Adaptive clustering algorithm for community detection in complex networks.
Ye, Zhenqing; Hu, Songnian; Yu, Jun
2008-10-01
Community structure is common in various real-world networks; methods or algorithms for detecting such communities in complex networks have attracted great attention in recent years. We introduced a different adaptive clustering algorithm capable of extracting modules from complex networks with considerable accuracy and robustness. In this approach, each node in a network acts as an autonomous agent demonstrating flocking behavior where vertices always travel toward their preferable neighboring groups. An optimal modular structure can emerge from a collection of these active nodes during a self-organization process where vertices constantly regroup. In addition, we show that our algorithm appears advantageous over other competing methods (e.g., the Newman-fast algorithm) through intensive evaluation. The applications in three real-world networks demonstrate the superiority of our algorithm to find communities that are parallel with the appropriate organization in reality. PMID:18999501
Nonclercq, Antoine; Foulon, Martine; Verheulpen, Denis; De Cock, Cathy; Buzatu, Marga; Mathys, Pierre; Van Bogaert, Patrick
2012-09-30
Visual quantification of interictal epileptiform activity is time consuming and requires a high level of expert's vigilance. This is especially true for overnight recordings of patient suffering from epileptic encephalopathy with continuous spike and waves during slow-wave sleep (CSWS) as they can show tens of thousands of spikes. Automatic spike detection would be attractive for this condition, but available algorithms have methodological limitations related to variation in spike morphology both between patients and within a single recording. We propose a fully automated method of interictal spike detection that adapts to interpatient and intrapatient variation in spike morphology. The algorithm works in five steps. (1) Spikes are detected using parameters suitable for highly sensitive detection. (2) Detected spikes are separated into clusters. (3) The number of clusters is automatically adjusted. (4) Centroids are used as templates for more specific spike detections, therefore adapting to the types of spike morphology. (5) Detected spikes are summed. The algorithm was evaluated on EEG samples from 20 children suffering from epilepsy with CSWS. When compared to the manual scoring of 3 EEG experts (3 records), the algorithm demonstrated similar performance since sensitivity and selectivity were 0.3% higher and 0.4% lower, respectively. The algorithm showed little difference compared to the manual scoring of another expert for the spike-and-wave index evaluation in 17 additional records (the mean absolute difference was 3.8%). This algorithm is therefore efficient for the count of interictal spikes and determination of a spike-and-wave index. PMID:22850558
Clustering of tethered satellite system simulation data by an adaptive neuro-fuzzy algorithm
NASA Technical Reports Server (NTRS)
Mitra, Sunanda; Pemmaraju, Surya
1992-01-01
Recent developments in neuro-fuzzy systems indicate that the concepts of adaptive pattern recognition, when used to identify appropriate control actions corresponding to clusters of patterns representing system states in dynamic nonlinear control systems, may result in innovative designs. A modular, unsupervised neural network architecture, in which fuzzy learning rules have been embedded is used for on-line identification of similar states. The architecture and control rules involved in Adaptive Fuzzy Leader Clustering (AFLC) allow this system to be incorporated in control systems for identification of system states corresponding to specific control actions. We have used this algorithm to cluster the simulation data of Tethered Satellite System (TSS) to estimate the range of delta voltages necessary to maintain the desired length rate of the tether. The AFLC algorithm is capable of on-line estimation of the appropriate control voltages from the corresponding length error and length rate error without a priori knowledge of their membership functions and familarity with the behavior of the Tethered Satellite System.
Adaptive Clustering of Hypermedia Documents.
ERIC Educational Resources Information Center
Johnson, Andrew; Fotouhi, Farshad
1996-01-01
Discussion of hypermedia systems focuses on a comparison of two types of adaptive algorithm (genetic algorithm and neural network) in clustering hypermedia documents. These clusters allow the user to index into the nodes to find needed information more quickly, since clustering is "personalized" based on the user's paths rather than representing…
Performance Comparison Of Evolutionary Algorithms For Image Clustering
NASA Astrophysics Data System (ADS)
Civicioglu, P.; Atasever, U. H.; Ozkan, C.; Besdok, E.; Karkinli, A. E.; Kesikoglu, A.
2014-09-01
Evolutionary computation tools are able to process real valued numerical sets in order to extract suboptimal solution of designed problem. Data clustering algorithms have been intensively used for image segmentation in remote sensing applications. Despite of wide usage of evolutionary algorithms on data clustering, their clustering performances have been scarcely studied by using clustering validation indexes. In this paper, the recently proposed evolutionary algorithms (i.e., Artificial Bee Colony Algorithm (ABC), Gravitational Search Algorithm (GSA), Cuckoo Search Algorithm (CS), Adaptive Differential Evolution Algorithm (JADE), Differential Search Algorithm (DSA) and Backtracking Search Optimization Algorithm (BSA)) and some classical image clustering techniques (i.e., k-means, fcm, som networks) have been used to cluster images and their performances have been compared by using four clustering validation indexes. Experimental test results exposed that evolutionary algorithms give more reliable cluster-centers than classical clustering techniques, but their convergence time is quite long.
Parallel Clustering Algorithms for Structured AMR
Gunney, B T; Wissink, A M; Hysom, D A
2005-10-26
We compare several different parallel implementation approaches for the clustering operations performed during adaptive gridding operations in patch-based structured adaptive mesh refinement (SAMR) applications. Specifically, we target the clustering algorithm of Berger and Rigoutsos (BR91), which is commonly used in many SAMR applications. The baseline for comparison is a simplistic parallel extension of the original algorithm that works well for up to O(10{sup 2}) processors. Our goal is a clustering algorithm for machines of up to O(10{sup 5}) processors, such as the 64K-processor IBM BlueGene/Light system. We first present an algorithm that avoids the unneeded communications of the simplistic approach to improve the clustering speed by up to an order of magnitude. We then present a new task-parallel implementation to further reduce communication wait time, adding another order of magnitude of improvement. The new algorithms also exhibit more favorable scaling behavior for our test problems. Performance is evaluated on a number of large scale parallel computer systems, including a 16K-processor BlueGene/Light system.
Ghorbanzadeh, Leila; Torshabi, Ahmad Esmaili; Nabipour, Jamshid Soltani; Arbatan, Moslem Ahmadi
2016-04-01
In image guided radiotherapy, in order to reach a prescribed uniform dose in dynamic tumors at thorax region while minimizing the amount of additional dose received by the surrounding healthy tissues, tumor motion must be tracked in real-time. Several correlation models have been proposed in recent years to provide tumor position information as a function of time in radiotherapy with external surrogates. However, developing an accurate correlation model is still a challenge. In this study, we proposed an adaptive neuro-fuzzy based correlation model that employs several data clustering algorithms for antecedent parameters construction to avoid over-fitting and to achieve an appropriate performance in tumor motion tracking compared with the conventional models. To begin, a comparative assessment is done between seven nuero-fuzzy correlation models each constructed using a unique data clustering algorithm. Then, each of the constructed models are combined within an adaptive sevenfold synthetic model since our tumor motion database has high degrees of variability and that each model has its intrinsic properties at motion tracking. In the proposed sevenfold synthetic model, best model is selected adaptively at pre-treatment. The model also updates the steps for each patient using an automatic model selectivity subroutine. We tested the efficacy of the proposed synthetic model on twenty patients (divided equally into two control and worst groups) treated with CyberKnife synchrony system. Compared to Cyberknife model, the proposed synthetic model resulted in 61.2% and 49.3% reduction in tumor tracking error in worst and control group, respectively. These results suggest that the proposed model selection program in our synthetic neuro-fuzzy model can significantly reduce tumor tracking errors. Numerical assessments confirmed that the proposed synthetic model is able to track tumor motion in real time with high accuracy during treatment. PMID:25765021
Cluster algorithms and computational complexity
NASA Astrophysics Data System (ADS)
Li, Xuenan
Cluster algorithms for the 2D Ising model with a staggered field have been studied and a new cluster algorithm for path sampling has been worked out. The complexity properties of Bak-Seppen model and the Growing network model have been studied by using the Computational Complexity Theory. The dynamic critical behavior of the two-replica cluster algorithm is studied. Several versions of the algorithm are applied to the two-dimensional, square lattice Ising model with a staggered field. The dynamic exponent for the full algorithm is found to be less than 0.5. It is found that odd translations of one replica with respect to the other together with global flips are essential for obtaining a small value of the dynamic exponent. The path sampling problem for the 1D Ising model is studied using both a local algorithm and a novel cluster algorithm. The local algorithm is extremely inefficient at low temperature, where the integrated autocorrelation time is found to be proportional to the fourth power of correlation length. The dynamic exponent of the cluster algorithm is found to be zero and therefore proved to be much more efficient than the local algorithm. The parallel computational complexity of the Bak-Sneppen evolution model is studied. It is shown that Bak-Sneppen histories can be generated by a massively parallel computer in a time that is polylog in the length of the history, which means that the logical depth of producing a Bak-Sneppen history is exponentially less than the length of the history. The parallel dynamics for generating Bak-Sneppen histories is contrasted to standard Bak-Sneppen dynamics. The parallel computational complexity of the Growing Network model is studied. The growth of the network with linear kernels is shown to be not complex and an algorithm with polylog parallel running time is found. The growth of the network with gamma ≥ 2 super-linear kernels can be realized by a randomized parallel algorithm with polylog expected running time.
The SMART CLUSTER METHOD - adaptive earthquake cluster analysis and declustering
NASA Astrophysics Data System (ADS)
Schaefer, Andreas; Daniell, James; Wenzel, Friedemann
2016-04-01
Earthquake declustering is an essential part of almost any statistical analysis of spatial and temporal properties of seismic activity with usual applications comprising of probabilistic seismic hazard assessments (PSHAs) and earthquake prediction methods. The nature of earthquake clusters and subsequent declustering of earthquake catalogues plays a crucial role in determining the magnitude-dependent earthquake return period and its respective spatial variation. Various methods have been developed to address this issue from other researchers. These have differing ranges of complexity ranging from rather simple statistical window methods to complex epidemic models. This study introduces the smart cluster method (SCM), a new methodology to identify earthquake clusters, which uses an adaptive point process for spatio-temporal identification. Hereby, an adaptive search algorithm for data point clusters is adopted. It uses the earthquake density in the spatio-temporal neighbourhood of each event to adjust the search properties. The identified clusters are subsequently analysed to determine directional anisotropy, focussing on a strong correlation along the rupture plane and adjusts its search space with respect to directional properties. In the case of rapid subsequent ruptures like the 1992 Landers sequence or the 2010/2011 Darfield-Christchurch events, an adaptive classification procedure is applied to disassemble subsequent ruptures which may have been grouped into an individual cluster using near-field searches, support vector machines and temporal splitting. The steering parameters of the search behaviour are linked to local earthquake properties like magnitude of completeness, earthquake density and Gutenberg-Richter parameters. The method is capable of identifying and classifying earthquake clusters in space and time. It is tested and validated using earthquake data from California and New Zealand. As a result of the cluster identification process, each event in
Cubit Adaptive Meshing Algorithm Library
2004-09-01
CAMAL (Cubit adaptive meshing algorithm library) is a software component library for mesh generation. CAMAL 2.0 includes components for triangle, quad and tetrahedral meshing. A simple Application Programmers Interface (API) takes a discrete boundary definition and CAMAL computes a quality interior unstructured grid. The triangle and quad algorithms may also import a geometric definition of a surface on which to define the grid. CAMALs triangle meshing uses a 3D space advancing front method, the quadmore » meshing algorithm is based upon Sandias patented paving algorithm and the tetrahedral meshing algorithm employs the GHS3D-Tetmesh component developed by INRIA, France.« less
Adaptive protection algorithm and system
Hedrick, Paul [Pittsburgh, PA; Toms, Helen L [Irwin, PA; Miller, Roger M [Mars, PA
2009-04-28
An adaptive protection algorithm and system for protecting electrical distribution systems traces the flow of power through a distribution system, assigns a value (or rank) to each circuit breaker in the system and then determines the appropriate trip set points based on the assigned rank.
Adaptive color image watermarking algorithm
NASA Astrophysics Data System (ADS)
Feng, Gui; Lin, Qiwei
2008-03-01
As a major method for intellectual property right protecting, digital watermarking techniques have been widely studied and used. But due to the problems of data amount and color shifted, watermarking techniques on color image was not so widespread studied, although the color image is the principal part for multi-medium usages. Considering the characteristic of Human Visual System (HVS), an adaptive color image watermarking algorithm is proposed in this paper. In this algorithm, HSI color model was adopted both for host and watermark image, the DCT coefficient of intensity component (I) of the host color image was used for watermark date embedding, and while embedding watermark the amount of embedding bit was adaptively changed with the complex degree of the host image. As to the watermark image, preprocessing is applied first, in which the watermark image is decomposed by two layer wavelet transformations. At the same time, for enhancing anti-attack ability and security of the watermarking algorithm, the watermark image was scrambled. According to its significance, some watermark bits were selected and some watermark bits were deleted as to form the actual embedding data. The experimental results show that the proposed watermarking algorithm is robust to several common attacks, and has good perceptual quality at the same time.
Basic firefly algorithm for document clustering
NASA Astrophysics Data System (ADS)
Mohammed, Athraa Jasim; Yusof, Yuhanis; Husni, Husniza
2015-12-01
The Document clustering plays significant role in Information Retrieval (IR) where it organizes documents prior to the retrieval process. To date, various clustering algorithms have been proposed and this includes the K-means and Particle Swarm Optimization. Even though these algorithms have been widely applied in many disciplines due to its simplicity, such an approach tends to be trapped in a local minimum during its search for an optimal solution. To address the shortcoming, this paper proposes a Basic Firefly (Basic FA) algorithm to cluster text documents. The algorithm employs the Average Distance to Document Centroid (ADDC) as the objective function of the search. Experiments utilizing the proposed algorithm were conducted on the 20Newsgroups benchmark dataset. Results demonstrate that the Basic FA generates a more robust and compact clusters than the ones produced by K-means and Particle Swarm Optimization (PSO).
Color sorting algorithm based on K-means clustering algorithm
NASA Astrophysics Data System (ADS)
Zhang, BaoFeng; Huang, Qian
2009-11-01
In the process of raisin production, there were a variety of color impurities, which needs be removed effectively. A new kind of efficient raisin color-sorting algorithm was presented here. First, the technology of image processing basing on the threshold was applied for the image pre-processing, and then the gray-scale distribution characteristic of the raisin image was found. In order to get the chromatic aberration image and reduce some disturbance, we made the flame image subtraction that the target image data minus the background image data. Second, Haar wavelet filter was used to get the smooth image of raisins. According to the different colors and mildew, spots and other external features, the calculation was made to identify the characteristics of their images, to enable them to fully reflect the quality differences between the raisins of different types. After the processing above, the image were analyzed by K-means clustering analysis method, which can achieve the adaptive extraction of the statistic features, in accordance with which, the image data were divided into different categories, thereby the categories of abnormal colors were distinct. By the use of this algorithm, the raisins of abnormal colors and ones with mottles were eliminated. The sorting rate was up to 98.6%, and the ratio of normal raisins to sorted grains was less than one eighth.
Self-organization and clustering algorithms
NASA Technical Reports Server (NTRS)
Bezdek, James C.
1991-01-01
Kohonen's feature maps approach to clustering is often likened to the k or c-means clustering algorithms. Here, the author identifies some similarities and differences between the hard and fuzzy c-Means (HCM/FCM) or ISODATA algorithms and Kohonen's self-organizing approach. The author concludes that some differences are significant, but at the same time there may be some important unknown relationships between the two methodologies. Several avenues of research are proposed.
Adaptive Fuzzy Consensus Clustering Framework for Clustering Analysis of Cancer Data.
Yu, Zhiwen; Chen, Hantao; You, Jane; Liu, Jiming; Wong, Hau-San; Han, Guoqiang; Li, Le
2015-01-01
Performing clustering analysis is one of the important research topics in cancer discovery using gene expression profiles, which is crucial in facilitating the successful diagnosis and treatment of cancer. While there are quite a number of research works which perform tumor clustering, few of them considers how to incorporate fuzzy theory together with an optimization process into a consensus clustering framework to improve the performance of clustering analysis. In this paper, we first propose a random double clustering based cluster ensemble framework (RDCCE) to perform tumor clustering based on gene expression data. Specifically, RDCCE generates a set of representative features using a randomly selected clustering algorithm in the ensemble, and then assigns samples to their corresponding clusters based on the grouping results. In addition, we also introduce the random double clustering based fuzzy cluster ensemble framework (RDCFCE), which is designed to improve the performance of RDCCE by integrating the newly proposed fuzzy extension model into the ensemble framework. RDCFCE adopts the normalized cut algorithm as the consensus function to summarize the fuzzy matrices generated by the fuzzy extension models, partition the consensus matrix, and obtain the final result. Finally, adaptive RDCFCE (A-RDCFCE) is proposed to optimize RDCFCE and improve the performance of RDCFCE further by adopting a self-evolutionary process (SEPP) for the parameter set. Experiments on real cancer gene expression profiles indicate that RDCFCE and A-RDCFCE works well on these data sets, and outperform most of the state-of-the-art tumor clustering algorithms. PMID:26357330
Extended TA Algorithm for Adapting a Situation Ontology
NASA Astrophysics Data System (ADS)
Zweigle, Oliver; Häussermann, Kai; Käppeler, Uwe-Philipp; Levi, Paul
In this work we introduce an improved version of a learning algorithm for the automatic adaption of a situation ontology (TAA) [1] which extends the basic principle of the learning algorithm. The approach bases on the assumption of uncertain data and includes elements from the domain of Bayesian Networks and Machine Learning. It is embedded into the cluster of excellence Nexus at the University of Stuttgart which has the aim to build a distributed context aware system for sharing context data.
An adaptive algorithm for modifying hyperellipsoidal decision surfaces
Kelly, P.M.; Hush, D.R.; White, J.M.
1992-05-01
The LVQ algorithm is a common method which allows a set of reference vectors for a distance classifier to adapt to a given training set. We have developed a similar learning algorithm, LVQ-MM, which manipulates hyperellipsoidal cluster boundaries as opposed to reference vectors. Regions of the input feature space are first enclosed by ellipsoidal decision boundaries, and then these boundaries are iteratively modified to reduce classification error. Results obtained by classifying the Iris data set are provided.
An adaptive algorithm for modifying hyperellipsoidal decision surfaces
Kelly, P.M.; Hush, D.R. . Dept. of Electrical and Computer Engineering); White, J.M. )
1992-01-01
The LVQ algorithm is a common method which allows a set of reference vectors for a distance classifier to adapt to a given training set. We have developed a similar learning algorithm, LVQ-MM, which manipulates hyperellipsoidal cluster boundaries as opposed to reference vectors. Regions of the input feature space are first enclosed by ellipsoidal decision boundaries, and then these boundaries are iteratively modified to reduce classification error. Results obtained by classifying the Iris data set are provided.
Open cluster membership probability based on K-means clustering algorithm
NASA Astrophysics Data System (ADS)
El Aziz, Mohamed Abd; Selim, I. M.; Essam, A.
2016-05-01
In the field of galaxies images, the relative coordinate positions of each star with respect to all the other stars are adapted. Therefore the membership of star cluster will be adapted by two basic criterions, one for geometric membership and other for physical (photometric) membership. So in this paper, we presented a new method for the determination of open cluster membership based on K-means clustering algorithm. This algorithm allows us to efficiently discriminate the cluster membership from the field stars. To validate the method we applied it on NGC 188 and NGC 2266, membership stars in these clusters have been obtained. The color-magnitude diagram of the membership stars is significantly clearer and shows a well-defined main sequence and a red giant branch in NGC 188, which allows us to better constrain the cluster members and estimate their physical parameters. The membership probabilities have been calculated and compared to those obtained by the other methods. The results show that the K-means clustering algorithm can effectively select probable member stars in space without any assumption about the spatial distribution of stars in cluster or field. The similarity of our results is in a good agreement with results derived by previous works.
Performance impact of dynamic parallelism on different clustering algorithms
NASA Astrophysics Data System (ADS)
DiMarco, Jeffrey; Taufer, Michela
2013-05-01
In this paper, we aim to quantify the performance gains of dynamic parallelism. The newest version of CUDA, CUDA 5, introduces dynamic parallelism, which allows GPU threads to create new threads, without CPU intervention, and adapt to its data. This effectively eliminates the superfluous back and forth communication between the GPU and CPU through nested kernel computations. The change in performance will be measured using two well-known clustering algorithms that exhibit data dependencies: the K-means clustering and the hierarchical clustering. K-means has a sequential data dependence wherein iterations occur in a linear fashion, while the hierarchical clustering has a tree-like dependence that produces split tasks. Analyzing the performance of these data-dependent algorithms gives us a better understanding of the benefits or potential drawbacks of CUDA 5's new dynamic parallelism feature.
Hierarchical link clustering algorithm in networks
NASA Astrophysics Data System (ADS)
Bodlaj, Jernej; Batagelj, Vladimir
2015-06-01
Hierarchical network clustering is an approach to find tightly and internally connected clusters (groups or communities) of nodes in a network based on its structure. Instead of nodes, it is possible to cluster links of the network. The sets of nodes belonging to clusters of links can overlap. While overlapping clusters of nodes are not always expected, they are natural in many applications. Using appropriate dissimilarity measures, we can complement the clustering strategy to consider, for example, the semantic meaning of links or nodes based on their properties. We propose a new hierarchical link clustering algorithm which in comparison to existing algorithms considers node and/or link properties (descriptions, attributes) of the input network alongside its structure using monotonic dissimilarity measures. The algorithm determines communities that form connected subnetworks (relational constraint) containing locally similar nodes with respect to their description. It is only implicitly based on the corresponding line graph of the input network, thus reducing its space and time complexities. We investigate both complexities analytically and statistically. Using provided dissimilarity measures, our algorithm can, in addition to the general overlapping community structure of input networks, uncover also related subregions inside these communities in a form of hierarchy. We demonstrate this ability on real-world and artificial network examples.
Hierarchical link clustering algorithm in networks.
Bodlaj, Jernej; Batagelj, Vladimir
2015-06-01
Hierarchical network clustering is an approach to find tightly and internally connected clusters (groups or communities) of nodes in a network based on its structure. Instead of nodes, it is possible to cluster links of the network. The sets of nodes belonging to clusters of links can overlap. While overlapping clusters of nodes are not always expected, they are natural in many applications. Using appropriate dissimilarity measures, we can complement the clustering strategy to consider, for example, the semantic meaning of links or nodes based on their properties. We propose a new hierarchical link clustering algorithm which in comparison to existing algorithms considers node and/or link properties (descriptions, attributes) of the input network alongside its structure using monotonic dissimilarity measures. The algorithm determines communities that form connected subnetworks (relational constraint) containing locally similar nodes with respect to their description. It is only implicitly based on the corresponding line graph of the input network, thus reducing its space and time complexities. We investigate both complexities analytically and statistically. Using provided dissimilarity measures, our algorithm can, in addition to the general overlapping community structure of input networks, uncover also related subregions inside these communities in a form of hierarchy. We demonstrate this ability on real-world and artificial network examples. PMID:26172761
An algorithm for spatial heirarchy clustering
NASA Technical Reports Server (NTRS)
Dejesusparada, N. (Principal Investigator); Velasco, F. R. D.
1981-01-01
A method for utilizing both spectral and spatial redundancy in compacting and preclassifying images is presented. In multispectral satellite images, a high correlation exists between neighboring image points which tend to occupy dense and restricted regions of the feature space. The image is divided into windows of the same size where the clustering is made. The classes obtained in several neighboring windows are clustered, and then again successively clustered until only one region corresponding to the whole image is obtained. By employing this algorithm only a few points are considered in each clustering, thus reducing computational effort. The method is illustrated as applied to LANDSAT images.
QPSO-Based Adaptive DNA Computing Algorithm
Karakose, Mehmet; Cigdem, Ugur
2013-01-01
DNA (deoxyribonucleic acid) computing that is a new computation model based on DNA molecules for information storage has been increasingly used for optimization and data analysis in recent years. However, DNA computing algorithm has some limitations in terms of convergence speed, adaptability, and effectiveness. In this paper, a new approach for improvement of DNA computing is proposed. This new approach aims to perform DNA computing algorithm with adaptive parameters towards the desired goal using quantum-behaved particle swarm optimization (QPSO). Some contributions provided by the proposed QPSO based on adaptive DNA computing algorithm are as follows: (1) parameters of population size, crossover rate, maximum number of operations, enzyme and virus mutation rate, and fitness function of DNA computing algorithm are simultaneously tuned for adaptive process, (2) adaptive algorithm is performed using QPSO algorithm for goal-driven progress, faster operation, and flexibility in data, and (3) numerical realization of DNA computing algorithm with proposed approach is implemented in system identification. Two experiments with different systems were carried out to evaluate the performance of the proposed approach with comparative results. Experimental results obtained with Matlab and FPGA demonstrate ability to provide effective optimization, considerable convergence speed, and high accuracy according to DNA computing algorithm. PMID:23935409
User-Based Document Clustering by Redescribing Subject Descriptions with a Genetic Algorithm.
ERIC Educational Resources Information Center
Gordon, Michael D.
1991-01-01
Discussion of clustering of documents and queries in information retrieval systems focuses on the use of a genetic algorithm to adapt subject descriptions so that documents become more effective in matching relevant queries. Various types of clustering are explained, and simulation experiments used to test the genetic algorithm are described. (27…
Adaptive sensor fusion using genetic algorithms
Fitzgerald, D.S.; Adams, D.G.
1994-08-01
Past attempts at sensor fusion have used some form of Boolean logic to combine the sensor information. As an alteniative, an adaptive ``fuzzy`` sensor fusion technique is described in this paper. This technique exploits the robust capabilities of fuzzy logic in the decision process as well as the optimization features of the genetic algorithm. This paper presents a brief background on fuzzy logic and genetic algorithms and how they are used in an online implementation of adaptive sensor fusion.
A Task-parallel Clustering Algorithm for Structured AMR
Gunney, B N; Wissink, A M
2004-11-02
A new parallel algorithm, based on the Berger-Rigoutsos algorithm for clustering grid points into logically rectangular regions, is presented. The clustering operation is frequently performed in the dynamic gridding steps of structured adaptive mesh refinement (SAMR) calculations. A previous study revealed that although the cost of clustering is generally insignificant for smaller problems run on relatively few processors, the algorithm scaled inefficiently in parallel and its cost grows with problem size. Hence, it can become significant for large scale problems run on very large parallel machines, such as the new BlueGene system (which has {Omicron}(10{sup 4}) processors). We propose a new task-parallel algorithm designed to reduce communication wait times. Performance was assessed using dynamic SAMR re-gridding operations on up to 16K processors of currently available computers at Lawrence Livermore National Laboratory. The new algorithm was shown to be up to an order of magnitude faster than the baseline algorithm and had better scaling trends.
Fusion and clustering algorithms for spatial data
NASA Astrophysics Data System (ADS)
Kuntala, Pavani
Spatial clustering is an approach for discovering groups of related data points in spatial data. Spatial clustering has attracted a lot of research attention due to various applications where it is needed. It holds practical importance in application domains such as geographic knowledge discovery, sensors, rare disease discovery, astronomy, remote sensing, and so on. The motivation for this work stems from the limitations of the existing spatial clustering methods. In most conventional spatial clustering algorithms, the similarity measurement mainly considers the geometric attributes. However, in many real applications, users are concerned about both the spatial and the non-spatial attributes. In conventional spatial clustering, the input data set is partitioned into several compact regions and data points that are similar to one another in their non-spatial attributes may be scattered over different regions, thus making the corresponding objective difficult to achieve. In this dissertation, a novel clustering methodology is proposed to explore the clustering problem within both spatial and non-spatial domains by employing a fusion-based approach. The goal is to optimize a given objective function in the spatial domain, while satisfying the constraint specified in the non- spatial attribute domain. Several experiments are conducted to provide insights into the proposed methodology. The algorithm first captures the spatial cores having the highest structure and then employs an iterative, heuristic mechanism to find the optimal number of spatial cores and non-spatial clusters that exist in the data. Such a fusion-based framework allows for the handling of data streams and provides a framework for comparing spatial clusters. The correctness and efficiency of the proposed clustering model is demonstrated on real world and synthetic data sets.
Genetic algorithm optimization of atomic clusters
Morris, J.R.; Deaven, D.M.; Ho, K.M.; Wang, C.Z.; Pan, B.C.; Wacker, J.G.; Turner, D.E. |
1996-12-31
The authors have been using genetic algorithms to study the structures of atomic clusters and related problems. This is a problem where local minima are easy to locate, but barriers between the many minima are large, and the number of minima prohibit a systematic search. They use a novel mating algorithm that preserves some of the geometrical relationship between atoms, in order to ensure that the resultant structures are likely to inherit the best features of the parent clusters. Using this approach, they have been able to find lower energy structures than had been previously obtained. Most recently, they have been able to turn around the building block idea, using optimized structures from the GA to learn about systematic structural trends. They believe that an effective GA can help provide such heuristic information, and (conversely) that such information can be introduced back into the algorithm to assist in the search process.
Self-adaptive parameters in genetic algorithms
NASA Astrophysics Data System (ADS)
Pellerin, Eric; Pigeon, Luc; Delisle, Sylvain
2004-04-01
Genetic algorithms are powerful search algorithms that can be applied to a wide range of problems. Generally, parameter setting is accomplished prior to running a Genetic Algorithm (GA) and this setting remains unchanged during execution. The problem of interest to us here is the self-adaptive parameters adjustment of a GA. In this research, we propose an approach in which the control of a genetic algorithm"s parameters can be encoded within the chromosome of each individual. The parameters" values are entirely dependent on the evolution mechanism and on the problem context. Our preliminary results show that a GA is able to learn and evaluate the quality of self-set parameters according to their degree of contribution to the resolution of the problem. These results are indicative of a promising approach to the development of GAs with self-adaptive parameter settings that do not require the user to pre-adjust parameters at the outset.
Sparse subspace clustering: algorithm, theory, and applications.
Elhamifar, Ehsan; Vidal, René
2013-11-01
Many real-world problems deal with collections of high-dimensional data, such as images, videos, text, and web documents, DNA microarray data, and more. Often, such high-dimensional data lie close to low-dimensional structures corresponding to several classes or categories to which the data belong. In this paper, we propose and study an algorithm, called sparse subspace clustering, to cluster data points that lie in a union of low-dimensional subspaces. The key idea is that, among the infinitely many possible representations of a data point in terms of other points, a sparse representation corresponds to selecting a few points from the same subspace. This motivates solving a sparse optimization program whose solution is used in a spectral clustering framework to infer the clustering of the data into subspaces. Since solving the sparse optimization program is in general NP-hard, we consider a convex relaxation and show that, under appropriate conditions on the arrangement of the subspaces and the distribution of the data, the proposed minimization program succeeds in recovering the desired sparse representations. The proposed algorithm is efficient and can handle data points near the intersections of subspaces. Another key advantage of the proposed algorithm with respect to the state of the art is that it can deal directly with data nuisances, such as noise, sparse outlying entries, and missing entries, by incorporating the model of the data into the sparse optimization program. We demonstrate the effectiveness of the proposed algorithm through experiments on synthetic data as well as the two real-world problems of motion segmentation and face clustering. PMID:24051734
Adaptive link selection algorithms for distributed estimation
NASA Astrophysics Data System (ADS)
Xu, Songcen; de Lamare, Rodrigo C.; Poor, H. Vincent
2015-12-01
This paper presents adaptive link selection algorithms for distributed estimation and considers their application to wireless sensor networks and smart grids. In particular, exhaustive search-based least mean squares (LMS) / recursive least squares (RLS) link selection algorithms and sparsity-inspired LMS / RLS link selection algorithms that can exploit the topology of networks with poor-quality links are considered. The proposed link selection algorithms are then analyzed in terms of their stability, steady-state, and tracking performance and computational complexity. In comparison with the existing centralized or distributed estimation strategies, the key features of the proposed algorithms are as follows: (1) more accurate estimates and faster convergence speed can be obtained and (2) the network is equipped with the ability of link selection that can circumvent link failures and improve the estimation performance. The performance of the proposed algorithms for distributed estimation is illustrated via simulations in applications of wireless sensor networks and smart grids.
Adaptive Cuckoo Search Algorithm for Unconstrained Optimization
2014-01-01
Modification of the intensification and diversification approaches in the recently developed cuckoo search algorithm (CSA) is performed. The alteration involves the implementation of adaptive step size adjustment strategy, and thus enabling faster convergence to the global optimal solutions. The feasibility of the proposed algorithm is validated against benchmark optimization functions, where the obtained results demonstrate a marked improvement over the standard CSA, in all the cases. PMID:25298971
Adaptive cuckoo search algorithm for unconstrained optimization.
Ong, Pauline
2014-01-01
Modification of the intensification and diversification approaches in the recently developed cuckoo search algorithm (CSA) is performed. The alteration involves the implementation of adaptive step size adjustment strategy, and thus enabling faster convergence to the global optimal solutions. The feasibility of the proposed algorithm is validated against benchmark optimization functions, where the obtained results demonstrate a marked improvement over the standard CSA, in all the cases. PMID:25298971
Cluster compression algorithm: A joint clustering/data compression concept
NASA Technical Reports Server (NTRS)
Hilbert, E. E.
1977-01-01
The Cluster Compression Algorithm (CCA), which was developed to reduce costs associated with transmitting, storing, distributing, and interpreting LANDSAT multispectral image data is described. The CCA is a preprocessing algorithm that uses feature extraction and data compression to more efficiently represent the information in the image data. The format of the preprocessed data enables simply a look-up table decoding and direct use of the extracted features to reduce user computation for either image reconstruction, or computer interpretation of the image data. Basically, the CCA uses spatially local clustering to extract features from the image data to describe spectral characteristics of the data set. In addition, the features may be used to form a sequence of scalar numbers that define each picture element in terms of the cluster features. This sequence, called the feature map, is then efficiently represented by using source encoding concepts. Various forms of the CCA are defined and experimental results are presented to show trade-offs and characteristics of the various implementations. Examples are provided that demonstrate the application of the cluster compression concept to multi-spectral images from LANDSAT and other sources.
Chaotic map clustering algorithm for EEG analysis
NASA Astrophysics Data System (ADS)
Bellotti, R.; De Carlo, F.; Stramaglia, S.
2004-03-01
The non-parametric chaotic map clustering algorithm has been applied to the analysis of electroencephalographic signals, in order to recognize the Huntington's disease, one of the most dangerous pathologies of the central nervous system. The performance of the method has been compared with those obtained through parametric algorithms, as K-means and deterministic annealing, and supervised multi-layer perceptron. While supervised neural networks need a training phase, performed by means of data tagged by the genetic test, and the parametric methods require a prior choice of the number of classes to find, the chaotic map clustering gives a natural evidence of the pathological class, without any training or supervision, thus providing a new efficient methodology for the recognition of patterns affected by the Huntington's disease.
Clustering of noisy image data using an adaptive neuro-fuzzy system
NASA Technical Reports Server (NTRS)
Pemmaraju, Surya; Mitra, Sunanda
1992-01-01
Identification of outliers or noise in a real data set is often quite difficult. A recently developed adaptive fuzzy leader clustering (AFLC) algorithm has been modified to separate the outliers from real data sets while finding the clusters within the data sets. The capability of this modified AFLC algorithm to identify the outliers in a number of real data sets indicates the potential strength of this algorithm in correct classification of noisy real data.
A Cross Unequal Clustering Routing Algorithm for Sensor Network
NASA Astrophysics Data System (ADS)
Tong, Wang; Jiyi, Wu; He, Xu; Jinghua, Zhu; Munyabugingo, Charles
2013-08-01
In the routing protocol for wireless sensor network, the cluster size is generally fixed in clustering routing algorithm for wireless sensor network, which can easily lead to the "hot spot" problem. Furthermore, the majority of routing algorithms barely consider the problem of long distance communication between adjacent cluster heads that brings high energy consumption. Therefore, this paper proposes a new cross unequal clustering routing algorithm based on the EEUC algorithm. In order to solve the defects of EEUC algorithm, this algorithm calculating of competition radius takes the node's position and node's remaining energy into account to make the load of cluster heads more balanced. At the same time, cluster adjacent node is applied to transport data and reduce the energy-loss of cluster heads. Simulation experiments show that, compared with LEACH and EEUC, the proposed algorithm can effectively reduce the energy-loss of cluster heads and balance the energy consumption among all nodes in the network and improve the network lifetime
Genetic algorithms in adaptive fuzzy control
NASA Technical Reports Server (NTRS)
Karr, C. Lucas; Harper, Tony R.
1992-01-01
Researchers at the U.S. Bureau of Mines have developed adaptive process control systems in which genetic algorithms (GA's) are used to augment fuzzy logic controllers (FLC's). GA's are search algorithms that rapidly locate near-optimum solutions to a wide spectrum of problems by modeling the search procedures of natural genetics. FLC's are rule based systems that efficiently manipulate a problem environment by modeling the 'rule-of-thumb' strategy used in human decision making. Together, GA's and FLC's possess the capabilities necessary to produce powerful, efficient, and robust adaptive control systems. To perform efficiently, such control systems require a control element to manipulate the problem environment, an analysis element to recognize changes in the problem environment, and a learning element to adjust fuzzy membership functions in response to the changes in the problem environment. Details of an overall adaptive control system are discussed. A specific computer-simulated chemical system is used to demonstrate the ideas presented.
Synchronous Firefly Algorithm for Cluster Head Selection in WSN.
Baskaran, Madhusudhanan; Sadagopan, Chitra
2015-01-01
Wireless Sensor Network (WSN) consists of small low-cost, low-power multifunctional nodes interconnected to efficiently aggregate and transmit data to sink. Cluster-based approaches use some nodes as Cluster Heads (CHs) and organize WSNs efficiently for aggregation of data and energy saving. A CH conveys information gathered by cluster nodes and aggregates/compresses data before transmitting it to a sink. However, this additional responsibility of the node results in a higher energy drain leading to uneven network degradation. Low Energy Adaptive Clustering Hierarchy (LEACH) offsets this by probabilistically rotating cluster heads role among nodes with energy above a set threshold. CH selection in WSN is NP-Hard as optimal data aggregation with efficient energy savings cannot be solved in polynomial time. In this work, a modified firefly heuristic, synchronous firefly algorithm, is proposed to improve the network performance. Extensive simulation shows the proposed technique to perform well compared to LEACH and energy-efficient hierarchical clustering. Simulations show the effectiveness of the proposed method in decreasing the packet loss ratio by an average of 9.63% and improving the energy efficiency of the network when compared to LEACH and EEHC. PMID:26495431
Synchronous Firefly Algorithm for Cluster Head Selection in WSN
Baskaran, Madhusudhanan; Sadagopan, Chitra
2015-01-01
Wireless Sensor Network (WSN) consists of small low-cost, low-power multifunctional nodes interconnected to efficiently aggregate and transmit data to sink. Cluster-based approaches use some nodes as Cluster Heads (CHs) and organize WSNs efficiently for aggregation of data and energy saving. A CH conveys information gathered by cluster nodes and aggregates/compresses data before transmitting it to a sink. However, this additional responsibility of the node results in a higher energy drain leading to uneven network degradation. Low Energy Adaptive Clustering Hierarchy (LEACH) offsets this by probabilistically rotating cluster heads role among nodes with energy above a set threshold. CH selection in WSN is NP-Hard as optimal data aggregation with efficient energy savings cannot be solved in polynomial time. In this work, a modified firefly heuristic, synchronous firefly algorithm, is proposed to improve the network performance. Extensive simulation shows the proposed technique to perform well compared to LEACH and energy-efficient hierarchical clustering. Simulations show the effectiveness of the proposed method in decreasing the packet loss ratio by an average of 9.63% and improving the energy efficiency of the network when compared to LEACH and EEHC. PMID:26495431
Classification of posture maintenance data with fuzzy clustering algorithms
NASA Technical Reports Server (NTRS)
Bezdek, James C.
1991-01-01
Sensory inputs from the visual, vestibular, and proprioreceptive systems are integrated by the central nervous system to maintain postural equilibrium. Sustained exposure to microgravity causes neurosensory adaptation during spaceflight, which results in decreased postural stability until readaptation occurs upon return to the terrestrial environment. Data which simulate sensory inputs under various conditions were collected in conjunction with JSC postural control studies using a Tilt-Translation Device (TTD). The University of West Florida proposed applying the Fuzzy C-Means Clustering (FCM) Algorithms to this data with a view towards identifying various states and stages. Data supplied by NASA/JSC were submitted to the FCM algorithms in an attempt to identify and characterize cluster substructure in a mixed ensemble of pre- and post-adaptational TTD data. Following several unsuccessful trials with FCM using a full 11 dimensional data set, a set of two channels (features) were found to enable FCM to separate pre- from post-adaptational TTD data. The main conclusions are that: (1) FCM seems able to separate pre- from post-TTD subject no. 2 on the one trial that was used, but only in certain subintervals of time; and (2) Channels 2 (right rear transducer force) and 8 (hip sway bar) contain better discrimination information than other supersets and combinations of the data that were tried so far.
Improved Ant Colony Clustering Algorithm and Its Performance Study.
Gao, Wei
2016-01-01
Clustering analysis is used in many disciplines and applications; it is an important tool that descriptively identifies homogeneous groups of objects based on attribute values. The ant colony clustering algorithm is a swarm-intelligent method used for clustering problems that is inspired by the behavior of ant colonies that cluster their corpses and sort their larvae. A new abstraction ant colony clustering algorithm using a data combination mechanism is proposed to improve the computational efficiency and accuracy of the ant colony clustering algorithm. The abstraction ant colony clustering algorithm is used to cluster benchmark problems, and its performance is compared with the ant colony clustering algorithm and other methods used in existing literature. Based on similar computational difficulties and complexities, the results show that the abstraction ant colony clustering algorithm produces results that are not only more accurate but also more efficiently determined than the ant colony clustering algorithm and the other methods. Thus, the abstraction ant colony clustering algorithm can be used for efficient multivariate data clustering. PMID:26839533
Improved Ant Colony Clustering Algorithm and Its Performance Study
Gao, Wei
2016-01-01
Clustering analysis is used in many disciplines and applications; it is an important tool that descriptively identifies homogeneous groups of objects based on attribute values. The ant colony clustering algorithm is a swarm-intelligent method used for clustering problems that is inspired by the behavior of ant colonies that cluster their corpses and sort their larvae. A new abstraction ant colony clustering algorithm using a data combination mechanism is proposed to improve the computational efficiency and accuracy of the ant colony clustering algorithm. The abstraction ant colony clustering algorithm is used to cluster benchmark problems, and its performance is compared with the ant colony clustering algorithm and other methods used in existing literature. Based on similar computational difficulties and complexities, the results show that the abstraction ant colony clustering algorithm produces results that are not only more accurate but also more efficiently determined than the ant colony clustering algorithm and the other methods. Thus, the abstraction ant colony clustering algorithm can be used for efficient multivariate data clustering. PMID:26839533
A clustering routing algorithm based on improved ant colony clustering for wireless sensor networks
NASA Astrophysics Data System (ADS)
Xiao, Xiaoli; Li, Yang
Because of real wireless sensor network node distribution uniformity, this paper presents a clustering strategy based on the ant colony clustering algorithm (ACC-C). To reduce the energy consumption of the head near the base station and the whole network, The algorithm uses ant colony clustering on non-uniform clustering. The improve route optimal degree is presented to evaluate the performance of the chosen route. Simulation results show that, compared with other algorithms, like the LEACH algorithm and the improve particle cluster kind of clustering algorithm (PSC - C), the proposed approach is able to keep away from the node with less residual energy, which can improve the life of networks.
An adaptive guidance algorithm for aerospace vehicles
NASA Astrophysics Data System (ADS)
Bradt, J. E.; Hardtla, J. W.; Cramer, E. J.
The specifications for proposed space transportation systems are placing more emphasis on developing reusable avionics subsystems which have the capability to respond to vehicle evolution and diverse missions while at the same time reducing the cost of ground support for mission planning, contingency response and verification and validation. An innovative approach to meeting these goals is to specify the guidance problem as a multi-point boundary value problen and solve that problem using modern control theory and nonlinear constrained optimization techniques. This approach has been implemented as Gamma Guidance (Hardtla, 1978) and has been successfully flown in the Inertial Upper Stage. The adaptive guidance algorithm described in this paper is a generalized formulation of Gamma Guidance. The basic equations are presented and then applied to four diverse aerospace vehicles to demonstrate the feasibility of using a reusable, explicit, adaptive guidance algorithm for diverse applications and vehicles.
Cross-Clustering: A Partial Clustering Algorithm with Automatic Estimation of the Number of Clusters
Tellaroli, Paola; Bazzi, Marco; Donato, Michele; Brazzale, Alessandra R.; Drăghici, Sorin
2016-01-01
Four of the most common limitations of the many available clustering methods are: i) the lack of a proper strategy to deal with outliers; ii) the need for a good a priori estimate of the number of clusters to obtain reasonable results; iii) the lack of a method able to detect when partitioning of a specific data set is not appropriate; and iv) the dependence of the result on the initialization. Here we propose Cross-clustering (CC), a partial clustering algorithm that overcomes these four limitations by combining the principles of two well established hierarchical clustering algorithms: Ward’s minimum variance and Complete-linkage. We validated CC by comparing it with a number of existing clustering methods, including Ward’s and Complete-linkage. We show on both simulated and real datasets, that CC performs better than the other methods in terms of: the identification of the correct number of clusters, the identification of outliers, and the determination of real cluster memberships. We used CC to cluster samples in order to identify disease subtypes, and on gene profiles, in order to determine groups of genes with the same behavior. Results obtained on a non-biological dataset show that the method is general enough to be successfully used in such diverse applications. The algorithm has been implemented in the statistical language R and is freely available from the CRAN contributed packages repository. PMID:27015427
A Hybrid Monkey Search Algorithm for Clustering Analysis
Chen, Xin; Zhou, Yongquan; Luo, Qifang
2014-01-01
Clustering is a popular data analysis and data mining technique. The k-means clustering algorithm is one of the most commonly used methods. However, it highly depends on the initial solution and is easy to fall into local optimum solution. In view of the disadvantages of the k-means method, this paper proposed a hybrid monkey algorithm based on search operator of artificial bee colony algorithm for clustering analysis and experiment on synthetic and real life datasets to show that the algorithm has a good performance than that of the basic monkey algorithm for clustering analysis. PMID:24772039
A parallel adaptive mesh refinement algorithm
NASA Technical Reports Server (NTRS)
Quirk, James J.; Hanebutte, Ulf R.
1993-01-01
Over recent years, Adaptive Mesh Refinement (AMR) algorithms which dynamically match the local resolution of the computational grid to the numerical solution being sought have emerged as powerful tools for solving problems that contain disparate length and time scales. In particular, several workers have demonstrated the effectiveness of employing an adaptive, block-structured hierarchical grid system for simulations of complex shock wave phenomena. Unfortunately, from the parallel algorithm developer's viewpoint, this class of scheme is quite involved; these schemes cannot be distilled down to a small kernel upon which various parallelizing strategies may be tested. However, because of their block-structured nature such schemes are inherently parallel, so all is not lost. In this paper we describe the method by which Quirk's AMR algorithm has been parallelized. This method is built upon just a few simple message passing routines and so it may be implemented across a broad class of MIMD machines. Moreover, the method of parallelization is such that the original serial code is left virtually intact, and so we are left with just a single product to support. The importance of this fact should not be underestimated given the size and complexity of the original algorithm.
Turbo LMS algorithm: supercharger meets adaptive filter
NASA Astrophysics Data System (ADS)
Meyer-Baese, Uwe
2006-04-01
Adaptive digital filters (ADFs) are, in general, the most sophisticated and resource intensive components of modern digital signal processing (DSP) and communication systems. Improvements in performance or the complexity of ADFs can have a significant impact on the overall size, speed, and power properties of a complete system. The least mean square (LMS) algorithm is a popular algorithm for coefficient adaptation in ADF because it is robust, easy to implement, and a close approximation to the optimal Wiener-Hopf least mean square solution. The main weakness of the LMS algorithm is the slow convergence, especially for non Markov-1 colored noise input signals with high eigenvalue ratios (EVRs). Since its introduction in 1993, the turbo (supercharge) principle has been successfully applied in error correction decoding and has become very popular because it reaches the theoretical limits of communication capacity predicted 5 decades ago by Shannon. The turbo principle applied to LMS ADF is analogous to the turbo principle used for error correction decoders: First, an "interleaver" is used to minimize crosscorrelation, secondly, an iterative improvement which uses the same data set several times is implemented using the standard LMS algorithm. Results for 6 different interleaver schemes for EVR in the range 1-100 are presented.
Fully implicit adaptive mesh refinement MHD algorithm
NASA Astrophysics Data System (ADS)
Philip, Bobby
2005-10-01
In the macroscopic simulation of plasmas, the numerical modeler is faced with the challenge of dealing with multiple time and length scales. The former results in stiffness due to the presence of very fast waves. The latter requires one to resolve the localized features that the system develops. Traditional approaches based on explicit time integration techniques and fixed meshes are not suitable for this challenge, as such approaches prevent the modeler from using realistic plasma parameters to keep the computation feasible. We propose here a novel approach, based on implicit methods and structured adaptive mesh refinement (SAMR). Our emphasis is on both accuracy and scalability with the number of degrees of freedom. To our knowledge, a scalable, fully implicit AMR algorithm has not been accomplished before for MHD. As a proof-of-principle, we focus on the reduced resistive MHD model as a basic MHD model paradigm, which is truly multiscale. The approach taken here is to adapt mature physics-based technologyootnotetextL. Chac'on et al., J. Comput. Phys. 178 (1), 15- 36 (2002) to AMR grids, and employ AMR-aware multilevel techniques (such as fast adaptive composite --FAC-- algorithms) for scalability. We will demonstrate that the concept is indeed feasible, featuring optimal scalability under grid refinement. Results of fully-implicit, dynamically-adaptive AMR simulations will be presented on a variety of problems.
SIMULATION OF DISPERSION OF A POWER PLANT PLUME USING AN ADAPTIVE GRID ALGORITHM
A new dynamic adaptive grid algorithm has been developed for use in air quality modeling. This algorithm uses a higher order numerical scheme?the piecewise parabolic method (PPM)?for computing advective solution fields; a weight function capable of promoting grid node clustering ...
Classification of posture maintenance data with fuzzy clustering algorithms
NASA Technical Reports Server (NTRS)
Bezdek, James C.
1992-01-01
Sensory inputs from the visual, vestibular, and proprioreceptive systems are integrated by the central nervous system to maintain postural equilibrium. Sustained exposure to microgravity causes neurosensory adaptation during spaceflight, which results in decreased postural stability until readaptation occurs upon return to the terrestrial environment. Data which simulate sensory inputs under various sensory organization test (SOT) conditions were collected in conjunction with Johnson Space Center postural control studies using a tilt-translation device (TTD). The University of West Florida applied the fuzzy c-meams (FCM) clustering algorithms to this data with a view towards identifying various states and stages of subjects experiencing such changes. Feature analysis, time step analysis, pooling data, response of the subjects, and the algorithms used are discussed.
Energy Aware Clustering Algorithms for Wireless Sensor Networks
NASA Astrophysics Data System (ADS)
Rakhshan, Noushin; Rafsanjani, Marjan Kuchaki; Liu, Chenglian
2011-09-01
The sensor nodes deployed in wireless sensor networks (WSNs) are extremely power constrained, so maximizing the lifetime of the entire networks is mainly considered in the design. In wireless sensor networks, hierarchical network structures have the advantage of providing scalable and energy efficient solutions. In this paper, we investigate different clustering algorithms for WSNs and also compare these clustering algorithms based on metrics such as clustering distribution, cluster's load balancing, Cluster Head's (CH) selection strategy, CH's role rotation, node mobility, clusters overlapping, intra-cluster communications, reliability, security and location awareness.
Adaptive path planning: Algorithm and analysis
Chen, Pang C.
1993-03-01
Path planning has to be fast to support real-time robot programming. Unfortunately, current planning techniques are still too slow to be effective, as they often require several minutes, if not hours of computation. To alleviate this problem, we present a learning algorithm that uses past experience to enhance future performance. The algorithm relies on an existing path planner to provide solutions to difficult tasks. From these solutions, an evolving sparse network of useful subgoals is learned to support faster planning. The algorithm is suitable for both stationary and incrementally-changing environments. To analyze our algorithm, we use a previously developed stochastic model that quantifies experience utility. Using this model, we characterize the situations in which the adaptive planner is useful, and provide quantitative bounds to predict its behavior. The results are demonstrated with problems in manipulator planning. Our algorithm and analysis are sufficiently general that they may also be applied to task planning or other planning domains in which experience is useful.
Adaptive Trajectory Prediction Algorithm for Climbing Flights
NASA Technical Reports Server (NTRS)
Schultz, Charles Alexander; Thipphavong, David P.; Erzberger, Heinz
2012-01-01
Aircraft climb trajectories are difficult to predict, and large errors in these predictions reduce the potential operational benefits of some advanced features for NextGen. The algorithm described in this paper improves climb trajectory prediction accuracy by adjusting trajectory predictions based on observed track data. It utilizes rate-of-climb and airspeed measurements derived from position data to dynamically adjust the aircraft weight modeled for trajectory predictions. In simulations with weight uncertainty, the algorithm is able to adapt to within 3 percent of the actual gross weight within two minutes of the initial adaptation. The root-mean-square of altitude errors for five-minute predictions was reduced by 73 percent. Conflict detection performance also improved, with a 15 percent reduction in missed alerts and a 10 percent reduction in false alerts. In a simulation with climb speed capture intent and weight uncertainty, the algorithm improved climb trajectory prediction accuracy by up to 30 percent and conflict detection performance, reducing missed and false alerts by up to 10 percent.
Multi-Parent Clustering Algorithms from Stochastic Grammar Data Models
NASA Technical Reports Server (NTRS)
Mjoisness, Eric; Castano, Rebecca; Gray, Alexander
1999-01-01
We introduce a statistical data model and an associated optimization-based clustering algorithm which allows data vectors to belong to zero, one or several "parent" clusters. For each data vector the algorithm makes a discrete decision among these alternatives. Thus, a recursive version of this algorithm would place data clusters in a Directed Acyclic Graph rather than a tree. We test the algorithm with synthetic data generated according to the statistical data model. We also illustrate the algorithm using real data from large-scale gene expression assays.
Synaptic dynamics: linear model and adaptation algorithm.
Yousefi, Ali; Dibazar, Alireza A; Berger, Theodore W
2014-08-01
In this research, temporal processing in brain neural circuitries is addressed by a dynamic model of synaptic connections in which the synapse model accounts for both pre- and post-synaptic processes determining its temporal dynamics and strength. Neurons, which are excited by the post-synaptic potentials of hundred of the synapses, build the computational engine capable of processing dynamic neural stimuli. Temporal dynamics in neural models with dynamic synapses will be analyzed, and learning algorithms for synaptic adaptation of neural networks with hundreds of synaptic connections are proposed. The paper starts by introducing a linear approximate model for the temporal dynamics of synaptic transmission. The proposed linear model substantially simplifies the analysis and training of spiking neural networks. Furthermore, it is capable of replicating the synaptic response of the non-linear facilitation-depression model with an accuracy better than 92.5%. In the second part of the paper, a supervised spike-in-spike-out learning rule for synaptic adaptation in dynamic synapse neural networks (DSNN) is proposed. The proposed learning rule is a biologically plausible process, and it is capable of simultaneously adjusting both pre- and post-synaptic components of individual synapses. The last section of the paper starts with presenting the rigorous analysis of the learning algorithm in a system identification task with hundreds of synaptic connections which confirms the learning algorithm's accuracy, repeatability and scalability. The DSNN is utilized to predict the spiking activity of cortical neurons and pattern recognition tasks. The DSNN model is demonstrated to be a generative model capable of producing different cortical neuron spiking patterns and CA1 Pyramidal neurons recordings. A single-layer DSNN classifier on a benchmark pattern recognition task outperforms a 2-Layer Neural Network and GMM classifiers while having fewer numbers of free parameters and
Adaptive Numerical Algorithms in Space Weather Modeling
NASA Technical Reports Server (NTRS)
Toth, Gabor; vanderHolst, Bart; Sokolov, Igor V.; DeZeeuw, Darren; Gombosi, Tamas I.; Fang, Fang; Manchester, Ward B.; Meng, Xing; Nakib, Dalal; Powell, Kenneth G.; Stout, Quentin F.; Glocer, Alex; Ma, Ying-Juan; Opher, Merav
2010-01-01
Space weather describes the various processes in the Sun-Earth system that present danger to human health and technology. The goal of space weather forecasting is to provide an opportunity to mitigate these negative effects. Physics-based space weather modeling is characterized by disparate temporal and spatial scales as well as by different physics in different domains. A multi-physics system can be modeled by a software framework comprising of several components. Each component corresponds to a physics domain, and each component is represented by one or more numerical models. The publicly available Space Weather Modeling Framework (SWMF) can execute and couple together several components distributed over a parallel machine in a flexible and efficient manner. The framework also allows resolving disparate spatial and temporal scales with independent spatial and temporal discretizations in the various models. Several of the computationally most expensive domains of the framework are modeled by the Block-Adaptive Tree Solar wind Roe Upwind Scheme (BATS-R-US) code that can solve various forms of the magnetohydrodynamics (MHD) equations, including Hall, semi-relativistic, multi-species and multi-fluid MHD, anisotropic pressure, radiative transport and heat conduction. Modeling disparate scales within BATS-R-US is achieved by a block-adaptive mesh both in Cartesian and generalized coordinates. Most recently we have created a new core for BATS-R-US: the Block-Adaptive Tree Library (BATL) that provides a general toolkit for creating, load balancing and message passing in a 1, 2 or 3 dimensional block-adaptive grid. We describe the algorithms of BATL and demonstrate its efficiency and scaling properties for various problems. BATS-R-US uses several time-integration schemes to address multiple time-scales: explicit time stepping with fixed or local time steps, partially steady-state evolution, point-implicit, semi-implicit, explicit/implicit, and fully implicit numerical
Adaptive numerical algorithms in space weather modeling
NASA Astrophysics Data System (ADS)
Tóth, Gábor; van der Holst, Bart; Sokolov, Igor V.; De Zeeuw, Darren L.; Gombosi, Tamas I.; Fang, Fang; Manchester, Ward B.; Meng, Xing; Najib, Dalal; Powell, Kenneth G.; Stout, Quentin F.; Glocer, Alex; Ma, Ying-Juan; Opher, Merav
2012-02-01
Space weather describes the various processes in the Sun-Earth system that present danger to human health and technology. The goal of space weather forecasting is to provide an opportunity to mitigate these negative effects. Physics-based space weather modeling is characterized by disparate temporal and spatial scales as well as by different relevant physics in different domains. A multi-physics system can be modeled by a software framework comprising several components. Each component corresponds to a physics domain, and each component is represented by one or more numerical models. The publicly available Space Weather Modeling Framework (SWMF) can execute and couple together several components distributed over a parallel machine in a flexible and efficient manner. The framework also allows resolving disparate spatial and temporal scales with independent spatial and temporal discretizations in the various models. Several of the computationally most expensive domains of the framework are modeled by the Block-Adaptive Tree Solarwind Roe-type Upwind Scheme (BATS-R-US) code that can solve various forms of the magnetohydrodynamic (MHD) equations, including Hall, semi-relativistic, multi-species and multi-fluid MHD, anisotropic pressure, radiative transport and heat conduction. Modeling disparate scales within BATS-R-US is achieved by a block-adaptive mesh both in Cartesian and generalized coordinates. Most recently we have created a new core for BATS-R-US: the Block-Adaptive Tree Library (BATL) that provides a general toolkit for creating, load balancing and message passing in a 1, 2 or 3 dimensional block-adaptive grid. We describe the algorithms of BATL and demonstrate its efficiency and scaling properties for various problems. BATS-R-US uses several time-integration schemes to address multiple time-scales: explicit time stepping with fixed or local time steps, partially steady-state evolution, point-implicit, semi-implicit, explicit/implicit, and fully implicit
An Adaptive Path Planning Algorithm for Cooperating Unmanned Air Vehicles
Cunningham, C.T.; Roberts, R.S.
2000-09-12
An adaptive path planning algorithm is presented for cooperating Unmanned Air Vehicles (UAVs) that are used to deploy and operate land-based sensor networks. The algorithm employs a global cost function to generate paths for the UAVs, and adapts the paths to exceptions that might occur. Examples are provided of the paths and adaptation.
Adaptive path planning algorithm for cooperating unmanned air vehicles
Cunningham, C T; Roberts, R S
2001-02-08
An adaptive path planning algorithm is presented for cooperating Unmanned Air Vehicles (UAVs) that are used to deploy and operate land-based sensor networks. The algorithm employs a global cost function to generate paths for the UAVs, and adapts the paths to exceptions that might occur. Examples are provided of the paths and adaptation.
Incremental Clustering Algorithm For Earth Science Data Mining
Vatsavai, Raju
2009-01-01
Remote sensing data plays a key role in understanding the complex geographic phenomena. Clustering is a useful tool in discovering interesting patterns and structures within the multivariate geospatial data. One of the key issues in clustering is the specication of appropriate number of clusters, which is not obvious in many practical situations. In this paper we provide an extension of G-means algorithm which automatically learns the number of clusters present in the data and avoids over estimation of the number of clusters. Experimental evaluation on simulated and remotely sensed image data shows the effectiveness of our algorithm.
A Novel Coverage-Preserving Clustering Algorithm for Wireless Sensor Networks
NASA Astrophysics Data System (ADS)
Di, Xin
Sensing coverage is one of the crucial characteristics for wireless sensor networks. It has to be considered in the design of routing protocols. LEACH (Low Energy Adaptive Cluster Hierarchy) is a significant and representative routing protocol which organizes the sensing nodes by clustering. For LEACH, residual energy should be considered in order to overcome the inequality of energy dissipation rate. Considering the impact on these two factors of a network, we have proposed a coverage-preserving energy-based clustering algorithm (CEC), which is an improved LEACH. Through improving the threshold for cluster-head selection, CEC achieved more effective results than the other baseline protocols.
