Science.gov

Sample records for adaptive closed-loop control

  1. Lag Synchronization Between Two Coupled Networks via Open-Plus-Closed-Loop and Adaptive Controls

    NASA Astrophysics Data System (ADS)

    Hu, Tong-Chun; Wu, Yong-Qing; Li, Shi-Xing

    2016-01-01

    In this paper, we study lag synchronization between two coupled networks and apply two types of control schemes, including the open-plus-closed-loop (OPCL) and adaptive controls. We then design the corresponding control algorithms according to the OPCL and adaptive feedback schemes. With the designed controllers, we obtain two theorems on the lag synchronization based on Lyapunov stability theory and Barbalat's lemma. Finally we provide numerical examples to show the effectiveness of the obtained controllers and see that the adaptive control is stronger than the OPCL control when realizing the lag synchronization between two coupled networks with different coupling structures. Supported by the National Natural Science Foundation of China under Grant No. 61304173, Foundation of Liaoning Educational Committee (No. 13-1069) and Hangzhou Polytechnic (No. KZYZ-2009-2)

  2. RUPERT closed loop control design.

    PubMed

    Balasubramanian, Sivakumar; Wei, Ruihua; He, Jiping

    2008-01-01

    Rehabilitation robotics is an active area of research in the field of stroke rehabilitation. There is significant potential for improving the current physical rehabilitation methods after stroke through the use of robotic devices. RUPERT is a wearable robotic exoskeleton powered by pneumatic muscle actuators. An adaptive robot control strategy combining a PID-based feedback controller and an Iterative Learning Controller (ILC) is proposed for performing passive reaching tasks. Additionally, a fuzzy rule-base for estimating the learning rate for the ILC is also proposed. The proposed control scheme has the ability to adapt to different subject for performing different reaching tasks. The preliminary results from two able-bodied subjects demonstrate that the proposed controller can provide consistent performance for different subjects performing different reaching tasks. PMID:19163455

  3. Closed loop adaptive control of spectrum-producing step using neural networks

    DOEpatents

    Fu, C.Y.

    1998-11-24

    Characteristics of the plasma in a plasma-based manufacturing process step are monitored directly and in real time by observing the spectrum which it produces. An artificial neural network analyzes the plasma spectrum and generates control signals to control one or more of the process input parameters in response to any deviation of the spectrum beyond a narrow range. In an embodiment, a plasma reaction chamber forms a plasma in response to input parameters such as gas flow, pressure and power. The chamber includes a window through which the electromagnetic spectrum produced by a plasma in the chamber, just above the subject surface, may be viewed. The spectrum is conducted to an optical spectrometer which measures the intensity of the incoming optical spectrum at different wavelengths. The output of optical spectrometer is provided to an analyzer which produces a plurality of error signals, each indicating whether a respective one of the input parameters to the chamber is to be increased or decreased. The microcontroller provides signals to control respective controls, but these lines are intercepted and first added to the error signals, before being provided to the controls for the chamber. The analyzer can include a neural network and an optional spectrum preprocessor to reduce background noise, as well as a comparator which compares the parameter values predicted by the neural network with a set of desired values provided by the microcontroller. 7 figs.

  4. Closed loop adaptive control of spectrum-producing step using neural networks

    DOEpatents

    Fu, Chi Yung

    1998-01-01

    Characteristics of the plasma in a plasma-based manufacturing process step are monitored directly and in real time by observing the spectrum which it produces. An artificial neural network analyzes the plasma spectrum and generates control signals to control one or more of the process input parameters in response to any deviation of the spectrum beyond a narrow range. In an embodiment, a plasma reaction chamber forms a plasma in response to input parameters such as gas flow, pressure and power. The chamber includes a window through which the electromagnetic spectrum produced by a plasma in the chamber, just above the subject surface, may be viewed. The spectrum is conducted to an optical spectrometer which measures the intensity of the incoming optical spectrum at different wavelengths. The output of optical spectrometer is provided to an analyzer which produces a plurality of error signals, each indicating whether a respective one of the input parameters to the chamber is to be increased or decreased. The microcontroller provides signals to control respective controls, but these lines are intercepted and first added to the error signals, before being provided to the controls for the chamber. The analyzer can include a neural network and an optional spectrum preprocessor to reduce background noise, as well as a comparator which compares the parameter values predicted by the neural network with a set of desired values provided by the microcontroller.

  5. RUPERT closed loop control design.

    PubMed

    Zhang, Hang; Balasubramanian, Sivakumar; Wei, Ruihua; Austin, Hiroko; Buchanan, Sharon; Herman, Richard; He, Jiping

    2010-01-01

    Robot-assisted rehabilitation is an active area of research in the field of stroke rehabilitation. RUPERT is a wearable robotic exoskeleton powered by pneumatic muscle actuators. In this study, we described the structure of the controllers for the five degrees of freedom currently used by RUPERT. We applied the RUPERT on 6 stroke patients to provide robot-assisted rehabilitation therapy in a clinical study. Statistical χ(2) test on the proportion of successfully reaching targets showed that 3 out of the 6 patients demonstrated significant improvement in reaching targets successfully, and the remaining 3 did not show performance improvement or deterioration. We plan to implement the RUPERT in the patient's house for easier access and more frequent use. More significant performance results are expected. PMID:21097049

  6. Closed Loop Welding Controller for Manufacturing Process

    NASA Astrophysics Data System (ADS)

    Bonaccorso, F.; Bruno, C.; Cantelli, L.; Longo, D.; Muscato, G.; Rapisarda, S.

    2011-12-01

    The aim of this paper is to investigate on the closed loop welding controller of a rapid manufacturing Shaped Metal Deposition (SMD) process. SMD was developed and patented by Rolls-Royce in order to produce mechanical parts directly from a CAD model. A simplified SMD plant has been set up in order to investigate the welding dynamics and parameters and to develop a SMD automatic controller. On the basis of the experience acquired, some basic control laws have been developed, and a closed loop controller has been implemented. This controller permits to find and to maintain the process stability condition, so that the final process results totally automatic. The control is performed adjusting the welding conditions on the basis of arc voltage information obtained from the welding machine during the deposition. The experimental results reported confirm the validity of the proposed strategy.

  7. On-off closed-loop control of vagus nerve stimulation for the adaptation of heart rate.

    PubMed

    Ugalde, Hector Romero; Le Rolle, Virginie; Bel, Alain; Bonnet, Jean-Luc; Andreu, David; Mabo, Philippe; Carrault, Guy; Hernández, Alfredo I

    2014-01-01

    Vagus nerve stimulation (VNS) is a potential therapeutic approach in a number of clinical applications. Although VNS is commonly delivered in an open-loop approach, it is now recognized that closed-loop approaches may be necessary to optimize the therapy and minimize side effects of neuro-stimulation devices. In this paper, we describe a prototype system for real-time control of the instantaneous heart rate, working synchronously with the heart period. As a first step, an on-off control method has been integrated. The system is evaluated on one sheep with induced heart failure, showing the interest of the proposed approach.

  8. Distributed cerebellar plasticity implements adaptable gain control in a manipulation task: a closed-loop robotic simulation

    PubMed Central

    Garrido, Jesús A.; Luque, Niceto R.; D'Angelo, Egidio; Ros, Eduardo

    2013-01-01

    Adaptable gain regulation is at the core of the forward controller operation performed by the cerebro-cerebellar loops and it allows the intensity of motor acts to be finely tuned in a predictive manner. In order to learn and store information about body-object dynamics and to generate an internal model of movement, the cerebellum is thought to employ long-term synaptic plasticity. LTD at the PF-PC synapse has classically been assumed to subserve this function (Marr, 1969). However, this plasticity alone cannot account for the broad dynamic ranges and time scales of cerebellar adaptation. We therefore tested the role of plasticity distributed over multiple synaptic sites (Hansel et al., 2001; Gao et al., 2012) by generating an analog cerebellar model embedded into a control loop connected to a robotic simulator. The robot used a three-joint arm and performed repetitive fast manipulations with different masses along an 8-shape trajectory. In accordance with biological evidence, the cerebellum model was endowed with both LTD and LTP at the PF-PC, MF-DCN and PC-DCN synapses. This resulted in a network scheme whose effectiveness was extended considerably compared to one including just PF-PC synaptic plasticity. Indeed, the system including distributed plasticity reliably self-adapted to manipulate different masses and to learn the arm-object dynamics over a time course that included fast learning and consolidation, along the lines of what has been observed in behavioral tests. In particular, PF-PC plasticity operated as a time correlator between the actual input state and the system error, while MF-DCN and PC-DCN plasticity played a key role in generating the gain controller. This model suggests that distributed synaptic plasticity allows generation of the complex learning properties of the cerebellum. The incorporation of further plasticity mechanisms and of spiking signal processing will allow this concept to be extended in a more realistic computational scenario

  9. Iterative LQG Controller Design Through Closed-Loop Identification

    NASA Technical Reports Server (NTRS)

    Hsiao, Min-Hung; Huang, Jen-Kuang; Cox, David E.

    1996-01-01

    This paper presents an iterative Linear Quadratic Gaussian (LQG) controller design approach for a linear stochastic system with an uncertain open-loop model and unknown noise statistics. This approach consists of closed-loop identification and controller redesign cycles. In each cycle, the closed-loop identification method is used to identify an open-loop model and a steady-state Kalman filter gain from closed-loop input/output test data obtained by using a feedback LQG controller designed from the previous cycle. Then the identified open-loop model is used to redesign the state feedback. The state feedback and the identified Kalman filter gain are used to form an updated LQC controller for the next cycle. This iterative process continues until the updated controller converges. The proposed controller design is demonstrated by numerical simulations and experiments on a highly unstable large-gap magnetic suspension system.

  10. Closed-Loop Motor-Speed Control

    NASA Technical Reports Server (NTRS)

    Smith, Matthew A.; Delcher, Ray C.; Huston, Steven W.

    1989-01-01

    Electronic motor-speed control circuit designed to operate in electrically noisy environment. Includes optoelectronic pick-up device, placed inside motor housing to provide speed feedback signal. Automatically maintains speed motor at commanded value. Measures speed of motor in terms of frequency of pulses of infrared light chopped by fan blades of motor. Difference between measured and commanded speeds serves as control signal for external amplifier driving motor. Major advantage of circuit is low cost.

  11. Closed-loop and robust control of quantum systems.

    PubMed

    Chen, Chunlin; Wang, Lin-Cheng; Wang, Yuanlong

    2013-01-01

    For most practical quantum control systems, it is important and difficult to attain robustness and reliability due to unavoidable uncertainties in the system dynamics or models. Three kinds of typical approaches (e.g., closed-loop learning control, feedback control, and robust control) have been proved to be effective to solve these problems. This work presents a self-contained survey on the closed-loop and robust control of quantum systems, as well as a brief introduction to a selection of basic theories and methods in this research area, to provide interested readers with a general idea for further studies. In the area of closed-loop learning control of quantum systems, we survey and introduce such learning control methods as gradient-based methods, genetic algorithms (GA), and reinforcement learning (RL) methods from a unified point of view of exploring the quantum control landscapes. For the feedback control approach, the paper surveys three control strategies including Lyapunov control, measurement-based control, and coherent-feedback control. Then such topics in the field of quantum robust control as H(∞) control, sliding mode control, quantum risk-sensitive control, and quantum ensemble control are reviewed. The paper concludes with a perspective of future research directions that are likely to attract more attention.

  12. Closed-Loop and Activity-Guided Optogenetic Control

    PubMed Central

    Grosenick, Logan; Marshel, James H.; Deisseroth, Karl

    2016-01-01

    Advances in optical manipulation and observation of neural activity have set the stage for widespread implementation of closed-loop and activity-guided optical control of neural circuit dynamics. Closing the loop optogenetically (i.e., basing optogenetic stimulation on simultaneously observed dynamics in a principled way) is a powerful strategy for causal investigation of neural circuitry. In particular, observing and feeding back the effects of circuit interventions on physiologically relevant timescales is valuable for directly testing whether inferred models of dynamics, connectivity, and causation are accurate in vivo. Here we highlight technical and theoretical foundations as well as recent advances and opportunities in this area, and we review in detail the known caveats and limitations of optogenetic experimentation in the context of addressing these challenges with closed-loop optogenetic control in behaving animals. PMID:25856490

  13. Closed-loop snowplow applicator control using road condition measurements

    NASA Astrophysics Data System (ADS)

    Erdogan, Gurkan; Alexander, Lee; Rajamani, Rajesh

    2011-04-01

    Closed-loop control of a snowplow applicator, based on direct measurement of the road surface condition, is a valuable technology for the optimisation of winter road maintenance costs and for the protection of the environment from the negative impacts of excessive usage of de-icing chemicals. To this end, a novel friction measurement wheel is designed to provide a continuous measurement of road friction coefficient, which is, in turn, utilised to control the applicator automatically on a snowplow. It is desired that the automated snowplow applicator deploy de-icing materials right from the beginning of any slippery surface detected by the friction wheel, meaning that no portion of the slippery road surface should be left untreated behind, as the snowplow travels over it at a reasonably high speed. This paper describes the developed wheel-based measurement system, the friction estimation algorithm and the expected performance of the closed-loop applicator system. Conventional and zero velocity applicators are introduced and their hardware time delays are measured in addition to the time delay of the friction estimation algorithm. The overall performance of the closed-loop applicator control system is shown to be reliable at typical snowplowing speeds if the zero velocity applicator is used.

  14. Feasibility of Outpatient Fully Integrated Closed-Loop Control

    PubMed Central

    Kovatchev, Boris P.; Renard, Eric; Cobelli, Claudio; Zisser, Howard C.; Keith-Hynes, Patrick; Anderson, Stacey M.; Brown, Sue A.; Chernavvsky, Daniel R.; Breton, Marc D.; Farret, Anne; Pelletier, Marie-Josée; Place, Jérôme; Bruttomesso, Daniela; Del Favero, Simone; Visentin, Roberto; Filippi, Alessio; Scotton, Rachele; Avogaro, Angelo; Doyle, Francis J.

    2013-01-01

    OBJECTIVE To evaluate the feasibility of a wearable artificial pancreas system, the Diabetes Assistant (DiAs), which uses a smart phone as a closed-loop control platform. RESEARCH DESIGN AND METHODS Twenty patients with type 1 diabetes were enrolled at the Universities of Padova, Montpellier, and Virginia and at Sansum Diabetes Research Institute. Each trial continued for 42 h. The United States studies were conducted entirely in outpatient setting (e.g., hotel or guest house); studies in Italy and France were hybrid hospital–hotel admissions. A continuous glucose monitoring/pump system (Dexcom Seven Plus/Omnipod) was placed on the subject and was connected to DiAs. The patient operated the system via the DiAs user interface in open-loop mode (first 14 h of study), switching to closed-loop for the remaining 28 h. Study personnel monitored remotely via 3G or WiFi connection to DiAs and were available on site for assistance. RESULTS The total duration of proper system communication functioning was 807.5 h (274 h in open-loop and 533.5 h in closed-loop), which represented 97.7% of the total possible time from admission to discharge. This exceeded the predetermined primary end point of 80% system functionality. CONCLUSIONS This study demonstrated that a contemporary smart phone is capable of running outpatient closed-loop control and introduced a prototype system (DiAs) for further investigation. Following this proof of concept, future steps should include equipping insulin pumps and sensors with wireless capabilities, as well as studies focusing on control efficacy and patient-oriented clinical outcomes. PMID:23801798

  15. Numerical investigation of closed-loop control for Hall accelerators

    SciTech Connect

    Barral, S.; Miedzik, J.

    2011-01-01

    Low frequency discharge current oscillations in Hall accelerators are conventionally damped with external inductor-capacitor (LC) or resistor-inductor-capacitor (RLC) networks. The role of such network in the stabilization of the plasma discharge is investigated with a numerical model and the potential advantages of proportional-integral-derivative (PID) closed-loop control over RLC networks are subsequently assessed using either discharge voltage or magnetic field modulation. Simulations confirm the reduction of current oscillations in the presence of a RLC network, but suggest that PID control could ensure nearly oscillation-free operation with little sensitivity toward the PID settings.

  16. Optical Closed-Loop Propulsion Control System Development

    NASA Technical Reports Server (NTRS)

    Poppel, Gary L.

    1998-01-01

    The overall objective of this program was to design and fabricate the components required for optical closed-loop control of a F404-400 turbofan engine, by building on the experience of the NASA Fiber Optic Control System Integration (FOCSI) program. Evaluating the performance of fiber optic technology at the component and system levels will result in helping to validate its use on aircraft engines. This report includes descriptions of three test plans. The EOI Acceptance Test is designed to demonstrate satisfactory functionality of the EOI, primarily fail-safe throughput of the F404 sensor signals in the normal mode, and validation, switching, and output of the five analog sensor signals as generated from validated optical sensor inputs, in the optical mode. The EOI System Test is designed to demonstrate acceptable F404 ECU functionality as interfaced with the EOI, making use of a production ECU test stand. The Optical Control Engine Test Request describes planned hardware installation, optical signal calibrations, data system coordination, test procedures, and data signal comparisons for an engine test demonstration of the optical closed-loop control.

  17. A Closed-loop Brain Computer Interface to a Virtual Reality Avatar: Gait Adaptation to Visual Kinematic Perturbations

    PubMed Central

    Luu, Trieu Phat; He, Yongtian; Brown, Samuel; Nakagome, Sho; Contreras-Vidal, Jose L.

    2016-01-01

    The control of human bipedal locomotion is of great interest to the field of lower-body brain computer interfaces (BCIs) for rehabilitation of gait. While the feasibility of a closed-loop BCI system for the control of a lower body exoskeleton has been recently shown, multi-day closed-loop neural decoding of human gait in a virtual reality (BCI-VR) environment has yet to be demonstrated. In this study, we propose a real-time closed-loop BCI that decodes lower limb joint angles from scalp electroencephalography (EEG) during treadmill walking to control the walking movements of a virtual avatar. Moreover, virtual kinematic perturbations resulting in asymmetric walking gait patterns of the avatar were also introduced to investigate gait adaptation using the closed-loop BCI-VR system over a period of eight days. Our results demonstrate the feasibility of using a closed-loop BCI to learn to control a walking avatar under normal and altered visuomotor perturbations, which involved cortical adaptations. These findings have implications for the development of BCI-VR systems for gait rehabilitation after stroke and for understanding cortical plasticity induced by a closed-loop BCI system. PMID:27713915

  18. Closed loop computer control for an automatic transmission

    DOEpatents

    Patil, Prabhakar B.

    1989-01-01

    In an automotive vehicle having an automatic transmission that driveably connects a power source to the driving wheels, a method to control the application of hydraulic pressure to a clutch, whose engagement produces an upshift and whose disengagement produces a downshift, the speed of the power source, and the output torque of the transmission. The transmission output shaft torque and the power source speed are the controlled variables. The commanded power source torque and commanded hydraulic pressure supplied to the clutch are the control variables. A mathematical model is formulated that describes the kinematics and dynamics of the powertrain before, during and after a gear shift. The model represents the operating characteristics of each component and the structural arrangement of the components within the transmission being controlled. Next, a close loop feedback control is developed to determine the proper control law or compensation strategy to achieve an acceptably smooth gear ratio change, one in which the output torque disturbance is kept to a minimum and the duration of the shift is minimized. Then a computer algorithm simulating the shift dynamics employing the mathematical model is used to study the effects of changes in the values of the parameters established from a closed loop control of the clutch hydraulic and the power source torque on the shift quality. This computer simulation is used also to establish possible shift control strategies. The shift strategies determined from the prior step are reduced to an algorithm executed by a computer to control the operation of the power source and the transmission.

  19. Closed loop heading control in the tobacco hawkmoth, Manduca sexta

    NASA Astrophysics Data System (ADS)

    Shafer, Michael W.; Tiwari, Rashi; Garcia, Ephrahim

    2011-04-01

    The study of Tobacco hawkmoths, Manduca sexta, with respect to the relationships between muscle activation and flight response has progressed to a point that closed loop heading control is possible on the live, tethered animals. We present a method of control through stimulation of the dorsoventral muscle (DVM) groups that are responsible for the upward motion of the wings. An experimental setup allowing for only yaw in flying moths was developed. A 10% duty cycle square wave input was used to stimulate the DVM on the side of the moth inboard of the desired turn. Both continuous and discontinuous signals were used and the results suggest that the moth is able to compensate for consistent input stimulation.

  20. Passive Identification is Non Stationary Objects With Closed Loop Control

    NASA Astrophysics Data System (ADS)

    Dyadik, Valeriy F.; Nadezhdin, Igor S.; Goryunov, Alexey G.; Manenti, Flavio

    2016-08-01

    Typically chemical processes have significant nonlinear dynamics, but despite this, industry is conventionally still using PID-based regulatory control systems. Moreover, process units are interconnected, in terms of inlet and outlet material/energy flows, to other neighbouring units, thus their dynamic behaviour is strongly influenced by these connections and, as a consequence, conventional control systems performance often proves to be poor. However, there a hybrid fuzzy PID control logic, whose tuning parameters are provided in real time. The fuzzy controller tuning is made on the basis of Mamdani controller, also exploiting the results coming from an identification procedure that is carried on when an unmeasured step disturbance of any shape affects the process behaviour. This paper presents procedure for identifying technological object control in a closed loop, i. e. that operates the automated control system. The variation in the controlled variable, caused by the change of the nonmeasurable disturbance, is considered the initial signal for the identification procedure. The parameters of the control object are found by optimization method Levenberg-Marquardt.

  1. Closed-loop Separation Control Using Oscillatory Flow Excitation

    NASA Technical Reports Server (NTRS)

    Allan, Brian G.; Juang, Jer-Nan; Raney, David L.; Seifert, Avi; Pack, latunia G.; Brown, Donald E.

    2000-01-01

    Design and implementation of a digital feedback controller for a flow control experiment was performed. The experiment was conducted in a cryogenic pressurized wind tunnel on a generic separated configuration at a chord Reynolds number of 16 million and a Mach number of 0.25. The model simulates the upper surface of a 20% thick airfoil at zero angle-of-attack. A moderate favorable pressure gradient, up to 55% of the chord, is followed by a severe adverse pressure gradient which is relaxed towards the trailing edge. The turbulent separation bubble, behind the adverse pressure gradient, is then reduced by introducing oscillatory flow excitation just upstream of the point of flow separation. The degree of reduction in the separation region can be controlled by the amplitude of the oscillatory excitation. A feedback controller was designed to track a given trajectory for the desired degree of flow reattachment and to improve the transient behavior of the flow system. Closed-loop experiments demonstrated that the feedback controller was able to track step input commands and improve the transient behavior of the open-loop response.

  2. Sensor enabled closed-loop bending control of soft beams

    NASA Astrophysics Data System (ADS)

    Case, Jennifer C.; White, Edward L.; Kramer, Rebecca K.

    2016-04-01

    Control of soft-bodied systems is challenging, as the absence of rigidity typically implies distributed deformations and infinite degrees-of-freedom. In this paper, we demonstrate closed-loop control of three elastomer beams that vary in bending stiffness. The most stiff beam is comprised of a single prismatic structure made from a single elastomer. In the next beam, increased flexibility is introduced via an indentation in the elastomer, forming a joint. The most flexible beam uses a softer elastomer in the joint section, along with an indentation. An antagonistic pair of actuators bend the joint while a pair of liquid-metal-embedded strain sensors provide angle feedback to a control loop. We were able to achieve control of the system with a proportional-integral-derivative control algorithm. The procedure we demonstrate in this work is not dependent on actuator and sensor choice and could be applied to to other hardware systems, as well as more complex multi-joint robotic structures in the future.

  3. Nonlinear closed-loop control system for intracranial pressure regulation.

    PubMed

    Coté, G L; Durai, R; Zoghi, B

    1995-01-01

    A nonlinear closed-loop control system with flat pressure-versus-flow characteristics that is aimed at regulating intracranial pressure (ICP) by adjusting the volume of cerebral spinal fluid (CSF) was designed, built, and tested. The control system design allows both the pressure setpoint and hysteresis to be adjusted to overcome the difficulties inherent in differential pressure-activated, fixed resistance, open-loop shunts. A dynamic six-compartment bench-top fluid system, which mimics the cerebral spinal fluid system, was designed, built, and tested. A computer simulation was developed which included the nonlinear on-off controller with hysteresis and a sixth-order, linear, multicompartmental model of the CSF system. The computer model and in vitro system results showed the ability of the system to track and compensate for pressure variations above and below normal as well as for spurious outputs that mimic such in vivo problems as blood pressure changes, sneezing, or coughing. There was one discrepancy between the simulated and in vitro results. The in vitro system had a higher rate of increase in pressure due to the more rigid compliance of the materials used, whereas the computer model compliance, based on the basal in vivo compliance of the CSF system, was less rigid. Based on these findings, the controller was modified to account for short-duration, extremely elevated pressures. PMID:8572426

  4. Closed-loop control for power tower heliostats

    NASA Astrophysics Data System (ADS)

    Convery, Mark R.

    2011-10-01

    In a Power Tower solar thermal power plant, alignment and control of the heliostats constitutes one of the largest costs of both time and money. This is especially the case in systems where individual heliostats are small (~1m2). I describe a closed-loop control system that generates the required feedback by inducing small mechanical vibrations in the heliostat reflector surface using piezoelectric actuators. These vibrations induce time-dependent changes in the reflected wavefront that can be detected by photosensors surrounding the thermal receiver target. Time and frequency encoding of the vibrations allows identification of a misaligned heliostat from among the thousands in the system. Corrections can then be applied to bring the reflected beam onto the receiver target. This technique can, in principle, control thousands of heliostats simultaneously.Outdoor testing of a small-scale model of this system has confirmed that such a system is effective and can achieve milliradian tracking accuracy. If such a system were implemented in a commercial plant, it could relax the accuracy specification required of the heliostats as well as provide an automated alignment and calibration system. This could significantly reduce the installed cost of the heliostat field.

  5. Robust closed-loop control of propofol administration using WAVCNS index as the controlled variable.

    PubMed

    Hahn, Jin-Oh; Dumont, Guy A; Ansermino, J

    2010-01-01

    This paper presents a robust closed-loop strategy for control of depth of hypnosis. The proposed method regulates the electroencephalogram (EEG)-derived WAVCNS index as a hypnosis measure by manipulating intravenous propofol administration. In contrast to many existing closed-loop methods, the control design presented in this paper produces stability and robustness against uncertainty by explicitly accounting for the pharmacokinetic (PK) and pharmacodynamic (PD) variability between different individuals, as well as unpredictable surgical stimuli that the closed-loop control is required to tolerate. This closed-loop control was evaluated using simulated surgical procedures in 44 patient models whose PK and PD were identified from real clinical data. The controller can deliver consistent and acceptable closed-loop induction and maintenance phase responses for patients with wide-ranging PK and PD differences. PMID:21097118

  6. Closed-loop glucose control: psychological and behavioral considerations.

    PubMed

    Gonder-Frederick, Linda; Shepard, Jaclyn; Peterson, Ninoska

    2011-11-01

    Since 2000, the diabetes community has witnessed tremendous technological advances that have revolutionized diabetes management. Currently, closed-loop glucose control (CLC) systems, which link continuous subcutaneous insulin infusion and continuous glucose monitoring, are the newest, cutting edge technology aimed at reducing glycemic variability and improving daily management of diabetes. Although advances in knowledge and technology in the treatment of diabetes have improved exponentially, adherence to diabetes regimens remains complex and often difficult to predict. Human factors, such as patient perceptions and behavioral self-regulation, are central to adherence to prescribed regimens, as well as to adoption and utilization of diabetes technology, and they will continue to be crucial as diabetes management evolves. Thus, the aims of this article are three-fold: (1) to review psychological and behavioral factors that have influenced adoption and utilization of past technologies, (2) to examine three theoretical frameworks that may help in conceptualizing relevant patient factors in diabetes management, and (3) to propose patient-selection factors that will likely affect future CLC systems. PMID:22226256

  7. Closed-loop fluidic control system for internal combustion engines

    SciTech Connect

    Abbey, H.G.

    1982-01-05

    A closed-loop fluidic control servo system is described for a vehicle having an internal combustion engine provided with a variable venturi carburetor having an axially-shiftable spool operated by a vacuum motor. The system acts automatically through the motor to maintain the ratio of fuel-to-air supplied by the venturi carburetor to the intake manifold of the system at the optimum value during all prevailing conditions of engine speed and load encountered in vehicular operation. The system includes a vacuum amplifier coupled to the intake manifold and responsive to a differential vacuum signal developed between the pressures existing at the inlet and throat of the venturi to produce a proportionally amplified vacuum which is derived from the intake manifold vacuum and is a function of the vacuum signal. The proportionally amplified vacuum serves to energize the vacuum motor to shift the axial position thereof in a direction and to an extent bringing about the desired fuel-to-air ratio.

  8. Conformal thermal therapy using planar ultrasound transducers and adaptive closed-loop MR temperature control: demonstration in gel phantoms and ex vivo tissues.

    PubMed

    Tang, K; Choy, V; Chopra, R; Bronskill, M J

    2007-05-21

    MRI-guided transurethral ultrasound therapy offers a minimally invasive approach for the treatment of localized prostate cancer. Integrating a multi-element planar transducer with active MR temperature feedback can enable three-dimensional conformal thermal therapy of a target region within the prostate gland while sparing surrounding normal tissues. Continuous measurement of the temperature distribution in tissue enables dynamic compensation for unknown changes in blood flow and tissue properties during treatment. The main goal of this study was to evaluate the feasibility of using active temperature feedback on a clinical 1.5 T MR imager for conformal thermal therapy. MR thermometry was performed during heating in both gel phantoms and excised tissue with a transurethral heating applicator, and the rotation rate and power were varied based on the thermal measurements. The capability to produce a region of thermal damage that matched a target boundary was evaluated. The influence of a cooling gradient (to simulate cooling of the rectum or urethra) on the desired pattern of thermal damage was also investigated in gel phantoms. Results showed high correlation between the desired target boundary and the 55 degrees C isotherm generated during heating with an average distance error of 0.9 mm +/- 0.4 mm (n = 6) in turkey breasts, 1.4 mm +/- 0.6 mm (n = 4) in gel phantoms without rectal cooling and 1.4 mm +/- 0.6 mm (n = 3) in gel phantoms with rectal cooling. The results were obtained using a temporal update rate of 5 s, a spatial resolution of 3 x 3 x 10 mm for the control point, and a temperature uncertainty of approximately 1 degrees C. The performance of the control algorithm under these conditions was comparable to that of simulations conducted previously by our group. Overall, the feasibility of generating targeted regions of thermal damage with a transurethral heating applicator and active MR temperature feedback has been demonstrated experimentally. This method

  9. Conformal thermal therapy using planar ultrasound transducers and adaptive closed-loop MR temperature control: demonstration in gel phantoms and ex vivo tissues

    NASA Astrophysics Data System (ADS)

    Tang, K.; Choy, V.; Chopra, R.; Bronskill, M. J.

    2007-05-01

    MRI-guided transurethral ultrasound therapy offers a minimally invasive approach for the treatment of localized prostate cancer. Integrating a multi-element planar transducer with active MR temperature feedback can enable three-dimensional conformal thermal therapy of a target region within the prostate gland while sparing surrounding normal tissues. Continuous measurement of the temperature distribution in tissue enables dynamic compensation for unknown changes in blood flow and tissue properties during treatment. The main goal of this study was to evaluate the feasibility of using active temperature feedback on a clinical 1.5 T MR imager for conformal thermal therapy. MR thermometry was performed during heating in both gel phantoms and excised tissue with a transurethral heating applicator, and the rotation rate and power were varied based on the thermal measurements. The capability to produce a region of thermal damage that matched a target boundary was evaluated. The influence of a cooling gradient (to simulate cooling of the rectum or urethra) on the desired pattern of thermal damage was also investigated in gel phantoms. Results showed high correlation between the desired target boundary and the 55 °C isotherm generated during heating with an average distance error of 0.9 mm ± 0.4 mm (n = 6) in turkey breasts, 1.4 mm ± 0.6 mm (n = 4) in gel phantoms without rectal cooling and 1.4 mm ± 0.6 mm (n = 3) in gel phantoms with rectal cooling. The results were obtained using a temporal update rate of 5 s, a spatial resolution of 3 × 3 × 10 mm for the control point, and a temperature uncertainty of approximately 1 °C. The performance of the control algorithm under these conditions was comparable to that of simulations conducted previously by our group. Overall, the feasibility of generating targeted regions of thermal damage with a transurethral heating applicator and active MR temperature feedback has been demonstrated experimentally. This method of treatment

  10. Closed-loop adaptive optics using a CMOS image quality metric sensor

    NASA Astrophysics Data System (ADS)

    Ting, Chueh; Rayankula, Aditya; Giles, Michael K.; Furth, Paul M.

    2006-08-01

    When compared to a Shack-Hartmann sensor, a CMOS image sharpness sensor has the advantage of reduced complexity in a closed-loop adaptive optics system. It also has the potential to be implemented as a smart sensor using VLSI technology. In this paper, we present a novel adaptive optics testbed that uses a CMOS sharpness imager built in the New Mexico State University (NMSU) Electro-Optics Research Laboratory (EORL). The adaptive optics testbed, which includes a CMOS image quality metric sensor and a 37-channel deformable mirror, has the capability to rapidly compensate higher-order phase aberrations. An experimental performance comparison of the pinhole image sharpness feedback method and the CMOS imager is presented. The experimental data shows that the CMOS sharpness imager works well in a closed-loop adaptive optics system. Its overall performance is better than that of the pinhole method, and it has a fast response time.

  11. Mitigation of vibrations in adaptive optics by minimization of closed-loop residuals.

    PubMed

    Guesalaga, Andres; Neichel, Benoit; O'Neal, Jared; Guzman, Dani

    2013-05-01

    We describe a new technique to reduce tip and tilt vibrations via the design of adaptive optics controllers in a frequency framework. The method synthesizes controllers by minimizing an H2 norm of the tip and tilt residuals. In this approach, open loop slopes (pseudo-open-loop) are reconstructed from on-sky data and input into off-line simulations of the adaptive optics system. The proposed procedure executes a sequence of off-line closed-loop runs with increasing controller complexity and searches for the controller that minimizes the variance of residuals. Although the method avoids any identification of the vibration and turbulence models during the controller synthesis, the actual models are indirectly constructed as a by-product of the H2 norm minimization. The technique has been implemented on and tested with two operational instruments, namely Paranal's NACO and Gemini-South's GeMS, showing an effective rejection of the main vibrations in the loop and also improving the overall performance of the system over varying turbulence conditions. It is shown that a superior performance is obtained when compared to the standard integrator controller.

  12. A closed-loop inductive power control system for an instrumented strain sensing tibial implant.

    PubMed

    Shiying Hao; Taylor, Stephen

    2014-01-01

    Inductively-powered implantable biomedical devices are widely used nowadays, however the power variations due to the coil misalignment can significantly affect the device performance. A closed-loop power control system is proposed in this paper, which is implemented in a Subject-Carried Implant Monitoring Inductive Telemetric Ambulatory Reader (SCIMITAR) for remote strain data acquisition from an instrumented ovine tibia implant. The output power of the energizer is adaptively adjusted via a feedback circuitry connected the demodulator with the power energizer. Lab results showed that feedback suppressed variations in induced power caused by coil misalignment and extended the functional range of the device in axial and planar directions. PMID:25571497

  13. Closed-loop response properties of a visual interneuron involved in fly optomotor control

    PubMed Central

    Ejaz, Naveed; Krapp, Holger G.; Tanaka, Reiko J.

    2013-01-01

    Due to methodological limitations neural function is mostly studied under open-loop conditions. Normally, however, nervous systems operate in closed-loop where sensory input is processed to generate behavioral outputs, which again change the sensory input. Here, we investigate the closed-loop responses of an identified visual interneuron, the blowfly H1-cell, that is part of a neural circuit involved in optomotor flight and gaze control. Those behaviors may be triggered by attitude changes during flight in turbulent air. The fly analyses the resulting retinal image shifts and performs compensatory body and head rotations to regain its default attitude. We developed a fly robot interface to study H1-cell responses in a 1 degree-of-freedom image stabilization task. Image shifts, induced by externally forced rotations, modulate the cell’s spike rate that controls counter rotations of a mobile robot to minimize relative motion between the robot and its visual surroundings. A feedback controller closed the loop between neural activity and the rotation of the robot. Under these conditions we found the following H1-cell response properties: (i) the peak spike rate decreases when the mean image velocity is increased, (ii) the relationship between spike rate and image velocity depends on the standard deviation of the image velocities suggesting adaptive scaling of the cell’s signaling range, and (iii) the cell’s gain decreases linearly with increasing image accelerations. Our results reveal a remarkable qualitative similarity between the response dynamics of the H1-cell under closed-loop conditions with those obtained in previous open-loop experiments. Finally, we show that the adaptive scaling of the H1-cell’s responses, while maximizing information on image velocity, decreases the cell’s sensitivity to image accelerations. Understanding such trade-offs in biological vision systems may advance the design of smart vision sensors for autonomous robots. PMID

  14. Closed-loop response properties of a visual interneuron involved in fly optomotor control.

    PubMed

    Ejaz, Naveed; Krapp, Holger G; Tanaka, Reiko J

    2013-01-01

    Due to methodological limitations neural function is mostly studied under open-loop conditions. Normally, however, nervous systems operate in closed-loop where sensory input is processed to generate behavioral outputs, which again change the sensory input. Here, we investigate the closed-loop responses of an identified visual interneuron, the blowfly H1-cell, that is part of a neural circuit involved in optomotor flight and gaze control. Those behaviors may be triggered by attitude changes during flight in turbulent air. The fly analyses the resulting retinal image shifts and performs compensatory body and head rotations to regain its default attitude. We developed a fly robot interface to study H1-cell responses in a 1 degree-of-freedom image stabilization task. Image shifts, induced by externally forced rotations, modulate the cell's spike rate that controls counter rotations of a mobile robot to minimize relative motion between the robot and its visual surroundings. A feedback controller closed the loop between neural activity and the rotation of the robot. Under these conditions we found the following H1-cell response properties: (i) the peak spike rate decreases when the mean image velocity is increased, (ii) the relationship between spike rate and image velocity depends on the standard deviation of the image velocities suggesting adaptive scaling of the cell's signaling range, and (iii) the cell's gain decreases linearly with increasing image accelerations. Our results reveal a remarkable qualitative similarity between the response dynamics of the H1-cell under closed-loop conditions with those obtained in previous open-loop experiments. Finally, we show that the adaptive scaling of the H1-cell's responses, while maximizing information on image velocity, decreases the cell's sensitivity to image accelerations. Understanding such trade-offs in biological vision systems may advance the design of smart vision sensors for autonomous robots. PMID:23543872

  15. Closed-loop response properties of a visual interneuron involved in fly optomotor control.

    PubMed

    Ejaz, Naveed; Krapp, Holger G; Tanaka, Reiko J

    2013-01-01

    Due to methodological limitations neural function is mostly studied under open-loop conditions. Normally, however, nervous systems operate in closed-loop where sensory input is processed to generate behavioral outputs, which again change the sensory input. Here, we investigate the closed-loop responses of an identified visual interneuron, the blowfly H1-cell, that is part of a neural circuit involved in optomotor flight and gaze control. Those behaviors may be triggered by attitude changes during flight in turbulent air. The fly analyses the resulting retinal image shifts and performs compensatory body and head rotations to regain its default attitude. We developed a fly robot interface to study H1-cell responses in a 1 degree-of-freedom image stabilization task. Image shifts, induced by externally forced rotations, modulate the cell's spike rate that controls counter rotations of a mobile robot to minimize relative motion between the robot and its visual surroundings. A feedback controller closed the loop between neural activity and the rotation of the robot. Under these conditions we found the following H1-cell response properties: (i) the peak spike rate decreases when the mean image velocity is increased, (ii) the relationship between spike rate and image velocity depends on the standard deviation of the image velocities suggesting adaptive scaling of the cell's signaling range, and (iii) the cell's gain decreases linearly with increasing image accelerations. Our results reveal a remarkable qualitative similarity between the response dynamics of the H1-cell under closed-loop conditions with those obtained in previous open-loop experiments. Finally, we show that the adaptive scaling of the H1-cell's responses, while maximizing information on image velocity, decreases the cell's sensitivity to image accelerations. Understanding such trade-offs in biological vision systems may advance the design of smart vision sensors for autonomous robots.

  16. Bio-Inspired Controller on an FPGA Applied to Closed-Loop Diaphragmatic Stimulation.

    PubMed

    Zbrzeski, Adeline; Bornat, Yannick; Hillen, Brian; Siu, Ricardo; Abbas, James; Jung, Ranu; Renaud, Sylvie

    2016-01-01

    Cervical spinal cord injury can disrupt connections between the brain respiratory network and the respiratory muscles which can lead to partial or complete loss of ventilatory control and require ventilatory assistance. Unlike current open-loop technology, a closed-loop diaphragmatic pacing system could overcome the drawbacks of manual titration as well as respond to changing ventilation requirements. We present an original bio-inspired assistive technology for real-time ventilation assistance, implemented in a digital configurable Field Programmable Gate Array (FPGA). The bio-inspired controller, which is a spiking neural network (SNN) inspired by the medullary respiratory network, is as robust as a classic controller while having a flexible, low-power and low-cost hardware design. The system was simulated in MATLAB with FPGA-specific constraints and tested with a computational model of rat breathing; the model reproduced experimentally collected respiratory data in eupneic animals. The open-loop version of the bio-inspired controller was implemented on the FPGA. Electrical test bench characterizations confirmed the system functionality. Open and closed-loop paradigm simulations were simulated to test the FPGA system real-time behavior using the rat computational model. The closed-loop system monitors breathing and changes in respiratory demands to drive diaphragmatic stimulation. The simulated results inform future acute animal experiments and constitute the first step toward the development of a neuromorphic, adaptive, compact, low-power, implantable device. The bio-inspired hardware design optimizes the FPGA resource and time costs while harnessing the computational power of spike-based neuromorphic hardware. Its real-time feature makes it suitable for in vivo applications.

  17. Bio-Inspired Controller on an FPGA Applied to Closed-Loop Diaphragmatic Stimulation.

    PubMed

    Zbrzeski, Adeline; Bornat, Yannick; Hillen, Brian; Siu, Ricardo; Abbas, James; Jung, Ranu; Renaud, Sylvie

    2016-01-01

    Cervical spinal cord injury can disrupt connections between the brain respiratory network and the respiratory muscles which can lead to partial or complete loss of ventilatory control and require ventilatory assistance. Unlike current open-loop technology, a closed-loop diaphragmatic pacing system could overcome the drawbacks of manual titration as well as respond to changing ventilation requirements. We present an original bio-inspired assistive technology for real-time ventilation assistance, implemented in a digital configurable Field Programmable Gate Array (FPGA). The bio-inspired controller, which is a spiking neural network (SNN) inspired by the medullary respiratory network, is as robust as a classic controller while having a flexible, low-power and low-cost hardware design. The system was simulated in MATLAB with FPGA-specific constraints and tested with a computational model of rat breathing; the model reproduced experimentally collected respiratory data in eupneic animals. The open-loop version of the bio-inspired controller was implemented on the FPGA. Electrical test bench characterizations confirmed the system functionality. Open and closed-loop paradigm simulations were simulated to test the FPGA system real-time behavior using the rat computational model. The closed-loop system monitors breathing and changes in respiratory demands to drive diaphragmatic stimulation. The simulated results inform future acute animal experiments and constitute the first step toward the development of a neuromorphic, adaptive, compact, low-power, implantable device. The bio-inspired hardware design optimizes the FPGA resource and time costs while harnessing the computational power of spike-based neuromorphic hardware. Its real-time feature makes it suitable for in vivo applications. PMID:27378844

  18. Bio-Inspired Controller on an FPGA Applied to Closed-Loop Diaphragmatic Stimulation

    PubMed Central

    Zbrzeski, Adeline; Bornat, Yannick; Hillen, Brian; Siu, Ricardo; Abbas, James; Jung, Ranu; Renaud, Sylvie

    2016-01-01

    Cervical spinal cord injury can disrupt connections between the brain respiratory network and the respiratory muscles which can lead to partial or complete loss of ventilatory control and require ventilatory assistance. Unlike current open-loop technology, a closed-loop diaphragmatic pacing system could overcome the drawbacks of manual titration as well as respond to changing ventilation requirements. We present an original bio-inspired assistive technology for real-time ventilation assistance, implemented in a digital configurable Field Programmable Gate Array (FPGA). The bio-inspired controller, which is a spiking neural network (SNN) inspired by the medullary respiratory network, is as robust as a classic controller while having a flexible, low-power and low-cost hardware design. The system was simulated in MATLAB with FPGA-specific constraints and tested with a computational model of rat breathing; the model reproduced experimentally collected respiratory data in eupneic animals. The open-loop version of the bio-inspired controller was implemented on the FPGA. Electrical test bench characterizations confirmed the system functionality. Open and closed-loop paradigm simulations were simulated to test the FPGA system real-time behavior using the rat computational model. The closed-loop system monitors breathing and changes in respiratory demands to drive diaphragmatic stimulation. The simulated results inform future acute animal experiments and constitute the first step toward the development of a neuromorphic, adaptive, compact, low-power, implantable device. The bio-inspired hardware design optimizes the FPGA resource and time costs while harnessing the computational power of spike-based neuromorphic hardware. Its real-time feature makes it suitable for in vivo applications. PMID:27378844

  19. Optimization of adaptive-optics systems closed-loop bandwidth settings to maximize imaging-system performance.

    PubMed

    Brigantic, R T; Roggemann, M C; Welsh, B M; Bauer, K W

    1998-02-10

    We present the results of research aimed at optimizing adaptive-optics closed-loop bandwidth settings to maximize imaging-system performance. The optimum closed-loop bandwidth settings are determined as a function of target-object light levels and atmospheric seeing conditions. Our work shows that, for bright objects, the optimum closed-loop bandwidth is near the Greenwood frequency. However, for dim objects without the use of a laser beacon the preferred closed-loop bandwidth settings are a small fraction of the Greenwood frequency. In addition, under low light levels selection of the proper closed-loop bandwidth is more critical for achieving maximum performance than it is under high light levels. We also present a strategy for selecting the closed-loop bandwidth to provide robust system performance for different target-object light levels.

  20. An optimal open/closed-loop control method with application to a pre-stressed thin duralumin plate

    NASA Astrophysics Data System (ADS)

    Nadimpalli, Sruthi Raju

    The excessive vibrations of a pre-stressed duralumin plate, suppressed by a combination of open-loop and closed-loop controls, also known as open/closed-loop control, is studied in this thesis. The two primary steps involved in this process are: Step (I) with an assumption that the closed-loop control law is proportional, obtain the optimal open-loop control by direct minimization of the performance measure consisting of energy at terminal time and a penalty on open-loop control force via calculus of variations. If the performance measure also involves a penalty on closed-loop control effort then a Fourier based method is utilized. Step (II) the energy at terminal time is minimized numerically to obtain optimal values of feedback gains. The optimal closed-loop control gains obtained are used to describe the displacement and the velocity of open-loop, closed-loop and open/closed-loop controlled duralumin plate.

  1. Closed-loop control of ionization oscillations in Hall accelerators

    SciTech Connect

    Barral, S.; Kaczmarczyk, J.; Kurzyna, J.; Dudeck, M.

    2011-08-15

    Feedback control of ionization oscillations in Hall accelerators is investigated with a proportional-integral-derivative controller acting on the discharge voltage. The stability of the current is found to systematically improve with proportional control, whereas integral and derivative control have in most cases a detrimental or insignificant impact. At low discharge voltages, proportional control eliminates at the same time ionization breathing oscillations as well as a coexisting low frequency mode. A progressive deterioration of the stability is observed at higher voltage, presumably attributable to the limited output voltage range of the controller. The time-averaged characteristics of the discharge such as average current, thrust and efficiency, remain unchanged within measurement uncertainties.

  2. Closed-loop control of anesthesia: a primer for anesthesiologists.

    PubMed

    Dumont, Guy A; Ansermino, J Mark

    2013-11-01

    Feedback control is ubiquitous in nature and engineering and has revolutionized safety in fields from space travel to the automobile. In anesthesia, automated feedback control holds the promise of limiting the effects on performance of individual patient variability, optimizing the workload of the anesthesiologist, increasing the time spent in a more desirable clinical state, and ultimately improving the safety and quality of anesthesia care. The benefits of control systems will not be realized without widespread support from the health care team in close collaboration with industrial partners. In this review, we provide an introduction to the established field of control systems research for the everyday anesthesiologist. We introduce important concepts such as feedback and modeling specific to control problems and provide insight into design requirements for guaranteeing the safety and performance of feedback control systems. We focus our discussion on the optimization of anesthetic drug administration.

  3. On the feasibility of closed-loop control of intra-aortic balloon pumping

    NASA Technical Reports Server (NTRS)

    Clark, J. W., Jr.; Bourland, H. M.; Kane, G. R.

    1973-01-01

    A closed-loop control scheme for the control of intra-aortic balloon pumping has been developed and tested in dog experiments. A performance index reflecting the general objectives of balloon-assist pumping is developed and a modified steepest ascent control algorithm is utilized for the selection of a proper operating point for the balloon during its pumping cycle. This paper attempts to indicate the feasibility of closed-loop control of balloon pumping, and particularly its flexibility in achieving both diastolic augmentation of mean aortic pressure and control of the level of end-diastolic pressure (EDP) an important factor in reducing heart work.

  4. Closed-Loop Aerodynamic Flow Control of a Maneuvering Airfoil

    NASA Astrophysics Data System (ADS)

    Brzozowski, Daniel P.; Culp, John R.; Glezer, Ari

    2011-11-01

    The unsteady interaction between trailing edge aerodynamic flow control and airfoil motion in pitch and plunge is investigated in wind tunnel experiments using a 2-DOF traverse which enables application of time-dependent external torque and forces by servo motors. The global aerodynamic forces and moments are regulated by controlling vorticity generation and accumulation near the surface using hybrid synthetic jet actuators. The dynamic coupling between the actuation and the time-dependent flow field is characterized using simultaneous force and velocity measurements that are taken phase-locked to the commanded actuation waveform. The effect of the unsteady motion on the model-embedded flow control is assessed in unsteady several maneuvers. Circulation time history that is estimated from a PIV wake survey shows that the entire flow over the airfoil readjusts within about 1.5 TCONV, which is about two orders of magnitude shorter than the characteristic time associated with the controlled maneuver of the wind tunnel model. This illustrates that flow-control actuation can be typically effected on time scales that are commensurate with the flow's convective time scale, and that the maneuver response is primarily limited by the inertia of the platform.

  5. Research developing closed loop roll control for magnetic balance systems

    NASA Technical Reports Server (NTRS)

    Covert, E. E.; Haldeman, C. W.

    1981-01-01

    Computer inputs were interfaced to the magnetic balance outputs to provide computer position control and data acquisition. The use of parameter identification of a means of determining dynamic characteristics was investigated. The thyraton and motor generator power supplies for the pitch and yaw degrees of freedom were repaired. Topics covered include: choice of a method for handling dynamic system data; applications to the magnetic balance; the computer interface; and wind tunnel tests, results, and error analysis.

  6. Hardware Evolution of Closed-Loop Controller Designs

    NASA Technical Reports Server (NTRS)

    Gwaltney, David; Ferguson, Ian

    2002-01-01

    Poster presentation will outline on-going efforts at NASA, MSFC to employ various Evolvable Hardware experimental platforms in the evolution of digital and analog circuitry for application to automatic control. Included will be information concerning the application of commercially available hardware and software along with the use of the JPL developed FPTA2 integrated circuit and supporting JPL developed software. Results to date will be presented.

  7. Closed Loop Software Control of the MIDEX Power System

    NASA Technical Reports Server (NTRS)

    Castell, Karen; Hernandez-Pellerano, Amri; Wismer, Margaret

    1998-01-01

    The Microwave Anisotropy Probe (MAP) is a follow-on to the Differential Microwave Radiometer (DMR) instrument on the Cosmic Background Explorer (COBE) spacecraft. The design and analysis of the MAP attitude control system (ACS) have been refined since work previously reported. The full spacecraft and instrument flexible model was developed in NASTRAN, and the resulting flexible modes were plotted and reduced with the Modal Significance Analysis Package (MSAP). The reduced-order model was used to perform the linear stability analysis for each control mode, the results of which are presented in this paper. Although MAP is going to a relatively disturbance-free Lissajous orbit around the Earth-Sun L2 Lagrange point, a detailed disturbance-torque analysis is required because there are only a small number of opportunities for momentum unloading each year. Environmental torques, including solar pressure at L2, and aerodynamic and gravity gradient during phasing-loop orbits, were calculated and simulated. A simple model of fuel slosh was derived to model its effect on the motion of the spacecraft. In addition, a thruster mode linear impulse controller was developed to meet the accuracy requirements of the phasing loop burns. A dynamic attitude error limiter was added to improve the performance of the ACS during large attitude slews. The result of this analysis is a stable ACS subsystem that meets all of the mission's requirements.

  8. Hybrid FES orthosis incorporating closed loop control and sensory feedback.

    PubMed

    Andrews, B J; Baxendale, R H; Barnett, R; Phillips, G F; Yamazaki, T; Paul, J P; Freeman, P A

    1988-04-01

    A hybrid functional electrical stimulation (FES) orthosis is described, comprising a rigid ankle-foot brace, a multi-channel FES stimulator with surface electrodes, body mounted sensors, a 'rule-based' controller and an electro-cutaneous display for supplementary sensory feedback. The mechanical brace provides stability, without FES activation of muscles, for standing postures normally adopted by patients. This avoids inducing muscle fatigue during prolonged upright activity. However, stability is conditional upon the position of the ground reaction vector (GRV) relative to the knee joint. The finite state FES controller reacts automatically to destabilizing shifts of the GRV by stimulating appropriate anti-gravity musculature to brace the leg. The FES system also features a control mode to initiate and terminate flexion of the leg during forward progression. A simple mode of supplementary sensory feedback was used during the laboratory standing tests to assist the patient in maintaining a set posture. Preliminary results of laboratory tests for two spinal cord injured subjects are presented. PMID:3361878

  9. Closed loop coherent control of electronic transitions in gallium arsenide.

    PubMed

    Singha, Sima; Hu, Zhan; Gordon, Robert J

    2011-06-16

    A genetic algorithm was used to control the photoluminesce-nce (PL) from GaAs(100). A spatial light modulator (SLM) used feedback from the emission to optimize the spectral phase profile of an ultrashort laser pulse. Most of the experiments were performed using a sine phase function to optimize the integrated PL spectrum over a specified wavelength range, with the amplitude and period of the phase function treated as genetic parameters. An order of magnitude increase in signal was achieved after only one generation, and an optimized waveform, consisting of three equally spaced pulses approximately 0.8 ps apart, was obtained after 15 generations. The effects of fluence, polarization, relative phase of the subpulses, and spectral range of the optimized PL were investigated. In addition, preliminary experiments were performed using the phases of individual pixels of the SLM as genetic variables. The PL spectrum is identified with recombination of electron-hole pairs in the L-valley of the Brillouin zone. Control is achieved by coherent manipulation of plasma electrons. It is proposed that hot electrons excite lattice phonons, which in turn scatter carriers into the L-valley.

  10. Adaptive multispectral stimulator providing registered IR and RF data in a closed-loop environment

    NASA Astrophysics Data System (ADS)

    Jones, Stephen C.; Hall, Robert L.

    2004-08-01

    The Multi-Spectral Stimulator described in this paper has been designed to answer the future testing and evaluation needs for emerging multi-spectral technology. This system is portable, low cost, and scalable, and can produce synchronous IR and RF images and signals, respectively, for both injection and projection to multi-mode sensors. The scenes generated are temporally and spatially registered and generated from a three-dimensional database. Its present development provides closed-loop capabilities to a missile simulation. Two adaptive technologies are merged into a flexible system that can stimulate multiple sensors simultaneously in real time. It merges Scientific Research Corporation's Adaptable Radar Environment Simulator (ARES) and Quantum3D/CG2 Inc.'s real-time, multi-spectral Scene Generation system. The stimulator can run in either real-time or stepped mode, providing signals on demand. The resulting stimulator test bed is integrated to a non-real-time high fidelity missile simulation that consists of an IR seeker, IR imaging tracker, and a 6-DOF/Autopilot model. The stimulator design can be modified to stimulate multiple passive sensors, active laser systems, multi-mode systems, multiple radar systems, or almost any combination of sensors. The next planned development stage integrates the system to real-time closed-loop system and associated interface electronics. This will provide a bridge to full hardware-in-the-loop (HWIL) integration for the simulation of a dual mode missile system.

  11. A closed-loop photon beam control study for the Advanced Light Source

    SciTech Connect

    Portmann, G.; Bengtsson, J.

    1993-05-01

    The third generation Advanced Light Source (ALS) will produce extremely bright photon beams using undulators and wigglers. In order to position the photon beams accurate to the micron level, a closed-loop feedback system is being developed. Using photon position monitors and dipole corrector magnets, a closed-loop system can automatically compensate for modeling uncertainties and exogenous disturbances. The following paper will present a dynamics model for the perturbations of the closed orbit of the electron beam in the ALS storage ring including the vacuum chamber magnetic field penetration effects. Using this reference model, two closed-loop feedback algorithms will be compared -- a classical PI controller and a two degree-of-freedom approach. The two degree-of-freedom method provides superior disturbance rejection while maintaining the desired performance goals. Both methods will address the need to gain schedule the controller due to the time varying dynamics introduced by changing field strengths when scanning the insertion devices.

  12. Lidar-based wake tracking for closed-loop wind farm control

    NASA Astrophysics Data System (ADS)

    Raach, Steffen; Schlipf, David; Cheng, Po Wen

    2016-09-01

    This work presents two advancements towards closed-loop wake redirecting of a wind turbine. First, a model-based estimation approach is presented which uses a nacelle-based lidar system facing downwind to obtain information about the wake. A reduced order wake model is described which is then used in the estimation to track the wake. The tracking is demonstrated with lidar measurement data from an offshore campaign and with simulated lidar data from a SOWFA simulation. Second, a controller for closed-loop wake steering is presented. It uses the wake tracking information to set the yaw actuator of the wind turbine to redirect the wake to a desired position. Altogether, this paper aims to present the concept of closed-loop wake redirecting and gives a possible solution to it.

  13. Evoked electromyography-based closed-loop torque control in functional electrical stimulation.

    PubMed

    Zhang, Qin; Hayashibe, Mitsuhiro; Azevedo-Coste, Christine

    2013-08-01

    This paper proposed a closed-loop torque control strategy of functional electrical stimulation (FES) with the aim of obtaining an accurate, safe, and robust FES system. Generally, FES control systems are faced with the challenge of how to deal with time-variant muscle dynamics due to physiological and biochemical factors (such as fatigue). The degraded muscle force needs to be compensated in order to ensure the accuracy of the motion restored by FES. Another challenge concerns the fact that implantable sensors are unavailable to feedback torque information for FES in humans. As FES-evoked electromyography (EMG) represents the activity of stimulated muscles, and also enables joint torque prediction as presented in our previous studies, here we propose an EMG-feedback predictive controller of FES to control joint torque adaptively. EMG feedback contributes to taking the activated muscle state in the FES torque control system into account. The nature of the predictive controller facilitates prediction of the muscle mechanical response and the system can therefore control joint torque from EMG feedback and also respond to time-variant muscle state changes. The control performance, fatigue compensation and aggressive control suppression capabilities of the proposed controller were evaluated and discussed through experimental and simulation studies. PMID:23529189

  14. Incorporating real time velocity map image reconstruction into closed-loop coherent control

    NASA Astrophysics Data System (ADS)

    Rallis, C. E.; Burwitz, T. G.; Andrews, P. R.; Zohrabi, M.; Averin, R.; De, S.; Bergues, B.; Jochim, Bethany; Voznyuk, A. V.; Gregerson, Neal; Gaire, B.; Znakovskaya, I.; McKenna, J.; Carnes, K. D.; Kling, M. F.; Ben-Itzhak, I.; Wells, E.

    2014-11-01

    We report techniques developed to utilize three-dimensional momentum information as feedback in adaptive femtosecond control of molecular dynamics. Velocity map imaging is used to obtain the three-dimensional momentum map of the dissociating ions following interaction with a shaped intense ultrafast laser pulse. In order to recover robust feedback information, however, the two-dimensional momentum projection from the detector must be inverted to reconstruct the full three-dimensional momentum of the photofragments. These methods are typically slow or require manual inputs and are therefore accomplished offline after the images have been obtained. Using an algorithm based upon an "onion-peeling" (also known as "back projection") method, we are able to invert 1040 × 1054 pixel images in under 1 s. This rapid inversion allows the full photofragment momentum to be used as feedback in a closed-loop adaptive control scheme, in which a genetic algorithm tailors an ultrafast laser pulse to optimize a specific outcome. Examples of three-dimensional velocity map image based control applied to strong-field dissociation of CO and O2 are presented.

  15. Optimal reconstruction for closed-loop ground-layer adaptive optics with elongated spots.

    PubMed

    Béchet, Clémentine; Tallon, Michel; Tallon-Bosc, Isabelle; Thiébaut, Éric; Le Louarn, Miska; Clare, Richard M

    2010-11-01

    The design of the laser-guide-star-based adaptive optics (AO) systems for the Extremely Large Telescopes requires careful study of the issue of elongated spots produced on Shack-Hartmann wavefront sensors. The importance of a correct modeling of the nonuniformity and correlations of the noise induced by this elongation has already been demonstrated for wavefront reconstruction. We report here on the first (to our knowledge) end-to-end simulations of closed-loop ground-layer AO with laser guide stars with such an improved noise model. The results are compared with the level of performance predicted by a classical noise model for the reconstruction. The performance is studied in terms of ensquared energy and confirms that, thanks to the improved noise model, central or side launching of the lasers does not affect the performance with respect to the laser guide stars' flux. These two launching schemes also perform similarly whatever the atmospheric turbulence strength.

  16. Optimal reconstruction for closed-loop ground-layer adaptive optics with elongated spots.

    PubMed

    Béchet, Clémentine; Tallon, Michel; Tallon-Bosc, Isabelle; Thiébaut, Éric; Le Louarn, Miska; Clare, Richard M

    2010-11-01

    The design of the laser-guide-star-based adaptive optics (AO) systems for the Extremely Large Telescopes requires careful study of the issue of elongated spots produced on Shack-Hartmann wavefront sensors. The importance of a correct modeling of the nonuniformity and correlations of the noise induced by this elongation has already been demonstrated for wavefront reconstruction. We report here on the first (to our knowledge) end-to-end simulations of closed-loop ground-layer AO with laser guide stars with such an improved noise model. The results are compared with the level of performance predicted by a classical noise model for the reconstruction. The performance is studied in terms of ensquared energy and confirms that, thanks to the improved noise model, central or side launching of the lasers does not affect the performance with respect to the laser guide stars' flux. These two launching schemes also perform similarly whatever the atmospheric turbulence strength. PMID:21045872

  17. Closed-loop focal plane wavefront control with the SCExAO instrument

    NASA Astrophysics Data System (ADS)

    Martinache, Frantz; Jovanovic, Nemanja; Guyon, Olivier

    2016-09-01

    Aims: This article describes the implementation of a focal plane based wavefront control loop on the high-contrast imaging instrument SCExAO (Subaru Coronagraphic Extreme Adaptive Optics). The sensor relies on the Fourier analysis of conventional focal-plane images acquired after an asymmetric mask is introduced in the pupil of the instrument. Methods: This absolute sensor is used here in a closed-loop to compensate for the non-common path errors that normally affects any imaging system relying on an upstream adaptive optics system.This specific implementation was used to control low-order modes corresponding to eight zernike modes (from focus to spherical). Results: This loop was successfully run on-sky at the Subaru Telescope and is used to offset the SCExAO deformable mirror shape used as a zero-point by the high-order wavefront sensor. The paper details the range of errors this wavefront-sensing approach can operate within and explores the impact of saturation of the data and how it can be bypassed, at a cost in performance. Conclusions: Beyond this application, because of its low hardware impact, the asymmetric pupil Fourier wavefront sensor (APF-WFS) can easily be ported in a wide variety of wavefront sensing contexts, for ground- as well space-borne telescopes, and for telescope pupils that can be continuous, segmented or even sparse. The technique is powerful because it measures the wavefront where it really matters, at the level of the science detector.

  18. Dynamic control of modeled tonic-clonic seizure states with closed-loop stimulation

    PubMed Central

    Beverlin II, Bryce; Netoff, Theoden I.

    2013-01-01

    Seizure control using deep brain stimulation (DBS) provides an alternative therapy to patients with intractable and drug resistant epilepsy. This paper presents novel DBS stimulus protocols to disrupt seizures. Two protocols are presented: open-loop stimulation and a closed-loop feedback system utilizing measured firing rates to adjust stimulus frequency. Stimulation suppression is demonstrated in a computational model using 3000 excitatory Morris–Lecar (M–L) model neurons connected with depressing synapses. Cells are connected using second order network topology (SONET) to simulate network topologies measured in cortical networks. The network spontaneously switches from tonic to clonic as synaptic strengths and tonic input to the neurons decreases. To this model we add periodic stimulation pulses to simulate DBS. Periodic forcing can synchronize or desynchronize an oscillating population of neurons, depending on the stimulus frequency and amplitude. Therefore, it is possible to either extend or truncate the tonic or clonic phases of the seizure. Stimuli applied at the firing rate of the neuron generally synchronize the population while stimuli slightly slower than the firing rate prevent synchronization. We present an adaptive stimulation algorithm that measures the firing rate of a neuron and adjusts the stimulus to maintain a relative stimulus frequency to firing frequency and demonstrate it in a computational model of a tonic-clonic seizure. This adaptive algorithm can affect the duration of the tonic phase using much smaller stimulus amplitudes than the open-loop control. PMID:23390413

  19. A Method for Precision Closed-Loop Irrigation Using a Modified PID Control Algorithm

    NASA Astrophysics Data System (ADS)

    Goodchild, Martin; Kühn, Karl; Jenkins, Malcolm; Burek, Kazimierz; Dutton, Andrew

    2016-04-01

    The benefits of closed-loop irrigation control have been demonstrated in grower trials which show the potential for improved crop yields and resource usage. Managing water use by controlling irrigation in response to soil moisture changes to meet crop water demands is a popular approach but requires knowledge of closed-loop control practice. In theory, to obtain precise closed-loop control of a system it is necessary to characterise every component in the control loop to derive the appropriate controller parameters, i.e. proportional, integral & derivative (PID) parameters in a classic PID controller. In practice this is often difficult to achieve. Empirical methods are employed to estimate the PID parameters by observing how the system performs under open-loop conditions. In this paper we present a modified PID controller, with a constrained integral function, that delivers excellent regulation of soil moisture by supplying the appropriate amount of water to meet the needs of the plant during the diurnal cycle. Furthermore, the modified PID controller responds quickly to changes in environmental conditions, including rainfall events which can result in: controller windup, under-watering and plant stress conditions. The experimental work successfully demonstrates the functionality of a constrained integral PID controller that delivers robust and precise irrigation control. Coir substrate strawberry growing trial data is also presented illustrating soil moisture control and the ability to match water deliver to solar radiation.

  20. A Review of Control Strategies in Closed-Loop Neuroprosthetic Systems.

    PubMed

    Wright, James; Macefield, Vaughan G; van Schaik, André; Tapson, Jonathan C

    2016-01-01

    It has been widely recognized that closed-loop neuroprosthetic systems achieve more favorable outcomes for users then equivalent open-loop devices. Improved performance of tasks, better usability, and greater embodiment have all been reported in systems utilizing some form of feedback. However, the interdisciplinary work on neuroprosthetic systems can lead to miscommunication due to similarities in well-established nomenclature in different fields. Here we present a review of control strategies in existing experimental, investigational and clinical neuroprosthetic systems in order to establish a baseline and promote a common understanding of different feedback modes and closed-loop controllers. The first section provides a brief discussion of feedback control and control theory. The second section reviews the control strategies of recent Brain Machine Interfaces, neuromodulatory implants, neuroprosthetic systems, and assistive neurorobotic devices. The final section examines the different approaches to feedback in current neuroprosthetic and neurorobotic systems. PMID:27462202

  1. A Review of Control Strategies in Closed-Loop Neuroprosthetic Systems

    PubMed Central

    Wright, James; Macefield, Vaughan G.; van Schaik, André; Tapson, Jonathan C.

    2016-01-01

    It has been widely recognized that closed-loop neuroprosthetic systems achieve more favorable outcomes for users then equivalent open-loop devices. Improved performance of tasks, better usability, and greater embodiment have all been reported in systems utilizing some form of feedback. However, the interdisciplinary work on neuroprosthetic systems can lead to miscommunication due to similarities in well-established nomenclature in different fields. Here we present a review of control strategies in existing experimental, investigational and clinical neuroprosthetic systems in order to establish a baseline and promote a common understanding of different feedback modes and closed-loop controllers. The first section provides a brief discussion of feedback control and control theory. The second section reviews the control strategies of recent Brain Machine Interfaces, neuromodulatory implants, neuroprosthetic systems, and assistive neurorobotic devices. The final section examines the different approaches to feedback in current neuroprosthetic and neurorobotic systems. PMID:27462202

  2. A closed-loop control scheme for steering steady states of glycolysis and glycogenolysis pathway.

    PubMed

    Panja, Surajit; Patra, Sourav; Mukherjee, Anirban; Basu, Madhumita; Sengupta, Sanghamitra; Dutta, Pranab K

    2013-01-01

    Biochemical networks normally operate in the neighborhood of one of its multiple steady states. It may reach from one steady state to other within a finite time span. In this paper, a closed-loop control scheme is proposed to steer states of the glycolysis and glycogenolysis (GG) pathway from one of its steady states to other. The GG pathway is modeled in the synergism and saturation system formalism, known as S-system. This S-system model is linearized into the controllable Brunovsky canonical form using a feedback linearization technique. For closed-loop control, the linear-quadratic regulator (LQR) and the linear-quadratic gaussian (LQG) regulator are invoked to design a controller for tracking prespecified steady states. In the feedback linearization technique, a global diffeomorphism function is proposed that facilitates in achieving the regulation requirement. The robustness of the regulated GG pathway is studied considering input perturbation and with measurement noise.

  3. Closed loop control of dielectric elastomer actuators based on self-sensing displacement feedback

    NASA Astrophysics Data System (ADS)

    Rizzello, G.; Naso, D.; York, A.; Seelecke, S.

    2016-03-01

    This paper describes a sensorless control algorithm for a positioning system based on a dielectric elastomer actuator (DEA). The voltage applied to the membrane and the resulting current can be measured during the actuation and used to estimate its displacement, i.e., to perform self-sensing. The estimated displacement can be then used as a feedback signal for a position control algorithm, which results in a compact device capable of operating in closed loop control without the need for additional electromechanical or optical transducers. In this work, a circular DEA preloaded with a bi-stable spring is used as a case of study to validate the proposed control architecture. A comparison of the closed loop performance achieved using an accurate laser displacement sensor for feedback is also provided to better assess the performance limitations of the overall sensorless scheme.

