia; Scioli, Erica; Forman, Daniel E

    2010-10-01

    The prevalence rates of obesity and metabolic syndrome are on the rise in the United States. Epidemiological surveys suggest that the rates of these medical conditions are especially high among persons with psychiatric disorders, including post-traumatic stress disorder (PTSD). A variety of factors are thought to contribute to the risk for metabolic syndrome, including excessive caloric intake, decreased activity and energy expenditure, use of certain medications, stress and genetic influences. Recent research demonstrates that stress, acting through the neuropeptide Y (NPY) and glucocorticoid systems, potentiates the development of obesity and other aspects of metabolic syndrome in mice fed a high caloric, fat and sugar diet. Alterations in the NPY and glucocorticoid systems also impact behavioral adaptation to stress, as indicated by studies in animals and persons exposed to severe, life-threatening or traumatic stress. The following review examines the biology of the NPY and neuroactive steroid systems as physiological links between metabolic syndrome and PTSD, a paradigmatic neuropsychiatric stress disorder. Hopefully, understanding the function of these systems from both a translational and systems biology point of view in relation to stress will enable development of more effective methods for preventing and treating the negative physical and mental health consequences of stress.

  20. Polyglutamine protein aggregation and toxicity are linked to the cellular stress response.

    PubMed

    Cowan, K J; Diamond, M I; Welch, W J

    2003-06-15

    Chronic exposure of cells to expanded polyglutamine proteins results in eventual cell demise. We constructed mouse cell lines expressing either the full-length androgen receptor (AR), or truncated forms of AR containing 25 or 65 glutamines to study the cellular consequences of chronic low-level exposure to these proteins. Expression of the polyglutamine-expanded truncated AR protein, but not the full-length expanded protein, resulted in the formation of cytoplasmic and nuclear aggregates and eventual cell death. Nuclear aggregates preferentially stained positive for heat shock protein (hsp)72, a sensitive indicator of a cellular stress response. Biochemical studies revealed that the presence of nuclear aggregates correlated with activation of the c-jun NH2-terminal kinase (JNK). Different metabolic insults, including heat shock treatment, and exposure to sodium arsenite or menadione, proved more toxic to those cells expressing the polyglutamine-expanded truncated protein than to cells expressing the non-expanded form. Cells containing cytoplasmic polyglutamine-protein aggregates exhibited a delayed expression of hsp72 after heat shock. Once expressed, hsp72 failed to localize normally and instead was sequestered within the protein aggregates. This was accompanied by an inability of the aggregate-containing cells to cease their stress response as evidenced by the continued presence of activated JNK. Finally, activation of the cellular stress response increased the overall extent of polyglutamine protein aggregation, especially within the nucleus. Inclusion of a JNK inhibitor reduced this stress-dependent increase in nuclear aggregates. Abnormal stress responses may contribute to enhanced cell vulnerability in cells expressing polyglutamine-expanded proteins and may increase the propensity of such cells to form cytoplasmic and nuclear inclusions. PMID:12783846

  1. Dynamic stress-strain states for metal foams using a 3D cellular model

    NASA Astrophysics Data System (ADS)

    Zheng, Zhijun; Wang, Changfeng; Yu, Jilin; Reid, Stephen R.; Harrigan, John J.

    2014-12-01

    Dynamic uniaxial impact behaviour of metal foams using a 3D cell-based finite element model is examined. At sufficiently high loading rates, these materials respond by forming ‘shock or consolidation waves' (Tan et al., 2005a, 2005b). However, the existing dynamic experimental methods have limitations in fully informing this behaviour, particularly for solving boundary/initial value problems. Recently, the problem of the shock-like response of an open-cell foam has been examined by Barnes et al. (2014) using the Hugoniot-curve representations. The present study is somewhat complementary to that approach and additionally aims to provide insight into the ‘rate sensitivity' mechanism applicable to cellular materials. To assist our understanding of the ‘loading rate sensitivity' behaviour of cellular materials, a virtual ‘test' method based on the direct impact technique is explored. Following a continuum representation of the response, the strain field calculation method is employed to determine the local strains ahead of and behind the resulting ‘shock front'. The dynamic stress-strain states in the densification stage are found to be different from the quasi-static ones. It is evident that the constitutive behaviour of the cellular material is deformation-mode dependent. The nature of the ‘rate sensitivity' revealed for cellular materials in this paper is different from the strain-rate sensitivity of dense metals. It is shown that the dynamic stress-strain states behind a shock front of the cellular material lie on a unique curve and each point on the curve corresponds to a particular ‘impact velocity', referred as the velocity upstream of the shock in this study. The dynamic stress-strain curve is related to a layer-wise collapse mode, whilst the equivalent quasi-static curve is related to a random shear band collapse mode. The findings herein are aimed at improving the experimental test techniques used to characterise the rate-sensitivity behaviour

  2. The iron-sulfur cluster assembly network component NARFL is a key element in the cellular defense against oxidative stress.

    PubMed

    Corbin, Monique V; Rockx, Davy A P; Oostra, Anneke B; Joenje, Hans; Dorsman, Josephine C

    2015-12-01

    Aim of this study was to explore cellular changes associated with increased resistance to atmospheric oxygen using high-resolution DNA and RNA profiling combined with functional studies. Two independently selected oxygen-resistant substrains of HeLa cells (capable of proliferating at >80% O2, i.e. hyperoxia) were compared with their parental cells (adapted to growth at 20% O2, but unable to grow at >80% O2). A striking consistent alteration found to be associated with the oxygen-resistant state appeared to be an amplified and overexpressed region on chromosome 16p13.3 harboring 21 genes. The driver gene of this amplification was identified by functional studies as NARFL, which encodes a component of the cytosolic iron-sulfur cluster assembly system. In line with this result we found the cytosolic c-aconitase activity as well as the nuclear protein RTEL1, both Fe-S dependent proteins, to be protected by NARFL overexpression under hyperoxia. In addition, we observed a protective effect of NARFL against hyperoxia-induced loss of sister-chromatid cohesion. NARFL thus appeared to be a key factor in the cellular defense against hyperoxia-induced oxidative stress in human cells. Our findings suggest that new insight into age-related degenerative processes may come from studies that specifically address the involvement of iron-sulfur proteins.

  3. [Regulatory role of mechanical stress response in cellular function: development of new drugs and tissue engineering].

    PubMed

    Momose, Kazutaka; Matsuda, Takehisa; Oike, Masahiro; Obara, Kazuo; Laher, Ismail; Sugiura, Seiryo; Ohata, Hisayuki; Nakayama, Koichi

    2003-02-01

    The investigation of mechanotransduction in the cardiovascular system is essentially important for elucidating the cellular and molecular mechanisms involved in not only the maintenance of hemodynamic homeostasis but also etiology of cardiovascular diseases including arteriosclerosis. The present review summarizes the latest research performed by six academic groups, and presented at the 75th Annual Meeting of the Japanese Pharmacological Society. Technology of cellular biomechanics is also required for research and clinical application of a vascular hybrid tissue responding to pulsatile stress. 1) Vascular tissue engineering: Design of pulsatile stress-responsive scaffold and in vivo vascular wall reconstruction (T. Matsuda); 2) Cellular mechanisms of mechanosensitive calcium transients in vascular endothelium (M. Oike et al.); 3) Cross-talk of stimulation with fluid flow and lysophosphatidic acid in vascular endothelial cells (K. Momose et al.); 4) Mechanotransduction of vascular smooth muscles: Rate-dependent stretch-induced protein phosphorylations and contractile activation (K. Obara et al.); 5) Lipid mediators in vascular myogenic tone (I. Laher et al.); and 6) Caldiomyocyte regulates its mechanical output in response to mechanical load (S. Sugiura et al.).

  4. PACS—Realization of an adaptive concept using pressure actuated cellular structures

    NASA Astrophysics Data System (ADS)

    Gramüller, B.; Boblenz, J.; Hühne, C.

    2014-10-01

    A biologically inspired concept is investigated which can be utilized to develop energy efficient, lightweight and applicational flexible adaptive structures. Building a real life morphing unit is an ambitious task as the numerous works in the particular field show. Summarizing fundamental demands and barriers regarding shape changing structures, the basic challenges of designing morphing structures are listed. The concept of Pressure Actuated Cellular Structures (PACS) is arranged within the recent morphing activities and it is shown that it complies with the underlying demands. Systematically divided into energy-related and structural subcomponents the working principle is illuminated and relationships between basic design parameters are expressed. The analytical background describing the physical mechanisms of PACS is presented in concentrated manner. This work focuses on the procedure of dimensioning, realizing and experimental testing of a single cell and a single row cantilever made of PACS. The experimental outcomes as well as the results from the FEM computations are used for evaluating the analytical methods. The functionality of the basic principle is thus validated and open issues are determined pointing the way ahead.

  5. Adaptive Movement Compensation for In Vivo Imaging of Fast Cellular Dynamics within a Moving Tissue

    PubMed Central

    Dufour, Hugues; De Koninck, Paul; De Koninck, Yves; Côté, Daniel

    2011-01-01

    In vivo non-linear optical microscopy has been essential to advance our knowledge of how intact biological systems work. It has been particularly enabling to decipher fast spatiotemporal cellular dynamics in neural networks. The power of the technique stems from its optical sectioning capability that in turn also limits its application to essentially immobile tissue. Only tissue not affected by movement or in which movement can be physically constrained can be imaged fast enough to conduct functional studies at high temporal resolution. Here, we show dynamic two-photon Ca2+ imaging in the spinal cord of a living rat at millisecond time scale, free of motion artifacts using an optical stabilization system. We describe a fast, non-contact adaptive movement compensation approach, applicable to rough and weakly reflective surfaces, allowing real-time functional imaging from intrinsically moving tissue in live animals. The strategy involves enslaving the position of the microscope objective to that of the tissue surface in real-time through optical monitoring and a closed feedback loop. The performance of the system allows for efficient image locking even in conditions of random or irregular movements. PMID:21629702

  6. Early-life stress impacts the developing hippocampus and primes seizure occurrence: cellular, molecular, and epigenetic mechanisms

    PubMed Central

    Huang, Li-Tung

    2014-01-01

    Early-life stress includes prenatal, postnatal, and adolescence stress. Early-life stress can affect the development of the hypothalamic-pituitary-adrenal (HPA) axis, and cause cellular and molecular changes in the developing hippocampus that can result in neurobehavioral changes later in life. Epidemiological data implicate stress as a cause of seizures in both children and adults. Emerging evidence indicates that both prenatal and postnatal stress can prime the developing brain for seizures and an increase in epileptogenesis. This article reviews the cellular and molecular changes encountered during prenatal and postnatal stress, and assesses the possible link between these changes and increases in seizure occurrence and epileptogenesis in the developing hippocampus. In addititon, the priming effect of prenatal and postnatal stress for seizures and epileptogenesis is discussed. Finally, the roles of epigenetic modifications in hippocampus and HPA axis programming, early-life stress, and epilepsy are discussed. PMID:24574961

  7. The SEB-1 Transcription Factor Binds to the STRE Motif in Neurospora crassa and Regulates a Variety of Cellular Processes Including the Stress Response and Reserve Carbohydrate Metabolism

    PubMed Central

    Freitas, Fernanda Zanolli; Virgilio, Stela; Cupertino, Fernanda Barbosa; Kowbel, David John; Fioramonte, Mariana; Gozzo, Fabio Cesar; Glass, N. Louise; Bertolini, Maria Célia

    2016-01-01

    When exposed to stress conditions, all cells induce mechanisms resulting in an attempt to adapt to stress that involve proteins which, once activated, trigger cell responses by modulating specific signaling pathways. In this work, using a combination of pulldown assays and mass spectrometry analyses, we identified the Neurospora crassa SEB-1 transcription factor that binds to the Stress Response Element (STRE) under heat stress. Orthologs of SEB-1 have been functionally characterized in a few filamentous fungi as being involved in stress responses; however, the molecular mechanisms mediated by this transcription factor may not be conserved. Here, we provide evidences for the involvement of N. crassa SEB-1 in multiple cellular processes, including response to heat, as well as osmotic and oxidative stress. The Δseb-1 strain displayed reduced growth under these conditions, and genes encoding stress-responsive proteins were differentially regulated in the Δseb-1 strain grown under the same conditions. In addition, the SEB-1-GFP protein translocated from the cytosol to the nucleus under heat, osmotic, and oxidative stress conditions. SEB-1 also regulates the metabolism of the reserve carbohydrates glycogen and trehalose under heat stress, suggesting an interconnection between metabolism control and this environmental condition. We demonstrated that SEB-1 binds in vivo to the promoters of genes encoding glycogen metabolism enzymes and regulates their expression. A genome-wide transcriptional profile of the Δseb-1 strain under heat stress was determined by RNA-seq, and a broad range of cellular processes was identified that suggests a role for SEB-1 as a protein interconnecting these mechanisms. PMID:26994287

  8. Urban plant physiology: adaptation-mitigation strategies under permanent stress.

    PubMed

    Calfapietra, Carlo; Peñuelas, Josep; Niinemets, Ülo

    2015-02-01

    Urban environments that are stressful for plant function and growth will become increasingly widespread in future. In this opinion article, we define the concept of 'urban plant physiology', which focuses on plant responses and long term adaptations to urban conditions and on the capacity of urban vegetation to mitigate environmental hazards in urbanized settings such as air and soil pollution. Use of appropriate control treatments would allow for studies in urban environments to be comparable to expensive manipulative experiments. In this opinion article, we propose to couple two approaches, based either on environmental gradients or manipulated gradients, to develop the concept of urban plant physiology for assessing how single or multiple environmental factors affect the key environmental services provided by urban forests.

  9. Cellular and subcellular oxidative stress parameters following severe spinal cord injury

    PubMed Central

    Visavadiya, Nishant P.; Patel, Samir P.; VanRooyen, Jenna L.; Sullivan, Patrick G.; Rabchevsky, Alexander G.

    2015-01-01

    The present study undertook a comprehensive assessment of the acute biochemical oxidative stress parameters in both cellular and, notably, mitochondrial isolates following severe upper lumbar contusion spinal cord injury (SCI) in adult female Sprague Dawley rats. At 24 h post-injury, spinal cord tissue homogenate and mitochondrial fractions were isolated concurrently and assessed for glutathione (GSH) content and production of nitric oxide (NO•), in addition to the presence of oxidative stress markers 3-nitrotyrosine (3-NT), protein carbonyl (PC), 4-hydroxynonenal (4-HNE) and lipid peroxidation (LPO). Moreover, we assessed production of superoxide (O2•-) and hydrogen peroxide (H2O2) in mitochondrial fractions. Quantitative biochemical analyses showed that compared to sham, SCI significantly lowered GSH content accompanied by increased NO• production in both cellular and mitochondrial fractions. SCI also resulted in increased O2•- and H2O2 levels in mitochondrial fractions. Western blot analysis further showed that reactive oxygen/nitrogen species (ROS/RNS) mediated PC and 3-NT production were significantly higher in both fractions after SCI. Conversely, neither 4-HNE levels nor LPO formation were increased at 24 h after injury in either tissue homogenate or mitochondrial fractions. These results indicate that by 24 h post-injury ROS-induced protein oxidation is more prominent compared to lipid oxidation, indicating a critical temporal distinction in secondary pathophysiology that is critical in designing therapeutic approaches to mitigate consequences of oxidative stress. PMID:26760911

  10. A review of adaptive mechanisms in cell responses towards oxidative stress caused by dental resin monomers.

    PubMed

    Krifka, Stephanie; Spagnuolo, Gianrico; Schmalz, Gottfried; Schweikl, Helmut

    2013-06-01

    Dental composite resins are biomaterials commonly used to aesthetically restore the structure and function of teeth impaired by caries, erosion, or fracture. Residual monomers released from resin restorations as a result of incomplete polymerization processes interact with living oral tissues. Monomers like triethylene glycol dimethacrylate (TEGDMA) or 2-hydroxylethyl methacrylate (HEMA) are cytotoxic via apoptosis, induce genotoxic effects, and delay the cell cycle. Monomers also influence the response of cells of the innate immune system, inhibit specific odontoblast cell functions, or delay the odontogenic differentiation and mineralization processes in pulp-derived cells including stem cells. These observations indicate that resin monomers act as environmental stressors which inevitably disturb regulatory cellular networks through interference with signal transduction pathways. We hypothesize that an understanding of the cellular mechanisms underlying these phenomena will provide a better estimation of the consequences associated with dental therapy using composite materials, and lead to innovative therapeutic strategies and improved materials being used at tissue interfaces within the oral cavity. Current findings strongly suggest that monomers enhance the formation of reactive oxygen species (ROS), which is most likely the cause of biological reactions activated by dental composites and resin monomers. The aim of the present review manuscript is to discuss adaptive cell responses to oxidative stress caused by monomers. The particular significance of a tightly controlled network of non-enzymatic as well as enzymatic antioxidants for the regulation of cellular redox homeostasis and antioxidant defense in monomer-exposed cells will be addressed. The expression of ROS-metabolizing antioxidant enzymes like superoxide dismutase (SOD1), glutathione peroxidase (GPx1/2), and catalase in cells exposed to monomers will be discussed with particular emphasis on the role

  11. A review of adaptive mechanisms in cell responses towards oxidative stress caused by dental resin monomers.

    PubMed

    Krifka, Stephanie; Spagnuolo, Gianrico; Schmalz, Gottfried; Schweikl, Helmut

    2013-06-01

    Dental composite resins are biomaterials commonly used to aesthetically restore the structure and function of teeth impaired by caries, erosion, or fracture. Residual monomers released from resin restorations as a result of incomplete polymerization processes interact with living oral tissues. Monomers like triethylene glycol dimethacrylate (TEGDMA) or 2-hydroxylethyl methacrylate (HEMA) are cytotoxic via apoptosis, induce genotoxic effects, and delay the cell cycle. Monomers also influence the response of cells of the innate immune system, inhibit specific odontoblast cell functions, or delay the odontogenic differentiation and mineralization processes in pulp-derived cells including stem cells. These observations indicate that resin monomers act as environmental stressors which inevitably disturb regulatory cellular networks through interference with signal transduction pathways. We hypothesize that an understanding of the cellular mechanisms underlying these phenomena will provide a better estimation of the consequences associated with dental therapy using composite materials, and lead to innovative therapeutic strategies and improved materials being used at tissue interfaces within the oral cavity. Current findings strongly suggest that monomers enhance the formation of reactive oxygen species (ROS), which is most likely the cause of biological reactions activated by dental composites and resin monomers. The aim of the present review manuscript is to discuss adaptive cell responses to oxidative stress caused by monomers. The particular significance of a tightly controlled network of non-enzymatic as well as enzymatic antioxidants for the regulation of cellular redox homeostasis and antioxidant defense in monomer-exposed cells will be addressed. The expression of ROS-metabolizing antioxidant enzymes like superoxide dismutase (SOD1), glutathione peroxidase (GPx1/2), and catalase in cells exposed to monomers will be discussed with particular emphasis on the role

  12. Filament formation by metabolic enzymes is a specific adaptation to an advanced state of cellular starvation

    PubMed Central

    Petrovska, Ivana; Nüske, Elisabeth; Munder, Matthias C; Kulasegaran, Gayathrie; Malinovska, Liliana; Kroschwald, Sonja; Richter, Doris; Fahmy, Karim; Gibson, Kimberley; Verbavatz, Jean-Marc; Alberti, Simon

    2014-01-01

    One of the key questions in biology is how the metabolism of a cell responds to changes in the environment. In budding yeast, starvation causes a drop in intracellular pH, but the functional role of this pH change is not well understood. Here, we show that the enzyme glutamine synthetase (Gln1) forms filaments at low pH and that filament formation leads to enzymatic inactivation. Filament formation by Gln1 is a highly cooperative process, strongly dependent on macromolecular crowding, and involves back-to-back stacking of cylindrical homo-decamers into filaments that associate laterally to form higher order fibrils. Other metabolic enzymes also assemble into filaments at low pH. Hence, we propose that filament formation is a general mechanism to inactivate and store key metabolic enzymes during a state of advanced cellular starvation. These findings have broad implications for understanding the interplay between nutritional stress, the metabolism and the physical organization of a cell. DOI: http://dx.doi.org/10.7554/eLife.02409.001 PMID:24771766

  13. Cellular, physiological, and molecular adaptive responses of Erwinia amylovora to starvation.

    PubMed

    Santander, Ricardo D; Oliver, James D; Biosca, Elena G

    2014-05-01

    Erwinia amylovora causes fire blight, a destructive disease of rosaceous plants distributed worldwide. This bacterium is a nonobligate pathogen able to survive outside the host under starvation conditions, allowing its spread by various means such as rainwater. We studied E. amylovora responses to starvation using water microcosms to mimic natural oligotrophy. Initially, survivability under optimal (28 °C) and suboptimal (20 °C) growth temperatures was compared. Starvation induced a loss of culturability much more pronounced at 28 °C than at 20 °C. Natural water microcosms at 20 °C were then used to characterize cellular, physiological, and molecular starvation responses of E. amylovora. Challenged cells developed starvation-survival and viable but nonculturable responses, reduced their size, acquired rounded shapes and developed surface vesicles. Starved cells lost motility in a few days, but a fraction retained flagella. The expression of genes related to starvation, oxidative stress, motility, pathogenicity, and virulence was detected during the entire experimental period with different regulation patterns observed during the first 24 h. Further, starved cells remained as virulent as nonstressed cells. Overall, these results provide new knowledge on the biology of E. amylovora under conditions prevailing in nature, which could contribute to a better understanding of the life cycle of this pathogen.

  14. Nitric oxide and cellular stress response in brain aging and neurodegenerative disorders: the role of vitagenes.

    PubMed

    Calabrese, Vittorio; Boyd-Kimball, Debra; Scapagnini, Giovanni; Butterfield, D Allan

    2004-01-01

    Nitric oxide and other reactive nitrogen species appear to play crucial roles in the brain such as neuromodulation, neurotransmission and synaptic plasticity, but are also involved in pathological processes such as neurodegeneration and neuroinflammation. Acute and chronic inflammation result in increased nitrogen monoxide formation and nitrosative stress. It is now well documented that NO and its toxic metabolite, peroxynitrite, can inhibit components of the mitochondrial respiratory chain leading to cellular energy deficiency and, eventually, to cell death. Within the brain, the susceptibility of different brain cell types to NO and peroxynitrite exposure may be dependent on factors such as the intracellular reduced glutathione and cellular stress resistance signal pathways. Thus neurons, in contrast to astrocytes, appear particularly vulnerable to the effect of nitrosative stress. Evidence is now available to support this scenario for neurological disorders such as Alzheimer's disease, amyotrophic lateral sclerosis, Parkinson's disease, multiple sclerosis and Huntington's disease, but also in the brain damage following ischemia and reperfusion, Down's syndrome and mitochondrial encephalopathies. To survive different types of injuries, brain cells have evolved integrated responses, the so-called longevity assurance processes, composed of several genes termed vitagenes and including, among others, members of the HSP system, such as HSP70 and HSP32, to detect and control diverse forms of stress. In particular, HSP32, also known as heme oxygenase-1 (HO-1), has received considerable attention, as it has been recently demonstrated that HO-1 induction, by generating the vasoactive molecule carbon monoxide and the potent antioxidant bilirubin, could represent a protective system potentially active against brain oxidative injury. Increasing evidence suggests that the HO-1 gene is redox-regulated and its expression appears closely related to conditions of oxidative and

  15. Enhanced susceptibility of T lymphocytes to oxidative stress in the absence of the cellular prion protein.

    PubMed

    Aude-Garcia, Catherine; Villiers, Christian; Candéias, Serge M; Garrel, Catherine; Bertrand, Caroline; Collin, Véronique; Marche, Patrice N; Jouvin-Marche, Evelyne

    2011-02-01

    The cellular prion glycoprotein (PrP(C)) is ubiquitously expressed but its physiologic functions remain enigmatic, particularly in the immune system. Here, we demonstrate in vitro and in vivo that PrP(C) is involved in T lymphocytes response to oxidative stress. By monitoring the intracellular level of reduced glutathione, we show that PrP(-/-) thymocytes display a higher susceptibility to H(2)O(2) exposure than PrP(+/+) cells. Furthermore, we find that in mice fed with a restricted diet, a regimen known to increase the intracellular level of ROS, PrP(-/-) thymocytes are more sensitive to oxidative stress. PrP(C) function appears to be specific for oxidative stress, since no significant differences are observed between PrP(-/-) and PrP(+/+) mice exposed to other kinds of stress. We also show a marked evolution of the redox status of T cells throughout differentiation in the thymus. Taken together, our results clearly ascribe to PrP(C) a protective function in thymocytes against oxidative stress.

  16. Conserved cellular function and stress-mediated regulation among members of the proteolipid protein family.

    PubMed

    Fernández, María E; Alfonso, Julieta; Brocco, Marcela A; Frasch, Alberto C

    2010-05-01

    Chronic stress causes morphological alterations in the hippocampus of rodents and tree shrews, including atrophy of CA3 dendrites and loss of synapses. The molecular mechanisms underlying these structural changes remain largely unknown. We have previously identified M6a as a stress responsive gene and shown that M6a is involved in filopodium/spine outgrowth and, likely, synapse formation. M6a belongs to the proteolipid protein (PLP) family, all of their members having four transmembrane domains that allow their localization at the plasma membrane. In the present work, we analyzed other members of this family, the closely related M6b as well as PLP and its splice variant DM20. We found that chronic restraint stress in mice reduces M6b and DM20, but not PLP, mRNA levels in the hippocampus. In addition, M6b and DM20, but again not PLP, induce filopodium formation in primary cultures of hippocampal neurons. Several M6b protein isoforms were studied, all of them having similar effects except for the one lacking the transmembrane domains. Our results reveal a conserved cellular function and a stress-mediated regulation among members of the proteolipid protein family, suggesting an involvement of proteolipid proteins in the stress response. PMID:19937804

  17. Ethylene-promoted Elongation: an Adaptation to Submergence Stress

    PubMed Central

    Jackson, Michael B.

    2008-01-01

    Background A sizeable minority of taxa is successful in areas prone to submergence. Many such plants elongate with increased vigour when underwater. This helps to restore contact with the aerial environment by shortening the duration of inundation. Poorly adapted species are usually incapable of this underwater escape. Scope Evidence implicating ethylene as the principal factor initiating fast underwater elongation by leaves or stems is evaluated comprehensively along with its interactions with other hormones and gases. These interactions make up a sequence of events that link the perception of submergence to a prompt acceleration of extension. The review encompasses whole plant physiology, cell biology and molecular genetics. It includes assessments of how submergence threatens plant life and of the extent to which the submergence escape demonstrably improves the likelihood of survival. Conclusions Experimental testing over many years establishes ethylene-promoted underwater extension as one of the most convincing examples of hormone-mediated stress adaptation by plants. The research has utilized a wide range of species that includes numerous angiosperms, a fern and a liverwort. It has also benefited from detailed physiological and molecular studies of underwater elongation by rice (Oryza sativa) and the marsh dock (Rumex palustris). Despite complexities and interactions, the work reveals that the signal transduction pathway is initiated by the simple expediency of physical entrapment of ethylene within growing cells by a covering of water. PMID:17956854

  18. Microchip Electrophoresis with Amperometric Detection Method for Profiling Cellular Nitrosative Stress Markers

    PubMed Central

    Gunasekara, Dulan B.; Siegel, Joseph M.; Caruso, Giuseppe; Hulvey, Matthew K.; Lunte, Susan M.

    2014-01-01

    Summary The overproduction of nitric oxide (NO) in cells results in nitrosative stress due to the generation of highly reactive species such as peroxynitrite and N2O3. These species disrupt the cellular redox processes through the oxidation, nitration, and nitrosylation of important biomolecules. Microchip electrophoresis (ME) is a fast separation method that can be used to profile cellular nitrosative stress through the separation of NO and nitrite from other redox-active intracellular components such as cellular antioxidants. This paper describes a ME method with electrochemical detection (ME-EC) for the separation of intracellular nitrosative stress markers in macrophage cells. The separation of nitrite, azide (interference), iodide (internal standard), tyrosine, glutathione, and hydrogen peroxide (neutral marker) was achieved in under 40 s using a run buffer consisting of 7.5 to 10 mM NaCl, 10 mM boric acid, and 2 mM TTAC at pH 10.3 to 10.7. Initially, NO production was monitored by the detection of nitrite (NO2−) in cell lysates. There was a 2.5- to 4-fold increase in NO2− production in lipopolysaccharide (LPS)-stimulated cells. The concentration of NO2− inside a single unstimulated macrophage cell was estimatedto be 1.41 mM using the method of standard additions. ME-EC was then used for the direct detection of NO and glutathione in stimulated and native macrophage cell lysates. NO was identified in these studies based on its migration time and rapid degradation kinetics. The intracellular levels of glutathione in native and stimulated macrophages were also compared, and no significant difference was observed between the two conditions. PMID:24728039

  19. Overexpression of a pea DNA helicase (PDH45) in peanut (Arachis hypogaea L.) confers improvement of cellular level tolerance and productivity under drought stress.

    PubMed

    Manjulatha, M; Sreevathsa, Rohini; Kumar, A Manoj; Sudhakar, Chinta; Prasad, T G; Tuteja, Narendra; Udayakumar, M

    2014-02-01

    Peanut, a major edible oil seed crop globally is predominantly grown under rainfed conditions and suffers yield losses due to drought. Development of drought-tolerant varieties through transgenic technology is a valid approach. Besides superior water relation traits like water mining, intrinsic cellular level tolerance mechanisms are important to sustain the growth under stress. To achieve this objective, the focus of this study was to pyramid drought adaptive traits by overexpressing a stress responsive helicase, PDH45 in the background of a genotype with superior water relations. PCR, Southern, and RT-PCR analyses confirmed stable integration and expression of the PDH45 gene in peanut transgenics. At the end of T₃ generation, eight transgenic events were identified as promising based on stress tolerance and improvement in productivity. Several transgenic lines showed stay-green phenotype and increased chlorophyll stability under stress and reduced chlorophyll retardation under etherel-induced simulated stress conditions. Stress-induced root growth was also substantially higher in the case of transformants. This was reflected in increased WUE (low Δ¹³C) and improved growth rates and productivity. The transgenics showed 17.2 and 26.75 % increase in yield under non-stress and stress conditions over wild type ascertaining the feasibility of trait pyramiding strategy for the development of drought-tolerant peanut.

  20. Redox regulation of cellular stress response in aging and neurodegenerative disorders: role of vitagenes.

    PubMed

    Calabrese, Vittorio; Guagliano, Eleonora; Sapienza, Maria; Panebianco, Mariangela; Calafato, Stella; Puleo, Edoardo; Pennisi, Giovanni; Mancuso, Cesare; Butterfield, D Allan; Stella, Annamaria Giuffrida

    2007-01-01

    Reduced expression and/or activity of antioxidant proteins lead to oxidative stress, accelerated aging and neurodegeneration. However, while excess reactive oxygen species (ROS) are toxic, regulated ROS play an important role in cell signaling. Perturbation of redox status, mutations favoring protein misfolding, altered glyc(osyl)ation, overloading of the product of polyunsaturated fatty acid peroxidation (hydroxynonenals, HNE) or cholesterol oxidation, can disrupt redox homeostasis. Collectively or individually these effects may impose stress and lead to accumulation of unfolded or misfolded proteins in brain cells. Alzheimer's (AD), Parkinson's and Huntington's disease, amyotrophic lateral sclerosis and Friedreich's ataxia are major neurological disorders associated with production of abnormally aggregated proteins and, as such, belong to the so-called "protein conformational diseases". The pathogenic aggregation of proteins in non-native conformation is generally associated with metabolic derangements and excessive production of ROS. The "unfolded protein response" has evolved to prevent accumulation of unfolded or misfolded proteins. Recent discoveries of the mechanisms of cellular stress signaling have led to new insights into the diverse processes that are regulated by cellular stress responses. The brain detects and overcomes oxidative stress by a complex network of "longevity assurance processes" integrated to the expression of genes termed vitagenes. Heat-shock proteins are highly conserved and facilitate correct protein folding. Heme oxygenase-1, an inducible and redox-regulated enzyme, has having an important role in cellular antioxidant defense. An emerging concept is neuroprotection afforded by heme oxygenase by its heme degrading activity and tissue-specific antioxidant effects, due to its products carbon monoxide and biliverdin, which is then reduced by biliverdin reductase in bilirubin. There is increasing interest in dietary compounds that can

  1. How to optimize vitamin D supplementation to prevent cancer, based on cellular adaptation and hydroxylase enzymology.

    PubMed

    Vieth, Reinhold

    2009-09-01

    The question of what makes an 'optimal' vitamin D intake is usually equivalent to, 'what serum 25-hydroxyvitamin D [25(OH)D] do we need to stay above to minimize risk of disease?'. This is a simplistic question that ignores the evidence that fluctuating concentrations of 25(OH)D may in themselves be a problem, even if concentrations do exceed a minimum desirable level. Vitamin D metabolism poses unique problems for the regulation of 1,25-dihydroxyvitamin D [1,25(OH)2D] concentrations in the tissues outside the kidney that possess 25(OH)D-1-hydroxylase [CYP27B1] and the catabolic enzyme, 1,25(OH)2D-24-hydroxylase [CYP24]. These enzymes behave according to first-order reaction kinetics. When 25(OH)D declines, the ratio of 1-hydroxylase/24-hydroxylase must increase to maintain tissue 1,25(OH)2D at its set-point level. The mechanisms that regulate this paracrine metabolism are poorly understood. I propose that delay in cellular adaptation, or lag time, in response to fluctuating 25(OH)D concentrations can explain why higher 25(OH)D in regions at high latitude or with low environmental ultraviolet light can be associated with the greater risks reported for prostate and pancreatic cancers. At temperate latitudes, higher summertime 25(OH)D levels are followed by sharper declines in 25(OH)D, causing inappropriately low 1-hydroxylase and high 24-hydroxylase, resulting in tissue 1,25(OH)2D below its ideal set-point. This hypothesis can answer concerns raised by the World Health Organization's International Agency for Research on Cancer about vitamin D and cancer risk. It also explains why higher 25(OH)D concentrations are not good if they fluctuate, and that desirable 25(OH)D concentrations are ones that are both high and stable. PMID:19667164

  2. Adaptation of the Black Yeast Wangiella dermatitidis to Ionizing Radiation: Molecular and Cellular Mechanisms

    PubMed Central

    Robertson, Kelly L.; Mostaghim, Anahita; Cuomo, Christina A.; Soto, Carissa M.; Lebedev, Nikolai; Bailey, Robert F.; Wang, Zheng

    2012-01-01

    Observations of enhanced growth of melanized fungi under low-dose ionizing radiation in the laboratory and in the damaged Chernobyl nuclear reactor suggest they have adapted the ability to survive or even benefit from exposure to ionizing radiation. However, the cellular and molecular mechanism of fungal responses to such radiation remains poorly understood. Using the black yeast Wangiella dermatitidis as a model, we confirmed that ionizing radiation enhanced cell growth by increasing cell division and cell size. Using RNA-seq technology, we compared the transcriptomic profiles of the wild type and the melanin-deficient wdpks1 mutant under irradiation and non-irradiation conditions. It was found that more than 3000 genes were differentially expressed when these two strains were constantly exposed to a low dose of ionizing radiation and that half were regulated at least two fold in either direction. Functional analysis indicated that many genes for amino acid and carbohydrate metabolism and cell cycle progression were down-regulated and that a number of antioxidant genes and genes affecting membrane fluidity were up-regulated in both irradiated strains. However, the expression of ribosomal biogenesis genes was significantly up-regulated in the irradiated wild-type strain but not in the irradiated wdpks1 mutant, implying that melanin might help to contribute radiation energy for protein translation. Furthermore, we demonstrated that long-term exposure to low doses of radiation significantly increased survivability of both the wild-type and the wdpks1 mutant, which was correlated with reduced levels of reactive oxygen species (ROS), increased production of carotenoid and induced expression of genes encoding translesion DNA synthesis. Our results represent the first functional genomic study of how melanized fungal cells respond to low dose ionizing radiation and provide clues for the identification of biological processes, molecular pathways and individual genes

  3. The importance of the cellular stress response in the pathogenesis and treatment of type 2 diabetes.

    PubMed

    Hooper, Philip L; Balogh, Gabor; Rivas, Eric; Kavanagh, Kylie; Vigh, Laszlo

    2014-07-01

    Organisms have evolved to survive rigorous environments and are not prepared to thrive in a world of caloric excess and sedentary behavior. A realization that physical exercise (or lack of it) plays a pivotal role in both the pathogenesis and therapy of type 2 diabetes mellitus (t2DM) has led to the provocative concept of therapeutic exercise mimetics. A decade ago, we attempted to simulate the beneficial effects of exercise by treating t2DM patients with 3 weeks of daily hyperthermia, induced by hot tub immersion. The short-term intervention had remarkable success, with a 1 % drop in HbA1, a trend toward weight loss, and improvement in diabetic neuropathic symptoms. An explanation for the beneficial effects of exercise and hyperthermia centers upon their ability to induce the cellular stress response (the heat shock response) and restore cellular homeostasis. Impaired stress response precedes major metabolic defects associated with t2DM and may be a near seminal event in the pathogenesis of the disease, tipping the balance from health into disease. Heat shock protein inducers share metabolic pathways associated with exercise with activation of AMPK, PGC1-a, and sirtuins. Diabetic therapies that induce the stress response, whether via heat, bioactive compounds, or genetic manipulation, improve or prevent all of the morbidities and comorbidities associated with the disease. The agents reduce insulin resistance, inflammatory cytokines, visceral adiposity, and body weight while increasing mitochondrial activity, normalizing membrane structure and lipid composition, and preserving organ function. Therapies restoring the stress response can re-tip the balance from disease into health and address the multifaceted defects associated with the disease.

  4. Electrochemical Potential Gradient as a Quantitative in Vitro Test Platform for Cellular Oxidative Stress

    PubMed Central

    Bryant, Carson; Atha, Donald; Reipa, Vytas

    2016-01-01

    Oxidative stress in a biological system is often defined as a redox imbalance within cells or groups of cells within an organism. Reductive-oxidative (redox) imbalances in cellular systems have been implicated in several diseases, such as cancer. To better understand the redox environment within cellular systems, it is important to be able to characterize the relationship between the intensity of the oxidative environment, characterized by redox potential, and the biomolecular consequences of oxidative damage. In this study, we show that an in situ electrochemical potential gradient can serve as a tool to simulate exogenous oxidative stress in surface-attached mammalian cells. A culture plate design, which permits direct imaging and analysis of the cell viability, following exposure to a range of solution redox potentials, was developed. The in vitro oxidative stress test vessel consists of a cell growth flask fitted with two platinum electrodes that support a direct current along the flask bottom. The applied potential span and gradient slope can be controlled by adjusting the constant current magnitude across the vessel with spatially localized media potentials measured with a sliding reference electrode. For example, the viability of Chinese Hamster Ovary cells under a gradient of redox potentials indicated that cell death was initiated at approximately 0.4 V vs. standard hydrogen electrode (SHE) media potential and this potential could be modified with antioxidants. This experimental platform may facilitate studies of oxidative stress characteristics on different types of cells by enabling imaging live cell cultures that have been exposed to a gradient of exogenous redox potentials. PMID:27409641

  5. Electrochemical Potential Gradient as a Quantitative in Vitro Test Platform for Cellular Oxidative Stress.

    PubMed

    Bryant, Carson; Atha, Donald; Reipa, Vytas

    2016-01-01

    Oxidative stress in a biological system is often defined as a redox imbalance within cells or groups of cells within an organism. Reductive-oxidative (redox) imbalances in cellular systems have been implicated in several diseases, such as cancer. To better understand the redox environment within cellular systems, it is important to be able to characterize the relationship between the intensity of the oxidative environment, characterized by redox potential, and the biomolecular consequences of oxidative damage. In this study, we show that an in situ electrochemical potential gradient can serve as a tool to simulate exogenous oxidative stress in surface-attached mammalian cells. A culture plate design, which permits direct imaging and analysis of the cell viability, following exposure to a range of solution redox potentials, was developed. The in vitro oxidative stress test vessel consists of a cell growth flask fitted with two platinum electrodes that support a direct current along the flask bottom. The applied potential span and gradient slope can be controlled by adjusting the constant current magnitude across the vessel with spatially localized media potentials measured with a sliding reference electrode. For example, the viability of Chinese Hamster Ovary cells under a gradient of redox potentials indicated that cell death was initiated at approximately 0.4 V vs. standard hydrogen electrode (SHE) media potential and this potential could be modified with antioxidants. This experimental platform may facilitate studies of oxidative stress characteristics on different types of cells by enabling imaging live cell cultures that have been exposed to a gradient of exogenous redox potentials. PMID:27409641

  6. Electrochemical Potential Gradient as a Quantitative in Vitro Test Platform for Cellular Oxidative Stress.

    PubMed

    Bryant, Carson; Atha, Donald; Reipa, Vytas

    2016-01-01

    Oxidative stress in a biological system is often defined as a redox imbalance within cells or groups of cells within an organism. Reductive-oxidative (redox) imbalances in cellular systems have been implicated in several diseases, such as cancer. To better understand the redox environment within cellular systems, it is important to be able to characterize the relationship between the intensity of the oxidative environment, characterized by redox potential, and the biomolecular consequences of oxidative damage. In this study, we show that an in situ electrochemical potential gradient can serve as a tool to simulate exogenous oxidative stress in surface-attached mammalian cells. A culture plate design, which permits direct imaging and analysis of the cell viability, following exposure to a range of solution redox potentials, was developed. The in vitro oxidative stress test vessel consists of a cell growth flask fitted with two platinum electrodes that support a direct current along the flask bottom. The applied potential span and gradient slope can be controlled by adjusting the constant current magnitude across the vessel with spatially localized media potentials measured with a sliding reference electrode. For example, the viability of Chinese Hamster Ovary cells under a gradient of redox potentials indicated that cell death was initiated at approximately 0.4 V vs. standard hydrogen electrode (SHE) media potential and this potential could be modified with antioxidants. This experimental platform may facilitate studies of oxidative stress characteristics on different types of cells by enabling imaging live cell cultures that have been exposed to a gradient of exogenous redox potentials.

  7. Hormesis, cellular stress response and vitagenes as critical determinants in aging and longevity.

    PubMed

    Calabrese, Vittorio; Cornelius, Carolin; Cuzzocrea, Salvatore; Iavicoli, Ivo; Rizzarelli, Enrico; Calabrese, Edward J

    2011-08-01

    Understanding mechanisms of aging and determinants of life span will help to reduce age-related morbidity and facilitate healthy aging. Average lifespan has increased over the last centuries, as a consequence of medical and environmental factors, but maximal life span remains unchanged. Extension of maximal life span is currently possible in animal models with measures such as genetic manipulations and caloric restriction (CR). CR appears to prolong life by reducing reactive oxygen species (ROS)-mediated oxidative damage. But ROS formation, which is positively implicated in cellular stress response mechanisms, is a highly regulated process controlled by a complex network of intracellular signaling pathways. By sensing the intracellular nutrient and energy status, the functional state of mitochondria, and the concentration of ROS produced in mitochondria, the longevity network regulates life span across species by co-ordinating information flow along its convergent, divergent and multiply branched signaling pathways, including vitagenes which are genes involved in preserving cellular homeostasis during stressful conditions. Vitagenes encode for heat shock proteins (Hsp) Hsp32, Hsp70, the thioredoxin and the sirtuin protein systems. Dietary antioxidants, such as carnosine, carnitines or polyphenols, have recently been demonstrated to be neuroprotective through the activation of hormetic pathways, including vitagenes. The hormetic dose-response, challenges long-standing beliefs about the nature of the dose-response in a lowdose zone, having the potential to affect significantly the design of pre-clinical studies and clinical trials as well as strategies for optimal patient dosing in the treatment of numerous diseases. Given the broad cytoprotective properties of the heat shock response there is now strong interest in discovering and developing pharmacological agents capable of inducing stress responses. In this review we discuss the most current and up to date

  8. The importance of the cellular stress response in the pathogenesis and treatment of type 2 diabetes.

    PubMed

    Hooper, Philip L; Balogh, Gabor; Rivas, Eric; Kavanagh, Kylie; Vigh, Laszlo

    2014-07-01

    Organisms have evolved to survive rigorous environments and are not prepared to thrive in a world of caloric excess and sedentary behavior. A realization that physical exercise (or lack of it) plays a pivotal role in both the pathogenesis and therapy of type 2 diabetes mellitus (t2DM) has led to the provocative concept of therapeutic exercise mimetics. A decade ago, we attempted to simulate the beneficial effects of exercise by treating t2DM patients with 3 weeks of daily hyperthermia, induced by hot tub immersion. The short-term intervention had remarkable success, with a 1 % drop in HbA1, a trend toward weight loss, and improvement in diabetic neuropathic symptoms. An explanation for the beneficial effects of exercise and hyperthermia centers upon their ability to induce the cellular stress response (the heat shock response) and restore cellular homeostasis. Impaired stress response precedes major metabolic defects associated with t2DM and may be a near seminal event in the pathogenesis of the disease, tipping the balance from health into disease. Heat shock protein inducers share metabolic pathways associated with exercise with activation of AMPK, PGC1-a, and sirtuins. Diabetic therapies that induce the stress response, whether via heat, bioactive compounds, or genetic manipulation, improve or prevent all of the morbidities and comorbidities associated with the disease. The agents reduce insulin resistance, inflammatory cytokines, visceral adiposity, and body weight while increasing mitochondrial activity, normalizing membrane structure and lipid composition, and preserving organ function. Therapies restoring the stress response can re-tip the balance from disease into health and address the multifaceted defects associated with the disease. PMID:24523032

  9. Optimization of biguanide derivatives as selective antitumor agents blocking adaptive stress responses in the tumor microenvironment.