Paraskevopoulou, Sivylla E; Wu, Di; Eftekhar, Amir; Constandinou, Timothy G
2014-09-30
This work presents a novel unsupervised algorithm for real-time adaptive clustering of neural spike data (spike sorting). The proposed Hierarchical Adaptive Means (HAM) clustering method combines centroid-based clustering with hierarchical cluster connectivity to classify incoming spikes using groups of clusters. It is described how the proposed method can adaptively track the incoming spike data without requiring any past history, iteration or training and autonomously determines the number of spike classes. Its performance (classification accuracy) has been tested using multiple datasets (both simulated and recorded) achieving a near-identical accuracy compared to k-means (using 10-iterations and provided with the number of spike classes). Also, its robustness in applying to different feature extraction methods has been demonstrated by achieving classification accuracies above 80% across multiple datasets. Last but crucially, its low complexity, that has been quantified through both memory and computation requirements makes this method hugely attractive for future hardware implementation. PMID:25035965
An adaptive replacement algorithm for paged-memory computer systems.
NASA Technical Reports Server (NTRS)
Thorington, J. M., Jr.; Irwin, J. D.
1972-01-01
A general class of adaptive replacement schemes for use in paged memories is developed. One such algorithm, called SIM, is simulated using a probability model that generates memory traces, and the results of the simulation of this adaptive scheme are compared with those obtained using the best nonlookahead algorithms. A technique for implementing this type of adaptive replacement algorithm with state of the art digital hardware is also presented.
Clustering algorithms do not learn, but they can be learned
NASA Astrophysics Data System (ADS)
Brun, Marcel; Dougherty, Edward R.
2005-08-01
Pattern classification theory involves an error criterion, optimal classifiers, and a theory of learning. For clustering, there has historically been little theory; in particular, there has generally (but not always) been no learning. The key point is that clustering has not been grounded on a probabilistic theory. Recently, a clustering theory has been developed in the context of random sets. This paper discusses learning within that context, in particular, k- nearest-neighbor learning of clustering algorithms.
Clustering algorithms for Stokes space modulation format recognition.
Boada, Ricard; Borkowski, Robert; Monroy, Idelfonso Tafur
2015-06-15
Stokes space modulation format recognition (Stokes MFR) is a blind method enabling digital coherent receivers to infer modulation format information directly from a received polarization-division-multiplexed signal. A crucial part of the Stokes MFR is a clustering algorithm, which largely influences the performance of the detection process, particularly at low signal-to-noise ratios. This paper reports on an extensive study of six different clustering algorithms: k-means, expectation maximization, density-based DBSCAN and OPTICS, spectral clustering and maximum likelihood clustering, used for discriminating between dual polarization: BPSK, QPSK, 8-PSK, 8-QAM, and 16-QAM. We determine essential performance metrics for each clustering algorithm and modulation format under test: minimum required signal-to-noise ratio, detection accuracy and algorithm complexity. PMID:26193532
A systematic comparison of genome-scale clustering algorithms
2012-01-01
Background A wealth of clustering algorithms has been applied to gene co-expression experiments. These algorithms cover a broad range of approaches, from conventional techniques such as k-means and hierarchical clustering, to graphical approaches such as k-clique communities, weighted gene co-expression networks (WGCNA) and paraclique. Comparison of these methods to evaluate their relative effectiveness provides guidance to algorithm selection, development and implementation. Most prior work on comparative clustering evaluation has focused on parametric methods. Graph theoretical methods are recent additions to the tool set for the global analysis and decomposition of microarray co-expression matrices that have not generally been included in earlier methodological comparisons. In the present study, a variety of parametric and graph theoretical clustering algorithms are compared using well-characterized transcriptomic data at a genome scale from Saccharomyces cerevisiae. Methods For each clustering method under study, a variety of parameters were tested. Jaccard similarity was used to measure each cluster's agreement with every GO and KEGG annotation set, and the highest Jaccard score was assigned to the cluster. Clusters were grouped into small, medium, and large bins, and the Jaccard score of the top five scoring clusters in each bin were averaged and reported as the best average top 5 (BAT5) score for the particular method. Results Clusters produced by each method were evaluated based upon the positive match to known pathways. This produces a readily interpretable ranking of the relative effectiveness of clustering on the genes. Methods were also tested to determine whether they were able to identify clusters consistent with those identified by other clustering methods. Conclusions Validation of clusters against known gene classifications demonstrate that for this data, graph-based techniques outperform conventional clustering approaches, suggesting that further
Adapted G-mode Clustering Method applied to Asteroid Taxonomy
NASA Astrophysics Data System (ADS)
Hasselmann, Pedro H.; Carvano, Jorge M.; Lazzaro, D.
2013-11-01
The original G-mode was a clustering method developed by A. I. Gavrishin in the late 60's for geochemical classification of rocks, but was also applied to asteroid photometry, cosmic rays, lunar sample and planetary science spectroscopy data. In this work, we used an adapted version to classify the asteroid photometry from SDSS Moving Objects Catalog. The method works by identifying normal distributions in a multidimensional space of variables. The identification starts by locating a set of points with smallest mutual distance in the sample, which is a problem when data is not planar. Here we present a modified version of the G-mode algorithm, which was previously written in FORTRAN 77, in Python 2.7 and using NumPy, SciPy and Matplotlib packages. The NumPy was used for array and matrix manipulation and Matplotlib for plot control. The Scipy had a import role in speeding up G-mode, Scipy.spatial.distance.mahalanobis was chosen as distance estimator and Numpy.histogramdd was applied to find the initial seeds from which clusters are going to evolve. Scipy was also used to quickly produce dendrograms showing the distances among clusters. Finally, results for Asteroids Taxonomy and tests for different sample sizes and implementations are presented.
An adaptive algorithm for motion compensated color image coding
NASA Technical Reports Server (NTRS)
Kwatra, Subhash C.; Whyte, Wayne A.; Lin, Chow-Ming
1987-01-01
This paper presents an adaptive algorithm for motion compensated color image coding. The algorithm can be used for video teleconferencing or broadcast signals. Activity segmentation is used to reduce the bit rate and a variable stage search is conducted to save computations. The adaptive algorithm is compared with the nonadaptive algorithm and it is shown that with approximately 60 percent savings in computing the motion vector and 33 percent additional compression, the performance of the adaptive algorithm is similar to the nonadaptive algorithm. The adaptive algorithm results also show improvement of up to 1 bit/pel over interframe DPCM coding with nonuniform quantization. The test pictures used for this study were recorded directly from broadcast video in color.
The Enhanced Hoshen-Kopelman Algorithm for Cluster Analysis
NASA Astrophysics Data System (ADS)
Hoshen, Joseph
1997-08-01
In 1976 Hoshen and Kopelman(J. Hoshen and R. Kopelman, Phys. Rev. B, 14, 3438 (1976).) introduced a breakthrough algorithm, known today as the Hoshen-Kopelman algorithm, for cluster analysis. This algorithm revolutionized Monte Carlo cluster calculations in percolation theory as it enables analysis of very large lattices containing 10^11 or more sites. Initially the HK algorithm primary use was in the domain of pure and basic sciences. Later it began finding applications in diverse fields of technology and applied sciences. Example of such applications are two and three dimensional image analysis, composite material modeling, polymers, remote sensing, brain modeling and food processing. While the original HK algorithm provides only cluster size data for only one class of sites, the Enhanced HK (EHK) algorithm, presented in this paper, enables calculations of cluster spatial moments -- characteristics of cluster shapes -- for multiple classes of sites. These enhancements preserve the time and space complexities of the original HK algorithm, such that very large lattices could be still analyzed simultaneously in a single pass through the lattice for cluster sizes, classes and shapes.
The ordered clustered travelling salesman problem: a hybrid genetic algorithm.
Ahmed, Zakir Hussain
2014-01-01
The ordered clustered travelling salesman problem is a variation of the usual travelling salesman problem in which a set of vertices (except the starting vertex) of the network is divided into some prespecified clusters. The objective is to find the least cost Hamiltonian tour in which vertices of any cluster are visited contiguously and the clusters are visited in the prespecified order. The problem is NP-hard, and it arises in practical transportation and sequencing problems. This paper develops a hybrid genetic algorithm using sequential constructive crossover, 2-opt search, and a local search for obtaining heuristic solution to the problem. The efficiency of the algorithm has been examined against two existing algorithms for some asymmetric and symmetric TSPLIB instances of various sizes. The computational results show that the proposed algorithm is very effective in terms of solution quality and computational time. Finally, we present solution to some more symmetric TSPLIB instances. PMID:24701148
Efficient Cluster Algorithm for Spin Glasses in Any Space Dimension.
Zhu, Zheng; Ochoa, Andrew J; Katzgraber, Helmut G
2015-08-14
Spin systems with frustration and disorder are notoriously difficult to study, both analytically and numerically. While the simulation of ferromagnetic statistical mechanical models benefits greatly from cluster algorithms, these accelerated dynamics methods remain elusive for generic spin-glass-like systems. Here, we present a cluster algorithm for Ising spin glasses that works in any space dimension and speeds up thermalization by at least one order of magnitude at temperatures where thermalization is typically difficult. Our isoenergetic cluster moves are based on the Houdayer cluster algorithm for two-dimensional spin glasses and lead to a speedup over conventional state-of-the-art methods that increases with the system size. We illustrate the benefits of the isoenergetic cluster moves in two and three space dimensions, as well as the nonplanar chimera topology found in the D-Wave Inc. quantum annealing machine. PMID:26317743
Efficient Cluster Algorithm for Spin Glasses in Any Space Dimension
NASA Astrophysics Data System (ADS)
Zhu, Zheng; Ochoa, Andrew J.; Katzgraber, Helmut G.
2015-08-01
Spin systems with frustration and disorder are notoriously difficult to study, both analytically and numerically. While the simulation of ferromagnetic statistical mechanical models benefits greatly from cluster algorithms, these accelerated dynamics methods remain elusive for generic spin-glass-like systems. Here, we present a cluster algorithm for Ising spin glasses that works in any space dimension and speeds up thermalization by at least one order of magnitude at temperatures where thermalization is typically difficult. Our isoenergetic cluster moves are based on the Houdayer cluster algorithm for two-dimensional spin glasses and lead to a speedup over conventional state-of-the-art methods that increases with the system size. We illustrate the benefits of the isoenergetic cluster moves in two and three space dimensions, as well as the nonplanar chimera topology found in the D-Wave Inc. quantum annealing machine.
A Fast Implementation of the ISODATA Clustering Algorithm
NASA Technical Reports Server (NTRS)
Memarsadeghi, Nargess; Mount, David M.; Netanyahu, Nathan S.; LeMoigne, Jacqueline
2005-01-01
Clustering is central to many image processing and remote sensing applications. ISODATA is one of the most popular and widely used clustering methods in geoscience applications, but it can run slowly, particularly with large data sets. We present a more efficient approach to ISODATA clustering, which achieves better running times by storing the points in a kd-tree and through a modification of the way in which the algorithm estimates the dispersion of each cluster. We also present an approximate version of the algorithm which allows the user to further improve the running time, at the expense of lower fidelity in computing the nearest cluster center to each point. We provide both theoretical and empirical justification that our modified approach produces clusterings that are very similar to those produced by the standard ISODATA approach. We also provide empirical studies on both synthetic data and remotely sensed Landsat and MODIS images that show that our approach has significantly lower running times.
Adaptive mesh and algorithm refinement using direct simulation Monte Carlo
Garcia, A.L.; Bell, J.B.; Crutchfield, W.Y.; Alder, B.J.
1999-09-01
Adaptive mesh and algorithm refinement (AMAR) embeds a particle method within a continuum method at the finest level of an adaptive mesh refinement (AMR) hierarchy. The coupling between the particle region and the overlaying continuum grid is algorithmically equivalent to that between the fine and coarse levels of AMR. Direct simulation Monte Carlo (DSMC) is used as the particle algorithm embedded within a Godunov-type compressible Navier-Stokes solver. Several examples are presented and compared with purely continuum calculations.
Lee, Chongdeuk; Jeong, Taegwon
2011-01-01
Clustering is an important mechanism that efficiently provides information for mobile nodes and improves the processing capacity of routing, bandwidth allocation, and resource management and sharing. Clustering algorithms can be based on such criteria as the battery power of nodes, mobility, network size, distance, speed and direction. Above all, in order to achieve good clustering performance, overhead should be minimized, allowing mobile nodes to join and leave without perturbing the membership of the cluster while preserving current cluster structure as much as possible. This paper proposes a Fuzzy Relevance-based Cluster head selection Algorithm (FRCA) to solve problems found in existing wireless mobile ad hoc sensor networks, such as the node distribution found in dynamic properties due to mobility and flat structures and disturbance of the cluster formation. The proposed mechanism uses fuzzy relevance to select the cluster head for clustering in wireless mobile ad hoc sensor networks. In the simulation implemented on the NS-2 simulator, the proposed FRCA is compared with algorithms such as the Cluster-based Routing Protocol (CBRP), the Weighted-based Adaptive Clustering Algorithm (WACA), and the Scenario-based Clustering Algorithm for Mobile ad hoc networks (SCAM). The simulation results showed that the proposed FRCA achieves better performance than that of the other existing mechanisms. PMID:22163905
Efficient Record Linkage Algorithms Using Complete Linkage Clustering
Mamun, Abdullah-Al; Aseltine, Robert; Rajasekaran, Sanguthevar
2016-01-01
Data from different agencies share data of the same individuals. Linking these datasets to identify all the records belonging to the same individuals is a crucial and challenging problem, especially given the large volumes of data. A large number of available algorithms for record linkage are prone to either time inefficiency or low-accuracy in finding matches and non-matches among the records. In this paper we propose efficient as well as reliable sequential and parallel algorithms for the record linkage problem employing hierarchical clustering methods. We employ complete linkage hierarchical clustering algorithms to address this problem. In addition to hierarchical clustering, we also use two other techniques: elimination of duplicate records and blocking. Our algorithms use sorting as a sub-routine to identify identical copies of records. We have tested our algorithms on datasets with millions of synthetic records. Experimental results show that our algorithms achieve nearly 100% accuracy. Parallel implementations achieve almost linear speedups. Time complexities of these algorithms do not exceed those of previous best-known algorithms. Our proposed algorithms outperform previous best-known algorithms in terms of accuracy consuming reasonable run times. PMID:27124604
An Adaptive Unified Differential Evolution Algorithm for Global Optimization
Qiang, Ji; Mitchell, Chad
2014-11-03
In this paper, we propose a new adaptive unified differential evolution algorithm for single-objective global optimization. Instead of the multiple mutation strate- gies proposed in conventional differential evolution algorithms, this algorithm employs a single equation unifying multiple strategies into one expression. It has the virtue of mathematical simplicity and also provides users the flexibility for broader exploration of the space of mutation operators. By making all control parameters in the proposed algorithm self-adaptively evolve during the process of optimization, it frees the application users from the burden of choosing appro- priate control parameters and also improves the performance of the algorithm. In numerical tests using thirteen basic unimodal and multimodal functions, the proposed adaptive unified algorithm shows promising performance in compari- son to several conventional differential evolution algorithms.
Clustering of Hadronic Showers with a Structural Algorithm
Charles, M.J.; /SLAC
2005-12-13
The internal structure of hadronic showers can be resolved in a high-granularity calorimeter. This structure is described in terms of simple components and an algorithm for reconstruction of hadronic clusters using these components is presented. Results from applying this algorithm to simulated hadronic Z-pole events in the SiD concept are discussed.
CCL: an algorithm for the efficient comparison of clusters
Hundt, R.; Schön, J. C.; Neelamraju, S.; Zagorac, J.; Jansen, M.
2013-01-01
The systematic comparison of the atomic structure of solids and clusters has become an important task in crystallography, chemistry, physics and materials science, in particular in the context of structure prediction and structure determination of nanomaterials. In this work, an efficient and robust algorithm for the comparison of cluster structures is presented, which is based on the mapping of the point patterns of the two clusters onto each other. This algorithm has been implemented as the module CCL in the structure visualization and analysis program KPLOT. PMID:23682193
A knowledge-based clustering algorithm driven by Gene Ontology.
Cheng, Jill; Cline, Melissa; Martin, John; Finkelstein, David; Awad, Tarif; Kulp, David; Siani-Rose, Michael A
2004-08-01
We have developed an algorithm for inferring the degree of similarity between genes by using the graph-based structure of Gene Ontology (GO). We applied this knowledge-based similarity metric to a clique-finding algorithm for detecting sets of related genes with biological classifications. We also combined it with an expression-based distance metric to produce a co-cluster analysis, which accentuates genes with both similar expression profiles and similar biological characteristics and identifies gene clusters that are more stable and biologically meaningful. These algorithms are demonstrated in the analysis of MPRO cell differentiation time series experiments. PMID:15468759
A modified density-based clustering algorithm and its implementation
NASA Astrophysics Data System (ADS)
Ban, Zhihua; Liu, Jianguo; Yuan, Lulu; Yang, Hua
2015-12-01
This paper presents an improved density-based clustering algorithm based on the paper of clustering by fast search and find of density peaks. A distance threshold is introduced for the purpose of economizing memory. In order to reduce the probability that two points share the same density value, similarity is utilized to define proximity measure. We have tested the modified algorithm on a large data set, several small data sets and shape data sets. It turns out that the proposed algorithm can obtain acceptable results and can be applied more wildly.
Xue, Y.; Liu, S.; Hu, Y.; Yang, J.; Chen, Q.
2007-01-01
To improve the accuracy in prediction, Genetic Algorithm based Adaptive Neural Network Ensemble (GA-ANNE) is presented. Intersections are allowed between different training sets based on the fuzzy clustering analysis, which ensures the diversity as well as the accuracy of individual Neural Networks (NNs). Moreover, to improve the accuracy of the adaptive weights of individual NNs, GA is used to optimize the cluster centers. Empirical results in predicting carbon flux of Duke Forest reveal that GA-ANNE can predict the carbon flux more accurately than Radial Basis Function Neural Network (RBFNN), Bagging NN ensemble, and ANNE. ?? 2007 IEEE.
Adaptive DNA Computing Algorithm by Using PCR and Restriction Enzyme
NASA Astrophysics Data System (ADS)
Kon, Yuji; Yabe, Kaoru; Rajaee, Nordiana; Ono, Osamu
In this paper, we introduce an adaptive DNA computing algorithm by using polymerase chain reaction (PCR) and restriction enzyme. The adaptive algorithm is designed based on Adleman-Lipton paradigm[3] of DNA computing. In this work, however, unlike the Adleman- Lipton architecture a cutting operation has been introduced to the algorithm and the mechanism in which the molecules used by computation were feedback to the next cycle devised. Moreover, the amplification by PCR is performed in the molecule used by feedback and the difference concentration arisen in the base sequence can be used again. By this operation the molecules which serve as a solution candidate can be reduced down and the optimal solution is carried out in the shortest path problem. The validity of the proposed adaptive algorithm is considered with the logical simulation and finally we go on to propose applying adaptive algorithm to the chemical experiment which used the actual DNA molecules for solving an optimal network problem.
A Genetic Algorithm That Exchanges Neighboring Centers for Fuzzy c-Means Clustering
ERIC Educational Resources Information Center
Chahine, Firas Safwan
2012-01-01
Clustering algorithms are widely used in pattern recognition and data mining applications. Due to their computational efficiency, partitional clustering algorithms are better suited for applications with large datasets than hierarchical clustering algorithms. K-means is among the most popular partitional clustering algorithm, but has a major…
Sampling Within k-Means Algorithm to Cluster Large Datasets
Bejarano, Jeremy; Bose, Koushiki; Brannan, Tyler; Thomas, Anita; Adragni, Kofi; Neerchal, Nagaraj; Ostrouchov, George
2011-08-01
Due to current data collection technology, our ability to gather data has surpassed our ability to analyze it. In particular, k-means, one of the simplest and fastest clustering algorithms, is ill-equipped to handle extremely large datasets on even the most powerful machines. Our new algorithm uses a sample from a dataset to decrease runtime by reducing the amount of data analyzed. We perform a simulation study to compare our sampling based k-means to the standard k-means algorithm by analyzing both the speed and accuracy of the two methods. Results show that our algorithm is significantly more efficient than the existing algorithm with comparable accuracy. Further work on this project might include a more comprehensive study both on more varied test datasets as well as on real weather datasets. This is especially important considering that this preliminary study was performed on rather tame datasets. Also, these datasets should analyze the performance of the algorithm on varied values of k. Lastly, this paper showed that the algorithm was accurate for relatively low sample sizes. We would like to analyze this further to see how accurate the algorithm is for even lower sample sizes. We could find the lowest sample sizes, by manipulating width and confidence level, for which the algorithm would be acceptably accurate. In order for our algorithm to be a success, it needs to meet two benchmarks: match the accuracy of the standard k-means algorithm and significantly reduce runtime. Both goals are accomplished for all six datasets analyzed. However, on datasets of three and four dimension, as the data becomes more difficult to cluster, both algorithms fail to obtain the correct classifications on some trials. Nevertheless, our algorithm consistently matches the performance of the standard algorithm while becoming remarkably more efficient with time. Therefore, we conclude that analysts can use our algorithm, expecting accurate results in considerably less time.
Sharma, Ashok; Podolsky, Robert; Zhao, Jieping; McIndoe, Richard A.
2009-01-01
Motivation: As the number of publically available microarray experiments increases, the ability to analyze extremely large datasets across multiple experiments becomes critical. There is a requirement to develop algorithms which are fast and can cluster extremely large datasets without affecting the cluster quality. Clustering is an unsupervised exploratory technique applied to microarray data to find similar data structures or expression patterns. Because of the high input/output costs involved and large distance matrices calculated, most of the algomerative clustering algorithms fail on large datasets (30 000 + genes/200 + arrays). In this article, we propose a new two-stage algorithm which partitions the high-dimensional space associated with microarray data using hyperplanes. The first stage is based on the Balanced Iterative Reducing and Clustering using Hierarchies algorithm with the second stage being a conventional k-means clustering technique. This algorithm has been implemented in a software tool (HPCluster) designed to cluster gene expression data. We compared the clustering results using the two-stage hyperplane algorithm with the conventional k-means algorithm from other available programs. Because, the first stage traverses the data in a single scan, the performance and speed increases substantially. The data reduction accomplished in the first stage of the algorithm reduces the memory requirements allowing us to cluster 44 460 genes without failure and significantly decreases the time to complete when compared with popular k-means programs. The software was written in C# (.NET 1.1). Availability: The program is freely available and can be downloaded from http://www.amdcc.org/bioinformatics/bioinformatics.aspx. Contact: rmcindoe@mail.mcg.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:19261720
CACONET: Ant Colony Optimization (ACO) Based Clustering Algorithm for VANET
Bajwa, Khalid Bashir; Khan, Salabat; Chaudary, Nadeem Majeed; Akram, Adeel
2016-01-01
A vehicular ad hoc network (VANET) is a wirelessly connected network of vehicular nodes. A number of techniques, such as message ferrying, data aggregation, and vehicular node clustering aim to improve communication efficiency in VANETs. Cluster heads (CHs), selected in the process of clustering, manage inter-cluster and intra-cluster communication. The lifetime of clusters and number of CHs determines the efficiency of network. In this paper a Clustering algorithm based on Ant Colony Optimization (ACO) for VANETs (CACONET) is proposed. CACONET forms optimized clusters for robust communication. CACONET is compared empirically with state-of-the-art baseline techniques like Multi-Objective Particle Swarm Optimization (MOPSO) and Comprehensive Learning Particle Swarm Optimization (CLPSO). Experiments varying the grid size of the network, the transmission range of nodes, and number of nodes in the network were performed to evaluate the comparative effectiveness of these algorithms. For optimized clustering, the parameters considered are the transmission range, direction and speed of the nodes. The results indicate that CACONET significantly outperforms MOPSO and CLPSO. PMID:27149517
CACONET: Ant Colony Optimization (ACO) Based Clustering Algorithm for VANET.
Aadil, Farhan; Bajwa, Khalid Bashir; Khan, Salabat; Chaudary, Nadeem Majeed; Akram, Adeel
2016-01-01
A vehicular ad hoc network (VANET) is a wirelessly connected network of vehicular nodes. A number of techniques, such as message ferrying, data aggregation, and vehicular node clustering aim to improve communication efficiency in VANETs. Cluster heads (CHs), selected in the process of clustering, manage inter-cluster and intra-cluster communication. The lifetime of clusters and number of CHs determines the efficiency of network. In this paper a Clustering algorithm based on Ant Colony Optimization (ACO) for VANETs (CACONET) is proposed. CACONET forms optimized clusters for robust communication. CACONET is compared empirically with state-of-the-art baseline techniques like Multi-Objective Particle Swarm Optimization (MOPSO) and Comprehensive Learning Particle Swarm Optimization (CLPSO). Experiments varying the grid size of the network, the transmission range of nodes, and number of nodes in the network were performed to evaluate the comparative effectiveness of these algorithms. For optimized clustering, the parameters considered are the transmission range, direction and speed of the nodes. The results indicate that CACONET significantly outperforms MOPSO and CLPSO. PMID:27149517
Self-adaptive genetic algorithms with simulated binary crossover.
Deb, K; Beyer, H G
2001-01-01
Self-adaptation is an essential feature of natural evolution. However, in the context of function optimization, self-adaptation features of evolutionary search algorithms have been explored mainly with evolution strategy (ES) and evolutionary programming (EP). In this paper, we demonstrate the self-adaptive feature of real-parameter genetic algorithms (GAs) using a simulated binary crossover (SBX) operator and without any mutation operator. The connection between the working of self-adaptive ESs and real-parameter GAs with the SBX operator is also discussed. Thereafter, the self-adaptive behavior of real-parameter GAs is demonstrated on a number of test problems commonly used in the ES literature. The remarkable similarity in the working principle of real-parameter GAs and self-adaptive ESs shown in this study suggests the need for emphasizing further studies on self-adaptive GAs. PMID:11382356
Elazab, Ahmed; Wang, Changmiao; Jia, Fucang; Wu, Jianhuang; Li, Guanglin; Hu, Qingmao
2015-01-01
An adaptively regularized kernel-based fuzzy C-means clustering framework is proposed for segmentation of brain magnetic resonance images. The framework can be in the form of three algorithms for the local average grayscale being replaced by the grayscale of the average filter, median filter, and devised weighted images, respectively. The algorithms employ the heterogeneity of grayscales in the neighborhood and exploit this measure for local contextual information and replace the standard Euclidean distance with Gaussian radial basis kernel functions. The main advantages are adaptiveness to local context, enhanced robustness to preserve image details, independence of clustering parameters, and decreased computational costs. The algorithms have been validated against both synthetic and clinical magnetic resonance images with different types and levels of noises and compared with 6 recent soft clustering algorithms. Experimental results show that the proposed algorithms are superior in preserving image details and segmentation accuracy while maintaining a low computational complexity. PMID:26793269
Wang, Changmiao; Jia, Fucang; Wu, Jianhuang; Li, Guanglin
2015-01-01
An adaptively regularized kernel-based fuzzy C-means clustering framework is proposed for segmentation of brain magnetic resonance images. The framework can be in the form of three algorithms for the local average grayscale being replaced by the grayscale of the average filter, median filter, and devised weighted images, respectively. The algorithms employ the heterogeneity of grayscales in the neighborhood and exploit this measure for local contextual information and replace the standard Euclidean distance with Gaussian radial basis kernel functions. The main advantages are adaptiveness to local context, enhanced robustness to preserve image details, independence of clustering parameters, and decreased computational costs. The algorithms have been validated against both synthetic and clinical magnetic resonance images with different types and levels of noises and compared with 6 recent soft clustering algorithms. Experimental results show that the proposed algorithms are superior in preserving image details and segmentation accuracy while maintaining a low computational complexity. PMID:26793269
Personalized PageRank Clustering: A graph clustering algorithm based on random walks
NASA Astrophysics Data System (ADS)
A. Tabrizi, Shayan; Shakery, Azadeh; Asadpour, Masoud; Abbasi, Maziar; Tavallaie, Mohammad Ali
2013-11-01
Graph clustering has been an essential part in many methods and thus its accuracy has a significant effect on many applications. In addition, exponential growth of real-world graphs such as social networks, biological networks and electrical circuits demands clustering algorithms with nearly-linear time and space complexity. In this paper we propose Personalized PageRank Clustering (PPC) that employs the inherent cluster exploratory property of random walks to reveal the clusters of a given graph. We combine random walks and modularity to precisely and efficiently reveal the clusters of a graph. PPC is a top-down algorithm so it can reveal inherent clusters of a graph more accurately than other nearly-linear approaches that are mainly bottom-up. It also gives a hierarchy of clusters that is useful in many applications. PPC has a linear time and space complexity and has been superior to most of the available clustering algorithms on many datasets. Furthermore, its top-down approach makes it a flexible solution for clustering problems with different requirements.
Functional clustering algorithm for the analysis of dynamic network data
NASA Astrophysics Data System (ADS)
Feldt, S.; Waddell, J.; Hetrick, V. L.; Berke, J. D.; Żochowski, M.
2009-05-01
We formulate a technique for the detection of functional clusters in discrete event data. The advantage of this algorithm is that no prior knowledge of the number of functional groups is needed, as our procedure progressively combines data traces and derives the optimal clustering cutoff in a simple and intuitive manner through the use of surrogate data sets. In order to demonstrate the power of this algorithm to detect changes in network dynamics and connectivity, we apply it to both simulated neural spike train data and real neural data obtained from the mouse hippocampus during exploration and slow-wave sleep. Using the simulated data, we show that our algorithm performs better than existing methods. In the experimental data, we observe state-dependent clustering patterns consistent with known neurophysiological processes involved in memory consolidation.
Development of clustering algorithms for Compressed Baryonic Matter experiment
NASA Astrophysics Data System (ADS)
Kozlov, G. E.; Ivanov, V. V.; Lebedev, A. A.; Vassiliev, Yu. O.
2015-05-01
A clustering problem for the coordinate detectors in the Compressed Baryonic Matter (CBM) experiment is discussed. Because of the high interaction rate and huge datasets to be dealt with, clustering algorithms are required to be fast and efficient and capable of processing events with high track multiplicity. At present there are two different approaches to the problem. In the first one each fired pad bears information about its charge, while in the second one a pad can or cannot be fired, thus rendering the separation of overlapping clusters a difficult task. To deal with the latter, two different clustering algorithms were developed, integrated into the CBMROOT software environment, and tested with various types of simulated events. Both of them are found to be highly efficient and accurate.
NCUBE - A clustering algorithm based on a discretized data space
NASA Technical Reports Server (NTRS)
Eigen, D. J.; Northouse, R. A.
1974-01-01
Cluster analysis involves the unsupervised grouping of data. The process provides an automatic procedure for generating known training samples for pattern classification. NCUBE, the clustering algorithm presented, is based upon the concept of imposing a gridwork on the data space. The NCUBE computer implementation of this concept provides an easily derived form of piecewise linear discrimination. This piecewise linear discrimination permits the separation of some types of data groups that are not linearly separable.
Gao, Ying; Wkram, Chris Hadri; Duan, Jiajie; Chou, Jarong
2015-01-01
In order to prolong the network lifetime, energy-efficient protocols adapted to the features of wireless sensor networks should be used. This paper explores in depth the nature of heterogeneous wireless sensor networks, and finally proposes an algorithm to address the problem of finding an effective pathway for heterogeneous clustering energy. The proposed algorithm implements cluster head selection according to the degree of energy attenuation during the network’s running and the degree of candidate nodes’ effective coverage on the whole network, so as to obtain an even energy consumption over the whole network for the situation with high degree of coverage. Simulation results show that the proposed clustering protocol has better adaptability to heterogeneous environments than existing clustering algorithms in prolonging the network lifetime. PMID:26690440
Fast clustering algorithm for codebook production in image vector quantization
NASA Astrophysics Data System (ADS)
Al-Otum, Hazem M.
2001-04-01
In this paper, a fast clustering algorithm (FCA) is proposed to be implemented in vector quantization codebook production. This algorithm gives the ability to avoid iterative averaging of vectors and is based on collecting vectors with similar or closely similar characters to produce corresponding clusters. FCA gives an increase in peak signal-to-noise ratio (PSNR) about 0.3 - 1.1 dB, over the LBG algorithm and reduces the computational cost for codebook production (10% - 60%) at different bit rates. Here, two FCA modifications are proposed: FCA with limited cluster size 1& (FCA-LCS1 and FCA-LCS2, respectively). FCA- LCS1 tends to subdivide large clusters into smaller ones while FCA-LCS2 reduces a predetermined threshold by a step to reach the required cluster size. The FCA-LCS1 and FCA- LCS2 give an increase in PSNR of about 0.9 - 1.0 and 0.9 - 1.1 dB, respectively, over the FCA algorithm, at the expense of about 15% - 25% and 18% - 28% increase in the output codebook size.
Particle flow reconstruction based on the directed tree clustering algorithm
Chakraborty, D.; Lima, J. G. R.; McIntosh, R.; Zutshi, V.
2006-10-27
We present the status of particle flow algorithm development at Northern Illinois University. A key element in our approach is the calorimeter-based directed tree clustering algorithm. We have attempted to identify and tackle the essential challenges and analyze the effect of several different approaches to the reconstruction of jet energies and the Z-boson mass. A number of possibilities have been studied, such as analog vs. digital energy measurement, hit density-based clustering and the use of single or multiple energy thresholds. We plan to use this PFA-based reconstruction to compare some of the proposed detector technologies and geometries.
Analysis of Network Clustering Algorithms and Cluster Quality Metrics at Scale
Kobourov, Stephen; Gallant, Mike; Börner, Katy
2016-01-01
Overview Notions of community quality underlie the clustering of networks. While studies surrounding network clustering are increasingly common, a precise understanding of the realtionship between different cluster quality metrics is unknown. In this paper, we examine the relationship between stand-alone cluster quality metrics and information recovery metrics through a rigorous analysis of four widely-used network clustering algorithms—Louvain, Infomap, label propagation, and smart local moving. We consider the stand-alone quality metrics of modularity, conductance, and coverage, and we consider the information recovery metrics of adjusted Rand score, normalized mutual information, and a variant of normalized mutual information used in previous work. Our study includes both synthetic graphs and empirical data sets of sizes varying from 1,000 to 1,000,000 nodes. Cluster Quality Metrics We find significant differences among the results of the different cluster quality metrics. For example, clustering algorithms can return a value of 0.4 out of 1 on modularity but score 0 out of 1 on information recovery. We find conductance, though imperfect, to be the stand-alone quality metric that best indicates performance on the information recovery metrics. Additionally, our study shows that the variant of normalized mutual information used in previous work cannot be assumed to differ only slightly from traditional normalized mutual information. Network Clustering Algorithms Smart local moving is the overall best performing algorithm in our study, but discrepancies between cluster evaluation metrics prevent us from declaring it an absolutely superior algorithm. Interestingly, Louvain performed better than Infomap in nearly all the tests in our study, contradicting the results of previous work in which Infomap was superior to Louvain. We find that although label propagation performs poorly when clusters are less clearly defined, it scales efficiently and accurately to large
An Efficient Method of Key-Frame Extraction Based on a Cluster Algorithm
Zhang, Qiang; Yu, Shao-Pei; Zhou, Dong-Sheng; Wei, Xiao-Peng
2013-01-01
This paper proposes a novel method of key-frame extraction for use with motion capture data. This method is based on an unsupervised cluster algorithm. First, the motion sequence is clustered into two classes by the similarity distance of the adjacent frames so that the thresholds needed in the next step can be determined adaptively. Second, a dynamic cluster algorithm called ISODATA is used to cluster all the frames and the frames nearest to the center of each class are automatically extracted as key-frames of the sequence. Unlike many other clustering techniques, the present improved cluster algorithm can automatically address different motion types without any need for specified parameters from users. The proposed method is capable of summarizing motion capture data reliably and efficiently. The present work also provides a meaningful comparison between the results of the proposed key-frame extraction technique and other previous methods. These results are evaluated in terms of metrics that measure reconstructed motion and the mean absolute error value, which are derived from the reconstructed data and the original data. PMID:24511336
Adaptive path planning: Algorithm and analysis
Chen, Pang C.
1995-03-01
To address the need for a fast path planner, we present a learning algorithm that improves path planning by using past experience to enhance future performance. The algorithm relies on an existing path planner to provide solutions difficult tasks. From these solutions, an evolving sparse work of useful robot configurations is learned to support faster planning. More generally, the algorithm provides a framework in which a slow but effective planner may be improved both cost-wise and capability-wise by a faster but less effective planner coupled with experience. We analyze algorithm by formalizing the concept of improvability and deriving conditions under which a planner can be improved within the framework. The analysis is based on two stochastic models, one pessimistic (on task complexity), the other randomized (on experience utility). Using these models, we derive quantitative bounds to predict the learning behavior. We use these estimation tools to characterize the situations in which the algorithm is useful and to provide bounds on the training time. In particular, we show how to predict the maximum achievable speedup. Additionally, our analysis techniques are elementary and should be useful for studying other types of probabilistic learning as well.
A dynamic clustering algorithm in wireless sensor networks
NASA Astrophysics Data System (ADS)
Wang, Rui; Liang, Yan; Pan, Quan; Wang, Quan; Cheng, Yongmei
2005-11-01
It is essential to prolong the lifetime of wireless sensor networks (WSN) via effective cooperation of its sensor nodes. Here, a dynamic clustering algorithm, named DCA, is presented to optimally and dynamically select the micro-sensor nodes to construct a dynamic sensor cluster at each time based on the integrated performance index including information acquirement and energy consumption. In distributed target tracking with WSN, the DCA can avoid the problem of "too frequent cluster head (CH) switches", save more than 80% energy and remain almost same tracking accuracy, compared with the information-driven sensor querying (IDSQ).
Optimal Pid Controller Design Using Adaptive Vurpso Algorithm
NASA Astrophysics Data System (ADS)
Zirkohi, Majid Moradi
2015-04-01
The purpose of this paper is to improve theVelocity Update Relaxation Particle Swarm Optimization algorithm (VURPSO). The improved algorithm is called Adaptive VURPSO (AVURPSO) algorithm. Then, an optimal design of a Proportional-Integral-Derivative (PID) controller is obtained using the AVURPSO algorithm. An adaptive momentum factor is used to regulate a trade-off between the global and the local exploration abilities in the proposed algorithm. This operation helps the system to reach the optimal solution quickly and saves the computation time. Comparisons on the optimal PID controller design confirm the superiority of AVURPSO algorithm to the optimization algorithms mentioned in this paper namely the VURPSO algorithm, the Ant Colony algorithm, and the conventional approach. Comparisons on the speed of convergence confirm that the proposed algorithm has a faster convergence in a less computation time to yield a global optimum value. The proposed AVURPSO can be used in the diverse areas of optimization problems such as industrial planning, resource allocation, scheduling, decision making, pattern recognition and machine learning. The proposed AVURPSO algorithm is efficiently used to design an optimal PID controller.
An adaptive inverse kinematics algorithm for robot manipulators
NASA Technical Reports Server (NTRS)
Colbaugh, R.; Glass, K.; Seraji, H.
1990-01-01
An adaptive algorithm for solving the inverse kinematics problem for robot manipulators is presented. The algorithm is derived using model reference adaptive control (MRAC) theory and is computationally efficient for online applications. The scheme requires no a priori knowledge of the kinematics of the robot if Cartesian end-effector sensing is available, and it requires knowledge of only the forward kinematics if joint position sensing is used. Computer simulation results are given for the redundant seven-DOF robotics research arm, demonstrating that the proposed algorithm yields accurate joint angle trajectories for a given end-effector position/orientation trajectory.
Six clustering algorithms applied to the WAIS-R: the problem of dissimilar cluster results.
Fraboni, M; Cooper, D
1989-11-01
Clusterings of the Wechsler Adult Intelligence Scale-Revised subtests were obtained from the application of six hierarchical clustering methods (N = 113). These sets of clusters were compared for similarities using the Rand index. The calculated indices suggested similarities of cluster group membership between the Complete Linkage and Centroid methods; Complete Linkage and Ward's methods; Centroid and Ward's methods; and Single Linkage and Average Linkage Between Groups methods. Cautious use of single clustering methods is implied, though the authors suggest some advantages of knowing specific similarities and differences. If between-method comparisons consistently reveal similar cluster membership, a choice could be made from those algorithms that tend to produce similar partitions, thereby enhancing cluster interpretation. PMID:2613904
A Resampling Based Clustering Algorithm for Replicated Gene Expression Data.
Li, Han; Li, Chun; Hu, Jie; Fan, Xiaodan
2015-01-01
In gene expression data analysis, clustering is a fruitful exploratory technique to reveal the underlying molecular mechanism by identifying groups of co-expressed genes. To reduce the noise, usually multiple experimental replicates are performed. An integrative analysis of the full replicate data, instead of reducing the data to the mean profile, carries the promise of yielding more precise and robust clusters. In this paper, we propose a novel resampling based clustering algorithm for genes with replicated expression measurements. Assuming those replicates are exchangeable, we formulate the problem in the bootstrap framework, and aim to infer the consensus clustering based on the bootstrap samples of replicates. In our approach, we adopt the mixed effect model to accommodate the heterogeneous variances and implement a quasi-MCMC algorithm to conduct statistical inference. Experiments demonstrate that by taking advantage of the full replicate data, our algorithm produces more reliable clusters and has robust performance in diverse scenarios, especially when the data is subject to multiple sources of variance. PMID:26671802
Adaptively resizing populations: Algorithm, analysis, and first results
NASA Technical Reports Server (NTRS)
Smith, Robert E.; Smuda, Ellen
1993-01-01
Deciding on an appropriate population size for a given Genetic Algorithm (GA) application can often be critical to the algorithm's success. Too small, and the GA can fall victim to sampling error, affecting the efficacy of its search. Too large, and the GA wastes computational resources. Although advice exists for sizing GA populations, much of this advice involves theoretical aspects that are not accessible to the novice user. An algorithm for adaptively resizing GA populations is suggested. This algorithm is based on recent theoretical developments that relate population size to schema fitness variance. The suggested algorithm is developed theoretically, and simulated with expected value equations. The algorithm is then tested on a problem where population sizing can mislead the GA. The work presented suggests that the population sizing algorithm may be a viable way to eliminate the population sizing decision from the application of GA's.
The C4 clustering algorithm: Clusters of galaxies in the Sloan Digital Sky Survey
Miller, Christopher J.; Nichol, Robert; Reichart, Dan; Wechsler, Risa H.; Evrard, August; Annis, James; McKay, Timothy; Bahcall, Neta; Bernardi, Mariangela; Boehringer, Hans; Connolly, Andrew; Goto, Tomo; Kniazev, Alexie; Lamb, Donald; Postman, Marc; Schneider, Donald; Sheth, Ravi; Voges, Wolfgang; /Cerro-Tololo InterAmerican Obs. /Portsmouth U., ICG /North Carolina U. /Chicago U., Astron. Astrophys. Ctr. /Chicago U., EFI /Michigan U. /Fermilab /Princeton U. Observ. /Garching, Max Planck Inst., MPE /Pittsburgh U. /Tokyo U., ICRR /Baltimore, Space Telescope Sci. /Penn State U. /Chicago U. /Stavropol, Astrophys. Observ. /Heidelberg, Max Planck Inst. Astron. /INI, SAO
2005-03-01
We present the ''C4 Cluster Catalog'', a new sample of 748 clusters of galaxies identified in the spectroscopic sample of the Second Data Release (DR2) of the Sloan Digital Sky Survey (SDSS). The C4 cluster-finding algorithm identifies clusters as overdensities in a seven-dimensional position and color space, thus minimizing projection effects that have plagued previous optical cluster selection. The present C4 catalog covers {approx}2600 square degrees of sky and ranges in redshift from z = 0.02 to z = 0.17. The mean cluster membership is 36 galaxies (with redshifts) brighter than r = 17.7, but the catalog includes a range of systems, from groups containing 10 members to massive clusters with over 200 cluster members with redshifts. The catalog provides a large number of measured cluster properties including sky location, mean redshift, galaxy membership, summed r-band optical luminosity (L{sub r}), velocity dispersion, as well as quantitative measures of substructure and the surrounding large-scale environment. We use new, multi-color mock SDSS galaxy catalogs, empirically constructed from the {Lambda}CDM Hubble Volume (HV) Sky Survey output, to investigate the sensitivity of the C4 catalog to the various algorithm parameters (detection threshold, choice of passbands and search aperture), as well as to quantify the purity and completeness of the C4 cluster catalog. These mock catalogs indicate that the C4 catalog is {approx_equal}90% complete and 95% pure above M{sub 200} = 1 x 10{sup 14} h{sup -1}M{sub {circle_dot}} and within 0.03 {le} z {le} 0.12. Using the SDSS DR2 data, we show that the C4 algorithm finds 98% of X-ray identified clusters and 90% of Abell clusters within 0.03 {le} z {le} 0.12. Using the mock galaxy catalogs and the full HV dark matter simulations, we show that the L{sub r} of a cluster is a more robust estimator of the halo mass (M{sub 200}) than the galaxy line-of-sight velocity dispersion or the richness of the cluster. However, if we
A Novel Hybrid Self-Adaptive Bat Algorithm
Fister, Iztok; Brest, Janez
2014-01-01
Nature-inspired algorithms attract many researchers worldwide for solving the hardest optimization problems. One of the newest members of this extensive family is the bat algorithm. To date, many variants of this algorithm have emerged for solving continuous as well as combinatorial problems. One of the more promising variants, a self-adaptive bat algorithm, has recently been proposed that enables a self-adaptation of its control parameters. In this paper, we have hybridized this algorithm using different DE strategies and applied these as a local search heuristics for improving the current best solution directing the swarm of a solution towards the better regions within a search space. The results of exhaustive experiments were promising and have encouraged us to invest more efforts into developing in this direction. PMID:25187904
An adaptive algorithm for low contrast infrared image enhancement
NASA Astrophysics Data System (ADS)
Liu, Sheng-dong; Peng, Cheng-yuan; Wang, Ming-jia; Wu, Zhi-guo; Liu, Jia-qi
2013-08-01
An adaptive infrared image enhancement algorithm for low contrast is proposed in this paper, to deal with the problem that conventional image enhancement algorithm is not able to effective identify the interesting region when dynamic range is large in image. This algorithm begin with the human visual perception characteristics, take account of the global adaptive image enhancement and local feature boost, not only the contrast of image is raised, but also the texture of picture is more distinct. Firstly, the global image dynamic range is adjusted from the overall, the dynamic range of original image and display grayscale form corresponding relationship, the gray scale of bright object is raised and the the gray scale of dark target is reduced at the same time, to improve the overall image contrast. Secondly, the corresponding filtering algorithm is used on the current point and its neighborhood pixels to extract image texture information, to adjust the brightness of the current point in order to enhance the local contrast of the image. The algorithm overcomes the default that the outline is easy to vague in traditional edge detection algorithm, and ensure the distinctness of texture detail in image enhancement. Lastly, we normalize the global luminance adjustment image and the local brightness adjustment image, to ensure a smooth transition of image details. A lot of experiments is made to compare the algorithm proposed in this paper with other convention image enhancement algorithm, and two groups of vague IR image are taken in experiment. Experiments show that: the contrast ratio of the picture is boosted after handled by histogram equalization algorithm, but the detail of the picture is not clear, the detail of the picture can be distinguished after handled by the Retinex algorithm. The image after deal with by self-adaptive enhancement algorithm proposed in this paper becomes clear in details, and the image contrast is markedly improved in compared with Retinex
Coupled cluster algorithms for networks of shared memory parallel processors
NASA Astrophysics Data System (ADS)
Bentz, Jonathan L.; Olson, Ryan M.; Gordon, Mark S.; Schmidt, Michael W.; Kendall, Ricky A.
2007-05-01
As the popularity of using SMP systems as the building blocks for high performance supercomputers increases, so too increases the need for applications that can utilize the multiple levels of parallelism available in clusters of SMPs. This paper presents a dual-layer distributed algorithm, using both shared-memory and distributed-memory techniques to parallelize a very important algorithm (often called the "gold standard") used in computational chemistry, the single and double excitation coupled cluster method with perturbative triples, i.e. CCSD(T). The algorithm is presented within the framework of the GAMESS [M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.J. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S. Su, T.L. Windus, M. Dupuis, J.A. Montgomery, General atomic and molecular electronic structure system, J. Comput. Chem. 14 (1993) 1347-1363]. (General Atomic and Molecular Electronic Structure System) program suite and the Distributed Data Interface [M.W. Schmidt, G.D. Fletcher, B.M. Bode, M.S. Gordon, The distributed data interface in GAMESS, Comput. Phys. Comm. 128 (2000) 190]. (DDI), however, the essential features of the algorithm (data distribution, load-balancing and communication overhead) can be applied to more general computational problems. Timing and performance data for our dual-level algorithm is presented on several large-scale clusters of SMPs.
NASA Technical Reports Server (NTRS)
Lennington, R. K.; Johnson, J. K.
1979-01-01
An efficient procedure which clusters data using a completely unsupervised clustering algorithm and then uses labeled pixels to label the resulting clusters or perform a stratified estimate using the clusters as strata is developed. Three clustering algorithms, CLASSY, AMOEBA, and ISOCLS, are compared for efficiency. Three stratified estimation schemes and three labeling schemes are also considered and compared.
An adaptive, lossless data compression algorithm and VLSI implementations
NASA Technical Reports Server (NTRS)
Venbrux, Jack; Zweigle, Greg; Gambles, Jody; Wiseman, Don; Miller, Warner H.; Yeh, Pen-Shu
1993-01-01
This paper first provides an overview of an adaptive, lossless, data compression algorithm originally devised by Rice in the early '70s. It then reports the development of a VLSI encoder/decoder chip set developed which implements this algorithm. A recent effort in making a space qualified version of the encoder is described along with several enhancements to the algorithm. The performance of the enhanced algorithm is compared with those from other currently available lossless compression techniques on multiple sets of test data. The results favor our implemented technique in many applications.
Adaptive fuzzy leader clustering of complex data sets in pattern recognition
NASA Technical Reports Server (NTRS)
Newton, Scott C.; Pemmaraju, Surya; Mitra, Sunanda
1992-01-01
A modular, unsupervised neural network architecture for clustering and classification of complex data sets is presented. The adaptive fuzzy leader clustering (AFLC) architecture is a hybrid neural-fuzzy system that learns on-line in a stable and efficient manner. The initial classification is performed in two stages: a simple competitive stage and a distance metric comparison stage. The cluster prototypes are then incrementally updated by relocating the centroid positions from fuzzy C-means system equations for the centroids and the membership values. The AFLC algorithm is applied to the Anderson Iris data and laser-luminescent fingerprint image data. It is concluded that the AFLC algorithm successfully classifies features extracted from real data, discrete or continuous.
Adaptive image contrast enhancement algorithm for point-based rendering
NASA Astrophysics Data System (ADS)
Xu, Shaoping; Liu, Xiaoping P.
2015-03-01
Surgical simulation is a major application in computer graphics and virtual reality, and most of the existing work indicates that interactive real-time cutting simulation of soft tissue is a fundamental but challenging research problem in virtual surgery simulation systems. More specifically, it is difficult to achieve a fast enough graphic update rate (at least 30 Hz) on commodity PC hardware by utilizing traditional triangle-based rendering algorithms. In recent years, point-based rendering (PBR) has been shown to offer the potential to outperform the traditional triangle-based rendering in speed when it is applied to highly complex soft tissue cutting models. Nevertheless, the PBR algorithms are still limited in visual quality due to inherent contrast distortion. We propose an adaptive image contrast enhancement algorithm as a postprocessing module for PBR, providing high visual rendering quality as well as acceptable rendering efficiency. Our approach is based on a perceptible image quality technique with automatic parameter selection, resulting in a visual quality comparable to existing conventional PBR algorithms. Experimental results show that our adaptive image contrast enhancement algorithm produces encouraging results both visually and numerically compared to representative algorithms, and experiments conducted on the latest hardware demonstrate that the proposed PBR framework with the postprocessing module is superior to the conventional PBR algorithm and that the proposed contrast enhancement algorithm can be utilized in (or compatible with) various variants of the conventional PBR algorithm.
Biologically supervised hierarchical clustering algorithms for gene expression data.
Boratyn, Grzegorz M; Datta, Susmita; Datta, Somnath
2006-01-01
Cluster analysis has become a standard part of gene expression analysis. In this paper, we propose a novel semi-supervised approach that offers the same flexibility as that of a hierarchical clustering. Yet it utilizes, along with the experimental gene expression data, common biological information about different genes that is being complied at various public, Web accessible databases. We argue that such an approach is inherently superior than the standard unsupervised approach of grouping genes based on expression data alone. It is shown that our biologically supervised methods produce better clustering results than the corresponding unsupervised methods as judged by the distance from the model temporal profiles. R-codes of the clustering algorithm are available from the authors upon request. PMID:17947147
An Adaptive Hybrid Algorithm for Global Network Alignment.
Xie, Jiang; Xiang, Chaojuan; Ma, Jin; Tan, Jun; Wen, Tieqiao; Lei, Jinzhi; Nie, Qing
2016-01-01
It is challenging to obtain reliable and optimal mapping between networks for alignment algorithms when both nodal and topological structures are taken into consideration due to the underlying NP-hard problem. Here, we introduce an adaptive hybrid algorithm that combines the classical Hungarian algorithm and the Greedy algorithm (HGA) for the global alignment of biomolecular networks. With this hybrid algorithm, every pair of nodes with one in each network is first aligned based on node information (e.g., their sequence attributes) and then followed by an adaptive and convergent iteration procedure for aligning the topological connections in the networks. For four well-studied protein interaction networks, i.e., C.elegans, yeast, D.melanogaster, and human, applications of HGA lead to improved alignments in acceptable running time. The mapping between yeast and human PINs obtained by the new algorithm has the largest value of common gene ontology (GO) terms compared to those obtained by other existing algorithms, while it still has lower Mean normalized entropy (MNE) and good performances on several other measures. Overall, the adaptive HGA is effective and capable of providing good mappings between aligned networks in which the biological properties of both the nodes and the connections are important. PMID:27295633
Adaptive impulsive cluster synchronization in community network with nonidentical nodes
NASA Astrophysics Data System (ADS)
Gong, Xiaoli; Gan, Luyining; Wu, Zhaoyan
2016-07-01
In this paper, cluster synchronization in community network with nonidentical nodes is investigated. Through introducing proper adaptive strategy into impulsive control scheme, adaptive impulsive controllers are designed for achieving the cluster synchronization. In this adaptive impulsive control scheme, for any given networks, the impulsive gains can adjust themselves to proper values according to the proposed adaptive strategy when the impulsive intervals are fixed. The impulsive instants can be estimated by solving a sequence of maximum value problems when the impulsive gains are fixed. Both community networks without and with coupling delay are considered. Based on the Lyapunov function method and mathematical analysis technique, two synchronization criteria are derived. Several numerical examples are performed to verify the effectiveness of the derived theoretical results.
Adaptive sensor tasking using genetic algorithms
NASA Astrophysics Data System (ADS)
Shea, Peter J.; Kirk, Joe; Welchons, Dave
2007-04-01
Today's battlefield environment contains a large number of sensors, and sensor types, onboard multiple platforms. The set of sensor types includes SAR, EO/IR, GMTI, AMTI, HSI, MSI, and video, and for each sensor type there may be multiple sensing modalities to select from. In an attempt to maximize sensor performance, today's sensors employ either static tasking approaches or require an operator to manually change sensor tasking operations. In a highly dynamic environment this leads to a situation whereby the sensors become less effective as the sensing environments deviates from the assumed conditions. Through a Phase I SBIR effort we developed a system architecture and a common tasking approach for solving the sensor tasking problem for a multiple sensor mix. As part of our sensor tasking effort we developed a genetic algorithm based task scheduling approach and demonstrated the ability to automatically task and schedule sensors in an end-to-end closed loop simulation. Our approach allows for multiple sensors as well as system and sensor constraints. This provides a solid foundation for our future efforts including incorporation of other sensor types. This paper will describe our approach for scheduling using genetic algorithms to solve the sensor tasking problem in the presence of resource constraints and required task linkage. We will conclude with a discussion of results for a sample problem and of the path forward.
Locally-adaptive and memetic evolutionary pattern search algorithms.
Hart, William E
2003-01-01
Recent convergence analyses of evolutionary pattern search algorithms (EPSAs) have shown that these methods have a weak stationary point convergence theory for a broad class of unconstrained and linearly constrained problems. This paper describes how the convergence theory for EPSAs can be adapted to allow each individual in a population to have its own mutation step length (similar to the design of evolutionary programing and evolution strategies algorithms). These are called locally-adaptive EPSAs (LA-EPSAs) since each individual's mutation step length is independently adapted in different local neighborhoods. The paper also describes a variety of standard formulations of evolutionary algorithms that can be used for LA-EPSAs. Further, it is shown how this convergence theory can be applied to memetic EPSAs, which use local search to refine points within each iteration. PMID:12804096
Adaptive-mesh algorithms for computational fluid dynamics
NASA Technical Reports Server (NTRS)
Powell, Kenneth G.; Roe, Philip L.; Quirk, James
1993-01-01
The basic goal of adaptive-mesh algorithms is to distribute computational resources wisely by increasing the resolution of 'important' regions of the flow and decreasing the resolution of regions that are less important. While this goal is one that is worthwhile, implementing schemes that have this degree of sophistication remains more of an art than a science. In this paper, the basic pieces of adaptive-mesh algorithms are described and some of the possible ways to implement them are discussed and compared. These basic pieces are the data structure to be used, the generation of an initial mesh, the criterion to be used to adapt the mesh to the solution, and the flow-solver algorithm on the resulting mesh. Each of these is discussed, with particular emphasis on methods suitable for the computation of compressible flows.
ABCluster: the artificial bee colony algorithm for cluster global optimization.
Zhang, Jun; Dolg, Michael
2015-10-01
Global optimization of cluster geometries is of fundamental importance in chemistry and an interesting problem in applied mathematics. In this work, we introduce a relatively new swarm intelligence algorithm, i.e. the artificial bee colony (ABC) algorithm proposed in 2005, to this field. It is inspired by the foraging behavior of a bee colony, and only three parameters are needed to control it. We applied it to several potential functions of quite different nature, i.e., the Coulomb-Born-Mayer, Lennard-Jones, Morse, Z and Gupta potentials. The benchmarks reveal that for long-ranged potentials the ABC algorithm is very efficient in locating the global minimum, while for short-ranged ones it is sometimes trapped into a local minimum funnel on a potential energy surface of large clusters. We have released an efficient, user-friendly, and free program "ABCluster" to realize the ABC algorithm. It is a black-box program for non-experts as well as experts and might become a useful tool for chemists to study clusters. PMID:26327507
Adaptive learning algorithms for vibration energy harvesting
NASA Astrophysics Data System (ADS)
Ward, John K.; Behrens, Sam
2008-06-01
By scavenging energy from their local environment, portable electronic devices such as MEMS devices, mobile phones, radios and wireless sensors can achieve greater run times with potentially lower weight. Vibration energy harvesting is one such approach where energy from parasitic vibrations can be converted into electrical energy through the use of piezoelectric and electromagnetic transducers. Parasitic vibrations come from a range of sources such as human movement, wind, seismic forces and traffic. Existing approaches to vibration energy harvesting typically utilize a rectifier circuit, which is tuned to the resonant frequency of the harvesting structure and the dominant frequency of vibration. We have developed a novel approach to vibration energy harvesting, including adaptation to non-periodic vibrations so as to extract the maximum amount of vibration energy available. Experimental results of an experimental apparatus using an off-the-shelf transducer (i.e. speaker coil) show mechanical vibration to electrical energy conversion efficiencies of 27-34%.
Adaptive Multigrid Algorithm for the Lattice Wilson-Dirac Operator
Babich, R.; Brower, R. C.; Rebbi, C.; Brannick, J.; Clark, M. A.; Manteuffel, T. A.; McCormick, S. F.; Osborn, J. C.
2010-11-12
We present an adaptive multigrid solver for application to the non-Hermitian Wilson-Dirac system of QCD. The key components leading to the success of our proposed algorithm are the use of an adaptive projection onto coarse grids that preserves the near null space of the system matrix together with a simplified form of the correction based on the so-called {gamma}{sub 5}-Hermitian symmetry of the Dirac operator. We demonstrate that the algorithm nearly eliminates critical slowing down in the chiral limit and that it has weak dependence on the lattice volume.
Adaptive multigrid algorithm for the lattice Wilson-Dirac operator.
Babich, R; Brannick, J; Brower, R C; Clark, M A; Manteuffel, T A; McCormick, S F; Osborn, J C; Rebbi, C
2010-11-12
We present an adaptive multigrid solver for application to the non-Hermitian Wilson-Dirac system of QCD. The key components leading to the success of our proposed algorithm are the use of an adaptive projection onto coarse grids that preserves the near null space of the system matrix together with a simplified form of the correction based on the so-called γ5-Hermitian symmetry of the Dirac operator. We demonstrate that the algorithm nearly eliminates critical slowing down in the chiral limit and that it has weak dependence on the lattice volume. PMID:21231217
Adaptive NUC algorithm for uncooled IRFPA based on neural networks
NASA Astrophysics Data System (ADS)
Liu, Ziji; Jiang, Yadong; Lv, Jian; Zhu, Hongbin
2010-10-01
With developments in uncooled infrared plane array (UFPA) technology, many new advanced uncooled infrared sensors are used in defensive weapons, scientific research, industry and commercial applications. A major difference in imaging techniques between infrared IRFPA imaging system and a visible CCD camera is that, IRFPA need nonuniformity correction and dead pixel compensation, we usually called it infrared image pre-processing. Two-point or multi-point correction algorithms based on calibration commonly used may correct the non-uniformity of IRFPAs, but they are limited by pixel linearity and instability. Therefore, adaptive non-uniformity correction techniques are developed. Two of these adaptive non-uniformity correction algorithms are mostly discussed, one is based on temporal high-pass filter, and another is based on neural network. In this paper, a new NUC algorithm based on improved neural networks is introduced, and involves the compare result between improved neural networks and other adaptive correction techniques. A lot of different will discussed in different angle, like correction effects, calculation efficiency, hardware implementation and so on. According to the result and discussion, it could be concluding that the adaptive algorithm offers improved performance compared to traditional calibration mode techniques. This new algorithm not only provides better sensitivity, but also increases the system dynamic range. As the sensor application expended, it will be very useful in future infrared imaging systems.