  4. Double closed-loop cascade control for lower limb exoskeleton with elastic actuation.

    PubMed

    Zhu, Yanhe; Zheng, Tianjiao; Jin, Hongzhe; Yang, Jixing; Zhao, Jie

    2015-01-01

    Unlike traditional rigid actuators, the significant features of Series Elastic Actuator (SEA) are stable torque control, lower output impedance, impact resistance and energy storage. Recently, SEA has been applied in many exoskeletons. In such applications, a key issue is how to realize the human-exoskeleton movement coordination. In this paper, double closed-loop cascade control for lower limb exoskeleton with SEA is proposed. This control method consists of inner SEA torque loop and outer contact force loop. Utilizing the SEA torque control with a motor velocity loop, actuation performances of SEA are analyzed. An integrated exoskeleton control system is designed, in which joint angles are calculated by internal encoders and resolvers and contact forces are gathered by external pressure sensors. The double closed-loop cascade control model is established based on the feedback signals of internal and external sensor. Movement experiments are accomplished in our prototype of lower limb exoskeleton. Preliminary results indicate the exoskeleton movements with pilot can be realized stably by utilizing this double closed-loop cascade control method. Feasibility of the SEA in our exoskeleton robot and effectiveness of the control method are verified.

  5. Androgynous, Reconfigurable Closed Loop Feedback Controlled Low Impact Docking System With Load Sensing Electromagnetic Capture Ring

    NASA Technical Reports Server (NTRS)

    Lewis, James L. (Inventor); Carroll, Monty B. (Inventor); Morales, Ray H. (Inventor); Le, Thang D. (Inventor)

    2002-01-01

    The present invention relates to a fully androgynous, reconfigurable closed loop feedback controlled low impact docking system with load sensing electromagnetic capture ring. The docking system of the present invention preferably comprises two Docking- assemblies, each docking assembly comprising a load sensing ring having an outer face, one of more electromagnets, one or more load cells coupled to said load sensing ring. The docking assembly further comprises a plurality of actuator arms coupled to said load sensing ring and capable of dynamically adjusting the orientation of said load sensing ring and a reconfigurable closed loop control system capable of analyzing signals originating from said plurality of load cells and of outputting real time control for each of the actuators. The docking assembly of the present invention incorporates an active load sensing system to automatically dynamically adjust the load sensing ring during capture instead of requiring significant force to push and realign the ring.

  6. Improvements To Progressive Wave Tube Performance Through Closed-Loop Control

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.

    2000-01-01

    This report documents recent improvements to the acoustic and thermal control systems of the Thermal Acoustic Fatigue Apparatus (TAFA), a progressive wave tube test facility at the NASA Langley Research Center, Hampton, Virginia. A brief summary of past acoustic performance is given first to serve as a basis for comparison with the new performance data using a multiple-input, closed-loop, narrow-band controller. Performance data in the form of test section acoustic power spectral densities and coherence are presented in three of six facility configurations for a variety of input spectra. Tested spectra include uniform, two cases of pink noise, three cases of narrow-band random, a simulated launch payload bay environment for an expendable launch vehicle, and a simulated external acoustic load for the aft section of a reusable launch vehicle. In addition, a new closed-loop temperature controller and thermocouple data acquisition system are described.

  7. Closed-Loop Process Control for Electron Beam Freeform Fabrication and Deposition Processes

    NASA Technical Reports Server (NTRS)

    Taminger, Karen M. (Inventor); Hafley, Robert A. (Inventor); Martin, Richard E. (Inventor); Hofmeister, William H. (Inventor)

    2013-01-01

    A closed-loop control method for an electron beam freeform fabrication (EBF(sup 3)) process includes detecting a feature of interest during the process using a sensor(s), continuously evaluating the feature of interest to determine, in real time, a change occurring therein, and automatically modifying control parameters to control the EBF(sup 3) process. An apparatus provides closed-loop control method of the process, and includes an electron gun for generating an electron beam, a wire feeder for feeding a wire toward a substrate, wherein the wire is melted and progressively deposited in layers onto the substrate, a sensor(s), and a host machine. The sensor(s) measure the feature of interest during the process, and the host machine continuously evaluates the feature of interest to determine, in real time, a change occurring therein. The host machine automatically modifies control parameters to the EBF(sup 3) apparatus to control the EBF(sup 3) process in a closed-loop manner.

  8. Real-time closed-loop control for micro mirrors with quasistatic comb drives

    NASA Astrophysics Data System (ADS)

    Schroedter, Richard; Sandner, Thilo; Janschek, Klaus; Roth, Matthias; Hruschka, Clemens

    2016-03-01

    This paper presents the application of a real-time closed-loop control for the quasistatic axis of electrostatic micro scanning mirrors. In comparison to resonantly driven mirrors, the quasistatic comb drive allows arbitrary motion profiles with frequencies up to its eigenfrequency. A current mirror setup at Fraunhofer IPMS is manufactured with a staggered vertical comb (SVC) drive and equipped with an integrated piezo-resistive deflection sensor, which can potentially be used as position feedback sensor. The control design is accomplished based on a nonlinear mechatronic system model and the preliminary parameter characterization. In previous papers [1, 2] we have shown that jerk-limited trajectories, calculated offline, provide a suitable method for parametric trajectory design, taking into account physical limitations given by the electrostatic comb and thus decreasing the dynamic requirements. The open-loop control shows in general unfavorable residual eigenfrequency oscillations leading to considerable tracking errors for desired triangle trajectories [3]. With real-time closed-loop control, implemented on a dSPACE system using an optical feedback, we can significantly reduce these errors and stabilize the mirror motion against external disturbances. In this paper we compare linear and different nonlinear closed-loop control strategies as well as two observer variants for state estimation. Finally, we evaluate the simulation and experimental results in terms of steady state accuracy and the concept feasibility for a low-cost realization.

  9. Closed-Loop Control System for Friction Stir Welding Retractable Pin Tool

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeffrey; Romine, Peter L.; Munafo, Paul M. (Technical Monitor)

    2001-01-01

    NASA invention disclosure, NASA Case No. MFS-31413, entitled "System for Controlling the Stirring Pin of a Friction Stir Welding Apparatus", (Patent Pending) authored by Jeff Ding, Dr Peter Romine and Pete Oelgoetz, addresses the precision control of the friction stir welding process. The closed-loop control system automatically adjusts the spinning welding pin, real-time, to maintain a precise penetration ligament (i.e., distance between pin-tip and weld panel backside surface). A specific pin length can be maintained while welding constant thickness or tapered material thickness weld panels. The closed-loop control system provides operator data and information relative to the exact position of the welding pin inside the weld joint. This paper presents the closed-loop RPT control system that operates using the auto-feedback of force signals sensed by the tip and shoulder of the welding pin. Significance: The FSW process can be successfully used in a production environment only if there is a method or technique that informs the FSW operator the precise location of the welding pin inside the weld joint. This is essential for applications in aerospace, automotive, pressure vessel, commercial aircraft and other industries.

  10. An error criterion for determining sampling rates in closed-loop control systems

    NASA Technical Reports Server (NTRS)

    Brecher, S. M.

    1972-01-01

    The determination of an error criterion which will give a sampling rate for adequate performance of linear, time-invariant closed-loop, discrete-data control systems was studied. The proper modelling of the closed-loop control system for characterization of the error behavior, and the determination of an absolute error definition for performance of the two commonly used holding devices are discussed. The definition of an adequate relative error criterion as a function of the sampling rate and the parameters characterizing the system is established along with the determination of sampling rates. The validity of the expressions for the sampling interval was confirmed by computer simulations. Their application solves the problem of making a first choice in the selection of sampling rates.

  11. Synchronization of fractional-order colored dynamical networks via open-plus-closed-loop control

    NASA Astrophysics Data System (ADS)

    Yang, Lixin; Jiang, Jun; Liu, Xiaojun

    2016-02-01

    In this paper, the synchronization of a fractional-order colored complex dynamical network model is studied for the first time. In this network model, color edges imply that both the outer coupling topology and the inner interactions between any pair of nodes may be different, and color nodes mean that local dynamics may be different. Based on the stability theory of fractional-order systems, the scheme of synchronization for fractional-order colored complex dynamical networks is presented. To achieve the synchronization of a complex fractional-order edge-colored network, the open-plus-closed-loop (OPCL) strategy is adopted and effective controllers for synchronization are designed. The open-plus-closed-loop (OPCL) strategy avoids the need for computation of eigenvalues of a very large matrix. Then, a synchronization method for a class of fractional-order colored complex network, containing both colored edges and colored nodes, is developed and some effective synchronization conditions via close-loop control are presented. Two examples of numerical simulations are presented to show the effectiveness of the proposed control strategies.

  12. Closed-loop optical stabilization and digital image registration in adaptive optics scanning light ophthalmoscopy.

    PubMed

    Yang, Qiang; Zhang, Jie; Nozato, Koji; Saito, Kenichi; Williams, David R; Roorda, Austin; Rossi, Ethan A

    2014-09-01

    Eye motion is a major impediment to the efficient acquisition of high resolution retinal images with the adaptive optics (AO) scanning light ophthalmoscope (AOSLO). Here we demonstrate a solution to this problem by implementing both optical stabilization and digital image registration in an AOSLO. We replaced the slow scanning mirror with a two-axis tip/tilt mirror for the dual functions of slow scanning and optical stabilization. Closed-loop optical stabilization reduced the amplitude of eye-movement related-image motion by a factor of 10-15. The residual RMS error after optical stabilization alone was on the order of the size of foveal cones: ~1.66-2.56 μm or ~0.34-0.53 arcmin with typical fixational eye motion for normal observers. The full implementation, with real-time digital image registration, corrected the residual eye motion after optical stabilization with an accuracy of ~0.20-0.25 μm or ~0.04-0.05 arcmin RMS, which to our knowledge is more accurate than any method previously reported.

  13. Closed-loop optical stabilization and digital image registration in adaptive optics scanning light ophthalmoscopy

    PubMed Central

    Yang, Qiang; Zhang, Jie; Nozato, Koji; Saito, Kenichi; Williams, David R.; Roorda, Austin; Rossi, Ethan A.

    2014-01-01

    Eye motion is a major impediment to the efficient acquisition of high resolution retinal images with the adaptive optics (AO) scanning light ophthalmoscope (AOSLO). Here we demonstrate a solution to this problem by implementing both optical stabilization and digital image registration in an AOSLO. We replaced the slow scanning mirror with a two-axis tip/tilt mirror for the dual functions of slow scanning and optical stabilization. Closed-loop optical stabilization reduced the amplitude of eye-movement related-image motion by a factor of 10–15. The residual RMS error after optical stabilization alone was on the order of the size of foveal cones: ~1.66–2.56 μm or ~0.34–0.53 arcmin with typical fixational eye motion for normal observers. The full implementation, with real-time digital image registration, corrected the residual eye motion after optical stabilization with an accuracy of ~0.20–0.25 μm or ~0.04–0.05 arcmin RMS, which to our knowledge is more accurate than any method previously reported. PMID:25401030

  14. Scenario-based, closed-loop model predictive control with application to emergency vehicle scheduling

    NASA Astrophysics Data System (ADS)

    Goodwin, Graham. C.; Medioli, Adrian. M.

    2013-08-01

    Model predictive control has been a major success story in process control. More recently, the methodology has been used in other contexts, including automotive engine control, power electronics and telecommunications. Most applications focus on set-point tracking and use single-sequence optimisation. Here we consider an alternative class of problems motivated by the scheduling of emergency vehicles. Here disturbances are the dominant feature. We develop a novel closed-loop model predictive control strategy aimed at this class of problems. We motivate, and illustrate, the ideas via the problem of fluid deployment of ambulance resources.

  15. Closed-loop motor control using high-speed fiber optics

    NASA Technical Reports Server (NTRS)

    Dawson, Reginald (Inventor); Rodriquiz, Dagobert (Inventor)

    1991-01-01

    A closed-loop control system for controlling the operation of one or more servo motors or other controllable devices is described. The system employs a fiber optics link immune to electromagnetic interference, for transmission of control signals from a controller or controllers at a remote station to the power electronics located in proximity to the motors or other devices at the local station. At the remote station the electrical control signals are time-multiplexed, converted to a formatted serial bit stream, and converted to light signals for transmission over a single fiber of the fiber optics link. At the local station, the received optical signals are reconstructed as electrical control signals for the controlled motors or other devices. At the local station, an encoder sensor linked to the driven device generates encoded feedback signals which provide information as to a condition of the controlled device. The encoded signals are placed in a formatted serial bit stream, multiplexed, and transmitted as optical signals over a second fiber of the fiber optic link which closes the control loop of the closed-loop motor controller. The encoded optical signals received at the remote station are demultiplexed, reconstructed and coupled to the controller(s) as electrical feedback signals.

  16. Gait adaptation to visual kinematic perturbations using a real-time closed-loop brain–computer interface to a virtual reality avatar

    NASA Astrophysics Data System (ADS)

    Phat Luu, Trieu; He, Yongtian; Brown, Samuel; Nakagame, Sho; Contreras-Vidal, Jose L.

    2016-06-01

    Objective. The control of human bipedal locomotion is of great interest to the field of lower-body brain–computer interfaces (BCIs) for gait rehabilitation. While the feasibility of closed-loop BCI systems for the control of a lower body exoskeleton has been recently shown, multi-day closed-loop neural decoding of human gait in a BCI virtual reality (BCI-VR) environment has yet to be demonstrated. BCI-VR systems provide valuable alternatives for movement rehabilitation when wearable robots are not desirable due to medical conditions, cost, accessibility, usability, or patient preferences. Approach. In this study, we propose a real-time closed-loop BCI that decodes lower limb joint angles from scalp electroencephalography (EEG) during treadmill walking to control a walking avatar in a virtual environment. Fluctuations in the amplitude of slow cortical potentials of EEG in the delta band (0.1–3 Hz) were used for prediction; thus, the EEG features correspond to time-domain amplitude modulated potentials in the delta band. Virtual kinematic perturbations resulting in asymmetric walking gait patterns of the avatar were also introduced to investigate gait adaptation using the closed-loop BCI-VR system over a period of eight days. Main results. Our results demonstrate the feasibility of using a closed-loop BCI to learn to control a walking avatar under normal and altered visuomotor perturbations, which involved cortical adaptations. The average decoding accuracies (Pearson’s r values) in real-time BCI across all subjects increased from (Hip: 0.18 ± 0.31 Knee: 0.23 ± 0.33 Ankle: 0.14 ± 0.22) on Day 1 to (Hip: 0.40 ± 0.24 Knee: 0.55 ± 0.20 Ankle: 0.29 ± 0.22) on Day 8. Significance. These findings have implications for the development of a real-time closed-loop EEG-based BCI-VR system for gait rehabilitation after stroke and for understanding cortical plasticity induced by a closed-loop BCI-VR system.

  17. Gait adaptation to visual kinematic perturbations using a real-time closed-loop brain-computer interface to a virtual reality avatar

    NASA Astrophysics Data System (ADS)

    Phat Luu, Trieu; He, Yongtian; Brown, Samuel; Nakagame, Sho; Contreras-Vidal, Jose L.

    2016-06-01

    Objective. The control of human bipedal locomotion is of great interest to the field of lower-body brain-computer interfaces (BCIs) for gait rehabilitation. While the feasibility of closed-loop BCI systems for the control of a lower body exoskeleton has been recently shown, multi-day closed-loop neural decoding of human gait in a BCI virtual reality (BCI-VR) environment has yet to be demonstrated. BCI-VR systems provide valuable alternatives for movement rehabilitation when wearable robots are not desirable due to medical conditions, cost, accessibility, usability, or patient preferences. Approach. In this study, we propose a real-time closed-loop BCI that decodes lower limb joint angles from scalp electroencephalography (EEG) during treadmill walking to control a walking avatar in a virtual environment. Fluctuations in the amplitude of slow cortical potentials of EEG in the delta band (0.1-3 Hz) were used for prediction; thus, the EEG features correspond to time-domain amplitude modulated potentials in the delta band. Virtual kinematic perturbations resulting in asymmetric walking gait patterns of the avatar were also introduced to investigate gait adaptation using the closed-loop BCI-VR system over a period of eight days. Main results. Our results demonstrate the feasibility of using a closed-loop BCI to learn to control a walking avatar under normal and altered visuomotor perturbations, which involved cortical adaptations. The average decoding accuracies (Pearson’s r values) in real-time BCI across all subjects increased from (Hip: 0.18 ± 0.31 Knee: 0.23 ± 0.33 Ankle: 0.14 ± 0.22) on Day 1 to (Hip: 0.40 ± 0.24 Knee: 0.55 ± 0.20 Ankle: 0.29 ± 0.22) on Day 8. Significance. These findings have implications for the development of a real-time closed-loop EEG-based BCI-VR system for gait rehabilitation after stroke and for understanding cortical plasticity induced by a closed-loop BCI-VR system.

  18. Neural signal processing and closed-loop control algorithm design for an implanted neural recording and stimulation system.

    PubMed

    Hamilton, Lei; McConley, Marc; Angermueller, Kai; Goldberg, David; Corba, Massimiliano; Kim, Louis; Moran, James; Parks, Philip D; Sang Chin; Widge, Alik S; Dougherty, Darin D; Eskandar, Emad N

    2015-08-01

    A fully autonomous intracranial device is built to continually record neural activities in different parts of the brain, process these sampled signals, decode features that correlate to behaviors and neuropsychiatric states, and use these features to deliver brain stimulation in a closed-loop fashion. In this paper, we describe the sampling and stimulation aspects of such a device. We first describe the signal processing algorithms of two unsupervised spike sorting methods. Next, we describe the LFP time-frequency analysis and feature derivation from the two spike sorting methods. Spike sorting includes a novel approach to constructing a dictionary learning algorithm in a Compressed Sensing (CS) framework. We present a joint prediction scheme to determine the class of neural spikes in the dictionary learning framework; and, the second approach is a modified OSort algorithm which is implemented in a distributed system optimized for power efficiency. Furthermore, sorted spikes and time-frequency analysis of LFP signals can be used to generate derived features (including cross-frequency coupling, spike-field coupling). We then show how these derived features can be used in the design and development of novel decode and closed-loop control algorithms that are optimized to apply deep brain stimulation based on a patient's neuropsychiatric state. For the control algorithm, we define the state vector as representative of a patient's impulsivity, avoidance, inhibition, etc. Controller parameters are optimized to apply stimulation based on the state vector's current state as well as its historical values. The overall algorithm and software design for our implantable neural recording and stimulation system uses an innovative, adaptable, and reprogrammable architecture that enables advancement of the state-of-the-art in closed-loop neural control while also meeting the challenges of system power constraints and concurrent development with ongoing scientific research designed

  19. Neural signal processing and closed-loop control algorithm design for an implanted neural recording and stimulation system.

    PubMed

    Hamilton, Lei; McConley, Marc; Angermueller, Kai; Goldberg, David; Corba, Massimiliano; Kim, Louis; Moran, James; Parks, Philip D; Sang Chin; Widge, Alik S; Dougherty, Darin D; Eskandar, Emad N

    2015-08-01

    A fully autonomous intracranial device is built to continually record neural activities in different parts of the brain, process these sampled signals, decode features that correlate to behaviors and neuropsychiatric states, and use these features to deliver brain stimulation in a closed-loop fashion. In this paper, we describe the sampling and stimulation aspects of such a device. We first describe the signal processing algorithms of two unsupervised spike sorting methods. Next, we describe the LFP time-frequency analysis and feature derivation from the two spike sorting methods. Spike sorting includes a novel approach to constructing a dictionary learning algorithm in a Compressed Sensing (CS) framework. We present a joint prediction scheme to determine the class of neural spikes in the dictionary learning framework; and, the second approach is a modified OSort algorithm which is implemented in a distributed system optimized for power efficiency. Furthermore, sorted spikes and time-frequency analysis of LFP signals can be used to generate derived features (including cross-frequency coupling, spike-field coupling). We then show how these derived features can be used in the design and development of novel decode and closed-loop control algorithms that are optimized to apply deep brain stimulation based on a patient's neuropsychiatric state. For the control algorithm, we define the state vector as representative of a patient's impulsivity, avoidance, inhibition, etc. Controller parameters are optimized to apply stimulation based on the state vector's current state as well as its historical values. The overall algorithm and software design for our implantable neural recording and stimulation system uses an innovative, adaptable, and reprogrammable architecture that enables advancement of the state-of-the-art in closed-loop neural control while also meeting the challenges of system power constraints and concurrent development with ongoing scientific research designed

  20. Stereovision and augmented reality for closed-loop control of grasping in hand prostheses

    NASA Astrophysics Data System (ADS)

    Markovic, Marko; Dosen, Strahinja; Cipriani, Christian; Popovic, Dejan; Farina, Dario

    2014-08-01

    Objective. Technologically advanced assistive devices are nowadays available to restore grasping, but effective and effortless control integrating both feed-forward (commands) and feedback (sensory information) is still missing. The goal of this work was to develop a user friendly interface for the semi-automatic and closed-loop control of grasping and to test its feasibility. Approach. We developed a controller based on stereovision to automatically select grasp type and size and augmented reality (AR) to provide artificial proprioceptive feedback. The system was experimentally tested in healthy subjects using a dexterous hand prosthesis to grasp a set of daily objects. The subjects wore AR glasses with an integrated stereo-camera pair, and triggered the system via a simple myoelectric interface. Main results. The results demonstrated that the subjects got easily acquainted with the semi-autonomous control. The stereovision grasp decoder successfully estimated the grasp type and size in realistic, cluttered environments. When allowed (forced) to correct the automatic system decisions, the subjects successfully utilized the AR feedback and achieved close to ideal system performance. Significance. The new method implements a high level, low effort control of complex functions in addition to the low level closed-loop control. The latter is achieved by providing rich visual feedback, which is integrated into the real life environment. The proposed system is an effective interface applicable with small alterations for many advanced prosthetic and orthotic/therapeutic rehabilitation devices.

  1. Three-dimensional closed-loop control of self-propelled microjets

    NASA Astrophysics Data System (ADS)

    Khalil, Islam S. M.; Magdanz, Veronika; Sanchez, Samuel; Schmidt, Oliver G.; Misra, Sarthak

    2013-10-01

    We demonstrate precise closed-loop control of microjets under the influence of the magnetic fields in three-dimensional (3D) space. For this purpose, we design a magnetic-based control system that directs the field lines towards reference positions. Microjets align along the controlled field lines using the magnetic torque exerted on their magnetic dipole, and move towards the reference positions using their self-propulsion force. We demonstrate the controlled motion of microjets in 3D space, and show that their propulsion force allows them to overcome vertical forces, such as buoyancy forces, interaction forces with oxygen bubbles, and vertical flow. The closed-loop control localizes the microjets within a spherical region of convergence with an average diameter of 406±220 μm, whereas the self-propulsion force allows them to swim at an average speed of 222±74 μm/s within the horizontal plane. Furthermore, we observe that the controlled microjets dive downward and swim upward towards reference positions at average speeds of 232±40 μm/s and 316±81 μm/s, respectively.

  2. Model-Based, Closed-Loop Control of PZT Creep for Cavity Ring-Down Spectroscopy

    PubMed Central

    McCartt, A D; Ognibene, T J; Bench, G; Turteltaub, K W

    2014-01-01

    Cavity ring-down spectrometers typically employ a PZT stack to modulate the cavity transmission spectrum. While PZTs ease instrument complexity and aid measurement sensitivity, PZT hysteresis hinders the implementation of cavity-length-stabilized, data-acquisition routines. Once the cavity length is stabilized, the cavity’s free spectral range imparts extreme linearity and precision to the measured spectrum’s wavelength axis. Methods such as frequency-stabilized cavity ring-down spectroscopy have successfully mitigated PZT hysteresis, but their complexity limits commercial applications. Described herein is a single-laser, model-based, closed-loop method for cavity length control. PMID:25395738

  3. Time Difference Amplifier with Robust Gain Using Closed-Loop Control

    NASA Astrophysics Data System (ADS)

    Nakura, Toru; Mandai, Shingo; Ikeda, Makoto; Asada, Kunihiro

    This paper presents a Time Difference Amplifier (TDA) that amplifies the input time difference into the output time difference. Cross coupled chains of variable delay cells with the same number of stages are applicable for TDA, and the gain is adjusted via the closed-loop control. The TDA was fabricated using 65nm CMOS and the measurement results show that the time difference gain is 4.78 at a nominal power supply while the designed gain is 4.0. The gain is stable enough to be less than 1.4% gain shift under ±10% power supply voltage fluctuation.

  4. Closed-Loop Performance Measures for Flight Controllers Subject to Neutron-Induced Upsets

    NASA Technical Reports Server (NTRS)

    Gray, W. Steven; Zhang, Hong; Gonzalex, Oscar R.

    2003-01-01

    It has been observed that atmospheric neutrons can produce single event upsets in digital flight control hardware. The phenomenon has been studied extensively at the chip level, and now system level experiments are underway. In this paper analytical closed-loop performance measures for the tracking error are developed for a plant that is stabilized by a recoverable computer system subject to neutron induced upsets. The underlying model is a Markov jump-linear system with process noise. The steady-state tracking error is expressed in terms of a generalized observability Gramian.

  5. Wireless Magnetic-Based Closed-Loop Control of Self-Propelled Microjets

    PubMed Central

    Khalil, Islam S. M.; Magdanz, Veronika; Sanchez, Samuel; Schmidt, Oliver G.; Misra, Sarthak

    2014-01-01

    In this study, we demonstrate closed-loop motion control of self-propelled microjets under the influence of external magnetic fields. We control the orientation of the microjets using external magnetic torque, whereas the linear motion towards a reference position is accomplished by the thrust and pulling magnetic forces generated by the ejecting oxygen bubbles and field gradients, respectively. The magnetic dipole moment of the microjets is characterized using the U-turn technique, and its average is calculated to be 1.310−10 A.m2 at magnetic field and linear velocity of 2 mT and 100 µm/s, respectively. The characterized magnetic dipole moment is used in the realization of the magnetic force-current map of the microjets. This map in turn is used for the design of a closed-loop control system that does not depend on the exact dynamical model of the microjets and the accurate knowledge of the parameters of the magnetic system. The motion control characteristics in the transient- and steady-states depend on the concentration of the surrounding fluid (hydrogen peroxide solution) and the strength of the applied magnetic field. Our control system allows us to position microjets at an average velocity of 115 m/s, and within an average region-of-convergence of 365 m. PMID:24505244

  6. Distributed flow sensing for closed-loop speed control of a flexible fish robot.

    PubMed

    Zhang, Feitian; Lagor, Francis D; Yeo, Derrick; Washington, Patrick; Paley, Derek A

    2015-10-23

    Flexibility plays an important role in fish behavior by enabling high maneuverability for predator avoidance and swimming in turbulent flow. This paper presents a novel flexible fish robot equipped with distributed pressure sensors for flow sensing. The body of the robot is molded from soft, hyperelastic material, which provides flexibility. Its Joukowski-foil shape is conducive to modeling the fluid analytically. A quasi-steady potential-flow model is adopted for real-time flow estimation, whereas a discrete-time vortex-shedding flow model is used for higher-fidelity simulation. The dynamics for the flexible fish robot yield a reduced model for one-dimensional swimming. A recursive Bayesian filter assimilates pressure measurements to estimate flow speed, angle of attack, and foil camber. The closed-loop speed-control strategy combines an inverse-mapping feedforward controller based on an average model derived for periodic actuation of angle-of-attack and a proportional-integral feedback controller utilizing the estimated flow information. Simulation and experimental results are presented to show the effectiveness of the estimation and control strategy. The paper provides a systematic approach to distributed flow sensing for closed-loop speed control of a flexible fish robot by regulating the flapping amplitude.

  7. Algorithms for a Closed-Loop Artificial Pancreas: The Case for Model Predictive Control

    PubMed Central

    Bequette, B. Wayne

    2013-01-01

    The relative merits of model predictive control (MPC) and proportional-integral-derivative (PID) control are discussed, with the end goal of a closed-loop artificial pancreas (AP). It is stressed that neither MPC nor PID are single algorithms, but rather are approaches or strategies that may be implemented very differently by different engineers. The primary advantages to MPC are that (i) constraints on the insulin delivery rate (and/or insulin on board) can be explicitly included in the control calculation; (ii) it is a general framework that makes it relatively easy to include the effect of meals, exercise, and other events that are a function of the time of day; and (iii) it is flexible enough to include many different objectives, from set-point tracking (target) to zone (control to range). In the end, however, it is recognized that the control algorithm, while important, represents only a portion of the effort required to develop a closed-loop AP. Thus, any number of algorithms/approaches can be successful—the engineers involved in the design must have experience with the particular technique, including the important experience of implementing the algorithm in human studies and not simply through simulation studies. PMID:24351190

  8. Distributed flow sensing for closed-loop speed control of a flexible fish robot.

    PubMed

    Zhang, Feitian; Lagor, Francis D; Yeo, Derrick; Washington, Patrick; Paley, Derek A

    2015-12-01

    Flexibility plays an important role in fish behavior by enabling high maneuverability for predator avoidance and swimming in turbulent flow. This paper presents a novel flexible fish robot equipped with distributed pressure sensors for flow sensing. The body of the robot is molded from soft, hyperelastic material, which provides flexibility. Its Joukowski-foil shape is conducive to modeling the fluid analytically. A quasi-steady potential-flow model is adopted for real-time flow estimation, whereas a discrete-time vortex-shedding flow model is used for higher-fidelity simulation. The dynamics for the flexible fish robot yield a reduced model for one-dimensional swimming. A recursive Bayesian filter assimilates pressure measurements to estimate flow speed, angle of attack, and foil camber. The closed-loop speed-control strategy combines an inverse-mapping feedforward controller based on an average model derived for periodic actuation of angle-of-attack and a proportional-integral feedback controller utilizing the estimated flow information. Simulation and experimental results are presented to show the effectiveness of the estimation and control strategy. The paper provides a systematic approach to distributed flow sensing for closed-loop speed control of a flexible fish robot by regulating the flapping amplitude. PMID:26495855

  9. Instrumentation to record evoked potentials for closed-loop control of deep brain stimulation.

    PubMed

    Kent, Alexander R; Grill, Warren M

    2011-01-01

    Closed-loop deep brain stimulation (DBS) systems offer promise in relieving the clinical burden of stimulus parameter selection and improving treatment outcomes. In such a system, a feedback signal is used to adjust automatically stimulation parameters and optimize the efficacy of stimulation. We explored the feasibility of recording electrically evoked compound action potentials (ECAPs) during DBS for use as a feedback control signal. A novel instrumentation system was developed to suppress the stimulus artifact and amplify the small magnitude, short latency ECAP response during DBS with clinically relevant parameters. In vitro testing demonstrated the capabilities to increase the gain by a factor of 1,000× over a conventional amplifier without saturation, reduce distortion of mock ECAP signals, and make high fidelity recordings of mock ECAPs at latencies of only 0.5 ms following DBS pulses of 50 to 100 μs duration. Subsequently, the instrumentation was used to make in vivo recordings of ECAPs during thalamic DBS in cats, without contamination by the stimulus artifact. The signal characteristics were similar across three experiments, suggesting common neural activation patterns. The ECAP recordings enabled with this novel instrumentation may provide insight into the type and spatial extent of neural elements activated during DBS, and could serve as feedback control signals for closed-loop systems. PMID:22255894

  10. Closed-loop adaptive-optics system with a liquid-crystal television as a phase retarder

    NASA Astrophysics Data System (ADS)

    Dou, Rensheng; Giles, Michael K.

    1995-07-01

    We present a closed-loop adaptive-optics system that uses a liquid-crystal television (LCTV) as a phase retarder. The system consists of a LCTV inserted into one leg of a Mach-Zehnder interferometer so that one measures the wave-front function by analyzing the interferogram using a video CCD camera and a computer and corrects the wave-front distortion by placing the conjugate function on the LCTV. Experimental results are presented.

  11. Closed-loop control of a 2-D mems micromirror with sidewall electrodes for a laser scanning microscope system

    NASA Astrophysics Data System (ADS)

    Chen, Hui; Chen, Albert; Jie Sun, Wei; Sun, Zhen Dong; Yeow, John TW

    2016-01-01

    This article presents the development and implementation of a robust nonlinear control scheme for a 2-D micromirror-based laser scanning microscope system. The presented control scheme, built around sliding mode control approach and augmented an adaptive algorithm, is proposed to improve the tracking accuracy in presence of cross-axis effect. The closed-loop controlled imaging system is developed through integrating a 2-D micromirror with sidewall electrodes (SW), a laser source, NI field-programmable gate array (FPGA) hardware, the optics, position sensing detector (PSD) and photo detector (PD). The experimental results demonstrated that the proposed scheme is able to achieve accurate tracking of a reference triangular signal. Compared with open-loop control, the scanning performance is significantly improved, and a better 2-D image is obtained using the micromirror with the proposed scheme.

  12. A statistical learning strategy for closed-loop control of fluid flows

    NASA Astrophysics Data System (ADS)

    Guéniat, Florimond; Mathelin, Lionel; Hussaini, M. Yousuff

    2016-04-01

    This work discusses a closed-loop control strategy for complex systems utilizing scarce and streaming data. A discrete embedding space is first built using hash functions applied to the sensor measurements from which a Markov process model is derived, approximating the complex system's dynamics. A control strategy is then learned using reinforcement learning once rewards relevant with respect to the control objective are identified. This method is designed for experimental configurations, requiring no computations nor prior knowledge of the system, and enjoys intrinsic robustness. It is illustrated on two systems: the control of the transitions of a Lorenz'63 dynamical system, and the control of the drag of a cylinder flow. The method is shown to perform well.

  13. UKF-based closed loop iterative learning control of epileptiform wave in a neural mass model.

    PubMed

    Shan, Bonan; Wang, Jiang; Deng, Bin; Wei, Xile; Yu, Haitao; Li, Huiyan

    2015-02-01

    A novel closed loop control framework is proposed to inhibit epileptiform wave in a neural mass model by external electric field, where the unscented Kalman filter method is used to reconstruct dynamics and estimate unmeasurable parameters of the model. Specifically speaking, the iterative learning control algorithm is introduced into the framework to optimize the control signal. In the proposed method, the control effect can be significantly improved based on the observation of the past attempts. Accordingly, the proposed method can effectively suppress the epileptiform wave as well as showing robustness to noises and uncertainties. Lastly, the simulation is carried out to illustrate the feasibility of the proposed method. Besides, this work shows potential value to design model-based feedback controllers for epilepsy treatment.

  14. UKF-based closed loop iterative learning control of epileptiform wave in a neural mass model.

    PubMed

    Shan, Bonan; Wang, Jiang; Deng, Bin; Wei, Xile; Yu, Haitao; Li, Huiyan

    2015-02-01

    A novel closed loop control framework is proposed to inhibit epileptiform wave in a neural mass model by external electric field, where the unscented Kalman filter method is used to reconstruct dynamics and estimate unmeasurable parameters of the model. Specifically speaking, the iterative learning control algorithm is introduced into the framework to optimize the control signal. In the proposed method, the control effect can be significantly improved based on the observation of the past attempts. Accordingly, the proposed method can effectively suppress the epileptiform wave as well as showing robustness to noises and uncertainties. Lastly, the simulation is carried out to illustrate the feasibility of the proposed method. Besides, this work shows potential value to design model-based feedback controllers for epilepsy treatment. PMID:26052360

  15. Closed Loop Active Flow Separation Detection and Control in a Multistage Compressor

    NASA Technical Reports Server (NTRS)

    Bright, Michelle M.; Culley, Dennis E.; Braunscheidel, Edward P.; Welch, Gerard E.

    2005-01-01

    Active closed loop flow control was successfully demonstrated on a full annulus of stator vanes in a low speed axial compressor. Two independent methods of detecting separated flow conditions on the vane suction surface were developed. The first technique detects changes in static pressure along the vane suction surface, while the second method monitors variation in the potential field of the downstream rotor. Both methods may feasibly be used in future engines employing embedded flow control technology. In response to the detection of separated conditions, injection along the suction surface of each vane was used. Injected mass flow on the suction surface of stator vanes is known to reduce separation and the resulting limitation on static pressure rise due to lowered diffusion in the vane passage. A control algorithm was developed which provided a proportional response of the injected mass flow to the degree of separation, thereby minimizing the performance penalty on the compressor system.

  16. Recovery of Dynamics and Function in Spiking Neural Networks with Closed-Loop Control

    PubMed Central

    Vlachos, Ioannis; Deniz, Taşkin; Aertsen, Ad; Kumar, Arvind

    2016-01-01

    There is a growing interest in developing novel brain stimulation methods to control disease-related aberrant neural activity and to address basic neuroscience questions. Conventional methods for manipulating brain activity rely on open-loop approaches that usually lead to excessive stimulation and, crucially, do not restore the original computations performed by the network. Thus, they are often accompanied by undesired side-effects. Here, we introduce delayed feedback control (DFC), a conceptually simple but effective method, to control pathological oscillations in spiking neural networks (SNNs). Using mathematical analysis and numerical simulations we show that DFC can restore a wide range of aberrant network dynamics either by suppressing or enhancing synchronous irregular activity. Importantly, DFC, besides steering the system back to a healthy state, also recovers the computations performed by the underlying network. Finally, using our theory we identify the role of single neuron and synapse properties in determining the stability of the closed-loop system. PMID:26829673

  17. Artificial neural networks for closed loop control of in silico and ad hoc type 1 diabetes.

    PubMed

    Fernandez de Canete, J; Gonzalez-Perez, S; Ramos-Diaz, J C

    2012-04-01

    The closed loop control of blood glucose levels might help to reduce many short- and long-term complications of type 1 diabetes. Continuous glucose monitoring and insulin pump systems have facilitated the development of the artificial pancreas. In this paper, artificial neural networks are used for both the identification of patient dynamics and the glycaemic regulation. A subcutaneous glucose measuring system together with a Lispro insulin subcutaneous pump were used to gather clinical data for each patient undergoing treatment, and a corresponding in silico and ad hoc neural network model was derived for each patient to represent their particular glucose-insulin relationship. Based on this nonlinear neural network model, an ad hoc neural network controller was designed to close the feedback loop for glycaemic regulation of the in silico patient. Both the neural network model and the controller were tested for each patient under simulation, and the results obtained show a good performance during food intake and variable exercise conditions.

  18. On the dynamics and control of flexible multibody systems with closed loops

    SciTech Connect

    Damaren, C.J.

    2000-03-01

    The motion control problem for cooperating flexible robot arms manipulating a large rigid payload is considered. An output that depends on the payload position and contributions form the joint motion of each arm is constructed whose rate yields the passivity property with respect to a special input. The input is a combination of the torques from each arm and contains a free load-sharing parameter. The passivity property is shown to depend on the payload mass properties, and in cases where the payload is large, a passivity-based controller combining feedforward and feedback as elements is devised, which yields tracking. An experimental facility consisting of two planar 3-DoF arms is used to implement the strategies. Good tracking is observed and compared with simulation predictions for closed-loop flexible multibody systems.

  19. On-board closed-loop congestion control for satellite based packet switching networks

    NASA Technical Reports Server (NTRS)

    Chu, Pong P.; Ivancic, William D.; Kim, Heechul

    1993-01-01

    NASA LeRC is currently investigating a satellite architecture that incorporates on-board packet switching capability. Because of the statistical nature of packet switching, arrival traffic may fluctuate and thus it is necessary to integrate congestion control mechanism as part of the on-board processing unit. This study focuses on the closed-loop reactive control. We investigate the impact of the long propagation delay on the performance and propose a scheme to overcome the problem. The scheme uses a global feedback signal to regulate the packet arrival rate of ground stations. In this scheme, the satellite continuously broadcasts the status of its output buffer and the ground stations respond by selectively discarding packets or by tagging the excessive packets as low-priority. The two schemes are evaluated by theoretical queuing analysis and simulation. The former is used to analyze the simplified model and to determine the basic trends and bounds, and the later is used to assess the performance of a more realistic system and to evaluate the effectiveness of more sophisticated control schemes. The results show that the long propagation delay makes the closed-loop congestion control less responsive. The broadcasted information can only be used to extract statistical information. The discarding scheme needs carefully-chosen status information and reduction function, and normally requires a significant amount of ground discarding to reduce the on-board packet loss probability. The tagging scheme is more effective since it tolerates more uncertainties and allows a larger margin of error in status information. It can protect the high-priority packets from excessive loss and fully utilize the downlink bandwidth at the same time.

  20. A neurochemical closed-loop controller for deep brain stimulation: toward individualized smart neuromodulation therapies.

    PubMed

    Grahn, Peter J; Mallory, Grant W; Khurram, Obaid U; Berry, B Michael; Hachmann, Jan T; Bieber, Allan J; Bennet, Kevin E; Min, Hoon-Ki; Chang, Su-Youne; Lee, Kendall H; Lujan, J L

    2014-01-01

    Current strategies for optimizing deep brain stimulation (DBS) therapy involve multiple postoperative visits. During each visit, stimulation parameters are adjusted until desired therapeutic effects are achieved and adverse effects are minimized. However, the efficacy of these therapeutic parameters may decline with time due at least in part to disease progression, interactions between the host environment and the electrode, and lead migration. As such, development of closed-loop control systems that can respond to changing neurochemical environments, tailoring DBS therapy to individual patients, is paramount for improving the therapeutic efficacy of DBS. Evidence obtained using electrophysiology and imaging techniques in both animals and humans suggests that DBS works by modulating neural network activity. Recently, animal studies have shown that stimulation-evoked changes in neurotransmitter release that mirror normal physiology are associated with the therapeutic benefits of DBS. Therefore, to fully understand the neurophysiology of DBS and optimize its efficacy, it may be necessary to look beyond conventional electrophysiological analyses and characterize the neurochemical effects of therapeutic and non-therapeutic stimulation. By combining electrochemical monitoring and mathematical modeling techniques, we can potentially replace the trial-and-error process used in clinical programming with deterministic approaches that help attain optimal and stable neurochemical profiles. In this manuscript, we summarize the current understanding of electrophysiological and electrochemical processing for control of neuromodulation therapies. Additionally, we describe a proof-of-principle closed-loop controller that characterizes DBS-evoked dopamine changes to adjust stimulation parameters in a rodent model of DBS. The work described herein represents the initial steps toward achieving a "smart" neuroprosthetic system for treatment of neurologic and psychiatric disorders

  1. Closed loop control of the induction heating process using miniature magnetic sensors

    DOEpatents

    Bentley, Anthony E.; Kelley, John Bruce; Zutavern, Fred J.

    2003-05-20

    A method and system for providing real-time, closed-loop control of the induction hardening process. A miniature magnetic sensor located near the outer surface of the workpiece measures changes in the surface magnetic field caused by changes in the magnetic properties of the workpiece as it heats up during induction heating (or cools down during quenching). A passive miniature magnetic sensor detects a distinct magnetic spike that appears when the saturation field, B.sub.sat, of the workpiece has been exceeded. This distinct magnetic spike disappears when the workpiece's surface temperature exceeds its Curie temperature, due to the sudden decrease in its magnetic permeability. Alternatively, an active magnetic sensor can measure changes in the resonance response of the monitor coil when the excitation coil is linearly swept over 0-10 MHz, due to changes in the magnetic permeability and electrical resistivity of the workpiece as its temperature increases (or decreases).

  2. A rapidly settled closed-loop control for airfoil aerodynamics based on plasma actuation

    NASA Astrophysics Data System (ADS)

    Wu, Z.; Wong, C. W.; Wang, L.; Lu, Z.; Zhu, Y.; Zhou, Y.

    2015-08-01

    This paper presents an experimental investigation on the response of the slope seeking with extended Kalman filter (EKF) deployed in a closed-loop system for airfoil aerodynamics control. A novel dielectric barrier discharge (DBD) plasma actuator was used to manipulate the flow around the NACA 0015 airfoil. Experiments were performed under different freestream velocities U ∞, covering the chord Reynolds number Re from 4.4 × 104 to 7.7 × 104. Firstly, the advantages of applying this DBD plasma actuator (hereafter called sawtooth plasma actuator) on the airfoil were examined in an open-loop system at Re = 7.7 × 104. The sawtooth plasma actuator led to a delay in the stall angle α stall by 5° and an increase in the maximum lift coefficient by about 9 %. On the other hand, at the same input power, the traditional DBD plasma actuator managed a delay in α stall by only 3° and an increase in by about 3 %. Secondly, the convergence time t c of the lift force F L at Re from 4.4 × 104 to 7.7 × 104 was investigated for two closed-loop systems. It has been demonstrated that the t c was about 70 % less under the slope seeking with EKF than that under the conventional slope seeking with high-pass (HP) and low-pass (LP) filters at Re = 7.7 × 104. The reduction in t c was also observed at a different Re. Finally, the slope seeking with EKF showed excellent robustness over a moderate Re range; that is, the voltage amplitude determined by the control algorithm promptly responded to a change in Re, much faster than that of the conventional slope seeking with HP and LP filters.

  3. Pre-frontal control of closed-loop limbic neurostimulation by rodents using a brain-computer interface

    NASA Astrophysics Data System (ADS)

    Widge, Alik S.; Moritz, Chet T.

    2014-04-01

    Objective. There is great interest in closed-loop neurostimulators that sense and respond to a patient's brain state. Such systems may have value for neurological and psychiatric illnesses where symptoms have high intraday variability. Animal models of closed-loop stimulators would aid preclinical testing. We therefore sought to demonstrate that rodents can directly control a closed-loop limbic neurostimulator via a brain-computer interface (BCI). Approach. We trained rats to use an auditory BCI controlled by single units in prefrontal cortex (PFC). The BCI controlled electrical stimulation in the medial forebrain bundle, a limbic structure involved in reward-seeking. Rigorous offline analyses were performed to confirm volitional control of the neurostimulator. Main results. All animals successfully learned to use the BCI and neurostimulator, with closed-loop control of this challenging task demonstrated at 80% of PFC recording locations. Analysis across sessions and animals confirmed statistically robust BCI control and specific, rapid modulation of PFC activity. Significance. Our results provide a preliminary demonstration of a method for emotion-regulating closed-loop neurostimulation. They further suggest that activity in PFC can be used to control a BCI without pre-training on a predicate task. This offers the potential for BCI-based treatments in refractory neurological and mental illness.

  4. On the use of dual frequency nematic material for adaptive optics systems: first results of a closed-loop experiment.

    PubMed

    Restaino, S; Dayton, D; Browne, S; Gonglewski, J; Baker, J; Rogers, S; McDermott, S; Gallegos, J; Shilko, M

    2000-01-01

    The use of liquid crystal devices for wavefront control has been suggested and implemented by several authors. In this paper we report some preliminary results on the use of Nematic based liquid crystal devices. Several experimental efforts have been carried out in the past few months. One of the main aims was to characterize a new device that uses dual frequency nematic material in a closed loop arrangement.

  5. On the use of dual frequency nematic material for adaptive optics systems: first results of a closed-loop experiment.

    PubMed

    Restaino, S; Dayton, D; Browne, S; Gonglewski, J; Baker, J; Rogers, S; McDermott, S; Gallegos, J; Shilko, M

    2000-01-01

    The use of liquid crystal devices for wavefront control has been suggested and implemented by several authors. In this paper we report some preliminary results on the use of Nematic based liquid crystal devices. Several experimental efforts have been carried out in the past few months. One of the main aims was to characterize a new device that uses dual frequency nematic material in a closed loop arrangement. PMID:19401740

  6. Closed loop control of a rotational joint driven by two antagonistic dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Randazzo, Marco; Fumagalli, Matteo; Metta, Giorgio; Sandini, Giulio

    2010-04-01

    Dielectric elastomers are a subclass of electronic EAPs able to produce large deformations (and thus mechanical work) when an external electric field is applied. While the intrinsic compliance of this kind of polymeric actuators have been always addressed as major benefit with respect to traditional electromagnetic motors, unable to fully capture the capabilities and mechanical properties of biological muscles, their polymeric nature poses peculiar challenges in controlling a system which is subject to nonlinearities, hysteresis and viscous creep behavior. In this paper we explore the controllability properties of a simple rotational joint driven by two dielectric elastomer actuators arranged in an antagonistic configuration. A number of sensors are used to obtain information about the state of controlled system: the angular position of the joint is measured by an angular encoder, custom-designed tension sensors are used to monitor the tension of the two driving tendons and linear encoders provide accurate measurements of the displacements generated by the two actuators. Using this feedback information, a control algorithm has been implemented on a microcontroller unit in order to independently activate the two actuators, allowing a closed loop control of both the angular position of the joint (position control) and the tensions of its tendons (force control). A description of the developed control strategy and its performances under different load conditions are discussed in this paper.

  7. Multisession, noninvasive closed-loop neuroprosthetic control of grasping by upper limb amputees.

    PubMed

    Agashe, H A; Paek, A Y; Contreras-Vidal, J L

    2016-01-01

    Upper limb amputation results in a severe reduction in the quality of life of affected individuals due to their inability to easily perform activities of daily living. Brain-machine interfaces (BMIs) that translate grasping intent from the brain's neural activity into prosthetic control may increase the level of natural control currently available in myoelectric prostheses. Current BMI techniques demonstrate accurate arm position and single degree-of-freedom grasp control but are invasive and require daily recalibration. In this study we tested if transradial amputees (A1 and A2) could control grasp preshaping in a prosthetic device using a noninvasive electroencephalography (EEG)-based closed-loop BMI system. Participants attempted to grasp presented objects by controlling two grasping synergies, in 12 sessions performed over 5 weeks. Prior to closed-loop control, the first six sessions included a decoder calibration phase using action observation by the participants; thereafter, the decoder was fixed to examine neuroprosthetic performance in the absence of decoder recalibration. Ability of participants to control the prosthetic was measured by the success rate of grasping; ie, the percentage of trials within a session in which presented objects were successfully grasped. Participant A1 maintained a steady success rate (63±3%) across sessions (significantly above chance [41±5%] for 11 sessions). Participant A2, who was under the influence of pharmacological treatment for depression, hormone imbalance, pain management (for phantom pain as well as shoulder joint inflammation), and drug dependence, achieved a success rate of 32±2% across sessions (significantly above chance [27±5%] in only two sessions). EEG signal quality was stable across sessions, but the decoders created during the first six sessions showed variation, indicating EEG features relevant to decoding at a smaller timescale (100ms) may not be stable. Overall, our results show that (a) an EEG

  8. Closed-Loop Control of Chemical Injection Rate for a Direct Nozzle Injection System.

    PubMed

    Cai, Xiang; Walgenbach, Martin; Doerpmond, Malte; Schulze Lammers, Peter; Sun, Yurui

    2016-01-20

    To realize site-specific and variable-rate application of agricultural pesticides, accurately metering and controlling the chemical injection rate is necessary. This study presents a prototype of a direct nozzle injection system (DNIS) by which chemical concentration transport lag was greatly reduced. In this system, a rapid-reacting solenoid valve (RRV) was utilized for injecting chemicals, driven by a pulse-width modulation (PWM) signal at 100 Hz, so with varying pulse width the chemical injection rate could be adjusted. Meanwhile, a closed-loop control strategy, proportional-integral-derivative (PID) method, was applied for metering and stabilizing the chemical injection rate. In order to measure chemical flow rates and input them into the controller as a feedback in real-time, a thermodynamic flowmeter that was independent of chemical viscosity was used. Laboratory tests were conducted to assess the performance of DNIS and PID control strategy. Due to the nonlinear input-output characteristics of the RRV, a two-phase PID control process obtained better effects as compared with single PID control strategy. Test results also indicated that the set-point chemical flow rate could be achieved within less than 4 s, and the output stability was improved compared to the case without control strategy.

  9. Closed-Loop Control of Chemical Injection Rate for a Direct Nozzle Injection System.

    PubMed

    Cai, Xiang; Walgenbach, Martin; Doerpmond, Malte; Schulze Lammers, Peter; Sun, Yurui

    2016-01-01

    To realize site-specific and variable-rate application of agricultural pesticides, accurately metering and controlling the chemical injection rate is necessary. This study presents a prototype of a direct nozzle injection system (DNIS) by which chemical concentration transport lag was greatly reduced. In this system, a rapid-reacting solenoid valve (RRV) was utilized for injecting chemicals, driven by a pulse-width modulation (PWM) signal at 100 Hz, so with varying pulse width the chemical injection rate could be adjusted. Meanwhile, a closed-loop control strategy, proportional-integral-derivative (PID) method, was applied for metering and stabilizing the chemical injection rate. In order to measure chemical flow rates and input them into the controller as a feedback in real-time, a thermodynamic flowmeter that was independent of chemical viscosity was used. Laboratory tests were conducted to assess the performance of DNIS and PID control strategy. Due to the nonlinear input-output characteristics of the RRV, a two-phase PID control process obtained better effects as compared with single PID control strategy. Test results also indicated that the set-point chemical flow rate could be achieved within less than 4 s, and the output stability was improved compared to the case without control strategy. PMID:26805833

  10. Closed-Loop Control of Chemical Injection Rate for a Direct Nozzle Injection System

    PubMed Central

    Cai, Xiang; Walgenbach, Martin; Doerpmond, Malte; Schulze Lammers, Peter; Sun, Yurui

    2016-01-01

    To realize site-specific and variable-rate application of agricultural pesticides, accurately metering and controlling the chemical injection rate is necessary. This study presents a prototype of a direct nozzle injection system (DNIS) by which chemical concentration transport lag was greatly reduced. In this system, a rapid-reacting solenoid valve (RRV) was utilized for injecting chemicals, driven by a pulse-width modulation (PWM) signal at 100 Hz, so with varying pulse width the chemical injection rate could be adjusted. Meanwhile, a closed-loop control strategy, proportional-integral-derivative (PID) method, was applied for metering and stabilizing the chemical injection rate. In order to measure chemical flow rates and input them into the controller as a feedback in real-time, a thermodynamic flowmeter that was independent of chemical viscosity was used. Laboratory tests were conducted to assess the performance of DNIS and PID control strategy. Due to the nonlinear input–output characteristics of the RRV, a two-phase PID control process obtained better effects as compared with single PID control strategy. Test results also indicated that the set-point chemical flow rate could be achieved within less than 4 s, and the output stability was improved compared to the case without control strategy. PMID:26805833

  11. Adaptive feedforward of estimated ripple improves the closed loop system performance significantly

    SciTech Connect

    Kwon, S.; Regan, A.; Wang, Y.M.; Rohlev, T.

    1998-12-31

    The Low Energy Demonstration Accelerator (LEDA) being constructed at Los Alamos National Laboratory will serve as the prototype for the low energy section of Acceleration Production of Tritium (APT) accelerator. This paper addresses the problem of LLRF control system for LEDA. The authors propose an estimator of the ripple and its time derivative and a control law which is based on PID control and adaptive feedforward of estimated ripple. The control law reduces the effect of the deterministic cathode ripple that is due to high voltage power supply and achieves tracking of desired set points.

  12. Closed loop control of a cylindrical tube type Ionic Polymer Metal Composite (IPMC)

    NASA Astrophysics Data System (ADS)

    Mead, Benjamin T.

    used for this purpose are tested and discussed. After determining a suitable type a mathematical electro-mechanical model is developed. Using this model several closed loop control systems are proposed. Once a final decision is reached the closed loop control system is implemented in the experimental setup. Several tests are designed to test the effectiveness of the closed loop system and mathematical models. Finally several improvements are made to enhance the users experience using IPMCs as well as incorporating them into conventional devices. To provide a better user interface the experimental control system is extended to allow the user to input controls via a standard computer mouse. This will allow a shorter operator training time and hopefully a wider array of real world uses for IPMCs. Attempts are also made to establish permanent connections to the IPMC. A tube type IPMC is meant to be used as part of a total system. To this end soldered connections to the IPMC are made. One of the main expected applications of tube type IPMCs are as active catheters. In this application the IPMC would be placed in-line with the plastic catheter line. As a proof of concept the IPMC is installed onto the tip of a conventional catheter line.

  13. Apparatus and method for closed-loop control of reactor power in minimum time

    DOEpatents

    Bernard, Jr., John A.

    1988-11-01

    Closed-loop control law for altering the power level of nuclear reactors in a safe manner and without overshoot and in minimum time. Apparatus is provided for moving a fast-acting control element such as a control rod or a control drum for altering the nuclear reactor power level. A computer computes at short time intervals either the function: .rho.=(.beta.-.rho.).omega.-.lambda..sub.e '.rho.-.SIGMA..beta..sub.i (.lambda..sub.i -.lambda..sub.e ')+l* .omega.+l* [.omega..sup.2 +.lambda..sub.e '.omega.] or the function: .rho.=(.beta.-.rho.).omega.-.lambda..sub.e .rho.-(.lambda..sub.e /.lambda..sub.e)(.beta.-.rho.)+l* .omega.+l* [.omega..sup.2 +.lambda..sub.e .omega.-(.lambda..sub.e /.lambda..sub.e).omega.] These functions each specify the rate of change of reactivity that is necessary to achieve a specified rate of change of reactor power. The direction and speed of motion of the control element is altered so as to provide the rate of reactivity change calculated using either or both of these functions thereby resulting in the attainment of a new power level without overshoot and in minimum time. These functions are computed at intervals of approximately 0.01-1.0 seconds depending on the specific application.

  14. Closed-loop separation control over a sharp edge ramp using genetic programming

    NASA Astrophysics Data System (ADS)

    Debien, Antoine; von Krbek, Kai A. F. F.; Mazellier, Nicolas; Duriez, Thomas; Cordier, Laurent; Noack, Bernd R.; Abel, Markus W.; Kourta, Azeddine

    2016-03-01

    We experimentally perform open and closed-loop control of a separating turbulent boundary layer downstream from a sharp edge ramp. The turbulent boundary layer just above the separation point has a Reynolds number Re_{θ }≈ 3500 based on momentum thickness. The goal of the control is to mitigate separation and early re-attachment. The forcing employs a spanwise array of active vortex generators. The flow state is monitored with skin-friction sensors downstream of the actuators. The feedback control law is obtained using model-free genetic programming control (GPC) (Gautier et al. in J Fluid Mech 770:442-457, 2015). The resulting flow is assessed using the momentum coefficient, pressure distribution and skin friction over the ramp and stereo PIV. The PIV yields vector field statistics, e.g. shear layer growth, the back-flow area and vortex region. GPC is benchmarked against the best periodic forcing. While open-loop control achieves separation reduction by locking-on the shedding mode, GPC gives rise to similar benefits by accelerating the shear layer growth. Moreover, GPC uses less actuation energy.

  15. Extending the Capabilities of Closed-loop Distributed Engine Control Simulations Using LAN Communication

    NASA Technical Reports Server (NTRS)

    Aretskin-Hariton, Eliot D.; Zinnecker, Alicia Mae; Culley, Dennis E.

    2014-01-01

    Distributed Engine Control (DEC) is an enabling technology that has the potential to advance the state-of-the-art in gas turbine engine control. To analyze the capabilities that DEC offers, a Hardware-In-the-Loop (HIL) test bed is being developed at NASA Glenn Research Center. This test bed will support a systems-level analysis of control capabilities in closed-loop engine simulations. The structure of the HIL emulates a virtual test cell by implementing the operator functions, control system, and engine on three separate computers. This implementation increases the flexibility and extensibility of the HIL. Here, a method is discussed for implementing these interfaces by connecting the three platforms over a dedicated Local Area Network (LAN). This approach is verified using the Commercial Modular Aero-Propulsion System Simulation 40k (C-MAPSS40k), which is typically implemented on one computer. There are marginal differences between the results from simulation of the typical and the three-computer implementation. Additional analysis of the LAN network, including characterization of network load, packet drop, and latency, is presented. The three-computer setup supports the incorporation of complex control models and proprietary engine models into the HIL framework.

  16. Closed-loop control of epileptiform activities in a neural population model using a proportional-derivative controller

    NASA Astrophysics Data System (ADS)

    Wang, Jun-Song; Wang, Mei-Li; Li, Xiao-Li; Ernst, Niebur

    2015-03-01

    Epilepsy is believed to be caused by a lack of balance between excitation and inhibitation in the brain. A promising strategy for the control of the disease is closed-loop brain stimulation. How to determine the stimulation control parameters for effective and safe treatment protocols remains, however, an unsolved question. To constrain the complex dynamics of the biological brain, we use a neural population model (NPM). We propose that a proportional-derivative (PD) type closed-loop control can successfully suppress epileptiform activities. First, we determine the stability of root loci, which reveals that the dynamical mechanism underlying epilepsy in the NPM is the loss of homeostatic control caused by the lack of balance between excitation and inhibition. Then, we design a PD type closed-loop controller to stabilize the unstable NPM such that the homeostatic equilibriums are maintained; we show that epileptiform activities are successfully suppressed. A graphical approach is employed to determine the stabilizing region of the PD controller in the parameter space, providing a theoretical guideline for the selection of the PD control parameters. Furthermore, we establish the relationship between the control parameters and the model parameters in the form of stabilizing regions to help understand the mechanism of suppressing epileptiform activities in the NPM. Simulations show that the PD-type closed-loop control strategy can effectively suppress epileptiform activities in the NPM. Project supported by the National Natural Science Foundation of China (Grant Nos. 61473208, 61025019, and 91132722), ONR MURI N000141010278, and NIH grant R01EY016281.

  17. Linear motor drive system for continuous-path closed-loop position control of an object

    DOEpatents

    Barkman, William E.

    1980-01-01

    A precision numerical controlled servo-positioning system is provided for continuous closed-loop position control of a machine slide or platform driven by a linear-induction motor. The system utilizes filtered velocity feedback to provide system stability required to operate with a system gain of 100 inches/minute/0.001 inch of following error. The filtered velocity feedback signal is derived from the position output signals of a laser interferometer utilized to monitor the movement of the slide. Air-bearing slides mounted to a stable support are utilized to minimize friction and small irregularities in the slideway which would tend to introduce positioning errors. A microprocessor is programmed to read command and feedback information and converts this information into the system following error signal. This error signal is summed with the negative filtered velocity feedback signal at the input of a servo amplifier whose output serves as the drive power signal to the linear motor position control coil.

  18. Suppressing epileptic activity in a neural mass model using a closed-loop proportional-integral controller

    NASA Astrophysics Data System (ADS)

    Wang, Junsong; Niebur, Ernst; Hu, Jinyu; Li, Xiaoli

    2016-06-01

    Closed-loop control is a promising deep brain stimulation (DBS) strategy that could be used to suppress high-amplitude epileptic activity. However, there are currently no analytical approaches to determine the stimulation parameters for effective and safe treatment protocols. Proportional-integral (PI) control is the most extensively used closed-loop control scheme in the field of control engineering because of its simple implementation and perfect performance. In this study, we took Jansen’s neural mass model (NMM) as a test bed to develop a PI-type closed-loop controller for suppressing epileptic activity. A graphical stability analysis method was employed to determine the stabilizing region of the PI controller in the control parameter space, which provided a theoretical guideline for the choice of the PI control parameters. Furthermore, we established the relationship between the parameters of the PI controller and the parameters of the NMM in the form of a stabilizing region, which provided insights into the mechanisms that may suppress epileptic activity in the NMM. The simulation results demonstrated the validity and effectiveness of the proposed closed-loop PI control scheme.

  19. Suppressing epileptic activity in a neural mass model using a closed-loop proportional-integral controller

    PubMed Central

    Wang, Junsong; Niebur, Ernst; Hu, Jinyu; Li, Xiaoli

    2016-01-01

    Closed-loop control is a promising deep brain stimulation (DBS) strategy that could be used to suppress high-amplitude epileptic activity. However, there are currently no analytical approaches to determine the stimulation parameters for effective and safe treatment protocols. Proportional-integral (PI) control is the most extensively used closed-loop control scheme in the field of control engineering because of its simple implementation and perfect performance. In this study, we took Jansen’s neural mass model (NMM) as a test bed to develop a PI-type closed-loop controller for suppressing epileptic activity. A graphical stability analysis method was employed to determine the stabilizing region of the PI controller in the control parameter space, which provided a theoretical guideline for the choice of the PI control parameters. Furthermore, we established the relationship between the parameters of the PI controller and the parameters of the NMM in the form of a stabilizing region, which provided insights into the mechanisms that may suppress epileptic activity in the NMM. The simulation results demonstrated the validity and effectiveness of the proposed closed-loop PI control scheme. PMID:27273563

  20. Design and implementation of sensor systems for control of a closed-loop life support system

    NASA Technical Reports Server (NTRS)

    Alnwick, Leslie; Clark, Amy; Debs, Patricia; Franczek, Chris; Good, Tom; Rodrigues, Pedro

    1989-01-01

    The sensing and controlling needs for a Closed-Loop Life Support System (CLLSS) were investigated. The sensing needs were identified in five particular areas and the requirements were defined for workable sensors. The specific areas of interest were atmosphere and temperature, nutrient delivery, plant health, plant propagation and support, and solids processing. The investigation of atmosphere and temperature control focused on the temperature distribution within the growth chamber as well as the possibility for sensing other parameters such as gas concentration, pressure, and humidity. The sensing needs were studied for monitoring the solution level in a porous membrane material along with the requirements for measuring the mass flow rate in the delivery system. The causes and symptoms of plant disease were examined and the various techniques for sensing these health indicators were explored. The study of sensing needs for plant propagation and support focused on monitoring seed viability and measuring seed moisture content as well as defining the requirements for drying and storing the seeds. The areas of harvesting, food processing, and resource recycling, were covered with a main focus on the sensing possibilities for regulating the recycling process.

  1. System identification of closed-loop cardiovascular control: effects of posture and autonomic blockade

    NASA Technical Reports Server (NTRS)

    Mullen, T. J.; Appel, M. L.; Mukkamala, R.; Mathias, J. M.; Cohen, R. J.

    1997-01-01

    We applied system identification to the analysis of fluctuations in heart rate (HR), arterial blood pressure (ABP), and instantaneous lung volume (ILV) to characterize quantitatively the physiological mechanisms responsible for the couplings between these variables. We characterized two autonomically mediated coupling mechanisms [the heart rate baroreflex (HR baroreflex) and respiratory sinus arrhythmia (ILV-HR)] and two mechanically mediated coupling mechanisms [the blood pressure wavelet generated with each cardiac contraction (circulatory mechanics) and the direct mechanical effects of respiration on blood pressure (ILV-->ABP)]. We evaluated the method in humans studied in the supine and standing postures under control conditions and under conditions of beta-sympathetic and parasympathetic pharmacological blockades. Combined beta-sympathetic and parasympathetic blockade abolished the autonomically mediated couplings while preserving the mechanically mediated coupling. Selective autonomic blockade and postural changes also altered the couplings in a manner consistent with known physiological mechanisms. System identification is an "inverse-modeling" technique that provides a means for creating a closed-loop model of cardiovascular regulation for an individual subject without altering the underlying physiological control mechanisms.

  2. Studies on the closed-loop digital control of multi-modular reactors

    SciTech Connect

    Bernard, J.A. . Nuclear Reactor Lab.); Henry, A.F.; Lanning, D.D.; Meyer, J.E. . Dept. of Nuclear Engineering)

    1992-11-01

    This report describes the theoretical development and the evaluation via both experiment and simulation of digital methods for the closed-loop control of power, temperature, and steam generator level in multi-modular reactors. The major conclusion of the research reported here is that the technology is currently available to automate many aspects of the operation of multi-modular plants. This will in turn minimize the number of required personnel and thus contain both operating and personnel costs, allow each module to be operated at a different power level thereby staggering the times at which refuelings would be needed, and maintain the competitiveness of US industry relative to foreign vendors who are developing and applying advanced control concepts. The technology described in this report is appropriate to the proposed multi-modular reactor designs and to present-generation pressurized water reactors. Its extension to boiling water reactors is possible provided that the commitment is made to create a real-time model of a BWR. The work reported here was performed by the Massachusetts Institute of Technology (MIT) under contract to the Oak Ridge National Laboratory (ORNL) and to the United States Department of Energy (Division of Industry and University Programs, Contract No. DE-FG07-90ER12930.)

  3. Studies on the closed-loop digital control of multi-modular reactors. Final report

    SciTech Connect

    Bernard, J.A.; Henry, A.F.; Lanning, D.D.; Meyer, J.E.

    1992-11-01

    This report describes the theoretical development and the evaluation via both experiment and simulation of digital methods for the closed-loop control of power, temperature, and steam generator level in multi-modular reactors. The major conclusion of the research reported here is that the technology is currently available to automate many aspects of the operation of multi-modular plants. This will in turn minimize the number of required personnel and thus contain both operating and personnel costs, allow each module to be operated at a different power level thereby staggering the times at which refuelings would be needed, and maintain the competitiveness of US industry relative to foreign vendors who are developing and applying advanced control concepts. The technology described in this report is appropriate to the proposed multi-modular reactor designs and to present-generation pressurized water reactors. Its extension to boiling water reactors is possible provided that the commitment is made to create a real-time model of a BWR. The work reported here was performed by the Massachusetts Institute of Technology (MIT) under contract to the Oak Ridge National Laboratory (ORNL) and to the United States Department of Energy (Division of Industry and University Programs, Contract No. DE-FG07-90ER12930.)

  4. Electromagnetic Steering of a Magnetic Cylindrical Microrobot Using Optical Feedback Closed-Loop Control

    NASA Astrophysics Data System (ADS)

    Ghanbari, Ali; Chang, Pyung H.; Nelson, Bradley J.; Choi, Hongsoo

    2014-04-01

    Control of small magnetic machines in viscous fluids may enable new medical applications of microrobots. Small-scale viscous environments lead to low Reynolds numbers, and although the flow is linear and steady, the magnetic actuation introduces a dynamic response that is nonlinear. We account for these nonlinearities, and the uncertainties in the dynamic and magnetic properties of the microrobot, by using time-delay estimation. The microrobot consists of a cylindrical magnet, 1 mm long and 500 µm in diameter, and is tracked using a visual feedback system. The microrobot was placed in silicone oil with a dynamic viscosity of 1 Pa.s, and followed step inputs with rise times of 0.45 s, 0.51 s, and 1.77 s, and overshoots of 37.5%, 33.3%, and 34.4% in the x, y, and z directions, respectively. In silicone oil with a viscosity of 3 Pa.s, the rise times were 1.04 s, 0.72 s, and 2.19 s, and the overshoots were 47.8%, 48.5%, and 86.8%. This demonstrates that closed-loop control of the magnetic microrobot was better in the less viscous fluid.

  5. Controlling Bursting in Cortical Cultures with Closed-Loop Multi-Electrode Stimulation

    PubMed Central

    Wagenaar, Daniel A.; Madhavan, Radhika; Pine, Jerome; Potter, Steve M.