    PubMed

    Narise, Kosuke; Okuda, Kensuke; Enomoto, Yukihiro; Hirayama, Tasuku; Nagasawa, Hideko

    2014-01-01

    Adaptive cellular responses resulting from multiple microenvironmental stresses, such as hypoxia and nutrient deprivation, are potential novel drug targets for cancer treatment. Accordingly, we focused on developing anticancer agents targeting the tumor microenvironment (TME). In this study, to search for selective antitumor agents blocking adaptive responses in the TME, thirteen new compounds, designed and synthesized on the basis of the arylmethylbiguanide scaffold of phenformin, were used in structure activity relationship studies of inhibition of hypoxia inducible factor (HIF)-1 and unfolded protein response (UPR) activation and of selective cytotoxicity under glucose-deprived stress conditions, using HT29 cells. We conducted luciferase reporter assays using stable cell lines expressing either an HIF-1-responsive reporter gene or a glucose-regulated protein 78 promoter-reporter gene, which were induced by hypoxia and glucose deprivation stress, respectively, to screen for TME-targeting antitumor drugs. The guanidine analog (compound 2), obtained by bioisosteric replacement of the biguanide group, had activities comparable with those of phenformin (compound 1). Introduction of various substituents on the phenyl ring significantly affected the activities. In particular, the o-methylphenyl analog compound 7 and the o-chlorophenyl analog compound 12 showed considerably more potent inhibitory effects on HIF-1 and UPR activation than did phenformin, and excellent selective cytotoxicity under glucose deprivation. These compounds, therefore, represent an improvement over phenformin. They also suppressed HIF-1- and UPR-related protein expression and secretion of vascular endothelial growth factor-A. Moreover, these compounds exhibited significant antiangiogenic effects in the chick chorioallantoic membrane assay. Our structural development studies of biguanide derivatives provided promising candidates for a novel anticancer agent targeting the TME for selective cancer

  10. Investigations in foot shock stress of variable intensity in mice: Adaptation and role of angiotensin II.

    PubMed

    Bali, Anjana; Jaggi, Amteshwar Singh

    2015-08-15

    The present study investigated the stress adaptation and role of angiotensin in response to repeated exposures of electric foot shocks of varying intensity. Mice were subjected to moderate (0.5mA) or severe (1.5mA) electric foot shocks for 1h for 5 days. Stress-induced behavioral changes were assessed by actophotometer, hole board, open field and social interaction tests. The serum corticosterone levels were measured as an index of HPA axis. Telmisartan (a selective AT1 receptor blocker) was employed as a pharmacological tool. A single exposure of moderate and severe stress produced behavioral deficits and increased the corticosterone levels. The restoration of these alterations was observed in response to repeated exposures of moderate stress, while no adaptation was observed in severe foot shock stress. A single administration of telmisartan (5mg/kg) exacerbated the moderate stress-induced decrease in behavioral activity and increase in corticosterone levels on the first day of stress exposure, suggesting the anti-stress role of angiotensin. In contrast, telmisartan normalized severe stress-induced behavioral and biochemical alterations suggesting the stress inducing actions of angiotensin. Furthermore, treatment with telmisartan abolished the stress adaptive response following repeated exposures of moderate stress suggesting that angiotensin has an adaptive role. It is concluded that there is a differential adaptive response in foot shock stress depending upon the severity of stress. Angiotensin II may act as an anti-stress agent and helps to promote the adaptation during medium stress, whereas it may promote stress response during severe stress.

  11. Cellular Response to Substrate Rigidity Is Governed by Either Stress or Strain

    PubMed Central

    Yip, Ai Kia; Iwasaki, Katsuhiko; Ursekar, Chaitanya; Machiyama, Hiroaki; Saxena, Mayur; Chen, Huiling; Harada, Ichiro; Chiam, Keng-Hwee; Sawada, Yasuhiro

    2013-01-01

    Cells sense the rigidity of their substrate; however, little is known about the physical variables that determine their response to this rigidity. Here, we report traction stress measurements carried out using fibroblasts on polyacrylamide gels with Young’s moduli ranging from 6 to 110 kPa. We prepared the substrates by employing a modified method that involves N-acryloyl-6-aminocaproic acid (ACA). ACA allows for covalent binding between proteins and elastomers and thus introduces a more stable immobilization of collagen onto the substrate when compared to the conventional method of using sulfo-succinimidyl-6-(4-azido-2-nitrophenyl-amino) hexanoate (sulfo-SANPAH). Cells remove extracellular matrix proteins off the surface of gels coated using sulfo-SANPAH, which corresponds to lower values of traction stress and substrate deformation compared to gels coated using ACA. On soft ACA gels (Young’s modulus <20 kPa), cell-exerted substrate deformation remains constant, independent of the substrate Young’s modulus. In contrast, on stiff substrates (Young’s modulus >20 kPa), traction stress plateaus at a limiting value and the substrate deformation decreases with increasing substrate rigidity. Sustained substrate strain on soft substrates and sustained traction stress on stiff substrates suggest these may be factors governing cellular responses to substrate rigidity. PMID:23332055

  12. Cellular stress and innate inflammation in organ-specific autoimmunity: lessons learned from vitiligo.

    PubMed

    Harris, John E

    2016-01-01

    For decades, research in autoimmunity has focused primarily on immune contributions to disease. Yet recent studies report elevated levels of reactive oxygen species and abnormal activation of the unfolded protein response in cells targeted by autoimmunity, implicating cellular stress originating from the target tissue as a contributing factor. A better understanding of this contribution may help to answer important lingering questions in organ-specific autoimmunity, as to what factors initiate disease and what directs its tissue specificity. Vitiligo, an autoimmune disease of the skin, has been the focus of translational research for over 30 years, and both melanocyte stress and immune mechanisms have been thought to be mutually exclusive explanations for pathogenesis. Chemical-induced vitiligo is a unique clinical presentation that reflects the importance of environmental influences on autoimmunity, provides insight into a new paradigm linking cell stress to the immune response, and serves as a template for other autoimmune diseases. In this review, I will discuss the evidence for cell stress contributions to a number of autoimmune diseases, the questions that remain, and how vitiligo, an underappreciated example of organ-specific autoimmunity, helps to answer them.

  13. Aberrant methylation of tRNAs links cellular stress to neuro-developmental disorders

    PubMed Central

    Blanco, Sandra; Dietmann, Sabine; Flores, Joana V; Hussain, Shobbir; Kutter, Claudia; Humphreys, Peter; Lukk, Margus; Lombard, Patrick; Treps, Lucas; Popis, Martyna; Kellner, Stefanie; Hölter, Sabine M; Garrett, Lillian; Wurst, Wolfgang; Becker, Lore; Klopstock, Thomas; Fuchs, Helmut; Gailus-Durner, Valerie; Hrabĕ de Angelis, Martin; Káradóttir, Ragnhildur T; Helm, Mark; Ule, Jernej; Gleeson, Joseph G; Odom, Duncan T; Frye, Michaela

    2014-01-01

    Mutations in the cytosine-5 RNA methyltransferase NSun2 cause microcephaly and other neurological abnormalities in mice and human. How post-transcriptional methylation contributes to the human disease is currently unknown. By comparing gene expression data with global cytosine-5 RNA methylomes in patient fibroblasts and NSun2-deficient mice, we find that loss of cytosine-5 RNA methylation increases the angiogenin-mediated endonucleolytic cleavage of transfer RNAs (tRNA) leading to an accumulation of 5′ tRNA-derived small RNA fragments. Accumulation of 5′ tRNA fragments in the absence of NSun2 reduces protein translation rates and activates stress pathways leading to reduced cell size and increased apoptosis of cortical, hippocampal and striatal neurons. Mechanistically, we demonstrate that angiogenin binds with higher affinity to tRNAs lacking site-specific NSun2-mediated methylation and that the presence of 5′ tRNA fragments is sufficient and required to trigger cellular stress responses. Furthermore, the enhanced sensitivity of NSun2-deficient brains to oxidative stress can be rescued through inhibition of angiogenin during embryogenesis. In conclusion, failure in NSun2-mediated tRNA methylation contributes to human diseases via stress-induced RNA cleavage. PMID:25063673

  14. Autophagy and phagocytosis-like cell cannibalism exert opposing effects on cellular survival during metabolic stress

    PubMed Central

    Poels, J; Spasić, M R; Gistelinck, M; Mutert, J; Schellens, A; Callaerts, P; Norga, K K

    2012-01-01

    Understanding mechanisms controlling neuronal cell death and survival under conditions of altered energy supply (e.g., during stroke) is fundamentally important for the development of therapeutic strategies. The function of autophagy herein is unclear, as both its beneficial and detrimental roles have been described. We previously demonstrated that loss of AMP-activated protein kinase (AMPK), an evolutionarily conserved enzyme that maintains cellular energy balance, leads to activity-dependent degeneration in neuronal tissue. Here, we show that energy depletion in Drosophila AMPK mutants results in increased autophagy that convincingly promotes, rather than rescues, neurodegeneration. The generated excessive autophagic response is accompanied by increased TOR and S6K activity in the absence of an AMPK-mediated negative regulatory feedback loop. Moreover, energy-depleted neurons use a phagocytic-like process as a means to cellular survival at the expense of surrounding cells. Consequently, phagocytosis stimulation by expression of the scavenger receptor Croquemort significantly delays neurodegeneration. This study thus reveals a potentially novel strategy for cellular survival during conditions of extreme energy depletion, resembling xeno-cannibalistic events seen in metastatic tumors. We provide new insights into the roles of autophagy and phagocytosis in the neuronal metabolic stress response and open new avenues into understanding of human disease and development of therapeutic strategies. PMID:22498699

  15. Stress in the brain: novel cellular mechanisms of injury linked to Alzheimer's disease.

    PubMed

    Chong, Zhao Zhong; Li, Faqi; Maiese, Kenneth

    2005-07-01

    More than a century has elapsed since the description of Alois Alzheimer's patient Auguste D. Yet, the well-documented generation of beta-amyloid aggregates and neurofibrillary tangles that define Alzheimer's disease is believed to represent only a portion of the cellular processes that can determine the course of Alzheimer's disease. Understanding of the complex nature of this disorder has evolved with an increased appreciation for pathways that involve the generation of reactive oxygen species and oxidative stress, apoptotic injury that leads to nuclear degradation in both neuronal and vascular populations, and the early loss of cellular membrane asymmetry that mitigates inflammation and vascular occlusion. Recent work has identified novel pathways, such as the Wnt pathway and the serine-threonine kinase Akt, as central modulators that oversee cellular apoptosis and the formation of neurofibrillary tangles through their downstream substrates that include glycogen synthase kinase-3beta, Bad, and Bcl-xL. Other closely integrated pathways control microglial activation, release of inflammatory cytokines, and caspase and calpain activation for the processing of amyloid precursor protein, tau protein cleavage, and presenilin disposal. New therapeutic avenues that are just open to exploration, such as with nicotinamide adenine dinucleotide modulation, cell cycle modulation, metabotropic glutamate system modulation, and erythropoietin targeted expression, may provide both attractive and viable alternatives to treat Alzheimer's disease.

  16. Viral and Cellular Proteins Containing FGDF Motifs Bind G3BP to Block Stress Granule Formation

    PubMed Central

    Panas, Marc D.; Schulte, Tim; Thaa, Bastian; Sandalova, Tatiana; Kedersha, Nancy; Achour, Adnane; McInerney, Gerald M.

    2015-01-01

    The Ras-GAP SH3 domain–binding proteins (G3BP) are essential regulators of the formation of stress granules (SG), cytosolic aggregates of proteins and RNA that are induced upon cellular stress, such as virus infection. Many viruses, including Semliki Forest virus (SFV), block SG induction by targeting G3BP. In this work, we demonstrate that the G3BP-binding motif of SFV nsP3 consists of two FGDF motifs, in which both phenylalanine and the glycine residue are essential for binding. In addition, we show that binding of the cellular G3BP-binding partner USP10 is also mediated by an FGDF motif. Overexpression of wt USP10, but not a mutant lacking the FGDF-motif, blocks SG assembly. Further, we identified FGDF-mediated G3BP binding site in herpes simplex virus (HSV) protein ICP8, and show that ICP8 binding to G3BP also inhibits SG formation, which is a novel function of HSV ICP8. We present a model of the three-dimensional structure of G3BP bound to an FGDF-containing peptide, likely representing a binding mode shared by many proteins to target G3BP. PMID:25658430

  17. Viral and cellular proteins containing FGDF motifs bind G3BP to block stress granule formation.

    PubMed

    Panas, Marc D; Schulte, Tim; Thaa, Bastian; Sandalova, Tatiana; Kedersha, Nancy; Achour, Adnane; McInerney, Gerald M

    2015-02-01

    The Ras-GAP SH3 domain-binding proteins (G3BP) are essential regulators of the formation of stress granules (SG), cytosolic aggregates of proteins and RNA that are induced upon cellular stress, such as virus infection. Many viruses, including Semliki Forest virus (SFV), block SG induction by targeting G3BP. In this work, we demonstrate that the G3BP-binding motif of SFV nsP3 consists of two FGDF motifs, in which both phenylalanine and the glycine residue are essential for binding. In addition, we show that binding of the cellular G3BP-binding partner USP10 is also mediated by an FGDF motif. Overexpression of wt USP10, but not a mutant lacking the FGDF-motif, blocks SG assembly. Further, we identified FGDF-mediated G3BP binding site in herpes simplex virus (HSV) protein ICP8, and show that ICP8 binding to G3BP also inhibits SG formation, which is a novel function of HSV ICP8. We present a model of the three-dimensional structure of G3BP bound to an FGDF-containing peptide, likely representing a binding mode shared by many proteins to target G3BP.

  18. Environmentally persistent free radicals amplify ultrafine particle mediated cellular oxidative stress and cytotoxicity

    PubMed Central

    Balakrishna, Shrilatha; Lomnicki, Slawo; McAvey, Kevin M; Cole, Richard B; Dellinger, Barry; Cormier, Stephania A

    2009-01-01

    Background Combustion generated particulate matter is deposited in the respiratory tract and pose a hazard to the lungs through their potential to cause oxidative stress and inflammation. We have previously shown that combustion of fuels and chlorinated hydrocarbons produce semiquinone-type radicals that are stabilized on particle surfaces (i.e. environmentally persistent free radicals; EPFRs). Because the composition and properties of actual combustion-generated particles are complex, heterogeneous in origin, and vary from day-to-day, we have chosen to use surrogate particle systems. In particular, we have chosen to use the radical of 2-monochlorophenol (MCP230) as the EPFR because we have previously shown that it forms a EPFR on Cu(II)O surfaces and catalyzes formation of PCDD/F. To understand the physicochemical properties responsible for the adverse pulmonary effects of combustion by-products, we have exposed human bronchial epithelial cells (BEAS-2B) to MCP230 or the CuO/silica substrate. Our general hypothesis was that the EPFR-containing particle would have greater toxicity than the substrate species. Results Exposure of BEAS-2B cells to our combustion generated particle systems significantly increased reactive oxygen species (ROS) generation and decreased cellular antioxidants resulting in cell death. Resveratrol treatment reversed the decline in cellular glutathione (GSH), glutathione peroxidase (GPx), and superoxide dismutase (SOD) levels for both types of combustion-generated particle systems. Conclusion The enhanced cytotoxicity upon exposure to MCP230 correlated with its ability to generate more cellular oxidative stress and concurrently reduce the antioxidant defenses of the epithelial cells (i.e. reduced GSH, SOD activity, and GPx). The EPFRs in MCP230 also seem to be of greater biological concern due to their ability to induce lipid peroxidation. These results are consistent with the oxidizing nature of the CuO/silica ultrafine particles and the

  19. Generally detected genes in comparative transcriptomics in bivalves: toward the identification of molecular markers of cellular stress response.

    PubMed

    Miao, Jingjing; Chi, Luping; Pan, Luqing; Song, Ying

    2015-01-01

    The specificity and representativeness of protein-coding genes identified by transcriptomics as biomarkers for environmental toxicological stress is crucial. We extracted the differential gene expression profile data from 49 published comparative transcriptomic studies of bivalves from January 2004 till November 2014 performed in 15 different bivalve species. Among the studies, 77 protein-coding genes were frequently detected when we use threefold of the average detection frequency as cut-off. Cellular organization and communication, protein and energy metabolism, stress response are the main functional classes of these proteins. We consider if these protein-coding genes represent common cellular stress responses of bivalves.

  20. Students Under Stress. A Study in the Social Psychology of Adaptation.

    ERIC Educational Resources Information Center

    Mechanic, David

    Students' reactions to preliminary Ph.D. examinations are investigated in this study examining responses to stress and techniques of adaptation. The applications of stress in a social science context are discussed and elements of successful social adaptation are examined. A study of 20 graduate students taking departmental written examinations…

  1. CSR, a scavenger receptor-like protein with a protective role against cellular damage causedby UV irradiation and oxidative stress.

    PubMed

    Han, H J; Tokino, T; Nakamura, Y

    1998-06-01

    Oxidative stress is a pathogenic condition that causes cellular damage and, in a normally functioning cell, several transcription factors respond to this threat by modulating expression of genes whose products ameliorate the altered redox status in some way. We have isolated a novel macrophage scavenger receptor-like gene, CSR (cellular stress response), whose transcription in normal fibroblasts was significantly elevated by exposure to UV radiation or hydrogen peroxide, and pre-treatment with antioxidants prevented induction of CSR . Under conditions of oxidative stress, reactive oxygen species were significantly depleted in CSR -overexpressing cells, indicating that the CSR product protects cells by scavenging oxidative molecules or harmful products of oxidation. Further investigations into the regulation and function of CSR should open a way to understanding the cellular response and the pathogenic processes caused by oxidative stress.

  2. Neuronal cellular responses to extremely low frequency electromagnetic field exposure: implications regarding oxidative stress and neurodegeneration.

    PubMed

    Reale, Marcella; Kamal, Mohammad A; Patruno, Antonia; Costantini, Erica; D'Angelo, Chiara; Pesce, Miko; Greig, Nigel H

    2014-01-01

    Neurodegenerative diseases comprise both hereditary and sporadic conditions characterized by an identifying progressive nervous system dysfunction and distinctive neuopathophysiology. The majority are of non-familial etiology and hence environmental factors and lifestyle play key roles in their pathogenesis. The extensive use of and ever increasing worldwide demand for electricity has stimulated societal and scientific interest on the environmental exposure to low frequency electromagnetic fields (EMFs) on human health. Epidemiological studies suggest a positive association between 50/60-Hz power transmission fields and leukemia or lymphoma development. Consequent to the association between EMFs and induction of oxidative stress, concerns relating to development of neurodegenerative diseases, such as Alzheimer disease (AD), have been voiced as the brain consumes the greatest fraction of oxygen and is particularly vulnerable to oxidative stress. Exposure to extremely low frequency (ELF)-EMFs are reported to alter animal behavior and modulate biological variables, including gene expression, regulation of cell survival, promotion of cellular differentiation, and changes in cerebral blood flow in aged AD transgenic mice. Alterations in inflammatory responses have also been reported, but how these actions impact human health remains unknown. We hence evaluated the effects of an electromagnetic wave (magnetic field intensity 1 mT; frequency, 50-Hz) on a well-characterized immortalized neuronal cell model, human SH-SY5Y cells. ELF-EMF exposure elevated the expession of NOS and O2(-), which were countered by compensatory changes in antioxidant catylase (CAT) activity and enzymatic kinetic parameters related to CYP-450 and CAT activity. Actions of ELF-EMFs on cytokine gene expression were additionally evaluated and found rapidly modified. Confronted with co-exposure to H2O2-induced oxidative stress, ELF-EMF proved not as well counteracted and resulted in a decline in CAT

  3. Punicalagin exerts protective effect against high glucose-induced cellular stress and neural tube defects.

    PubMed

    Zhong, Jianxiang; Reece, E Albert; Yang, Peixin

    2015-11-13

    Maternal diabetes-induced birth defects remain a significant health problem. Studying the effect of natural compounds with antioxidant properties and minimal toxicities on diabetic embryopathy may lead to the development of new and safe dietary supplements. Punicalagin is a primary polyphenol found in pomegranate juice, which possesses antioxidant, anti-inflammatory and anti-tumorigenic properties, suggesting a protective effect of punicalagin on diabetic embryopathy. Here, we examined whether punicalagin could reduce high glucose-induced neural tube defects (NTDs), and if this rescue occurs through blockage of cellular stress and caspase activation. Embryonic day 8.5 (E8.5) mouse embryos were cultured for 24 or 36 h with normal (5 mM) glucose or high glucose (16.7 mM), in presence or absence of 10 or 20 μM punicalagin. 10 μM punicalagin slightly reduced NTD formation under high glucose conditions; however, 20 μM punicalagin significantly inhibited high glucose-induced NTD formation. Punicalagin suppressed high glucose-induced lipid peroxidation marker 4-hydroxynonenal, nitrotyrosine-modified proteins, and lipid peroxides. Moreover, punicalagin abrogated endoplasmic reticulum stress by inhibiting phosphorylated protein kinase ribonucleic acid (RNA)-like ER kinase (p-PERK), phosphorylated inositol-requiring protein-1α (p-IRE1α), phosphorylated eukaryotic initiation factor 2α (p-eIF2α), C/EBP-homologous protein (CHOP), binding immunoglobulin protein (BiP) and x-box binding protein 1 (XBP1) mRNA splicing. Additionally, punicalagin suppressed high glucose-induced caspase 3 and caspase 8 cleavage. Punicalagin reduces high glucose-induced NTD formation by blocking cellular stress and caspase activation. These observations suggest punicalagin supplements could mitigate the teratogenic effects of hyperglycemia in the developing embryo, and possibly prevent diabetes-induced NTDs.

  4. Short-term differential adaptation to anaerobic stress via genomic mutations by Escherichia coli strains K-12 and B lacking alcohol dehydrogenase

    PubMed Central

    Kim, Hyun Ju; Jeong, Haeyoung; Hwang, Seungwoo; Lee, Moo-Seung; Lee, Yong-Jik; Lee, Dong-Woo; Lee, Sang Jun

    2014-01-01

    Microbial adaptations often occur via genomic mutations under adverse environmental conditions. This study used Escherichia coli ΔadhE cells as a model system to investigate adaptation to anaerobic conditions, which we then compared with the adaptive mechanisms of two closely related E. coli strains, K-12 and B. In contrast to K-12 ΔadhE cells, the E. coli B ΔadhE cells exhibited significantly delayed adaptive growth under anaerobic conditions. Adaptation by the K-12 and B strains mainly employed anaerobic lactate fermentation to restore cellular growth. Several mutations were identified in the pta or pflB genes of adapted K-12 cells, but mostly in the pta gene of the B strains. However, the types of mutation in the adapted K-12 and B strains were similar. Cellular viability was affected directly by severe redox imbalance in B ΔadhE cells, which also impaired their ability to adapt to anaerobic conditions. This study demonstrates that closely related microorganisms may undergo different adaptations under the same set of adverse conditions, which might be associated with the specific metabolic characteristics of each strain. This study provides new insights into short-term microbial adaptation to stressful conditions, which may reflect dynamic microbial population changes in nature. PMID:25250024

  5. Short-term differential adaptation to anaerobic stress via genomic mutations by Escherichia coli strains K-12 and B lacking alcohol dehydrogenase.

    PubMed

    Kim, Hyun Ju; Jeong, Haeyoung; Hwang, Seungwoo; Lee, Moo-Seung; Lee, Yong-Jik; Lee, Dong-Woo; Lee, Sang Jun

    2014-01-01

    Microbial adaptations often occur via genomic mutations under adverse environmental conditions. This study used Escherichia coli ΔadhE cells as a model system to investigate adaptation to anaerobic conditions, which we then compared with the adaptive mechanisms of two closely related E. coli strains, K-12 and B. In contrast to K-12 ΔadhE cells, the E. coli B ΔadhE cells exhibited significantly delayed adaptive growth under anaerobic conditions. Adaptation by the K-12 and B strains mainly employed anaerobic lactate fermentation to restore cellular growth. Several mutations were identified in the pta or pflB genes of adapted K-12 cells, but mostly in the pta gene of the B strains. However, the types of mutation in the adapted K-12 and B strains were similar. Cellular viability was affected directly by severe redox imbalance in B ΔadhE cells, which also impaired their ability to adapt to anaerobic conditions. This study demonstrates that closely related microorganisms may undergo different adaptations under the same set of adverse conditions, which might be associated with the specific metabolic characteristics of each strain. This study provides new insights into short-term microbial adaptation to stressful conditions, which may reflect dynamic microbial population changes in nature.

  6. Adaptation of the myoglobin knockout mouse to hypoxic stress.

    PubMed

    Schlieper, Georg; Kim, Jie-Hoon; Molojavyi, Andrei; Jacoby, Christoph; Laussmann, Tim; Flögel, Ulrich; Gödecke, Axel; Schrader, Jürgen

    2004-04-01

    Myoglobin knockout (myo-/-) mice were previously reported to show no obvious phenotype but revealed several compensatory mechanisms that include increases in cardiac capillary density, coronary flow, and hemoglobin. The aim of this study was to investigate whether severe hypoxic stress can exhaust these compensatory mechanisms and whether this can be monitored on the gene and protein level. Myo-/- and wild-type (WT) mice we e exposed to hypoxia (10% O(2)) fo 2 wk. Thereafter hemodynamic parameters were investigated by invasive measurement combined with magnetic resonance imaging. Cardiac gene and protein expression were analyzed using cDNA arrays and two-dimensional gel electrophoresis plus mass spectrometry, respectively. Hematocrit levels increased from 44% (WT) and 48% (myo-/-) to 72% in both groups. Similar to WT controls, hypoxic myo-/- animals maintained stable cardiovascular function (mean arterial blood pressure 82.4 mmHg, ejection fraction 72.5%). Cardiac gene expression of hypoxic myo-/- mice differed significantly from WT controls in 17 genes (e.g., keratinocyte lipid binding protein +202%, cytochrome c oxidase Vb +41%). Interestingly, hypoxia inducible factor-1alpha remained unchanged in both groups. Proteome analysis revealed reduced levels of heart fatty acid-binding protein and heat shock protein 27 both in hypoxic myo-/- and WT mice. Our data thus demonstrate that myo-/- mice do not decompensate du ing hypoxic st ess but a e surprisingly well adapted. Changes in ene gy metabolism of fatty acids may contribute to the robustness of myoglobin-deficient mice. PMID:14656764

  7. Adaptation of the myoglobin knockout mouse to hypoxic stress.

    PubMed

    Schlieper, Georg; Kim, Jie-Hoon; Molojavyi, Andrei; Jacoby, Christoph; Laussmann, Tim; Flögel, Ulrich; Gödecke, Axel; Schrader, Jürgen

    2004-04-01

    Myoglobin knockout (myo-/-) mice were previously reported to show no obvious phenotype but revealed several compensatory mechanisms that include increases in cardiac capillary density, coronary flow, and hemoglobin. The aim of this study was to investigate whether severe hypoxic stress can exhaust these compensatory mechanisms and whether this can be monitored on the gene and protein level. Myo-/- and wild-type (WT) mice we e exposed to hypoxia (10% O(2)) fo 2 wk. Thereafter hemodynamic parameters were investigated by invasive measurement combined with magnetic resonance imaging. Cardiac gene and protein expression were analyzed using cDNA arrays and two-dimensional gel electrophoresis plus mass spectrometry, respectively. Hematocrit levels increased from 44% (WT) and 48% (myo-/-) to 72% in both groups. Similar to WT controls, hypoxic myo-/- animals maintained stable cardiovascular function (mean arterial blood pressure 82.4 mmHg, ejection fraction 72.5%). Cardiac gene expression of hypoxic myo-/- mice differed significantly from WT controls in 17 genes (e.g., keratinocyte lipid binding protein +202%, cytochrome c oxidase Vb +41%). Interestingly, hypoxia inducible factor-1alpha remained unchanged in both groups. Proteome analysis revealed reduced levels of heart fatty acid-binding protein and heat shock protein 27 both in hypoxic myo-/- and WT mice. Our data thus demonstrate that myo-/- mice do not decompensate du ing hypoxic st ess but a e surprisingly well adapted. Changes in ene gy metabolism of fatty acids may contribute to the robustness of myoglobin-deficient mice.

  8. Translational and fluctuating asymmetry as tools to detect stress in stress-adapted and nonadapted plants

    USGS Publications Warehouse

    Alados, C.L.; Navarro, T.; Escos, J.; Cabezudo, B.; Emlen, J.M.

    2001-01-01

    Plants having experienced previous exposure to a stress are expected to be more resistant to further stress than those not having been exposed. While the assessment of stress in plants is a difficult task, particularly for stress-adapted plants, developmental instability has proven a useful tool for assessing stress in organisms. We examined the effect of water availability on developmental instability (translational asymmetry and fluctuating asymmetry) and growth of Anthyllis cytisoides L. under a precipitation gradient. We compared A. cytisoides in very xeric (Almeri??a, 256 mm of average rainfall) and subhumid (Ma??laga, 613 mm of average rainfall) areas, from north- and south-facing slopes, after both a period of extreme drought (1995) and a humid period (1997). Translational symmetry varied between north- and south-exposed plants but differently for the Almeri??a and Ma??laga populations. We observed that developmental stability was enhanced in south-exposed plants in the population from the more xeric habitat (Almeri??a) after both dry and humid periods. In contrast, A. cytisoides living in a subhumid habitat did not alter their developmental stability in response to exposure after a humid period but exhibited a decline in stability in south-exposed slopes after a dry period. That is interpreted as a consequence of the adaptation of A. cytisoides to aridity. Growth patterns were also investigated. By reducing growth, plants can mitigate stress through a reduction of water and nutrient demands, allowing the maintenance of a steady supply of nutrients for developmental stability. This strategy was followed by plants acclimated to drought. But in mild weather, such as that of Montes de Ma??laga, a high growth rate cannot be supported when water is scarce. We also observed that floral fluctuating asymmetry was greatest on north-facing slopes at both the Almeri??a and Ma??laga sites. That is, southern exposure enhanced floral homeostasis during development

  9. Silicon dioxide nanoparticles increase macrophage atherogenicity: Stimulation of cellular cytotoxicity, oxidative stress, and triglycerides accumulation.

    PubMed

    Petrick, Lauren; Rosenblat, Mira; Paland, Nicole; Aviram, Michael

    2016-06-01

    Nanoparticle research has focused on their toxicity in general, while increasing evidence points to additional specific adverse effects on atherosclerosis development. Arterial macrophage cholesterol and triglyceride (TG) accumulation and foam cell formation are the hallmark of early atherogenesis, leading to cardiovascular events. To investigate the in vitro atherogenic effects of silicon dioxide (SiO2 ), J774.1 cultured macrophages (murine cell line) were incubated with SiO2 nanoparticle (SP, d = 12 nm, 0-20 µg/mL), followed by cellular cytotoxicity, oxidative stress, TG and cholesterol metabolism analyses. A significant dose-dependent increase in oxidative stress (up to 164%), in cytotoxicity (up to 390% measured by lactate dehydrogenase (LDH) release), and in TG content (up to 63%) was observed in SiO2 exposed macrophages compared with control cells. A smaller increase in macrophage cholesterol mass (up to 22%) was noted. TG accumulation in macrophages was not due to a decrease in TG cell secretion or to an increased TG biosynthesis rate, but was the result of attenuated TG hydrolysis secondary to decreased lipase activity and both adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) protein expression (by 42 and 25%, respectively). Overall, SPs showed pro-atherogenic effects on macrophages as observed by cytotoxicity, increased oxidative stress and TG accumulation. © 2014 Wiley Periodicals, Inc. Environ Toxicol 31: 713-723, 2016.

  10. The role of fungal symbiosis in the adaptation of plants to high stress environments

    USGS Publications Warehouse

    Rodriguez, Russell J.; Redman, Regina S.; Henson, Joan M.

    2004-01-01

    All plants studied in natural ecosystemsare symbiotic with fungi that either resideentirely (endophytes) or partially(mycorrhizae) within plants. Thesesymbioses appear to adapt to biotic andabiotic stresses and may be responsible forthe survival of both plant hosts and fungalsymbionts in high stress habitats. Here wedescribe the role of symbiotic fungi inplant stress tolerance and present astrategy based on adaptive symbiosis topotentially mitigate the impacts of globalchange on plant communities.

  11. The response of the heart to stress: a biological view of myocardial adaptation and failure.

    PubMed

    Alpert, N R; Mulieri, L A

    1987-01-01

    The response of the myocardium to persistent stress involves an increase in mass and a restructuring of the cellular and subcellular elements. The experiments described in this article are designed to test the hypothesis that the restructuring of the various systems (contractile, excitation-contraction coupling, recovery, etc.) that occurs in adaptive hypertrophy is a coordinated (matched) process. When the restructuring of the systems in response to stress occurs in an uncoordinated fashion, congestive heart failure results. In addition to controls, three heart models with normal pump performance are used (control, C; pressure overload, P; thyrotoxic, T; and pressure overload plus thyrotoxic, PT4) and one with inadequate pump performance (pressure overload plus thyrotoxic, PT2). In this analysis the contractile and excitation-contraction coupling systems are evaluated. The former is assessed by sensitive myothermal measurement of tension dependent heat (TDH) normalized for the isometric tension time integral (integral of Pdt). The latter is assessed from measurement of the time to peak isometric tension (TPT). The TDH/integral of Pdt (mu cal/g.cm.s) and TPT (ms) for the C, P, T, PT4, and PT2 hearts are 2.4, 1.8, 5.2, 5.1, and 0.1, mu cal/g.cm.s and 627, 816, 352, 484, and 465 ms, respectively. According to the coordination or matching hypothesis, if TDH/integral of Pdt is low, then TPT should be increased, or if TDH/integral of Pdt is high, then TPT should be decreased. Relative to control hearts, matched restructuring of the contractile and excitation-contraction coupling systems occurred for the P, T, and PT4 preparations. In these animals the hypertrophy has been adaptive and the pump performance is adequate.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2485028

  12. Characterizing early molecular biomarkers of zinc-induced adaptive and adverseoxidative stress responses in human bronchial epithelial cells

    EPA Science Inventory

    Determining mechanism-based biomarkers that distinguish adaptive and adverse cellular processes is critical to understanding the health effects of environmental exposures. Here, we examined cellular responses of the tracheobronchial airway to zinc (Zn) exposure. A pharmacokinetic...

  13. Evolution: how fruit flies adapt to seasonal stresses.

    PubMed

    Williams, Karen D; Sokolowski, Marla B

    2009-01-27

    Fruit flies inhabit a wide range of latitudes, requiring adaptation to the varying local climates. A recent study reports evidence that the ability of North American flies to endure the winter involves adaptive polymorphism of the couch potato gene.

  14. Using a Vulnerability-Stress-Adaptation Framework to Predict Physical Aggression Trajectories in Newlywed Marriage

    ERIC Educational Resources Information Center

    Langer, Amie; Lawrence, Erika; Barry, Robin A.

    2008-01-01

    The authors used a vulnerability-stress-adaptation framework to examine personality traits and chronic stress as predictors of the developmental course of physical aggression in the early years of marriage. Additionally, personality traits and physical aggression were examined as predictors of the developmental course of chronic stress. Data from…

  15. Relief of delayed oxidative stress by ascorbic acid can suppress radiation-induced cellular senescence in mammalian fibroblast cells.

    PubMed

    Kobashigawa, Shinko; Kashino, Genro; Mori, Hiromu; Watanabe, Masami

    2015-03-01

    Ionizing radiation-induced cellular senescence is thought to be caused by nuclear DNA damage that cannot be repaired. However, here we found that radiation induces delayed increase of intracellular oxidative stress after irradiation. We investigated whether the relief of delayed oxidative stress by ascorbic acid would suppress the radiation-induced cellular senescence in Syrian golden hamster embryo (SHE) cells. We observed that the level of oxidative stress was drastically increased soon after irradiation, then declined to the level in non-irradiated cells, and increased again with a peak on day 3 after irradiation. We found that the inductions of cellular senescence after X-irradiation were reduced along with suppression of the delayed induction of oxidative stress by treatment with ascorbic acid, but not when oxidative stress occurred immediately after irradiation. Moreover, treatment of ascorbic acid inhibited p53 accumulation at 3 days after irradiation. Our data suggested a delayed increase of intracellular oxidative stress levels plays an important role in the process of radiation-induced cellular senescence by p53 accumulation.

  16. Linking physiological and cellular responses to thermal stress: β-adrenergic blockade reduces the heat shock response in fish.

    PubMed

    Templeman, Nicole M; LeBlanc, Sacha; Perry, Steve F; Currie, Suzanne

    2014-08-01

    When faced with stress, animals use physiological and cellular strategies to preserve homeostasis. We were interested in how these high-level stress responses are integrated at the level of the whole animal. Here, we investigated the capacity of the physiological stress response, and specifically the β-adrenergic response, to affect the induction of the cellular heat shock proteins, HSPs, following a thermal stress in vivo. We predicted that blocking β-adrenergic stimulation during an acute heat stress in the whole animal would result in reduced levels of HSPs in red blood cells (RBCs) of rainbow trout compared to animals where adrenergic signaling remained intact. We first determined that a 1 h heat shock at 25 °C in trout acclimated to 13 °C resulted in RBC adrenergic stimulation as determined by a significant increase in cell swelling, a hallmark of the β-adrenergic response. A whole animal injection with the β2-adrenergic antagonist, ICI-118,551, successfully reduced this heat-induced RBC swelling. The acute heat shock caused a significant induction of HSP70 in RBCs of 13 °C-acclimated trout as well as a significant increase in plasma catecholamines. When heat-shocked fish were treated with ICI-118,551, we observed a significant attenuation of the HSP70 response. We conclude that circulating catecholamines influence the cellular heat shock response in rainbow trout RBCs, demonstrating physiological/hormonal control of the cellular stress response.

  17. Identification of microRNAs associated with hyperthermia-induced cellular stress response.

    PubMed

    Wilmink, Gerald J; Roth, Caleb L; Ibey, Bennett L; Ketchum, Norma; Bernhard, Joshua; Cerna, Cesario Z; Roach, William P

    2010-11-01

    MicroRNAs (miRNAs) are a class of small RNAs that play a critical role in the coordination of fundamental cellular processes. Recent studies suggest that miRNAs participate in the cellular stress response (CSR), but their specific involvement remains unclear. In this study, we identify a group of thermally regulated miRNAs (TRMs) that are associated with the CSR. Using miRNA microarrays, we show that dermal fibroblasts differentially express 123 miRNAs when exposed to hyperthermia. Interestingly, only 27 of these miRNAs are annotated in the current Sanger registry. We validated the expression of the annotated miRNAs using qPCR techniques, and we found that the qPCR and microarray data was in well agreement. Computational target-prediction studies revealed that putative targets for the TRMs are heat shock proteins and Argonaute-2-the core functional unit of RNA silencing. These results indicate that cells express a specific group of miRNAs when exposed to hyperthermia, and these miRNAs may function in the regulation of the CSR. Future studies will be conducted to determine if other cells lines differentially express these miRNAs when exposed to hyperthermia.

  18. Simulated microgravity promotes cellular senescence via oxidant stress in rat PC12 cells.

    PubMed

    Wang, Jinghua; Zhang, Jifei; Bai, Shasha; Wang, Guangyou; Mu, Lili; Sun, Bo; Wang, Dandan; Kong, Qingfei; Liu, Yumei; Yao, Xiuhua; Xu, Ying; Li, Hulun

    2009-12-01

    Microgravity has a unique effect on biological organisms. Organs exposed to microgravity display cellular senescence, a change that resembles the aging process. To directly investigate the influence of simulated microgravity on neuronal original rat PC12 cells, we used a rotary cell culture system that simulates the microgravity environment on the earth. We found that simulated microgravity induced partial G1 phase arrest, upregulated senescence-associated beta-galactosidase (SA-beta-gal) activity, and activated both p53 and p16 protein pathways linked to cell senescence. The amount of reactive oxygen species (ROS) was also increased. The activity of intracellular antioxidant enzymes, such as superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT), was all significantly increased at 12h after the microgravity onset, yet decreased at 96h. Furthermore, concomitant block of ROS by the antioxidant N-acetylcysteine significantly inhibited the microgravity-induced upregulation of SA-beta-gal activity. These results suggest that exposure to simulated microgravity induces cellular senescence in PC12 cells via an increased oxidant stress. PMID:19616052

  19. Mitochondrial dysfunction, free radical generation and cellular stress response in neurodegenerative disorders.

    PubMed

    Mancuso, Cesare; Scapagini, Giovanni; Currò, Diego; Giuffrida Stella, Anna Maria; De Marco, Carlo; Butterfield, D Allan; Calabrese, Vittorio

    2007-01-01

    Protein conformational diseases, such as Alzheimer's, Parkinson's and Huntington's, affect a large portion of aging population. The pathogenic dysfunctional aggregation of proteins in non-native conformations is associated with metabolic derangements and excessive production of reactive oxygen species. Reduction of cellular expression and activity of antioxidant proteins result in increased oxidative stress. Free-radicals derived from mitochondrial dysfunction and from the cyclooxygenase enzyme activity play a role in oxidative damage of brain. Cyclooxygenase also mediates in neuro-inflammation by the production of pro-inflammatory prostaglandins which contribute to brain injury. The pathogenic role of cyclooxygenase has been demonstrated in Alzheimer and Parkinson diseases. The brain responses to detect and control diverse forms of stress are accomplished by a complex network of "longevity assurance processes" integrated to the expression of genes termed vitagenes. Heat shock proteins are a highly conserved system responsible for the preservation and repair of correct protein conformation. Heme oxygenase-1, a inducible and redox-regulated enzyme, is currently considered as having an important role in cellular antioxidant defense. A neuroprotective effect, due to its heme degrading activity, and tissue-specific pro-oxidant effects, due to its products CO and free iron, are under debate. There is a current interest in dietary compounds that can inhibit, retard or reverse the multi-stage pathophysiology of Alzheimer disease, with a chronic inflammatory response, brain injury and beta-amyloid associated pathology. Curcumin and ferulic acid, two powerful antioxidants, the first from the curry spice turmeric and the second a major constituent of fruit and vegetables, have emerged as strong inducers of the heat shock response. Food supplementation with curcumin and ferulic acid is considered a nutritional approach to reduce oxidative damage and amyloid pathology in

  20. Development of Maladaptive Coping: A Functional Adaptation to Chronic, Uncontrollable Stress

    PubMed Central

    Wadsworth, Martha E.

    2015-01-01

    Health disparities are rooted in childhood and stem from adverse early environments that damage physiologic stress-response systems. Developmental psychobiological models of the effects of chronic stress account for both the negative effects of a stress-response system calibrated to a dangerous and unpredictable environment from a health perspective, and the positive effects of such an adaptively calibrated stress response from a functional perspective. Our research suggests that contexts that produce functionally adapted physiologic responses to stress also encourage a functionally adapted coping response—coping that can result in maladjustment in physical and mental health, but enables children to grow and develop within those contexts. In this article, I highlight the value of reframing maladaptive coping as functional adaptation to understand more completely the development of children’s coping in different contexts, and the value of such a conceptual shift for coping-based theory, research, and intervention. PMID:26019717

  1. Stress inoculation training supported by physiology-driven adaptive virtual reality stimulation.

    PubMed

    Popović, Sinisa; Horvat, Marko; Kukolja, Davor; Dropuljić, Branimir; Cosić, Kresimir

    2009-01-01

    Significant proportion of psychological problems related to combat stress in recent large peacekeeping operations underscores importance of effective methods for strengthening the stress resistance of military personnel. Adaptive control of virtual reality (VR) stimulation, based on estimation of the subject's emotional state from physiological signals, may enhance existing stress inoculation training (SIT). Physiology-driven adaptive VR stimulation can tailor the progress of stressful stimuli delivery to the physiological characteristics of each individual, which is indicated for improvement in stress resistance. Therefore, following an overview of SIT and its applications in the military setting, generic concept of physiology-driven adaptive VR stimulation is presented in the paper. Toward the end of the paper, closed-loop adaptive control strategy applicable to SIT is outlined. PMID:19592729

  2. Topology optimization of adaptive fluid-actuated cellular structures with arbitrary polygonal motor cells

    NASA Astrophysics Data System (ADS)

    Lv, Jun; Tang, Liang; Li, Wenbo; Liu, Lei; Zhang, Hongwu

    2016-05-01

    This paper mainly focuses on the fast and efficient design method for plant bioinspired fluidic cellular materials and structures composed of polygonal motor cells. Here we developed a novel structural optimization method with arbitrary polygonal coarse-grid elements based on multiscale finite element frameworks. The fluidic cellular structures are meshed with irregular polygonal coarse-grid elements according to their natural size and the shape of the imbedded motor cells. The multiscale base functions of solid displacement and hydraulic pressure are then constructed to bring the small-scale information of the irregular motor cells to the large-scale simulations on the polygonal coarse-grid elements. On this basis, a new topology optimization method based on the resulting polygonal coarse-grid elements is proposed to determine the optimal distributions or number of motor cells in the smart cellular structures. Three types of optimization problems are solved according to the usages of the fluidic cellular structures. Firstly, the proposed optimization method is utilized to minimize the system compliance of the load-bearing fluidic cellular structures. Second, the method is further extended to design biomimetic compliant actuators of the fluidic cellular materials due to the fact that non-uniform volume expansions of fluid in the cells can induce elastic action. Third, the optimization problem focuses on the weight minimization of the cellular structure under the constraints for the compliance of the whole system. Several representative examples are investigated to validate the effectiveness of the proposed polygon-based topology optimization method of the smart materials.