Adaptive dimension reduction for clustering high dimensional data
Ding, Chris; He, Xiaofeng; Zha, Hongyuan; Simon, Horst
2002-10-01
It is well-known that for high dimensional data clustering, standard algorithms such as EM and the K-means are often trapped in local minimum. many initialization methods were proposed to tackle this problem, but with only limited success. In this paper they propose a new approach to resolve this problem by repeated dimension reductions such that K-means or EM are performed only in very low dimensions. Cluster membership is utilized as a bridge between the reduced dimensional sub-space and the original space, providing flexibility and ease of implementation. Clustering analysis performed on highly overlapped Gaussians, DNA gene expression profiles and internet newsgroups demonstrate the effectiveness of the proposed algorithm.
Data-adaptive algorithms for calling alleles in repeat polymorphisms.
Stoughton, R; Bumgarner, R; Frederick, W J; McIndoe, R A
1997-01-01
Data-adaptive algorithms are presented for separating overlapping signatures of heterozygotic allele pairs in electrophoresis data. Application is demonstrated for human microsatellite CA-repeat polymorphisms in LiCor 4000 and ABI 373 data. The algorithms allow overlapping alleles to be called correctly in almost every case where a trained observer could do so, and provide a fast automated objective alternative to human reading of the gels. The algorithm also supplies an indication of confidence level which can be used to flag marginal cases for verification by eye, or as input to later stages of statistical analysis. PMID:9059812
Mapping cultivable land from satellite imagery with clustering algorithms
NASA Astrophysics Data System (ADS)
Arango, R. B.; Campos, A. M.; Combarro, E. F.; Canas, E. R.; Díaz, I.
2016-07-01
Open data satellite imagery provides valuable data for the planning and decision-making processes related with environmental domains. Specifically, agriculture uses remote sensing in a wide range of services, ranging from monitoring the health of the crops to forecasting the spread of crop diseases. In particular, this paper focuses on a methodology for the automatic delimitation of cultivable land by means of machine learning algorithms and satellite data. The method uses a partition clustering algorithm called Partitioning Around Medoids and considers the quality of the clusters obtained for each satellite band in order to evaluate which one better identifies cultivable land. The proposed method was tested with vineyards using as input the spectral and thermal bands of the Landsat 8 satellite. The experimental results show the great potential of this method for cultivable land monitoring from remote-sensed multispectral imagery.
Advanced defect detection algorithm using clustering in ultrasonic NDE
NASA Astrophysics Data System (ADS)
Gongzhang, Rui; Gachagan, Anthony
2016-02-01
A range of materials used in industry exhibit scattering properties which limits ultrasonic NDE. Many algorithms have been proposed to enhance defect detection ability, such as the well-known Split Spectrum Processing (SSP) technique. Scattering noise usually cannot be fully removed and the remaining noise can be easily confused with real feature signals, hence becoming artefacts during the image interpretation stage. This paper presents an advanced algorithm to further reduce the influence of artefacts remaining in A-scan data after processing using a conventional defect detection algorithm. The raw A-scan data can be acquired from either traditional single transducer or phased array configurations. The proposed algorithm uses the concept of unsupervised machine learning to cluster segmental defect signals from pre-processed A-scans into different classes. The distinction and similarity between each class and the ensemble of randomly selected noise segments can be observed by applying a classification algorithm. Each class will then be labelled as `legitimate reflector' or `artefacts' based on this observation and the expected probability of defection (PoD) and probability of false alarm (PFA) determined. To facilitate data collection and validate the proposed algorithm, a 5MHz linear array transducer is used to collect A-scans from both austenitic steel and Inconel samples. Each pulse-echo A-scan is pre-processed using SSP and the subsequent application of the proposed clustering algorithm has provided an additional reduction to PFA while maintaining PoD for both samples compared with SSP results alone.
Non-equilibrium relaxation analysis in cluster algorithms
NASA Astrophysics Data System (ADS)
Nonomura, Yoshihiko
2014-03-01
In Monte Carlo study of phase transitions, the critical slowing down has been a serious problem. In order to overcome this difficulty, two kinds of approaches have been proposed. One is the cluster algorithms, where global update scheme based on a percolation theory is introduced in order to refrain from the power-law behavior at the critical point. Another is the non-equilibrium relaxation method, where the power-law critical relaxation process is analyzed by the dynamical scaling theory in order to refrain from time-consuming equilibration. Then, the next step is to fuse these two approaches -- to investigate phase transitions with early-stage relaxation process of cluster algorithms. Since the dynamical scaling theory does not hold in cluster algorithms in principle, such attempt had been considered impossible. In the present talk we show that such fusion is actually possible using an empirical scaling form obtained from the 2D Ising models instead of the dynamical scaling theory. Applications to the q >= 3 Potts models, +/- J Ising models etc. will also be explained in the presentation.
An improved distance matrix computation algorithm for multicore clusters.
Al-Neama, Mohammed W; Reda, Naglaa M; Ghaleb, Fayed F M
2014-01-01
Distance matrix has diverse usage in different research areas. Its computation is typically an essential task in most bioinformatics applications, especially in multiple sequence alignment. The gigantic explosion of biological sequence databases leads to an urgent need for accelerating these computations. DistVect algorithm was introduced in the paper of Al-Neama et al. (in press) to present a recent approach for vectorizing distance matrix computing. It showed an efficient performance in both sequential and parallel computing. However, the multicore cluster systems, which are available now, with their scalability and performance/cost ratio, meet the need for more powerful and efficient performance. This paper proposes DistVect1 as highly efficient parallel vectorized algorithm with high performance for computing distance matrix, addressed to multicore clusters. It reformulates DistVect1 vectorized algorithm in terms of clusters primitives. It deduces an efficient approach of partitioning and scheduling computations, convenient to this type of architecture. Implementations employ potential of both MPI and OpenMP libraries. Experimental results show that the proposed method performs improvement of around 3-fold speedup upon SSE2. Further it also achieves speedups more than 9 orders of magnitude compared to the publicly available parallel implementation utilized in ClustalW-MPI. PMID:25013779
Comparison of cluster expansion fitting algorithms for interactions at surfaces
NASA Astrophysics Data System (ADS)
Herder, Laura M.; Bray, Jason M.; Schneider, William F.
2015-10-01
Cluster expansions (CEs) are Ising-type interaction models that are increasingly used to model interaction and ordering phenomena at surfaces, such as the adsorbate-adsorbate interactions that control coverage-dependent adsorption or surface-vacancy interactions that control surface reconstructions. CEs are typically fit to a limited set of data derived from density functional theory (DFT) calculations. The CE fitting process involves iterative selection of DFT data points to include in a fit set and selection of interaction clusters to include in the CE. Here we compare the performance of three CE fitting algorithms-the MIT Ab-initio Phase Stability code (MAPS, the default in ATAT software), a genetic algorithm (GA), and a steepest descent (SD) algorithm-against synthetic data. The synthetic data is encoded in model Hamiltonians of varying complexity motivated by the observed behavior of atomic adsorbates on a face-centered-cubic transition metal close-packed (111) surface. We compare the performance of the leave-one-out cross-validation score against the true fitting error available from knowledge of the hidden CEs. For these systems, SD achieves lowest overall fitting and prediction error independent of the underlying system complexity. SD also most accurately predicts cluster interaction energies without ignoring or introducing extra interactions into the CE. MAPS achieves good results in fewer iterations, while the GA performs least well for these particular problems.
ICANP2: Isoenergetic cluster algorithm for NP-complete Problems
NASA Astrophysics Data System (ADS)
Zhu, Zheng; Fang, Chao; Katzgraber, Helmut G.
NP-complete optimization problems with Boolean variables are of fundamental importance in computer science, mathematics and physics. Most notably, the minimization of general spin-glass-like Hamiltonians remains a difficult numerical task. There has been a great interest in designing efficient heuristics to solve these computationally difficult problems. Inspired by the rejection-free isoenergetic cluster algorithm developed for Ising spin glasses, we present a generalized cluster update that can be applied to different NP-complete optimization problems with Boolean variables. The cluster updates allow for a wide-spread sampling of phase space, thus speeding up optimization. By carefully tuning the pseudo-temperature (needed to randomize the configurations) of the problem, we show that the method can efficiently tackle problems on topologies with a large site-percolation threshold. We illustrate the ICANP2 heuristic on paradigmatic optimization problems, such as the satisfiability problem and the vertex cover problem.
The Kernel Adaptive Autoregressive-Moving-Average Algorithm.
Li, Kan; Príncipe, José C
2016-02-01
In this paper, we present a novel kernel adaptive recurrent filtering algorithm based on the autoregressive-moving-average (ARMA) model, which is trained with recurrent stochastic gradient descent in the reproducing kernel Hilbert spaces. This kernelized recurrent system, the kernel adaptive ARMA (KAARMA) algorithm, brings together the theories of adaptive signal processing and recurrent neural networks (RNNs), extending the current theory of kernel adaptive filtering (KAF) using the representer theorem to include feedback. Compared with classical feedforward KAF methods, the KAARMA algorithm provides general nonlinear solutions for complex dynamical systems in a state-space representation, with a deferred teacher signal, by propagating forward the hidden states. We demonstrate its capabilities to provide exact solutions with compact structures by solving a set of benchmark nondeterministic polynomial-complete problems involving grammatical inference. Simulation results show that the KAARMA algorithm outperforms equivalent input-space recurrent architectures using first- and second-order RNNs, demonstrating its potential as an effective learning solution for the identification and synthesis of deterministic finite automata. PMID:25935049
An Adaptive Tradeoff Algorithm for Multi-issue SLA Negotiation
NASA Astrophysics Data System (ADS)
Son, Seokho; Sim, Kwang Mong
Since participants in a Cloud may be independent bodies, mechanisms are necessary for resolving different preferences in leasing Cloud services. Whereas there are currently mechanisms that support service-level agreement negotiation, there is little or no negotiation support for concurrent price and timeslot for Cloud service reservations. For the concurrent price and timeslot negotiation, a tradeoff algorithm to generate and evaluate a proposal which consists of price and timeslot proposal is necessary. The contribution of this work is thus to design an adaptive tradeoff algorithm for multi-issue negotiation mechanism. The tradeoff algorithm referred to as "adaptive burst mode" is especially designed to increase negotiation speed and total utility and to reduce computational load by adaptively generating concurrent set of proposals. The empirical results obtained from simulations carried out using a testbed suggest that due to the concurrent price and timeslot negotiation mechanism with adaptive tradeoff algorithm: 1) both agents achieve the best performance in terms of negotiation speed and utility; 2) the number of evaluations of each proposal is comparatively lower than previous scheme (burst-N).
NIC-based Reduction Algorithms for Large-scale Clusters
Petrini, F; Moody, A T; Fernandez, J; Frachtenberg, E; Panda, D K
2004-07-30
Efficient algorithms for reduction operations across a group of processes are crucial for good performance in many large-scale, parallel scientific applications. While previous algorithms limit processing to the host CPU, we utilize the programmable processors and local memory available on modern cluster network interface cards (NICs) to explore a new dimension in the design of reduction algorithms. In this paper, we present the benefits and challenges, design issues and solutions, analytical models, and experimental evaluations of a family of NIC-based reduction algorithms. Performance and scalability evaluations were conducted on the ASCI Linux Cluster (ALC), a 960-node, 1920-processor machine at Lawrence Livermore National Laboratory, which uses the Quadrics QsNet interconnect. We find NIC-based reductions on modern interconnects to be more efficient than host-based implementations in both scalability and consistency. In particular, at large-scale--1812 processes--NIC-based reductions of small integer and floating-point arrays provided respective speedups of 121% and 39% over the host-based, production-level MPI implementation.
An Adaptive Immune Genetic Algorithm for Edge Detection
NASA Astrophysics Data System (ADS)
Li, Ying; Bai, Bendu; Zhang, Yanning
An adaptive immune genetic algorithm (AIGA) based on cost minimization technique method for edge detection is proposed. The proposed AIGA recommends the use of adaptive probabilities of crossover, mutation and immune operation, and a geometric annealing schedule in immune operator to realize the twin goals of maintaining diversity in the population and sustaining the fast convergence rate in solving the complex problems such as edge detection. Furthermore, AIGA can effectively exploit some prior knowledge and information of the local edge structure in the edge image to make vaccines, which results in much better local search ability of AIGA than that of the canonical genetic algorithm. Experimental results on gray-scale images show the proposed algorithm perform well in terms of quality of the final edge image, rate of convergence and robustness to noise.
Flight data processing with the F-8 adaptive algorithm
NASA Technical Reports Server (NTRS)
Hartmann, G.; Stein, G.; Petersen, K.
1977-01-01
An explicit adaptive control algorithm based on maximum likelihood estimation of parameters has been designed for NASA's DFBW F-8 aircraft. To avoid iterative calculations, the algorithm uses parallel channels of Kalman filters operating at fixed locations in parameter space. This algorithm has been implemented in NASA/DFRC's Remotely Augmented Vehicle (RAV) facility. Real-time sensor outputs (rate gyro, accelerometer and surface position) are telemetered to a ground computer which sends new gain values to an on-board system. Ground test data and flight records were used to establish design values of noise statistics and to verify the ground-based adaptive software. The software and its performance evaluation based on flight data are described
A new adaptive GMRES algorithm for achieving high accuracy
Sosonkina, M.; Watson, L.T.; Kapania, R.K.; Walker, H.F.
1996-12-31
GMRES(k) is widely used for solving nonsymmetric linear systems. However, it is inadequate either when it converges only for k close to the problem size or when numerical error in the modified Gram-Schmidt process used in the GMRES orthogonalization phase dramatically affects the algorithm performance. An adaptive version of GMRES (k) which tunes the restart value k based on criteria estimating the GMRES convergence rate for the given problem is proposed here. The essence of the adaptive GMRES strategy is to adapt the parameter k to the problem, similar in spirit to how a variable order ODE algorithm tunes the order k. With FORTRAN 90, which provides pointers and dynamic memory management, dealing with the variable storage requirements implied by varying k is not too difficult. The parameter k can be both increased and decreased-an increase-only strategy is described next followed by pseudocode.
Adaptive process control using fuzzy logic and genetic algorithms
NASA Technical Reports Server (NTRS)
Karr, C. L.
1993-01-01
Researchers at the U.S. Bureau of Mines have developed adaptive process control systems in which genetic algorithms (GA's) are used to augment fuzzy logic controllers (FLC's). GA's are search algorithms that rapidly locate near-optimum solutions to a wide spectrum of problems by modeling the search procedures of natural genetics. FLC's are rule based systems that efficiently manipulate a problem environment by modeling the 'rule-of-thumb' strategy used in human decision making. Together, GA's and FLC's possess the capabilities necessary to produce powerful, efficient, and robust adaptive control systems. To perform efficiently, such control systems require a control element to manipulate the problem environment, and a learning element to adjust to the changes in the problem environment. Details of an overall adaptive control system are discussed. A specific laboratory acid-base pH system is used to demonstrate the ideas presented.
Adaptive Process Control with Fuzzy Logic and Genetic Algorithms
NASA Technical Reports Server (NTRS)
Karr, C. L.
1993-01-01
Researchers at the U.S. Bureau of Mines have developed adaptive process control systems in which genetic algorithms (GA's) are used to augment fuzzy logic controllers (FLC's). GA's are search algorithms that rapidly locate near-optimum solutions to a wide spectrum of problems by modeling the search procedures of natural genetics. FLC's are rule based systems that efficiently manipulate a problem environment by modeling the 'rule-of-thumb' strategy used in human decision-making. Together, GA's and FLC's possess the capabilities necessary to produce powerful, efficient, and robust adaptive control systems. To perform efficiently, such control systems require a control element to manipulate the problem environment, an analysis element to recognize changes in the problem environment, and a learning element to adjust to the changes in the problem environment. Details of an overall adaptive control system are discussed. A specific laboratory acid-base pH system is used to demonstrate the ideas presented.
NASA Astrophysics Data System (ADS)
Bo, Yizhou; Shifa, Naima
2013-09-01
An estimator for finding the abundance of a rare, clustered and mobile population has been introduced. This model is based on adaptive cluster sampling (ACS) to identify the location of the population and negative binomial distribution to estimate the total in each site. To identify the location of the population we consider both sampling with replacement (WR) and sampling without replacement (WOR). Some mathematical properties of the model are also developed.
Finding reproducible cluster partitions for the k-means algorithm
2013-01-01
K-means clustering is widely used for exploratory data analysis. While its dependence on initialisation is well-known, it is common practice to assume that the partition with lowest sum-of-squares (SSQ) total i.e. within cluster variance, is both reproducible under repeated initialisations and also the closest that k-means can provide to true structure, when applied to synthetic data. We show that this is generally the case for small numbers of clusters, but for values of k that are still of theoretical and practical interest, similar values of SSQ can correspond to markedly different cluster partitions. This paper extends stability measures previously presented in the context of finding optimal values of cluster number, into a component of a 2-d map of the local minima found by the k-means algorithm, from which not only can values of k be identified for further analysis but, more importantly, it is made clear whether the best SSQ is a suitable solution or whether obtaining a consistently good partition requires further application of the stability index. The proposed method is illustrated by application to five synthetic datasets replicating a real world breast cancer dataset with varying data density, and a large bioinformatics dataset. PMID:23369085
Mustapha, Ibrahim; Mohd Ali, Borhanuddin; Rasid, Mohd Fadlee A; Sali, Aduwati; Mohamad, Hafizal
2015-01-01
It is well-known that clustering partitions network into logical groups of nodes in order to achieve energy efficiency and to enhance dynamic channel access in cognitive radio through cooperative sensing. While the topic of energy efficiency has been well investigated in conventional wireless sensor networks, the latter has not been extensively explored. In this paper, we propose a reinforcement learning-based spectrum-aware clustering algorithm that allows a member node to learn the energy and cooperative sensing costs for neighboring clusters to achieve an optimal solution. Each member node selects an optimal cluster that satisfies pairwise constraints, minimizes network energy consumption and enhances channel sensing performance through an exploration technique. We first model the network energy consumption and then determine the optimal number of clusters for the network. The problem of selecting an optimal cluster is formulated as a Markov Decision Process (MDP) in the algorithm and the obtained simulation results show convergence, learning and adaptability of the algorithm to dynamic environment towards achieving an optimal solution. Performance comparisons of our algorithm with the Groupwise Spectrum Aware (GWSA)-based algorithm in terms of Sum of Square Error (SSE), complexity, network energy consumption and probability of detection indicate improved performance from the proposed approach. The results further reveal that an energy savings of 9% and a significant Primary User (PU) detection improvement can be achieved with the proposed approach. PMID:26287191
Mustapha, Ibrahim; Ali, Borhanuddin Mohd; Rasid, Mohd Fadlee A.; Sali, Aduwati; Mohamad, Hafizal
2015-01-01
It is well-known that clustering partitions network into logical groups of nodes in order to achieve energy efficiency and to enhance dynamic channel access in cognitive radio through cooperative sensing. While the topic of energy efficiency has been well investigated in conventional wireless sensor networks, the latter has not been extensively explored. In this paper, we propose a reinforcement learning-based spectrum-aware clustering algorithm that allows a member node to learn the energy and cooperative sensing costs for neighboring clusters to achieve an optimal solution. Each member node selects an optimal cluster that satisfies pairwise constraints, minimizes network energy consumption and enhances channel sensing performance through an exploration technique. We first model the network energy consumption and then determine the optimal number of clusters for the network. The problem of selecting an optimal cluster is formulated as a Markov Decision Process (MDP) in the algorithm and the obtained simulation results show convergence, learning and adaptability of the algorithm to dynamic environment towards achieving an optimal solution. Performance comparisons of our algorithm with the Groupwise Spectrum Aware (GWSA)-based algorithm in terms of Sum of Square Error (SSE), complexity, network energy consumption and probability of detection indicate improved performance from the proposed approach. The results further reveal that an energy savings of 9% and a significant Primary User (PU) detection improvement can be achieved with the proposed approach. PMID:26287191
Adaptive Flocking of Robot Swarms: Algorithms and Properties
NASA Astrophysics Data System (ADS)
Lee, Geunho; Chong, Nak Young
This paper presents a distributed approach for adaptive flocking of swarms of mobile robots that enables to navigate autonomously in complex environments populated with obstacles. Based on the observation of the swimming behavior of a school of fish, we propose an integrated algorithm that allows a swarm of robots to navigate in a coordinated manner, split into multiple swarms, or merge with other swarms according to the environment conditions. We prove the convergence of the proposed algorithm using Lyapunov stability theory. We also verify the effectiveness of the algorithm through extensive simulations, where a swarm of robots repeats the process of splitting and merging while passing around multiple stationary and moving obstacles. The simulation results show that the proposed algorithm is scalable, and robust to variations in the sensing capability of individual robots.
Automated Tract Extraction via Atlas Based Adaptive Clustering
Tunç, Birkan; Parker, William A.; Ingalhalikar, Madhura; Verma, Ragini
2014-01-01
Advancements in imaging protocols such as the high angular resolution diffusion-weighted imaging (HARDI) and in tractography techniques are expected to cause an increase in the tract-based analyses. Statistical analyses over white matter tracts can contribute greatly towards understanding structural mechanisms of the brain since tracts are representative of the connectivity pathways. The main challenge with tract-based studies is the extraction of the tracts of interest in a consistent and comparable manner over a large group of individuals without drawing the inclusion and exclusion regions of interest. In this work, we design a framework for automated extraction of white matter tracts. The framework introduces three main components, namely a connectivity based fiber representation, a fiber clustering atlas, and a clustering approach called Adaptive Clustering. The fiber representation relies on the connectivity signatures of fibers to establish an easy correspondence between different subjects. A group-wise clustering of these fibers that are represented by the connectivity signatures is then used to generate a fiber bundle atlas. Finally, Adaptive Clustering incorporates the previously generated clustering atlas as a prior, to cluster the fibers of a new subject automatically. Experiments on the HARDI scans of healthy individuals acquired repeatedly, demonstrate the applicability, the reliability and the repeatability of our approach in extracting white matter tracts. By alleviating the seed region selection or the inclusion/exclusion ROI drawing requirements that are usually handled by trained radiologists, the proposed framework expands the range of possible clinical applications and establishes the ability to perform tract-based analyses with large samples. PMID:25134977
An adaptive grid algorithm for one-dimensional nonlinear equations
NASA Technical Reports Server (NTRS)
Gutierrez, William E.; Hills, Richard G.
1990-01-01
Richards' equation, which models the flow of liquid through unsaturated porous media, is highly nonlinear and difficult to solve. Step gradients in the field variables require the use of fine grids and small time step sizes. The numerical instabilities caused by the nonlinearities often require the use of iterative methods such as Picard or Newton interation. These difficulties result in large CPU requirements in solving Richards equation. With this in mind, adaptive and multigrid methods are investigated for use with nonlinear equations such as Richards' equation. Attention is focused on one-dimensional transient problems. To investigate the use of multigrid and adaptive grid methods, a series of problems are studied. First, a multigrid program is developed and used to solve an ordinary differential equation, demonstrating the efficiency with which low and high frequency errors are smoothed out. The multigrid algorithm and an adaptive grid algorithm is used to solve one-dimensional transient partial differential equations, such as the diffusive and convective-diffusion equations. The performance of these programs are compared to that of the Gauss-Seidel and tridiagonal methods. The adaptive and multigrid schemes outperformed the Gauss-Seidel algorithm, but were not as fast as the tridiagonal method. The adaptive grid scheme solved the problems slightly faster than the multigrid method. To solve nonlinear problems, Picard iterations are introduced into the adaptive grid and tridiagonal methods. Burgers' equation is used as a test problem for the two algorithms. Both methods obtain solutions of comparable accuracy for similar time increments. For the Burgers' equation, the adaptive grid method finds the solution approximately three times faster than the tridiagonal method. Finally, both schemes are used to solve the water content formulation of the Richards' equation. For this problem, the adaptive grid method obtains a more accurate solution in fewer work units and
Fast randomized Hough transformation track initiation algorithm based on multi-scale clustering
NASA Astrophysics Data System (ADS)
Wan, Minjie; Gu, Guohua; Chen, Qian; Qian, Weixian; Wang, Pengcheng
2015-10-01
A fast randomized Hough transformation track initiation algorithm based on multi-scale clustering is proposed to overcome existing problems in traditional infrared search and track system(IRST) which cannot provide movement information of the initial target and select the threshold value of correlation automatically by a two-dimensional track association algorithm based on bearing-only information . Movements of all the targets are presumed to be uniform rectilinear motion throughout this new algorithm. Concepts of space random sampling, parameter space dynamic linking table and convergent mapping of image to parameter space are developed on the basis of fast randomized Hough transformation. Considering the phenomenon of peak value clustering due to shortcomings of peak detection itself which is built on threshold value method, accuracy can only be ensured on condition that parameter space has an obvious peak value. A multi-scale idea is added to the above-mentioned algorithm. Firstly, a primary association is conducted to select several alternative tracks by a low-threshold .Then, alternative tracks are processed by multi-scale clustering methods , through which accurate numbers and parameters of tracks are figured out automatically by means of transforming scale parameters. The first three frames are processed by this algorithm in order to get the first three targets of the track , and then two slightly different gate radius are worked out , mean value of which is used to be the global threshold value of correlation. Moreover, a new model for curvilinear equation correction is applied to the above-mentioned track initiation algorithm for purpose of solving the problem of shape distortion when a space three-dimensional curve is mapped to a two-dimensional bearing-only space. Using sideways-flying, launch and landing as examples to build models and simulate, the application of the proposed approach in simulation proves its effectiveness , accuracy , and adaptivity
Adaptive sensor array algorithm for structural health monitoring of helmet
NASA Astrophysics Data System (ADS)
Zou, Xiaotian; Tian, Ye; Wu, Nan; Sun, Kai; Wang, Xingwei
2011-04-01
The adaptive neural network is a standard technique used in nonlinear system estimation and learning applications for dynamic models. In this paper, we introduced an adaptive sensor fusion algorithm for a helmet structure health monitoring system. The helmet structure health monitoring system is used to study the effects of ballistic/blast events on the helmet and human skull. Installed inside the helmet system, there is an optical fiber pressure sensors array. After implementing the adaptive estimation algorithm into helmet system, a dynamic model for the sensor array has been developed. The dynamic response characteristics of the sensor network are estimated from the pressure data by applying an adaptive control algorithm using artificial neural network. With the estimated parameters and position data from the dynamic model, the pressure distribution of the whole helmet can be calculated following the Bazier Surface interpolation method. The distribution pattern inside the helmet will be very helpful for improving helmet design to provide better protection to soldiers from head injuries.
Dynamically Incremental K-means++ Clustering Algorithm Based on Fuzzy Rough Set Theory
NASA Astrophysics Data System (ADS)
Li, Wei; Wang, Rujing; Jia, Xiufang; Jiang, Qing
Being classic K-means++ clustering algorithm only for static data, dynamically incremental K-means++ clustering algorithm (DK-Means++) is presented based on fuzzy rough set theory in this paper. Firstly, in DK-Means++ clustering algorithm, the formula of similar degree is improved by weights computed by using of the important degree of attributes which are reduced on the basis of rough fuzzy set theory. Secondly, new data only need match granular which was clustered by K-means++ algorithm or seldom new data is clustered by classic K-means++ algorithm in global data. In this way, that all data is re-clustered each time in dynamic data set is avoided, so the efficiency of clustering is improved. Throughout our experiments showing, DK-Means++ algorithm can objectively and efficiently deal with clustering problem of dynamically incremental data.
Estimating meme fitness in adaptive memetic algorithms for combinatorial problems.
Smith, J E
2012-01-01
Among the most promising and active research areas in heuristic optimisation is the field of adaptive memetic algorithms (AMAs). These gain much of their reported robustness by adapting the probability with which each of a set of local improvement operators is applied, according to an estimate of their current value to the search process. This paper addresses the issue of how the current value should be estimated. Assuming the estimate occurs over several applications of a meme, we consider whether the extreme or mean improvements should be used, and whether this aggregation should be global, or local to some part of the solution space. To investigate these issues, we use the well-established COMA framework that coevolves the specification of a population of memes (representing different local search algorithms) alongside a population of candidate solutions to the problem at hand. Two very different memetic algorithms are considered: the first using adaptive operator pursuit to adjust the probabilities of applying a fixed set of memes, and a second which applies genetic operators to dynamically adapt and create memes and their functional definitions. For the latter, especially on combinatorial problems, credit assignment mechanisms based on historical records, or on notions of landscape locality, will have limited application, and it is necessary to estimate the value of a meme via some form of sampling. The results on a set of binary encoded combinatorial problems show that both methods are very effective, and that for some problems it is necessary to use thousands of variables in order to tease apart the differences between different reward schemes. However, for both memetic algorithms, a significant pattern emerges that reward based on mean improvement is better than that based on extreme improvement. This contradicts recent findings from adapting the parameters of operators involved in global evolutionary search. The results also show that local reward schemes
NASA Astrophysics Data System (ADS)
Cheng, Sheng-Yi; Liu, Wen-Jin; Chen, Shan-Qiu; Dong, Li-Zhi; Yang, Ping; Xu, Bing
2015-08-01
Among all kinds of wavefront control algorithms in adaptive optics systems, the direct gradient wavefront control algorithm is the most widespread and common method. This control algorithm obtains the actuator voltages directly from wavefront slopes through pre-measuring the relational matrix between deformable mirror actuators and Hartmann wavefront sensor with perfect real-time characteristic and stability. However, with increasing the number of sub-apertures in wavefront sensor and deformable mirror actuators of adaptive optics systems, the matrix operation in direct gradient algorithm takes too much time, which becomes a major factor influencing control effect of adaptive optics systems. In this paper we apply an iterative wavefront control algorithm to high-resolution adaptive optics systems, in which the voltages of each actuator are obtained through iteration arithmetic, which gains great advantage in calculation and storage. For AO system with thousands of actuators, the computational complexity estimate is about O(n2) ˜ O(n3) in direct gradient wavefront control algorithm, while the computational complexity estimate in iterative wavefront control algorithm is about O(n) ˜ (O(n)3/2), in which n is the number of actuators of AO system. And the more the numbers of sub-apertures and deformable mirror actuators, the more significant advantage the iterative wavefront control algorithm exhibits. Project supported by the National Key Scientific and Research Equipment Development Project of China (Grant No. ZDYZ2013-2), the National Natural Science Foundation of China (Grant No. 11173008), and the Sichuan Provincial Outstanding Youth Academic Technology Leaders Program, China (Grant No. 2012JQ0012).
Efficient implementation of the adaptive scale pixel decomposition algorithm
NASA Astrophysics Data System (ADS)
Zhang, L.; Bhatnagar, S.; Rau, U.; Zhang, M.
2016-08-01
Context. Most popular algorithms in use to remove the effects of a telescope's point spread function (PSF) in radio astronomy are variants of the CLEAN algorithm. Most of these algorithms model the sky brightness using the delta-function basis, which results in undesired artefacts when used to image extended emission. The adaptive scale pixel decomposition (Asp-Clean) algorithm models the sky brightness on a scale-sensitive basis and thus gives a significantly better imaging performance when imaging fields that contain both resolved and unresolved emission. Aims: However, the runtime cost of Asp-Clean is higher than that of scale-insensitive algorithms. In this paper, we identify the most expensive step in the original Asp-Clean algorithm and present an efficient implementation of it, which significantly reduces the computational cost while keeping the imaging performance comparable to the original algorithm. The PSF sidelobe levels of modern wide-band telescopes are significantly reduced, allowing us to make approximations to reduce the computational cost, which in turn allows for the deconvolution of larger images on reasonable timescales. Methods: As in the original algorithm, scales in the image are estimated through function fitting. Here we introduce an analytical method to model extended emission, and a modified method for estimating the initial values used for the fitting procedure, which ultimately leads to a lower computational cost. Results: The new implementation was tested with simulated EVLA data and the imaging performance compared well with the original Asp-Clean algorithm. Tests show that the current algorithm can recover features at different scales with lower computational cost.
An adaptive mesh refinement algorithm for the discrete ordinates method
Jessee, J.P.; Fiveland, W.A.; Howell, L.H.; Colella, P.; Pember, R.B.
1996-03-01
The discrete ordinates form of the radiative transport equation (RTE) is spatially discretized and solved using an adaptive mesh refinement (AMR) algorithm. This technique permits the local grid refinement to minimize spatial discretization error of the RTE. An error estimator is applied to define regions for local grid refinement; overlapping refined grids are recursively placed in these regions; and the RTE is then solved over the entire domain. The procedure continues until the spatial discretization error has been reduced to a sufficient level. The following aspects of the algorithm are discussed: error estimation, grid generation, communication between refined levels, and solution sequencing. This initial formulation employs the step scheme, and is valid for absorbing and isotopically scattering media in two-dimensional enclosures. The utility of the algorithm is tested by comparing the convergence characteristics and accuracy to those of the standard single-grid algorithm for several benchmark cases. The AMR algorithm provides a reduction in memory requirements and maintains the convergence characteristics of the standard single-grid algorithm; however, the cases illustrate that efficiency gains of the AMR algorithm will not be fully realized until three-dimensional geometries are considered.
Fast frequency acquisition via adaptive least squares algorithm
NASA Technical Reports Server (NTRS)
Kumar, R.
1986-01-01
A new least squares algorithm is proposed and investigated for fast frequency and phase acquisition of sinusoids in the presence of noise. This algorithm is a special case of more general, adaptive parameter-estimation techniques. The advantages of the algorithms are their conceptual simplicity, flexibility and applicability to general situations. For example, the frequency to be acquired can be time varying, and the noise can be nonGaussian, nonstationary and colored. As the proposed algorithm can be made recursive in the number of observations, it is not necessary to have a priori knowledge of the received signal-to-noise ratio or to specify the measurement time. This would be required for batch processing techniques, such as the fast Fourier transform (FFT). The proposed algorithm improves the frequency estimate on a recursive basis as more and more observations are obtained. When the algorithm is applied in real time, it has the extra advantage that the observations need not be stored. The algorithm also yields a real time confidence measure as to the accuracy of the estimator.
Adaptive Cluster Expansion for Inferring Boltzmann Machines with Noisy Data
NASA Astrophysics Data System (ADS)
Cocco, S.; Monasson, R.
2011-03-01
We introduce a procedure to infer the interactions among a set of binary variables, based on their sampled frequencies and pairwise correlations. The algorithm builds the clusters of variables contributing most to the entropy of the inferred Ising model and rejects the small contributions due to the sampling noise. Our procedure successfully recovers benchmark Ising models even at criticality and in the low temperature phase, and is applied to neurobiological data.
PHURBAS: AN ADAPTIVE, LAGRANGIAN, MESHLESS, MAGNETOHYDRODYNAMICS CODE. I. ALGORITHM
Maron, Jason L.; McNally, Colin P.; Mac Low, Mordecai-Mark E-mail: cmcnally@amnh.org
2012-05-01
We present an algorithm for simulating the equations of ideal magnetohydrodynamics and other systems of differential equations on an unstructured set of points represented by sample particles. Local, third-order, least-squares, polynomial interpolations (Moving Least Squares interpolations) are calculated from the field values of neighboring particles to obtain field values and spatial derivatives at the particle position. Field values and particle positions are advanced in time with a second-order predictor-corrector scheme. The particles move with the fluid, so the time step is not limited by the Eulerian Courant-Friedrichs-Lewy condition. Full spatial adaptivity is implemented to ensure the particles fill the computational volume, which gives the algorithm substantial flexibility and power. A target resolution is specified for each point in space, with particles being added and deleted as needed to meet this target. Particle addition and deletion is based on a local void and clump detection algorithm. Dynamic artificial viscosity fields provide stability to the integration. The resulting algorithm provides a robust solution for modeling flows that require Lagrangian or adaptive discretizations to resolve. This paper derives and documents the Phurbas algorithm as implemented in Phurbas version 1.1. A following paper presents the implementation and test problem results.
Landsat ecosystem disturbance adaptive processing system (LEDAPS) algorithm description
Schmidt, Gail; Jenkerson, Calli; Masek, Jeffrey; Vermote, Eric; Gao, Feng
2013-01-01
The Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) software was originally developed by the National Aeronautics and Space Administration–Goddard Space Flight Center and the University of Maryland to produce top-of-atmosphere reflectance from LandsatThematic Mapper and Enhanced Thematic Mapper Plus Level 1 digital numbers and to apply atmospheric corrections to generate a surface-reflectance product.The U.S. Geological Survey (USGS) has adopted the LEDAPS algorithm for producing the Landsat Surface Reflectance Climate Data Record.This report discusses the LEDAPS algorithm, which was implemented by the USGS.
A new detection algorithm for microcalcification clusters in mammographic screening
NASA Astrophysics Data System (ADS)
Xie, Weiying; Ma, Yide; Li, Yunsong
2015-05-01
A novel approach for microcalcification clusters detection is proposed. At the first time, we make a short analysis of mammographic images with microcalcification lesions to confirm these lesions have much greater gray values than normal regions. After summarizing the specific feature of microcalcification clusters in mammographic screening, we make more focus on preprocessing step including eliminating the background, image enhancement and eliminating the pectoral muscle. In detail, Chan-Vese Model is used for eliminating background. Then, we do the application of combining morphology method and edge detection method. After the AND operation and Sobel filter, we use Hough Transform, it can be seen that the result have outperformed for eliminating the pectoral muscle which is approximately the gray of microcalcification. Additionally, the enhancement step is achieved by morphology. We make effort on mammographic image preprocessing to achieve lower computational complexity. As well known, it is difficult to robustly achieve mammograms analysis due to low contrast between normal and lesion tissues, there are also much noise in such images. After a serious preprocessing algorithm, a method based on blob detection is performed to microcalcification clusters according their specific features. The proposed algorithm has employed Laplace operator to improve Difference of Gaussians (DoG) function in terms of low contrast images. A preliminary evaluation of the proposed method performs on a known public database namely MIAS, rather than synthetic images. The comparison experiments and Cohen's kappa coefficients all demonstrate that our proposed approach can potentially obtain better microcalcification clusters detection results in terms of accuracy, sensitivity and specificity.
Adaptive vector quantization of MR images using online k-means algorithm
NASA Astrophysics Data System (ADS)
Shademan, Azad; Zia, Mohammad A.
2001-12-01
The k-means algorithm is widely used to design image codecs using vector quantization (VQ). In this paper, we focus on an adaptive approach to implement a VQ technique using the online version of k-means algorithm, in which the size of the codebook is adapted continuously to the statistical behavior of the image. Based on the statistical analysis of the feature space, a set of thresholds are designed such that those codewords corresponding to the low-density clusters would be removed from the codebook and hence, resulting in a higher bit-rate efficiency. Applications of this approach would be in telemedicine, where sequences of highly correlated medical images, e.g. consecutive brain slices, are transmitted over a low bit-rate channel. We have applied this algorithm on magnetic resonance (MR) images and the simulation results on a sample sequence are given. The proposed method has been compared to the standard k-means algorithm in terms of PSNR, MSE, and elapsed time to complete the algorithm.
Adaptive experiments with a multivariate Elo-type algorithm.
Doebler, Philipp; Alavash, Mohsen; Giessing, Carsten
2015-06-01
The present article introduces the multivariate Elo-type algorithm (META), which is inspired by the Elo rating system, a tool for the measurement of the performance of chess players. The META is intended for adaptive experiments with correlated traits. The relationship of the META to other existing procedures is explained, and useful variants and modifications are discussed. The META was investigated within three simulation studies. The gain in efficiency of the univariate Elo-type algorithm was compared to standard univariate procedures; the impact of using correlational information in the META was quantified; and the adaptability to learning and fatigue was investigated. Our results show that the META is a powerful tool to efficiently control task performance in a short time period and to assess correlated traits. The R code of the simulations, the implementation of the META in MATLAB, and an example of how to use the META in the context of neuroscience are provided in supplemental materials. PMID:24878597
On some limitations of adaptive feedback measurement algorithm
NASA Astrophysics Data System (ADS)
Opalski, Leszek J.
2015-09-01
The brilliant idea of Adaptive Feedback Control Systems (AFCS) makes possible creation of highly efficient adaptive systems for estimation, identification and filtering of signals and physical processes. The research problem considered in this paper is: how performance of AFCS changes if some of the assumptions used to formulate iterative estimation algorithm are not fulfilled exactly. To limit the scope of research a particular implementation of the AFCS concept was considered, i.e. an adaptive feedback measurement system (AFMS). The iterative measurement algorithm used was derived under some idealized conditions, notably with perfect knowledge of the system model and Gaussian communication channels. The selected non-idealities of interest are non-zero mean value of noise processes and non-ideal calibration of transmission gain in the forward channel - because they are related to intrinsic non-idealities of analog building blocks, used for the AFMS implementation. The presented original analysis of the iterative measurement algorithm provides quantitative information on speed of convergence and limit behavior. The analysis should be useful for AFCS implementors in the measurement area - since the results are presented in terms of accuracy and precision of iterative measurement process.
A Fast Clustering Algorithm for Data with a Few Labeled Instances
Yang, Jinfeng; Xiao, Yong; Wang, Jiabing; Ma, Qianli; Shen, Yanhua
2015-01-01
The diameter of a cluster is the maximum intracluster distance between pairs of instances within the same cluster, and the split of a cluster is the minimum distance between instances within the cluster and instances outside the cluster. Given a few labeled instances, this paper includes two aspects. First, we present a simple and fast clustering algorithm with the following property: if the ratio of the minimum split to the maximum diameter (RSD) of the optimal solution is greater than one, the algorithm returns optimal solutions for three clustering criteria. Second, we study the metric learning problem: learn a distance metric to make the RSD as large as possible. Compared with existing metric learning algorithms, one of our metric learning algorithms is computationally efficient: it is a linear programming model rather than a semidefinite programming model used by most of existing algorithms. We demonstrate empirically that the supervision and the learned metric can improve the clustering quality. PMID:25861252
A kernel adaptive algorithm for quaternion-valued inputs.
Paul, Thomas K; Ogunfunmi, Tokunbo
2015-10-01
The use of quaternion data can provide benefit in applications like robotics and image recognition, and particularly for performing transforms in 3-D space. Here, we describe a kernel adaptive algorithm for quaternions. A least mean square (LMS)-based method was used, resulting in the derivation of the quaternion kernel LMS (Quat-KLMS) algorithm. Deriving this algorithm required describing the idea of a quaternion reproducing kernel Hilbert space (RKHS), as well as kernel functions suitable with quaternions. A modified HR calculus for Hilbert spaces was used to find the gradient of cost functions defined on a quaternion RKHS. In addition, the use of widely linear (or augmented) filtering is proposed to improve performance. The benefit of the Quat-KLMS and widely linear forms in learning nonlinear transformations of quaternion data are illustrated with simulations. PMID:25594982
Adaptive Load-Balancing Algorithms Using Symmetric Broadcast Networks
NASA Technical Reports Server (NTRS)
Das, Sajal K.; Biswas, Rupak; Chancellor, Marisa K. (Technical Monitor)
1997-01-01
In a distributed-computing environment, it is important to ensure that the processor workloads are adequately balanced. Among numerous load-balancing algorithms, a unique approach due to Dam and Prasad defines a symmetric broadcast network (SBN) that provides a robust communication pattern among the processors in a topology-independent manner. In this paper, we propose and analyze three novel SBN-based load-balancing algorithms, and implement them on an SP2. A thorough experimental study with Poisson-distributed synthetic loads demonstrates that these algorithms are very effective in balancing system load while minimizing processor idle time. They also compare favorably with several other existing load-balancing techniques. Additional experiments performed with real data demonstrate that the SBN approach is effective in adaptive computational science and engineering applications where dynamic load balancing is extremely crucial.
A local adaptive discretization algorithm for Smoothed Particle Hydrodynamics
NASA Astrophysics Data System (ADS)
Spreng, Fabian; Schnabel, Dirk; Mueller, Alexandra; Eberhard, Peter
2014-06-01
In this paper, an extension to the Smoothed Particle Hydrodynamics (SPH) method is proposed that allows for an adaptation of the discretization level of a simulated continuum at runtime. By combining a local adaptive refinement technique with a newly developed coarsening algorithm, one is able to improve the accuracy of the simulation results while reducing the required computational cost at the same time. For this purpose, the number of particles is, on the one hand, adaptively increased in critical areas of a simulation model. Typically, these are areas that show a relatively low particle density and high gradients in stress or temperature. On the other hand, the number of SPH particles is decreased for domains with a high particle density and low gradients. Besides a brief introduction to the basic principle of the SPH discretization method, the extensions to the original formulation providing such a local adaptive refinement and coarsening of the modeled structure are presented in this paper. After having introduced its theoretical background, the applicability of the enhanced formulation, as well as the benefit gained from the adaptive model discretization, is demonstrated in the context of four different simulation scenarios focusing on solid continua. While presenting the results found for these examples, several properties of the proposed adaptive technique are discussed, e.g. the conservation of momentum as well as the existing correlation between the chosen refinement and coarsening patterns and the observed quality of the results.
Adaptive Firefly Algorithm: Parameter Analysis and its Application
Shen, Hong-Bin
2014-01-01
As a nature-inspired search algorithm, firefly algorithm (FA) has several control parameters, which may have great effects on its performance. In this study, we investigate the parameter selection and adaptation strategies in a modified firefly algorithm — adaptive firefly algorithm (AdaFa). There are three strategies in AdaFa including (1) a distance-based light absorption coefficient; (2) a gray coefficient enhancing fireflies to share difference information from attractive ones efficiently; and (3) five different dynamic strategies for the randomization parameter. Promising selections of parameters in the strategies are analyzed to guarantee the efficient performance of AdaFa. AdaFa is validated over widely used benchmark functions, and the numerical experiments and statistical tests yield useful conclusions on the strategies and the parameter selections affecting the performance of AdaFa. When applied to the real-world problem — protein tertiary structure prediction, the results demonstrated improved variants can rebuild the tertiary structure with the average root mean square deviation less than 0.4Å and 1.5Å from the native constrains with noise free and 10% Gaussian white noise. PMID:25397812
Discrete-time minimal control synthesis adaptive algorithm
NASA Astrophysics Data System (ADS)
di Bernardo, M.; di Gennaro, F.; Olm, J. M.; Santini, S.
2010-12-01
This article proposes a discrete-time Minimal Control Synthesis (MCS) algorithm for a class of single-input single-output discrete-time systems written in controllable canonical form. As it happens with the continuous-time MCS strategy, the algorithm arises from the family of hyperstability-based discrete-time model reference adaptive controllers introduced in (Landau, Y. (1979), Adaptive Control: The Model Reference Approach, New York: Marcel Dekker, Inc.) and is able to ensure tracking of the states of a given reference model with minimal knowledge about the plant. The control design shows robustness to parameter uncertainties, slow parameter variation and matched disturbances. Furthermore, it is proved that the proposed discrete-time MCS algorithm can be used to control discretised continuous-time plants with the same performance features. Contrary to previous discrete-time implementations of the continuous-time MCS algorithm, here a formal proof of asymptotic stability is given for generic n-dimensional plants in controllable canonical form. The theoretical approach is validated by means of simulation results.
Adaptive firefly algorithm: parameter analysis and its application.
Cheung, Ngaam J; Ding, Xue-Ming; Shen, Hong-Bin
2014-01-01
As a nature-inspired search algorithm, firefly algorithm (FA) has several control parameters, which may have great effects on its performance. In this study, we investigate the parameter selection and adaptation strategies in a modified firefly algorithm - adaptive firefly algorithm (AdaFa). There are three strategies in AdaFa including (1) a distance-based light absorption coefficient; (2) a gray coefficient enhancing fireflies to share difference information from attractive ones efficiently; and (3) five different dynamic strategies for the randomization parameter. Promising selections of parameters in the strategies are analyzed to guarantee the efficient performance of AdaFa. AdaFa is validated over widely used benchmark functions, and the numerical experiments and statistical tests yield useful conclusions on the strategies and the parameter selections affecting the performance of AdaFa. When applied to the real-world problem - protein tertiary structure prediction, the results demonstrated improved variants can rebuild the tertiary structure with the average root mean square deviation less than 0.4Å and 1.5Å from the native constrains with noise free and 10% Gaussian white noise. PMID:25397812
Generalized pattern search algorithms with adaptive precision function evaluations
Polak, Elijah; Wetter, Michael
2003-05-14
In the literature on generalized pattern search algorithms, convergence to a stationary point of a once continuously differentiable cost function is established under the assumption that the cost function can be evaluated exactly. However, there is a large class of engineering problems where the numerical evaluation of the cost function involves the solution of systems of differential algebraic equations. Since the termination criteria of the numerical solvers often depend on the design parameters, computer code for solving these systems usually defines a numerical approximation to the cost function that is discontinuous with respect to the design parameters. Standard generalized pattern search algorithms have been applied heuristically to such problems, but no convergence properties have been stated. In this paper we extend a class of generalized pattern search algorithms to a form that uses adaptive precision approximations to the cost function. These numerical approximations need not define a continuous function. Our algorithms can be used for solving linearly constrained problems with cost functions that are at least locally Lipschitz continuous. Assuming that the cost function is smooth, we prove that our algorithms converge to a stationary point. Under the weaker assumption that the cost function is only locally Lipschitz continuous, we show that our algorithms converge to points at which the Clarke generalized directional derivatives are nonnegative in predefined directions. An important feature of our adaptive precision scheme is the use of coarse approximations in the early iterations, with the approximation precision controlled by a test. Such an approach leads to substantial time savings in minimizing computationally expensive functions.
jClustering, an open framework for the development of 4D clustering algorithms.
Mateos-Pérez, José María; García-Villalba, Carmen; Pascau, Javier; Desco, Manuel; Vaquero, Juan J
2013-01-01
We present jClustering, an open framework for the design of clustering algorithms in dynamic medical imaging. We developed this tool because of the difficulty involved in manually segmenting dynamic PET images and the lack of availability of source code for published segmentation algorithms. Providing an easily extensible open tool encourages publication of source code to facilitate the process of comparing algorithms and provide interested third parties with the opportunity to review code. The internal structure of the framework allows an external developer to implement new algorithms easily and quickly, focusing only on the particulars of the method being implemented and not on image data handling and preprocessing. This tool has been coded in Java and is presented as an ImageJ plugin in order to take advantage of all the functionalities offered by this imaging analysis platform. Both binary packages and source code have been published, the latter under a free software license (GNU General Public License) to allow modification if necessary. PMID:23990913
NASA Technical Reports Server (NTRS)
Rogers, David
1991-01-01
G/SPLINES are a hybrid of Friedman's Multivariable Adaptive Regression Splines (MARS) algorithm with Holland's Genetic Algorithm. In this hybrid, the incremental search is replaced by a genetic search. The G/SPLINE algorithm exhibits performance comparable to that of the MARS algorithm, requires fewer least squares computations, and allows significantly larger problems to be considered.
A Novel Method to Predict Genomic Islands Based on Mean Shift Clustering Algorithm.
de Brito, Daniel M; Maracaja-Coutinho, Vinicius; de Farias, Savio T; Batista, Leonardo V; do Rêgo, Thaís G
2016-01-01
Genomic Islands (GIs) are regions of bacterial genomes that are acquired from other organisms by the phenomenon of horizontal transfer. These regions are often responsible for many important acquired adaptations of the bacteria, with great impact on their evolution and behavior. Nevertheless, these adaptations are usually associated with pathogenicity, antibiotic resistance, degradation and metabolism. Identification of such regions is of medical and industrial interest. For this reason, different approaches for genomic islands prediction have been proposed. However, none of them are capable of predicting precisely the complete repertory of GIs in a genome. The difficulties arise due to the changes in performance of different algorithms in the face of the variety of nucleotide distribution in different species. In this paper, we present a novel method to predict GIs that is built upon mean shift clustering algorithm. It does not require any information regarding the number of clusters, and the bandwidth parameter is automatically calculated based on a heuristic approach. The method was implemented in a new user-friendly tool named MSGIP--Mean Shift Genomic Island Predictor. Genomes of bacteria with GIs discussed in other papers were used to evaluate the proposed method. The application of this tool revealed the same GIs predicted by other methods and also different novel unpredicted islands. A detailed investigation of the different features related to typical GI elements inserted in these new regions confirmed its effectiveness. Stand-alone and user-friendly versions for this new methodology are available at http://msgip.integrativebioinformatics.me. PMID:26731657
A Novel Method to Predict Genomic Islands Based on Mean Shift Clustering Algorithm
de Brito, Daniel M.; Maracaja-Coutinho, Vinicius; de Farias, Savio T.; Batista, Leonardo V.; do Rêgo, Thaís G.
2016-01-01
Genomic Islands (GIs) are regions of bacterial genomes that are acquired from other organisms by the phenomenon of horizontal transfer. These regions are often responsible for many important acquired adaptations of the bacteria, with great impact on their evolution and behavior. Nevertheless, these adaptations are usually associated with pathogenicity, antibiotic resistance, degradation and metabolism. Identification of such regions is of medical and industrial interest. For this reason, different approaches for genomic islands prediction have been proposed. However, none of them are capable of predicting precisely the complete repertory of GIs in a genome. The difficulties arise due to the changes in performance of different algorithms in the face of the variety of nucleotide distribution in different species. In this paper, we present a novel method to predict GIs that is built upon mean shift clustering algorithm. It does not require any information regarding the number of clusters, and the bandwidth parameter is automatically calculated based on a heuristic approach. The method was implemented in a new user-friendly tool named MSGIP—Mean Shift Genomic Island Predictor. Genomes of bacteria with GIs discussed in other papers were used to evaluate the proposed method. The application of this tool revealed the same GIs predicted by other methods and also different novel unpredicted islands. A detailed investigation of the different features related to typical GI elements inserted in these new regions confirmed its effectiveness. Stand-alone and user-friendly versions for this new methodology are available at http://msgip.integrativebioinformatics.me. PMID:26731657
GX-Means: A model-based divide and merge algorithm for geospatial image clustering
Vatsavai, Raju; Symons, Christopher T; Chandola, Varun; Jun, Goo
2011-01-01
One of the practical issues in clustering is the specification of the appropriate number of clusters, which is not obvious when analyzing geospatial datasets, partly because they are huge (both in size and spatial extent) and high dimensional. In this paper we present a computationally efficient model-based split and merge clustering algorithm that incrementally finds model parameters and the number of clusters. Additionally, we attempt to provide insights into this problem and other data mining challenges that are encountered when clustering geospatial data. The basic algorithm we present is similar to the G-means and X-means algorithms; however, our proposed approach avoids certain limitations of these well-known clustering algorithms that are pertinent when dealing with geospatial data. We compare the performance of our approach with the G-means and X-means algorithms. Experimental evaluation on simulated data and on multispectral and hyperspectral remotely sensed image data demonstrates the effectiveness of our algorithm.
AES based secure low energy adaptive clustering hierarchy for WSNs
NASA Astrophysics Data System (ADS)
Kishore, K. R.; Sarma, N. V. S. N.
2013-01-01
Wireless sensor networks (WSNs) provide a low cost solution in diversified application areas. The wireless sensor nodes are inexpensive tiny devices with limited storage, computational capability and power. They are being deployed in large scale in both military and civilian applications. Security of the data is one of the key concerns where large numbers of nodes are deployed. Here, an energy-efficient secure routing protocol, secure-LEACH (Low Energy Adaptive Clustering Hierarchy) for WSNs based on the Advanced Encryption Standard (AES) is being proposed. This crypto system is a session based one and a new session key is assigned for each new session. The network (WSN) is divided into number of groups or clusters and a cluster head (CH) is selected among the member nodes of each cluster. The measured data from the nodes is aggregated by the respective CH's and then each CH relays this data to another CH towards the gateway node in the WSN which in turn sends the same to the Base station (BS). In order to maintain confidentiality of data while being transmitted, it is necessary to encrypt the data before sending at every hop, from a node to the CH and from the CH to another CH or to the gateway node.
Analysis of adaptive algorithms for an integrated communication network
NASA Technical Reports Server (NTRS)
Reed, Daniel A.; Barr, Matthew; Chong-Kwon, Kim
1985-01-01
Techniques were examined that trade communication bandwidth for decreased transmission delays. When the network is lightly used, these schemes attempt to use additional network resources to decrease communication delays. As the network utilization rises, the schemes degrade gracefully, still providing service but with minimal use of the network. Because the schemes use a combination of circuit and packet switching, they should respond to variations in the types and amounts of network traffic. Also, a combination of circuit and packet switching to support the widely varying traffic demands imposed on an integrated network was investigated. The packet switched component is best suited to bursty traffic where some delays in delivery are acceptable. The circuit switched component is reserved for traffic that must meet real time constraints. Selected packet routing algorithms that might be used in an integrated network were simulated. An integrated traffic places widely varying workload demands on a network. Adaptive algorithms were identified, ones that respond to both the transient and evolutionary changes that arise in integrated networks. A new algorithm was developed, hybrid weighted routing, that adapts to workload changes.
Soar adaptive optics observations of the globular cluster NGC 6496
Fraga, Luciano; Kunder, Andrea; Tokovinin, Andrei E-mail: lfraga@lna.br
2013-06-01
We present high-quality BVRI photometric data in the field of globular cluster NGC 6496 obtained with the SOAR Telescope Adaptive Module (SAM). Our observations were collected as part of the ongoing SAM commissioning. The distance modulus and cluster color excess as found from the red clump are (m – M) {sub V} = 15.71 ± 0.02 mag and E(V – I) = 0.28 ± 0.02 mag. An age of 10.5 ± 0.5 Gyr is determined from the difference in magnitude between the red clump and the subgiant branch. These parameters are in excellent agreement with the values derived from isochrone fitting. From the color-magnitude diagram we find a metallicity of [Fe/H] = –0.65 dex and hence support a disk classification for NGC 6496. The complete BVRI data set for NGC 6469 is made available in the electronic edition of the Journal.
Dynamic Layered Dual-Cluster Heads Routing Algorithm Based on Krill Herd Optimization in UWSNs.
Jiang, Peng; Feng, Yang; Wu, Feng; Yu, Shanen; Xu, Huan
2016-01-01
Aimed at the limited energy of nodes in underwater wireless sensor networks (UWSNs) and the heavy load of cluster heads in clustering routing algorithms, this paper proposes a dynamic layered dual-cluster routing algorithm based on Krill Herd optimization in UWSNs. Cluster size is first decided by the distance between the cluster head nodes and sink node, and a dynamic layered mechanism is established to avoid the repeated selection of the same cluster head nodes. Using Krill Herd optimization algorithm selects the optimal and second optimal cluster heads, and its Lagrange model directs nodes to a high likelihood area. It ultimately realizes the functions of data collection and data transition. The simulation results show that the proposed algorithm can effectively decrease cluster energy consumption, balance the network energy consumption, and prolong the network lifetime. PMID:27589744
Hierarchically clustered adaptive quantization CMAC and its learning convergence.
Teddy, S D; Lai, E M K; Quek, C
2007-11-01
The cerebellar model articulation controller (CMAC) neural network (NN) is a well-established computational model of the human cerebellum. Nevertheless, there are two major drawbacks associated with the uniform quantization scheme of the CMAC network. They are the following: (1) a constant output resolution associated with the entire input space and (2) the generalization-accuracy dilemma. Moreover, the size of the CMAC network is an exponential function of the number of inputs. Depending on the characteristics of the training data, only a small percentage of the entire set of CMAC memory cells is utilized. Therefore, the efficient utilization of the CMAC memory is a crucial issue. One approach is to quantize the input space nonuniformly. For existing nonuniformly quantized CMAC systems, there is a tradeoff between memory efficiency and computational complexity. Inspired by the underlying organizational mechanism of the human brain, this paper presents a novel CMAC architecture named hierarchically clustered adaptive quantization CMAC (HCAQ-CMAC). HCAQ-CMAC employs hierarchical clustering for the nonuniform quantization of the input space to identify significant input segments and subsequently allocating more memory cells to these regions. The stability of the HCAQ-CMAC network is theoretically guaranteed by the proof of its learning convergence. The performance of the proposed network is subsequently benchmarked against the original CMAC network, as well as two other existing CMAC variants on two real-life applications, namely, automated control of car maneuver and modeling of the human blood glucose dynamics. The experimental results have demonstrated that the HCAQ-CMAC network offers an efficient memory allocation scheme and improves the generalization and accuracy of the network output to achieve better or comparable performances with smaller memory usages. Index Terms-Cerebellar model articulation controller (CMAC), hierarchical clustering, hierarchically
NASA Astrophysics Data System (ADS)
Park, Sang Ha; Lee, Seokjin; Sung, Koeng-Mo
Non-negative matrix factorization (NMF) is widely used for monaural musical sound source separation because of its efficiency and good performance. However, an additional clustering process is required because the musical sound mixture is separated into more signals than the number of musical tracks during NMF separation. In the conventional method, manual clustering or training-based clustering is performed with an additional learning process. Recently, a clustering algorithm based on the mel-frequency cepstrum coefficient (MFCC) was proposed for unsupervised clustering. However, MFCC clustering supplies limited information for clustering. In this paper, we propose various timbre features for unsupervised clustering and a clustering algorithm with these features. Simulation experiments are carried out using various musical sound mixtures. The results indicate that the proposed method improves clustering performance, as compared to conventional MFCC-based clustering.
Statistical behaviour of adaptive multilevel splitting algorithms in simple models
Rolland, Joran Simonnet, Eric
2015-02-15
Adaptive multilevel splitting algorithms have been introduced rather recently for estimating tail distributions in a fast and efficient way. In particular, they can be used for computing the so-called reactive trajectories corresponding to direct transitions from one metastable state to another. The algorithm is based on successive selection–mutation steps performed on the system in a controlled way. It has two intrinsic parameters, the number of particles/trajectories and the reaction coordinate used for discriminating good or bad trajectories. We investigate first the convergence in law of the algorithm as a function of the timestep for several simple stochastic models. Second, we consider the average duration of reactive trajectories for which no theoretical predictions exist. The most important aspect of this work concerns some systems with two degrees of freedom. They are studied in detail as a function of the reaction coordinate in the asymptotic regime where the number of trajectories goes to infinity. We show that during phase transitions, the statistics of the algorithm deviate significatively from known theoretical results when using non-optimal reaction coordinates. In this case, the variance of the algorithm is peaking at the transition and the convergence of the algorithm can be much slower than the usual expected central limit behaviour. The duration of trajectories is affected as well. Moreover, reactive trajectories do not correspond to the most probable ones. Such behaviour disappears when using the optimal reaction coordinate called committor as predicted by the theory. We finally investigate a three-state Markov chain which reproduces this phenomenon and show logarithmic convergence of the trajectory durations.