    2009-01-01

    One of the major modes of activity of high-density cultures of dissociated neurons is globally synchronized bursting. Unlike in vivo, neuronal ensembles in culture maintain activity patterns dominated by global bursts for the lifetime of the culture (up to 2 years). We hypothesize that persistence of bursting is caused by a lack of input from other brain areas. To study this hypothesis, we grew small but dense monolayer cultures of cortical neurons and glia from rat embryos on multi-electrode arrays and used electrical stimulation to substitute for afferents. We quantified the burstiness of the firing of the cultures in spontaneous activity and during several stimulation protocols. Although slow stimulation through individual electrodes increased burstiness as a result of burst entrainment, rapid stimulation reduced burstiness. Distributing stimuli across several electrodes, as well as continuously fine-tuning stimulus strength with closed-loop feedback, greatly enhanced burst control. We conclude that externally applied electrical stimulation can substitute for natural inputs to cortical neuronal ensembles in transforming burst-dominated activity to dispersed spiking, more reminiscent of the awake cortex in vivo. This nonpharmacological method of controlling bursts will be a critical tool for exploring the information processing capacities of neuronal ensembles in vitro and has potential applications for the treatment of epilepsy. PMID:15659605

  6. Frequency-induced changes in interlimb interactions: increasing manifestations of closed-loop control.

    PubMed

    de Boer, Betteco J; Peper, C Lieke E; Beek, Peter J

    2011-06-20

    In bimanual coordination, interactions between the limbs result in attraction to in-phase and antiphase coordination. Increasing movement frequency leads to decreasing stability of antiphase coordination, often resulting in a transition to the more stable in-phase pattern. It is unknown, however, how this frequency-induced loss of stability is engendered in terms of the interlimb interactions underwriting bimanual coordination. The present study was conducted to help resolve this issue. Using an established method (based on comparison of various unimanual and bimanual tasks involving both passive and active movements), three sources of interlimb interaction were dissociated: (1) integrated timing of feedforward signals, (2) afference-based correction of relative phase errors, and (3) phase entrainment by contralateral afference. Results indicated that phase entrainment strength remained unaffected by frequency and that the stabilizing effects of error correction and integrated timing decreased with increasing frequency. Their contributions, however, reflected an interesting interplay as frequency increased. For moderate frequencies coordinative stability was predominantly secured by integrated timing processes. However, at high frequencies, the stabilization of the antiphase pattern required combined contributions of both integrated timing and error correction. In sum, increasing frequency was found to induce a shift from predominantly open-loop control to more closed-loop control. The results may be accounted for by means of an internal forward model for sensorimotor integration in which the sensory signals are compared to values predicted on the basis of efference copies.

  7. MEMS closed-loop control incorporating a memristor as feedback sensing element

    DOE PAGES

    Garcia, Ernest J.; Almeida, Sergio F.; Mireles, Jr., Jose; Zubia, David

    2015-12-01

    In this work the integration of a memristor with a MEMS parallel plate capacitor coupled by an amplification stage is simulated. It is shown that the MEMS upper plate position can be controlled up to 95% of the total gap. Due to its common operation principle, the change in the MEMS plate position can be interpreted by the change in the memristor resistance, or memristance. A memristance modulation of ~1 KΩ was observed. A polynomial expression representing the MEMS upper plate displacement as a function of the memristance is presented. Thereafter a simple design for a voltage closed-loop control ismore » presented showing that the MEMS upper plate can be stabilized up to 95% of the total gap using the memristor as a feedback sensing element. As a result, the memristor can play important dual roles in overcoming the limited operation range of MEMS parallel plate capacitors and in simplifying read-out circuits of those devices by representing the motion of the upper plate in the form of resistance change instead of capacitance change.« less

  8. MEMS closed-loop control incorporating a memristor as feedback sensing element

    SciTech Connect

    Garcia, Ernest J.; Almeida, Sergio F.; Mireles, Jr., Jose; Zubia, David

    2015-12-01

    In this work the integration of a memristor with a MEMS parallel plate capacitor coupled by an amplification stage is simulated. It is shown that the MEMS upper plate position can be controlled up to 95% of the total gap. Due to its common operation principle, the change in the MEMS plate position can be interpreted by the change in the memristor resistance, or memristance. A memristance modulation of ~1 KΩ was observed. A polynomial expression representing the MEMS upper plate displacement as a function of the memristance is presented. Thereafter a simple design for a voltage closed-loop control is presented showing that the MEMS upper plate can be stabilized up to 95% of the total gap using the memristor as a feedback sensing element. As a result, the memristor can play important dual roles in overcoming the limited operation range of MEMS parallel plate capacitors and in simplifying read-out circuits of those devices by representing the motion of the upper plate in the form of resistance change instead of capacitance change.

  9. System identification of closed-loop cardiovascular control mechanisms: diabetic autonomic neuropathy

    NASA Technical Reports Server (NTRS)

    Mukkamala, R.; Mathias, J. M.; Mullen, T. J.; Cohen, R. J.; Freeman, R.

    1999-01-01

    We applied cardiovascular system identification (CSI) to characterize closed-loop cardiovascular regulation in patients with diabetic autonomic neuropathy (DAN). The CSI method quantitatively analyzes beat-to-beat fluctuations in noninvasively measured heart rate, arterial blood pressure (ABP), and instantaneous lung volume (ILV) to characterize four physiological coupling mechanisms, two of which are autonomically mediated (the heart rate baroreflex and the coupling of respiration, measured in terms of ILV, to heart rate) and two of which are mechanically mediated (the coupling of ventricular contraction to the generation of the ABP wavelet and the coupling of respiration to ABP). We studied 37 control and 60 diabetic subjects who were classified as having minimal, moderate, or severe DAN on the basis of standard autonomic tests. The autonomically mediated couplings progressively decreased with increasing severity of DAN, whereas the mechanically mediated couplings were essentially unchanged. CSI identified differences between the minimal DAN and control groups, which were indistinguishable based on the standard autonomic tests. CSI may provide a powerful tool for assessing DAN.

  10. Low-order design and high-order simulation of active closed-loop control for aerospace structures under construction

    NASA Technical Reports Server (NTRS)

    Balas, Mark J.

    1989-01-01

    Partially constructed/assembled structures in space are complicated enough but their dynamics will also be operating in closed-loop with feedback controllers. The dynamics of such structures are modeled by large-scale finite element models. The model dimension L is extremely large (approximately 10,000) while the numbers of actuators (M) and sensors (P) are small. The model parameters M(sub m) mass matrix, D(sub o) damping matrix, and K(sub o) stiffness matrix, are all symmetric and sparse (banded). Thus simulation of open-loop structure models of very large dimension can be accomplished by special integration techniques for sparse matrices. The problem of simulation of closed-loop control of such structures is complicated by the addition of controllers. Simulation of closed-loop controlled structures is an essential part of the controller design and evaluation process. Current research in the following areas is presented: high-order simulation of actively controlled aerospace structures; low-order controller design and SCI compensation for unmodeled dynamics; prediction of closed-loop stability using asymptotic eigenvalue series; and flexible robot manipulator control experiment.

  11. Closed-loop controlled noninvasive ultrasonic glucose sensing and insulin delivery

    NASA Astrophysics Data System (ADS)

    Park, Eun-Joo; Werner, Jacob; Jaiswal, Devina; Smith, Nadine Barrie

    2010-03-01

    To prevent complications in diabetes, the proper management of blood glucose levels is essential. Previously, ultrasonic transdermal methods using a light-weight cymbal transducer array has been studied for noninvasive methods of insulin delivery for Type-1 diabetes and glucose level monitoring. In this study, the ultrasound systems of insulin delivery and glucose sensing have been combined by a feedback controller. This study was designed to show the feasibility of the feedback controlled ultrasound system for the noninvasive glucose control. For perspective human application, in vivo experiments were performed on large animals that have a similar size to humans. Four in vivo experiments were performed using about 200 lbs pigs. The cymbal array of 3×3 pattern has been used for insulin delivery at 30 kHz with the spatial-peak temporal-peak intensity (Isptp) of 100 mW/cm2. For glucose sensing, a 2×2 array was operated at 20 kHz with Isptp = 100 mW/cm2. Based on the glucose level determined by biosensors after the ultrasound exposure, the ultrasound system for the insulin delivery was automatically operated. The glucose level of 115 mg/dl was set as a reference value for operating the insulin delivery system. For comparison, the glucose levels of blood samples collected from the ear vein were measured by a commercial glucose meter. Using the ultrasound system operated by the close-loop, feed-back controller, the glucose levels of four pigs were determined every 20 minutes and continuously controlled for 120 minutes. In comparison to the commercial glucose meter, the glucose levels determined by the biosensor were slightly higher. The results of in vivo experiments indicate the feasibility of the feedback controlled ultrasound system using the cymbal array for noninvasive glucose sensing and insulin delivery. Further studies on the extension of the glucose control will be continued for the effective method of glucose control.

  12. Inverted Pendulum Standing Apparatus for Investigating Closed-Loop Control of Ankle Joint Muscle Contractions during Functional Electrical Stimulation

    PubMed Central

    Tan, John F.; Masani, Kei; Vette, Albert H.; Zariffa, José; Robinson, Mark; Lynch, Cheryl; Popovic, Milos R.

    2014-01-01

    The restoration of arm-free standing in individuals with paraplegia can be facilitated via functional electrical stimulation (FES). In developing adequate control strategies for FES systems, it remains challenging to test the performance of a particular control scheme on human subjects. In this study, we propose a testing platform for developing effective control strategies for a closed-loop FES system for standing. The Inverted Pendulum Standing Apparatus (IPSA) is a mechanical inverted pendulum, whose angular position is determined by the subject's ankle joint angle as controlled by the FES system while having the subject's body fixed in a standing frame. This approach provides a setup that is safe, prevents falling, and enables a research and design team to rigorously test various closed-loop controlled FES systems applied to the ankle joints. To demonstrate the feasibility of using the IPSA, we conducted a case series that employed the device for studying FES closed-loop controllers for regulating ankle joint kinematics during standing. The utilized FES system stimulated, in able-bodied volunteers, the plantarflexors as they prevent toppling during standing. Four different conditions were compared, and we were able to show unique performance of each condition using the IPSA. We concluded that the IPSA is a useful tool for developing and testing closed-loop controlled FES systems for regulating ankle joint position during standing. PMID:27350992

  13. Inverted Pendulum Standing Apparatus for Investigating Closed-Loop Control of Ankle Joint Muscle Contractions during Functional Electrical Stimulation.

    PubMed

    Tan, John F; Masani, Kei; Vette, Albert H; Zariffa, José; Robinson, Mark; Lynch, Cheryl; Popovic, Milos R

    2014-01-01

    The restoration of arm-free standing in individuals with paraplegia can be facilitated via functional electrical stimulation (FES). In developing adequate control strategies for FES systems, it remains challenging to test the performance of a particular control scheme on human subjects. In this study, we propose a testing platform for developing effective control strategies for a closed-loop FES system for standing. The Inverted Pendulum Standing Apparatus (IPSA) is a mechanical inverted pendulum, whose angular position is determined by the subject's ankle joint angle as controlled by the FES system while having the subject's body fixed in a standing frame. This approach provides a setup that is safe, prevents falling, and enables a research and design team to rigorously test various closed-loop controlled FES systems applied to the ankle joints. To demonstrate the feasibility of using the IPSA, we conducted a case series that employed the device for studying FES closed-loop controllers for regulating ankle joint kinematics during standing. The utilized FES system stimulated, in able-bodied volunteers, the plantarflexors as they prevent toppling during standing. Four different conditions were compared, and we were able to show unique performance of each condition using the IPSA. We concluded that the IPSA is a useful tool for developing and testing closed-loop controlled FES systems for regulating ankle joint position during standing.

  14. Closed-loop control of zebrafish response using a bioinspired robotic-fish in a preference test

    PubMed Central

    Kopman, Vladislav; Laut, Jeffrey; Polverino, Giovanni; Porfiri, Maurizio

    2013-01-01

    In this paper, we study the response of zebrafish to a robotic-fish whose morphology and colour pattern are inspired by zebrafish. Experiments are conducted in a three-chambered instrumented water tank where a robotic-fish is juxtaposed with an empty compartment, and the preference of live subjects is scored as the mean time spent in the vicinity of the tank's two lateral sides. The tail-beating of the robotic-fish is controlled in real-time based on feedback from fish motion to explore a spectrum of closed-loop systems, including proportional and integral controllers. Closed-loop control systems are complemented by open-loop strategies, wherein the tail-beat of the robotic-fish is independent of the fish motion. The preference space and the locomotory patterns of fish for each experimental condition are analysed and compared to understand the influence of real-time closed-loop control on zebrafish response. The results of this study show that zebrafish respond differently to the pattern of tail-beating motion executed by the robotic-fish. Specifically, the preference and behaviour of zebrafish depend on whether the robotic-fish tail-beating frequency is controlled as a function of fish motion and how such closed-loop control is implemented. PMID:23152102

  15. Closed-loop anesthesia.

    PubMed

    LE Guen, Morgan; Liu, Ngai; Chazot, Thierry; Fischler, Marc

    2016-05-01

    Automated anesthesia which may offer to the physician time to control hemodynamic and to supervise neurological outcome and which may offer to the patient safety and quality was until recently consider as a holy grail. But this field of research is now increasing in every component of general anesthesia (hypnosis, nociception, neuromuscular blockade) and literature describes some successful algorithms - single or multi closed-loop controller. The aim of these devices is to control a predefined target and to continuously titrate anesthetics whatever the patients' co morbidities and surgical events to reach this target. Literature contains many randomized trials comparing manual and automated anesthesia and shows feasibility and safety of this system. Automation could quickly concern other aspects of anesthesia as fluid management and this review proposes an overview of closed-loop systems in anesthesia.

  16. Package architecture and component design for an implanted neural stimulator with closed loop control.

    PubMed

    Bjune, Caroline K; Marinis, Thomas F; Brady, Jeanne M; Moran, James; Wheeler, Jesse; Sriram, Tirunelveli S; Parks, Philip D; Widge, Alik S; Dougherty, Darin D; Eskandar, Emad N

    2015-08-01

    An implanted neural stimulator with closed loop control requires electrodes for stimulation pulses and recording neuron activity. Our system features arrays of 64 electrodes. Each electrode can be addressed through a cross bar switch, to enable it to be used for stimulation or recording. This electrode switch, a bank of low noise amplifiers with an integrated analog to digital converter, power conditioning electronics, and a communications and control gate array are co-located with the electrode array in a 14 millimeter diameter satellite package that is designed to be flush mounted in a skull burr hole. Our system features five satellite packages connected to a central hub processor-controller via ten conductor cables that terminate in a custom designed, miniaturized connector. The connector incorporates features of high reliability, military grade devices and utilizes three distinct seals to isolate the contacts from fluid permeation. The hub system is comprised of a connector header, hermetic electronics package, and rechargeable battery pack, which are mounted on and electrically interconnected by a flexible circuit board. The assembly is over molded with a compliant silicone rubber. The electronics package contains two antennas, a large coil, used for recharging the battery and a high bandwidth antenna that is used to download data and update software. The package is assembled from two machined alumina pieces, a flat base with brazed in, electrical feed through pins and a rectangular cover with rounded corners. Titanium seal rings are brazed onto these two pieces so that they can be sealed by laser welding. A third system antenna is incorporated in the flexible circuit board. It is used to communicate with an externally worn control package, which monitors the health of the system and allows both the user and clinician to control or modify various system function parameters. PMID:26738106

  17. The role of feed-forward and feedback processes for closed-loop prosthesis control

    PubMed Central

    2011-01-01

    Background It is widely believed that both feed-forward and feed-back mechanisms are required for successful object manipulation. Open-loop upper-limb prosthesis wearers receive no tactile feedback, which may be the cause of their limited dexterity and compromised grip force control. In this paper we ask whether observed prosthesis control impairments are due to lack of feedback or due to inadequate feed-forward control. Methods Healthy subjects were fitted with a closed-loop robotic hand and instructed to grasp and lift objects of different weights as we recorded trajectories and force profiles. We conducted three experiments under different feed-forward and feed-back configurations to elucidate the role of tactile feedback (i) in ideal conditions, (ii) under sensory deprivation, and (iii) under feed-forward uncertainty. Results (i) We found that subjects formed economical grasps in ideal conditions. (ii) To our surprise, this ability was preserved even when visual and tactile feedback were removed. (iii) When we introduced uncertainty into the hand controller performance degraded significantly in the absence of either visual or tactile feedback. Greatest performance was achieved when both sources of feedback were present. Conclusions We have introduced a novel method to understand the cognitive processes underlying grasping and lifting. We have shown quantitatively that tactile feedback can significantly improve performance in the presence of feed-forward uncertainty. However, our results indicate that feed-forward and feed-back mechanisms serve complementary roles, suggesting that to improve on the state-of-the-art in prosthetic hands we must develop prostheses that empower users to correct for the inevitable uncertainty in their feed-forward control. PMID:22032545

  18. Package architecture and component design for an implanted neural stimulator with closed loop control.

    PubMed

    Bjune, Caroline K; Marinis, Thomas F; Brady, Jeanne M; Moran, James; Wheeler, Jesse; Sriram, Tirunelveli S; Parks, Philip D; Widge, Alik S; Dougherty, Darin D; Eskandar, Emad N

    2015-08-01

    An implanted neural stimulator with closed loop control requires electrodes for stimulation pulses and recording neuron activity. Our system features arrays of 64 electrodes. Each electrode can be addressed through a cross bar switch, to enable it to be used for stimulation or recording. This electrode switch, a bank of low noise amplifiers with an integrated analog to digital converter, power conditioning electronics, and a communications and control gate array are co-located with the electrode array in a 14 millimeter diameter satellite package that is designed to be flush mounted in a skull burr hole. Our system features five satellite packages connected to a central hub processor-controller via ten conductor cables that terminate in a custom designed, miniaturized connector. The connector incorporates features of high reliability, military grade devices and utilizes three distinct seals to isolate the contacts from fluid permeation. The hub system is comprised of a connector header, hermetic electronics package, and rechargeable battery pack, which are mounted on and electrically interconnected by a flexible circuit board. The assembly is over molded with a compliant silicone rubber. The electronics package contains two antennas, a large coil, used for recharging the battery and a high bandwidth antenna that is used to download data and update software. The package is assembled from two machined alumina pieces, a flat base with brazed in, electrical feed through pins and a rectangular cover with rounded corners. Titanium seal rings are brazed onto these two pieces so that they can be sealed by laser welding. A third system antenna is incorporated in the flexible circuit board. It is used to communicate with an externally worn control package, which monitors the health of the system and allows both the user and clinician to control or modify various system function parameters.

  19. A real-time pressure estimation algorithm for closed-loop combustion control

    NASA Astrophysics Data System (ADS)

    Al-Durra, Ahmed; Canova, Marcello; Yurkovich, Stephen

    2013-07-01

    The cylinder pressure is arguably the most important variable characterizing the combustion process in internal combustion engines. In light of the recent advances in combustion technologies and in engine control, the use of cylinder pressure is now frequently considered as a feedback signal for closed-loop combustion control algorithms. In order to generate an accurate pressure trace for real-time combustion control and diagnostics, the output of the in-cylinder pressure transducer must be conditioned with signal processing methods to mitigate the well-known issues of offset and noise. While several techniques have been proposed for processing the cylinder pressure signal with limited computational burden, most of the available methods still require one to apply low-pass filters or moving average windows in order to mitigate the noise. This ultimately limits the opportunity of exploiting the in-cylinder pressure feedback for a cycle-by-cycle control of the combustion process. To this extent, this paper presents an estimation algorithm that extracts the pressure signal from the in-cylinder sensor in real-time, allowing for estimating the 50% burn rate location and IMEP on a cycle-by-cycle basis. The proposed approach relies on a model-based estimation algorithm whose starting point is a crank-angle based engine combustion model that predicts the in-cylinder pressure from the definition of a burn rate function. Linear parameter varying (LPV) techniques are then used to expand the region of estimation to cover the engine operating map, as well as allowing for real-time cylinder estimation during transients. The estimator is tested on the experimental data collected on an engine dynamometer as well as on a high-fidelity engine simulator. The results obtained show the effectiveness of the estimator in reconstructing the cylinder pressure on a crank-angle basis and in rejecting measurement noise and modeling errors, with considerably low computation effort.

  20. Controlling the oscillation phase through precisely timed closed-loop optogenetic stimulation: a computational study

    PubMed Central

    Witt, Annette; Palmigiano, Agostina; Neef, Andreas; El Hady, Ahmed; Wolf, Fred; Battaglia, Demian

    2013-01-01

    Dynamic oscillatory coherence is believed to play a central role in flexible communication between brain circuits. To test this communication-through-coherence hypothesis, experimental protocols that allow a reliable control of phase-relations between neuronal populations are needed. In this modeling study, we explore the potential of closed-loop optogenetic stimulation for the control of functional interactions mediated by oscillatory coherence. The theory of non-linear oscillators predicts that the efficacy of local stimulation will depend not only on the stimulation intensity but also on its timing relative to the ongoing oscillation in the target area. Induced phase-shifts are expected to be stronger when the stimulation is applied within specific narrow phase intervals. Conversely, stimulations with the same or even stronger intensity are less effective when timed randomly. Stimulation should thus be properly phased with respect to ongoing oscillations (in order to optimally perturb them) and the timing of the stimulation onset must be determined by a real-time phase analysis of simultaneously recorded local field potentials (LFPs). Here, we introduce an electrophysiologically calibrated model of Channelrhodopsin 2 (ChR2)-induced photocurrents, based on fits holding over two decades of light intensity. Through simulations of a neural population which undergoes coherent gamma oscillations—either spontaneously or as an effect of continuous optogenetic driving—we show that precisely-timed photostimulation pulses can be used to shift the phase of oscillation, even at transduction rates smaller than 25%. We consider then a canonic circuit with two inter-connected neural populations oscillating with gamma frequency in a phase-locked manner. We demonstrate that photostimulation pulses applied locally to a single population can induce, if precisely phased, a lasting reorganization of the phase-locking pattern and hence modify functional interactions between the

  1. A closed-loop anesthetic delivery system for real-time control of burst suppression

    NASA Astrophysics Data System (ADS)

    Liberman, Max Y.; Ching, ShiNung; Chemali, Jessica; Brown, Emery N.

    2013-08-01

    Objective. There is growing interest in using closed-loop anesthetic delivery (CLAD) systems to automate control of brain states (sedation, unconsciousness and antinociception) in patients receiving anesthesia care. The accuracy and reliability of these systems can be improved by using as control signals electroencephalogram (EEG) markers for which the neurophysiological links to the anesthetic-induced brain states are well established. Burst suppression, in which bursts of electrical activity alternate with periods of quiescence or suppression, is a well-known, readily discernible EEG marker of profound brain inactivation and unconsciousness. This pattern is commonly maintained when anesthetics are administered to produce a medically-induced coma for cerebral protection in patients suffering from brain injuries or to arrest brain activity in patients having uncontrollable seizures. Although the coma may be required for several hours or days, drug infusion rates are managed inefficiently by manual adjustment. Our objective is to design a CLAD system for burst suppression control to automate management of medically-induced coma. Approach. We establish a CLAD system to control burst suppression consisting of: a two-dimensional linear system model relating the anesthetic brain level to the EEG dynamics; a new control signal, the burst suppression probability (BSP) defining the instantaneous probability of suppression; the BSP filter, a state-space algorithm to estimate the BSP from EEG recordings; a proportional-integral controller; and a system identification procedure to estimate the model and controller parameters. Main results. We demonstrate reliable performance of our system in simulation studies of burst suppression control using both propofol and etomidate in rodent experiments based on Vijn and Sneyd, and in human experiments based on the Schnider pharmacokinetic model for propofol. Using propofol, we further demonstrate that our control system reliably

  2. Brain State-Dependent Closed-Loop Modulation of Paired Associative Stimulation Controlled by Sensorimotor Desynchronization

    PubMed Central

    Royter, Vladislav; Gharabaghi, Alireza

    2016-01-01

    Background: Pairing peripheral electrical stimulation (ES) and transcranial magnetic stimulation (TMS) increases corticospinal excitability when applied with a specific temporal pattern. When the two stimulation techniques are applied separately, motor imagery (MI)-related oscillatory modulation amplifies both ES-related cortical effects—sensorimotor event-related desynchronization (ERD), and TMS-induced peripheral responses—motor-evoked potentials (MEP). However, the influence of brain self-regulation on the associative pairing of these stimulation techniques is still unclear. Objective: The aim of this pilot study was to investigate the effects of MI-related ERD during associative ES and TMS on subsequent corticospinal excitability. Method: The paired application of functional electrical stimulation (FES) of the extensor digitorum communis (EDC) muscle and subsequent single-pulse TMS (110% resting motor threshold (RMT)) of the contralateral primary motor cortex (M1) was controlled by beta-band (16–22 Hz) ERD during MI of finger extension and applied within a brain-machine interface environment in six healthy subjects. Neural correlates were probed by acquiring the stimulus-response curve (SRC) of both MEP peak-to-peak amplitude and area under the curve (AUC) before and after the intervention. Result: The application of approximately 150 pairs of associative FES and TMS resulted in a significant increase of MEP amplitudes and AUC, indicating that the induced increase of corticospinal excitability was mediated by the recruitment of additional neuronal pools. MEP increases were brain state-dependent and correlated with beta-band ERD, but not with the background EDC muscle activity; this finding was independent of the FES intensity applied. Conclusion: These results could be relevant for developing closed-loop therapeutic approaches such as the application of brain state-dependent, paired associative stimulation (PAS) in the context of neurorehabilitation. PMID

  3. Influences of Frailty Syndrome on Open-loop and Closed-loop Postural Control Strategy

    PubMed Central

    Toosizadeh, Nima; Mohler, Jane; Wendel, Chris; Najafi, Bijan

    2014-01-01

    Background As the population of older adults quickly increases, the incidence of frailty syndrome, a reduction in physiological reserve across multiple physiological systems, likewise increases. To date, impaired balance has been associated with frailty; however, the underlying frailty-related postural balance mechanisms remain unclear. Objective The aim of the current study was to use open-loop (postural muscles) and closed-loop (postural muscles plus sensory feedback) (OLCL) mechanisms to explore differences in postural balance mechanisms between non-frail (n = 44), pre-frail (n = 59), and frail individuals (n = 19). Methods One-hundred and twenty-two older adults (age ≥ 65 years) without major mobility disorders were recruited, and frailty was measured using Fried's criteria. Each participant performed two 15-second trials of Romberg balance assessment, once with eyes-open, and once with eyes-closed. Body-worn sensors were used to estimate center-of-gravity (COG) plots. Body sway (traditional stabilogram analysis) and OLCL (stabilogram diffusion analysis) parameters were derived using COG plots and compared between groups using ANOVA. Frailty and pre-frailty were estimated using a multiple variable logistic regression while controlling for age, BMI, body sway, and OLCL parameters. Results Between-group differences in parameters of interest were more pronounced during eyes-closed condition. During eyes-closed, open-loop duration was approximately 33% and 22% shorter in frail and pre-frail, when compared to non-frail controls (mean = 1.9±1.1 sec, p = 0.01). The average rate of sway during open-loop was 164% and 66% higher, respectively in frail and pre-frail when compared to non-frail subjects (0.03±0.02 cm2/sec, p < 0.001). Results also suggest that OLCL parameters can predict frail and pre-frail categories when compared to non-frail controls. Using this method, frailty was identified with a sensitivity and specificity of 97% and 85% (as compared to non

  4. Closed loop engine control for regulating NOx emissions, using a two-dimensional fuel-air curve

    DOEpatents

    Bourn, Gary D.; Smith, Jack A.; Gingrich, Jess W.

    2007-01-30

    An engine control strategy that ensures that NOx emissions from the engine will be maintained at an acceptable level. The control strategy is based on a two-dimensional fuel-air curve, in which air manifold pressure (AMP) is a function of fuel header pressure and engine speed. The control strategy provides for closed loop NOx adjustment to a base AMP value derived from the fuel-air curve.

  5. Decentralized Sliding Mode Observer Based Dual Closed-Loop Fault Tolerant Control for Reconfigurable Manipulator against Actuator Failure

    PubMed Central

    Zhao, Bo; Li, Yuanchun

    2015-01-01

    This paper considers a decentralized fault tolerant control (DFTC) scheme for reconfigurable manipulators. With the appearance of norm-bounded failure, a dual closed-loop trajectory tracking control algorithm is proposed on the basis of the Lyapunov stability theory. Characterized by the modularization property, the actuator failure is estimated by the proposed decentralized sliding mode observer (DSMO). Moreover, the actuator failure can be treated in view of the local joint information, so its control performance degradation is independent of other normal joints. In addition, the presented DFTC scheme is significantly simplified in terms of the structure of the controller due to its dual closed-loop architecture, and its feasibility is highly reflected in the control of reconfigurable manipulators. Finally, the effectiveness of the proposed DFTC scheme is demonstrated using simulations. PMID:26181826

  6. Decentralized Sliding Mode Observer Based Dual Closed-Loop Fault Tolerant Control for Reconfigurable Manipulator against Actuator Failure.

    PubMed

    Zhao, Bo; Li, Chenghao; Liu, Derong; Li, Yuanchun

    2015-01-01

    This paper considers a decentralized fault tolerant control (DFTC) scheme for reconfigurable manipulators. With the appearance of norm-bounded failure, a dual closed-loop trajectory tracking control algorithm is proposed on the basis of the Lyapunov stability theory. Characterized by the modularization property, the actuator failure is estimated by the proposed decentralized sliding mode observer (DSMO). Moreover, the actuator failure can be treated in view of the local joint information, so its control performance degradation is independent of other normal joints. In addition, the presented DFTC scheme is significantly simplified in terms of the structure of the controller due to its dual closed-loop architecture, and its feasibility is highly reflected in the control of reconfigurable manipulators. Finally, the effectiveness of the proposed DFTC scheme is demonstrated using simulations. PMID:26181826

  7. Decentralized Sliding Mode Observer Based Dual Closed-Loop Fault Tolerant Control for Reconfigurable Manipulator against Actuator Failure.

    PubMed

    Zhao, Bo; Li, Chenghao; Liu, Derong; Li, Yuanchun

    2015-01-01

    This paper considers a decentralized fault tolerant control (DFTC) scheme for reconfigurable manipulators. With the appearance of norm-bounded failure, a dual closed-loop trajectory tracking control algorithm is proposed on the basis of the Lyapunov stability theory. Characterized by the modularization property, the actuator failure is estimated by the proposed decentralized sliding mode observer (DSMO). Moreover, the actuator failure can be treated in view of the local joint information, so its control performance degradation is independent of other normal joints. In addition, the presented DFTC scheme is significantly simplified in terms of the structure of the controller due to its dual closed-loop architecture, and its feasibility is highly reflected in the control of reconfigurable manipulators. Finally, the effectiveness of the proposed DFTC scheme is demonstrated using simulations.

  8. A Closed Loop Brain-machine Interface for Epilepsy Control Using Dorsal Column Electrical Stimulation.

    PubMed

    Pais-Vieira, Miguel; Yadav, Amol P; Moreira, Derek; Guggenmos, David; Santos, Amílcar; Lebedev, Mikhail; Nicolelis, Miguel A L

    2016-01-01

    Although electrical neurostimulation has been proposed as an alternative treatment for drug-resistant cases of epilepsy, current procedures such as deep brain stimulation, vagus, and trigeminal nerve stimulation are effective only in a fraction of the patients. Here we demonstrate a closed loop brain-machine interface that delivers electrical stimulation to the dorsal column (DCS) of the spinal cord to suppress epileptic seizures. Rats were implanted with cortical recording microelectrodes and spinal cord stimulating electrodes, and then injected with pentylenetetrazole to induce seizures. Seizures were detected in real time from cortical local field potentials, after which DCS was applied. This method decreased seizure episode frequency by 44% and seizure duration by 38%. We argue that the therapeutic effect of DCS is related to modulation of cortical theta waves, and propose that this closed-loop interface has the potential to become an effective and semi-invasive treatment for refractory epilepsy and other neurological disorders. PMID:27605389

  9. A Closed Loop Brain-machine Interface for Epilepsy Control Using Dorsal Column Electrical Stimulation

    PubMed Central

    Pais-Vieira, Miguel; Yadav, Amol P.; Moreira, Derek; Guggenmos, David; Santos, Amílcar; Lebedev, Mikhail; Nicolelis, Miguel A. L.

    2016-01-01

    Although electrical neurostimulation has been proposed as an alternative treatment for drug-resistant cases of epilepsy, current procedures such as deep brain stimulation, vagus, and trigeminal nerve stimulation are effective only in a fraction of the patients. Here we demonstrate a closed loop brain-machine interface that delivers electrical stimulation to the dorsal column (DCS) of the spinal cord to suppress epileptic seizures. Rats were implanted with cortical recording microelectrodes and spinal cord stimulating electrodes, and then injected with pentylenetetrazole to induce seizures. Seizures were detected in real time from cortical local field potentials, after which DCS was applied. This method decreased seizure episode frequency by 44% and seizure duration by 38%. We argue that the therapeutic effect of DCS is related to modulation of cortical theta waves, and propose that this closed-loop interface has the potential to become an effective and semi-invasive treatment for refractory epilepsy and other neurological disorders. PMID:27605389

  10. A Closed Loop Brain-machine Interface for Epilepsy Control Using Dorsal Column Electrical Stimulation.

    PubMed

    Pais-Vieira, Miguel; Yadav, Amol P; Moreira, Derek; Guggenmos, David; Santos, Amílcar; Lebedev, Mikhail; Nicolelis, Miguel A L

    2016-09-08

    Although electrical neurostimulation has been proposed as an alternative treatment for drug-resistant cases of epilepsy, current procedures such as deep brain stimulation, vagus, and trigeminal nerve stimulation are effective only in a fraction of the patients. Here we demonstrate a closed loop brain-machine interface that delivers electrical stimulation to the dorsal column (DCS) of the spinal cord to suppress epileptic seizures. Rats were implanted with cortical recording microelectrodes and spinal cord stimulating electrodes, and then injected with pentylenetetrazole to induce seizures. Seizures were detected in real time from cortical local field potentials, after which DCS was applied. This method decreased seizure episode frequency by 44% and seizure duration by 38%. We argue that the therapeutic effect of DCS is related to modulation of cortical theta waves, and propose that this closed-loop interface has the potential to become an effective and semi-invasive treatment for refractory epilepsy and other neurological disorders.

  11. Open-loop, closed-loop and compensatory control: performance improvement under pressure in a rhythmic task

    PubMed Central

    Wei, Kunlin; Sternad, Dagmar

    2012-01-01

    According to explicit monitoring theories, the phenomenon of choking under pressure is due to actors focusing their attention on the execution of the skill. This step-by-step perceptually guided control may then interfere with automatic execution. In order to examine the changes in control at the sensorimotor level, we examined the rhythmic task of ball bouncing which affords detailed quantification of indicators of control based on previous research. The hypothesis was that under psychological pressure perceptually guided control should lead to decreased performance due to over-emphasis on closed-loop control and decreased compensatory control. In two experiments of different difficulty psychological stress was induced via setting up a fake competition. Results showed that, contrary to the hypothesis, performance accuracy and consistency improved together with an increase in compensatory control. Indicators for open- and closed-loop processes did not change. Only under more challenging conditions in Experiment 2, enhanced performance under pressure was accompanied by more active, closed-loop and less passive control. The results are discussed in light of task demands and the continuous rhythmic nature of the task: in more challenging tasks, control appears to be more prone to disturbance due to psychological stress. The different control demands in continuous rhythmic tasks may be less prone to interference due to psychological stress than in discrete tasks. PMID:19943039

  12. Closed-loop identification and control application for dissolved oxygen concentration in a full-scale coke wastewater treatment plant.

    PubMed

    Yoo, C K; Cho, J H; Kwak, H J; Choi, S K; Chun, H D; Lee, I

    2001-01-01

    The objective of this paper is to apply a closed-loop identification to actual dissolved oxygen control system in the coke wastewater treatment plant. It approximates the dissolved oxygen dynamics to a high order model using the integral transform method and reduces it to the first-order plus time delay (FOPTD) or second-order plus time delay (SOPTD) for the PID controller tuning. To experiment the process identification on the real plant, a simple set-point change of the speed of surface aerator under the closed-loop control without any mode change was used as an activation signal of the identification. The full-scale experimental results show a good identification performance and a good tracking ability for set-point change. As a result of improved control performance, the fluctuation of dissolved oxygen concentration variation has been decreased and the electric power saving has been accomplished.

  13. Closed-loop identification and control application for dissolved oxygen concentration in a full-scale coke wastewater treatment plant.

    PubMed

    Yoo, C K; Cho, J H; Kwak, H J; Choi, S K; Chun, H D; Lee, I

    2001-01-01

    The objective of this paper is to apply a closed-loop identification to actual dissolved oxygen control system in the coke wastewater treatment plant. It approximates the dissolved oxygen dynamics to a high order model using the integral transform method and reduces it to the first-order plus time delay (FOPTD) or second-order plus time delay (SOPTD) for the PID controller tuning. To experiment the process identification on the real plant, a simple set-point change of the speed of surface aerator under the closed-loop control without any mode change was used as an activation signal of the identification. The full-scale experimental results show a good identification performance and a good tracking ability for set-point change. As a result of improved control performance, the fluctuation of dissolved oxygen concentration variation has been decreased and the electric power saving has been accomplished. PMID:11385849

  14. A Biological Micro Actuator: Graded and Closed-Loop Control of Insect Leg Motion by Electrical Stimulation of Muscles

    PubMed Central

    Cao, Feng; Zhang, Chao; Vo Doan, Tat Thang; Li, Yao; Sangi, Daniyal Haider; Koh, Jie Sheng; Huynh, Ngoc Anh; Aziz, Mohamed Fareez Bin; Choo, Hao Yu; Ikeda, Kazuo; Abbeel, Pieter; Maharbiz, Michel M.; Sato, Hirotaka

    2014-01-01

    In this study, a biological microactuator was demonstrated by closed-loop motion control of the front leg of an insect (Mecynorrhina torquata, beetle) via electrical stimulation of the leg muscles. The three antagonistic pairs of muscle groups in the front leg enabled the actuator to have three degrees of freedom: protraction/retraction, levation/depression, and extension/flexion. We observed that the threshold amplitude (voltage) required to elicit leg motions was approximately 1.0 V; thus, we fixed the stimulation amplitude at 1.5 V to ensure a muscle response. The leg motions were finely graded by alternation of the stimulation frequencies: higher stimulation frequencies elicited larger leg angular displacement. A closed-loop control system was then developed, where the stimulation frequency was the manipulated variable for leg-muscle stimulation (output from the final control element to the leg muscle) and the angular displacement of the leg motion was the system response. This closed-loop control system, with an optimized proportional gain and update time, regulated the leg to set at predetermined angular positions. The average electrical stimulation power consumption per muscle group was 148 µW. These findings related to and demonstrations of the leg motion control offer promise for the future development of a reliable, low-power, biological legged machine (i.e., an insect–machine hybrid legged robot). PMID:25140875

  15. An 8-channel neural spike processing IC with unsupervised closed-loop control based on spiking probability estimation.

    PubMed

    Wu, Tong; Yang, Zhi

    2014-01-01

    This paper presents a neural spike processing IC for simultaneous spike detection, alignment, and transmission on 8 recording channels with unsupervised closed-loop control. In this work, spikes are detected according to online estimated spiking probability maps, which reliably predict the possibility of spike occurrence. The closed-loop control has been made possible by estimating firing rates based on alignment results and turning on/off channels individually and automatically. The 8-channel neural spike processing IC, implemented in a 0.13 μm CMOS process, has a varied power dissipation from 36 μW to 54.4 μW per channel at a voltage supply of 1.2 V. The chip also achieves a 380× data rate reduction for the testing in vivo data, allowing easy integration with wireless data transmission modules. PMID:25571180

  16. A Real-Time and Closed-Loop Control Algorithm for Cascaded Multilevel Inverter Based on Artificial Neural Network

    PubMed Central

    Wang, Libing; Mao, Chengxiong; Wang, Dan; Lu, Jiming; Zhang, Junfeng; Chen, Xun

    2014-01-01

    In order to control the cascaded H-bridges (CHB) converter with staircase modulation strategy in a real-time manner, a real-time and closed-loop control algorithm based on artificial neural network (ANN) for three-phase CHB converter is proposed in this paper. It costs little computation time and memory. It has two steps. In the first step, hierarchical particle swarm optimizer with time-varying acceleration coefficient (HPSO-TVAC) algorithm is employed to minimize the total harmonic distortion (THD) and generate the optimal switching angles offline. In the second step, part of optimal switching angles are used to train an ANN and the well-designed ANN can generate optimal switching angles in a real-time manner. Compared with previous real-time algorithm, the proposed algorithm is suitable for a wider range of modulation index and results in a smaller THD and a lower calculation time. Furthermore, the well-designed ANN is embedded into a closed-loop control algorithm for CHB converter with variable direct voltage (DC) sources. Simulation results demonstrate that the proposed closed-loop control algorithm is able to quickly stabilize load voltage and minimize the line current's THD (<5%) when subjecting the DC sources disturbance or load disturbance. In real design stage, a switching angle pulse generation scheme is proposed and experiment results verify its correctness. PMID:24772025

  17. A real-time and closed-loop control algorithm for cascaded multilevel inverter based on artificial neural network.

    PubMed

    Wang, Libing; Mao, Chengxiong; Wang, Dan; Lu, Jiming; Zhang, Junfeng; Chen, Xun

    2014-01-01

    In order to control the cascaded H-bridges (CHB) converter with staircase modulation strategy in a real-time manner, a real-time and closed-loop control algorithm based on artificial neural network (ANN) for three-phase CHB converter is proposed in this paper. It costs little computation time and memory. It has two steps. In the first step, hierarchical particle swarm optimizer with time-varying acceleration coefficient (HPSO-TVAC) algorithm is employed to minimize the total harmonic distortion (THD) and generate the optimal switching angles offline. In the second step, part of optimal switching angles are used to train an ANN and the well-designed ANN can generate optimal switching angles in a real-time manner. Compared with previous real-time algorithm, the proposed algorithm is suitable for a wider range of modulation index and results in a smaller THD and a lower calculation time. Furthermore, the well-designed ANN is embedded into a closed-loop control algorithm for CHB converter with variable direct voltage (DC) sources. Simulation results demonstrate that the proposed closed-loop control algorithm is able to quickly stabilize load voltage and minimize the line current's THD (<5%) when subjecting the DC sources disturbance or load disturbance. In real design stage, a switching angle pulse generation scheme is proposed and experiment results verify its correctness. PMID:24772025

  18. Closed-Loop System Identification Experience for Flight Control Law and Flying Qualities Evaluation of a High Performance Fighter Aircraft

    NASA Technical Reports Server (NTRS)

    Murphy, Patrick C.

    1999-01-01

    This paper highlights some of the results and issues associated with estimating models to evaluate control law design methods and design criteria for advanced high performance aircraft. Experimental fighter aircraft such as the NASA High Alpha Research Vehicle (HARV) have the capability to maneuver at very high angles of attack where nonlinear aerodynamics often predominate. HARV is an experimental F/A-18, configured with thrust vectoring and conformal actuated nose strakes. Identifying closed-loop models for this type of aircraft can be made difficult by nonlinearities and high-order characteristics of the system. In this paper only lateral-directional axes are considered since the lateral-directional control law was specifically designed to produce classical airplane responses normally expected with low-order, rigid-body systems. Evaluation of the control design methodology was made using low-order equivalent systems determined from flight and simulation. This allowed comparison of the closed-loop rigid-body dynamics achieved in flight with that designed in simulation. In flight, the On Board Excitation System was used to apply optimal inputs to lateral stick and pedals at five angles of attack: 5, 20, 30, 45, and 60 degrees. Data analysis and closed-loop model identification were done using frequency domain maximum likelihood. The structure of the identified models was a linear state-space model reflecting classical 4th-order airplane dynamics. Input time delays associated with the high-order controller and aircraft system were accounted for in data preprocessing. A comparison of flight estimated models with small perturbation linear design models highlighted nonlinearities in the system and indicated that the estimated closed-loop rigid-body dynamics were sensitive to input amplitudes at 20 and 30 degrees angle of attack.

  19. Closed-Loop System Identification Experience for Flight Control Law and Flying Qualities Evaluation of a High Performance Fighter Aircraft

    NASA Technical Reports Server (NTRS)

    Murphy, Patrick C.

    1996-01-01

    This paper highlights some of the results and issues associated with estimating models to evaluate control law design methods and design criteria for advanced high performance aircraft. Experimental fighter aircraft such as the NASA-High Alpha Research Vehicle (HARV) have the capability to maneuver at very high angles of attack where nonlinear aerodynamics often predominate. HARV is an experimental F/A-18, configured with thrust vectoring and conformal actuated nose strakes. Identifying closed-loop models for this type of aircraft can be made difficult by nonlinearities and high order characteristics of the system. In this paper, only lateral-directional axes are considered since the lateral-directional control law was specifically designed to produce classical airplane responses normally expected with low-order, rigid-body systems. Evaluation of the control design methodology was made using low-order equivalent systems determined from flight and simulation. This allowed comparison of the closed-loop rigid-body dynamics achieved in flight with that designed in simulation. In flight, the On Board Excitation System was used to apply optimal inputs to lateral stick and pedals at five angles at attack : 5, 20, 30, 45, and 60 degrees. Data analysis and closed-loop model identification were done using frequency domain maximum likelihood. The structure of identified models was a linear state-space model reflecting classical 4th-order airplane dynamics. Input time delays associated with the high-order controller and aircraft system were accounted for in data preprocessing. A comparison of flight estimated models with small perturbation linear design models highlighted nonlinearities in the system and indicated that the closed-loop rigid-body dynamics were sensitive to input amplitudes at 20 and 30 degrees angle of attack.

  20. System identification of dynamic closed-loop control of total peripheral resistance by arterial and cardiopulmonary baroreceptors

    NASA Technical Reports Server (NTRS)

    Aljuri, A. N.; Bursac, N.; Marini, R.; Cohen, R. J.

    2001-01-01

    Prolonged exposure to microgravity in space flight missions (days) impairs the mechanisms responsible for defense of arterial blood pressure (ABP) and cardiac output (CO) against orthostatic stress in the post-flight period. The mechanisms responsible for the observed orthostatic intolerance are not yet completely understood. Additionally, effective counter measures to attenuate this pathophysiological response are not available. The aim of this study was to investigate the ability of our proposed system identification method to predict closed-loop dynamic changes in TPR induced by changes in mean arterial pressure (MAP) and right atrial pressure (RAP). For this purpose we designed and employed a novel experimental animal model for the examination of arterial and cardiopulmonary baroreceptors in the dynamic closed-loop control of total peripheral resistance (TPR), and applied system identification to the analysis of beat-to-beat fluctuations in the measured signals. Grant numbers: NAG5-4989. c 2001. Elsevier Science Ltd. All rights reserved.

  1. Closed-Loop Evaluation of an Integrated Failure Identification and Fault Tolerant Control System for a Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Shin, Jong-Yeob; Belcastro, Christine; Khong, thuan

    2006-01-01

    Formal robustness analysis of aircraft control upset prevention and recovery systems could play an important role in their validation and ultimate certification. Such systems developed for failure detection, identification, and reconfiguration, as well as upset recovery, need to be evaluated over broad regions of the flight envelope or under extreme flight conditions, and should include various sources of uncertainty. To apply formal robustness analysis, formulation of linear fractional transformation (LFT) models of complex parameter-dependent systems is required, which represent system uncertainty due to parameter uncertainty and actuator faults. This paper describes a detailed LFT model formulation procedure from the nonlinear model of a transport aircraft by using a preliminary LFT modeling software tool developed at the NASA Langley Research Center, which utilizes a matrix-based computational approach. The closed-loop system is evaluated over the entire flight envelope based on the generated LFT model which can cover nonlinear dynamics. The robustness analysis results of the closed-loop fault tolerant control system of a transport aircraft are presented. A reliable flight envelope (safe flight regime) is also calculated from the robust performance analysis results, over which the closed-loop system can achieve the desired performance of command tracking and failure detection.

  2. Controller development of photo bioreactor for closed-loop regulation of O2 production based on ANN model reference control and computer simulation

    NASA Astrophysics Data System (ADS)

    Hu, Dawei; Zhang, Houkai; Zhou, Rui; Li, Ming; Sun, Yi

    2013-02-01

    When Bioregenerative Life Support System (BLSS) is used for long-term deep space exploration in the future, it is possible to perform closed-loop control on growth of microalgae to effectively regulate O2 production process in emergencies. However, designing controller of microalgae cultivating device (MCD) by means of traditional methods is very difficult or even impossible due to its highly nonlinearity and large operation scope. In our research, the Artificial Neural Network Model Reference Control (ANN-MRC) method was therefore utilized for model identification and controller design for O2 production process of a specific MCD prototype—photo bioreactor (PBR), based on actual experiment and computer simulation. The results demonstrated that the ANN-MRC servo controller could robustly and self-adaptively control and regulate the light intensity of PBR to make O2 concentrations in vent pipe be in line with step reference concentrations with prescribed dynamic response performance.

  3. A Closed-Loop Hardware Simulation of Decentralized Satellite Formation Control

    NASA Technical Reports Server (NTRS)

    Ebimuma, Takuji; Lightsey, E. Glenn; Baur, Frank (Technical Monitor)

    2002-01-01

    In recent years, there has been significant interest in the use of formation flying spacecraft for a variety of earth and space science missions. Formation flying may provide smaller and cheaper satellites that, working together, have more capability than larger and more expensive satellites. Several decentralized architectures have been proposed for autonomous establishment and maintenance of satellite formations. In such architectures, each satellite cooperatively maintains the shape of the formation without a central supervisor, and processing only local measurement information. The Global Positioning System (GPS) sensors are ideally suited to provide such local position and velocity measurements to the individual satellites. An investigation of the feasibility of a decentralized approach to satellite formation flying was originally presented by Carpenter. He extended a decentralized linear-quadratic-Gaussian (LQG) framework proposed by Speyer in a fashion similar to an extended Kalman filter (EKE) which processed GPS position fix solutions. The new decentralized LQG architecture was demonstrated in a numerical simulation for a realistic scenario that is similar to missions that have been proposed by NASA and the U.S. Air Force. Another decentralized architecture was proposed by Park et al. using carrier differential-phase GPS (CDGPS). Recently, Busse et al demonstrated the decentralized CDGPS architecture in a hardware-in-the-loop simulation on the Formation Flying TestBed (FFTB) at Goddard Space Flight Center (GSFC), which features two Spirent Cox 16 channel GPS signal generator. Although representing a step forward by utilizing GPS signal simulators for a spacecraft formation flying simulation, only an open-loop performance, in which no maneuvers were executed based on the real-time state estimates, was considered. In this research, hardware experimentation has been extended to include closed-loop integrated guidance and navigation of multiple spacecraft

  4. Nonlinear closed loop optimal control: a modified state-dependent Riccati equation.

    PubMed

    Rafee Nekoo, S

    2013-03-01

    The state-dependent Riccati equation (SDRE), as a controller, has been introduced and implemented since the 90s. In this article, the other aspects of this controller are declared which shows the capability of this technique. First, a general case which has control nonlinearities and time varying weighting matrix Q is solved with three approaches: exact solution (ES), online control update (OCU) and power series approximation (PSA). The proposed PSA in this paper is able to deal with time varying or state-dependent Q in nonlinear systems. As a result of having the solution of nonlinear systems with complex Q containing constraints, using OCU and proposed PSA, a method is introduced to prevent the collision of an end-effector of a robot and an obstacle which shows the adaptability of the SDRE controller. Two examples to support the idea are presented and conferred. Supplementing constraints to the SDRE via matrix Q, this approach is named a modified SDRE.

  5. Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks

    PubMed Central

    Pedrocchi, Alessandra; Ferrante, Simona; De Momi, Elena; Ferrigno, Giancarlo

    2006-01-01

    Background The design of an optimal neuroprostheses controller and its clinical use presents several challenges. First, the physiological system is characterized by highly inter-subjects varying properties and also by non stationary behaviour with time, due to conditioning level and fatigue. Secondly, the easiness to use in routine clinical practice requires experienced operators. Therefore, feedback controllers, avoiding long setting procedures, are required. Methods The error mapping controller (EMC) here proposed uses artificial neural networks (ANNs) both for the design of an inverse model and of a feedback controller. A neuromuscular model is used to validate the performance of the controllers in simulations. The EMC performance is compared to a Proportional Integral Derivative (PID) included in an anti wind-up scheme (called PIDAW) and to a controller with an ANN as inverse model and a PID in the feedback loop (NEUROPID). In addition tests on the EMC robustness in response to variations of the Plant parameters and to mechanical disturbances are carried out. Results The EMC shows improvements with respect to the other controllers in tracking accuracy, capability to prolong exercise managing fatigue, robustness to parameter variations and resistance to mechanical disturbances. Conclusion Different from the other controllers, the EMC is capable of balancing between tracking accuracy and mapping of fatigue during the exercise. In this way, it avoids overstressing muscles and allows a considerable prolongation of the movement. The collection of the training sets does not require any particular experimental setting and can be introduced in routine clinical practice. PMID:17029636

  6. Multiple-input single-output closed-loop isometric force control using asynchronous intrafascicular multi-electrode stimulation.

    PubMed

    Frankel, Mitchell A; Dowden, Brett R; Mathews, V John; Normann, Richard A; Clark, Gregory A; Meek, Sanford G

    2011-06-01

    Although asynchronous intrafascicular multi-electrode stimulation (IFMS) can evoke fatigue-resistant muscle force, a priori determination of the necessary stimulation parameters for precise force production is not possible. This paper presents a proportionally-modulated, multiple-input single-output (MISO) controller that was designed and experimentally validated for real-time, closed-loop force-feedback control of asynchronous IFMS. Experiments were conducted on anesthetized felines with a Utah Slanted Electrode Array implanted in the sciatic nerve, either acutely or chronically ( n = 1 for each). Isometric forces were evoked in plantar-flexor muscles, and target forces consisted of up to 7 min of step, sinusoidal, and more complex time-varying trajectories. The controller was successful in evoking steps in force with time-to-peak of less than 0.45 s, steady-state ripple of less than 7% of the mean steady-state force, and near-zero steady-state error even in the presence of muscle fatigue, but with transient overshoot of near 20%. The controller was also successful in evoking target sinusoidal and complex time-varying force trajectories with amplitude error of less than 0.5 N and time delay of approximately 300 ms. This MISO control strategy can potentially be used to develop closed-loop asynchronous IFMS controllers for a wide variety of multi-electrode stimulation applications to restore lost motor function.

  7. Physical Activity Capture Technology With Potential for Incorporation Into Closed-Loop Control for Type 1 Diabetes.

    PubMed

    Dadlani, Vikash; Levine, James A; McCrady-Spitzer, Shelly K; Dassau, Eyal; Kudva, Yogish C

    2015-10-18

    Physical activity is an important determinant of glucose variability in type 1 diabetes (T1D). It has been incorporated as a nonglucose input into closed-loop control (CLC) protocols for T1D during the last 4 years mainly by 3 research groups in single center based controlled clinical trials involving a maximum of 18 subjects in any 1 study. Although physical activity data capture may have clinical benefit in patients with T1D by impacting cardiovascular fitness and optimal body weight achievement and maintenance, limited number of such studies have been conducted to date. Clinical trial registries provide information about a single small sample size 2 center prospective study incorporating physical activity data input to modulate closed-loop control in T1D that are seeking to build on prior studies. We expect an increase in such studies especially since the NIH has expanded support of this type of research with additional grants starting in the second half of 2015. Studies (1) involving patients with other disorders that have lasted 12 weeks or longer and tracked physical activity and (2) including both aerobic and resistance activity may offer insights about the user experience and device optimization even as single input CLC heads into real-world clinical trials over the next few years and nonglucose input is introduced as the next advance.

  8. Physical Activity Capture Technology With Potential for Incorporation Into Closed-Loop Control for Type 1 Diabetes.

    PubMed

    Dadlani, Vikash; Levine, James A; McCrady-Spitzer, Shelly K; Dassau, Eyal; Kudva, Yogish C

    2015-11-01

    Physical activity is an important determinant of glucose variability in type 1 diabetes (T1D). It has been incorporated as a nonglucose input into closed-loop control (CLC) protocols for T1D during the last 4 years mainly by 3 research groups in single center based controlled clinical trials involving a maximum of 18 subjects in any 1 study. Although physical activity data capture may have clinical benefit in patients with T1D by impacting cardiovascular fitness and optimal body weight achievement and maintenance, limited number of such studies have been conducted to date. Clinical trial registries provide information about a single small sample size 2 center prospective study incorporating physical activity data input to modulate closed-loop control in T1D that are seeking to build on prior studies. We expect an increase in such studies especially since the NIH has expanded support of this type of research with additional grants starting in the second half of 2015. Studies (1) involving patients with other disorders that have lasted 12 weeks or longer and tracked physical activity and (2) including both aerobic and resistance activity may offer insights about the user experience and device optimization even as single input CLC heads into real-world clinical trials over the next few years and nonglucose input is introduced as the next advance. PMID:26481641

  9. Physical Activity Capture Technology With Potential for Incorporation Into Closed-Loop Control for Type 1 Diabetes

    PubMed Central

    Dadlani, Vikash; Levine, James A.; McCrady-Spitzer, Shelly K.; Dassau, Eyal; Kudva, Yogish C.

    2015-01-01

    Physical activity is an important determinant of glucose variability in type 1 diabetes (T1D). It has been incorporated as a nonglucose input into closed-loop control (CLC) protocols for T1D during the last 4 years mainly by 3 research groups in single center based controlled clinical trials involving a maximum of 18 subjects in any 1 study. Although physical activity data capture may have clinical benefit in patients with T1D by impacting cardiovascular fitness and optimal body weight achievement and maintenance, limited number of such studies have been conducted to date. Clinical trial registries provide information about a single small sample size 2 center prospective study incorporating physical activity data input to modulate closed-loop control in T1D that are seeking to build on prior studies. We expect an increase in such studies especially since the NIH has expanded support of this type of research with additional grants starting in the second half of 2015. Studies (1) involving patients with other disorders that have lasted 12 weeks or longer and tracked physical activity and (2) including both aerobic and resistance activity may offer insights about the user experience and device optimization even as single input CLC heads into real-world clinical trials over the next few years and nonglucose input is introduced as the next advance. PMID:26481641

  10. Open and closed-loop control of transonic buffet on 3D turbulent wings using fluidic devices

    NASA Astrophysics Data System (ADS)

    Dandois, Julien; Lepage, Arnaud; Dor, Jean-Bernard; Molton, Pascal; Ternoy, Frédéric; Geeraert, Arnaud; Brunet, Vincent; Coustols, Éric

    2014-06-01

    This paper presents an overview of the work performed recently at ONERA on the control of the buffet phenomenon. This aerodynamic instability induces strong wall pressure fluctuations and as such limits aircraft envelope; consequently, it is interesting to try to delay its onset, in order to enlarge aircraft flight envelop, but also to provide more flexibility during the design phase. Several types of flow control have been investigated, either passive (mechanical vortex generators) or active (fluidic VGs, fluidic trailing-edge device (TED)). It is shown than mechanical and fluidic VGs are able to delay buffet onset in the angle-of-attack domain by suppressing the separation downstream of the shock. The effect of the fluidic TED is different, the separation is not suppressed, but the rear wing loading is increased and consequently the buffet onset is not delayed to higher angles of attack, but only to higher lift coefficient. Then, a closed loop control methodology based on a quasi-static approach is defined and several architectures are tested for various parameters such as the input signal, the objective function or, the tuning of the feedback gain. All closed loop methods are implemented on a dSPACE device calculating in real time the fluidic actuators command from the unsteady pressure sensors data.

  11. Closed-loop control of a shape memory alloy actuation system for variable area fan nozzle

    NASA Astrophysics Data System (ADS)

    Barooah, Prabir; Rey, Nancy

    2002-07-01

    Shape Memory Alloys have been used in a wide variety of actuation applications. A bundled shape memory alloy cable actuator, capable of providing large force and displacement has been developed by United Technologies Corporation (patents pending) for actuating a Variable Area fan Nozzle (VAN). The ability to control fan nozzle exit area is an enabling technology for the next generation turbofan engines. Performance benefits for VAN engines are estimated to be up to 9% in Thrust Specific Fuel Consumption (TSFC) compared to traditional fixed geometry designs. The advantage of SMA actuated VAN design is light weight and low complexity compared to conventionally actuated designs. To achieve the maximum efficiency from a VAN engine, the nozzle exit area has to be continuously varied for a certain period of time during climb, since the optimum nozzle exit area is a function of several flight variables (flight Mach number, altitude etc). Hence, the actuator had to be controlled to provide the time varying desired nozzle area. A new control algorithm was developed for this purpose, which produced the desired flap area by metering the resistive heating of the SMA actuator. Since no active cooling was used, reducing overshoot was a significant challenge of the controller. A full scale, 2 flap model of the VAN system was built, which was capable of simulating a 20% nozzle area variation, and tested under full scale aerodynamic load in NASA Langley Jet Exit Test facility. The controller met all the requirements of the actuation system and was able to drive the flap position to the desired position with less than 2% overshoot in step input tests. The controller is based on a adaptive algorithm formulation with logical switches that reduces its overshoot error. Although the effectiveness of the controller was demonstrated in full scale model tests, no theoretical results as to its stability and robustness has been derived. Stability of the controller will have to be investigated

  12. Real-time closed-loop simulation and upset evaluation of control systems in harsh electromagnetic environments

    NASA Technical Reports Server (NTRS)

    Belcastro, Celeste M.

    1989-01-01

    Digital control systems for applications such as aircraft avionics and multibody systems must maintain adequate control integrity in adverse as well as nominal operating conditions. For example, control systems for advanced aircraft, and especially those with relaxed static stability, will be critical to flight and will, therefore, have very high reliability specifications which must be met regardless of operating conditions. In addition, multibody systems such as robotic manipulators performing critical functions must have control systems capable of robust performance in any operating environment in order to complete the assigned task reliably. Severe operating conditions for electronic control systems can result from electromagnetic disturbances caused by lightning, high energy radio frequency (HERF) transmitters, and nuclear electromagnetic pulses (NEMP). For this reason, techniques must be developed to evaluate the integrity of the control system in adverse operating environments. The most difficult and illusive perturbations to computer-based control systems that can be caused by an electromagnetic environment (EME) are functional error modes that involve no component damage. These error modes are collectively known as upset, can occur simultaneously in all of the channels of a redundant control system, and are software dependent. Upset studies performed to date have not addressed the assessment of fault tolerant systems and do not involve the evaluation of a control system operating in a closed-loop with the plant. A methodology for performing a real-time simulation of the closed-loop dynamics of a fault tolerant control system with a simulated plant operating in an electromagnetically harsh environment is presented. In particular, considerations for performing upset tests on the controller are discussed. Some of these considerations are the generation and coupling of analog signals representative of electromagnetic disturbances to a control system under test

  13. An automatic closed-loop control system of boiler load for combined joint and separate combustion of gases

    NASA Astrophysics Data System (ADS)

    Ismatkhodzhaev, S. K.

    2014-10-01

    A system for automatic closed-loop control of drum boiler heat load for combined joint and separate combustion of blast-furnace, coke, and natural gases under the conditions of randomly changed flow rates of blast-furnace and coke gases is considered. For achieving more efficient operation of the automatic control system, it is proposed to introduce circuits for compensating random disturbances in the flow rates of these gases in addition to the standard automatic control system using the heat signal. The estimated parameters of the control channels transfer functions are presented for different ratios between the flow rates of fired gases and boiler loads. The results obtained from an investigation of the combined system are described, and its effectiveness with the boiler operating in different modes is demonstrated.

  14. Closed-loop control of ammonium concentration in nitritation: convenient for reactor operation but also for modeling.

    PubMed

    Jemaat, Zulkifly; Bartrolí, Albert; Isanta, Eduardo; Carrera, Julián; Suárez-Ojeda, María Eugenia; Pérez, Julio

    2013-01-01

    A mathematical biofilm model was developed to describe nitritation in aerobic granular reactor operating in continuous mode. The model includes the automatic closed-loop control of ammonium concentration in the effluent. This is integrated in a ratio control strategy to maintain the proportion between the dissolved oxygen (DO) and the total ammonia nitrogen (TAN) concentrations in the reactor effluent at a desired value. The model was validated with a large set of experimental results previously reported in the literature. The model was used to study the effect of DO and TAN setpoints on the achievement of full nitritation, as well as to establish the appropriate required range of the DO/TAN concentration ratio to be applied. Nitritation at 20 °C was tested experimentally and simulated with the model. Additionally, the importance of controlling the TAN concentration was highlighted with different scenarios, in which periodic disturbances were applied mimicking a poor control situation.

  15. Closed-loop, non-linear feedback control simulations of beam-driven field-reversed configurations (FRCs)

    NASA Astrophysics Data System (ADS)

    Rath, N.; Onofri, M.; Barnes, D.; Romero, J.; the TAE Team

    2015-11-01

    The C-2U device has recently demonstrated sustainment of an advanced, beam-driven FRC over time scales longer than the characteristic times for confinement, fast ion slow-down, and wall current decay. In anticipation of further advances in plasma lifetime, we are developing feedback control techniques for major FRC parameters and resistive instabilities. The LamyRidge code solves the time-dependent extended MHD equations in axisymmetric geometry. In the Q2D code, LamyRidge is combined with a 3-D kinetic code that tracks fast ions and runs in parallel with LamyRidge. Periodically, the background fields in the kinetic code are updated from the MHD simulation and the averaged fast particle distribution is integrated into the fluid equations. Recently, we have added the capability to run Q2D simulations as subordinate processes in Simulink, giving us the ability to run non-linear, closed-loop simulations using control algorithms developed in Simulink. The same Simulink models can be exported to real-time targets (CPU or FPGA) to perform feedback control in experiments. We present closed-loop simulations of beam-driven FRCs under magnetically-actuated feedback control. Results for positionally unstable FRCs are compared with the predictions of a linearized rigid-plasma model. Plasmas predicted to be passively stabilized by the linear model are found to exhibit Alfvenic growth in several cases. Feedback gains predicted to be stabilizing in the linear model are generally found to be insufficient in non-linear simulations, and vice versa. Control of separatrix geometry is demonstrated.

  16. Frequency difference stabilization in dual-frequency laser by stress-induced birefringence closed-loop control.

    PubMed

    Li, Jiyang; Niu, Yanxiong; Niu, Haisha

    2016-06-01

    The frequency difference of dual-frequency lasers is increasingly becoming an area of focus in research. The stabilization of beat frequency is of significance in fields such as synthetic wavelength and shows great potential in precise measurement. In this paper, a novel device based on stress-induced birefringence closed-loop control is proposed. Experiments are carried out on a dual-frequency He-Ne Zeeman-birefringence laser with the output mirror sealed in the opposite direction. The results show that the device is capable of controlling the frequency difference variation in 1.3%, in a convenient and highly cost-effective way, and it can increase the quantity of frequency difference, which is crucial to the application of precise measurement through dual-frequency lasers.

  17. Current topics in glycemic control by wearable artificial pancreas or bedside artificial pancreas with closed-loop system.

    PubMed

    Hanazaki, Kazuhiro; Munekage, Masaya; Kitagawa, Hiroyuki; Yatabe, Tomoaki; Munekage, Eri; Shiga, Mai; Maeda, Hiromichi; Namikawa, Tsutomu

    2016-09-01

    The incidence of diabetes is increasing at an unprecedented pace and has become a serious health concern worldwide during the last two decades. Despite this, adequate glycemic control using an artificial pancreas has not been established, although the 21st century has seen rapid developments in this area. Herein, we review current topics in glycemic control for both the wearable artificial pancreas for type 1 and type 2 diabetic patients and the bedside artificial pancreas for surgical diabetic patients. In type 1 diabetic patients, nocturnal hypoglycemia associated with insulin therapy remains a serious problem that could be addressed by the recent development of a wearable artificial pancreas. This smart phone-like device, comprising a real-time, continuous glucose monitoring system and insulin pump system, could potentially significantly reduce nocturnal hypoglycemia compared with conventional glycemic control. Of particular interest in this space are the recent inventions of a low-glucose suspend feature in the portable systems that automatically stops insulin delivery 2 h following a glucose sensor value <70 mg/dL and a bio-hormonal pump system consisting of insulin and glucagon pumps. Perioperative tight glycemic control using a bedside artificial pancreas with the closed-loop system has also proved safe and effective for not only avoiding hypoglycemia, but also for reducing blood glucose level variability resulting in good surgical outcomes. We hope that a more sophisticated artificial pancreas with closed-loop system will now be taken up for routine use worldwide, providing enormous relief for patients suffering from uncontrolled hyperglycemia, hypoglycemia, and/or variability in blood glucose concentrations. PMID:27142278

  18. Current topics in glycemic control by wearable artificial pancreas or bedside artificial pancreas with closed-loop system.

    PubMed

    Hanazaki, Kazuhiro; Munekage, Masaya; Kitagawa, Hiroyuki; Yatabe, Tomoaki; Munekage, Eri; Shiga, Mai; Maeda, Hiromichi; Namikawa, Tsutomu

    2016-09-01

    The incidence of diabetes is increasing at an unprecedented pace and has become a serious health concern worldwide during the last two decades. Despite this, adequate glycemic control using an artificial pancreas has not been established, although the 21st century has seen rapid developments in this area. Herein, we review current topics in glycemic control for both the wearable artificial pancreas for type 1 and type 2 diabetic patients and the bedside artificial pancreas for surgical diabetic patients. In type 1 diabetic patients, nocturnal hypoglycemia associated with insulin therapy remains a serious problem that could be addressed by the recent development of a wearable artificial pancreas. This smart phone-like device, comprising a real-time, continuous glucose monitoring system and insulin pump system, could potentially significantly reduce nocturnal hypoglycemia compared with conventional glycemic control. Of particular interest in this space are the recent inventions of a low-glucose suspend feature in the portable systems that automatically stops insulin delivery 2 h following a glucose sensor value <70 mg/dL and a bio-hormonal pump system consisting of insulin and glucagon pumps. Perioperative tight glycemic control using a bedside artificial pancreas with the closed-loop system has also proved safe and effective for not only avoiding hypoglycemia, but also for reducing blood glucose level variability resulting in good surgical outcomes. We hope that a more sophisticated artificial pancreas with closed-loop system will now be taken up for routine use worldwide, providing enormous relief for patients suffering from uncontrolled hyperglycemia, hypoglycemia, and/or variability in blood glucose concentrations.