  3. Establishing cellular stress response profiles as biomarkers of homeodynamics, health and hormesis.

    PubMed

    Demirovic, Dino; Rattan, Suresh I S

    2013-01-01

    Aging is the progressive shrinkage of the homeodynamic space. A crucial component of the homeodynamic space is the stress response (SR), by virtue of which a living system senses disturbance and initiates a series of events for maintenance, repair, adaptation, remodeling and survival. Here we discuss the main intracellular SR pathways in human cells, and argue for the need to define and establish the immediate and delayed stress response profiles (SRP) during aging. Such SRP are required to be established at several age-points, which can be the molecular biomarkers of homeodynamic space and the health status of cells and organisms. SRP can also be useful for testing potential protectors and stimulators of homeodynamics, and can be a standard for monitoring the efficacy of potential pro-survival, health-promoting and aging-modulating conditions, food components and other compounds. An effective strategy, which makes use of SRP for achieving healthy aging and extending the healthspan, is that of strengthening the homeodynamics through repeated mild stress-induced hormesis by physical, biological and nutritional hormetins. Furthermore, SRP can also be the basis for defining health as a state of having adequate physical and mental independence of activities of daily living, by identifying a set of measurable parameters at the most fundamental level of biological organization.

  4. Stability of sublethal acid stress adaptation and induced cross protection against lauric arginate in Listeria monocytogenes.

    PubMed

    Shen, Qian; Soni, Kamlesh A; Nannapaneni, Ramakrishna

    2015-06-16

    The stability of acid stress adaptation in Listeria monocytogenes and its induced cross protection effect against GRAS (generally recognized as safe) antimicrobial compounds has never been investigated before. In the present study, the acid stress adaptation in L. monocytogenes was initially induced in pH 5.0 tryptic soy broth supplemented with 0.6% yeast extract (TSB-YE) at 37 °C. Subsequently, the stability of acid stress adaptation, which was defined as the capacity to maintain its acquired acid adaptation after induction in the absence of sublethal acid stress, was determined at 37 °C, 22 °C or 4 °C in broth and in different food substrates. Then, the acid stress adaptation induced cross protection against lauric arginate (LAE) and its stability was investigated in TSB-YE, milk and carrot juice. Our findings show that the acid stress adaptation was stable at 4 °C up to 24h but was reversed at 37 °C or 22 °C within 2h. In the cross protection assay with LAE, the acid stress adapted cells had approximately 2 log CFU/ml greater survival than non-adapted cells in broth at 22 °C or in milk and carrot juice at 4 °C. The acid adaptation induced cross protection against LAE in L. monocytogenes was reversible within 1h at 4 °C in the absence of sublethal acid stress. Our findings suggest that the stability of acid adaptation in L. monocytogenes under cold conditions should be taken into account when the risk analysis is performed during food processing.

  5. Impaired mitophagy leads to cigarette smoke stress-induced cellular senescence: implications for chronic obstructive pulmonary disease.

    PubMed

    Ahmad, Tanveer; Sundar, Isaac K; Lerner, Chad A; Gerloff, Janice; Tormos, Ana M; Yao, Hongwei; Rahman, Irfan

    2015-07-01

    Cigarette smoke (CS)-induced cellular senescence is involved in the pathogenesis of chronic obstructive pulmonary disease (COPD). The molecular mechanism by which CS induces cellular senescence is unknown. Here, we show that CS stress (exposure of primary lung cells to CS extract 0.2-0.75% with a half-maximal inhibitory concentration of ∼0.5%) led to impaired mitophagy and perinuclear accumulation of damaged mitochondria associated with cellular senescence in both human lung fibroblasts and small airway epithelial cells (SAECs). Impaired mitophagy was attributed to reduced Parkin translocation to damaged mitochondria, which was due to CS-induced cytoplasmic p53 accumulation and its interaction with Parkin. Impaired Parkin translocation to damaged mitochondria was also observed in mouse lungs with emphysema (6 months CS exposure, 100 mg TPM/m(3)) as well as in lungs of chronic smokers and patients with COPD. Primary SAECs from patients with COPD also exhibited impaired mitophagy and increased cellular senescence via suborganellar signaling. Mitochondria-targeted antioxidant (Mito-Tempo) restored impaired mitophagy, decreased mitochondrial mass accumulation, and delayed cellular senescence in Parkin-overexpressing cells. In conclusion, defective mitophagy leads to CS stress-induced lung cellular senescence, and restoring mitophagy delays cellular senescence, which provides a promising therapeutic intervention in chronic airway diseases.

  6. Adaptive Stress Response in Segmental Progeria Resembles Long-Lived Dwarfism and Calorie Restriction in Mice

    PubMed Central

    Holcomb, Valerie B; von Lindern, Marieke; Jong, Willeke M. C; Zeeuw, Chris I. De; Suh, Yousin; Hasty, Paul; Hoeijmakers, Jan H. J; van der Horst, Gijsbertus T. J; Mitchell, James R

    2006-01-01

    How congenital defects causing genome instability can result in the pleiotropic symptoms reminiscent of aging but in a segmental and accelerated fashion remains largely unknown. Most segmental progerias are associated with accelerated fibroblast senescence, suggesting that cellular senescence is a likely contributing mechanism. Contrary to expectations, neither accelerated senescence nor acute oxidative stress hypersensitivity was detected in primary fibroblast or erythroblast cultures from multiple progeroid mouse models for defects in the nucleotide excision DNA repair pathway, which share premature aging features including postnatal growth retardation, cerebellar ataxia, and death before weaning. Instead, we report a prominent phenotypic overlap with long-lived dwarfism and calorie restriction during postnatal development (2 wk of age), including reduced size, reduced body temperature, hypoglycemia, and perturbation of the growth hormone/insulin-like growth factor 1 neuroendocrine axis. These symptoms were also present at 2 wk of age in a novel progeroid nucleotide excision repair-deficient mouse model (XPDG602D/R722W/XPA−/−) that survived weaning with high penetrance. However, despite persistent cachectic dwarfism, blood glucose and serum insulin-like growth factor 1 levels returned to normal by 10 wk, with hypoglycemia reappearing near premature death at 5 mo of age. These data strongly suggest changes in energy metabolism as part of an adaptive response during the stressful period of postnatal growth. Interestingly, a similar perturbation of the postnatal growth axis was not detected in another progeroid mouse model, the double-strand DNA break repair deficient Ku80−/− mouse. Specific (but not all) types of genome instability may thus engage a conserved response to stress that evolved to cope with environmental pressures such as food shortage. PMID:17173483

  7. Plasma membrane proteomics in the maize primary root growth zone: novel insights into root growth adaptation to water stress.

    PubMed

    Voothuluru, Priyamvada; Anderson, Jeffrey C; Sharp, Robert E; Peck, Scott C

    2016-09-01

    Previous work on maize (Zea mays L.) primary root growth under water stress showed that cell elongation is maintained in the apical region of the growth zone but progressively inhibited further from the apex. These responses involve spatially differential and coordinated regulation of osmotic adjustment, modification of cell wall extensibility, and other cellular growth processes that are required for root growth under water-stressed conditions. As the interface between the cytoplasm and the apoplast (including the cell wall), the plasma membrane likely plays critical roles in these responses. Using a simplified method for enrichment of plasma membrane proteins, the developmental distribution of plasma membrane proteins was analysed in the growth zone of well-watered and water-stressed maize primary roots. The results identified 432 proteins with differential abundances in well-watered and water-stressed roots. The majority of changes involved region-specific patterns of response, and the identities of the water stress-responsive proteins suggest involvement in diverse biological processes including modification of sugar and nutrient transport, ion homeostasis, lipid metabolism, and cell wall composition. Integration of the distinct, region-specific plasma membrane protein abundance patterns with results from previous physiological, transcriptomic and cell wall proteomic studies reveals novel insights into root growth adaptation to water stress.

  8. Plasma membrane proteomics in the maize primary root growth zone: novel insights into root growth adaptation to water stress.

    PubMed

    Voothuluru, Priyamvada; Anderson, Jeffrey C; Sharp, Robert E; Peck, Scott C

    2016-09-01

    Previous work on maize (Zea mays L.) primary root growth under water stress showed that cell elongation is maintained in the apical region of the growth zone but progressively inhibited further from the apex. These responses involve spatially differential and coordinated regulation of osmotic adjustment, modification of cell wall extensibility, and other cellular growth processes that are required for root growth under water-stressed conditions. As the interface between the cytoplasm and the apoplast (including the cell wall), the plasma membrane likely plays critical roles in these responses. Using a simplified method for enrichment of plasma membrane proteins, the developmental distribution of plasma membrane proteins was analysed in the growth zone of well-watered and water-stressed maize primary roots. The results identified 432 proteins with differential abundances in well-watered and water-stressed roots. The majority of changes involved region-specific patterns of response, and the identities of the water stress-responsive proteins suggest involvement in diverse biological processes including modification of sugar and nutrient transport, ion homeostasis, lipid metabolism, and cell wall composition. Integration of the distinct, region-specific plasma membrane protein abundance patterns with results from previous physiological, transcriptomic and cell wall proteomic studies reveals novel insights into root growth adaptation to water stress. PMID:27341663

  9. Interplay between Ubiquitin, SUMO, and Poly(ADP-Ribose) in the Cellular Response to Genotoxic Stress

    PubMed Central

    Pellegrino, Stefania; Altmeyer, Matthias

    2016-01-01

    Cells employ a complex network of molecular pathways to cope with endogenous and exogenous genotoxic stress. This multilayered response ensures that genomic lesions are efficiently detected and faithfully repaired in order to safeguard genome integrity. The molecular choreography at sites of DNA damage relies heavily on post-translational modifications (PTMs). Protein modifications with ubiquitin and the small ubiquitin-like modifier SUMO have recently emerged as important regulatory means to coordinate DNA damage signaling and repair. Both ubiquitylation and SUMOylation can lead to extensive chain-like protein modifications, a feature that is shared with yet another DNA damage-induced PTM, the modification of proteins with poly(ADP-ribose) (PAR). Chains of ubiquitin, SUMO, and PAR all contribute to the multi-protein assemblies found at sites of DNA damage and regulate their spatio-temporal dynamics. Here, we review recent advancements in our understanding of how ubiquitin, SUMO, and PAR coordinate the DNA damage response and highlight emerging examples of an intricate interplay between these chain-like modifications during the cellular response to genotoxic stress. PMID:27148359

  10. Neuronal cellular responses to extremely low frequency electromagnetic field exposure: implications regarding oxidative stress and neurodegeneration.

    PubMed

    Reale, Marcella; Kamal, Mohammad A; Patruno, Antonia; Costantini, Erica; D'Angelo, Chiara; Pesce, Miko; Greig, Nigel H

    2014-01-01

    Neurodegenerative diseases comprise both hereditary and sporadic conditions characterized by an identifying progressive nervous system dysfunction and distinctive neuopathophysiology. The majority are of non-familial etiology and hence environmental factors and lifestyle play key roles in their pathogenesis. The extensive use of and ever increasing worldwide demand for electricity has stimulated societal and scientific interest on the environmental exposure to low frequency electromagnetic fields (EMFs) on human health. Epidemiological studies suggest a positive association between 50/60-Hz power transmission fields and leukemia or lymphoma development. Consequent to the association between EMFs and induction of oxidative stress, concerns relating to development of neurodegenerative diseases, such as Alzheimer disease (AD), have been voiced as the brain consumes the greatest fraction of oxygen and is particularly vulnerable to oxidative stress. Exposure to extremely low frequency (ELF)-EMFs are reported to alter animal behavior and modulate biological variables, including gene expression, regulation of cell survival, promotion of cellular differentiation, and changes in cerebral blood flow in aged AD transgenic mice. Alterations in inflammatory responses have also been reported, but how these actions impact human health remains unknown. We hence evaluated the effects of an electromagnetic wave (magnetic field intensity 1 mT; frequency, 50-Hz) on a well-characterized immortalized neuronal cell model, human SH-SY5Y cells. ELF-EMF exposure elevated the expession of NOS and O2(-), which were countered by compensatory changes in antioxidant catylase (CAT) activity and enzymatic kinetic parameters related to CYP-450 and CAT activity. Actions of ELF-EMFs on cytokine gene expression were additionally evaluated and found rapidly modified. Confronted with co-exposure to H2O2-induced oxidative stress, ELF-EMF proved not as well counteracted and resulted in a decline in CAT

  11. Endogenous progesterone and its cellular binding sites in wheat exposed to drought stress.

    PubMed

    Janeczko, Anna; Oklešťková, Jana; Siwek, Agata; Dziurka, Michał; Pociecha, Ewa; Kocurek, Maciej; Novák, Ondřej

    2013-11-01

    Progesterone is a basic hormone that regulates the metabolism in mammals. The presence of this compound has also been found in certain plants. It is believed that progesterone can regulate growth processes and resistance to stress, however, its precise role in plants remains unknown. The research conducted in this study was aimed at analyzing the content of endogenous progesterone and its cellular binding sites in the leaves of spring wheat exposed to drought. Changes were studied in two cultivars of wheat - a cultivar sensitive to drought (Katoda) and tolerant cultivar (Monsun). Plants had undergone periodic droughts during the seedling stage or in the phase of heading. The occurrence of free progesterone as well as its conjugated forms was observed in wheat studied. The amount of progesterone ranged from 0.2 to 5.8pmolgFW(-1) and was dependent on the cultivar, age of the plants, stage of development and fluctuated as a result of the exposure to drought. Cv. Katoda responded to a water deficit by lowering the amount of progesterone and cv. Monsun by increasing its level. Progesterone in plants grown in limited water conditions occurred primarily in a free form. While in the optimal watering conditions, some of its pool was found in the form of conjugates. In the spring wheat the occurrence of binding sites for progesterone was detected in cell membranes, cytoplasm and nuclei in the range of 10-36fmol/mg of protein. The wheat cultivars tested, Monsun and Katoda, differ in their concentration of cellular binding sites for progesterone. This number varied in the individual fractions during different stages of plant development and due to the effect of drought stress. The number of binding sites for progesterone located in the membrane fraction of seedlings and flag leaves increased significantly under drought in the cv. Katoda (35-46%), but did not change in the cv. Monsun. Whereas the number of cytoplasmic progesterone binding sites increased during the drought in

  12. Neuronal Cellular Responses to Extremely Low Frequency Electromagnetic Field Exposure: Implications Regarding Oxidative Stress and Neurodegeneration

    PubMed Central

    Reale, Marcella; Kamal, Mohammad A.; Patruno, Antonia; Costantini, Erica; D'Angelo, Chiara; Pesce, Miko; Greig, Nigel H.

    2014-01-01

    Neurodegenerative diseases comprise both hereditary and sporadic conditions characterized by an identifying progressive nervous system dysfunction and distinctive neuopathophysiology. The majority are of non-familial etiology and hence environmental factors and lifestyle play key roles in their pathogenesis. The extensive use of and ever increasing worldwide demand for electricity has stimulated societal and scientific interest on the environmental exposure to low frequency electromagnetic fields (EMFs) on human health. Epidemiological studies suggest a positive association between 50/60-Hz power transmission fields and leukemia or lymphoma development. Consequent to the association between EMFs and induction of oxidative stress, concerns relating to development of neurodegenerative diseases, such as Alzheimer disease (AD), have been voiced as the brain consumes the greatest fraction of oxygen and is particularly vulnerable to oxidative stress. Exposure to extremely low frequency (ELF)-EMFs are reported to alter animal behavior and modulate biological variables, including gene expression, regulation of cell survival, promotion of cellular differentiation, and changes in cerebral blood flow in aged AD transgenic mice. Alterations in inflammatory responses have also been reported, but how these actions impact human health remains unknown. We hence evaluated the effects of an electromagnetic wave (magnetic field intensity 1mT; frequency, 50-Hz) on a well-characterized immortalized neuronal cell model, human SH-SY5Y cells. ELF-EMF exposure elevated the expession of NOS and O2−, which were countered by compensatory changes in antioxidant catylase (CAT) activity and enzymatic kinetic parameters related to CYP-450 and CAT activity. Actions of ELF-EMFs on cytokine gene expression were additionally evaluated and found rapidly modified. Confronted with co-exposure to H2O2-induced oxidative stress, ELF-EMF proved not as well counteracted and resulted in a decline in CAT

  13. Endogenous progesterone and its cellular binding sites in wheat exposed to drought stress.

    PubMed

    Janeczko, Anna; Oklešťková, Jana; Siwek, Agata; Dziurka, Michał; Pociecha, Ewa; Kocurek, Maciej; Novák, Ondřej

    2013-11-01

    Progesterone is a basic hormone that regulates the metabolism in mammals. The presence of this compound has also been found in certain plants. It is believed that progesterone can regulate growth processes and resistance to stress, however, its precise role in plants remains unknown. The research conducted in this study was aimed at analyzing the content of endogenous progesterone and its cellular binding sites in the leaves of spring wheat exposed to drought. Changes were studied in two cultivars of wheat - a cultivar sensitive to drought (Katoda) and tolerant cultivar (Monsun). Plants had undergone periodic droughts during the seedling stage or in the phase of heading. The occurrence of free progesterone as well as its conjugated forms was observed in wheat studied. The amount of progesterone ranged from 0.2 to 5.8pmolgFW(-1) and was dependent on the cultivar, age of the plants, stage of development and fluctuated as a result of the exposure to drought. Cv. Katoda responded to a water deficit by lowering the amount of progesterone and cv. Monsun by increasing its level. Progesterone in plants grown in limited water conditions occurred primarily in a free form. While in the optimal watering conditions, some of its pool was found in the form of conjugates. In the spring wheat the occurrence of binding sites for progesterone was detected in cell membranes, cytoplasm and nuclei in the range of 10-36fmol/mg of protein. The wheat cultivars tested, Monsun and Katoda, differ in their concentration of cellular binding sites for progesterone. This number varied in the individual fractions during different stages of plant development and due to the effect of drought stress. The number of binding sites for progesterone located in the membrane fraction of seedlings and flag leaves increased significantly under drought in the cv. Katoda (35-46%), but did not change in the cv. Monsun. Whereas the number of cytoplasmic progesterone binding sites increased during the drought in

  14. Molecular and cellular sex differences at the intersection of stress and arousal.

    PubMed

    Valentino, Rita J; Reyes, Beverly; Van Bockstaele, Elisabeth; Bangasser, Debra

    2012-01-01

    Elucidating the mechanisms underlying sex biases in the prevalence and severity of diseases can advance our understanding of their pathophysiological basis and serve as a guide for developing treatments. A well-established sex difference in psychiatry is the higher incidence of mood and anxiety disorders in females. These disorders share stress as a potential etiological contributor and hyperarousal as a core symptom, suggesting that the distinction between sexes lies at the intersection of stress and arousal systems. This review focuses on the link between the stress axis and the brain norepinephrine arousal system as a key point at which sex differences occur and are translated to differences in the expression of mood disorders. Evidence for a circuit designed to relay emotion-related information via the limbic corticotropin-releasing factor (CRF) system to the locus coeruleus (LC)-norepinephrine arousal system is reviewed. This is followed by recent novel findings of sex differences in CRF receptor signaling and trafficking that would result in an enhanced arousal response and a compromised ability to adapt to chronic stress in females. Finally, we discuss the evidence for sex differences in LC dendritic structure that allow for an increased receipt and processing of limbic information in females compared to males. Together these complementary sets of data suggest that in females, the LC arousal system is poised to process more limbic information and to respond to some of this information in an enhanced manner compared to males. The clinical and therapeutic considerations arising from this perspective are discussed. This article is part of a Special Issue entitled 'Anxiety and Depression'. PMID:21712048

  15. Transglutaminase type 2-dependent selective recruitment of proteins into exosomes under stressful cellular conditions.

    PubMed

    Diaz-Hidalgo, Laura; Altuntas, Sara; Rossin, Federica; D'Eletto, Manuela; Marsella, Claudia; Farrace, Maria Grazia; Falasca, Laura; Antonioli, Manuela; Fimia, Gian Maria; Piacentini, Mauro

    2016-08-01

    Numerous studies are revealing a role of exosomes in intercellular communication, and growing evidence indicates an important function for these vesicles in the progression and pathogenesis of cancer and neurodegenerative diseases. However, the biogenesis process of exosomes is still unclear. Tissue transglutaminase (TG2) is a multifunctional enzyme with different subcellular localizations. Particularly, under stressful conditions, the enzyme has been also detected in the extracellular matrix, but the mechanism(s) by which TG2 is released outside the cells requires further investigation. Therefore, the goal of the present study was to determine whether exosomes might be a vehicle for TG2 to reach the extracellular space, and whether TG2 could be involved in exosomes biogenesis. To address this issue, we isolated and characterized exosomes derived from cells either expressing or not TG2, under stressful conditions (i.e. proteasome impairment or expressing a mutated form of huntingtin (mHtt) containing 84 polyglutamine repeats). Our results show that TG2 is present in the exosomes only upon proteasome blockade, a condition in which TG2 interacts with TSG101 and ALIX, two key proteins involved in exosome biogenesis. Interestingly, we found that TG2 favours the assembly of a protein complex including mHtt, ALIX, TSG101 and BAG3, a co-chaperone involved in the clearance of mHtt. The formation of this complex is paralleled by the selective recruitment of mHtt and BAG3 in the exosomes derived from TG2 proficient cells only. Overall, our data indicate that TG2 is an important player in the biogenesis of exosomes controlling the selectivity of their cargo under stressful cellular conditions. In addition, these vesicles represent the way by which cells can release TG2 into the extracellular space under proteostasis impairment.

  16. Transglutaminase type 2-dependent selective recruitment of proteins into exosomes under stressful cellular conditions.

    PubMed

    Diaz-Hidalgo, Laura; Altuntas, Sara; Rossin, Federica; D'Eletto, Manuela; Marsella, Claudia; Farrace, Maria Grazia; Falasca, Laura; Antonioli, Manuela; Fimia, Gian Maria; Piacentini, Mauro

    2016-08-01

    Numerous studies are revealing a role of exosomes in intercellular communication, and growing evidence indicates an important function for these vesicles in the progression and pathogenesis of cancer and neurodegenerative diseases. However, the biogenesis process of exosomes is still unclear. Tissue transglutaminase (TG2) is a multifunctional enzyme with different subcellular localizations. Particularly, under stressful conditions, the enzyme has been also detected in the extracellular matrix, but the mechanism(s) by which TG2 is released outside the cells requires further investigation. Therefore, the goal of the present study was to determine whether exosomes might be a vehicle for TG2 to reach the extracellular space, and whether TG2 could be involved in exosomes biogenesis. To address this issue, we isolated and characterized exosomes derived from cells either expressing or not TG2, under stressful conditions (i.e. proteasome impairment or expressing a mutated form of huntingtin (mHtt) containing 84 polyglutamine repeats). Our results show that TG2 is present in the exosomes only upon proteasome blockade, a condition in which TG2 interacts with TSG101 and ALIX, two key proteins involved in exosome biogenesis. Interestingly, we found that TG2 favours the assembly of a protein complex including mHtt, ALIX, TSG101 and BAG3, a co-chaperone involved in the clearance of mHtt. The formation of this complex is paralleled by the selective recruitment of mHtt and BAG3 in the exosomes derived from TG2 proficient cells only. Overall, our data indicate that TG2 is an important player in the biogenesis of exosomes controlling the selectivity of their cargo under stressful cellular conditions. In addition, these vesicles represent the way by which cells can release TG2 into the extracellular space under proteostasis impairment. PMID:27169926

  17. Innate and adaptive cellular phenotypes contributing to pulmonary disease in mice after respiratory syncytial virus immunization and infection.

    PubMed

    Lee, Young-Tae; Kim, Ki-Hye; Hwang, Hye Suk; Lee, Youri; Kwon, Young-Man; Ko, Eun-Ju; Jung, Yu-Jin; Lee, Yu-Na; Kim, Min-Chul; Kang, Sang-Moo

    2015-11-01

    Respiratory syncytial virus (RSV) is the major leading cause of infantile viral bronchiolitis. However, cellular phenotypes contributing to the RSV protection and vaccine-enhanced disease remain largely unknown. Upon RSV challenge, we analyzed phenotypes and cellularity in the lung of mice that were naïve, immunized with formalin inactivated RSV (FI-RSV), or re-infected with RSV. In comparison with naïve and live RSV re-infected mice, the high levels of eosinophils, neutrophils, plasmacytoid and CD11b(+) dendritic cells, and IL-4(+) CD4(+) T cells were found to be contributing to pulmonary inflammation in FI-RSV immune mice despite lung viral clearance. Alveolar macrophages appeared to play differential roles in protection and inflammation upon RSV infection of different RSV immune mice. These results suggest that multiple innate and adaptive immune components differentially contribute to RSV disease and inflammation.

  18. Aortic pulse pressure homeostasis emerges from physiological adaptation of systemic arteries to local mechanical stresses.

    PubMed

    Nguyen, Phuc H; Tuzun, Egemen; Quick, Christopher M

    2016-09-01

    Aortic pulse pressure arises from the interaction of the heart, the systemic arterial system, and peripheral microcirculations. The complex interaction between hemodynamics and arterial remodeling precludes the ability to experimentally ascribe changes in aortic pulse pressure to particular adaptive responses. Therefore, the purpose of the present work was to use a human systemic arterial system model to test the hypothesis that pulse pressure homeostasis can emerge from physiological adaptation of systemic arteries to local mechanical stresses. First, we assumed a systemic arterial system that had a realistic topology consisting of 121 arterial segments. Then the relationships of pulsatile blood pressures and flows in arterial segments were characterized by standard pulse transmission equations. Finally, each arterial segment was assumed to remodel to local stresses following three simple rules: 1) increases in endothelial shear stress increases radius, 2) increases in wall circumferential stress increases wall thickness, and 3) increases in wall circumferential stress decreases wall stiffness. Simulation of adaptation by iteratively calculating pulsatile hemodynamics, mechanical stresses, and vascular remodeling led to a general behavior in response to mechanical perturbations: initial increases in pulse pressure led to increased arterial compliances, and decreases in pulse pressure led to decreased compliances. Consequently, vascular adaptation returned pulse pressures back toward baseline conditions. This behavior manifested when modeling physiological adaptive responses to changes in cardiac output, changes in peripheral resistances, and changes in local arterial radii. The present work, thus, revealed that pulse pressure homeostasis emerges from physiological adaptation of systemic arteries to local mechanical stresses.

  19. Chronic stress and brain plasticity: mechanisms underlying adaptive and maladaptive changes and implications for stress-related CNS disorders

    PubMed Central

    Radley, Jason; Morilak, David; Viau, Victor; Campeau, Serge

    2015-01-01

    Stress responses entail neuroendocrine, autonomic, and behavioral changes to promote effective coping with real or perceived threats to one’s safety. While these responses are critical for the survival of the individual, adverse effects of repeated exposure to stress are widely known to have deleterious effects on health. Thus, a considerable effort in the search for treatments to stress-related CNS disorders necessitates unraveling the brain mechanisms responsible for adaptation under acute conditions and their perturbations following chronic stress exposure. This paper is based upon a symposium from the 2014 International Behavioral Neuroscience Meeting, summarizing some recent advances in understanding the effects of stress on adaptive and maladaptive responses subserved by limbic forebrain networks. An important theme highlighted in this review is that the same networks mediating neuroendocrine, autonomic, and behavioral processes during adaptive coping also comprise targets of the effects of repeated stress exposure in the development of maladaptive states. Where possible, reference is made to the similarity of neurobiological substrates and effects observed following repeated exposure to stress in laboratory animals and the clinical features of stress-related disorders in humans. PMID:26116544

  20. From Cellular Attractor Selection to Adaptive Signal Control for Traffic Networks

    NASA Astrophysics Data System (ADS)

    Tian, Daxin; Zhou, Jianshan; Sheng, Zhengguo; Wang, Yunpeng; Ma, Jianming

    2016-03-01

    The management of varying traffic flows essentially depends on signal controls at intersections. However, design an optimal control that considers the dynamic nature of a traffic network and coordinates all intersections simultaneously in a centralized manner is computationally challenging. Inspired by the stable gene expressions of Escherichia coli in response to environmental changes, we explore the robustness and adaptability performance of signalized intersections by incorporating a biological mechanism in their control policies, specifically, the evolution of each intersection is induced by the dynamics governing an adaptive attractor selection in cells. We employ a mathematical model to capture such biological attractor selection and derive a generic, adaptive and distributed control algorithm which is capable of dynamically adapting signal operations for the entire dynamical traffic network. We show that the proposed scheme based on attractor selection can not only promote the balance of traffic loads on each link of the network but also allows the global network to accommodate dynamical traffic demands. Our work demonstrates the potential of bio-inspired intelligence emerging from cells and provides a deep understanding of adaptive attractor selection-based control formation that is useful to support the designs of adaptive optimization and control in other domains.

  1. From Cellular Attractor Selection to Adaptive Signal Control for Traffic Networks

    PubMed Central

    Tian, Daxin; Zhou, Jianshan; Sheng, Zhengguo; Wang, Yunpeng; Ma, Jianming

    2016-01-01

    The management of varying traffic flows essentially depends on signal controls at intersections. However, design an optimal control that considers the dynamic nature of a traffic network and coordinates all intersections simultaneously in a centralized manner is computationally challenging. Inspired by the stable gene expressions of Escherichia coli in response to environmental changes, we explore the robustness and adaptability performance of signalized intersections by incorporating a biological mechanism in their control policies, specifically, the evolution of each intersection is induced by the dynamics governing an adaptive attractor selection in cells. We employ a mathematical model to capture such biological attractor selection and derive a generic, adaptive and distributed control algorithm which is capable of dynamically adapting signal operations for the entire dynamical traffic network. We show that the proposed scheme based on attractor selection can not only promote the balance of traffic loads on each link of the network but also allows the global network to accommodate dynamical traffic demands. Our work demonstrates the potential of bio-inspired intelligence emerging from cells and provides a deep understanding of adaptive attractor selection-based control formation that is useful to support the designs of adaptive optimization and control in other domains. PMID:26972968

  2. Tissue adaptations to gravitational stress - Newborn versus adult giraffes

    NASA Technical Reports Server (NTRS)

    Hargens, Alan R; Gershuni, David H.; Danzig, Larry A.; Millard, Ronald W.; Pettersson, Knut

    1988-01-01

    Preliminary results on developmental alterations in load-bearing tissues of newborn and adult giraffes are presented. Attention is focused on vascular wall thickness in relation to local blood pressure, and on meniscal adaptations to increased load bearing in the developing giraffe. It is believed that the developing giraffe provides an excellent model for investigations of adaptive mechanisms of increased weight bearing.

  3. Adaptation to hot climate and strategies to alleviate heat stress in livestock production.

    PubMed

    Renaudeau, D; Collin, A; Yahav, S; de Basilio, V; Gourdine, J L; Collier, R J

    2012-05-01

    Despite many challenges faced by animal producers, including environmental problems, diseases, economic pressure, and feed availability, it is still predicted that animal production in developing countries will continue to sustain the future growth of the world's meat production. In these areas, livestock performance is generally lower than those obtained in Western Europe and North America. Although many factors can be involved, climatic factors are among the first and crucial limiting factors of the development of animal production in warm regions. In addition, global warming will further accentuate heat stress-related problems. The objective of this paper was to review the effective strategies to alleviate heat stress in the context of tropical livestock production systems. These strategies can be classified into three groups: those increasing feed intake or decreasing metabolic heat production, those enhancing heat-loss capacities, and those involving genetic selection for heat tolerance. Under heat stress, improved production should be possible through modifications of diet composition that either promotes a higher intake or compensates the low feed consumption. In addition, altering feeding management such as a change in feeding time and/or frequency, are efficient tools to avoid excessive heat load and improve survival rate, especially in poultry. Methods to enhance heat exchange between the environment and the animal and those changing the environment to prevent or limit heat stress can be used to improve performance under hot climatic conditions. Although differences in thermal tolerance exist between livestock species (ruminants > monogastrics), there are also large differences between breeds of a species and within each breed. Consequently, the opportunity may exist to improve thermal tolerance of the animals using genetic tools. However, further research is required to quantify the genetic antagonism between adaptation and production traits to evaluate

  4. Genomic instability and cellular stress in organ biopsies and peripheral blood lymphocytes from patients with colorectal cancer and predisposing pathologies

    PubMed Central

    Lombardi, Sara; Fuoco, Ilenia; di Fluri, Giorgia; Costa, Francesco; Ricchiuti, Angelo; Biondi, Graziano; Nardini, Vincenzo; Scarpato, Roberto

    2015-01-01

    Inflammatory bowel disease (IBD) and polyps, are common colorectal pathologies in western society and are risk factors for development of colorectal cancer (CRC). Genomic instability is a cancer hallmark and is connected to changes in chromosomal structure, often caused by double strand break formation (DSB), and aneuploidy. Cellular stress, may contribute to genomic instability. In colorectal biopsies and peripheral blood lymphocytes of patients with IBD, polyps and CRC, we evaluated 1) genomic instability using the γH2AX assay as marker of DSB and micronuclei in mononuclear lymphocytes kept under cytodieresis inhibition, and 2) cellular stress through expression and cellular localization of glutathione-S-transferase omega 1 (GSTO1). Colon biopsies showed γH2AX increase starting from polyps, while lymphocytes already from IBD. Micronuclei frequency began to rise in lymphocytes of subjects with polyps, suggesting a systemic genomic instability condition. Colorectal tissues lost GSTO1 expression but increased nuclear localization with pathology progression. Lymphocytes did not change GSTO1 expression and localization until CRC formation, where enzyme expression was increased. We propose that the growing genomic instability found in our patients is connected with the alteration of cellular environment. Evaluation of genomic damage and cellular stress in colorectal pathologies may facilitate prevention and management of CRC. PMID:26046795

  5. Stress Recovery Based h-Adaptive Finite Element Simulation of Sheet Forming Operations

    NASA Astrophysics Data System (ADS)

    Ahmed, Mohd.; Singh, Devinder

    2016-07-01

    In the present work, stress recovery techniques based adaptive finite element analysis of sheet forming operations is presented. An adaptive two dimensional finite element computer code allows the analysis of sheet forming operations and results in distribution of adaptively refined mesh, effective strain, and punch load, stress and strain rate tensor in the domain that has been developed. The recovery scheme for determining more accurate stress field is based on the least squares fitting of the computed stresses in an element patch surrounding and including a particular node. The solution error is estimated on the basis of an energy norm. It is shown with the help of an illustrative example of axi-symmetric stretching of a metal blank by a hemispherical punch that the adaptive analysis may be usefully employed to predict accurately deformation process, the seats of large deformations and locations of possible instability.

  6. Attenuation of replication stress-induced premature cellular senescence to assess anti-aging modalities.

    PubMed

    Zhao, Hong; Darzynkiewicz, Zbigniew

    2014-01-01

    Described is an in vitro model of premature senescence in pulmonary adenocarcinoma A549 cells induced by persistent DNA replication stress in response to treatment with the DNA damaging drug mitoxantrone (Mxt). The degree of cellular senescence, based on characteristic changes in cell morphology, is measured by laser scanning cytometry. Specifically, the flattening of cells grown on slides (considered the hallmark of cellular senescence) is measured as the decline in local intensity of DNA-associated DAPI fluorescence (represented by maximal pixels). This change is paralleled by an increase in nuclear area. Thus, the ratio of mean intensity of maximal pixels to nuclear area provides a very sensitive morphometric biomarker for the degree of senescence. This analysis is combined with immunocytochemical detection of senescence markers, such as overexpression of cyclin kinase inhibitors (e.g., p21(WAF1) ) and phosphorylation of ribosomal protein S6 (rpS6), a key marker associated with aging/senescence that is detected using a phospho-specific antibody. These biomarker indices are presented in quantitative terms defined as a senescence index (SI), which is the fraction of the marker in test cultures relative to the same marker in exponentially growing control cultures. This system can be used to evaluate the anti-aging potential of test agents by assessing attenuation of maximal senescence. As an example, the inclusion of berberine, a natural alkaloid with reported anti-aging properties and a long history of use in traditional Chinese medicine, is shown to markedly attenuate the Mxt-induced SI and phosphorylation of rpS6. The multivariate analysis of senescence markers by laser scanning cytometry offers a promising tool to explore the potential anti-aging properties of a variety agents.

  7. Mitochondrial oxidative stress caused by Sod2 deficiency promotes cellular senescence and aging phenotypes in the skin.

    PubMed

    Velarde, Michael C; Flynn, James M; Day, Nicholas U; Melov, Simon; Campisi, Judith

    2012-01-01

    Cellular senescence arrests the proliferation of mammalian cells at risk for neoplastic transformation, and is also associated with aging. However, the factors that cause cellular senescence during aging are unclear. Excessive reactive oxygen species (ROS) have been shown to cause cellular senescence in culture, and accumulated molecular damage due to mitochondrial ROS has long been thought to drive aging phenotypesin vivo. Here, we test the hypothesis that mitochondrial oxidative stress can promote cellular senescence in vivo and contribute to aging phenotypes in vivo, specifically in the skin. We show that the number of senescent cells, as well as impaired mitochondrial (complex II) activity increase in naturally aged mouse skin. Using a mouse model of genetic Sod2 deficiency, we show that failure to express this important mitochondrial anti-oxidant enzyme also impairs mitochondrial complex II activity, causes nuclear DNA damage, and induces cellular senescence but not apoptosis in the epidermis. Sod2 deficiency also reduced the number of cells and thickness of the epidermis, while increasing terminal differentiation. Our results support the idea that mitochondrial oxidative stress and cellular senescence contribute to aging skin phenotypes in vivo.

  8. Physiology-driven adaptive virtual reality stimulation for prevention and treatment of stress related disorders.

    PubMed

    Cosić, Kresimir; Popović, Sinisa; Kukolja, Davor; Horvat, Marko; Dropuljić, Branimir

    2010-02-01

    The significant proportion of severe psychological problems related to intensive stress in recent large peacekeeping operations underscores the importance of effective methods for strengthening the prevention and treatment of stress-related disorders. Adaptive control of virtual reality (VR) stimulation presented in this work, based on estimation of the person's emotional state from physiological signals, may enhance existing stress inoculation training (SIT). Physiology-driven adaptive VR stimulation can tailor the progress of stressful stimuli delivery to the physiological characteristics of each individual, which is indicated for improvement in stress resistance. Following an overview of physiology-driven adaptive VR stimulation, its major functional subsystems are described in more detail. A specific algorithm of stimuli delivery applicable to SIT is outlined. PMID:20528296

  9. ROS-triggered phosphorylation of complex II by Fgr kinase regulates cellular adaptation to fuel use.

    PubMed

    Acín-Pérez, Rebeca; Carrascoso, Isabel; Baixauli, Francesc; Roche-Molina, Marta; Latorre-Pellicer, Ana; Fernández-Silva, Patricio; Mittelbrunn, María; Sanchez-Madrid, Francisco; Pérez-Martos, Acisclo; Lowell, Clifford A; Manfredi, Giovanni; Enríquez, José Antonio

    2014-06-01

    Electron flux in the mitochondrial electron transport chain is determined by the superassembly of mitochondrial respiratory complexes. Different superassemblies are dedicated to receive electrons derived from NADH or FADH2, allowing cells to adapt to the particular NADH/FADH2 ratio generated from available fuel sources. When several fuels are available, cells adapt to the fuel best suited to their type or functional status (e.g., quiescent versus proliferative). We show that an appropriate proportion of superassemblies can be achieved by increasing CII activity through phosphorylation of the complex II catalytic subunit FpSDH. This phosphorylation is mediated by the tyrosine-kinase Fgr, which is activated by hydrogen peroxide. Ablation of Fgr or mutation of the FpSDH target tyrosine abolishes the capacity of mitochondria to adjust metabolism upon nutrient restriction, hypoxia/reoxygenation, and T cell activation, demonstrating the physiological relevance of this adaptive response.

  10. Ebselen alters cellular oxidative status and induces endoplasmic reticulum stress in rat hippocampal astrocytes.

    PubMed

    Santofimia-Castaño, Patricia; Izquierdo-Alvarez, Alicia; de la Casa-Resino, Irene; Martinez-Ruiz, Antonio; Perez-Lopez, Marcos; Portilla, Juan C; Salido, Gines M; Gonzalez, Antonio

    2016-05-16

    Ebselen (2-phenyl-1,2-benzisoselenazol-3(2H)-one) is an organoselenium radical scavenger compound, which has strong antioxidant and anti-inflammatory effects. Because of its properties, it may be protective against injury to the nervous tissue. However, evidence suggests that its glutathione peroxidase activity could underlie certain deleterious actions on cell physiology. In this study we have analyzed the effect of ebselen on rat hippocampal astrocytes in culture. Cellular oxidative status, cytosolic free-Ca(2+) concentration ([Ca(2+)]c), setting of endoplasmic reticulum stress and phosphorylation of glial fibrillary acidic protein and major mitogen-activated protein kinases were analyzed. Our results show that ebselen induced a concentration-dependent increase in the generation of reactive oxygen species in the mitochondria. We observed a concentration-dependent increase in global cysteine oxidation and in the level of malondialdehyde in the presence of ebselen. We also detected increases in catalase, glutathione S-transferase and glutathione reductase activity. Ebselen also evoked a concentration-dependent increase in [Ca(2+)]c. Moreover, we observed a concentration-dependent increase in the phosphorylation of the unfolded protein response markers, eukaryotic translation initiation factor 2α and X-box binding protein 1. Finally, ebselen also induced an increase in the phosphorylation of glial fibrillary acidic protein, SAPK/JNK, p38 MAPK and p44/42 MAPK. Our results provide strong evidence that implicate endoplasmic reticulum stress and activation of crucial mitogen-activated protein kinases in an oxidative damage of cells in the presence of ebselen. The compound thus might exert deleterious actions on astrocyte physiology that could compromise their function. PMID:27282967

  11. Propofol ameliorates doxorubicin-induced oxidative stress and cellular apoptosis in rat cardiomyocytes

    SciTech Connect

    Lai, H.C.; Yeh, Y.C.; Wang, L.C.; Ting, C.T.; Lee, W.L.; Lee, H.W.; Wang, K.Y.; Wu, A.; Su, C.S.; Liu, T.J.

    2011-12-15

    Background: Propofol is an anesthetic with pluripotent cytoprotective properties against various extrinsic insults. This study was designed to examine whether this agent could also ameliorate the infamous toxicity of doxorubicin, a widely-used chemotherapeutic agent against a variety of cancer diseases, on myocardial cells. Methods: Cultured neonatal rat cardiomyocytes were administrated with vehicle, doxorubicin (1 {mu}M), propofol (1 {mu}M), or propofol plus doxorubicin (given 1 h post propofol). After 24 h, cells were harvested and specific analyses regarding oxidative/nitrative stress and cellular apoptosis were conducted. Results: Trypan blue exclusion and MTT assays disclosed that viability of cardiomyocytes was significantly reduced by doxorubicin. Contents of reactive oxygen and nitrogen species were increased and antioxidant enzymes SOD1, SOD2, and GPx were decreased in these doxorubicin-treated cells. Mitochondrial dehydrogenase activity and membrane potential were also depressed, along with activation of key effectors downstream of mitochondrion-dependent apoptotic signaling. Besides, abundance of p53 was elevated and cleavage of PKC-{delta} was induced in these myocardial cells. In contrast, all of the above oxidative, nitrative and pro-apoptotic events could be suppressed by propofol pretreatment. Conclusions: Propofol could extensively counteract oxidative/nitrative and multiple apoptotic effects of doxorubicin in the heart; hence, this anesthetic may serve as an adjuvant agent to assuage the untoward cardiac effects of doxorubicin in clinical application. -- Highlights: Black-Right-Pointing-Pointer We evaluate how propofol prevents doxorubicin-induced toxicity in cardiomyocytes. Black-Right-Pointing-Pointer Propofol reduces doxorubicin-imposed nitrative and oxidative stress. Black-Right-Pointing-Pointer Propofol suppresses mitochondrion-, p53- and PKC-related apoptotic signaling. Black-Right-Pointing-Pointer Propofol ameliorates apoptosis and

  12. Melatonin alleviates cadmium-induced cellular stress and germ cell apoptosis in testes.

    PubMed

    Ji, Yan-Li; Wang, Hua; Meng, Can; Zhao, Xian-Feng; Zhang, Cheng; Zhang, Ying; Zhao, Mei; Chen, Yuan-Hua; Meng, Xiu-Hong; Xu, De-Xiang

    2012-01-01

    Increasing evidence demonstrates that melatonin has an anti-apoptotic effect in somatic cells. However, whether melatonin can protect against germ cell apoptosis remains obscure. Cadmium (Cd) is a testicular toxicant and induces germ cell apoptosis. In this study, we investigated the effects of melatonin on Cd-evoked germ cell apoptosis in testes. Male ICR mice were intraperitoneally (i.p.) injected with melatonin (5 mg/kg) every 8 hr, beginning at 8 hr before CdCl(2) (2.0 mg/kg, i.p.). As expected, acute Cd exposure resulted in germ cell apoptosis in testes, as determined by terminal dUTP nick-end labeling (TUNEL) staining. Melatonin significantly alleviated Cd-induced testicular germ cell apoptosis. An additional experiment showed that spliced form of XBP-1, the target of the IRE-1 pathway, was significantly increased in testes of mice injected with CdCl(2). GRP78, an endoplasmic reticulum (ER) chaperone, and CHOP, a downstream target of the PERK pathway, were upregulated in testes of Cd-treated mice. In addition, acute Cd exposure significantly increased testicular eIF2α and JNK phosphorylation, indicating that the unfolded protein response (UPR) pathway was activated by CdCl(2). Interestingly, melatonin almost completely inhibited Cd-induced ER stress and the UPR in testes. In addition, melatonin obviously attenuated Cd-induced heme oxygenase (HO)-1 expression and protein nitration in testes. Taken together, these results suggest that melatonin alleviates Cd-induced cellular stress and germ cell apoptosis in testes. Melatonin may be useful as pharmacological agents to protect against Cd-induced testicular toxicity. PMID:21793897

  13. Soldiers Working Internationally: Impacts of Masculinity, Military Culture, and Operational Stress on Cross-Cultural Adaptation

    ERIC Educational Resources Information Center

    Keats, Patrice A.