Adaptivity and smart algorithms for fluid-structure interaction
NASA Technical Reports Server (NTRS)
Oden, J. Tinsley
1990-01-01
This paper reviews new approaches in CFD which have the potential for significantly increasing current capabilities of modeling complex flow phenomena and of treating difficult problems in fluid-structure interaction. These approaches are based on the notions of adaptive methods and smart algorithms, which use instantaneous measures of the quality and other features of the numerical flowfields as a basis for making changes in the structure of the computational grid and of algorithms designed to function on the grid. The application of these new techniques to several problem classes are addressed, including problems with moving boundaries, fluid-structure interaction in high-speed turbine flows, flow in domains with receding boundaries, and related problems.
Characterization of atmospheric contaminant sources using adaptive evolutionary algorithms
NASA Astrophysics Data System (ADS)
Cervone, Guido; Franzese, Pasquale; Grajdeanu, Adrian
2010-10-01
The characteristics of an unknown source of emissions in the atmosphere are identified using an Adaptive Evolutionary Strategy (AES) methodology based on ground concentration measurements and a Gaussian plume model. The AES methodology selects an initial set of source characteristics including position, size, mass emission rate, and wind direction, from which a forward dispersion simulation is performed. The error between the simulated concentrations from the tentative source and the observed ground measurements is calculated. Then the AES algorithm prescribes the next tentative set of source characteristics. The iteration proceeds towards minimum error, corresponding to convergence towards the real source. The proposed methodology was used to identify the source characteristics of 12 releases from the Prairie Grass field experiment of dispersion, two for each atmospheric stability class, ranging from very unstable to stable atmosphere. The AES algorithm was found to have advantages over a simple canonical ES and a Monte Carlo (MC) method which were used as benchmarks.
Algorithm to extract the spanning clusters and calculate conductivity in strip geometries
NASA Astrophysics Data System (ADS)
Babalievski, F.
1995-06-01
I present an improved algorithm to solve the random resistor problem using a transfer-matrix technique. Preconditioning by spanning cluster extraction both reduces the size of the matrix and yields faster execution times when compared to previous algorithms.
NASA Astrophysics Data System (ADS)
Nguyen, Sy Dzung; Nguyen, Quoc Hung; Choi, Seung-Bok
2015-01-01
This paper presents a new algorithm for building an adaptive neuro-fuzzy inference system (ANFIS) from a training data set called B-ANFIS. In order to increase accuracy of the model, the following issues are executed. Firstly, a data merging rule is proposed to build and perform a data-clustering strategy. Subsequently, a combination of clustering processes in the input data space and in the joint input-output data space is presented. Crucial reason of this task is to overcome problems related to initialization and contradictory fuzzy rules, which usually happen when building ANFIS. The clustering process in the input data space is accomplished based on a proposed merging-possibilistic clustering (MPC) algorithm. The effectiveness of this process is evaluated to resume a clustering process in the joint input-output data space. The optimal parameters obtained after completion of the clustering process are used to build ANFIS. Simulations based on a numerical data, 'Daily Data of Stock A', and measured data sets of a smart damper are performed to analyze and estimate accuracy. In addition, convergence and robustness of the proposed algorithm are investigated based on both theoretical and testing approaches.
Fully implicit adaptive mesh refinement algorithm for reduced MHD
NASA Astrophysics Data System (ADS)
Philip, Bobby; Pernice, Michael; Chacon, Luis
2006-10-01
In the macroscopic simulation of plasmas, the numerical modeler is faced with the challenge of dealing with multiple time and length scales. Traditional approaches based on explicit time integration techniques and fixed meshes are not suitable for this challenge, as such approaches prevent the modeler from using realistic plasma parameters to keep the computation feasible. We propose here a novel approach, based on implicit methods and structured adaptive mesh refinement (SAMR). Our emphasis is on both accuracy and scalability with the number of degrees of freedom. As a proof-of-principle, we focus on the reduced resistive MHD model as a basic MHD model paradigm, which is truly multiscale. The approach taken here is to adapt mature physics-based technology to AMR grids, and employ AMR-aware multilevel techniques (such as fast adaptive composite grid --FAC-- algorithms) for scalability. We demonstrate that the concept is indeed feasible, featuring near-optimal scalability under grid refinement. Results of fully-implicit, dynamically-adaptive AMR simulations in challenging dissipation regimes will be presented on a variety of problems that benefit from this capability, including tearing modes, the island coalescence instability, and the tilt mode instability. L. Chac'on et al., J. Comput. Phys. 178 (1), 15- 36 (2002) B. Philip, M. Pernice, and L. Chac'on, Lecture Notes in Computational Science and Engineering, accepted (2006)
Industry Cluster's Adaptive Co-competition Behavior Modeling Inspired by Swarm Intelligence
NASA Astrophysics Data System (ADS)
Xiang, Wei; Ye, Feifan
Adaptation helps the individual enterprise to adjust its behavior to uncertainties in environment and hence determines a healthy growth of both the individuals and the whole industry cluster as well. This paper is focused on the study on co-competition adaptation behavior of industry cluster, which is inspired by swarm intelligence mechanisms. By referencing to ant cooperative transportation and ant foraging behavior and their related swarm intelligence approaches, the cooperative adaptation and competitive adaptation behavior are studied and relevant models are proposed. Those adaptive co-competition behaviors model can be integrated to the multi-agent system of industry cluster to make the industry cluster model more realistic.
Incorporating Adaptive Local Information Into Fuzzy Clustering for Image Segmentation.
Liu, Guoying; Zhang, Yun; Wang, Aimin
2015-11-01
Fuzzy c-means (FCM) clustering with spatial constraints has attracted great attention in the field of image segmentation. However, most of the popular techniques fail to resolve misclassification problems due to the inaccuracy of their spatial models. This paper presents a new unsupervised FCM-based image segmentation method by paying closer attention to the selection of local information. In this method, region-level local information is incorporated into the fuzzy clustering procedure to adaptively control the range and strength of interactive pixels. First, a novel dissimilarity function is established by combining region-based and pixel-based distance functions together, in order to enhance the relationship between pixels which have similar local characteristics. Second, a novel prior probability function is developed by integrating the differences between neighboring regions into the mean template of the fuzzy membership function, which adaptively selects local spatial constraints by a tradeoff weight depending upon whether a pixel belongs to a homogeneous region or not. Through incorporating region-based information into the spatial constraints, the proposed method strengthens the interactions between pixels within the same region and prevents over smoothing across region boundaries. Experimental results over synthetic noise images, natural color images, and synthetic aperture radar images show that the proposed method achieves more accurate segmentation results, compared with five state-of-the-art image segmentation methods. PMID:26186787
Path Planning Algorithms for the Adaptive Sensor Fleet
NASA Technical Reports Server (NTRS)
Stoneking, Eric; Hosler, Jeff
2005-01-01
The Adaptive Sensor Fleet (ASF) is a general purpose fleet management and planning system being developed by NASA in coordination with NOAA. The current mission of ASF is to provide the capability for autonomous cooperative survey and sampling of dynamic oceanographic phenomena such as current systems and algae blooms. Each ASF vessel is a software model that represents a real world platform that carries a variety of sensors. The OASIS platform will provide the first physical vessel, outfitted with the systems and payloads necessary to execute the oceanographic observations described in this paper. The ASF architecture is being designed for extensibility to accommodate heterogenous fleet elements, and is not limited to using the OASIS platform to acquire data. This paper describes the path planning algorithms developed for the acquisition phase of a typical ASF task. Given a polygonal target region to be surveyed, the region is subdivided according to the number of vessels in the fleet. The subdivision algorithm seeks a solution in which all subregions have equal area and minimum mean radius. Once the subregions are defined, a dynamic programming method is used to find a minimum-time path for each vessel from its initial position to its assigned region. This path plan includes the effects of water currents as well as avoidance of known obstacles. A fleet-level planning algorithm then shuffles the individual vessel assignments to find the overall solution which puts all vessels in their assigned regions in the minimum time. This shuffle algorithm may be described as a process of elimination on the sorted list of permutations of a cost matrix. All these path planning algorithms are facilitated by discretizing the region of interest onto a hexagonal tiling.
Computation of Transient Nonlinear Ship Waves Using AN Adaptive Algorithm
NASA Astrophysics Data System (ADS)
Çelebi, M. S.
2000-04-01
An indirect boundary integral method is used to solve transient nonlinear ship wave problems. A resulting mixed boundary value problem is solved at each time-step using a mixed Eulerian- Lagrangian time integration technique. Two dynamic node allocation techniques, which basically distribute nodes on an ever changing body surface, are presented. Both two-sided hyperbolic tangent and variational grid generation algorithms are developed and compared on station curves. A ship hull form is generated in parametric space using a B-spline surface representation. Two-sided hyperbolic tangent and variational adaptive curve grid-generation methods are then applied on the hull station curves to generate effective node placement. The numerical algorithm, in the first method, used two stretching parameters. In the second method, a conservative form of the parametric variational Euler-Lagrange equations is used the perform an adaptive gridding on each station. The resulting unsymmetrical influence coefficient matrix is solved using both a restarted version of GMRES based on the modified Gram-Schmidt procedure and a line Jacobi method based on LU decomposition. The convergence rates of both matrix iteration techniques are improved with specially devised preconditioners. Numerical examples of node placements on typical hull cross-sections using both techniques are discussed and fully nonlinear ship wave patterns and wave resistance computations are presented.
Wavefront sensors and algorithms for adaptive optical systems
NASA Astrophysics Data System (ADS)
Lukin, V. P.; Botygina, N. N.; Emaleev, O. N.; Konyaev, P. A.
2010-07-01
The results of recent works related to techniques and algorithms for wave-front (WF) measurement using Shack-Hartmann sensors show their high efficiency in solution of very different problems of applied optics. The goal of this paper was to develop a sensitive Shack-Hartmann sensor with high precision WF measurement capability on the base of modern technology of optical elements making and new efficient methods and computational algorithms of WF reconstruction. The Shack-Hartmann sensors sensitive to small WF aberrations are used for adaptive optical systems, compensating the wave distortions caused by atmospheric turbulence. A high precision Shack-Hartmann WF sensor has been developed on the basis of a low-aperture off-axis diffraction lens array. The device is capable of measuring WF slopes at array sub-apertures of size 640×640 μm with an error not exceeding 4.80 arcsec (0.15 pixel), which corresponds to the standard deviation equal to 0.017λ at the reconstructed WF with wavelength λ . Also the modification of this sensor for adaptive system of solar telescope using extended scenes as tracking objects, such as sunspot, pores, solar granulation and limb, is presented. The software package developed for the proposed WF sensors includes three algorithms of local WF slopes estimation (modified centroids, normalized cross-correlation and fast Fourierdemodulation), as well as three methods of WF reconstruction (modal Zernike polynomials expansion, deformable mirror response functions expansion and phase unwrapping), that can be selected during operation with accordance to the application.
A novel adaptive multi-resolution combined watermarking algorithm
NASA Astrophysics Data System (ADS)
Feng, Gui; Lin, QiWei
2008-04-01
The rapid development of IT and WWW technique, causing person frequently confronts with various kinds of authorized identification problem, especially the copyright problem of digital products. The digital watermarking technique was emerged as one kind of solutions. The balance between robustness and imperceptibility is always the object sought by related researchers. In order to settle the problem of robustness and imperceptibility, a novel adaptive multi-resolution combined digital image watermarking algorithm was proposed in this paper. In the proposed algorithm, we first decompose the watermark into several sub-bands, and according to its significance to embed the sub-band to different DWT coefficient of the carrier image. While embedding, the HVS was considered. So under the precondition of keeping the quality of image, the larger capacity of watermark can be embedding. The experimental results have shown that the proposed algorithm has better performance in the aspects of robustness and security. And with the same visual quality, the technique has larger capacity. So the unification of robustness and imperceptibility was achieved.
NASA Astrophysics Data System (ADS)
Schneider, Martin; Kellermann, Walter
2016-01-01
Acoustic echo cancellation (AEC) is a well-known application of adaptive filters in communication acoustics. To implement AEC for multichannel reproduction systems, powerful adaptation algorithms like the generalized frequency-domain adaptive filtering (GFDAF) algorithm are required for satisfactory convergence behavior. In this paper, the GFDAF algorithm is rigorously derived as an approximation of the block recursive least-squares (RLS) algorithm. Thereby, the original formulation of the GFDAF algorithm is generalized while avoiding an error that has been in the original derivation. The presented algorithm formulation is applied to pruned transform-domain loudspeaker-enclosure-microphone models in a mathematically consistent manner. Such pruned models have recently been proposed to cope with the tremendous computational demands of massive multichannel AEC. Beyond its generalization, a regularization of the GFDAF is shown to have a close relation to the well-known block least-mean-squares algorithm.
Contributions to "k"-Means Clustering and Regression via Classification Algorithms
ERIC Educational Resources Information Center
Salman, Raied
2012-01-01
The dissertation deals with clustering algorithms and transforming regression problems into classification problems. The main contributions of the dissertation are twofold; first, to improve (speed up) the clustering algorithms and second, to develop a strict learning environment for solving regression problems as classification tasks by using…
Chen, Zhijia; Zhu, Yuanchang; Di, Yanqiang; Feng, Shaochong
2015-01-01
In IaaS (infrastructure as a service) cloud environment, users are provisioned with virtual machines (VMs). To allocate resources for users dynamically and effectively, accurate resource demands predicting is essential. For this purpose, this paper proposes a self-adaptive prediction method using ensemble model and subtractive-fuzzy clustering based fuzzy neural network (ESFCFNN). We analyze the characters of user preferences and demands. Then the architecture of the prediction model is constructed. We adopt some base predictors to compose the ensemble model. Then the structure and learning algorithm of fuzzy neural network is researched. To obtain the number of fuzzy rules and the initial value of the premise and consequent parameters, this paper proposes the fuzzy c-means combined with subtractive clustering algorithm, that is, the subtractive-fuzzy clustering. Finally, we adopt different criteria to evaluate the proposed method. The experiment results show that the method is accurate and effective in predicting the resource demands. PMID:25691896
A Competency-Based Guided-Learning Algorithm Applied on Adaptively Guiding E-Learning
ERIC Educational Resources Information Center
Hsu, Wei-Chih; Li, Cheng-Hsiu
2015-01-01
This paper presents a new algorithm called competency-based guided-learning algorithm (CBGLA), which can be applied on adaptively guiding e-learning. Computational process analysis and mathematical derivation of competency-based learning (CBL) were used to develop the CBGLA. The proposed algorithm could generate an effective adaptively guiding…
Application of adaptive cluster sampling to low-density populations of freshwater mussels
Smith, D.R.; Villella, R.F.; Lemarie, D.P.
2003-01-01
Freshwater mussels appear to be promising candidates for adaptive cluster sampling because they are benthic macroinvertebrates that cluster spatially and are frequently found at low densities. We applied adaptive cluster sampling to estimate density of freshwater mussels at 24 sites along the Cacapon River, WV, where a preliminary timed search indicated that mussels were present at low density. Adaptive cluster sampling increased yield of individual mussels and detection of uncommon species; however, it did not improve precision of density estimates. Because finding uncommon species, collecting individuals of those species, and estimating their densities are important conservation activities, additional research is warranted on application of adaptive cluster sampling to freshwater mussels. However, at this time we do not recommend routine application of adaptive cluster sampling to freshwater mussel populations. The ultimate, and currently unanswered, question is how to tell when adaptive cluster sampling should be used, i.e., when is a population sufficiently rare and clustered for adaptive cluster sampling to be efficient and practical? A cost-effective procedure needs to be developed to identify biological populations for which adaptive cluster sampling is appropriate.
Security clustering algorithm based on reputation in hierarchical peer-to-peer network
NASA Astrophysics Data System (ADS)
Chen, Mei; Luo, Xin; Wu, Guowen; Tan, Yang; Kita, Kenji
2013-03-01
For the security problems of the hierarchical P2P network (HPN), the paper presents a security clustering algorithm based on reputation (CABR). In the algorithm, we take the reputation mechanism for ensuring the security of transaction and use cluster for managing the reputation mechanism. In order to improve security, reduce cost of network brought by management of reputation and enhance stability of cluster, we select reputation, the historical average online time, and the network bandwidth as the basic factors of the comprehensive performance of node. Simulation results showed that the proposed algorithm improved the security, reduced the network overhead, and enhanced stability of cluster.
A Formal Algorithm for Verifying the Validity of Clustering Results Based on Model Checking
Huang, Shaobin; Cheng, Yuan; Lang, Dapeng; Chi, Ronghua; Liu, Guofeng
2014-01-01
The limitations in general methods to evaluate clustering will remain difficult to overcome if verifying the clustering validity continues to be based on clustering results and evaluation index values. This study focuses on a clustering process to analyze crisp clustering validity. First, we define the properties that must be satisfied by valid clustering processes and model clustering processes based on program graphs and transition systems. We then recast the analysis of clustering validity as the problem of verifying whether the model of clustering processes satisfies the specified properties with model checking. That is, we try to build a bridge between clustering and model checking. Experiments on several datasets indicate the effectiveness and suitability of our algorithms. Compared with traditional evaluation indices, our formal method can not only indicate whether the clustering results are valid but, in the case the results are invalid, can also detect the objects that have led to the invalidity. PMID:24608823
Adaptive centroid-finding algorithm for freeform surface measurements.
Guo, Wenjiang; Zhao, Liping; Tong, Chin Shi; I-Ming, Chen; Joshi, Sunil Chandrakant
2013-04-01
Wavefront sensing systems measure the slope or curvature of a surface by calculating the centroid displacement of two focal spot images. Accurately finding the centroid of each focal spot determines the measurement results. This paper studied several widely used centroid-finding techniques and observed that thresholding is the most critical factor affecting the centroid-finding accuracy. Since the focal spot image of a freeform surface usually suffers from various types of image degradation, it is difficult and sometimes impossible to set a best threshold value for the whole image. We propose an adaptive centroid-finding algorithm to tackle this problem and have experimentally proven its effectiveness in measuring freeform surfaces. PMID:23545985
An adaptive genetic algorithm for crystal structure prediction
Wu, Shunqing; Ji, Min; Wang, Cai-Zhuang; Nguyen, Manh Cuong; Zhao, Xin; Umemoto, K.; Wentzcovitch, R. M.; Ho, Kai-Ming
2013-12-18
We present a genetic algorithm (GA) for structural search that combines the speed of structure exploration by classical potentials with the accuracy of density functional theory (DFT) calculations in an adaptive and iterative way. This strategy increases the efficiency of the DFT-based GA by several orders of magnitude. This gain allows a considerable increase in the size and complexity of systems that can be studied by first principles. The performance of the method is illustrated by successful structure identifications of complex binary and ternary intermetallic compounds with 36 and 54 atoms per cell, respectively. The discovery of a multi-TPa Mg-silicate phase with unit cell containing up to 56 atoms is also reported. Such a phase is likely to be an essential component of terrestrial exoplanetary mantles.
Algorithms and data structures for adaptive multigrid elliptic solvers
NASA Technical Reports Server (NTRS)
Vanrosendale, J.
1983-01-01
Adaptive refinement and the complicated data structures required to support it are discussed. These data structures must be carefully tuned, especially in three dimensions where the time and storage requirements of algorithms are crucial. Another major issue is grid generation. The options available seem to be curvilinear fitted grids, constructed on iterative graphics systems, and unfitted Cartesian grids, which can be constructed automatically. On several grounds, including storage requirements, the second option seems preferrable for the well behaved scalar elliptic problems considered here. A variety of techniques for treatment of boundary conditions on such grids are reviewed. A new approach, which may overcome some of the difficulties encountered with previous approaches, is also presented.
Self-adaptive closed constrained solution algorithms for nonlinear conduction
NASA Technical Reports Server (NTRS)
Padovan, J.; Tovichakchaikul, S.
1982-01-01
Self-adaptive solution algorithms are developed for nonlinear heat conduction problems encountered in analyzing materials for use in high temperature or cryogenic conditions. The nonlinear effects are noted to occur due to convection and radiation effects, as well as temperature-dependent properties of the materials. Incremental successive substitution (ISS) and Newton-Raphson (NR) procedures are treated as extrapolation schemes which have solution projections bounded by a hyperline with an externally applied thermal load vector arising from internal heat generation and boundary conditions. Closed constraints are formulated which improve the efficiency and stability of the procedures by employing closed ellipsoidal surfaces to control the size of successive iterations. Governing equations are defined for nonlinear finite element models, and comparisons are made of results using the the new method and the ISS and NR schemes for epoxy, PVC, and CuGe.
Parallelization of the Wolff single-cluster algorithm.
Kaupuzs, J; Rimsāns, J; Melnik, R V N
2010-02-01
A parallel [open multiprocessing (OpenMP)] implementation of the Wolff single-cluster algorithm has been developed and tested for the three-dimensional (3D) Ising model. The developed procedure is generalizable to other lattice spin models and its effectiveness depends on the specific application at hand. The applicability of the developed methodology is discussed in the context of the applications, where a sophisticated shuffling scheme is used to generate pseudorandom numbers of high quality, and an iterative method is applied to find the critical temperature of the 3D Ising model with a great accuracy. For the lattice with linear size L=1024, we have reached the speedup about 1.79 times on two processors and about 2.67 times on four processors, as compared to the serial code. According to our estimation, the speedup about three times on four processors is reachable for the O(n) models with n> or =2. Furthermore, the application of the developed OpenMP code allows us to simulate larger lattices due to greater operative (shared) memory available. PMID:20365669
Using Clustering Algorithms to Identify Brown Dwarf Characteristics
NASA Astrophysics Data System (ADS)
Choban, Caleb
2016-06-01
Brown dwarfs are stars that are not massive enough to sustain core hydrogen fusion, and thus fade and cool over time. The molecular composition of brown dwarf atmospheres can be determined by observing absorption features in their infrared spectrum, which can be quantified using spectral indices. Comparing these indices to one another, we can determine what kind of brown dwarf it is, and if it is young or metal-poor. We explored a new method for identifying these subgroups through the expectation-maximization machine learning clustering algorithm, which provides a quantitative and statistical way of identifying index pairs which separate rare populations. We specifically quantified two statistics, completeness and concentration, to identify the best index pairs. Starting with a training set, we defined selection regions for young, metal-poor and binary brown dwarfs, and tested these on a large sample of L dwarfs. We present the results of this analysis, and demonstrate that new objects in these classes can be found through these methods.
A heart disease recognition embedded system with fuzzy cluster algorithm.
de Carvalho, Helton Hugo; Moreno, Robson Luiz; Pimenta, Tales Cleber; Crepaldi, Paulo C; Cintra, Evaldo
2013-06-01
This article presents the viability analysis and the development of heart disease identification embedded system. It offers a time reduction on electrocardiogram - ECG signal processing by reducing the amount of data samples, without any significant loss. The goal of the developed system is the analysis of heart signals. The ECG signals are applied into the system that performs an initial filtering, and then uses a Gustafson-Kessel fuzzy clustering algorithm for the signal classification and correlation. The classification indicated common heart diseases such as angina, myocardial infarction and coronary artery diseases. The system uses the European electrocardiogram ST-T Database (EDB) as a reference for tests and evaluation. The results prove the system can perform the heart disease detection on a data set reduced from 213 to just 20 samples, thus providing a reduction to just 9.4% of the original set, while maintaining the same effectiveness. This system is validated in a Xilinx Spartan(®)-3A FPGA. The field programmable gate array (FPGA) implemented a Xilinx Microblaze(®) Soft-Core Processor running at a 50MHz clock rate. PMID:23394802
Combining text clustering and retrieval for corpus adaptation
NASA Astrophysics Data System (ADS)
He, Feng; Ding, Xiaoqing
2007-01-01
The application-relevant text data are very useful in various natural language applications. Using them can achieve significantly better performance for vocabulary selection, language modeling, which are widely employed in automatic speech recognition, intelligent input method etc. In some situations, however, the relevant data is hard to collect. Thus, the scarcity of application-relevant training text brings difficulty upon these natural language processing. In this paper, only using a small set of application specific text, by combining unsupervised text clustering and text retrieval techniques, the proposed approach can find the relevant text from unorganized large scale corpus, thereby, adapt training corpus towards the application area of interest. We use the performance of n-gram statistical language model, which is trained from the text retrieved and test on the application-specific text, to evaluate the relevance of the text acquired, accordingly, to validate the effectiveness of our corpus adaptation approach. The language models trained from the ranked text bundles present well discriminated perplexities on the application-specific text. The preliminary experiments on short message text and unorganized large corpus demonstrate the performance of the proposed methods.
Design of infrasound-detection system via adaptive LMSTDE algorithm
NASA Technical Reports Server (NTRS)
Khalaf, C. S.; Stoughton, J. W.
1984-01-01
A proposed solution to an aviation safety problem is based on passive detection of turbulent weather phenomena through their infrasonic emission. This thesis describes a system design that is adequate for detection and bearing evaluation of infrasounds. An array of four sensors, with the appropriate hardware, is used for the detection part. Bearing evaluation is based on estimates of time delays between sensor outputs. The generalized cross correlation (GCC), as the conventional time-delay estimation (TDE) method, is first reviewed. An adaptive TDE approach, using the least mean square (LMS) algorithm, is then discussed. A comparison between the two techniques is made and the advantages of the adaptive approach are listed. The behavior of the GCC, as a Roth processor, is examined for the anticipated signals. It is shown that the Roth processor has the desired effect of sharpening the peak of the correlation function. It is also shown that the LMSTDE technique is an equivalent implementation of the Roth processor in the time domain. A LMSTDE lead-lag model, with a variable stability coefficient and a convergence criterion, is designed.
A wavelet packet adaptive filtering algorithm for enhancing manatee vocalizations.
Gur, M Berke; Niezrecki, Christopher
2011-04-01
Approximately a quarter of all West Indian manatee (Trichechus manatus latirostris) mortalities are attributed to collisions with watercraft. A boater warning system based on the passive acoustic detection of manatee vocalizations is one possible solution to reduce manatee-watercraft collisions. The success of such a warning system depends on effective enhancement of the vocalization signals in the presence of high levels of background noise, in particular, noise emitted from watercraft. Recent research has indicated that wavelet domain pre-processing of the noisy vocalizations is capable of significantly improving the detection ranges of passive acoustic vocalization detectors. In this paper, an adaptive denoising procedure, implemented on the wavelet packet transform coefficients obtained from the noisy vocalization signals, is investigated. The proposed denoising algorithm is shown to improve the manatee detection ranges by a factor ranging from two (minimum) to sixteen (maximum) compared to high-pass filtering alone, when evaluated using real manatee vocalization and background noise signals of varying signal-to-noise ratios (SNR). Furthermore, the proposed method is also shown to outperform a previously suggested feedback adaptive line enhancer (FALE) filter on average 3.4 dB in terms of noise suppression and 0.6 dB in terms of waveform preservation. PMID:21476661
Clustering performance comparison using K-means and expectation maximization algorithms
Jung, Yong Gyu; Kang, Min Soo; Heo, Jun
2014-01-01
Clustering is an important means of data mining based on separating data categories by similar features. Unlike the classification algorithm, clustering belongs to the unsupervised type of algorithms. Two representatives of the clustering algorithms are the K-means and the expectation maximization (EM) algorithm. Linear regression analysis was extended to the category-type dependent variable, while logistic regression was achieved using a linear combination of independent variables. To predict the possibility of occurrence of an event, a statistical approach is used. However, the classification of all data by means of logistic regression analysis cannot guarantee the accuracy of the results. In this paper, the logistic regression analysis is applied to EM clusters and the K-means clustering method for quality assessment of red wine, and a method is proposed for ensuring the accuracy of the classification results. PMID:26019610
Sun, Liping; Luo, Yonglong; Ding, Xintao; Zhang, Ji
2014-01-01
An important component of a spatial clustering algorithm is the distance measure between sample points in object space. In this paper, the traditional Euclidean distance measure is replaced with innovative obstacle distance measure for spatial clustering under obstacle constraints. Firstly, we present a path searching algorithm to approximate the obstacle distance between two points for dealing with obstacles and facilitators. Taking obstacle distance as similarity metric, we subsequently propose the artificial immune clustering with obstacle entity (AICOE) algorithm for clustering spatial point data in the presence of obstacles and facilitators. Finally, the paper presents a comparative analysis of AICOE algorithm and the classical clustering algorithms. Our clustering model based on artificial immune system is also applied to the case of public facility location problem in order to establish the practical applicability of our approach. By using the clone selection principle and updating the cluster centers based on the elite antibodies, the AICOE algorithm is able to achieve the global optimum and better clustering effect. PMID:25435862
A highly efficient multi-core algorithm for clustering extremely large datasets
2010-01-01
Background In recent years, the demand for computational power in computational biology has increased due to rapidly growing data sets from microarray and other high-throughput technologies. This demand is likely to increase. Standard algorithms for analyzing data, such as cluster algorithms, need to be parallelized for fast processing. Unfortunately, most approaches for parallelizing algorithms largely rely on network communication protocols connecting and requiring multiple computers. One answer to this problem is to utilize the intrinsic capabilities in current multi-core hardware to distribute the tasks among the different cores of one computer. Results We introduce a multi-core parallelization of the k-means and k-modes cluster algorithms based on the design principles of transactional memory for clustering gene expression microarray type data and categorial SNP data. Our new shared memory parallel algorithms show to be highly efficient. We demonstrate their computational power and show their utility in cluster stability and sensitivity analysis employing repeated runs with slightly changed parameters. Computation speed of our Java based algorithm was increased by a factor of 10 for large data sets while preserving computational accuracy compared to single-core implementations and a recently published network based parallelization. Conclusions Most desktop computers and even notebooks provide at least dual-core processors. Our multi-core algorithms show that using modern algorithmic concepts, parallelization makes it possible to perform even such laborious tasks as cluster sensitivity and cluster number estimation on the laboratory computer. PMID:20370922
C-element: a new clustering algorithm to find high quality functional modules in PPI networks.
Ghasemi, Mahdieh; Rahgozar, Maseud; Bidkhori, Gholamreza; Masoudi-Nejad, Ali
2013-01-01
Graph clustering algorithms are widely used in the analysis of biological networks. Extracting functional modules in protein-protein interaction (PPI) networks is one such use. Most clustering algorithms whose focuses are on finding functional modules try either to find a clique like sub networks or to grow clusters starting from vertices with high degrees as seeds. These algorithms do not make any difference between a biological network and any other networks. In the current research, we present a new procedure to find functional modules in PPI networks. Our main idea is to model a biological concept and to use this concept for finding good functional modules in PPI networks. In order to evaluate the quality of the obtained clusters, we compared the results of our algorithm with those of some other widely used clustering algorithms on three high throughput PPI networks from Sacchromyces Cerevisiae, Homo sapiens and Caenorhabditis elegans as well as on some tissue specific networks. Gene Ontology (GO) analyses were used to compare the results of different algorithms. Each algorithm's result was then compared with GO-term derived functional modules. We also analyzed the effect of using tissue specific networks on the quality of the obtained clusters. The experimental results indicate that the new algorithm outperforms most of the others, and this improvement is more significant when tissue specific networks are used. PMID:24039752
NASA Astrophysics Data System (ADS)
Zhang, Han; Chen, Xuefeng; Du, Zhaohui; Li, Xiang; Yan, Ruqiang
2016-04-01
Fault information of aero-engine bearings presents two particular phenomena, i.e., waveform distortion and impulsive feature frequency band dispersion, which leads to a challenging problem for current techniques of bearing fault diagnosis. Moreover, although many progresses of sparse representation theory have been made in feature extraction of fault information, the theory also confronts inevitable performance degradation due to the fact that relatively weak fault information has not sufficiently prominent and sparse representations. Therefore, a novel nonlocal sparse model (coined NLSM) and its algorithm framework has been proposed in this paper, which goes beyond simple sparsity by introducing more intrinsic structures of feature information. This work adequately exploits the underlying prior information that feature information exhibits nonlocal self-similarity through clustering similar signal fragments and stacking them together into groups. Within this framework, the prior information is transformed into a regularization term and a sparse optimization problem, which could be solved through block coordinate descent method (BCD), is formulated. Additionally, the adaptive structural clustering sparse dictionary learning technique, which utilizes k-Nearest-Neighbor (kNN) clustering and principal component analysis (PCA) learning, is adopted to further enable sufficient sparsity of feature information. Moreover, the selection rule of regularization parameter and computational complexity are described in detail. The performance of the proposed framework is evaluated through numerical experiment and its superiority with respect to the state-of-the-art method in the field is demonstrated through the vibration signals of experimental rig of aircraft engine bearings.
An adaptive regression mixture model for fMRI cluster analysis.
Oikonomou, Vangelis P; Blekas, Konstantinos
2013-04-01
Functional magnetic resonance imaging (fMRI) has become one of the most important techniques for studying the human brain in action. A common problem in fMRI analysis is the detection of activated brain regions in response to an experimental task. In this work we propose a novel clustering approach for addressing this issue using an adaptive regression mixture model. The main contribution of our method is the employment of both spatial and sparse properties over the body of the mixture model. Thus, the clustering approach is converted into a maximum a posteriori estimation approach, where the expectation-maximization algorithm is applied for model training. Special care is also given to estimate the kernel scalar parameter per cluster of the design matrix by presenting a multi-kernel scheme. In addition an incremental training procedure is presented so as to make the approach independent on the initialization of the model parameters. The latter also allows us to introduce an efficient stopping criterion of the process for determining the optimum brain activation area. To assess the effectiveness of our method, we have conducted experiments with simulated and real fMRI data, where we have demonstrated its ability to produce improved performance and functional activation detection capabilities. PMID:23047865
A Special Local Clustering Algorithm for Identifying the Genes Associated With Alzheimer’s Disease
Pang, Chao-Yang; Hu, Wei; Hu, Ben-Qiong; Shi, Ying; Vanderburg, Charles R.; Rogers, Jack T.
2010-01-01
Clustering is the grouping of similar objects into a class. Local clustering feature refers to the phenomenon whereby one group of data is separated from another, and the data from these different groups are clustered locally. A compact class is defined as one cluster in which all similar elements cluster tightly within the cluster. Herein, the essence of the local clustering feature, revealed by mathematical manipulation, results in a novel clustering algorithm termed as the special local clustering (SLC) algorithm that was used to process gene microarray data related to Alzheimer’s disease (AD). SLC algorithm was able to group together genes with similar expression patterns and identify significantly varied gene expression values as isolated points. If a gene belongs to a compact class in control data and appears as an isolated point in incipient, moderate and/or severe AD gene microarray data, this gene is possibly associated with AD. Application of a clustering algorithm in disease-associated gene identification such as in AD is rarely reported. PMID:20089478
Deb, Suash; Yang, Xin-She
2014-01-01
Traditional K-means clustering algorithms have the drawback of getting stuck at local optima that depend on the random values of initial centroids. Optimization algorithms have their advantages in guiding iterative computation to search for global optima while avoiding local optima. The algorithms help speed up the clustering process by converging into a global optimum early with multiple search agents in action. Inspired by nature, some contemporary optimization algorithms which include Ant, Bat, Cuckoo, Firefly, and Wolf search algorithms mimic the swarming behavior allowing them to cooperatively steer towards an optimal objective within a reasonable time. It is known that these so-called nature-inspired optimization algorithms have their own characteristics as well as pros and cons in different applications. When these algorithms are combined with K-means clustering mechanism for the sake of enhancing its clustering quality by avoiding local optima and finding global optima, the new hybrids are anticipated to produce unprecedented performance. In this paper, we report the results of our evaluation experiments on the integration of nature-inspired optimization methods into K-means algorithms. In addition to the standard evaluation metrics in evaluating clustering quality, the extended K-means algorithms that are empowered by nature-inspired optimization methods are applied on image segmentation as a case study of application scenario. PMID:25202730
Fong, Simon; Deb, Suash; Yang, Xin-She; Zhuang, Yan
2014-01-01
Traditional K-means clustering algorithms have the drawback of getting stuck at local optima that depend on the random values of initial centroids. Optimization algorithms have their advantages in guiding iterative computation to search for global optima while avoiding local optima. The algorithms help speed up the clustering process by converging into a global optimum early with multiple search agents in action. Inspired by nature, some contemporary optimization algorithms which include Ant, Bat, Cuckoo, Firefly, and Wolf search algorithms mimic the swarming behavior allowing them to cooperatively steer towards an optimal objective within a reasonable time. It is known that these so-called nature-inspired optimization algorithms have their own characteristics as well as pros and cons in different applications. When these algorithms are combined with K-means clustering mechanism for the sake of enhancing its clustering quality by avoiding local optima and finding global optima, the new hybrids are anticipated to produce unprecedented performance. In this paper, we report the results of our evaluation experiments on the integration of nature-inspired optimization methods into K-means algorithms. In addition to the standard evaluation metrics in evaluating clustering quality, the extended K-means algorithms that are empowered by nature-inspired optimization methods are applied on image segmentation as a case study of application scenario. PMID:25202730
Block clustering based on difference of convex functions (DC) programming and DC algorithms.
Le, Hoai Minh; Le Thi, Hoai An; Dinh, Tao Pham; Huynh, Van Ngai
2013-10-01
We investigate difference of convex functions (DC) programming and the DC algorithm (DCA) to solve the block clustering problem in the continuous framework, which traditionally requires solving a hard combinatorial optimization problem. DC reformulation techniques and exact penalty in DC programming are developed to build an appropriate equivalent DC program of the block clustering problem. They lead to an elegant and explicit DCA scheme for the resulting DC program. Computational experiments show the robustness and efficiency of the proposed algorithm and its superiority over standard algorithms such as two-mode K-means, two-mode fuzzy clustering, and block classification EM. PMID:23777526
Ab initio study on (CO2)n clusters via electrostatics- and molecular tailoring-based algorithm
NASA Astrophysics Data System (ADS)
Jovan Jose, K. V.; Gadre, Shridhar R.
An algorithm based on molecular electrostatic potential (MESP) and molecular tailoring approach (MTA) for building energetically favorable molecular clusters is presented. This algorithm is tested on prototype (CO2)n clusters with n = 13, 20, and 25 to explore their structure, energetics, and properties. The most stable clusters in this series are seen to show more number of triangular motifs. Many-body energy decomposition analysis performed on the most stable clusters reveals that the 2-body is the major contributor (>96%) to the total interaction energy. Vibrational frequencies and molecular electrostatic potentials are also evaluated for these large clusters through MTA. The MTA-based MESPs of these clusters show a remarkably good agreement with the corresponding actual ones. The most intense MTA-based normal mode frequencies are in fair agreement with the actual ones for smaller clusters. These calculated asymmetric stretching frequencies are blue-shifted with reference to the CO2 monomer.
Chinese Text Clustering Algorithm Based k-means
NASA Astrophysics Data System (ADS)
Yao, Mingyu; Pi, Dechang; Cong, Xiangxiang
Text clustering is an important means and method in text mining. The process of Chinese text clustering based on k-means was emphasized, we found that new center of a cluster was easily effected by isolated text after some experiments. Average similarity of one cluster was used as a parameter, and multiplied it with a modulus between 0.75 and 1.25 to get the similarity threshold value, the texts whose similarity with original cluster center was greater than or equal to the threshold value ware collected as a candidate collection, then updated the cluster center with center of candidate collection. The experiments show that improved method averagely increased purity and F value about 10 percent over the original method.
A scalable and practical one-pass clustering algorithm for recommender system
NASA Astrophysics Data System (ADS)
Khalid, Asra; Ghazanfar, Mustansar Ali; Azam, Awais; Alahmari, Saad Ali
2015-12-01
KMeans clustering-based recommendation algorithms have been proposed claiming to increase the scalability of recommender systems. One potential drawback of these algorithms is that they perform training offline and hence cannot accommodate the incremental updates with the arrival of new data, making them unsuitable for the dynamic environments. From this line of research, a new clustering algorithm called One-Pass is proposed, which is a simple, fast, and accurate. We show empirically that the proposed algorithm outperforms K-Means in terms of recommendation and training time while maintaining a good level of accuracy.
NASA Technical Reports Server (NTRS)
Mach, Douglas M.; Christian, Hugh J.; Blakeslee, Richard; Boccippio, Dennis J.; Goodman, Steve J.; Boeck, William
2006-01-01
We describe the clustering algorithm used by the Lightning Imaging Sensor (LIS) and the Optical Transient Detector (OTD) for combining the lightning pulse data into events, groups, flashes, and areas. Events are single pixels that exceed the LIS/OTD background level during a single frame (2 ms). Groups are clusters of events that occur within the same frame and in adjacent pixels. Flashes are clusters of groups that occur within 330 ms and either 5.5 km (for LIS) or 16.5 km (for OTD) of each other. Areas are clusters of flashes that occur within 16.5 km of each other. Many investigators are utilizing the LIS/OTD flash data; therefore, we test how variations in the algorithms for the event group and group-flash clustering affect the flash count for a subset of the LIS data. We divided the subset into areas with low (1-3), medium (4-15), high (16-63), and very high (64+) flashes to see how changes in the clustering parameters affect the flash rates in these different sizes of areas. We found that as long as the cluster parameters are within about a factor of two of the current values, the flash counts do not change by more than about 20%. Therefore, the flash clustering algorithm used by the LIS and OTD sensors create flash rates that are relatively insensitive to reasonable variations in the clustering algorithms.
A new clustering algorithm for scanning electron microscope images
NASA Astrophysics Data System (ADS)
Yousef, Amr; Duraisamy, Prakash; Karim, Mohammad
2016-04-01
A scanning electron microscope (SEM) is a type of electron microscope that produces images of a sample by scanning it with a focused beam of electrons. The electrons interact with the sample atoms, producing various signals that are collected by detectors. The gathered signals contain information about the sample's surface topography and composition. The electron beam is generally scanned in a raster scan pattern, and the beam's position is combined with the detected signal to produce an image. The most common configuration for an SEM produces a single value per pixel, with the results usually rendered as grayscale images. The captured images may be produced with insufficient brightness, anomalous contrast, jagged edges, and poor quality due to low signal-to-noise ratio, grained topography and poor surface details. The segmentation of the SEM images is a tackling problems in the presence of the previously mentioned distortions. In this paper, we are stressing on the clustering of these type of images. In that sense, we evaluate the performance of the well-known unsupervised clustering and classification techniques such as connectivity based clustering (hierarchical clustering), centroid-based clustering, distribution-based clustering and density-based clustering. Furthermore, we propose a new spatial fuzzy clustering technique that works efficiently on this type of images and compare its results against these regular techniques in terms of clustering validation metrics.
Evaluating Knowledge Structure-Based Adaptive Testing Algorithms and System Development
ERIC Educational Resources Information Center
Wu, Huey-Min; Kuo, Bor-Chen; Yang, Jinn-Min
2012-01-01
In recent years, many computerized test systems have been developed for diagnosing students' learning profiles. Nevertheless, it remains a challenging issue to find an adaptive testing algorithm to both shorten testing time and precisely diagnose the knowledge status of students. In order to find a suitable algorithm, four adaptive testing…
Adaptable Particle-in-Cell Algorithms for Graphical Processing Units
NASA Astrophysics Data System (ADS)
Decyk, Viktor; Singh, Tajendra
2010-11-01
Emerging computer architectures consist of an increasing number of shared memory computing cores in a chip, often with vector (SIMD) co-processors. Future exascale high performance systems will consist of a hierarchy of such nodes, which will require different algorithms at different levels. Since no one knows exactly how the future will evolve, we have begun development of an adaptable Particle-in-Cell (PIC) code, whose parameters can match different hardware configurations. The data structures reflect three levels of parallelism, contiguous vectors and non-contiguous blocks of vectors, which can share memory, and groups of blocks which do not. Particles are kept ordered at each time step, and the size of a sorting cell is an adjustable parameter. We have implemented a simple 2D electrostatic skeleton code whose inner loop (containing 6 subroutines) runs entirely on the NVIDIA Tesla C1060. We obtained speedups of about 16-25 compared to a 2.66 GHz Intel i7 (Nehalem), depending on the plasma temperature, with an asymptotic limit of 40 for a frozen plasma. We expect speedups of about 70 for an 2D electromagnetic code and about 100 for a 3D electromagnetic code, which have higher computational intensities (more flops/memory access).
A Novel Artificial Bee Colony Based Clustering Algorithm for Categorical Data
2015-01-01
Data with categorical attributes are ubiquitous in the real world. However, existing partitional clustering algorithms for categorical data are prone to fall into local optima. To address this issue, in this paper we propose a novel clustering algorithm, ABC-K-Modes (Artificial Bee Colony clustering based on K-Modes), based on the traditional k-modes clustering algorithm and the artificial bee colony approach. In our approach, we first introduce a one-step k-modes procedure, and then integrate this procedure with the artificial bee colony approach to deal with categorical data. In the search process performed by scout bees, we adopt the multi-source search inspired by the idea of batch processing to accelerate the convergence of ABC-K-Modes. The performance of ABC-K-Modes is evaluated by a series of experiments in comparison with that of the other popular algorithms for categorical data. PMID:25993469
A novel artificial bee colony based clustering algorithm for categorical data.
Ji, Jinchao; Pang, Wei; Zheng, Yanlin; Wang, Zhe; Ma, Zhiqiang
2015-01-01
Data with categorical attributes are ubiquitous in the real world. However, existing partitional clustering algorithms for categorical data are prone to fall into local optima. To address this issue, in this paper we propose a novel clustering algorithm, ABC-K-Modes (Artificial Bee Colony clustering based on K-Modes), based on the traditional k-modes clustering algorithm and the artificial bee colony approach. In our approach, we first introduce a one-step k-modes procedure, and then integrate this procedure with the artificial bee colony approach to deal with categorical data. In the search process performed by scout bees, we adopt the multi-source search inspired by the idea of batch processing to accelerate the convergence of ABC-K-Modes. The performance of ABC-K-Modes is evaluated by a series of experiments in comparison with that of the other popular algorithms for categorical data. PMID:25993469
Gardiner, Eleanor J; Gillet, Valerie J; Willett, Peter; Cosgrove, David A
2007-01-01
Chemical databases are routinely clustered, with the aim of grouping molecules which share similar structural features. Ideally, medicinal chemists are then able to browse a few representatives of the cluster in order to interpret the shared activity of the cluster members. However, when molecules are clustered using fingerprints, it may be difficult to decipher the structural commonalities which are present. Here, we seek to represent a cluster by means of a maximum common substructure based on the shared functionality of the cluster members. Previously, we have used reduced graphs, where each node corresponds to a generalized functional group, as topological molecular descriptors for virtual screening. In this work, we precluster a database using any clustering method. We then represent the molecules in a cluster as reduced graphs. By repeated application of a maximum common edge substructure (MCES) algorithm, we obtain one or more reduced graph cluster representatives. The sparsity of the reduced graphs means that the MCES calculations can be performed in real time. The reduced graph cluster representatives are readily interpretable in terms of functional activity and can be mapped directly back to the molecules to which they correspond, giving the chemist a rapid means of assessing potential activities contained within the cluster. Clusters of interest are then subject to a detailed R-group analysis using the same iterated MCES algorithm applied to the molecular graphs. PMID:17309248
NASA Astrophysics Data System (ADS)
Sun, Xu; Yang, Lina; Gao, Lianru; Zhang, Bing; Li, Shanshan; Li, Jun
2015-01-01
Center-oriented hyperspectral image clustering methods have been widely applied to hyperspectral remote sensing image processing; however, the drawbacks are obvious, including the over-simplicity of computing models and underutilized spatial information. In recent years, some studies have been conducted trying to improve this situation. We introduce the artificial bee colony (ABC) and Markov random field (MRF) algorithms to propose an ABC-MRF-cluster model to solve the problems mentioned above. In this model, a typical ABC algorithm framework is adopted in which cluster centers and iteration conditional model algorithm's results are considered as feasible solutions and objective functions separately, and MRF is modified to be capable of dealing with the clustering problem. Finally, four datasets and two indices are used to show that the application of ABC-cluster and ABC-MRF-cluster methods could help to obtain better image accuracy than conventional methods. Specifically, the ABC-cluster method is superior when used for a higher power of spectral discrimination, whereas the ABC-MRF-cluster method can provide better results when used for an adjusted random index. In experiments on simulated images with different signal-to-noise ratios, ABC-cluster and ABC-MRF-cluster showed good stability.
Improved fuzzy clustering algorithms in segmentation of DC-enhanced breast MRI.
Kannan, S R; Ramathilagam, S; Devi, Pandiyarajan; Sathya, A
2012-02-01
Segmentation of medical images is a difficult and challenging problem due to poor image contrast and artifacts that result in missing or diffuse organ/tissue boundaries. Many researchers have applied various techniques however fuzzy c-means (FCM) based algorithms is more effective compared to other methods. The objective of this work is to develop some robust fuzzy clustering segmentation systems for effective segmentation of DCE - breast MRI. This paper obtains the robust fuzzy clustering algorithms by incorporating kernel methods, penalty terms, tolerance of the neighborhood attraction, additional entropy term and fuzzy parameters. The initial centers are obtained using initialization algorithm to reduce the computation complexity and running time of proposed algorithms. Experimental works on breast images show that the proposed algorithms are effective to improve the similarity measurement, to handle large amount of noise, to have better results in dealing the data corrupted by noise, and other artifacts. The clustering results of proposed methods are validated using Silhouette Method. PMID:20703716
An Improved Fuzzy c-Means Clustering Algorithm Based on Shadowed Sets and PSO
Zhang, Jian; Shen, Ling
2014-01-01
To organize the wide variety of data sets automatically and acquire accurate classification, this paper presents a modified fuzzy c-means algorithm (SP-FCM) based on particle swarm optimization (PSO) and shadowed sets to perform feature clustering. SP-FCM introduces the global search property of PSO to deal with the problem of premature convergence of conventional fuzzy clustering, utilizes vagueness balance property of shadowed sets to handle overlapping among clusters, and models uncertainty in class boundaries. This new method uses Xie-Beni index as cluster validity and automatically finds the optimal cluster number within a specific range with cluster partitions that provide compact and well-separated clusters. Experiments show that the proposed approach significantly improves the clustering effect. PMID:25477953
Sheng, Zheng; Wang, Jun; Zhou, Shudao; Zhou, Bihua
2014-03-01
This paper introduces a novel hybrid optimization algorithm to establish the parameters of chaotic systems. In order to deal with the weaknesses of the traditional cuckoo search algorithm, the proposed adaptive cuckoo search with simulated annealing algorithm is presented, which incorporates the adaptive parameters adjusting operation and the simulated annealing operation in the cuckoo search algorithm. Normally, the parameters of the cuckoo search algorithm are kept constant that may result in decreasing the efficiency of the algorithm. For the purpose of balancing and enhancing the accuracy and convergence rate of the cuckoo search algorithm, the adaptive operation is presented to tune the parameters properly. Besides, the local search capability of cuckoo search algorithm is relatively weak that may decrease the quality of optimization. So the simulated annealing operation is merged into the cuckoo search algorithm to enhance the local search ability and improve the accuracy and reliability of the results. The functionality of the proposed hybrid algorithm is investigated through the Lorenz chaotic system under the noiseless and noise condition, respectively. The numerical results demonstrate that the method can estimate parameters efficiently and accurately in the noiseless and noise condition. Finally, the results are compared with the traditional cuckoo search algorithm, genetic algorithm, and particle swarm optimization algorithm. Simulation results demonstrate the effectiveness and superior performance of the proposed algorithm. PMID:24697395
Sheng, Zheng; Wang, Jun; Zhou, Bihua; Zhou, Shudao
2014-03-15
This paper introduces a novel hybrid optimization algorithm to establish the parameters of chaotic systems. In order to deal with the weaknesses of the traditional cuckoo search algorithm, the proposed adaptive cuckoo search with simulated annealing algorithm is presented, which incorporates the adaptive parameters adjusting operation and the simulated annealing operation in the cuckoo search algorithm. Normally, the parameters of the cuckoo search algorithm are kept constant that may result in decreasing the efficiency of the algorithm. For the purpose of balancing and enhancing the accuracy and convergence rate of the cuckoo search algorithm, the adaptive operation is presented to tune the parameters properly. Besides, the local search capability of cuckoo search algorithm is relatively weak that may decrease the quality of optimization. So the simulated annealing operation is merged into the cuckoo search algorithm to enhance the local search ability and improve the accuracy and reliability of the results. The functionality of the proposed hybrid algorithm is investigated through the Lorenz chaotic system under the noiseless and noise condition, respectively. The numerical results demonstrate that the method can estimate parameters efficiently and accurately in the noiseless and noise condition. Finally, the results are compared with the traditional cuckoo search algorithm, genetic algorithm, and particle swarm optimization algorithm. Simulation results demonstrate the effectiveness and superior performance of the proposed algorithm.
NASA Astrophysics Data System (ADS)
Sheng, Zheng; Wang, Jun; Zhou, Shudao; Zhou, Bihua
2014-03-01
This paper introduces a novel hybrid optimization algorithm to establish the parameters of chaotic systems. In order to deal with the weaknesses of the traditional cuckoo search algorithm, the proposed adaptive cuckoo search with simulated annealing algorithm is presented, which incorporates the adaptive parameters adjusting operation and the simulated annealing operation in the cuckoo search algorithm. Normally, the parameters of the cuckoo search algorithm are kept constant that may result in decreasing the efficiency of the algorithm. For the purpose of balancing and enhancing the accuracy and convergence rate of the cuckoo search algorithm, the adaptive operation is presented to tune the parameters properly. Besides, the local search capability of cuckoo search algorithm is relatively weak that may decrease the quality of optimization. So the simulated annealing operation is merged into the cuckoo search algorithm to enhance the local search ability and improve the accuracy and reliability of the results. The functionality of the proposed hybrid algorithm is investigated through the Lorenz chaotic system under the noiseless and noise condition, respectively. The numerical results demonstrate that the method can estimate parameters efficiently and accurately in the noiseless and noise condition. Finally, the results are compared with the traditional cuckoo search algorithm, genetic algorithm, and particle swarm optimization algorithm. Simulation results demonstrate the effectiveness and superior performance of the proposed algorithm.
Belyakov, A.A.; Mal`tsev, A.A.; Medvedev, S.Yu.
1995-04-01
A modified least squares algorithm, preventing the overflow of the discharge grid of weight coefficients of an adaptive transverse filter and guaranteeing stable system operation, is suggested for the tuning of an adaptive system of an actively quenched sound field. Experimental results are provided for an adaptive filter with a modified algorithm in a system of several harmonic components of an actively quenched sound field.
An Adaptive RFID Anti-Collision Algorithm Based on Dynamic Framed ALOHA
NASA Astrophysics Data System (ADS)
Lee, Chang Woo; Cho, Hyeonwoo; Kim, Sang Woo
The collision of ID signals from a large number of colocated passive RFID tags is a serious problem; to realize a practical RFID systems we need an effective anti-collision algorithm. This letter presents an adaptive algorithm to minimize the total time slots and the number of rounds required for identifying the tags within the RFID reader's interrogation zone. The proposed algorithm is based on the framed ALOHA protocol, and the frame size is adaptively updated each round. Simulation results show that our proposed algorithm is more efficient than the conventional algorithms based on the framed ALOHA.
A new clustering algorithm applicable to multispectral and polarimetric SAR images
NASA Technical Reports Server (NTRS)
Wong, Yiu-Fai; Posner, Edward C.
1993-01-01
We describe an application of a scale-space clustering algorithm to the classification of a multispectral and polarimetric SAR image of an agricultural site. After the initial polarimetric and radiometric calibration and noise cancellation, we extracted a 12-dimensional feature vector for each pixel from the scattering matrix. The clustering algorithm was able to partition a set of unlabeled feature vectors from 13 selected sites, each site corresponding to a distinct crop, into 13 clusters without any supervision. The cluster parameters were then used to classify the whole image. The classification map is much less noisy and more accurate than those obtained by hierarchical rules. Starting with every point as a cluster, the algorithm works by melting the system to produce a tree of clusters in the scale space. It can cluster data in any multidimensional space and is insensitive to variability in cluster densities, sizes and ellipsoidal shapes. This algorithm, more powerful than existing ones, may be useful for remote sensing for land use.
An Adaptable Power System with Software Control Algorithm
NASA Technical Reports Server (NTRS)
Castell, Karen; Bay, Mike; Hernandez-Pellerano, Amri; Ha, Kong
1998-01-01
A low cost, flexible and modular spacecraft power system design was developed in response to a call for an architecture that could accommodate multiple missions in the small to medium load range. Three upcoming satellites will use this design, with one launch date in 1999 and two in the year 2000. The design consists of modular hardware that can be scaled up or down, without additional cost, to suit missions in the 200 to 600 Watt orbital average load range. The design will be applied to satellite orbits that are circular, polar elliptical and a libration point orbit. Mission unique adaptations are accomplished in software and firmware. In designing this advanced, adaptable power system, the major goals were reduction in weight volume and cost. This power system design represents reductions in weight of 78 percent, volume of 86 percent and cost of 65 percent from previous comparable systems. The efforts to miniaturize the electronics without sacrificing performance has created streamlined power electronics with control functions residing in the system microprocessor. The power system design can handle any battery size up to 50 Amp-hour and any battery technology. The three current implementations will use both nickel cadmium and nickel hydrogen batteries ranging in size from 21 to 50 Amp-hours. Multiple batteries can be used by adding another battery module. Any solar cell technology can be used and various array layouts can be incorporated with no change in Power System Electronics (PSE) hardware. Other features of the design are the standardized interfaces between cards and subsystems and immunity to radiation effects up to 30 krad Total Ionizing Dose (TID) and 35 Mev/cm(exp 2)-kg for Single Event Effects (SEE). The control algorithm for the power system resides in a radiation-hardened microprocessor. A table driven software design allows for flexibility in mission specific requirements. By storing critical power system constants in memory, modifying the system
NASA Astrophysics Data System (ADS)
Berendes, Todd A.; Mecikalski, John R.; MacKenzie, Wayne M.; Bedka, Kristopher M.; Nair, U. S.
2008-10-01
This paper describes a statistical clustering approach toward the classification of cloud types within meteorological satellite imagery, specifically, visible and infrared data. The method is based on the Standard Deviation Limited Adaptive Clustering (SDLAC) procedure, which has been used to classify a variety of features within both polar orbiting and geostationary imagery, including land cover, volcanic ash, dust, and clouds of various types. In this study, the focus is on classifying cumulus clouds of various types (e.g., "fair weather, "towering, and newly glaciated cumulus, in addition to cumulonimbus). The SDLAC algorithm is demonstrated by showing examples using Geostationary Operational Environmental Satellite (GOES) 12, Meteosat Second Generation's (MSG) Spinning Enhanced Visible and Infrared Imager (SEVIRI), and the Moderate Resolution Infrared Spectrometer (MODIS). Results indicate that the method performs well, classifying cumulus similarly between MODIS, SEVIRI, and GOES, despite the obvious channel and resolution differences between these three sensors. The SDLAC methodology has been used in several research activities related to convective weather forecasting, which offers some proof of concept for its value.
New Approach for IIR Adaptive Lattice Filter Structure Using Simultaneous Perturbation Algorithm
NASA Astrophysics Data System (ADS)
Martinez, Jorge Ivan Medina; Nakano, Kazushi; Higuchi, Kohji
Adaptive infinite impulse response (IIR), or recursive, filters are less attractive mainly because of the stability and the difficulties associated with their adaptive algorithms. Therefore, in this paper the adaptive IIR lattice filters are studied in order to devise algorithms that preserve the stability of the corresponding direct-form schemes. We analyze the local properties of stationary points, a transformation achieving this goal is suggested, which gives algorithms that can be efficiently implemented. Application to the Steiglitz-McBride (SM) and Simple Hyperstable Adaptive Recursive Filter (SHARF) algorithms is presented. Also a modified version of Simultaneous Perturbation Stochastic Approximation (SPSA) is presented in order to get the coefficients in a lattice form more efficiently and with a lower computational cost and complexity. The results are compared with previous lattice versions of these algorithms. These previous lattice versions may fail to preserve the stability of stationary points.
Estimating Position of Mobile Robots From Omnidirectional Vision Using an Adaptive Algorithm.
Li, Luyang; Liu, Yun-Hui; Wang, Kai; Fang, Mu
2015-08-01
This paper presents a novel and simple adaptive algorithm for estimating the position of a mobile robot with high accuracy in an unknown and unstructured environment by fusing images of an omnidirectional vision system with measurements of odometry and inertial sensors. Based on a new derivation where the omnidirectional projection can be linearly parameterized by the positions of the robot and natural feature points, we propose a novel adaptive algorithm, which is similar to the Slotine-Li algorithm in model-based adaptive control, to estimate the robot's position by using the tracked feature points in image sequence, the robot's velocity, and orientation angles measured by odometry and inertial sensors. It is proved that the adaptive algorithm leads to global exponential convergence of the position estimation errors to zero. Simulations and real-world experiments are performed to demonstrate the performance of the proposed algorithm. PMID:25265622
An Improved Clustering Algorithm of Tunnel Monitoring Data for Cloud Computing
Zhong, Luo; Tang, KunHao; Li, Lin; Yang, Guang; Ye, JingJing
2014-01-01
With the rapid development of urban construction, the number of urban tunnels is increasing and the data they produce become more and more complex. It results in the fact that the traditional clustering algorithm cannot handle the mass data of the tunnel. To solve this problem, an improved parallel clustering algorithm based on k-means has been proposed. It is a clustering algorithm using the MapReduce within cloud computing that deals with data. It not only has the advantage of being used to deal with mass data but also is more efficient. Moreover, it is able to compute the average dissimilarity degree of each cluster in order to clean the abnormal data. PMID:24982971
An Enhanced PSO-Based Clustering Energy Optimization Algorithm for Wireless Sensor Network.