  19. Closed-Loop Neuromorphic Benchmarks.

    PubMed

    Stewart, Terrence C; DeWolf, Travis; Kleinhans, Ashley; Eliasmith, Chris

    2015-01-01

    Evaluating the effectiveness and performance of neuromorphic hardware is difficult. It is even more difficult when the task of interest is a closed-loop task; that is, a task where the output from the neuromorphic hardware affects some environment, which then in turn affects the hardware's future input. However, closed-loop situations are one of the primary potential uses of neuromorphic hardware. To address this, we present a methodology for generating closed-loop benchmarks that makes use of a hybrid of real physical embodiment and a type of "minimal" simulation. Minimal simulation has been shown to lead to robust real-world performance, while still maintaining the practical advantages of simulation, such as making it easy for the same benchmark to be used by many researchers. This method is flexible enough to allow researchers to explicitly modify the benchmarks to identify specific task domains where particular hardware excels. To demonstrate the method, we present a set of novel benchmarks that focus on motor control for an arbitrary system with unknown external forces. Using these benchmarks, we show that an error-driven learning rule can consistently improve motor control performance across a randomly generated family of closed-loop simulations, even when there are up to 15 interacting joints to be controlled. PMID:26696820

  20. Closed-Loop Neuromorphic Benchmarks

    PubMed Central

    Stewart, Terrence C.; DeWolf, Travis; Kleinhans, Ashley; Eliasmith, Chris

    2015-01-01

    Evaluating the effectiveness and performance of neuromorphic hardware is difficult. It is even more difficult when the task of interest is a closed-loop task; that is, a task where the output from the neuromorphic hardware affects some environment, which then in turn affects the hardware's future input. However, closed-loop situations are one of the primary potential uses of neuromorphic hardware. To address this, we present a methodology for generating closed-loop benchmarks that makes use of a hybrid of real physical embodiment and a type of “minimal” simulation. Minimal simulation has been shown to lead to robust real-world performance, while still maintaining the practical advantages of simulation, such as making it easy for the same benchmark to be used by many researchers. This method is flexible enough to allow researchers to explicitly modify the benchmarks to identify specific task domains where particular hardware excels. To demonstrate the method, we present a set of novel benchmarks that focus on motor control for an arbitrary system with unknown external forces. Using these benchmarks, we show that an error-driven learning rule can consistently improve motor control performance across a randomly generated family of closed-loop simulations, even when there are up to 15 interacting joints to be controlled. PMID:26696820

  1. A widely tunable fiber ring laser with closed loop control based on high-precision stepper motor

    NASA Astrophysics Data System (ADS)

    Wang, Li-li; Xin, Xiang-jun; Zhu, Lin-wei

    2016-05-01

    A tunable single-longitudinal mode erbium-doped fiber ring laser based on stepper motor and closed loop control is proposed and demonstrated. The system consists of an erbium-doped fiber (EDF), a tunable fiber Bragg grating (FBG) filter and a wavelength detector. The characteristics of output laser, such as output power, power stability and 3-dB linewidth, are investigated in the operation range of 1 531—1 569 nm. The repeated experimental results of the fiber laser show that the 3-dB linewidth is less than 17 ps, the side-mode suppression ratio ( SMSR) is up to 60 dB, the output power is up to 1.37 dBm, and the power variation is less than 0.61 dB.

  2. Direct chaotic dynamics to any desired orbits via a closed-loop control

    NASA Astrophysics Data System (ADS)

    Chen, Chien-Chong

    1996-02-01

    A modification of the chaotic entrainment method by superimposing a feedback control term can successfully control dynamical systems to any desired orbits (goal dynamics). Numerical studies show that autonomous Lorenz systems can be controlled to arbitrary goal dynamics such as flat profiles, simple and highly modulated oscillations. Also a non-autonomous Duffing-Holmes oscillator can be stabilized to a chosen dynamics.

  3. Real time closed loop control of an Ar and Ar/O2 plasma in an ICP

    NASA Astrophysics Data System (ADS)

    Faulkner, R.; Soberón, F.; McCarter, A.; Gahan, D.; Karkari, S.; Milosavljevic, V.; Hayden, C.; Islyaikin, A.; Law, V. J.; Hopkins, M. B.; Keville, B.; Iordanov, P.; Doherty, S.; Ringwood, J. V.

    2006-10-01

    Real time closed loop control for plasma assisted semiconductor manufacturing has been the subject of academic research for over a decade. However, due to process complexity and the lack of suitable real time metrology, progress has been elusive and genuine real time, multi-input, multi-output (MIMO) control of a plasma assisted process has yet to be successfully implemented in an industrial setting. A Splasma parameter control strategy T is required to be adopted whereby process recipes which are defined in terms of plasma properties such as critical species densities as opposed to input variables such as rf power and gas flow rates may be transferable between different chamber types. While PIC simulations and multidimensional fluid models have contributed considerably to the basic understanding of plasmas and the design of process equipment, such models require a large amount of processing time and are hence unsuitable for testing control algorithms. In contrast, linear dynamical empirical models, obtained through system identification techniques are ideal in some respects for control design since their computational requirements are comparatively small and their structure facilitates the application of classical control design techniques. However, such models provide little process insight and are specific to an operating point of a particular machine. An ideal first principles-based, control-oriented model would exhibit the simplicity and computational requirements of an empirical model and, in addition, despite sacrificing first principles detail, capture enough of the essential physics and chemistry of the process in order to provide reasonably accurate qualitative predictions. This paper will discuss the development of such a first-principles based, control-oriented model of a laboratory inductively coupled plasma chamber. The model consists of a global model of the chemical kinetics coupled to an analytical model of power deposition. Dynamics of actuators

  4. Modal domain fiber optic sensor for closed loop vibration control of a flexible beam

    NASA Technical Reports Server (NTRS)

    Cox, D.; Thomas, D.; Reichard, K.; Lindner, D.; Claus, R. O.

    1990-01-01

    The use of a modal domain sensor in a vibration control experiment is described. An optical fiber is bonded along the length of a flexible beam. A control signal derived from the output of the modal domain sensor is used to suppress vibrations induced in the beam. A distributed effect model for the modal domain sensor is developed and combined with models of the beam and actuator dynamics to produce a system suitable for control design.

  5. Closed-loop torque feedback for a universal field-oriented controller

    SciTech Connect

    De Doncker, R.W.A.A.; King, R.D.; Sanza, P.C.; Haefner, K.B.

    1992-11-24

    A torque feedback system is employed in a universal field-oriented (UFO) controller to tune a torque-producing current command and a slip frequency command in order to achieve robust torque control of an induction machine even in the event of current regulator errors and during transitions between pulse width modulated (PWM) and square wave modes of operation. 1 figure.

  6. Closed-loop torque feedback for a universal field-oriented controller

    DOEpatents

    De Doncker, Rik W. A. A.; King, Robert D.; Sanza, Peter C.; Haefner, Kenneth B.

    1992-01-01

    A torque feedback system is employed in a universal field-oriented (UFO) controller to tune a torque-producing current command and a slip frequency command in order to achieve robust torque control of an induction machine even in the event of current regulator errors and during transitions between pulse width modulated (PWM) and square wave modes of operation.

  7. Solar array maximum power tracking with closed-loop control of a 30-centimeter ion thruster

    NASA Technical Reports Server (NTRS)

    Gruber, R. P.

    1977-01-01

    A new solar array/ion thruster system control concept has been developed and demonstrated. An ion thruster beam load is used to automatically and continuously operate an unregulated solar array at its maximum power point independent of variations in solar array voltage and current. Preliminary tests were run which verified that this method of control can be implemented with a few, physically small, signal level components dissipating less than two watts.

  8. Closed-Loop Control Techniques for Active Vibration Suppression of a Flexible Mechanical System

    NASA Astrophysics Data System (ADS)

    Villaverde Huertas, Vladímir; Rohaľ-Ilkiv, Boris

    2012-12-01

    This paper investigates the problem of vibration attenuation of a lightly damped mechanical system using piezoelectric actuation. First of all, an explicit predictive controller will be designed using the Matlab multi-parametric toolbox. Then, we will explore the positive position feedback technique and test the discrete-time PPF controller using an xPC target real-time system. On the other hand, we will realize the modal analysis of the analyzed flexible system in order to determine the frequency corresponding to the first mode shape. This frequency will be utilized as PPF controller frequency. Moreover, the state-space model of the flexible mechanical system will be obtained using the Matlab system identification toolbox applying the subspace identification approach.

  9. Implementation of a closed-loop CD and overlay controller for sub-0.25-μm patterning

    NASA Astrophysics Data System (ADS)

    Sturtevant, John L.; Weilemann, Michele R.; Green, Kent G.; Dwyer, John; Robertson, Eric; Hershey, Robert R.

    1998-06-01

    The traditional approach for CD and overlay control in lithography has been based upon statistical control of the critical inputs to the lithographic process. This SPC approach has the disadvantage that the process equipment must be taken out of manufacturing whenever a parameter goes out of control, so that the root cause may be diagnosed and addressed. In the case of leading-edge lithography, it is often not trivial to determine the cause of such disturbances, and productivity can be greatly increased if output data is used to dynamically tune the system inputs. We have successfully implemented a fully automated, closed-loop CD and overlay control system in manufacturing for both I-line and DUV lithography. This system features automatic metrology data upload, host control of stepper/track clusters, and utilizes tool-based lot data for manipulation of future lot inputs. CD control to within 1 nm of target and less than 20 nm 3(sigma) lot to lot variability has been demonstrated. Mean overlay errors of less than 50 nm have been realized as well. Process Cpk values were improved in some cases by more than 50% with implementation of the controller.

  10. Directly induced swing for closed loop control of electroslag remelting furnace

    DOEpatents

    Damkroger, Brian

    1998-01-01

    An apparatus and method for controlling an electroslag remelting furnace, imposing a periodic fluctuation on electrode drive speed and thereby generating a predictable voltage swing signal. The fluctuation is preferably done by imposition of a sine, square, or sawtooth wave on the drive dc offset signal.

  11. Reducing risk of closed loop control of blood glucose in artificial pancreas using fractional calculus.

    PubMed

    Ghorbani, Mahboobeh; Bogdan, Paul

    2014-01-01

    Healthcare costs in the US are among the highest in the world. Chronic diseases such as diabetes significantly contribute to these extensive costs. Despite technological advances to improve sensing and actuation devices, we still lack a coherent theory that facilitates the design and optimization of efficient and robust medical cyber-physical systems for managing chronic diseases. In this paper, we propose a mathematical model for capturing the complex dynamics of blood glucose time series (e.g., time dependent and fractal behavior) observed in real world measurements via fractional calculus concepts. Building upon our time dependent fractal model, we propose a novel model predictive controller for an artificial pancreas that regulates insulin injection. We verify the accuracy of our controller by comparing it to conventional non-fractal models using real world measurements and show how the nonlinear optimal controller based on fractal calculus concepts is superior to non-fractal controllers in terms of average risk index and prediction accuracy. PMID:25571075

  12. Directly induced swing for closed loop control of electroslag remelting furnace

    DOEpatents

    Damkroger, B.

    1998-04-07

    An apparatus and method are disclosed for controlling an electroslag remelting furnace, imposing a periodic fluctuation on electrode drive speed and thereby generating a predictable voltage swing signal. The fluctuation is preferably done by imposition of a sine, square, or sawtooth wave on the drive dc offset signal. 8 figs.

  13. Reconstructing surface EMG from scalp EEG during myoelectric control of a closed looped prosthetic device.

    PubMed

    Paek, Andrew Y; Brown, Jeremy D; Gillespie, R Brent; O'Malley, Marcia K; Shewokis, Patricia A; Contreras-Vidal, Jose L

    2013-01-01

    In this study, seven able-bodied human subjects controlled a robotic gripper with surface electromyography (sEMG) activity from the biceps. While subjects controlled the gripper, they felt the forces measured by the robotic gripper through an exoskeleton fitted on their non-dominant left arm. Subjects were instructed to identify objects with the force feedback provided by the exoskeleton. While subjects operated the robotic gripper, scalp electroencephalography (EEG) and functional near infrared spectroscopy (fNIRS) were recorded. We developed neural decoders that used scalp EEG to reconstruct the sEMG used to control the robotic gripper. The neural decoders used a genetic algorithm embedded in a linear model with memory to reconstruct the sEMG from a plurality of EEG channels. The performance of the decoders, measured with Pearson correlation coefficients (median r-value = 0.59, maximum r-value = 0.91) was found to be comparable to previous studies that reconstructed sEMG linear envelopes from neural activity recorded with invasive techniques. These results show the feasibility of developing EEG-based neural interfaces that in turn could be used to control a robotic device.

  14. Closed-loop control of boundary layer streaks induced by free-stream turbulence

    NASA Astrophysics Data System (ADS)

    Papadakis, George; Lu, Liang; Ricco, Pierre

    2016-08-01

    The central aim of the paper is to carry out a theoretical and numerical study of active wall transpiration control of streaks generated within an incompressible boundary layer by free-stream turbulence. The disturbance flow model is based on the linearized unsteady boundary-region (LUBR) equations, studied by Leib, Wundrow, and Goldstein [J. Fluid Mech. 380, 169 (1999), 10.1017/S0022112098003504], which are the rigorous asymptotic limit of the Navier-Stokes equations for low-frequency and long-streamwise wavelength. The mathematical formulation of the problem directly incorporates the random forcing into the equations in a consistent way. Due to linearity, this forcing is factored out and appears as a multiplicative factor. It is shown that the cost function (integral of kinetic energy in the domain) is properly defined as the expectation of a random quadratic function only after integration in wave number space. This operation naturally introduces the free-stream turbulence spectral tensor into the cost function. The controller gains for each wave number are independent of the spectral tensor and, in that sense, universal. Asymptotic matching of the LUBR equations with the free-stream conditions results in an additional forcing term in the state-space system whose presence necessitates the reformulation of the control problem and the rederivation of its solution. It is proved that the solution can be obtained analytically using an extension of the sweep method used in control theory to obtain the standard Riccati equation. The control signal consists of two components, a feedback part and a feed-forward part (that depends explicitly on the forcing term). Explicit recursive equations that provide these two components are derived. It is shown that the feed-forward part makes a negligible contribution to the control signal. We also derive an explicit expression that a priori (i.e., before solving the control problem) leads to the minimum of the objective cost

  15. Closed Loop solar array-ion thruster system with power control circuitry

    NASA Technical Reports Server (NTRS)

    Gruber, R. P. (Inventor)

    1979-01-01

    A power control circuit connected between a solar array and an ion thruster receives voltage and current signals from the solar array. The control circuit multiplies the voltage and current signals together to produce a power signal which is differentiated with respect to time. The differentiator output is detected by a zero crossing detector and, after suitable shaping, the detector output is phase compared with a clock in a phase demodulator. An integrator receives no output from the phase demodulator when the operating point is at the maximum power but is driven toward the maximum power point for non-optimum operation. A ramp generator provides minor variations in the beam current reference signal produced by the integrator in order to obtain the first derivative of power.

  16. Multivariable closed loop control analysis and synthesis for complex flight systems

    NASA Technical Reports Server (NTRS)

    Schmidt, D. K.

    1981-01-01

    A flight control system analysis and synthesis method is presented that is intended to be especially suitable for application to vehicles exhibiting complex dynamic characteristics. For such vehicles quantitative handling qualities specifications are not usually available. Howver, handling qualities objectives are specifically introduced in this method via the hypothesis of correlation between pilot ratings and the objective function of an optimal control model of the human pilot. Further, since augmentation and pilot operate in parallel, simultaneous determination of the augmentation and pilot model gains is required. Desirable augmented dynamics are obtained for a variety of complex systems and the method is experimentally verified in the case of simple pilot damper gain selection for optimum pitch tracking performance.

  17. Design of Sensors for Control of Closed Loop Life Support Systems

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A brief summary is presented of a Engineering Design sequence, a cooperation between NASA-Kennedy and the University of Florida on the Controlled Environmental Life Support System (CELSS) program. Part of the class was devoted to learning general principles and techniques of design. The next portion of the class was devoted to learning to design, actually fabricating and testing small components and subsystems of a CELSS.

  18. On the benefits of hysteresis effects for closed-loop separation control using plasma actuation

    NASA Astrophysics Data System (ADS)

    Benard, N.; Cattafesta, L. N.; Moreau, E.; Griffin, J.; Bonnet, J. P.

    2011-08-01

    Flow separation control by a non-thermal plasma actuator is considered for a NACA 0015 airfoil at a chord Reynolds number of 1.9 × 105. Static hysteresis in the lift coefficient is demonstrated for increasing and then decreasing sinusoidal voltage amplitude supplying a typical single dielectric barrier discharge actuator at the leading edge of the model. In addition to these open-loop experiments, unsteady surface pressure signals are examined for transient processes involving forced reattachment and natural separation. The results show that strong pressure oscillations in the relatively slow separation process, compared to reattachment, precede the ultimate massive flow separation. To enhance the contrast between the parts of the signal related to the attached flow and those related to the incipient separation, RMS estimate of filtered values of Cp is used to define a flow separation predictor that is implemented in feedback control. Two simple controllers are proposed, one based on a predefined threshold of the unsteady Cp and another that utilizes the flow separation predictor to identify incipient separation. The latter effectively leverages the hysteresis in the post-stall regime to reduce the electrical power consumed by the actuator while maintaining continuously attached flow.

  19. Vct system having closed loop control employing spool valve actuated by a stepper motor

    SciTech Connect

    Quin, S.B. Jr.; Siemon, E.C.

    1993-06-15

    An internal combustion engine is described comprising: a crankshaft, the crankshaft being rotable about an axis; a cam shaft, the cam shaft being rotatable about a second axis, the second axis being parallel to the axis, the cam shaft being subject to torque reversals during the rotation thereof; a vane, the vane having at least one lobe, the vane being attached to the cam shaft, being rotatable with the cam shaft and being non-oscillatable with respect to the cam shaft; a housing, the housing being rotatable with the cam shaft and being oscillatable with respect to the cam shaft, the housing having at least one recess, the recess receiving the lobe, the lobe being oscillatable within the recess; rotary movement transmitting means for transmitting rotary movement from the crankshaft to the housing; actuating means for varying the position of the housing relative to the cam shaft in reaction to torque reversals in the cam shaft, the actuating means comprising a stepper motor, a lead screw and a proportional spool valve, the position of the spool valve being controlled by the position of the lead screw driven by the stepper motor, the actuating means also delivering hydraulic fluid to the vane; and processing means for controlling the position of the actuating means.

  20. Experimental closed-loop control of separated-flow over a plain flap using extremum seeking

    NASA Astrophysics Data System (ADS)

    Chabert, Timothée; Dandois, Julien; Garnier, Éric

    2016-03-01

    The lift coefficient of a configuration made of a flat plate with a trailing-edge plain flap is maximized at post-stall conditions by driving automatically the forcing frequency of a fluidic control system to an optimal value. The flap is equipped with pulsed blowing slots whose actuation frequency can be varied at constant actuation amplitude. The post-stall flow over the deflected flap is fully separated and organized around the natural vortex shedding at St=0.2. It appears to be sensitive to the forcing frequency so that the lift coefficient is maximized if actuation is precisely the Strouhal number. Since this frequency depends on the flap deflection angle and the upstream velocity, an extremum seeking algorithm is implemented in order to drive the forcing frequency and thus guarantees that lift remains maximum whatever the geometric configuration is. Finally, a fuzzy-logic regulator is synthesized and integrated into the extremum seeking control scheme in order to speed up the convergence while maintaining stability and accuracy.

  1. Modified superposition: A simple time series approach to closed-loop manual controller identification

    NASA Technical Reports Server (NTRS)

    Biezad, D. J.; Schmidt, D. K.; Leban, F.; Mashiko, S.

    1986-01-01

    Single-channel pilot manual control output in closed-tracking tasks is modeled in terms of linear discrete transfer functions which are parsimonious and guaranteed stable. The transfer functions are found by applying a modified super-position time series generation technique. A Levinson-Durbin algorithm is used to determine the filter which prewhitens the input and a projective (least squares) fit of pulse response estimates is used to guarantee identified model stability. Results from two case studies are compared to previous findings, where the source of data are relatively short data records, approximately 25 seconds long. Time delay effects and pilot seasonalities are discussed and analyzed. It is concluded that single-channel time series controller modeling is feasible on short records, and that it is important for the analyst to determine a criterion for best time domain fit which allows association of model parameter values, such as pure time delay, with actual physical and physiological constraints. The purpose of the modeling is thus paramount.

  2. In Silico Preclinical Trials: Methodology and Engineering Guide to Closed-Loop Control in Type 1 Diabetes Mellitus

    PubMed Central

    Patek, Stephen D.; Bequette, B. Wayne; Breton, Marc; Buckingham, Bruce A.; Dassau, Eyal; Doyle, Francis J.; Lum, John; Magni, Lalo; Zisser, Howard

    2009-01-01

    This article sets forth guidelines for in silico (simulation-based) proof-of-concept testing of artificial pancreas control algorithms. The goal was to design a test procedure that can facilitate regulatory approval [e.g., Food and Drug Administration Investigational Device Exemption] for General Clinical Research Center experiments without preliminary testing on animals. The methodology is designed around a software package, based on a recent meal simulation model of the glucose–insulin system. Putting a premium on generality, this document starts by specifying a generic, rather abstract, meta-algorithm for control. The meta-algorithm has two main components: (1) patient assessment and tuning of control parameters, i.e., algorithmic processes for collection and processing patient data prior to closed-loop operation, and (2) controller warm-up and run-time operation, i.e., algorithmic processes for initializing controller states and managing blood glucose. The simulation-based testing methodology is designed to reveal the conceptual/mathematical operation of both main components, as applied to a large population of in silico patients with type 1 diabetes mellitus. PMID:20144358

  3. Closed-loop control for cardiopulmonary management and intensive care unit sedation using digital imaging

    NASA Astrophysics Data System (ADS)

    Gholami, Behnood

    This dissertation introduces a new problem in the delivery of healthcare, which could result in lower cost and a higher quality of medical care as compared to the current healthcare practice. In particular, a framework is developed for sedation and cardiopulmonary management for patients in the intensive care unit. A method is introduced to automatically detect pain and agitation in nonverbal patients, specifically in sedated patients in the intensive care unit, using their facial expressions. Furthermore, deterministic as well as probabilistic expert systems are developed to suggest the appropriate drug dose based on patient sedation level. Patients in the intensive care unit who require mechanical ventilation due to acute respiratory failure also frequently require the administration of sedative agents. The need for sedation arises both from patient anxiety due to the loss of personal control and the unfamiliar and intrusive environment of the intensive care unit, and also due to pain or other variants of noxious stimuli. In this dissertation, we develop a rule-based expert system for cardiopulmonary management and intensive care unit sedation. Furthermore, we use probability theory to quantify uncertainty and to extend the proposed rule-based expert system to deal with more realistic situations. Pain assessment in patients who are unable to verbally communicate is a challenging problem. The fundamental limitations in pain assessment stem from subjective assessment criteria, rather than quantifiable, measurable data. The relevance vector machine (RVM) classification technique is a Bayesian extension of the support vector machine (SVM) algorithm which achieves comparable performance to SVM while providing posterior probabilities for class memberships and a sparser model. In this dissertation, we use the RVM classification technique to distinguish pain from non-pain as well as assess pain intensity levels. We also correlate our results with the pain intensity

  4. Assessment of Closed-Loop Control Using Multi-Mode Sensor Fusion For a High Reynolds Number Transonic Jet

    NASA Astrophysics Data System (ADS)

    Low, Kerwin; Elhadidi, Basman; Glauser, Mark

    2009-11-01

    Understanding the different noise production mechanisms caused by the free shear flows in a turbulent jet flow provides insight to improve ``intelligent'' feedback mechanisms to control the noise. Towards this effort, a control scheme is based on feedback of azimuthal pressure measurements in the near field of the jet at two streamwise locations. Previous studies suggested that noise reduction can be achieved by azimuthal actuators perturbing the shear layer at the jet lip. The closed-loop actuation will be based on a low-dimensional Fourier representation of the hydrodynamic pressure measurements. Preliminary results show that control authority and reduction in the overall sound pressure level was possible. These results provide motivation to move forward with the overall vision of developing innovative multi-mode sensing methods to improve state estimation and derive dynamical systems. It is envisioned that estimating velocity-field and dynamic pressure information from various locations both local and in the far-field regions, sensor fusion techniques can be utilized to ascertain greater overall control authority.

  5. Development of the Mayo Investigational Neuromodulation Control System: toward a closed-loop electrochemical feedback system for deep brain stimulation

    PubMed Central

    Chang, Su-Youne; Kimble, Christopher J.; Kim, Inyong; Paek, Seungleal B.; Kressin, Kenneth R.; Boesche, Joshua B.; Whitlock, Sidney V.; Eaker, Diane R.; Kasasbeh, Aimen; Horne, April E.; Blaha, Charles D.; Bennet, Kevin E.; Lee, Kendall H.

    2014-01-01

    Object Conventional deep brain stimulation (DBS) devices continue to rely on an open-loop system in which stimulation is independent of functional neural feedback. The authors previously proposed that as the foundation of a DBS “smart” device, a closed-loop system based on neurochemical feedback, may have the potential to improve therapeutic outcomes. Alterations in neurochemical release are thought to be linked to the clinical benefit of DBS, and fast-scan cyclic voltammetry (FSCV) has been shown to be effective for recording these evoked neurochemical changes. However, the combination of FSCV with conventional DBS devices interferes with the recording and identification of the evoked analytes. To integrate neurochemical recording with neurostimulation, the authors developed the Mayo Investigational Neuromodulation Control System (MINCS), a novel, wirelessly controlled stimulation device designed to interface with FSCV performed by their previously described Wireless Instantaneous Neurochemical Concentration Sensing System (WINCS). Methods To test the functionality of these integrated devices, various frequencies of electrical stimulation were applied by MINCS to the medial forebrain bundle of the anesthetized rat, and striatal dopamine release was recorded by WINCS. The parameters for FSCV in the present study consisted of a pyramidal voltage waveform applied to the carbon-fiber microelectrode every 100 msec, ramping between −0.4 V and +1.5 V with respect to an Ag/AgCl reference electrode at a scan rate of either 400 V/sec or 1000 V/sec. The carbon-fiber microelectrode was held at the baseline potential of −0.4 V between scans. Results By using MINCS in conjunction with WINCS coordinated through an optic fiber, the authors interleaved intervals of electrical stimulation with FSCV scans and thus obtained artifact-free wireless FSCV recordings. Electrical stimulation of the medial forebrain bundle in the anesthetized rat by MINCS elicited striatal dopamine

  6. Safety and Efficacy of 24-h Closed-Loop Insulin Delivery in Well-Controlled Pregnant Women With Type 1 Diabetes

    PubMed Central

    Murphy, Helen R.; Kumareswaran, Kavita; Elleri, Daniela; Allen, Janet M.; Caldwell, Karen; Biagioni, Martina; Simmons, David; Dunger, David B.; Nodale, Marianna; Wilinska, Malgorzata E.; Amiel, Stephanie A.; Hovorka, Roman

    2011-01-01

    OBJECTIVE To evaluate the safety and efficacy of closed-loop insulin delivery in well-controlled pregnant women with type 1 diabetes treated with continuous subcutaneous insulin infusion (CSII). RESEARCH DESIGN AND METHODS A total of 12 women with type 1 diabetes (aged 32.9 years, diabetes duration 17.6 years, BMI 27.1 kg/m2, and HbA1c 6.4%) were randomly allocated to closed-loop or conventional CSII. They performed normal daily activities (standardized meals, snacks, and exercise) for 24 h on two occasions at 19 and 23 weeks’ gestation. Plasma glucose time in target (63–140 mg/dL) and time spent hypoglycemic were calculated. RESULTS Plasma glucose time in target was comparable for closed-loop and conventional CSII (median [interquartile range]: 81 [59–87] vs. 81% [54–90]; P = 0.75). Less time was spent hypoglycemic (<45 mg/dL [0.0 vs. 0.3%]; P = 0.04), with a lower low blood glucose index (2.4 [0.9–3.5] vs. 3.3 [1.9–5.1]; P = 0.03), during closed-loop insulin delivery. CONCLUSIONS Closed-loop insulin delivery was as effective as conventional CSII, with less time spent in extreme hypoglycemia. PMID:22011408

  7. Clinical Decision Support and Closed-Loop Control for Cardiopulmonary Management and Intensive Care Unit Sedation Using Expert Systems.

    PubMed

    Gholami, Behnood; Bailey, James M; Haddad, Wassim M; Tannenbaum, Allen R

    2012-03-01

    Patients in the intensive care unit (ICU) who require mechanical ventilation due to acute respiratory failure also frequently require the administration of sedative agents. The need for sedation arises both from patient anxiety due to the loss of personal control and the unfamiliar and intrusive environment of the ICU, and also due to pain or other variants of noxious stimuli. While physicians select the agent(s) used for sedation and cardiovascular function, the actual administration of these agents is the responsibility of the nursing staff. If clinical decision support systems and closed-loop control systems could be developed for critical care monitoring and lifesaving interventions as well as the administration of sedation and cardiopulmonary management, the ICU nurse could be released from the intense monitoring of sedation, allowing her/him to focus on other critical tasks. One particularly attractive strategy is to utilize the knowledge and experience of skilled clinicians, capturing explicitly the rules expert clinicians use to decide on how to titrate drug doses depending on the level of sedation. In this paper, we extend the deterministic rule-based expert system for cardiopulmonary management and ICU sedation framework presented in [1] to a stochastic setting by using probability theory to quantify uncertainty and hence deal with more realistic clinical situations.

  8. A Closed-Loop Optimal Neural-Network Controller to Optimize Rotorcraft Aeromechanical Behaviour. Volume 1; Theory and Methodology

    NASA Technical Reports Server (NTRS)

    Leyland, Jane Anne

    2001-01-01

    Given the predicted growth in air transportation, the potential exists for significant market niches for rotary wing subsonic vehicles. Technological advances which optimise rotorcraft aeromechanical behaviour can contribute significantly to both their commercial and military development, acceptance, and sales. Examples of the optimisation of rotorcraft aeromechanical behaviour which are of interest include the minimisation of vibration and/or loads. The reduction of rotorcraft vibration and loads is an important means to extend the useful life of the vehicle and to improve its ride quality. Although vibration reduction can be accomplished by using passive dampers and/or tuned masses, active closed-loop control has the potential to reduce vibration and loads throughout a.wider flight regime whilst requiring less additional weight to the aircraft man that obtained by using passive methads. It is ernphasised that the analysis described herein is applicable to all those rotorcraft aeromechanical behaviour optimisation problems for which the relationship between the harmonic control vector and the measurement vector can be adequately described by a neural-network model.

  9. Closed-Loop Simulation Study of the Ares I Upper Stage Thrust Vector Control Subsystem for Nominal and Failure Scenarios

    NASA Technical Reports Server (NTRS)

    Chicatelli, Amy; Fulton, Chris; Connolly, Joe; Hunker, Keith

    2010-01-01

    As a replacement to the current Shuttle, the Ares I rocket and Orion crew module are currently under development by the National Aeronautics and Space Administration (NASA). This new launch vehicle is segmented into major elements, one of which is the Upper Stage (US). The US is further broken down into subsystems, one of which is the Thrust Vector Control (TVC) subsystem which gimbals the US rocket nozzle. Nominal and off-nominal simulations for the US TVC subsystem are needed in order to support the development of software used for control systems and diagnostics. In addition, a clear and complete understanding of the effect of off-nominal conditions on the vehicle flight dynamics is desired. To achieve these goals, a simulation of the US TVC subsystem combined with the Ares I vehicle as developed. This closed-loop dynamic model was created using Matlab s Simulink and a modified version of a vehicle simulation, MAVERIC, which is currently used in the Ares I project and was developed by the Marshall Space Flight Center (MSFC). For this report, the effects on the flight trajectory of the Ares I vehicle are investigated after failures are injected into the US TVC subsystem. The comparisons of the off-nominal conditions observed in the US TVC subsystem with those of the Ares I vehicle flight dynamics are of particular interest.

  10. Adaptive correction of vortex laser beam in a closed-loop system with phase only liquid crystal spatial light modulator

    NASA Astrophysics Data System (ADS)

    Ma, Haotong; Liu, Zejin; Wu, Huiyun; Xu, Xiaojun; Chen, Jinbao

    2012-03-01

    We propose and demonstrate the wave front correction of a vortex laser beam by using dual phase only liquid crystal spatial light modulators (LC-SLMs) and a stochastic parallel gradient descent (SPGD) algorithm. One phase only LC-SLM is used to generate vortex laser beam by loading spiral phase screen onto the wave front of input quasi-Gaussian beam. The other phase only LC-SLM under SPGD controller based on the subzone control method adaptively compensates the wave front of vortex laser beam. Numerical simulation and experimental results show that after correction, vortex doughnut like beam is focused into a beam with airy disk pattern distribution in the far field. The adaptive corrections of vortex laser beam with different optical topological charges are studied. The results show that the optical topological charge has little influence on adaptive correction. The powers in the main lobe of far field intensity distributions of vortex laser beams with different optical topological charges are all greatly improved by adaptive correction. The technique proposed in this paper can be used in optical communication, relay mirror and atmospheric turbulence correction.

  11. Microgyroscope with closed loop output

    NASA Technical Reports Server (NTRS)

    Challoner, A. Dorian (Inventor); Gutierrez, Roman C. (Inventor); Tang, Tony K. (Inventor); Cargille, Donald R. (Inventor)

    2002-01-01

    A micro-gyroscope (10) having closed loop operation by a control voltage (V.sub.TY), that is demodulated by an output signal of the sense electrodes (S1, S2), providing Coriolis torque rebalance to prevent displacement of the micro-gyroscope (10) on the output axis (y-axis). The present invention provides wide-band, closed-loop operation for a micro-gyroscope (10) and allows the drive frequency to be closely tuned to a high Q sense axis resonance. A differential sense signal (S1-S2) is compensated and fed back by differentially changing the voltage on the drive electrodes to rebalance Coriolis torque. The feedback signal is demodulated in phase with the drive axis signal (K.sub..omega..crclbar..sub.x) to produce a measure of the Coriolis force.

  12. Closed-loop control of a fragile network: application to seizure-like dynamics of an epilepsy model

    PubMed Central

    Ehrens, Daniel; Sritharan, Duluxan; Sarma, Sridevi V.

    2015-01-01

    It has recently been proposed that the epileptic cortex is fragile in the sense that seizures manifest through small perturbations in the synaptic connections that render the entire cortical network unstable. Closed-loop therapy could therefore entail detecting when the network goes unstable, and then stimulating with an exogenous current to stabilize the network. In this study, a non-linear stochastic model of a neuronal network was used to simulate both seizure and non-seizure activity. In particular, synaptic weights between neurons were chosen such that the network's fixed point is stable during non-seizure periods, and a subset of these connections (the most fragile) were perturbed to make the same fixed point unstable to model seizure events; and, the model randomly transitions between these two modes. The goal of this study was to measure spike train observations from this epileptic network and then apply a feedback controller that (i) detects when the network goes unstable, and then (ii) applies a state-feedback gain control input to the network to stabilize it. The stability detector is based on a 2-state (stable, unstable) hidden Markov model (HMM) of the network, and detects the transition from the stable mode to the unstable mode from using the firing rate of the most fragile node in the network (which is the output of the HMM). When the unstable mode is detected, a state-feedback gain is applied to generate a control input to the fragile node bringing the network back to the stable mode. Finally, when the network is detected as stable again, the feedback control input is switched off. High performance was achieved for the stability detector, and feedback control suppressed seizures within 2 s after onset. PMID:25784851

  13. Distributed flow estimation and closed-loop control of an underwater vehicle with a multi-modal artificial lateral line.

    PubMed

    DeVries, Levi; Lagor, Francis D; Lei, Hong; Tan, Xiaobo; Paley, Derek A

    2015-03-25

    Bio-inspired sensing modalities enhance the ability of autonomous vehicles to characterize and respond to their environment. This paper concerns the lateral line of cartilaginous and bony fish, which is sensitive to fluid motion and allows fish to sense oncoming flow and the presence of walls or obstacles. The lateral line consists of two types of sensing modalities: canal neuromasts measure approximate pressure gradients, whereas superficial neuromasts measure local flow velocities. By employing an artificial lateral line, the performance of underwater sensing and navigation strategies is improved in dark, cluttered, or murky environments where traditional sensing modalities may be hindered. This paper presents estimation and control strategies enabling an airfoil-shaped unmanned underwater vehicle to assimilate measurements from a bio-inspired, multi-modal artificial lateral line and estimate flow properties for feedback control. We utilize potential flow theory to model the fluid flow past a foil in a uniform flow and in the presence of an upstream obstacle. We derive theoretically justified nonlinear estimation strategies to estimate the free stream flowspeed, angle of attack, and the relative position of an upstream obstacle. The feedback control strategy uses the estimated flow properties to execute bio-inspired behaviors including rheotaxis (the tendency of fish to orient upstream) and station-holding (the tendency of fish to position behind an upstream obstacle). A robotic prototype outfitted with a multi-modal artificial lateral line composed of ionic polymer metal composite and embedded pressure sensors experimentally demonstrates the distributed flow sensing and closed-loop control strategies.

  14. Distributed flow estimation and closed-loop control of an underwater vehicle with a multi-modal artificial lateral line.

    PubMed

    DeVries, Levi; Lagor, Francis D; Lei, Hong; Tan, Xiaobo; Paley, Derek A

    2015-04-01

    Bio-inspired sensing modalities enhance the ability of autonomous vehicles to characterize and respond to their environment. This paper concerns the lateral line of cartilaginous and bony fish, which is sensitive to fluid motion and allows fish to sense oncoming flow and the presence of walls or obstacles. The lateral line consists of two types of sensing modalities: canal neuromasts measure approximate pressure gradients, whereas superficial neuromasts measure local flow velocities. By employing an artificial lateral line, the performance of underwater sensing and navigation strategies is improved in dark, cluttered, or murky environments where traditional sensing modalities may be hindered. This paper presents estimation and control strategies enabling an airfoil-shaped unmanned underwater vehicle to assimilate measurements from a bio-inspired, multi-modal artificial lateral line and estimate flow properties for feedback control. We utilize potential flow theory to model the fluid flow past a foil in a uniform flow and in the presence of an upstream obstacle. We derive theoretically justified nonlinear estimation strategies to estimate the free stream flowspeed, angle of attack, and the relative position of an upstream obstacle. The feedback control strategy uses the estimated flow properties to execute bio-inspired behaviors including rheotaxis (the tendency of fish to orient upstream) and station-holding (the tendency of fish to position behind an upstream obstacle). A robotic prototype outfitted with a multi-modal artificial lateral line composed of ionic polymer metal composite and embedded pressure sensors experimentally demonstrates the distributed flow sensing and closed-loop control strategies. PMID:25807584

  15. First closed-loop visible AO test results for the advanced adaptive secondary AO system for the Magellan Telescope: MagAO's performance and status

    NASA Astrophysics Data System (ADS)

    Close, Laird M.; Males, Jared R.; Kopon, Derek A.; Gasho, Victor; Follette, Katherine B.; Hinz, Phil; Morzinski, Katie; Uomoto, Alan; Hare, Tyson; Riccardi, Armando; Esposito, Simone; Puglisi, Alfio; Pinna, Enrico; Busoni, Lorenzo; Arcidiacono, Carmelo; Xompero, Marco; Briguglio, Runa; Quiros-Pacheco, Fernando; Argomedo, Javier

    2012-07-01

    The heart of the 6.5 Magellan AO system (MagAO) is a 585 actuator adaptive secondary mirror (ASM) with <1 msec response times (0.7 ms typically). This adaptive secondary will allow low emissivity and high-contrast AO science. We fabricated a high order (561 mode) pyramid wavefront sensor (similar to that now successfully used at the Large Binocular Telescope). The relatively high actuator count (and small projected ~23 cm pitch) allows moderate Strehls to be obtained by MagAO in the “visible” (0.63-1.05 μm). To take advantage of this we have fabricated an AO CCD science camera called "VisAO". Complete “end-to-end” closed-loop lab tests of MagAO achieve a solid, broad-band, 37% Strehl (122 nm rms) at 0.76 μm (i’) with the VisAO camera in 0.8” simulated seeing (13 cm ro at V) with fast 33 mph winds and a 40 m Lo locked on R=8 mag artificial star. These relatively high visible wavelength Strehls are enabled by our powerful combination of a next generation ASM and a Pyramid WFS with 400 controlled modes and 1000 Hz sample speeds (similar to that used successfully on-sky at the LBT). Currently only the VisAO science camera is used for lab testing of MagAO, but this high level of measured performance (122 nm rms) promises even higher Strehls with our IR science cameras. On bright (R=8 mag) stars we should achieve very high Strehls (>70% at H) in the IR with the existing MagAO Clio2 (λ=1-5.3 μm) science camera/coronagraph or even higher (~98% Strehl) the Mid-IR (8-26 microns) with the existing BLINC/MIRAC4 science camera in the future. To eliminate non-common path vibrations, dispersions, and optical errors the VisAO science camera is fed by a common path advanced triplet ADC and is piggy-backed on the Pyramid WFS optical board itself. Also a high-speed shutter can be used to block periods of poor correction. The entire system passed CDR in June 2009, and we finished the closed-loop system level testing phase in December 2011. Final system acceptance (

  16. Closed-loop glycaemic control using an implantable artificial pancreas in diabetic domestic pig (Sus scrofa domesticus).

    PubMed

    Taylor, M J; Gregory, R; Tomlins, P; Jacob, D; Hubble, J; Sahota, T S

    2016-03-16

    The performance of a completely implantable peritoneal artificial pancreas (AP) has been demonstrated in principle in a live diabetic domestic pig. The device consists of a smart glucose-sensitive gel that forms a gateway to an insulin reservoir and is designed to both sense glucose and deliver insulin in the peritoneal cavity. It can be refilled with insulin via subcutaneous ports and surgery was developed to insert the AP. Diabetes was induced with streptozotocin (STZ), the device filled with insulin (Humulin(®) R U-500) in situ and the animal observed for several weeks, during which time there was normal access to food and water and several oral glucose challenges. Blood glucose (BG) levels were brought down from >30 mmol/L (540 mg/dL) to non-fasted values between 7 and 13 mmol/L (126-234 mg/dL) about five days after filling the device. Glucose challenge responses improved ultimately so that, starting at 10 mmol/L (180 mg/dL), the BG peak was 18 mmol/L (324 mg/dL) and fell to 7 mmol/L (126 mg/dL) after 30 min, contrasting with intravenous attempts. The reservoir solution was removed after 8 days of blood glucose levels during which they had been increasingly better controlled. A rapid return to diabetic BG levels (30 mmol/L) occurred only after a further 24 days implying some insulin had remained in the device after removal of the reservoir solution. Thus, the closed loop system appeared to have particular influence on the basal and bolus needs for the 8 days in which the reservoir solution was in place and substantial impact for a further 3 weeks. No additional insulin manual adjustment was given during this period. PMID:26691655

  17. Closed-Loop Neuroprosthesis for Reach-to-Grasp Assistance: Combining Adaptive Multi-channel Neuromuscular Stimulation with a Multi-joint Arm Exoskeleton.

    PubMed

    Grimm, Florian; Gharabaghi, Alireza

    2016-01-01

    Stroke patients with severe motor deficits cannot execute task-oriented rehabilitation exercises with their affected upper extremity. Advanced rehabilitation technology may support them in performing such reach-to-grasp movements. The challenge is, however, to provide assistance as needed, while maintaining the participants' commitment during the exercises. In this feasibility study, we introduced a closed-loop neuroprosthesis for reach-to-grasp assistance which combines adaptive multi-channel neuromuscular stimulation with a multi-joint arm exoskeleton. Eighteen severely affected chronic stroke patients were assisted by a gravity-compensating, seven-degree-of-freedom exoskeleton which was attached to the paretic arm for performing reach-to-grasp exercises resembling activities of daily living in a virtual environment. During the exercises, adaptive electrical stimulation was applied to seven different muscles of the upper extremity in a performance-dependent way to enhance the task-oriented movement trajectory. The stimulation intensity was individualized for each targeted muscle and remained subthreshold, i.e., induced no overt support. Closed-loop neuromuscular stimulation could be well integrated into the exoskeleton-based training, and increased the task-related range of motion (p = 0.0004) and movement velocity (p = 0.015), while preserving accuracy. The highest relative stimulation intensity was required to facilitate the grasping function. The facilitated range of motion correlated with the upper extremity Fugl-Meyer Assessment score of the patients (p = 0.028). Combining adaptive multi-channel neuromuscular stimulation with antigravity assistance amplifies the residual motor capabilities of severely affected stroke patients during rehabilitation exercises and may thus provide a customized training environment for patient-tailored support while preserving the participants' engagement. PMID:27445658

  18. Closed-Loop Neuroprosthesis for Reach-to-Grasp Assistance: Combining Adaptive Multi-channel Neuromuscular Stimulation with a Multi-joint Arm Exoskeleton

    PubMed Central

    Grimm, Florian; Gharabaghi, Alireza

    2016-01-01

    Stroke patients with severe motor deficits cannot execute task-oriented rehabilitation exercises with their affected upper extremity. Advanced rehabilitation technology may support them in performing such reach-to-grasp movements. The challenge is, however, to provide assistance as needed, while maintaining the participants' commitment during the exercises. In this feasibility study, we introduced a closed-loop neuroprosthesis for reach-to-grasp assistance which combines adaptive multi-channel neuromuscular stimulation with a multi-joint arm exoskeleton. Eighteen severely affected chronic stroke patients were assisted by a gravity-compensating, seven-degree-of-freedom exoskeleton which was attached to the paretic arm for performing reach-to-grasp exercises resembling activities of daily living in a virtual environment. During the exercises, adaptive electrical stimulation was applied to seven different muscles of the upper extremity in a performance-dependent way to enhance the task-oriented movement trajectory. The stimulation intensity was individualized for each targeted muscle and remained subthreshold, i.e., induced no overt support. Closed-loop neuromuscular stimulation could be well integrated into the exoskeleton-based training, and increased the task-related range of motion (p = 0.0004) and movement velocity (p = 0.015), while preserving accuracy. The highest relative stimulation intensity was required to facilitate the grasping function. The facilitated range of motion correlated with the upper extremity Fugl-Meyer Assessment score of the patients (p = 0.028). Combining adaptive multi-channel neuromuscular stimulation with antigravity assistance amplifies the residual motor capabilities of severely affected stroke patients during rehabilitation exercises and may thus provide a customized training environment for patient-tailored support while preserving the participants' engagement. PMID:27445658

  19. Closed-Loop Neuroprosthesis for Reach-to-Grasp Assistance: Combining Adaptive Multi-channel Neuromuscular Stimulation with a Multi-joint Arm Exoskeleton.

    PubMed

    Grimm, Florian; Gharabaghi, Alireza

    2016-01-01

    Stroke patients with severe motor deficits cannot execute task-oriented rehabilitation exercises with their affected upper extremity. Advanced rehabilitation technology may support them in performing such reach-to-grasp movements. The challenge is, however, to provide assistance as needed, while maintaining the participants' commitment during the exercises. In this feasibility study, we introduced a closed-loop neuroprosthesis for reach-to-grasp assistance which combines adaptive multi-channel neuromuscular stimulation with a multi-joint arm exoskeleton. Eighteen severely affected chronic stroke patients were assisted by a gravity-compensating, seven-degree-of-freedom exoskeleton which was attached to the paretic arm for performing reach-to-grasp exercises resembling activities of daily living in a virtual environment. During the exercises, adaptive electrical stimulation was applied to seven different muscles of the upper extremity in a performance-dependent way to enhance the task-oriented movement trajectory. The stimulation intensity was individualized for each targeted muscle and remained subthreshold, i.e., induced no overt support. Closed-loop neuromuscular stimulation could be well integrated into the exoskeleton-based training, and increased the task-related range of motion (p = 0.0004) and movement velocity (p = 0.015), while preserving accuracy. The highest relative stimulation intensity was required to facilitate the grasping function. The facilitated range of motion correlated with the upper extremity Fugl-Meyer Assessment score of the patients (p = 0.028). Combining adaptive multi-channel neuromuscular stimulation with antigravity assistance amplifies the residual motor capabilities of severely affected stroke patients during rehabilitation exercises and may thus provide a customized training environment for patient-tailored support while preserving the participants' engagement.

  20. Direct Optical Ice Sensing and Closed-Loop Controller Design for Active De-icing of Wind Turbines Using Distributed Heating

    NASA Astrophysics Data System (ADS)

    Shajiee, Shervin

    Ice accumulation on wind turbines operating in cold regions reduces power generation by degrading aerodynamic efficiency and causes mass imbalance and fatigue loads on the blades. Due to blade rotation and variation of the pitch angle, different locations on the blade experience large variations of Reynolds number, Nusselt number, heat loss, and non-uniform ice distribution. Hence, applying different amounts of heat flux in different blade locations can provide more effective de-icing for the same total power consumption. This large variation of required heat flux motivates using distributed resistive heating, with the capability of locally adjusting thermal power as a function of location on the blade. The main contributions of this research are developing the experimental feasibility of direct ice sensing using an optical sensing technique as well as development of a computational framework for implementation of closed-loop localized active de-icing using distributed sensing. A script-base module was developed in a commercial finite-element software (ANSYS) which provides the capability of (i) Closed-loop de-icing simulations for a distributed network of sensors and actuators, (ii) investigating different closed-loop thermal control schemes and their de-icing efficiency (iii) optimizing thermal actuation for a distributed resistive heating, and (iv) analyzing different faulty scenarios for sensors and thermal actuators under known faults in the network. Different surrogate models were used to enhance the computational efficiency of this approach. The results showed that optimal value of control parameters in a distributed network of heaters depends on convective heat transfer characteristics, layout of heaters and type of closed-loop controller scheme used for thermal actuation. Furthermore, It was shown that closed-loop control provides much faster de-icing than the open-loop constant heat flux thermal actuation. It was observed both experimentally and

  1. Model-based rational feedback controller design for closed-loop deep brain stimulation of Parkinson's disease

    NASA Astrophysics Data System (ADS)

    Gorzelic, P.; Schiff, S. J.; Sinha, A.

    2013-04-01

    Objective. To explore the use of classical feedback control methods to achieve an improved deep brain stimulation (DBS) algorithm for application to Parkinson's disease (PD). Approach. A computational model of PD dynamics was employed to develop model-based rational feedback controller design. The restoration of thalamocortical relay capabilities to patients suffering from PD is formulated as a feedback control problem with the DBS waveform serving as the control input. Two high-level control strategies are tested: one that is driven by an online estimate of thalamic reliability, and another that acts to eliminate substantial decreases in the inhibition from the globus pallidus interna (GPi) to the thalamus. Control laws inspired by traditional proportional-integral-derivative (PID) methodology are prescribed for each strategy and simulated on this computational model of the basal ganglia network. Main Results. For control based upon thalamic reliability, a strategy of frequency proportional control with proportional bias delivered the optimal control achieved for a given energy expenditure. In comparison, control based upon synaptic inhibitory output from the GPi performed very well in comparison with those of reliability-based control, with considerable further reduction in energy expenditure relative to that of open-loop DBS. The best controller performance was amplitude proportional with derivative control and integral bias, which is full PID control. We demonstrated how optimizing the three components of PID control is feasible in this setting, although the complexity of these optimization functions argues for adaptive methods in implementation. Significance. Our findings point to the potential value of model-based rational design of feedback controllers for Parkinson's disease.

  2. Closed-loop optogenetic control of thalamus as a new tool to interrupt seizures after cortical injury

    PubMed Central

    Paz, Jeanne T.; Davidson, Thomas J.; Frechette, Eric S.; Delord, Bruno; Parada, Isabel; Peng, Kathy; Deisseroth, Karl; Huguenard, John R.

    2013-01-01

    Cerebrocortical injuries, such as stroke, are a major source of disability. Maladaptive consequences can result from post-injury local reorganization of cortical circuits. For example, epilepsy is a common sequela of cortical stroke, yet mechanisms responsible for seizures following cortical injuries remain unknown. In addition to local reorganization, long-range, extra-cortical connections might be critical for seizure maintenance. Here we report in rats the first evidence that the thalamus – a structure remote from but connected to the injured cortex – is required to maintain cortical seizures. Thalamocortical neurons connected to the injured epileptic cortex undergo changes in HCN channel expression and become hyperexcitable. Targeting these neurons with a closed-loop optogenetic strategy demonstrates that reducing their activity in real-time is sufficient to immediately interrupt electrographic and behavioral seizures. This approach is of therapeutic interest for intractable epilepsy, since it spares cortical function between seizures, in contrast to existing treatments such as surgical lesioning or drugs. PMID:23143518

  3. Closed-loop feedback control and bifurcation analysis of epileptiform activity via optogenetic stimulation in a mathematical model of human cortex

    NASA Astrophysics Data System (ADS)

    Selvaraj, Prashanth; Sleigh, Jamie W.; Kirsch, Heidi E.; Szeri, Andrew J.

    2016-01-01

    Optogenetics provides a method of neuron stimulation that has high spatial, temporal, and cell-type specificity. Here we present a model of optogenetic feedback control that targets the inhibitory population, which expresses light-sensitive channelrhodopsin-2 channels, in a mean-field model of undifferentiated cortex that is driven to seizures. The inhibitory population is illuminated with an intensity that is a function of electrode measurements obtained via the cortical model. We test the efficacy of this control method on seizurelike activity observed in two parameter spaces of the cortical model that most closely correspond to seizures observed in patients. We also compare the effect of closed-loop and open-loop control on seizurelike activity using a less-complicated ordinary differential equation model of the undifferentiated cortex in parameter space. Seizurelike activity is successfully suppressed in both parameter planes using optimal illumination intensities less likely to have adverse effects on cortical tissue.

  4. Closed loop performance of a brushless dc motor powered electromechanical actuator for flight control applications. [computerized simulation for Shuttle Orbiter applications

    NASA Technical Reports Server (NTRS)

    Demerdash, N. A.; Nehl, T. W.

    1980-01-01

    A comprehensive digital model for the analysis and possible optimization of the closed loop dynamic (instantaneous) performance of a power conditioner fed, brushless dc motor powered, electromechanical actuator system (EMA) is presented. This model was developed for the simulation of the dynamic performance of an actual prototype EMA built for NASA-JSC as a possible alternative to hydraulic actuators for consideration in Space Shuttle Orbiter applications. Excellent correlation was achieved between numerical model simulation and experimental test results obtained from the actual hardware. These results include: various current and voltage waveforms in the machine-power conditioner (MPC) unit, flap position as well as other control loop variables in response to step commands of change of flap position. These results with consequent conclusions are detailed in the paper.

  5. Restoration of motor function following spinal cord injury via optimal control of intraspinal microstimulation: toward a next generation closed-loop neural prosthesis

    PubMed Central

    Grahn, Peter J.; Mallory, Grant W.; Berry, B. Michael; Hachmann, Jan T.; Lobel, Darlene A.; Lujan, J. Luis

    2014-01-01

    Movement is planned and coordinated by the brain and carried out by contracting muscles acting on specific joints. Motor commands initiated in the brain travel through descending pathways in the spinal cord to effector motor neurons before reaching target muscles. Damage to these pathways by spinal cord injury (SCI) can result in paralysis below the injury level. However, the planning and coordination centers of the brain, as well as peripheral nerves and the muscles that they act upon, remain functional. Neuroprosthetic devices can restore motor function following SCI by direct electrical stimulation of the neuromuscular system. Unfortunately, conventional neuroprosthetic techniques are limited by a myriad of factors that include, but are not limited to, a lack of characterization of non-linear input/output system dynamics, mechanical coupling, limited number of degrees of freedom, high power consumption, large device size, and rapid onset of muscle fatigue. Wireless multi-channel closed-loop neuroprostheses that integrate command signals from the brain with sensor-based feedback from the environment and the system's state offer the possibility of increasing device performance, ultimately improving quality of life for people with SCI. In this manuscript, we review neuroprosthetic technology for improving functional restoration following SCI and describe brain-machine interfaces suitable for control of neuroprosthetic systems with multiple degrees of freedom. Additionally, we discuss novel stimulation paradigms that can improve synergy with higher planning centers and improve fatigue-resistant activation of paralyzed muscles. In the near future, integration of these technologies will provide SCI survivors with versatile closed-loop neuroprosthetic systems for restoring function to paralyzed muscles. PMID:25278830

  6. Dynamic Modeling and Control of Nuclear Reactors Coupled to Closed-Loop Brayton Cycle Systems using SIMULINK™

    NASA Astrophysics Data System (ADS)

    Wright, Steven A.; Sanchez, Travis

    2005-02-01

    The operation of space reactors for both in-space and planetary operations will require unprecedented levels of autonomy and control. Development of these autonomous control systems will require dynamic system models, effective control methodologies, and autonomous control logic. This paper briefly describes the results of reactor, power-conversion, and control models that are implemented in SIMULINK™ (Simulink, 2004). SIMULINK™ is a development environment packaged with MatLab™ (MatLab, 2004) that allows the creation of dynamic state flow models. Simulation modules for liquid metal, gas cooled reactors, and electrically heated systems have been developed, as have modules for dynamic power-conversion components such as, ducting, heat exchangers, turbines, compressors, permanent magnet alternators, and load resistors. Various control modules for the reactor and the power-conversion shaft speed have also been developed and simulated. The modules are compiled into libraries and can be easily connected in different ways to explore the operational space of a number of potential reactor, power-conversion system configurations, and control approaches. The modularity and variability of these SIMULINK™ models provides a way to simulate a variety of complete power generation systems. To date, both Liquid Metal Reactors (LMR), Gas Cooled Reactors (GCR), and electric heaters that are coupled to gas-dynamics systems and thermoelectric systems have been simulated and are used to understand the behavior of these systems. Current efforts are focused on improving the fidelity of the existing SIMULINK™ modules, extending them to include isotopic heaters, heat pipes, Stirling engines, and on developing state flow logic to provide intelligent autonomy. The simulation code is called RPC-SIM (Reactor Power and Control-Simulator).

  7. Closed Loop System Identification with Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Whorton, Mark S.

    2004-01-01

    High performance control design for a flexible space structure is challenging since high fidelity plant models are di.cult to obtain a priori. Uncertainty in the control design models typically require a very robust, low performance control design which must be tuned on-orbit to achieve the required performance. Closed loop system identi.cation is often required to obtain a multivariable open loop plant model based on closed-loop response data. In order to provide an accurate initial plant model to guarantee convergence for standard local optimization methods, this paper presents a global parameter optimization method using genetic algorithms. A minimal representation of the state space dynamics is employed to mitigate the non-uniqueness and over-parameterization of general state space realizations. This control-relevant system identi.cation procedure stresses the joint nature of the system identi.cation and control design problem by seeking to obtain a model that minimizes the di.erence between the predicted and actual closed-loop performance.

  8. Closed-loop pulsed helium ionization detector

    DOEpatents

    Ramsey, Roswitha S.; Todd, Richard A.

    1987-01-01

    A helium ionization detector for gas chromatography is operated in a constant current, pulse-modulated mode by configuring the detector, electrometer and a high voltage pulser in a closed-loop control system. The detector current is maintained at a fixed level by varying the frequency of fixed-width, high-voltage bias pulses applied to the detector. An output signal proportional to the pulse frequency is produced which is indicative of the charge collected for a detected species.

  9. Similarity Metrics for Closed Loop Dynamic Systems

    NASA Technical Reports Server (NTRS)

    Whorton, Mark S.; Yang, Lee C.; Bedrossian, Naz; Hall, Robert A.

    2008-01-01

    To what extent and in what ways can two closed-loop dynamic systems be said to be "similar?" This question arises in a wide range of dynamic systems modeling and control system design applications. For example, bounds on error models are fundamental to the controller optimization with modern control design methods. Metrics such as the structured singular value are direct measures of the degree to which properties such as stability or performance are maintained in the presence of specified uncertainties or variations in the plant model. Similarly, controls-related areas such as system identification, model reduction, and experimental model validation employ measures of similarity between multiple realizations of a dynamic system. Each area has its tools and approaches, with each tool more or less suited for one application or the other. Similarity in the context of closed-loop model validation via flight test is subtly different from error measures in the typical controls oriented application. Whereas similarity in a robust control context relates to plant variation and the attendant affect on stability and performance, in this context similarity metrics are sought that assess the relevance of a dynamic system test for the purpose of validating the stability and performance of a "similar" dynamic system. Similarity in the context of system identification is much more relevant than are robust control analogies in that errors between one dynamic system (the test article) and another (the nominal "design" model) are sought for the purpose of bounding the validity of a model for control design and analysis. Yet system identification typically involves open-loop plant models which are independent of the control system (with the exception of limited developments in closed-loop system identification which is nonetheless focused on obtaining open-loop plant models from closed-loop data). Moreover the objectives of system identification are not the same as a flight test and

  10. The Fourier-Kelvin Stellar Interferometer (FKSI) Nulling Testbed II: Closed-loop Path Length Metrology And Control Subsystem

    NASA Technical Reports Server (NTRS)

    Frey, B. J.; Barry, R. K.; Danchi, W. C.; Hyde, T. T.; Lee, K. Y.; Martino, A. J.; Zuray, M. S.

    2006-01-01

    The Fourier-Kelvin Stellar Interferometer (FKSI) is a mission concept for an imaging and nulling interferometer in the near to mid-infrared spectral region (3-8 microns), and will be a scientific and technological pathfinder for upcoming missions including TPF-I/DARWIN, SPECS, and SPIRIT. At NASA's Goddard Space Flight Center, we have constructed a symmetric Mach-Zehnder nulling testbed to demonstrate techniques and algorithms that can be used to establish and maintain the 10(exp 4) null depth that will be required for such a mission. Among the challenges inherent in such a system is the ability to acquire and track the null fringe to the desired depth for timescales on the order of hours in a laboratory environment. In addition, it is desirable to achieve this stability without using conventional dithering techniques. We describe recent testbed metrology and control system developments necessary to achieve these goals and present our preliminary results.

  11. Dynamics of the Coupled Human-climate System Resulting from Closed-loop Control of Solar Geoengineering

    SciTech Connect

    MacMartin, Douglas; Kravitz, Benjamin S.; Keith, David; Jarvis, Andrew

    2014-07-08

    If solar radiation management (SRM) were ever implemented, feedback of the observed climate state might be used to adjust the radiative forcing of SRM, in order to compensate for uncertainty in either the forcing or the climate response; this would also compensate for unexpected changes in the system, e.g. a nonlinear change in climate sensitivity. This feedback creates an emergent coupled human-climate system, with entirely new dynamics. In addition to the intended response to greenhouse-gas induced changes, the use of feedback would also result in a geoengineering response to natural climate variability. We use a simple box-diffusion dynamic model to understand how changing feedback-control parameters and time delay affect the behavior of this coupled natural-human system, and verify these predictions using the HadCM3L general circulation model. In particular, some amplification of natural variability is unavoidable; any time delay (e.g., to average out natural variability, or due to decision-making) exacerbates this amplification, with oscillatory behavior possible if there is a desire for rapid correction (high feedback gain), but a delayed response needed for decision making. Conversely, the need for feedback to compensate for uncertainty, combined with a desire to avoid excessive amplification, results in a limit on how rapidly SRM could respond to uncertain changes.

  12. Dynamics of the coupled human-climate system resulting from closed-loop control of solar geoengineering

    NASA Astrophysics Data System (ADS)

    MacMartin, Douglas G.; Kravitz, Ben; Keith, David W.; Jarvis, Andrew

    2014-07-01

    If solar radiation management (SRM) were ever implemented, feedback of the observed climate state might be used to adjust the radiative forcing of SRM in order to compensate for uncertainty in either the forcing or the climate response. Feedback might also compensate for unexpected changes in the system, e.g. a nonlinear change in climate sensitivity. However, in addition to the intended response to greenhouse-gas induced changes, the use of feedback would also result in a geoengineering response to natural climate variability. We use a box-diffusion dynamic model of the climate system to understand how changing the properties of the feedback control affect the emergent dynamics of this coupled human-climate system, and evaluate these predictions using the HadCM3L general circulation model. In particular, some amplification of natural variability is unavoidable; any time delay (e.g., to average out natural variability, or due to decision-making) exacerbates this amplification, with oscillatory behavior possible if there is a desire for rapid correction (high feedback gain). This is a challenge for policy as a delayed response is needed for decision making. Conversely, the need for feedback to compensate for uncertainty, combined with a desire to avoid excessive amplification of natural variability, results in a limit on how rapidly SRM could respond to changes in the observed state of the climate system.

  13. Closed loop control of lactate concentration in mammalian cell culture by Raman spectroscopy leads to improved cell density, viability, and biopharmaceutical protein production.

    PubMed

    Matthews, Thomas E; Berry, Brandon N; Smelko, John; Moretto, Justin; Moore, Brandon; Wiltberger, Kelly

    2016-11-01

    Accumulation of lactate in mammalian cell culture often negatively impacts culture performance, impeding production of therapeutic proteins. Many efforts have been made to limit the accumulation of lactate in cell culture. Here, we describe a closed loop control scheme based on online spectroscopic measurements of glucose and lactate concentrations. A Raman spectroscopy probe was used to monitor a fed-batch mammalian cell culture and predict glucose and lactate concentrations via multivariate calibration using partial least squares regression (PLS). The PLS models had a root mean squared error of prediction (RMSEP) of 0.27 g/L for glucose and 0.20 g/L for lactate. All glucose feeding was controlled by the Raman PLS model predictions. Glucose was automatically fed when lactate levels were beneath a setpoint (either 4.0 or 2.5 g/L) and glucose was below its own setpoint (0.5 g/L). This control scheme was successful in maintaining lactate levels at an arbitrary setpoint throughout the culture, as compared to the eventual accumulate of lactate to 8.0 g/L in the historical process. Automated control of lactate by restricted glucose feeding led to improvements in culture duration, viability, productivity, and robustness. Culture duration was extended from 11 to 13 days, and harvest titer increased 85% over the historical process. Biotechnol. Bioeng. 2016;113: 2416-2424. © 2016 Wiley Periodicals, Inc.

  14. A Closed-Loop Optimal Neural-Network Controller to Optimize Rotorcraft Aeromechanical Behaviour. Volume 2; Output from Two Sample Cases

    NASA Technical Reports Server (NTRS)

    Leyland, Jane Anne

    2001-01-01

    A closed-loop optimal neural-network controller technique was developed to optimize rotorcraft aeromechanical behaviour. This technique utilities a neural-network scheme to provide a general non-linear model of the rotorcraft. A modem constrained optimisation method is used to determine and update the constants in the neural-network plant model as well as to determine the optimal control vector. Current data is read, weighted, and added to a sliding data window. When the specified maximum number of data sets allowed in the data window is exceeded, the oldest data set is and the remaining data sets are re-weighted. This procedure provides at least four additional degrees-of-freedom in addition to the size and geometry of the neural-network itself with which to optimize the overall operation of the controller. These additional degrees-of-freedom are: 1. the maximum length of the sliding data window, 2. the frequency of neural-network updates, 3. the weighting of the individual data sets within the sliding window, and 4. the maximum number of optimisation iterations used for the neural-network updates.

  15. System identification from closed-loop data with known output feedback dynamics

    NASA Technical Reports Server (NTRS)

    Phan, Minh; Juang, Jer-Nan; Horta, Lucas G.; Longman, Richard W.

    1992-01-01

    This paper presents a procedure to identify the open loop systems when it is operating under closed loop conditions. First, closed loop excitation data are used to compute the system open loop and closed loop Markov parameters. The Markov parameters, which are the pulse response samples, are then used to compute a state space representation of the open loop system. Two closed loop configurations are considered in this paper. The closed loop system can have either a linear output feedback controller or a dynamic output feedback controller. Numerical examples are provided to illustrate the proposed closed loop identification method.

  16. Closed-loop control of functional electrical stimulation-assisted arm-free standing in individuals with spinal cord injury: a feasibility study.

    PubMed

    Vette, Albert H; Masani, Kei; Kim, Joon-Young; Popovic, Milos R

    2009-01-01

    Objectives.  The purpose of the present study was to show that the design of a neuroprosthesis for unsupported (arm-free) standing is feasible. We review findings suggesting that a closed-loop controlled functional electrical stimulation (FES) system should be able to facilitate arm-free quiet standing in individuals with spinal cord injury (SCI). Particularly, this manuscript identifies: 1) a control strategy that accurately mimics the strategy healthy individuals apply to regulate the ankle joint position during quiet standing and 2) the degrees of freedom (DOF) of the redundant, closed-chain dynamic system of bipedal stance that have to be regulated to facilitate stable standing. Methods and Results.  First, we utilized a single DOF model of quiet standing (inverted pendulum) to analytically identify a proportional and derivative (PD) feedback controller that regulates the ankle torque in a physiologic manner despite a long sensory-motor time delay. Second, these theoretic results were experimentally validated by implementing the proposed PD controller to stabilize an individual with SCI during quiet standing. Third, a realistic, three-dimensional dynamic model of quiet standing with 12 DOF was used to determine the optimal combination of the minimum number of DOF that need to be regulated with the PD controller to ensure stability during quiet standing. Finally, perturbation simulations confirmed that the kinematics of this system are similar to those of healthy individuals during perturbed standing. Conclusions.  The presented results suggest that stable standing can be achieved in individuals with SCI by controlling only six DOF in the lower limbs using FES, and that a PD controller actuating these DOF can stabilize the system despite a long sensory-motor time delay. Our finding that not all DOF in the lower limbs need to be regulated is particularly relevant for individuals with complete SCI, because some of their muscles may be denervated or difficult

  17. Closed loop steam cooled airfoil

    DOEpatents

    Widrig, Scott M.; Rudolph, Ronald J.; Wagner, Gregg P.

    2006-04-18

    An airfoil, a method of manufacturing an airfoil, and a system for cooling an airfoil is provided. The cooling system can be used with an airfoil located in the first stages of a combustion turbine within a combined cycle power generation plant and involves flowing closed loop steam through a pin array set within an airfoil. The airfoil can comprise a cavity having a cooling chamber bounded by an interior wall and an exterior wall so that steam can enter the cavity, pass through the pin array, and then return to the cavity to thereby cool the airfoil. The method of manufacturing an airfoil can include a type of lost wax investment casting process in which a pin array is cast into an airfoil to form a cooling chamber.

  18. A mechanical chest compressor closed-loop controller with an effective trade-off between blood flow improvement and ribs fracture reduction.

    PubMed

    Zhang, Guang; Wu, Taihu; Song, Zhenxing; Wang, Haitao; Lu, Hengzhi; Wang, Yalin; Wang, Dan; Chen, Feng

    2015-06-01

    Chest compression (CC) is a significant emergency medical procedure for maintaining circulation during cardiac arrest. Although CC produces the necessary blood flow for patients with heart arrest, improperly deep CC will contribute significantly to the risk of chest injury. In this paper, an optimal CC closed-loop controller for a mechanical chest compressor (OCC-MCC) was developed to provide an effective trade-off between the benefit of improved blood perfusion and the risk of ribs fracture. The trade-off performance of the OCC-MCC during real automatic mechanical CCs was evaluated by comparing the OCC-MCC and the traditional mechanical CC method (TMCM) with a human circulation hardware model based on hardware simulations. A benefit factor (BF), risk factor (RF) and benefit versus risk index (BRI) were introduced in this paper for the comprehensive evaluation of risk and benefit. The OCC-MCC was developed using the LabVIEW control platform and the mechanical chest compressor (MCC) controller. PID control is also employed by MCC for effective compression depth regulation. In addition, the physiological parameters model for MCC was built based on a digital signal processor for hardware simulations. A comparison between the OCC-MCC and TMCM was then performed based on the simulation test platform which is composed of the MCC, LabVIEW control platform, physiological parameters model for MCC and the manikin. Compared with the TMCM, the OCC-MCC obtained a better trade-off and a higher BRI in seven out of a total of nine cases. With a higher mean value of cardiac output (1.35 L/min) and partial pressure of end-tidal CO2 (15.7 mmHg), the OCC-MCC obtained a larger blood flow and higher BF than TMCM (5.19 vs. 3.41) in six out of a total of nine cases. Although it is relatively difficult to maintain a stable CC depth when the chest is stiff, the OCC-MCC is still superior to the TMCM for performing safe and effective CC during CPR. The OCC-MCC is superior to the TMCM in

  19. Generalized modal analysis for closed-loop piezoelectric devices

    NASA Astrophysics Data System (ADS)

    Giraud-Audine, Christophe; Giraud, Frédéric; Amberg, Michel; Lemaire-Semail, Betty

    2015-08-01

    Stress in a piezoelectric material can be controlled by imposing an electrical field. Thanks to feedback, this electrical field can be a function of some strain-related measurement so as to confer on the piezoelectric device a closed-loop macroscopic behaviour. In this paper we address the modelling of such a system by extending the modal decomposition methods to account for the closed loop. To do so, the boundary conditions are modified to include the electrical feedback circuit, hence allowing a closed-loop modal analysis. A case study is used to illustrate the theory and to validate it. The main advantage of the method is that design issues such as the coupling factor of the device and closed-loop stability are simultaneously captured.