    2010-01-01

    This paper explores the ramifications of masculinized military culture and operational stress on cross-cultural adaptation. The author examines how characteristics of military culture may obstruct effective cross-cultural adaptation by promoting a hypermasculinity that tends to oppose effective management of trauma, and thereby suppresses skills…

  14. Adaptive Skills, Behavior Problems, and Parenting Stress in Mothers of Boys with Fragile X Syndrome

    ERIC Educational Resources Information Center

    Sarimski, Klaus

    2010-01-01

    The relationship of temperament, atypical behaviors, and adaptive behavior of young boys with Fragile X syndrome on mothers' parenting stress was analyzed. Twenty-six boys with Fragile X syndrome (30-88 months of age) participated. The overall development of the participants was significantly delayed with a specific profile of adaptive behaviors…

  15. A hypothesis for vulnerable plaque rupture due to stress-induced debonding around cellular microcalcifications in thin fibrous caps

    PubMed Central

    Vengrenyuk, Yuliya; Carlier, Stéphane; Xanthos, Savvas; Cardoso, Luis; Ganatos, Peter; Virmani, Renu; Einav, Shmuel; Gilchrist, Lane; Weinbaum, Sheldon

    2006-01-01

    In this article, we advance a hypothesis for the rupture of thin fibrous cap atheroma, namely that minute (10-μm-diameter) cellular-level microcalcifications in the cap, which heretofore have gone undetected because they lie below the visibility of current in vivo imaging techniques, cause local stress concentrations that lead to interfacial debonding. New theoretical solutions are presented for the local stress concentration around these minute spherical inclusions that predict a nearly 2-fold increase in interfacial stress that is relatively insensitive to the location of the hypothesized microinclusions in the cap. To experimentally confirm the existence of the hypothesized cellular-level microcalcifications, we examined autopsy specimens of coronary atheromatous lesions using in vitro imaging techniques whose resolution far exceeds conventional magnetic resonance imaging, intravascular ultrasound, and optical coherence tomography approaches. These high-resolution imaging modalities, which include confocal microscopy with calcium-specific staining and micro-computed tomography imaging, provide images of cellular-level calcifications within the cap proper. As anticipated, the minute inclusions in the cap are very rare compared with the numerous calcified macrophages observed in the necrotic core. Our mathematical model predicts that inclusions located in an area of high circumferential stress (>300 kPa) in the cap can intensify this stress to nearly 600 kPa when the cap thickness is <65 μm. The most likely candidates for the inclusions are either calcified macrophages or smooth muscle cells that have undergone apoptosis. PMID:17003118

  16. Separating Fluid Shear Stress from Acceleration during Vibrations in Vitro: Identification of Mechanical Signals Modulating the Cellular Response

    PubMed Central

    Uzer, Gunes; Manske, Sarah L; Chan, M Ete; Chiang, Fu-Pen; Rubin, Clinton T; Frame, Mary D; Judex, Stefan

    2012-01-01

    The identification of the physical mechanism(s) by which cells can sense vibrations requires the determination of the cellular mechanical environment. Here, we quantified vibration-induced fluid shear stresses in vitro and tested whether this system allows for the separation of two mechanical parameters previously proposed to drive the cellular response to vibration – fluid shear and peak accelerations. When peak accelerations of the oscillatory horizontal motions were set at 1g and 60Hz, peak fluid shear stresses acting on the cell layer reached 0.5Pa. A 3.5-fold increase in fluid viscosity increased peak fluid shear stresses 2.6-fold while doubling fluid volume in the well caused a 2-fold decrease in fluid shear. Fluid shear was positively related to peak acceleration magnitude and inversely related to vibration frequency. These data demonstrated that peak shear stress can be effectively separated from peak acceleration by controlling specific levels of vibration frequency, acceleration, and/or fluid viscosity. As an example for exploiting these relations, we tested the relevance of shear stress in promoting COX-2 expression in osteoblast like cells. Across different vibration frequencies and fluid viscosities, neither the level of generated fluid shear nor the frequency of the signal were able to consistently account for differences in the relative increase in COX-2 expression between groups, emphasizing that the eventual identification of the physical mechanism(s) requires a detailed quantification of the cellular mechanical environment. PMID:23074384

  17. Contribution of glutathione to the control of cellular redox homeostasis under toxic metal and metalloid stress.

    PubMed

    Hernández, Luis E; Sobrino-Plata, Juan; Montero-Palmero, M Belén; Carrasco-Gil, Sandra; Flores-Cáceres, M Laura; Ortega-Villasante, Cristina; Escobar, Carolina

    2015-05-01

    The accumulation of toxic metals and metalloids, such as cadmium (Cd), mercury (Hg), or arsenic (As), as a consequence of various anthropogenic activities, poses a serious threat to the environment and human health. The ability of plants to take up mineral nutrients from the soil can be exploited to develop phytoremediation technologies able to alleviate the negative impact of toxic elements in terrestrial ecosystems. However, we must select plant species or populations capable of tolerating exposure to hazardous elements. The tolerance of plant cells to toxic elements is highly dependent on glutathione (GSH) metabolism. GSH is a biothiol tripeptide that plays a fundamental dual role: first, as an antioxidant to mitigate the redox imbalance caused by toxic metal(loid) accumulation, and second as a precursor of phytochelatins (PCs), ligand peptides that limit the free ion cellular concentration of those pollutants. The sulphur assimilation pathway, synthesis of GSH, and production of PCs are tightly regulated in order to alleviate the phytotoxicity of different hazardous elements, which might induce specific stress signatures. This review provides an update on mechanisms of tolerance that depend on biothiols in plant cells exposed to toxic elements, with a particular emphasis on the Hg-triggered responses, and considering the contribution of hormones to their regulation.

  18. Contribution of glutathione to the control of cellular redox homeostasis under toxic metal and metalloid stress.

    PubMed

    Hernández, Luis E; Sobrino-Plata, Juan; Montero-Palmero, M Belén; Carrasco-Gil, Sandra; Flores-Cáceres, M Laura; Ortega-Villasante, Cristina; Escobar, Carolina

    2015-05-01

    The accumulation of toxic metals and metalloids, such as cadmium (Cd), mercury (Hg), or arsenic (As), as a consequence of various anthropogenic activities, poses a serious threat to the environment and human health. The ability of plants to take up mineral nutrients from the soil can be exploited to develop phytoremediation technologies able to alleviate the negative impact of toxic elements in terrestrial ecosystems. However, we must select plant species or populations capable of tolerating exposure to hazardous elements. The tolerance of plant cells to toxic elements is highly dependent on glutathione (GSH) metabolism. GSH is a biothiol tripeptide that plays a fundamental dual role: first, as an antioxidant to mitigate the redox imbalance caused by toxic metal(loid) accumulation, and second as a precursor of phytochelatins (PCs), ligand peptides that limit the free ion cellular concentration of those pollutants. The sulphur assimilation pathway, synthesis of GSH, and production of PCs are tightly regulated in order to alleviate the phytotoxicity of different hazardous elements, which might induce specific stress signatures. This review provides an update on mechanisms of tolerance that depend on biothiols in plant cells exposed to toxic elements, with a particular emphasis on the Hg-triggered responses, and considering the contribution of hormones to their regulation. PMID:25750419

  19. Substrate recognition and function of the R2TP complex in response to cellular stress

    PubMed Central

    von Morgen, Patrick; Hořejší, Zuzana; Macurek, Libor

    2015-01-01

    The R2TP complex is a HSP90 co-chaperone, which consists of four subunits: PIH1D1, RPAP3, RUVBL1, and RUVBL2. It is involved in the assembly of large protein or protein–RNA complexes such as RNA polymerase, small nucleolar ribonucleoproteins (snoRNPs), phosphatidylinositol 3 kinase-related kinases (PIKKs), and their complexes. While RPAP3 has a HSP90 binding domain and the RUVBLs comprise ATPase activities important for R2TP functions, PIH1D1 contains a PIH-N domain that specifically recognizes phosphorylated substrates of the R2TP complex. In this review we provide an overview of the current knowledge of the R2TP complex with the focus on the recently identified structural and mechanistic features of the R2TP complex functions. We also discuss the way R2TP regulates cellular response to stress caused by low levels of nutrients or by DNA damage and its possible exploitation as a target for anti-cancer therapy. PMID:25767478

  20. The “Goldilocks Zone” from a redox perspective—Adaptive vs. deleterious responses to oxidative stress in striated muscle

    PubMed Central

    Alleman, Rick J.; Katunga, Lalage A.; Nelson, Margaret A. M.; Brown, David A.; Anderson, Ethan J.

    2014-01-01

    Consequences of oxidative stress may be beneficial or detrimental in physiological systems. An organ system's position on the “hormetic curve” is governed by the source and temporality of reactive oxygen species (ROS) production, proximity of ROS to moieties most susceptible to damage, and the capacity of the endogenous cellular ROS scavenging mechanisms. Most importantly, the resilience of the tissue (the capacity to recover from damage) is a decisive factor, and this is reflected in the disparate response to ROS in cardiac and skeletal muscle. In myocytes, a high oxidative capacity invariably results in a significant ROS burden which in homeostasis, is rapidly neutralized by the robust antioxidant network. The up-regulation of key pathways in the antioxidant network is a central component of the hormetic response to ROS. Despite such adaptations, persistent oxidative stress over an extended time-frame (e.g., months to years) inevitably leads to cumulative damages, maladaptation and ultimately the pathogenesis of chronic diseases. Indeed, persistent oxidative stress in heart and skeletal muscle has been repeatedly demonstrated to have causal roles in the etiology of heart disease and insulin resistance, respectively. Deciphering the mechanisms that underlie the divergence between adaptive and maladaptive responses to oxidative stress remains an active area of research for basic scientists and clinicians alike, as this would undoubtedly lead to novel therapeutic approaches. Here, we provide an overview of major types of ROS in striated muscle and the divergent adaptations that occur in response to them. Emphasis is placed on highlighting newly uncovered areas of research on this topic, with particular focus on the mitochondria, and the diverging roles that ROS play in muscle health (e.g., exercise or preconditioning) and disease (e.g., cardiomyopathy, ischemia, metabolic syndrome). PMID:25278906

  1. Dream Content and Adaptation to a Stressful Situation

    ERIC Educational Resources Information Center

    De Koninck, Joseph M.; Koulack, David

    1975-01-01

    The present study considered whether it is better to dream about a stressful presleep experience and have anxious dreams, or is it better to dream about something else and have pleasant dreams. (Author/RK)

  2. Plant Adaptation to Multiple Stresses during Submergence and Following Desubmergence

    PubMed Central

    Tamang, Bishal Gole; Fukao, Takeshi

    2015-01-01

    Plants require water for growth and development, but excessive water negatively affects their productivity and viability. Flash floods occasionally result in complete submergence of plants in agricultural and natural ecosystems. When immersed in water, plants encounter multiple stresses including low oxygen, low light, nutrient deficiency, and high risk of infection. As floodwaters subside, submerged plants are abruptly exposed to higher oxygen concentration and greater light intensity, which can induce post-submergence injury caused by oxidative stress, high light, and dehydration. Recent studies have emphasized the significance of multiple stress tolerance in the survival of submergence and prompt recovery following desubmergence. A mechanistic understanding of acclimation responses to submergence at molecular and physiological levels can contribute to the deciphering of the regulatory networks governing tolerance to other environmental stresses that occur simultaneously or sequentially in the natural progress of a flood event. PMID:26694376

  3. Dr Jekyll and Mr Hyde: role of aneuploidy in cellular adaptation and cancer.

    PubMed

    Pavelka, Norman; Rancati, Giulia; Li, Rong

    2010-12-01

    When cells in our body change their genome and develop into cancer, we blame it on genome instability. When novel species conquer inhospitable environments, we credit it to genome evolution. From a cellular perspective, however, both processes are outcomes of the same fundamental biological properties-genome and pathway plasticity and the natural selection of cells that escape death and acquire growth advantages. Unraveling the consequences of genome plasticity at a cellular level is not only central to the understanding of species evolution but also crucial to deciphering important cell biological problems, such as how cancer cells emerge and how pathogens develop drug resistance. Aside from the well-known role of DNA sequence mutations, recent evidence suggests that changes in DNA copy numbers in the form of segmental or whole-chromosome aneuploidy can bring about large phenotypic variation. Although usually detrimental under conditions suitable for normal proliferation of euploid cells, aneuploidization may be a frequently occurring genetic change that enables pathogens or cancer cells to escape physiological or pharmacological roadblocks. PMID:20655187

  4. Cardiac hypertrophy, arrhythmogenicity and the new myocardial phenotype. II. The cellular adaptational process.

    PubMed

    Swynghedauw, B; Chevalier, B; Charlemagne, D; Mansier, P; Carré, F

    1997-07-01

    Ventricular fibrosis is not the only structural determinant of arrhythmias in left ventricular hypertrophy. In an experimental model of compensatory cardiac hypertrophy (CCH) the degree of cardiac hypertrophy is also independently linked to ventricular arrhythmias. Cardiac hypertrophy reflects the level of adaptation, and matches the adaptational modifications of the myocardial phenotype. We suggest that these modifications have detrimental aspects. The increased action potential (AP) and QT duration and the prolonged calcium transient both favour spontaneous calcium oscillations, and both are potentially arrhythmogenic and linked to phenotypic changes in membrane proteins. To date, only two ionic currents have been studied in detail: Ito is depressed (likely the main determinant in AP durations), and If, the pacemaker current, is induced in the overloaded ventricular myocytes. In rat CCH, the two components of the sarcoplasmic reticulum, namely Ca(2+)-ATPase and ryanodine receptors, are down-regulated in parallel. Nevertheless, while the inward calcium current is unchanged, the functionally linked duo composed of the Na+/Ca2+ exchanged and (Na+, K+)-ATPase, is less active. Such an imbalance may explain the prolonged calcium transient. The changes in heart rate variability provide information about the state of the autonomic nervous system and has prognostic value even in CCH. Transgenic studies have demonstrated that the myocardial adrenergic and muscarinic receptor content is also a determining factor. During CCH, several phenotypic membrane changes participate in the slowing of contraction velocity and are thus adaptational. They also have a detrimental counterpart and, together with fibrosis, favour arrhythmias. PMID:9302342

  5. Exercise before and after SCUBA diving and the role of cellular microparticles in decompression stress.

    PubMed

    Madden, Dennis; Thom, Stephen R; Dujic, Zeljko

    2016-01-01

    Risk in SCUBA diving is often associated with the presence of gas bubbles in the venous circulation formed during decompression. Although it has been demonstrated time-after-time that, while venous gas emboli (VGE) often accompany decompression sickness (DCS), they are also frequently observed in high quantities in asymptomatic divers following even mild recreational dive profiles. Despite this VGE are commonly utilized as a quantifiable marker of the potential for an individual to develop DCS. Certain interventions such as exercise, antioxidant supplements, vibration, and hydration appear to impact VGE production and the decompression process. However promising these procedures may seem, the data are not yet conclusive enough to warrant changes in decompression procedure, possibly suggesting a component of individual response. We hypothesize that the impact of exercise varies widely in individuals and once tested, recommendations can be made that will reduce individual decompression stress and possibly the incidence of DCS. The understanding of physiological adaptations to diving stress can be applied in different diseases that include endothelial dysfunction and microparticle (MP) production. Exercise before diving is viewed by some as a protective form of preconditioning because some studies have shown that it reduces VGE quantity. We propose that MP production and clearance might be a part of this mechanism. Exercise after diving appears to impact the risk of adverse events as well. Research suggests that the arterialization of VGE presents a greater risk for DCS than when emboli are eliminated by the pulmonary circuit before they have a chance to crossover. Laboratory studies have demonstrated that exercise increases the incidence of crossover likely through extra-cardiac mechanisms such as intrapulmonary arterial-venous anastomoses (IPAVAs). This effect of exercise has been repeated in the field with divers demonstrating a direct relationship between exercise

  6. Exercise before and after SCUBA diving and the role of cellular microparticles in decompression stress.

    PubMed

    Madden, Dennis; Thom, Stephen R; Dujic, Zeljko

    2016-01-01

    Risk in SCUBA diving is often associated with the presence of gas bubbles in the venous circulation formed during decompression. Although it has been demonstrated time-after-time that, while venous gas emboli (VGE) often accompany decompression sickness (DCS), they are also frequently observed in high quantities in asymptomatic divers following even mild recreational dive profiles. Despite this VGE are commonly utilized as a quantifiable marker of the potential for an individual to develop DCS. Certain interventions such as exercise, antioxidant supplements, vibration, and hydration appear to impact VGE production and the decompression process. However promising these procedures may seem, the data are not yet conclusive enough to warrant changes in decompression procedure, possibly suggesting a component of individual response. We hypothesize that the impact of exercise varies widely in individuals and once tested, recommendations can be made that will reduce individual decompression stress and possibly the incidence of DCS. The understanding of physiological adaptations to diving stress can be applied in different diseases that include endothelial dysfunction and microparticle (MP) production. Exercise before diving is viewed by some as a protective form of preconditioning because some studies have shown that it reduces VGE quantity. We propose that MP production and clearance might be a part of this mechanism. Exercise after diving appears to impact the risk of adverse events as well. Research suggests that the arterialization of VGE presents a greater risk for DCS than when emboli are eliminated by the pulmonary circuit before they have a chance to crossover. Laboratory studies have demonstrated that exercise increases the incidence of crossover likely through extra-cardiac mechanisms such as intrapulmonary arterial-venous anastomoses (IPAVAs). This effect of exercise has been repeated in the field with divers demonstrating a direct relationship between exercise

  7. Evolution and Adaptation of Wild Emmer Wheat Populations to Biotic and Abiotic Stresses.

    PubMed

    Huang, Lin; Raats, Dina; Sela, Hanan; Klymiuk, Valentina; Lidzbarsky, Gabriel; Feng, Lihua; Krugman, Tamar; Fahima, Tzion

    2016-08-01

    The genetic bottlenecks associated with plant domestication and subsequent selection in man-made agroecosystems have limited the genetic diversity of modern crops and increased their vulnerability to environmental stresses. Wild emmer wheat, the tetraploid progenitor of domesticated wheat, distributed along a wide range of ecogeographical conditions in the Fertile Crescent, has valuable "left behind" adaptive diversity to multiple diseases and environmental stresses. The biotic and abiotic stress responses are conferred by series of genes and quantitative trait loci (QTLs) that control complex resistance pathways. The study of genetic diversity, genomic organization, expression profiles, protein structure and function of biotic and abiotic stress-resistance genes, and QTLs could shed light on the evolutionary history and adaptation mechanisms of wild emmer populations for their natural habitats. The continuous evolution and adaptation of wild emmer to the changing environment provide novel solutions that can contribute to safeguarding food for the rapidly growing human population.

  8. Cellular Stress Induced by Resazurin Leads to Autophagy and Cell Death Via Production of Reactive Oxygen Species and Mitochondrial Impairment

    PubMed Central

    Erikstein, Bjarte Skoe; Hagland, Hanne Røland; Nikolaisen, Julie; Kulawiec, Mariola; Singh, Keshav K.; Gjertsen, Bjørn Tore; Tronstad, Karl Johan

    2010-01-01

    Mitochondrial bioenergetics and reactive oxygen species (ROS) often play important roles in cellular stress mechanisms. In this study we investigated how these factors are involved in the stress response triggered by resazurin (Alamar Blue) in cultured cancer cells. Resazurin is a redox reactive compound widely used as reporter agent in assays of cell biology (e.g. cell viability and metabolic activity) due to its colorimetric and fluorimetric properties. In order to investigate resazurin-induced stress mechanisms we employed cells affording different metabolic and regulatory phenotypes. In HL-60 and Jurkat leukemia cells resazurin caused mitochondrial disintegration, respiratory dysfunction, reduced proliferation, and cell death. These effects were preceded by a burst of ROS, especially in HL-60 cells which also were more sensitive and contained autophagic vesicles. Studies in Rho0 cells (devoid of mitochondrial DNA) indicated that the stress response does not depend on the rates of mitochondrial respiration. The anti-proliferative effect of resazurin was confirmed in native acute myelogenous leukemia (AML) blasts. In conclusion, the data suggest that resazurin triggers cellular ROS production and thereby initiates a stress response leading to mitochondrial dysfunction, reduced proliferation, autophagy and cell degradation. The ability of cells to tolerate this type of stress may be important in toxicity and chemoresistance. PMID:20568117

  9. [Role of micro-organisms in adapting plants to environmental stress conditions].

    PubMed

    Hirt, Heribert

    2012-01-01

    Due to their sessile nature, plants have always been confronted to various abiotic and biotic stresses in their immediate environment. As a consequence, the survival of plants depended on their ability to adjust rapidly their physiology, development and growth to escape or mitigate the impacts of stress. All plants are known to perceive and respond to stress signals such as drought, heat, salinity, attacks by herbivores and pathogens. Some biochemical processes are common to all plant stress responses including the production of certain stress proteins and metabolites, as well as the modification of the reactive oxygen species (ROS) metabolism. Although there has been extensive research in the plant stress response field, it is not yet known which factors are responsible for conferring to some plant species the capacity to colonize extreme habitats. Although considerable progress has been made in our understanding of plant stress physiology, the contribution of the plant-associated microbial community in the soil, commonly called the rhizosphere, has only recently received enhanced attention. Recent studies showed that some plant species in natural habitats require microbial associations for stress tolerance and survival. Since plants have colonized land, they have evolved mechanisms to respond to changing environmental conditions and settle in extreme habitats. Although many plants lack the adaptive capability to adapt to stress conditions, the ability of a variety of plants to adapt to stress conditions appears to depend on the association with microbes, raising a number of questions: can all plants improve stress tolerance when associated with their appropriate microbial partners? Did we miss identifying the right partners for a given plant species or variety? What distinguishes the microbes and plants that are adapted to extreme environmental conditions from those living in temperate zones? Answers to these questions are likely to revolutionize plant biology

  10. Adaptive cellular structures and devices with internal features for enhanced structural performance

    NASA Astrophysics Data System (ADS)

    Pontecorvo, Michael Eugene

    This dissertation aims to develop a family of cellular and repeatable devices that exhibit a variety of force-displacement behaviors. It is envisioned that these cellular structures might be used either as stand-alone elements, or combined and repeated to create multiple types of structures (i.e. buildings, ship hulls, vehicle subfloors, etc.) with the ability to passively or actively perform multiple functions (harmonic energy dissipation, impact mitigation, modulus change) over a range of loading types, amplitudes, and frequencies. To accomplish this goal, this work combines repeatable structural frameworks, such as that provided by a hexagonal cellular structure, with internal structural elements such as springs, viscous dampers, buckling plates, bi-stable von Mises trusses (VMTs), and pneumatic artificial muscles (PAMs). The repeatable framework serves to position damping and load carrying elements throughout the structure, and the configuration of the internal elements allow each cell to be tuned to exhibit a desired force-displacement response. Therefore, gradient structures or structures with variable load paths can be created for an optimal global response to a range of loads. This dissertation focuses on the development of cellular structures for three functions: combined load-carrying capability with harmonic energy dissipation, impact mitigation, and cell modulus variation. One or more conceptual designs are presented for devices that can perform each of these functions, and both experimental measurements and simulations are used to gain a fundamental understanding of each device. Chapter 2 begins with a presentation of a VMT model that is the basis for many of the elements. The equations of motion for the VMT are derived and the static and dynamic behavior of the VMT are discussed in detail. Next, two metrics for the energy dissipation of the VMT - hysteresis loop area and loss factor - are presented. The responses of the VMT to harmonic displacement

  11. Adaptive call admission control and resource allocation in multi server wireless/cellular network

    NASA Astrophysics Data System (ADS)

    Jain, Madhu; Mittal, Ragini

    2016-11-01

    The ever increasing demand of the subscribers has put pressure on the capacity of wireless networks around the world. To utilize the scare resources, in the present paper we propose an optimal allocation scheme for an integrated wireless/cellular model with handoff priority and handoff guarantee services. The suggested algorithm optimally allocates the resources in each cell and dynamically adjust threshold to control the admission. To give the priority to handoff calls over the new calls, the provision of guard channels and subrating scheme is taken into consideration. The handoff voice call may balk and renege from the system while waiting in the buffer. An iterative algorithm is implemented to generate the arrival rate of the handoff calls in each cell. Various performance indices are established in term of steady state probabilities. The sensitivity analysis has also been carried out to examine the tractability of algorithms and to explore the effects of system descriptors on the performance indices.

  12. A cellular automaton model adapted to sandboxes to simulate the transport of solutes

    NASA Astrophysics Data System (ADS)

    Lora, Boris; Donado, Leonardo; Castro, Eduardo; Bayuelo, Alfredo

    2016-04-01

    The increasingly use of groundwater sources for human consumption and the growth of the levels of these hydric sources contamination make imperative to reach a deeper understanding how the contaminants are transported by the water, in particular through a heterogeneous porous medium. Accordingly, the present research aims to design a model, which simulates the transport of solutes through a heterogeneous porous medium, using cellular automata. Cellular automata (CA) are a class of spatially (pixels) and temporally discrete mathematical systems characterized by local interaction (neighborhoods). The pixel size and the CA neighborhood were determined in order to reproduce accurately the solute behavior (Ilachinski, 2001). For the design and corresponding validation of the CA model were developed different conservative tracer tests using a sandbox packed heterogeneously with a coarse sand (size # 20 grain diameter 0,85 to 0,6 mm) and clay. We use Uranine and a saline solution with NaCl as a tracer which were measured taking snapshots each 20 seconds. A calibration curve (pixel intensity Vs Concentration) was used to obtain concentration maps. The sandbox was constructed of acrylic (caliber 0,8 cms) with 70 x 45 x 4 cms of dimensions. The "sandbox" had a grid of 35 transversal holes with a diameter of 4 mm each and an uniform separation from one to another of 10 cms. To validate the CA-model it was used a metric consisting in rating the number of correctly predicted pixels over the total per image throughout the entire test run. The CA-model shows that calibrations of pixels and neighborhoods allow reaching results over the 60 % of correctly predictions usually. This makes possible to think that the application of the CA- model could be useful in further researches regarding the transport of contaminants in hydrogeology.

  13. Open cascades as simple solutions to providing ultrasensitivity and adaptation in cellular signaling

    NASA Astrophysics Data System (ADS)

    Srividhya, Jeyaraman; Li, Yongfeng; Pomerening, Joseph R.

    2011-08-01

    Cell signaling is achieved predominantly by reversible phosphorylation-dephosphorylation reaction cascades. Up until now, circuits conferring adaptation have all required the presence of a cascade with some type of closed topology: negative-feedback loop with a buffering node, or incoherent feed-forward loop with a proportioner node. In this paper—using Goldbeter and Koshland-type expressions—we propose a differential equation model to describe a generic, open signaling cascade that elicits an adaptation response. This is accomplished by coupling N phosphorylation-dephosphorylation cycles unidirectionally, without any explicit feedback loops. Using this model, we show that as the length of the cascade grows, the steady states of the downstream cycles reach a limiting value. In other words, our model indicates that there are a minimum number of cycles required to achieve a maximum in sensitivity and amplitude in the response of a signaling cascade. We also describe for the first time that the phenomenon of ultrasensitivity can be further subdivided into three sub-regimes, separated by sharp stimulus threshold values: OFF, OFF-ON-OFF, and ON. In the OFF-ON-OFF regime, an interesting property emerges. In the presence of a basal amount of activity, the temporal evolution of early cycles yields damped peak responses. On the other hand, the downstream cycles switch rapidly to a higher activity state for an extended period of time, prior to settling to an OFF state (OFF-ON-OFF). This response arises from the changing dynamics between a feed-forward activation module and dephosphorylation reactions. In conclusion, our model gives the new perspective that open signaling cascades embedded in complex biochemical circuits may possess the ability to show a switch-like adaptation response, without the need for any explicit feedback circuitry.

  14. Spatial and temporal task characteristics as stress: a test of the dynamic adaptability theory of stress, workload, and performance.

    PubMed

    Szalma, James L; Teo, Grace W L

    2012-03-01

    The goal for this study was to test assertions of the dynamic adaptability theory of stress, which proposes two fundamental task dimensions, information rate (temporal properties of a task) and information structure (spatial properties of a task). The theory predicts adaptive stability across stress magnitudes, with progressive and precipitous changes in adaptive response manifesting first as increases in perceived workload and stress and then as performance failure. Information structure was manipulated by varying the number of displays to be monitored (1, 2, 4 or 8 displays). Information rate was manipulated by varying stimulus presentation rate (8, 12, 16, or 20 events/min). A signal detection task was used in which critical signals were pairs of digits that differed by 0 or 1. Performance accuracy declined and workload and stress increased as a function of increased task demand, with a precipitous decline in accuracy at the highest demand levels. However, the form of performance change as well as the pattern of relationships between speed and accuracy and between performance and workload/stress indicates that some aspects of the theory need revision. Implications of the results for the theory and for future research are discussed.

  15. Adaptation of intertidal biofilm communities is driven by metal ion and oxidative stresses

    PubMed Central

    Zhang, Weipeng; Wang, Yong; Lee, On On; Tian, Renmao; Cao, Huiluo; Gao, Zhaoming; Li, Yongxin; Yu, Li; Xu, Ying; Qian, Pei-Yuan

    2013-01-01

    Marine organisms in intertidal zones are subjected to periodical fluctuations and wave activities. To understand how microbes in intertidal biofilms adapt to the stresses, the microbial metagenomes of biofilms from intertidal and subtidal zones were compared. The genes responsible for resistance to metal ion and oxidative stresses were enriched in both 6-day and 12-day intertidal biofilms, including genes associated with secondary metabolism, inorganic ion transport and metabolism, signal transduction and extracellular polymeric substance metabolism. In addition, these genes were more enriched in 12-day than 6-day intertidal biofilms. We hypothesize that a complex signaling network is used for stress tolerance and propose a model illustrating the relationships between these functions and environmental metal ion concentrations and oxidative stresses. These findings show that bacteria use diverse mechanisms to adapt to intertidal zones and indicate that the community structures of intertidal biofilms are modulated by metal ion and oxidative stresses. PMID:24212283

  16. A Shape Memory Polymer Dialysis Needle Adapter for the Reduction of Hemodynamic Stress within Arteriovenous Grafts

    SciTech Connect

    Ortega, J M; Small, W; Wilson, T S; Benett, W; Loge, J; Maitland, D J

    2006-08-16

    A deployable, shape memory polymer adapter is investigated for reducing the hemodynamic stress caused by a dialysis needle flow within an arteriovenous graft. Computational fluid dynamics simulations of dialysis sessions with and without the adapter demonstrate that the adapter provides a significant decrease in the wall shear stress. In vitro flow visualization measurements are made within a graft model following delivery and actuation of a prototype shape memory polymer adapter. Vascular access complications resulting from arteriovenous (AV) graft failures account for over $1 billion per year in the health care costs of dialysis patients in the U.S.[1] The primary mode of failure of arteriovenous fistulas (AVF's) and polytetrafluoroethylene (PTFE) grafts is the development of intimal hyperplasia (IH) and the subsequent formation of stenotic lesions, resulting in a graft flow decline. The hemodynamic stresses arising within AVF's and PTFE grafts play an important role in the pathogenesis of IH. Studies have shown that vascular damage can occur in regions where there is flow separation, oscillation, or extreme values of wall shear stress (WSS).[2] Nevaril et al.[3] show that exposure of red blood cells to WSS's on the order of 1500 dynes/cm2 can result in hemolysis. Hemodynamic stress from dialysis needle flow has recently been investigated for the role it plays in graft failure. Using laser Doppler velocimetry measurements, Unnikrishnan et al.[4] show that turbulence intensities are 5-6 times greater in the AV flow when the needle flow is present and that increased levels of turbulence exist for approximately 7-8cm downstream of the needle. Since the AVF or PTFE graft is exposed to these high levels of hemodynamic stress several hours each week during dialysis sessions, it is quite possible that needle flow is an important contributor to vascular access occlusion.[4] We present a method for reducing the hemodynamic stress in an AV graft by tailoring the fluid

  17. Adaptation of Paramecium caudatum to variable conditions of temperature stress.

    PubMed

    Duncan, Alison B; Fellous, Simon; Quillery, Elsa; Kaltz, Oliver

    2011-11-01

    The environment is rarely constant and organisms are exposed to spatial and temporal variation that will impact life-histories. It is important to understand how such variation affects the adaptation of organisms to their local environment. We compare the adaptation of populations of the ciliate Paramecium caudatum exposed to constant (23 °C or 35 °C) and temporally variable temperature environments (random daily fluctuations between 23 °C or 35 °C). Consistent with theory, our experiment shows the evolution of specialists when evolution proceeds in constant environments and generalists when the environment is temporally variable. In addition, we demonstrate costs for specialists of being locally adapted through reduced fitness in novel environments. Conversely, we do not find any costs for generalists, as all populations from variable environments had equal or superior performance to specialists in their own environment. The lack of a cost for generalists is emphasised by the presence of a super generalist that has the highest performance at both assay temperatures.

  18. Aneuploidy as a mechanism for stress-induced liver adaptation

    PubMed Central

    Duncan, Andrew W.; Hanlon Newell, Amy E.; Bi, Weimin; Finegold, Milton J.; Olson, Susan B.; Beaudet, Arthur L.; Grompe, Markus

    2012-01-01

    Over half of the mature hepatocytes in mice and humans are aneuploid and yet retain full ability to undergo mitosis. This observation has raised the question of whether this unusual somatic genetic variation evolved as an adaptive mechanism in response to hepatic injury. According to this model, hepatotoxic insults select for hepatocytes with specific numerical chromosome abnormalities, rendering them differentially resistant to injury. To test this hypothesis, we utilized a strain of mice heterozygous for a mutation in the homogentisic acid dioxygenase (Hgd) gene located on chromosome 16. Loss of the remaining Hgd allele protects from fumarylacetoacetate hydrolase (Fah) deficiency, a genetic liver disease model. When adult mice heterozygous for Hgd and lacking Fah were exposed to chronic liver damage, injury-resistant nodules consisting of Hgd-null hepatocytes rapidly emerged. To determine whether aneuploidy played a role in this phenomenon, array comparative genomic hybridization (aCGH) and metaphase karyotyping were performed. Strikingly, loss of chromosome 16 was dramatically enriched in all mice that became completely resistant to tyrosinemia-induced hepatic injury. The frequency of chromosome 16–specific aneuploidy was approximately 50%. This result indicates that selection of a specific aneuploid karyotype can result in the adaptation of hepatocytes to chronic liver injury. The extent to which aneuploidy promotes hepatic adaptation in humans remains under investigation. PMID:22863619

  19. Aneuploidy as a mechanism for stress-induced liver adaptation.

    PubMed

    Duncan, Andrew W; Hanlon Newell, Amy E; Bi, Weimin; Finegold, Milton J; Olson, Susan B; Beaudet, Arthur L; Grompe, Markus

    2012-09-01

    Over half of the mature hepatocytes in mice and humans are aneuploid and yet retain full ability to undergo mitosis. This observation has raised the question of whether this unusual somatic genetic variation evolved as an adaptive mechanism in response to hepatic injury. According to this model, hepatotoxic insults select for hepatocytes with specific numerical chromosome abnormalities, rendering them differentially resistant to injury. To test this hypothesis, we utilized a strain of mice heterozygous for a mutation in the homogentisic acid dioxygenase (Hgd) gene located on chromosome 16. Loss of the remaining Hgd allele protects from fumarylacetoacetate hydrolase (Fah) deficiency, a genetic liver disease model. When adult mice heterozygous for Hgd and lacking Fah were exposed to chronic liver damage, injury-resistant nodules consisting of Hgd-null hepatocytes rapidly emerged. To determine whether aneuploidy played a role in this phenomenon, array comparative genomic hybridization (aCGH) and metaphase karyotyping were performed. Strikingly, loss of chromosome 16 was dramatically enriched in all mice that became completely resistant to tyrosinemia-induced hepatic injury. The frequency of chromosome 16-specific aneuploidy was approximately 50%. This result indicates that selection of a specific aneuploid karyotype can result in the adaptation of hepatocytes to chronic liver injury. The extent to which aneuploidy promotes hepatic adaptation in humans remains under investigation.

  20. Knowledge-Based Intelligent Software Support of Cellular Adaptation to Microgravity Investigations

    NASA Technical Reports Server (NTRS)

    Groleau, Nick; Grymes, Rosalind A.; Alizadeh, Babak; Friedland, Peter (Technical Monitor)

    1994-01-01

    One of the most significant new opportunities that the Space Station affords cell biologists is the ability to do long-term cultivation of cells in the space environment. This facility is essential for investigations that are primarily focused on effects requiring a longer timeline of observation than that provided by the STS (Space Transportation System) platform. Such work requires both very strong laboratory skills to properly and quickly interact with the hardware hosting the culture and deep knowledge of the cell biology domain in order to optimally react to unanticipated scientific developments. Such work can be enabled by advanced automation techniques that have recently been used in the STS-based Spacelab, and that are being readied for the Space Station. In this paper, we describe the adaptation of PI-in-a-Box, the first interactive space science assistant system, to the study of the effects of space flight on cell cycle progression and proliferation.

  1. Complex dynamics of selection and cellular memory in adaptation to a changing environment

    NASA Astrophysics Data System (ADS)

    Kussell, Edo; Lin, Wei-Hsiang

    We study a synthetic evolutionary system in bacteria in which an antibiotic resistance gene is controlled by a stochastic on/off switching promoter. At the population level, this system displays all the basic ingredients for evolutionary selection, including diversity, fitness differences, and heritability. At the single cell level, physiological processes can modulate the ability of selection to act. We expose the stochastic switching strains to pulses of antibiotics of different durations in periodically changing environments using microfluidics. Small populations are tracked over a large number of periods at single cell resolution, allowing the visualization and quantification of selective sweeps and counter-sweeps at the population level, as well as detailed single cell analysis. A simple model is introduced to predict long-term population growth rates from single cell measurements, and reveals unexpected aspects of population dynamics, including cellular memory that acts on a fast timescale to modulate growth rates. This work is supported by NIH Grant No. R01-GM097356.

  2. Eomesodermin, HAND1, and CSH1 proteins are induced by cellular stress in a stress-activated protein kinase-dependent manner.

    PubMed

    Awonuga, A O; Zhong, W; Abdallah, M E; Slater, J A; Zhou, S C; Xie, Y F; Puscheck, E E; Rappolee, D A

    2011-07-01

    Eomesodermin (Eomes) is a transcription factor essential for trophoblast development. Stress stimuli activate stress-activated protein kinase (MAPK8/9) and modulate transcription factors in trophoblast stem cells (TSC). In this study, we test the hypothesis that stress-induced Eomes upregulation and downstream trophoblast development are MAPK8/9-dependent. Immunocytochemical and immunoblot assays suggest that Eomes is induced by hyperosmolar stress in a dose- and time-dependent manner. Two MAPK8/9 inhibitors that work by different mechanisms, LJNKl1 and SP600125, block induction of Eomes protein by stress. During normal TSC differentiation, the transcription factor heart and neural crest derivatives expressed 1 (HAND1) is dependent on Eomes, and chorionic somatomammotropin hormone 1 (CSH1) expression is dependent on HAND1. Similar to Eomes, HAND1 and CSH1 induction by stress are MAPK8/9-dependent, and CSH1 is induced in nearly all stressed TSC. CSH1 induction normally requires downregulation of the transcription factor inhibitor of differentiation 2 (ID2) as well as HAND1 upregulation. It was shown previously that hyperosmolar stress induces AMP-activated protein kinase (PRKAA1/2)-dependent ID2 loss in a MAPK8/9-independent manner. Inhibition of PRKAA1/2 with compound C and LJNKl1, more than MAPK8/9 inhibitors alone, inhibits the induction of CSH1 by stress. Taken together these data suggest that stress-induced MAPK8/9 and PRKAA1/2 regulate transcription factors Eomes/HAND1 and ID2, respectively. Together this network mediates induction of CSH1 by stress. Therefore, stress triggers a proportional increase in a normal early TSC differentiation event that could be adaptive in inducing CSH1. But the flexibility of TSC to undergo stress-induced differentiation could lead to pathophysiological consequences if stress endured and TSC differentiation became unbalanced.

  3. Adaptive changes of the yeast mitochondrial proteome in response to salt stress.

    PubMed

    Martínez-Pastor, Mar; Proft, Markus; Pascual-Ahuir, Amparo

    2010-10-01

    Mitochondria are dynamic organelles with the capacity to adapt to environmental stimuli and stress. Here we use yeast (Saccharomyces cerevisiae) in combination with proteomic approaches to quantify the changes in the protein composition of mitochondria in the presence of salt stress provoked by NaCl. We identified 15 proteins that were more than twofold overrepresented in salt adapted mitochondria. These proteins are mainly involved in the oxidative stress defense, the biosynthesis of amino acids and ubiquinone or in the metabolism of pyruvate and acetate. Loss of function of most of the upregulated proteins did not result in a significant growth phenotype under high salt conditions. However, all identified proteins were necessary to sustain efficient growth under oxidative stress caused by hydrogen peroxide. Additionally, a subset of outer mitochondrial membrane proteins was shown to be upregulated upon salt stress. We furthermore identified nine proteins that were more than threefold underrepresented in salt adapted mitochondria. These proteins were mainly glycolytic enzymes or proteins with a predominant localization at the endoplasmatic reticulum. Our results underline the complex nature of the stress adaptation of mitochondria and identify functional groups of proteins whose specific role in salt resistance should be revealed in the future.

  4. On residual stresses and homeostasis: an elastic theory of functional adaptation in living matter

    NASA Astrophysics Data System (ADS)

    Ciarletta, P.; Destrade, M.; Gower, A. L.

    2016-04-01

    Living matter can functionally adapt to external physical factors by developing internal tensions, easily revealed by cutting experiments. Nonetheless, residual stresses intrinsically have a complex spatial distribution, and destructive techniques cannot be used to identify a natural stress-free configuration. This work proposes a novel elastic theory of pre-stressed materials. Imposing physical compatibility and symmetry arguments, we define a new class of free energies explicitly depending on the internal stresses. This theory is finally applied to the study of arterial remodelling, proving its potential for the non-destructive determination of the residual tensions within biological materials.

  5. On residual stresses and homeostasis: an elastic theory of functional adaptation in living matter

    PubMed Central

    Ciarletta, P.; Destrade, M.; Gower, A. L.

    2016-01-01

    Living matter can functionally adapt to external physical factors by developing internal tensions, easily revealed by cutting experiments. Nonetheless, residual stresses intrinsically have a complex spatial distribution, and destructive techniques cannot be used to identify a natural stress-free configuration. This work proposes a novel elastic theory of pre-stressed materials. Imposing physical compatibility and symmetry arguments, we define a new class of free energies explicitly depending on the internal stresses. This theory is finally applied to the study of arterial remodelling, proving its potential for the non-destructive determination of the residual tensions within biological materials. PMID:27113413

  6. A cellular and metabolic assessment of the thermal stress responses in the endemic gastropod Benedictia limnaeoides ongurensis from Lake Baikal.

    PubMed

    Axenov-Gribanov, Denis V; Bedulina, Daria S; Shatilina, Zhanna M; Lubyaga, Yulia A; Vereshchagina, Kseniya P; Timofeyev, Maxim A

    2014-01-01

    Our objective was to determine if the Lake Baikal endemic gastropod Benedictia limnaeoides ongurensis, which inhabits in stable cold waters expresses a thermal stress response. We hypothesized that the evolution of this species in the stable cold waters of Lake Baikal resulted in a reduction of its thermal stress-response mechanisms at the biochemical and cellular levels. Contrary to our hypothesis, our results show that exposure to a thermal challenge activates the cellular and biochemical mechanisms of thermal resistance, such as heat shock proteins and antioxidative enzymes, and alters energetic metabolism in B. limnaeoides ongurensis. Thermal stress caused the elevation of heat shock protein 70 and the products of anaerobic glycolysis together with the depletion of glucose and phosphagens in the studied species. Thus, a temperature increase activates the complex biochemical system of stress response and alters the energetic metabolism in this endemic Baikal gastropod. It is concluded that the deepwater Lake Baikal endemic gastropod B. limnaeoides ongurensis retains the ability to activate well-developed biochemical stress-response mechanisms when exposed to a thermal challenge. PMID:24076104

  7. Adaptive cellular structures and devices with internal features for enhanced structural performance

    NASA Astrophysics Data System (ADS)

    Pontecorvo, Michael Eugene

    This dissertation aims to develop a family of cellular and repeatable devices that exhibit a variety of force-displacement behaviors. It is envisioned that these cellular structures might be used either as stand-alone elements, or combined and repeated to create multiple types of structures (i.e. buildings, ship hulls, vehicle subfloors, etc.) with the ability to passively or actively perform multiple functions (harmonic energy dissipation, impact mitigation, modulus change) over a range of loading types, amplitudes, and frequencies. To accomplish this goal, this work combines repeatable structural frameworks, such as that provided by a hexagonal cellular structure, with internal structural elements such as springs, viscous dampers, buckling plates, bi-stable von Mises trusses (VMTs), and pneumatic artificial muscles (PAMs). The repeatable framework serves to position damping and load carrying elements throughout the structure, and the configuration of the internal elements allow each cell to be tuned to exhibit a desired force-displacement response. Therefore, gradient structures or structures with variable load paths can be created for an optimal global response to a range of loads. This dissertation focuses on the development of cellular structures for three functions: combined load-carrying capability with harmonic energy dissipation, impact mitigation, and cell modulus variation. One or more conceptual designs are presented for devices that can perform each of these functions, and both experimental measurements and simulations are used to gain a fundamental understanding of each device. Chapter 2 begins with a presentation of a VMT model that is the basis for many of the elements. The equations of motion for the VMT are derived and the static and dynamic behavior of the VMT are discussed in detail. Next, two metrics for the energy dissipation of the VMT - hysteresis loop area and loss factor - are presented. The responses of the VMT to harmonic displacement

  8. KAT2B Is Required for Pancreatic Beta Cell Adaptation to Metabolic Stress by Controlling the Unfolded Protein Response.