Vimalarani, C; Subramanian, R; Sivanandam, S N
2016-01-01
Wireless Sensor Network (WSN) is a network which formed with a maximum number of sensor nodes which are positioned in an application environment to monitor the physical entities in a target area, for example, temperature monitoring environment, water level, monitoring pressure, and health care, and various military applications. Mostly sensor nodes are equipped with self-supported battery power through which they can perform adequate operations and communication among neighboring nodes. Maximizing the lifetime of the Wireless Sensor networks, energy conservation measures are essential for improving the performance of WSNs. This paper proposes an Enhanced PSO-Based Clustering Energy Optimization (EPSO-CEO) algorithm for Wireless Sensor Network in which clustering and clustering head selection are done by using Particle Swarm Optimization (PSO) algorithm with respect to minimizing the power consumption in WSN. The performance metrics are evaluated and results are compared with competitive clustering algorithm to validate the reduction in energy consumption. PMID:26881273
A Hybrid Algorithm for Clustering of Time Series Data Based on Affinity Search Technique
Aghabozorgi, Saeed; Ying Wah, Teh; Herawan, Tutut; Jalab, Hamid A.; Shaygan, Mohammad Amin; Jalali, Alireza
2014-01-01
Time series clustering is an important solution to various problems in numerous fields of research, including business, medical science, and finance. However, conventional clustering algorithms are not practical for time series data because they are essentially designed for static data. This impracticality results in poor clustering accuracy in several systems. In this paper, a new hybrid clustering algorithm is proposed based on the similarity in shape of time series data. Time series data are first grouped as subclusters based on similarity in time. The subclusters are then merged using the k-Medoids algorithm based on similarity in shape. This model has two contributions: (1) it is more accurate than other conventional and hybrid approaches and (2) it determines the similarity in shape among time series data with a low complexity. To evaluate the accuracy of the proposed model, the model is tested extensively using syntactic and real-world time series datasets. PMID:24982966
An Enhanced PSO-Based Clustering Energy Optimization Algorithm for Wireless Sensor Network
Vimalarani, C.; Subramanian, R.; Sivanandam, S. N.
2016-01-01
Wireless Sensor Network (WSN) is a network which formed with a maximum number of sensor nodes which are positioned in an application environment to monitor the physical entities in a target area, for example, temperature monitoring environment, water level, monitoring pressure, and health care, and various military applications. Mostly sensor nodes are equipped with self-supported battery power through which they can perform adequate operations and communication among neighboring nodes. Maximizing the lifetime of the Wireless Sensor networks, energy conservation measures are essential for improving the performance of WSNs. This paper proposes an Enhanced PSO-Based Clustering Energy Optimization (EPSO-CEO) algorithm for Wireless Sensor Network in which clustering and clustering head selection are done by using Particle Swarm Optimization (PSO) algorithm with respect to minimizing the power consumption in WSN. The performance metrics are evaluated and results are compared with competitive clustering algorithm to validate the reduction in energy consumption. PMID:26881273
Fuzzy-Kohonen-clustering neural network trained by genetic algorithm and fuzzy competition learning
NASA Astrophysics Data System (ADS)
Xie, Weixing; Li, Wenhua; Gao, Xinbo
1995-08-01
Kohonen networks are well known for clustering analysis. Classical Kohonen networks for hard c-means clustering (trained by winner-take-all learning) have some severe drawbacks. Fuzzy Kohonen networks (FKCNN) for fuzzy c-means clustering are trained by fuzzy competition learning, and can get better clustering results than the classical Kohonen networks. However, both winner-take-all and fuzzy competition learning algorithms are in essence local search techniques that search for the optimum by using a hill-climbing technique. Thus, they often fail in the search for the global optimum. In this paper we combine genetic algorithms (GAs) with fuzzy competition learning to train the FKCNN. Our experimental results show that the proposed GA/FC learning algorithm has much higher probabilities of finding the global optimal solutions than either the winner-take-all or the fuzzy competition learning.
NASA Astrophysics Data System (ADS)
Brenden, T. O.; Clark, R. D.; Wiley, M. J.; Seelbach, P. W.; Wang, L.
2005-05-01
Remote sensing and geographic information systems have made it possible to attribute variables for streams at increasingly detailed resolutions (e.g., individual river reaches). Nevertheless, management decisions still must be made at large scales because land and stream managers typically lack sufficient resources to manage on an individual reach basis. Managers thus require a method for identifying stream management units that are ecologically similar and that can be expected to respond similarly to management decisions. We have developed a spatially-constrained clustering algorithm that can merge neighboring river reaches with similar ecological characteristics into larger management units. The clustering algorithm is based on the Cluster Affinity Search Technique (CAST), which was developed for clustering gene expression data. Inputs to the clustering algorithm are the neighbor relationships of the reaches that comprise the digital river network, the ecological attributes of the reaches, and an affinity value, which identifies the minimum similarity for merging river reaches. In this presentation, we describe the clustering algorithm in greater detail and contrast its use with other methods (expert opinion, classification approach, regular clustering) for identifying management units using several Michigan watersheds as a backdrop.
An approximation polynomial-time algorithm for a sequence bi-clustering problem
NASA Astrophysics Data System (ADS)
Kel'manov, A. V.; Khamidullin, S. A.
2015-06-01
We consider a strongly NP-hard problem of partitioning a finite sequence of vectors in Euclidean space into two clusters using the criterion of the minimal sum of the squared distances from the elements of the clusters to the centers of the clusters. The center of one of the clusters is to be optimized and is determined as the mean value over all vectors in this cluster. The center of the other cluster is fixed at the origin. Moreover, the partition is such that the difference between the indices of two successive vectors in the first cluster is bounded above and below by prescribed constants. A 2-approximation polynomial-time algorithm is proposed for this problem.
Uy, D.L.
1996-02-01
An algorithm for detection and identification of image clusters or {open_quotes}blobs{close_quotes} based on color information for an autonomous mobile robot is developed. The input image data are first processed using a crisp color fuszzyfier, a binary smoothing filter, and a median filter. The processed image data is then inputed to the image clusters detection and identification program. The program employed the concept of {open_quotes}elastic rectangle{close_quotes}that stretches in such a way that the whole blob is finally enclosed in a rectangle. A C-program is develop to test the algorithm. The algorithm is tested only on image data of 8x8 sizes with different number of blobs in them. The algorithm works very in detecting and identifying image clusters.
Vectorizable algorithms for adaptive schemes for rapid analysis of SSME flows
NASA Technical Reports Server (NTRS)
Oden, J. Tinsley
1987-01-01
An initial study into vectorizable algorithms for use in adaptive schemes for various types of boundary value problems is described. The focus is on two key aspects of adaptive computational methods which are crucial in the use of such methods (for complex flow simulations such as those in the Space Shuttle Main Engine): the adaptive scheme itself and the applicability of element-by-element matrix computations in a vectorizable format for rapid calculations in adaptive mesh procedures.
A network-assisted co-clustering algorithm to discover cancer subtypes based on gene expression
2014-01-01
Background Cancer subtype information is critically important for understanding tumor heterogeneity. Existing methods to identify cancer subtypes have primarily focused on utilizing generic clustering algorithms (such as hierarchical clustering) to identify subtypes based on gene expression data. The network-level interaction among genes, which is key to understanding the molecular perturbations in cancer, has been rarely considered during the clustering process. The motivation of our work is to develop a method that effectively incorporates molecular interaction networks into the clustering process to improve cancer subtype identification. Results We have developed a new clustering algorithm for cancer subtype identification, called “network-assisted co-clustering for the identification of cancer subtypes” (NCIS). NCIS combines gene network information to simultaneously group samples and genes into biologically meaningful clusters. Prior to clustering, we assign weights to genes based on their impact in the network. Then a new weighted co-clustering algorithm based on a semi-nonnegative matrix tri-factorization is applied. We evaluated the effectiveness of NCIS on simulated datasets as well as large-scale Breast Cancer and Glioblastoma Multiforme patient samples from The Cancer Genome Atlas (TCGA) project. NCIS was shown to better separate the patient samples into clinically distinct subtypes and achieve higher accuracy on the simulated datasets to tolerate noise, as compared to consensus hierarchical clustering. Conclusions The weighted co-clustering approach in NCIS provides a unique solution to incorporate gene network information into the clustering process. Our tool will be useful to comprehensively identify cancer subtypes that would otherwise be obscured by cancer heterogeneity, using high-throughput and high-dimensional gene expression data. PMID:24491042
A Fast Density-Based Clustering Algorithm for Real-Time Internet of Things Stream
Ying Wah, Teh
2014-01-01
Data streams are continuously generated over time from Internet of Things (IoT) devices. The faster all of this data is analyzed, its hidden trends and patterns discovered, and new strategies created, the faster action can be taken, creating greater value for organizations. Density-based method is a prominent class in clustering data streams. It has the ability to detect arbitrary shape clusters, to handle outlier, and it does not need the number of clusters in advance. Therefore, density-based clustering algorithm is a proper choice for clustering IoT streams. Recently, several density-based algorithms have been proposed for clustering data streams. However, density-based clustering in limited time is still a challenging issue. In this paper, we propose a density-based clustering algorithm for IoT streams. The method has fast processing time to be applicable in real-time application of IoT devices. Experimental results show that the proposed approach obtains high quality results with low computation time on real and synthetic datasets. PMID:25110753
A fast density-based clustering algorithm for real-time Internet of Things stream.
Amini, Amineh; Saboohi, Hadi; Wah, Teh Ying; Herawan, Tutut
2014-01-01
Data streams are continuously generated over time from Internet of Things (IoT) devices. The faster all of this data is analyzed, its hidden trends and patterns discovered, and new strategies created, the faster action can be taken, creating greater value for organizations. Density-based method is a prominent class in clustering data streams. It has the ability to detect arbitrary shape clusters, to handle outlier, and it does not need the number of clusters in advance. Therefore, density-based clustering algorithm is a proper choice for clustering IoT streams. Recently, several density-based algorithms have been proposed for clustering data streams. However, density-based clustering in limited time is still a challenging issue. In this paper, we propose a density-based clustering algorithm for IoT streams. The method has fast processing time to be applicable in real-time application of IoT devices. Experimental results show that the proposed approach obtains high quality results with low computation time on real and synthetic datasets. PMID:25110753
Efficient cluster Monte Carlo algorithm for Ising spin glasses in more than two space dimensions
NASA Astrophysics Data System (ADS)
Ochoa, Andrew J.; Zhu, Zheng; Katzgraber, Helmut G.
2015-03-01
A cluster algorithm that speeds up slow dynamics in simulations of nonplanar Ising spin glasses away from criticality is urgently needed. In theory, the cluster algorithm proposed by Houdayer poses no advantage over local moves in systems with a percolation threshold below 50%, such as cubic lattices. However, we show that the frustration present in Ising spin glasses prevents the growth of system-spanning clusters at temperatures roughly below the characteristic energy scale J of the problem. Adding Houdayer cluster moves to simulations of Ising spin glasses for T ~ J produces a speedup that grows with the system size over conventional local moves. We show results for the nonplanar quasi-two-dimensional Chimera graph of the D-Wave Two quantum annealer, as well as conventional three-dimensional Ising spin glasses, where in both cases the addition of cluster moves speeds up thermalization visibly in the physically-interesting low temperature regime.
An Adaptive Digital Image Watermarking Algorithm Based on Morphological Haar Wavelet Transform
NASA Astrophysics Data System (ADS)
Huang, Xiaosheng; Zhao, Sujuan
At present, much more of the wavelet-based digital watermarking algorithms are based on linear wavelet transform and fewer on non-linear wavelet transform. In this paper, we propose an adaptive digital image watermarking algorithm based on non-linear wavelet transform--Morphological Haar Wavelet Transform. In the algorithm, the original image and the watermark image are decomposed with multi-scale morphological wavelet transform respectively. Then the watermark information is adaptively embedded into the original image in different resolutions, combining the features of Human Visual System (HVS). The experimental results show that our method is more robust and effective than the ordinary wavelet transform algorithms.
Comparative study of adaptive-noise-cancellation algorithms for intrusion detection systems
Claassen, J.P.; Patterson, M.M.
1981-01-01
Some intrusion detection systems are susceptible to nonstationary noise resulting in frequent nuisance alarms and poor detection when the noise is present. Adaptive inverse filtering for single channel systems and adaptive noise cancellation for two channel systems have both demonstrated good potential in removing correlated noise components prior detection. For such noise susceptible systems the suitability of a noise reduction algorithm must be established in a trade-off study weighing algorithm complexity against performance. The performance characteristics of several distinct classes of algorithms are established through comparative computer studies using real signals. The relative merits of the different algorithms are discussed in the light of the nature of intruder and noise signals.
NASA Astrophysics Data System (ADS)
Ball, R. C.; Lee, J. R.
1996-03-01
We prove that a new, irreversible growth algorithm, Non-Deletion Reaction-Limited Cluster-cluster Aggregation (NDRLCA), produces equilibrium Branched Polymers, expected to exhibit Lattice Animal statistics [1]. We implement NDRLCA, off-lattice, as a computer simulation for embedding dimension d=2 and 3, obtaining values for critical exponents, fractal dimension D and cluster mass distribution exponent tau: d=2, D≈ 1.53± 0.05, tau = 1.09± 0.06; d=3, D=1.96± 0.04, tau =1.50± 0.04 in good agreement with theoretical LA values. The simulation results do not support recent suggestions [2] that BPs may be in the same universality class as percolation. We also obtain values for a model-dependent critical “fugacity”, z_c and investigate the finite-size effects of our simulation, quantifying notions of “inbreeding” that occur in this algorithm. Finally we use an extension of the NDRLCA proof to show that standard Reaction-Limited Cluster-cluster Aggregation is very unlikely to be in the same universality class as Branched Polymers/Lattice Animals unless the backnone dimension for the latter is considerably less than the published value.
Binocular self-calibration performed via adaptive genetic algorithm based on laser line imaging
NASA Astrophysics Data System (ADS)
Apolinar Muñoz Rodríguez, J.; Mejía Alanís, Francisco Carlos
2016-07-01
An accurate technique to perform binocular self-calibration by means of an adaptive genetic algorithm based on a laser line is presented. In this calibration, the genetic algorithm computes the vision parameters through simulated binary crossover (SBX). To carry it out, the genetic algorithm constructs an objective function from the binocular geometry of the laser line projection. Then, the SBX minimizes the objective function via chromosomes recombination. In this algorithm, the adaptive procedure determines the search space via line position to obtain the minimum convergence. Thus, the chromosomes of vision parameters provide the minimization. The approach of the proposed adaptive genetic algorithm is to calibrate and recalibrate the binocular setup without references and physical measurements. This procedure leads to improve the traditional genetic algorithms, which calibrate the vision parameters by means of references and an unknown search space. It is because the proposed adaptive algorithm avoids errors produced by the missing of references. Additionally, the three-dimensional vision is carried out based on the laser line position and vision parameters. The contribution of the proposed algorithm is corroborated by an evaluation of accuracy of binocular calibration, which is performed via traditional genetic algorithms.
A novel algorithm for real-time adaptive signal detection and identification
Sleefe, G.E.; Ladd, M.D.; Gallegos, D.E.; Sicking, C.W.; Erteza, I.A.
1998-04-01
This paper describes a novel digital signal processing algorithm for adaptively detecting and identifying signals buried in noise. The algorithm continually computes and updates the long-term statistics and spectral characteristics of the background noise. Using this noise model, a set of adaptive thresholds and matched digital filters are implemented to enhance and detect signals that are buried in the noise. The algorithm furthermore automatically suppresses coherent noise sources and adapts to time-varying signal conditions. Signal detection is performed in both the time-domain and the frequency-domain, thereby permitting the detection of both broad-band transients and narrow-band signals. The detection algorithm also provides for the computation of important signal features such as amplitude, timing, and phase information. Signal identification is achieved through a combination of frequency-domain template matching and spectral peak picking. The algorithm described herein is well suited for real-time implementation on digital signal processing hardware. This paper presents the theory of the adaptive algorithm, provides an algorithmic block diagram, and demonstrate its implementation and performance with real-world data. The computational efficiency of the algorithm is demonstrated through benchmarks on specific DSP hardware. The applications for this algorithm, which range from vibration analysis to real-time image processing, are also discussed.
An Effective Intrusion Detection Algorithm Based on Improved Semi-supervised Fuzzy Clustering
NASA Astrophysics Data System (ADS)
Li, Xueyong; Zhang, Baojian; Sun, Jiaxia; Yan, Shitao
An algorithm for intrusion detection based on improved evolutionary semi- supervised fuzzy clustering is proposed which is suited for situation that gaining labeled data is more difficulty than unlabeled data in intrusion detection systems. The algorithm requires a small number of labeled data only and a large number of unlabeled data and class labels information provided by labeled data is used to guide the evolution process of each fuzzy partition on unlabeled data, which plays the role of chromosome. This algorithm can deal with fuzzy label, uneasily plunges locally optima and is suited to implement on parallel architecture. Experiments show that the algorithm can improve classification accuracy and has high detection efficiency.
Adaptive Load-Balancing Algorithms using Symmetric Broadcast Networks
NASA Technical Reports Server (NTRS)
Das, Sajal K.; Harvey, Daniel J.; Biswas, Rupak; Biegel, Bryan A. (Technical Monitor)
2002-01-01
In a distributed computing environment, it is important to ensure that the processor workloads are adequately balanced, Among numerous load-balancing algorithms, a unique approach due to Das and Prasad defines a symmetric broadcast network (SBN) that provides a robust communication pattern among the processors in a topology-independent manner. In this paper, we propose and analyze three efficient SBN-based dynamic load-balancing algorithms, and implement them on an SGI Origin2000. A thorough experimental study with Poisson distributed synthetic loads demonstrates that our algorithms are effective in balancing system load. By optimizing completion time and idle time, the proposed algorithms are shown to compare favorably with several existing approaches.
NASA Astrophysics Data System (ADS)
Zainuddin, Zarita; Lai, Kee Huong; Ong, Pauline
2013-04-01
Artificial neural networks (ANNs) are powerful mathematical models that are used to solve complex real world problems. Wavelet neural networks (WNNs), which were developed based on the wavelet theory, are a variant of ANNs. During the training phase of WNNs, several parameters need to be initialized; including the type of wavelet activation functions, translation vectors, and dilation parameter. The conventional k-means and fuzzy c-means clustering algorithms have been used to select the translation vectors. However, the solution vectors might get trapped at local minima. In this regard, the evolutionary harmony search algorithm, which is capable of searching for near-optimum solution vectors, both locally and globally, is introduced to circumvent this problem. In this paper, the conventional k-means and fuzzy c-means clustering algorithms were hybridized with the metaheuristic harmony search algorithm. In addition to obtaining the estimation of the global minima accurately, these hybridized algorithms also offer more than one solution to a particular problem, since many possible solution vectors can be generated and stored in the harmony memory. To validate the robustness of the proposed WNNs, the real world problem of epileptic seizure detection was presented. The overall classification accuracy from the simulation showed that the hybridized metaheuristic algorithms outperformed the standard k-means and fuzzy c-means clustering algorithms.
An efficient clustering algorithm for partitioning Y-short tandem repeats data
2012-01-01
Background Y-Short Tandem Repeats (Y-STR) data consist of many similar and almost similar objects. This characteristic of Y-STR data causes two problems with partitioning: non-unique centroids and local minima problems. As a result, the existing partitioning algorithms produce poor clustering results. Results Our new algorithm, called k-Approximate Modal Haplotypes (k-AMH), obtains the highest clustering accuracy scores for five out of six datasets, and produces an equal performance for the remaining dataset. Furthermore, clustering accuracy scores of 100% are achieved for two of the datasets. The k-AMH algorithm records the highest mean accuracy score of 0.93 overall, compared to that of other algorithms: k-Population (0.91), k-Modes-RVF (0.81), New Fuzzy k-Modes (0.80), k-Modes (0.76), k-Modes-Hybrid 1 (0.76), k-Modes-Hybrid 2 (0.75), Fuzzy k-Modes (0.74), and k-Modes-UAVM (0.70). Conclusions The partitioning performance of the k-AMH algorithm for Y-STR data is superior to that of other algorithms, owing to its ability to solve the non-unique centroids and local minima problems. Our algorithm is also efficient in terms of time complexity, which is recorded as O(km(n-k)) and considered to be linear. PMID:23039132
Design and analysis of closed-loop decoder adaptation algorithms for brain-machine interfaces.
Dangi, Siddharth; Orsborn, Amy L; Moorman, Helene G; Carmena, Jose M
2013-07-01
Closed-loop decoder adaptation (CLDA) is an emerging paradigm for achieving rapid performance improvements in online brain-machine interface (BMI) operation. Designing an effective CLDA algorithm requires making multiple important decisions, including choosing the timescale of adaptation, selecting which decoder parameters to adapt, crafting the corresponding update rules, and designing CLDA parameters. These design choices, combined with the specific settings of CLDA parameters, will directly affect the algorithm's ability to make decoder parameters converge to values that optimize performance. In this article, we present a general framework for the design and analysis of CLDA algorithms and support our results with experimental data of two monkeys performing a BMI task. First, we analyze and compare existing CLDA algorithms to highlight the importance of four critical design elements: the adaptation timescale, selective parameter adaptation, smooth decoder updates, and intuitive CLDA parameters. Second, we introduce mathematical convergence analysis using measures such as mean-squared error and KL divergence as a useful paradigm for evaluating the convergence properties of a prototype CLDA algorithm before experimental testing. By applying these measures to an existing CLDA algorithm, we demonstrate that our convergence analysis is an effective analytical tool that can ultimately inform and improve the design of CLDA algorithms. PMID:23607558
Clustering-based robust three-dimensional phase unwrapping algorithm.
Arevalillo-Herráez, Miguel; Burton, David R; Lalor, Michael J
2010-04-01
Relatively recent techniques that produce phase volumes have motivated the study of three-dimensional (3D) unwrapping algorithms that inherently incorporate the third dimension into the process. We propose a novel 3D unwrapping algorithm that can be considered to be a generalization of the minimum spanning tree (MST) approach. The technique combines characteristics of some of the most robust existing methods: it uses a quality map to guide the unwrapping process, a region growing mechanism to progressively unwrap the signal, and also cut surfaces to avoid error propagation. The approach has been evaluated in the context of noncontact measurement of dynamic objects, suggesting a better performance than MST-based approaches. PMID:20357860
NASA Astrophysics Data System (ADS)
Leihong, Zhang; Dong, Liang; Bei, Li; Yi, Kang; Zilan, Pan; Dawei, Zhang; Xiuhua, Ma
2016-04-01
In order to improve the reconstruction accuracy and reduce the workload, the algorithm of compressive sensing based on the iterative threshold is combined with the method of adaptive selection of the training sample, and a new algorithm of adaptive compressive sensing is put forward. The three kinds of training sample are used to reconstruct the spectral reflectance of the testing sample based on the compressive sensing algorithm and adaptive compressive sensing algorithm, and the color difference and error are compared. The experiment results show that spectral reconstruction precision based on the adaptive compressive sensing algorithm is better than that based on the algorithm of compressive sensing.
A hybrid adaptive routing algorithm for event-driven wireless sensor networks.
Figueiredo, Carlos M S; Nakamura, Eduardo F; Loureiro, Antonio A F
2009-01-01
Routing is a basic function in wireless sensor networks (WSNs). For these networks, routing algorithms depend on the characteristics of the applications and, consequently, there is no self-contained algorithm suitable for every case. In some scenarios, the network behavior (traffic load) may vary a lot, such as an event-driven application, favoring different algorithms at different instants. This work presents a hybrid and adaptive algorithm for routing in WSNs, called Multi-MAF, that adapts its behavior autonomously in response to the variation of network conditions. In particular, the proposed algorithm applies both reactive and proactive strategies for routing infrastructure creation, and uses an event-detection estimation model to change between the strategies and save energy. To show the advantages of the proposed approach, it is evaluated through simulations. Comparisons with independent reactive and proactive algorithms show improvements on energy consumption. PMID:22423207
Zhang, Zhihua; Sheng, Zheng; Shi, Hanqing; Fan, Zhiqiang
2016-01-01
Using the RFC technique to estimate refractivity parameters is a complex nonlinear optimization problem. In this paper, an improved cuckoo search (CS) algorithm is proposed to deal with this problem. To enhance the performance of the CS algorithm, a parameter dynamic adaptive operation and crossover operation were integrated into the standard CS (DACS-CO). Rechenberg's 1/5 criteria combined with learning factor were used to control the parameter dynamic adaptive adjusting process. The crossover operation of genetic algorithm was utilized to guarantee the population diversity. The new hybrid algorithm has better local search ability and contributes to superior performance. To verify the ability of the DACS-CO algorithm to estimate atmospheric refractivity parameters, the simulation data and real radar clutter data are both implemented. The numerical experiments demonstrate that the DACS-CO algorithm can provide an effective method for near-real-time estimation of the atmospheric refractivity profile from radar clutter. PMID:27212938
Zhang, Zhihua; Sheng, Zheng; Shi, Hanqing; Fan, Zhiqiang
2016-01-01
Using the RFC technique to estimate refractivity parameters is a complex nonlinear optimization problem. In this paper, an improved cuckoo search (CS) algorithm is proposed to deal with this problem. To enhance the performance of the CS algorithm, a parameter dynamic adaptive operation and crossover operation were integrated into the standard CS (DACS-CO). Rechenberg's 1/5 criteria combined with learning factor were used to control the parameter dynamic adaptive adjusting process. The crossover operation of genetic algorithm was utilized to guarantee the population diversity. The new hybrid algorithm has better local search ability and contributes to superior performance. To verify the ability of the DACS-CO algorithm to estimate atmospheric refractivity parameters, the simulation data and real radar clutter data are both implemented. The numerical experiments demonstrate that the DACS-CO algorithm can provide an effective method for near-real-time estimation of the atmospheric refractivity profile from radar clutter. PMID:27212938
Research of adaptive threshold edge detection algorithm based on statistics canny operator
NASA Astrophysics Data System (ADS)
Xu, Jian; Wang, Huaisuo; Huang, Hua
2015-12-01
The traditional Canny operator cannot get the optimal threshold in different scene, on this foundation, an improved Canny edge detection algorithm based on adaptive threshold is proposed. The result of the experiment pictures indicate that the improved algorithm can get responsible threshold, and has the better accuracy and precision in the edge detection.
Crane, N K; Parsons, I D; Hjelmstad, K D
2002-03-21
Adaptive mesh refinement selectively subdivides the elements of a coarse user supplied mesh to produce a fine mesh with reduced discretization error. Effective use of adaptive mesh refinement coupled with an a posteriori error estimator can produce a mesh that solves a problem to a given discretization error using far fewer elements than uniform refinement. A geometric multigrid solver uses increasingly finer discretizations of the same geometry to produce a very fast and numerically scalable solution to a set of linear equations. Adaptive mesh refinement is a natural method for creating the different meshes required by the multigrid solver. This paper describes the implementation of a scalable adaptive multigrid method on a distributed memory parallel computer. Results are presented that demonstrate the parallel performance of the methodology by solving a linear elastic rocket fuel deformation problem on an SGI Origin 3000. Two challenges must be met when implementing adaptive multigrid algorithms on massively parallel computing platforms. First, although the fine mesh for which the solution is desired may be large and scaled to the number of processors, the multigrid algorithm must also operate on much smaller fixed-size data sets on the coarse levels. Second, the mesh must be repartitioned as it is adapted to maintain good load balancing. In an adaptive multigrid algorithm, separate mesh levels may require separate partitioning, further complicating the load balance problem. This paper shows that, when the proper optimizations are made, parallel adaptive multigrid algorithms perform well on machines with several hundreds of processors.
NASA Technical Reports Server (NTRS)
Boussalis, Dhemetrios; Wang, Shyh J.
1992-01-01
This paper presents a method for utilizing artificial neural networks for direct adaptive control of dynamic systems with poorly known dynamics. The neural network weights (controller gains) are adapted in real time using state measurements and a random search optimization algorithm. The results are demonstrated via simulation using two highly nonlinear systems.
A Game Theory Algorithm for Intra-Cluster Data Aggregation in a Vehicular Ad Hoc Network.
Chen, Yuzhong; Weng, Shining; Guo, Wenzhong; Xiong, Naixue
2016-01-01
Vehicular ad hoc networks (VANETs) have an important role in urban management and planning. The effective integration of vehicle information in VANETs is critical to traffic analysis, large-scale vehicle route planning and intelligent transportation scheduling. However, given the limitations in the precision of the output information of a single sensor and the difficulty of information sharing among various sensors in a highly dynamic VANET, effectively performing data aggregation in VANETs remains a challenge. Moreover, current studies have mainly focused on data aggregation in large-scale environments but have rarely discussed the issue of intra-cluster data aggregation in VANETs. In this study, we propose a multi-player game theory algorithm for intra-cluster data aggregation in VANETs by analyzing the competitive and cooperative relationships among sensor nodes. Several sensor-centric metrics are proposed to measure the data redundancy and stability of a cluster. We then study the utility function to achieve efficient intra-cluster data aggregation by considering both data redundancy and cluster stability. In particular, we prove the existence of a unique Nash equilibrium in the game model, and conduct extensive experiments to validate the proposed algorithm. Results demonstrate that the proposed algorithm has advantages over typical data aggregation algorithms in both accuracy and efficiency. PMID:26907272
A Game Theory Algorithm for Intra-Cluster Data Aggregation in a Vehicular Ad Hoc Network
Chen, Yuzhong; Weng, Shining; Guo, Wenzhong; Xiong, Naixue
2016-01-01
Vehicular ad hoc networks (VANETs) have an important role in urban management and planning. The effective integration of vehicle information in VANETs is critical to traffic analysis, large-scale vehicle route planning and intelligent transportation scheduling. However, given the limitations in the precision of the output information of a single sensor and the difficulty of information sharing among various sensors in a highly dynamic VANET, effectively performing data aggregation in VANETs remains a challenge. Moreover, current studies have mainly focused on data aggregation in large-scale environments but have rarely discussed the issue of intra-cluster data aggregation in VANETs. In this study, we propose a multi-player game theory algorithm for intra-cluster data aggregation in VANETs by analyzing the competitive and cooperative relationships among sensor nodes. Several sensor-centric metrics are proposed to measure the data redundancy and stability of a cluster. We then study the utility function to achieve efficient intra-cluster data aggregation by considering both data redundancy and cluster stability. In particular, we prove the existence of a unique Nash equilibrium in the game model, and conduct extensive experiments to validate the proposed algorithm. Results demonstrate that the proposed algorithm has advantages over typical data aggregation algorithms in both accuracy and efficiency. PMID:26907272
Adaptive algorithm for cloud cover estimation from all-sky images over the sea
NASA Astrophysics Data System (ADS)
Krinitskiy, M. A.; Sinitsyn, A. V.
2016-05-01
A new algorithm for cloud cover estimation has been formulated and developed based on the synthetic control index, called the grayness rate index, and an additional algorithm step of adaptive filtering of the Mie scattering contribution. A setup for automated cloud cover estimation has been designed, assembled, and tested under field conditions. The results shows a significant advantage of the new algorithm over currently commonly used procedures.
Genomic rearrangements and the evolution of clusters of locally adaptive loci
Yeaman, Sam
2013-01-01
Numerous studies of ecological genetics have found that alleles contributing to local adaptation sometimes cluster together, forming “genomic islands of divergence.” Divergence hitchhiking theory posits that these clusters evolve by the preferential establishment of tightly linked locally adapted mutations, because such linkage reduces the rate that recombination breaks up locally favorable combinations of alleles. Here, I use calculations based on previously developed analytical models of divergence hitchhiking to show that very few clustered mutations should be expected in a single bout of adaptation, relative to the number of unlinked mutations, suggesting that divergence hitchhiking theory alone may often be insufficient to explain empirical observations. Using individual-based simulations that allow for the transposition of a single genetic locus from one position on a chromosome to another, I then show that tight clustering of the loci involved in local adaptation tends to evolve on biologically realistic time scales. These results suggest that genomic rearrangements may often be an important component of local adaptation and the evolution of genomic islands of divergence. More generally, these results suggest that genomic architecture and functional neighborhoods of genes may be actively shaped by natural selection in heterogeneous environments. Because small-scale changes in gene order are relatively common in some taxa, comparative genomic studies could be coupled with studies of adaptation to explore how commonly such rearrangements are involved in local adaptation. PMID:23610436
Node Non-Uniform Deployment Based on Clustering Algorithm for Underwater Sensor Networks.
Jiang, Peng; Liu, Jun; Wu, Feng
2015-01-01
A node non-uniform deployment based on clustering algorithm for underwater sensor networks (UWSNs) is proposed in this study. This algorithm is proposed because optimizing network connectivity rate and network lifetime is difficult for the existing node non-uniform deployment algorithms under the premise of improving the network coverage rate for UWSNs. A high network connectivity rate is achieved by determining the heterogeneous communication ranges of nodes during node clustering. Moreover, the concept of aggregate contribution degree is defined, and the nodes with lower aggregate contribution degrees are used to substitute the dying nodes to decrease the total movement distance of nodes and prolong the network lifetime. Simulation results show that the proposed algorithm can achieve a better network coverage rate and network connectivity rate, as well as decrease the total movement distance of nodes and prolong the network lifetime. PMID:26633408
Node Non-Uniform Deployment Based on Clustering Algorithm for Underwater Sensor Networks
Jiang, Peng; Liu, Jun; Wu, Feng
2015-01-01
A node non-uniform deployment based on clustering algorithm for underwater sensor networks (UWSNs) is proposed in this study. This algorithm is proposed because optimizing network connectivity rate and network lifetime is difficult for the existing node non-uniform deployment algorithms under the premise of improving the network coverage rate for UWSNs. A high network connectivity rate is achieved by determining the heterogeneous communication ranges of nodes during node clustering. Moreover, the concept of aggregate contribution degree is defined, and the nodes with lower aggregate contribution degrees are used to substitute the dying nodes to decrease the total movement distance of nodes and prolong the network lifetime. Simulation results show that the proposed algorithm can achieve a better network coverage rate and network connectivity rate, as well as decrease the total movement distance of nodes and prolong the network lifetime. PMID:26633408
The Development of FPGA-Based Pseudo-Iterative Clustering Algorithms
NASA Astrophysics Data System (ADS)
Drueke, Elizabeth; Fisher, Wade; Plucinski, Pawel
2016-03-01
The Large Hadron Collider (LHC) in Geneva, Switzerland, is set to undergo major upgrades in 2025 in the form of the High-Luminosity Large Hadron Collider (HL-LHC). In particular, several hardware upgrades are proposed to the ATLAS detector, one of the two general purpose detectors. These hardware upgrades include, but are not limited to, a new hardware-level clustering algorithm, to be performed by a field programmable gate array, or FPGA. In this study, we develop that clustering algorithm and compare the output to a Python-implemented topoclustering algorithm developed at the University of Oregon. Here, we present the agreement between the FPGA output and expected output, with particular attention to the time required by the FPGA to complete the algorithm and other limitations set by the FPGA itself.
NASA Astrophysics Data System (ADS)
Liu, Lifeng; Sun, Sam Zandong; Yu, Hongyu; Yue, Xingtong; Zhang, Dong
2016-06-01
Considering the fact that the fluid distribution in carbonate reservoir is very complicated and the existing fluid prediction methods are not able to produce ideal predicted results, this paper proposes a new fluid identification method in carbonate reservoir based on the modified Fuzzy C-Means (FCM) Clustering algorithm. Both initialization and globally optimum cluster center are produced by Chaotic Quantum Particle Swarm Optimization (CQPSO) algorithm, which can effectively avoid the disadvantage of sensitivity to initial values and easily falling into local convergence in the traditional FCM Clustering algorithm. Then, the modified algorithm is applied to fluid identification in the carbonate X area in Tarim Basin of China, and a mapping relation between fluid properties and pre-stack elastic parameters will be built in multi-dimensional space. It has been proven that this modified algorithm has a good ability of fuzzy cluster and its total coincidence rate of fluid prediction reaches 97.10%. Besides, the membership of different fluids can be accumulated to obtain respective probability, which can evaluate the uncertainty in fluid identification result.
Improving GPU-accelerated adaptive IDW interpolation algorithm using fast kNN search.
Mei, Gang; Xu, Nengxiong; Xu, Liangliang
2016-01-01
This paper presents an efficient parallel Adaptive Inverse Distance Weighting (AIDW) interpolation algorithm on modern Graphics Processing Unit (GPU). The presented algorithm is an improvement of our previous GPU-accelerated AIDW algorithm by adopting fast k-nearest neighbors (kNN) search. In AIDW, it needs to find several nearest neighboring data points for each interpolated point to adaptively determine the power parameter; and then the desired prediction value of the interpolated point is obtained by weighted interpolating using the power parameter. In this work, we develop a fast kNN search approach based on the space-partitioning data structure, even grid, to improve the previous GPU-accelerated AIDW algorithm. The improved algorithm is composed of the stages of kNN search and weighted interpolating. To evaluate the performance of the improved algorithm, we perform five groups of experimental tests. The experimental results indicate: (1) the improved algorithm can achieve a speedup of up to 1017 over the corresponding serial algorithm; (2) the improved algorithm is at least two times faster than our previous GPU-accelerated AIDW algorithm; and (3) the utilization of fast kNN search can significantly improve the computational efficiency of the entire GPU-accelerated AIDW algorithm. PMID:27610308
Mean-shift tracking algorithm based on adaptive fusion of multi-feature
NASA Astrophysics Data System (ADS)
Yang, Kai; Xiao, Yanghui; Wang, Ende; Feng, Junhui
2015-10-01
The classic mean-shift tracking algorithm has achieved success in the field of computer vision because of its speediness and efficiency. However, classic mean-shift tracking algorithm would fail to track in some complicated conditions such as some parts of the target are occluded, little color difference between the target and background exists, or sudden change of illumination and so on. In order to solve the problems, an improved algorithm is proposed based on the mean-shift tracking algorithm and adaptive fusion of features. Color, edges and corners of the target are used to describe the target in the feature space, and a method for measuring the discrimination of various features is presented to make feature selection adaptive. Then the improved mean-shift tracking algorithm is introduced based on the fusion of various features. For the purpose of solving the problem that mean-shift tracking algorithm with the single color feature is vulnerable to sudden change of illumination, we eliminate the effects by the fusion of affine illumination model and color feature space which ensures the correctness and stability of target tracking in that condition. Using a group of videos to test the proposed algorithm, the results show that the tracking correctness and stability of this algorithm are better than the mean-shift tracking algorithm with single feature space. Furthermore the proposed algorithm is more robust than the classic algorithm in the conditions of occlusion, target similar with background or illumination change.
Matthews, Devin A.; Stanton, John F.
2015-02-14
The theory of non-orthogonal spin-adaptation for closed-shell molecular systems is applied to coupled cluster methods with quadruple excitations (CCSDTQ). Calculations at this level of detail are of critical importance in describing the properties of molecular systems to an accuracy which can meet or exceed modern experimental techniques. Such calculations are of significant (and growing) importance in such fields as thermodynamics, kinetics, and atomic and molecular spectroscopies. With respect to the implementation of CCSDTQ and related methods, we show that there are significant advantages to non-orthogonal spin-adaption with respect to simplification and factorization of the working equations and to creating an efficient implementation. The resulting algorithm is implemented in the CFOUR program suite for CCSDT, CCSDTQ, and various approximate methods (CCSD(T), CC3, CCSDT-n, and CCSDT(Q))
Quantum cluster algorithm for frustrated Ising models in a transverse field
NASA Astrophysics Data System (ADS)
Biswas, Sounak; Rakala, Geet; Damle, Kedar
2016-06-01
Working within the stochastic series expansion framework, we introduce and characterize a plaquette-based quantum cluster algorithm for quantum Monte Carlo simulations of transverse field Ising models with frustrated Ising exchange interactions. As a demonstration of the capabilities of this algorithm, we show that a relatively small ferromagnetic next-nearest-neighbor coupling drives the transverse field Ising antiferromagnet on the triangular lattice from an antiferromagnetic three-sublattice ordered state at low temperature to a ferrimagnetic three-sublattice ordered state.
Stochastic Leader Gravitational Search Algorithm for Enhanced Adaptive Beamforming Technique
Darzi, Soodabeh; Islam, Mohammad Tariqul; Tiong, Sieh Kiong; Kibria, Salehin; Singh, Mandeep
2015-01-01
In this paper, stochastic leader gravitational search algorithm (SL-GSA) based on randomized k is proposed. Standard GSA (SGSA) utilizes the best agents without any randomization, thus it is more prone to converge at suboptimal results. Initially, the new approach randomly choses k agents from the set of all agents to improve the global search ability. Gradually, the set of agents is reduced by eliminating the agents with the poorest performances to allow rapid convergence. The performance of the SL-GSA was analyzed for six well-known benchmark functions, and the results are compared with SGSA and some of its variants. Furthermore, the SL-GSA is applied to minimum variance distortionless response (MVDR) beamforming technique to ensure compatibility with real world optimization problems. The proposed algorithm demonstrates superior convergence rate and quality of solution for both real world problems and benchmark functions compared to original algorithm and other recent variants of SGSA. PMID:26552032
Stochastic Leader Gravitational Search Algorithm for Enhanced Adaptive Beamforming Technique.
Darzi, Soodabeh; Islam, Mohammad Tariqul; Tiong, Sieh Kiong; Kibria, Salehin; Singh, Mandeep
2015-01-01
In this paper, stochastic leader gravitational search algorithm (SL-GSA) based on randomized k is proposed. Standard GSA (SGSA) utilizes the best agents without any randomization, thus it is more prone to converge at suboptimal results. Initially, the new approach randomly choses k agents from the set of all agents to improve the global search ability. Gradually, the set of agents is reduced by eliminating the agents with the poorest performances to allow rapid convergence. The performance of the SL-GSA was analyzed for six well-known benchmark functions, and the results are compared with SGSA and some of its variants. Furthermore, the SL-GSA is applied to minimum variance distortionless response (MVDR) beamforming technique to ensure compatibility with real world optimization problems. The proposed algorithm demonstrates superior convergence rate and quality of solution for both real world problems and benchmark functions compared to original algorithm and other recent variants of SGSA. PMID:26552032
An Adaptive Data Collection Algorithm Based on a Bayesian Compressed Sensing Framework
Liu, Zhi; Zhang, Mengmeng; Cui, Jian
2014-01-01
For Wireless Sensor Networks, energy efficiency is always a key consideration in system design. Compressed sensing is a new theory which has promising prospects in WSNs. However, how to construct a sparse projection matrix is a problem. In this paper, based on a Bayesian compressed sensing framework, a new adaptive algorithm which can integrate routing and data collection is proposed. By introducing new target node selection metrics, embedding the routing structure and maximizing the differential entropy for each collection round, an adaptive projection vector is constructed. Simulations show that compared to reference algorithms, the proposed algorithm can decrease computation complexity and improve energy efficiency. PMID:24818659
NASA Technical Reports Server (NTRS)
Whitmore, S. A.
1985-01-01
The dynamics model and data sources used to perform air-data reconstruction are discussed, as well as the Kalman filter. The need for adaptive determination of the noise statistics of the process is indicated. The filter innovations are presented as a means of developing the adaptive criterion, which is based on the true mean and covariance of the filter innovations. A method for the numerical approximation of the mean and covariance of the filter innovations is presented. The algorithm as developed is applied to air-data reconstruction for the space shuttle, and data obtained from the third landing are presented. To verify the performance of the adaptive algorithm, the reconstruction is also performed using a constant covariance Kalman filter. The results of the reconstructions are compared, and the adaptive algorithm exhibits better performance.
NASA Technical Reports Server (NTRS)
Whitmore, S. A.
1985-01-01
The dynamics model and data sources used to perform air-data reconstruction are discussed, as well as the Kalman filter. The need for adaptive determination of the noise statistics of the process is indicated. The filter innovations are presented as a means of developing the adaptive criterion, which is based on the true mean and covariance of the filter innovations. A method for the numerical approximation of the mean and covariance of the filter innovations is presented. The algorithm as developed is applied to air-data reconstruction for the Space Shuttle, and data obtained from the third landing are presented. To verify the performance of the adaptive algorithm, the reconstruction is also performed using a constant covariance Kalman filter. The results of the reconstructions are compared, and the adaptive algorithm exhibits better performance.
NASA Astrophysics Data System (ADS)
Li, Xiaofeng; Xiang, Suying; Zhu, Pengfei; Wu, Min
2015-12-01
In order to avoid the inherent deficiencies of the traditional BP neural network, such as slow convergence speed, that easily leading to local minima, poor generalization ability and difficulty in determining the network structure, the dynamic self-adaptive learning algorithm of the BP neural network is put forward to improve the function of the BP neural network. The new algorithm combines the merit of principal component analysis, particle swarm optimization, correlation analysis and self-adaptive model, hence can effectively solve the problems of selecting structural parameters, initial connection weights and thresholds and learning rates of the BP neural network. This new algorithm not only reduces the human intervention, optimizes the topological structures of BP neural networks and improves the network generalization ability, but also accelerates the convergence speed of a network, avoids trapping into local minima, and enhances network adaptation ability and prediction ability. The dynamic self-adaptive learning algorithm of the BP neural network is used to forecast the total retail sale of consumer goods of Sichuan Province, China. Empirical results indicate that the new algorithm is superior to the traditional BP network algorithm in predicting accuracy and time consumption, which shows the feasibility and effectiveness of the new algorithm.
An Effective Tri-Clustering Algorithm Combining Expression Data with Gene Regulation Information
Li, Ao; Tuck, David
2009-01-01
Motivation Bi-clustering algorithms aim to identify sets of genes sharing similar expression patterns across a subset of conditions. However direct interpretation or prediction of gene regulatory mechanisms may be difficult as only gene expression data is used. Information about gene regulators may also be available, most commonly about which transcription factors may bind to the promoter region and thus control the expression level of a gene. Thus a method to integrate gene expression and gene regulation information is desirable for clustering and analyzing. Methods By incorporating gene regulatory information with gene expression data, we define regulated expression values (REV) as indicators of how a gene is regulated by a specific factor. Existing bi-clustering methods are extended to a three dimensional data space by developing a heuristic TRI-Clustering algorithm. An additional approach named Automatic Boundary Searching algorithm (ABS) is introduced to automatically determine the boundary threshold. Results Results based on incorporating ChIP-chip data representing transcription factor-gene interactions show that the algorithms are efficient and robust for detecting tri-clusters. Detailed analysis of the tri-cluster extracted from yeast sporulation REV data shows genes in this cluster exhibited significant differences during the middle and late stages. The implicated regulatory network was then reconstructed for further study of defined regulatory mechanisms. Topological and statistical analysis of this network demonstrated evidence of significant changes of TF activities during the different stages of yeast sporulation, and suggests this approach might be a general way to study regulatory networks undergoing transformations. PMID:19838334
An algorithm for point cluster generalization based on the Voronoi diagram
NASA Astrophysics Data System (ADS)
Yan, Haowen; Weibel, Robert
2008-08-01
This paper presents an algorithm for point cluster generalization. Four types of information, i.e. statistical, thematic, topological, and metric information are considered, and measures are selected to describe corresponding types of information quantitatively in the algorithm, i.e. the number of points for statistical information, the importance value for thematic information, the Voronoi neighbors for topological information, and the distribution range and relative local density for metric information. Based on these measures, an algorithm for point cluster generalization is developed. Firstly, point clusters are triangulated and a border polygon of the point clusters is obtained. By the border polygon, some pseudo points are added to the original point clusters to form a new point set and a range polygon that encloses all original points is constructed. Secondly, the Voronoi polygons of the new point set are computed in order to obtain the so-called relative local density of each point. Further, the selection probability of each point is computed using its relative local density and importance value, and then mark those will-be-deleted points as 'deleted' according to their selection probabilities and Voronoi neighboring relations. Thirdly, if the number of retained points does not satisfy that computed by the Radical Law, physically delete the points marked as 'deleted' forming a new point set, and the second step is repeated; else physically deleted pseudo points and the points marked as 'deleted', and the generalized point clusters are achieved. Owing to the use of the Voronoi diagram the algorithm is parameter free and fully automatic. As our experiments show, it can be used in the generalization of point features arranged in clusters such as thematic dot maps and control points on cartographic maps.
A seed expanding cluster algorithm for deriving upwelling areas on sea surface temperature images
NASA Astrophysics Data System (ADS)
Nascimento, Susana; Casca, Sérgio; Mirkin, Boris
2015-12-01
In this paper a novel clustering algorithm is proposed as a version of the seeded region growing (SRG) approach for the automatic recognition of coastal upwelling from sea surface temperature (SST) images. The new algorithm, one seed expanding cluster (SEC), takes advantage of the concept of approximate clustering due to Mirkin (1996, 2013) to derive a homogeneity criterion in the format of a product rather than the conventional difference between a pixel value and the mean of values over the region of interest. It involves a boundary-oriented pixel labeling so that the cluster growing is performed by expanding its boundary iteratively. The starting point is a cluster consisting of just one seed, the pixel with the coldest temperature. The baseline version of the SEC algorithm uses Otsu's thresholding method to fine-tune the homogeneity threshold. Unfortunately, this method does not always lead to a satisfactory solution. Therefore, we introduce a self-tuning version of the algorithm in which the homogeneity threshold is locally derived from the approximation criterion over a window around the pixel under consideration. The window serves as a boundary regularizer. These two unsupervised versions of the algorithm have been applied to a set of 28 SST images of the western coast of mainland Portugal, and compared against a supervised version fine-tuned by maximizing the F-measure with respect to manually labeled ground-truth maps. The areas built by the unsupervised versions of the SEC algorithm are significantly coincident over the ground-truth regions in the cases at which the upwelling areas consist of a single continuous fragment of the SST map.
Cluster formation by allelomimesis in real-world complex adaptive systems
NASA Astrophysics Data System (ADS)
Juanico, Dranreb Earl; Monterola, Christopher; Saloma, Caesar
2005-04-01
Animal and human clusters are complex adaptive systems and many organize in cluster sizes s that obey the frequency distribution D(s)∝s-τ . The exponent τ describes the relative abundance of the cluster sizes in a given system. Data analyses reveal that real-world clusters exhibit a broad spectrum of τ values, 0.7 (tuna fish schools) ⩽τ⩽4.61 (T4 bacteriophage gene family sizes). Allelomimesis is proposed as an underlying mechanism for adaptation that explains the observed broad τ spectrum. Allelomimesis is the tendency of an individual to imitate the actions of others and two cluster systems have different τ values when their component agents display unequal degrees of allelomimetic tendencies. Cluster formation by allelomimesis is shown to be of three general types: namely, blind copying, information-use copying, and noncopying. Allelomimetic adaptation also reveals that the most stable cluster size is formed by three strongly allelomimetic individuals. Our finding is consistent with available field data taken from killer whales and marmots.
Lewis, P.S.
1988-10-01
Least squares techniques are widely used in adaptive signal processing. While algorithms based on least squares are robust and offer rapid convergence properties, they also tend to be complex and computationally intensive. To enable the use of least squares techniques in real-time applications, it is necessary to develop adaptive algorithms that are efficient and numerically stable, and can be readily implemented in hardware. The first part of this work presents a uniform development of general recursive least squares (RLS) algorithms, and multichannel least squares lattice (LSL) algorithms. RLS algorithms are developed for both direct estimators, in which a desired signal is present, and for mixed estimators, in which no desired signal is available, but the signal-to-data cross-correlation is known. In the second part of this work, new and more flexible techniques of mapping algorithms to array architectures are presented. These techniques, based on the synthesis and manipulation of locally recursive algorithms (LRAs), have evolved from existing data dependence graph-based approaches, but offer the increased flexibility needed to deal with the structural complexities of the RLS and LSL algorithms. Using these techniques, various array architectures are developed for each of the RLS and LSL algorithms and the associated space/time tradeoffs presented. In the final part of this work, the application of these algorithms is demonstrated by their employment in the enhancement of single-trial auditory evoked responses in magnetoencephalography. 118 refs., 49 figs., 36 tabs.
Experimental realization of the Deutsch-Jozsa algorithm with a six-qubit cluster state
Vallone, Giuseppe; Donati, Gaia; Bruno, Natalia; Chiuri, Andrea; Mataloni, Paolo
2010-05-15
We describe an experimental realization of the Deutsch-Jozsa quantum algorithm to evaluate the properties of a two-bit Boolean function in the framework of one-way quantum computation. For this purpose, a two-photon six-qubit cluster state was engineered. Its peculiar topological structure is the basis of the original measurement pattern allowing the algorithm realization. The good agreement of the experimental results with the theoretical predictions, obtained at {approx}1 kHz success rate, demonstrates the correct implementation of the algorithm.
Borodovsky, M; Peresetsky, A
1994-09-01
Non-homogeneous Markov chain models can represent biologically important regions of DNA sequences. The statistical pattern that is described by these models is usually weak and was found primarily because of strong biological indications. The general method for extracting similar patterns is presented in the current paper. The algorithm incorporates cluster analysis, multiple alignment and entropy minimization. The method was first tested using the set of DNA sequences produced by Markov chain generators. It was shown that artificial gene sequences, which initially have been randomly set up along the multiple alignment panels, are aligned according to the hidden triplet phase. Then the method was applied to real protein-coding sequences and the resulting alignment clearly indicated the triplet phase and produced the parameters of the optimal 3-periodic non-homogeneous Markov chain model. These Markov models were already employed in the GeneMark gene prediction algorithm, which is used in genome sequencing projects. The algorithm can also handle the case in which the sequences to be aligned reveal different statistical patterns, such as Escherichia coli protein-coding sequences belonging to Class II and Class III. The algorithm accepts a random mix of sequences from different classes, and is able to separate them into two groups (clusters), align each cluster separately, and define a non-homogeneous Markov chain model for each sequence cluster. PMID:7952897
Tame, M. S.; Kim, M. S.
2010-09-15
We show that fundamental versions of the Deutsch-Jozsa and Bernstein-Vazirani quantum algorithms can be performed using a small entangled cluster state resource of only six qubits. We then investigate the minimal resource states needed to demonstrate general n-qubit versions and a scalable method to produce them. For this purpose, we propose a versatile photonic on-chip setup.
Adaptive inpainting algorithm based on DCT induced wavelet regularization.
Li, Yan-Ran; Shen, Lixin; Suter, Bruce W
2013-02-01
In this paper, we propose an image inpainting optimization model whose objective function is a smoothed l(1) norm of the weighted nondecimated discrete cosine transform (DCT) coefficients of the underlying image. By identifying the objective function of the proposed model as a sum of a differentiable term and a nondifferentiable term, we present a basic algorithm inspired by Beck and Teboulle's recent work on the model. Based on this basic algorithm, we propose an automatic way to determine the weights involved in the model and update them in each iteration. The DCT as an orthogonal transform is used in various applications. We view the rows of a DCT matrix as the filters associated with a multiresolution analysis. Nondecimated wavelet transforms with these filters are explored in order to analyze the images to be inpainted. Our numerical experiments verify that under the proposed framework, the filters from a DCT matrix demonstrate promise for the task of image inpainting. PMID:23060331
Solving the depth of the repeated texture areas based on the clustering algorithm
NASA Astrophysics Data System (ADS)
Xiong, Zhang; Zhang, Jun; Tian, Jinwen
2015-12-01
The reconstruction of the 3D scene in the monocular stereo vision needs to get the depth of the field scenic points in the picture scene. But there will inevitably be error matching in the process of image matching, especially when there are a large number of repeat texture areas in the images, there will be lots of error matches. At present, multiple baseline stereo imaging algorithm is commonly used to eliminate matching error for repeated texture areas. This algorithm can eliminate the ambiguity correspond to common repetition texture. But this algorithm has restrictions on the baseline, and has low speed. In this paper, we put forward an algorithm of calculating the depth of the matching points in the repeat texture areas based on the clustering algorithm. Firstly, we adopt Gauss Filter to preprocess the images. Secondly, we segment the repeated texture regions in the images into image blocks by using spectral clustering segmentation algorithm based on super pixel and tag the image blocks. Then, match the two images and solve the depth of the image. Finally, the depth of the image blocks takes the median in all depth values of calculating point in the bock. So the depth of repeated texture areas is got. The results of a lot of image experiments show that the effect of our algorithm for calculating the depth of repeated texture areas is very good.
NEW MDS AND CLUSTERING BASED ALGORITHMS FOR PROTEIN MODEL QUALITY ASSESSMENT AND SELECTION
WANG, QINGGUO; SHANG, CHARLES; XU, DONG
2014-01-01
In protein tertiary structure prediction, assessing the quality of predicted models is an essential task. Over the past years, many methods have been proposed for the protein model quality assessment (QA) and selection problem. Despite significant advances, the discerning power of current methods is still unsatisfactory. In this paper, we propose two new algorithms, CC-Select and MDS-QA, based on multidimensional scaling and k-means clustering. For the model selection problem, CC-Select combines consensus with clustering techniques to select the best models from a given pool. Given a set of predicted models, CC-Select first calculates a consensus score for each structure based on its average pairwise structural similarity to other models. Then, similar structures are grouped into clusters using multidimensional scaling and clustering algorithms. In each cluster, the one with the highest consensus score is selected as a candidate model. For the QA problem, MDS-QA combines single-model scoring functions with consensus to determine more accurate assessment score for every model in a given pool. Using extensive benchmark sets of a large collection of predicted models, we compare the two algorithms with existing state-of-the-art quality assessment methods and show significant improvement. PMID:24808625
NEW MDS AND CLUSTERING BASED ALGORITHMS FOR PROTEIN MODEL QUALITY ASSESSMENT AND SELECTION.
Wang, Qingguo; Shang, Charles; Xu, Dong; Shang, Yi
2013-10-25
In protein tertiary structure prediction, assessing the quality of predicted models is an essential task. Over the past years, many methods have been proposed for the protein model quality assessment (QA) and selection problem. Despite significant advances, the discerning power of current methods is still unsatisfactory. In this paper, we propose two new algorithms, CC-Select and MDS-QA, based on multidimensional scaling and k-means clustering. For the model selection problem, CC-Select combines consensus with clustering techniques to select the best models from a given pool. Given a set of predicted models, CC-Select first calculates a consensus score for each structure based on its average pairwise structural similarity to other models. Then, similar structures are grouped into clusters using multidimensional scaling and clustering algorithms. In each cluster, the one with the highest consensus score is selected as a candidate model. For the QA problem, MDS-QA combines single-model scoring functions with consensus to determine more accurate assessment score for every model in a given pool. Using extensive benchmark sets of a large collection of predicted models, we compare the two algorithms with existing state-of-the-art quality assessment methods and show significant improvement. PMID:24808625
An effective trust-based recommendation method using a novel graph clustering algorithm
NASA Astrophysics Data System (ADS)
Moradi, Parham; Ahmadian, Sajad; Akhlaghian, Fardin
2015-10-01
Recommender systems are programs that aim to provide personalized recommendations to users for specific items (e.g. music, books) in online sharing communities or on e-commerce sites. Collaborative filtering methods are important and widely accepted types of recommender systems that generate recommendations based on the ratings of like-minded users. On the other hand, these systems confront several inherent issues such as data sparsity and cold start problems, caused by fewer ratings against the unknowns that need to be predicted. Incorporating trust information into the collaborative filtering systems is an attractive approach to resolve these problems. In this paper, we present a model-based collaborative filtering method by applying a novel graph clustering algorithm and also considering trust statements. In the proposed method first of all, the problem space is represented as a graph and then a sparsest subgraph finding algorithm is applied on the graph to find the initial cluster centers. Then, the proposed graph clustering algorithm is performed to obtain the appropriate users/items clusters. Finally, the identified clusters are used as a set of neighbors to recommend unseen items to the current active user. Experimental results based on three real-world datasets demonstrate that the proposed method outperforms several state-of-the-art recommender system methods.
Simulation of Biochemical Pathway Adaptability Using Evolutionary Algorithms
Bosl, W J
2005-01-26
The systems approach to genomics seeks quantitative and predictive descriptions of cells and organisms. However, both the theoretical and experimental methods necessary for such studies still need to be developed. We are far from understanding even the simplest collective behavior of biomolecules, cells or organisms. A key aspect to all biological problems, including environmental microbiology, evolution of infectious diseases, and the adaptation of cancer cells is the evolvability of genomes. This is particularly important for Genomes to Life missions, which tend to focus on the prospect of engineering microorganisms to achieve desired goals in environmental remediation and climate change mitigation, and energy production. All of these will require quantitative tools for understanding the evolvability of organisms. Laboratory biodefense goals will need quantitative tools for predicting complicated host-pathogen interactions and finding counter-measures. In this project, we seek to develop methods to simulate how external and internal signals cause the genetic apparatus to adapt and organize to produce complex biochemical systems to achieve survival. This project is specifically directed toward building a computational methodology for simulating the adaptability of genomes. This project investigated the feasibility of using a novel quantitative approach to studying the adaptability of genomes and biochemical pathways. This effort was intended to be the preliminary part of a larger, long-term effort between key leaders in computational and systems biology at Harvard University and LLNL, with Dr. Bosl as the lead PI. Scientific goals for the long-term project include the development and testing of new hypotheses to explain the observed adaptability of yeast biochemical pathways when the myosin-II gene is deleted and the development of a novel data-driven evolutionary computation as a way to connect exploratory computational simulation with hypothesis
An X-Ray Spectral Classification Algorithm with Application to Young Stellar Clusters
NASA Astrophysics Data System (ADS)
Hojnacki, S. M.; Kastner, J. H.; Micela, G.; Feigelson, E. D.; LaLonde, S. M.
2007-04-01
A large volume of low signal-to-noise, multidimensional data is available from the CCD imaging spectrometers aboard the Chandra X-Ray Observatory and the X-Ray Multimirror Mission (XMM-Newton). To make progress analyzing this data, it is essential to develop methods to sort, classify, and characterize the vast library of X-ray spectra in a nonparametric fashion (complementary to current parametric model fits). We have developed a spectral classification algorithm that handles large volumes of data and operates independently of the requirement of spectral model fits. We use proven multivariate statistical techniques including principal component analysis and an ensemble classifier consisting of agglomerative hierarchical clustering and K-means clustering applied for the first time for spectral classification. The algorithm positions the sources in a multidimensional spectral sequence and then groups the ordered sources into clusters based on their spectra. These clusters appear more distinct for sources with harder observed spectra. The apparent diversity of source spectra is reduced to a three-dimensional locus in principal component space, with spectral outliers falling outside this locus. The algorithm was applied to a sample of 444 strong sources selected from the 1616 X-ray emitting sources detected in deep Chandra imaging spectroscopy of the Orion Nebula Cluster. Classes form sequences in NH, AV, and accretion activity indicators, demonstrating that the algorithm efficiently sorts the X-ray sources into a physically meaningful sequence. The algorithm also isolates important classes of very deeply embedded, active young stellar objects, and yields trends between X-ray spectral parameters and stellar parameters for the lowest mass, pre-main-sequence stars.