  20. Closed-Loop, Open-Source Electrophysiology

    PubMed Central

    Rolston, John D.; Gross, Robert E.; Potter, Steve M.

    2010-01-01

    Multiple extracellular microelectrodes (multi-electrode arrays, or MEAs) effectively record rapidly varying neural signals, and can also be used for electrical stimulation. Multi-electrode recording can serve as artificial output (efferents) from a neural system, while complex spatially and temporally targeted stimulation can serve as artificial input (afferents) to the neuronal network. Multi-unit or local field potential (LFP) recordings can not only be used to control real world artifacts, such as prostheses, computers or robots, but can also trigger or alter subsequent stimulation. Real-time feedback stimulation may serve to modulate or normalize aberrant neural activity, to induce plasticity, or to serve as artificial sensory input. Despite promising closed-loop applications, commercial electrophysiology systems do not yet take advantage of the bidirectional capabilities of multi-electrodes, especially for use in freely moving animals. We addressed this lack of tools for closing the loop with NeuroRighter, an open-source system including recording hardware, stimulation hardware, and control software with a graphical user interface. The integrated system is capable of multi-electrode recording and simultaneous patterned microstimulation (triggered by recordings) with minimal stimulation artifact. The potential applications of closed-loop systems as research tools and clinical treatments are broad; we provide one example where epileptic activity recorded by a multi-electrode probe is used to trigger targeted stimulation, via that probe, to freely moving rodents. PMID:20859448

  1. Closed-loop, open-source electrophysiology.

    PubMed

    Rolston, John D; Gross, Robert E; Potter, Steve M

    2010-01-01

    Multiple extracellular microelectrodes (multi-electrode arrays, or MEAs) effectively record rapidly varying neural signals, and can also be used for electrical stimulation. Multi-electrode recording can serve as artificial output (efferents) from a neural system, while complex spatially and temporally targeted stimulation can serve as artificial input (afferents) to the neuronal network. Multi-unit or local field potential (LFP) recordings can not only be used to control real world artifacts, such as prostheses, computers or robots, but can also trigger or alter subsequent stimulation. Real-time feedback stimulation may serve to modulate or normalize aberrant neural activity, to induce plasticity, or to serve as artificial sensory input. Despite promising closed-loop applications, commercial electrophysiology systems do not yet take advantage of the bidirectional capabilities of multi-electrodes, especially for use in freely moving animals. We addressed this lack of tools for closing the loop with NeuroRighter, an open-source system including recording hardware, stimulation hardware, and control software with a graphical user interface. The integrated system is capable of multi-electrode recording and simultaneous patterned microstimulation (triggered by recordings) with minimal stimulation artifact. The potential applications of closed-loop systems as research tools and clinical treatments are broad; we provide one example where epileptic activity recorded by a multi-electrode probe is used to trigger targeted stimulation, via that probe, to freely moving rodents. PMID:20859448

  2. Monitoring Digital Closed-Loop Feedback Systems

    NASA Technical Reports Server (NTRS)

    Katz, Richard; Kleyner, Igor

    2011-01-01

    A technique of monitoring digital closed-loop feedback systems has been conceived. The basic idea is to obtain information on the performances of closed-loop feedback circuits in such systems to aid in the determination of the functionality and integrity of the circuits and of performance margins. The need for this technique arises as follows: Some modern digital systems include feedback circuits that enable other circuits to perform with precision and are tolerant of changes in environment and the device s parameters. For example, in a precision timing circuit, it is desirable to make the circuit insensitive to variability as a result of the manufacture of circuit components and to the effects of temperature, voltage, radiation, and aging. However, such a design can also result in masking the indications of damaged and/or deteriorating components. The present technique incorporates test circuitry and associated engineering-telemetry circuitry into an embedded system to monitor the closed-loop feedback circuits, using spare gates that are often available in field programmable gate arrays (FPGAs). This technique enables a test engineer to determine the amount of performance margin in the system, detect out of family circuit performance, and determine one or more trend(s) in the performance of the system. In one system to which the technique has been applied, an ultra-stable oscillator is used as a reference for internal adjustment of 12 time-to-digital converters (TDCs). The feedback circuit produces a pulse-width-modulated signal that is fed as a control input into an amplifier, which controls the circuit s operating voltage. If the circuit s gates are determined to be operating too slowly or rapidly when their timing is compared with that of the reference signal, then the pulse width increases or decreases, respectively, thereby commanding the amplifier to increase or reduce, respectively, its output level, and "adjust" the speed of the circuits. The nominal

  3. Adaptive control of robotic manipulators

    NASA Technical Reports Server (NTRS)

    Seraji, H.

    1987-01-01

    The author presents a novel approach to adaptive control of manipulators to achieve trajectory tracking by the joint angles. The central concept in this approach is the utilization of the manipulator inverse as a feedforward controller. The desired trajectory is applied as an input to the feedforward controller which behaves as the inverse of the manipulator at any operating point; the controller output is used as the driving torque for the manipulator. The controller gains are then updated by an adaptation algorithm derived from MRAC (model reference adaptive control) theory to cope with variations in the manipulator inverse due to changes of the operating point. An adaptive feedback controller and an auxiliary signal are also used to enhance closed-loop stability and to achieve faster adaptation. The proposed control scheme is computationally fast and does not require a priori knowledge of the complex dynamic model or the parameter values of the manipulator or the payload.

  4. Closed loop electrostatic levitation system

    NASA Technical Reports Server (NTRS)

    Rhim, W. K.; Saffren, M. M.; Elleman, D. D. (Inventor)

    1985-01-01

    An electrostatic levitation system is described, which can closely control the position of objects of appreciable size. A plurality of electrodes surround the desired position of an electrostatically charged object, the position of the objects is monitored, and the voltages applied to the electrodes are varied to hold the object at a desired position. In one system, the object is suspended above a plate-like electrode which has a concave upper face to urge the object toward the vertical axis of the curved plate. An upper electrode that is also curved can be positioned above the object, to assure curvature of the field at any height above the lower plate. In another system, four spherical electrodes are positioned at the points of a tetrahedron, and the voltages applied to the electrodes are varied in accordance with the object position as detected by two sensors.

  5. Criticality of Adaptive Control Dynamics

    NASA Astrophysics Data System (ADS)

    Patzelt, Felix; Pawelzik, Klaus

    2011-12-01

    We show, that stabilization of a dynamical system can annihilate observable information about its structure. This mechanism induces critical points as attractors in locally adaptive control. It also reveals, that previously reported criticality in simple controllers is caused by adaptation and not by other controller details. We apply these results to a real-system example: human balancing behavior. A model of predictive adaptive closed-loop control subject to some realistic constraints is introduced and shown to reproduce experimental observations in unprecedented detail. Our results suggests, that observed error distributions in between the Lévy and Gaussian regimes may reflect a nearly optimal compromise between the elimination of random local trends and rare large errors.

  6. Assessing the effectiveness of 3 months day and night home closed-loop insulin delivery in adults with suboptimally controlled type 1 diabetes: a randomised crossover study protocol

    PubMed Central

    Leelarathna, Lalantha; Dellweg, Sibylle; Mader, Julia K; Barnard, Katharine; Benesch, Carsten; Ellmerer, Martin; Heinemann, Lutz; Kojzar, Harald; Thabit, Hood; Wilinska, Malgorzata E; Wysocki, Tim; Pieber, Thomas R; Arnolds, Sabine; Evans, Mark L; Hovorka, Roman

    2014-01-01

    Introduction Despite therapeutic advances, many people with type 1 diabetes are still unable to achieve optimal glycaemic control, limited by the occurrence of hypoglycaemia. The objective of the present study is to determine the effectiveness of day and night home closed-loop over the medium term compared with sensor-augmented pump therapy in adults with type 1 diabetes and suboptimal glycaemic control. Methods and analysis The study will adopt an open label, three-centre, multinational, randomised, two-period crossover study design comparing automated closed-loop glucose control with sensor augmented insulin pump therapy. The study will aim for 30 completed participants. Eligible participants will be adults (≥18 years) with type 1 diabetes treated with insulin pump therapy and suboptimal glycaemic control (glycated haemoglobin (HbA1c) ≥7.5% (58 mmol/mmol) and ≤10% (86 mmol/mmol)). Following a 4-week optimisation period, participants will undergo a 3-month use of automated closed-loop insulin delivery and sensor-augmented pump therapy, with a 4–6 week washout period in between. The order of the interventions will be random. All analysis will be conducted on an intention to treat basis. The primary outcome is the time spent in the target glucose range from 3.9 to 10.0 mmol/L based on continuous glucose monitoring levels during the 3 months free living phase. Secondary outcomes include HbA1c changes; mean glucose and time spent above and below target glucose levels. Further, participants will be invited at baseline, midpoint and study end to participate in semistructured interviews and complete questionnaires to explore usability and acceptance of the technology, impact on quality of life and fear of hypoglycaemia. Ethics and dissemination Ethical approval has been obtained at all sites. Before screening, all participants will be provided with oral and written information about the trial. The study will be disseminated by peer-review publications

  7. Closed loop models for analyzing engineering requirements for simulators

    NASA Technical Reports Server (NTRS)

    Baron, S.; Muralidharan, R.; Kleinman, D.

    1980-01-01

    A closed loop analytic model, incorporating a model for the human pilot, (namely, the optimal control model) that would allow certain simulation design tradeoffs to be evaluated quantitatively was developed. This model was applied to a realistic flight control problem. The resulting model is used to analyze both overall simulation effects and the effects of individual elements. The results show that, as compared to an ideal continuous simulation, the discrete simulation can result in significant performance and/or workload penalties.

  8. Chaotic satellite attitude control by adaptive approach

    NASA Astrophysics Data System (ADS)

    Wei, Wei; Wang, Jing; Zuo, Min; Liu, Zaiwen; Du, Junping

    2014-06-01

    In this article, chaos control of satellite attitude motion is considered. Adaptive control based on dynamic compensation is utilised to suppress the chaotic behaviour. Control approaches with three control inputs and with only one control input are proposed. Since the adaptive control employed is based on dynamic compensation, faithful model of the system is of no necessity. Sinusoidal disturbance and parameter uncertainties are considered to evaluate the robustness of the closed-loop system. Both of the approaches are confirmed by theoretical and numerical results.

  9. Closed-Loop Optogenetic Intervention in Mice

    PubMed Central

    Oijala, Mikko; Soltesz, Ivan

    2014-01-01

    Optogenetic interventions offer novel ways of probing, in a temporally specific manner, the roles of specific cell types in neuronal network functions of awake, behaving animals. Despite the unique potential for temporally specific optogenetic interventions in disease states, a major hurdle in its broad application to unpredictable brain states in a laboratory setting is constructing a real-time responsive system. We recently created a closed-loop system for stopping spontaneous seizures in chronically epileptic mice using optogenetic intervention. This system performs with very high sensitivity and specificity, and the strategy is relevant not only to epilepsy, but can also be used to react in real time, with optogenetic or other interventions, to diverse brain states. The protocol presented here is highly modular and requires variable time to perform. We describe the basic construction of a complete system, and include our downloadable custom closed-loop detection software which can be employed for this purpose. PMID:23845961

  10. Closed loop adaptive control of a 4.0 gigaHertz reactively steered microstrip array - experimental results

    NASA Astrophysics Data System (ADS)

    Dinger, R. J.

    1983-10-01

    The research described in this report was performed during fiscal year 1983 and was supported by Independent Research and Independent Exploratory Development funding. It is part of a continuing effort to explore novel radio frequency radiating and receiving structures for applications to airborne communications and radar systems.

  11. Central safety factor and β N control on NSTX-U via beam power and plasma boundary shape modification, using TRANSP for closed loop simulations

    SciTech Connect

    Boyer, M. D.; Andre, R.; Gates, D. A.; Gerhardt, S.; Goumiri, I. R.; Menard, J.

    2015-04-24

    The high-performance operational goals of NSTX-U will require development of advanced feedback control algorithms, including control of ßN and the safety factor profile. In this work, a novel approach to simultaneously controlling ßN and the value of the safety factor on the magnetic axis, q0, through manipulation of the plasma boundary shape and total beam power, is proposed. Simulations of the proposed scheme show promising results and motivate future experimental implementation and eventual integration into a more complex current profile control scheme planned to include actuation of individual beam powers, density, and loop voltage. As part of this work, a flexible framework for closed loop simulations within the high-fidelity code TRANSP was developed. The framework, used here to identify control-design-oriented models and to tune and test the proposed controller, exploits many of the predictive capabilities of TRANSP and provides a means for performing control calculations based on user-supplied data (controller matrices, target waveforms, etc.). The flexible framework should enable high-fidelity testing of a variety of control algorithms, thereby reducing the amount of expensive experimental time needed to implement new control algorithms on NSTX-U and other devices.

  12. Closed-loop enhancement of jet mixing with extremum-seeking and physics-based strategies

    NASA Astrophysics Data System (ADS)

    Wu, Z.; Zhou, Y.; Cao, H. L.; Li, W. J.

    2016-06-01

    The closed-loop control of a turbulent round air jet is experimentally investigated based on two unsteady minijets, with a view to enhancing jet mixing. The two minijets are placed at diametrically opposite locations upstream of the nozzle exit. The open-loop control experiments are first performed. Given the mass flow rate ratio C m of the minijets to that of the main jet, the decay rate overline{K} of jet centerline mean velocity exhibits a maximum at the frequency ratio f e/ f 0 ≈ 1.0, where f e and f 0 are the excitation frequency of minijets and the preferred mode frequency of the natural main jet, respectively. An extremum-seeking feedback control has been developed to achieve autonomously the optimal control performance. It has been found that, given C m, this closed-loop control technique may obtain automatically and rapidly the optimal value of f e and the desired or maximum overline{K}, as achieved in the open-loop control. This control technique is robust and adaptable when the Reynolds number and initial excitation frequency are changed separately. A flow-physics-based feedback control strategy has also been investigated, which could achieve the optimal control performance automatically with a shorter convergence time than the extremum-seeking control, not robust though.

  13. Performance of the 0.3-meter transonic cryogenic tunnel with air, nitrogen, and sulfur hexafluoride media under closed loop automatic control

    NASA Technical Reports Server (NTRS)

    Balakrishna, S.; Kilgore, W. Allen

    1995-01-01

    The NASA Langley 0.3-m Transonic Cryogenic Tunnel was modified in 1994, to operate with any one of the three test gas media viz., air, cryogenic nitrogen gas, or sulfur hexafluoride gas. This document provides the initial test results with respect to the tunnel performance and tunnel control, as a part of the commissioning activities on the microcomputer based controller. The tunnel can provide precise and stable control of temperature to less than or equal to +/- 0.3 K in the range 80-320 K in cyro mode or 300-320 K in air/SF6 mode, pressure to +/- 0.01 psia in the range 15-88 psia and Mach number to +/- O.0015 in the range 0.150 to transonic Mach numbers up to 1.000. A new heat exchanger has been included in the tunnel circuit and is performing adequately. The tunnel airfoil testing benefits considerably by precise control of tunnel states and helps in generating high quality aerodynamic test data from the 0.3-m TCT.

  14. Closed-loop approach to thermodynamics

    NASA Astrophysics Data System (ADS)

    Goupil, C.; Ouerdane, H.; Herbert, E.; Benenti, G.; D'Angelo, Y.; Lecoeur, Ph.

    2016-09-01

    We present the closed-loop approach to linear nonequilibrium thermodynamics considering a generic heat engine dissipatively connected to two temperature baths. The system is usually quite generally characterized by two parameters: the output power P and the conversion efficiency η , to which we add a third one, the working frequency ω . We establish that a detailed understanding of the effects of the dissipative coupling on the energy conversion process requires only knowing two quantities: the system's feedback factor β and its open-loop gain A0, which product A0β characterizes the interplay between the efficiency, the output power, and the operating rate of the system. By raising the abstract hermodynamic analysis to a higher level, the feedback loop approach provides a versatile and economical, hence fairly efficient, tool for the study of any conversion engine operation for which a feedback factor can be defined.

  15. Closed Loop Requirements and Analysis Management

    NASA Technical Reports Server (NTRS)

    Lamoreaux, Michael; Verhoef, Brett

    2015-01-01

    Effective systems engineering involves the use of analysis in the derivation of requirements and verification of designs against those requirements. The initial development of requirements often depends on analysis for the technical definition of specific aspects of a product. Following the allocation of system-level requirements to a product's components, the closure of those requirements often involves analytical approaches to verify that the requirement criteria have been satisfied. Meanwhile, changes that occur in between these two processes need to be managed in order to achieve a closed-loop requirement derivation/verification process. Herein are presented concepts for employing emerging Team center capabilities to jointly manage requirements and analysis data such that analytical techniques are utilized to effectively derive and allocate requirements, analyses are consulted and updated during the change evaluation processes, and analyses are leveraged during the design verification process. Recommendations on concept validation case studies are also discussed.

  16. Integrated Evaluation of Closed Loop Air Revitalization System Components

    NASA Technical Reports Server (NTRS)

    Murdock, K.

    2010-01-01

    NASA s vision and mission statements include an emphasis on human exploration of space, which requires environmental control and life support technologies. This Contractor Report (CR) describes the development and evaluation of an Air Revitalization System, modeling and simulation of the components, and integrated hardware testing with the goal of better understanding the inherent capabilities and limitations of this closed loop system. Major components integrated and tested included a 4-Bed Modular Sieve, Mechanical Compressor Engineering Development Unit, Temperature Swing Adsorption Compressor, and a Sabatier Engineering and Development Unit. The requisite methodolgy and technical results are contained in this CR.

  17. Multicenter Closed-Loop Insulin Delivery Study Points to Challenges for Keeping Blood Glucose in a Safe Range by a Control Algorithm in Adults and Adolescents with Type 1 Diabetes from Various Sites

    PubMed Central

    Zisser, Howard; Renard, Eric; Kovatchev, Boris; Cobelli, Claudio; Avogaro, Angelo; Nimri, Revital; Magni, Lalo; Buckingham, Bruce A.; Chase, H. Peter; Doyle, Francis J.; Lum, John; Calhoun, Peter; Kollman, Craig; Dassau, Eyal; Farret, Anne; Place, Jerome; Breton, Marc; Anderson, Stacey M.; Dalla Man, Chiara; Del Favero, Simone; Bruttomesso, Daniela; Filippi, Alessio; Scotton, Rachele; Phillip, Moshe; Atlas, Eran; Muller, Ido; Miller, Shahar; Toffanin, Chiara; Raimondo, Davide Martino; De Nicolao, Giuseppe

    2014-01-01

    Abstract Background: The Control to Range Study was a multinational artificial pancreas study designed to assess the time spent in the hypo- and hyperglycemic ranges in adults and adolescents with type 1 diabetes while under closed-loop control. The controller attempted to keep the glucose ranges between 70 and 180 mg/dL. A set of prespecified metrics was used to measure safety. Research Design and Methods: We studied 53 individuals for approximately 22 h each during clinical research center admissions. Plasma glucose level was measured every 15–30 min (YSI clinical laboratory analyzer instrument [YSI, Inc., Yellow Springs, OH]). During the admission, subjects received three mixed meals (1 g of carbohydrate/kg of body weight; 100 g maximum) with meal announcement and automated insulin dosing by the controller. Results: For adults, the mean of subjects' mean glucose levels was 159 mg/dL, and mean percentage of values 71–180 mg/dL was 66% overall (59% daytime and 82% overnight). For adolescents, the mean of subjects' mean glucose levels was 166 mg/dL, and mean percentage of values in range was 62% overall (53% daytime and 82% overnight). Whereas prespecified criteria for safety were satisfied by both groups, they were met at the individual level in adults only for combined daytime/nighttime and for isolated nighttime. Two adults and six adolescents failed to meet the daytime criterion, largely because of postmeal hyperglycemia, and another adolescent failed to meet the nighttime criterion. Conclusions: The control-to-range system performed as expected: faring better overnight than during the day and performing with variability between patients even after individualization based on patients' prior settings. The system had difficulty preventing postmeal excursions above target range. PMID:25003311

  18. Closed-loop rehabilitation of age-related cognitive disorders.

    PubMed

    Mishra, Jyoti; Gazzaley, Adam

    2014-11-01

    Cognitive deficits are common in older adults, as a result of both the natural aging process and neurodegenerative disease. Although medical advancements have successfully prolonged the human lifespan, the challenge of remediating cognitive aging remains. The authors discuss the current state of cognitive therapeutic interventions and then present the need for development and validation of more powerful neurocognitive therapeutics. They propose that the next generation of interventions be implemented as closed-loop systems that target specific neural processing deficits, incorporate quantitative feedback to the individual and clinician, and are personalized to the individual's neurocognitive capacities using real-time performance-adaptive algorithms. This approach should be multimodal and seamlessly integrate other treatment approaches, including neurofeedback and transcranial electrical stimulation. This novel approach will involve the generation of software that engages the individual in an immersive and enjoyable game-based interface, integrated with advanced biosensing hardware, to maximally harness plasticity and assure adherence. Introducing such next-generation closed-loop neurocognitive therapeutics into the mainstream of our mental health care system will require the combined efforts of clinicians, neuroscientists, bioengineers, software game developers, and industry and policy makers working together to meet the challenges and opportunities of translational neuroscience in the 21st century. PMID:25520029

  19. A translational platform for prototyping closed-loop neuromodulation systems

    PubMed Central

    Afshar, Pedram; Khambhati, Ankit; Stanslaski, Scott; Carlson, David; Jensen, Randy; Linde, Dave; Dani, Siddharth; Lazarewicz, Maciej; Cong, Peng; Giftakis, Jon; Stypulkowski, Paul; Denison, Tim

    2013-01-01

    While modulating neural activity through stimulation is an effective treatment for neurological diseases such as Parkinson's disease and essential tremor, an opportunity for improving neuromodulation therapy remains in automatically adjusting therapy to continuously optimize patient outcomes. Practical issues associated with achieving this include the paucity of human data related to disease states, poorly validated estimators of patient state, and unknown dynamic mappings of optimal stimulation parameters based on estimated states. To overcome these challenges, we present an investigational platform including: an implanted sensing and stimulation device to collect data and run automated closed-loop algorithms; an external tool to prototype classifier and control-policy algorithms; and real-time telemetry to update the implanted device firmware and monitor its state. The prototyping system was demonstrated in a chronic large animal model studying hippocampal dynamics. We used the platform to find biomarkers of the observed states and transfer functions of different stimulation amplitudes. Data showed that moderate levels of stimulation suppress hippocampal beta activity, while high levels of stimulation produce seizure-like after-discharge activity. The biomarker and transfer function observations were mapped into classifier and control-policy algorithms, which were downloaded to the implanted device to continuously titrate stimulation amplitude for the desired network effect. The platform is designed to be a flexible prototyping tool and could be used to develop improved mechanistic models and automated closed-loop systems for a variety of neurological disorders. PMID:23346048

  20. A reconfigurable visual-programming library for real-time closed-loop cellular electrophysiology

    PubMed Central

    Biró, István; Giugliano, Michele

    2015-01-01

    Most of the software platforms for cellular electrophysiology are limited in terms of flexibility, hardware support, ease of use, or re-configuration and adaptation for non-expert users. Moreover, advanced experimental protocols requiring real-time closed-loop operation to investigate excitability, plasticity, dynamics, are largely inaccessible to users without moderate to substantial computer proficiency. Here we present an approach based on MATLAB/Simulink, exploiting the benefits of LEGO-like visual programming and configuration, combined to a small, but easily extendible library of functional software components. We provide and validate several examples, implementing conventional and more sophisticated experimental protocols such as dynamic-clamp or the combined use of intracellular and extracellular methods, involving closed-loop real-time control. The functionality of each of these examples is demonstrated with relevant experiments. These can be used as a starting point to create and support a larger variety of electrophysiological tools and methods, hopefully extending the range of default techniques and protocols currently employed in experimental labs across the world. PMID:26157385

  1. A reconfigurable visual-programming library for real-time closed-loop cellular electrophysiology.

    PubMed

    Biró, István; Giugliano, Michele

    2015-01-01

    Most of the software platforms for cellular electrophysiology are limited in terms of flexibility, hardware support, ease of use, or re-configuration and adaptation for non-expert users. Moreover, advanced experimental protocols requiring real-time closed-loop operation to investigate excitability, plasticity, dynamics, are largely inaccessible to users without moderate to substantial computer proficiency. Here we present an approach based on MATLAB/Simulink, exploiting the benefits of LEGO-like visual programming and configuration, combined to a small, but easily extendible library of functional software components. We provide and validate several examples, implementing conventional and more sophisticated experimental protocols such as dynamic-clamp or the combined use of intracellular and extracellular methods, involving closed-loop real-time control. The functionality of each of these examples is demonstrated with relevant experiments. These can be used as a starting point to create and support a larger variety of electrophysiological tools and methods, hopefully extending the range of default techniques and protocols currently employed in experimental labs across the world. PMID:26157385

  2. Stable adaptive fuzzy controllers with application to inverted pendulum tracking.

    PubMed

    Wang, L X

    1996-01-01

    An adaptive fuzzy controller is constructed from a set of fuzzy IF-THEN rules whose parameters are adjusted on-line according to some adaptation law for the purpose of controlling the plant to track a given-trajectory. In this paper, two adaptive fuzzy controllers are designed based on the Lyapunov synthesis approach. We require that the final closed-loop system must be globally stable in the sense that all signals involved (states, controls, parameters, etc.) must be uniformly bounded. Roughly speaking, the adaptive fuzzy controllers are designed through the following steps: first, construct an initial controller based on linguistic descriptions (in the form of fuzzy IF-THEN rules) about the unknown plant from human experts; then, develop an adaptation law to adjust the parameters of the fuzzy controller on-line. We prove, for both adaptive fuzzy controllers, that: (1) all signals in the closed-loop systems are uniformly bounded; and (2) the tracking errors converge to zero under mild conditions. We provide the specific formulas of the bounds so that controller designers can determine the bounds based on their requirements. Finally, the adaptive fuzzy controllers are used to control the inverted pendulum to track a given trajectory, and the simulation results show that: (1) the adaptive fuzzy controllers can perform successful tracking without using any linguistic information; and (2) after incorporating some linguistic fuzzy rules into the controllers, the adaptation speed becomes faster and the tracking error becomes smaller.

  3. Multiday Fully Closed Loop Insulin Delivery in Monitored Outpatient Conditions

    ClinicalTrials.gov

    2014-04-29

    To Demonstrate That the Closed Loop System Can be Used Safely Over a Few Consecutive Days.; To Assess Effectiveness in Maintaining Patients' Glucose Levels in the Target Range of 70 to 180 mg/dl, Measured by Blood Glucose Sensor.; To Evaluate the User Experience With a Closed Loop System

  4. Adaptive hybrid optimal quantum control for imprecisely characterized systems.

    PubMed

    Egger, D J; Wilhelm, F K

    2014-06-20

    Optimal quantum control theory carries a huge promise for quantum technology. Its experimental application, however, is often hindered by imprecise knowledge of the input variables, the quantum system's parameters. We show how to overcome this by adaptive hybrid optimal control, using a protocol named Ad-HOC. This protocol combines open- and closed-loop optimal control by first performing a gradient search towards a near-optimal control pulse and then an experimental fidelity estimation with a gradient-free method. For typical settings in solid-state quantum information processing, adaptive hybrid optimal control enhances gate fidelities by an order of magnitude, making optimal control theory applicable and useful. PMID:24996074

  5. Adaptive control of Space Station with control moment gyros

    NASA Technical Reports Server (NTRS)

    Bishop, Robert H.; Paynter, Scott J.; Sunkel, John W.

    1992-01-01

    An adaptive approach to Space Station attitude control is investigated. The main components of the controller are the parameter identification scheme, the control gain calculation, and the control law. The control law is a full-state feedback space station baseline control law. The control gain calculation is based on linear-quadratic regulator theory with eigenvalues placement in a vertical strip. The parameter identification scheme is a recursive extended Kalman filter that estimates the inertias and also provides an estimate of the unmodeled disturbances due to the aerodynamic torques and to the nonlinear effects. An analysis of the inertia estimation problem suggests that it is possible to estimate Space Station inertias accurately during nominal control moment gyro operations. The closed-loop adaptive control law is shown to be capable of stabilizing the Space Station after large inertia changes. Results are presented for the pitch axis.

  6. A monolithic MEMS position sensor for closed-loop high-speed atomic force microscopy.

    PubMed

    Hosseini, N; Nievergelt, A P; Adams, J D; Stavrov, V T; Fantner, G E

    2016-04-01

    The accuracy and repeatability of atomic force microscopy (AFM) imaging significantly depend on the accuracy of the piezoactuator. However, nonlinear properties of piezoactuators can distort the image, necessitating sensor-based closed-loop actuators to achieve high accuracy AFM imaging. The advent of high-speed AFM has made the requirements on the position sensors in such a system even more stringent, requiring higher bandwidths and lower sensor mass than traditional sensors can provide. In this paper, we demonstrate a way for high-speed, high-precision closed-loop AFM nanopositioning using a novel, miniaturized micro-electro-mechanical system position sensor in conjunction with a simple PID controller. The sensor was developed to respond to the need for small, lightweight, high-bandwidth, long-range and sub-nm-resolution position measurements in high-speed AFM applications. We demonstrate the use of this sensor for closed-loop operation of conventional as well as high-speed AFM operation to provide distortion-free images. The presented implementation of this closed-loop approach allows for positioning precision down to 2.1 Å, reduces the integral nonlinearity to below 0.2%, and allows for accurate closed loop imaging at line rates up to 300 Hz.

  7. Robust adaptive control of MEMS triaxial gyroscope using fuzzy compensator.

    PubMed

    Fei, Juntao; Zhou, Jian

    2012-12-01

    In this paper, a robust adaptive control strategy using a fuzzy compensator for MEMS triaxial gyroscope, which has system nonlinearities, including model uncertainties and external disturbances, is proposed. A fuzzy logic controller that could compensate for the model uncertainties and external disturbances is incorporated into the adaptive control scheme in the Lyapunov framework. The proposed adaptive fuzzy controller can guarantee the convergence and asymptotical stability of the closed-loop system. The proposed adaptive fuzzy control strategy does not depend on accurate mathematical models, which simplifies the design procedure. The innovative development of intelligent control methods incorporated with conventional control for the MEMS gyroscope is derived with the strict theoretical proof of the Lyapunov stability. Numerical simulations are investigated to verify the effectiveness of the proposed adaptive fuzzy control scheme and demonstrate the satisfactory tracking performance and robustness against model uncertainties and external disturbances compared with conventional adaptive control method.

  8. Design of an adaptive controller for dive-plane control of a torpedo-shaped AUV

    NASA Astrophysics Data System (ADS)

    Cao, Jian; Su, Yumin; Zhao, Jinxin

    2011-09-01

    Underwater vehicles operating in complex ocean conditions present difficulties in determining accurate dynamic models. To guarantee robustness against parameter uncertainty, an adaptive controller for dive-plane control, based on Lyapunov theory and back-stepping techniques, was proposed. In the closed-loop system, asymptotic tracking of the reference depth and pitch angle trajectories was accomplished. Simulation results were presented which show effective dive-plane control in spite of the uncertainties in the system parameters.

  9. Adaptive control strategies for flexible robotic arm

    NASA Technical Reports Server (NTRS)

    Bialasiewicz, Jan T.

    1993-01-01

    The motivation of this research came about when a neural network direct adaptive control scheme was applied to control the tip position of a flexible robotic arm. Satisfactory control performance was not attainable due to the inherent non-minimum phase characteristics of the flexible robotic arm tip. Most of the existing neural network control algorithms are based on the direct method and exhibit very high sensitivity if not unstable closed-loop behavior. Therefore a neural self-tuning control (NSTC) algorithm is developed and applied to this problem and showed promising results. Simulation results of the NSTC scheme and the conventional self-tuning (STR) control scheme are used to examine performance factors such as control tracking mean square error, estimation mean square error, transient response, and steady state response.

  10. Linear state feedback, quadratic weights, and closed loop eigenstructures. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Thompson, P. M.

    1979-01-01

    Results are given on the relationships between closed loop eigenstructures, state feedback gain matrices of the linear state feedback problem, and quadratic weights of the linear quadratic regulator. Equations are derived for the angles of general multivariable root loci and linear quadratic optimal root loci, including angles of departure and approach. The generalized eigenvalue problem is used for the first time to compute angles of approach. Equations are also derived to find the sensitivity of closed loop eigenvalues and the directional derivatives of closed loop eigenvectors (with respect to a scalar multiplying the feedback gain matrix or the quadratic control weight). An equivalence class of quadratic weights that produce the same asymptotic eigenstructure is defined, sufficient conditions to be in it are given, a canonical element is defined, and an algorithm to find it is given. The behavior of the optimal root locus in the nonasymptotic region is shown to be different for quadratic weights with the same asymptotic properties.

  11. Multiple model adaptive control with mixing

    NASA Astrophysics Data System (ADS)

    Kuipers, Matthew

    Despite the remarkable theoretical accomplishments and successful applications of adaptive control, the field is not sufficiently mature to solve challenging control problems requiring strict performance and safety guarantees. Towards addressing these issues, a novel deterministic multiple-model adaptive control approach called adaptive mixing control is proposed. In this approach, adaptation comes from a high-level system called the supervisor that mixes into feedback a number of candidate controllers, each finely-tuned to a subset of the parameter space. The mixing signal, the supervisor's output, is generated by estimating the unknown parameters and, at every instant of time, calculating the contribution level of each candidate controller based on certainty equivalence. The proposed architecture provides two characteristics relevant to solving stringent, performance-driven applications. First, the full-suite of linear time invariant control tools is available. A disadvantage of conventional adaptive control is its restriction to utilizing only those control laws whose solutions can be feasibly computed in real-time, such as model reference and pole-placement type controllers. Because its candidate controllers are computed off line, the proposed approach suffers no such restriction. Second, the supervisor's output is smooth and does not necessarily depend on explicit a priori knowledge of the disturbance model. These characteristics can lead to improved performance by avoiding the unnecessary switching and chattering behaviors associated with some other multiple adaptive control approaches. The stability and robustness properties of the adaptive scheme are analyzed. It is shown that the mean-square regulation error is of the order of the modeling error. And when the parameter estimate converges to its true value, which is guaranteed if a persistence of excitation condition is satisfied, the adaptive closed-loop system converges exponentially fast to a closed-loop

  12. Improvements on adaptive optics control approaches: experimental tests of wavefront correction forecasting

    NASA Astrophysics Data System (ADS)

    Del Moro, Dario; Piazzesi, Roberto; Stangalini, Marco; Giovannelli, Luca; Berrilli, Francesco

    2015-01-01

    The FORS (closed loop forecasting system) control algorithm has been already successfully applied to improve the efficiency of a simulated adaptive optics (AO) system. To test its performance in real conditions, we implemented this algorithm in a hardware AO demonstrator, introducing controlled aberrations into the system. We present here the results of introducing into the system both a simple periodic defocus aberration and a real open loop defocus time sequence acquired at the vacuum tower telescope solar telescope. In both cases, FORS yields a significant performance increase, improving the stability of the system in closed-loop conditions and decreasing the amplitude of the residual uncorrected wavefront aberrations.

  13. The stochastic control of the F-8C aircraft using the Multiple Model Adaptive Control (MMAC) method

    NASA Technical Reports Server (NTRS)

    Athans, M.; Dunn, K. P.; Greene, E. S.; Lee, W. H.; Sandel, N. R., Jr.

    1975-01-01

    The purpose of this paper is to summarize results obtained for the adaptive control of the F-8C aircraft using the so-called Multiple Model Adaptive Control method. The discussion includes the selection of the performance criteria for both the lateral and the longitudinal dynamics, the design of the Kalman filters for different flight conditions, the 'identification' aspects of the design using hypothesis testing ideas, and the performance of the closed loop adaptive system.

  14. Direct-contact closed-loop heat exchanger

    DOEpatents

    Berry, Gregory F.; Minkov, Vladimir; Petrick, Michael

    1984-01-01

    A high temperature heat exchanger with a closed loop and a heat transfer liquid within the loop, the closed loop having a first horizontal channel with inlet and outlet means for providing direct contact of a first fluid at a first temperature with the heat transfer liquid, a second horizontal channel with inlet and outlet means for providing direct contact of a second fluid at a second temperature with the heat transfer liquid, and means for circulating the heat transfer liquid.

  15. Closed loop spray cooling apparatus. [for particle accelerator targets

    NASA Technical Reports Server (NTRS)

    Alger, D. L.; Schwab, W. B.; Furman, E. R. (Inventor)

    1978-01-01

    A closed loop apparatus for spraying coolant against the back of a radiation target is described. The coolant was circulated through a closed loop with a bubble of inert gas being maintained around the spray. Mesh material was disposed between the bubble and the surface of the liquid coolant which was below the bubble at a predetermined level. In a second embodiment, no inert gas was used, the bubble consisting of a vapor produced when the coolant was sprayed against the target.

  16. Adaptive Control Allocation in the Presence of Actuator Failures

    NASA Technical Reports Server (NTRS)

    Liu, Yu; Crespo, Luis G.

    2010-01-01

    In this paper, a novel adaptive control allocation framework is proposed. In the adaptive control allocation structure, cooperative actuators are grouped and treated as an equivalent control effector. A state feedback adaptive control signal is designed for the equivalent effector and allocated to the member actuators adaptively. Two adaptive control allocation algorithms are proposed, which guarantee closed-loop stability and asymptotic state tracking in the presence of uncertain loss of effectiveness and constant-magnitude actuator failures. The proposed algorithms can be shown to reduce the controller complexity with proper grouping of the actuators. The proposed adaptive control allocation schemes are applied to two linearized aircraft models, and the simulation results demonstrate the performance of the proposed algorithms.

  17. Learning from ISS-modular adaptive NN control of nonlinear strict-feedback systems.

    PubMed

    Wang, Cong; Wang, Min; Liu, Tengfei; Hill, David J

    2012-10-01

    This paper studies learning from adaptive neural control (ANC) for a class of nonlinear strict-feedback systems with unknown affine terms. To achieve the purpose of learning, a simple input-to-state stability (ISS) modular ANC method is first presented to ensure the boundedness of all the signals in the closed-loop system and the convergence of tracking errors in finite time. Subsequently, it is proven that learning with the proposed stable ISS-modular ANC can be achieved. The cascade structure and unknown affine terms of the considered systems make it very difficult to achieve learning using existing methods. To overcome these difficulties, the stable closed-loop system in the control process is decomposed into a series of linear time-varying (LTV) perturbed subsystems with the appropriate state transformation. Using a recursive design, the partial persistent excitation condition for the radial basis function neural network (NN) is established, which guarantees exponential stability of LTV perturbed subsystems. Consequently, accurate approximation of the closed-loop system dynamics is achieved in a local region along recurrent orbits of closed-loop signals, and learning is implemented during a closed-loop feedback control process. The learned knowledge is reused to achieve stability and an improved performance, thereby avoiding the tremendous repeated training process of NNs. Simulation studies are given to demonstrate the effectiveness of the proposed method.

  18. Closed-loop and decision-assist resuscitation of burn patients.

    PubMed

    Salinas, Jose; Drew, Guy; Gallagher, James; Cancio, Leopoldo C; Wolf, Steven E; Wade, Charles E; Holcomb, John B; Herndon, David N; Kramer, George C

    2008-04-01

    Effective resuscitation is critical in reducing mortality and morbidity rates of patients with acute burns. To this end, guidelines and formulas have been developed to define infusion rates and volume requirements during the first 48 hours postburn. Even with these standardized resuscitation guidelines, however, over- and under-resuscitation are not uncommon. Two approaches to adjust infusion rate are decision-assist and closed-loop algorithms based on levels of urinary output. Specific decision assist guidelines or a closed-loop system using computer-controlled feedback technology that supplies automatic control of infusion rates can potentially achieve better control of urinary output. In a properly designed system, closed-loop control has the potential to provide more accurate titration rates, while lowering the incidence of over- and under-resuscitation. Because the system can self-adjust based on monitoring inputs, the technology can be pushed to environments such as combat zones where burn resuscitation expertise is limited. A closed-loop system can also assist in the management of mass casualties, another scenario in which medical expertise is often in short supply. This article reviews the record of fluid balance of contemporary burn resuscitation and approaches, as well as the engineering efforts, animal studies, and algorithm development of our most recent autonomous systems for burn resuscitation. PMID:18385584

  19. Closed-loop, ultraprecise, automated craniotomies

    PubMed Central

    Pak, Nikita; Siegle, Joshua H.; Kinney, Justin P.; Denman, Daniel J.; Blanche, Timothy J.

    2015-01-01

    A large array of neuroscientific techniques, including in vivo electrophysiology, two-photon imaging, optogenetics, lesions, and microdialysis, require access to the brain through the skull. Ideally, the necessary craniotomies could be performed in a repeatable and automated fashion, without damaging the underlying brain tissue. Here we report that when drilling through the skull a stereotypical increase in conductance can be observed when the drill bit passes through the skull base. We present an architecture for a robotic device that can perform this algorithm, along with two implementations—one based on homebuilt hardware and one based on commercially available hardware—that can automatically detect such changes and create large numbers of precise craniotomies, even in a single skull. We also show that this technique can be adapted to automatically drill cranial windows several millimeters in diameter. Such robots will not only be useful for helping neuroscientists perform both small and large craniotomies more reliably but can also be used to create precisely aligned arrays of craniotomies with stereotaxic registration to standard brain atlases that would be difficult to drill by hand. PMID:25855700

  20. Closed-loop, ultraprecise, automated craniotomies.

    PubMed

    Pak, Nikita; Siegle, Joshua H; Kinney, Justin P; Denman, Daniel J; Blanche, Timothy J; Boyden, Edward S

    2015-06-01

    A large array of neuroscientific techniques, including in vivo electrophysiology, two-photon imaging, optogenetics, lesions, and microdialysis, require access to the brain through the skull. Ideally, the necessary craniotomies could be performed in a repeatable and automated fashion, without damaging the underlying brain tissue. Here we report that when drilling through the skull a stereotypical increase in conductance can be observed when the drill bit passes through the skull base. We present an architecture for a robotic device that can perform this algorithm, along with two implementations--one based on homebuilt hardware and one based on commercially available hardware--that can automatically detect such changes and create large numbers of precise craniotomies, even in a single skull. We also show that this technique can be adapted to automatically drill cranial windows several millimeters in diameter. Such robots will not only be useful for helping neuroscientists perform both small and large craniotomies more reliably but can also be used to create precisely aligned arrays of craniotomies with stereotaxic registration to standard brain atlases that would be difficult to drill by hand. PMID:25855700

  1. Growth of protein crystals suspended in a closed loop thermosyphon

    NASA Astrophysics Data System (ADS)

    Nyce, Thomas A.; Rosenberger, Franz

    1991-03-01

    The quality of protein crystals often suffers from their growth at a liquid or solid surface. A novel solution growth method was developed to alleviate this problem. A growing crystal is suspended in a specially configured upflow of supersaturated nutrient, which is provided by the effect of fluid buoyancy in a closed loop thermosyphon. The flow rate and supersaturation are controlled by the temperature distribution in the thermosyphon, while contact of the crystal with the wall during growth is practically eliminated. The method was applied to the growth of lysozyme single crystals, with surprising results. While the orthorhombic form of lysozyme grew readily to the suspension limit of this particular apparatus (1.5 mm), the tetragonal form grew only to a maximum size less than 0.1 mm. Seed crystals of tetragonal lysozyme introduced into stagnant batch controls did not experience the growth cessation that the suspended crystals did. A likely cause of this growth cessation is the fluid shear forces on the suspended crystals.

  2. A closed-loop identification protocol for nonlinear dynamical systems.

    PubMed

    Feng, Xiao-jiang; Rabitz, Herschel; Turinici, Gabriel; Le Bris, Claude

    2006-06-29

    A previous work introduced an optimal identification (OI) technique for reliably extracting model parameters of biochemical reaction systems from tailored laboratory experiments. The notion of optimality enters through seeking an external control in the laboratory producing data that leads to minimum uncertainties in the identified parameter distributions. A number of algorithmic and operational improvements are introduced in this paper to OI, aiming to build a more practical and efficient closed-loop identification protocol/procedure (CLIP) for nonlinear dynamical systems. The improvements in CLIP include (a) inversion cost function modification to preferably search for the upper and lower boundaries of the parameter distributions consistent with the observed data, (b) dynamic search range updating of the unknown parameters to better exploit the information from the prior iterative experiments, (c) replacing the control genetic algorithm by the simplex method to enable better balance between operational cost and inversion quality, and (d) utilizing virtual sensitivity optimization techniques to further reduce the laboratory costs. The workings of CLIP utilizing these new algorithms are illustrated in indentifying a simulated tRNA proofreading model, and the results demonstrate enhanced performance of CLIP in terms of algorithmic reliability and efficiency. PMID:16789759

  3. Psychophysiological Control of Acognitive Task Using Adaptive Automation

    NASA Technical Reports Server (NTRS)

    Freeman, Frederick; Pope, Alan T. (Technical Monitor)

    2001-01-01

    The major focus of the present proposal was to examine psychophysiological variables related to hazardous states of awareness induced by monitoring automated systems. With the increased use of automation in today's work environment, people's roles in the work place are being redefined from that of active participant to one of passive monitor. Although the introduction of automated systems has a number of benefits, there are also a number of disadvantages regarding worker performance. Byrne and Parasuraman have argued for the use of psychophysiological measures in the development and the implementation of adaptive automation. While both performance based and model based adaptive automation have been studied, the use of psychophysiological measures, especially EEG, offers the advantage of real time evaluation of the state of the subject. The current study used the closed-loop system, developed at NASA-Langley Research Center, to control the state of awareness of subjects while they performed a cognitive vigilance task. Previous research in our laboratory, supported by NASA, has demonstrated that, in an adaptive automation, closed-loop environment, subjects perform a tracking task better under a negative than a positive, feedback condition. In addition, this condition produces less subjective workload and larger P300 event related potentials to auditory stimuli presented in a concurrent oddball task. We have also recently shown that the closed-loop system used to control the level of automation in a tracking task can also be used to control the event rate of stimuli in a vigilance monitoring task. By changing the event rate based on the subject's index of arousal, we have been able to produce improved monitoring, relative to various control groups. We have demonstrated in our initial closed-loop experiments with the the vigilance paradigm that using a negative feedback contingency (i.e. increasing event rates when the EEG index is low and decreasing event rates when

  4. Closed-loop autonomous docking system

    NASA Technical Reports Server (NTRS)

    Dabney, Richard W. (Inventor); Howard, Richard T. (Inventor)

    1992-01-01

    An autonomous docking system is provided which produces commands for the steering and propulsion system of a chase vehicle used in the docking of that chase vehicle with a target vehicle. The docking system comprises a passive optical target affixed to the target vehicle and comprising three reflective areas including a central area mounted on a short post, and tracking sensor and process controller apparatus carried by the chase vehicle. The latter apparatus comprises a laser diode array for illuminating the target so as to cause light to be reflected from the reflective areas of the target; a sensor for detecting the light reflected from the target and for producing an electrical output signal in accordance with an image of the reflected light; a signal processor for processing the electrical output signal in accordance with an image of the reflected light; a signal processor for processing the electrical output signal and for producing, based thereon, output signals relating to the relative range, roll, pitch, yaw, azimuth, and elevation of the chase and target vehicles; and a docking process controller, responsive to the output signals produced by the signal processor, for producing command signals for controlling the steering and propulsion system of the chase vehicle.

  5. Quantitative Evaluation of Closed-Loop-Shaped Cardiomyocyte Network by Using Ring-Shaped Electrode

    NASA Astrophysics Data System (ADS)

    Nomura, Fumimasa; Kaneko, Tomoyuki; Hamada, Tomoyo; Hattori, Akihiro; Yasuda, Kenji

    2012-06-01

    Re-entry of excitation in the heart is one of the abnormal phenomena that causes lethal arrhythmia and is thought to be induced by the looped structure of the excitation conduction pathway. To evaluate the geometrical pattern dependence of electrophysiological results, we fabricated three models of cardiomyocyte networks and compared their beating frequencies (BFs), amplitudes of a depolarization peak, and field potential durations (FPDs). The set of different closed-loop-shaped network models from 3 to 8 mm in length showed the same BFs, amplitudes, and FPDs independent of their loop lengths, whereas the BFs and FPDs of 60 µm small clusters, and the FPDs of the 2 mm open-line-shaped network model were different from those of a closed-loop-shaped network model. These results indicate that the mm order larger size of clusters might create lower BFs, and the closed-loop-shaped model may generate longer FPDs. They also suggest the importance of spatial arrangement control of the cardoimyocyte community for reproducible measurement of electrophysiological properties of cardiomyocytes, especially control of the closed-loop formation, which might change the waveforms of FPDs depending on the difference in the geometry and conduction pathway of the cell network.

  6. Fuzzy Backstepping Torque Control Of Passive Torque Simulator With Algebraic Parameters Adaptation

    NASA Astrophysics Data System (ADS)

    Ullah, Nasim; Wang, Shaoping; Wang, Xingjian

    2015-07-01

    This work presents fuzzy backstepping control techniques applied to the load simulator for good tracking performance in presence of extra torque, and nonlinear friction effects. Assuming that the parameters of the system are uncertain and bounded, Algebraic parameters adaptation algorithm is used to adopt the unknown parameters. The effect of transient fuzzy estimation error on parameters adaptation algorithm is analyzed and the fuzzy estimation error is further compensated using saturation function based adaptive control law working in parallel with the actual system to improve the transient performance of closed loop system. The saturation function based adaptive control term is large in the transient time and settles to an optimal lower value in the steady state for which the closed loop system remains stable. The simulation results verify the validity of the proposed control method applied to the complex aerodynamics passive load simulator.

  7. Dynamics of closed-loop systems containing flexible bodies

    NASA Technical Reports Server (NTRS)

    Tadikonda, Sivakumar S. K.; Singh, Ramendra P.

    1991-01-01

    An important characteristic of flexible multibody systems containing closed-loop topologies is that the component modes used to describe individual bodies will no longer be independent because of loop closure constraints. Thus, the issue of component modal selection becomes even more complicated. In addition, the foreshortening effect that has been studied extensively in the literature in the context of open-loop topologies will also be present in these constraint equations. Simulation results presented demonstrate the effects of modal selection and foreshortening on the dynamic response of closed-loop flexible systems.

  8. Direct-contact closed-loop heat exchanger

    DOEpatents

    Berry, G.F.; Minkov, V.; Petrick, M.

    1981-11-02

    A high temperature heat exchanger is disclosed which has a closed loop and a heat transfer liquid within the loop, the closed loop having a first horizontal channel with inlet and outlet means for providing direct contact of a first fluid at a first temperature with the heat transfer liquid, a second horizontal channel with inlet and outlet means for providing direct contact of a second fluid at a second temperature with the heat transfer liquid, and means for circulating the heat transfer liquid.

  9. Probing the closed-loop model of mRNA translation in living cells.

    PubMed

    Archer, Stuart K; Shirokikh, Nikolay E; Hallwirth, Claus V; Beilharz, Traude H; Preiss, Thomas

    2015-01-01

    The mRNA closed-loop, formed through interactions between the cap structure, poly(A) tail, eIF4E, eIF4G and PAB, features centrally in models of eukaryotic translation initiation, although direct support for its existence in vivo is not well established. Here, we investigated the closed-loop using a combination of mRNP isolation from rapidly cross-linked cells and high-throughput qPCR. Using the interaction between these factors and the opposing ends of mRNAs as a proxy for the closed-loop, we provide evidence that it is prevalent for eIF4E/4G-bound but unexpectedly sparse for PAB1-bound mRNAs, suggesting it primarily occurs during a distinct phase of polysome assembly. We observed mRNA-specific variation in the extent of closed-loop formation, consistent with a role for polysome topology in the control of gene expression.

  10. Probing the closed-loop model of mRNA translation in living cells

    PubMed Central

    Archer, Stuart K; Shirokikh, Nikolay E; Hallwirth, Claus V; Beilharz, Traude H; Preiss, Thomas

    2015-01-01

    The mRNA closed-loop, formed through interactions between the cap structure, poly(A) tail, eIF4E, eIF4G and PAB, features centrally in models of eukaryotic translation initiation, although direct support for its existence in vivo is not well established. Here, we investigated the closed-loop using a combination of mRNP isolation from rapidly cross-linked cells and high-throughput qPCR. Using the interaction between these factors and the opposing ends of mRNAs as a proxy for the closed-loop, we provide evidence that it is prevalent for eIF4E/4G-bound but unexpectedly sparse for PAB1-bound mRNAs, suggesting it primarily occurs during a distinct phase of polysome assembly. We observed mRNA-specific variation in the extent of closed-loop formation, consistent with a role for polysome topology in the control of gene expression. PMID:25826658

  11. Fabrication and formation mechanism of closed-loop fibers by electrospinning with a tip collector

    NASA Astrophysics Data System (ADS)

    Xu, Yan; Miao, Yu; Wen-Peng, Han; Ming-Hao, You; Jun-Cheng, Zhang; Rui-Hua, Dong; Hong-Di, Zhang; Yun-Ze, Long

    2016-07-01

    Electrospun nanofibers with designed or controlled structures have drawn much attention. In this study, we report an interesting new closed-loop structure in individual cerium nitrate/polyvinyl alcohol (Ce(NO3)3/PVA) and NaCl/PVA fibers, which are fabricated by electrospinning with a nail collector. The electrospinning parameters such as voltage and Ce(NO3)3 (or NaCl) concentration are examined for the formation of the closed-loop structure. The results suggest that the increase of the spinning voltage or addition of Ce(NO3)3 (or NaCl) is favorable for the formation of the closed-loop structure, and the increase of loop numbers and the decrease of loop size. Further analyses indicate that the formation mechanism of the closed-loop fibers can be predominantly attributed to the Coulomb repulsion in the charged jets. Project supported by the National Natural Science Foundation of China (Grant Nos. 51373082 and 11404181), the Taishan Scholars Program of Shandong Province, China (Grant No. ts20120528), and the Postdoctoral Scientific Research Foundation of Qingdao City, China.

  12. A new approach to adaptive control of manipulators

    NASA Technical Reports Server (NTRS)

    Seraji, H.

    1987-01-01

    An approach in which the manipulator inverse is used as a feedforward controller is employed in the adaptive control of manipulators in order to achieve trajectory tracking by the joint angles. The desired trajectory is applied as an input to the feedforward controller, and the controller output is used as the driving torque for the manipulator. An adaptive algorithm obtained from MRAC theory is used to update the controller gains to cope with variations in the manipulator inverse due to changes of the operating point. An adaptive feedback controller and an auxiliary signal enhance closed-loop stability and achieve faster adaptation. Simulation results demonstrate the effectiveness of the proposed control scheme for different reference trajectories, and despite large variations in the payload.

  13. The Future of Open and Closed-Loop Insulin Delivery for Diabetes Mellitus

    PubMed Central

    Farmer, Terry G.; Edgar, Thomas F.

    2011-01-01

    Several aspects of insulin-dependent diabetes mellitus are analyzed, including the glucose metabolic system, diabetes complications, and previous and ongoing research aimed at controlling glucose in diabetic patients. An expert review of various models and control algorithms developed for the glucose homeostasis system is presented, along with an analysis of research towards the development of a polymeric insulin infusion system. Recommendations for future directions in creating a true closed-loop glucose control system are presented, including the development of multivariable models and control systems to more accurately describe and control the multi-metabolite, multi-hormonal system, as well as in vivo assessments of implicit closed-loop control systems. PMID:18088499

  14. Characterization and control of a multielement dual-frequency liquid-crystal device for high-speed adaptive optical wave-front correction.

    PubMed

    Dayton, D; Browne, S; Gonglewski, J; Restaino, S

    2001-05-20

    Multielement nematic liquid-crystal devices have been used by others and ourselves for closed-loop adaptive control of optical wave-front distortions. Until recently the phase retardance of available devices could be controlled rapidly in only one direction. The phase retardance of the dual-frequency device can be controlled rapidly in both directions. Understanding the dynamics of the phase retardance change is critical to the development of a high-speed control algorithm. We describe measurements and experiments leading to the closed-loop control of a multielement dual-frequency liquid-crystal adaptive optic.

  15. Characterization and Control of a Multielement Dual-Frequency Liquid-Crystal Device for High-Speed Adaptive Optical Wave-Front Correction

    NASA Astrophysics Data System (ADS)

    Dayton, David; Browne, Stephen; Gonglewski, John; Restaino, Sergio

    2001-05-01

    Multielement nematic liquid-crystal devices have been used by others and ourselves for closed-loop adaptive control of optical wave-front distortions. Until recently the phase retardance of available devices could be controlled rapidly in only one direction. The phase retardance of the dual-frequency device can be controlled rapidly in both directions. Understanding the dynamics of the phase retardance change is critical to the development of a high-speed control algorithm. We describe measurements and experiments leading to the closed-loop control of a multielement dual-frequency liquid-crystal adaptive optic.

  16. Characterization and control of a multielement dual-frequency liquid-crystal device for high-speed adaptive optical wave-front correction.

    PubMed

    Dayton, D; Browne, S; Gonglewski, J; Restaino, S

    2001-05-20

    Multielement nematic liquid-crystal devices have been used by others and ourselves for closed-loop adaptive control of optical wave-front distortions. Until recently the phase retardance of available devices could be controlled rapidly in only one direction. The phase retardance of the dual-frequency device can be controlled rapidly in both directions. Understanding the dynamics of the phase retardance change is critical to the development of a high-speed control algorithm. We describe measurements and experiments leading to the closed-loop control of a multielement dual-frequency liquid-crystal adaptive optic. PMID:18357243

  17. Closed Loop Test Facility for hot dirty gas valves

    SciTech Connect

    Not Available

    1980-02-06

    A design study of a closed loop test facility for eight-inch hot dirty gas valves is presented. The objective of the facility is to quality valves for use in coal gasifiers, combined cycle plants, and pressurized fluid bed combustors. Outline sketches and estimated costs are presented for the selected design.

  18. Study on digital closed-loop system of silicon resonant micro-sensor

    NASA Astrophysics Data System (ADS)

    Xu, Yefeng; He, Mengke

    2008-10-01

    Designing a micro, high reliability weak signal extracting system is a critical problem need to be solved in the application of silicon resonant micro-sensor. The closed-loop testing system based on FPGA uses software to replace hardware circuit which dramatically decrease the system's mass and power consumption and make the system more compact, both correlation theory and frequency scanning scheme are used in extracting weak signal, the adaptive frequency scanning arithmetic ensures the system real-time. The error model was analyzed to show the solution to enhance the system's measurement precision. The experiment results show that the closed-loop testing system based on FPGA has the personality of low power consumption, high precision, high-speed, real-time etc, and also the system is suitable for different kinds of Silicon Resonant Micro-sensor.

  19. A study of closed-loop application for logic patterning

    NASA Astrophysics Data System (ADS)

    Imai, Hidemichi; Yoshikawa, Shingo; Takamizawa, Hideyoshi; Le-Gratiet, Bertrand; Pelletier, Alice; Sundermann, Frank; Buttgereit, Ute; Trautzsch, Thomas; Thaler, Thomas; Graitzer, Erez

    2012-06-01

    Optical lithography stays at 193nm with a numerical aperture of 1.35 for several more years before moving to EUV lithography. Utilization of 193nm lithography for 45nm and beyond forces the mask shop to produce complex mask designs and tighter lithography specifications which in turn make process control more important than ever. High yield with regards to chip production requires accurate process control. Critical Dimension Uniformity (CDU) is one of the key parameters necessary to assure good performance and reliable functionality of any integrated circuit. There are different contributors which impact the total wafer CDU, mask CD uniformity, resist process, scanner and lens fingerprint, wafer topography, etc. In this paper, the wafer level CD metrology tool WLCD of Carl Zeiss SMS is utilized for CDU measurements in conjunction with the CDC tool from Carl Zeiss SMS which provides CD uniformity correction. The WLCD measures CD based on proven aerial imaging technology. The CDC utilizes an ultrafast femto-second laser to write intra-volume shading elements (Shade-In ElementsTM) inside the bulk material of the mask. By adjusting the density of the shading elements, the light transmission through the mask is locally changed in a manner that improves wafer CDU when the corrected mask is printed. The objective of this study is to evaluate the usage of these two tools in a closed loop process to optimize CDU of the mask before leaving the mask shop and to ensure improved intra-field CDU at wafer level. Mainly we present the method of operation and results for logic pattering by using these two tools.

  20. Bayesian nonparametric adaptive control using Gaussian processes.

    PubMed

    Chowdhary, Girish; Kingravi, Hassan A; How, Jonathan P; Vela, Patricio A

    2015-03-01

    Most current model reference adaptive control (MRAC) methods rely on parametric adaptive elements, in which the number of parameters of the adaptive element are fixed a priori, often through expert judgment. An example of such an adaptive element is radial basis function networks (RBFNs), with RBF centers preallocated based on the expected operating domain. If the system operates outside of the expected operating domain, this adaptive element can become noneffective in capturing and canceling the uncertainty, thus rendering the adaptive controller only semiglobal in nature. This paper investigates a Gaussian process-based Bayesian MRAC architecture (GP-MRAC), which leverages the power and flexibility of GP Bayesian nonparametric models of uncertainty. The GP-MRAC does not require the centers to be preallocated, can inherently handle measurement noise, and enables MRAC to handle a broader set of uncertainties, including those that are defined as distributions over functions. We use stochastic stability arguments to show that GP-MRAC guarantees good closed-loop performance with no prior domain knowledge of the uncertainty. Online implementable GP inference methods are compared in numerical simulations against RBFN-MRAC with preallocated centers and are shown to provide better tracking and improved long-term learning.

  1. Adaptive backstepping slide mode control of pneumatic position servo system

    NASA Astrophysics Data System (ADS)

    Ren, Haipeng; Fan, Juntao

    2016-06-01

    With the price decreasing of the pneumatic proportional valve and the high performance micro controller, the simple structure and high tracking performance pneumatic servo system demonstrates more application potential in many fields. However, most existing control methods with high tracking performance need to know the model information and to use pressure sensor. This limits the application of the pneumatic servo system. An adaptive backstepping slide mode control method is proposed for pneumatic position servo system. The proposed method designs adaptive slide mode controller using backstepping design technique. The controller parameter adaptive law is derived from Lyapunov analysis to guarantee the stability of the system. A theorem is testified to show that the state of closed-loop system is uniformly bounded, and the closed-loop system is stable. The advantages of the proposed method include that system dynamic model parameters are not required for the controller design, uncertain parameters bounds are not need, and the bulk and expensive pressure sensor is not needed as well. Experimental results show that the designed controller can achieve better tracking performance, as compared with some existing methods.

  2. Rapid inversion of velocity map images for adaptive femtosecond control

    NASA Astrophysics Data System (ADS)

    Rallis, C.; Andrews, P.; Averin, R.; Jochim, B.; Gregerson, N.; Wells, E.; Zohrabi, M.; de, S.; Gaire, B.; Carnes, K. D.; Ben-Itzhak, I.; Bergues, B.; Kling, M. F.

    2011-05-01

    We report techniques developed to utilize three dimensional momentum information as feedback in adaptive femtosecond control of molecular systems. Velocity map imaging of the dissociating ions following interaction with an intense ultrafast laser pulse provides raw data. In order to recover momentum information, however, the two-dimensional image must be inverted to reconstruct the three-dimensional photofragment distribution. Using a variation of the onion-peeling technique, we invert 1054 × 1040 pixel images in under 1 second. This rapid inversion allows a slice of the momentum distribution to be used as feedback in a closed-loop adaptive control scheme. We report techniques developed to utilize three dimensional momentum information as feedback in adaptive femtosecond control of molecular systems. Velocity map imaging of the dissociating ions following interaction with an intense ultrafast laser pulse provides raw data. In order to recover momentum information, however, the two-dimensional image must be inverted to reconstruct the three-dimensional photofragment distribution. Using a variation of the onion-peeling technique, we invert 1054 × 1040 pixel images in under 1 second. This rapid inversion allows a slice of the momentum distribution to be used as feedback in a closed-loop adaptive control scheme. This work supported by National Science Foundation award PHY-0969687 and the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Science, Office of Science, US Department of Energy.

  3. IMC-PID design based on model matching approach and closed-loop shaping.

    PubMed

    Jin, Qi B; Liu, Q

    2014-03-01

    Motivated by the limitations of the conventional internal model control (IMC), this communication addresses the design of IMC-based PID in terms of the robust performance of the control system. The IMC controller form is obtained by solving an H-infinity problem based on the model matching approach, and the parameters are determined by closed-loop shaping. The shaping of the closed-loop transfer function is considered both for the set-point tracking and for the load disturbance rejection. The design procedure is formulated as a multi-objective optimization problem which is solved by a specific optimization algorithm. A nice feature of this design method is that it permits a clear tradeoff between robustness and performance. Simulation examples show that the proposed method is effective and has a wide applicability.

  4. Robust adaptive tracking control for nonholonomic mobile manipulator with uncertainties.

    PubMed

    Peng, Jinzhu; Yu, Jie; Wang, Jie

    2014-07-01

    In this paper, mobile manipulator is divided into two subsystems, that is, nonholonomic mobile platform subsystem and holonomic manipulator subsystem. First, the kinematic controller of the mobile platform is derived to obtain a desired velocity. Second, regarding the coupling between the two subsystems as disturbances, Lyapunov functions of the two subsystems are designed respectively. Third, a robust adaptive tracking controller is proposed to deal with the unknown upper bounds of parameter uncertainties and disturbances. According to the Lyapunov stability theory, the derived robust adaptive controller guarantees global stability of the closed-loop system, and the tracking errors and adaptive coefficient errors are all bounded. Finally, simulation results show that the proposed robust adaptive tracking controller for nonholonomic mobile manipulator is effective and has good tracking capacity. PMID:24917071

  5. Simple PID parameter tuning method based on outputs of the closed loop system

    NASA Astrophysics Data System (ADS)

    Han, Jianda; Zhu, Zhiqiang; Jiang, Ziya; He, Yuqing

    2016-05-01

    Most of the existing PID parameters tuning methods are only effective with pre-known accurate system models, which often require some strict identification experiments and thus infeasible for many complicated systems. Actually, in most practical engineering applications, it is desirable for the PID tuning scheme to be directly based on the input-output response of the closed-loop system. Thus, a new parameter tuning scheme for PID controllers without explicit mathematical model is developed in this paper. The paper begins with a new frequency domain properties analysis of the PID controller. After that, the definition of characteristic frequency for the PID controller is given in order to study the mathematical relationship between the PID parameters and the open-loop frequency properties of the controlled system. Then, the concepts of M-field and θ-field are introduced, which are then used to explain how the PID control parameters influence the closed-loop frequency-magnitude property and its time responses. Subsequently, the new PID parameter tuning scheme, i.e., a group of tuning rules, is proposed based on the preceding analysis. Finally, both simulations and experiments are conducted, and the results verify the feasibility and validity of the proposed methods. This research proposes a PID parameter tuning method based on outputs of the closed loop system.

  6. Automated Droplet Manipulation Using Closed-Loop Axisymmetric Drop Shape Analysis.

    PubMed

    Yu, Kyle; Yang, Jinlong; Zuo, Yi Y

    2016-05-17

    Droplet manipulation plays an important role in a wide range of scientific and industrial applications, such as synthesis of thin-film materials, control of interfacial reactions, and operation of digital microfluidics. Compared to micron-sized droplets, which are commonly considered as spherical beads, millimeter-sized droplets are generally deformable by gravity, thus introducing nonlinearity into control of droplet properties. Such a nonlinear drop shape effect is especially crucial for droplet manipulation, even for small droplets, at the presence of surfactants. In this paper, we have developed a novel closed-loop axisymmetric drop shape analysis (ADSA), integrated into a constrained drop surfactometer (CDS), for manipulating millimeter-sized droplets. The closed-loop ADSA generalizes applications of the traditional drop shape analysis from a surface tension measurement methodology to a sophisticated tool for manipulating droplets in real time. We have demonstrated the feasibility and advantages of the closed-loop ADSA in three applications, including control of drop volume by automatically compensating natural evaporation, precise control of surface area variations for high-fidelity biophysical simulations of natural pulmonary surfactant, and steady control of surface pressure for in situ Langmuir-Blodgett transfer from droplets. All these applications have demonstrated the accuracy, versatility, applicability, and automation of this new ADSA-based droplet manipulation technique. Combining with CDS, the closed-loop ADSA holds great promise for advancing droplet manipulation in a variety of material and surface science applications, such as thin-film fabrication, self-assembly, and biophysical study of pulmonary surfactant.

  7. Adjustment of Open-Loop Settings to Improve Closed-Loop Results in Type 1 Diabetes: A Multicenter Randomized Trial

    PubMed Central

    Dassau, Eyal; Brown, Sue A.; Basu, Ananda; Pinsker, Jordan E.; Kudva, Yogish C.; Gondhalekar, Ravi; Patek, Steve; Lv, Dayu; Schiavon, Michele; Lee, Joon Bok; Dalla Man, Chiara; Hinshaw, Ling; Castorino, Kristin; Mallad, Ashwini; Dadlani, Vikash; McCrady-Spitzer, Shelly K.; McElwee-Malloy, Molly; Wakeman, Christian A.; Bevier, Wendy C.; Bradley, Paige K.; Kovatchev, Boris; Cobelli, Claudio; Zisser, Howard C.

    2015-01-01

    Context: Closed-loop control (CLC) relies on an individual's open-loop insulin pump settings to initialize the system. Optimizing open-loop settings before using CLC usually requires significant time and effort. Objective: The objective was to investigate the effects of a one-time algorithmic adjustment of basal rate and insulin to carbohydrate ratio open-loop settings on the performance of CLC. Design: This study reports a multicenter, outpatient, randomized, crossover clinical trial. Patients: Thirty-seven adults with type 1 diabetes were enrolled at three clinical sites. Interventions: Each subject's insulin pump settings were subject to a one-time algorithmic adjustment based on 1 week of open-loop (i.e., home care) data collection. Subjects then underwent two 27-hour periods of CLC in random order with either unchanged (control) or algorithmic adjusted basal rate and carbohydrate ratio settings (adjusted) used to initialize the zone-model predictive control artificial pancreas controller. Subject's followed their usual meal-plan and had an unannounced exercise session. Main Outcomes and Measures: Time in the glucose range was 80–140 mg/dL, compared between both arms. Results: Thirty-two subjects completed the protocol. Median time in CLC was 25.3 hours. The median time in the 80–140 mg/dl range was similar in both groups (39.7% control, 44.2% adjusted). Subjects in both arms of CLC showed minimal time spent less than 70 mg/dl (median 1.34% and 1.37%, respectively). There were no significant differences more than 140 mg/dL. Conclusions: A one-time algorithmic adjustment of open-loop settings did not alter glucose control in a relatively short duration outpatient closed-loop study. The CLC system proved very robust and adaptable, with minimal (<2%) time spent in the hypoglycemic range in either arm. PMID:26204135

  8. Closed-Loop Analysis of Soft Decisions for Serial Links

    NASA Technical Reports Server (NTRS)

    Lansdowne, Chatwin A.; Steele, Glen F.; Zucha, Joan P.; Schlensinger, Adam M.