    PubMed

    Rabhi, Nabil; Denechaud, Pierre-Damien; Gromada, Xavier; Hannou, Sarah Anissa; Zhang, Hongbo; Rashid, Talha; Salas, Elisabet; Durand, Emmanuelle; Sand, Olivier; Bonnefond, Amélie; Yengo, Loic; Chavey, Carine; Bonner, Caroline; Kerr-Conte, Julie; Abderrahmani, Amar; Auwerx, Johan; Fajas, Lluis; Froguel, Philippe; Annicotte, Jean-Sébastien

    2016-05-01

    The endoplasmic reticulum (ER) unfolded protein response (UPR(er)) pathway plays an important role in helping pancreatic β cells to adapt their cellular responses to environmental cues and metabolic stress. Although altered UPR(er) gene expression appears in rodent and human type 2 diabetic (T2D) islets, the underlying molecular mechanisms remain unknown. We show here that germline and β cell-specific disruption of the lysine acetyltransferase 2B (Kat2b) gene in mice leads to impaired insulin secretion and glucose intolerance. Genome-wide analysis of Kat2b-regulated genes and functional assays reveal a critical role for Kat2b in maintaining UPR(er) gene expression and subsequent β cell function. Importantly, Kat2b expression is decreased in mouse and human diabetic β cells and correlates with UPR(er) gene expression in normal human islets. In conclusion, Kat2b is a crucial transcriptional regulator for adaptive β cell function during metabolic stress by controlling UPR(er) and represents a promising target for T2D prevention and treatment. PMID:27117420

  9. A NAP-Family Histone Chaperone Functions in Abiotic Stress Response and Adaptation1[OPEN

    PubMed Central

    Pareek, Ashwani; Singla-Pareek, Sneh Lata

    2016-01-01

    Modulation of gene expression is one of the most significant molecular mechanisms of abiotic stress response in plants. Via altering DNA accessibility, histone chaperones affect the transcriptional competence of genomic loci. However, in contrast to other factors affecting chromatin dynamics, the role of plant histone chaperones in abiotic stress response and adaptation remains elusive. Here, we studied the physiological function of a stress-responsive putative rice (Oryza sativa) histone chaperone of the NAP superfamily: OsNAPL6. We show that OsNAPL6 is a nuclear-localized H3/H4 histone chaperone capable of assembling a nucleosome-like structure. Utilizing overexpression and knockdown approaches, we found a positive correlation between OsNAPL6 expression levels and adaptation to multiple abiotic stresses. Results of comparative transcriptome profiling and promoter-recruitment studies indicate that OsNAPL6 functions during stress response via modulation of expression of various genes involved in diverse functions. For instance, we show that OsNAPL6 is recruited to OsRad51 promoter, activating its expression and leading to more efficient DNA repair and abrogation of programmed cell death under salinity and genotoxic stress conditions. These results suggest that the histone chaperone OsNAPL6 may serve a regulatory role in abiotic stress physiology possibly via modulating nucleosome dynamics at various stress-associated genomic loci. Taken together, our findings establish a hitherto unknown link between histone chaperones and abiotic stress response in plants. PMID:27342307

  10. Central role of the brain in stress and adaptation: Links to socioeconomic status, health, and disease

    PubMed Central

    McEwen, Bruce S.; Gianaros, Peter J.

    2010-01-01

    The brain is the key organ of stress reactivity, coping, and recovery processes. Within the brain, a distributed neural circuitry determines what is threatening and thus stressful to the individual. Instrumental brain systems of this circuitry include the hippocampus, amygdala, and areas of the prefrontal cortex. Together, these systems regulate physiological and behavioral stress processes, which can be adaptive in the short-term and maladaptive in the long-term. Importantly, such stress processes arise from bidirectional patterns of communication between the brain and the autonomic, cardiovascular, and immune systems via neural and endocrine mechanisms underpinning cognition, experience, and behavior. In one respect, these bidirectional stress mechanisms are protective in that they promote short-term adaptation (allostasis). In another respect, however, these stress mechanisms can lead to a long-term dysregulation of allostasis in that they promote maladaptive wear-and-tear on the body and brain under chronically stressful conditions (allostatic load), compromising stress resiliency and health. This review focuses specifically on the links between stress-related processes embedded within the social environment and embodied within the brain, which is viewed as the central mediator and target of allostasis and allostatic load. PMID:20201874

  11. On a quest for stress tolerance genes: membrane transporters in sensing and adapting to hostile soils.

    PubMed

    Shabala, Sergey; Bose, Jayakumar; Fuglsang, Anja Thoe; Pottosin, Igor

    2016-02-01

    Abiotic stresses such as salinity, drought, and flooding severely limit food and fibre production and result in penalties of in excess of US$100 billion per annum to the agricultural sector. Improved abiotic stress tolerance to these environmental constraints via traditional or molecular breeding practices requires a good understanding of the physiological and molecular mechanisms behind roots sensing of hostile soils, as well as downstream signalling cascades to effectors mediating plant adaptive responses to the environment. In this review, we discuss some common mechanisms conferring plant tolerance to these three major abiotic stresses. Central to our discussion are: (i) the essentiality of membrane potential maintenance and ATP production/availability and its use for metabolic versus adaptive responses; (ii) reactive oxygen species and Ca(2+) 'signatures' mediating stress signalling; and (iii) cytosolic K(+) as the common denominator of plant adaptive responses. We discuss in detail how key plasma membrane and tonoplast transporters are regulated by various signalling molecules and processes observed in plants under stress conditions (e.g. changes in membrane potential; cytosolic pH and Ca(2+); reactive oxygen species; polyamines; abscisic acid) and how these stress-induced changes are related to expression and activity of specific ion transporters. The reported results are then discussed in the context of strategies for breeding crops with improved abiotic stress tolerance. We also discuss a classical trade-off between tolerance and yield, and possible avenues for resolving this dilemma.

  12. On a quest for stress tolerance genes: membrane transporters in sensing and adapting to hostile soils.

    PubMed

    Shabala, Sergey; Bose, Jayakumar; Fuglsang, Anja Thoe; Pottosin, Igor

    2016-02-01

    Abiotic stresses such as salinity, drought, and flooding severely limit food and fibre production and result in penalties of in excess of US$100 billion per annum to the agricultural sector. Improved abiotic stress tolerance to these environmental constraints via traditional or molecular breeding practices requires a good understanding of the physiological and molecular mechanisms behind roots sensing of hostile soils, as well as downstream signalling cascades to effectors mediating plant adaptive responses to the environment. In this review, we discuss some common mechanisms conferring plant tolerance to these three major abiotic stresses. Central to our discussion are: (i) the essentiality of membrane potential maintenance and ATP production/availability and its use for metabolic versus adaptive responses; (ii) reactive oxygen species and Ca(2+) 'signatures' mediating stress signalling; and (iii) cytosolic K(+) as the common denominator of plant adaptive responses. We discuss in detail how key plasma membrane and tonoplast transporters are regulated by various signalling molecules and processes observed in plants under stress conditions (e.g. changes in membrane potential; cytosolic pH and Ca(2+); reactive oxygen species; polyamines; abscisic acid) and how these stress-induced changes are related to expression and activity of specific ion transporters. The reported results are then discussed in the context of strategies for breeding crops with improved abiotic stress tolerance. We also discuss a classical trade-off between tolerance and yield, and possible avenues for resolving this dilemma. PMID:26507891

  13. Structural basis of evasion of cellular adaptive immunity by HIV-1 Nef

    SciTech Connect

    Jia, Xiaofei; Singh, Rajendra; Homann, Stefanie; Yang, Haitao; Guatelli, John; Xiong, Yong

    2012-10-24

    The HIV-1 protein Nef inhibits antigen presentation by class I major histocompatibility complex (MHC-I). We determined the mechanism of this activity by solving the crystal structure of a protein complex comprising Nef, the MHC-I cytoplasmic domain (MHC-I CD) and the {mu}1 subunit of the clathrin adaptor protein complex 1. A ternary, cooperative interaction clamps the MHC-I CD into a narrow binding groove at the Nef-{mu}1 interface, which encompasses the cargo-recognition site of {mu}1 and the proline-rich strand of Nef. The Nef C terminus induces a previously unobserved conformational change in {mu}1, whereas the N terminus binds the Nef core to position it optimally for complex formation. Positively charged patches on {mu}1 recognize acidic clusters in Nef and MHC-I. The structure shows how Nef functions as a clathrin-associated sorting protein to alter the specificity of host membrane trafficking and enable viral evasion of adaptive immunity.

  14. Structural Basis of Evasion of Cellular Adaptive Immunity by HIV-1 Nef

    PubMed Central

    Jia, Xiaofei; Singh, Rajendra; Homann, Stefanie; Yang, Haitao; Guatelli, John; Xiong, Yong

    2012-01-01

    The HIV-1 protein Nef inhibits antigen presentation by class I MHC (MHC-I). Here the mechanism of this activity is revealed by the crystal structure of a protein complex consisting of Nef, the MHC-I cytoplasmic domain (MHC-I CD), and the μ1 subunit of the clathrin adaptor protein complex 1. A ternary, cooperative interaction clamps the MHC-I CD into a narrow binding groove at the Nef-μ1 interface encompassing the cargo-recognition site of μ1 and the proline rich strand of Nef. The Nef C-terminus induces a novel conformational change in μ1, while the N-terminus binds the Nef core to position it optimally for complex formation. Positively charged patches on μ1 recognize acidic clusters in Nef and MHC-I. The structure shows how Nef functions as a clathrin-associated sorting protein to alter the specificity of host membrane trafficking and enable viral evasion of adaptive immunity. PMID:22705789

  15. Analysis of the cellular stress response in MCF10A cells exposed to combined radio frequency radiation.

    PubMed

    Kim, Han-Na; Han, Na-Kyung; Hong, Mi-Na; Chi, Sung-Gil; Lee, Yun-Sil; Kim, Taehong; Pack, Jeong-Ki; Choi, Hyung-Do; Kim, Nam; Lee, Jae-Seon

    2012-01-01

    Exposure to environmental stressors can be measured by monitoring the cellular stress response in target cells. Here, we used the cellular stress response to investigate whether single or combined radio frequency (RF) radiation could induce stress response in human cells. Cellular stress responses in MCF10A human breast epithelial cells were characterized after exposure to 4 h of RF radiation [code division multiple access (CDMA) or CDMA plus wideband CDMA (WCDMA)] or 2 h RF radiation on 3 consecutive days. Specific absorption rate (SAR) was 4.0 W/kg for CDMA signal alone exposure and 2.0 W/kg each, 4.0 W/kg in total for combined CDMA plus WCDMA signals. Expression levels and phosphorylation states of specific heat shock proteins (HSPs) and mitogen-activated protein kinases (MAPKs) were analyzed by Western blot. It was found that HSP27 and ERK1/2 phosphorylations are the most sensitive markers of the stress response in MCF10A cells exposed to heat shock or ionizing radiation. Using these markers, we demonstrated that neither one-time nor repeated single (CDMA alone) or combined (CDMA plus WCDMA) RF radiation exposure significantly altered HSP27 and ERK1/2 phosphorylations in MCF10A cells (p > 0.05). The lack of a statistically significant alteration in HSP27 and ERK1/2 phosphorylations suggests that single or combined RF radiation exposure did not elicit activation of HSP27 and ERK1/2 in MCF10A cells.

  16. Effect of certain psychopharmacological preparations on adaptation under stress conditions

    NASA Technical Reports Server (NTRS)

    Stanishevskaya, A. V.; Mezentseva, L. N.

    1980-01-01

    Experiments staged on rats demonstrated that the formation of pathological states caused by stress and accompanied by the development of ulcerative lesion of the gastric mucosa are associated with the degree of the catecholamines level drop in the mesencephalon and hypothalamus. The application of seduxen and also of combinations consisting of L-DOPA with seduxen, or with an L-adrenoblocking agent pyroxan tends to reduce the frequency of developing alcerative lesions of the stomach. The protective effect produced by the combination of L-DOPA with an L-adrenoblocking agent pyroxan is barred by an additional administration of an B-adrenoblocking agent, inderal.

  17. Thermotolerant Yeast Strains Adapted by Laboratory Evolution Show Trade-Off at Ancestral Temperatures and Preadaptation to Other Stresses

    PubMed Central

    Nielsen, Jens

    2015-01-01

    ABSTRACT A major challenge for the production of ethanol from biomass-derived feedstocks is to develop yeasts that can sustain growth under the variety of inhibitory conditions present in the production process, e.g., high osmolality, high ethanol titers, and/or elevated temperatures (≥40°C). Using adaptive laboratory evolution, we previously isolated seven Saccharomyces cerevisiae strains with improved growth at 40°C. Here, we show that genetic adaptations to high temperature caused a growth trade-off at ancestral temperatures, reduced cellular functions, and improved tolerance of other stresses. Thermotolerant yeast strains showed horizontal displacement of their thermal reaction norms to higher temperatures. Hence, their optimal and maximum growth temperatures increased by about 3°C, whereas they showed a growth trade-off at temperatures below 34°C. Computational analysis of the physical properties of proteins showed that the lethal temperature for yeast is around 49°C, as a large fraction of the yeast proteins denature above this temperature. Our analysis also indicated that the number of functions involved in controlling the growth rate decreased in the thermotolerant strains compared with the number in the ancestral strain. The latter is an advantageous attribute for acquiring thermotolerance and correlates with the reduction of yeast functions associated with loss of respiration capacity. This trait caused glycerol overproduction that was associated with the growth trade-off at ancestral temperatures. In combination with altered sterol composition of cellular membranes, glycerol overproduction was also associated with yeast osmotolerance and improved tolerance of high concentrations of glucose and ethanol. Our study shows that thermal adaptation of yeast is suitable for improving yeast resistance to inhibitory conditions found in industrial ethanol production processes. PMID:26199325

  18. Actions of Prolactin in the Brain: From Physiological Adaptations to Stress and Neurogenesis to Psychopathology

    PubMed Central

    Torner, Luz

    2016-01-01

    Prolactin (PRL) is one of the most versatile hormones known. It is considered an adaptive hormone due to the key roles it plays in the modulation of the stress response and during pregnancy and lactation. Within the brain, PRL acts as a neuropeptide to promote physiological responses related to reproduction, stress adaptation, neurogenesis, and neuroprotection. The action of PRL on the nervous system contributes to the wide array of changes that occur in the female brain during pregnancy and result in the attenuation of the hypothalamic–pituitary–adrenal axis. Together, all these changes promote behavioral and physiological adaptations of the new mother to enable reproductive success. Brain adaptations driven by PRL are also important for the regulation of maternal emotionality and well-being. PRL also affects the male brain during the stress response, but its effects have been less studied. PRL regulates neurogenesis both in the subventricular zone and in the hippocampus. Therefore, alterations in the PRL system due to stress or exposure to substances that reduce neurogenesis or other conditions, could contribute to maladaptive responses and pathological behavioral outcomes. Here, we review the PRL system and the role it plays in the modulation of stress response and emotion regulation. We discuss the effects of PRL on neurogenesis and neuroprotection, the putative neuronal mechanisms underlying these effects, and their contribution to the onset of psychopathological states such as depression. PMID:27065946

  19. Actions of Prolactin in the Brain: From Physiological Adaptations to Stress and Neurogenesis to Psychopathology.

    PubMed

    Torner, Luz

    2016-01-01

    Prolactin (PRL) is one of the most versatile hormones known. It is considered an adaptive hormone due to the key roles it plays in the modulation of the stress response and during pregnancy and lactation. Within the brain, PRL acts as a neuropeptide to promote physiological responses related to reproduction, stress adaptation, neurogenesis, and neuroprotection. The action of PRL on the nervous system contributes to the wide array of changes that occur in the female brain during pregnancy and result in the attenuation of the hypothalamic-pituitary-adrenal axis. Together, all these changes promote behavioral and physiological adaptations of the new mother to enable reproductive success. Brain adaptations driven by PRL are also important for the regulation of maternal emotionality and well-being. PRL also affects the male brain during the stress response, but its effects have been less studied. PRL regulates neurogenesis both in the subventricular zone and in the hippocampus. Therefore, alterations in the PRL system due to stress or exposure to substances that reduce neurogenesis or other conditions, could contribute to maladaptive responses and pathological behavioral outcomes. Here, we review the PRL system and the role it plays in the modulation of stress response and emotion regulation. We discuss the effects of PRL on neurogenesis and neuroprotection, the putative neuronal mechanisms underlying these effects, and their contribution to the onset of psychopathological states such as depression.

  20. Stress-induced adaptive islet cell identity changes.

    PubMed

    Cigliola, V; Thorel, F; Chera, S; Herrera, P L

    2016-09-01

    The different forms of diabetes mellitus differ in their pathogenesis but, ultimately, they are all characterized by progressive islet β-cell loss. Restoring the β-cell mass is therefore a major goal for future therapeutic approaches. The number of β-cells found at birth is determined by proliferation and differentiation of pancreatic progenitor cells, and it has been considered to remain mostly unchanged throughout adult life. Recent studies in mice have revealed an unexpected plasticity in islet endocrine cells in response to stress; under certain conditions, islet non-β-cells have the potential to reprogram into insulin producers, thus contributing to restore the β-cell mass. Here, we discuss the latest findings on pancreas and islet cell plasticity upon physiological, pathological and experimental conditions of stress. Understanding the mechanisms involved in cell reprogramming in these models will allow the development of new strategies for the treatment of diabetes, by exploiting the intrinsic regeneration capacity of the pancreas. PMID:27615136

  1. Endogenous nitric oxide mediates He-Ne laser-induced adaptive responses in salt stressed-tall fescue leaves.

    PubMed

    Li, Yongfeng; Gao, Limei; Han, Rong

    2016-10-01

    The aim of this study was to investigate the role of endogenous nitric oxide in protective effects of He-Ne laser on salt stressed-tall fescue leaves. Salt stress resulted in significant increases of membrane injury, reactive oxygen species (ROS) production, polyamine accumulation, and activities of SOD, POD, and APX, while pronounced decreases of antioxidant contents, CAT activity and intracellular Ca(2+) concentration in seedlings leaves. He-Ne laser illumination caused a distinct alleviation of cellular injury that was reflected by the lower MDA amounts, polyamine accumulation and ROS levels at the stress period. In contrast, the laser treatment displayed a higher Ca(2+) concentration, antioxidant amounts, NO release, antioxidant enzyme, and NOS activities. These responses could be blocked due to the inhibition of NO biosynthesis by PTIO (NO scavenger) or LNNA (NOS inhibitor). The presented results demonstrated that endogenous NO might be involved in the progress of He-Ne laser-induced plant antioxidant system activation and ROS degradation in order to enhance adaptive responses of tall fescue to prolonged saline conditions. PMID:27309569

  2. The role of nanosecond electric pulse-induced mechanical stress in cellular nanoporation

    NASA Astrophysics Data System (ADS)

    Roth, Caleb C.

    Background: Exposures of cells to very short (less than 1 microsecond) electric pulses in the megavolt/meter range have been shown to cause a multitude of effects, both physical and molecular in nature. Physically, nanosecond electrical pulse exposure can disrupt the plasma membrane, leading to a phenomenon known as nanoporation. Nanoporation is the production of nanometer sized holes (less than 2 nanometers in diameter) that can persist for up to fifteen minutes, allowing the flow of ions into and out of the cell. Nanoporation can lead to secondary physical effects, such as cellular swelling, shrinking and blebbing. Molecularly, nanosecond electrical pulses have been shown to activate signaling pathways, produce oxidative stress, stimulate hormone secretion and induce both apoptotic and necrotic death. The mechanism by which nanosecond electrical pulses cause molecular changes is unknown; however, it is thought the flow of ions, such as calcium, into the cell via nanopores, could be a major cause. The ability of nanosecond electrical pulses to cause membranes to become permeable and to induce apoptosis makes the technology a desirable modality for cancer research; however, the lack of understanding regarding the mechanisms by which nanosecond electrical pulses cause nanoporation impedes further development of this technology. This dissertation documents the genomic and proteomic responses of cells exposed to nanosecond electrical pulses and describes in detail the biophysical effects of these electrical pulses, including the demonstration for the first time of the generation of acoustic pressure transients capable of disrupting plasma membranes and possibly contributing to nanoporation. Methods: Jurkat, clone E6-1 (human lymphocytic cell line), U937 (human lymphocytic cell line), Chinese hamster ovarian cells and adult primary human dermal fibroblasts exposed to nanosecond electrical pulses were subjected to a variety of molecular assays, including flow cytometry

  3. Catecholamines of the adrenal medula and their morphological changes during adaptation to repeated immobilization stress

    NASA Technical Reports Server (NTRS)

    Kvetnansky, R.; Mitro, A.; Mikulaj, L.; Hocman, G.

    1980-01-01

    Changes of the adrenal medulla of rats were studied in the course of adaptation to repeated immobilization stress. An increase in the number of cells in the adrenal medulla was found in the adapted animals; this increase was confirmed by weight indices of the medulla and by cell counts per surface unit. Simultaneous karyometric measurements of the nuclei of adrenal medulla cells and an analysis of the catecholamine contents in the adrenals explain the increased activity of the adrenal medulla in the course of adaptation.

  4. Natural variation in abiotic stress responsive gene expression and local adaptation to climate in Arabidopsis thaliana.

    PubMed

    Lasky, Jesse R; Des Marais, David L; Lowry, David B; Povolotskaya, Inna; McKay, John K; Richards, James H; Keitt, Timothy H; Juenger, Thomas E

    2014-09-01

    Gene expression varies widely in natural populations, yet the proximate and ultimate causes of this variation are poorly known. Understanding how variation in gene expression affects abiotic stress tolerance, fitness, and adaptation is central to the field of evolutionary genetics. We tested the hypothesis that genes with natural genetic variation in their expression responses to abiotic stress are likely to be involved in local adaptation to climate in Arabidopsis thaliana. Specifically, we compared genes with consistent expression responses to environmental stress (expression stress responsive, "eSR") to genes with genetically variable responses to abiotic stress (expression genotype-by-environment interaction, "eGEI"). We found that on average genes that exhibited eGEI in response to drought or cold had greater polymorphism in promoter regions and stronger associations with climate than those of eSR genes or genomic controls. We also found that transcription factor binding sites known to respond to environmental stressors, especially abscisic acid responsive elements, showed significantly higher polymorphism in drought eGEI genes in comparison to eSR genes. By contrast, eSR genes tended to exhibit relatively greater pairwise haplotype sharing, lower promoter diversity, and fewer nonsynonymous polymorphisms, suggesting purifying selection or selective sweeps. Our results indicate that cis-regulatory evolution and genetic variation in stress responsive gene expression may be important mechanisms of local adaptation to climatic selective gradients.

  5. Natural Variation in Abiotic Stress Responsive Gene Expression and Local Adaptation to Climate in Arabidopsis thaliana

    PubMed Central

    Lasky, Jesse R.; Des Marais, David L.; Lowry, David B.; Povolotskaya, Inna; McKay, John K.; Richards, James H.; Keitt, Timothy H.; Juenger, Thomas E.

    2014-01-01

    Gene expression varies widely in natural populations, yet the proximate and ultimate causes of this variation are poorly known. Understanding how variation in gene expression affects abiotic stress tolerance, fitness, and adaptation is central to the field of evolutionary genetics. We tested the hypothesis that genes with natural genetic variation in their expression responses to abiotic stress are likely to be involved in local adaptation to climate in Arabidopsis thaliana. Specifically, we compared genes with consistent expression responses to environmental stress (expression stress responsive, “eSR”) to genes with genetically variable responses to abiotic stress (expression genotype-by-environment interaction, “eGEI”). We found that on average genes that exhibited eGEI in response to drought or cold had greater polymorphism in promoter regions and stronger associations with climate than those of eSR genes or genomic controls. We also found that transcription factor binding sites known to respond to environmental stressors, especially abscisic acid responsive elements, showed significantly higher polymorphism in drought eGEI genes in comparison to eSR genes. By contrast, eSR genes tended to exhibit relatively greater pairwise haplotype sharing, lower promoter diversity, and fewer nonsynonymous polymorphisms, suggesting purifying selection or selective sweeps. Our results indicate that cis-regulatory evolution and genetic variation in stress responsive gene expression may be important mechanisms of local adaptation to climatic selective gradients. PMID:24850899

  6. Heat-stress and light-stress induce different cellular pathologies in the symbiotic dinoflagellate during coral bleaching.

    PubMed

    Downs, C A; McDougall, Kathleen E; Woodley, Cheryl M; Fauth, John E; Richmond, Robert H; Kushmaro, Ariel; Gibb, Stuart W; Loya, Yossi; Ostrander, Gary K; Kramarsky-Winter, Esti

    2013-01-01

    Coral bleaching is a significant contributor to the worldwide degradation of coral reefs and is indicative of the termination of symbiosis between the coral host and its symbiotic algae (dinoflagellate; Symbiodinium sp. complex), usually by expulsion or xenophagy (symbiophagy) of its dinoflagellates. Herein, we provide evidence that during the earliest stages of environmentally induced bleaching, heat stress and light stress generate distinctly different pathomorphological changes in the chloroplasts, while a combined heat- and light-stress exposure induces both pathomorphologies; suggesting that these stressors act on the dinoflagellate by different mechanisms. Within the first 48 hours of a heat stress (32°C) under low-light conditions, heat stress induced decomposition of thylakoid structures before observation of extensive oxidative damage; thus it is the disorganization of the thylakoids that creates the conditions allowing photo-oxidative-stress. Conversely, during the first 48 hours of a light stress (2007 µmoles m(-2) s(-1) PAR) at 25°C, condensation or fusion of multiple thylakoid lamellae occurred coincidently with levels of oxidative damage products, implying that photo-oxidative stress causes the structural membrane damage within the chloroplasts. Exposure to combined heat- and light-stresses induced both pathomorphologies, confirming that these stressors acted on the dinoflagellate via different mechanisms. Within 72 hours of exposure to heat and/or light stresses, homeostatic processes (e.g., heat-shock protein and anti-oxidant enzyme response) were evident in the remaining intact dinoflagellates, regardless of the initiating stressor. Understanding the sequence of events during bleaching when triggered by different environmental stressors is important for predicting both severity and consequences of coral bleaching.

  7. Heat-Stress and Light-Stress Induce Different Cellular Pathologies in the Symbiotic Dinoflagellate during Coral Bleaching

    PubMed Central

    Downs, C. A.; McDougall, Kathleen E.; Woodley, Cheryl M.; Fauth, John E.; Richmond, Robert H.; Kushmaro, Ariel; Gibb, Stuart W.; Loya, Yossi; Ostrander, Gary K.; Kramarsky-Winter, Esti

    2013-01-01

    Coral bleaching is a significant contributor to the worldwide degradation of coral reefs and is indicative of the termination of symbiosis between the coral host and its symbiotic algae (dinoflagellate; Symbiodinium sp. complex), usually by expulsion or xenophagy (symbiophagy) of its dinoflagellates. Herein, we provide evidence that during the earliest stages of environmentally induced bleaching, heat stress and light stress generate distinctly different pathomorphological changes in the chloroplasts, while a combined heat- and light-stress exposure induces both pathomorphologies; suggesting that these stressors act on the dinoflagellate by different mechanisms. Within the first 48 hours of a heat stress (32°C) under low-light conditions, heat stress induced decomposition of thylakoid structures before observation of extensive oxidative damage; thus it is the disorganization of the thylakoids that creates the conditions allowing photo-oxidative-stress. Conversely, during the first 48 hours of a light stress (2007 µmoles m−2 s−1 PAR) at 25°C, condensation or fusion of multiple thylakoid lamellae occurred coincidently with levels of oxidative damage products, implying that photo-oxidative stress causes the structural membrane damage within the chloroplasts. Exposure to combined heat- and light-stresses induced both pathomorphologies, confirming that these stressors acted on the dinoflagellate via different mechanisms. Within 72 hours of exposure to heat and/or light stresses, homeostatic processes (e.g., heat-shock protein and anti-oxidant enzyme response) were evident in the remaining intact dinoflagellates, regardless of the initiating stressor. Understanding the sequence of events during bleaching when triggered by different environmental stressors is important for predicting both severity and consequences of coral bleaching. PMID:24324575

  8. Adaptive Stress Testing of Airborne Collision Avoidance Systems

    NASA Technical Reports Server (NTRS)

    Lee, Ritchie; Kochenderfer, Mykel J.; Mengshoel, Ole J.; Brat, Guillaume P.; Owen, Michael P.

    2015-01-01

    This paper presents a scalable method to efficiently search for the most likely state trajectory leading to an event given only a simulator of a system. Our approach uses a reinforcement learning formulation and solves it using Monte Carlo Tree Search (MCTS). The approach places very few requirements on the underlying system, requiring only that the simulator provide some basic controls, the ability to evaluate certain conditions, and a mechanism to control the stochasticity in the system. Access to the system state is not required, allowing the method to support systems with hidden state. The method is applied to stress test a prototype aircraft collision avoidance system to identify trajectories that are likely to lead to near mid-air collisions. We present results for both single and multi-threat encounters and discuss their relevance. Compared with direct Monte Carlo search, this MCTS method performs significantly better both in finding events and in maximizing their likelihood.

  9. Persisting in papyrus: size, oxidative stress, and fitness in freshwater organisms adapted to sustained hypoxia.

    PubMed

    Joyner-Matos, Joanna; Chapman, Lauren J

    2013-08-01

    Aquatic hypoxia is generally viewed as stressful for aerobic organisms. However, hypoxia may also benefit organisms by decreasing cellular stress, particularly that related to free radicals. Thus, an ideal habitat may have the minimum O2 necessary to both sustain aerobic metabolism and reduce the need to scavenge free radicals and repair free radical damage. The ability of aquatic organisms to sustain aerobic metabolism relates in part to the ability to maximize gas diffusion, which can be facilitated by small body size when O2 uptake occurs across the body surface, by a large gill surface area, or by the ability to use atmospheric air. We use water-breathing organisms in chronically hypoxic papyrus (Cyperus papyrus) swamps of East Africa to test the hypothesis that cellular-level benefits of hypoxia may translate into increased fitness, especially for small organisms. A review of recent studies of fingernail clams (Sphaerium sp.) shows that clams living in sustained hypoxia have minimized oxidative stress and that these cellular-level benefits may lead to increased fitness. We suggest that organisms in the extreme conditions in the papyrus swamps provide a unique opportunity to challenge the conventional classification of hypoxic habitats as 'stressful' and normoxic habitats as 'optimal.' PMID:23558301

  10. Biological stress response terminology: Integrating the concepts of adaptive response and preconditioning stress within a hormetic dose-response framework.

    PubMed

    Calabrese, Edward J; Bachmann, Kenneth A; Bailer, A John; Bolger, P Michael; Borak, Jonathan; Cai, Lu; Cedergreen, Nina; Cherian, M George; Chiueh, Chuang C; Clarkson, Thomas W; Cook, Ralph R; Diamond, David M; Doolittle, David J; Dorato, Michael A; Duke, Stephen O; Feinendegen, Ludwig; Gardner, Donald E; Hart, Ronald W; Hastings, Kenneth L; Hayes, A Wallace; Hoffmann, George R; Ives, John A; Jaworowski, Zbigniew; Johnson, Thomas E; Jonas, Wayne B; Kaminski, Norbert E; Keller, John G; Klaunig, James E; Knudsen, Thomas B; Kozumbo, Walter J; Lettieri, Teresa; Liu, Shu-Zheng; Maisseu, Andre; Maynard, Kenneth I; Masoro, Edward J; McClellan, Roger O; Mehendale, Harihara M; Mothersill, Carmel; Newlin, David B; Nigg, Herbert N; Oehme, Frederick W; Phalen, Robert F; Philbert, Martin A; Rattan, Suresh I S; Riviere, Jim E; Rodricks, Joseph; Sapolsky, Robert M; Scott, Bobby R; Seymour, Colin; Sinclair, David A; Smith-Sonneborn, Joan; Snow, Elizabeth T; Spear, Linda; Stevenson, Donald E; Thomas, Yolene; Tubiana, Maurice; Williams, Gary M; Mattson, Mark P

    2007-07-01

    Many biological subdisciplines that regularly assess dose-response relationships have identified an evolutionarily conserved process in which a low dose of a stressful stimulus activates an adaptive response that increases the resistance of the cell or organism to a moderate to severe level of stress. Due to a lack of frequent interaction among scientists in these many areas, there has emerged a broad range of terms that describe such dose-response relationships. This situation has become problematic because the different terms describe a family of similar biological responses (e.g., adaptive response, preconditioning, hormesis), adversely affecting interdisciplinary communication, and possibly even obscuring generalizable features and central biological concepts. With support from scientists in a broad range of disciplines, this article offers a set of recommendations we believe can achieve greater conceptual harmony in dose-response terminology, as well as better understanding and communication across the broad spectrum of biological disciplines.

  11. Expression of Arabidopsis FCS-Like Zinc finger genes is differentially regulated by sugars, cellular energy level, and abiotic stress

    PubMed Central

    Jamsheer K, Muhammed; Laxmi, Ashverya

    2015-01-01

    Cellular energy status is an important regulator of plant growth, development, and stress mitigation. Environmental stresses ultimately lead to energy deficit in the cell which activates the SNF1-RELATED KINASE 1 (SnRK1) signaling cascade which eventually triggering a massive reprogramming of transcription to enable the plant to survive under low-energy conditions. The role of Arabidopsis thaliana FCS-Like Zinc finger (FLZ) gene family in energy and stress signaling is recently come to highlight after their interaction with kinase subunits of SnRK1 were identified. In a detailed expression analysis in different sugars, energy starvation, and replenishment series, we identified that the expression of most of the FLZ genes is differentially modulated by cellular energy level. It was found that FLZ gene family contains genes which are both positively and negatively regulated by energy deficit as well as energy-rich conditions. Genetic and pharmacological studies identified the role of HEXOKINASE 1- dependent and energy signaling pathways in the sugar-induced expression of FLZ genes. Further, these genes were also found to be highly responsive to different stresses as well as abscisic acid. In over-expression of kinase subunit of SnRK1, FLZ genes were found to be differentially regulated in accordance with their response toward energy fluctuation suggesting that these genes may work downstream to the established SnRK1 signaling under low-energy stress. Taken together, the present study provides a conceptual framework for further studies related to SnRK1-FLZ interaction in relation to sugar and energy signaling and stress response. PMID:26442059

  12. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state.

    PubMed

    Kurutas, Ergul Belge

    2016-01-01

    Remarkable interest has risen in the idea that oxidative/nitrosative stress is mediated in the etiology of numerous human diseases. Oxidative/Nitrosative stress is the result of an disequilibrium in oxidant/antioxidant which reveals from continuous increase of Reactive Oxygen and Reactive Nitrogen Species production. The aim of this review is to emphasize with current information the importance of antioxidants which play the role in cellular responce against oxidative/nitrosative stress, which would be helpful in enhancing the knowledge of any biochemist, pathophysiologist, or medical personnel regarding this important issue. Products of lipid peroxidation have commonly been used as biomarkers of oxidative/nitrosative stress damage. Lipid peroxidation generates a variety of relatively stable decomposition end products, mainly α, β-unsaturated reactive aldehydes, such as malondialdehyde, 4-hydroxy-2-nonenal, 2-propenal (acrolein) and isoprostanes, which can be measured in plasma and urine as an indirect index of oxidative/nitrosative stress. Antioxidants are exogenous or endogenous molecules that mitigate any form of oxidative/nitrosative stress or its consequences. They may act from directly scavenging free radicals to increasing antioxidative defences. Antioxidant deficiencies can develop as a result of decreased antioxidant intake, synthesis of endogenous enzymes or increased antioxidant utilization. Antioxidant supplementation has become an increasingly popular practice to maintain optimal body function. However, antoxidants exhibit pro-oxidant activity depending on the specific set of conditions. Of particular importance are their dosage and redox conditions in the cell.

  13. Broad MICA/B Expression in the Small Bowel Mucosa: A Link between Cellular Stress and Celiac Disease

    PubMed Central

    Allegretti, Yessica L.; Bondar, Constanza; Guzman, Luciana; Cueto Rua, Eduardo; Chopita, Nestor; Fuertes, Mercedes; Zwirner, Norberto W.; Chirdo, Fernando G.

    2013-01-01

    The MICA/B genes (MHC class I chain related genes A and B) encode for non conventional class I HLA molecules which have no role in antigen presentation. MICA/B are up-regulated by different stress conditions such as heat-shock, oxidative stress, neoplasic transformation and viral infection. Particularly, MICA/B are expressed in enterocytes where they can mediate enterocyte apoptosis when recognised by the activating NKG2D receptor present on intraepithelial lymphocytes. This mechanism was suggested to play a major pathogenic role in active celiac disease (CD). Due to the importance of MICA/B in CD pathogenesis we studied their expression in duodenal tissue from CD patients. By immunofluorescence confocal microscopy and flow cytometry we established that MICA/B was mainly intracellularly located in enterocytes. In addition, we identified MICA/B+ T cells in both the intraepithelial and lamina propria compartments. We also found MICA/B+ B cells, plasma cells and some macrophages in the lamina propria. The pattern of MICA/B staining in mucosal tissue in severe enteropathy was similar to that found in in vitro models of cellular stress. In such models, MICA/B were located in stress granules that are associated to the oxidative and ER stress response observed in active CD enteropathy. Our results suggest that expression of MICA/B in the intestinal mucosa of CD patients is linked to disregulation of mucosa homeostasis in which the stress response plays an active role. PMID:24058482

  14. Broad MICA/B expression in the small bowel mucosa: a link between cellular stress and celiac disease.

    PubMed

    Allegretti, Yessica L; Bondar, Constanza; Guzman, Luciana; Cueto Rua, Eduardo; Chopita, Nestor; Fuertes, Mercedes; Zwirner, Norberto W; Chirdo, Fernando G

    2013-01-01

    The MICA/B genes (MHC class I chain related genes A and B) encode for non conventional class I HLA molecules which have no role in antigen presentation. MICA/B are up-regulated by different stress conditions such as heat-shock, oxidative stress, neoplasic transformation and viral infection. Particularly, MICA/B are expressed in enterocytes where they can mediate enterocyte apoptosis when recognised by the activating NKG2D receptor present on intraepithelial lymphocytes. This mechanism was suggested to play a major pathogenic role in active celiac disease (CD). Due to the importance of MICA/B in CD pathogenesis we studied their expression in duodenal tissue from CD patients. By immunofluorescence confocal microscopy and flow cytometry we established that MICA/B was mainly intracellularly located in enterocytes. In addition, we identified MICA/B(+) T cells in both the intraepithelial and lamina propria compartments. We also found MICA/B(+) B cells, plasma cells and some macrophages in the lamina propria. The pattern of MICA/B staining in mucosal tissue in severe enteropathy was similar to that found in in vitro models of cellular stress. In such models, MICA/B were located in stress granules that are associated to the oxidative and ER stress response observed in active CD enteropathy. Our results suggest that expression of MICA/B in the intestinal mucosa of CD patients is linked to disregulation of mucosa homeostasis in which the stress response plays an active role.

  15. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state.

    PubMed

    Kurutas, Ergul Belge

    2016-01-01

    Remarkable interest has risen in the idea that oxidative/nitrosative stress is mediated in the etiology of numerous human diseases. Oxidative/Nitrosative stress is the result of an disequilibrium in oxidant/antioxidant which reveals from continuous increase of Reactive Oxygen and Reactive Nitrogen Species production. The aim of this review is to emphasize with current information the importance of antioxidants which play the role in cellular responce against oxidative/nitrosative stress, which would be helpful in enhancing the knowledge of any biochemist, pathophysiologist, or medical personnel regarding this important issue. Products of lipid peroxidation have commonly been used as biomarkers of oxidative/nitrosative stress damage. Lipid peroxidation generates a variety of relatively stable decomposition end products, mainly α, β-unsaturated reactive aldehydes, such as malondialdehyde, 4-hydroxy-2-nonenal, 2-propenal (acrolein) and isoprostanes, which can be measured in plasma and urine as an indirect index of oxidative/nitrosative stress. Antioxidants are exogenous or endogenous molecules that mitigate any form of oxidative/nitrosative stress or its consequences. They may act from directly scavenging free radicals to increasing antioxidative defences. Antioxidant deficiencies can develop as a result of decreased antioxidant intake, synthesis of endogenous enzymes or increased antioxidant utilization. Antioxidant supplementation has become an increasingly popular practice to maintain optimal body function. However, antoxidants exhibit pro-oxidant activity depending on the specific set of conditions. Of particular importance are their dosage and redox conditions in the cell. PMID:27456681

  16. Broad-spectrum anti-biofilm peptide that targets a cellular stress response.

    PubMed

    de la Fuente-Núñez, César; Reffuveille, Fany; Haney, Evan F; Straus, Suzana K; Hancock, Robert E W

    2014-05-01

    Bacteria form multicellular communities known as biofilms that cause two thirds of all infections and demonstrate a 10 to 1000 fold increase in adaptive resistance to conventional antibiotics. Currently, there are no approved drugs that specifically target bacterial biofilms. Here we identified a potent anti-biofilm peptide 1018 that worked by blocking (p)ppGpp, an important signal in biofilm development. At concentrations that did not affect planktonic growth, peptide treatment completely prevented biofilm formation and led to the eradication of mature biofilms in representative strains of both Gram-negative and Gram-positive bacterial pathogens including Pseudomonas aeruginosa, Escherichia coli, Acinetobacter baumannii, Klebsiella pneumoniae, methicillin resistant Staphylococcus aureus, Salmonella Typhimurium and Burkholderia cenocepacia. Low levels of the peptide led to biofilm dispersal, while higher doses triggered biofilm cell death. We hypothesized that the peptide acted to inhibit a common stress response in target species, and that the stringent response, mediating (p)ppGpp synthesis through the enzymes RelA and SpoT, was targeted. Consistent with this, increasing (p)ppGpp synthesis by addition of serine hydroxamate or over-expression of relA led to reduced susceptibility to the peptide. Furthermore, relA and spoT mutations blocking production of (p)ppGpp replicated the effects of the peptide, leading to a reduction of biofilm formation in the four tested target species. Also, eliminating (p)ppGpp expression after two days of biofilm growth by removal of arabinose from a strain expressing relA behind an arabinose-inducible promoter, reciprocated the effect of peptide added at the same time, leading to loss of biofilm. NMR and chromatography studies showed that the peptide acted on cells to cause degradation of (p)ppGpp within 30 minutes, and in vitro directly interacted with ppGpp. We thus propose that 1018 targets (p)ppGpp and marks it for degradation in

  17. Mitochondrial role in adaptive response to stress conditions in preeclampsia

    PubMed Central

    Vishnyakova, Polina A.; Volodina, Maria A.; Tarasova, Nadezhda V.; Marey, Maria V.; Tsvirkun, Daria V.; Vavina, Olga V.; Khodzhaeva, Zulfiya S.; Kan, Natalya E.; Menon, Ramkumar; Vysokikh, Mikhail Yu.; Sukhikh, Gennady T.