Jawarneh, Sana; Abdullah, Salwani
2015-01-01
This paper presents a bee colony optimisation (BCO) algorithm to tackle the vehicle routing problem with time window (VRPTW). The VRPTW involves recovering an ideal set of routes for a fleet of vehicles serving a defined number of customers. The BCO algorithm is a population-based algorithm that mimics the social communication patterns of honeybees in solving problems. The performance of the BCO algorithm is dependent on its parameters, so the online (self-adaptive) parameter tuning strategy is used to improve its effectiveness and robustness. Compared with the basic BCO, the adaptive BCO performs better. Diversification is crucial to the performance of the population-based algorithm, but the initial population in the BCO algorithm is generated using a greedy heuristic, which has insufficient diversification. Therefore the ways in which the sequential insertion heuristic (SIH) for the initial population drives the population toward improved solutions are examined. Experimental comparisons indicate that the proposed adaptive BCO-SIH algorithm works well across all instances and is able to obtain 11 best results in comparison with the best-known results in the literature when tested on Solomon’s 56 VRPTW 100 customer instances. Also, a statistical test shows that there is a significant difference between the results. PMID:26132158
Adaptive Sampling Algorithms for Probabilistic Risk Assessment of Nuclear Simulations
Diego Mandelli; Dan Maljovec; Bei Wang; Valerio Pascucci; Peer-Timo Bremer
2013-09-01
Nuclear simulations are often computationally expensive, time-consuming, and high-dimensional with respect to the number of input parameters. Thus exploring the space of all possible simulation outcomes is infeasible using finite computing resources. During simulation-based probabilistic risk analysis, it is important to discover the relationship between a potentially large number of input parameters and the output of a simulation using as few simulation trials as possible. This is a typical context for performing adaptive sampling where a few observations are obtained from the simulation, a surrogate model is built to represent the simulation space, and new samples are selected based on the model constructed. The surrogate model is then updated based on the simulation results of the sampled points. In this way, we attempt to gain the most information possible with a small number of carefully selected sampled points, limiting the number of expensive trials needed to understand features of the simulation space. We analyze the specific use case of identifying the limit surface, i.e., the boundaries in the simulation space between system failure and system success. In this study, we explore several techniques for adaptively sampling the parameter space in order to reconstruct the limit surface. We focus on several adaptive sampling schemes. First, we seek to learn a global model of the entire simulation space using prediction models or neighborhood graphs and extract the limit surface as an iso-surface of the global model. Second, we estimate the limit surface by sampling in the neighborhood of the current estimate based on topological segmentations obtained locally. Our techniques draw inspirations from topological structure known as the Morse-Smale complex. We highlight the advantages and disadvantages of using a global prediction model versus local topological view of the simulation space, comparing several different strategies for adaptive sampling in both
The RedGOLD cluster detection algorithm and its cluster candidate catalogue for the CFHT-LS W1
NASA Astrophysics Data System (ADS)
Licitra, Rossella; Mei, Simona; Raichoor, Anand; Erben, Thomas; Hildebrandt, Hendrik
2016-01-01
We present RedGOLD (Red-sequence Galaxy Overdensity cLuster Detector), a new optical/NIR galaxy cluster detection algorithm, and apply it to the CFHT-LS W1 field. RedGOLD searches for red-sequence galaxy overdensities while minimizing contamination from dusty star-forming galaxies. It imposes an Navarro-Frenk-White profile and calculates cluster detection significance and richness. We optimize these latter two parameters using both simulations and X-ray-detected cluster catalogues, and obtain a catalogue ˜80 per cent pure up to z ˜ 1, and ˜100 per cent (˜70 per cent) complete at z ≤ 0.6 (z ≲ 1) for galaxy clusters with M ≳ 1014 M⊙ at the CFHT-LS Wide depth. In the CFHT-LS W1, we detect 11 cluster candidates per deg2 out to z ˜ 1.1. When we optimize both completeness and purity, RedGOLD obtains a cluster catalogue with higher completeness and purity than other public catalogues, obtained using CFHT-LS W1 observations, for M ≳ 1014 M⊙. We use X-ray-detected cluster samples to extend the study of the X-ray temperature-optical richness relation to a lower mass threshold, and find a mass scatter at fixed richness of σlnM|λ = 0.39 ± 0.07 and σlnM|λ = 0.30 ± 0.13 for the Gozaliasl et al. and Mehrtens et al. samples. When considering similar mass ranges as previous work, we recover a smaller scatter in mass at fixed richness. We recover 93 per cent of the redMaPPer detections, and find that its richness estimates is on average ˜40-50 per cent larger than ours at z > 0.3. RedGOLD recovers X-ray cluster spectroscopic redshifts at better than 5 per cent up to z ˜ 1, and the centres within a few tens of arcseconds.
Adaptive optics image deconvolution based on a modified Richardson-Lucy algorithm
NASA Astrophysics Data System (ADS)
Chen, Bo; Geng, Ze-xun; Yan, Xiao-dong; Yang, Yang; Sui, Xue-lian; Zhao, Zhen-lei
2007-12-01
Adaptive optical (AO) system provides a real-time compensation for atmospheric turbulence. However, the correction is often only partial, and a deconvolution is required for reaching the diffraction limit. The Richardson-Lucy (R-L) Algorithm is the technique most widely used for AO image deconvolution, but Standard R-L Algorithm (SRLA) is often puzzled by speckling phenomenon, wraparound artifact and noise problem. A Modified R-L Algorithm (MRLA) for AO image deconvolution is presented. This novel algorithm applies Magain's correct sampling approach and incorporating noise statistics to Standard R-L Algorithm. The alternant iterative method is applied to estimate PSF and object in the novel algorithm. Comparing experiments for indoor data and AO image are done with SRLA and the MRLA in this paper. Experimental results show that this novel MRLA outperforms the SRLA.
A geometry-based adaptive unstructured grid generation algorithm for complex geological media
NASA Astrophysics Data System (ADS)
Bahrainian, Seyed Saied; Dezfuli, Alireza Daneh
2014-07-01
In this paper a novel unstructured grid generation algorithm is presented that considers the effect of geological features and well locations in grid resolution. The proposed grid generation algorithm presents a strategy for definition and construction of an initial grid based on the geological model, geometry adaptation of geological features, and grid resolution control. The algorithm is applied to seismotectonic map of the Masjed-i-Soleiman reservoir. Comparison of grid results with the “Triangle” program shows a more suitable permeability contrast. Immiscible two-phase flow solutions are presented for a fractured porous media test case using different grid resolutions. Adapted grid on the fracture geometry gave identical results with that of a fine grid. The adapted grid employed 88.2% less CPU time when compared to the solutions obtained by the fine grid.
Adaptive control and noise suppression by a variable-gain gradient algorithm
NASA Technical Reports Server (NTRS)
Merhav, S. J.; Mehta, R. S.
1987-01-01
An adaptive control system based on normalized LMS filters is investigated. The finite impulse response of the nonparametric controller is adaptively estimated using a given reference model. Specifically, the following issues are addressed: The stability of the closed loop system is analyzed and heuristically established. Next, the adaptation process is studied for piecewise constant plant parameters. It is shown that by introducing a variable-gain in the gradient algorithm, a substantial reduction in the LMS adaptation rate can be achieved. Finally, process noise at the plant output generally causes a biased estimate of the controller. By introducing a noise suppression scheme, this bias can be substantially reduced and the response of the adapted system becomes very close to that of the reference model. Extensive computer simulations validate these and demonstrate assertions that the system can rapidly adapt to random jumps in plant parameters.
Performance study of LMS based adaptive algorithms for unknown system identification
Javed, Shazia; Ahmad, Noor Atinah
2014-07-10
Adaptive filtering techniques have gained much popularity in the modeling of unknown system identification problem. These techniques can be classified as either iterative or direct. Iterative techniques include stochastic descent method and its improved versions in affine space. In this paper we present a comparative study of the least mean square (LMS) algorithm and some improved versions of LMS, more precisely the normalized LMS (NLMS), LMS-Newton, transform domain LMS (TDLMS) and affine projection algorithm (APA). The performance evaluation of these algorithms is carried out using adaptive system identification (ASI) model with random input signals, in which the unknown (measured) signal is assumed to be contaminated by output noise. Simulation results are recorded to compare the performance in terms of convergence speed, robustness, misalignment, and their sensitivity to the spectral properties of input signals. Main objective of this comparative study is to observe the effects of fast convergence rate of improved versions of LMS algorithms on their robustness and misalignment.
Detection of Human Impacts by an Adaptive Energy-Based Anisotropic Algorithm
Prado-Velasco, Manuel; Ortiz Marín, Rafael; del Rio Cidoncha, Gloria
2013-01-01
Boosted by health consequences and the cost of falls in the elderly, this work develops and tests a novel algorithm and methodology to detect human impacts that will act as triggers of a two-layer fall monitor. The two main requirements demanded by socio-healthcare providers—unobtrusiveness and reliability—defined the objectives of the research. We have demonstrated that a very agile, adaptive, and energy-based anisotropic algorithm can provide 100% sensitivity and 78% specificity, in the task of detecting impacts under demanding laboratory conditions. The algorithm works together with an unsupervised real-time learning technique that addresses the adaptive capability, and this is also presented. The work demonstrates the robustness and reliability of our new algorithm, which will be the basis of a smart falling monitor. This is shown in this work to underline the relevance of the results. PMID:24157505
Performance study of LMS based adaptive algorithms for unknown system identification
NASA Astrophysics Data System (ADS)
Javed, Shazia; Ahmad, Noor Atinah
2014-07-01
Adaptive filtering techniques have gained much popularity in the modeling of unknown system identification problem. These techniques can be classified as either iterative or direct. Iterative techniques include stochastic descent method and its improved versions in affine space. In this paper we present a comparative study of the least mean square (LMS) algorithm and some improved versions of LMS, more precisely the normalized LMS (NLMS), LMS-Newton, transform domain LMS (TDLMS) and affine projection algorithm (APA). The performance evaluation of these algorithms is carried out using adaptive system identification (ASI) model with random input signals, in which the unknown (measured) signal is assumed to be contaminated by output noise. Simulation results are recorded to compare the performance in terms of convergence speed, robustness, misalignment, and their sensitivity to the spectral properties of input signals. Main objective of this comparative study is to observe the effects of fast convergence rate of improved versions of LMS algorithms on their robustness and misalignment.
The parallelization of an advancing-front, all-quadrilateral meshing algorithm for adaptive analysis
Lober, R.R.; Tautges, T.J.; Cairncross, R.A.
1995-11-01
The ability to perform effective adaptive analysis has become a critical issue in the area of physical simulation. Of the multiple technologies required to realize a parallel adaptive analysis capability, automatic mesh generation is an enabling technology, filling a critical need in the appropriate discretization of a problem domain. The paving algorithm`s unique ability to generate a function-following quadrilateral grid is a substantial advantage in Sandia`s pursuit of a modified h-method adaptive capability. This characteristic combined with a strong transitioning ability allow the paving algorithm to place elements where an error function indicates more mesh resolution is needed. Although the original paving algorithm is highly serial, a two stage approach has been designed to parallelize the algorithm but also retain the nice qualities of the serial algorithm. The authors approach also allows the subdomain decomposition used by the meshing code to be shared with the finite element physics code, eliminating the need for data transfer across the processors between the analysis and remeshing steps. In addition, the meshed subdomains are adjusted with a dynamic load balancer to improve the original decomposition and maintain load efficiency each time the mesh has been regenerated. This initial parallel implementation assumes an approach of restarting the physics problem from time zero at each interaction, with a refined mesh adapting to the previous iterations objective function. The remeshing tools are being developed to enable real time remeshing and geometry regeneration. Progress on the redesign of the paving algorithm for parallel operation is discussed including extensions allowing adaptive control and geometry regeneration.
FctClus: A Fast Clustering Algorithm for Heterogeneous Information Networks.
Yang, Jing; Chen, Limin; Zhang, Jianpei
2015-01-01
It is important to cluster heterogeneous information networks. A fast clustering algorithm based on an approximate commute time embedding for heterogeneous information networks with a star network schema is proposed in this paper by utilizing the sparsity of heterogeneous information networks. First, a heterogeneous information network is transformed into multiple compatible bipartite graphs from the compatible point of view. Second, the approximate commute time embedding of each bipartite graph is computed using random mapping and a linear time solver. All of the indicator subsets in each embedding simultaneously determine the target dataset. Finally, a general model is formulated by these indicator subsets, and a fast algorithm is derived by simultaneously clustering all of the indicator subsets using the sum of the weighted distances for all indicators for an identical target object. The proposed fast algorithm, FctClus, is shown to be efficient and generalizable and exhibits high clustering accuracy and fast computation speed based on a theoretic analysis and experimental verification. PMID:26090857
A priori data-driven multi-clustered reservoir generation algorithm for echo state network.
Li, Xiumin; Zhong, Ling; Xue, Fangzheng; Zhang, Anguo
2015-01-01
Echo state networks (ESNs) with multi-clustered reservoir topology perform better in reservoir computing and robustness than those with random reservoir topology. However, these ESNs have a complex reservoir topology, which leads to difficulties in reservoir generation. This study focuses on the reservoir generation problem when ESN is used in environments with sufficient priori data available. Accordingly, a priori data-driven multi-cluster reservoir generation algorithm is proposed. The priori data in the proposed algorithm are used to evaluate reservoirs by calculating the precision and standard deviation of ESNs. The reservoirs are produced using the clustering method; only the reservoir with a better evaluation performance takes the place of a previous one. The final reservoir is obtained when its evaluation score reaches the preset requirement. The prediction experiment results obtained using the Mackey-Glass chaotic time series show that the proposed reservoir generation algorithm provides ESNs with extra prediction precision and increases the structure complexity of the network. Further experiments also reveal the appropriate values of the number of clusters and time window size to obtain optimal performance. The information entropy of the reservoir reaches the maximum when ESN gains the greatest precision. PMID:25875296
A novel pseudoderivative-based mutation operator for real-coded adaptive genetic algorithms
Kanwal, Maxinder S; Ramesh, Avinash S; Huang, Lauren A
2013-01-01
Recent development of large databases, especially those in genetics and proteomics, is pushing the development of novel computational algorithms that implement rapid and accurate search strategies. One successful approach has been to use artificial intelligence and methods, including pattern recognition (e.g. neural networks) and optimization techniques (e.g. genetic algorithms). The focus of this paper is on optimizing the design of genetic algorithms by using an adaptive mutation rate that is derived from comparing the fitness values of successive generations. We propose a novel pseudoderivative-based mutation rate operator designed to allow a genetic algorithm to escape local optima and successfully continue to the global optimum. Once proven successful, this algorithm can be implemented to solve real problems in neurology and bioinformatics. As a first step towards this goal, we tested our algorithm on two 3-dimensional surfaces with multiple local optima, but only one global optimum, as well as on the N-queens problem, an applied problem in which the function that maps the curve is implicit. For all tests, the adaptive mutation rate allowed the genetic algorithm to find the global optimal solution, performing significantly better than other search methods, including genetic algorithms that implement fixed mutation rates. PMID:24627784
K-Boost: a scalable algorithm for high-quality clustering of microarray gene expression data.
Geraci, Filippo; Leoncini, Mauro; Montangero, Manuela; Pellegrini, Marco; Renda, M Elena
2009-06-01
Microarray technology for profiling gene expression levels is a popular tool in modern biological research. Applications range from tissue classification to the detection of metabolic networks, from drug discovery to time-critical personalized medicine. Given the increase in size and complexity of the data sets produced, their analysis is becoming problematic in terms of time/quality trade-offs. Clustering genes with similar expression profiles is a key initial step for subsequent manipulations and the increasing volumes of data to be analyzed requires methods that are at the same time efficient (completing an analysis in minutes rather than hours) and effective (identifying significant clusters with high biological correlations). In this paper, we propose K-Boost, a clustering algorithm based on a combination of the furthest-point-first (FPF) heuristic for solving the metric k-center problem, a stability-based method for determining the number of clusters, and a k-means-like cluster refinement. K-Boost runs in O (|N| x k) time, where N is the input matrix and k is the number of proposed clusters. Experiments show that this low complexity is usually coupled with a very good quality of the computed clusterings, which we measure using both internal and external criteria. Supporting data can be found as online Supplementary Material at www.liebertonline.com. PMID:19522668
Large spatial, temporal, and algorithmic adaptivity for implicit nonlinear finite element analysis
Engelmann, B.E.; Whirley, R.G.
1992-07-30
The development of effective solution strategies to solve the global nonlinear equations which arise in implicit finite element analysis has been the subject of much research in recent years. Robust algorithms are needed to handle the complex nonlinearities that arise in many implicit finite element applications such as metalforming process simulation. The authors experience indicates that robustness can best be achieved through adaptive solution strategies. In the course of their research, this adaptivity and flexibility has been refined into a production tool through the development of a solution control language called ISLAND. This paper discusses aspects of adaptive solution strategies including iterative procedures to solve the global equations and remeshing techniques to extend the domain of Lagrangian methods. Examples using the newly developed ISLAND language are presented to illustrate the advantages of embedding temporal, algorithmic, and spatial adaptivity in a modem implicit nonlinear finite element analysis code.
DARAL: A Dynamic and Adaptive Routing Algorithm for Wireless Sensor Networks.
Estévez, Francisco José; Glösekötter, Peter; González, Jesús
2016-01-01
The evolution of Smart City projects is pushing researchers and companies to develop more efficient embedded hardware and also more efficient communication technologies. These communication technologies are the focus of this work, presenting a new routing algorithm based on dynamically-allocated sub-networks and node roles. Among these features, our algorithm presents a fast set-up time, a reduced overhead and a hierarchical organization, which allows for the application of complex management techniques. This work presents a routing algorithm based on a dynamically-allocated hierarchical clustering, which uses the link quality indicator as a reference parameter, maximizing the network coverage and minimizing the control message overhead and the convergence time. The present work based its test scenario and analysis in the density measure, considered as a node degree. The routing algorithm is compared with some of the most well known routing algorithms for different scenario densities. PMID:27347962
DARAL: A Dynamic and Adaptive Routing Algorithm for Wireless Sensor Networks
Estévez, Francisco José; Glösekötter, Peter; González, Jesús
2016-01-01
The evolution of Smart City projects is pushing researchers and companies to develop more efficient embedded hardware and also more efficient communication technologies. These communication technologies are the focus of this work, presenting a new routing algorithm based on dynamically-allocated sub-networks and node roles. Among these features, our algorithm presents a fast set-up time, a reduced overhead and a hierarchical organization, which allows for the application of complex management techniques. This work presents a routing algorithm based on a dynamically-allocated hierarchical clustering, which uses the link quality indicator as a reference parameter, maximizing the network coverage and minimizing the control message overhead and the convergence time. The present work based its test scenario and analysis in the density measure, considered as a node degree. The routing algorithm is compared with some of the most well known routing algorithms for different scenario densities. PMID:27347962
NASA Technical Reports Server (NTRS)
Lennington, R. K.; Rassbach, M. E.
1979-01-01
Discussed in this report is the clustering algorithm CLASSY, including detailed descriptions of its general structure and mathematical background and of the various major subroutines. The report provides a development of the logic and equations used with specific reference to program variables. Some comments on timing and proposed optimization techniques are included.
NASA Technical Reports Server (NTRS)
Ianculescu, G. D.; Klop, J. J.
1992-01-01
Classical and adaptive control algorithms for the solar array pointing system of the Space Station Freedom are designed using a continuous rigid body model of the solar array gimbal assembly containing both linear and nonlinear dynamics due to various friction components. The robustness of the design solution is examined by performing a series of sensitivity analysis studies. Adaptive control strategies are examined in order to compensate for the unfavorable effect of static nonlinearities, such as dead-zone uncertainties.
Cluster-Based Multipolling Sequencing Algorithm for Collecting RFID Data in Wireless LANs
NASA Astrophysics Data System (ADS)
Choi, Woo-Yong; Chatterjee, Mainak
2015-03-01
With the growing use of RFID (Radio Frequency Identification), it is becoming important to devise ways to read RFID tags in real time. Access points (APs) of IEEE 802.11-based wireless Local Area Networks (LANs) are being integrated with RFID networks that can efficiently collect real-time RFID data. Several schemes, such as multipolling methods based on the dynamic search algorithm and random sequencing, have been proposed. However, as the number of RFID readers associated with an AP increases, it becomes difficult for the dynamic search algorithm to derive the multipolling sequence in real time. Though multipolling methods can eliminate the polling overhead, we still need to enhance the performance of the multipolling methods based on random sequencing. To that extent, we propose a real-time cluster-based multipolling sequencing algorithm that drastically eliminates more than 90% of the polling overhead, particularly so when the dynamic search algorithm fails to derive the multipolling sequence in real time.
A genetic algorithmic approach to antenna null-steering using a cluster computer.
NASA Astrophysics Data System (ADS)
Recine, Greg; Cui, Hong-Liang
2001-06-01
We apply a genetic algorithm (GA) to the problem of electronically steering the maximums and nulls of an antenna array to desired positions (null toward enemy listener/jammer, max toward friendly listener/transmitter). The antenna pattern itself is computed using NEC2 which is called by the main GA program. Since a GA naturally lends itself to parallelization, this simulation was applied to our new twin 64-node cluster computers (Gemini). Design issues and uses of the Gemini cluster in our group are also discussed.
KD-tree based clustering algorithm for fast face recognition on large-scale data
NASA Astrophysics Data System (ADS)
Wang, Yuanyuan; Lin, Yaping; Yang, Junfeng
2015-07-01
This paper proposes an acceleration method for large-scale face recognition system. When dealing with a large-scale database, face recognition is time-consuming. In order to tackle this problem, we employ the k-means clustering algorithm to classify face data. Specifically, the data in each cluster are stored in the form of the kd-tree, and face feature matching is conducted with the kd-tree based nearest neighborhood search. Experiments on CAS-PEAL and self-collected database show the effectiveness of our proposed method.
K-Means Re-Clustering-Algorithmic Options with Quantifiable Performance Comparisons
Meyer, A W; Paglieroni, D; Asteneh, C
2002-12-17
This paper presents various architectural options for implementing a K-Means Re-Clustering algorithm suitable for unsupervised segmentation of hyperspectral images. Performance metrics are developed based upon quantitative comparisons of convergence rates and segmentation quality. A methodology for making these comparisons is developed and used to establish K values that produce the best segmentations with minimal processing requirements. Convergence rates depend on the initial choice of cluster centers. Consequently, this same methodology may be used to evaluate the effectiveness of different initialization techniques.
ERIC Educational Resources Information Center
Lancioni, Giulio E.; O'reilly, Mark F.; Singh, Nirbhay N.; Sigafoos, Jeff; Oliva, Doretta; Baccani, Simona; Groeneweg, Jop
2006-01-01
The authors assessed new microswitch clusters (i.e., combinations of two microswitches) and contingent stimulation to increase adaptive responses (i.e., foot and head movements) and reduce aberrant behavior (i.e., finger mouthing) in a boy with multiple disabilities. Initially, intervention was directed at increasing the frequency of each adaptive…
Adaptive Waveform Correlation Detectors for Arrays: Algorithms for Autonomous Calibration
Ringdal, F; Harris, D B; Dodge, D; Gibbons, S J
2009-07-23
extend detection to lower magnitudes. This year we addressed a problem long known to limit the acceptance of correlation detectors in practice: the labor intensive development of templates. For example, existing design methods cannot keep pace with rapidly unfolding aftershock sequences. We successfully built and tested an object-oriented framework (as described in our 2005 proposal) for autonomous calibration of waveform correlation detectors for an array. The framework contains a dynamic list of detectors of several types operating on a continuous array data stream. The list has permanent detectors: beam forming power (STA/LTA) detectors which serve the purpose of detecting signals not yet characterized with a waveform template. The framework also contains an arbitrary number of subspace detectors which are launched automatically using the waveforms from validated power detections as templates. The implementation is very efficient such that the computational cost of adding subspace detectors was low. The framework contains a supervisor that oversees the validation of power detections, and periodically halts the processing to revise the portfolio of detectors. The process of revision consists of collecting the waveforms from all detections, performing cross-correlations pairwise among all waveforms, clustering the detections using correlations as a distance measure, then creating a new subspace detector from each cluster. The collection of new subspace detectors replaces the existing portfolio and processing of the data stream resumes. This elaborate scheme was implemented to prevent proliferation of closely-related subspace detectors. The method performed very well on several simple sequences: 2005 'drumbeat' events observed locally at Mt. St. Helens, and the 2003 Orinda, CA aftershock sequence. Our principal test entailed detection of the aftershocks of the San Simeon earthquake using the NVAR array; in this case, the system automatically detected and categorized
An Adaptive Weighting Algorithm for Interpolating the Soil Potassium Content.
Liu, Wei; Du, Peijun; Zhao, Zhuowen; Zhang, Lianpeng
2016-01-01
The concept of spatial interpolation is important in the soil sciences. However, the use of a single global interpolation model is often limited by certain conditions (e.g., terrain complexity), which leads to distorted interpolation results. Here we present a method of adaptive weighting combined environmental variables for soil properties interpolation (AW-SP) to improve accuracy. Using various environmental variables, AW-SP was used to interpolate soil potassium content in Qinghai Lake Basin. To evaluate AW-SP performance, we compared it with that of inverse distance weighting (IDW), ordinary kriging, and OK combined with different environmental variables. The experimental results showed that the methods combined with environmental variables did not always improve prediction accuracy even if there was a strong correlation between the soil properties and environmental variables. However, compared with IDW, OK, and OK combined with different environmental variables, AW-SP is more stable and has lower mean absolute and root mean square errors. Furthermore, the AW-SP maps provided improved details of soil potassium content and provided clearer boundaries to its spatial distribution. In conclusion, AW-SP can not only reduce prediction errors, it also accounts for the distribution and contributions of environmental variables, making the spatial interpolation of soil potassium content more reasonable. PMID:27051998
An Adaptive Weighting Algorithm for Interpolating the Soil Potassium Content
Liu, Wei; Du, Peijun; Zhao, Zhuowen; Zhang, Lianpeng
2016-01-01
The concept of spatial interpolation is important in the soil sciences. However, the use of a single global interpolation model is often limited by certain conditions (e.g., terrain complexity), which leads to distorted interpolation results. Here we present a method of adaptive weighting combined environmental variables for soil properties interpolation (AW-SP) to improve accuracy. Using various environmental variables, AW-SP was used to interpolate soil potassium content in Qinghai Lake Basin. To evaluate AW-SP performance, we compared it with that of inverse distance weighting (IDW), ordinary kriging, and OK combined with different environmental variables. The experimental results showed that the methods combined with environmental variables did not always improve prediction accuracy even if there was a strong correlation between the soil properties and environmental variables. However, compared with IDW, OK, and OK combined with different environmental variables, AW-SP is more stable and has lower mean absolute and root mean square errors. Furthermore, the AW-SP maps provided improved details of soil potassium content and provided clearer boundaries to its spatial distribution. In conclusion, AW-SP can not only reduce prediction errors, it also accounts for the distribution and contributions of environmental variables, making the spatial interpolation of soil potassium content more reasonable. PMID:27051998
An Adaptive Weighting Algorithm for Interpolating the Soil Potassium Content
NASA Astrophysics Data System (ADS)
Liu, Wei; Du, Peijun; Zhao, Zhuowen; Zhang, Lianpeng
2016-04-01
The concept of spatial interpolation is important in the soil sciences. However, the use of a single global interpolation model is often limited by certain conditions (e.g., terrain complexity), which leads to distorted interpolation results. Here we present a method of adaptive weighting combined environmental variables for soil properties interpolation (AW-SP) to improve accuracy. Using various environmental variables, AW-SP was used to interpolate soil potassium content in Qinghai Lake Basin. To evaluate AW-SP performance, we compared it with that of inverse distance weighting (IDW), ordinary kriging, and OK combined with different environmental variables. The experimental results showed that the methods combined with environmental variables did not always improve prediction accuracy even if there was a strong correlation between the soil properties and environmental variables. However, compared with IDW, OK, and OK combined with different environmental variables, AW-SP is more stable and has lower mean absolute and root mean square errors. Furthermore, the AW-SP maps provided improved details of soil potassium content and provided clearer boundaries to its spatial distribution. In conclusion, AW-SP can not only reduce prediction errors, it also accounts for the distribution and contributions of environmental variables, making the spatial interpolation of soil potassium content more reasonable.
Adaptive motion artifact reducing algorithm for wrist photoplethysmography application
NASA Astrophysics Data System (ADS)
Zhao, Jingwei; Wang, Guijin; Shi, Chenbo
2016-04-01
Photoplethysmography (PPG) technology is widely used in wearable heart pulse rate monitoring. It might reveal the potential risks of heart condition and cardiopulmonary function by detecting the cardiac rhythms in physical exercise. However the quality of wrist photoelectric signal is very sensitive to motion artifact since the thicker tissues and the fewer amount of capillaries. Therefore, motion artifact is the major factor that impede the heart rate measurement in the high intensity exercising. One accelerometer and three channels of light with different wavelengths are used in this research to analyze the coupled form of motion artifact. A novel approach is proposed to separate the pulse signal from motion artifact by exploiting their mixing ratio in different optical paths. There are four major steps of our method: preprocessing, motion artifact estimation, adaptive filtering and heart rate calculation. Five healthy young men are participated in the experiment. The speeder in the treadmill is configured as 12km/h, and all subjects would run for 3-10 minutes by swinging the arms naturally. The final result is compared with chest strap. The average of mean square error (MSE) is less than 3 beats per minute (BPM/min). Proposed method performed well in intense physical exercise and shows the great robustness to individuals with different running style and posture.
Performance Analysis of Apriori Algorithm with Different Data Structures on Hadoop Cluster
NASA Astrophysics Data System (ADS)
Singh, Sudhakar; Garg, Rakhi; Mishra, P. K.
2015-10-01
Mining frequent itemsets from massive datasets is always being a most important problem of data mining. Apriori is the most popular and simplest algorithm for frequent itemset mining. To enhance the efficiency and scalability of Apriori, a number of algorithms have been proposed addressing the design of efficient data structures, minimizing database scan and parallel and distributed processing. MapReduce is the emerging parallel and distributed technology to process big datasets on Hadoop Cluster. To mine big datasets it is essential to re-design the data mining algorithm on this new paradigm. In this paper, we implement three variations of Apriori algorithm using data structures hash tree, trie and hash table trie i.e. trie with hash technique on MapReduce paradigm. We emphasize and investigate the significance of these three data structures for Apriori algorithm on Hadoop cluster, which has not been given attention yet. Experiments are carried out on both real life and synthetic datasets which shows that hash table trie data structures performs far better than trie and hash tree in terms of execution time. Moreover the performance in case of hash tree becomes worst.
Evaluation of an adaptive filtering algorithm for CT cardiac imaging with EKG modulated tube current
NASA Astrophysics Data System (ADS)
Li, Jianying; Hsieh, Jiang; Mohr, Kelly; Okerlund, Darin
2005-04-01
We have developed an adaptive filtering algorithm for cardiac CT scans with EKG-modulated tube current to optimize resolution and noise for different cardiac phases and to provide safety net for cases where end-systole phase is used for coronary imaging. This algorithm has been evaluated using patient cardiac CT scans where lower tube currents are used for the systolic phases. In this paper, we present the evaluation results. The results demonstrated that with the use of the proposed algorithm, we could improve image quality for all cardiac phases, while providing greater noise and streak artifact reduction for systole phases where lower CT dose were used.
Robustness of ‘cut and splice’ genetic algorithms in the structural optimization of atomic clusters
NASA Astrophysics Data System (ADS)
Froltsov, Vladimir A.; Reuter, Karsten
2009-05-01
We return to the geometry optimization problem of Lennard-Jones clusters to analyze the performance dependence of 'cut and splice' genetic algorithms (GAs) on the employed population size. We generally find that admixing twinning mutation moves leads to an improved robustness of the algorithm efficiency with respect to this a priori unknown technical parameter. The resulting very stable performance of the corresponding mutation + mating GA implementation over a wide range of population sizes is an important feature when addressing unknown systems with computationally involved first-principles based GA sampling.
Modified fast frequency acquisition via adaptive least squares algorithm
NASA Technical Reports Server (NTRS)
Kumar, Rajendra (Inventor)
1992-01-01
A method and the associated apparatus for estimating the amplitude, frequency, and phase of a signal of interest are presented. The method comprises the following steps: (1) inputting the signal of interest; (2) generating a reference signal with adjustable amplitude, frequency and phase at an output thereof; (3) mixing the signal of interest with the reference signal and a signal 90 deg out of phase with the reference signal to provide a pair of quadrature sample signals comprising respectively a difference between the signal of interest and the reference signal and a difference between the signal of interest and the signal 90 deg out of phase with the reference signal; (4) using the pair of quadrature sample signals to compute estimates of the amplitude, frequency, and phase of an error signal comprising the difference between the signal of interest and the reference signal employing a least squares estimation; (5) adjusting the amplitude, frequency, and phase of the reference signal from the numerically controlled oscillator in a manner which drives the error signal towards zero; and (6) outputting the estimates of the amplitude, frequency, and phase of the error signal in combination with the reference signal to produce a best estimate of the amplitude, frequency, and phase of the signal of interest. The preferred method includes the step of providing the error signal as a real time confidence measure as to the accuracy of the estimates wherein the closer the error signal is to zero, the higher the probability that the estimates are accurate. A matrix in the estimation algorithm provides an estimate of the variance of the estimation error.
STAR adaptation of QR algorithm. [program for solving over-determined systems of linear equations
NASA Technical Reports Server (NTRS)
Shah, S. N.
1981-01-01
The QR algorithm used on a serial computer and executed on the Control Data Corporation 6000 Computer was adapted to execute efficiently on the Control Data STAR-100 computer. How the scalar program was adapted for the STAR-100 and why these adaptations yielded an efficient STAR program is described. Program listings of the old scalar version and the vectorized SL/1 version are presented in the appendices. Execution times for the two versions applied to the same system of linear equations, are compared.
An adaptive algorithm for removing the blocking artifacts in block-transform coded images
NASA Astrophysics Data System (ADS)
Yang, Jingzhong; Ma, Zheng
2005-11-01
JPEG and MPEG compression standards adopt the macro block encoding approach, but this method can lead to annoying blocking effects-the artificial rectangular discontinuities in the decoded images. Many powerful postprocessing algorithms have been developed to remove the blocking effects. However, all but the simplest algorithms can be too complex for real-time applications, such as video decoding. We propose an adaptive and easy-to-implement algorithm that can removes the artificial discontinuities. This algorithm contains two steps, firstly, to perform a fast linear smoothing of the block edge's pixel by average value replacement strategy, the next one, by comparing the variance that is derived from the difference of the processed image with a reasonable threshold, to determine whether the first step should stop or not. Experiments have proved that this algorithm can quickly remove the artificial discontinuities without destroying the key information of the decoded images, it is robust to different images and transform strategy.
An adaptive ant colony system algorithm for continuous-space optimization problems.
Li, Yan-jun; Wu, Tie-jun
2003-01-01
Ant colony algorithms comprise a novel category of evolutionary computation methods for optimization problems, especially for sequencing-type combinatorial optimization problems. An adaptive ant colony algorithm is proposed in this paper to tackle continuous-space optimization problems, using a new objective-function-based heuristic pheromone assignment approach for pheromone update to filtrate solution candidates. Global optimal solutions can be reached more rapidly by self-adjusting the path searching behaviors of the ants according to objective values. The performance of the proposed algorithm is compared with a basic ant colony algorithm and a Square Quadratic Programming approach in solving two benchmark problems with multiple extremes. The results indicated that the efficiency and reliability of the proposed algorithm were greatly improved. PMID:12656341
Riemannian mean and space-time adaptive processing using projection and inversion algorithms
NASA Astrophysics Data System (ADS)
Balaji, Bhashyam; Barbaresco, Frédéric
2013-05-01
The estimation of the covariance matrix from real data is required in the application of space-time adaptive processing (STAP) to an airborne ground moving target indication (GMTI) radar. A natural approach to estimation of the covariance matrix that is based on the information geometry has been proposed. In this paper, the output of the Riemannian mean is used in inversion and projection algorithms. It is found that the projection class of algorithms can yield very significant gains, even when the gains due to inversion-based algorithms are marginal over standard algorithms. The performance of the projection class of algorithms does not appear to be overly sensitive to the projected subspace dimension.
Alavandar, Srinivasan; Nigam, M J
2009-10-01
Control of an industrial robot includes nonlinearities, uncertainties and external perturbations that should be considered in the design of control laws. In this paper, some new hybrid adaptive neuro-fuzzy control algorithms (ANFIS) have been proposed for manipulator control with uncertainties. These hybrid controllers consist of adaptive neuro-fuzzy controllers and conventional controllers. The outputs of these controllers are applied to produce the final actuation signal based on current position and velocity errors. Numerical simulation using the dynamic model of six DOF puma robot arm with uncertainties shows the effectiveness of the approach in trajectory tracking problems. Performance indices of RMS error, maximum error are used for comparison. It is observed that the hybrid adaptive neuro-fuzzy controllers perform better than only conventional/adaptive controllers and in particular hybrid controller structure consisting of adaptive neuro-fuzzy controller and critically damped inverse dynamics controller. PMID:19523623
Huang, X N; Ren, H P
2016-01-01
Robust adaptation is a critical ability of gene regulatory network (GRN) to survive in a fluctuating environment, which represents the system responding to an input stimulus rapidly and then returning to its pre-stimulus steady state timely. In this paper, the GRN is modeled using the Michaelis-Menten rate equations, which are highly nonlinear differential equations containing 12 undetermined parameters. The robust adaption is quantitatively described by two conflicting indices. To identify the parameter sets in order to confer the GRNs with robust adaptation is a multi-variable, multi-objective, and multi-peak optimization problem, which is difficult to acquire satisfactory solutions especially high-quality solutions. A new best-neighbor particle swarm optimization algorithm is proposed to implement this task. The proposed algorithm employs a Latin hypercube sampling method to generate the initial population. The particle crossover operation and elitist preservation strategy are also used in the proposed algorithm. The simulation results revealed that the proposed algorithm could identify multiple solutions in one time running. Moreover, it demonstrated a superior performance as compared to the previous methods in the sense of detecting more high-quality solutions within an acceptable time. The proposed methodology, owing to its universality and simplicity, is useful for providing the guidance to design GRN with superior robust adaptation. PMID:27323043
Fast Adapting Ensemble: A New Algorithm for Mining Data Streams with Concept Drift
Ortíz Díaz, Agustín; Ramos-Jiménez, Gonzalo; Frías Blanco, Isvani; Caballero Mota, Yailé; Morales-Bueno, Rafael
2015-01-01
The treatment of large data streams in the presence of concept drifts is one of the main challenges in the field of data mining, particularly when the algorithms have to deal with concepts that disappear and then reappear. This paper presents a new algorithm, called Fast Adapting Ensemble (FAE), which adapts very quickly to both abrupt and gradual concept drifts, and has been specifically designed to deal with recurring concepts. FAE processes the learning examples in blocks of the same size, but it does not have to wait for the batch to be complete in order to adapt its base classification mechanism. FAE incorporates a drift detector to improve the handling of abrupt concept drifts and stores a set of inactive classifiers that represent old concepts, which are activated very quickly when these concepts reappear. We compare our new algorithm with various well-known learning algorithms, taking into account, common benchmark datasets. The experiments show promising results from the proposed algorithm (regarding accuracy and runtime), handling different types of concept drifts. PMID:25879051
The design of a parallel adaptive paving all-quadrilateral meshing algorithm
Tautges, T.J.; Lober, R.R.; Vaughan, C.
1995-08-01
Adaptive finite element analysis demands a great deal of computational resources, and as such is most appropriately solved in a massively parallel computer environment. This analysis will require other parallel algorithms before it can fully utilize MP computers, one of which is parallel adaptive meshing. A version of the paving algorithm is being designed which operates in parallel but which also retains the robustness and other desirable features present in the serial algorithm. Adaptive paving in a production mode is demonstrated using a Babuska-Rheinboldt error estimator on a classic linearly elastic plate problem. The design of the parallel paving algorithm is described, and is based on the decomposition of a surface into {open_quotes}virtual{close_quotes} surfaces. The topology of the virtual surface boundaries is defined using mesh entities (mesh nodes and edges) so as to allow movement of these boundaries with smoothing and other operations. This arrangement allows the use of the standard paving algorithm on subdomain interiors, after the negotiation of the boundary mesh.
User Activity Recognition in Smart Homes Using Pattern Clustering Applied to Temporal ANN Algorithm.
Bourobou, Serge Thomas Mickala; Yoo, Younghwan
2015-01-01
This paper discusses the possibility of recognizing and predicting user activities in the IoT (Internet of Things) based smart environment. The activity recognition is usually done through two steps: activity pattern clustering and activity type decision. Although many related works have been suggested, they had some limited performance because they focused only on one part between the two steps. This paper tries to find the best combination of a pattern clustering method and an activity decision algorithm among various existing works. For the first step, in order to classify so varied and complex user activities, we use a relevant and efficient unsupervised learning method called the K-pattern clustering algorithm. In the second step, the training of smart environment for recognizing and predicting user activities inside his/her personal space is done by utilizing the artificial neural network based on the Allen's temporal relations. The experimental results show that our combined method provides the higher recognition accuracy for various activities, as compared with other data mining classification algorithms. Furthermore, it is more appropriate for a dynamic environment like an IoT based smart home. PMID:26007738
User Activity Recognition in Smart Homes Using Pattern Clustering Applied to Temporal ANN Algorithm
Bourobou, Serge Thomas Mickala; Yoo, Younghwan
2015-01-01
This paper discusses the possibility of recognizing and predicting user activities in the IoT (Internet of Things) based smart environment. The activity recognition is usually done through two steps: activity pattern clustering and activity type decision. Although many related works have been suggested, they had some limited performance because they focused only on one part between the two steps. This paper tries to find the best combination of a pattern clustering method and an activity decision algorithm among various existing works. For the first step, in order to classify so varied and complex user activities, we use a relevant and efficient unsupervised learning method called the K-pattern clustering algorithm. In the second step, the training of smart environment for recognizing and predicting user activities inside his/her personal space is done by utilizing the artificial neural network based on the Allen’s temporal relations. The experimental results show that our combined method provides the higher recognition accuracy for various activities, as compared with other data mining classification algorithms. Furthermore, it is more appropriate for a dynamic environment like an IoT based smart home. PMID:26007738
Longest jobs first algorithm in solving job shop scheduling using adaptive genetic algorithm (GA)
NASA Astrophysics Data System (ADS)
Alizadeh Sahzabi, Vahid; Karimi, Iman; Alizadeh Sahzabi, Navid; Mamaani Barnaghi, Peiman
2011-12-01
In this paper, genetic algorithm was used to solve job shop scheduling problems. One example discussed in JSSP (Job Shop Scheduling Problem) and I described how we can solve such these problems by genetic algorithm. The goal in JSSP is to gain the shortest process time. Furthermore I proposed a method to obtain best performance on performing all jobs in shortest time. The method mainly, is according to Genetic algorithm (GA) and crossing over between parents always follows the rule which the longest process is at the first in the job queue. In the other word chromosomes is suggested to sorts based on the longest processes to shortest i.e. "longest job first" says firstly look which machine contains most processing time during its performing all its jobs and that is the bottleneck. Secondly, start sort those jobs which are belonging to that specific machine descending. Based on the achieved results," longest jobs first" is the optimized status in job shop scheduling problems. In our results the accuracy would grow up to 94.7% for total processing time and the method improved 4% the accuracy of performing all jobs in the presented example.
Longest jobs first algorithm in solving job shop scheduling using adaptive genetic algorithm (GA)
NASA Astrophysics Data System (ADS)
Alizadeh Sahzabi, Vahid; Karimi, Iman; Alizadeh Sahzabi, Navid; Mamaani Barnaghi, Peiman
2012-01-01
In this paper, genetic algorithm was used to solve job shop scheduling problems. One example discussed in JSSP (Job Shop Scheduling Problem) and I described how we can solve such these problems by genetic algorithm. The goal in JSSP is to gain the shortest process time. Furthermore I proposed a method to obtain best performance on performing all jobs in shortest time. The method mainly, is according to Genetic algorithm (GA) and crossing over between parents always follows the rule which the longest process is at the first in the job queue. In the other word chromosomes is suggested to sorts based on the longest processes to shortest i.e. "longest job first" says firstly look which machine contains most processing time during its performing all its jobs and that is the bottleneck. Secondly, start sort those jobs which are belonging to that specific machine descending. Based on the achieved results," longest jobs first" is the optimized status in job shop scheduling problems. In our results the accuracy would grow up to 94.7% for total processing time and the method improved 4% the accuracy of performing all jobs in the presented example.
Adaptive switching detection algorithm for iterative-MIMO systems to enable power savings
NASA Astrophysics Data System (ADS)
Tadza, N.; Laurenson, D.; Thompson, J. S.
2014-11-01
This paper attempts to tackle one of the challenges faced in soft input soft output Multiple Input Multiple Output (MIMO) detection systems, which is to achieve optimal error rate performance with minimal power consumption. This is realized by proposing a new algorithm design that comprises multiple thresholds within the detector that, in real time, specify the receiver behavior according to the current channel in both slow and fast fading conditions, giving it adaptivity. This adaptivity enables energy savings within the system since the receiver chooses whether to accept or to reject the transmission, according to the success rate of detecting thresholds. The thresholds are calculated using the mutual information of the instantaneous channel conditions between the transmitting and receiving antennas of iterative-MIMO systems. In addition, the power saving technique, Dynamic Voltage and Frequency Scaling, helps to reduce the circuit power demands of the adaptive algorithm. This adaptivity has the potential to save up to 30% of the total energy when it is implemented on Xilinx®Virtex-5 simulation hardware. Results indicate the benefits of having this "intelligence" in the adaptive algorithm due to the promising performance-complexity tradeoff parameters in both software and hardware codesign simulation.
Evaluation of particle clustering algorithms in the prediction of brownout dust clouds
NASA Astrophysics Data System (ADS)
Govindarajan, Bharath Madapusi
2011-07-01
A study of three Lagrangian particle clustering methods has been conducted with application to the problem of predicting brownout dust clouds that develop when rotorcraft land over surfaces covered with loose sediment. A significant impediment in performing such particle modeling simulations is the extremely large number of particles needed to obtain dust clouds of acceptable fidelity. Computing the motion of each and every individual sediment particle in a dust cloud (which can reach into tens of billions per cubic meter) is computationally prohibitive. The reported work involved the development of computationally efficient clustering algorithms that can be applied to the simulation of dilute gas-particle suspensions at low Reynolds numbers of the relative particle motion. The Gaussian distribution, k-means and Osiptsov's clustering methods were studied in detail to highlight the nuances of each method for a prototypical flow field that mimics the highly unsteady, two-phase vortical particle flow obtained when rotorcraft encounter brownout conditions. It is shown that although clustering algorithms can be problem dependent and have bounds of applicability, they offer the potential to significantly reduce computational costs while retaining the overall accuracy of a brownout dust cloud solution.
NASA Astrophysics Data System (ADS)
Irondi, Iheanyi; Wang, Qi; Grecos, Christos
2016-04-01
Adaptive video streaming using HTTP has become popular in recent years for commercial video delivery. The recent MPEG-DASH standard allows interoperability and adaptability between servers and clients from different vendors. The delivery of the MPD (Media Presentation Description) files in DASH and the DASH client behaviours are beyond the scope of the DASH standard. However, the different adaptation algorithms employed by the clients do affect the overall performance of the system and users' QoE (Quality of Experience), hence the need for research in this field. Moreover, standard DASH delivery is based on fixed segments of the video. However, there is no standard segment duration for DASH where various fixed segment durations have been employed by different commercial solutions and researchers with their own individual merits. Most recently, the use of variable segment duration in DASH has emerged but only a few preliminary studies without practical implementation exist. In addition, such a technique requires a DASH client to be aware of segment duration variations, and this requirement and the corresponding implications on the DASH system design have not been investigated. This paper proposes a segment-duration-aware bandwidth estimation and next-segment selection adaptation strategy for DASH. Firstly, an MPD file extension scheme to support variable segment duration is proposed and implemented in a realistic hardware testbed. The scheme is tested on a DASH client, and the tests and analysis have led to an insight on the time to download next segment and the buffer behaviour when fetching and switching between segments of different playback durations. Issues like sustained buffering when switching between segments of different durations and slow response to changing network conditions are highlighted and investigated. An enhanced adaptation algorithm is then proposed to accurately estimate the bandwidth and precisely determine the time to download the next
A High Fuel Consumption Efficiency Management Scheme for PHEVs Using an Adaptive Genetic Algorithm
Lee, Wah Ching; Tsang, Kim Fung; Chi, Hao Ran; Hung, Faan Hei; Wu, Chung Kit; Chui, Kwok Tai; Lau, Wing Hong; Leung, Yat Wah
2015-01-01
A high fuel efficiency management scheme for plug-in hybrid electric vehicles (PHEVs) has been developed. In order to achieve fuel consumption reduction, an adaptive genetic algorithm scheme has been designed to adaptively manage the energy resource usage. The objective function of the genetic algorithm is implemented by designing a fuzzy logic controller which closely monitors and resembles the driving conditions and environment of PHEVs, thus trading off between petrol versus electricity for optimal driving efficiency. Comparison between calculated results and publicized data shows that the achieved efficiency of the fuzzified genetic algorithm is better by 10% than existing schemes. The developed scheme, if fully adopted, would help reduce over 600 tons of CO2 emissions worldwide every day. PMID:25587974
A high fuel consumption efficiency management scheme for PHEVs using an adaptive genetic algorithm.
Lee, Wah Ching; Tsang, Kim Fung; Chi, Hao Ran; Hung, Faan Hei; Wu, Chung Kit; Chui, Kwok Tai; Lau, Wing Hong; Leung, Yat Wah
2015-01-01
A high fuel efficiency management scheme for plug-in hybrid electric vehicles (PHEVs) has been developed. In order to achieve fuel consumption reduction, an adaptive genetic algorithm scheme has been designed to adaptively manage the energy resource usage. The objective function of the genetic algorithm is implemented by designing a fuzzy logic controller which closely monitors and resembles the driving conditions and environment of PHEVs, thus trading off between petrol versus electricity for optimal driving efficiency. Comparison between calculated results and publicized data shows that the achieved efficiency of the fuzzified genetic algorithm is better by 10% than existing schemes. The developed scheme, if fully adopted, would help reduce over 600 tons of CO2 emissions worldwide every day. PMID:25587974
Big Data GPU-Driven Parallel Processing Spatial and Spatio-Temporal Clustering Algorithms
NASA Astrophysics Data System (ADS)
Konstantaras, Antonios; Skounakis, Emmanouil; Kilty, James-Alexander; Frantzeskakis, Theofanis; Maravelakis, Emmanuel
2016-04-01
Advances in graphics processing units' technology towards encompassing parallel architectures [1], comprised of thousands of cores and multiples of parallel threads, provide the foundation in terms of hardware for the rapid processing of various parallel applications regarding seismic big data analysis. Seismic data are normally stored as collections of vectors in massive matrices, growing rapidly in size as wider areas are covered, denser recording networks are being established and decades of data are being compiled together [2]. Yet, many processes regarding seismic data analysis are performed on each seismic event independently or as distinct tiles [3] of specific grouped seismic events within a much larger data set. Such processes, independent of one another can be performed in parallel narrowing down processing times drastically [1,3]. This research work presents the development and implementation of three parallel processing algorithms using Cuda C [4] for the investigation of potentially distinct seismic regions [5,6] present in the vicinity of the southern Hellenic seismic arc. The algorithms, programmed and executed in parallel comparatively, are the: fuzzy k-means clustering with expert knowledge [7] in assigning overall clusters' number; density-based clustering [8]; and a selves-developed spatio-temporal clustering algorithm encompassing expert [9] and empirical knowledge [10] for the specific area under investigation. Indexing terms: GPU parallel programming, Cuda C, heterogeneous processing, distinct seismic regions, parallel clustering algorithms, spatio-temporal clustering References [1] Kirk, D. and Hwu, W.: 'Programming massively parallel processors - A hands-on approach', 2nd Edition, Morgan Kaufman Publisher, 2013 [2] Konstantaras, A., Valianatos, F., Varley, M.R. and Makris, J.P.: 'Soft-Computing Modelling of Seismicity in the Southern Hellenic Arc', Geoscience and Remote Sensing Letters, vol. 5 (3), pp. 323-327, 2008 [3] Papadakis, S. and
Knowledge-Aided Multichannel Adaptive SAR/GMTI Processing: Algorithm and Experimental Results
NASA Astrophysics Data System (ADS)
Wu, Di; Zhu, Daiyin; Zhu, Zhaoda
2010-12-01
The multichannel synthetic aperture radar ground moving target indication (SAR/GMTI) technique is a simplified implementation of space-time adaptive processing (STAP), which has been proved to be feasible in the past decades. However, its detection performance will be degraded in heterogeneous environments due to the rapidly varying clutter characteristics. Knowledge-aided (KA) STAP provides an effective way to deal with the nonstationary problem in real-world clutter environment. Based on the KA STAP methods, this paper proposes a KA algorithm for adaptive SAR/GMTI processing in heterogeneous environments. It reduces sample support by its fast convergence properties and shows robust to non-stationary clutter distribution relative to the traditional adaptive SAR/GMTI scheme. Experimental clutter suppression results are employed to verify the virtue of this algorithm.
A self-adaptive genetic algorithm to estimate JA model parameters considering minor loops
NASA Astrophysics Data System (ADS)
Lu, Hai-liang; Wen, Xi-shan; Lan, Lei; An, Yun-zhu; Li, Xiao-ping
2015-01-01
A self-adaptive genetic algorithm for estimating Jiles-Atherton (JA) magnetic hysteresis model parameters is presented. The fitness function is established based on the distances between equidistant key points of normalized hysteresis loops. Linearity function and logarithm function are both adopted to code the five parameters of JA model. Roulette wheel selection is used and the selection pressure is adjusted adaptively by deducting a proportional which depends on current generation common value. The Crossover operator is established by combining arithmetic crossover and multipoint crossover. Nonuniform mutation is improved by adjusting the mutation ratio adaptively. The algorithm is used to estimate the parameters of one kind of silicon-steel sheet's hysteresis loops, and the results are in good agreement with published data.
A Fast Cluster Motif Finding Algorithm for ChIP-Seq Data Sets.
Zhang, Yipu; Wang, Ping
2015-01-01
New high-throughput technique ChIP-seq, coupling chromatin immunoprecipitation experiment with high-throughput sequencing technologies, has extended the identification of binding locations of a transcription factor to the genome-wide regions. However, the most existing motif discovery algorithms are time-consuming and limited to identify binding motifs in ChIP-seq data which normally has the significant characteristics of large scale data. In order to improve the efficiency, we propose a fast cluster motif finding algorithm, named as FCmotif, to identify the (l, d) motifs in large scale ChIP-seq data set. It is inspired by the emerging substrings mining strategy to find the enriched substrings and then searching the neighborhood instances to construct PWM and cluster motifs in different length. FCmotif is not following the OOPS model constraint and can find long motifs. The effectiveness of proposed algorithm has been proved by experiments on the ChIP-seq data sets from mouse ES cells. The whole detection of the real binding motifs and processing of the full size data of several megabytes finished in a few minutes. The experimental results show that FCmotif has advantageous to deal with the (l, d) motif finding in the ChIP-seq data; meanwhile it also demonstrates better performance than other current widely-used algorithms such as MEME, Weeder, ChIPMunk, and DREME. PMID:26236718
NASA Astrophysics Data System (ADS)
Plaza, Antonio; Chang, Chein-I.; Plaza, Javier; Valencia, David
2006-05-01
The incorporation of hyperspectral sensors aboard airborne/satellite platforms is currently producing a nearly continual stream of multidimensional image data, and this high data volume has soon introduced new processing challenges. The price paid for the wealth spatial and spectral information available from hyperspectral sensors is the enormous amounts of data that they generate. Several applications exist, however, where having the desired information calculated quickly enough for practical use is highly desirable. High computing performance of algorithm analysis is particularly important in homeland defense and security applications, in which swift decisions often involve detection of (sub-pixel) military targets (including hostile weaponry, camouflage, concealment, and decoys) or chemical/biological agents. In order to speed-up computational performance of hyperspectral imaging algorithms, this paper develops several fast parallel data processing techniques. Techniques include four classes of algorithms: (1) unsupervised classification, (2) spectral unmixing, and (3) automatic target recognition, and (4) onboard data compression. A massively parallel Beowulf cluster (Thunderhead) at NASA's Goddard Space Flight Center in Maryland is used to measure parallel performance of the proposed algorithms. In order to explore the viability of developing onboard, real-time hyperspectral data compression algorithms, a Xilinx Virtex-II field programmable gate array (FPGA) is also used in experiments. Our quantitative and comparative assessment of parallel techniques and strategies may help image analysts in selection of parallel hyperspectral algorithms for specific applications.
Dynamic scheduling study on engineering machinery of clusters using multi-agent system ant algorithm
NASA Astrophysics Data System (ADS)
Gao, Qiang; Wang, Hongli; Guo, Long; Xiang, Jianping
2005-12-01
In the process of road surface construction, dispatchers' scheduling was experiential and blindfold in some degree and static scheduling restricted the continuity of the construction. Serious problems such as labor holdup, material awaiting and scheduling delay could occur when the old scheduling technique was used. This paper presents ant colony algorithm based on MAS that has the abilities of intelligentized modeling and dynamic scheduling. MAS model deals with single agent's communication and corresponding in engineering machinery of clusters firstly, next we apply ant colony algorithm to solve dynamic scheduling in the plant. Ant colony algorithm can optimize the match of agents and make the system dynamic balance. The effectiveness of the proposed method is demonstrated with MATLAB simulations.
Karimi, Abbas; Afsharfarnia, Abbas; Zarafshan, Faraneh; Al-Haddad, S. A. R.
2014-01-01
The stability of clusters is a serious issue in mobile ad hoc networks. Low stability of clusters may lead to rapid failure of clusters, high energy consumption for reclustering, and decrease in the overall network stability in mobile ad hoc network. In order to improve the stability of clusters, weight-based clustering algorithms are utilized. However, these algorithms only use limited features of the nodes. Thus, they decrease the weight accuracy in determining node's competency and lead to incorrect selection of cluster heads. A new weight-based algorithm presented in this paper not only determines node's weight using its own features, but also considers the direct effect of feature of adjacent nodes. It determines the weight of virtual links between nodes and the effect of the weights on determining node's final weight. By using this strategy, the highest weight is assigned to the best choices for being the cluster heads and the accuracy of nodes selection increases. The performance of new algorithm is analyzed by using computer simulation. The results show that produced clusters have longer lifetime and higher stability. Mathematical simulation shows that this algorithm has high availability in case of failure. PMID:25114965
Shan, Hai; Yasuda, Toshiyuki; Ohkura, Kazuhiro
2015-06-01
The artificial bee colony (ABC) algorithm is one of popular swarm intelligence algorithms that inspired by the foraging behavior of honeybee colonies. To improve the convergence ability, search speed of finding the best solution and control the balance between exploration and exploitation using this approach, we propose a self adaptive hybrid enhanced ABC algorithm in this paper. To evaluate the performance of standard ABC, best-so-far ABC (BsfABC), incremental ABC (IABC), and the proposed ABC algorithms, we implemented numerical optimization problems based on the IEEE Congress on Evolutionary Computation (CEC) 2014 test suite. Our experimental results show the comparative performance of standard ABC, BsfABC, IABC, and the proposed ABC algorithms. According to the results, we conclude that the proposed ABC algorithm is competitive to those state-of-the-art modified ABC algorithms such as BsfABC and IABC algorithms based on the benchmark problems defined by CEC 2014 test suite with dimension sizes of 10, 30, and 50, respectively. PMID:25982071
Massively parallel algorithms for real-time wavefront control of a dense adaptive optics system
Fijany, A.; Milman, M.; Redding, D.
1994-12-31
In this paper massively parallel algorithms and architectures for real-time wavefront control of a dense adaptive optic system (SELENE) are presented. The authors have already shown that the computation of a near optimal control algorithm for SELENE can be reduced to the solution of a discrete Poisson equation on a regular domain. Although, this represents an optimal computation, due the large size of the system and the high sampling rate requirement, the implementation of this control algorithm poses a computationally challenging problem since it demands a sustained computational throughput of the order of 10 GFlops. They develop a novel algorithm, designated as Fast Invariant Imbedding algorithm, which offers a massive degree of parallelism with simple communication and synchronization requirements. Due to these features, this algorithm is significantly more efficient than other Fast Poisson Solvers for implementation on massively parallel architectures. The authors also discuss two massively parallel, algorithmically specialized, architectures for low-cost and optimal implementation of the Fast Invariant Imbedding algorithm.
Comparing residue clusters from thermophilic and mesophilic enzymes reveals adaptive mechanisms
Sammond, Deanne W.; Kastelowitz, Noah; Himmel, Michael E.; Yin, Hang; Crowley, Michael F.; Bomble, Yannick J.
2016-01-07
Understanding how proteins adapt to function at high temperatures is important for deciphering the energetics that dictate protein stability and folding. While multiple principles important for thermostability have been identified, we lack a unified understanding of how internal protein structural and chemical environment determine qualitative or quantitative impact of evolutionary mutations. In this work we compare equivalent clusters of spatially neighboring residues between paired thermophilic and mesophilic homologues to evaluate adaptations under the selective pressure of high temperature. We find the residue clusters in thermophilic enzymes generally display improved atomic packing compared to mesophilic enzymes, in agreement with previous research.more » Unlike residue clusters from mesophilic enzymes, however, thermophilic residue clusters do not have significant cavities. In addition, anchor residues found in many clusters are highly conserved with respect to atomic packing between both thermophilic and mesophilic enzymes. As a result, the improvements in atomic packing observed in thermophilic homologues are not derived from these anchor residues but from neighboring positions, which may serve to expand optimized protein core regions.« less
Comparing Residue Clusters from Thermophilic and Mesophilic Enzymes Reveals Adaptive Mechanisms
Sammond, Deanne W.; Kastelowitz, Noah; Himmel, Michael E.; Yin, Hang; Crowley, Michael F.; Bomble, Yannick J.