    2012-01-01

    Modern receivers are providing soft decision symbol synchronization as radio links are challenged to push more data and more overhead through noisier channels, and software-defined radios use error-correction techniques that approach Shannon s theoretical limit of performance. The authors describe the benefit of closed-loop measurements for a receiver when paired with a counterpart transmitter and representative channel conditions. We also describe a real-time Soft Decision Analyzer (SDA) implementation for closed-loop measurements on single- or dual- (orthogonal) channel serial data communication links. The analyzer has been used to identify, quantify, and prioritize contributors to implementation loss in real-time during the development of software defined radios.

  9. Closed-Loop Analysis of Soft Decisions for Serial Links

    NASA Technical Reports Server (NTRS)

    Lansdowne, Chatwin A.; Steele, Glen F.; Zucha, Joan P.; Schlesinger, Adam M.

    2013-01-01

    We describe the benefit of using closed-loop measurements for a radio receiver paired with a counterpart transmitter. We show that real-time analysis of the soft decision output of a receiver can provide rich and relevant insight far beyond the traditional hard-decision bit error rate (BER) test statistic. We describe a Soft Decision Analyzer (SDA) implementation for closed-loop measurements on single- or dual- (orthogonal) channel serial data communication links. The analyzer has been used to identify, quantify, and prioritize contributors to implementation loss in live-time during the development of software defined radios. This test technique gains importance as modern receivers are providing soft decision symbol synchronization as radio links are challenged to push more data and more protocol overhead through noisier channels, and software-defined radios (SDRs) use error-correction codes that approach Shannon's theoretical limit of performance.

  10. Application of ISFETs in closed-loop systems for greenhouses

    NASA Astrophysics Data System (ADS)

    Gieling, Th. H.; van den Vlekkert, H. H.

    In horticulture, growing in artificial substrates such as rockwool is more and more considered to be a sound alternative to growing in soil. This development enables the opportunity to create closed-loop systems which lower the waste of raw materials and reduce pollution of the environment. Applying closed-loop systems needs precise knowledge of the composition of the recirculating nutrient solution. This paper presents basic principles of a measuring system, which can monitor continuously the concentration of nutrients in water. The system is based on ion-selective field effect transistors (ISFETs). By appropriate calibration, a high accuracy is achieved for pH and potassium measurements in the nutrient solution. An accuracy of better than 10% (mMol/l) has been achieved.

  11. Integrated closed-loop cavity of a tunable laser

    NASA Astrophysics Data System (ADS)

    Ren, M.; Cai, H.; Gu, Y. D.; Chin, L. K.; Radhakrishnan, K.; Ser, W.; Sun, H. D.; Liang, Q. X.; Kwong, D.-L.; Liu, A. Q.

    2016-10-01

    In this paper, a closed-loop cavity of a tunable laser integrated onto a silicon chip is demonstrated. The closed-loop cavity consists of a semiconductor optical amplifier chip, two separated micro-ring resonators, and a U-shaped waveguide sub-loop, enabling dominating lasing in the counterclockwise direction. The lasing wavelength is tuned by varying the effective refractive index of the thermal ring-resonators. It has achieved wide tuning range (55.4 nm), high spectral purity (50-dB side mode suppression ratio), ˜1-mW output power, and 36-dB counter-propagation power suppression ratio. The integrated tunable laser has high potential in applications such as optical network, optical sensing, and integrated optoelectronic systems.

  12. Study of the Open Loop and Closed Loop Oscillator Techniques

    SciTech Connect

    Imel, George R.; Baker, Benjamin; Riley, Tony; Langbehn, Adam; Aryal, Harishchandra; Benzerga, M. Lamine

    2015-04-11

    This report presents the progress and completion of a five-year study undertaken at Idaho State University of the measurement of very small worth reactivity samples comparing open and closed loop oscillator techniques.The study conclusively demonstrated the equivalency of the two techniques with regard to uncertainties in reactivity values, i.e., limited by reactor noise. As those results are thoroughly documented in recent publications, in this report we will concentrate on the support work that was necessary. For example, we describe in some detail the construction and calibration of a pilot rod for the closed loop system. We discuss the campaign to measure the required reactor parameters necessary for inverse-kinetics. Finally, we briefly discuss the transfer of the open loop technique to other reactor systems.

  13. Closed-loop air cooling system for a turbine engine

    DOEpatents

    North, William Edward

    2000-01-01

    Method and apparatus are disclosed for providing a closed-loop air cooling system for a turbine engine. The method and apparatus provide for bleeding pressurized air from a gas turbine engine compressor for use in cooling the turbine components. The compressed air is cascaded through the various stages of the turbine. At each stage a portion of the compressed air is returned to the compressor where useful work is recovered.

  14. Adaptive control of Hammerstein-Wiener nonlinear systems

    NASA Astrophysics Data System (ADS)

    Zhang, Bi; Hong, Hyokchan; Mao, Zhizhong

    2016-07-01

    The Hammerstein-Wiener model is a block-oriented model, having a linear dynamic block sandwiched by two static nonlinear blocks. This note develops an adaptive controller for a special form of Hammerstein-Wiener nonlinear systems which are parameterized by the key-term separation principle. The adaptive control law and recursive parameter estimation are updated by the use of internal variable estimations. By modeling the errors due to the estimation of internal variables, we establish convergence and stability properties. Theoretical results show that parameter estimation convergence and closed-loop system stability can be guaranteed under sufficient condition. From a qualitative analysis of the sufficient condition, we introduce an adaptive weighted factor to improve the performance of the adaptive controller. Numerical examples are given to confirm the results in this paper.

  15. Perception as a closed-loop convergence process

    PubMed Central

    Ahissar, Ehud; Assa, Eldad

    2016-01-01

    Perception of external objects involves sensory acquisition via the relevant sensory organs. A widely-accepted assumption is that the sensory organ is the first station in a serial chain of processing circuits leading to an internal circuit in which a percept emerges. This open-loop scheme, in which the interaction between the sensory organ and the environment is not affected by its concurrent downstream neuronal processing, is strongly challenged by behavioral and anatomical data. We present here a hypothesis in which the perception of external objects is a closed-loop dynamical process encompassing loops that integrate the organism and its environment and converging towards organism-environment steady-states. We discuss the consistency of closed-loop perception (CLP) with empirical data and show that it can be synthesized in a robotic setup. Testable predictions are proposed for empirical distinction between open and closed loop schemes of perception. DOI: http://dx.doi.org/10.7554/eLife.12830.001 PMID:27159238

  16. Model-Driven Safety Analysis of Closed-Loop Medical Systems

    PubMed Central

    Pajic, Miroslav; Mangharam, Rahul; Sokolsky, Oleg; Arney, David; Goldman, Julian; Lee, Insup

    2013-01-01

    In modern hospitals, patients are treated using a wide array of medical devices that are increasingly interacting with each other over the network, thus offering a perfect example of a cyber-physical system. We study the safety of a medical device system for the physiologic closed-loop control of drug infusion. The main contribution of the paper is the verification approach for the safety properties of closed-loop medical device systems. We demonstrate, using a case study, that the approach can be applied to a system of clinical importance. Our method combines simulation-based analysis of a detailed model of the system that contains continuous patient dynamics with model checking of a more abstract timed automata model. We show that the relationship between the two models preserves the crucial aspect of the timing behavior that ensures the conservativeness of the safety analysis. We also describe system design that can provide open-loop safety under network failure. PMID:24177176

  17. Model-Driven Safety Analysis of Closed-Loop Medical Systems.

    PubMed

    Pajic, Miroslav; Mangharam, Rahul; Sokolsky, Oleg; Arney, David; Goldman, Julian; Lee, Insup

    2012-10-26

    In modern hospitals, patients are treated using a wide array of medical devices that are increasingly interacting with each other over the network, thus offering a perfect example of a cyber-physical system. We study the safety of a medical device system for the physiologic closed-loop control of drug infusion. The main contribution of the paper is the verification approach for the safety properties of closed-loop medical device systems. We demonstrate, using a case study, that the approach can be applied to a system of clinical importance. Our method combines simulation-based analysis of a detailed model of the system that contains continuous patient dynamics with model checking of a more abstract timed automata model. We show that the relationship between the two models preserves the crucial aspect of the timing behavior that ensures the conservativeness of the safety analysis. We also describe system design that can provide open-loop safety under network failure. PMID:24177176

  18. Fault Detection and Safety in Closed-Loop Artificial Pancreas Systems

    PubMed Central

    2014-01-01

    Continuous subcutaneous insulin infusion pumps and continuous glucose monitors enable individuals with type 1 diabetes to achieve tighter blood glucose control and are critical components in a closed-loop artificial pancreas. Insulin infusion sets can fail and continuous glucose monitor sensor signals can suffer from a variety of anomalies, including signal dropout and pressure-induced sensor attenuations. In addition to hardware-based failures, software and human-induced errors can cause safety-related problems. Techniques for fault detection, safety analyses, and remote monitoring techniques that have been applied in other industries and applications, such as chemical process plants and commercial aircraft, are discussed and placed in the context of a closed-loop artificial pancreas. PMID:25049365

  19. Fault detection and safety in closed-loop artificial pancreas systems.

    PubMed

    Bequette, B Wayne

    2014-11-01

    Continuous subcutaneous insulin infusion pumps and continuous glucose monitors enable individuals with type 1 diabetes to achieve tighter blood glucose control and are critical components in a closed-loop artificial pancreas. Insulin infusion sets can fail and continuous glucose monitor sensor signals can suffer from a variety of anomalies, including signal dropout and pressure-induced sensor attenuations. In addition to hardware-based failures, software and human-induced errors can cause safety-related problems. Techniques for fault detection, safety analyses, and remote monitoring techniques that have been applied in other industries and applications, such as chemical process plants and commercial aircraft, are discussed and placed in the context of a closed-loop artificial pancreas. PMID:25049365

  20. Closed-Loop, Multichannel Experimentation Using the Open-Source NeuroRighter Electrophysiology Platform

    PubMed Central

    Newman, Jonathan P.; Zeller-Townson, Riley; Fong, Ming-Fai; Arcot Desai, Sharanya; Gross, Robert E.; Potter, Steve M.

    2013-01-01

    Single neuron feedback control techniques, such as voltage clamp and dynamic clamp, have enabled numerous advances in our understanding of ion channels, electrochemical signaling, and neural dynamics. Although commercially available multichannel recording and stimulation systems are commonly used for studying neural processing at the network level, they provide little native support for real-time feedback. We developed the open-source NeuroRighter multichannel electrophysiology hardware and software platform for closed-loop multichannel control with a focus on accessibility and low cost. NeuroRighter allows 64 channels of stimulation and recording for around US $10,000, along with the ability to integrate with other software and hardware. Here, we present substantial enhancements to the NeuroRighter platform, including a redesigned desktop application, a new stimulation subsystem allowing arbitrary stimulation patterns, low-latency data servers for accessing data streams, and a new application programming interface (API) for creating closed-loop protocols that can be inserted into NeuroRighter as plugin programs. This greatly simplifies the design of sophisticated real-time experiments without sacrificing the power and speed of a compiled programming language. Here we present a detailed description of NeuroRighter as a stand-alone application, its plugin API, and an extensive set of case studies that highlight the system’s abilities for conducting closed-loop, multichannel interfacing experiments. PMID:23346047

  1. Real-time, closed-loop dual-wavelength optical polarimetry for glucose monitoring

    NASA Astrophysics Data System (ADS)

    Malik, Bilal H.; Coté, Gerard L.

    2010-01-01

    The development of a real-time, dual-wavelength optical polarimetric system to ultimately probe the aqueous humor glucose concentrations as a means of noninvasive diabetic glucose monitoring is the long-term goal of this research. The key impact of the work is the development of an approach for the reduction of the time-variant corneal birefringence due to motion artifact, which is still a limiting factor preventing the realization of such a device. Our dual-wavelength approach utilizes real-time, closed-loop feedback that employs a classical three-term feedback controller and efficiently reduces the effect of motion artifact that appears as a common noise source for both wavelengths. In vitro results are shown for the open-loop system, and although the dual-wavelength system helps to reduce the noise, it is shown that closed-loop control is necessary to bring the noise down to a sufficient level for physiological monitoring. Specifically, in vitro measurement results with the closed-loop dual-wavelength approach demonstrate a sensitivity of 12.8 mg/dl across the physiologic glucose range in the presence of time-variant test cell birefringence. Overall, it is shown that this polarimetric system has the potential to be used as a noninvasive measure of glucose for diabetes.

  2. Adaptive hybrid intelligent control for uncertain nonlinear dynamical systems.

    PubMed

    Wang, Chi-Hsu; Lin, Tsung-Chih; Lee, Tsu-Tian; Liu, Han-Leih

    2002-01-01

    A new hybrid direct/indirect adaptive fuzzy neural network (FNN) controller with a state observer and supervisory controller for a class of uncertain nonlinear dynamic systems is developed in this paper. The hybrid adaptive FNN controller, the free parameters of which can be tuned on-line by an observer-based output feedback control law and adaptive law, is a combination of direct and indirect adaptive FNN controllers. A weighting factor, which can be adjusted by the tradeoff between plant knowledge and control knowledge, is adopted to sum together the control efforts from indirect adaptive FNN controller and direct adaptive FNN controller. Furthermore, a supervisory controller is appended into the FNN controller to force the state to be within the constraint set. Therefore, if the FNN controller cannot maintain the stability, the supervisory controller starts working to guarantee stability. On the other hand, if the FNN controller works well, the supervisory controller will be deactivated. The overall adaptive scheme guarantees the global stability of the resulting closed-loop system in the sense that all signals involved are uniformly bounded. Two nonlinear systems, namely, inverted pendulum system and Chua's (1989) chaotic circuit, are fully illustrated to track sinusoidal signals. The resulting hybrid direct/indirect FNN control systems show better performances, i.e., tracking error and control effort can be made smaller and it is more flexible during the design process.

  3. Conceptualization and validation of an open-source closed-loop deep brain stimulation system in rat.

    PubMed

    Wu, Hemmings; Ghekiere, Hartwin; Beeckmans, Dorien; Tambuyzer, Tim; van Kuyck, Kris; Aerts, Jean-Marie; Nuttin, Bart

    2015-01-01

    Conventional deep brain stimulation (DBS) applies constant electrical stimulation to specific brain regions to treat neurological disorders. Closed-loop DBS with real-time feedback is gaining attention in recent years, after proved more effective than conventional DBS in terms of pathological symptom control clinically. Here we demonstrate the conceptualization and validation of a closed-loop DBS system using open-source hardware. We used hippocampal theta oscillations as system input, and electrical stimulation in the mesencephalic reticular formation (mRt) as controller output. It is well documented that hippocampal theta oscillations are highly related to locomotion, while electrical stimulation in the mRt induces freezing. We used an Arduino open-source microcontroller between input and output sources. This allowed us to use hippocampal local field potentials (LFPs) to steer electrical stimulation in the mRt. Our results showed that closed-loop DBS significantly suppressed locomotion compared to no stimulation, and required on average only 56% of the stimulation used in open-loop DBS to reach similar effects. The main advantages of open-source hardware include wide selection and availability, high customizability, and affordability. Our open-source closed-loop DBS system is effective, and warrants further research using open-source hardware for closed-loop neuromodulation. PMID:25897892

  4. Conceptualization and validation of an open-source closed-loop deep brain stimulation system in rat

    PubMed Central

    Wu, Hemmings; Ghekiere, Hartwin; Beeckmans, Dorien; Tambuyzer, Tim; van Kuyck, Kris; Aerts, Jean-Marie; Nuttin, Bart

    2015-01-01

    Conventional deep brain stimulation (DBS) applies constant electrical stimulation to specific brain regions to treat neurological disorders. Closed-loop DBS with real-time feedback is gaining attention in recent years, after proved more effective than conventional DBS in terms of pathological symptom control clinically. Here we demonstrate the conceptualization and validation of a closed-loop DBS system using open-source hardware. We used hippocampal theta oscillations as system input, and electrical stimulation in the mesencephalic reticular formation (mRt) as controller output. It is well documented that hippocampal theta oscillations are highly related to locomotion, while electrical stimulation in the mRt induces freezing. We used an Arduino open-source microcontroller between input and output sources. This allowed us to use hippocampal local field potentials (LFPs) to steer electrical stimulation in the mRt. Our results showed that closed-loop DBS significantly suppressed locomotion compared to no stimulation, and required on average only 56% of the stimulation used in open-loop DBS to reach similar effects. The main advantages of open-source hardware include wide selection and availability, high customizability, and affordability. Our open-source closed-loop DBS system is effective, and warrants further research using open-source hardware for closed-loop neuromodulation. PMID:25897892

  5. Closed-loop Brain-Machine-Body Interfaces for Noninvasive Rehabilitation of Movement Disorders

    PubMed Central

    Broccard, Frédéric D.; Mullen, Tim; Chi, Yu Mike; Peterson, David; Iversen, John R.; Arnold, Mike; Kreutz-Delgado, Kenneth; Jung, Tzyy-Ping; Makeig, Scott; Poizner, Howard; Sejnowski, Terrence; Cauwenberghs, Gert

    2014-01-01

    Traditional approaches for neurological rehabilitation of patients affected with movement disorders, such as Parkinson's disease (PD), dystonia, and essential tremor (ET) consist mainly of oral medication, physical therapy, and botulinum toxin injections. Recently, the more invasive method of deep brain stimulation (DBS) showed significant improvement of the physical symptoms associated with these disorders. In the past several years, the adoption of feedback control theory helped DBS protocols to take into account the progressive and dynamic nature of these neurological movement disorders that had largely been ignored so far. As a result, a more efficient and effective management of PD cardinal symptoms has emerged. In this paper, we review closed-loop systems for rehabilitation of movement disorders, focusing on PD, for which several invasive and noninvasive methods have been developed during the last decade, reducing the complications and side effects associated with traditional rehabilitation approaches and paving the way for tailored individual therapeutics. We then present a novel, transformative, noninvasive closed-loop framework based on force neurofeedback and discuss several future developments of closed-loop systems that might bring us closer to individualized solutions for neurological rehabilitation of movement disorders. PMID:24833254

  6. An adaptive human response mechanism controlling the V/STOL aircraft. Appendix 3: The adaptive control model of a pilot in V/STOL aircraft control loops. M.S. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Kucuk, Senol

    1988-01-01

    Importance of the role of human operator in control systems has led to the particular area of manual control theory. Human describing functions were developed to model human behavior for manual control studies to take advantage of the successful and safe human operations. A single variable approach is presented that can be extended for multi-variable tasks where a low order human response model is used together with its rules, to adapt the model on-line, being capable of responding to the changes in the controlled element dynamics. Basic control theory concepts are used to combine the model, constrained with the physical observations, particularly, for the case of aircraft control. Pilot experience is represented as the initial model parameters. An adaptive root-locus method is presented as the adaptation law of the model where the closed loop bandwidth of the system is to be preserved in a stable manner with the adjustments of the pilot handling qualities which relate the latter to the closed loop bandwidth and damping of the closed loop pilot aircraft combination. A Kalman filter parameter estimator is presented as the controlled element identifier of the adaptive model where any discrepancies of the open loop dynamics from the presented one, are sensed to be compensated.

  7. The Effects of Closed-Loop Medical Devices on the Autonomy and Accountability of Persons and Systems.

    PubMed

    Kellmeyer, Philipp; Cochrane, Thomas; Müller, Oliver; Mitchell, Christine; Ball, Tonio; Fins, Joseph J; Biller-Andorno, Nikola

    2016-10-01

    Closed-loop medical devices such as brain-computer interfaces are an emerging and rapidly advancing neurotechnology. The target patients for brain-computer interfaces (BCIs) are often severely paralyzed, and thus particularly vulnerable in terms of personal autonomy, decisionmaking capacity, and agency. Here we analyze the effects of closed-loop medical devices on the autonomy and accountability of both persons (as patients or research participants) and neurotechnological closed-loop medical systems. We show that although BCIs can strengthen patient autonomy by preserving or restoring communicative abilities and/or motor control, closed-loop devices may also create challenges for moral and legal accountability. We advocate the development of a comprehensive ethical and legal framework to address the challenges of emerging closed-loop neurotechnologies like BCIs and stress the centrality of informed consent and refusal as a means to foster accountability. We propose the creation of an international neuroethics task force with members from medical neuroscience, neuroengineering, computer science, medical law, and medical ethics, as well as representatives of patient advocacy groups and the public. PMID:27634714

  8. The Effects of Closed-Loop Medical Devices on the Autonomy and Accountability of Persons and Systems.

    PubMed

    Kellmeyer, Philipp; Cochrane, Thomas; Müller, Oliver; Mitchell, Christine; Ball, Tonio; Fins, Joseph J; Biller-Andorno, Nikola

    2016-10-01

    Closed-loop medical devices such as brain-computer interfaces are an emerging and rapidly advancing neurotechnology. The target patients for brain-computer interfaces (BCIs) are often severely paralyzed, and thus particularly vulnerable in terms of personal autonomy, decisionmaking capacity, and agency. Here we analyze the effects of closed-loop medical devices on the autonomy and accountability of both persons (as patients or research participants) and neurotechnological closed-loop medical systems. We show that although BCIs can strengthen patient autonomy by preserving or restoring communicative abilities and/or motor control, closed-loop devices may also create challenges for moral and legal accountability. We advocate the development of a comprehensive ethical and legal framework to address the challenges of emerging closed-loop neurotechnologies like BCIs and stress the centrality of informed consent and refusal as a means to foster accountability. We propose the creation of an international neuroethics task force with members from medical neuroscience, neuroengineering, computer science, medical law, and medical ethics, as well as representatives of patient advocacy groups and the public.

  9. Adaptive control of Space Station during nominal operations with CMGs. [Control Moment Gyroscopes

    NASA Technical Reports Server (NTRS)

    Bishop, R. H.; Paynter, S. J.; Sunkel, J. W.

    1991-01-01

    An adaptive control approach is investigated for the Space Station. The main components of the adaptive controller are the parameter identification scheme, the control gain calculation, and the control law. The control law is the Space Station baseline control law. The control gain calculation is based on linear quadratic regulator theory with eigenvalue placement in a vertical strip. The parameter identification scheme is a real-time recursive extended Kalman filter which estimates the inertias and also provides an estimate of the unmodeled disturbances due to the aerodynamic torques and to the nonlinear effects. An analysis of the inertia estimation problem suggests that it is possible to compute accurate estimates of the Space Station inertias during nominal CMG (control moment gyro) operations. The closed-loop adaptive control law is shown to be capable of stabilizing the Space Station after large inertia changes. Results are presented for the pitch axis.

  10. Mechanical ventilation in orbit: emphasis on closed-loop ventilation.

    PubMed

    Kaczka, David W; Beck, George

    2004-09-01

    As part of a Crew Health Care Maintenance System onboard the International Space Station, the National Aeronautics and Space Administration has included a Respiratory Support Pack (RSP) to resuscitate or sustain a crew member with an acute impairment in pulmonary function. This article provides a critical appraisal of the RSP and of current strategies for mechanical ventilation in space. Various closed-loop ventilation strategies are reviewed,and their appropriateness for respiratory support in space is explored. Recommendations are made for enhancing and upgrading the current RSP to provide an injured crew member with the best possible chance of survival.

  11. Closed loop air cooling system for combustion turbines

    DOEpatents

    Huber, D.J.; Briesch, M.S.

    1998-07-21

    Convective cooling of turbine hot parts using a closed loop system is disclosed. Preferably, the present invention is applied to cooling the hot parts of combustion turbine power plants, and the cooling provided permits an increase in the inlet temperature and the concomitant benefits of increased efficiency and output. In preferred embodiments, methods and apparatus are disclosed wherein air is removed from the combustion turbine compressor and delivered to passages internal to one or more of a combustor and turbine hot parts. The air cools the combustor and turbine hot parts via convection and heat is transferred through the surfaces of the combustor and turbine hot parts. 1 fig.

  12. Closed loop air cooling system for combustion turbines

    DOEpatents

    Huber, David John; Briesch, Michael Scot

    1998-01-01

    Convective cooling of turbine hot parts using a closed loop system is disclosed. Preferably, the present invention is applied to cooling the hot parts of combustion turbine power plants, and the cooling provided permits an increase in the inlet temperature and the concomitant benefits of increased efficiency and output. In preferred embodiments, methods and apparatus are disclosed wherein air is removed from the combustion turbine compressor and delivered to passages internal to one or more of a combustor and turbine hot parts. The air cools the combustor and turbine hot parts via convection and heat is transferred through the surfaces of the combustor and turbine hot parts.

  13. Inverse spin Hall effect in a closed loop circuit

    SciTech Connect

    Omori, Y.; Auvray, F.; Wakamura, T.; Niimi, Y.; Fert, A.

    2014-06-16

    We present measurements of inverse spin Hall effects (ISHEs), in which the conversion of a spin current into a charge current via the ISHE is detected not as a voltage in a standard open circuit but directly as the charge current generated in a closed loop. The method is applied to the ISHEs of Bi-doped Cu and Pt. The derived expression of ISHE for the loop structure can relate the charge current flowing into the loop to the spin Hall angle of the SHE material and the resistance of the loop.

  14. Low power and highly precise closed-loop driving circuits for piezoelectric micromirrors with embedded capacitive position sensors

    NASA Astrophysics Data System (ADS)

    Rombach, S.; Marx, M.; Gu-Stoppel, S.; Manoli, Y.

    2016-03-01

    This work presents an integrated closed-loop driving circuit for previously reported PZT resonant micro-mirrors, which is based on embedded capacitive position sensors for minimizing the system footprint. Signals with a high SNR of 84 dB were measured, when the mechanical scan angle of the micro-mirror was 2°, so that high controlling resolution of 14 bit for the complete motion range of the mirror is enabled. The total power consumption of the closed-loop system is only 0.86mW. Measurement results of the closed-loop driven micromirror system are presented, demonstrating its competitiveness due to the great reliability, high precision and low-power consumption. Additionally, the implementation and performance of a self-resonant loop is discussed. Finally, the fabrication, temperature dependency and performance of embedded capacitive position sensors for single and dual axis PZT resonant micro-mirrors is evaluated and presented.

  15. Adaptive neural control for a class of nonlinearly parametric time-delay systems.

    PubMed

    Ho, Daniel W C; Li, Junmin; Niu, Yugang

    2005-05-01

    In this paper, an adaptive neural controller for a class of time-delay nonlinear systems with unknown nonlinearities is proposed. Based on a wavelet neural network (WNN) online approximation model, a state feedback adaptive controller is obtained by constructing a novel integral-type Lyapunov-Krasovskii functional, which also efficiently overcomes the controller singularity problem. It is shown that the proposed method guarantees the semiglobal boundedness of all signals in the adaptive closed-loop systems. An example is provided to illustrate the application of the approach.

  16. Tool for Turbine Engine Closed-Loop Transient Analysis (TTECTrA) Users' Guide

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey T.; Zinnecker, Alicia M.

    2014-01-01

    The tool for turbine engine closed-loop transient analysis (TTECTrA) is a semi-automated control design tool for subsonic aircraft engine simulations. At a specific flight condition, TTECTrA produces a basic controller designed to meet user-defined goals and containing only the fundamental limiters that affect the transient performance of the engine. The purpose of this tool is to provide the user a preliminary estimate of the transient performance of an engine model without the need to design a full nonlinear controller.

  17. Adaptive fuzzy output-feedback controller design for nonlinear time-delay systems with unknown control direction.

    PubMed

    Hua, Chang-Chun; Wang, Qing-Guo; Guan, Xin-Ping

    2009-04-01

    In this paper, the robust-control problem is investigated for a class of uncertain nonlinear time-delay systems via dynamic output-feedback approach. The considered system is in the strict-feedback form with unknown control direction. A full-order observer is constructed with the gains computed via linear matrix inequality at first. Then, with the bounds of uncertain functions known, we design the dynamic output-feedback controller such that the closed-loop system is asymptotically stable. Furthermore, when the bound functions of uncertainties are not available, the adaptive fuzzy-logic system is employed to approximate the uncertain function, and the corresponding output-feedback controller is designed. It is shown that the resulting closed-loop system is stable in the sense of semiglobal uniform ultimate boundedness. Finally, simulations are done to verify the feasibility and effectiveness of the obtained theoretical results.

  18. The Stomatogastric Nervous System as a Model for Studying Sensorimotor Interactions in Real-Time Closed-Loop Conditions

    PubMed Central

    Daur, Nelly; Diehl, Florian; Mader, Wolfgang; Stein, Wolfgang

    2012-01-01

    The perception of proprioceptive signals that report the internal state of the body is one of the essential tasks of the nervous system and helps to continuously adapt body movements to changing circumstances. Despite the impact of proprioceptive feedback on motor activity it has rarely been studied in conditions in which motor output and sensory activity interact as they do in behaving animals, i.e., in closed-loop conditions. The interaction of motor and sensory activities, however, can create emergent properties that may govern the functional characteristics of the system. We here demonstrate a method to use a well-characterized model system for central pattern generation, the stomatogastric nervous system, for studying these properties in vitro. We created a real-time computer model of a single-cell muscle tendon organ in the gastric mill of the crab foregut that uses intracellular current injections to control the activity of the biological proprioceptor. The resulting motor output of a gastric mill motor neuron is then recorded intracellularly and fed into a simple muscle model consisting of a series of low-pass filters. The muscle output is used to activate a one-dimensional Hodgkin–Huxley type model of the muscle tendon organ in real-time, allowing closed-loop conditions. Model properties were either hand tuned to achieve the best match with data from semi-intact muscle preparations, or an exhaustive search was performed to determine the best set of parameters. We report the real-time capabilities of our models, its performance and its interaction with the biological motor system. PMID:22435059

  19. Decentralized adaptive control

    NASA Technical Reports Server (NTRS)

    Oh, B. J.; Jamshidi, M.; Seraji, H.

    1988-01-01

    A decentralized adaptive control is proposed to stabilize and track the nonlinear, interconnected subsystems with unknown parameters. The adaptation of the controller gain is derived by using model reference adaptive control theory based on Lyapunov's direct method. The adaptive gains consist of sigma, proportional, and integral combination of the measured and reference values of the corresponding subsystem. The proposed control is applied to the joint control of a two-link robot manipulator, and the performance in computer simulation corresponds with what is expected in theoretical development.

  20. Verification and Tuning of an Adaptive Controller for an Unmanned Air Vehicle

    NASA Technical Reports Server (NTRS)

    Crespo, Luis G.; Matsutani, Megumi; Annaswamy, Anuradha M.

    2010-01-01

    This paper focuses on the analysis and tuning of a controller based on the Adaptive Control Technology for Safe Flight (ACTS) architecture. The ACTS architecture consists of a nominal, non-adaptive controller that provides satisfactory performance under nominal flying conditions, and an adaptive controller that provides robustness under off-nominal ones. A framework unifying control verification and gain tuning is used to make the controller s ability to satisfy the closed-loop requirements more robust to uncertainty. In this paper we tune the gains of both controllers using this approach. Some advantages and drawbacks of adaptation are identified by performing a global robustness assessment of both the adaptive controller and its non-adaptive counterpart. The analyses used to determine these characteristics are based on evaluating the degradation in closed-loop performance resulting from uncertainties having increasing levels of severity. The specific adverse conditions considered can be grouped into three categories: aerodynamic uncertainties, structural damage, and actuator failures. These failures include partial and total loss of control effectiveness, locked-in-place control surface deflections, and engine out conditions. The requirements considered are the peak structural loading, the ability of the controller to track pilot commands, the ability of the controller to keep the aircraft s state within the reliable flight envelope, and the handling/riding qualities of the aircraft. The nominal controller resulting from these tuning strategies was successfully validated using the NASA GTM Flight Test Vehicle.

  1. Variable Neural Adaptive Robust Control: A Switched System Approach

    SciTech Connect

    Lian, Jianming; Hu, Jianghai; Zak, Stanislaw H.

    2015-05-01

    Variable neural adaptive robust control strategies are proposed for the output tracking control of a class of multi-input multi-output uncertain systems. The controllers incorporate a variable-structure radial basis function (RBF) network as the self-organizing approximator for unknown system dynamics. The variable-structure RBF network solves the problem of structure determination associated with fixed-structure RBF networks. It can determine the network structure on-line dynamically by adding or removing radial basis functions according to the tracking performance. The structure variation is taken into account in the stability analysis of the closed-loop system using a switched system approach with the aid of the piecewise quadratic Lyapunov function. The performance of the proposed variable neural adaptive robust controllers is illustrated with simulations.

  2. Adaptive neural control of nonlinear time-delay systems with unknown virtual control coefficients.

    PubMed

    Ge, Shuzhi Sam; Hong, Fan; Lee, Tong Heng

    2004-02-01

    In this paper, adaptive neural control is presented for a class of strict-feedback nonlinear systems with unknown time delays. The proposed design method does not require a priori knowledge of the signs of the unknown virtual control coefficients. The unknown time delays are compensated for using appropriate Lyapunov-Krasovskii functionals in the design. It is proved that the proposed backstepping design method is able to guarantee semiglobal uniformly ultimately boundedness of all the signals in the closed-loop. In addition, the output of the system is proven to converge to a small neighborhood of the origin. Simulation results are provided to show the effectiveness of the proposed approach.

  3. Learning from adaptive neural dynamic surface control of strict-feedback systems.

    PubMed

    Wang, Min; Wang, Cong

    2015-06-01

    Learning plays an essential role in autonomous control systems. However, how to achieve learning in the nonstationary environment for nonlinear systems is a challenging problem. In this paper, we present learning method for a class of n th-order strict-feedback systems by adaptive dynamic surface control (DSC) technology, which achieves the human-like ability of learning by doing and doing with learned knowledge. To achieve the learning, this paper first proposes stable adaptive DSC with auxiliary first-order filters, which ensures the boundedness of all the signals in the closed-loop system and the convergence of tracking errors in a finite time. With the help of DSC, the derivative of the filter output variable is used as the neural network (NN) input instead of traditional intermediate variables. As a result, the proposed adaptive DSC method reduces greatly the dimension of NN inputs, especially for high-order systems. After the stable DSC design, we decompose the stable closed-loop system into a series of linear time-varying perturbed subsystems. Using a recursive design, the recurrent property of NN input variables is easily verified since the complexity is overcome using DSC. Subsequently, the partial persistent excitation condition of the radial basis function NN is satisfied. By combining a state transformation, accurate approximations of the closed-loop system dynamics are recursively achieved in a local region along recurrent orbits. Then, the learning control method using the learned knowledge is proposed to achieve the closed-loop stability and the improved control performance. Simulation studies are performed to demonstrate the proposed scheme can not only reuse the learned knowledge to achieve the better control performance with the faster tracking convergence rate and the smaller tracking error but also greatly alleviate the computational burden because of reducing the number and complexity of NN input variables.

  4. Design of biomass management systems and components for closed loop life support systems

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The goal of the EGM 4000/1 Design class was to investigate a Biomass Management System (BMS) and design, fabricate, and test components for biomass management in a closed-loop life support system (CLLSS). The designs explored were to contribute to the development of NASA's Controlled Ecological Life Support System (CELSS) at Kennedy Space Center. Designs included a sectored plant growth unit, a container and transfer mechanism, and an air curtain system for fugitive particle control. The work performed by the class members is summarized.

  5. Software systems testing of a closed loop tracking system using a SIMULINK-based simulation

    NASA Astrophysics Data System (ADS)

    Robinson, Brendan; Sasaki, Doreen M.

    2000-07-01

    This paper discuses a simulation approach that has streamlined the real-time software development process for a closed loop image-based tracking system. The MATLAB/SIMULINK simulation consists of elements constructed from common source modules shared with the deliverable system. The simulation has provided a tool to support algorithm development for the fundamental system components, including a system controller, a servo controller, and an image processor. In addition, the simulation has provided a testbed for verification of system performance. The context for this application is the low rate initial production phase of a tactical airborne avionics system that includes an image-based tracking system.

  6. A closed-loop model of the respiratory system: focus on hypercapnia and active expiration.

    PubMed

    Molkov, Yaroslav I; Shevtsova, Natalia A; Park, Choongseok; Ben-Tal, Alona; Smith, Jeffrey C; Rubin, Jonathan E; Rybak, Ilya A

    2014-01-01

    Breathing is a vital process providing the exchange of gases between the lungs and atmosphere. During quiet breathing, pumping air from the lungs is mostly performed by contraction of the diaphragm during inspiration, and muscle contraction during expiration does not play a significant role in ventilation. In contrast, during intense exercise or severe hypercapnia forced or active expiration occurs in which the abdominal "expiratory" muscles become actively involved in breathing. The mechanisms of this transition remain unknown. To study these mechanisms, we developed a computational model of the closed-loop respiratory system that describes the brainstem respiratory network controlling the pulmonary subsystem representing lung biomechanics and gas (O2 and CO2) exchange and transport. The lung subsystem provides two types of feedback to the neural subsystem: a mechanical one from pulmonary stretch receptors and a chemical one from central chemoreceptors. The neural component of the model simulates the respiratory network that includes several interacting respiratory neuron types within the Bötzinger and pre-Bötzinger complexes, as well as the retrotrapezoid nucleus/parafacial respiratory group (RTN/pFRG) representing the central chemoreception module targeted by chemical feedback. The RTN/pFRG compartment contains an independent neural generator that is activated at an increased CO2 level and controls the abdominal motor output. The lung volume is controlled by two pumps, a major one driven by the diaphragm and an additional one activated by abdominal muscles and involved in active expiration. The model represents the first attempt to model the transition from quiet breathing to breathing with active expiration. The model suggests that the closed-loop respiratory control system switches to active expiration via a quantal acceleration of expiratory activity, when increases in breathing rate and phrenic amplitude no longer provide sufficient ventilation. The model

  7. Adaptive Control of a Transport Aircraft Using Differential Thrust

    NASA Technical Reports Server (NTRS)

    Stepanyan, Vahram; Krishnakumar, Kalmanje; Nguyen, Nhan

    2009-01-01

    The paper presents an adaptive control technique for a damaged large transport aircraft subject to unknown atmospheric disturbances such as wind gust or turbulence. It is assumed that the damage results in vertical tail loss with no rudder authority, which is replaced with a differential thrust input. The proposed technique uses the adaptive prediction based control design in conjunction with the time scale separation principle, based on the singular perturbation theory. The application of later is necessitated by the fact that the engine response to a throttle command is substantially slow that the angular rate dynamics of the aircraft. It is shown that this control technique guarantees the stability of the closed-loop system and the tracking of a given reference model. The simulation example shows the benefits of the approach.

  8. Verifiable Adaptive Control with Analytical Stability Margins by Optimal Control Modification

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.

    2010-01-01

    This paper presents a verifiable model-reference adaptive control method based on an optimal control formulation for linear uncertain systems. A predictor model is formulated to enable a parameter estimation of the system parametric uncertainty. The adaptation is based on both the tracking error and predictor error. Using a singular perturbation argument, it can be shown that the closed-loop system tends to a linear time invariant model asymptotically under an assumption of fast adaptation. A stability margin analysis is given to estimate a lower bound of the time delay margin using a matrix measure method. Using this analytical method, the free design parameter n of the optimal control modification adaptive law can be determined to meet a specification of stability margin for verification purposes.

  9. Indirect model reference adaptive control for a class of fractional order systems

    NASA Astrophysics Data System (ADS)

    Chen, Yuquan; Wei, Yiheng; Liang, Shu; Wang, Yong

    2016-10-01

    This article focuses on the indirect model reference adaptive control problem for fractional order systems. A constrained gradient estimation method was established firstly, since parameter estimation is part and parcel of the whole control problem. Then a novel adaptive control law is designed, from which the two problems, i.e., parameter estimation and reference tracking, can be unified perfectly. On these basis, an effective control scheme is established. The stability of the resulting closed-loop system is analyzed rigorously via indirect Lyapunov method and frequency distributed model. Finally, a careful simulation study is reported to illustrate the effectiveness of the proposed scheme.

  10. Adaptive neural control for a class of perturbed strict-feedback nonlinear time-delay systems.

    PubMed

    Wang, Min; Chen, Bing; Shi, Peng

    2008-06-01

    This paper proposes a novel adaptive neural control scheme for a class of perturbed strict-feedback nonlinear time-delay systems with unknown virtual control coefficients. Based on the radial basis function neural network online approximation capability, an adaptive neural controller is presented by combining the backstepping approach and Lyapunov-Krasovskii functionals. The proposed controller guarantees the semiglobal boundedness of all the signals in the closed-loop system and contains minimal learning parameters. Finally, three simulation examples are given to demonstrate the effectiveness and applicability of the proposed scheme.

  11. Adaptive identification and control of structural dynamics systems using recursive lattice filters

    NASA Technical Reports Server (NTRS)

    Sundararajan, N.; Montgomery, R. C.; Williams, J. P.

    1985-01-01

    A new approach for adaptive identification and control of structural dynamic systems by using least squares lattice filters thar are widely used in the signal processing area is presented. Testing procedures for interfacing the lattice filter identification methods and modal control method for stable closed loop adaptive control are presented. The methods are illustrated for a free-free beam and for a complex flexible grid, with the basic control objective being vibration suppression. The approach is validated by using both simulations and experimental facilities available at the Langley Research Center.

  12. Implementation of Adaptive Digital Controllers on Programmable Logic Devices

    NASA Technical Reports Server (NTRS)

    Gwaltney, David A.; King, Kenneth D.; Smith, Keary J.; Montenegro, Justino (Technical Monitor)

    2002-01-01

    Much has been made of the capabilities of Field Programmable Gate Arrays (FPGA's) in the hardware implementation of fast digital signal processing functions. Such capability also makes an FPGA a suitable platform for the digital implementation of closed loop controllers. Other researchers have implemented a variety of closed-loop digital controllers on FPGA's. Some of these controllers include the widely used Proportional-Integral-Derivative (PID) controller, state space controllers, neural network and fuzzy logic based controllers. There are myriad advantages to utilizing an FPGA for discrete-time control functions which include the capability for reconfiguration when SRAM- based FPGA's are employed, fast parallel implementation of multiple control loops and implementations that can meet space level radiation tolerance requirements in a compact form-factor. Generally, a software implementation on a Digital Signal Processor (DSP) device or microcontroller is used to implement digital controllers. At Marshall Space Flight Center, the Control Electronics Group has been studying adaptive discrete-time control of motor driven actuator systems using DSP devices. While small form factor, commercial DSP devices are now available with event capture, data conversion, Pulse Width Modulated (PWM) outputs and communication peripherals, these devices are not currently available in designs and packages which meet space level radiation requirements. In general, very few DSP devices are produced that are designed to meet any level of radiation tolerance or hardness. An alternative is required for compact implementation of such functionality to withstand the harsh environment encountered on spacemap. The goal of this effort is to create a fully digital, flight ready controller design that utilizes an FPGA for implementation of signal conditioning for control feedback signals, generation of commands to the controlled system, and hardware insertion of adaptive-control algorithm

  13. Implementation of Adaptive Digital Controllers on Programmable Logic Devices

    NASA Technical Reports Server (NTRS)

    Gwaltney, David A.; King, Kenneth D.; Smith, Keary J.; Monenegro, Justino (Technical Monitor)

    2002-01-01

    Much has been made of the capabilities of FPGA's (Field Programmable Gate Arrays) in the hardware implementation of fast digital signal processing. Such capability also makes an FPGA a suitable platform for the digital implementation of closed loop controllers. Other researchers have implemented a variety of closed-loop digital controllers on FPGA's. Some of these controllers include the widely used proportional-integral-derivative (PID) controller, state space controllers, neural network and fuzzy logic based controllers. There are myriad advantages to utilizing an FPGA for discrete-time control functions which include the capability for reconfiguration when SRAM-based FPGA's are employed, fast parallel implementation of multiple control loops and implementations that can meet space level radiation tolerance requirements in a compact form-factor. Generally, a software implementation on a DSP (Digital Signal Processor) or microcontroller is used to implement digital controllers. At Marshall Space Flight Center, the Control Electronics Group has been studying adaptive discrete-time control of motor driven actuator systems using digital signal processor (DSP) devices. While small form factor, commercial DSP devices are now available with event capture, data conversion, pulse width modulated (PWM) outputs and communication peripherals, these devices are not currently available in designs and packages which meet space level radiation requirements. In general, very few DSP devices are produced that are designed to meet any level of radiation tolerance or hardness. The goal of this effort is to create a fully digital, flight ready controller design that utilizes an FPGA for implementation of signal conditioning for control feedback signals, generation of commands to the controlled system, and hardware insertion of adaptive control algorithm approaches. An alternative is required for compact implementation of such functionality to withstand the harsh environment

  14. Online Parameter Estimation and Adaptive Control of Magnetic Wire Actuators

    NASA Astrophysics Data System (ADS)

    Karve, Harshwardhan

    Cantilevered magnetic wires and fibers can be used as actuators in microfluidic applications. The actuator may be unstable in some range of displacements. Precise position control is required for actuation. The goal of this work is to develop position controllers for cantilevered magnetic wires. A simple exact model knowledge (EMK) controller can be used for position control, but the actuator needs to be modeled accurately for the EMK controller to work. Continuum models have been proposed for magnetic wires in literature. Reduced order models have also been proposed. A one degree of freedom model sufficiently describes the dynamics of a cantilevered wire in the field of one magnet over small displacements. This reduced order model is used to develop the EMK controller here. The EMK controller assumes that model parameters are known accurately. Some model parameters depend on the magnetic field. However, the effect of the magnetic field on the wire is difficult to measure in practice. Stability analysis shows that an inaccurate estimate of the magnetic field introduces parametric perturbations in the closed loop system. This makes the system less robust to disturbances. Therefore, the model parameters need to be estimated accurately for the EMK controller to work. An adaptive observer that can estimate system parameters on-line and reduce parametric perturbations is designed here. The adaptive observer only works if the system is stable. The EMK controller is not guaranteed to stabilize the system under perturbations. Precise tuning of parameters is required to stabilize the system using the EMK controller. Therefore, a controller that stabilizes the system using imprecise model parameters is required for the observer to work as intended. The adaptive observer estimates system states and parameters. These states and parameters are used here to implement an indirect adaptive controller. This indirect controller can stabilize the system using imprecise initial

  15. Closed-loop thrust and pressure profile throttling of a nitrous oxide/hydroxyl-terminated polybutadiene hybrid rocket motor

    NASA Astrophysics Data System (ADS)

    Peterson, Zachary W.

    Hybrid motors that employ non-toxic, non-explosive components with a liquid oxidizer and a solid hydrocarbon fuel grain have inherently safe operating characteristics. The inherent safety of hybrid rocket motors offers the potential to greatly reduce overall operating costs. Another key advantage of hybrid rocket motors is the potential for in-flight shutdown, restart, and throttle by controlling the pressure drop between the oxidizer tank and the injector. This research designed, developed, and ground tested a closed-loop throttle controller for a hybrid rocket motor using nitrous oxide and hydroxyl-terminated polybutadiene as propellants. The research simultaneously developed closed-loop throttle algorithms and lab scale motor hardware to evaluate the fidelity of the throttle simulations and algorithms. Initial open-loop motor tests were performed to better classify system parameters and to validate motor performance values. Deep-throttle open-loop tests evaluated limits of stable thrust that can be achieved on the test hardware. Open-loop tests demonstrated the ability to throttle the motor to less than 10% of maximum thrust with little reduction in effective specific impulse and acoustical stability. Following the open-loop development, closed-loop, hardware-in-the-loop tests were performed. The closed-loop controller successfully tracked prescribed step and ramp command profiles with a high degree of fidelity. Steady-state accuracy was greatly improved over uncontrolled thrust.

  16. Investigation of the overall transient performance of the industrial two-phase closed loop thermosyphon

    NASA Astrophysics Data System (ADS)

    Vincent, Charles C. J.; Kok, Jim B. W.

    1992-06-01

    The two-phase closed loop thermosyphon is investigated with emphasis on the overall performance in transient operation. The control volume approach is the base of a global analysis describing the motion of vapor and liquid phases of the thermosyphon system in one-dimensional equations. Interfacial shear forces are neglected as only co-current flows are present. Heat transfer coefficients are based on empirical correlations. It is found that the density ratio vapor-liquid, dimensionless friction coefficient, and water column length determine respectively the overall dynamic behavior characteristics such as response time, damping, and oscillation frequency.

  17. A Hardware Platform for Tuning of MEMS Devices Using Closed-Loop Frequency Response

    NASA Technical Reports Server (NTRS)

    Ferguson, Michael I.; MacDonald, Eric; Foor, David

    2005-01-01

    We report on the development of a hardware platform for integrated tuning and closed-loop operation of MEMS gyroscopes. The platform was developed and tested for the second generation JPL/Boeing Post-Resonator MEMS gyroscope. The control of this device is implemented through a digital design on a Field Programmable Gate Array (FPGA). A software interface allows the user to configure, calibrate, and tune the bias voltages on the micro-gyro. The interface easily transitions to an embedded solution that allows for the miniaturization of the system to a single chip.

  18. Nonlinear analysis of a closed-loop tractor-semitrailer vehicle system with time delay

    NASA Astrophysics Data System (ADS)

    Liu, Zhaoheng; Hu, Kun; Chung, Kwok-wai

    2016-08-01

    In this paper, a nonlinear analysis is performed on a closed-loop system of articulated heavy vehicles with driver steering control. The nonlinearity arises from the nonlinear cubic tire force model. An integration method is employed to derive an analytical periodic solution of the system in the neighbourhood of the critical speed. The results show that excellent accuracy can be achieved for the calculation of periodic solutions arising from Hopf bifurcation of the vehicle motion. A criterion is obtained for detecting the Bautin bifurcation which separates branches of supercritical and subcritical Hopf bifurcations. The integration method is compared to the incremental harmonic balance method in both supercritical and subcritical scenarios.

  19. New trends in diabetes management: mobile telemedicine closed-loop system.

    PubMed

    Hernando, M Elena; Gómez, Enrique J; Gili, Antonio; Gómez, Mónica; García, Gema; del Pozo, Francisco

    2004-01-01

    The rapid growth and development of information technologies over recent years, in the areas of mobile and wireless technologies is shaping a new technological scenario of telemedicine in diabetes. This telemedicine scenario can play an important role for further acceptance by diabetic patients of the existing continuous glucose monitoring systems and insulin pumps with the final goal of improving current therapeutic procedures. This paper describes a Personal Smart Assistant integrated in a multi-access telemedicine architecture for the implementation of a mobile telemedicine closed-loop system for diabetes management. The system is being evaluated within the European Union project named INCA ("Intelligent Control Assistant for Diabetes").

  20. Reverse engineering of free-form surface based on the closed-loop theory.

    PubMed

    He, Xue Ming; He, Jun Fei; Wu, Mei Ping; Zhang, Rong; Ji, Xiao Gang

    2015-01-01

    To seek better methods of measurement and more accurate model of reconstruction in the field of reverse engineering has been the focus of researchers. Based on this, a new method of adaptive measurement, real-time reconstruction, and online evaluation of free-form surface was presented in this paper. The coordinates and vectors of the prediction points are calculated according to a Bézier curve which is fitted by measured points. Final measured point cloud distribution is in agreement with the geometric characteristics of the free-form surfaces. Fitting the point cloud to a surface model by the nonuniform B-spline method, extracting some check points from the surface models based on grids and a feature on the surface, review the location of these check points on the surface with CMM and evaluate the model, and then update the surface model to meet the accuracy. Integrated measurement, reconstruction, and evaluation, with the closed-loop reverse process, established an accurate model. The results of example show that the measuring points are distributed over the surface according to curvature, and the reconstruction model can be completely expressed with micron level. Meanwhile, measurement, reconstruction and evaluation are integrated in forms of closed-loop reverse system.

  1. Reverse Engineering of Free-Form Surface Based on the Closed-Loop Theory

    PubMed Central

    He, Xue Ming; He, Jun Fei; Wu, Mei Ping; Zhang, Rong; Ji, Xiao Gang

    2015-01-01

    To seek better methods of measurement and more accurate model of reconstruction in the field of reverse engineering has been the focus of researchers. Based on this, a new method of adaptive measurement, real-time reconstruction, and online evaluation of free-form surface was presented in this paper. The coordinates and vectors of the prediction points are calculated according to a Bézier curve which is fitted by measured points. Final measured point cloud distribution is in agreement with the geometric characteristics of the free-form surfaces. Fitting the point cloud to a surface model by the nonuniform B-spline method, extracting some check points from the surface models based on grids and a feature on the surface, review the location of these check points on the surface with CMM and evaluate the model, and then update the surface model to meet the accuracy. Integrated measurement, reconstruction, and evaluation, with the closed-loop reverse process, established an accurate model. The results of example show that the measuring points are distributed over the surface according to curvature, and the reconstruction model can be completely expressed with micron level. Meanwhile, measurement, reconstruction and evaluation are integrated in forms of closed-loop reverse system. PMID:25879078

  2. Stability and Performance Metrics for Adaptive Flight Control

    NASA Technical Reports Server (NTRS)

    Stepanyan, Vahram; Krishnakumar, Kalmanje; Nguyen, Nhan; VanEykeren, Luarens

    2009-01-01

    This paper addresses the problem of verifying adaptive control techniques for enabling safe flight in the presence of adverse conditions. Since the adaptive systems are non-linear by design, the existing control verification metrics are not applicable to adaptive controllers. Moreover, these systems are in general highly uncertain. Hence, the system's characteristics cannot be evaluated by relying on the available dynamical models. This necessitates the development of control verification metrics based on the system's input-output information. For this point of view, a set of metrics is introduced that compares the uncertain aircraft's input-output behavior under the action of an adaptive controller to that of a closed-loop linear reference model to be followed by the aircraft. This reference model is constructed for each specific maneuver using the exact aerodynamic and mass properties of the aircraft to meet the stability and performance requirements commonly accepted in flight control. The proposed metrics are unified in the sense that they are model independent and not restricted to any specific adaptive control methods. As an example, we present simulation results for a wing damaged generic transport aircraft with several existing adaptive controllers.

  3. Robust Brain-Machine Interface Design Using Optimal Feedback Control Modeling and Adaptive Point Process Filtering

    PubMed Central

    Carmena, Jose M.

    2016-01-01

    Much progress has been made in brain-machine interfaces (BMI) using decoders such as Kalman filters and finding their parameters with closed-loop decoder adaptation (CLDA). However, current decoders do not model the spikes directly, and hence may limit the processing time-scale of BMI control and adaptation. Moreover, while specialized CLDA techniques for intention estimation and assisted training exist, a unified and systematic CLDA framework that generalizes across different setups is lacking. Here we develop a novel closed-loop BMI training architecture that allows for processing, control, and adaptation using spike events, enables robust control and extends to various tasks. Moreover, we develop a unified control-theoretic CLDA framework within which intention estimation, assisted training, and adaptation are performed. The architecture incorporates an infinite-horizon optimal feedback-control (OFC) model of the brain’s behavior in closed-loop BMI control, and a point process model of spikes. The OFC model infers the user’s motor intention during CLDA—a process termed intention estimation. OFC is also used to design an autonomous and dynamic assisted training technique. The point process model allows for neural processing, control and decoder adaptation with every spike event and at a faster time-scale than current decoders; it also enables dynamic spike-event-based parameter adaptation unlike current CLDA methods that use batch-based adaptation on much slower adaptation time-scales. We conducted closed-loop experiments in a non-human primate over tens of days to dissociate the effects of these novel CLDA components. The OFC intention estimation improved BMI performance compared with current intention estimation techniques. OFC assisted training allowed the subject to consistently achieve proficient control. Spike-event-based adaptation resulted in faster and more consistent performance convergence compared with batch-based methods, and was robust to

  4. Robust Brain-Machine Interface Design Using Optimal Feedback Control Modeling and Adaptive Point Process Filtering.

    PubMed

    Shanechi, Maryam M; Orsborn, Amy L; Carmena, Jose M

    2016-04-01

    Much progress has been made in brain-machine interfaces (BMI) using decoders such as Kalman filters and finding their parameters with closed-loop decoder adaptation (CLDA). However, current decoders do not model the spikes directly, and hence may limit the processing time-scale of BMI control and adaptation. Moreover, while specialized CLDA techniques for intention estimation and assisted training exist, a unified and systematic CLDA framework that generalizes across different setups is lacking. Here we develop a novel closed-loop BMI training architecture that allows for processing, control, and adaptation using spike events, enables robust control and extends to various tasks. Moreover, we develop a unified control-theoretic CLDA framework within which intention estimation, assisted training, and adaptation are performed. The architecture incorporates an infinite-horizon optimal feedback-control (OFC) model of the brain's behavior in closed-loop BMI control, and a point process model of spikes. The OFC model infers the user's motor intention during CLDA-a process termed intention estimation. OFC is also used to design an autonomous and dynamic assisted training technique. The point process model allows for neural processing, control and decoder adaptation with every spike event and at a faster time-scale than current decoders; it also enables dynamic spike-event-based parameter adaptation unlike current CLDA methods that use batch-based adaptation on much slower adaptation time-scales. We conducted closed-loop experiments in a non-human primate over tens of days to dissociate the effects of these novel CLDA components. The OFC intention estimation improved BMI performance compared with current intention estimation techniques. OFC assisted training allowed the subject to consistently achieve proficient control. Spike-event-based adaptation resulted in faster and more consistent performance convergence compared with batch-based methods, and was robust to parameter

  5. Apparatus for externally controlled closed-loop feedback digital epitaxy

    DOEpatents

    Eres, D.; Sharp, J.W.

    1996-07-30

    A method and apparatus for digital epitaxy are disclosed. The apparatus includes a pulsed gas delivery assembly that supplies gaseous material to a substrate to form an adsorption layer of the gaseous material on the substrate. Structure is provided for measuring the isothermal desorption spectrum of the growth surface to monitor the active sites which are available for adsorption. The vacuum chamber housing the substrate facilitates evacuation of the gaseous material from the area adjacent the substrate following exposure. In use, digital epitaxy is achieved by exposing a substrate to a pulse of gaseous material to form an adsorption layer of the material on the substrate. The active sites on the substrate are monitored during the formation of the adsorption layer to determine if all the active sites have been filled. Once the active sites have been filled on the growth surface of the substrate, the pulse of gaseous material is terminated. The unreacted portion of the gas pulse is evacuated by continuous pumping. Subsequently, a second pulse is applied when availability of active sites is determined by studying the isothermal desorption spectrum. These steps are repeated until a thin film of sufficient thickness is produced. 5 figs.

  6. Apparatus for externally controlled closed-loop feedback digital epitaxy

    DOEpatents

    Eres, Djula; Sharp, Jeffrey W.

    1996-01-01

    A method and apparatus for digital epitaxy. The apparatus includes a pulsed gas delivery assembly that supplies gaseous material to a substrate to form an adsorption layer of the gaseous material on the substrate. Structure is provided for measuring the isothermal desorption spectrum of the growth surface to monitor the active sites which are available for adsorption. The vacuum chamber housing the substrate facilitates evacuation of the gaseous material from the area adjacent the substrate following exposure. In use, digital epitaxy is achieved by exposing a substrate to a pulse of gaseous material to form an adsorption layer of the material on the substrate. The active sites on the substrate are monitored during the formation of the adsorption layer to determine if all the active sites have been filled. Once the active sites have been filled on the growth surface of the substrate, the pulse of gaseous material is terminated. The unreacted portion of the gas pulse is evacuated by continuous pumping. Subsequently, a second pulse is applied when availability of active sites is determined by studying the isothermal desorption spectrum. These steps are repeated until a thin film of sufficient thickness is produced.

  7. Controller-structure interaction compensation using adaptive residual mode filters

    NASA Technical Reports Server (NTRS)

    Davidson, Roger A.; Balas, Mark J.

    1990-01-01

    It is not feasible to construct controllers for large space structures or large scale systems (LSS's) which are of the same order as the structures. The complexity of the dynamics of these systems is such that full knowledge of its behavior cannot by processed by today's controller design methods. The controller for system performance of such a system is therefore based on a much smaller reduced-order model (ROM). Unfortunately, the interaction between the LSS and the ROM-based controller can produce instabilities in the closed-loop system due to the unmodeled dynamics of the LSS. Residual mode filters (RMF's) allow the systematic removal of these instabilities in a matter which does not require a redesign of the controller. In addition RMF's have a strong theoretical basis. As simple first- or second-order filters, the RMF CSI compensation technique is at once modular, simple and highly effective. RMF compensation requires knowledge of the dynamics of the system modes which resulted in the previous closed-loop instabilities (the residual modes), but this information is sometimes known imperfectly. An adaptive, self-tuning RMF design, which compensates for uncertainty in the frequency of the residual mode, has been simulated using continuous-time and discrete-time models of a flexible robot manipulator. Work has also been completed on the discrete-time experimental implementation on the Martin Marietta flexible robot manipulator experiment. This paper will present the results of that work on adaptive, self-tuning RMF's, and will clearly show the advantage of this adaptive compensation technique for controller-structure interaction (CSI) instabilities in actively-controlled LSS's.

  8. Effect of ambient pressure variation on closed loop gas system for India based Neutrino Observatory (INO)

    NASA Astrophysics Data System (ADS)

    Satyanarayana, B.; Majumder, G.; Mondal, N. K.; Kalmani, S. D.; Shinde, R. R.; Joshi, A.

    2014-10-01

    Pilot unit of a closed loop gas mixing and distribution system for the INO project was designed and is being operated with 1.8meters × 1.9meters RPCs for about two years. A number of studies on controlling the flow and optimisation of the gas mixture through the RPC stack were carried out during this period. The gas system essentially measures and attempts to maintain absolute pressure inside the RPC gas volume. During typical Mumbai monsoon seasons, the barometric pressure changes rather rapidly, due to which the gas system fails to maintain the set differential pressure between the ambience and the RPC gas volume. As the safety bubblers on the RPC gas input lines are set to work on fixed pressure differentials, the ambient pressure changes lead to either venting out and thus wasting gas through safety bubblers or over pressuring the RPCs gas volume and thus degrading its performance. The above problem also leads to gas mixture contamination through minute leaks in gas gap. The problem stated above was solved by including the ambient barometric pressure as an input parameter in the closed loop. Using this, it is now possible to maintain any set differential pressure between the ambience and RPC gas volumes between 0 to 20mm of water column, thus always ensuring a positive pressure inside the RPC gas volume with respect to the ambience. This has resulted in improved performance of the gas system by maintaining the constant gas flow and reducing the gas toping up frequency. In this paper, we will highlight the design features and improvements of the closed loop gas system. We will present some of the performance studies and considerations for scaling up the system to be used with the engineering module and then followed by Iron Calorimeter detector (ICAL), which is designed to deploy about 30,000 RPCs of 1.8meters × 1.9 meters in area.

  9. Adaptive fuzzy control with smooth inverse for nonlinear systems preceded by non-symmetric dead-zone

    NASA Astrophysics Data System (ADS)

    Wang, Xingjian; Wang, Shaoping

    2016-07-01

    In this study, the adaptive output feedback control problem of a class of nonlinear systems preceded by non-symmetric dead-zone is considered. To cope with the possible control signal chattering phenomenon which is caused by non-smooth dead-zone inverse, a new smooth inverse is proposed for non-symmetric dead-zone compensation. For the systematic design procedure of the adaptive fuzzy control algorithm, we combine the backstepping technique and small-gain approach. The Takagi-Sugeno fuzzy logic systems are used to approximate unknown system nonlinearities. The closed-loop stability is studied by using small gain theorem and the closed-loop system is proved to be semi-globally uniformly ultimately bounded. Simulation results indicate that, compared to the algorithm with the non-smooth inverse, the proposed control strategy can achieve better tracking performance and the chattering phenomenon can be avoided effectively.

  10. Phase-sensitive atom localization for closed-loop quantum systems

    NASA Astrophysics Data System (ADS)

    Hamedi, H. R.; Juzeliūnas, Gediminas

    2016-07-01

    A scheme of high-precision two- and three-dimensional (3D) atom localization is proposed and analyzed by using a density matrix method for a five-level atom-light coupling scheme. In this system four strong laser components (which could be standing waves) couple a pair of atomic internal states to another pair of states in all possible ways to form a closed-loop diamond-shape configuration of the atom-light interaction. By systematically solving the density matrix equations of the motion, we show that the imaginary part of the susceptibility for the weak probe field is position dependent. As a result, one can obtain information about the position of the atom by measuring the resulting absorption spectra. Focusing on the signatures of the relative phase of the applied fields stemming from the closed- loop structure of the diamond- shape subsystem, we find out that there exists a significant phase dependence of the eigenvalues required to have a maximum in the probe absorption spectra. It is found that by properly selecting the controlling parameters of the system, a nearly perfect 2D atom localization can be obtained. Finally, we numerically explore the phase control of 3D atom localization for the present scheme and show the possibility to obtain 1/2 detecting probability of finding the atom at a particular volume in 3D space within one period of standing waves.

  11. Precision Closed-Loop Orbital Maneuvering System Design and Performance for the Magnetospheric Multiscale Formation

    NASA Technical Reports Server (NTRS)

    Chai, Dean J.; Queen, Steven Z.; Placanica, Samuel J.

    2015-01-01

    NASAs Magnetospheric Multiscale (MMS) mission successfully launched on March 13,2015 (UTC) consists of four identically instrumented spin-stabilized observatories that function as a constellation to study magnetic reconnection in space. The need to maintain sufficiently accurate spatial and temporal formation resolution of the observatories must be balanced against the logistical constraints of executing overly-frequent maneuvers on a small fleet of spacecraft. These two considerations make for an extremely challenging maneuver design problem. This paper focuses on the design elements of a 6-DOF spacecraft attitude control and maneuvering system capable of delivering the high-precision adjustments required by the constellation designers specifically, the design, implementation, and on-orbit performance of the closed-loop formation-class maneuvers that include initialization, maintenance, and re-sizing. The maneuvering control system flown on MMS utilizes a micro-gravity resolution accelerometer sampled at a high rate in order to achieve closed-loop velocity tracking of an inertial target with arc-minute directional and millimeter-per second magnitude accuracy. This paper summarizes the techniques used for correcting bias drift, sensor-head offsets, and centripetal aliasing in the acceleration measurements. It also discusses the on-board pre-maneuver calibration and compensation algorithms as well as the implementation of the post-maneuver attitude adjustments.

  12. Characteristics of Supersonic Closed Loop with Disk CCMHD Generator

    NASA Astrophysics Data System (ADS)

    Yamasaki, Hiroyuki; Murakami, Tomoyuki; Okuno, Yoshihiro

    Results of experimental study on performance of the supersonic closed loop with a disk MHD generator are described. The high temperature (> 1900K) argon circulation was carried out successfully during 2.4 hours. The heat gain and loss of argon was investigated, and a large heat loss was found at the diffuser and the exhausting duct although an energy efficiency of recuperator was high. The large heat loss was ascribed to water cooling at the diffuser and the exhausting duct. At the same time, the enhancement of heat transfer coefficient was suggested. The argon temperature and the heat loss calculated under an assumption of four times larger heat transfer coefficient have shown a good agreement with experimental ones. The pressure ratio inside the loop was discussed, and the result has indicated that the total pressure at the upstream of nozzle throat is decided by the total temperature and the mass flow. On the other hand, the total pressure at the downstream is determined by the total mass in the loop and the total pressure at the upstream. The first power generation was carried out, and a good correlation between the load resistance and the Hall voltage was observed. However, the power output remained very small.

  13. Closed-Loop Dynamic Modeling of Cerebral Hemodynamics

    PubMed Central

    Marmarelis, V. Z.; Shin, D. C.; Orme, M. E.; Zhang, R.

    2013-01-01

    The dynamics of cerebral hemodynamics have been studied extensively because of their fundamental physiological and clinical importance. In particular, the dynamic processes of cerebral flow autoregulation and CO2 vasomotor reactivity have attracted broad attention because of their involvement in a host of pathologies and clinical conditions (e.g. hypertension, syncope, stroke, traumatic brain injury, vascular dementia, Alzheimer’s disease, mild cognitive impairment etc.). This raises the prospect of useful diagnostic methods being developed on the basis of quantitative models of cerebral hemodynamics, if cerebral vascular dysfunction can be quantified reliably from data collected within practical clinical constraints. This paper presents a modeling method that utilizes beat-to-beat measurements of mean arterial blood pressure, cerebral blood flow velocity and end-tidal CO2 (collected non-invasively under resting conditions) to quantify the dynamics of cerebral flow autoregulation (CFA) and cerebral vasomotor reactivity (CVMR). The unique and novel aspect of this dynamic model is that it is nonlinear and operates in a closed-loop configuration. PMID:23292615

  14. Real-Time Closed Loop Modulated Turbine Cooling

    NASA Technical Reports Server (NTRS)

    Shyam, Vikram; Culley, Dennis E.; Eldridge, Jeffrey; Jones, Scott; Woike, Mark; Cuy, Michael

    2014-01-01

    It has been noted by industry that in addition to dramatic variations of temperature over a given blade surface, blade-to-blade variations also exist despite identical design. These variations result from manufacturing variations, uneven wear and deposition over the life of the part as well as limitations in the uniformity of coolant distribution in the baseline cooling design. It is proposed to combine recent advances in optical sensing, actuation, and film cooling concepts to develop a workable active, closed-loop modulated turbine cooling system to improve by 10 to 20 the turbine thermal state over the flight mission, to improve engine life and to dramatically reduce turbine cooling air usage and aircraft fuel burn. A reduction in oxides of nitrogen (NOx) can also be achieved by using the excess coolant to improve mixing in the combustor especially for rotorcraft engines. Recent patents filed by industry and universities relate to modulating endwall cooling using valves. These schemes are complex, add weight and are limited to the endwalls. The novelty of the proposed approach is twofold 1) Fluidic diverters that have no moving parts are used to modulate cooling and can operate under a wide range of conditions and environments. 2) Real-time optical sensing to map the thermal state of the turbine has never been attempted in realistic engine conditions.

  15. Closed loop supply chain network design with fuzzy tactical decisions

    NASA Astrophysics Data System (ADS)

    Sherafati, Mahtab; Bashiri, Mahdi

    2016-01-01

    One of the most strategic and the most significant decisions in supply chain management is reconfiguration of the structure and design of the supply chain network. In this paper, a closed loop supply chain network design model is presented to select the best tactical and strategic decision levels simultaneously considering the appropriate transportation mode in activated links. The strategic decisions are made for a long term; thus, it is more satisfactory and more appropriate when the decision variables are considered uncertain and fuzzy, because it is more flexible and near to the real world. This paper is the first research which considers fuzzy decision variables in the supply chain network design model. Moreover, in this study a new fuzzy optimization approach is proposed to solve a supply chain network design problem with fuzzy tactical decision variables. Finally, the proposed approach and model are verified using several numerical examples. The comparison of the results with other existing approaches confirms efficiency of the proposed approach. Moreover the results confirms that by considering the vagueness of tactical decisions some properties of the supply chain network will be improved.