    2016-01-01

    Preeclampsia (PE) is a pregnancy-specific syndrome, characterized in general by hypertension with proteinuria or other systemic disturbances. PE is the major cause of maternal and fetal morbidity and mortality worldwide. However, the etiology of PE still remains unclear. Our study involved 38 patients: 14 with uncomplicated pregnancy; 13 with early-onset PE (eoPE); and 11 with late-onset PE (loPE). We characterized the immunophenotype of cells isolated from the placenta and all biopsy samples were stained positive for Cytokeratin 7, SOX2, Nestin, Vimentin, and CD44. We obtained a significant increase in OPA1 mRNA and protein expression in the eoPE placentas. Moreover, TFAM expression was down-regulated in comparison to the control (p < 0.01). Mitochondrial DNA copy number in eoPE placentas was significantly higher than in samples from normal pregnancies. We observed an increase of maximum coupled state 3 respiration rate in mitochondria isolated from the placenta in the presence of complex I substrates in the eoPE group and an increase of P/O ratio, citrate synthase activity and decrease of Ca2+-induced depolarization rate in both PE groups. Our results suggest an essential role of mitochondrial activity changes in an adaptive response to the development of PE. PMID:27573305

  18. Mitochondrial role in adaptive response to stress conditions in preeclampsia.

    PubMed

    Vishnyakova, Polina A; Volodina, Maria A; Tarasova, Nadezhda V; Marey, Maria V; Tsvirkun, Daria V; Vavina, Olga V; Khodzhaeva, Zulfiya S; Kan, Natalya E; Menon, Ramkumar; Vysokikh, Mikhail Yu; Sukhikh, Gennady T

    2016-01-01

    Preeclampsia (PE) is a pregnancy-specific syndrome, characterized in general by hypertension with proteinuria or other systemic disturbances. PE is the major cause of maternal and fetal morbidity and mortality worldwide. However, the etiology of PE still remains unclear. Our study involved 38 patients: 14 with uncomplicated pregnancy; 13 with early-onset PE (eoPE); and 11 with late-onset PE (loPE). We characterized the immunophenotype of cells isolated from the placenta and all biopsy samples were stained positive for Cytokeratin 7, SOX2, Nestin, Vimentin, and CD44. We obtained a significant increase in OPA1 mRNA and protein expression in the eoPE placentas. Moreover, TFAM expression was down-regulated in comparison to the control (p < 0.01). Mitochondrial DNA copy number in eoPE placentas was significantly higher than in samples from normal pregnancies. We observed an increase of maximum coupled state 3 respiration rate in mitochondria isolated from the placenta in the presence of complex I substrates in the eoPE group and an increase of P/O ratio, citrate synthase activity and decrease of Ca(2+)-induced depolarization rate in both PE groups. Our results suggest an essential role of mitochondrial activity changes in an adaptive response to the development of PE. PMID:27573305

  19. Overexpression of factor VIII after AAV delivery is transiently associated with cellular stress in hemophilia A mice

    PubMed Central

    Lange, Amy M; Altynova, Ekaterina S; Nguyen, Giang N; Sabatino, Denise E

    2016-01-01

    Factor VIII (FVIII) is a large glycoprotein that is challenging to express both in vitro and in vivo. Several studies suggest that high levels of FVIII expression can lead to cellular stress. After gene transfer, transgene expression is restricted to a subset of cells and the increased FVIII load per cell may impact activation of the unfolded protein response. We sought to determine whether increased FVIII expression in mice after adeno-associated viral liver gene transfer would affect the unfolded protein response and/or immune response to the transgene. The FVIII gene was delivered as B-domain deleted single chain or two chain (light and heavy chains) at a range of doses in hemophilia A mice. A correlation between FVIII expression and anti-FVIII antibody titers was observed. Analysis of key components of the unfolded protein response, binding immunoglobulin protein (BiP), and C/EBP homologous protein (CHOP), showed transient unfolded protein response activation in the single chain treated group expressing >200% of FVIII but not after two chain delivery. These studies suggest that supraphysiological single chain FVIII expression may increase the likelihood of a cellular stress response but does not alter liver function. These data are in agreement with the observed long-term expression of FVIII at therapeutic levels after adeno-associated viral delivery in hemophilia A dogs without evidence of cellular toxicity. PMID:27738645

  20. The yeast mitogen-activated protein kinase Slt2 is involved in the cellular response to genotoxic stress

    PubMed Central

    2012-01-01

    Background The maintenance of genomic integrity is essential for cell viability. Complex signalling pathways (DNA integrity checkpoints) mediate the response to genotoxic stresses. Identifying new functions involved in the cellular response to DNA-damage is crucial. The Saccharomyces cerevisiae SLT2 gene encodes a member of the mitogen-activated protein kinase (MAPK) cascade whose main function is the maintenance of the cell wall integrity. However, different observations suggest that SLT2 may also have a role related to DNA metabolism. Results This work consisted in a comprehensive study to connect the Slt2 protein to genome integrity maintenance in response to genotoxic stresses. The slt2 mutant strain was hypersensitive to a variety of genotoxic treatments, including incubation with hydroxyurea (HU), methylmetanosulfonate (MMS), phleomycin or UV irradiation. Furthermore, Slt2 was activated by all these treatments, which suggests that Slt2 plays a central role in the cellular response to genotoxic stresses. Activation of Slt2 was not dependent on the DNA integrity checkpoint. For MMS and UV, Slt2 activation required progression through the cell cycle. In contrast, HU also activated Slt2 in nocodazol-arrested cells, which suggests that Slt2 may respond to dNTP pools alterations. However, neither the protein level of the distinct ribonucleotide reductase subunits nor the dNTP pools were affected in a slt2 mutant strain. An analysis of the checkpoint function revealed that Slt2 was not required for either cell cycle arrest or the activation of the Rad53 checkpoint kinase in response to DNA damage. However, slt2 mutant cells showed an elongated bud and partially impaired Swe1 degradation after replicative stress, indicating that Slt2 could contribute, in parallel with Rad53, to bud morphogenesis control after genotoxic stresses. Conclusions Slt2 is activated by several genotoxic treatments and is required to properly cope with DNA damage. Slt2 function is important

  1. Transcriptomic and Proteomic Analysis of Oenococcus oeni Adaptation to Wine Stress Conditions

    PubMed Central

    Margalef-Català, Mar; Araque, Isabel; Bordons, Albert; Reguant, Cristina; Bautista-Gallego, Joaquín

    2016-01-01

    Oenococcus oeni, the main lactic acid bacteria responsible for malolactic fermentation in wine, has to adapt to stressful conditions, such as low pH and high ethanol content. In this study, the changes in the transcriptome and the proteome of O. oeni PSU-1 during the adaptation period before MLF start have been studied. DNA microarrays were used for the transcriptomic analysis and two complementary proteomic techniques, 2-D DIGE and iTRAQ labeling were used to analyze the proteomic response. One of the most influenced functions in PSU-1 due to inoculation into wine-like medium (WLM) was translation, showing the over-expression of certain ribosomal genes and the corresponding proteins. Amino acid metabolism and transport was also altered and several peptidases were up regulated both at gene and protein level. Certain proteins involved in glutamine and glutamate metabolism showed an increased abundance revealing the key role of nitrogen uptake under stressful conditions. A strong transcriptional inhibition of carbohydrate metabolism related genes was observed. On the other hand, the transcriptional up-regulation of malate transport and citrate consumption was indicative of the use of L-malate and citrate associated to stress response and as an alternative energy source to sugar metabolism. Regarding the stress mechanisms, our results support the relevance of the thioredoxin and glutathione systems in the adaptation of O. oeni to wine related stress. Genes and proteins related to cell wall showed also significant changes indicating the relevance of the cell envelop as protective barrier to environmental stress. The differences found between transcriptomic and proteomic data suggested the relevance of post-transcriptional mechanisms and the complexity of the stress response in O. oeni adaptation. Further research should deepen into the metabolisms mostly altered due to wine conditions to elucidate the role of each mechanism in the O. oeni ability to develop MLF. PMID

  2. Muscle mitochondrial stress adaptation operates independently of endogenous FGF21 action

    PubMed Central

    Ost, Mario; Coleman, Verena; Voigt, Anja; van Schothorst, Evert M.; Keipert, Susanne; van der Stelt, Inge; Ringel, Sebastian; Graja, Antonia; Ambrosi, Thomas; Kipp, Anna P.; Jastroch, Martin; Schulz, Tim J.; Keijer, Jaap; Klaus, Susanne

    2015-01-01

    Objective Fibroblast growth factor 21 (FGF21) was recently discovered as stress-induced myokine during mitochondrial disease and proposed as key metabolic mediator of the integrated stress response (ISR) presumably causing systemic metabolic improvements. Curiously, the precise cell-non-autonomous and cell-autonomous relevance of endogenous FGF21 action remained poorly understood. Methods We made use of the established UCP1 transgenic (TG) mouse, a model of metabolic perturbations made by a specific decrease in muscle mitochondrial efficiency through increased respiratory uncoupling and robust metabolic adaptation and muscle ISR-driven FGF21 induction. In a cross of TG with Fgf21-knockout (FGF21−/−) mice, we determined the functional role of FGF21 as a muscle stress-induced myokine under low and high fat feeding conditions. Results Here we uncovered that FGF21 signaling is dispensable for metabolic improvements evoked by compromised mitochondrial function in skeletal muscle. Strikingly, genetic ablation of FGF21 fully counteracted the cell-non-autonomous metabolic remodeling and browning of subcutaneous white adipose tissue (WAT), together with the reduction of circulating triglycerides and cholesterol. Brown adipose tissue activity was similar in all groups. Remarkably, we found that FGF21 played a negligible role in muscle mitochondrial stress-related improved obesity resistance, glycemic control and hepatic lipid homeostasis. Furthermore, the protective cell-autonomous muscle mitohormesis and metabolic stress adaptation, including an increased muscle proteostasis via mitochondrial unfolded protein response (UPRmt) and amino acid biosynthetic pathways did not require the presence of FGF21. Conclusions Here we demonstrate that although FGF21 drives WAT remodeling, the adaptive pseudo-starvation response under elevated muscle mitochondrial stress conditions operates independently of both WAT browning and FGF21 action. Thus, our findings challenge FGF21 as key

  3. Oroxin B selectively induces tumor-suppressive ER stress and concurrently inhibits tumor-adaptive ER stress in B-lymphoma cells for effective anti-lymphoma therapy.

    PubMed

    Yang, Ping; Fu, Shilong; Cao, Zhifei; Liao, Huaidong; Huo, Zihe; Pan, Yanyan; Zhang, Gaochuan; Gao, Aidi; Zhou, Quansheng

    2015-10-15

    Cancer cells have both tumor-adaptive and -suppressive endoplasmic reticulum (ER) stress machineries that determine cell fate. In malignant tumors including lymphoma, constant activation of tumor-adaptive ER stress and concurrent reduction of tumor-suppressive ER stress favors cancer cell proliferation and tumor growth. Current ER stress-based anti-tumor drugs typically activate both tumor-adaptive and -suppressive ER stresses, resulting in low anti-cancer efficacy; hence, selective induction of tumor-suppressive ER stress and inhibition of tumor-adaptive ER stress are new strategies for novel anti-cancer drug discovery. Thus far, specific tumor-suppressive ER stress therapeutics have remained absent in clinical settings. In this study, we explored unique tumor-suppressive ER stress agents from the traditional Chinese medicinal herb Oroxylum indicum, and found that a small molecule oroxin B selectively induced tumor-suppressive ER stress in malignant lymphoma cells, but not in normal cells, effectively inhibited lymphoma growth in vivo, and significantly prolonged overall survival of lymphoma-xenografted mice without obvious toxicity. Mechanistic studies have revealed that the expression of key tumor-adaptive ER-stress gene GRP78 was notably suppressed by oroxin B via down-regulation of up-stream key signaling protein ATF6, while tumor-suppressive ER stress master gene DDIT3 was strikingly activated through activating the MKK3-p38 signaling pathway, correcting the imbalance between tumor-suppressive DDIT3 and tumor-adaptive GRP78 in lymphoma. Together, selective induction of unique tumor-suppressive ER stress and concurrent inhibition of tumor-adaptive ER stress in malignant lymphoma are new and feasible approaches for novel anti-lymphoma drug discovery and anti-lymphoma therapy.

  4. ["Stress proteins" as a cellular endpoint to detect cardiotoxicity in vitro

    PubMed

    Löw-Friedrich, Iris; Schoeppe, Wilhelm

    1991-01-01

    Toxic chemical or physical influences induce the de novo formation of protective "stress proteins" in cells. The detection of de novo synthetized "stress proteins" in cultured cardiac myocytes is used as an in vitro assay for the toxicity of pharmaceutics and chemical compounds. First, typical agents inducing "stress protein" formation ("heat shock", H2O2, CdCl2) were examined producing the expected responses in cultured heart cells. Allylamine, a toxin causing myocardial fibrosis in vivo, induces the synthesis of the same "stress protein". We tested pharmaceutics relevant in transplant medicine: Methyl-prednisolone, azathioprine, and cyclosporine A evoke the de novo synthesis of a 30 kDa "stress protein" in a concentration dependent manner. Cardiotoxicity is the main obstacle for the therapeutic use of high dosage anthracycline chemotherapeutics. Doxorubicin and daunomycin inhibit protein synthesis almost completely. The reduction of global protein formation induced by the anthracyclines also inhibits "stress protein" synthesis. Exposition of the cultured cardiac myocytes first to the anthracyclines and afterwards to another toxin (CdCl2) causes a significant inhibition of "stress" protein formation indicating that the cells are less resistant to the second damaging influence. Cardioprotective effects can also be documented by measurement of "stress protein" synthesis. The calcium channel blocking drugs diltiazem, verapemil and nifedipine stimulate the de novo formation of the 30 kDa "stress protein". After a pre-incubation of the cardiac myocytes with the calcium antagonists, the synthesis of "stress proteins" evoked by a toxin (CdCl2) is significantly reduced while total protein synthesis remains unaffected. In conclusion: 1. cardiac myocytes respond to typical inductors of "stress protein" formation and to toxin exposition with the de novo synthesis of these proteins. 2. The "stress protein" formation is concentration dependent. 3. The anthracycline

  5. Evaluation of the Stress Adjustment and Adaptation Model among Families Reporting Economic Pressure

    ERIC Educational Resources Information Center

    Vandsburger, Etty; Biggerstaff, Marilyn A.

    2004-01-01

    This research evaluates the Stress Adjustment and Adaptation Model (double ABCX model) examining the effects resiliency resources on family functioning when families experience economic pressure. Families (N = 128) with incomes at or below the poverty line from a rural area of a southern state completed measures of perceived economic pressure,…

  6. Willingness to Communicate and Cross-Cultural Adaptation: L2 Communication and Acculturative Stress as Transaction

    ERIC Educational Resources Information Center

    Gallagher, H. Colin

    2013-01-01

    Although much research has focused on the influence of second language (L2) proficiency on L2 use and on outcomes of intercultural adaptation, these two strands have remained largely separate. This study examines the impact of willingness to communicate in the L2 (L2 WTC) on the daily hassles and stress of international students, with the aim of…

  7. Determining adaptive and adverse oxidative stress responses in human bronical epithelial cells exposed to zinc

    EPA Science Inventory

    Determining adaptive and adverse oxidative stress responses in human bronchial epithelial cells exposed to zincJenna M. Currier1,2, Wan-Yun Cheng1, Rory Conolly1, Brian N. Chorley1Zinc is a ubiquitous contaminant of ambient air that presents an oxidant challenge to the human lung...

  8. Bibliography of Selected Literature in the 1970s Related to Crises, Family Stress, Coping and Adaptation.

    ERIC Educational Resources Information Center

    Chesser, Barbara

    This bibliography of literature from the 1970s related to crises, family stress, coping, and adaptation contains references of particular interest to professionals in the areas of counseling, education, and family social, psychological and health services. The bibliography is divided into 26 categories; references are classified according to major…

  9. Cortisol Reactivity to Social Stress as a Mediator of Early Adversity on Risk and Adaptive Outcomes

    ERIC Educational Resources Information Center

    Conradt, Elisabeth; Abar, Beau; Lester, Barry M.; LaGasse, Linda L.; Shankaran, Seetha; Bada, Henrietta; Bauer, Charles R.; Whitaker, Toni M.; Hammond, Jane A.

    2014-01-01

    Children chronically exposed to stress early in life are at increased risk for maladaptive outcomes, though the physiological mechanisms driving these effects are unknown. Cortisol reactivity was tested as a mediator of the relation between prenatal substance exposure and/or early adversity on adaptive and maladaptive outcomes. Data were drawn…

  10. Increased rate of response of the pituitary-adrenal system in rats adapted to chronic stress

    NASA Technical Reports Server (NTRS)

    Sakellaris, P. C.; Vernikos-Danellis, J.

    1975-01-01

    The response and adaptation of the pituitary-adrenal system to chronic stresses was investigated. These included individual caging, confinement, and exposure to cold for varying periods of time. Studies were carried out demonstrating that during the period of adaptation when plasma corticosterone concentrations returned toward their prestress level despite continued exposure to the stressor, the animals responded to additional stimuli of ether for 1 min, a saline injection, or release from confinement with a faster increase (within 2.5 min) in plasma corticosterone than controls (10 min). It is concluded that during adaptation to a chronic stress the pituitary-adrenal system is not inhibited by the circulating steroid level but is actually hypersensitive to additional stimuli.

  11. Stress, sex and neural adaptation to a changing environment: mechanisms of neuronal remodeling

    PubMed Central

    McEwen, Bruce S.

    2010-01-01

    The adult brain is much more resilient and adaptable than previously believed, and adaptive structural plasticity involves growth and shrinkage of dendritic trees, turnover of synapses and limited amounts of neurogenesis in the forebrain, especially the dentate gyrus of the hippocampal formation. Stress and sex hormones help to mediate adaptive structural plasticity, which has been extensively investigated in hippocampus and to a lesser extent in prefrontal cortex and amygdala, all brain regions that are involved in cognitive and emotional functions. Stress and sex hormones exert their effects on brain structural remodeling through both classical genomic as well as non-genomic mechanisms, and they do so in collaboration with neurotransmitters and other intra- and extracellular mediators. This review will illustrate the actions of estrogen on synapse formation in the hippocampus and the process of stress-induced remodelling of dendrites and synapses in the hippocampus, amygdala and prefrontal cortex. The influence of early developmental epigenetic events, such as early life stress and brain sexual differentiation, is noted along with the interactions between sex hormones and the effects of stress on the brain. Because hormones influence brain structure and function and because hormone secretion is governed by the brain, applied molecular neuroscience techniques can begin to reveal the role of hormones in brain-related disorders and the treatment of these diseases. A better understanding of hormone-brain interactions should promote more flexible approaches to the treatment of psychiatric disorders, as well as their prevention through both behavioral and pharmaceutical interventions. PMID:20840167

  12. Modulation of cellular stress response via the erythropoietin/CD131 heteroreceptor complex in mouse mesenchymal-derived cells.

    PubMed

    Bohr, Stefan; Patel, Suraj J; Vasko, Radovan; Shen, Keyue; Iracheta-Vellve, Arvin; Lee, Jungwoo; Bale, Shyam Sundhar; Chakraborty, Nilay; Brines, Michael; Cerami, Anthony; Berthiaume, Francois; Yarmush, Martin L

    2015-02-01

    Tissue-protective properties of erythropoietin (EPO) have let to the discovery of an alternative EPO signaling via an EPO-R/CD131 receptor complex which can now be specifically targeted through pharmaceutically designed short sequence peptides such as ARA290. However, little is still known about specific functions of alternative EPO signaling in defined cell populations. In this study, we investigated effects of signaling through EPO-R/CD131 complex on cellular stress responses and pro-inflammatory activation in different mesenchymal-derived phenotypes. We show that anti-apoptotic, anti-inflammatory effects of ARA290 and EPO coincide with the externalization of CD131 receptor component as an immediate response to cellular stress. In addition, alternative EPO signaling strongly modulated transcriptional, translational, or metabolic responses after stressor removal. Specifically, we saw that ARA290 was able to overcome a TNFα-mediated inhibition of transcription factor activation related to cell stress responses, most notably of serum response factor (SRF), heat shock transcription factor protein 1 (HSF1), and activator protein 1 (AP1). We conclude that alternative EPO signaling acts as a modulator of pro-inflammatory signaling pathways and likely plays a role in restoring tissue homeostasis. Key message: Erythropoietin (EPO) triggers an alternative pathway via heteroreceptor EPO/CD131. ARA290 peptide specifically binds EPO/CD131 but not the canonical EPO/EPO receptor. Oxidative stress and inflammation promote cell surface expression of CD131. ARA290 prevents tumor necrosis factor-mediated inhibition of stress-related genes. Alternative EPO signaling modulates inflammation and promotes tissue homeostasis.

  13. Do stressful conditions make adaptation difficult? Guppies in the oil-polluted environments of southern Trinidad

    PubMed Central

    Rolshausen, Gregor; Phillip, Dawn A T; Beckles, Denise M; Akbari, Ali; Ghoshal, Subhasis; Hamilton, Patrick B; Tyler, Charles R; Scarlett, Alan G; Ramnarine, Indar; Bentzen, Paul; Hendry, Andrew P

    2015-01-01

    The ability of populations to rapidly adapt to new environments will determine their future in an increasingly human-modified world. Although meta-analyses do frequently uncover signatures of local adaptation, they also reveal many exceptions. We suggest that particular constraints on local adaptation might arise when organisms are exposed to novel stressors, such as anthropogenic pollution. To inform this possibility, we studied the extent to which guppies (Poecilia reticulata) show local adaptation to oil pollution in southern Trinidad. Neutral genetic markers revealed that paired populations in oil-polluted versus not-polluted habitats diverged independently in two different watersheds. Morphometrics revealed some divergence (particularly in head shape) between these environments, some of which was parallel between rivers. Reciprocal transplant experiments in nature, however, found little evidence of local adaptation based on survival and growth. Moreover, subsequent laboratory experiments showed that the two populations from oil-polluted sites showed only weak local adaptation even when compared to guppies from oil-free northern Trinidad. We conclude that guppies show little local adaptation to oil pollution, which might result from the challenges associated with adaptation to particularly stressful environments. It might also reflect genetic drift owing to small population sizes and/or high gene flow between environments. PMID:26495039

  14. Acute dyskerin depletion triggers cellular senescence and renders osteosarcoma cells resistant to genotoxic stress-induced apoptosis

    SciTech Connect

    Lin, Ping; Mobasher, Maral E.; Alawi, Faizan

    2014-04-18

    Highlights: • Dyskerin depletion triggers cellular senescence in U2OS osteosarcoma cells. • Dyskerin-depleted cells are resistant to apoptosis induced by genotoxic stress. • Chromatin relaxation sensitizes dyskerin-depleted cells to apoptosis. - Abstract: Dyskerin is a conserved, nucleolar RNA-binding protein implicated in an increasing array of fundamental cellular processes. Germline mutation in the dyskerin gene (DKC1) is the cause of X-linked dyskeratosis congenita (DC). Conversely, wild-type dyskerin is overexpressed in sporadic cancers, and high-levels may be associated with poor prognosis. It was previously reported that acute loss of dyskerin function via siRNA-mediated depletion slowed the proliferation of transformed cell lines. However, the mechanisms remained unclear. Using human U2OS osteosarcoma cells, we show that siRNA-mediated dyskerin depletion induced cellular senescence as evidenced by proliferative arrest, senescence-associated heterochromatinization and a senescence-associated molecular profile. Senescence can render cells resistant to apoptosis. Conversely, chromatin relaxation can reverse the repressive effects of senescence-associated heterochromatinization on apoptosis. To this end, genotoxic stress-induced apoptosis was suppressed in dyskerin-depleted cells. In contrast, agents that induce chromatin relaxation, including histone deacetylase inhibitors and the DNA intercalator chloroquine, sensitized dyskerin-depleted cells to apoptosis. Dyskerin is a core component of the telomerase complex and plays an important role in telomere homeostasis. Defective telomere maintenance resulting in premature senescence is thought to primarily underlie the pathogenesis of X-linked DC. Since U2OS cells are telomerase-negative, this leads us to conclude that loss of dyskerin function can also induce cellular senescence via mechanisms independent of telomere shortening.

  15. Adaptation of Piglets Using Different Methods of Stress Prevention

    PubMed Central

    Bekenev, Vitaly; Garcia, Arlene; Hasnulin, Vyacheslav

    2015-01-01

    Simple Summary Stressful events play a major negative role in the modern technology of weaned piglets. These events include but are not limited to weaning itself, lack of maternal milk, loss of maternal bonding, mixing of different litters, transportation to growing-finishing farms, and housing conditions. Various additives (phenazepam, aminazine, vitamins E and C, the extract Eleutherococcus senticosus, and ultraviolet irradiation) at different doses and combinations with or without ultraviolet irradiation were used to evaluate their effect on the viability and growth rate of piglets after weaning. Content of lipids in the blood and liver, antioxidant activity (AOA) and lipid peroxidation (LPO) significantly decreased or increased with the use of the additives. Feeding a mixture of additives increased survival rate, average daily gain, and live weight at the end of the experiment. Abstract The purpose of this study was to evaluate the viability and growth rate of piglets after weaning, the content of lipids in the blood and liver, antioxidant activity (AOA) and lipid peroxidation (LPO) when various additives are used in feed. The experiments were performed on two crosses of piglets obtained from Large White breed sows and Landrace breed boars. Twenty to 28 animals were randomly assigned per group. The following additives were tested: the benzodiazepine phenazepam, the neuroleptic aminazine, vitamins E and C, and the extract Eleutherococcus senticosus (Araliaceae). Different doses and combinations of the additives against ultraviolet irradiation were used. The addition of these substances improved the growth rate and viability of piglets. AOA increased under the influence of all factors studied, especially with the addition of extract of Eleutherococcus in feed in combination with aminazine and UV-irradiation (p < 0.01). However, the addition of Eleutherococcus extract and aminazine intensified LPO (p < 0.01), but use of UV irradiation helped to decrease LPO values

  16. Addition of Alanyl-Glutamine to Dialysis Fluid Restores Peritoneal Cellular Stress Responses – A First-In-Man Trial

    PubMed Central

    Boehm, Michael; Herzog, Rebecca; Gruber, Katharina; Lichtenauer, Anton Michael; Kuster, Lilian; Csaicsich, Dagmar; Gleiss, Andreas; Alper, Seth L.; Aufricht, Christoph; Vychytil, Andreas

    2016-01-01

    Background Peritonitis and ultrafiltration failure remain serious complications of chronic peritoneal dialysis (PD). Dysfunctional cellular stress responses aggravate peritoneal injury associated with PD fluid exposure, potentially due to peritoneal glutamine depletion. In this randomized cross-over phase I/II trial we investigated cytoprotective effects of alanyl-glutamine (AlaGln) addition to glucose-based PDF. Methods In a prospective randomized cross-over design, 20 stable PD outpatients underwent paired peritoneal equilibration tests 4 weeks apart, using conventional acidic, single chamber 3.86% glucose PD fluid, with and without 8 mM supplemental AlaGln. Heat-shock protein 72 expression was assessed in peritoneal effluent cells as surrogate parameter of cellular stress responses, complemented by metabolomics and functional immunocompetence assays. Results AlaGln restored peritoneal glutamine levels and increased the primary outcome heat-shock protein expression (effect 1.51-fold, CI 1.07–2.14; p = 0.022), without changes in peritoneal ultrafiltration, small solute transport, or biomarkers reflecting cell mass and inflammation. Further effects were glutamine-like metabolomic changes and increased ex-vivo LPS-stimulated cytokine release from healthy donor peripheral blood monocytes. In patients with a history of peritonitis (5 of 20), AlaGln supplementation decreased dialysate interleukin-8 levels. Supplemented PD fluid also attenuated inflammation and enhanced stimulated cytokine release in a mouse model of PD-associated peritonitis. Conclusion We conclude that AlaGln-supplemented, glucose-based PD fluid can restore peritoneal cellular stress responses with attenuation of sterile inflammation, and may improve peritoneal host-defense in the setting of PD. PMID:27768727

  17. Designing Microfluidic Devices for Studying Cellular Responses Under Single or Coexisting Chemical/Electrical/Shear Stress Stimuli.

    PubMed

    Chou, Tzu-Yuan; Sun, Yung-Shin; Hou, Hsien-San; Wu, Shang-Ying; Zhu, Yun; Cheng, Ji-Yen; Lo, Kai-Yin

    2016-08-13

    Microfluidic devices are capable of creating a precise and controllable cellular micro-environment of pH, temperature, salt concentration, and other physical or chemical stimuli. They have been commonly used for in vitro cell studies by providing in vivo like surroundings. Especially, how cells response to chemical gradients, electrical fields, and shear stresses has drawn many interests since these phenomena are important in understanding cellular properties and functions. These microfluidic chips can be made of glass substrates, silicon wafers, polydimethylsiloxane (PDMS) polymers, polymethylmethacrylate (PMMA) substrates, or polyethyleneterephthalate (PET) substrates. Out of these materials, PMMA substrates are cheap and can be easily processed using laser ablation and writing. Although a few microfluidic devices have been designed and fabricated for generating multiple, coexisting chemical and electrical stimuli, none of them was considered efficient enough in reducing experimental repeats, particular for screening purposes. In this report, we describe our design and fabrication of two PMMA-based microfluidic chips for investigating cellular responses, in the production of reactive oxygen species and the migration, under single or coexisting chemical/electrical/shear stress stimuli. The first chip generates five relative concentrations of 0, 1/8, 1/2, 7/8, and 1 in the culture regions, together with a shear stress gradient produced inside each of these areas. The second chip generates the same relative concentrations, but with five different electric field strengths created within each culture area. These devices not only provide cells with a precise, controllable micro-environment but also greatly increase the experimental throughput.

  18. Designing Microfluidic Devices for Studying Cellular Responses Under Single or Coexisting Chemical/Electrical/Shear Stress Stimuli.

    PubMed

    Chou, Tzu-Yuan; Sun, Yung-Shin; Hou, Hsien-San; Wu, Shang-Ying; Zhu, Yun; Cheng, Ji-Yen; Lo, Kai-Yin

    2016-01-01

    Microfluidic devices are capable of creating a precise and controllable cellular micro-environment of pH, temperature, salt concentration, and other physical or chemical stimuli. They have been commonly used for in vitro cell studies by providing in vivo like surroundings. Especially, how cells response to chemical gradients, electrical fields, and shear stresses has drawn many interests since these phenomena are important in understanding cellular properties and functions. These microfluidic chips can be made of glass substrates, silicon wafers, polydimethylsiloxane (PDMS) polymers, polymethylmethacrylate (PMMA) substrates, or polyethyleneterephthalate (PET) substrates. Out of these materials, PMMA substrates are cheap and can be easily processed using laser ablation and writing. Although a few microfluidic devices have been designed and fabricated for generating multiple, coexisting chemical and electrical stimuli, none of them was considered efficient enough in reducing experimental repeats, particular for screening purposes. In this report, we describe our design and fabrication of two PMMA-based microfluidic chips for investigating cellular responses, in the production of reactive oxygen species and the migration, under single or coexisting chemical/electrical/shear stress stimuli. The first chip generates five relative concentrations of 0, 1/8, 1/2, 7/8, and 1 in the culture regions, together with a shear stress gradient produced inside each of these areas. The second chip generates the same relative concentrations, but with five different electric field strengths created within each culture area. These devices not only provide cells with a precise, controllable micro-environment but also greatly increase the experimental throughput. PMID:27584698

  19. Growth Hormone Effects in Immune Stress: AKT/eNOS Signaling Module in the Cellular Response

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The activation of the constitutive endothelial nitric-oxide synthase (eNOS) and expression of inducible NOS (iNOS) with subsequent nitric oxide production are among the early cellular responses that follow in a systemic exposure of animals to lipopolysaccharide (LPS). Growth hormone (GH) has been sh...

  20. Sirtuin 7 promotes cellular survival following genomic stress by attenuation of DNA damage, SAPK activation and p53 response

    SciTech Connect

    Kiran, Shashi; Oddi, Vineesha; Ramakrishna, Gayatri

    2015-02-01

    Maintaining the genomic integrity is a constant challenge in proliferating cells. Amongst various proteins involved in this process, Sirtuins play a key role in DNA damage repair mechanisms in yeast as well as mammals. In the present work we report the role of one of the least explored Sirtuin viz., SIRT7, under conditions of genomic stress when treated with doxorubicin. Knockdown of SIRT7 sensitized osteosarcoma (U2OS) cells to DNA damage induced cell death by doxorubicin. SIRT7 overexpression in NIH3T3 delayed cell cycle progression by causing delay in G1 to S transition. SIRT7 overexpressing cells when treated with low dose of doxorubicin (0.25 µM) showed delayed onset of senescence, lesser accumulation of DNA damage marker γH2AX and lowered levels of growth arrest markers viz., p53 and p21 when compared to doxorubicin treated control GFP expressing cells. Resistance to DNA damage following SIRT7 overexpression was also evident by EdU incorporation studies where cellular growth arrest was significantly delayed. When treated with higher dose of doxorubicin (>1 µM), SIRT7 conferred resistance to apoptosis by attenuating stress activated kinases (SAPK viz., p38 and JNK) and p53 response thereby shifting the cellular fate towards senescence. Interestingly, relocalization of SIRT7 from nucleolus to nucleoplasm together with its co-localization with SAPK was an important feature associated with DNA damage. SIRT7 mediated resistance to doxorubicin induced apoptosis and senescence was lost when p53 level was restored by nutlin treatment. Overall, we propose SIRT7 attenuates DNA damage, SAPK activation and p53 response thereby promoting cellular survival under conditions of genomic stress. - Highlights: • Knockdown of SIRT7 sensitized cells to DNA damage induced apoptosis. • SIRT7 delayed onset of premature senescence by attenuating DNA damage response. • Overexpression of SIRT7 delayed cell cycle progression by delaying G1/S transition. • Upon DNA damage SIRT

  1. Chemical Genomics Identifies the PERK-Mediated Unfolded Protein Stress Response as a Cellular Target for Influenza Virus Inhibition

    PubMed Central

    Landeras-Bueno, Sara; Fernández, Yolanda; Falcón, Ana; Oliveros, Juan Carlos

    2016-01-01

    ABSTRACT Influenza A viruses generate annual epidemics and occasional pandemics of respiratory disease with important consequences for human health and the economy. Therefore, a large effort has been devoted to the development of new anti-influenza virus drugs directed to viral targets, as well as to the identification of cellular targets amenable to anti-influenza virus therapy. Here we have addressed the identification of such potential cellular targets by screening collections of drugs approved for human use. We reasoned that screening with a green fluorescent protein-based recombinant replicon system would identify cellular targets involved in virus transcription/replication and/or gene expression and hence address an early stage of virus infection. By using such a strategy, we identified Montelukast (MK) as an inhibitor of virus multiplication. MK inhibited virus gene expression but did not alter viral RNA synthesis in vitro or viral RNA accumulation in vivo. The low selectivity index of MK prevented its use as an antiviral, but it was sufficient to identify a new cellular pathway suitable for anti-influenza virus intervention. By deep sequencing of RNA isolated from mock- and virus-infected human cells, treated with MK or left untreated, we showed that it stimulates the PERK-mediated unfolded protein stress response. The phosphorylation of PERK was partly inhibited in virus-infected cells but stimulated in MK-treated cells. Accordingly, pharmacological inhibition of PERK phosphorylation led to increased viral gene expression, while inhibition of PERK phosphatase reduced viral protein synthesis. These results suggest the PERK-mediated unfolded protein response as a potential cellular target to modulate influenza virus infection. PMID:27094326

  2. Transfer RNAs Mediate the Rapid Adaptation of Escherichia coli to Oxidative Stress

    PubMed Central

    Du, Gaofei; Sun, Xuesong; He, Qing-Yu; Zhang, Gong

    2015-01-01

    Translational systems can respond promptly to sudden environmental changes to provide rapid adaptations to environmental stress. Unlike the well-studied translational responses to oxidative stress in eukaryotic systems, little is known regarding how prokaryotes respond rapidly to oxidative stress in terms of translation. In this study, we measured protein synthesis from the entire Escherichia coli proteome and found that protein synthesis was severely slowed down under oxidative stress. With unchanged translation initiation, this slowdown was caused by decreased translation elongation speed. We further confirmed by tRNA sequencing and qRT-PCR that this deceleration was caused by a global, enzymatic downregulation of almost all tRNA species shortly after exposure to oxidative agents. Elevation in tRNA levels accelerated translation and protected E. coli against oxidative stress caused by hydrogen peroxide and the antibiotic ciprofloxacin. Our results showed that the global regulation of tRNAs mediates the rapid adjustment of the E. coli translation system for prompt adaptation to oxidative stress. PMID:26090660

  3. GH3-mediated auxin homeostasis links growth regulation with stress adaptation response in Arabidopsis.

    PubMed

    Park, Jung-Eun; Park, Ju-Young; Kim, Youn-Sung; Staswick, Paul E; Jeon, Jin; Yun, Ju; Kim, Sun-Young; Kim, Jungmook; Lee, Yong-Hwan; Park, Chung-Mo

    2007-03-30

    Plants constantly monitor environmental fluctuations to optimize their growth and metabolism. One example is adaptive growth occurring in response to biotic and abiotic stresses. Here, we demonstrate that GH3-mediated auxin homeostasis is an essential constituent of the complex network of auxin actions that regulates stress adaptation responses in Arabidopsis. Endogenous auxin pool is regulated, at least in part, through negative feedback by a group of auxin-inducible GH3 genes encoding auxin-conjugating enzymes. An Arabidopsis mutant, wes1-D, in which a GH3 gene WES1 is activated by nearby insertion of the (35)S enhancer, exhibited auxin-deficient traits, including reduced growth and altered leaf shape. Interestingly, WES1 is also induced by various stress conditions as well as by salicylic acid and abscisic acid. Accordingly, wes1-D was resistant to both biotic and abiotic stresses, and stress-responsive genes, such as pathogenesis-related genes and CBF genes, were upregulated in this mutant. In contrast, a T-DNA insertional mutant showed reduced stress resistance. We therefore propose that GH3-mediated growth suppression directs reallocation of metabolic resources to resistance establishment and represents the fitness costs of induced resistance.

  4. Alternative Oxidase Pathway Optimizes Photosynthesis During Osmotic and Temperature Stress by Regulating Cellular ROS, Malate Valve and Antioxidative Systems

    PubMed Central

    Vishwakarma, Abhaypratap; Raghavendra, Agepati S.; Padmasree, Kollipara

    2016-01-01

    The present study reveals the importance of alternative oxidase (AOX) pathway in optimizing photosynthesis under osmotic and temperature stress conditions in the mesophyll protoplasts of Pisum sativum. The responses of photosynthesis and respiration were monitored at saturating light intensity of 1000 μmoles m–2 s–1 at 25°C under a range of sorbitol concentrations from 0.4 to 1.0 M to induce hyper-osmotic stress and by varying the temperature of the thermo-jacketed pre-incubation chamber from 25 to 10°C to impose sub-optimal temperature stress. Compared to controls (0.4 M sorbitol and 25°C), the mesophyll protoplasts showed remarkable decrease in NaHCO3-dependent O2 evolution (indicator of photosynthetic carbon assimilation), under both hyper-osmotic (1.0 M sorbitol) and sub-optimal temperature stress conditions (10°C), while the decrease in rates of respiratory O2 uptake were marginal. The capacity of AOX pathway increased significantly in parallel to increase in intracellular pyruvate and reactive oxygen species (ROS) levels under both hyper-osmotic stress and sub-optimal temperature stress under the background of saturating light. The ratio of redox couple (Malate/OAA) related to malate valve increased in contrast to the ratio of redox couple (GSH/GSSG) related to antioxidative system during hyper-osmotic stress. Further, the ratio of GSH/GSSG decreased in the presence of sub-optimal temperature, while the ratio of Malate/OAA showed no visible changes. Also, the redox ratios of pyridine nucleotides increased under hyper-osmotic (NADH/NAD) and sub-optimal temperature (NADPH/NADP) stresses, respectively. However, upon restriction of AOX pathway by using salicylhydroxamic acid (SHAM), the observed changes in NaHCO3-dependent O2 evolution, cellular ROS, redox ratios of Malate/OAA, NAD(P)H/NAD(P) and GSH/GSSG were further aggravated under stress conditions with concomitant modulations in NADP-MDH and antioxidant enzymes. Taken together, the results indicated

  5. Heritable variation in heat shock gene expression: a potential mechanism for adaptation to thermal stress in embryos of sea turtles.

    PubMed

    Tedeschi, J N; Kennington, W J; Tomkins, J L; Berry, O; Whiting, S; Meekan, M G; Mitchell, N J

    2016-01-13

    The capacity of species to respond adaptively to warming temperatures will be key to their survival in the Anthropocene. The embryos of egg-laying species such as sea turtles have limited behavioural means for avoiding high nest temperatures, and responses at the physiological level may be critical to coping with predicted global temperature increases. Using the loggerhead sea turtle (Caretta caretta) as a model, we used quantitative PCR to characterise variation in the expression response of heat-shock genes (hsp60, hsp70 and hsp90; molecular chaperones involved in cellular stress response) to an acute non-lethal heat shock. We show significant variation in gene expression at the clutch and population levels for some, but not all hsp genes. Using pedigree information, we estimated heritabilities of the expression response of hsp genes to heat shock and demonstrated both maternal and additive genetic effects. This is the first evidence that the heat-shock response is heritable in sea turtles and operates at the embryonic stage in any reptile. The presence of heritable variation in the expression of key thermotolerance genes is necessary for sea turtles to adapt at a molecular level to warming incubation environments.

  6. FUNCTIONAL GENOMICS OF ADAPTATION TO HYPOXIC COLD-STRESS IN HIGH-ALTITUDE DEER MICE: TRANSCRIPTOMIC PLASTICITY AND THERMOGENIC PERFORMANCE

    PubMed Central

    Connaty, Alex D.; McClelland, Grant B.; Storz, Jay F.

    2015-01-01

    In species that are distributed across steep environmental gradients, adaptive variation in physiological performance may be attributable to transcriptional plasticity in underlying regulatory networks. Here we report the results of common-garden experiments that were designed to elucidate the role of regulatory plasticity in evolutionary adaptation to hypoxic cold-stress in deer mice (Peromyscus maniculatus). We integrated genomic transcriptional profiles with measures of metabolic enzyme activities and whole-animal thermogenic performance under hypoxia in highland (4350 m) and lowland (430 m) mice from three experimental groups: (1) wild-caught mice that were sampled at their native elevations; (2) wild-caught/lab-reared mice that were deacclimated to low-elevation conditions in a common-garden lab environment; and (3) the F1 progeny of deacclimated mice that were maintained under the same low-elevation common-garden conditions. In each experimental group, highland mice exhibited greater thermogenic capacities than lowland mice, and this enhanced performance was associated with upregulation of transcriptional modules that influence several hierarchical steps in the O2 cascade, including tissue O2 diffusion (angiogenesis) and tissue O2 utilization (metabolic fuel use and cellular oxidative capacity). Most of these performance-related transcriptomic changes occurred over physiological and developmental timescales, suggesting that regulatory plasticity makes important contributions to fitness-related physiological performance in highland deer mice. PMID:24102503

  7. Heritable variation in heat shock gene expression: a potential mechanism for adaptation to thermal stress in embryos of sea turtles.

    PubMed

    Tedeschi, J N; Kennington, W J; Tomkins, J L; Berry, O; Whiting, S; Meekan, M G; Mitchell, N J

    2016-01-13

    The capacity of species to respond adaptively to warming temperatures will be key to their survival in the Anthropocene. The embryos of egg-laying species such as sea turtles have limited behavioural means for avoiding high nest temperatures, and responses at the physiological level may be critical to coping with predicted global temperature increases. Using the loggerhead sea turtle (Caretta caretta) as a model, we used quantitative PCR to characterise variation in the expression response of heat-shock genes (hsp60, hsp70 and hsp90; molecular chaperones involved in cellular stress response) to an acute non-lethal heat shock. We show significant variation in gene expression at the clutch and population levels for some, but not all hsp genes. Using pedigree information, we estimated heritabilities of the expression response of hsp genes to heat shock and demonstrated both maternal and additive genetic effects. This is the first evidence that the heat-shock response is heritable in sea turtles and operates at the embryonic stage in any reptile. The presence of heritable variation in the expression of key thermotolerance genes is necessary for sea turtles to adapt at a molecular level to warming incubation environments. PMID:26763709

  8. Modification of plasma membrane proton pumps in cucumber roots as an adaptation mechanism to salt stress.

    PubMed

    Janicka-Russak, Małgorzata; Kabała, Katarzyna; Wdowikowska, Anna; Kłobus, Grażyna

    2013-07-01

    The effect of salt stress (50mM NaCl) on modification of plasma membrane (PM) H(+)-ATPase (EC 3.6.3.14) activity in cucumber roots was studied. Plants were grown under salt stress for 1, 3 or 6 days. In salt-stressed plants, weak stimulation of ATP hydrolytic activity of PM H(+)-ATPase and significant stimulation of proton transport through the plasma membrane were observed. The H(+)/ATP coupling ratio in the plasma membrane of plants subjected to salt stress significantly increased. The greatest stimulation of PM H(+)-ATPase was in 6-day stressed plants. Increased H2O2 accumulation under salt stress conditions in cucumber roots was also observed, with the greatest accumulation observed in 6-day stressed plants. Additionally, during the sixth day of salinity, there appeared heat shock proteins (HSPs) 17.7 and 101, suggesting that repair processes and adaptation to stress occurred in plants. Under salt stress conditions, fast post-translational modifications took place. Protein blot analysis with antibody against phosphothreonine and 14-3-3 proteins showed that, under salinity, the level of those elements increased. Additionally, under salt stress, activity changes of PM H(+)-ATPase can partly result from changes in the pattern of expression of PM H(+)-ATPase genes. In cucumber seedlings, there was increased expression of CsHA10 under salt stress and the transcript of a new PM H(+)-ATPase gene isoform, CsHA1, also appeared. Accumulation of the CsHA1 transcript was induced by NaCl exposure, and was not expressed at detectable levels in roots of control plants. The appearance of a new PM H(+)-ATPase transcript, in addition to the increase in enzyme activity, indicates the important role of the enzyme in maintaining ion homeostasis in plants under salt stress.

  9. Early-Life Stress, HPA Axis Adaptation, and Mechanisms Contributing to Later Health Outcomes

    PubMed Central

    Maniam, Jayanthi; Antoniadis, Christopher; Morris, Margaret J.