2016-01-01
Understanding how proteins adapt to function at high temperatures is important for deciphering the energetics that dictate protein stability and folding. While multiple principles important for thermostability have been identified, we lack a unified understanding of how internal protein structural and chemical environment determine qualitative or quantitative impact of evolutionary mutations. In this work we compare equivalent clusters of spatially neighboring residues between paired thermophilic and mesophilic homologues to evaluate adaptations under the selective pressure of high temperature. We find the residue clusters in thermophilic enzymes generally display improved atomic packing compared to mesophilic enzymes, in agreement with previous research. Unlike residue clusters from mesophilic enzymes, however, thermophilic residue clusters do not have significant cavities. In addition, anchor residues found in many clusters are highly conserved with respect to atomic packing between both thermophilic and mesophilic enzymes. Thus the improvements in atomic packing observed in thermophilic homologues are not derived from these anchor residues but from neighboring positions, which may serve to expand optimized protein core regions. PMID:26741367
NASA Astrophysics Data System (ADS)
Hegde, Veena; Deekshit, Ravishankar; Satyanarayana, P. S.
2011-12-01
The electrocardiogram (ECG) is widely used for diagnosis of heart diseases. Good quality of ECG is utilized by physicians for interpretation and identification of physiological and pathological phenomena. However, in real situations, ECG recordings are often corrupted by artifacts or noise. Noise severely limits the utility of the recorded ECG and thus needs to be removed, for better clinical evaluation. In the present paper a new noise cancellation technique is proposed for removal of random noise like muscle artifact from ECG signal. A transform domain robust variable step size Griffiths' LMS algorithm (TVGLMS) is proposed for noise cancellation. For the TVGLMS, the robust variable step size has been achieved by using the Griffiths' gradient which uses cross-correlation between the desired signal contaminated with observation or random noise and the input. The algorithm is discrete cosine transform (DCT) based and uses symmetric property of the signal to represent the signal in frequency domain with lesser number of frequency coefficients when compared to that of discrete Fourier transform (DFT). The algorithm is implemented for adaptive line enhancer (ALE) filter which extracts the ECG signal in a noisy environment using LMS filter adaptation. The proposed algorithm is found to have better convergence error/misadjustment when compared to that of ordinary transform domain LMS (TLMS) algorithm, both in the presence of white/colored observation noise. The reduction in convergence error achieved by the new algorithm with desired signal decomposition is found to be lower than that obtained without decomposition. The experimental results indicate that the proposed method is better than traditional adaptive filter using LMS algorithm in the aspects of retaining geometrical characteristics of ECG signal.
NASA Astrophysics Data System (ADS)
Abdul-Nasir, Aimi Salihah; Mashor, Mohd Yusoff; Halim, Nurul Hazwani Abd; Mohamed, Zeehaida
2015-05-01
Malaria is a life-threatening parasitic infectious disease that corresponds for nearly one million deaths each year. Due to the requirement of prompt and accurate diagnosis of malaria, the current study has proposed an unsupervised pixel segmentation based on clustering algorithm in order to obtain the fully segmented red blood cells (RBCs) infected with malaria parasites based on the thin blood smear images of P. vivax species. In order to obtain the segmented infected cell, the malaria images are first enhanced by using modified global contrast stretching technique. Then, an unsupervised segmentation technique based on clustering algorithm has been applied on the intensity component of malaria image in order to segment the infected cell from its blood cells background. In this study, cascaded moving k-means (MKM) and fuzzy c-means (FCM) clustering algorithms has been proposed for malaria slide image segmentation. After that, median filter algorithm has been applied to smooth the image as well as to remove any unwanted regions such as small background pixels from the image. Finally, seeded region growing area extraction algorithm has been applied in order to remove large unwanted regions that are still appeared on the image due to their size in which cannot be cleaned by using median filter. The effectiveness of the proposed cascaded MKM and FCM clustering algorithms has been analyzed qualitatively and quantitatively by comparing the proposed cascaded clustering algorithm with MKM and FCM clustering algorithms. Overall, the results indicate that segmentation using the proposed cascaded clustering algorithm has produced the best segmentation performances by achieving acceptable sensitivity as well as high specificity and accuracy values compared to the segmentation results provided by MKM and FCM algorithms.
An adaptive two-stage sequential design for sampling rare and clustered populations
Brown, J.A.; Salehi, M.M.; Moradi, M.; Bell, G.; Smith, D.R.
2008-01-01
How to design an efficient large-area survey continues to be an interesting question for ecologists. In sampling large areas, as is common in environmental studies, adaptive sampling can be efficient because it ensures survey effort is targeted to subareas of high interest. In two-stage sampling, higher density primary sample units are usually of more interest than lower density primary units when populations are rare and clustered. Two-stage sequential sampling has been suggested as a method for allocating second stage sample effort among primary units. Here, we suggest a modification: adaptive two-stage sequential sampling. In this method, the adaptive part of the allocation process means the design is more flexible in how much extra effort can be directed to higher-abundance primary units. We discuss how best to design an adaptive two-stage sequential sample. ?? 2008 The Society of Population Ecology and Springer.
Study on 2D random medium inversion algorithm based on Fuzzy C-means Clustering theory
NASA Astrophysics Data System (ADS)
Xu, Z.; Zhu, P.; Gu, Y.; Yang, X.; Jiang, J.
2015-12-01
Abstract: In seismic exploration for metal deposits, the traditional seismic inversion method based on layered homogeneous medium theory seems difficult to inverse small scale inhomogeneity and spatial variation of the actual medium. The reason is that physical properties of actual medium are more likely random distribution rather than layered. Thus, it is necessary to investigate a random medium inversion algorithm. The velocity of 2D random medium can be described as a function of five parameters: the background velocity (V0), the standard deviation of velocity (σ), the horizontal and vertical autocorrelation lengths (A and B), and the autocorrelation angle (θ). In this study, we propose an inversion algorithm for random medium based on the Fuzzy C-means Clustering (FCM) theory, whose basic idea is that FCM is used to control the inversion process to move forward to the direction we desired by clustering the estimated parameters into groups. Our method can be divided into three steps: firstly, the three parameters (A, B, θ) are estimated from 2D post-stack seismic data using the non-stationary random medium parameter estimation method, and then the estimated parameters are clustered to different groups according to FCM; secondly, the initial random medium model is constructed with clustered groups and the rest two parameters (V0 and σ) obtained from the well logging data; at last, inversion of the random medium are conducted to obtain velocity, impedance and random medium parameters using the Conjugate Gradient Method. The inversion experiments of synthetic seismic data show that the velocity models inverted by our algorithm are close to the real velocity distribution and the boundary of different media can be distinguished clearly.Key words: random medium, inversion, FCM, parameter estimation
Liu, Derong; Li, Hongliang; Wang, Ding
2015-06-01
In this paper, we establish error bounds of adaptive dynamic programming algorithms for solving undiscounted infinite-horizon optimal control problems of discrete-time deterministic nonlinear systems. We consider approximation errors in the update equations of both value function and control policy. We utilize a new assumption instead of the contraction assumption in discounted optimal control problems. We establish the error bounds for approximate value iteration based on a new error condition. Furthermore, we also establish the error bounds for approximate policy iteration and approximate optimistic policy iteration algorithms. It is shown that the iterative approximate value function can converge to a finite neighborhood of the optimal value function under some conditions. To implement the developed algorithms, critic and action neural networks are used to approximate the value function and control policy, respectively. Finally, a simulation example is given to demonstrate the effectiveness of the developed algorithms. PMID:25751878
Self-adaptive predictor-corrector algorithm for static nonlinear structural analysis
NASA Technical Reports Server (NTRS)
Padovan, J.
1981-01-01
A multiphase selfadaptive predictor corrector type algorithm was developed. This algorithm enables the solution of highly nonlinear structural responses including kinematic, kinetic and material effects as well as pro/post buckling behavior. The strategy involves three main phases: (1) the use of a warpable hyperelliptic constraint surface which serves to upperbound dependent iterate excursions during successive incremental Newton Ramphson (INR) type iterations; (20 uses an energy constraint to scale the generation of successive iterates so as to maintain the appropriate form of local convergence behavior; (3) the use of quality of convergence checks which enable various self adaptive modifications of the algorithmic structure when necessary. The restructuring is achieved by tightening various conditioning parameters as well as switch to different algorithmic levels to improve the convergence process. The capabilities of the procedure to handle various types of static nonlinear structural behavior are illustrated.
The algorithm analysis on non-uniformity correction based on LMS adaptive filtering
NASA Astrophysics Data System (ADS)
Zhan, Dongjun; Wang, Qun; Wang, Chensheng; Chen, Huawang
2010-11-01
The traditional least mean square (LMS) algorithm has the performance of good adaptivity to noise, but there are several disadvantages in the traditional LMS algorithm, such as the defect in desired value of pending pixels, undetermined original coefficients, which result in slow convergence speed and long convergence period. Method to solve the desired value of pending pixel has improved based on these problems, also, the correction gain and offset coefficients worked out by the method of two-point temperature non-uniformity correction (NUC) as the original coefficients, which has improved the convergence speed. The simulation with real infrared images has proved that the new LMS algorithm has the advantages of better correction effect. Finally, the algorithm is implemented on the hardware structure of FPGA+DSP.
A Constrained Genetic Algorithm with Adaptively Defined Fitness Function in MRS Quantification
NASA Astrophysics Data System (ADS)
Papakostas, G. A.; Karras, D. A.; Mertzios, B. G.; Graveron-Demilly, D.; van Ormondt, D.
MRS Signal quantification is a rather involved procedure and has attracted the interest of the medical engineering community, regarding the development of computationally efficient methodologies. Significant contributions based on Computational Intelligence tools, such as Neural Networks (NNs), demonstrated a good performance but not without drawbacks already discussed by the authors. On the other hand preliminary application of Genetic Algorithms (GA) has already been reported in the literature by the authors regarding the peak detection problem encountered in MRS quantification using the Voigt line shape model. This paper investigates a novel constrained genetic algorithm involving a generic and adaptively defined fitness function which extends the simple genetic algorithm methodology in case of noisy signals. The applicability of this new algorithm is scrutinized through experimentation in artificial MRS signals interleaved with noise, regarding its signal fitting capabilities. Although extensive experiments with real world MRS signals are necessary, the herein shown performance illustrates the method's potential to be established as a generic MRS metabolites quantification procedure.
A contour-line color layer separation algorithm based on fuzzy clustering and region growing
NASA Astrophysics Data System (ADS)
Liu, Tiange; Miao, Qiguang; Xu, Pengfei; Tong, Yubing; Song, Jianfeng; Xia, Ge; Yang, Yun; Zhai, Xiaojie
2016-03-01
The color layers of contour-lines separated from scanned topographic map are the basis of contour-line extraction, but it is difficult to separate them well due to the color aliasing and mixed color problems. This paper will focus us on contour-line color layer separation and presents a novel approach for it based on fuzzy clustering and Single-prototype Region Growing for Contour-line Layer (SRGCL). The purpose of this paper is to provide a solution for processing scanned topographic maps on which contour-lines are abundant and densely distributed, for example, in the condition similar to hilly areas and mountainous regions, the contour-lines always occupy the largest proportion in linear features and the contour-line separation is the most difficult task. The proposed approach includes steps as follows. First step, line features are extracted from the map to reduce the interference from area features in fuzzy clustering. Second step, fuzzy clustering algorithm is employed to obtain membership matrix of pixels in the line map. Third step, based on the membership matrix, we obtain the most-similar prototype and the second-similar prototype of each pixel as the indicators of the pixel in SRGCL. The spatial relationship and the fuzzy similarity of color features are used in SRGCL to overcome the inaccurate classification of ambiguous pixels. The procedure focusing on single contour-line layer will improve the accuracy of contour-line segmentation result of SRGCL relative to general segmentation methods. We verified the algorithm on several USGS historical maps, the experimental results show that our algorithm produces contour-line color layers with good continuity and few noises, which verifies the improvement in contour-line color layer separation of our algorithm relative to two general segmentation methods.
Effects of algorithm for diagnosis of active labour: cluster randomised trial
Hundley, Vanora; Dowding, Dawn; Bland, J Martin; McNamee, Paul; Greer, Ian; Styles, Maggie; Barnett, Carol A; Scotland, Graham; Niven, Catherine
2008-01-01
Objective To compare the effectiveness of an algorithm for diagnosis of active labour in primiparous women with standard care in terms of maternal and neonatal outcomes. Design Cluster randomised trial. Setting Maternity units in Scotland with at least 800 annual births. Participants 4503 women giving birth for the first time, in 14 maternity units. Seven experimental clusters collected data from a baseline sample of 1029 women and a post-implementation sample of 896 women. The seven control clusters had a baseline sample of 1291 women and a post-implementation sample of 1287 women. Intervention Use of an algorithm by midwives to assist their diagnosis of active labour, compared with standard care. Main outcomes Primary outcome: use of oxytocin for augmentation of labour. Secondary outcomes: medical interventions in labour, admission management, and birth outcome. Results No significant difference was found between groups in percentage use of oxytocin for augmentation of labour (experimental minus control, difference=0.3, 95% confidence interval −9.2 to 9.8; P=0.9) or in the use of medical interventions in labour. Women in the algorithm group were more likely to be discharged from the labour suite after their first labour assessment (difference=−19.2, −29.9 to −8.6; P=0.002) and to have more pre-labour admissions (0.29, 0.04 to 0.55; P=0.03). Conclusions Use of an algorithm to assist midwives with the diagnosis of active labour in primiparous women did not result in a reduction in oxytocin use or in medical intervention in spontaneous labour. Significantly more women in the experimental group were discharged home after their first labour ward assessment. Trial registration Current Controlled Trials ISRCTN00522952. PMID:19064606
An adaptive metamodel-based global optimization algorithm for black-box type problems
NASA Astrophysics Data System (ADS)
Jie, Haoxiang; Wu, Yizhong; Ding, Jianwan
2015-11-01
In this article, an adaptive metamodel-based global optimization (AMGO) algorithm is presented to solve unconstrained black-box problems. In the AMGO algorithm, a type of hybrid model composed of kriging and augmented radial basis function (RBF) is used as the surrogate model. The weight factors of hybrid model are adaptively selected in the optimization process. To balance the local and global search, a sub-optimization problem is constructed during each iteration to determine the new iterative points. As numerical experiments, six standard two-dimensional test functions are selected to show the distributions of iterative points. The AMGO algorithm is also tested on seven well-known benchmark optimization problems and contrasted with three representative metamodel-based optimization methods: efficient global optimization (EGO), GutmannRBF and hybrid and adaptive metamodel (HAM). The test results demonstrate the efficiency and robustness of the proposed method. The AMGO algorithm is finally applied to the structural design of the import and export chamber of a cycloid gear pump, achieving satisfactory results.
A parallel second-order adaptive mesh algorithm for incompressible flow in porous media.
Pau, George S H; Almgren, Ann S; Bell, John B; Lijewski, Michael J
2009-11-28
In this paper, we present a second-order accurate adaptive algorithm for solving multi-phase, incompressible flow in porous media. We assume a multi-phase form of Darcy's law with relative permeabilities given as a function of the phase saturation. The remaining equations express conservation of mass for the fluid constituents. In this setting, the total velocity, defined to be the sum of the phase velocities, is divergence free. The basic integration method is based on a total-velocity splitting approach in which we solve a second-order elliptic pressure equation to obtain a total velocity. This total velocity is then used to recast component conservation equations as nonlinear hyperbolic equations. Our approach to adaptive refinement uses a nested hierarchy of logically rectangular grids with simultaneous refinement of the grids in both space and time. The integration algorithm on the grid hierarchy is a recursive procedure in which coarse grids are advanced in time, fine grids are advanced multiple steps to reach the same time as the coarse grids and the data at different levels are then synchronized. The single-grid algorithm is described briefly, but the emphasis here is on the time-stepping procedure for the adaptive hierarchy. Numerical examples are presented to demonstrate the algorithm's accuracy and convergence properties and to illustrate the behaviour of the method. PMID:19840985
A Parallel Second-Order Adaptive Mesh Algorithm for Incompressible Flow in Porous Media
Pau, George Shu Heng; Almgren, Ann S.; Bell, John B.; Lijewski, Michael J.
2008-04-01
In this paper we present a second-order accurate adaptive algorithm for solving multiphase, incompressible flows in porous media. We assume a multiphase form of Darcy's law with relative permeabilities given as a function of the phase saturation. The remaining equations express conservation of mass for the fluid constituents. In this setting the total velocity, defined to be the sum of the phase velocities, is divergence-free. The basic integration method is based on a total-velocity splitting approach in which we solve a second-order elliptic pressure equation to obtain a total velocity. This total velocity is then used to recast component conservation equations as nonlinear hyperbolic equations. Our approach to adaptive refinement uses a nested hierarchy of logically rectangular grids with simultaneous refinement of the grids in both space and time. The integration algorithm on the grid hierarchy is a recursive procedure in which coarse grids are advanced in time, fine grids areadvanced multiple steps to reach the same time as the coarse grids and the data atdifferent levels are then synchronized. The single grid algorithm is described briefly,but the emphasis here is on the time-stepping procedure for the adaptive hierarchy. Numerical examples are presented to demonstrate the algorithm's accuracy and convergence properties and to illustrate the behavior of the method.
A new adaptive merging and growing algorithm for designing artificial neural networks.
Islam, Md Monirul; Sattar, Md Abdus; Amin, Md Faijul; Yao, Xin; Murase, Kazuyuki
2009-06-01
This paper presents a new algorithm, called adaptive merging and growing algorithm (AMGA), in designing artificial neural networks (ANNs). This algorithm merges and adds hidden neurons during the training process of ANNs. The merge operation introduced in AMGA is a kind of a mixed mode operation, which is equivalent to pruning two neurons and adding one neuron. Unlike most previous studies, AMGA puts emphasis on autonomous functioning in the design process of ANNs. This is the main reason why AMGA uses an adaptive not a predefined fixed strategy in designing ANNs. The adaptive strategy merges or adds hidden neurons based on the learning ability of hidden neurons or the training progress of ANNs. In order to reduce the amount of retraining after modifying ANN architectures, AMGA prunes hidden neurons by merging correlated hidden neurons and adds hidden neurons by splitting existing hidden neurons. The proposed AMGA has been tested on a number of benchmark problems in machine learning and ANNs, including breast cancer, Australian credit card assessment, and diabetes, gene, glass, heart, iris, and thyroid problems. The experimental results show that AMGA can design compact ANN architectures with good generalization ability compared to other algorithms. PMID:19203888
A structured multi-block solution-adaptive mesh algorithm with mesh quality assessment
NASA Technical Reports Server (NTRS)
Ingram, Clint L.; Laflin, Kelly R.; Mcrae, D. Scott
1995-01-01
The dynamic solution adaptive grid algorithm, DSAGA3D, is extended to automatically adapt 2-D structured multi-block grids, including adaption of the block boundaries. The extension is general, requiring only input data concerning block structure, connectivity, and boundary conditions. Imbedded grid singular points are permitted, but must be prevented from moving in space. Solutions for workshop cases 1 and 2 are obtained on multi-block grids and illustrate both increased resolution of and alignment with the solution. A mesh quality assessment criteria is proposed to determine how well a given mesh resolves and aligns with the solution obtained upon it. The criteria is used to evaluate the grid quality for solutions of workshop case 6 obtained on both static and dynamically adapted grids. The results indicate that this criteria shows promise as a means of evaluating resolution.
Dependence of Adaptive Cross-correlation Algorithm Performance on the Extended Scene Image Quality
NASA Technical Reports Server (NTRS)
Sidick, Erkin
2008-01-01
Recently, we reported an adaptive cross-correlation (ACC) algorithm to estimate with high accuracy the shift as large as several pixels between two extended-scene sub-images captured by a Shack-Hartmann wavefront sensor. It determines the positions of all extended-scene image cells relative to a reference cell in the same frame using an FFT-based iterative image-shifting algorithm. It works with both point-source spot images as well as extended scene images. We have demonstrated previously based on some measured images that the ACC algorithm can determine image shifts with as high an accuracy as 0.01 pixel for shifts as large 3 pixels, and yield similar results for both point source spot images and extended scene images. The shift estimate accuracy of the ACC algorithm depends on illumination level, background, and scene content in addition to the amount of the shift between two image cells. In this paper we investigate how the performance of the ACC algorithm depends on the quality and the frequency content of extended scene images captured by a Shack-Hatmann camera. We also compare the performance of the ACC algorithm with those of several other approaches, and introduce a failsafe criterion for the ACC algorithm-based extended scene Shack-Hatmann sensors.
Dependence of adaptive cross-correlation algorithm performance on the extended scene image quality
NASA Astrophysics Data System (ADS)
Sidick, Erkin
2008-08-01
Recently, we reported an adaptive cross-correlation (ACC) algorithm to estimate with high accuracy the shift as large as several pixels between two extended-scene sub-images captured by a Shack-Hartmann wavefront sensor. It determines the positions of all extended-scene image cells relative to a reference cell in the same frame using an FFT-based iterative image-shifting algorithm. It works with both point-source spot images as well as extended scene images. We have demonstrated previously based on some measured images that the ACC algorithm can determine image shifts with as high an accuracy as 0.01 pixel for shifts as large 3 pixels, and yield similar results for both point source spot images and extended scene images. The shift estimate accuracy of the ACC algorithm depends on illumination level, background, and scene content in addition to the amount of the shift between two image cells. In this paper we investigate how the performance of the ACC algorithm depends on the quality and the frequency content of extended scene images captured by a Shack-Hatmann camera. We also compare the performance of the ACC algorithm with those of several other approaches, and introduce a failsafe criterion for the ACC algorithm-based extended scene Shack-Hatmann sensors.
Lober, R.R.; Tautges, T.J.; Vaughan, C.T.
1997-03-01
Paving is an automated mesh generation algorithm which produces all-quadrilateral elements. It can additionally generate these elements in varying sizes such that the resulting mesh adapts to a function distribution, such as an error function. While powerful, conventional paving is a very serial algorithm in its operation. Parallel paving is the extension of serial paving into parallel environments to perform the same meshing functions as conventional paving only on distributed, discretized models. This extension allows large, adaptive, parallel finite element simulations to take advantage of paving`s meshing capabilities for h-remap remeshing. A significantly modified version of the CUBIT mesh generation code has been developed to host the parallel paving algorithm and demonstrate its capabilities on both two dimensional and three dimensional surface geometries and compare the resulting parallel produced meshes to conventionally paved meshes for mesh quality and algorithm performance. Sandia`s {open_quotes}tiling{close_quotes} dynamic load balancing code has also been extended to work with the paving algorithm to retain parallel efficiency as subdomains undergo iterative mesh refinement.
Low Complex Forward Adaptive Loss Compression Algorithm and Its Application in Speech Coding
NASA Astrophysics Data System (ADS)
Nikolić, Jelena; Perić, Zoran; Antić, Dragan; Jovanović, Aleksandra; Denić, Dragan
2011-01-01
This paper proposes a low complex forward adaptive loss compression algorithm that works on the frame by frame basis. Particularly, the algorithm we propose performs frame by frame analysis of the input speech signal, estimates and quantizes the gain within the frames in order to enable the quantization by the forward adaptive piecewise linear optimal compandor. In comparison to the solution designed according to the G.711 standard, our algorithm provides not only higher level of the average signal to quantization noise ratio, but also performs a reduction of the PCM bit rate for about 1 bits/sample. Moreover, the algorithm we propose completely satisfies the G.712 standard, since it provides overreaching the curve defined by the G.712 standard in the whole of variance range. Accordingly, we can reasonably believe that our algorithm will find its practical implementation in the high quality coding of signals, represented with less than 8 bits/sample, which as well as speech signals follow Laplacian distribution and have the time varying variances.
NASA Astrophysics Data System (ADS)
Naser, Mohamed A.; Patterson, Michael S.; Wong, John W.
2014-04-01
A reconstruction algorithm for diffuse optical tomography based on diffusion theory and finite element method is described. The algorithm reconstructs the optical properties in a permissible domain or region-of-interest to reduce the number of unknowns. The algorithm can be used to reconstruct optical properties for a segmented object (where a CT-scan or MRI is available) or a non-segmented object. For the latter, an adaptive segmentation algorithm merges contiguous regions with similar optical properties thereby reducing the number of unknowns. In calculating the Jacobian matrix the algorithm uses an efficient direct method so the required time is comparable to that needed for a single forward calculation. The reconstructed optical properties using segmented, non-segmented, and adaptively segmented 3D mouse anatomy (MOBY) are used to perform bioluminescence tomography (BLT) for two simulated internal sources. The BLT results suggest that the accuracy of reconstruction of total source power obtained without the segmentation provided by an auxiliary imaging method such as x-ray CT is comparable to that obtained when using perfect segmentation.
Crowded Cluster Cores: An Algorithm for Deblending in Dark Energy Survey Images
NASA Astrophysics Data System (ADS)
Zhang, Yuanyuan; McKay, Timothy A.; Bertin, Emmanuel; Jeltema, Tesla; Miller, Christopher J.; Rykoff, Eli; Song, Jeeseon
2015-11-01
Deep optical images are often crowded with overlapping objects. This is especially true in the cores of galaxy clusters, where images of dozens of galaxies may lie atop one another. Accurate measurements of cluster properties require deblending algorithms designed to automatically extract a list of individual objects and decide what fraction of the light in each pixel comes from each object. In this article, we introduce a new software tool called the Gradient And Interpolation based (GAIN) deblender. GAIN is used as a secondary deblender to improve the separation of overlapping objects in galaxy cluster cores in Dark Energy Survey images. It uses image intensity gradients and an interpolation technique originally developed to correct flawed digital images. This paper is dedicated to describing the algorithm of the GAIN deblender and its applications, but we additionally include modest tests of the software based on real Dark Energy Survey co-add images. GAIN helps to extract an unbiased photometry measurement for blended sources and improve detection completeness, while introducing few spurious detections. When applied to processed Dark Energy Survey data, GAIN serves as a useful quick fix when a high level of deblending is desired.
Crowded Cluster Cores. Algorithms for Deblending in Dark Energy Survey Images
Zhang, Yuanyuan; McKay, Timothy A.; Bertin, Emmanuel; Jeltema, Tesla; Miller, Christopher J.; Rykoff, Eli; Song, Jeeseon
2015-10-26
Deep optical images are often crowded with overlapping objects. We found that this is especially true in the cores of galaxy clusters, where images of dozens of galaxies may lie atop one another. Accurate measurements of cluster properties require deblending algorithms designed to automatically extract a list of individual objects and decide what fraction of the light in each pixel comes from each object. In this article, we introduce a new software tool called the Gradient And Interpolation based (GAIN) deblender. GAIN is used as a secondary deblender to improve the separation of overlapping objects in galaxy cluster cores in Dark Energy Survey images. It uses image intensity gradients and an interpolation technique originally developed to correct flawed digital images. Our paper is dedicated to describing the algorithm of the GAIN deblender and its applications, but we additionally include modest tests of the software based on real Dark Energy Survey co-add images. GAIN helps to extract an unbiased photometry measurement for blended sources and improve detection completeness, while introducing few spurious detections. When applied to processed Dark Energy Survey data, GAIN serves as a useful quick fix when a high level of deblending is desired.
Detection and clustering of features in aerial images by neuron network-based algorithm
NASA Astrophysics Data System (ADS)
Vozenilek, Vit
2015-12-01
The paper presents the algorithm for detection and clustering of feature in aerial photographs based on artificial neural networks. The presented approach is not focused on the detection of specific topographic features, but on the combination of general features analysis and their use for clustering and backward projection of clusters to aerial image. The basis of the algorithm is a calculation of the total error of the network and a change of weights of the network to minimize the error. A classic bipolar sigmoid was used for the activation function of the neurons and the basic method of backpropagation was used for learning. To verify that a set of features is able to represent the image content from the user's perspective, the web application was compiled (ASP.NET on the Microsoft .NET platform). The main achievements include the knowledge that man-made objects in aerial images can be successfully identified by detection of shapes and anomalies. It was also found that the appropriate combination of comprehensive features that describe the colors and selected shapes of individual areas can be useful for image analysis.
Crowded Cluster Cores. Algorithms for Deblending in Dark Energy Survey Images
Zhang, Yuanyuan; McKay, Timothy A.; Bertin, Emmanuel; Jeltema, Tesla; Miller, Christopher J.; Rykoff, Eli; Song, Jeeseon
2015-10-26
Deep optical images are often crowded with overlapping objects. We found that this is especially true in the cores of galaxy clusters, where images of dozens of galaxies may lie atop one another. Accurate measurements of cluster properties require deblending algorithms designed to automatically extract a list of individual objects and decide what fraction of the light in each pixel comes from each object. In this article, we introduce a new software tool called the Gradient And Interpolation based (GAIN) deblender. GAIN is used as a secondary deblender to improve the separation of overlapping objects in galaxy cluster cores inmore » Dark Energy Survey images. It uses image intensity gradients and an interpolation technique originally developed to correct flawed digital images. Our paper is dedicated to describing the algorithm of the GAIN deblender and its applications, but we additionally include modest tests of the software based on real Dark Energy Survey co-add images. GAIN helps to extract an unbiased photometry measurement for blended sources and improve detection completeness, while introducing few spurious detections. When applied to processed Dark Energy Survey data, GAIN serves as a useful quick fix when a high level of deblending is desired.« less
An Adaptive Evolutionary Algorithm for Traveling Salesman Problem with Precedence Constraints
Sung, Jinmo; Jeong, Bongju
2014-01-01
Traveling sales man problem with precedence constraints is one of the most notorious problems in terms of the efficiency of its solution approach, even though it has very wide range of industrial applications. We propose a new evolutionary algorithm to efficiently obtain good solutions by improving the search process. Our genetic operators guarantee the feasibility of solutions over the generations of population, which significantly improves the computational efficiency even when it is combined with our flexible adaptive searching strategy. The efficiency of the algorithm is investigated by computational experiments. PMID:24701158
Algorithme d'adaptation du filtre de Kalman aux variations soudaines de bruit
NASA Astrophysics Data System (ADS)
Canciu, Vintila
This research targets the case of Kalman filtering as applied to linear time-invariant systems having unknown process noise covariance and measurement noise covariance matrices and addresses the problem represented by the incomplete a priori knowledge of these two filter initialization parameters. The goal of this research is to determine in realtime both the process covariance matrix and the noise covariance matrix in the context of adaptive Kalman filtering. The resultant filter, called evolutionary adaptive Kalman filter, is able to adapt to sudden noise variations and constitutes a hybrid solution for adaptive Kalman filtering based on metaheuristic algorithms. MATLAB/Simulink simulation using several processes and covariance matrices plus comparison with other filters was selected as validation method. The Cramer-Rae Lower Bound (CRLB) was used as performance criterion. The thesis begins with a description of the problem under consideration (the design of a Kalman filter that is able to adapt to sudden noise variations) followed by a typical application (INS-GPS integrated navigation system) and by a statistical analysis of publications related to adaptive Kalman filtering. Next, the thesis presents the current architectures of the adaptive Kalman filtering: the innovation adaptive estimator (IAE) and the multiple model adaptive estimator (MMAE). It briefly presents their formulation, their behavior, and the limit of their performances. The thesis continues with the architectural synthesis of the evolutionary adaptive Kalman filter. The steps involved in the solution of the problem under consideration is also presented: an analysis of Kalman filtering and sub-optimal filtering methods, a comparison of current adaptive Kalman and sub-optimal filtering methods, the emergence of evolutionary adaptive Kalman filter as an enrichment of sub-optimal filtering with the help of biological-inspired computational intelligence methods, and the step-by-step architectural
Anisotropic optical flow algorithm based on self-adaptive cellular neural network
NASA Astrophysics Data System (ADS)
Zhang, Congxuan; Chen, Zhen; Li, Ming; Sun, Kaiqiong
2013-01-01
An anisotropic optical flow estimation method based on self-adaptive cellular neural networks (CNN) is proposed. First, a novel optical flow energy function which contains a robust data term and an anisotropic smoothing term is projected. Next, the CNN model which has the self-adaptive feedback operator and threshold is presented according to the Euler-Lagrange partial differential equations of the proposed optical flow energy function. Finally, the elaborate evaluation experiments indicate the significant effects of the various proposed strategies for optical flow estimation, and the comparison results with the other methods show that the proposed algorithm has better performance in computing accuracy and efficiency.
A FOSSIL BULGE GLOBULAR CLUSTER REVEALED BY VERY LARGE TELESCOPE MULTI-CONJUGATE ADAPTIVE OPTICS
Ortolani, Sergio; Barbuy, Beatriz; Momany, Yazan; Saviane, Ivo; Jilkova, Lucie; Bica, Eduardo; Salerno, Gustavo M.; Jungwiert, Bruno E-mail: barbuy@astro.iag.usp.br E-mail: isaviane@eso.org E-mail: bica@if.ufrgs.br
2011-08-10
The globular cluster HP 1 is projected on the bulge, very close to the Galactic center. The Multi-Conjugate Adaptive Optics Demonstrator on the Very Large Telescope allowed us to acquire high-resolution deep images that, combined with first epoch New Technology Telescope data, enabled us to derive accurate proper motions. The cluster and bulge fields' stellar contents were disentangled through this process and produced an unprecedented definition in color-magnitude diagrams of this cluster. The metallicity of [Fe/H] {approx} -1.0 from previous spectroscopic analysis is confirmed, which together with an extended blue horizontal branch imply an age older than the halo average. Orbit reconstruction results suggest that HP 1 is spatially confined within the bulge.
NASA Astrophysics Data System (ADS)
Akakin, Hatice C.; Gokozan, Hamza; Otero, Jose; Gurcan, Metin N.
2015-03-01
We propose a method to detect and segment the oligodendrocytes and gliomas in OLIG2 immunoperoxidase stained tissue sections. Segmentation of cell nuclei is essential for automatic, fast, accurate and consistent analysis of pathology images. In general, glioma cells and oligodendrocytes mostly differ in shape and size within the tissue slide. In OLIG2 stained tissue images, gliomas are represented with irregularly shaped nuclei with varying sizes and brown shades. On the other hand, oligodendrocytes have more regular round nuclei shapes and are smaller in size when compared to glioma cells found in oligodendroglioma, astrocytomas, or oligoastrocytomas. The first task is to detect the OLIG2 positive cell regions within a region of interest image selected from a whole slide. The second task is to segment each cell nucleus and count the number of cell nuclei. However, the cell nuclei belonging to glioma cases have particularly irregular nuclei shapes and form cell clusters by touching or overlapping with each other. In addition to this clustered structure, the shading of the brown stain and the texture of the nuclei differ slightly within a tissue image. The final step of the algorithm is to classify glioma cells versus oligodendrocytes. Our method starts with color segmentation to detect positively stained cells followed by the classification of single individual cells and cell clusters by K-means clustering. Detected cell clusters are segmented with the H-minima based watershed algorithm. The novel aspects of our work are: 1) the detection and segmentation of multiple-type, positively-stained nuclei by incorporating only minimal prior information; and 2) adaptively determining clustering parameters to adjust to the natural variation in staining as well as the underlying cellular structure while accommodating multiple cell types in the image. Performance of the algorithm to detect individual cells is evaluated by sensitivity and precision metrics. Promising
A robust face recognition algorithm under varying illumination using adaptive retina modeling
NASA Astrophysics Data System (ADS)
Cheong, Yuen Kiat; Yap, Vooi Voon; Nisar, Humaira
2013-10-01
Variation in illumination has a drastic effect on the appearance of a face image. This may hinder the automatic face recognition process. This paper presents a novel approach for face recognition under varying lighting conditions. The proposed algorithm uses adaptive retina modeling based illumination normalization. In the proposed approach, retina modeling is employed along with histogram remapping following normal distribution. Retina modeling is an approach that combines two adaptive nonlinear equations and a difference of Gaussians filter. Two databases: extended Yale B database and CMU PIE database are used to verify the proposed algorithm. For face recognition Gabor Kernel Fisher Analysis method is used. Experimental results show that the recognition rate for the face images with different illumination conditions has improved by the proposed approach. Average recognition rate for Extended Yale B database is 99.16%. Whereas, the recognition rate for CMU-PIE database is 99.64%.
A Study on Adapting the Zoom FFT Algorithm to Automotive Millimetre Wave Radar
NASA Astrophysics Data System (ADS)
Kuroda, Hiroshi; Takano, Kazuaki
The millimetre wave radar has been developed for automotive application such as ACC (Adaptive Cruise Control) and CWS (Collision Warning System). The radar uses MMIC (Monolithic Microwave Integrated Circuits) devices for transmitting and receiving 76 GHz millimetre wave signals. The radar is FSK (Frequency Shift Keying) monopulse type. The radar transmits 2 frequencies in time-duplex manner, and measures distance and relative speed of targets. The monopulse feature detects the azimuth angle of targets without a scanning mechanism. The Zoom FFT (Fast Fourier Transform) algorithm, which analyses frequency domain precisely, has adapted to the radar for discriminating multiple stationary targets. The Zoom FFT algorithm is evaluated in test truck. The evaluation results show good performance on discriminating two stationary vehicles in host lane and adjacent lane.
Adjoint-Based Algorithms for Adaptation and Design Optimizations on Unstructured Grids
NASA Technical Reports Server (NTRS)
Nielsen, Eric J.
2006-01-01
Schemes based on discrete adjoint algorithms present several exciting opportunities for significantly advancing the current state of the art in computational fluid dynamics. Such methods provide an extremely efficient means for obtaining discretely consistent sensitivity information for hundreds of design variables, opening the door to rigorous, automated design optimization of complex aerospace configuration using the Navier-Stokes equation. Moreover, the discrete adjoint formulation provides a mathematically rigorous foundation for mesh adaptation and systematic reduction of spatial discretization error. Error estimates are also an inherent by-product of an adjoint-based approach, valuable information that is virtually non-existent in today's large-scale CFD simulations. An overview of the adjoint-based algorithm work at NASA Langley Research Center is presented, with examples demonstrating the potential impact on complex computational problems related to design optimization as well as mesh adaptation.
A modified Richardson-Lucy algorithm for single image with adaptive reference maps
NASA Astrophysics Data System (ADS)
Cui, Guangmang; Feng, Huajun; Xu, Zhihai; Li, Qi; Chen, Yueting
2014-06-01
In this paper, we propose a modified non-blind Richardson-Lucy algorithm using adaptive reference maps as local constraint to reduce noise and ringing artifacts effectively. The deconvolution process can be divided into two stages. In the first deblurring stage, the reference map is estimated from the blurred image and an intermediate deblurred result is obtained. And then the adaptive reference map is updated according to both the blurred image and the deblurred result of the first stage to produce a more accurate edge description, which is very helpful to suppress the ringing around edges. Gaussian image prior is adopted as the regularization to improve the standard Richardson-Lucy algorithm. Experimental results show that the presented approach could suppress the negative ringing artifacts effectively as well as preserve the edge information, even if the blurred image contains rich textures.
QoE collaborative evaluation method based on fuzzy clustering heuristic algorithm.
Bao, Ying; Lei, Weimin; Zhang, Wei; Zhan, Yuzhuo
2016-01-01
At present, to realize or improve the quality of experience (QoE) is a major goal for network media transmission service, and QoE evaluation is the basis for adjusting the transmission control mechanism. Therefore, a kind of QoE collaborative evaluation method based on fuzzy clustering heuristic algorithm is proposed in this paper, which is concentrated on service score calculation at the server side. The server side collects network transmission quality of service (QoS) parameter, node location data, and user expectation value from client feedback information. Then it manages the historical data in database through the "big data" process mode, and predicts user score according to heuristic rules. On this basis, it completes fuzzy clustering analysis, and generates service QoE score and management message, which will be finally fed back to clients. Besides, this paper mainly discussed service evaluation generative rules, heuristic evaluation rules and fuzzy clustering analysis methods, and presents service-based QoE evaluation processes. The simulation experiments have verified the effectiveness of QoE collaborative evaluation method based on fuzzy clustering heuristic rules. PMID:27398281
Applications of colored petri net and genetic algorithms to cluster tool scheduling
NASA Astrophysics Data System (ADS)
Liu, Tung-Kuan; Kuo, Chih-Jen; Hsiao, Yung-Chin; Tsai, Jinn-Tsong; Chou, Jyh-Horng
2005-12-01
In this paper, we propose a method, which uses Coloured Petri Net (CPN) and genetic algorithm (GA) to obtain an optimal deadlock-free schedule and to solve re-entrant problem for the flexible process of the cluster tool. The process of the cluster tool for producing a wafer usually can be classified into three types: 1) sequential process, 2) parallel process, and 3) sequential parallel process. But these processes are not economical enough to produce a variety of wafers in small volume. Therefore, this paper will propose the flexible process where the operations of fabricating wafers are randomly arranged to achieve the best utilization of the cluster tool. However, the flexible process may have deadlock and re-entrant problems which can be detected by CPN. On the other hand, GAs have been applied to find the optimal schedule for many types of manufacturing processes. Therefore, we successfully integrate CPN and GAs to obtain an optimal schedule with the deadlock and re-entrant problems for the flexible process of the cluster tool.
Zarepisheh, Masoud; Li, Nan; Long, Troy; Romeijn, H. Edwin; Tian, Zhen; Jia, Xun; Jiang, Steve B.
2014-06-15
Purpose: To develop a novel algorithm that incorporates prior treatment knowledge into intensity modulated radiation therapy optimization to facilitate automatic treatment planning and adaptive radiotherapy (ART) replanning. Methods: The algorithm automatically creates a treatment plan guided by the DVH curves of a reference plan that contains information on the clinician-approved dose-volume trade-offs among different targets/organs and among different portions of a DVH curve for an organ. In ART, the reference plan is the initial plan for the same patient, while for automatic treatment planning the reference plan is selected from a library of clinically approved and delivered plans of previously treated patients with similar medical conditions and geometry. The proposed algorithm employs a voxel-based optimization model and navigates the large voxel-based Pareto surface. The voxel weights are iteratively adjusted to approach a plan that is similar to the reference plan in terms of the DVHs. If the reference plan is feasible but not Pareto optimal, the algorithm generates a Pareto optimal plan with the DVHs better than the reference ones. If the reference plan is too restricting for the new geometry, the algorithm generates a Pareto plan with DVHs close to the reference ones. In both cases, the new plans have similar DVH trade-offs as the reference plans. Results: The algorithm was tested using three patient cases and found to be able to automatically adjust the voxel-weighting factors in order to generate a Pareto plan with similar DVH trade-offs as the reference plan. The algorithm has also been implemented on a GPU for high efficiency. Conclusions: A novel prior-knowledge-based optimization algorithm has been developed that automatically adjust the voxel weights and generate a clinical optimal plan at high efficiency. It is found that the new algorithm can significantly improve the plan quality and planning efficiency in ART replanning and automatic treatment
Applying Social Networking and Clustering Algorithms to Galaxy Groups in ALFALFA
NASA Astrophysics Data System (ADS)
Bramson, Ali; Wilcots, E. M.
2012-01-01
Because most galaxies live in groups, and the environment in which it resides affects the evolution of a galaxy, it is crucial to develop tools to understand how galaxies are distributed within groups. At the same time we must understand how groups are distributed and connected in the larger scale structure of the Universe. I have applied a variety of networking techniques to assess the substructure of galaxy groups, including distance matrices, agglomerative hierarchical clustering algorithms and dendrograms. We use distance matrices to locate groupings spatially in 3-D. Dendrograms created from agglomerative hierarchical clustering results allow us to quantify connections between galaxies and galaxy groups. The shape of the dendrogram reveals if the group is spatially homogenous or clumpy. These techniques are giving us new insight into the structure and dynamical state of galaxy groups and large scale structure. We specifically apply these techniques to the ALFALFA survey of the Coma-Abell 1367 supercluster and its resident galaxy groups.
Burst detection in district metering areas using a data driven clustering algorithm.
Wu, Yipeng; Liu, Shuming; Wu, Xue; Liu, Youfei; Guan, Yisheng
2016-09-01
This paper describes a novel methodology for burst detection in a water distribution system. The proposed method has two stages. In the first stage, a clustering algorithm was employed for outlier detection, while the second stage identified the presence of bursts. An important feature of this method is that data analysis is carried out dependent on multiple flow meters whose measurements vary simultaneously in a district metering area (DMA). Moreover, the clustering-based method can automatically cope with non-stationary conditions in historical data; namely, the method has no prior data selection process. An example application of this method has been implemented to confirm that relatively large bursts (simulated by flushing) with short duration can be detected effectively. Noticeably, the method has a low false positive rate compared with previous studies and appearance of detected abnormal water usage consists with weather changes, showing great promise in real application to multi-inlet and multi-outlet DMAs. PMID:27176651
Development of a Genetic Algorithm to Automate Clustering of a Dependency Structure Matrix
NASA Technical Reports Server (NTRS)
Rogers, James L.; Korte, John J.; Bilardo, Vincent J.
2006-01-01
Much technology assessment and organization design data exists in Microsoft Excel spreadsheets. Tools are needed to put this data into a form that can be used by design managers to make design decisions. One need is to cluster data that is highly coupled. Tools such as the Dependency Structure Matrix (DSM) and a Genetic Algorithm (GA) can be of great benefit. However, no tool currently combines the DSM and a GA to solve the clustering problem. This paper describes a new software tool that interfaces a GA written as an Excel macro with a DSM in spreadsheet format. The results of several test cases are included to demonstrate how well this new tool works.
An Adaptive Displacement Estimation Algorithm for Improved Reconstruction of Thermal Strain
Ding, Xuan; Dutta, Debaditya; Mahmoud, Ahmed M.; Tillman, Bryan; Leers, Steven A.; Kim, Kang
2014-01-01
Thermal strain imaging (TSI) can be used to differentiate between lipid and water-based tissues in atherosclerotic arteries. However, detecting small lipid pools in vivo requires accurate and robust displacement estimation over a wide range of displacement magnitudes. Phase-shift estimators such as Loupas’ estimator and time-shift estimators like normalized cross-correlation (NXcorr) are commonly used to track tissue displacements. However, Loupas’ estimator is limited by phase-wrapping and NXcorr performs poorly when the signal-to-noise ratio (SNR) is low. In this paper, we present an adaptive displacement estimation algorithm that combines both Loupas’ estimator and NXcorr. We evaluated this algorithm using computer simulations and an ex-vivo human tissue sample. Using 1-D simulation studies, we showed that when the displacement magnitude induced by thermal strain was >λ/8 and the electronic system SNR was >25.5 dB, the NXcorr displacement estimate was less biased than the estimate found using Loupas’ estimator. On the other hand, when the displacement magnitude was ≤λ/4 and the electronic system SNR was ≤25.5 dB, Loupas’ estimator had less variance than NXcorr. We used these findings to design an adaptive displacement estimation algorithm. Computer simulations of TSI using Field II showed that the adaptive displacement estimator was less biased than either Loupas’ estimator or NXcorr. Strain reconstructed from the adaptive displacement estimates improved the strain SNR by 43.7–350% and the spatial accuracy by 1.2–23.0% (p < 0.001). An ex-vivo human tissue study provided results that were comparable to computer simulations. The results of this study showed that a novel displacement estimation algorithm, which combines two different displacement estimators, yielded improved displacement estimation and results in improved strain reconstruction. PMID:25585398
CLUSTAG & WCLUSTAG: Hierarchical Clustering Algorithms for Efficient Tag-SNP Selection
NASA Astrophysics Data System (ADS)
Ao, Sio-Iong
More than 6 million single nucleotide polymorphisms (SNPs) in the human genome have been genotyped by the HapMap project. Although only a pro portion of these SNPs are functional, all can be considered as candidate markers for indirect association studies to detect disease-related genetic variants. The complete screening of a gene or a chromosomal region is nevertheless an expensive undertak ing for association studies. A key strategy for improving the efficiency of association studies is to select a subset of informative SNPs, called tag SNPs, for analysis. In the chapter, hierarchical clustering algorithms have been proposed for efficient tag SNP selection.
Reduced-cost sparsity-exploiting algorithm for solving coupled-cluster equations.
Brabec, Jiri; Yang, Chao; Epifanovsky, Evgeny; Krylov, Anna I; Ng, Esmond
2016-05-01
We present an algorithm for reducing the computational work involved in coupled-cluster (CC) calculations by sparsifying the amplitude correction within a CC amplitude update procedure. We provide a theoretical justification for this approach, which is based on the convergence theory of inexact Newton iterations. We demonstrate by numerical examples that, in the simplest case of the CCD equations, we can sparsify the amplitude correction by setting, on average, roughly 90% nonzero elements to zeros without a major effect on the convergence of the inexact Newton iterations. PMID:26804120
NASA Astrophysics Data System (ADS)
Wang, Deguang; Han, Baochang; Huang, Ming
Computer forensics is the technology of applying computer technology to access, investigate and analysis the evidence of computer crime. It mainly include the process of determine and obtain digital evidence, analyze and take data, file and submit result. And the data analysis is the key link of computer forensics. As the complexity of real data and the characteristics of fuzzy, evidence analysis has been difficult to obtain the desired results. This paper applies fuzzy c-means clustering algorithm based on particle swarm optimization (FCMP) in computer forensics, and it can be more satisfactory results.
A novel adaptive, real-time algorithm to detect gait events from wearable sensors.
Chia Bejarano, Noelia; Ambrosini, Emilia; Pedrocchi, Alessandra; Ferrigno, Giancarlo; Monticone, Marco; Ferrante, Simona
2015-05-01
A real-time, adaptive algorithm based on two inertial and magnetic sensors placed on the shanks was developed for gait-event detection. For each leg, the algorithm detected the Initial Contact (IC), as the minimum of the flexion/extension angle, and the End Contact (EC) and the Mid-Swing (MS), as minimum and maximum of the angular velocity, respectively. The algorithm consisted of calibration, real-time detection, and step-by-step update. Data collected from 22 healthy subjects (21 to 85 years) walking at three self-selected speeds were used to validate the algorithm against the GaitRite system. Comparable levels of accuracy and significantly lower detection delays were achieved with respect to other published methods. The algorithm robustness was tested on ten healthy subjects performing sudden speed changes and on ten stroke subjects (43 to 89 years). For healthy subjects, F1-scores of 1 and mean detection delays lower than 14 ms were obtained. For stroke subjects, F1-scores of 0.998 and 0.944 were obtained for IC and EC, respectively, with mean detection delays always below 31 ms. The algorithm accurately detected gait events in real time from a heterogeneous dataset of gait patterns and paves the way for the design of closed-loop controllers for customized gait trainings and/or assistive devices. PMID:25069118
Multispectral image classification of MRI data using an empirically-derived clustering algorithm
Horn, K.M.; Osbourn, G.C.; Bouchard, A.M.; Sanders, J.A. |
1998-08-01
Multispectral image analysis of magnetic resonance imaging (MRI) data has been performed using an empirically-derived clustering algorithm. This algorithm groups image pixels into distinct classes which exhibit similar response in the T{sub 2} 1st and 2nd-echo, and T{sub 1} (with ad without gadolinium) MRI images. The grouping is performed in an n-dimensional mathematical space; the n-dimensional volumes bounding each class define each specific tissue type. The classification results are rendered again in real-space by colored-coding each grouped class of pixels (associated with differing tissue types). This classification method is especially well suited for class volumes with complex boundary shapes, and is also expected to robustly detect abnormal tissue classes. The classification process is demonstrated using a three dimensional data set of MRI scans of a human brain tumor.
An adaptive importance sampling algorithm for Bayesian inversion with multimodal distributions
Li, Weixuan; Lin, Guang
2015-08-01
Parametric uncertainties are encountered in the simulations of many physical systems, and may be reduced by an inverse modeling procedure that calibrates the simulation results to observations on the real system being simulated. Following Bayes' rule, a general approach for inverse modeling problems is to sample from the posterior distribution of the uncertain model parameters given the observations. However, the large number of repetitive forward simulations required in the sampling process could pose a prohibitive computational burden. This difficulty is particularly challenging when the posterior is multimodal. We present in this paper an adaptive importance sampling algorithm to tackle these challenges. Two essential ingredients of the algorithm are: 1) a Gaussian mixture (GM) model adaptively constructed as the proposal distribution to approximate the possibly multimodal target posterior, and 2) a mixture of polynomial chaos (PC) expansions, built according to the GM proposal, as a surrogate model to alleviate the computational burden caused by computational-demanding forward model evaluations. In three illustrative examples, the proposed adaptive importance sampling algorithm demonstrates its capabilities of automatically finding a GM proposal with an appropriate number of modes for the specific problem under study, and obtaining a sample accurately and efficiently representing the posterior with limited number of forward simulations.
Adaptive time stepping algorithm for Lagrangian transport models: Theory and idealised test cases
NASA Astrophysics Data System (ADS)
Shah, Syed Hyder Ali Muttaqi; Heemink, Arnold Willem; Gräwe, Ulf; Deleersnijder, Eric
2013-08-01
Random walk simulations have an excellent potential in marine and oceanic modelling. This is essentially due to their relative simplicity and their ability to represent advective transport without being plagued by the deficiencies of the Eulerian methods. The physical and mathematical foundations of random walk modelling of turbulent diffusion have become solid over the years. Random walk models rest on the theory of stochastic differential equations. Unfortunately, the latter and the related numerical aspects have not attracted much attention in the oceanic modelling community. The main goal of this paper is to help bridge the gap by developing an efficient adaptive time stepping algorithm for random walk models. Its performance is examined on two idealised test cases of turbulent dispersion; (i) pycnocline crossing and (ii) non-flat isopycnal diffusion, which are inspired by shallow-sea dynamics and large-scale ocean transport processes, respectively. The numerical results of the adaptive time stepping algorithm are compared with the fixed-time increment Milstein scheme, showing that the adaptive time stepping algorithm for Lagrangian random walk models is more efficient than its fixed step-size counterpart without any loss in accuracy.
An adaptive importance sampling algorithm for Bayesian inversion with multimodal distributions
Li, Weixuan; Lin, Guang
2015-03-21
Parametric uncertainties are encountered in the simulations of many physical systems, and may be reduced by an inverse modeling procedure that calibrates the simulation results to observations on the real system being simulated. Following Bayes’ rule, a general approach for inverse modeling problems is to sample from the posterior distribution of the uncertain model parameters given the observations. However, the large number of repetitive forward simulations required in the sampling process could pose a prohibitive computational burden. This difficulty is particularly challenging when the posterior is multimodal. We present in this paper an adaptive importance sampling algorithm to tackle these challenges. Two essential ingredients of the algorithm are: 1) a Gaussian mixture (GM) model adaptively constructed as the proposal distribution to approximate the possibly multimodal target posterior, and 2) a mixture of polynomial chaos (PC) expansions, built according to the GM proposal, as a surrogate model to alleviate the computational burden caused by computational-demanding forward model evaluations. In three illustrative examples, the proposed adaptive importance sampling algorithm demonstrates its capabilities of automatically finding a GM proposal with an appropriate number of modes for the specific problem under study, and obtaining a sample accurately and efficiently representing the posterior with limited number of forward simulations.
Ye, Zhiwei; Wang, Mingwei; Hu, Zhengbing; Liu, Wei
2015-01-01
Image enhancement is an important procedure of image processing and analysis. This paper presents a new technique using a modified measure and blending of cuckoo search and particle swarm optimization (CS-PSO) for low contrast images to enhance image adaptively. In this way, contrast enhancement is obtained by global transformation of the input intensities; it employs incomplete Beta function as the transformation function and a novel criterion for measuring image quality considering three factors which are threshold, entropy value, and gray-level probability density of the image. The enhancement process is a nonlinear optimization problem with several constraints. CS-PSO is utilized to maximize the objective fitness criterion in order to enhance the contrast and detail in an image by adapting the parameters of a novel extension to a local enhancement technique. The performance of the proposed method has been compared with other existing techniques such as linear contrast stretching, histogram equalization, and evolutionary computing based image enhancement methods like backtracking search algorithm, differential search algorithm, genetic algorithm, and particle swarm optimization in terms of processing time and image quality. Experimental results demonstrate that the proposed method is robust and adaptive and exhibits the better performance than other methods involved in the paper. PMID:25784928
An adaptive importance sampling algorithm for Bayesian inversion with multimodal distributions
Li, Weixuan; Lin, Guang
2015-03-21
Parametric uncertainties are encountered in the simulations of many physical systems, and may be reduced by an inverse modeling procedure that calibrates the simulation results to observations on the real system being simulated. Following Bayes’ rule, a general approach for inverse modeling problems is to sample from the posterior distribution of the uncertain model parameters given the observations. However, the large number of repetitive forward simulations required in the sampling process could pose a prohibitive computational burden. This difficulty is particularly challenging when the posterior is multimodal. We present in this paper an adaptive importance sampling algorithm to tackle thesemore » challenges. Two essential ingredients of the algorithm are: 1) a Gaussian mixture (GM) model adaptively constructed as the proposal distribution to approximate the possibly multimodal target posterior, and 2) a mixture of polynomial chaos (PC) expansions, built according to the GM proposal, as a surrogate model to alleviate the computational burden caused by computational-demanding forward model evaluations. In three illustrative examples, the proposed adaptive importance sampling algorithm demonstrates its capabilities of automatically finding a GM proposal with an appropriate number of modes for the specific problem under study, and obtaining a sample accurately and efficiently representing the posterior with limited number of forward simulations.« less
Ye, Zhiwei; Wang, Mingwei; Hu, Zhengbing; Liu, Wei
2015-01-01
Image enhancement is an important procedure of image processing and analysis. This paper presents a new technique using a modified measure and blending of cuckoo search and particle swarm optimization (CS-PSO) for low contrast images to enhance image adaptively. In this way, contrast enhancement is obtained by global transformation of the input intensities; it employs incomplete Beta function as the transformation function and a novel criterion for measuring image quality considering three factors which are threshold, entropy value, and gray-level probability density of the image. The enhancement process is a nonlinear optimization problem with several constraints. CS-PSO is utilized to maximize the objective fitness criterion in order to enhance the contrast and detail in an image by adapting the parameters of a novel extension to a local enhancement technique. The performance of the proposed method has been compared with other existing techniques such as linear contrast stretching, histogram equalization, and evolutionary computing based image enhancement methods like backtracking search algorithm, differential search algorithm, genetic algorithm, and particle swarm optimization in terms of processing time and image quality. Experimental results demonstrate that the proposed method is robust and adaptive and exhibits the better performance than other methods involved in the paper. PMID:25784928
Clarifying Our View of Milky Way Massive Young Star Clusters with Adaptive Optics
NASA Astrophysics Data System (ADS)
Lu, Jessica R.; Ghez, A. M.; McCrady, N.; Yelda, S.
2011-01-01
We present Keck laser guide star adaptive optics (AO) observations of the massive young star clusters W51 G48.9-0.3 and W49A Cluster 1 in an effort to test the universality of the initial mass function (IMF) in extreme star forming environments. High-precision AO astrometry over a 1 year time baseline is successfully used to separate cluster members from contaminating field objects with differential proper motions as small as 0.5 mas/yr (15 km/s at 6 pc). We have developed improved AO photometric analysis techniques and use the near-infrared photometry of the proper motion selected cluster members to construct mass functions corrected for spatially varying extinction and incompleteness. Contrary to previous results for W51, we measure a mass function that has a high-mass end slope consistent with a Salpeter IMF and find that the observed cluster mass within 0.3 pc is <700 solar masses between 1 and 60 solar masses.
Meanie3D - a mean-shift based, multivariate, multi-scale clustering and tracking algorithm
NASA Astrophysics Data System (ADS)
Simon, Jürgen-Lorenz; Malte, Diederich; Silke, Troemel
2014-05-01
Project OASE is the one of 5 work groups at the HErZ (Hans Ertel Centre for Weather Research), an ongoing effort by the German weather service (DWD) to further research at Universities concerning weather prediction. The goal of project OASE is to gain an object-based perspective on convective events by identifying them early in the onset of convective initiation and follow then through the entire lifecycle. The ability to follow objects in this fashion requires new ways of object definition and tracking, which incorporate all the available data sets of interest, such as Satellite imagery, weather Radar or lightning counts. The Meanie3D algorithm provides the necessary tool for this purpose. Core features of this new approach to clustering (object identification) and tracking are the ability to identify objects using the mean-shift algorithm applied to a multitude of variables (multivariate), as well as the ability to detect objects on various scales (multi-scale) using elements of Scale-Space theory. The algorithm works in 2D as well as 3D without modifications. It is an extension of a method well known from the field of computer vision and image processing, which has been tailored to serve the needs of the meteorological community. In spite of the special application to be demonstrated here (like convective initiation), the algorithm is easily tailored to provide clustering and tracking for a wide class of data sets and problems. In this talk, the demonstration is carried out on two of the OASE group's own composite sets. One is a 2D nationwide composite of Germany including C-Band Radar (2D) and Satellite information, the other a 3D local composite of the Bonn/Jülich area containing a high-resolution 3D X-Band Radar composite.
A Biomimetic Adaptive Algorithm and Low-Power Architecture for Implantable Neural Decoders
Rapoport, Benjamin I.; Wattanapanitch, Woradorn; Penagos, Hector L.; Musallam, Sam; Andersen, Richard A.; Sarpeshkar, Rahul
2010-01-01
Algorithmically and energetically efficient computational architectures that operate in real time are essential for clinically useful neural prosthetic devices. Such devices decode raw neural data to obtain direct control signals for external devices. They can also perform data compression and vastly reduce the bandwidth and consequently power expended in wireless transmission of raw data from implantable brain-machine interfaces. We describe a biomimetic algorithm and micropower analog circuit architecture for decoding neural cell ensemble signals. The decoding algorithm implements a continuous-time artificial neural network, using a bank of adaptive linear filters with kernels that emulate synaptic dynamics. The filters transform neural signal inputs into control-parameter outputs, and can be tuned automatically in an on-line learning process. We provide experimental validation of our system using neural data from thalamic head-direction cells in an awake behaving rat. PMID:19964345
A self-adaptive parameter optimization algorithm in a real-time parallel image processing system.