  16. Robust Adaptive Control for a Class of Uncertain Nonlinear Systems with Time-Varying Delay

    PubMed Central

    Wang, Ruliang; Li, Jie; Zhang, Shanshan; Gao, Dongmei; Sun, Huanlong

    2013-01-01

    We present adaptive neural control design for a class of perturbed nonlinear MIMO time-varying delay systems in a block-triangular form. Based on a neural controller, it is obtained by constructing a quadratic-type Lyapunov-Krasovskii functional, which efficiently avoids the controller singularity. The proposed control guarantees that all closed-loop signals remain bounded, while the output tracking error dynamics converge to a neighborhood of the desired trajectories. The simulation results demonstrate the effectiveness of the proposed control scheme. PMID:23853544

  17. A novel adaptive sliding mode control with application to MEMS gyroscope.

    PubMed

    Fei, Juntao; Batur, Celal

    2009-01-01

    This paper presents a new adaptive sliding mode controller for MEMS gyroscope; an adaptive tracking controller with a proportional and integral sliding surface is proposed. The adaptive sliding mode control algorithm can estimate the angular velocity and the damping and stiffness coefficients in real time. A proportional and integral sliding surface, instead of a conventional sliding surface is adopted. An adaptive sliding mode controller that incorporates both matched and unmatched uncertainties and disturbances is derived and the stability of the closed-loop system is established. The numerical simulation is presented to verify the effectiveness of the proposed control scheme. It is shown that the proposed adaptive sliding mode control scheme offers several advantages such as the consistent estimation of gyroscope parameters including angular velocity and large robustness to parameter variations and external disturbances.

  18. Adaptive integral dynamic surface control of a hypersonic flight vehicle

    NASA Astrophysics Data System (ADS)

    Aslam Butt, Waseem; Yan, Lin; Amezquita S., Kendrick

    2015-07-01

    In this article, non-linear adaptive dynamic surface air speed and flight path angle control designs are presented for the longitudinal dynamics of a flexible hypersonic flight vehicle. The tracking performance of the control design is enhanced by introducing a novel integral term that caters to avoiding a large initial control signal. To ensure feasibility, the design scheme incorporates magnitude and rate constraints on the actuator commands. The uncertain non-linear functions are approximated by an efficient use of the neural networks to reduce the computational load. A detailed stability analysis shows that all closed-loop signals are uniformly ultimately bounded and the ? tracking performance is guaranteed. The robustness of the design scheme is verified through numerical simulations of the flexible flight vehicle model.

  19. Evaluation of a closed loop inductive power transmission system on an awake behaving animal subject.

    PubMed

    Kiani, Mehdi; Kwon, Ki Yong; Zhang, Fei; Oweiss, Karim; Ghovanloo, Maysam

    2011-01-01

    This paper presents in vivo experimental results for a closed loop wireless power transmission system to implantable devices on an awake behaving animal subject. In this system, wireless power transmission takes place across an inductive link, controlled by a commercial off-the-shelf (COTS) radio frequency identification (RFID) transceiver (TRF7960) operating at 13.56 MHz. Induced voltage on the implantable secondary coil is rectified, digitized by a 10-bit analog to digital converter, and transmitted back to the primary via back telemetry. Transmitter (Tx) and receiver (Rx) circuitry were mounted on the back of an adult rat with a nominal distance of ~7 mm between their coils. Our experiments showed that the closed loop system was able to maintain the Rx supply voltage at the designated 3.8 V despite changes in the coils' relative distance and alignment due to animal movements. The Tx power consumption changed between 410 ~ 560 mW in order to deliver 27 mW to the receiver. The open loop system, on the other hand, showed undesired changes in the Rx supply voltage while the Tx power consumption was constant at 660 mW. PMID:22256112

  20. A dimensionally-heterogeneous closed-loop model for the cardiovascular system and its applications.

    PubMed

    Blanco, P J; Feijóo, R A

    2013-05-01

    In the present work a computational model of the entire cardiovascular system is developed using heterogeneous mathematical representations. This model integrates different levels of detail for the blood circulation. The arterial tree is described by a one dimensional model in order to simulate the wave propagation phenomena that take place at the larger arterial vessels. The inflow and outflow locations of this 1D model are coupled with lumped parameter descriptions of the remainder part of the circulatory system, closing the loop. The four cardiac valves are considered using a valve model which allows for stenoses and regurgitation phenomena. In addition, full 3D geometrical models of arterial districts are embedded in this closed-loop circuit to model the local blood flow in specific vessels. This kind of detailed closed-loop network for the cardiovascular system allows hemodynamics analyses of patient-specific arterial district, delivering naturally the appropriate boundary conditions for different cardiovascular scenarios. An example of application involving the effect of aortic insufficiency on the local hemodynamics of a cerebral aneurism is provided as a motivation to reproduce, through numerical simulation, the hemodynamic environment in patients suffering from infective endocarditis and mycotic aneurisms. The need for incorporating homeostatic control mechanisms is also discussed in view of the large sensitivity observed in the results, noting that this kind of integrative modeling allows such incorporation.

  1. Inventory decision in a closed-loop supply chain with inspection, sorting, and waste disposal

    NASA Astrophysics Data System (ADS)

    Dwicahyani, A. R.; Jauhari, W. A.; Kurdhi, N. A.

    2016-02-01

    The study of returned item inventory management in a closed-loop supply chain system has become an important issue in recent years. So far, investigations about inventory decision making in a closed-loop supply chain system have been confined to traditional forward and reverse oriented material flow supply chain. In this study, we propose an integrated inventory model consisting a supplier, a manufacturer, and a retailer where the manufacturer inspects all of the returned items collected from the customers and classifies them as recoverable or waste. Returned items that recovered through the remanufacturing process and the newly manufactured products are then used to meet the demand of the retailer. However, some recovered items which are not comparable to the ones in quality, classified as refurbished items, are sold to a secondary market at a reduced price. This study also suggests that the flow of returned items is controlled by a decision variable, namely an acceptance quality level of recoverable item in the system. We apply multiple remanufacturing cycle and multiple production cycle policy to the proposed model and give the corresponding iterative procedure to determine the optimal solutions. Further, numerical examples are presented for illustrative purpose.

  2. Future missions for observing Earth's changing gravity field: a closed-loop simulation tool

    NASA Astrophysics Data System (ADS)

    Visser, P. N.

    2008-12-01

    The GRACE mission has successfully demonstrated the observation from space of the changing Earth's gravity field at length and time scales of typically 1000 km and 10-30 days, respectively. Many scientific communities strongly advertise the need for continuity of observing Earth's gravity field from space. Moreover, a strong interest is being expressed to have gravity missions that allow a more detailed sampling of the Earth's gravity field both in time and in space. Designing a gravity field mission for the future is a complicated process that involves making many trade-offs, such as trade-offs between spatial, temporal resolution and financial budget. Moreover, it involves the optimization of many parameters, such as orbital parameters (height, inclination), distinction between which gravity sources to observe or correct for (for example are gravity changes due to ocean currents a nuisance or a signal to be retrieved?), observation techniques (low-low satellite-to-satellite tracking, satellite gravity gradiometry, accelerometers), and satellite control systems (drag-free?). A comprehensive tool has been developed and implemented that allows the closed-loop simulation of gravity field retrievals for different satellite mission scenarios. This paper provides a description of this tool. Moreover, its capabilities are demonstrated by a few case studies. Acknowledgments. The research that is being done with the closed-loop simulation tool is partially funded by the European Space Agency (ESA). An important component of the tool is the GEODYN software, kindly provided by NASA Goddard Space Flight Center in Greenbelt, Maryland.

  3. Beating of Aharonov-Bohm oscillations in a closed-loop interferometer

    SciTech Connect

    Jo, Sanghyun; Chang, Dong-In; Lee, Hu-Jong; Khym, Gyong Luck; Kang, Kicheon; Chung, Yunchul; Mahalu, Diana; Umansky, Vladimir

    2007-07-15

    One of the points at issue with closed-loop-type interferometers is beating in the Aharonov-Bohm (AB) oscillations. Recent observations suggest the possibility that the beating results from the Berry-phase pickup by the conducting electrons in materials with the strong spin-orbit interaction (SOI). In this study, we also observed beats in the AB oscillations in a gate-defined closed-loop interferometer fabricated on a GaAs/Al{sub 0.3}Ga{sub 0.7}As two-dimensional electron-gas heterostructure. Since this heterostructure has very small SOI, the picture of the Berry-phase pickup is ruled out. The observation of beats in this study, with the controllability of forming a single transverse subband mode in both arms of our gate-defined interferometer, also rules out the often-claimed multiple transverse subband effect. It is observed that nodes of the beats with an h/2e period exhibit a parabolic distribution for varying the side gate. These results are shown to be well interpreted, without resorting to the SOI effect, by the existence of two-dimensional multiple longitudinal modes in a single transverse subband. The Fourier spectrum of measured conductance, despite showing multiple h/e peaks with the magnetic-field dependence that are very similar to that from strong-SOI materials, can also be interpreted as the two-dimensional multiple-longitudinal-modes effect.

  4. A closed-loop neurobotic system for fine touch sensing

    NASA Astrophysics Data System (ADS)

    Bologna, L. L.; Pinoteau, J.; Passot, J.-B.; Garrido, J. A.; Vogel, J.; Ros Vidal, E.; Arleo, A.

    2013-08-01

    Objective. Fine touch sensing relies on peripheral-to-central neurotransmission of somesthetic percepts, as well as on active motion policies shaping tactile exploration. This paper presents a novel neuroengineering framework for robotic applications based on the multistage processing of fine tactile information in the closed action-perception loop. Approach. The integrated system modules focus on (i) neural coding principles of spatiotemporal spiking patterns at the periphery of the somatosensory pathway, (ii) probabilistic decoding mechanisms mediating cortical-like tactile recognition and (iii) decision-making and low-level motor adaptation underlying active touch sensing. We probed the resulting neural architecture through a Braille reading task. Main results. Our results on the peripheral encoding of primary contact features are consistent with experimental data on human slow-adapting type I mechanoreceptors. They also suggest second-order processing by cuneate neurons may resolve perceptual ambiguities, contributing to a fast and highly performing online discrimination of Braille inputs by a downstream probabilistic decoder. The implemented multilevel adaptive control provides robustness to motion inaccuracy, while making the number of finger accelerations covariate with Braille character complexity. The resulting modulation of fingertip kinematics is coherent with that observed in human Braille readers. Significance. This work provides a basis for the design and implementation of modular neuromimetic systems for fine touch discrimination in robotics.

  5. Adaptive control and noise suppression by a variable-gain gradient algorithm

    NASA Technical Reports Server (NTRS)

    Merhav, S. J.; Mehta, R. S.

    1987-01-01

    An adaptive control system based on normalized LMS filters is investigated. The finite impulse response of the nonparametric controller is adaptively estimated using a given reference model. Specifically, the following issues are addressed: The stability of the closed loop system is analyzed and heuristically established. Next, the adaptation process is studied for piecewise constant plant parameters. It is shown that by introducing a variable-gain in the gradient algorithm, a substantial reduction in the LMS adaptation rate can be achieved. Finally, process noise at the plant output generally causes a biased estimate of the controller. By introducing a noise suppression scheme, this bias can be substantially reduced and the response of the adapted system becomes very close to that of the reference model. Extensive computer simulations validate these and demonstrate assertions that the system can rapidly adapt to random jumps in plant parameters.

  6. An ultrasonic horn atomizer with closed loop driving circuit

    NASA Astrophysics Data System (ADS)

    Chou, Yuan-Fang; Chen, Kai-Jhong; Hsu, Jui-Mei; Chou, Pei-En

    2016-04-01

    A novel ultrasonic horn atomizer is developed for the purpose of obtaining small size droplets at a large flow rate. The ultrasonic horn has a non-monotonically decreasing cross sectional area to provide a large atomizing surface. Consisting of two horns and one actuator section, the 301 kHz atomizer nozzle is made of {100} silicon wafer with its axis aligned in the <100> direction to minimize the length. Two PZT plates are adhered to each side of the actuator section to provide driving power. This device atomizes the liquid film on its nozzle tip to generate droplets. It is capable of atomizing more than 350 μl/min water into droplet. The mean diameter of droplet is 9.61 μm and the size distribution is quite narrow. The atomizing mechanism is based on the capillary wave on liquid surface. Once the wave amplitude exceeds the critical value, the motion of surface liquid becomes unstable and releases droplets. Therefore, driving at resonant frequency is the most effective way for atomizing. Dimension deviation combined with different kind of liquid to be atomized causes resonant frequencies of nozzles changed from time to time. Due to the high Q nature of nozzles, atomizing performance will drop drastically once the driving frequency is different from its resonant frequency by very little amount. Therefore, a feedback circuit is designed to tracking resonant frequency automatically instead of adjusting driving frequency manually. Comparing the atomizing performance between the open loop system and the closed loop system, significant improvement is obtained.

  7. Self-tuning adaptive control of induced hypotension in humans: a comparison of isoflurane and sodium nitroprusside.

    PubMed

    Prys-Roberts, C; Millard, R K

    1990-07-01

    Induced hypotension is commonly used during surgery to decrease arterial pressure. Sodium nitroprusside and isoflurane are well-known hypotensive agents. The use of self-tuning adaptive control of induced hypotension was assessed with the use of sodium nitroprusside and isoflurane as hypotensive agents. Nineteen surgical patients were studied during closed-loop control of hypotension induced with sodium nitroprusside. This group of patients was compared with 10 similar patients in whom infusions of sodium nitroprusside were controlled manually by an anesthesiologist. Although the results of the two studies varied, no conclusion could be drawn regarding the superiority of either manual or closed-loop control. When manual versus automatic control of isoflurane-induced hypotension was assessed in a similar fashion, the two methods of induction were found to be comparable. PMID:2380754

  8. Comparative Study of Adaptive Type-1 and Type-2 Fuzzy Controls for Nonlinear Systems under Uncertainty

    NASA Astrophysics Data System (ADS)

    Mokaddem, S.; Khaber, F.

    2008-06-01

    This work presents a development of adaptive type-1 and type-2 fuzzy controls for uncertain nonlinear systems. Using the adaptive type-1 fuzzy control, the dynamic of the nonlinear systems is approximated with type-1 fuzzy systems whose parameters are adjusted by appropriate law adaptation. For adaptive type-2 fuzzy control, the dynamic of the nonlinear systems is approximated with interval type-2 fuzzy systems. The use of this type-2 control requires an additional operation witch is the type reduction, in comparing with typ-1 control. The closed-loop system stability is guaranteed by the Lyaponov synthesis. To show the performance of the developed controls, a comparative study is realized through the application of these controls so that an inverted pendulum tracks a given trajectory in presence of disturbances.

  9. Adaptive Neural Network Based Control of Noncanonical Nonlinear Systems.

    PubMed

    Zhang, Yanjun; Tao, Gang; Chen, Mou

    2016-09-01

    This paper presents a new study on the adaptive neural network-based control of a class of noncanonical nonlinear systems with large parametric uncertainties. Unlike commonly studied canonical form nonlinear systems whose neural network approximation system models have explicit relative degree structures, which can directly be used to derive parameterized controllers for adaptation, noncanonical form nonlinear systems usually do not have explicit relative degrees, and thus their approximation system models are also in noncanonical forms. It is well-known that the adaptive control of noncanonical form nonlinear systems involves the parameterization of system dynamics. As demonstrated in this paper, it is also the case for noncanonical neural network approximation system models. Effective control of such systems is an open research problem, especially in the presence of uncertain parameters. This paper shows that it is necessary to reparameterize such neural network system models for adaptive control design, and that such reparameterization can be realized using a relative degree formulation, a concept yet to be studied for general neural network system models. This paper then derives the parameterized controllers that guarantee closed-loop stability and asymptotic output tracking for noncanonical form neural network system models. An illustrative example is presented with the simulation results to demonstrate the control design procedure, and to verify the effectiveness of such a new design method.

  10. Closed-loop dialog model of face-to-face communication with a photo-real virtual human

    NASA Astrophysics Data System (ADS)

    Kiss, Bernadette; Benedek, Balázs; Szijárto, Gábor; Takács, Barnabás

    2004-01-01

    We describe an advanced Human Computer Interaction (HCI) model that employs photo-realistic virtual humans to provide digital media users with information, learning services and entertainment in a highly personalized and adaptive manner. The system can be used as a computer interface or as a tool to deliver content to end-users. We model the interaction process between the user and the system as part of a closed loop dialog taking place between the participants. This dialog, exploits the most important characteristics of a face-to-face communication process, including the use of non-verbal gestures and meta communication signals to control the flow of information. Our solution is based on a Virtual Human Interface (VHI) technology that was specifically designed to be able to create emotional engagement between the virtual agent and the user, thus increasing the efficiency of learning and/or absorbing any information broadcasted through this device. The paper reviews the basic building blocks and technologies needed to create such a system and discusses its advantages over other existing methods.

  11. On the suitability of Elekta’s Agility 160 MLC for tracked radiation delivery: closed-loop machine performance

    NASA Astrophysics Data System (ADS)

    Glitzner, M.; Crijns, S. P. M.; de Senneville, B. Denis; Lagendijk, J. J. W.; Raaymakers, B. W.

    2015-03-01

    For motion adaptive radiotherapy, dynamic multileaf collimator tracking can be employed to reduce treatment margins by steering the beam according to the organ motion. The Elekta Agility 160 MLC has hitherto not been evaluated for its tracking suitability. Both dosimetric performance and latency are key figures and need to be assessed generically, independent of the used motion sensor. In this paper, we propose the use of harmonic functions directly fed to the MLC to determine its latency during continuous motion. Furthermore, a control variable is extracted from a camera system and fed to the MLC. Using this setup, film dosimetry and subsequent γ statistics are performed, evaluating the response when tracking (MRI)-based physiologic motion in a closed-loop. The delay attributed to the MLC itself was shown to be a minor contributor to the overall feedback chain as compared to the impact of imaging components such as MRI sequences. Delay showed a linear phase behaviour of the MLC employed in continuously dynamic applications, which enables a general MLC-characterization. Using the exemplary feedback chain, dosimetry showed a vast increase in pass rate employing γ statistics. In this early stage, the tracking performance of the Agility using the test bench yielded promising results, making the technique eligible for translation to tracking using clinical imaging modalities.

  12. A closed-loop compressive-sensing-based neural recording system

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Mitra, Srinjoy; Suo, Yuanming; Cheng, Andrew; Xiong, Tao; Michon, Frederic; Welkenhuysen, Marleen; Kloosterman, Fabian; Chin, Peter S.; Hsiao, Steven; Tran, Trac D.; Yazicioglu, Firat; Etienne-Cummings, Ralph

    2015-06-01

    Objective. This paper describes a low power closed-loop compressive sensing (CS) based neural recording system. This system provides an efficient method to reduce data transmission bandwidth for implantable neural recording devices. By doing so, this technique reduces a majority of system power consumption which is dissipated at data readout interface. The design of the system is scalable and is a viable option for large scale integration of electrodes or recording sites onto a single device. Approach. The entire system consists of an application-specific integrated circuit (ASIC) with 4 recording readout channels with CS circuits, a real time off-chip CS recovery block and a recovery quality evaluation block that provides a closed feedback to adaptively adjust compression rate. Since CS performance is strongly signal dependent, the ASIC has been tested in vivo and with standard public neural databases. Main results. Implemented using efficient digital circuit, this system is able to achieve >10 times data compression on the entire neural spike band (500-6KHz) while consuming only 0.83uW (0.53 V voltage supply) additional digital power per electrode. When only the spikes are desired, the system is able to further compress the detected spikes by around 16 times. Unlike other similar systems, the characteristic spikes and inter-spike data can both be recovered which guarantes a >95% spike classification success rate. The compression circuit occupied 0.11mm2/electrode in a 180nm CMOS process. The complete signal processing circuit consumes <16uW/electrode. Significance. Power and area efficiency demonstrated by the system make it an ideal candidate for integration into large recording arrays containing thousands of electrode. Closed-loop recording and reconstruction performance evaluation further improves the robustness of the compression method, thus making the system more practical for long term recording.

  13. Open and closed loop manipulation of charged microchiplets in an electric field

    SciTech Connect

    Lu, J. P. Thompson, J. D.; Whiting, G. L.; Biegelsen, D. K.; Raychaudhuri, S.; Lujan, R.; Veres, J.; Lavery, L. L.; Völkel, A. R.; Chow, E. M.

    2014-08-04

    We demonstrate the ability to orient, position, and transport microchips (“chiplets”) with electric fields. In an open-loop approach, modified four phase traveling wave potential patterns manipulate chiplets in a dielectric solution using dynamic template agitation techniques. Repeatable parallel assembly of chiplets is demonstrated to a positional accuracy of 6.5 μm using electrodes of 200 μm pitch. Chiplets with dipole surface charge patterns are used to show that orientation can be controlled by adding unique charge patterns on the chiplets. Chip path routing is also demonstrated. With a closed-loop control system approach using video feedback, dielectric, and electrophoretic forces are used to achieve positioning accuracy of better than 1 μm with 1 mm pitch driving electrodes. These chip assembly techniques have the potential to enable future printer systems where inputs are electronic chiplets and the output is a functional electronic system.

  14. Robust adaptive control for Unmanned Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Kahveci, Nazli E.

    anti-windup compensation. Our analysis on the indirect adaptive scheme reveals that the perturbation terms due to parameter errors do not cause any unbounded signals in the closed-loop. The stability of the adaptive system is established, and the properties of the proposed control scheme are demonstrated through simulations on a UAV model with input magnitude saturation constraints. The robust adaptive control design is further developed to extend our results to rate-saturated systems.

  15. Kinematics and dynamics of robotic systems with multiple closed loops

    NASA Astrophysics Data System (ADS)

    Zhang, Chang-De

    The kinematics and dynamics of robotic systems with multiple closed loops, such as Stewart platforms, walking machines, and hybrid manipulators, are studied. In the study of kinematics, focus is on the closed-form solutions of the forward position analysis of different parallel systems. A closed-form solution means that the solution is expressed as a polynomial in one variable. If the order of the polynomial is less than or equal to four, the solution has analytical closed-form. First, the conditions of obtaining analytical closed-form solutions are studied. For a Stewart platform, the condition is found to be that one rotational degree of freedom of the output link is decoupled from the other five. Based on this condition, a class of Stewart platforms which has analytical closed-form solution is formulated. Conditions of analytical closed-form solution for other parallel systems are also studied. Closed-form solutions of forward kinematics for walking machines and multi-fingered grippers are then studied. For a parallel system with three three-degree-of-freedom subchains, there are 84 possible ways to select six independent joints among nine joints. These 84 ways can be classified into three categories: Category 3:3:0, Category 3:2:1, and Category 2:2:2. It is shown that the first category has no solutions; the solutions of the second category have analytical closed-form; and the solutions of the last category are higher order polynomials. The study is then extended to a nearly general Stewart platform. The solution is a 20th order polynomial and the Stewart platform has a maximum of 40 possible configurations. Also, the study is extended to a new class of hybrid manipulators which consists of two serially connected parallel mechanisms. In the study of dynamics, a computationally efficient method for inverse dynamics of manipulators based on the virtual work principle is developed. Although this method is comparable with the recursive Newton-Euler method for

  16. Adaptive sequential controller

    DOEpatents

    El-Sharkawi, Mohamed A.; Xing, Jian; Butler, Nicholas G.; Rodriguez, Alonso

    1994-01-01

    An adaptive sequential controller (50/50') for controlling a circuit breaker (52) or other switching device to substantially eliminate transients on a distribution line caused by closing and opening the circuit breaker. The device adaptively compensates for changes in the response time of the circuit breaker due to aging and environmental effects. A potential transformer (70) provides a reference signal corresponding to the zero crossing of the voltage waveform, and a phase shift comparator circuit (96) compares the reference signal to the time at which any transient was produced when the circuit breaker closed, producing a signal indicative of the adaptive adjustment that should be made. Similarly, in controlling the opening of the circuit breaker, a current transformer (88) provides a reference signal that is compared against the time at which any transient is detected when the circuit breaker last opened. An adaptive adjustment circuit (102) produces a compensation time that is appropriately modified to account for changes in the circuit breaker response, including the effect of ambient conditions and aging. When next opened or closed, the circuit breaker is activated at an appropriately compensated time, so that it closes when the voltage crosses zero and opens when the current crosses zero, minimizing any transients on the distribution line. Phase angle can be used to control the opening of the circuit breaker relative to the reference signal provided by the potential transformer.

  17. Adaptive fuzzy switched control design for uncertain nonholonomic systems with input nonsmooth constraint

    NASA Astrophysics Data System (ADS)

    Li, Yongming; Tong, Shaocheng

    2016-10-01

    In this paper, a fuzzy adaptive switched control approach is proposed for a class of uncertain nonholonomic chained systems with input nonsmooth constraint. In the control design, an auxiliary dynamic system is designed to address the input nonsmooth constraint, and an adaptive switched control strategy is constructed to overcome the uncontrollability problem associated with x0(t0) = 0. By using fuzzy logic systems to tackle unknown nonlinear functions, a fuzzy adaptive control approach is explored based on the adaptive backstepping technique. By constructing the combination approximation technique and using Young's inequality scaling technique, the number of the online learning parameters is reduced to n and the 'explosion of complexity' problem is avoid. It is proved that the proposed method can guarantee that all variables of the closed-loop system converge to a small neighbourhood of zero. Two simulation examples are provided to illustrate the effectiveness of the proposed control approach.

  18. Sensor-integrated polymer actuators for closed-loop drug delivery system

    NASA Astrophysics Data System (ADS)

    Xu, Han; Wang, Chunlei; Kulinsky, Lawrence; Zoval, Jim; Madou, Marc

    2006-03-01

    This work presents manufacturing and testing of a closed-loop drug delivery system where drug release is achieved by an electrochemical actuation of an array of polymeric valves on a set of drug reservoirs. The valves are based on bi-layer structures made of polypyrrole/gold in the shape of a flap that is hinged on one side of a valve seat. Drugs stored in the underlying chambers are released by bending the bi-layer flaps back with a small applied bias. These polymeric valves simultaneously function as both drug release components and biological/chemical sensors responding to a specific biological or environmental stimulus. The sensors may send signals to the control module to realize closed-loop control of the drug release. In this study a glucose sensor has been integrated with the polymeric actuators through immobilization of glucose oxidase(GOx) within polypyrrole(PPy) valves. Sensitivities per unit area of the integrated glucose sensor have been measured and compared before and after the actuation of the sensor/actuator PPy/DBS/GOx film. Other sensing parameters such as linear range and response time were discussed as well. Using an array of these sensor/actuator cells, the amount of released drug, e.g. insulin, can be precisely controlled according to the surrounding glucose concentration detected by the glucose sensor. Activation of these reservoirs can be triggered either by the signal from the sensor, or by the signal from the operator. This approach also serves as the initial step to use the proposed system as an implantable drug delivery platform in the future.

  19. Neural control and adaptive neural forward models for insect-like, energy-efficient, and adaptable locomotion of walking machines

    PubMed Central

    Manoonpong, Poramate; Parlitz, Ulrich; Wörgötter, Florentin

    2013-01-01

    Living creatures, like walking animals, have found fascinating solutions for the problem of locomotion control. Their movements show the impression of elegance including versatile, energy-efficient, and adaptable locomotion. During the last few decades, roboticists have tried to imitate such natural properties with artificial legged locomotion systems by using different approaches including machine learning algorithms, classical engineering control techniques, and biologically-inspired control mechanisms. However, their levels of performance are still far from the natural ones. By contrast, animal locomotion mechanisms seem to largely depend not only on central mechanisms (central pattern generators, CPGs) and sensory feedback (afferent-based control) but also on internal forward models (efference copies). They are used to a different degree in different animals. Generally, CPGs organize basic rhythmic motions which are shaped by sensory feedback while internal models are used for sensory prediction and state estimations. According to this concept, we present here adaptive neural locomotion control consisting of a CPG mechanism with neuromodulation and local leg control mechanisms based on sensory feedback and adaptive neural forward models with efference copies. This neural closed-loop controller enables a walking machine to perform a multitude of different walking patterns including insect-like leg movements and gaits as well as energy-efficient locomotion. In addition, the forward models allow the machine to autonomously adapt its locomotion to deal with a change of terrain, losing of ground contact during stance phase, stepping on or hitting an obstacle during swing phase, leg damage, and even to promote cockroach-like climbing behavior. Thus, the results presented here show that the employed embodied neural closed-loop system can be a powerful way for developing robust and adaptable machines. PMID:23408775

  20. Neural control and adaptive neural forward models for insect-like, energy-efficient, and adaptable locomotion of walking machines.

    PubMed

    Manoonpong, Poramate; Parlitz, Ulrich; Wörgötter, Florentin

    2013-01-01

    Living creatures, like walking animals, have found fascinating solutions for the problem of locomotion control. Their movements show the impression of elegance including versatile, energy-efficient, and adaptable locomotion. During the last few decades, roboticists have tried to imitate such natural properties with artificial legged locomotion systems by using different approaches including machine learning algorithms, classical engineering control techniques, and biologically-inspired control mechanisms. However, their levels of performance are still far from the natural ones. By contrast, animal locomotion mechanisms seem to largely depend not only on central mechanisms (central pattern generators, CPGs) and sensory feedback (afferent-based control) but also on internal forward models (efference copies). They are used to a different degree in different animals. Generally, CPGs organize basic rhythmic motions which are shaped by sensory feedback while internal models are used for sensory prediction and state estimations. According to this concept, we present here adaptive neural locomotion control consisting of a CPG mechanism with neuromodulation and local leg control mechanisms based on sensory feedback and adaptive neural forward models with efference copies. This neural closed-loop controller enables a walking machine to perform a multitude of different walking patterns including insect-like leg movements and gaits as well as energy-efficient locomotion. In addition, the forward models allow the machine to autonomously adapt its locomotion to deal with a change of terrain, losing of ground contact during stance phase, stepping on or hitting an obstacle during swing phase, leg damage, and even to promote cockroach-like climbing behavior. Thus, the results presented here show that the employed embodied neural closed-loop system can be a powerful way for developing robust and adaptable machines. PMID:23408775

  1. Adaptive Cruise Control (ACC)

    NASA Astrophysics Data System (ADS)

    Reif, Konrad

    Die adaptive Fahrgeschwindigkeitsregelung (ACC, Adaptive Cruise Control) ist eine Weiterentwicklung der konventionellen Fahrgeschwindigkeitsregelung, die eine konstante Fahrgeschwindigkeit einstellt. ACC überwacht mittels eines Radarsensors den Bereich vor dem Fahrzeug und passt die Geschwindigkeit den Gegebenheiten an. ACC reagiert auf langsamer vorausfahrende oder einscherende Fahrzeuge mit einer Reduzierung der Geschwindigkeit, sodass der vorgeschriebene Mindestabstand zum vorausfahrenden Fahrzeug nicht unterschritten wird. Hierzu greift ACC in Antrieb und Bremse ein. Sobald das vorausfahrende Fahrzeug beschleunigt oder die Spur verlässt, regelt ACC die Geschwindigkeit wieder auf die vorgegebene Sollgeschwindigkeit ein (Bild 1). ACC steht somit für eine Geschwindigkeitsregelung, die sich dem vorausfahrenden Verkehr anpasst.

  2. Design of biomass management systems and components for closed loop life support systems

    NASA Technical Reports Server (NTRS)

    Nevill, Gale E., Jr.

    1991-01-01

    The design of a biomass management system (BMS) for use in a closed loop support system is presented by University of Florida students as the culmination of two design courses. The report is divided into two appendixes, each presenting the results of one of the design courses. The first appendix discusses the preliminary design of the biomass management system and is subdivided into five subsystems: (1) planting and harvesting, (2) food management, (3) resource recovery, (4) refurbishing, and (5) transport. Each subsystem is investigated for possible solutions to problems, and recommendations and conclusions for an integrated BMS are discussed. The second appendix discusses the specific design of components for the BMS and is divided into three sections: (1) a sectored plant growth unit with support systems, (2) a container and receiving mechanism, and (3) an air curtain system for fugitive particle control. In this section components are designed, fabricated, and tested.

  3. Investigation of creep by use of closed loop servo-hydraulic test system

    NASA Technical Reports Server (NTRS)

    Wu, H. C.; Yao, J. C.

    1981-01-01

    Creep tests were conducted by means of a closed loop servo-controlled materials test system. These tests are different from the conventional creep tests in that the strain history prior to creep may be carefully monitored. Tests were performed for aluminum alloy 6061-0 at 150 C and monitored by a PDP 11/04 minicomputer at a preset constant plastic-strain rate prehistory. The results show that the plastic-strain rate prior to creep plays a significant role in creep behavior. The endochronic theory of viscoplasticity was applied to describe the observed creep curves. The concepts of intrinsic time and strain rate sensitivity function are employed and modified according to the present observation.

  4. A double closed loop to enhance the quality of life of Parkinson's Disease patients: REMPARK system.

    PubMed

    Samà, Albert; Pérez-López, Carlos; Rodríguez-Martín, Daniel; Moreno-Aróstegui, J Manuel; Rovira, Jordi; Ahlrichs, Claas; Castro, Rui; Cevada, João; Graça, Ricardo; Guimarães, Vânia; Pina, Bernardo; Counihan, Timothy; Lewy, Hadas; Annicchiarico, Roberta; Bayés, Angels; Rodríguez-Molinero, Alejandro; Cabestany, Joan

    2014-01-01

    This paper presents REMPARK system, a novel approach to deal with Parkinson's Disease (PD). REMPARK system comprises two closed loops of actuation onto PD. The first loop consists in a wearable system that, based on a belt-worn movement sensor, detects movement alterations that activate an auditory cueing system controlled by a smartphone in order to improve patient's gait. The belt-worn sensor analyzes patient's movement through real-time learning algorithms that were developed on the basis of a database previously collected from 93 PD patients. The second loop consists in disease management based on the data collected during long periods and that enables neurologists to tailor medication of their PD patients and follow the disease evolution. REMPARK system is going to be tested in 40 PD patients in Spain, Ireland, Italy and Israel. This paper describes the approach followed to obtain this system, its components, functionalities and trials in which the system will be validated. PMID:25488217

  5. Closed Loop Guidance with Multiple Constraints for Low Orbit Vehicle Trajectory Optimization

    NASA Astrophysics Data System (ADS)

    Zhang, Rufei; Zhao, Shifan

    Low orbit has features of strong invisibility and penetration, but needs more shutdown energy comparable to high orbit under the same range, which strongly requires studying the problem of delivery capacity optimization for multi-stage launch vehicles. Based on remnant apparent velocity and constraints models, multi-constraint closed-loop guidance with constraints of trajectory maximum height and azimuth was proposed, which adopted elliptical orbit theory and Newton iteration algorithm to optimize trajectory and thrust direction, reached to take full advantage of multi-stage launch vehicle propellant, and guided low orbit vehicle to enter maximum range trajectory. Theory deduction and numerical example demonstrate that the proposed guidance method could extend range and achieve precise control for orbit maximum height and azimuth.

  6. Autonomous Closed-Loop Tasking, Acquisition, Processing, and Evaluation for Situational Awareness Feedback

    NASA Technical Reports Server (NTRS)

    Frye, Stuart; Mandl, Dan; Cappelaere, Pat

    2016-01-01

    This presentation describes the closed loop satellite autonomy methods used to connect users and the assets on Earth Orbiter- 1 (EO-1) and similar satellites. The base layer is a distributed architecture based on Goddard Mission Services Evolution Concept (GMSEC) thus each asset still under independent control. Situational awareness is provided by a middleware layer through common Application Programmer Interface (API) to GMSEC components developed at GSFC. Users setup their own tasking requests, receive views into immediate past acquisitions in their area of interest, and into future feasibilities for acquisition across all assets. Automated notifications via pubsub feeds are returned to users containing published links to image footprints, algorithm results, and full data sets. Theme-based algorithms are available on-demand for processing.

  7. An adaptive robust controller for time delay maglev transportation systems

    NASA Astrophysics Data System (ADS)

    Milani, Reza Hamidi; Zarabadipour, Hassan; Shahnazi, Reza

    2012-12-01

    For engineering systems, uncertainties and time delays are two important issues that must be considered in control design. Uncertainties are often encountered in various dynamical systems due to modeling errors, measurement noises, linearization and approximations. Time delays have always been among the most difficult problems encountered in process control. In practical applications of feedback control, time delay arises frequently and can severely degrade closed-loop system performance and in some cases, drives the system to instability. Therefore, stability analysis and controller synthesis for uncertain nonlinear time-delay systems are important both in theory and in practice and many analytical techniques have been developed using delay-dependent Lyapunov function. In the past decade the magnetic and levitation (maglev) transportation system as a new system with high functionality has been the focus of numerous studies. However, maglev transportation systems are highly nonlinear and thus designing controller for those are challenging. The main topic of this paper is to design an adaptive robust controller for maglev transportation systems with time-delay, parametric uncertainties and external disturbances. In this paper, an adaptive robust control (ARC) is designed for this purpose. It should be noted that the adaptive gain is derived from Lyapunov-Krasovskii synthesis method, therefore asymptotic stability is guaranteed.

  8. Adaptive control of nonlinear systems with actuator failures and uncertainties

    NASA Astrophysics Data System (ADS)

    Tang, Xidong

    2005-11-01

    Actuator failures have damaging effect on the performance of control systems, leading to undesired system behavior or even instability. Actuator failures are unknown in terms of failure time instants, failure patterns, and failure parameters. For system safety and reliability, the compensation of actuator failures is of both theoretical and practical significance. This dissertation is to further the study of adaptive designs for actuator failure compensation to nonlinear systems. In this dissertation a theoretical framework for adaptive control of nonlinear systems with actuator failures and system uncertainties is established. The contributions are the development of new adaptive nonlinear control schemes to handle unknown actuator failures for convergent tracking performance, the specification of conditions as a guideline for applications and system designs, and the extension of the adaptive nonlinear control theory. In the dissertation, adaptive actuator failure compensation is studied for several classes of nonlinear systems. In particular, adaptive state feedback schemes are developed for feedback linearizable systems and parametric strict-feedback systems. Adaptive output feedback schemes are deigned for output-feedback systems and a class of systems with unknown state-dependent nonlinearities. Furthermore, adaptive designs are addressed for MIMO systems with actuator failures, based on two grouping techniques: fixed grouping and virtual grouping. Theoretical issues such as controller structures, actuation schemes, zero dynamics, observation, grouping conditions, closed-loop stability, and tracking performance are extensively investigated. For each scheme, design conditions are clarified, and detailed stability and performance analysis is presented. A variety of applications including a wing-rock model, twin otter aircraft, hypersonic aircraft, and cooperative multiple manipulators are addressed with simulation results showing the effectiveness of the

  9. Evolving refractory major depressive disorder diagnostic and treatment paradigms: toward closed-loop therapeutics.

    PubMed

    Ward, Matthew P; Irazoqui, Pedro P

    2010-01-01

    Current antidepressant therapies do not effectively control or cure depressive symptoms. Pharmaceutical therapies altogether fail to address an estimated 4 million Americans who suffer from a recurrent and severe treatment-resistant form of depression known as refractory major depressive disorder. Subjective diagnostic schemes, differing manifestations of the disorder, and antidepressant treatments with limited theoretical bases each contribute to the general lack of therapeutic efficacy and differing levels of treatment resistance in the refractory population. Stimulation-based therapies, such as vagus nerve stimulation, transcranial magnetic stimulation, and deep brain stimulation, are promising treatment alternatives for this treatment-resistant subset of patients, but are plagued with inconsistent reports of efficacy and variable side effects. Many of these problems stem from the unknown mechanisms of depressive disorder pathogenesis, which prevents the development of treatments that target the specific underlying causes of the disorder. Other problems likely arise due to the non-specific stimulation of various limbic and paralimbic structures in an open-loop configuration. This review critically assesses current literature on depressive disorder diagnostic methodologies, treatment schemes, and pathogenesis in order to emphasize the need for more stringent depressive disorder classifications, quantifiable biological markers that are suitable for objective diagnoses, and alternative closed-loop treatment options tailored to well-defined forms of the disorder. A closed-loop neurostimulation device design framework is proposed, utilizing symptom-linked biomarker abnormalities as control points for initiating and terminating a corrective electrical stimulus which is autonomously optimized for correcting the magnitude and direction of observed biomarker abnormality.

  10. Stabilization of an axially moving accelerated/decelerated system via an adaptive boundary control.

    PubMed

    Liu, Yu; Zhao, Zhijia; He, Wei

    2016-09-01

    In this study, an adaptive boundary control is developed for vibration suppression of an axially moving accelerated/decelerated belt system. The dynamic model of the belt system is represented by partial-ordinary differential equations with consideration of the high acceleration/deceleration and unknown distributed disturbance. By utilizing adaptive technique and Lyapunov-based back stepping method, an adaptive boundary control is proposed for vibration suppression of the belt system, a disturbance observer is introduced to attenuate the effects of unknown boundary disturbance, the adaptive law is developed to handle parametric uncertainties and the S-curve acceleration/deceleration method is adopted to plan the belt׳s speed. With the proposed control scheme, the well-posedness and stability of the closed-loop system are mathematically demonstrated. Simulations are displayed to illustrate the effectiveness of the proposed control. PMID:27269191

  11. Numerical Analysis of Combined Well and Open-Closed Loops Geothermal (CWG) Systems

    NASA Astrophysics Data System (ADS)

    Park, Yu-Chul

    2016-04-01

    Open-loop geothermal heat pump (GHP) system and closed-loop heat pump systems have been used in Korea to reduce emission of greenhouse gases such as carbon dioxide (CO2). The GHP systems have the pros and cons, for example, the open-loop GHP system is good energy-efficient and the closed-loop GHP system requires minimum maintenance costs. The open-loop GHP system can be used practically only with large amount of groundwater supply. The closed-loop GHP system can be used with high costs of initial installation. The performance and efficiency of the GHP system depend on the characteristics of the GHP system itself in addition to the geologic conditions. To overcome the cons of open-loop or closed-loop GHP system, the combined well and open-closed loops geothermal (CWG) system was designed. The open-loop GHP system is surrounded with closed-loop GHP systems in the CWG system. The geothermal energy in closed-loop GHP systems is supplied by the groundwater pumped by the open-loop GHP system. In this study, 2 different types of the CWG systems (small aperture hybrid CWG system and large aperture CWG system) are estimated using numerical simulation models in the aspect of energy efficiency. This work was supported by the New & Renewable Energy Core Technology Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea. (No.20153030111120).

  12. Global adaptive stabilisation for nonlinear systems with unknown control directions and input disturbance

    NASA Astrophysics Data System (ADS)

    Man, Yongchao; Liu, Yungang

    2016-05-01

    This paper addresses the global adaptive stabilisation via switching and learning strategies for a class of uncertain nonlinear systems. Remarkably, the systems in question simultaneously have unknown control directions, unknown input disturbance and unknown growth rate, which makes the problem in question challenging to solve and essentially different from those in the existing literature. To solve the problem, an adaptive scheme via switching and learning is proposed by skilfully integrating the techniques of backstepping design, adaptive learning and adaptive switching. One key point in the design scheme is the introduction of the learning mechanism, in order to compensate the unknown input disturbance, and the other one is the design of the switching mechanism, through tuning the design parameters online to deal with the unknown control directions, unknown bound and period of input disturbance and unknown growth rate. The designed controller guarantees that all the signals of the resulting closed-loop systems are bounded, and furthermore, the closed-loop system states globally converge to zero.

  13. Closed-loop nominal and abort atmospheric ascent guidance for rocket-powered launch vehicles

    NASA Astrophysics Data System (ADS)

    Dukeman, Greg A.

    2005-07-01

    An advanced ascent guidance algorithm for rocket-powered launch vehicles is developed. The ascent guidance function is responsible for commanding attitude, throttle and setting during the powered ascent phase of flight so that the vehicle attains target cutoff conditions in a near optimal manner while satisfying path constraints such as maximum allowed bending moment and maximum allowed axial acceleration. This algorithm cyclically solves the calculus-of-variations two-point boundary-value problem starting at vertical rise completion through orbit insertion. This is different from traditional ascent guidance algorithms which operate in an open-loop mode until the high dynamic pressure portion of the trajectory is over, at which time there is a switch to a closed loop guidance mode that operates under the assumption of negligible aerodynamic forces. The main contribution of this research is an algorithm of the predictor-corrector type wherein the state/costate system is propagated with known (navigated) initial state and guessed initial costate to predict the state/costate at engine cutoff. The initial costate guess is corrected, using a multi-dimensional Newton's method, based on errors in the terminal state constraints and the transversality conditions. Path constraints are enforced within the propagation process. A modified multiple shooting method is shown to be a very effective numerical technique for this application. Results for a single stage to orbit launch vehicle are given. In addition, the formulation for the free final time multi-arc trajectory optimization problem is given. Results for a two-stage launch vehicle burn-coast-burn ascent to orbit in a closed-loop guidance mode are shown. An abort to landing site formulation of the algorithm and numerical results are presented. A technique for numerically treating the transversality conditions is discussed that eliminates part of the analytical and coding burden associated with optimal control theory.

  14. A robust adaptive nonlinear fault-tolerant controller via norm estimation for reusable launch vehicles

    NASA Astrophysics Data System (ADS)

    Hu, Chaofang; Gao, Zhifei; Ren, Yanli; Liu, Yunbing

    2016-11-01

    In this paper, a reusable launch vehicle (RLV) attitude control problem with actuator faults is addressed via the robust adaptive nonlinear fault-tolerant control (FTC) with norm estimation. Firstly, the accurate tracking task of attitude angles in the presence of parameter uncertainties and external disturbances is considered. A fault-free controller is proposed using dynamic surface control (DSC) combined with fuzzy adaptive approach. Furthermore, the minimal learning parameter strategy via norm estimation technique is introduced to reduce the multi-parameter adaptive computation burden of fuzzy approximation of the lump uncertainties. Secondly, a compensation controller is designed to handle the partial loss fault of actuator effectiveness. The unknown maximum eigenvalue of actuator efficiency loss factors is estimated online. Moreover, stability analysis guarantees that all signals of the closed-loop control system are semi-global uniformly ultimately bounded. Finally, illustrative simulations show the effectiveness of the proposed method.

  15. An Adaptive Control Technology for Safety of a GTM-like Aircraft

    NASA Technical Reports Server (NTRS)

    Matsutani, Megumi; Crespo, Luis G.; Annaswamy, Anuradha; Jang, Jinho

    2010-01-01

    An adaptive control architecture for safe performance of a transport aircraft subject to various adverse conditions is proposed and verified in this report. This architecture combines a nominal controller based on a Linear Quadratic Regulator with integral action, and an adaptive controller that accommodates actuator saturation and bounded disturbances. The effectiveness of the baseline controller and its adaptive augmentation are evaluated using a stand-alone control veri fication methodology. Case studies that pair individual parameter uncertainties with critical flight maneuvers are studied. The resilience of the controllers is determined by evaluating the degradation in closed-loop performance resulting from increasingly larger deviations in the uncertain parameters from their nominal values. Symmetric and asymmetric actuator failures, flight upsets, and center of gravity displacements, are some of the uncertainties considered.

  16. Robust observer-based adaptive fuzzy sliding mode controller

    NASA Astrophysics Data System (ADS)

    Oveisi, Atta; Nestorović, Tamara

    2016-08-01

    In this paper, a new observer-based adaptive fuzzy integral sliding mode controller is proposed based on the Lyapunov stability theorem. The plant is subjected to a square-integrable disturbance and is assumed to have mismatch uncertainties both in state- and input-matrices. Based on the classical sliding mode controller, the equivalent control effort is obtained to satisfy the sufficient requirement of sliding mode controller and then the control law is modified to guarantee the reachability of the system trajectory to the sliding manifold. In order to relax the norm-bounded constrains on the control law and solve the chattering problem of sliding mode controller, a fuzzy logic inference mechanism is combined with the controller. An adaptive law is then introduced to tune the parameters of the fuzzy system on-line. Finally, for evaluating the controller and the robust performance of the closed-loop system, the proposed regulator is implemented on a real-time mechanical vibrating system.

  17. Integration of Online Parameter Identification and Neural Network for In-Flight Adaptive Control

    NASA Technical Reports Server (NTRS)

    Hageman, Jacob J.; Smith, Mark S.; Stachowiak, Susan

    2003-01-01

    An indirect adaptive system has been constructed for robust control of an aircraft with uncertain aerodynamic characteristics. This system consists of a multilayer perceptron pre-trained neural network, online stability and control derivative identification, a dynamic cell structure online learning neural network, and a model following control system based on the stochastic optimal feedforward and feedback technique. The pre-trained neural network and model following control system have been flight-tested, but the online parameter identification and online learning neural network are new additions used for in-flight adaptation of the control system model. A description of the modification and integration of these two stand-alone software packages into the complete system in preparation for initial flight tests is presented. Open-loop results using both simulation and flight data, as well as closed-loop performance of the complete system in a nonlinear, six-degree-of-freedom, flight validated simulation, are analyzed. Results show that this online learning system, in contrast to the nonlearning system, has the ability to adapt to changes in aerodynamic characteristics in a real-time, closed-loop, piloted simulation, resulting in improved flying qualities.

  18. Closed-loop artificial pancreas systems: physiological input to enhance next-generation devices.

    PubMed

    Kudva, Yogish C; Carter, Rickey E; Cobelli, Claudio; Basu, Rita; Basu, Ananda

    2014-01-01

    To provide an understanding of both the preclinical and clinical aspects of closed-loop artificial pancreas systems, we provide a discussion of this topic as part of this two-part Bench to Clinic narrative. Here, the Bench narrative provides an in-depth understanding of insulin-glucose-glucagon physiology in conditions that mimic the free-living situation to the extent possible in type 1 diabetes that will help refine and improve future closed-loop system algorithms. In the Clinic narrative, Doyle and colleagues compare and evaluate technology used in current closed-loop studies to gain further momentum toward outpatient trials and eventual approval for widespread use.

  19. Policy design in closed-loop supply chains for the integrated management of component recycling and spare parts supply in the electronics industry

    NASA Astrophysics Data System (ADS)

    Schroeter, Marcus; Spengler, Thomas

    2004-02-01

    The strategy to recover components from discarded electrical and electronic equipment to obtain spare parts is promising, especially during the final service phase. In that phase, the original product is no longer produced and the sources of new parts are often limited. Controlling those closed-loop supply chains is challenging. Decision makers have to choose when to acquire discarded equipment, when to recover used parts, and when to produce new parts. We developed a generic system dynamics model that provides a test for various proposed policies to control closed-loop supply chains with parts recovery and spare-parts supply.

  20. Robust adaptive backstepping control for reentry reusable launch vehicles

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Wu, Zhong; Du, Yijiang

    2016-09-01

    During the reentry process of reusable launch vehicles (RLVs), the large range of flight envelope will not only result in high nonlinearities, strong coupling and fast time-varying characteristics of the attitude dynamics, but also result in great uncertainties in the atmospheric density, aerodynamic coefficients and environmental disturbances, etc. In order to attenuate the effects of these problems on the control performance of the reentry process, a robust adaptive backstepping control (RABC) strategy is proposed for RLV in this paper. This strategy consists of two-loop controllers designed via backstepping method. Both the outer and the inner loop adopt a robust adaptive controller, which can deal with the disturbances and uncertainties by the variable-structure term with the estimation of their bounds. The outer loop can track the desired attitude by the design of virtual control-the desired angular velocity, while the inner one can track the desired angular velocity by the design of control torque. Theoretical analysis indicates that the closed-loop system under the proposed control strategy is globally asymptotically stable. Even if the boundaries of the disturbances and uncertainties are unknown, the attitude can track the desired value accurately. Simulation results of a certain RLV demonstrate the effectiveness of the control strategy.

  1. Learning from adaptive neural network output feedback control of a unicycle-type mobile robot.

    PubMed

    Zeng, Wei; Wang, Qinghui; Liu, Fenglin; Wang, Ying

    2016-03-01

    This paper studies learning from adaptive neural network (NN) output feedback control of nonholonomic unicycle-type mobile robots. The major difficulties are caused by the unknown robot system dynamics and the unmeasurable states. To overcome these difficulties, a new adaptive control scheme is proposed including designing a new adaptive NN output feedback controller and two high-gain observers. It is shown that the stability of the closed-loop robot system and the convergence of tracking errors are guaranteed. The unknown robot system dynamics can be approximated by radial basis function NNs. When repeating same or similar control tasks, the learned knowledge can be recalled and reused to achieve guaranteed stability and better control performance, thereby avoiding the tremendous repeated training process of NNs. PMID:26830003

  2. Learning from adaptive neural network output feedback control of a unicycle-type mobile robot.

    PubMed

    Zeng, Wei; Wang, Qinghui; Liu, Fenglin; Wang, Ying

    2016-03-01

    This paper studies learning from adaptive neural network (NN) output feedback control of nonholonomic unicycle-type mobile robots. The major difficulties are caused by the unknown robot system dynamics and the unmeasurable states. To overcome these difficulties, a new adaptive control scheme is proposed including designing a new adaptive NN output feedback controller and two high-gain observers. It is shown that the stability of the closed-loop robot system and the convergence of tracking errors are guaranteed. The unknown robot system dynamics can be approximated by radial basis function NNs. When repeating same or similar control tasks, the learned knowledge can be recalled and reused to achieve guaranteed stability and better control performance, thereby avoiding the tremendous repeated training process of NNs.

  3. A Power-Efficient Wireless System With Adaptive Supply Control for Deep Brain Stimulation.

    PubMed

    Lee, Hyung-Min; Park, Hangue; Ghovanloo, Maysam

    2013-09-01

    A power-efficient wireless stimulating system for a head-mounted deep brain stimulator (DBS) is presented. A new adaptive rectifier generates a variable DC supply voltage from a constant AC power carrier utilizing phase control feedback, while achieving high AC-DC power conversion efficiency (PCE) through active synchronous switching. A current-controlled stimulator adopts closed-loop supply control to automatically adjust the stimulation compliance voltage by detecting stimulation site potentials through a voltage readout channel, and improve the stimulation efficiency. The stimulator also utilizes closed-loop active charge balancing to maintain the residual charge at each site within a safe limit, while receiving the stimulation parameters wirelessly from the amplitude-shift-keyed power carrier. A 4-ch wireless stimulating system prototype was fabricated in a 0.5-μm 3M2P standard CMOS process, occupying 2.25 mm². With 5 V peak AC input at 2 MHz, the adaptive rectifier provides an adjustable DC output between 2.5 V and 4.6 V at 2.8 mA loading, resulting in measured PCE of 72 ~ 87%. The adaptive supply control increases the stimulation efficiency up to 30% higher than a fixed supply voltage to 58 ~ 68%. The prototype wireless stimulating system was verified in vitro. PMID:24678126

  4. A Power-Efficient Wireless System With Adaptive Supply Control for Deep Brain Stimulation

    PubMed Central

    Lee, Hyung-Min; Park, Hangue; Ghovanloo, Maysam

    2014-01-01

    A power-efficient wireless stimulating system for a head-mounted deep brain stimulator (DBS) is presented. A new adaptive rectifier generates a variable DC supply voltage from a constant AC power carrier utilizing phase control feedback, while achieving high AC-DC power conversion efficiency (PCE) through active synchronous switching. A current-controlled stimulator adopts closed-loop supply control to automatically adjust the stimulation compliance voltage by detecting stimulation site potentials through a voltage readout channel, and improve the stimulation efficiency. The stimulator also utilizes closed-loop active charge balancing to maintain the residual charge at each site within a safe limit, while receiving the stimulation parameters wirelessly from the amplitude-shift-keyed power carrier. A 4-ch wireless stimulating system prototype was fabricated in a 0.5-μm 3M2P standard CMOS process, occupying 2.25 mm². With 5 V peak AC input at 2 MHz, the adaptive rectifier provides an adjustable DC output between 2.5 V and 4.6 V at 2.8 mA loading, resulting in measured PCE of 72 ~ 87%. The adaptive supply control increases the stimulation efficiency up to 30% higher than a fixed supply voltage to 58 ~ 68%. The prototype wireless stimulating system was verified in vitro. PMID:24678126

  5. Adaptive control for accelerators

    DOEpatents

    Eaton, Lawrie E.; Jachim, Stephen P.; Natter, Eckard F.

    1991-01-01

    An adaptive feedforward control loop is provided to stabilize accelerator beam loading of the radio frequency field in an accelerator cavity during successive pulses of the beam into the cavity. A digital signal processor enables an adaptive algorithm to generate a feedforward error correcting signal functionally determined by the feedback error obtained by a beam pulse loading the cavity after the previous correcting signal was applied to the cavity. Each cavity feedforward correcting signal is successively stored in the digital processor and modified by the feedback error resulting from its application to generate the next feedforward error correcting signal. A feedforward error correcting signal is generated by the digital processor in advance of the beam pulse to enable a composite correcting signal and the beam pulse to arrive concurrently at the cavity.

  6. Adaptive nonlinear flight control

    NASA Astrophysics Data System (ADS)

    Rysdyk, Rolf Theoduor

    1998-08-01

    Research under supervision of Dr. Calise and Dr. Prasad at the Georgia Institute of Technology, School of Aerospace Engineering. has demonstrated the applicability of an adaptive controller architecture. The architecture successfully combines model inversion control with adaptive neural network (NN) compensation to cancel the inversion error. The tiltrotor aircraft provides a specifically interesting control design challenge. The tiltrotor aircraft is capable of converting from stable responsive fixed wing flight to unstable sluggish hover in helicopter configuration. It is desirable to provide the pilot with consistency in handling qualities through a conversion from fixed wing flight to hover. The linear model inversion architecture was adapted by providing frequency separation in the command filter and the error-dynamics, while not exiting the actuator modes. This design of the architecture provides for a model following setup with guaranteed performance. This in turn allowed for convenient implementation of guaranteed handling qualities. A rigorous proof of boundedness is presented making use of compact sets and the LaSalle-Yoshizawa theorem. The analysis allows for the addition of the e-modification which guarantees boundedness of the NN weights in the absence of persistent excitation. The controller is demonstrated on the Generic Tiltrotor Simulator of Bell-Textron and NASA Ames R.C. The model inversion implementation is robustified with respect to unmodeled input dynamics, by adding dynamic nonlinear damping. A proof of boundedness of signals in the system is included. The effectiveness of the robustification is also demonstrated on the XV-15 tiltrotor. The SHL Perceptron NN provides a more powerful application, based on the universal approximation property of this type of NN. The SHL NN based architecture is also robustified with the dynamic nonlinear damping. A proof of boundedness extends the SHL NN augmentation with robustness to unmodeled actuator

  7. Control algorithms of liquid crystal phased arrays used as adaptive optic correctors

    NASA Astrophysics Data System (ADS)

    Dayton, David; Gonglewski, John; Browne, Stephen

    2006-08-01

    Multi-segment liquid crystal phased arrays have been demonstrated as adaptive optics elements for correction of atmospheric turbulence. High speed dual-frequency nematic liquid crystal has sufficient bandwidth to keep up with moderate atmospheric Greenwood frequencies. However the segmented piston correction only spatial nature of the devices requires novel approaches to control algorithms especially when used with Shack-Hartmann wave front sensors. In this presentation we explore approaches and their effects on closed loop Strehl ratios. A Zernike modal based approach has produced the best results. The presentation will contain results from experiments with a Meadowlark optics liquid crystal device.

  8. [Therapeutic applications of closed-loop brain stimulation. Success and expectations].

    PubMed

    Zrenner, C; Ziemann, U

    2015-12-01

    The therapeutic application of brain stimulation is still limited to relatively few indications and small groups of patients due to variable efficacy. Individualization of stimulation parameters by employing a closed-loop system, i.e. synchronization of stimulation with endogenous brain activity with millisecond precision, has the potential to significantly improve the therapeutic efficacy when compared to open-loop systems. In this article the theoretical and experimental results are reviewed including first clinical trials that support the superiority of closed-loop brain stimulation, fundamental aspects in the development of closed loop methods are discussed and clinical studies which could quantify an increase in effectiveness are summarized. A significant increase in the indications for therapeutic applications of closed-loop systems is to be expected in the near future. PMID:26567042

  9. Closed-loop carrier phase synchronization techniques motivated by likelihood functions

    NASA Technical Reports Server (NTRS)

    Tsou, H.; Hinedi, S.; Simon, M.

    1994-01-01

    This article reexamines the notion of closed-loop carrier phase synchronization motivated by the theory of maximum a posteriori phase estimation with emphasis on the development of new structures based on both maximum-likelihood and average-likelihood functions. The criterion of performance used for comparison of all the closed-loop structures discussed is the mean-squared phase error for a fixed-loop bandwidth.

  10. Stoichiometry and Change of the mRNA Closed-Loop Factors as Translating Ribosomes Transit from Initiation to Elongation

    PubMed Central

    Wang, Xin; Xi, Wen; Toomey, Shaun; Chiang, Yueh-Chin; Hasek, Jiri; Laue, Thomas M.; Denis, Clyde L.

    2016-01-01

    Protein synthesis is a highly efficient process and is under exacting control. Yet, the actual abundance of translation factors present in translating complexes and how these abundances change during the transit of a ribosome across an mRNA remains unknown. Using analytical ultracentrifugation with fluorescent detection we have determined the stoichiometry of the closed-loop translation factors for translating ribosomes. A variety of pools of translating polysomes and monosomes were identified, each containing different abundances of the closed-loop factors eIF4E, eIF4G, and PAB1 and that of the translational repressor, SBP1. We establish that closed-loop factors eIF4E/eIF4G dissociated both as ribosomes transited polyadenylated mRNA from initiation to elongation and as translation changed from the polysomal to monosomal state prior to cessation of translation. eIF4G was found to particularly dissociate from polyadenylated mRNA as polysomes moved to the monosomal state, suggesting an active role for translational repressors in this process. Consistent with this suggestion, translating complexes generally did not simultaneously contain eIF4E/eIF4G and SBP1, implying mutual exclusivity in such complexes. For substantially deadenylated mRNA, however, a second type of closed-loop structure was identified that contained just eIF4E and eIF4G. More than one eIF4G molecule per polysome appeared to be present in these complexes, supporting the importance of eIF4G interactions with the mRNA independent of PAB1. These latter closed-loop structures, which were particularly stable in polysomes, may be playing specific roles in both normal and disease states for specific mRNA that are deadenylated and/or lacking PAB1. These analyses establish a dynamic snapshot of molecular abundance changes during ribosomal transit across an mRNA in what are likely to be critical targets of regulation. PMID:26953568

  11. Stoichiometry and Change of the mRNA Closed-Loop Factors as Translating Ribosomes Transit from Initiation to Elongation.

    PubMed

    Wang, Xin; Xi, Wen; Toomey, Shaun; Chiang, Yueh-Chin; Hasek, Jiri; Laue, Thomas M; Denis, Clyde L

    2016-01-01

    Protein synthesis is a highly efficient process and is under exacting control. Yet, the actual abundance of translation factors present in translating complexes and how these abundances change during the transit of a ribosome across an mRNA remains unknown. Using analytical ultracentrifugation with fluorescent detection we have determined the stoichiometry of the closed-loop translation factors for translating ribosomes. A variety of pools of translating polysomes and monosomes were identified, each containing different abundances of the closed-loop factors eIF4E, eIF4G, and PAB1 and that of the translational repressor, SBP1. We establish that closed-loop factors eIF4E/eIF4G dissociated both as ribosomes transited polyadenylated mRNA from initiation to elongation and as translation changed from the polysomal to monosomal state prior to cessation of translation. eIF4G was found to particularly dissociate from polyadenylated mRNA as polysomes moved to the monosomal state, suggesting an active role for translational repressors in this process. Consistent with this suggestion, translating complexes generally did not simultaneously contain eIF4E/eIF4G and SBP1, implying mutual exclusivity in such complexes. For substantially deadenylated mRNA, however, a second type of closed-loop structure was identified that contained just eIF4E and eIF4G. More than one eIF4G molecule per polysome appeared to be present in these complexes, supporting the importance of eIF4G interactions with the mRNA independent of PAB1. These latter closed-loop structures, which were particularly stable in polysomes, may be playing specific roles in both normal and disease states for specific mRNA that are deadenylated and/or lacking PAB1. These analyses establish a dynamic snapshot of molecular abundance changes during ribosomal transit across an mRNA in what are likely to be critical targets of regulation. PMID:26953568

  12. Stoichiometry and Change of the mRNA Closed-Loop Factors as Translating Ribosomes Transit from Initiation to Elongation.

    PubMed

    Wang, Xin; Xi, Wen; Toomey, Shaun; Chiang, Yueh-Chin; Hasek, Jiri; Laue, Thomas M; Denis, Clyde L

    2016-01-01

    Protein synthesis is a highly efficient process and is under exacting control. Yet, the actual abundance of translation factors present in translating complexes and how these abundances change during the transit of a ribosome across an mRNA remains unknown. Using analytical ultracentrifugation with fluorescent detection we have determined the stoichiometry of the closed-loop translation factors for translating ribosomes. A variety of pools of translating polysomes and monosomes were identified, each containing different abundances of the closed-loop factors eIF4E, eIF4G, and PAB1 and that of the translational repressor, SBP1. We establish that closed-loop factors eIF4E/eIF4G dissociated both as ribosomes transited polyadenylated mRNA from initiation to elongation and as translation changed from the polysomal to monosomal state prior to cessation of translation. eIF4G was found to particularly dissociate from polyadenylated mRNA as polysomes moved to the monosomal state, suggesting an active role for translational repressors in this process. Consistent with this suggestion, translating complexes generally did not simultaneously contain eIF4E/eIF4G and SBP1, implying mutual exclusivity in such complexes. For substantially deadenylated mRNA, however, a second type of closed-loop structure was identified that contained just eIF4E and eIF4G. More than one eIF4G molecule per polysome appeared to be present in these complexes, supporting the importance of eIF4G interactions with the mRNA independent of PAB1. These latter closed-loop structures, which were particularly stable in polysomes, may be playing specific roles in both normal and disease states for specific mRNA that are deadenylated and/or lacking PAB1. These analyses establish a dynamic snapshot of molecular abundance changes during ribosomal transit across an mRNA in what are likely to be critical targets of regulation.

  13. A fast converging robust controller using adaptive second order sliding mode.

    PubMed

    Mondal, Sanjoy; Mahanta, Chitralekha

    2012-11-01

    This paper proposes an adaptive second order sliding mode (SOSM) controller with a nonlinear sliding surface. The nonlinear sliding surface consists of a gain matrix having a variable damping ratio. Initially the sliding surface uses a low value of damping ratio to get a quick system response. As the closed loop system approaches the desired reference, the value of the damping ratio gets increased with an aim to reducing the overshoot and the settling time. The time derivative of the control signal is used to design the controller. The actual control input obtained by integrating the derivative control signal is smooth and chattering free. The adaptive tuning law used by the proposed controller eliminates the need of prior knowledge about the upper bound of system uncertainties. Simulation results demonstrate the effectiveness of the proposed control strategy.

  14. Experimental Validation of L1 Adaptive Control: Rohrs' Counterexample in Flight

    NASA Technical Reports Server (NTRS)

    Xargay, Enric; Hovakimyan, Naira; Dobrokhodov, Vladimir; Kaminer, Issac; Kitsios, Ioannis; Cao, Chengyu; Gregory, Irene M.; Valavani, Lena

    2010-01-01

    The paper presents new results on the verification and in-flight validation of an L1 adaptive flight control system, and proposes a general methodology for verification and validation of adaptive flight control algorithms. The proposed framework is based on Rohrs counterexample, a benchmark problem presented in the early 80s to show the limitations of adaptive controllers developed at that time. In this paper, the framework is used to evaluate the performance and robustness characteristics of an L1 adaptive control augmentation loop implemented onboard a small unmanned aerial vehicle. Hardware-in-the-loop simulations and flight test results confirm the ability of the L1 adaptive controller to maintain stability and predictable performance of the closed loop adaptive system in the presence of general (artificially injected) unmodeled dynamics. The results demonstrate the advantages of L1 adaptive control as a verifiable robust adaptive control architecture with the potential of reducing flight control design costs and facilitating the transition of adaptive control into advanced flight control systems.

  15. Decentralized closed-loop collaborative surveillance and tracking performance sensitivity to communications connectivity

    NASA Astrophysics Data System (ADS)

    DeSena, Jonathan T.; Martin, Sean R.; Clarke, Jesse C.; Dutrow, Daniel A.; Kohan, Brian C.; Newman, Andrew J.

    2013-05-01

    As the number and diversity of sensing assets available for intelligence, surveillance and reconnaissance (ISR) operations continues to expand, the limited ability of human operators to effectively manage, control and exploit the ISR ensemble is exceeded, leading to reduced operational effectiveness. Our approach is to apply the principles of feedback control to ISR operations, "closing the loop" from the sensor collections through automated processing to ISR asset control. Previous work by the authors demonstrated closed-loop control, involving both platform routing and sensor pointing, of a multi-sensor, multi-platform ISR ensemble tasked with providing situational awareness and performing search, track and classification of multiple targets. The multi-asset control used a joint optimization of routes and schedules in a centralized architecture, requiring a fully-connected communications network. This paper presents an extension of the previous work to a decentralized architecture that relaxes the communications requirements. The decentralized approach achieves a solution equivalent to the centralized system when the network allows full communications and gracefully degrades ISR performance as communications links degrade. The decentralized closedloop ISR system has been exercised via a simulation test bed against a scenario in the Afghanistan theater under a variety of network conditions, from full to poor connectivity. Simulation experiment results are presented.

  16. First Results from a Hardware-in-the-Loop Demonstration of Closed-Loop Autonomous Formation Flying

    NASA Technical Reports Server (NTRS)

    Gill, E.; Naasz, Bo; Ebinuma, T.