    2014-01-01

    Stress activates the hypothalamic–pituitary–adrenal (HPA) axis, which then modulates the degree of adaptation and response to a later stressor. It is known that early-life stress can impact on later health but less is known about how early-life stress impairs HPA axis activity, contributing to maladaptation of the stress–response system. Early-life stress exposure (either prenatally or in the early postnatal period) can impact developmental pathways resulting in lasting structural and regulatory changes that predispose to adulthood disease. Epidemiological, clinical, and experimental studies have demonstrated that early-life stress produces long term hyper-responsiveness to stress with exaggerated circulating glucocorticoids, and enhanced anxiety and depression-like behaviors. Recently, evidence has emerged on early-life stress-induced metabolic derangements, for example hyperinsulinemia and altered insulin sensitivity on exposure to a high energy diet later in life. This draws our attention to the contribution of later environment to disease vulnerability. Early-life stress can alter the expression of genes in peripheral tissues, such as the glucocorticoid receptor and 11-beta hydroxysteroid dehydrogenase (11β-HSD1). We propose that interactions between altered HPA axis activity and liver 11β-HSD1 modulates both tissue and circulating glucocorticoid availability, with adverse metabolic consequences. This review discusses the potential mechanisms underlying early-life stress-induced maladaptation of the HPA axis, and its subsequent effects on energy utilization and expenditure. The effects of positive later environments as a means of ameliorating early-life stress-induced health deficits, and proposed mechanisms underpinning the interaction between early-life stress and subsequent detrimental environmental exposures on metabolic risk will be outlined. Limitations in current methodology linking early-life stress and later health outcomes will also be

  10. Defining the tipping point: a complex cellular life/death balance in corals in response to stress.

    PubMed

    Ainsworth, T D; Wasmund, K; Ukani, L; Seneca, F; Yellowlees, D; Miller, D; Leggat, W

    2011-01-01

    Apoptotic cell death has been implicated in coral bleaching but the molecules involved and the mechanisms by which apoptosis is regulated are only now being identified. In contrast the mechanisms underlying apoptosis in higher animals are relatively well understood. To better understand the response of corals to thermal stress, the expression of coral homologs of six key regulators of apoptosis was studied in Acropora aspera under conditions simulating those of a mass bleaching event. Significant changes in expression were detected between the daily minimum and maximum temperatures. Maximum daily temperatures from as low as 3°C below the bleaching threshold resulted in significant changes in both pro- and anti-apoptotic gene expression. The results suggest that the control of apoptosis is highly complex in this eukaryote-eukaryote endosymbiosis and that apoptotic cell death cascades potentially play key roles tipping the cellular life/death balance during environmental stress prior to the onset of coral bleaching.

  11. Time-Course Determination of Cellular Stress Responses Elicited by Engineered Nanomaterials

    EPA Science Inventory

    Engineered nanomaterials are being incorporated continuously into consumer products, resulting in increased human exposures. The study of engineered nanomaterials has focused largely on oxidative stress and inflammation endpoints without further investigating potential pathways. ...

  12. Response and adaptation of photosynthesis, respiration, and antioxidant systems to elevated CO2 with environmental stress in plants

    PubMed Central

    Xu, Zhenzhu; Jiang, Yanling; Zhou, Guangsheng

    2015-01-01

    It is well known that plant photosynthesis and respiration are two fundamental and crucial physiological processes, while the critical role of the antioxidant system in response to abiotic factors is still a focus point for investigating physiological stress. Although one key metabolic process and its response to climatic change have already been reported and reviewed, an integrative review, including several biological processes at multiple scales, has not been well reported. The current review will present a synthesis focusing on the underlying mechanisms in the responses to elevated CO2 at multiple scales, including molecular, cellular, biochemical, physiological, and individual aspects, particularly, for these biological processes under elevated CO2 with other key abiotic stresses, such as heat, drought, and ozone pollution, as well as nitrogen limitation. The present comprehensive review may add timely and substantial information about the topic in recent studies, while it presents what has been well established in previous reviews. First, an outline of the critical biological processes, and an overview of their roles in environmental regulation, is presented. Second, the research advances with regard to the individual subtopics are reviewed, including the response and adaptation of the photosynthetic capacity, respiration, and antioxidant system to CO2 enrichment alone, and its combination with other climatic change factors. Finally, the potential applications for plant responses at various levels to climate change are discussed. The above issue is currently of crucial concern worldwide, and this review may help in a better understanding of how plants deal with elevated CO2 using other mainstream abiotic factors, including molecular, cellular, biochemical, physiological, and whole individual processes, and the better management of the ecological environment, climate change, and sustainable development. PMID:26442017

  13. Response and adaptation of photosynthesis, respiration, and antioxidant systems to elevated CO2 with environmental stress in plants.

    PubMed

    Xu, Zhenzhu; Jiang, Yanling; Zhou, Guangsheng

    2015-01-01

    It is well known that plant photosynthesis and respiration are two fundamental and crucial physiological processes, while the critical role of the antioxidant system in response to abiotic factors is still a focus point for investigating physiological stress. Although one key metabolic process and its response to climatic change have already been reported and reviewed, an integrative review, including several biological processes at multiple scales, has not been well reported. The current review will present a synthesis focusing on the underlying mechanisms in the responses to elevated CO2 at multiple scales, including molecular, cellular, biochemical, physiological, and individual aspects, particularly, for these biological processes under elevated CO2 with other key abiotic stresses, such as heat, drought, and ozone pollution, as well as nitrogen limitation. The present comprehensive review may add timely and substantial information about the topic in recent studies, while it presents what has been well established in previous reviews. First, an outline of the critical biological processes, and an overview of their roles in environmental regulation, is presented. Second, the research advances with regard to the individual subtopics are reviewed, including the response and adaptation of the photosynthetic capacity, respiration, and antioxidant system to CO2 enrichment alone, and its combination with other climatic change factors. Finally, the potential applications for plant responses at various levels to climate change are discussed. The above issue is currently of crucial concern worldwide, and this review may help in a better understanding of how plants deal with elevated CO2 using other mainstream abiotic factors, including molecular, cellular, biochemical, physiological, and whole individual processes, and the better management of the ecological environment, climate change, and sustainable development. PMID:26442017

  14. De novo cholesterol synthesis at the crossroads of adaptive response to extracellular stress through SREBP.

    PubMed

    Robichon, Céline; Dugail, Isabelle

    2007-02-01

    Cell sterol supply is subjected to tight negative feedback regulation through the SREBP pathway. Upon cholesterol depletion, SREBP transcription factors become activated by cleavage of a membrane bound precursor form, which stimulates the expression of the genes encoding proteins of the cholesterol synthesis pathway. In this paper, we discuss two situations of extracellular stress (hypoxia and heat shock) in which the cholesterol synthesis pathway and SREBPs are directly impacted to generate an adaptive response to cell damage. On one hand, the lack of oxygen in fission yeast Saccharomyces pombe induces a drop in cholesterol synthesis which in turn activates SREBP-mediated transcription. The presence of genes involved in the anaerobic growth program among SREBP target genes in fission yeast, indicates that SREBP behaves as an oxygen sensor, required for adaptive growth in low oxygen. On the other hand, upon heat shock in mammalian cells, SREBP-responsive heat shock proteins have been characterized, which were able to upregulate sterol synthesis by targeting the activity of HMG-CoA reductase, the rate limiting enzyme in this pathway. Although not yet proven, high rates of sterol synthesis can be viewed as an adaptive response to correct structural membrane damage and bilayer fluidification induced by thermal stress. Together these situations illustrate how the highly regulated SREBP pathway for the control of sterol synthesis can be used to achieve cell adaptive responses to extracellular stresses.

  15. Neurological and cellular regulation of visceral hypersensitivity induced by chronic stress and colonic inflammation in rats.

    PubMed

    Chen, J; Winston, J H; Sarna, S K

    2013-09-17

    The role of inflammation in inducing visceral hypersensitivity (VHS) in ulcerative colitis patients remains unknown. We tested the hypothesis that acute ulcerative colitis-like inflammation does not induce VHS. However, it sets up molecular conditions such that chronic stress following inflammation exaggerates single-unit afferent discharges to colorectal distension. We used dextran sodium sulfate (DSS) to induce ulcerative colitis-like inflammation and a 9-day heterotypic chronic stress protocol in rats. DSS upregulated Nav1.8 mRNA in colon-responsive dorsal root ganglion (DRG) neurons, TRPV1 in colonic muscularis externae (ME) and BDNF in spinal cord without affecting the spike frequency in spinal afferents or VMR to CRD. By contrast, chronic stress did not induce inflammation but it downregulated Kv1.1 and Kv1.4 mRNA in DRG neurons, and upregulated TRPA1 and nerve growth factor in ME, which mediated the increase of spike frequency and VMR to CRD. Chronic stress following inflammation exacerbated spike frequency in spinal afferent neurons. TRPA1 antagonist suppressed the sensitization of afferent neurons. DSS-inflammation did not affect the composition or excitation thresholds of low-threshold and high-threshold fibers. Chronic stress following inflammation increased the percent composition of high-threshold fibers and lowered the excitation threshold of both types of fibers. We conclude that not all types of inflammation induce VHS, whereas chronic stress induces VHS in the absence of inflammation. PMID:23806714

  16. Global Microarray Analysis of Alkaliphilic Halotolerant Bacterium Bacillus sp. N16-5 Salt Stress Adaptation

    PubMed Central

    Yin, Liang; Xue, Yanfen; Ma, Yanhe

    2015-01-01

    The alkaliphilic halotolerant bacterium Bacillus sp. N16-5 is often exposed to salt stress in its natural habitats. In this study, we used one-colour microarrays to investigate adaptive responses of Bacillus sp. N16-5 transcriptome to long-term growth at different salinity levels (0%, 2%, 8%, and 15% NaCl) and to a sudden salt increase from 0% to 8% NaCl. The common strategies used by bacteria to survive and grow at high salt conditions, such as K+ uptake, Na+ efflux, and the accumulation of organic compatible solutes (glycine betaine and ectoine), were observed in Bacillus sp. N16-5. The genes of SigB regulon involved in general stress responses and chaperone-encoding genes were also induced by high salt concentration. Moreover, the genes regulating swarming ability and the composition of the cytoplasmic membrane and cell wall were also differentially expressed. The genes involved in iron uptake were down-regulated, whereas the iron homeostasis regulator Fur was up-regulated, suggesting that Fur may play a role in the salt adaption of Bacillus sp. N16-5. In summary, we present a comprehensive gene expression profiling of alkaliphilic Bacillus sp. N16-5 cells exposed to high salt stress, which would help elucidate the mechanisms underlying alkaliphilic Bacillus spp. survival in and adaptation to salt stress. PMID:26030352

  17. Global Microarray Analysis of Alkaliphilic Halotolerant Bacterium Bacillus sp. N16-5 Salt Stress Adaptation.

    PubMed

    Yin, Liang; Xue, Yanfen; Ma, Yanhe

    2015-01-01

    The alkaliphilic halotolerant bacterium Bacillus sp. N16-5 is often exposed to salt stress in its natural habitats. In this study, we used one-colour microarrays to investigate adaptive responses of Bacillus sp. N16-5 transcriptome to long-term growth at different salinity levels (0%, 2%, 8%, and 15% NaCl) and to a sudden salt increase from 0% to 8% NaCl. The common strategies used by bacteria to survive and grow at high salt conditions, such as K+ uptake, Na+ efflux, and the accumulation of organic compatible solutes (glycine betaine and ectoine), were observed in Bacillus sp. N16-5. The genes of SigB regulon involved in general stress responses and chaperone-encoding genes were also induced by high salt concentration. Moreover, the genes regulating swarming ability and the composition of the cytoplasmic membrane and cell wall were also differentially expressed. The genes involved in iron uptake were down-regulated, whereas the iron homeostasis regulator Fur was up-regulated, suggesting that Fur may play a role in the salt adaption of Bacillus sp. N16-5. In summary, we present a comprehensive gene expression profiling of alkaliphilic Bacillus sp. N16-5 cells exposed to high salt stress, which would help elucidate the mechanisms underlying alkaliphilic Bacillus spp. survival in and adaptation to salt stress.

  18. The Roles of Mitochondrial Reactive Oxygen Species in Cellular Signaling and Stress Response in Plants.

    PubMed

    Huang, Shaobai; Van Aken, Olivier; Schwarzländer, Markus; Belt, Katharina; Millar, A Harvey

    2016-07-01

    Mitochondria produce ATP via respiratory oxidation of organic acids and transfer of electrons to O2 via the mitochondrial electron transport chain. This process produces reactive oxygen species (ROS) at various rates that can impact respiratory and cellular function, affecting a variety of signaling processes in the cell. Roles in redox signaling, retrograde signaling, plant hormone action, programmed cell death, and defense against pathogens have been attributed to ROS generated in plant mitochondria (mtROS). The shortcomings of the black box-idea of mtROS are discussed in the context of mechanistic considerations and the measurement of mtROS The overall aim of this update is to better define our current understanding of mtROS and appraise their potential influence on cellular function in plants. Furthermore, directions for future research are provided, along with suggestions to increase reliability of mtROS measurements.

  19. Replicate altitudinal clines reveal that evolutionary flexibility underlies adaptation to drought stress in annual Mimulus guttatus.

    PubMed

    Kooyers, Nicholas J; Greenlee, Anna B; Colicchio, Jack M; Oh, Morgan; Blackman, Benjamin K

    2015-04-01

    Examining how morphology, life history and physiology vary along environmental clines can reveal functional insight into adaptations to climate and thus inform predictions about evolutionary responses to global change. Widespread species occurring over latitudinal and altitudinal gradients in seasonal water availability are excellent systems for investigating multivariate adaptation to drought stress. Under common garden conditions, we characterized variation in 27 traits for 52 annual populations of Mimulus guttatus sampled from 10 altitudinal transects. We also assessed variation in the critical photoperiod for flowering and surveyed neutral genetic markers to control for demography when analyzing clinal patterns. Many drought escape (e.g. flowering time) and drought avoidance (e.g. specific leaf area, succulence) traits exhibited geographic or climatic clines, which often remained significant after accounting for population structure. Critical photoperiod and flowering time in glasshouse conditions followed distinct clinal patterns, indicating different aspects of seasonal phenology confer adaptation to unique agents of selection. Although escape and avoidance traits were negatively correlated range-wide, populations from sites with short growing seasons produced both early flowering and dehydration avoidance phenotypes. Our results highlight how abundant genetic variation in the component traits that build multivariate adaptations to drought stress provides flexibility for intraspecific adaptation to diverse climates. PMID:25407964

  20. Stress Responses, Adaptation, and Virulence of Bacterial Pathogens During Host Gastrointestinal Colonization.

    PubMed

    Flint, Annika; Butcher, James; Stintzi, Alain

    2016-04-01

    Invading pathogens are exposed to a multitude of harmful conditions imposed by the host gastrointestinal tract and immune system. Bacterial defenses against these physical and chemical stresses are pivotal for successful host colonization and pathogenesis. Enteric pathogens, which are encountered due to the ingestion of or contact with contaminated foods or materials, are highly successful at surviving harsh conditions to colonize and cause the onset of host illness and disease. Pathogens such as Campylobacter, Helicobacter, Salmonella, Listeria, and virulent strains of Escherichia have evolved elaborate defense mechanisms to adapt to the diverse range of stresses present along the gastrointestinal tract. Furthermore, these pathogens contain a multitude of defenses to help survive and escape from immune cells such as neutrophils and macrophages. This chapter focuses on characterized bacterial defenses against pH, osmotic, oxidative, and nitrosative stresses with emphasis on both the direct and indirect mechanisms that contribute to the survival of each respective stress response. PMID:27227312

  1. Stress Responses, Adaptation, and Virulence of Bacterial Pathogens During Host Gastrointestinal Colonization.

    PubMed

    Flint, Annika; Butcher, James; Stintzi, Alain

    2016-04-01

    Invading pathogens are exposed to a multitude of harmful conditions imposed by the host gastrointestinal tract and immune system. Bacterial defenses against these physical and chemical stresses are pivotal for successful host colonization and pathogenesis. Enteric pathogens, which are encountered due to the ingestion of or contact with contaminated foods or materials, are highly successful at surviving harsh conditions to colonize and cause the onset of host illness and disease. Pathogens such as Campylobacter, Helicobacter, Salmonella, Listeria, and virulent strains of Escherichia have evolved elaborate defense mechanisms to adapt to the diverse range of stresses present along the gastrointestinal tract. Furthermore, these pathogens contain a multitude of defenses to help survive and escape from immune cells such as neutrophils and macrophages. This chapter focuses on characterized bacterial defenses against pH, osmotic, oxidative, and nitrosative stresses with emphasis on both the direct and indirect mechanisms that contribute to the survival of each respective stress response.

  2. Reaction of small heat-shock proteins to different kinds of cellular stress in cultured rat hippocampal neurons.

    PubMed

    Bartelt-Kirbach, Britta; Golenhofen, Nikola

    2014-01-01

    Upregulation of small heat-shock proteins (sHsps) in response to cellular stress is one mechanism to increase cell viability.We previously described that cultured rat hippocampal neurons express five of the 11 family members but only upregulate two of them (HspB1 and HspB5) at the protein level after heat stress. Since neurons have to cope with many other pathological conditions, we investigated in this study the expression of all five expressed sHsps on mRNA and protein level after sublethal sodium arsenite and oxidative and hyperosmotic stress. Under all three conditions, HspB1, HspB5, HspB6, and HspB8 but not HspB11 were consistently upregulated but showed differences in the time course of upregulation. The increase of sHsps always occurred earlier on mRNA level compared with protein levels. We conclude from our data that these four upregulated sHsps (HspB1, HspB5, HspB6, HspB8) act together in different proportions in the protection of neurons from various stress conditions.

  3. Influence of drought stress on cellular ultrastructure and antioxidant system in tea cultivars with different drought sensitivities.

    PubMed

    Das, Akan; Mukhopadhyay, Mainaak; Sarkar, Bipasa; Saha, Dipanwita; Mondal, Tapan K

    2015-07-01

    Drought is the major yield-limiting abiotic factor of tea cultivation. In the present study, influence of drought stress on cellular ultrastructure and antioxidants was studied drought-tolerant (TV-23) and -sensitive (S.3/A3) tea cultivars by imposing drought stress for 21 days. Drought stress led to considerable structural alterations in mitochondria, chloroplast and vacuole. Lesser membrane integrity and higher structural damage was observed in S.3/A3. Chlorophyll a, chl-b and carotenoids content in leaves decreased in each cultivar; however, the decrement was more brisk in S.3/A3. Proline, total soluble sugar, ascorbic acid and abscisic acid were elevated in TV-23 whereas hydrogen peroxide, superoxide anion, lipid peroxidation and electrolyte leakage increased rapidly in S.3/A3. Starch content decreased both in leaves and roots of each cultivar and was more pronounced in roots of TV-23. Under drought, enhanced activities of ascorbate peroxidase, catalase, peroxidase and superoxide dismutase were recorded in both roots and leaves of each cultivar, but the rate of enhancement was more in TV-23. This indicated that tolerant cultivar exhibited higher antioxidant capacity and a stronger protective mechanism such that their ultrastructural integrity was better maintained during exposure to drought stress. PMID:26364464

  4. In vivo cellular imaging of various stress/response pathways using AAV following axonal injury in mice

    PubMed Central

    Fujita, Kosuke; Nishiguchi, Koji M; Yokoyama, Yu; Tomiyama, Yusuke; Tsuda, Satoru; Yasuda, Masayuki; Maekawa, Shigeto; Nakazawa, Toru

    2015-01-01

    Glaucoma, a leading cause of blindness worldwide, is instigated by various factors, including axonal injury, which eventually leads to a progressive loss of retinal ganglion cells (RGCs). To study various pathways reportedly involved in the pathogenesis of RGC death caused by axonal injury, seven pathways were investigated. Pathway-specific fluorescent protein-coded reporters were each packaged into an adeno-associated virus (AAV). After producing axonal injury in the eye, injected with AAV to induce RGC death, the temporal activity of each stress-related pathway was monitored in vivo through the detection of fluorescent RGCs using confocal ophthalmoscopy. We identified the activation of ATF6 and MCP-1 pathways involved in endoplasmic reticulum stress and macrophage recruitment, respectively, as early markers of RGC stress that precede neuronal death. Conversely, inflammatory responses probed by NF-κB and cell-death-related pathway p53 were most prominent in the later phases, when RGC death was already ongoing. AAV-mediated delivery of stress/response reporters followed by in vivo cellular imaging is a powerful strategy to characterize the temporal aspects of complex molecular pathways involved in retinal diseases. The identification of promoter elements that are activated before the death of RGCs enables the development of pre-emptive gene therapy, exclusively targeting the early phases of diseased cells. PMID:26670005

  5. ACUTE DYSKERIN DEPLETION TRIGGERS CELLULAR SENESCENCE AND RENDERS OSTEOSARCOMA CELLS RESISTANT TO GENOTOXIC STRESS-INDUCED APOPTOSIS

    PubMed Central

    Lin, Ping; Mobasher, Maral E.; Alawi, Faizan

    2014-01-01

    Dyskerin is a conserved, nucleolar RNA-binding protein implicated in an increasing array of fundamental cellular processes. Germline mutation in the dyskerin gene (DKC1) is the cause of X-linked dyskeratosis congenita. Conversely, wild-type dyskerin is overexpressed in sporadic cancers, and high-levels may be associated with poor prognosis. It was previously reported that acute loss of dyskerin function via siRNA-mediated depletion slowed the proliferation of transformed cell lines. However, the mechanisms remained unclear. Using human U2OS osteosarcoma cells, we show that siRNA-mediated dyskerin depletion induced cellular senescence as evidenced by proliferative arrest, senescence-associated heterochromatinization and a senescence-associated molecular profile. Senescence can render cells resistant to apoptosis. Conversely, chromatin relaxation can reverse the repressive effects of senescence-associated heterochromatinization on apoptosis. To this end, genotoxic stress-induced apoptosis was suppressed in dyskerin-depleted cells. In contrast, agents that induce chromatin relaxation, including histone deacetylase inhibitors and the DNA intercalator chloroquine, sensitized dyskerin-depleted cells to apoptosis. Dyskerin is a core component of the telomerase complex and plays an important role in telomere homeostasis. Defective telomere maintenance resulting in premature senescence is thought to primarily underlie the pathogenesis of X-linked DC. Since U2OS cells are telomerase-negative, this leads us to conclude that loss of dyskerin function can also induce cellular senescence via mechanisms independent of telomere shortening. PMID:24690175

  6. Modeling of time dependent localized flow shear stress and its impact on cellular growth within additive manufactured titanium implants.

    PubMed

    Zhang, Ziyu; Yuan, Lang; Lee, Peter D; Jones, Eric; Jones, Julian R

    2014-11-01

    Bone augmentation implants are porous to allow cellular growth, bone formation and fixation. However, the design of the pores is currently based on simple empirical rules, such as minimum pore and interconnects sizes. We present a three-dimensional (3D) transient model of cellular growth based on the Navier-Stokes equations that simulates the body fluid flow and stimulation of bone precursor cellular growth, attachment, and proliferation as a function of local flow shear stress. The model's effectiveness is demonstrated for two additive manufactured (AM) titanium scaffold architectures. The results demonstrate that there is a complex interaction of flow rate and strut architecture, resulting in partially randomized structures having a preferential impact on stimulating cell migration in 3D porous structures for higher flow rates. This novel result demonstrates the potential new insights that can be gained via the modeling tool developed, and how the model can be used to perform what-if simulations to design AM structures to specific functional requirements.

  7. Adaptive unstructured meshing for thermal stress analysis of built-up structures

    NASA Technical Reports Server (NTRS)

    Dechaumphai, Pramote

    1992-01-01

    An adaptive unstructured meshing technique for mechanical and thermal stress analysis of built-up structures has been developed. A triangular membrane finite element and a new plate bending element are evaluated on a panel with a circular cutout and a frame stiffened panel. The adaptive unstructured meshing technique, without a priori knowledge of the solution to the problem, generates clustered elements only where needed. An improved solution accuracy is obtained at a reduced problem size and analysis computational time as compared to the results produced by the standard finite element procedure.

  8. The Impact of Non-Enzymatic Reactions and Enzyme Promiscuity on Cellular Metabolism during (Oxidative) Stress Conditions

    PubMed Central

    Piedrafita, Gabriel; Keller, Markus A; Ralser, Markus

    2015-01-01

    Cellular metabolism assembles in a structurally highly conserved, but functionally dynamic system, known as the metabolic network. This network involves highly active, enzyme-catalyzed metabolic pathways that provide the building blocks for cell growth. In parallel, however, chemical reactivity of metabolites and unspecific enzyme function give rise to a number of side products that are not part of canonical metabolic pathways. It is increasingly acknowledged that these molecules are important for the evolution of metabolism, affect metabolic efficiency, and that they play a potential role in human disease—age-related disorders and cancer in particular. In this review we discuss the impact of oxidative and other cellular stressors on the formation of metabolic side products, which originate as a consequence of: (i) chemical reactivity or modification of regular metabolites; (ii) through modifications in substrate specificity of damaged enzymes; and (iii) through altered metabolic flux that protects cells in stress conditions. In particular, oxidative and heat stress conditions are causative of metabolite and enzymatic damage and thus promote the non-canonical metabolic activity of the cells through an increased repertoire of side products. On the basis of selected examples, we discuss the consequences of non-canonical metabolic reactivity on evolution, function and repair of the metabolic network. PMID:26378592

  9. Testing the Adaptation to Poverty-Related Stress Model: Predicting Psychopathology Symptoms in Families Facing Economic Hardship

    ERIC Educational Resources Information Center

    Wadsworth, Martha E.; Raviv, Tali; Santiago, Catherine DeCarlo; Etter, Erica M.

    2011-01-01

    This study tested the Adaptation to Poverty-related Stress Model and its proposed relations between poverty-related stress, effortful and involuntary stress responses, and symptoms of psychopathology in an ethnically diverse sample of low-income children and their parents. Prospective Hierarchical Linear Modeling analyses conducted with 98…

  10. Vitamin C and E supplementation hampers cellular adaptation to endurance training in humans: a double-blind, randomised, controlled trial

    PubMed Central

    Paulsen, Gøran; Cumming, Kristoffer T; Holden, Geir; Hallén, Jostein; Rønnestad, Bent Ronny; Sveen, Ole; Skaug, Arne; Paur, Ingvild; Bastani, Nasser E; Østgaard, Hege Nymo; Buer, Charlotte; Midttun, Magnus; Freuchen, Fredrik; Wiig, Håvard; Ulseth, Elisabeth Tallaksen; Garthe, Ina; Blomhoff, Rune; Benestad, Haakon B; Raastad, Truls

    2014-01-01

    In this double-blind, randomised, controlled trial, we investigated the effects of vitamin C and E supplementation on endurance training adaptations in humans. Fifty-four young men and women were randomly allocated to receive either 1000 mg of vitamin C and 235 mg of vitamin E or a placebo daily for 11 weeks. During supplementation, the participants completed an endurance training programme consisting of three to four sessions per week (primarily of running), divided into high-intensity interval sessions [4–6 × 4–6 min; >90% of maximal heart rate (HRmax)] and steady state continuous sessions (30–60 min; 70–90% of HRmax). Maximal oxygen uptake (), submaximal running and a 20 m shuttle run test were assessed and blood samples and muscle biopsies were collected, before and after the intervention. Participants in the vitamin C and E group increased their (mean ± s.d.: 8 ± 5%) and performance in the 20 m shuttle test (10 ± 11%) to the same degree as those in the placebo group (mean ± s.d.: 8 ± 5% and 14 ± 17%, respectively). However, the mitochondrial marker cytochrome c oxidase subunit IV (COX4) and cytosolic peroxisome proliferator-activated receptor-γ coactivator 1 α (PGC-1α) increased in the m. vastus lateralis in the placebo group by 59 ± 97% and 19 ± 51%, respectively, but not in the vitamin C and E group (COX4: −13 ± 54%; PGC-1α: −13 ± 29%; P ≤ 0.03, between groups). Furthermore, mRNA levels of CDC42 and mitogen-activated protein kinase 1 (MAPK1) in the trained muscle were lower in the vitamin C and E group than in the placebo group (P ≤ 0.05). Daily vitamin C and E supplementation attenuated increases in markers of mitochondrial biogenesis following endurance training. However, no clear interactions were detected for improvements in and running performance. Consequently, vitamin C and E supplementation hampered cellular adaptations in the exercised muscles, and although this did not translate to

  11. Adaptive Responses to Oxidative Stress in the Filamentous Fungal Shiraia bambusicola.

    PubMed

    Deng, Huaxiang; Chen, Jiajun; Gao, Ruijie; Liao, Xiangru; Cai, Yujie

    2016-01-01

    Shiraia bambusicola can retain excellent physiological activity when challenged with maximal photo-activated hypocrellin, which causes cellular oxidative stress. The protective mechanism of this fungus against oxidative stress has not yet been reported. We evaluated the biomass and hypocrellin biosynthesis of Shiraia sp. SUPER-H168 when treated with high concentrations of H₂O₂. Hypocrellin production was improved by nearly 27% and 25% after 72 h incubation with 10 mM and 20 mM H₂O₂, respectively, while the inhibition ratios of exogenous 20 mM H₂O₂ on wild S. bambusicola and a hypocrellin-deficient strain were 20% and 33%, respectively. Under exogenous oxidative stress, the specific activities of catalase, glutathione reductase, and superoxide dismutase were significantly increased. These changes may allow Shiraia to maintain normal life activities under oxidative stress. Moreover, sufficient glutathione peroxidase was produced in the SUPER-H168 and hypocrellin-deficient strains, to further ensure that S. bambusicola has excellent protective abilities against oxidative stress. This study creates the possibility that the addition of high H₂O₂ concentrations can stimulate fungal secondary metabolism, and will lead to a comprehensive and coherent understanding of mechanisms against oxidative stresses from high hydrogen peroxide concentrations in the filamentous fungal Shiraia sp. SUPER-H168.

  12. Transcriptome Analysis in Tardigrade Species Reveals Specific Molecular Pathways for Stress Adaptations

    PubMed Central

    Förster, Frank; Beisser, Daniela; Grohme, Markus A.; Liang, Chunguang; Mali, Brahim; Siegl, Alexander Matthias; Engelmann, Julia C.; Shkumatov, Alexander V.; Schokraie, Elham; Müller, Tobias; Schnölzer, Martina; Schill, Ralph O.; Frohme, Marcus; Dandekar, Thomas

    2012-01-01

    Tardigrades have unique stress-adaptations that allow them to survive extremes of cold, heat, radiation and vacuum. To study this, encoded protein clusters and pathways from an ongoing transcriptome study on the tardigrade Milnesium tardigradum were analyzed using bioinformatics tools and compared to expressed sequence tags (ESTs) from Hypsibius dujardini, revealing major pathways involved in resistance against extreme environmental conditions. ESTs are available on the Tardigrade Workbench along with software and databank updates. Our analysis reveals that RNA stability motifs for M. tardigradum are different from typical motifs known from higher animals. M. tardigradum and H. dujardini protein clusters and conserved domains imply metabolic storage pathways for glycogen, glycolipids and specific secondary metabolism as well as stress response pathways (including heat shock proteins, bmh2, and specific repair pathways). Redox-, DNA-, stress- and protein protection pathways complement specific repair capabilities to achieve the strong robustness of M. tardigradum. These pathways are partly conserved in other animals and their manipulation could boost stress adaptation even in human cells. However, the unique combination of resistance and repair pathways make tardigrades and M. tardigradum in particular so highly stress resistant. PMID:22563243

  13. Transcriptome analysis in tardigrade species reveals specific molecular pathways for stress adaptations.

    PubMed

    Förster, Frank; Beisser, Daniela; Grohme, Markus A; Liang, Chunguang; Mali, Brahim; Siegl, Alexander Matthias; Engelmann, Julia C; Shkumatov, Alexander V; Schokraie, Elham; Müller, Tobias; Schnölzer, Martina; Schill, Ralph O; Frohme, Marcus; Dandekar, Thomas

    2012-01-01

    Tardigrades have unique stress-adaptations that allow them to survive extremes of cold, heat, radiation and vacuum. To study this, encoded protein clusters and pathways from an ongoing transcriptome study on the tardigrade Milnesium tardigradum were analyzed using bioinformatics tools and compared to expressed sequence tags (ESTs) from Hypsibius dujardini, revealing major pathways involved in resistance against extreme environmental conditions. ESTs are available on the Tardigrade Workbench along with software and databank updates. Our analysis reveals that RNA stability motifs for M. tardigradum are different from typical motifs known from higher animals. M. tardigradum and H. dujardini protein clusters and conserved domains imply metabolic storage pathways for glycogen, glycolipids and specific secondary metabolism as well as stress response pathways (including heat shock proteins, bmh2, and specific repair pathways). Redox-, DNA-, stress- and protein protection pathways complement specific repair capabilities to achieve the strong robustness of M. tardigradum. These pathways are partly conserved in other animals and their manipulation could boost stress adaptation even in human cells. However, the unique combination of resistance and repair pathways make tardigrades and M. tardigradum in particular so highly stress resistant.

  14. Transcriptome analysis in tardigrade species reveals specific molecular pathways for stress adaptations.

    PubMed

    Förster, Frank; Beisser, Daniela; Grohme, Markus A; Liang, Chunguang; Mali, Brahim; Siegl, Alexander Matthias; Engelmann, Julia C; Shkumatov, Alexander V; Schokraie, Elham; Müller, Tobias; Schnölzer, Martina; Schill, Ralph O; Frohme, Marcus; Dandekar, Thomas

    2012-01-01

    Tardigrades have unique stress-adaptations that allow them to survive extremes of cold, heat, radiation and vacuum. To study this, encoded protein clusters and pathways from an ongoing transcriptome study on the tardigrade Milnesium tardigradum were analyzed using bioinformatics tools and compared to expressed sequence tags (ESTs) from Hypsibius dujardini, revealing major pathways involved in resistance against extreme environmental conditions. ESTs are available on the Tardigrade Workbench along with software and databank updates. Our analysis reveals that RNA stability motifs for M. tardigradum are different from typical motifs known from higher animals. M. tardigradum and H. dujardini protein clusters and conserved domains imply metabolic storage pathways for glycogen, glycolipids and specific secondary metabolism as well as stress response pathways (including heat shock proteins, bmh2, and specific repair pathways). Redox-, DNA-, stress- and protein protection pathways complement specific repair capabilities to achieve the strong robustness of M. tardigradum. These pathways are partly conserved in other animals and their manipulation could boost stress adaptation even in human cells. However, the unique combination of resistance and repair pathways make tardigrades and M. tardigradum in particular so highly stress resistant. PMID:22563243

  15. The Ever-Changing Brain: Cellular and Molecular Mechanisms for the Effects of Stressful Experiences

    PubMed Central

    McEwen, Bruce S.

    2011-01-01

    The adult brain is capable of considerable structural and functional plasticity and the study of hormone actions in brain has contributed to our understanding of this important phenomenon. In particular, stress and stress-related hormones such as glucocorticoids and mineralocorticoids play a key role in the ability of acute and chronic stress to cause reversible remodeling of neuronal connections in the hippocampus, prefrontal cortex and amygdala. To produce this plasticity, these hormones act by both genomic and non-genomic mechanisms together with ongoing, experience-driven neural activity mediated by excitatory amino acid neurotransmitters, neurotrophic factors such as brain derived neurotrophic factor (BDNF), extracellular molecules such as neural cell adhesion molecule (NCAM), neuropeptides such as corticotrophin releasing factor (CRF) and endocannabinoids. The result is a dynamic brain architecture that can be modified by experience. Under this view, the role of pharmaceutical agents, such as antidepressants, is to facilitate such plasticity that must also be guided by experiences. PMID:21898852

  16. Degradation of Human PDZ-Proteins by Human Alphapapillomaviruses Represents an Evolutionary Adaptation to a Novel Cellular Niche.

    PubMed

    Van Doorslaer, Koenraad; DeSalle, Rob; Einstein, Mark H; Burk, Robert D

    2015-06-01

    In order to complete their life cycle, papillomaviruses have evolved to manipulate a plethora of cellular pathways. The products of the human Alphapapillomavirus E6 proteins specifically interact with and target PDZ containing proteins for degradation. This viral phenotype has been suggested to play a role in viral oncogenesis. To analyze the association of HPV E6 mediated PDZ-protein degradation with cervical oncogenesis, a high-throughput cell culture assay was developed. Degradation of an epitope tagged human MAGI1 isoform was visualized by immunoblot. The correlation between HPV E6-induced degradation of hMAGI1 and epidemiologically determined HPV oncogenicity was evaluated using a Bayesian approach within a phylogenetic context. All tested oncogenic types degraded the PDZ-containing protein hMAGI1d; however, E6 proteins isolated from several related albeit non-oncogenic viral types were equally efficient at degrading hMAGI1. The relationship between both traits (oncogenicity and PDZ degradation potential) is best explained by a model in which the potential to degrade PDZ proteins was acquired prior to the oncogenic phenotype. This analysis provides evidence that the ancestor of both oncogenic and non-oncogenic HPVs acquired the potential to degrade human PDZ-containing proteins. This suggests that HPV E6 directed degradation of PDZ-proteins represents an ancient ecological niche adaptation. Phylogenetic modeling indicates that this phenotype is not specifically correlated with oncogenic risk, but may act as an enabling phenotype. The role of PDZ protein degradation in HPV fitness and oncogenesis needs to be interpreted in the context of Alphapapillomavirus evolution.

  17. Degradation of Human PDZ-Proteins by Human Alphapapillomaviruses Represents an Evolutionary Adaptation to a Novel Cellular Niche

    PubMed Central

    Van Doorslaer, Koenraad; DeSalle, Rob; Einstein, Mark H.; Burk, Robert D.

    2015-01-01

    In order to complete their life cycle, papillomaviruses have evolved to manipulate a plethora of cellular pathways. The products of the human Alphapapillomavirus E6 proteins specifically interact with and target PDZ containing proteins for degradation. This viral phenotype has been suggested to play a role in viral oncogenesis. To analyze the association of HPV E6 mediated PDZ-protein degradation with cervical oncogenesis, a high-throughput cell culture assay was developed. Degradation of an epitope tagged human MAGI1 isoform was visualized by immunoblot. The correlation between HPV E6-induced degradation of hMAGI1 and epidemiologically determined HPV oncogenicity was evaluated using a Bayesian approach within a phylogenetic context. All tested oncogenic types degraded the PDZ-containing protein hMAGI1d; however, E6 proteins isolated from several related albeit non-oncogenic viral types were equally efficient at degrading hMAGI1. The relationship between both traits (oncogenicity and PDZ degradation potential) is best explained by a model in which the potential to degrade PDZ proteins was acquired prior to the oncogenic phenotype. This analysis provides evidence that the ancestor of both oncogenic and non-oncogenic HPVs acquired the potential to degrade human PDZ-containing proteins. This suggests that HPV E6 directed degradation of PDZ-proteins represents an ancient ecological niche adaptation. Phylogenetic modeling indicates that this phenotype is not specifically correlated with oncogenic risk, but may act as an enabling phenotype. The role of PDZ protein degradation in HPV fitness and oncogenesis needs to be interpreted in the context of Alphapapillomavirus evolution. PMID:26086730

  18. The pathology of cellular anti-stress mechanisms: a new frontier.

    PubMed

    Macario, Alberto J L; Conway de Macario, Everly

    2004-12-01

    Exposure to stressors is an omnipresent variable for all living organisms, which have evolved anti-stress mechanisms to deal with the consequences of stress. The chaperoning systems are among these mechanisms, and their central components are the molecular chaperones that play important roles in protein biogenesis. Recent data suggest that failure of the chaperoning systems due to defective chaperones, for example, leads to pathology. Consequently, medical researchers and practitioners must now also consider the chaperoning systems, both as potentially major players in pathogenesis and as diagnostic-prognostic indicators.

  19. Tualang honey improves human corneal epithelial progenitor cell migration and cellular resistance to oxidative stress in vitro.

    PubMed

    Tan, Jun Jie; Azmi, Siti Maisura; Yong, Yoke Keong; Cheah, Hong Leong; Lim, Vuanghao; Sandai, Doblin; Shaharuddin, Bakiah

    2014-01-01

    Stem cells with enhanced resistance to oxidative stress after in vitro expansion have been shown to have improved engraftment and regenerative capacities. Such cells can be generated by preconditioning them with exposure to an antioxidant. In this study we evaluated the effects of Tualang honey (TH), an antioxidant-containing honey, on human corneal epithelial progenitor (HCEP) cells in culture. Cytotoxicity, gene expression, migration, and cellular resistance to oxidative stress were evaluated. Immunofluorescence staining revealed that HCEP cells were holoclonal and expressed epithelial stem cell marker p63 without corneal cytokeratin 3. Cell viability remained unchanged after cells were cultured with 0.004, 0.04, and 0.4% TH in the medium, but it was significantly reduced when the concentration was increased to 3.33%. Cell migration, tested using scratch migration assay, was significantly enhanced when cells were cultured with TH at 0.04% and 0.4%. We also found that TH has hydrogen peroxide (H2O2) scavenging ability, although a trace level of H2O2 was detected in the honey in its native form. Preconditioning HCEP cells with 0.4% TH for 48 h showed better survival following H2O2-induced oxidative stress at 50 µM than untreated group, with a significantly lower number of dead cells (15.3 ± 0.4%) were observed compared to the untreated population (20.5 ± 0.9%, p<0.01). Both TH and ascorbic acid improved HCEP viability following induction of 100 µM H2O2, but the benefit was greater with TH treatment than with ascorbic acid. However, no significant advantage was demonstrated using 5-hydroxymethyl-2-furancarboxaldehyde, a compound that was found abundant in TH using GC/MS analysis. This suggests that the cellular anti-oxidative capacity in HCEP cells was augmented by native TH and was attributed to its antioxidant properties. In conclusion, TH possesses antioxidant properties and can improve cell migration and cellular resistance to oxidative stress in HCEP cells

  20. A biphasic endothelial stress-survival mechanism regulates the cellular response to vascular endothelial growth factor A

    SciTech Connect

    Latham, Antony M.; Odell, Adam F.; Mughal, Nadeem A.; Issitt, Theo; Ulyatt, Clare; Walker, John H.; Homer-Vanniasinkam, Shervanthi; Ponnambalam, Sreenivasan

    2012-11-01

    Vascular endothelial growth factor A (VEGF-A) is an essential cytokine that regulates endothelial function and angiogenesis. VEGF-A binding to endothelial receptor tyrosine kinases such as VEGFR1 and VEGFR2 triggers cellular responses including survival, proliferation and new blood vessel sprouting. Increased levels of a soluble VEGFR1 splice variant (sFlt-1) correlate with endothelial dysfunction in pathologies such as pre-eclampsia; however the cellular mechanism(s) underlying the regulation and function of sFlt-1 are unclear. Here, we demonstrate the existence of a biphasic stress response in endothelial cells, using serum deprivation as a model of endothelial dysfunction. The early phase is characterized by a high VEGFR2:sFlt-1 ratio, which is reversed in the late phase. A functional consequence is a short-term increase in VEGF-A-stimulated intracellular signaling. In the late phase, sFlt-1 is secreted and deposited at the extracellular matrix. We hypothesized that under stress, increased endothelial sFlt-1 levels reduce VEGF-A bioavailability: VEGF-A treatment induces sFlt-1 expression at the cell surface and VEGF-A silencing inhibits sFlt-1 anchorage to the extracellular matrix. Treatment with recombinant sFlt-1 inhibits VEGF-A-stimulated in vitro angiogenesis and sFlt-1 silencing enhances this process. In this response, increased VEGFR2 levels are regulated by the phosphatidylinositol-3-kinase and PKB/Akt signaling pathways and increased sFlt-1 levels by the ERK1/2 signaling pathway. We conclude that during serum withdrawal, cellular sensing of environmental stress modulates sFlt-1 and VEGFR2 levels, regulating VEGF-A bioavailability and ensuring cell survival takes precedence over cell proliferation and migration. These findings may underpin an important mechanism contributing to endothelial dysfunction in pathological states. -- Highlights: Black-Right-Pointing-Pointer Endothelial cells mount a stress response under conditions of low serum. Black

  1. Tualang honey improves human corneal epithelial progenitor cell migration and cellular resistance to oxidative stress in vitro.