    2003-01-01

    A closed-loop system for the demonstration of autonomous satellite formation flying technologies using hardware-in-the-loop has been developed. Making use of a GPS signal simulator with a dual radio frequency outlet, the system includes two GPS space receivers as well as a powerful onboard navigation processor dedicated to the GPS-based guidance, navigation, and control of a satellite formation in real-time. The closed-loop system allows realistic simulations of autonomous formation flying scenarios, enabling research in the fields of tracking and orbit control strategies for a wide range of applications. The autonomous closed-loop formation acquisition and keeping strategy is based on Lyapunov's direct control method as applied to the standard set of Keplerian elements. This approach not only assures global and asymptotic stability of the control but also maintains valuable physical insight into the applied control vectors. Furthermore, the approach can account for system uncertainties and effectively avoids a computationally expensive solution of the two point boundary problem, which renders the concept particularly attractive for implementation in onboard processors. A guidance law has been developed which strictly separates the relative from the absolute motion, thus avoiding the numerical integration of a target trajectory in the onboard processor. Moreover, upon using precise kinematic relative GPS solutions, a dynamical modeling or filtering is avoided which provides for an efficient implementation of the process on an onboard processor. A sample formation flying scenario has been created aiming at the autonomous transition of a Low Earth Orbit satellite formation from an initial along-track separation of 800 m to a target distance of 100 m. Assuming a low-thrust actuator which may be accommodated on a small satellite, a typical control accuracy of less than 5 m has been achieved which proves the applicability of autonomous formation flying techniques to

  17. Closed-loop Robots Driven by Short-Term Synaptic Plasticity: Emergent Explorative vs. Limit-Cycle Locomotion

    PubMed Central

    Martin, Laura; Sándor, Bulcsú; Gros, Claudius

    2016-01-01

    We examine the hypothesis, that short-term synaptic plasticity (STSP) may generate self-organized motor patterns. We simulated sphere-shaped autonomous robots, within the LPZRobots simulation package, containing three weights moving along orthogonal internal rods. The position of a weight is controlled by a single neuron receiving excitatory input from the sensor, measuring its actual position, and inhibitory inputs from the other two neurons. The inhibitory connections are transiently plastic, following physiologically inspired STSP-rules. We find that a wide palette of motion patterns are generated through the interaction of STSP, robot, and environment (closed-loop configuration), including various forward meandering and circular motions, together with chaotic trajectories. The observed locomotion is robust with respect to additional interactions with obstacles. In the chaotic phase the robot is seemingly engaged in actively exploring its environment. We believe that our results constitute a concept of proof that transient synaptic plasticity, as described by STSP, may potentially be important for the generation of motor commands and for the emergence of complex locomotion patterns, adapting seamlessly also to unexpected environmental feedback. We observe spontaneous and collision induced mode switchings, finding in addition, that locomotion may follow transiently limit cycles which are otherwise unstable. Regular locomotion corresponds to stable limit cycles in the sensorimotor loop, which may be characterized in turn by arbitrary angles of propagation. This degeneracy is, in our analysis, one of the drivings for the chaotic wandering observed for selected parameter settings, which is induced by the smooth diffusion of the angle of propagation. PMID:27803661

  18. Station-keeping control for a stratospheric airship platform via fuzzy adaptive backstepping approach

    NASA Astrophysics Data System (ADS)

    Yang, Yueneng; Wu, Jie; Zheng, Wei

    2013-04-01

    This paper presents a novel approach for station-keeping control of a stratospheric airship platform in the presence of parametric uncertainty and external disturbance. First, conceptual design of the stratospheric airship platform is introduced, including the target mission, configuration, energy sources, propeller and payload. Second, the dynamics model of the airship platform is presented, and the mathematical model of its horizontal motion is derived. Third, a fuzzy adaptive backstepping control approach is proposed to develop the station-keeping control system for the simplified horizontal motion. The backstepping controller is designed assuming that the airship model is accurately known, and a fuzzy adaptive algorithm is used to approximate the uncertainty of the airship model. The stability of the closed-loop control system is proven via the Lyapunov theorem. Finally, simulation results illustrate the effectiveness and robustness of the proposed control approach.

  19. Adaptive fuzzy backstepping control for a class of switched nonlinear systems with actuator faults

    NASA Astrophysics Data System (ADS)

    Hou, Yingxue; Tong, Shaocheng; Li, Yongming

    2016-11-01

    This paper investigates the problem of fault-tolerant control (FTC) for a class of switched nonlinear systems. These systems are under arbitrary switchings and are subject to both lock-in-place and loss-of-effectiveness actuator faults. In the control design, fuzzy logic systems are used to identify the unknown switched nonlinear systems. Under the framework of the backstepping control design, FTC, fuzzy adaptive control and common Lyapunov function stability theory, an adaptive fuzzy control approach is developed. It is proved that the proposed control approach can guarantee that all the signals in the closed-loop switched system are semi-globally uniformly ultimately bounded (SGUUB) and the tracking error remains an adjustable neighbourhood of the origin. Two simulation examples are provided to illustrate the effectiveness of the proposed approach.

  20. Robust adaptive tracking control of MIMO nonlinear systems in the presence of actuator hysteresis

    NASA Astrophysics Data System (ADS)

    Fu, Guiyuan; Ou, Linlin; Zhang, Weidong

    2016-07-01

    Adaptive tracking control of a class of MIMO nonlinear system preceded by unknown hysteresis is investigated. Based on dynamic surface control, an adaptive robust control law is developed and compensators are designed to mitigate the influences of both the unknown bounded external uncertainties and the unknown Prandtl-Islinskii hysteresis. By adopting the low-pass filters, the explosion of complexity caused by tedious computation of the time derivatives of the virtual control laws is overcome. With the proposed control scheme, the closed-loop system is proved to be semi-globally ultimately bounded by the Lyapunov stability theory, and the output of the controlled system can track the desired trajectories with an arbitrarily small error. Finally, numerical simulations are given to verify the effectiveness of the proposed approach.

  1. Observed-Based Adaptive Fuzzy Tracking Control for Switched Nonlinear Systems With Dead-Zone.

    PubMed

    Tong, Shaocheng; Sui, Shuai; Li, Yongming

    2015-12-01

    In this paper, the problem of adaptive fuzzy output-feedback control is investigated for a class of uncertain switched nonlinear systems in strict-feedback form. The considered switched systems contain unknown nonlinearities, dead-zone, and immeasurable states. Fuzzy logic systems are utilized to approximate the unknown nonlinear functions, a switched fuzzy state observer is designed and thus the immeasurable states are obtained by it. By applying the adaptive backstepping design principle and the average dwell time method, an adaptive fuzzy output-feedback tracking control approach is developed. It is proved that the proposed control approach can guarantee that all the variables in the closed-loop system are bounded under a class of switching signals with average dwell time, and also that the system output can track a given reference signal as closely as possible. The simulation results are given to check the effectiveness of the proposed approach.

  2. A Methodology to Assess the Capability of Engine Designs to Meet Closed-Loop Performance and Operability Requirements

    NASA Technical Reports Server (NTRS)

    Zinnecker, Alicia M.; Csank, Jeffrey

    2015-01-01

    Designing a closed-loop controller for an engine requires balancing trade-offs between performance and operability of the system. One such trade-off is the relationship between the 95 percent response time and minimum high-pressure compressor (HPC) surge margin (SM) attained during acceleration from idle to takeoff power. Assuming a controller has been designed to meet some specification on response time and minimum HPC SM for a mid-life (nominal) engine, there is no guarantee that these limits will not be violated as the engine ages, particularly as it reaches the end of its life. A characterization for the uncertainty in this closed-loop system due to aging is proposed that defines elliptical boundaries to estimate worst-case performance levels for a given control design point. The results of this characterization can be used to identify limiting design points that bound the possible controller designs yielding transient results that do not exceed specified limits in response time or minimum HPC SM. This characterization involves performing Monte Carlo simulation of the closed-loop system with controller constructed for a set of trial design points and developing curve fits to describe the size and orientation of each ellipse; a binary search procedure is then employed that uses these fits to identify the limiting design point. The method is demonstrated through application to a generic turbofan engine model in closed-loop with a simplified controller; it is found that the limit for which each controller was designed was exceeded by less than 4.76 percent. Extension of the characterization to another trade-off, that between the maximum high-pressure turbine (HPT) entrance temperature and minimum HPC SM, showed even better results: the maximum HPT temperature was estimated within 0.76 percent. Because of the accuracy in this estimation, this suggests another limit that may be taken into consideration during design and analysis. It also demonstrates the extension

  3. A study of closed-loop application: WLCD-CDC for 32nm and beyond reticles

    NASA Astrophysics Data System (ADS)

    Goonesekera, Arosha; Buttgereit, Ute; Thaler, Thomas; Graitzer, Erez

    2011-11-01

    Optical lithography stays at 193nm with a numerical aperture of 1.35 for several more years before moving to EUV lithography. Utilization of 193nm lithography for 32nm and beyond forces the mask maker to produce complex mask designs and tighter lithography specifications which in turn make process control more important than ever. High yield with regards to chip production requires accurate process control. Critical Dimension Uniformity (CDU) is one of the key parameters necessary to assure good performance and reliable functionality of any integrated circuit. There are different contributors which impact the total wafer CDU: mask CD uniformity, resist process, scanner and lens fingerprint, wafer topography, etc. In this study the newly developed wafer level CD metrology tool WLCD of Carl Zeiss SMS is utilized for CDU measurements in conjunction with the CDC tool from Carl Zeiss SMS which provides CD uniformity correction. The WLCD measures CD based on proven aerial imaging technology. The CDC utilizes an ultrafast femto-second laser to write intra-volume shading elements (Shade-In ElementsTM) inside the bulk material of the mask. By adjusting the density of the shading elements, the light transmission through the mask is locally changed in a manner that improves wafer CDU when the corrected mask is printed. The objective of this study is to evaluate the usage of these two tools in a closed loop process to optimize CDU of the mask before leaving the mask shop and to ensure improved intra-field CDU at wafer level. Main focus of the study is to investigate the correlation of applied attenuation by CDC and the resulting CD change, the impact of CDC process on CD linearity behavior and the correlation of WLCD data and wafer data. Logic and SRAM cells with features having designed line CD's at wafer level, ranging from 27nm to 42nm have been used for the study. The investigation provides evidence that the applied attenuation by CDC shows a linear correlation to CD

  4. Adaptive control of robotic manipulators with structural flexibility

    NASA Astrophysics Data System (ADS)

    Wu, Sijun

    The control problem of mechanically flexible systems was an important issue for the past decade due mainly to the growing needs for fast, precise manipulators in industry and space applications. In this thesis, stable, high precision, and high-bandwidth closed-loop tip position control of a one-link flexible robot was investigated. Two adaptive control methods are developed and studied. A non-dimensionalized dynamic model for the flexible robot arm is developed. Payload mass and moment of inertia are also considered in the modeling. It can be shown that with a set of strain gauge measurements, the payload mass and moment of inertia could be estimated. This provides a convenient tool to detect the variations of the payload, which is crucial for precision control. The lattice filter used in the tip position control of a flexible arm proves to be a good parameter identifier in the on-line identification of the robot due to its high convergence rate and noise rejection capability. Although the lattice filter is usualy designed for auto-regressive or moving-average processes, its applications are extended to include auto-regressive and moving-average processes. The proposed model reference adaptive inverse controller is in the form of a series type of model reference system. It differs from other model reference controller in that the forward controller is the identified systems inverse. Moreover, an additional control signal is applied which comes from a signal synthesis block to compensate the output tracking and parameter identification errors. Compared with other control techniques such as stable factorization and linear quadratic Gaussian, the predictive adaptive controller could provide faster control with reasonably low input energy level.

  5. A Methodology to Assess the Capability of Engine Designs to Meet Closed-loop Performance and Operability Requirements

    NASA Technical Reports Server (NTRS)

    Zinnecker, Alicia M.; Csank, Jeffrey T.

    2015-01-01

    Designing a closed-loop controller for an engine requires balancing trade-offs between performance and operability of the system. One such trade-off is the relationship between the 95% response time and minimum high-pressure compressor (HPC) surge margin (SM) attained during acceleration from idle to takeoff power. Assuming a controller has been designed to meet some specification on response time and minimum HPC SM for a mid-life (nominal) engine, there is no guarantee that these limits will not be violated as the engine ages, particularly as it reaches the end of its life. A characterization for the uncertainty in this closed-loop system due to aging is proposed that defines elliptical boundaries to estimate worst-case performance levels for a given control design point. The results of this characterization can be used to identify limiting design points that bound the possible con- troller designs yielding transient results that do not exceed specified limits in response time or minimum HPC SM. This characterization involves performing Monte Carlo simulation of the closed-loop system with controller constructed for a set of trial design points and developing curve fits to describe the size and orientation of each ellipse; a binary search procedure is then employed that uses these fits to identify the limiting design point. The method is demonstrated through application to a generic turbofan engine model in closed- loop with a simplified controller; it is found that the limit for which each controller was designed was exceeded by less than 4.76%. Extension of the characterization to another trade-off, that between the maximum high-pressure turbine (HPT) entrance temperature and minimum HPC SM, showed even better results: the maximum HPT temperature was estimated within 0.76%. Because of the accuracy in this estimation, this suggests another limit that may be taken into consideration during design and analysis. It also demonstrates the extension of the

  6. Nonlinear Adaptive Flight Control for the X-38 Reentry Vehicle

    NASA Astrophysics Data System (ADS)

    Wallner, E. M.; Well, K. H.

    The paper is concerned with designing an attitude control system for the X-38 vehicle for the hypersonic and supersonic region. The design goals are i) good tracking performance such that the vehicle will follow the guidance commands, ii) robust stability and performance in view of uncertain aerodynamic parameters, iii) cross-airframe capability of the control architecture in order to minimize redesign efforts in view of vehicle modifications which might occur during the development process. These goals have been achieved by selecting an inversion based control system design procedure combined with a CMAC neural net for adaptation of the linear PID controller parameters in view of the uncertainties. It is shown that the application of dynamic inversion requires a redefinition of the controlled variables in order to adequately stabilize the closed-loop system. The need for output-redefinition lies in the fact that only two bodyflaps are available for control, which limits the number of controlled variables to two. Simulation results are given to show the efficacy of the control approach.

  7. Adaptive NN Control of a Class of Nonlinear Systems With Asymmetric Saturation Actuators.

    PubMed

    Ma, Jianjun; Ge, Shuzhi Sam; Zheng, Zhiqiang; Hu, Dewen

    2015-07-01

    In this note, adaptive neural network (NN) control is investigated for a class of uncertain nonlinear systems with asymmetric saturation actuators and external disturbances. To handle the effect of nonsmooth asymmetric saturation nonlinearity, a Gaussian error function-based continuous differentiable asymmetric saturation model is employed such that the backstepping technique can be used in the control design. The explosion of complexity in traditional backstepping design is avoided using dynamic surface control. Using radial basis function NN, adaptive control is developed to guarantee that all the signals in the closed-loop system are semiglobally uniformly ultimately bounded, and the tracking error converges to a small neighborhood of origin by appropriately choosing design constants. The effectiveness of the proposed control is demonstrated in the simulation study.

  8. Successful Application of Closed-Loop Artificial Pancreas Therapy After Islet Autotransplantation.

    PubMed

    Forlenza, G P; Nathan, B M; Moran, A M; Dunn, T B; Beilman, G J; Pruett, T L; Bellin, M D

    2016-02-01

    Total pancreatectomy with islet autotransplantation (TPIAT) may relieve the pain of chronic pancreatitis while avoiding postsurgical diabetes. Minimizing hyperglycemia after TPIAT limits beta cell apoptosis during islet engraftment. Closed-loop (CL) therapy combining an insulin pump with a continuous glucose monitor (CGM) has not been investigated previously in islet transplant recipients. Our objective was to determine the feasibility and efficacy of CL therapy to maintain glucose profiles close to normoglycemia following TPIAT. Fourteen adult subjects (36% male; aged 35.9 ± 11.4 years) were randomized to subcutaneous insulin via CL pump (n = 7) or multiple daily injections with blinded CGM (n = 7) for 72 h at transition from intravenous to subcutaneous insulin. Mean serum glucose values were significantly lower in the CL pump group than in the control group (111 ± 4 vs. 130 ± 13 mg/dL; p = 0.003) without increased risk of hypoglycemia (percentage of time <70 mg/dL: CL pump 1.9%, control 4.8%; p = 0.46). Results from this pilot study suggest that CL therapy is superior to conventional therapy in maintaining euglycemia without increased hypoglycemia. This technology shows significant promise to safely maintain euglycemic targets during the period of islet engraftment following islet transplantation. PMID:26588810

  9. Development of a real-time closed-loop dual wavelength optical polarimeter for glucose monitoring

    NASA Astrophysics Data System (ADS)

    Malik, Bilal H.; Coté, Gerard L.

    2010-02-01

    Over the last decade, noninvasive glucose sensors based on optical polarimetry have been proposed to probe the anterior chamber of the eye. Such sensors would ultimately be used to measure the aqueous humor glucose concentration which is correlated with blood glucose concentration. Although the effect of other chiral components in the eye has been minimized, the time-variant corneal birefringence due to motion artifact is still a limiting factor which needs to be resolved for realization of such a device. Here we present the development of a real-time dual wavelength optical polarimetric system employing a classical three-term feedback controller. Our dual wavelength system utilizes real-time closed-loop feedback based on proportional-integral-derivative (PID) control, which effectively reduced the time taken by the system to stabilize to less than 300 ms while minimizing the effect of motion artifact, which appears as common noise source for both wavelengths. Measurements in the presence of time-variant test cell birefringence demonstrate the sensitivity of the current system to measure glucose within the range of 0-600 mg/dl with a standard error of less than 13 mg/dl using the dual wavelength information.

  10. Potential and benefits of closed loop ECLS systems on the ISS.

    PubMed

    Raatschen, W; Preiss, H

    2001-01-01

    To close open loops for long manned missions in space is a big challenge for aeronautic engineers throughout the world. The paper's focus is on the oxygen reclamation from carbon dioxide within a space habitat. A brief description of the function principle of a fixed alkaline electrolyzer, a solid amine carbon dioxide concentrator and a Sabatier reactor is given. By combining these devices to an air revitalization system the technical and economical benefits are explained. Astrium's Air Revitalization System (ARES) as a potential future part of the International Space Station's Environmental Control and Life Support System would close the oxygen loop. The amount of oxygen, needed for an ISS crew of seven astronauts could be provided by ARES. The upload of almost 1500 kg of water annually for oxygen generation through the onboard electrolyzer would be reduced by more than 1000 kg, resulting in savings of more than 30M$ per year. Additionally, the payload capacity of supply flights would be increased by this amount of mass. Further possibilities are addressed to combine ECLS mass flows with those of the power, propulsion and attitude control systems. Such closed loop approaches will contribute to ease long time missions (e. g. Mars, Moon) from a cost and logistic point of view. The hardware realization of Astrium's space-sized operating ARES is shown and test results of continuous and intermittent closed chamber tests are presented.

  11. A closed-loop phase-locked interferometer for wide bandwidth position sensing

    SciTech Connect

    Fleming, Andrew J. Routley, Ben S.

    2015-11-15

    This article describes a position sensitive interferometer with closed-loop control of the reference mirror. A calibrated nanopositioner is used to lock the interferometer phase to the most sensitive point in the interferogram. In this configuration, large low-frequency movements of the sensor mirror can be detected from the control signal applied to the nanopositioner and high-frequency short-range signals can be measured directly from the photodiode. It is demonstrated that these two signals are complementary and can be summed to find the total displacement. The resulting interferometer has a number of desirable characteristics: it is optically simple, does not require polarization or modulation to detect the direction of motion, does not require fringe-counting or interpolation electronics, and has a bandwidth equal to that of the photodiode. Experimental results demonstrate the frequency response analysis of a high-speed positioning stage. The proposed instrument is ideal for measuring the frequency response of nanopositioners, electro-optical components, MEMs devices, ultrasonic devices, and sensors such as surface acoustic wave detectors.

  12. Successful Application of Closed-Loop Artificial Pancreas Therapy After Islet Autotransplantation.

    PubMed

    Forlenza, G P; Nathan, B M; Moran, A M; Dunn, T B; Beilman, G J; Pruett, T L; Bellin, M D

    2016-02-01

    Total pancreatectomy with islet autotransplantation (TPIAT) may relieve the pain of chronic pancreatitis while avoiding postsurgical diabetes. Minimizing hyperglycemia after TPIAT limits beta cell apoptosis during islet engraftment. Closed-loop (CL) therapy combining an insulin pump with a continuous glucose monitor (CGM) has not been investigated previously in islet transplant recipients. Our objective was to determine the feasibility and efficacy of CL therapy to maintain glucose profiles close to normoglycemia following TPIAT. Fourteen adult subjects (36% male; aged 35.9 ± 11.4 years) were randomized to subcutaneous insulin via CL pump (n = 7) or multiple daily injections with blinded CGM (n = 7) for 72 h at transition from intravenous to subcutaneous insulin. Mean serum glucose values were significantly lower in the CL pump group than in the control group (111 ± 4 vs. 130 ± 13 mg/dL; p = 0.003) without increased risk of hypoglycemia (percentage of time <70 mg/dL: CL pump 1.9%, control 4.8%; p = 0.46). Results from this pilot study suggest that CL therapy is superior to conventional therapy in maintaining euglycemia without increased hypoglycemia. This technology shows significant promise to safely maintain euglycemic targets during the period of islet engraftment following islet transplantation.

  13. Adaptive Fuzzy Control of Strict-Feedback Nonlinear Time-Delay Systems With Unmodeled Dynamics.

    PubMed

    Yin, Shen; Shi, Peng; Yang, Hongyan

    2016-08-01

    In this paper, an approximated-based adaptive fuzzy control approach with only one adaptive parameter is presented for a class of single input single output strict-feedback nonlinear systems in order to deal with phenomena like nonlinear uncertainties, unmodeled dynamics, dynamic disturbances, and unknown time delays. Lyapunov-Krasovskii function approach is employed to compensate the unknown time delays in the design procedure. By combining the advances of the hyperbolic tangent function with adaptive fuzzy backstepping technique, the proposed controller guarantees the semi-globally uniformly ultimately boundedness of all the signals in the closed-loop system from the mean square point of view. Two simulation examples are finally provided to show the superior effectiveness of the proposed scheme.

  14. Robust time and frequency domain estimation methods in adaptive control

    NASA Technical Reports Server (NTRS)

    Lamaire, Richard Orville

    1987-01-01

    A robust identification method was developed for use in an adaptive control system. The type of estimator is called the robust estimator, since it is robust to the effects of both unmodeled dynamics and an unmeasurable disturbance. The development of the robust estimator was motivated by a need to provide guarantees in the identification part of an adaptive controller. To enable the design of a robust control system, a nominal model as well as a frequency-domain bounding function on the modeling uncertainty associated with this nominal model must be provided. Two estimation methods are presented for finding parameter estimates, and, hence, a nominal model. One of these methods is based on the well developed field of time-domain parameter estimation. In a second method of finding parameter estimates, a type of weighted least-squares fitting to a frequency-domain estimated model is used. The frequency-domain estimator is shown to perform better, in general, than the time-domain parameter estimator. In addition, a methodology for finding a frequency-domain bounding function on the disturbance is used to compute a frequency-domain bounding function on the additive modeling error due to the effects of the disturbance and the use of finite-length data. The performance of the robust estimator in both open-loop and closed-loop situations is examined through the use of simulations.

  15. Conceptual design of a closed loop nutrient solution delivery system for CELSS implementation in a micro-gravity environment

    NASA Technical Reports Server (NTRS)

    Schwartzkopf, Steven H.; Oleson, Mel W.; Cullingford, Hatice S.

    1990-01-01

    Described here are the results of a study to develop a conceptual design for an experimental closed loop fluid handling system capable of monitoring, controlling, and supplying nutrient solution to higher plants. The Plant Feeder Experiment (PFE) is designed to be flight tested in a microgravity environment. When flown, the PFX will provide information on both the generic problems of microgravity fluid handling and the specific problems associated with the delivery of the nutrient solution in a microgravity environment. The experimental hardware is designed to fit into two middeck lockers on the Space Shuttle, and incorporates several components that have previously been flight tested.

  16. Driver steering model for closed-loop steering function analysis

    NASA Astrophysics Data System (ADS)

    Bolia, Pratiksh; Weiskircher, Thomas; Müller, Steffen

    2014-05-01

    In this paper, a two level preview driver steering control model for the use in numerical vehicle dynamics simulation is introduced. The proposed model is composed of cascaded control loops: The outer loop is the path following layer based on potential field framework. The inner loop tries to capture the driver's physical behaviour. The proposed driver model allows easy implementation of different driving situations to simulate a wide range of different driver types, moods and vehicle types. The expediency of the proposed driver model is shown with the help of developed driver steering assist (DSA) function integrated with a conventional series production (Electric Power steering System with rack assist servo unit) system. With the help of the DSA assist function, the driver is prevented from over saturating the front tyre forces and loss of stability and controllability during cornering. The simulation results show different driver reactions caused by the change in the parameters or properties of the proposed driver model if the DSA assist function is activated. Thus, the proposed driver model is useful for the advanced driver steering and vehicle stability assist function evaluation in the early stage of vehicle dynamics handling and stability evaluation.

  17. A recurrent neural network for closed-loop intracortical brain-machine interface decoders

    NASA Astrophysics Data System (ADS)

    Sussillo, David; Nuyujukian, Paul; Fan, Joline M.; Kao, Jonathan C.; Stavisky, Sergey D.; Ryu, Stephen; Shenoy, Krishna

    2012-04-01

    Recurrent neural networks (RNNs) are useful tools for learning nonlinear relationships in time series data with complex temporal dependences. In this paper, we explore the ability of a simplified type of RNN, one with limited modifications to the internal weights called an echostate network (ESN), to effectively and continuously decode monkey reaches during a standard center-out reach task using a cortical brain-machine interface (BMI) in a closed loop. We demonstrate that the RNN, an ESN implementation termed a FORCE decoder (from first order reduced and controlled error learning), learns the task quickly and significantly outperforms the current state-of-the-art method, the velocity Kalman filter (VKF), using the measure of target acquire time. We also demonstrate that the FORCE decoder generalizes to a more difficult task by successfully operating the BMI in a randomized point-to-point task. The FORCE decoder is also robust as measured by the success rate over extended sessions. Finally, we show that decoded cursor dynamics are more like naturalistic hand movements than those of the VKF. Taken together, these results suggest that RNNs in general, and the FORCE decoder in particular, are powerful tools for BMI decoder applications.

  18. A recurrent neural network for closed-loop intracortical brain–machine interface decoders

    PubMed Central

    Sussillo, David; Nuyujukian, Paul; Fan, Joline M; Kao, Jonathan C; Stavisky, Sergey D; Ryu, Stephen; Shenoy, Krishna

    2013-01-01

    Recurrent neural networks (RNNs) are useful tools for learning nonlinear relationships in time series data with complex temporal dependences. In this paper, we explore the ability of a simplified type of RNN, one with limited modifications to the internal weights called an echostate network (ESN), to effectively and continuously decode monkey reaches during a standard center-out reach task using a cortical brain–machine interface (BMI) in a closed loop. We demonstrate that the RNN, an ESN implementation termed a FORCE decoder (from first order reduced and controlled error learning), learns the task quickly and significantly outperforms the current state-of-the-art method, the velocity Kalman filter (VKF), using the measure of target acquire time. We also demonstrate that the FORCE decoder generalizes to a more difficult task by successfully operating the BMI in a randomized point-to-point task. The FORCE decoder is also robust as measured by the success rate over extended sessions. Finally, we show that decoded cursor dynamics are more like naturalistic hand movements than those of the VKF. Taken together, these results suggest that RNNs in general, and the FORCE decoder in particular, are powerful tools for BMI decoder applications. PMID:22427488

  19. Efficient Computation of Closed-loop Frequency Response for Large Order Flexible Systems

    NASA Technical Reports Server (NTRS)

    Maghami, Peiman G.; Giesy, Daniel P.

    1997-01-01

    An efficient and robust computational scheme is given for the calculation of the frequency response function of a large order, flexible system implemented with a linear, time invariant control system. Advantage is taken of the highly structured sparsity of the system matrix of the plant based on a model of the structure using normal mode coordinates. The computational time per frequency point of the new computational scheme is a linear function of system size, a significant improvement over traditional, full-matrix techniques whose computational times per frequency point range from quadratic to cubic functions of system size. This permits the practical frequency domain analysis of systems of much larger order than by traditional, full-matrix techniques. Formulations are given for both open and closed loop loop systems. Numerical examples are presented showing the advantages of the present formulation over traditional approaches, both in speed and in accuracy. Using a model with 703 structural modes, a speed-up of almost two orders of magnitude was observed while accuracy improved by up to 5 decimal places.

  20. Closed-Loop Neuroscience and Non-Invasive Brain Stimulation: A Tale of Two Loops

    PubMed Central

    Zrenner, Christoph; Belardinelli, Paolo; Müller-Dahlhaus, Florian; Ziemann, Ulf

    2016-01-01

    Closed-loop neuroscience is receiving increasing attention with recent technological advances that enable complex feedback loops to be implemented with millisecond resolution on commodity hardware. We summarize emerging conceptual and methodological frameworks that are available to experimenters investigating a “brain in the loop” using non-invasive brain stimulation and briefly review the experimental and therapeutic implications. We take the view that closed-loop neuroscience in fact deals with two conceptually quite different loops: a “brain-state dynamics” loop, used to couple with and modulate the trajectory of neuronal activity patterns, and a “task dynamics” loop, that is the bidirectional motor-sensory interaction between brain and (simulated) environment, and which enables goal-directed behavioral tasks to be incorporated. Both loops need to be considered and combined to realize the full experimental and therapeutic potential of closed-loop neuroscience. PMID:27092055

  1. Closed-Loop Artificial Pancreas Systems: Physiological Input to Enhance Next-Generation Devices

    PubMed Central

    Kudva, Yogish C.; Carter, Rickey E.; Cobelli, Claudio

    2014-01-01

    To provide an understanding of both the preclinical and clinical aspects of closed-loop artificial pancreas systems, we provide a discussion of this topic as part of this two-part Bench to Clinic narrative. Here, the Bench narrative provides an in-depth understanding of insulin-glucose-glucagon physiology in conditions that mimic the free-living situation to the extent possible in type 1 diabetes that will help refine and improve future closed-loop system algorithms. In the Clinic narrative, Doyle and colleagues compare and evaluate technology used in current closed-loop studies to gain further momentum toward outpatient trials and eventual approval for widespread use. PMID:24757225

  2. Closed-Loop Neuroscience and Non-Invasive Brain Stimulation: A Tale of Two Loops.

    PubMed

    Zrenner, Christoph; Belardinelli, Paolo; Müller-Dahlhaus, Florian; Ziemann, Ulf

    2016-01-01

    Closed-loop neuroscience is receiving increasing attention with recent technological advances that enable complex feedback loops to be implemented with millisecond resolution on commodity hardware. We summarize emerging conceptual and methodological frameworks that are available to experimenters investigating a "brain in the loop" using non-invasive brain stimulation and briefly review the experimental and therapeutic implications. We take the view that closed-loop neuroscience in fact deals with two conceptually quite different loops: a "brain-state dynamics" loop, used to couple with and modulate the trajectory of neuronal activity patterns, and a "task dynamics" loop, that is the bidirectional motor-sensory interaction between brain and (simulated) environment, and which enables goal-directed behavioral tasks to be incorporated. Both loops need to be considered and combined to realize the full experimental and therapeutic potential of closed-loop neuroscience. PMID:27092055

  3. Closed loop recycling of lead/acid batteries

    NASA Astrophysics Data System (ADS)

    Bied-Charreton, B.

    The traditional lead/acid battery is a recycleable product, irrespective whether it is of an automotive, traction or standby design. The product benefits from the traditional lead metallurgy that has been developed for both primary (mines) and secondary (recycling) smelting. Secondary smelting accounts for 60% of total lead production in Europe, and this market lead the most effectively metal. In secondary smelters, scrapped batteries are crushed and smelted. The polypropylene from the boxes is recycled to produce secondary plastic for battery, automotive, or other miscellaneous uses. The lead metal is refined to be re-used in the battery industry. The acid is retreated. Recycling requires a collection network. The lead/acid battery benefits from the traditional collection network that has been established for scrap-iron and non-ferrous metal scrap. In Western Europe, the recycling rate for scrapped batteries is estimated to be 80 to 90%. All participants in the battery recycling loop agree that the process must be a clean cycle for it to be credible. The collection organization is improving the quality of storage and transportation, especially with regard to the acid that can only be neutralized in correctly-controlled facilities, generally located at the smelters. The smelters themselves tend, through local regulations, to run at the optimum level of protection of the environment.

  4. Adaptive neural control for an uncertain robotic manipulator with joint space constraints

    NASA Astrophysics Data System (ADS)

    Tang, Zhong-Liang; Ge, Shuzhi Sam; Tee, Keng Peng; He, Wei

    2016-07-01

    In this paper, adaptive neural tracking control is proposed for a robotic manipulator with uncertainties in both manipulator dynamics and joint actuator dynamics. The manipulator joints are subject to inequality constraints, i.e., the joint angles are required to remain in some compact sets. Integral barrier Lyapunov functionals (iBLFs) are employed to address the joint space constraints directly without performing an additional mapping to the error space. Neural networks (NNs) are utilised to compensate for the unknown robot dynamics and external force. Adapting parameters are developed to estimate the unknown bounds on NN approximations. By the Lyapunov synthesis, the proposed control can guarantee the semi-global uniform ultimate boundedness of the closed-loop system, and the practical tracking of joint reference trajectory is achieved without the violation of predefined joint space constraints. Simulation results are given to validate the effectiveness of the proposed control scheme.

  5. CFD and experimental data of closed-loop wind tunnel flow.

    PubMed

    Calautit, John Kaiser; Hughes, Ben Richard

    2016-06-01

    The data presented in this article were the basis for the study reported in the research articles entitled 'A validated design methodology for a closed loop subsonic wind tunnel' (Calautit et al., 2014) [1], which presented a systematic investigation into the design, simulation and analysis of flow parameters in a wind tunnel using Computational Fluid Dynamics (CFD). The authors evaluated the accuracy of replicating the flow characteristics for which the wind tunnel was designed using numerical simulation. Here, we detail the numerical and experimental set-up for the analysis of the closed-loop subsonic wind tunnel with an empty test section.

  6. A novel Cs-(129)Xe atomic spin gyroscope with closed-loop Faraday modulation.

    PubMed

    Fang, Jiancheng; Wan, Shuangai; Qin, Jie; Zhang, Chen; Quan, Wei; Yuan, Heng; Dong, Haifeng

    2013-08-01

    We report a novel Cs-(129)Xe atomic spin gyroscope (ASG) with closed-loop Faraday modulation method. This ASG requires approximately 30 min to start-up and 110 °C to operate. A closed-loop Faraday modulation method for measurement of the optical rotation was used in this ASG. This method uses an additional Faraday modulator to suppress the laser intensity fluctuation and Faraday modulator thermal induced fluctuation. We theoretically and experimentally validate this method in the Cs-(129)Xe ASG and achieved a bias stability of approximately 3.25 °∕h.

  7. A closed-loop dual-modulation multi-spectral polarimeter for glucose monitoring

    NASA Astrophysics Data System (ADS)

    Yu, Zhen fang; Pirnstill, Casey W.; Coté, Gerard L.

    2016-03-01

    Optical polarimetry is a promising noninvasive means of assessing glucose concentration in the aqueous humor of the eye. One the major limiting factors is time-varying cornea birefringence due to motion artifact, which prevents the realization of this device. In this study, we simultaneously utilize laser intensity modulation and Faraday polarization rotation modulation for a real-time closed-loop multi-spectral polarimeter for glucose monitoring in vitro. In this report, a real-time closed-loop dual-modulation dual-spectral polarimeter was presented and in vitro glucose measurements were performed demonstrating the accuracy and repeatability of this polarimeter.

  8. CFD and experimental data of closed-loop wind tunnel flow.

    PubMed

    Calautit, John Kaiser; Hughes, Ben Richard

    2016-06-01

    The data presented in this article were the basis for the study reported in the research articles entitled 'A validated design methodology for a closed loop subsonic wind tunnel' (Calautit et al., 2014) [1], which presented a systematic investigation into the design, simulation and analysis of flow parameters in a wind tunnel using Computational Fluid Dynamics (CFD). The authors evaluated the accuracy of replicating the flow characteristics for which the wind tunnel was designed using numerical simulation. Here, we detail the numerical and experimental set-up for the analysis of the closed-loop subsonic wind tunnel with an empty test section. PMID:26958641

  9. Gross motion and classification of manipulators with closed-loop, four-bar chains

    SciTech Connect

    Kwun-Lon Ting )

    1992-06-01

    This article presents an extensive study on the gross motion of 2-DOF manipulators with closed-loop, four-bar chains. The investigation is focused on (1) classification, (2) work space and sub-work space, (3) existence of singular circles, (4) number of postures and service angles, and (5) the effects of the orientation of the wrist on the floating link. One may find that closed-loop manipulators are not only lightweight, they can also provide better kinematic properties in view of work space, singularity, postures, and service angles.

  10. Flow in a rectangular closed-loop thermosyphon with vertical heat transfer passages

    NASA Astrophysics Data System (ADS)

    Durig, Brian R.; Shadday, Martin A., Jr.

    1986-12-01

    Closed-loop thermosyphons are pipe networks in which the flow is due to simultaneous heating and cooling of different sections of the pipe network. Thermosyphons are commonly modeled one-dimensionally, where wall shear is accounted for by a friction factor. When the heat transfer passages of a thermosyphon are oriented vertically, buoyancy drastically alters the flow, and forced convection friction factor and Nusselt number correlations are no longer applicable. A closed-loop rectangular thermosyphon with vertical heat transfer passages was investigated both theoretically and experimentally. Friction factor and Nusselt number correlations for the combined forced/free flow in the vertical legs of the loop were determined numerically.

  11. Development of a design tool for closed-loop digital vibrometer.

    PubMed

    Melchionni, Dario; Magnani, Alessandro; Pesatori, Alessandro; Norgia, Michele

    2015-11-10

    The closed-loop technique has been demonstrated as a possible configuration to design a vibrometer based upon self-mixing interferometry. The electronic feedback loop allows a better linearity while extending the linearity range of a self-mixing interferometer. A deep analysis of the feedback loop is carried out in order to improve stability and performance through a digital approach. This work describes first the simulation of the closed-loop vibrometer, and then the performance obtained through its implementation on an FPGA based prototype. PMID:26560797

  12. CFD and experimental data of closed-loop wind tunnel flow

    PubMed Central

    Calautit, John Kaiser; Hughes, Ben Richard

    2016-01-01

    The data presented in this article were the basis for the study reported in the research articles entitled ‘A validated design methodology for a closed loop subsonic wind tunnel’ (Calautit et al., 2014) [1], which presented a systematic investigation into the design, simulation and analysis of flow parameters in a wind tunnel using Computational Fluid Dynamics (CFD). The authors evaluated the accuracy of replicating the flow characteristics for which the wind tunnel was designed using numerical simulation. Here, we detail the numerical and experimental set-up for the analysis of the closed-loop subsonic wind tunnel with an empty test section. PMID:26958641

  13. First Results from a Hardware-in-the-Loop Demonstration of Closed-Loop Autonomous Formation Flying

    NASA Technical Reports Server (NTRS)

    Gill, E.; Naasz, Bo; Ebinuma, T.

    2003-01-01

    A closed-loop system for the demonstration of formation flying technologies has been developed at NASA s Goddard Space Flight Center. Making use of a GPS signal simulator with a dual radio frequency outlet, the system includes two GPS space receivers as well as a powerful onboard navigation processor dedicated to the GPS-based guidance, navigation, and control of a satellite formation in real-time. The closed-loop system allows realistic simulations of autonomous formation flying scenarios, enabling research in the fields of tracking and orbit control strategies for a wide range of applications. A sample scenario has been set up where the autonomous transition of a satellite formation from an initial along-track separation of 800 m to a final distance of 100 m has been demonstrated. As a result, a typical control accuracy of about 5 m has been achieved which proves the applicability of autonomous formation flying techniques to formations of satellites as close as 50 m.

  14. Fast convergence of learning requires plasticity between inferior olive and deep cerebellar nuclei in a manipulation task: a closed-loop robotic simulation

    PubMed Central

    Luque, Niceto R.; Garrido, Jesús A.; Carrillo, Richard R.; D'Angelo, Egidio; Ros, Eduardo

    2014-01-01

    The cerebellum is known to play a critical role in learning relevant patterns of activity for adaptive motor control, but the underlying network mechanisms are only partly understood. The classical long-term synaptic plasticity between parallel fibers (PFs) and Purkinje cells (PCs), which is driven by the inferior olive (IO), can only account for limited aspects of learning. Recently, the role of additional forms of plasticity in the granular layer, molecular layer and deep cerebellar nuclei (DCN) has been considered. In particular, learning at DCN synapses allows for generalization, but convergence to a stable state requires hundreds of repetitions. In this paper we have explored the putative role of the IO-DCN connection by endowing it with adaptable weights and exploring its implications in a closed-loop robotic manipulation task. Our results show that IO-DCN plasticity accelerates convergence of learning by up to two orders of magnitude without conflicting with the generalization properties conferred by DCN plasticity. Thus, this model suggests that multiple distributed learning mechanisms provide a key for explaining the complex properties of procedural learning and open up new experimental questions for synaptic plasticity in the cerebellar network. PMID:25177290

  15. Adaptive deep brain stimulation (aDBS) controlled by local field potential oscillations.

    PubMed

    Priori, Alberto; Foffani, Guglielmo; Rossi, Lorenzo; Marceglia, Sara

    2013-07-01

    Despite their proven efficacy in treating neurological disorders, especially Parkinson's disease, deep brain stimulation (DBS) systems could be further optimized to maximize treatment benefits. In particular, because current open-loop DBS strategies based on fixed stimulation settings leave the typical parkinsonian motor fluctuations and rapid symptom variations partly uncontrolled, research has for several years focused on developing novel "closed-loop" or "adaptive" DBS (aDBS) systems. aDBS consists of a simple closed-loop model designed to measure and analyze a control variable reflecting the patient's clinical condition to elaborate new stimulation settings and send them to an "intelligent" implanted stimulator. The major problem in developing an aDBS system is choosing the ideal control variable for feedback. Here we review current evidence on the advantages of neurosignal-controlled aDBS that uses local field potentials (LFPs) as a control variable, and describe the technology already available to create new aDBS systems, and the potential benefits of aDBS for patients with Parkinson's disease. PMID:23022916

  16. Active Attenuation of Acoustic Noise Using Adaptive Armax Control.

    NASA Astrophysics Data System (ADS)

    Swanson, David Carl

    An adaptive auxiliary input autoregressive moving average (ARMAX) control system using the recursive least -squares lattice for system identification is developed for active control of dynamic systems. The closed-loop adaptive ARMAX control system is applied to active acoustic noise reduction in three-dimensional spaces. The structure of the ARMAX system is compared to that for duct cancellation systems, model-reference control systems, and the general field solution and is seen as a reasonable approach for active field control in the general case. The ARMAX system is derived for multiple inputs and outputs where the measured outputs are to be driven to desired waveforms with least -squares error using a multi-channel ARMAX lattice for recursive system identification. A significant reduction in complexity is obtained by neglecting the ARMAX zeros for the special case of active attenuation of non-dispersive acoustic waves. It is shown that using the least-squares lattice requires fewer multiplies, divides, additions, and subtractions than the recursive least-squares algorithm which is based on the matrix inversion lemma. Computational complexity is seen as an important issue in the application of adaptive ARMAX systems to active field control because the system must control relatively higher numbers of modes and frequencies in real time than are seen in industrial process plants for which the adaptive ARMAX systems were first developed using recursive least squares. Convergence requirements using the lattice system identification algorithm are the same as that for the recursive least squares algorithm in adaptive ARMAX system and are verified in numerical simulations using known ARMAX parameters. A real-time simulation of active attenuation of acoustic noise is presented using the blade-excited harmonics from a small axial flow fan. The adaptive ARMAX controller provides active attenuation for correlated spectral peaks but not for uncorrelated noise from turbulence

  17. Closed-Loop Restoration Approach to Blurry Images Based on Machine Learning and Feedback Optimization.

    PubMed

    Yousaf, Saqib; Qin, Shiyin

    2015-12-01

    Blind image deconvolution (BID) aims to remove or reduce the degradations that have occurred during the acquisition or processing. It is a challenging ill-posed problem due to a lack of enough information in degraded image for unambiguous recovery of both point spread function (PSF) and clear image. Although recently many powerful algorithms appeared; however, it is still an active research area due to the diversity of degraded images as well as degradations. Closed-loop control systems are characterized with their powerful ability to stabilize the behavior response and overcome external disturbances by designing an effective feedback optimization. In this paper, we employed feedback control to enhance the stability of BID by driving the current estimation quality of PSF to the desired level without manually selecting restoration parameters and using an effective combination of machine learning with feedback optimization. The foremost challenge when designing a feedback structure is to construct or choose a suitable performance metric as a controlled index and a feedback information. Our proposed quality metric is based on the blur assessment of deconvolved patches to identify the best PSF and computing its relative quality. The Kalman filter-based extremum seeking approach is employed to find the optimum value of controlled variable. To find better restoration parameters, learning algorithms, such as multilayer perceptron and bagged decision trees, are used to estimate the generic PSF support size instead of trial and error methods. The problem is modeled as a combination of pattern classification and regression using multiple training features, including noise metrics, blur metrics, and low-level statistics. Multi-objective genetic algorithm is used to find key patches from multiple saliency maps which enhance performance and save extra computation by avoiding ineffectual regions of the image. The proposed scheme is shown to outperform corresponding open

  18. Closed-Loop Restoration Approach to Blurry Images Based on Machine Learning and Feedback Optimization.

    PubMed

    Yousaf, Saqib; Qin, Shiyin

    2015-12-01

    Blind image deconvolution (BID) aims to remove or reduce the degradations that have occurred during the acquisition or processing. It is a challenging ill-posed problem due to a lack of enough information in degraded image for unambiguous recovery of both point spread function (PSF) and clear image. Although recently many powerful algorithms appeared; however, it is still an active research area due to the diversity of degraded images as well as degradations. Closed-loop control systems are characterized with their powerful ability to stabilize the behavior response and overcome external disturbances by designing an effective feedback optimization. In this paper, we employed feedback control to enhance the stability of BID by driving the current estimation quality of PSF to the desired level without manually selecting restoration parameters and using an effective combination of machine learning with feedback optimization. The foremost challenge when designing a feedback structure is to construct or choose a suitable performance metric as a controlled index and a feedback information. Our proposed quality metric is based on the blur assessment of deconvolved patches to identify the best PSF and computing its relative quality. The Kalman filter-based extremum seeking approach is employed to find the optimum value of controlled variable. To find better restoration parameters, learning algorithms, such as multilayer perceptron and bagged decision trees, are used to estimate the generic PSF support size instead of trial and error methods. The problem is modeled as a combination of pattern classification and regression using multiple training features, including noise metrics, blur metrics, and low-level statistics. Multi-objective genetic algorithm is used to find key patches from multiple saliency maps which enhance performance and save extra computation by avoiding ineffectual regions of the image. The proposed scheme is shown to outperform corresponding open

  19. A method for closed-loop presentation of sensory stimuli conditional on the internal brain-state of awake animals

    PubMed Central

    Rutishauser, Ueli; Kotowicz, Andreas; Laurent, Gilles

    2013-01-01

    Brain activity often consists of interactions between internal—or on-going—and external—or sensory—activity streams, resulting in complex, distributed patterns of neural activity. Investigation of such interactions could benefit from closed-loop experimental protocols in which one stream can be controlled depending on the state of the other. We describe here methods to present rapid and precisely timed visual stimuli to awake animals, conditional on features of the animal’s on-going brain state; those features are the presence, power and phase of oscillations in local field potentials (LFP). The system can process up to 64 channels in real time. We quantified its performance using simulations, synthetic data and animal experiments (chronic recordings in the dorsal cortex of awake turtles). The delay from detection of an oscillation to the onset of a visual stimulus on an LCD screen was 47.5 ms and visual-stimulus onset could be locked to the phase of ongoing oscillations at any frequency ≤40 Hz. Our software’s architecture is flexible, allowing on-the-fly modifications by experimenters and the addition of new closed-loop control and analysis components through plugins. The source code of our system “StimOMatic” is available freely as open-source. PMID:23473800

  20. Precision Closed-Loop Orbital Maneuvering System Design and Performance for the Magnetospheric Multi-Scale Mission (MMS) Formation

    NASA Technical Reports Server (NTRS)

    Chai, Dean; Queen, Steve; Placanica, Sam

    2015-01-01

    NASA's Magnetospheric Multi-Scale (MMS) mission successfully launched on March 13, 2015 (UTC) consists of four identically instrumented spin-stabilized observatories that function as a constellation to study magnetic reconnection in space. The need to maintain sufficiently accurate spatial and temporal formation resolution of the observatories must be balanced against the logistical constraints of executing overly-frequent maneuvers on a small fleet of spacecraft. These two considerations make for an extremely challenging maneuver design problem. This paper focuses on the design elements of a 6-DOF spacecraft attitude control and maneuvering system capable of delivering the high-precision adjustments required by the constellation designers---specifically, the design, implementation, and on-orbit performance of the closed-loop formation-class maneuvers that include initialization, maintenance, and re-sizing. The maneuvering control system flown on MMS utilizes a micro-gravity resolution accelerometer sampled at a high rate in order to achieve closed-loop velocity tracking of an inertial target with arc-minute directional and millimeter-per-second magnitude accuracy. This paper summarizes the techniques used for correcting bias drift, sensor-head offsets, and centripetal aliasing in the acceleration measurements. It also discusses the on-board pre-maneuver calibration and compensation algorithms as well as the implementation of the post-maneuver attitude adjustments.

  1. Tool for the Integrated Dynamic Numerical Propulsion System Simulation (NPSS)/Turbine Engine Closed-Loop Transient Analysis (TTECTrA) User's Guide

    NASA Technical Reports Server (NTRS)

    Chin, Jeffrey C.; Csank, Jeffrey T.

    2016-01-01

    The Tool for Turbine Engine Closed-Loop Transient Analysis (TTECTrA ver2) is a control design tool thatenables preliminary estimation of transient performance for models without requiring a full nonlinear controller to bedesigned. The program is compatible with subsonic engine models implemented in the MATLAB/Simulink (TheMathworks, Inc.) environment and Numerical Propulsion System Simulation (NPSS) framework. At a specified flightcondition, TTECTrA will design a closed-loop controller meeting user-defined requirements in a semi or fully automatedfashion. Multiple specifications may be provided, in which case TTECTrA will design one controller for each, producing acollection of controllers in a single run. Each resulting controller contains a setpoint map, a schedule of setpointcontroller gains, and limiters; all contributing to transient characteristics. The goal of the program is to providesteady-state engine designers with more immediate feedback on the transient engine performance earlier in the design cycle.

  2. Maximized Gust Loads of a Closed-Loop, Nonlinear Aeroelastic System Using Nonlinear Systems Theory

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.

    1999-01-01

    The problem of computing the maximized gust load for a nonlinear, closed-loop aeroelastic aircraft is discusses. The Volterra theory of nonlinear systems is applied in order to define a linearized system that provides a bounds on the response of the nonlinear system of interest. The method is applied to a simplified model of an Airbus A310.

  3. A digital wireless system for closed-loop inhibition of nociceptive signals

    NASA Astrophysics Data System (ADS)

    Zuo, Chao; Yang, Xiaofei; Wang, Yang; Hagains, Christopher E.; Li, Ai-Ling; Peng, Yuan B.; Chiao, J.-C.

    2012-10-01

    Neurostimulation of the spinal cord or brain has been used to inhibit nociceptive signals in pain management applications. Nevertheless, most of the current neurostimulation models are based on open-loop system designs. There is a lack of closed-loop systems for neurostimulation in research with small freely-moving animals and in future clinical applications. Based on our previously developed analog wireless system for closed-loop neurostimulation, a digital wireless system with real-time feedback between recorder and stimulator modules has been developed to achieve multi-channel communication. The wireless system includes a wearable recording module, a wearable stimulation module and a transceiver connected to a computer for real-time and off-line data processing, display and storage. To validate our system, wide dynamic range neurons in the spinal cord dorsal horn have been recorded from anesthetized rats in response to graded mechanical stimuli (brush, pressure and pinch) applied in the hind paw. The identified nociceptive signals were used to automatically trigger electrical stimulation at the periaqueductal gray in real time to inhibit their own activities by the closed-loop design. Our digital wireless closed-loop system has provided a simplified and efficient method for further study of pain processing in freely-moving animals and potential clinical application in patients. Groups 1, 2 and 3 contributed equally to this project.

  4. Integrate knowledge acquisition with target recognition through closed-loop ATR

    NASA Astrophysics Data System (ADS)

    Yu, Ssu-Hsin; McLaughlin, Pat; Zatezalo, Aleksandar; Hsiao, Kai-yuh; Boskovic, Jovan

    2015-05-01

    Automatic Target Recognition (ATR) algorithm performance is highly dependent on the sensing conditions under which the input data is collected. Open-loop fly-bys often produce poor results due to less than ideal measurement conditions. In addition, ATR algorithms must be extremely complicated to handle the diverse range of inputs with a resulting reduction in overall performance and increase in complexity. Our approach, closed-loop ATR (CL-ATR), focuses on improving the quality of information input to the ATR algorithms by optimizing motion, sensor settings and team (vehicle-vehicle-human) collaboration to dramatically improve classification accuracy. By managing the data collection guided by predicted ATR performance gain, we increase the information content of the data and thus dramatically improve ATR performance with existing ATR algorithms. CL-ATR has two major functions; first, an ATR utility function, which represents the performance sensitivity of ATR produced classification labels as a function of parameters that correlate to vehicle/sensor states. This utility function is developed off-line and is often available from the original ATR study as a confusion matrix, or it can be derived through simulation without direct access to the inner working of the ATR algorithm. The utility function is inserted into our CLATR framework to autonomously control the vehicle/sensor. Second, an on-board planner maps the utility function into vehicle position and sensor collection plans. Because we only require the utility function on-board, we can activate any ATR algorithm onto a unmanned aerial vehicle (UAV) platform no matter how complex. This pairing of ATR performance profiles with vehicle/sensor controls creates a unique and powerful active perception behavior.

  5. Application of the Tool for Turbine Engine Closed-loop Transient Analysis (TTECTrA) for Dynamic Systems Analysis

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey Thomas; Zinnecker, Alicia Mae

    2014-01-01

    Systems analysis involves steady-state simulations of combined components to evaluate the steady-state performance, weight, and cost of a system; dynamic considerations are not included until later in the design process. The Dynamic Systems Analysis task, under NASAs Fixed Wing project, is developing the capability for assessing dynamic issues at earlier stages during systems analysis. To provide this capability the Tool for Turbine Engine Closed-loop Transient Analysis (TTECTrA) has been developed to design a single flight condition controller (defined as altitude and Mach number) and, ultimately, provide an estimate of the closed-loop performance of the engine model. This tool has been integrated with the Commercial Modular Aero-Propulsion System Simulation 40,000 (CMAPSS 40k) engine model to demonstrate the additional information TTECTrA makes available for dynamic systems analysis. This dynamic data can be used to evaluate the trade-off between performance and safety, which could not be done with steady-state systems analysis data. TTECTrA has been designed to integrate with any turbine engine model that is compatible with the MATLAB Simulink (The MathWorks, Inc.) environment.

  6. Application of the Tool for Turbine Engine Closed-loop Transient Analysis (TTECTrA) for Dynamic Systems Analysis

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey; Zinnecker, Alicia

    2014-01-01

    Systems analysis involves steady-state simulations of combined components to evaluate the steady-state performance, weight, and cost of a system; dynamic considerations are not included until later in the design process. The Dynamic Systems Analysis task, under NASAs Fixed Wing project, is developing the capability for assessing dynamic issues at earlier stages during systems analysis. To provide this capability the Tool for Turbine Engine Closed-loop Transient Analysis (TTECTrA) has been developed to design a single flight condition controller (defined as altitude and Mach number) and, ultimately, provide an estimate of the closed-loop performance of the engine model. This tool has been integrated with the Commercial Modular Aero-Propulsion System Simulation 40,000(CMAPSS40k) engine model to demonstrate the additional information TTECTrA makes available for dynamic systems analysis. This dynamic data can be used to evaluate the trade-off between performance and safety, which could not be done with steady-state systems analysis data. TTECTrA has been designed to integrate with any turbine engine model that is compatible with the MATLABSimulink (The MathWorks, Inc.) environment.

  7. Application of the Tool for Turbine Engine Closed-Loop Transient Analysis (TTECTrA) for Dynamic Systems Analysis

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey T.; Zinnecker, Alicia M.

    2014-01-01

    The aircraft engine design process seeks to achieve the best overall system-level performance, weight, and cost for a given engine design. This is achieved by a complex process known as systems analysis, where steady-state simulations are used to identify trade-offs that should be balanced to optimize the system. The steady-state simulations and data on which systems analysis relies may not adequately capture the true performance trade-offs that exist during transient operation. Dynamic Systems Analysis provides the capability for assessing these trade-offs at an earlier stage of the engine design process. The concept of dynamic systems analysis and the type of information available from this analysis are presented in this paper. To provide this capability, the Tool for Turbine Engine Closed-loop Transient Analysis (TTECTrA) was developed. This tool aids a user in the design of a power management controller to regulate thrust, and a transient limiter to protect the engine model from surge at a single flight condition (defined by an altitude and Mach number). Results from simulation of the closed-loop system may be used to estimate the dynamic performance of the model. This enables evaluation of the trade-off between performance and operability, or safety, in the engine, which could not be done with steady-state data alone. A design study is presented to compare the dynamic performance of two different engine models integrated with the TTECTrA software.

  8. Adaptive neural network tracking control of MIMO nonlinear systems with unknown dead zones and control directions.

    PubMed

    Zhang, Tianping; Ge, Shuzhi Sam

    2009-03-01

    In this paper, adaptive neural network (NN) tracking control is investigated for a class of uncertain multiple-input-multiple-output (MIMO) nonlinear systems in triangular control structure with unknown nonsymmetric dead zones and control directions. The design is based on the principle of sliding mode control and the use of Nussbaum-type functions in solving the problem of the completely unknown control directions. It is shown that the dead-zone output can be represented as a simple linear system with a static time-varying gain and bounded disturbance by introducing characteristic function. By utilizing the integral-type Lyapunov function and introducing an adaptive compensation term for the upper bound of the optimal approximation error and the dead-zone disturbance, the closed-loop control system is proved to be semiglobally uniformly ultimately bounded, with tracking errors converging to zero under the condition that the slopes of unknown dead zones are equal. Simulation results demonstrate the effectiveness of the approach.

  9. ATS-6 - Spacecraft Attitude Precision Pointing and Slewing Adaptive Control Experiment

    NASA Technical Reports Server (NTRS)

    Isley, W. C.; Endres, D. L.

    1975-01-01

    The primary objective of the Spacecraft Attitude Precision Pointing and Slewing Adaptive Control (SAPPSAC) experiment is to establish feasibility and evaluate capabilities of a ground-based spacecraft attitude control system, wherein RF command and telemetry links, together with a ground station on-line minicomputer, perform closed loop attitude control of the Applications Technology Satellite-6 (ATS-6). The ground processor is described, including operational characteristics and the controller software. Attitude maneuvers include precision pointing to fixed targets, slewing between targets, and generation of prescribed ground tracks. Test results show high performance and reliability for over 30 hours of on-line control with no serious anomalies. Attitude stabilization relative to a prescribed target has been achieved to better than 0.007 deg in pitch and roll and 0.02 deg in yaw for a period of 43 min. Ground tracks were generated which had maximum latitude/longitude deviations less than 0.15 deg from reference.

  10. Neural-network-observer-based optimal control for unknown nonlinear systems using adaptive dynamic programming

    NASA Astrophysics Data System (ADS)

    Liu, Derong; Huang, Yuzhu; Wang, Ding; Wei, Qinglai

    2013-09-01

    In this paper, an observer-based optimal control scheme is developed for unknown nonlinear systems using adaptive dynamic programming (ADP) algorithm. First, a neural-network (NN) observer is designed to estimate system states. Then, based on the observed states, a neuro-controller is constructed via ADP method to obtain the optimal control. In this design, two NN structures are used: a three-layer NN is used to construct the observer which can be applied to systems with higher degrees of nonlinearity and without a priori knowledge of system dynamics, and a critic NN is employed to approximate the value function. The optimal control law is computed using the critic NN and the observer NN. Uniform ultimate boundedness of the closed-loop system is guaranteed. The actor, critic, and observer structures are all implemented in real-time, continuously and simultaneously. Finally, simulation results are presented to demonstrate the effectiveness of the proposed control scheme.

  11. Hippocampal closed-loop modeling and implications for seizure stimulation design

    NASA Astrophysics Data System (ADS)

    Sandler, Roman A.; Song, Dong; Hampson, Robert E.; Deadwyler, Sam A.; Berger, Theodore W.; Marmarelis, Vasilis Z.

    2015-10-01

    Objective. Traditional hippocampal modeling has focused on the series of feedforward synapses known as the trisynaptic pathway. However, feedback connections from CA1 back to the hippocampus through the entorhinal cortex (EC) actually make the hippocampus a closed-loop system. By constructing a functional closed-loop model of the hippocampus, one may learn how both physiological and epileptic oscillations emerge and design efficient neurostimulation patterns to abate such oscillations. Approach. Point process input-output models where estimated from recorded rodent hippocampal data to describe the nonlinear dynamical transformation from CA3 → CA1, via the schaffer-collateral synapse, and CA1 → CA3 via the EC. Each Volterra-like subsystem was composed of linear dynamics (principal dynamic modes) followed by static nonlinearities. The two subsystems were then wired together to produce the full closed-loop model of the hippocampus. Main results. Closed-loop connectivity was found to be necessary for the emergence of theta resonances as seen in recorded data, thus validating the model. The model was then used to identify frequency parameters for the design of neurostimulation patterns to abate seizures. Significance. Deep-brain stimulation (DBS) is a new and promising therapy for intractable seizures. Currently, there is no efficient way to determine optimal frequency parameters for DBS, or even whether periodic or broadband stimuli are optimal. Data-based computational models have the potential to be used as a testbed for designing optimal DBS patterns for individual patients. However, in order for these models to be successful they must incorporate the complex closed-loop structure of the seizure focus. This study serves as a proof-of-concept of using such models to design efficient personalized DBS patterns for epilepsy.

  12. Adaptive tracking control for double-pendulum overhead cranes subject to tracking error limitation, parametric uncertainties and external disturbances

    NASA Astrophysics Data System (ADS)

    Zhang, Menghua; Ma, Xin; Rong, Xuewen; Tian, Xincheng; Li, Yibin

    2016-08-01

    In a practical application, overhead cranes are usually subjected to system parameter uncertainties, such as uncertain payload masses, cable lengths, frictions, and external disturbances, such as air resistance. Most existing crane control methods treat the payload swing as that of a single-pendulum. However, certain types of payloads and hoisting mechanisms result in double-pendulum dynamics. The double-pendulum effects will make most existing crane control methods fail to work normally. Therefore, an adaptive tracking controller for double-pendulum overhead cranes subject to parametric uncertainties and external disturbances is developed in this paper. The proposed adaptive tracking control method guarantees that the trolley tracking error is always within a prior set of boundary conditions and converges to zero rapidly. The asymptotic stability of the closed-loop system's equilibrium point is assured by Lyapunov techniques and Barbalat's Lemma. Simulation results show that the proposed adaptive tracking control method is robust with respect to system parametric uncertainties and external disturbances.

  13. Aircraft adaptive learning control

    NASA Technical Reports Server (NTRS)

    Lee, P. S. T.; Vanlandingham, H. F.

    1979-01-01

    The optimal control theory of stochastic linear systems is discussed in terms of the advantages of distributed-control systems, and the control of randomly-sampled systems. An optimal solution to longitudinal control is derived and applied to the F-8 DFBW aircraft. A randomly-sampled linear process model with additive process and noise is developed.

  14. Optic flow estimation on trajectories generated by bio-inspired closed-loop flight.

    PubMed

    Shoemaker, Patrick A; Hyslop, Andrew M; Humbert, J Sean

    2011-05-01

    We generated panoramic imagery by simulating a fly-like robot carrying an imaging sensor, moving in free flight through a virtual arena bounded by walls, and containing obstructions. Flight was conducted under closed-loop control by a bio-inspired algorithm for visual guidance with feedback signals corresponding to the true optic flow that would be induced on an imager (computed by known kinematics and position of the robot relative to the environment). The robot had dynamics representative of a housefly-sized organism, although simplified to two-degree-of-freedom flight to generate uniaxial (azimuthal) optic flow on the retina in the plane of travel. Surfaces in the environment contained images of natural and man-made scenes that were captured by the moving sensor. Two bio-inspired motion detection algorithms and two computational optic flow estimation algorithms were applied to sequences of image data, and their performance as optic flow estimators was evaluated by estimating the mutual information between outputs and true optic flow in an equatorial section of the visual field. Mutual information for individual estimators at particular locations within the visual field was surprisingly low (less than 1 bit in all cases) and considerably poorer for the bio-inspired algorithms that the man-made computational algorithms. However, mutual information between weighted sums of these signals and comparable sums of the true optic flow showed significant increases for the bio-inspired algorithms, whereas such improvement did not occur for the computational algorithms. Such summation is representative of the spatial integration performed by wide-field motion-sensitive neurons in the third optic ganglia of flies.

  15. Optic flow estimation on trajectories generated by bio-inspired closed-loop flight.

    PubMed

    Shoemaker, Patrick A; Hyslop, Andrew M; Humbert, J Sean

    2011-05-01

    We generated panoramic imagery by simulating a fly-like robot carrying an imaging sensor, moving in free flight through a virtual arena bounded by walls, and containing obstructions. Flight was conducted under closed-loop control by a bio-inspired algorithm for visual guidance with feedback signals corresponding to the true optic flow that would be induced on an imager (computed by known kinematics and position of the robot relative to the environment). The robot had dynamics representative of a housefly-sized organism, although simplified to two-degree-of-freedom flight to generate uniaxial (azimuthal) optic flow on the retina in the plane of travel. Surfaces in the environment contained images of natural and man-made scenes that were captured by the moving sensor. Two bio-inspired motion detection algorithms and two computational optic flow estimation algorithms were applied to sequences of image data, and their performance as optic flow estimators was evaluated by estimating the mutual information between outputs and true optic flow in an equatorial section of the visual field. Mutual information for individual estimators at particular locations within the visual field was surprisingly low (less than 1 bit in all cases) and considerably poorer for the bio-inspired algorithms that the man-made computational algorithms. However, mutual information between weighted sums of these signals and comparable sums of the true optic flow showed significant increases for the bio-inspired algorithms, whereas such improvement did not occur for the computational algorithms. Such summation is representative of the spatial integration performed by wide-field motion-sensitive neurons in the third optic ganglia of flies. PMID:21626306

  16. Advanced Hybrid Spacesuit Concept Featuring Integrated Open Loop and Closed Loop Ventilation Systems

    NASA Technical Reports Server (NTRS)

    Daniel, Brian A.; Fitzpatrick, Garret R.; Gohmert, Dustin M.; Ybarra, Rick M.; Dub, Mark O.

    2013-01-01

    A document discusses the design and prototype of an advanced spacesuit concept that integrates the capability to function seamlessly with multiple ventilation system approaches. Traditionally, spacesuits are designed to operate both dependently and independently of a host vehicle environment control and life support system (ECLSS). Spacesuits that operate independent of vehicle-provided ECLSS services must do so with equipment selfcontained within or on the spacesuit. Suits that are dependent on vehicle-provided consumables must remain physically connected to and integrated with the vehicle to operate properly. This innovation is the design and prototype of a hybrid spacesuit approach that configures the spacesuit to seamlessly interface and integrate with either type of vehicular systems, while still maintaining the ability to function completely independent of the vehicle. An existing Advanced Crew Escape Suit (ACES) was utilized as the platform from which to develop the innovation. The ACES was retrofitted with selected components and one-off items to achieve the objective. The ventilation system concept was developed and prototyped/retrofitted to an existing ACES. Components were selected to provide suit connectors, hoses/umbilicals, internal breathing system ducting/ conduits, etc. The concept utilizes a lowpressure- drop, high-flow ventilation system that serves as a conduit from the vehicle supply into the suit, up through a neck seal, into the breathing helmet cavity, back down through the neck seal, out of the suit, and returned to the vehicle. The concept also utilizes a modified demand-based breathing system configured to function seamlessly with the low-pressure-drop closed-loop ventilation system.

  17. Strategic optimization of large-scale vertical closed-loop shallow geothermal systems

    NASA Astrophysics Data System (ADS)

    Hecht-Méndez, J.; de Paly, M.; Beck, M.; Blum, P.; Bayer, P.

    2012-04-01

    Vertical closed-loop geothermal systems or ground source heat pump (GSHP) systems with multiple vertical borehole heat exchangers (BHEs) are attractive technologies that provide heating and cooling to large facilities such as hotels, schools, big office buildings or district heating systems. Currently, the worldwide number of installed systems shows a recurrent increase. By running arrays of multiple BHEs, the energy demand of a given facility is fulfilled by exchanging heat with the ground. Due to practical and technical reasons, square arrays of the BHEs are commonly used and the total energy extraction from the subsurface is accomplished by an equal operation of each BHE. Moreover, standard designing practices disregard the presence of groundwater flow. We present a simulation-optimization approach that is able to regulate the individual operation of multiple BHEs, depending on the given hydro-geothermal conditions. The developed approach optimizes the overall performance of the geothermal system while mitigating the environmental impact. As an example, a synthetic case with a geothermal system using 25 BHEs for supplying a seasonal heating energy demand is defined. The optimization approach is evaluated for finding optimal energy extractions for 15 scenarios with different specific constant groundwater flow velocities. Ground temperature development is simulated using the optimal energy extractions and contrasted against standard application. It is demonstrated that optimized systems always level the ground temperature distribution and generate smaller subsurface temperature changes than non-optimized ones. Mean underground temperature changes within the studied BHE field are between 13% and 24% smaller when the optimized system is used. By applying the optimized energy extraction patterns, the temperature of the heat carrier fluid in the BHE, which controls the overall performance of the system, can also be raised by more than 1 °C.

  18. Synchronisation of high-order MIMO nonlinear systems using distributed neuro-adaptive control

    NASA Astrophysics Data System (ADS)

    Ghiti Sarand, Hassan; Karimi, Bahram

    2016-07-01

    This paper addresses synchronisation problem of high-order multi-input/multi-output (MIMO) multi-agent systems. Each agent has unknown nonlinear dynamics and is subject to uncertain external disturbances. The agents must follow a reference trajectory. An adaptive distributed controller based on relative information of neighbours of each agent is designed to solve the problem for any undirected connected communication topology. A radial basis function neural network is used to represent the controller's unknown structure. Lyapunov stability analysis is employed to guarantee stability of the overall system. By the theoretical analysis, the closed-loop control system is shown to be uniformly ultimately bounded. Finally, simulations are provided to show effectiveness of the proposed control method against uncertainty and disturbances.

  19. Adaptive fuzzy dynamic surface control for the chaotic permanent magnet synchronous motor using Nussbaum gain

    SciTech Connect

    Luo, Shaohua

    2014-09-01

    This paper is concerned with the problem of adaptive fuzzy dynamic surface control (DSC) for the permanent magnet synchronous motor (PMSM) system with chaotic behavior, disturbance and unknown control gain and parameters. Nussbaum gain is adopted to cope with the situation that the control gain is unknown. And the unknown items can be estimated by fuzzy logic system. The proposed controller guarantees that all the signals in the closed-loop system are bounded and the system output eventually converges to a small neighborhood of the desired reference signal. Finally, the numerical simulations indicate that the proposed scheme can suppress the chaos of PMSM and show the effectiveness and robustness of the proposed method.

  20. Adaptive fuzzy dynamic surface control for the chaotic permanent magnet synchronous motor using Nussbaum gain.

    PubMed

    Luo, Shaohua

    2014-09-01

    This paper is concerned with the problem of adaptive fuzzy dynamic surface control (DSC) for the permanent magnet synchronous motor (PMSM) system with chaotic behavior, disturbance and unknown control gain and parameters. Nussbaum gain is adopted to cope with the situation that the control gain is unknown. And the unknown items can be estimated by fuzzy logic system. The proposed controller guarantees that all the signals in the closed-loop system are bounded and the system output eventually converges to a small neighborhood of the desired reference signal. Finally, the numerical simulations indicate that the proposed scheme can suppress the chaos of PMSM and show the effectiveness and robustness of the proposed method.