    PubMed

    Tan, Jun Jie; Azmi, Siti Maisura; Yong, Yoke Keong; Cheah, Hong Leong; Lim, Vuanghao; Sandai, Doblin; Shaharuddin, Bakiah

    2014-01-01

    Stem cells with enhanced resistance to oxidative stress after in vitro expansion have been shown to have improved engraftment and regenerative capacities. Such cells can be generated by preconditioning them with exposure to an antioxidant. In this study we evaluated the effects of Tualang honey (TH), an antioxidant-containing honey, on human corneal epithelial progenitor (HCEP) cells in culture. Cytotoxicity, gene expression, migration, and cellular resistance to oxidative stress were evaluated. Immunofluorescence staining revealed that HCEP cells were holoclonal and expressed epithelial stem cell marker p63 without corneal cytokeratin 3. Cell viability remained unchanged after cells were cultured with 0.004, 0.04, and 0.4% TH in the medium, but it was significantly reduced when the concentration was increased to 3.33%. Cell migration, tested using scratch migration assay, was significantly enhanced when cells were cultured with TH at 0.04% and 0.4%. We also found that TH has hydrogen peroxide (H2O2) scavenging ability, although a trace level of H2O2 was detected in the honey in its native form. Preconditioning HCEP cells with 0.4% TH for 48 h showed better survival following H2O2-induced oxidative stress at 50 µM than untreated group, with a significantly lower number of dead cells (15.3 ± 0.4%) were observed compared to the untreated population (20.5 ± 0.9%, p<0.01). Both TH and ascorbic acid improved HCEP viability following induction of 100 µM H2O2, but the benefit was greater with TH treatment than with ascorbic acid. However, no significant advantage was demonstrated using 5-hydroxymethyl-2-furancarboxaldehyde, a compound that was found abundant in TH using GC/MS analysis. This suggests that the cellular anti-oxidative capacity in HCEP cells was augmented by native TH and was attributed to its antioxidant properties. In conclusion, TH possesses antioxidant properties and can improve cell migration and cellular resistance to oxidative stress in HCEP cells

  2. Tualang Honey Improves Human Corneal Epithelial Progenitor Cell Migration and Cellular Resistance to Oxidative Stress In Vitro

    PubMed Central

    Tan, Jun Jie; Azmi, Siti Maisura; Yong, Yoke Keong; Cheah, Hong Leong; Lim, Vuanghao; Sandai, Doblin; Shaharuddin, Bakiah

    2014-01-01

    Stem cells with enhanced resistance to oxidative stress after in vitro expansion have been shown to have improved engraftment and regenerative capacities. Such cells can be generated by preconditioning them with exposure to an antioxidant. In this study we evaluated the effects of Tualang honey (TH), an antioxidant-containing honey, on human corneal epithelial progenitor (HCEP) cells in culture. Cytotoxicity, gene expression, migration, and cellular resistance to oxidative stress were evaluated. Immunofluorescence staining revealed that HCEP cells were holoclonal and expressed epithelial stem cell marker p63 without corneal cytokeratin 3. Cell viability remained unchanged after cells were cultured with 0.004, 0.04, and 0.4% TH in the medium, but it was significantly reduced when the concentration was increased to 3.33%. Cell migration, tested using scratch migration assay, was significantly enhanced when cells were cultured with TH at 0.04% and 0.4%. We also found that TH has hydrogen peroxide (H2O2) scavenging ability, although a trace level of H2O2 was detected in the honey in its native form. Preconditioning HCEP cells with 0.4% TH for 48 h showed better survival following H2O2-induced oxidative stress at 50 µM than untreated group, with a significantly lower number of dead cells (15.3±0.4%) were observed compared to the untreated population (20.5±0.9%, p<0.01). Both TH and ascorbic acid improved HCEP viability following induction of 100 µM H2O2, but the benefit was greater with TH treatment than with ascorbic acid. However, no significant advantage was demonstrated using 5-hydroxymethyl-2-furancarboxaldehyde, a compound that was found abundant in TH using GC/MS analysis. This suggests that the cellular anti-oxidative capacity in HCEP cells was augmented by native TH and was attributed to its antioxidant properties. In conclusion, TH possesses antioxidant properties and can improve cell migration and cellular resistance to oxidative stress in HCEP cells in

  3. Adapting to suprasegmental lexical stress errors in foreign-accented speech.

    PubMed

    Reinisch, Eva; Weber, Andrea

    2012-08-01

    Can native listeners rapidly adapt to suprasegmental mispronunciations in foreign-accented speech? To address this question, an exposure-test paradigm was used to test whether Dutch listeners can improve their understanding of non-canonical lexical stress in Hungarian-accented Dutch. During exposure, one group of listeners heard a Dutch story with only initially stressed words, whereas another group also heard 28 words with canonical second-syllable stress (e.g., EEKhorn, "squirrel" was replaced by koNIJN "rabbit"; capitals indicate stress). The 28 words, however, were non-canonically marked by the Hungarian speaker with high pitch and amplitude on the initial syllable, both of which are stress cues in Dutch. After exposure, listeners' eye movements were tracked to Dutch target-competitor pairs with segmental overlap but different stress patterns, while they listened to new words from the same Hungarian speaker (e.g., HERsens, herSTEL, "brain," "recovery"). Listeners who had previously heard non-canonically produced words distinguished target-competitor pairs better than listeners who had only been exposed to Hungarian accent with canonical forms of lexical stress. Even a short exposure thus allows listeners to tune into speaker-specific realizations of words' suprasegmental make-up, and use this information for word recognition.

  4. Epigallocatechin-3-gallate prevents oxidative stress-induced cellular senescence in human mesenchymal stem cells via Nrf2

    PubMed Central

    Shin, Joo-Hyun; Jeon, Hyo-Jin; Park, Jihye; Chang, Mi-Sook

    2016-01-01

    Human mesenchymal stem cells (hMSCs) have great therapeutic potential due to their high plasticity, immune privileged status and ease of preparation, as well as a lack of ethical barriers to their use. However, their ultimate usefulness is limited by cellular senescence occurring secondary to increased cellular levels of reactive oxygen species (ROS) during their propagation in culture. The underlying molecular mechanisms responsible for this process in hMSCs remain unclear. An antioxidant polyphenol epigallocatechin-3-gallate (EGCG) found in green tea, is known to activate nuclear factor-erythroid 2-related factor 2 (Nrf2), a master transcriptional regulator of antioxidant genes. Herein, we examined the EGCG-mediated antioxidant mechanism in hMSCs exposed to ROS which involves Nrf2 activation. The H2O2-exposed hMSCs showed cellular senescence with significantly increased protein levels of acetyl-p53 and p21 in comparison with the untreated hMSCs, and these effects were prevented by pre-treatment with EGCG. By contrast, in Nrf2-knockdown hMSCs, EGCG lost its antioxidant effect, exhibiting high levels of acetyl-p53 and p21 following EGCG pre-treatment and H2O2 exposure. This indicates that Nrf2 and p53/p21 may be involved in the anti-senescent effect of EGCG in hMSCs. Taken together, these findings indicate the important role of EGCG in preventing oxidative stress-induced cellular senescence in hMSCs through Nrf2 activation, which has applications for the massive production of more suitable hMSCs for cell-based therapy. PMID:27498709

  5. Epigallocatechin-3-gallate prevents oxidative stress-induced cellular senescence in human mesenchymal stem cells via Nrf2.

    PubMed

    Shin, Joo-Hyun; Jeon, Hyo-Jin; Park, Jihye; Chang, Mi-Sook

    2016-10-01

    Human mesenchymal stem cells (hMSCs) have great therapeutic potential due to their high plasticity, immune privileged status and ease of preparation, as well as a lack of ethical barriers to their use. However, their ultimate usefulness is limited by cellular senescence occurring secondary to increased cellular levels of reactive oxygen species (ROS) during their propagation in culture. The underlying molecular mechanisms responsible for this process in hMSCs remain unclear. An antioxidant polyphenol epigallocatechin-3-gallate (EGCG) found in green tea, is known to activate nuclear factor-erythroid 2-related factor 2 (Nrf2), a master transcriptional regulator of antioxidant genes. Herein, we examined the EGCG-mediated antioxidant mechanism in hMSCs exposed to ROS which involves Nrf2 activation. The H2O2-exposed hMSCs showed cellular senescence with significantly increased protein levels of acetyl-p53 and p21 in comparison with the untreated hMSCs, and these effects were prevented by pre-treatment with EGCG. By contrast, in Nrf2-knockdown hMSCs, EGCG lost its antioxidant effect, exhibiting high levels of acetyl-p53 and p21 following EGCG pre-treatment and H2O2 exposure. This indicates that Nrf2 and p53/p21 may be involved in the anti‑senescent effect of EGCG in hMSCs. Taken together, these findings indicate the important role of EGCG in preventing oxidative stress-induced cellular senescence in hMSCs through Nrf2 activation, which has applications for the massive production of more suitable hMSCs for cell-based therapy. PMID:27498709

  6. Introduction to the Special Issue: Electrons, water and rice fields: plant response and adaptation to flooding and submergence stress.

    PubMed

    Jackson, Michael B; Ismail, Abdelbagi M

    2015-01-01

    Flooding and submergence impose widespread and unpredictable environmental stresses on plants and depress the yield of most food crops. The problem is increasing, as is the need for greater food production from an expanding human population. The incompatibility of these opposing trends creates an urgent need to improve crop resilience to flooding in its multifarious forms. This Special Issue brings together research findings from diverse plant species to address the challenge of enhancing adaptation to flooding in major crops and learning from tactics of wetland plants. Here we provide an overview of the articles, with attempts to summarize how recent research results are being used to produce varieties of crop plants with greater flooding tolerance, notably in rice. The progress is considerable and based firmly on molecular and physiological research findings. The article also sets out how next-generation improvements in crop tolerance are likely to be achieved and highlights some of the new research that is guiding the development of improved varieties. The potential for non-model species from the indigenous riparian flora to uncover and explain novel adaptive mechanisms of flooding tolerance that may be introduced into crop species is also explored. The article begins by considering how, despite the essential role of water in sustaining plant life, floodwater can threaten its existence unless appropriate adaptations are present. Central to resolving the contradiction is the distinction between the essential role of cellular water as the source of electrons and protons used to build and operate the plant after combining with CO2 and O2 and the damaging role of extracellular water that, in excess, interferes with the union of these gases with photosynthetic or respiratory electrons and protons. PMID:26174144

  7. Introduction to the Special Issue: Electrons, water and rice fields: plant response and adaptation to flooding and submergence stress

    PubMed Central

    Jackson, Michael B.; Ismail, Abdelbagi M.

    2015-01-01

    Flooding and submergence impose widespread and unpredictable environmental stresses on plants and depress the yield of most food crops. The problem is increasing, as is the need for greater food production from an expanding human population. The incompatibility of these opposing trends creates an urgent need to improve crop resilience to flooding in its multifarious forms. This Special Issue brings together research findings from diverse plant species to address the challenge of enhancing adaptation to flooding in major crops and learning from tactics of wetland plants. Here we provide an overview of the articles, with attempts to summarize how recent research results are being used to produce varieties of crop plants with greater flooding tolerance, notably in rice. The progress is considerable and based firmly on molecular and physiological research findings. The article also sets out how next-generation improvements in crop tolerance are likely to be achieved and highlights some of the new research that is guiding the development of improved varieties. The potential for non-model species from the indigenous riparian flora to uncover and explain novel adaptive mechanisms of flooding tolerance that may be introduced into crop species is also explored. The article begins by considering how, despite the essential role of water in sustaining plant life, floodwater can threaten its existence unless appropriate adaptations are present. Central to resolving the contradiction is the distinction between the essential role of cellular water as the source of electrons and protons used to build and operate the plant after combining with CO2 and O2 and the damaging role of extracellular water that, in excess, interferes with the union of these gases with photosynthetic or respiratory electrons and protons. PMID:26174144

  8. [Assessing work-related stress: an Italian adaptation of the HSE Management Standards Work-Related Stress Indicator Tool].

    PubMed

    Marcatto, Francesco; D'Errico, Giuseppe; Di Blas, Lisa; Ferrante, Donatella

    2011-01-01

    The aim of this paper is to present a preliminary validation of an Italian adaptation of the HSE Management Standards Work-Related Stress Indicator Tool (IT), an instrument for assessing work-related stress at the organizational level, originally developed in Britain by the Health and Safety Executive. A scale that assesses the physical work environment has been added to the original version of the IT. 190 employees of the University of Trieste have been enrolled in the study. A confirmatory analysis showed a satisfactory fit of the eight-factors structure of the instrument. Further psychometric analysis showed adequate internal consistency of the IT scales and good criterion validity, as evidenced by the correlations with self-perception of stress, work satisfaction and motivation. In conclusion, the Indicator Tool proved to be a valid and reliable instrument for the assessment of work-related stress at the organizational level, and it is also compatible with the instructions provided by the Ministry of Labour and Social Policy (Circular letter 18/11/2010).

  9. Mapping the Hsp90 Genetic Network Reveals Ergosterol Biosynthesis and Phosphatidylinositol-4-Kinase Signaling as Core Circuitry Governing Cellular Stress

    PubMed Central

    O’Meara, Teresa R.; Valaei, Seyedeh Fereshteh; Diezmann, Stephanie; Cowen, Leah E.

    2016-01-01

    Candida albicans is a leading human fungal pathogen that causes life-threatening systemic infections. A key regulator of C. albicans stress response, drug resistance, morphogenesis, and virulence is the molecular chaperone Hsp90. Targeting Hsp90 provides a powerful strategy to treat fungal infections, however, the therapeutic utility of current inhibitors is compromised by toxicity due to inhibition of host Hsp90. To identify components of the Hsp90-dependent circuitry governing virulence and drug resistance that are sufficiently divergent for selective targeting in the pathogen, we pioneered chemical genomic profiling of the Hsp90 genetic network in C. albicans. Here, we screen mutant collections covering ~10% of the genome for hypersensitivity to Hsp90 inhibition in multiple environmental conditions. We identify 158 HSP90 chemical genetic interactors, most of which are important for growth only in specific environments. We discovered that the sterol C-22 desaturase gene ERG5 and the phosphatidylinositol-4-kinase (PI4K) gene STT4 are HSP90 genetic interactors under multiple conditions, suggesting a function upstream of Hsp90. By systematic analysis of the ergosterol biosynthetic cascade, we demonstrate that defects in ergosterol biosynthesis induce cellular stress that overwhelms Hsp90’s functional capacity. By analysis of the phosphatidylinositol pathway, we demonstrate that there is a genetic interaction between the PI4K Stt4 and Hsp90. We also establish that Stt4 is required for normal actin polarization through regulation of Wal1, and suggest a model in which defects in actin remodeling induces stress that creates a cellular demand for Hsp90 that exceeds its functional capacity. Consistent with this model, actin inhibitors are synergistic with Hsp90 inhibitors. We highlight new connections between Hsp90 and virulence traits, demonstrating that Erg5 and Stt4 enable activation of macrophage pyroptosis. This work uncovers novel circuitry regulating Hsp90

  10. Physiological, cellular and biochemical thermal stress response of intertidal shrimps with different vertical distributions: Palaemon elegans and Palaemon serratus.

    PubMed

    Madeira, Diana; Mendonça, Vanessa; Dias, Marta; Roma, Joana; Costa, Pedro M; Larguinho, Miguel; Vinagre, Catarina; Diniz, Mário S

    2015-05-01

    The ability to cope with high temperature variations is a critical factor in intertidal communities. Two species of intertidal rocky shore shrimps (Palaemon sp.) with different vertical distributions were collected from the Portuguese coast in order to test if they were differentially sensitive to thermal stress. Three distinct levels of biological organization (organismal, biochemical, and cellular) were surveyed. The shrimp were exposed to a constant rate of temperature increase of 1°C x h(-1), starting at 20°C until reaching the CTMax (critical thermal maximum). During heat stress, two biomarkers of protein damage were quantified in the muscle via enzyme-linked immunosorbent assays: heat shock proteins HSP70 (hsp70/hsc70) and total ubiquitin. Muscle histopathological alterations caused by temperature were also evaluated. CTMax values were not significantly different between the congeners (P. elegans 33.4 ± 0.5 °C; P. serratus 33.0 ± 0.5 °C). Biomarker levels did not increase along the temperature trial, but P. elegans (higher intertidal) showed higher amounts of HSP70 and total ubiquitin than P. serratus (lower intertidal). HSP70 and total ubiquitin levels showed a positive significant correlation in both species, suggesting that their association is important in thermal tolerance. Histopathological observations of muscle tissue in P. serratus showed no gross alterations due to temperature but did show localized atrophy of muscle fibers at CTMax. In P. elegans, alterations occurred at a larger scale, showing multiple foci of atrophic muscular fascicles caused by necrotic or autolytic processes. In conclusion, Palaemon congeners displayed different responses to stress at a cellular level, with P. elegans having greater biomarker levels and histopathological alterations. PMID:25582544

  11. Environmental adaptability and stress tolerance of Laribacter hongkongensis: a genome-wide analysis

    PubMed Central

    2011-01-01

    Background Laribacter hongkongensis is associated with community-acquired gastroenteritis and traveler's diarrhea and it can reside in human, fish, frogs and water. In this study, we performed an in-depth annotation of the genes in its genome related to adaptation to the various environmental niches. Results L. hongkongensis possessed genes for DNA repair and recombination, basal transcription, alternative σ-factors and 109 putative transcription factors, allowing DNA repair and global changes in gene expression in response to different environmental stresses. For acid stress, it possessed a urease gene cassette and two arc gene clusters. For alkaline stress, it possessed six CDSs for transporters of the monovalent cation/proton antiporter-2 and NhaC Na+:H+ antiporter families. For heavy metals acquisition and tolerance, it possessed CDSs for iron and nickel transport and efflux pumps for other metals. For temperature stress, it possessed genes related to chaperones and chaperonins, heat shock proteins and cold shock proteins. For osmotic stress, 25 CDSs were observed, mostly related to regulators for potassium ion, proline and glutamate transport. For oxidative and UV light stress, genes for oxidant-resistant dehydratase, superoxide scavenging, hydrogen peroxide scavenging, exclusion and export of redox-cycling antibiotics, redox balancing, DNA repair, reduction of disulfide bonds, limitation of iron availability and reduction of iron-sulfur clusters are present. For starvation, it possessed phosphorus and, despite being asaccharolytic, carbon starvation-related CDSs. Conclusions The L. hongkongensis genome possessed a high variety of genes for adaptation to acid, alkaline, temperature, osmotic, oxidative, UV light and starvation stresses and acquisition of and tolerance to heavy metals. PMID:21711489

  12. Sexually dimorphic adaptations in basal maternal stress physiology during pregnancy and implications for fetal development.

    PubMed

    Giesbrecht, Gerald F; Campbell, Tavis; Letourneau, Nicole

    2015-06-01

    There is clear evidence of reciprocal exchange of information between the mother and fetus during pregnancy but the majority of research in this area has focussed on the fetus as a recipient of signals from the mother. Specifically, physiological signals produced by the maternal stress systems in response to the environment may carry valuable information about the state of the external world. Prenatal stress produces sex-specific adaptations within fetal physiology that have pervasive and long-lasting effects on development. Little is known, however, about the effects of sex-specific fetal signals on maternal adaptations to pregnancy. The current prospective study examined sexually dimorphic adaptations within maternal stress physiology, including the hypothalamic-adrenal-pituitary (HPA) axis and the autonomic nervous system (ANS) and associations with fetal growth. Using diurnal suites of saliva collected in early and late pregnancy, we demonstrate that basal cortisol and salivary alpha-amylase (sAA) differ by fetal sex. Women carrying female fetuses displayed greater autonomic arousal and flatter (but more elevated) diurnal cortisol patterns compared to women carrying males. Women with flatter daytime cortisol trajectories and more blunted sAA awakening responses also had infants with lower birth weight. These maternal adaptations are consistent with sexually dimorphic fetal developmental/evolutionary adaptation strategies that favor growth for males and conservation of resources for females. The findings provide new evidence to suggest that the fetus contributes to maternal HPA axis and ANS regulation during pregnancy and that these systems also contribute to the regulation of fetal growth.

  13. Sexually dimorphic adaptations in basal maternal stress physiology during pregnancy and implications for fetal development.

    PubMed

    Giesbrecht, Gerald F; Campbell, Tavis; Letourneau, Nicole

    2015-06-01

    There is clear evidence of reciprocal exchange of information between the mother and fetus during pregnancy but the majority of research in this area has focussed on the fetus as a recipient of signals from the mother. Specifically, physiological signals produced by the maternal stress systems in response to the environment may carry valuable information about the state of the external world. Prenatal stress produces sex-specific adaptations within fetal physiology that have pervasive and long-lasting effects on development. Little is known, however, about the effects of sex-specific fetal signals on maternal adaptations to pregnancy. The current prospective study examined sexually dimorphic adaptations within maternal stress physiology, including the hypothalamic-adrenal-pituitary (HPA) axis and the autonomic nervous system (ANS) and associations with fetal growth. Using diurnal suites of saliva collected in early and late pregnancy, we demonstrate that basal cortisol and salivary alpha-amylase (sAA) differ by fetal sex. Women carrying female fetuses displayed greater autonomic arousal and flatter (but more elevated) diurnal cortisol patterns compared to women carrying males. Women with flatter daytime cortisol trajectories and more blunted sAA awakening responses also had infants with lower birth weight. These maternal adaptations are consistent with sexually dimorphic fetal developmental/evolutionary adaptation strategies that favor growth for males and conservation of resources for females. The findings provide new evidence to suggest that the fetus contributes to maternal HPA axis and ANS regulation during pregnancy and that these systems also contribute to the regulation of fetal growth. PMID:25827961

  14. Adaptive response of vascular endothelial cells to an acute increase in shear stress frequency

    PubMed Central

    Zhang, Ji

    2013-01-01

    Local shear stress sensed by arterial endothelial cells is occasionally altered by changes in global hemodynamic parameters, e.g., heart rate and blood flow rate, as a result of normal physiological events, such as exercise. In a recently study (41), we demonstrated that during the adaptive response to increased shear magnitude, porcine endothelial cells exhibited an unique phenotype featuring a transient increase in permeability and the upregulation of a set of anti-inflammatory and antioxidative genes. In the present study, we characterize the adaptive response of these cells to an increase in shear frequency, another important hemodynamic parameter with implications in atherogenesis. Endothelial cells were preconditioned by a basal-level sinusoidal shear stress of 15 ± 15 dyn/cm2 at 1 Hz, and the frequency was then elevated to 2 Hz. Endothelial permeability increased slowly after the frequency step-up, but the increase was relatively small. Using microarrays, we identified 37 genes that are sensitive to the frequency step-up. The acute increase in shear frequency upregulates a set of cell-cycle regulation and angiogenesis-related genes. The overall adaptive response to the increased frequency is distinctly different from that to a magnitude step-up. However, consistent with the previous study, our data support the notion that endothelial function during an adaptive response is different than that of fully adapted endothelial cells. Our studies may also provide insights into the beneficial effects of exercise on vascular health: transient increases in frequency may facilitate endothelial repair, whereas similar increases in shear magnitude may keep excessive inflammation and oxidative stress at bay. PMID:23851277

  15. Background adaptation and water acidification affect pigmentation and stress physiology of tilapia, Oreochromis mossambicus.

    PubMed

    van der Salm, A L; Spanings, F A T; Gresnigt, R; Bonga, S E Wendelaar; Flik, G

    2005-10-01

    The ability to adjust skin darkness to the background is a common phenomenon in fish. The hormone alpha-melanophore-stimulating hormone (alphaMSH) enhances skin darkening. In Mozambique tilapia, Oreochromis mossambicus L., alphaMSH acts as a corticotropic hormone during adaptation to water with a low pH, in addition to its role in skin colouration. In the current study, we investigated the responses of this fish to these two environmental challenges when it is exposed to both simultaneously. The skin darkening of tilapia on a black background and the lightening on grey and white backgrounds are compromised in water with a low pH, indicating that the two vastly different processes both rely on alphaMSH-regulatory mechanisms. If the water is acidified after 25 days of undisturbed background adaptation, fish showed a transient pigmentation change but recovered after two days and continued the adaptation of their skin darkness to match the background. Black backgrounds are experienced by tilapia as more stressful than grey or white backgrounds both in neutral and in low pH water. A decrease of water pH from 7.8 to 4.5 applied over a two-day period was not experienced as stressful when combined with background adaptation, based on unchanged plasma pH and plasma alphaMSH, and Na levels. However, when water pH was lowered after 25 days of undisturbed background adaptation, particularly alphaMSH levels increased chronically. In these fish, plasma pH and Na levels had decreased, indicating a reduced capacity to maintain ion-homeostasis, implicating that the fish indeed experience stress. We conclude that simultaneous exposure to these two types of stressor has a lower impact on the physiology of tilapia than subsequent exposure to the stressors.

  16. Interactions of the p53 protein family in cellular stress response in gastrointestinal tumors

    PubMed Central

    Vilgelm, Anna E.; Washington, Mary K.; Wei, Jinxiong; Chen, Heidi; Prassolov, Vladimir S.; Zaika, Alexander I.

    2010-01-01

    p53, p63 and p73 are members of the p53 protein family involved in regulation of cell cycle, apoptosis, differentiation and other critical cellular processes. Here we investigated the contribution of the entire p53 family in chemotherapeutic drug response in gastrointestinal tumors. Real-time PCR and immunohistochemistry revealed complexity and variability of expression profiles of the p53 protein family. Using colon and esophageal cancer cells, we found that the integral transcription activity of the entire p53 family, as measured by the reporter analysis, associated with response to drug treatment in studied cells. We also found that p53 and p73, as well as p63 and p73, bind simultaneously to the promoters of p53 target genes. Taken together, our results support the view that the p53 protein family functions as an interacting network of proteins and show that cellular responses to chemotherapeutic drug treatment are determined by the total activity of the entire p53 family, rather than p53 alone. PMID:20197393

  17. Interactions of the p53 protein family in cellular stress response in gastrointestinal tumors.

    PubMed

    Vilgelm, Anna E; Washington, Mary K; Wei, Jinxiong; Chen, Heidi; Prassolov, Vladimir S; Zaika, Alexander I

    2010-03-01

    p53, p63, and p73 are members of the p53 protein family involved in regulation of cell cycle, apoptosis, differentiation, and other critical cellular processes. Here, we investigated the contribution of the entire p53 family in chemotherapeutic drug response in gastrointestinal tumors. Real-time PCR and immunohistochemistry revealed complexity and variability of expression profiles of the p53 protein family. Using colon and esophageal cancer cells, we found that the integral transcription activity of the entire p53 family, as measured by the reporter analysis, associated with response to drug treatment in studied cells. We also found that p53 and p73, as well as p63 and p73, bind simultaneously to the promoters of p53 target genes. Taken together, our results support the view that the p53 protein family functions as an interacting network of proteins and show that cellular responses to chemotherapeutic drug treatment are determined by the total activity of the entire p53 family rather than p53 alone.

  18. The use of cellular diagnostics for identifying sub-lethal stress in reef corals.

    PubMed

    Downs, Craig A; Ostrander, Gary K; Rougee, Luc; Rongo, Teina; Knutson, Sean; Williams, David E; Mendiola, Wendy; Holbrook, Jackalyn; Richmond, Robert H

    2012-04-01

    Coral reefs throughout the world are exhibiting documented declines in coral cover and species diversity, which have been linked to anthropogenic stressors including land-based sources of pollution. Reductions in coastal water and substratum quality are affecting coral survivorship, reproduction and recruitment, and hence, the persistence of coral reefs. One major obstacle in effectively addressing these declines is the lack of tools that can identify cause-and-effect relationships between stressors and specific coral reef losses, while a second problem is the inability to measure the efficacy of mitigation efforts in a timely fashion. We examined corals from six coral reefs on Guam, Mariana Islands, which were being affected by different environmental stressors (e.g. PAH's, pesticides, PCB's and sedimentation). Cellular diagnostic analysis differentiated the cellular-physiological condition of these corals. Examination of protein expression provided insight into their homeostatic responses to chemical and physical stressors in exposed corals prior to outright mortality, providing improved opportunities for developing locally-based management responses. This approach adds critically needed tools for addressing the effects of multiple stressors on corals and will allow researchers to move beyond present assessment and monitoring techniques that simply document the loss of coral abundance and diversity.

  19. Proteotoxic stress and ageing triggers the loss of redox homeostasis across cellular compartments.

    PubMed

    Kirstein, Janine; Morito, Daisuke; Kakihana, Taichi; Sugihara, Munechika; Minnen, Anita; Hipp, Mark S; Nussbaum-Krammer, Carmen; Kasturi, Prasad; Hartl, F Ulrich; Nagata, Kazuhiro; Morimoto, Richard I

    2015-09-14

    The cellular proteostasis network integrates the protein folding and clearance machineries in multiple sub-cellular compartments of the eukaryotic cell. The endoplasmic reticulum (ER) is the site of synthesis and folding of membrane and secretory proteins. A distinctive feature of the ER is its tightly controlled redox homeostasis necessary for the formation of inter- and intra-molecular disulphide bonds. Employing genetically encoded in vivo sensors reporting on the redox state in an organelle-specific manner, we show in the nematode Caenorhabditis elegans that the redox state of the ER is subject to profound changes during worm lifetime. In young animals, the ER is oxidizing and this shifts towards reducing conditions during ageing, whereas in the cytosol the redox state becomes more oxidizing with age. Likewise, the redox state in the cytosol and the ER change in an opposing manner in response to proteotoxic challenges in C. elegans and in HeLa cells revealing conservation of redox homeostasis. Moreover, we show that organelle redox homeostasis is regulated across tissues within C. elegans providing a new measure for organismal fitness.

  20. The beneficial role of proteolysis in skeletal muscle growth and stress adaptation.

    PubMed

    Bell, Ryan A V; Al-Khalaf, Mohammad; Megeney, Lynn A

    2016-01-01

    Muscle atrophy derived from excessive proteolysis is a hallmark of numerous disease conditions. Accordingly, the negative consequences of skeletal muscle protein breakdown often overshadow the critical nature of proteolytic systems in maintaining normal cellular function. Here, we discuss the major cellular proteolysis machinery-the ubiquitin/proteosome system, the autophagy/lysosomal system, and caspase-mediated protein cleavage-and the critical role of these protein machines in establishing and preserving muscle health. We examine how ordered degradation modifies (1) the spatiotemporal expression of myogenic regulatory factors during myoblast differentiation, (2) membrane fusion during myotube formation, (3) sarcomere remodeling and muscle growth following physical stress, and (4) energy homeostasis during nutrient deprivation. Finally, we review the origin and etiology of a number of myopathies and how these devastating conditions arise from inborn errors in proteolysis.

  1. The Effect of Cellular Stress on T and B Cell Memory Pathways in Immunized and Unimmunized BALB/c Mice.

    PubMed

    Wang, Yufei; Rahman, Durdana; Mistry, Mukesh; Lehner, Thomas

    2016-09-23

    Immunological memory is a fundamental function of vaccination. The antigenic breakdown products of the vaccine may not persist, and undefined tonic stimulation has been proposed to maintain the specific memory. We have suggested that cellular stress agents to which the immune cells are constantly exposed may be responsible for tonic stimulation. Here we have studied four stress agents: sodium arsenite, an oxidative agent; Gramicidin, eliciting K(+) efflux and calcium influx; dithiocarbamate, a metal ionophore; and aluminum hydroxide (alum), an immunological adjuvant. The aims of this study are to extend these investigations to T and B cell responses of unimmunized and ovalbumin (OVA)-immunized BALB/c mice, and furthermore, to ascertain whether stress is involved in optimal expression of memory B cells, as demonstrated in CD4(+) T cells. Examination of the homeostatic pathway defined by IL-15/IL-15R (IL-15 receptor) interaction and the inflammasome pathway defined by the IL-1-IL-1R interaction between dendritic cells (DC) and CD4(+) T cells suggests that both pathways are involved in the development of optimal expression of CD4(+)CD45RO(+) memory T cells in unimmunized and OVA-immunized BALB/c mice. Furthermore, significant direct correlation was found between CD4(+)CD44(+) memory T cells and both IL-15 of the homeostatic and IL-1β of the inflammasome pathways. However, CD19(+)CD27(+) memory B cells in vivo seem to utilize only the IL-15/IL-15R homeostatic pathway, although the proliferative responses are enhanced by the stress agents. Altogether, stress agents may up-regulate unimmunized and OVA-immunized CD4(+)CD44(+) memory T cells by the homeostatic and inflammasome pathways. However, the CD19(+)CD27(+) memory B cells utilize only the homeostatic pathway. PMID:27502276

  2. The Effect of Cellular Stress on T and B Cell Memory Pathways in Immunized and Unimmunized BALB/c Mice*

    PubMed Central

    Wang, Yufei; Rahman, Durdana; Mistry, Mukesh; Lehner, Thomas

    2016-01-01

    Immunological memory is a fundamental function of vaccination. The antigenic breakdown products of the vaccine may not persist, and undefined tonic stimulation has been proposed to maintain the specific memory. We have suggested that cellular stress agents to which the immune cells are constantly exposed may be responsible for tonic stimulation. Here we have studied four stress agents: sodium arsenite, an oxidative agent; Gramicidin, eliciting K+ efflux and calcium influx; dithiocarbamate, a metal ionophore; and aluminum hydroxide (alum), an immunological adjuvant. The aims of this study are to extend these investigations to T and B cell responses of unimmunized and ovalbumin (OVA)-immunized BALB/c mice, and furthermore, to ascertain whether stress is involved in optimal expression of memory B cells, as demonstrated in CD4+ T cells. Examination of the homeostatic pathway defined by IL-15/IL-15R (IL-15 receptor) interaction and the inflammasome pathway defined by the IL-1-IL-1R interaction between dendritic cells (DC) and CD4+ T cells suggests that both pathways are involved in the development of optimal expression of CD4+CD45RO+ memory T cells in unimmunized and OVA-immunized BALB/c mice. Furthermore, significant direct correlation was found between CD4+CD44+ memory T cells and both IL-15 of the homeostatic and IL-1β of the inflammasome pathways. However, CD19+CD27+ memory B cells in vivo seem to utilize only the IL-15/IL-15R homeostatic pathway, although the proliferative responses are enhanced by the stress agents. Altogether, stress agents may up-regulate unimmunized and OVA-immunized CD4+CD44+ memory T cells by the homeostatic and inflammasome pathways. However, the CD19+CD27+ memory B cells utilize only the homeostatic pathway. PMID:27502276

  3. Network Modeling Reveals Cross Talk of MAP Kinases during Adaptation to Caspofungin Stress in Aspergillus fumigatus

    PubMed Central

    Baldin, Clara; Weber, Jakob; Guthke, Reinhard; Kniemeyer, Olaf; Brakhage, Axel A.; Linde, Jörg

    2015-01-01

    Mitogen activated protein kinases (MAPKs) are highly conserved in eukaryotic organisms. In pathogenic fungi, their activities were assigned to different physiological functions including drug adaptation and resistance. Aspergillus fumigatus is a human pathogenic fungus, which causes life-threatening invasive infections. Therapeutic options against invasive mycoses are still limited. One of the clinically used drugs is caspofungin, which specifically targets the fungal cell wall biosynthesis. A systems biology approach, based on comprehensive transcriptome data sets and mathematical modeling, was employed to infer a regulatory network and identify key interactions during adaptation to caspofungin stress in A. fumigatus. Mathematical modeling and experimental validations confirmed an intimate cross talk occurring between the cell wall-integrity and the high osmolarity-glycerol signaling pathways. Specifically, increased concentrations of caspofungin promoted activation of these signalings. Moreover, caspofungin affected the intracellular transport, which caused an additional osmotic stress that is independent of glucan inhibition. High concentrations of caspofungin reduced this osmotic stress, and thus decreased its toxic activity. Our results demonstrated that MAPK signaling pathways play a key role during caspofungin adaptation and are contributing to the paradoxical effect exerted by this drug. PMID:26356475

  4. Genetic Adaptation to Salt Stress in Experimental Evolution of Desulfovibrio vulgaris Hildenborough

    SciTech Connect

    Zhou, Aifen; Hillesland, Kristina; He, Zhili; Joachimiak, Marcin; Zane, Grant; Dehal, Paramvir; Arkin, Adam; Stahl, David; Wall, Judy; Hazen, Terry; Zhou, Jizhong; Baidoo, Edward; Benke, Peter; Mukhopadhyay, Aindrila

    2010-05-17

    High salinity is one of the most common environmental stressors. In order to understand how environmental organisms adapt to salty environment, an experiment evolution with sulfate reducing bacteria Desulfovibrio vugaris Hildenborough was conducted. Control lines and salt-stressed lines (6 lines each) grown in minimal medium LS4D or LS4D + 100 mM NaCl were transferred for 1200 generations. The salt tolerance was tested with LS4D supplemented with 250 mM NaCl. Statistical analysis of the growth data suggested that all lines adapted to their evolutionary environment. In addition, the control lines performed better than the ancestor with faster growth rate, higher biomass yield and shorter lag phase under salty environment they did not evolve in. However, the salt-adapted lines performed better than the control lines on measures of growth rate and yield under salty environment, suggesting that the salt?evolved lines acquired mutations specific to having extra salt in LS4D. Growth data and gene transcription data suggested that populations tended to improve till 1000 generations and active mutations tended to be fixed at the stage of 1000 generations. Point mutations and insertion/deletions were identified in isolated colonies from salt-adapted and control lines via whole genome sequencing. Glu, Gln and Ala appears to be the major osmoprotectant in evolved salt-stressed line. Ongoing studies are now characterizing the contribution of specific mutations identified in the salt-evolved D. vulgaris.

  5. Thermotolerant yeasts selected by adaptive evolution express heat stress response at 30 °C

    PubMed Central

    Caspeta, Luis; Chen, Yun; Nielsen, Jens

    2016-01-01

    Exposure to long-term environmental changes across >100s of generations results in adapted phenotypes, but little is known about how metabolic and transcriptional responses are optimized in these processes. Here, we show that thermotolerant yeast strains selected by adaptive laboratory evolution to grow at increased temperature, activated a constitutive heat stress response when grown at the optimal ancestral temperature, and that this is associated with a reduced growth rate. This preventive response was perfected by additional transcriptional changes activated when the cultivation temperature is increased. Remarkably, the sum of global transcriptional changes activated in the thermotolerant strains when transferred from the optimal to the high temperature, corresponded, in magnitude and direction, to the global changes observed in the ancestral strain exposed to the same transition. This demonstrates robustness of the yeast transcriptional program when exposed to heat, and that the thermotolerant strains streamlined their path to rapidly and optimally reach post-stress transcriptional and metabolic levels. Thus, long-term adaptation to heat improved yeasts ability to rapidly adapt to increased temperatures, but this also causes a trade-off in the growth rate at the optimal ancestral temperature. PMID:27229477

  6. Dietary lecithin potentiates thermal tolerance and cellular stress protection of milk fish (Chanos Chanos) reared under low dose endosulfan-induced stress.

    PubMed

    Kumar, Neeraj; Minhas, P S; Ambasankar, K; Krishnani, K K; Rana, R S

    2014-12-01

    Endosulfan is an organochlorine pesticide commonly found in aquatic environments that has been found to reduce thermal tolerance of fish. Lipotropes such as the food additive, Lecithin has been shown to improve thermal tolerance in fish species. This study was conducted to evaluate the role of lipotropes (lecithin) for enhancing the thermal tolerance of Chanos chanos reared under sublethal low dose endosulfan-induced stress. Two hundred and twenty-five fish were distributed randomly into five treatments, each with three replicates. Four isocaloric and isonitrogenous diets were prepared with graded levels of lecithin: normal water and fed with control diet (En0/L0), endosulfan-treated water and fed with control diet (En/L0), endosulfan-treated water and fed with 1% (En/L1%), 1.5% (En/L 1.5%) and 2% (En/L 2%) lecithin supplemented feed. The endosulfan in treated water was maintained at the level of 1/40th of LC50 (0.52ppb). At the end of the five weeks, critical temperature maxima (CTmax), lethal temperature maxima (LTmax), critical temperature minima (CTmin) and lethal temperature minima (LTmin) were Determined. There was a significant (P<0.01) effect of dietary lecithin on temperature tolerance (CTmax, LTmax, CTmin and LTmin) of the groups fed with 1, 1.5 and 2% lecithin-supplemented diet compared to control and endosulfan-exposed groups. Positive correlations were observed between CT max and LTmax (R(2)=0.934) as well as between CTmin and LTmin (R(2)=0.9313). At the end of the thermal tolerance study, endosulfan-induced changes in cellular stress enzymes (Catalase, SOD and GST in liver and gill and neurotansmitter enzyme, brain AChE) were significantly (p<0.01) improved by dietary lecithin. We herein report the role of lecithin in enhancing the thermal tolerance and protection against cellular stress in fish exposed to an organochlorine pesticide.

  7. Dietary lecithin potentiates thermal tolerance and cellular stress protection of milk fish (Chanos Chanos) reared under low dose endosulfan-induced stress.

    PubMed

    Kumar, Neeraj; Minhas, P S; Ambasankar, K; Krishnani, K K; Rana, R S

    2014-12-01

    Endosulfan is an organochlorine pesticide commonly found in aquatic environments that has been found to reduce thermal tolerance of fish. Lipotropes such as the food additive, Lecithin has been shown to improve thermal tolerance in fish species. This study was conducted to evaluate the role of lipotropes (lecithin) for enhancing the thermal tolerance of Chanos chanos reared under sublethal low dose endosulfan-induced stress. Two hundred and twenty-five fish were distributed randomly into five treatments, each with three replicates. Four isocaloric and isonitrogenous diets were prepared with graded levels of lecithin: normal water and fed with control diet (En0/L0), endosulfan-treated water and fed with control diet (En/L0), endosulfan-treated water and fed with 1% (En/L1%), 1.5% (En/L 1.5%) and 2% (En/L 2%) lecithin supplemented feed. The endosulfan in treated water was maintained at the level of 1/40th of LC50 (0.52ppb). At the end of the five weeks, critical temperature maxima (CTmax), lethal temperature maxima (LTmax), critical temperature minima (CTmin) and lethal temperature minima (LTmin) were Determined. There was a significant (P<0.01) effect of dietary lecithin on temperature tolerance (CTmax, LTmax, CTmin and LTmin) of the groups fed with 1, 1.5 and 2% lecithin-supplemented diet compared to control and endosulfan-exposed groups. Positive correlations were observed between CT max and LTmax (R(2)=0.934) as well as between CTmin and LTmin (R(2)=0.9313). At the end of the thermal tolerance study, endosulfan-induced changes in cellular stress enzymes (Catalase, SOD and GST in liver and gill and neurotansmitter enzyme, brain AChE) were significantly (p<0.01) improved by dietary lecithin. We herein report the role of lecithin in enhancing the thermal tolerance and protection against cellular stress in fish exposed to an organochlorine pesticide. PMID:25455939

  8. Oma1 Links Mitochondrial Protein Quality Control and TOR Signaling To Modulate Physiological Plasticity and Cellular Stress Responses.

    PubMed

    Bohovych, Iryna; Kastora, Stavroula; Christianson, Sara; Topil, Danelle; Kim, Heejeong; Fangman, Teresa; Zhou, You J; Barrientos, Antoni; Lee, Jaekwon; Brown, Alistair J P; Khalimonchuk, Oleh

    2016-09-01

    A network of conserved proteases known as the intramitochondrial quality control (IMQC) system is central to mitochondrial protein homeostasis and cellular health. IMQC proteases also appear to participate in establishment of signaling cues for mitochondrion-to-nucleus communication. However, little is known about this process. Here, we show that in Saccharomyces cerevisiae, inactivation of the membrane-bound IMQC protease Oma1 interferes with oxidative-stress responses through enhanced production of reactive oxygen species (ROS) during logarithmic growth and reduced stress signaling via the TORC1-Rim15-Msn2/Msn4 axis. Pharmacological or genetic prevention of ROS accumulation in Oma1-deficient cells restores this defective TOR signaling. Additionally, inactivation of the Oma1 ortholog in the human fungal pathogen Candida albicans also alters TOR signaling and, unexpectedly, leads to increased resistance to neutrophil killing and virulence in the invertebrate animal model Galleria mellonella Our findings reveal a novel and evolutionarily conserved link between IMQC and TOR-mediated signaling that regulates physiological plasticity and pancellular oxidative-stress responses. PMID:27325672

  9. Cellular stress reactions assessed by gender and species in spiders from areas variously polluted with heavy metals.

    PubMed

    Wilczek, Grazyna; Babczyńska, Agnieszka; Wilczek, Piotr; Dolezych, Bogdan; Migula, Paweł; Młyńska, Hanna

    2008-05-01

    In the funnel web spider Agelena labyrinthica (Agelenidae; A. l.), sheet web spider Linyphia triangularis (Linyphiidae; L. t.) and wolf spider Xerolycosa nemoralis (Lycosidae; X. n.) from two differently polluted meadow sites in southern Poland, we studied the relations between antioxidant parameters (glutathione, GSH; glutathione peroxidases, GPOX, GSTPx; catalase, CAT; stress proteins-Hsp70, metallothioneins Mts), the intensity of apoptosis and necrosis, and heavy metal burdens of the midgut gland. Cellular reactions against stress caused by pollutants seemed to be sex-dependent. The concentrations of Zn and Cu in the midgut glands of male A. l. and X. n. were more than double that of the females, from both study sites. In male spiders from the heavily polluted site, both negative correlations (activity of caspase-3-like proteins vs Cu, Zn concentration; number of depolarized mitochondria vs Cu concentration) and positive correlations (number of necrotic cells vs Cu concentrations; activity of CAT vs Zn ) were noted. The defense of males against high metal content and its prooxidative effects is based mainly on GSH and CAT. In females the antioxidative reactions are species-specific and depend mainly on high peroxidase activity and on stress protein level. The increase in the number of apoptotic cells in the midgut gland of female spiders from the heavily polluted site suggests the defensive role of this process in maintaining the proper functioning of this organ.

  10. A Loss in Cellular Protein Partners Promotes α-Synuclein Aggregation in Cells Resulting from Oxidative Stress

    PubMed Central

    Guo, Yuanjian; Scarlata, Suzanne

    2015-01-01

    There is a consensus that oxidative stress promotes neurodegeneration and may be linked to plaque formation. α-Synuclein is the main component of neurodegenerative plaques. We have found that α-synuclein binds strongly to the enzyme phospholipase Cβ1 (PLCβ1) in vitro and in cells affecting both its G protein activation and its degradation. Because PLCβ1 binds to α-synuclein in cells, we tested whether decreasing its level would promote α-synuclein aggregation and whether overproducing PLCβ1 would inhibit aggregation. By imaging fluorescent α-synuclein in living HEK293, PC12, and SK-H-SH cells, we find that α-synuclein aggregation is directly related to the level of PLCβ1. Importantly, we found that oxidative stress does not affect the cellular levels of α-synuclein but results in the down-regulation of PLCβ1 thereby promoting α-synuclein aggregation. A peptide that mimics part of the α-synuclein binding site to PLCβ prevents aggregation. Our studies indicate that PLCβ1 can reduce cell damage under oxidative stress and offers a potential site that might be exploited to prevent α-synuclein aggregation. PMID:23659438

  11. Decoding genome-wide GadEWX-transcriptional regulatory networks reveals multifaceted cellular responses to acid stress in Escherichia coli.

    PubMed

    Seo, Sang Woo; Kim, Donghyuk; O'Brien, Edward J; Szubin, Richard; Palsson, Bernhard O

    2015-01-01

    The regulators GadE, GadW and GadX (which we refer to as GadEWX) play a critical role in the transcriptional regulation of the glutamate-dependent acid resistance (GDAR) s