Li, Ge; Zhang, Xuehe; Zhao, Jie; Zhang, Hongli; Ye, Jianwei; Zhang, Weizhe
2013-01-01
Aiming at the stalemate that precision, speed, robustness, and other parameters constrain each other in the parallel processed vision servo system, this paper proposed an adaptive load capacity balance strategy on the servo parameters optimization algorithm (ALBPO) to improve the computing precision and to achieve high detection ratio while not reducing the servo circle. We use load capacity functions (LC) to estimate the load for each processor and then make continuous self-adaptation towards a balanced status based on the fluctuated LC results; meanwhile, we pick up a proper set of target detection and location parameters according to the results of LC. Compared with current load balance algorithm, the algorithm proposed in this paper is proceeded under an unknown informed status about the maximum load and the current load of the processors, which means it has great extensibility. Simulation results showed that the ALBPO algorithm has great merits on load balance performance, realizing the optimization of QoS for each processor, fulfilling the balance requirements of servo circle, precision, and robustness of the parallel processed vision servo system. PMID:24174920
NASA Astrophysics Data System (ADS)
Shams Esfand Abadi, Mohammad; AbbasZadeh Arani, Seyed Ali Asghar
2011-12-01
This paper extends the recently introduced variable step-size (VSS) approach to the family of adaptive filter algorithms. This method uses prior knowledge of the channel impulse response statistic. Accordingly, optimal step-size vector is obtained by minimizing the mean-square deviation (MSD). The presented algorithms are the VSS affine projection algorithm (VSS-APA), the VSS selective partial update NLMS (VSS-SPU-NLMS), the VSS-SPU-APA, and the VSS selective regressor APA (VSS-SR-APA). In VSS-SPU adaptive algorithms the filter coefficients are partially updated which reduce the computational complexity. In VSS-SR-APA, the optimal selection of input regressors is performed during the adaptation. The presented algorithms have good convergence speed, low steady state mean square error (MSE), and low computational complexity features. We demonstrate the good performance of the proposed algorithms through several simulations in system identification scenario.
An adaptive algorithm for simulation of stochastic reaction-diffusion processes
Ferm, Lars Hellander, Andreas Loetstedt, Per
2010-01-20
We propose an adaptive hybrid method suitable for stochastic simulation of diffusion dominated reaction-diffusion processes. For such systems, simulation of the diffusion requires the predominant part of the computing time. In order to reduce the computational work, the diffusion in parts of the domain is treated macroscopically, in other parts with the tau-leap method and in the remaining parts with Gillespie's stochastic simulation algorithm (SSA) as implemented in the next subvolume method (NSM). The chemical reactions are handled by SSA everywhere in the computational domain. A trajectory of the process is advanced in time by an operator splitting technique and the timesteps are chosen adaptively. The spatial adaptation is based on estimates of the errors in the tau-leap method and the macroscopic diffusion. The accuracy and efficiency of the method are demonstrated in examples from molecular biology where the domain is discretized by unstructured meshes.
Farah, Ihsen; Nguyen, Thi Nguyet Que; Groh, Audrey; Guenot, Dominique; Jeannesson, Pierre; Gobinet, Cyril
2016-05-23
The coupling between Fourier-transform infrared (FTIR) imaging and unsupervised classification is effective in revealing the different structures of human tissues based on their specific biomolecular IR signatures; thus the spectral histology of the studied samples is achieved. However, the most widely applied clustering methods in spectral histology are local search algorithms, which converge to a local optimum, depending on initialization. Multiple runs of the techniques estimate multiple different solutions. Here, we propose a memetic algorithm, based on a genetic algorithm and a k-means clustering refinement, to perform optimal clustering. In addition, this approach was applied to the acquired FTIR images of normal human colon tissues originating from five patients. The results show the efficiency of the proposed memetic algorithm to achieve the optimal spectral histology of these samples, contrary to k-means. PMID:27110605
Chen, Deng-kai; Gu, Rong; Gu, Yu-feng; Yu, Sui-huai
2016-01-01
Consumers' Kansei needs reflect their perception about a product and always consist of a large number of adjectives. Reducing the dimension complexity of these needs to extract primary words not only enables the target product to be explicitly positioned, but also provides a convenient design basis for designers engaging in design work. Accordingly, this study employs a numerical design structure matrix (NDSM) by parameterizing a conventional DSM and integrating genetic algorithms to find optimum Kansei clusters. A four-point scale method is applied to assign link weights of every two Kansei adjectives as values of cells when constructing an NDSM. Genetic algorithms are used to cluster the Kansei NDSM and find optimum clusters. Furthermore, the process of the proposed method is presented. The details of the proposed approach are illustrated using an example of electronic scooter for Kansei needs clustering. The case study reveals that the proposed method is promising for clustering Kansei needs adjectives in product emotional design.
KANTS: a stigmergic ant algorithm for cluster analysis and swarm art.
Fernandes, Carlos M; Mora, Antonio M; Merelo, Juan J; Rosa, Agostinho C
2014-06-01
KANTS is a swarm intelligence clustering algorithm inspired by the behavior of social insects. It uses stigmergy as a strategy for clustering large datasets and, as a result, displays a typical behavior of complex systems: self-organization and global patterns emerging from the local interaction of simple units. This paper introduces a simplified version of KANTS and describes recent experiments with the algorithm in the context of a contemporary artistic and scientific trend called swarm art, a type of generative art in which swarm intelligence systems are used to create artwork or ornamental objects. KANTS is used here for generating color drawings from the input data that represent real-world phenomena, such as electroencephalogram sleep data. However, the main proposal of this paper is an art project based on well-known abstract paintings, from which the chromatic values are extracted and used as input. Colors and shapes are therefore reorganized by KANTS, which generates its own interpretation of the original artworks. The project won the 2012 Evolutionary Art, Design, and Creativity Competition. PMID:23912505
A contiguity-enhanced k-means clustering algorithm for unsupervised multispectral image segmentation
Theiler, J.; Gisler, G.
1997-07-01
The recent and continuing construction of multi and hyper spectral imagers will provide detailed data cubes with information in both the spatial and spectral domain. This data shows great promise for remote sensing applications ranging from environmental and agricultural to national security interests. The reduction of this voluminous data to useful intermediate forms is necessary both for downlinking all those bits and for interpreting them. Smart onboard hardware is required, as well as sophisticated earth bound processing. A segmented image (in which the multispectral data in each pixel is classified into one of a small number of categories) is one kind of intermediate form which provides some measure of data compression. Traditional image segmentation algorithms treat pixels independently and cluster the pixels according only to their spectral information. This neglects the implicit spatial information that is available in the image. We will suggest a simple approach; a variant of the standard k-means algorithm which uses both spatial and spectral properties of the image. The segmented image has the property that pixels which are spatially contiguous are more likely to be in the same class than are random pairs of pixels. This property naturally comes at some cost in terms of the compactness of the clusters in the spectral domain, but we have found that the spatial contiguity and spectral compactness properties are nearly orthogonal, which means that we can make considerable improvements in the one with minimal loss in the other.
A New Modified Artificial Bee Colony Algorithm with Exponential Function Adaptive Steps
Mao, Wei; Li, Hao-ru
2016-01-01
As one of the most recent popular swarm intelligence techniques, artificial bee colony algorithm is poor at exploitation and has some defects such as slow search speed, poor population diversity, the stagnation in the working process, and being trapped into the local optimal solution. The purpose of this paper is to develop a new modified artificial bee colony algorithm in view of the initial population structure, subpopulation groups, step updating, and population elimination. Further, depending on opposition-based learning theory and the new modified algorithms, an improved S-type grouping method is proposed and the original way of roulette wheel selection is substituted through sensitivity-pheromone way. Then, an adaptive step with exponential functions is designed for replacing the original random step. Finally, based on the new test function versions CEC13, six benchmark functions with the dimensions D = 20 and D = 40 are chosen and applied in the experiments for analyzing and comparing the iteration speed and accuracy of the new modified algorithms. The experimental results show that the new modified algorithm has faster and more stable searching and can quickly increase poor population diversity and bring out the global optimal solutions. PMID:27293426
A New Modified Artificial Bee Colony Algorithm with Exponential Function Adaptive Steps.
Mao, Wei; Lan, Heng-You; Li, Hao-Ru
2016-01-01
As one of the most recent popular swarm intelligence techniques, artificial bee colony algorithm is poor at exploitation and has some defects such as slow search speed, poor population diversity, the stagnation in the working process, and being trapped into the local optimal solution. The purpose of this paper is to develop a new modified artificial bee colony algorithm in view of the initial population structure, subpopulation groups, step updating, and population elimination. Further, depending on opposition-based learning theory and the new modified algorithms, an improved S-type grouping method is proposed and the original way of roulette wheel selection is substituted through sensitivity-pheromone way. Then, an adaptive step with exponential functions is designed for replacing the original random step. Finally, based on the new test function versions CEC13, six benchmark functions with the dimensions D = 20 and D = 40 are chosen and applied in the experiments for analyzing and comparing the iteration speed and accuracy of the new modified algorithms. The experimental results show that the new modified algorithm has faster and more stable searching and can quickly increase poor population diversity and bring out the global optimal solutions. PMID:27293426
Noll, Douglas C.; Fessler, Jeffrey A.
2014-01-01
Sparsity-promoting regularization is useful for combining compressed sensing assumptions with parallel MRI for reducing scan time while preserving image quality. Variable splitting algorithms are the current state-of-the-art algorithms for SENSE-type MR image reconstruction with sparsity-promoting regularization. These methods are very general and have been observed to work with almost any regularizer; however, the tuning of associated convergence parameters is a commonly-cited hindrance in their adoption. Conversely, majorize-minimize algorithms based on a single Lipschitz constant have been observed to be slow in shift-variant applications such as SENSE-type MR image reconstruction since the associated Lipschitz constants are loose bounds for the shift-variant behavior. This paper bridges the gap between the Lipschitz constant and the shift-variant aspects of SENSE-type MR imaging by introducing majorizing matrices in the range of the regularizer matrix. The proposed majorize-minimize methods (called BARISTA) converge faster than state-of-the-art variable splitting algorithms when combined with momentum acceleration and adaptive momentum restarting. Furthermore, the tuning parameters associated with the proposed methods are unitless convergence tolerances that are easier to choose than the constraint penalty parameters required by variable splitting algorithms. PMID:25330484
Qin, Lei; Snoussi, Hichem; Abdallah, Fahed
2014-01-01
We propose a novel approach for tracking an arbitrary object in video sequences for visual surveillance. The first contribution of this work is an automatic feature extraction method that is able to extract compact discriminative features from a feature pool before computing the region covariance descriptor. As the feature extraction method is adaptive to a specific object of interest, we refer to the region covariance descriptor computed using the extracted features as the adaptive covariance descriptor. The second contribution is to propose a weakly supervised method for updating the object appearance model during tracking. The method performs a mean-shift clustering procedure among the tracking result samples accumulated during a period of time and selects a group of reliable samples for updating the object appearance model. As such, the object appearance model is kept up-to-date and is prevented from contamination even in case of tracking mistakes. We conducted comparing experiments on real-world video sequences, which confirmed the effectiveness of the proposed approaches. The tracking system that integrates the adaptive covariance descriptor and the clustering-based model updating method accomplished stable object tracking on challenging video sequences. PMID:24865883
Analysis Clustering of Electricity Usage Profile Using K-Means Algorithm
NASA Astrophysics Data System (ADS)
Amri, Yasirli; Lailatul Fadhilah, Amanda; Fatmawati; Setiani, Novi; Rani, Septia
2016-01-01
Electricity is one of the most important needs for human life in many sectors. Demand for electricity will increase in line with population and economic growth. Adjustment of the amount of electricity production in specified time is important because the cost of storing electricity is expensive. For handling this problem, we need knowledge about the electricity usage pattern of clients. This pattern can be obtained by using clustering techniques. In this paper, clustering is used to obtain the similarity of electricity usage patterns in a specified time. We use K-Means algorithm to employ clustering on the dataset of electricity consumption from 370 clients that collected in a year. Result of this study, we obtained an interesting pattern that there is a big group of clients consume the lowest electric load in spring season, but in another group, the lowest electricity consumption occurred in winter season. From this result, electricity provider can make production planning in specified season based on pattern of electricity usage profile.
Optimization algorithm in adaptive PMD compensation in 10Gb/s optical communication system
NASA Astrophysics Data System (ADS)
Diao, Cao; Li, Tangjun; Wang, Muguang; Gong, Xiangfeng
2005-02-01
In this paper, the optimization algorithms are introduced in adaptive PMD compensation in 10Gb/s optical communication system. The PMD monitoring technique based on degree of polarization (DOP) is adopted. DOP can be a good indicator of PMD with monotonically deceasing of DOP as differential group delay (DGD) increasing. In order to use DOP as PMD monitoring feedback signal, it is required to emulate the state of DGD in the transmission circuitry. A PMD emulator is designed. A polarization controller (PC) is used in fiber multiplexer to adjust the polarization state of optical signal, and at the output of the fiber multiplexer a polarizer is used. After the feedback signal reach the control computer, the optimization program run to search the global optimization spot and through the PC to control the PMD. Several popular modern nonlinear optimization algorithms (Tabu Search, Simulated Annealing, Genetic Algorithm, Artificial Neural Networks, Ant Colony Optimization etc.) are discussed and the comparisons among them are made to choose the best optimization algorithm. Every algorithm has its advantage and disadvantage, but in this circs the Genetic Algorithm (GA) may be the best. It eliminates the worsen spots constantly and lets them have no chance to enter the circulation. So it has the quicker convergence velocity and less time. The PMD can be compensated in very few steps by using this algorithm. As a result, the maximum compensation ability of the one-stage PMD and two-stage PMD can be made in very short time, and the dynamic compensation time is no more than 10ms.
Jiang, Peng; Xu, Yiming; Wu, Feng
2016-01-01
Existing move-restricted node self-deployment algorithms are based on a fixed node communication radius, evaluate the performance based on network coverage or the connectivity rate and do not consider the number of nodes near the sink node and the energy consumption distribution of the network topology, thereby degrading network reliability and the energy consumption balance. Therefore, we propose a distributed underwater node self-deployment algorithm. First, each node begins the uneven clustering based on the distance on the water surface. Each cluster head node selects its next-hop node to synchronously construct a connected path to the sink node. Second, the cluster head node adjusts its depth while maintaining the layout formed by the uneven clustering and then adjusts the positions of in-cluster nodes. The algorithm originally considers the network reliability and energy consumption balance during node deployment and considers the coverage redundancy rate of all positions that a node may reach during the node position adjustment. Simulation results show, compared to the connected dominating set (CDS) based depth computation algorithm, that the proposed algorithm can increase the number of the nodes near the sink node and improve network reliability while guaranteeing the network connectivity rate. Moreover, it can balance energy consumption during network operation, further improve network coverage rate and reduce energy consumption. PMID:26784193
Jiang, Peng; Xu, Yiming; Wu, Feng
2016-01-01
Existing move-restricted node self-deployment algorithms are based on a fixed node communication radius, evaluate the performance based on network coverage or the connectivity rate and do not consider the number of nodes near the sink node and the energy consumption distribution of the network topology, thereby degrading network reliability and the energy consumption balance. Therefore, we propose a distributed underwater node self-deployment algorithm. First, each node begins the uneven clustering based on the distance on the water surface. Each cluster head node selects its next-hop node to synchronously construct a connected path to the sink node. Second, the cluster head node adjusts its depth while maintaining the layout formed by the uneven clustering and then adjusts the positions of in-cluster nodes. The algorithm originally considers the network reliability and energy consumption balance during node deployment and considers the coverage redundancy rate of all positions that a node may reach during the node position adjustment. Simulation results show, compared to the connected dominating set (CDS) based depth computation algorithm, that the proposed algorithm can increase the number of the nodes near the sink node and improve network reliability while guaranteeing the network connectivity rate. Moreover, it can balance energy consumption during network operation, further improve network coverage rate and reduce energy consumption. PMID:26784193
Convergence of a discretized self-adaptive evolutionary algorithm on multi-dimensional problems.
Hart, William Eugene; DeLaurentis, John Morse
2003-08-01
We consider the convergence properties of a non-elitist self-adaptive evolutionary strategy (ES) on multi-dimensional problems. In particular, we apply our recent convergence theory for a discretized (1,{lambda})-ES to design a related (1,{lambda})-ES that converges on a class of seperable, unimodal multi-dimensional problems. The distinguishing feature of self-adaptive evolutionary algorithms (EAs) is that the control parameters (like mutation step lengths) are evolved by the evolutionary algorithm. Thus the control parameters are adapted in an implicit manner that relies on the evolutionary dynamics to ensure that more effective control parameters are propagated during the search. Self-adaptation is a central feature of EAs like evolutionary stategies (ES) and evolutionary programming (EP), which are applied to continuous design spaces. Rudolph summarizes theoretical results concerning self-adaptive EAs and notes that the theoretical underpinnings for these methods are essentially unexplored. In particular, convergence theories that ensure convergence to a limit point on continuous spaces have only been developed by Rudolph, Hart, DeLaurentis and Ferguson, and Auger et al. In this paper, we illustrate how our analysis of a (1,{lambda})-ES for one-dimensional unimodal functions can be used to ensure convergence of a related ES on multidimensional functions. This (1,{lambda})-ES randomly selects a search dimension in each iteration, along which points generated. For a general class of separable functions, our analysis shows that the ES searches along each dimension independently, and thus this ES converges to the (global) minimum.
A new Self-Adaptive disPatching System for local clusters
NASA Astrophysics Data System (ADS)
Kan, Bowen; Shi, Jingyan; Lei, Xiaofeng
2015-12-01
The scheduler is one of the most important components of a high performance cluster. This paper introduces a self-adaptive dispatching system (SAPS) based on Torque[1] and Maui[2]. It promotes cluster resource utilization and improves the overall speed of tasks. It provides some extra functions for administrators and users. First of all, in order to allow the scheduling of GPUs, a GPU scheduling module based on Torque and Maui has been developed. Second, SAPS analyses the relationship between the number of queueing jobs and the idle job slots, and then tunes the priority of users’ jobs dynamically. This means more jobs run and fewer job slots are idle. Third, integrating with the monitoring function, SAPS excludes nodes in error states as detected by the monitor, and returns them to the cluster after the nodes have recovered. In addition, SAPS provides a series of function modules including a batch monitoring management module, a comprehensive scheduling accounting module and a real-time alarm module. The aim of SAPS is to enhance the reliability and stability of Torque and Maui. Currently, SAPS has been running stably on a local cluster at IHEP (Institute of High Energy Physics, Chinese Academy of Sciences), with more than 12,000 cpu cores and 50,000 jobs running each day. Monitoring has shown that resource utilization has been improved by more than 26%, and the management work for both administrator and users has been reduced greatly.
A comparison of two adaptive algorithms for the control of active engine mounts
NASA Astrophysics Data System (ADS)
Hillis, A. J.; Harrison, A. J. L.; Stoten, D. P.
2005-08-01
This paper describes work conducted in order to control automotive active engine mounts, consisting of a conventional passive mount and an internal electromagnetic actuator. Active engine mounts seek to cancel the oscillatory forces generated by the rotation of out-of-balance masses within the engine. The actuator generates a force dependent on a control signal from an algorithm implemented with a real-time DSP. The filtered-x least-mean-square (FXLMS) adaptive filter is used as a benchmark for comparison with a new implementation of the error-driven minimal controller synthesis (Er-MCSI) adaptive controller. Both algorithms are applied to an active mount fitted to a saloon car equipped with a four-cylinder turbo-diesel engine, and have no a priori knowledge of the system dynamics. The steady-state and transient performance of the two algorithms are compared and the relative merits of the two approaches are discussed. The Er-MCSI strategy offers significant computational advantages as it requires no cancellation path modelling. The Er-MCSI controller is found to perform in a fashion similar to the FXLMS filter—typically reducing chassis vibration by 50-90% under normal driving conditions.
Adaptive Inverse Hyperbolic Tangent Algorithm for Dynamic Contrast Adjustment in Displaying Scenes
NASA Astrophysics Data System (ADS)
Yu, Cheng-Yi; Ouyang, Yen-Chieh; Wang, Chuin-Mu; Chang, Chein-I.
2010-12-01
Contrast has a great influence on the quality of an image in human visual perception. A poorly illuminated environment can significantly affect the contrast ratio, producing an unexpected image. This paper proposes an Adaptive Inverse Hyperbolic Tangent (AIHT) algorithm to improve the display quality and contrast of a scene. Because digital cameras must maintain the shadow in a middle range of luminance that includes a main object such as a face, a gamma function is generally used for this purpose. However, this function has a severe weakness in that it decreases highlight contrast. To mitigate this problem, contrast enhancement algorithms have been designed to adjust contrast to tune human visual perception. The proposed AIHT determines the contrast levels of an original image as well as parameter space for different contrast types so that not only the original histogram shape features can be preserved, but also the contrast can be enhanced effectively. Experimental results show that the proposed algorithm is capable of enhancing the global contrast of the original image adaptively while extruding the details of objects simultaneously.
Application of an adaptive plan to the configuration of nonlinear image-processing algorithms
NASA Astrophysics Data System (ADS)
Chu, Chee-Hung H.
1990-07-01
The application of an adaptive plan to the design of a class of nonlinear digital image processing operators known as stack filters is presented in this paper. The adaptive plan is based on the mechanics found in genetics and natural selection. Such learning mechanisms have become known as genetic algorithms. A stack filter is characterized by the coefficients of its underlying positive Boolean function. This set of coefficients constitute a binary string, referred to as a chromosome in a genetic algorithm, that represents that particular filter configuration. A fitness value for each chromosome is computed based on the performance of the associated filter in specific tasks such as noise suppression. A population of chromosomes is maintained by the genetic algorithm, and new generations are formed by selecting mating pairs based on their fitness values. Genetic operators such as crossover or mutation are applied to the mating pairs to form offsprings. By exchanging some substrings of the two parent-chromosomes, the crossover operator can bring different blocks of genes that result in good performance together into one chromosome that yields the best performance. Empirical results show that this method is capable of configuring stack filters that are effective in impulsive noise suppression.
NASA Astrophysics Data System (ADS)
Hou, Zuoxun; Ma, Yitao; Zhu, Hongbo; Zheng, Nanning; Shibata, Tadashi
2013-04-01
A very large-scale integration (VLSI) recognition system equipped with an on-chip learning capability has been developed for real-time processing applications. This system can work in two functional modes of operation: adaptive K-means learning mode and recognition mode. In the adaptive K-means learning mode, the variance ratio criterion (VRC) has been employed to evaluate the quality of K-means classification results, and the evaluation algorithm has been implemented on the chip. As a result, it has become possible for the system to autonomously determine the optimum number of clusters (K). In the recognition mode, the nearest-neighbor search algorithm is very efficiently carried out by the fully parallel architecture employed in the chip. In both modes of operation, many hardware resources are shared and the functionality is flexibly altered by the system controller designed as a finite-state machine (FSM). The chip is implemented on Altera Cyclone II FPGA with 46K logic cells. Its operating clock is 25 MHz and the processing times for adaptive learning and recognition with 256 64-dimension feature vectors are about 0.42 ms and 4 µs, respectively. Both adaptive K-means learning and recognition functions have been verified by experiments using the image data from the COIL-100 (Columbia University Object Image Library) database.
Xue, Zhong; Shen, Dinggang; Li, Hai; Wong, Stephen
2010-01-01
The traditional fuzzy clustering algorithm and its extensions have been successfully applied in medical image segmentation. However, because of the variability of tissues and anatomical structures, the clustering results might be biased by the tissue population and intensity differences. For example, clustering-based algorithms tend to over-segment white matter tissues of MR brain images. To solve this problem, we introduce a tissue probability map constrained clustering algorithm and apply it to serial MR brain image segmentation, i.e., a series of 3-D MR brain images of the same subject at different time points. Using the new serial image segmentation algorithm in the framework of the CLASSIC framework, which iteratively segments the images and estimates the longitudinal deformations, we improved both accuracy and robustness for serial image computing, and at the mean time produced longitudinally consistent segmentation and stable measures. In the algorithm, the tissue probability maps consist of both the population-based and subject-specific segmentation priors. Experimental study using both simulated longitudinal MR brain data and the Alzheimer’s Disease Neuroimaging Initiative (ADNI) data confirmed that using both priors more accurate and robust segmentation results can be obtained. The proposed algorithm can be applied in longitudinal follow up studies of MR brain imaging with subtle morphological changes for neurological disorders. PMID:26566399
NASA Astrophysics Data System (ADS)
He, Wenda; Juette, Arne; Denton, Erica R. E.; Zwiggelaar, Reyer
2015-03-01
Breast cancer is the most frequently diagnosed cancer in women. Early detection, precise identification of women at risk, and application of appropriate disease prevention measures are by far the most effective ways to overcome the disease. Successful mammographic density segmentation is a key aspect in deriving correct tissue composition, ensuring an accurate mammographic risk assessment. However, mammographic densities have not yet been fully incorporated with non-image based risk prediction models, (e.g. the Gail and the Tyrer-Cuzick model), because of unreliable segmentation consistency and accuracy. This paper presents a novel multiresolution mammographic density segmentation, a concept of stack representation is proposed, and 3D texture features were extracted by adapting techniques based on classic 2D first-order statistics. An unsupervised clustering technique was employed to achieve mammographic segmentation, in which two improvements were made; 1) consistent segmentation by incorporating an optimal centroids initialisation step, and 2) significantly reduced the number of missegmentation by using an adaptive cluster merging technique. A set of full field digital mammograms was used in the evaluation. Visual assessment indicated substantial improvement on segmented anatomical structures and tissue specific areas, especially in low mammographic density categories. The developed method demonstrated an ability to improve the quality of mammographic segmentation via clustering, and results indicated an improvement of 26% in segmented image with good quality when compared with the standard clustering approach. This in turn can be found useful in early breast cancer detection, risk-stratified screening, and aiding radiologists in the process of decision making prior to surgery and/or treatment.
NASA Astrophysics Data System (ADS)
Zhu, Li; He, Yongxiang; Xue, Haidong; Chen, Leichen
Traditional genetic algorithms (GA) displays a disadvantage of early-constringency in dealing with scheduling problem. To improve the crossover operators and mutation operators self-adaptively, this paper proposes a self-adaptive GA at the target of multitask scheduling optimization under limited resources. The experiment results show that the proposed algorithm outperforms the traditional GA in evolutive ability to deal with complex task scheduling optimization.
Falcon: neural fuzzy control and decision systems using FKP and PFKP clustering algorithms.
Tung, W L; Quek, C
2004-02-01
Neural fuzzy networks proposed in the literature can be broadly classified into two groups. The first group is essentially fuzzy systems with self-tuning capabilities and requires an initial rule base to be specified prior to training. The second group of neural fuzzy networks, on the other hand, is able to automatically formulate the fuzzy rules from the numerical training data. Examples are the Falcon-ART, and the POPFNN family of networks. A cluster analysis is first performed on the training data and the fuzzy rules are subsequently derived through the proper connections of these computed clusters. This correspondence proposes two new networks: Falcon-FKP and Falcon-PFKP. They are extensions of the Falcon-ART network, and aimed to overcome the shortcomings faced by the Falcon-ART network itself, i.e., poor classification ability when the classes of input data are very similar to each other, termination of training cycle depends heavily on a preset error parameter, the fuzzy rule base of the Falcon-ART network may not be consistent Nauck, there is no control over the number of fuzzy rules generated, and learning efficiency may deteriorate by using complementarily coded training data. These deficiencies are essentially inherent to the fuzzy ART, clustering technique employed by the Falcon-ART network. Hence, two clustering techniques--Fuzzy Kohonen Partitioning (FKP) and its pseudo variant PFKP, are synthesized with the basic Falcon structure to compute the fuzzy sets and to automatically derive the fuzzy rules from the training data. The resultant neural fuzzy networks are Falcon-FKP and Falcon-PFKP, respectively. These two proposed networks have a lean and efficient training algorithm and consistent fuzzy rule bases. Extensive simulations are conducted using the two networks and their performances are encouraging when benchmarked against other neural and neural fuzzy systems. PMID:15369109
`Inter-Arrival Time' Inspired Algorithm and its Application in Clustering and Molecular Phylogeny
NASA Astrophysics Data System (ADS)
Kolekar, Pandurang S.; Kale, Mohan M.; Kulkarni-Kale, Urmila
2010-10-01
Bioinformatics, being multidisciplinary field, involves applications of various methods from allied areas of Science for data mining using computational approaches. Clustering and molecular phylogeny is one of the key areas in Bioinformatics, which help in study of classification and evolution of organisms. Molecular phylogeny algorithms can be divided into distance based and character based methods. But most of these methods are dependent on pre-alignment of sequences and become computationally intensive with increase in size of data and hence demand alternative efficient approaches. `Inter arrival time distribution' (IATD) is a popular concept in the theory of stochastic system modeling but its potential in molecular data analysis has not been fully explored. The present study reports application of IATD in Bioinformatics for clustering and molecular phylogeny. The proposed method provides IATDs of nucleotides in genomic sequences. The distance function based on statistical parameters of IATDs is proposed and distance matrix thus obtained is used for the purpose of clustering and molecular phylogeny. The method is applied on a dataset of 3' non-coding region sequences (NCR) of Dengue virus type 3 (DENV-3), subtype III, reported in 2008. The phylogram thus obtained revealed the geographical distribution of DENV-3 isolates. Sri Lankan DENV-3 isolates were further observed to be clustered in two sub-clades corresponding to pre and post Dengue hemorrhagic fever emergence groups. These results are consistent with those reported earlier, which are obtained using pre-aligned sequence data as an input. These findings encourage applications of the IATD based method in molecular phylogenetic analysis in particular and data mining in general.
An adaptive multi-level simulation algorithm for stochastic biological systems
NASA Astrophysics Data System (ADS)
Lester, C.; Yates, C. A.; Giles, M. B.; Baker, R. E.
2015-01-01
Discrete-state, continuous-time Markov models are widely used in the modeling of biochemical reaction networks. Their complexity often precludes analytic solution, and we rely on stochastic simulation algorithms (SSA) to estimate system statistics. The Gillespie algorithm is exact, but computationally costly as it simulates every single reaction. As such, approximate stochastic simulation algorithms such as the tau-leap algorithm are often used. Potentially computationally more efficient, the system statistics generated suffer from significant bias unless tau is relatively small, in which case the computational time can be comparable to that of the Gillespie algorithm. The multi-level method [Anderson and Higham, "Multi-level Monte Carlo for continuous time Markov chains, with applications in biochemical kinetics," SIAM Multiscale Model. Simul. 10(1), 146-179 (2012)] tackles this problem. A base estimator is computed using many (cheap) sample paths at low accuracy. The bias inherent in this estimator is then reduced using a number of corrections. Each correction term is estimated using a collection of paired sample paths where one path of each pair is generated at a higher accuracy compared to the other (and so more expensive). By sharing random variables between these paired paths, the variance of each correction estimator can be reduced. This renders the multi-level method very efficient as only a relatively small number of paired paths are required to calculate each correction term. In the original multi-level method, each sample path is simulated using the tau-leap algorithm with a fixed value of τ. This approach can result in poor performance when the reaction activity of a system changes substantially over the timescale of interest. By introducing a novel adaptive time-stepping approach where τ is chosen according to the stochastic behaviour of each sample path, we extend the applicability of the multi-level method to such cases. We demonstrate the
An adaptive multi-level simulation algorithm for stochastic biological systems
Lester, C. Giles, M. B.; Baker, R. E.; Yates, C. A.
2015-01-14
Discrete-state, continuous-time Markov models are widely used in the modeling of biochemical reaction networks. Their complexity often precludes analytic solution, and we rely on stochastic simulation algorithms (SSA) to estimate system statistics. The Gillespie algorithm is exact, but computationally costly as it simulates every single reaction. As such, approximate stochastic simulation algorithms such as the tau-leap algorithm are often used. Potentially computationally more efficient, the system statistics generated suffer from significant bias unless tau is relatively small, in which case the computational time can be comparable to that of the Gillespie algorithm. The multi-level method [Anderson and Higham, “Multi-level Monte Carlo for continuous time Markov chains, with applications in biochemical kinetics,” SIAM Multiscale Model. Simul. 10(1), 146–179 (2012)] tackles this problem. A base estimator is computed using many (cheap) sample paths at low accuracy. The bias inherent in this estimator is then reduced using a number of corrections. Each correction term is estimated using a collection of paired sample paths where one path of each pair is generated at a higher accuracy compared to the other (and so more expensive). By sharing random variables between these paired paths, the variance of each correction estimator can be reduced. This renders the multi-level method very efficient as only a relatively small number of paired paths are required to calculate each correction term. In the original multi-level method, each sample path is simulated using the tau-leap algorithm with a fixed value of τ. This approach can result in poor performance when the reaction activity of a system changes substantially over the timescale of interest. By introducing a novel adaptive time-stepping approach where τ is chosen according to the stochastic behaviour of each sample path, we extend the applicability of the multi-level method to such cases. We demonstrate the
Adaptation of a Fast Optimal Interpolation Algorithm to the Mapping of Oceangraphic Data
NASA Technical Reports Server (NTRS)
Menemenlis, Dimitris; Fieguth, Paul; Wunsch, Carl; Willsky, Alan
1997-01-01
A fast, recently developed, multiscale optimal interpolation algorithm has been adapted to the mapping of hydrographic and other oceanographic data. This algorithm produces solution and error estimates which are consistent with those obtained from exact least squares methods, but at a small fraction of the computational cost. Problems whose solution would be completely impractical using exact least squares, that is, problems with tens or hundreds of thousands of measurements and estimation grid points, can easily be solved on a small workstation using the multiscale algorithm. In contrast to methods previously proposed for solving large least squares problems, our approach provides estimation error statistics while permitting long-range correlations, using all measurements, and permitting arbitrary measurement locations. The multiscale algorithm itself, published elsewhere, is not the focus of this paper. However, the algorithm requires statistical models having a very particular multiscale structure; it is the development of a class of multiscale statistical models, appropriate for oceanographic mapping problems, with which we concern ourselves in this paper. The approach is illustrated by mapping temperature in the northeastern Pacific. The number of hydrographic stations is kept deliberately small to show that multiscale and exact least squares results are comparable. A portion of the data were not used in the analysis; these data serve to test the multiscale estimates. A major advantage of the present approach is the ability to repeat the estimation procedure a large number of times for sensitivity studies, parameter estimation, and model testing. We have made available by anonymous Ftp a set of MATLAB-callable routines which implement the multiscale algorithm and the statistical models developed in this paper.
Zou, Weiyao; Burns, Stephen A.
2012-01-01
A Lagrange multiplier-based damped least-squares control algorithm for woofer-tweeter (W-T) dual deformable-mirror (DM) adaptive optics (AO) is tested with a breadboard system. We show that the algorithm can complementarily command the two DMs to correct wavefront aberrations within a single optimization process: the woofer DM correcting the high-stroke, low-order aberrations, and the tweeter DM correcting the low-stroke, high-order aberrations. The optimal damping factor for a DM is found to be the median of the eigenvalue spectrum of the influence matrix of that DM. Wavefront control accuracy is maximized with the optimized control parameters. For the breadboard system, the residual wavefront error can be controlled to the precision of 0.03 μm in root mean square. The W-T dual-DM AO has applications in both ophthalmology and astronomy. PMID:22441462
RZA-NLMF algorithm-based adaptive sparse sensing for realizing compressive sensing
NASA Astrophysics Data System (ADS)
Gui, Guan; Xu, Li; Adachi, Fumiyuki
2014-12-01
Nonlinear sparse sensing (NSS) techniques have been adopted for realizing compressive sensing in many applications such as radar imaging. Unlike the NSS, in this paper, we propose an adaptive sparse sensing (ASS) approach using the reweighted zero-attracting normalized least mean fourth (RZA-NLMF) algorithm which depends on several given parameters, i.e., reweighted factor, regularization parameter, and initial step size. First, based on the independent assumption, Cramer-Rao lower bound (CRLB) is derived as for the performance comparisons. In addition, reweighted factor selection method is proposed for achieving robust estimation performance. Finally, to verify the algorithm, Monte Carlo-based computer simulations are given to show that the ASS achieves much better mean square error (MSE) performance than the NSS.
A parallel dynamic load balancing algorithm for 3-D adaptive unstructured grids
NASA Technical Reports Server (NTRS)
Vidwans, A.; Kallinderis, Y.; Venkatakrishnan, V.
1993-01-01
Adaptive local grid refinement and coarsening results in unequal distribution of workload among the processors of a parallel system. A novel method for balancing the load in cases of dynamically changing tetrahedral grids is developed. The approach employs local exchange of cells among processors in order to redistribute the load equally. An important part of the load balancing algorithm is the method employed by a processor to determine which cells within its subdomain are to be exchanged. Two such methods are presented and compared. The strategy for load balancing is based on the Divide-and-Conquer approach which leads to an efficient parallel algorithm. This method is implemented on a distributed-memory MIMD system.
Comparison of Control Algorithms for a MEMS-based Adaptive Optics Scanning Laser Ophthalmoscope
Li, Kaccie Y.; Mishra, Sandipan; Tiruveedhula, Pavan; Roorda, Austin
2010-01-01
We compared four algorithms for controlling a MEMS deformable mirror of an adaptive optics (AO) scanning laser ophthalmoscope. Interferometer measurements of the static nonlinear response of the deformable mirror were used to form an equivalent linear model of the AO system so that the classic integrator plus wavefront reconstructor type controller can be implemented. The algorithms differ only in the design of the wavefront reconstructor. The comparisons were made for two eyes (two individuals) via a series of imaging sessions. All four controllers performed similarly according to estimated residual wavefront error not reflecting the actual image quality observed. A metric based on mean image intensity did consistently reflect the qualitative observations of retinal image quality. Based on this metric, the controller most effective for suppressing the least significant modes of the deformable mirror performed the best. PMID:20454552
Rainfall Estimation over the Nile Basin using an Adapted Version of the SCaMPR Algorithm
NASA Astrophysics Data System (ADS)
Habib, E. H.; Kuligowski, R. J.; Elshamy, M. E.; Ali, M. A.; Haile, A.; Amin, D.; Eldin, A.
2011-12-01
Management of Egypt's Aswan High Dam is critical not only for flood control on the Nile but also for ensuring adequate water supplies for most of Egypt since rainfall is scarce over the vast majority of its land area. However, reservoir inflow is driven by rainfall over Sudan, Ethiopia, Uganda, and several other countries from which routine rain gauge data are sparse. Satellite-derived estimates of rainfall offer a much more detailed and timely set of data to form a basis for decisions on the operation of the dam. A single-channel infrared algorithm is currently in operational use at the Egyptian Nile Forecast Center (NFC). This study reports on the adaptation of a multi-spectral, multi-instrument satellite rainfall estimation algorithm (Self-Calibrating Multivariate Precipitation Retrieval, SCaMPR) for operational application over the Nile Basin. The algorithm uses a set of rainfall predictors from multi-spectral Infrared cloud top observations and self-calibrates them to a set of predictands from Microwave (MW) rain rate estimates. For application over the Nile Basin, the SCaMPR algorithm uses multiple satellite IR channels recently available to NFC from the Spinning Enhanced Visible and Infrared Imager (SEVIRI). Microwave rain rates are acquired from multiple sources such as SSM/I, SSMIS, AMSU, AMSR-E, and TMI. The algorithm has two main steps: rain/no-rain separation using discriminant analysis, and rain rate estimation using stepwise linear regression. We test two modes of algorithm calibration: real-time calibration with continuous updates of coefficients with newly coming MW rain rates, and calibration using static coefficients that are derived from IR-MW data from past observations. We also compare the SCaMPR algorithm to other global-scale satellite rainfall algorithms (e.g., 'Tropical Rainfall Measuring Mission (TRMM) and other sources' (TRMM-3B42) product, and the National Oceanographic and Atmospheric Administration Climate Prediction Center (NOAA
NASA Astrophysics Data System (ADS)
Nakariyakul, Songyot; Casasent, David
2006-10-01
Detection of skin tumors on chicken carcasses is considered. A chicken skin tumor consists of an ulcerous lesion region surrounded by a region of thickened-skin. We use a new adaptive branch-and-bound (ABB) feature selection algorithm to choose only a few useful wavebands from hyperspectral data for use in a real-time multispectral camera. The ABB algorithm selects an optimal feature subset and is shown to be much faster than any other versions of the branch and bound algorithm. We found that the spectral responses of the lesion and the thickened-skin regions of tumors are considerably different; thus we train our feature selection algorithm to separately detect the lesion regions and thickened-skin regions of tumors. We then fuse the two HS detection results of lesion and thickened-skin regions to reduce false alarms. Initial results on six hyperspectral cubes show that our method gives an excellent tumor detection rate and a low false alarm rate.
An Adaptive Reputation-Based Algorithm for Grid Virtual Organization Formation
NASA Astrophysics Data System (ADS)
Cui, Yongrui; Li, Mingchu; Ren, Yizhi; Sakurai, Kouichi
A novel adaptive reputation-based virtual organization formation is proposed. It restrains the bad performers effectively based on the consideration of the global experience of the evaluator and evaluates the direct trust relation between two grid nodes accurately by consulting the previous trust value rationally. It also consults and improves the reputation evaluation process in PathTrust model by taking account of the inter-organizational trust relationship and combines it with direct and recommended trust in a weighted way, which makes the algorithm more robust against collusion attacks. Additionally, the proposed algorithm considers the perspective of the VO creator and takes required VO services as one of the most important fine-grained evaluation criterion, which makes the algorithm more suitable for constructing VOs in grid environments that include autonomous organizations. Simulation results show that our algorithm restrains the bad performers and resists against fake transaction attacks and badmouth attacks effectively. It provides a clear advantage in the design of a VO infrastructure.
Metabolic flux estimation--a self-adaptive evolutionary algorithm with singular value decomposition.
Yang, Jing; Wongsa, Sarawan; Kadirkamanathan, Visakan; Billings, Stephen A; Wright, Phillip C
2007-01-01
Metabolic flux analysis is important for metabolic system regulation and intracellular pathway identification. A popular approach for intracellular flux estimation involves using 13C tracer experiments to label states that can be measured by nuclear magnetic resonance spectrometry or gas chromatography mass spectrometry. However, the bilinear balance equations derived from 13C tracer experiments and the noisy measurements require a nonlinear optimization approach to obtain the optimal solution. In this paper, the flux quantification problem is formulated as an error-minimization problem with equality and inequality constraints through the 13C balance and stoichiometric equations. The stoichiometric constraints are transformed to a null space by singular value decomposition. Self-adaptive evolutionary algorithms are then introduced for flux quantification. The performance of the evolutionary algorithm is compared with ordinary least squares estimation by the simulation of the central pentose phosphate pathway. The proposed algorithm is also applied to the central metabolism of Corynebacterium glutamicum under lysine-producing conditions. A comparison between the results from the proposed algorithm and data from the literature is given. The complexity of a metabolic system with bidirectional reactions is also investigated by analyzing the fluctuations in the flux estimates when available measurements are varied. PMID:17277420
NASA Technical Reports Server (NTRS)
Blissit, J. A.
1986-01-01
Using analysis results from the post trajectory optimization program, an adaptive guidance algorithm is developed to compensate for density, aerodynamic and thrust perturbations during an atmospheric orbital plane change maneuver. The maneuver offers increased mission flexibility along with potential fuel savings for future reentry vehicles. Although designed to guide a proposed NASA Entry Research Vehicle, the algorithm is sufficiently generic for a range of future entry vehicles. The plane change analysis provides insight suggesting a straight-forward algorithm based on an optimized nominal command profile. Bank angle, angle of attack, and engine thrust level, ignition and cutoff times are modulated to adjust the vehicle's trajectory to achieve the desired end-conditions. A performance evaluation of the scheme demonstrates a capability to guide to within 0.05 degrees of the desired plane change and five nautical miles of the desired apogee altitude while maintaining heating constraints. The algorithm is tested under off-nominal conditions of + or -30% density biases, two density profile models, + or -15% aerodynamic uncertainty, and a 33% thrust loss and for various combinations of these conditions.
NASA Technical Reports Server (NTRS)
Matthews, Bryan L.; Srivastava, Ashok N.
2010-01-01
Prior to the launch of STS-119 NASA had completed a study of an issue in the flow control valve (FCV) in the Main Propulsion System of the Space Shuttle using an adaptive learning method known as Virtual Sensors. Virtual Sensors are a class of algorithms that estimate the value of a time series given other potentially nonlinearly correlated sensor readings. In the case presented here, the Virtual Sensors algorithm is based on an ensemble learning approach and takes sensor readings and control signals as input to estimate the pressure in a subsystem of the Main Propulsion System. Our results indicate that this method can detect faults in the FCV at the time when they occur. We use the standard deviation of the predictions of the ensemble as a measure of uncertainty in the estimate. This uncertainty estimate was crucial to understanding the nature and magnitude of transient characteristics during startup of the engine. This paper overviews the Virtual Sensors algorithm and discusses results on a comprehensive set of Shuttle missions and also discusses the architecture necessary for deploying such algorithms in a real-time, closed-loop system or a human-in-the-loop monitoring system. These results were presented at a Flight Readiness Review of the Space Shuttle in early 2009.
A baseline correction algorithm for Raman spectroscopy by adaptive knots B-spline
NASA Astrophysics Data System (ADS)
Wang, Xin; Fan, Xian-guang; Xu, Ying-jie; Wang, Xiu-fen; He, Hao; Zuo, Yong
2015-11-01
The Raman spectroscopy technique is a powerful and non-invasive technique for molecular fingerprint detection which has been widely used in many areas, such as food safety, drug safety, and environmental testing. But Raman signals can be easily corrupted by a fluorescent background, therefore we presented a baseline correction algorithm to suppress the fluorescent background in this paper. In this algorithm, the background of the Raman signal was suppressed by fitting a curve called a baseline using a cyclic approximation method. Instead of the traditional polynomial fitting, we used the B-spline as the fitting algorithm due to its advantages of low-order and smoothness, which can avoid under-fitting and over-fitting effectively. In addition, we also presented an automatic adaptive knot generation method to replace traditional uniform knots. This algorithm can obtain the desired performance for most Raman spectra with varying baselines without any user input or preprocessing step. In the simulation, three kinds of fluorescent background lines were introduced to test the effectiveness of the proposed method. We showed that two real Raman spectra (parathion-methyl and colza oil) can be detected and their baselines were also corrected by the proposed method.
Despeckling algorithm on ultrasonic image using adaptive block-based singular value decomposition
NASA Astrophysics Data System (ADS)
Sae-Bae, Napa; Udomhunsakul, Somkait
2008-03-01
Speckle noise reduction is an important technique to enhance the quality of ultrasonic image. In this paper, a despeckling algorithm based on an adaptive block-based singular value decomposition filtering (BSVD) applied on ultrasonic images is presented. Instead of applying BSVD directly to ultrasonic image, we propose to apply BSVD on the noisy edge image version obtained from the difference between the logarithmic transformations of the original image and blur image version of its. The recovered image is performed by combining the speckle noise-free edge image with blur image version of its. Finally, exponential transformation is applied in order to get the reconstructed image. To evaluate our algorithm compared with well-know algorithms such as Lee filter, Kuan filter, Homomorphic Wiener filter, median filter and wavelet soft thresholding, four image quality measurements, which are Mean Square Error (MSE), Signal to MSE (S/MSE), Edge preservation (β), and Correlation measurement (ρ), are used. From the results, it clearly shows that the proposed algorithm outperforms other methods in terms of quantitative and subjective assessments.
Chen, Ying-ping; Chen, Chao-Hong
2010-01-01
An adaptive discretization method, called split-on-demand (SoD), enables estimation of distribution algorithms (EDAs) for discrete variables to solve continuous optimization problems. SoD randomly splits a continuous interval if the number of search points within the interval exceeds a threshold, which is decreased at every iteration. After the split operation, the nonempty intervals are assigned integer codes, and the search points are discretized accordingly. As an example of using SoD with EDAs, the integration of SoD and the extended compact genetic algorithm (ECGA) is presented and numerically examined. In this integration, we adopt a local search mechanism as an optional component of our back end optimization engine. As a result, the proposed framework can be considered as a memetic algorithm, and SoD can potentially be applied to other memetic algorithms. The numerical experiments consist of two parts: (1) a set of benchmark functions on which ECGA with SoD and ECGA with two well-known discretization methods: the fixed-height histogram (FHH) and the fixed-width histogram (FWH) are compared; (2) a real-world application, the economic dispatch problem, on which ECGA with SoD is compared to other methods. The experimental results indicate that SoD is a better discretization method to work with ECGA. Moreover, ECGA with SoD works quite well on the economic dispatch problem and delivers solutions better than the best known results obtained by other methods in existence. PMID:20210600
NASA Astrophysics Data System (ADS)
Fujii, Kensaku; Aoki, Ryo; Muneyasu, Mitsuji
This paper proposes an adaptive algorithm for identifying unknown systems containing nonlinear amplitude characteristics. Usually, the nonlinearity is so small as to be negligible. However, in low cost systems, such as acoustic echo canceller using a small loudspeaker, the nonlinearity deteriorates the performance of the identification. Several methods preventing the deterioration, polynomial or Volterra series approximations, have been hence proposed and studied. However, the conventional methods require high processing cost. In this paper, we propose a method approximating the nonlinear characteristics with a piecewise linear curve and show using computer simulations that the performance can be extremely improved. The proposed method can also reduce the processing cost to only about twice that of the linear adaptive filter system.
Pollack, L K; Max, C E; Schneider, G
2007-02-12
We discuss images of the central {approx} 10 kpc (in projection) of the galaxy merger NGC 6240 at H and K{prime} bands, taken with the NIRC2 narrow camera on Keck II using natural guide star adaptive optics. We detect 28 star clusters in the NIRC2 images, of which only 7 can be seen in the similar-spatial-resolution, archival WFPC2 Planetary Camera data at either B or I bands. Combining the NIRC2 narrow camera pointings with wider NICMOS NIC2 images taken with the F110W, F160W, and F222M filters, we identify a total of 32 clusters that are detected in at least one of these 5 infrared ({lambda}{sub c} > 1 {micro}m) bandpasses. By comparing to instantaneous burst, stellar population synthesis models (Bruzual & Charlot 2003), we estimate that most of the clusters are consistent with being {approx} 15 Myr old and have photometric masses ranging from 7 x 10{sup 5} M{sub {circle_dot}} to 4 x 10{sup 7}M{sub {circle_dot}}. The total contribution to the star formation rate (SFR) from these clusters is approximately 10M{sub {circle_dot}} yr{sup -1}, or {approx} 10% of the total SFR in the nuclear region. We use these newly discovered clusters to estimate the extinction toward NGC 6240's double nuclei, and find values of A{sub v} as high as 14 magnitudes along some sightlines, with an average extinction of A{sub v} {approx} 7 mag toward sightlines within {approx} 3-inches of the double nuclei.
Infrared gas detection based on an adaptive Savitzky-Golay algorithm
NASA Astrophysics Data System (ADS)
Deng, Hao; Li, Jingsong; Li, Pengfei; Liu, Yu; Yu, Benli
2015-08-01
We have developed a simple but robust method based on the Savitzky-Golay filter for real-time processing tunable diode laser absorption spectroscopy (TDLAS) signal. Our method was developed to resolve the blindness of selecting the input filter parameters and potential signal distortion induced in digital signal processing. By applying the developed adaptive Savitzky-Golay filter algorithm to the simulated and experimentally observed signal and comparing with the wavelet-based de-noising technique, the results indicate that the new developed method is effective in obtaining high-quality TDLAS data for a wide variety of applications including atmospheric environmental monitoring and industrial processing control.
NASA Astrophysics Data System (ADS)
Zhao, Sheng; Su, Xiuping; Wu, Ziran; Xu, Chengwen
The paper illustrates the procedure of reliability optimization modeling for contact springs of AC contactors under nonlinear multi-constraint conditions. The adaptive genetic algorithm (AGA) is utilized to perform reliability optimization on the contact spring parameters of a type of AC contactor. A method that changes crossover and mutation rates at different times in the AGA can effectively avoid premature convergence, and experimental tests are performed after optimization. The experimental result shows that the mass of each optimized spring is reduced by 16.2%, while the reliability increases to 99.9% from 94.5%. The experimental result verifies the correctness and feasibility of this reliability optimization designing method.
Wavefront control algorithms and analysis for a dense adaptive optics system
Milman, M.; Fijany, A.; Redding, D.
1994-12-31
This paper presents the development and analysis of a wavefront control strategy for the Space Laser Electric Energy (SELENE) power being system. SELENE represents a substantial departure from most conventional adaptive optics systems in that the deformable element is the segmented primary mirror and the signal that is fed back includes both the local wavefront tilt and the relative edge mismatch between adjacent segments. The major challenge in designing the wavefront control system is the large number of subapertures that must be commanded. A fast and near optimal algorithm based on the local slope and edge measurements is defined for this system.
Experimental Evaluation of a Braille-Reading-Inspired Finger Motion Adaptive Algorithm
2016-01-01
Braille reading is a complex process involving intricate finger-motion patterns and finger-rubbing actions across Braille letters for the stimulation of appropriate nerves. Although Braille reading is performed by smoothly moving the finger from left-to-right, research shows that even fluent reading requires right-to-left movements of the finger, known as “reversal”. Reversals are crucial as they not only enhance stimulation of nerves for correctly reading the letters, but they also show one to re-read the letters that were missed in the first pass. Moreover, it is known that reversals can be performed as often as in every sentence and can start at any location in a sentence. Here, we report experimental results on the feasibility of an algorithm that can render a machine to automatically adapt to reversal gestures of one’s finger. Through Braille-reading-analogous tasks, the algorithm is tested with thirty sighted subjects that volunteered in the study. We find that the finger motion adaptive algorithm (FMAA) is useful in achieving cooperation between human finger and the machine. In the presence of FMAA, subjects’ performance metrics associated with the tasks have significantly improved as supported by statistical analysis. In light of these encouraging results, preliminary experiments are carried out with five blind subjects with the aim to put the algorithm to test. Results obtained from carefully designed experiments showed that subjects’ Braille reading accuracy in the presence of FMAA was more favorable then when FMAA was turned off. Utilization of FMAA in future generation Braille reading devices thus holds strong promise. PMID:26849058
Ahmad, Amir
2016-01-01
The early diagnosis of breast cancer is an important step in a fight against the disease. Machine learning techniques have shown promise in improving our understanding of the disease. As medical datasets consist of data points which cannot be precisely assigned to a class, fuzzy methods have been useful for studying of these datasets. Sometimes breast cancer datasets are described by categorical features. Many fuzzy clustering algorithms have been developed for categorical datasets. However, in most of these methods Hamming distance is used to define the distance between the two categorical feature values. In this paper, we use a probabilistic distance measure for the distance computation among a pair of categorical feature values. Experiments demonstrate that the distance measure performs better than Hamming distance for Wisconsin breast cancer data. PMID:27022504
OpenACC programs of the Swendsen-Wang multi-cluster spin flip algorithm
NASA Astrophysics Data System (ADS)
Komura, Yukihiro
2015-12-01
We present sample OpenACC programs of the Swendsen-Wang multi-cluster spin flip algorithm. OpenACC is a directive-based programming model for accelerators without requiring modification to the underlying CPU code itself. In this paper, we deal with the classical spin models as with the sample CUDA programs (Komura and Okabe, 2014), that is, two-dimensional (2D) Ising model, three-dimensional (3D) Ising model, 2D Potts model, 3D Potts model, 2D XY model and 3D XY model. We explain the details of sample OpenACC programs and compare the performance of the present OpenACC implementations with that of the CUDA implementations for the 2D and 3D Ising models and the 2D and 3D XY models.
NASA Astrophysics Data System (ADS)
He, Tao; Sun, Yu-Jun; Xu, Ji-De; Wang, Xue-Jun; Hu, Chang-Ru
2014-01-01
Land use/cover (LUC) classification plays an important role in remote sensing and land change science. Because of the complexity of ground covers, LUC classification is still regarded as a difficult task. This study proposed a fusion algorithm, which uses support vector machines (SVM) and fuzzy k-means (FKM) clustering algorithms. The main scheme was divided into two steps. First, a clustering map was obtained from the original remote sensing image using FKM; simultaneously, a normalized difference vegetation index layer was extracted from the original image. Then, the classification map was generated by using an SVM classifier. Three different classification algorithms were compared, tested, and verified-parametric (maximum likelihood), nonparametric (SVM), and hybrid (unsupervised-supervised, fusion of SVM and FKM) classifiers, respectively. The proposed algorithm obtained the highest overall accuracy in our experiments.
Kanters, René P F; Donald, Kelling J
2014-12-01
A new flexible implementation of a genetic algorithm for locating unique low energy minima of isomers of clusters is described and tested. The strategy employed can be applied to molecular or atomic clusters and has a flexible input structure so that a system with several different elements can be built up from a set of individual atoms or from fragments made up of groups of atoms. This cluster program is tested on several systems, and the results are compared to computational and experimental data from previous studies. The quality of the algorithm for locating reliably the most competitive low energy structures of an assembly of atoms is examined for strongly bound Si-Li clusters, and ZnF2 clusters, and the more weakly interacting water trimers. The use of the nuclear repulsion energy as a duplication criterion, an increasing population size, and avoiding mutation steps without loss of efficacy are distinguishing features of the program. For the Si-Li clusters, a few new low energy minima are identified in the testing of the algorithm, and our results for the metal fluorides and water show very good agreement with the literature. PMID:26583254
Camley, Brian A.; Zimmermann, Juliane; Levine, Herbert; Rappel, Wouter-Jan
2016-01-01
Single eukaryotic cells commonly sense and follow chemical gradients, performing chemotaxis. Recent experiments and theories, however, show that even when single cells do not chemotax, clusters of cells may, if their interactions are regulated by the chemoattractant. We study this general mechanism of “collective guidance” computationally with models that integrate stochastic dynamics for individual cells with biochemical reactions within the cells, and diffusion of chemical signals between the cells. We show that if clusters of cells use the well-known local excitation, global inhibition (LEGI) mechanism to sense chemoattractant gradients, the speed of the cell cluster becomes non-monotonic in the cluster’s size—clusters either larger or smaller than an optimal size will have lower speed. We argue that the cell cluster speed is a crucial readout of how the cluster processes chemotactic signals; both amplification and adaptation will alter the behavior of cluster speed as a function of size. We also show that, contrary to the assumptions of earlier theories, collective guidance does not require persistent cell-cell contacts and strong short range adhesion. If cell-cell adhesion is absent, and the cluster cohesion is instead provided by a co-attraction mechanism, e.g. chemotaxis toward a secreted molecule, collective guidance may still function. However, new behaviors, such as cluster rotation, may also appear in this case. Co-attraction and adaptation allow for collective guidance that is robust to varying chemoattractant concentrations while not requiring strong cell-cell adhesion. PMID:27367541
NASA Astrophysics Data System (ADS)
Bagheripour, Parisa; Asoodeh, Mojtaba
2013-12-01
Porosity, the void portion of reservoir rocks, determines the volume of hydrocarbon accumulation and has a great control on assessment and development of hydrocarbon reservoirs. Accurate determination of porosity from core analysis is highly cost, time, and labor intensive. Therefore, the mission of finding an accurate, fast and cheap way of determining porosity is unavoidable. On the other hand, conventional well log data, available in almost all wells contain invaluable implicit information about the porosity. Therefore, an intelligent system can explicate this information. Fuzzy logic is a powerful tool for handling geosciences problem which is associated with uncertainty. However, determination of the best fuzzy formulation is still an issue. This study purposes an improved strategy, called hybrid genetic algorithm-pattern search (GA-PS) technique, against the widely held subtractive clustering (SC) method for setting up fuzzy rules between core porosity and petrophysical logs. Hybrid GA-PS technique is capable of extracting optimal parameters for fuzzy clusters (membership functions) which consequently results in the best fuzzy formulation. Results indicate that GA-PS technique manipulates both mean and variance of Gaussian membership functions contrary to SC that only has a control on mean of Gaussian membership functions. A comparison between hybrid GA-PS technique and SC method confirmed the superiority of GA-PS technique in setting up fuzzy rules. The proposed strategy was successfully applied to one of the Iranian carbonate reservoir rocks.
Silva, Mateus X; Galvão, Breno R L; Belchior, Jadson C
2014-05-21
Genetic algorithm is employed to survey an empirical potential energy surface for small Na(x)K(y) clusters with x + y ≤ 15, providing initial conditions for electronic structure methods. The minima of such empirical potential are assessed and corrected using high level ab initio methods such as CCSD(T), CR-CCSD(T)-L and MP2, and benchmark results are obtained for specific cases. The results are the first calculations for such small alloy clusters and may serve as a reference for further studies. The validity and choice of a proper functional and basis set for DFT calculations are then explored using the benchmark data, where it was found that the usual DFT approach may fail to provide the correct qualitative result for specific systems. The best general agreement to the benchmark calculations is achieved with def2-TZVPP basis set with SVWN5 functional, although the LANL2DZ basis set (with effective core potential) and SVWN5 functional provided the most cost-effective results. PMID:24691391
Finn, Roderick Nigel; Chauvigné, François; Hlidberg, Jón Baldur; Cutler, Christopher P.; Cerdà, Joan
2014-01-01
A major physiological barrier for aquatic organisms adapting to terrestrial life is dessication in the aerial environment. This barrier was nevertheless overcome by the Devonian ancestors of extant Tetrapoda, but the origin of specific molecular mechanisms that solved this water problem remains largely unknown. Here we show that an ancient aquaporin gene cluster evolved specifically in the sarcopterygian lineage, and subsequently diverged into paralogous forms of AQP2, -5, or -6 to mediate water conservation in extant Tetrapoda. To determine the origin of these apomorphic genomic traits, we combined aquaporin sequencing from jawless and jawed vertebrates with broad taxon assembly of >2,000 transcripts amongst 131 deuterostome genomes and developed a model based upon Bayesian inference that traces their convergent roots to stem subfamilies in basal Metazoa and Prokaryota. This approach uncovered an unexpected diversity of aquaporins in every lineage investigated, and revealed that the vertebrate superfamily consists of 17 classes of aquaporins (Aqp0 - Aqp16). The oldest orthologs associated with water conservation in modern Tetrapoda are traced to a cluster of three aqp2-like genes in Actinistia that likely arose >500 Ma through duplication of an aqp0-like gene present in a jawless ancestor. In sea lamprey, we show that aqp0 first arose in a protocluster comprised of a novel aqp14 paralog and a fused aqp01 gene. To corroborate these findings, we conducted phylogenetic analyses of five syntenic nuclear receptor subfamilies, which, together with observations of extensive genome rearrangements, support the coincident loss of ancestral aqp2-like orthologs in Actinopterygii. We thus conclude that the divergence of sarcopterygian-specific aquaporin gene clusters was permissive for the evolution of water conservation mechanisms that facilitated tetrapod terrestrial adaptation. PMID:25426855
An Adaptive Defect Weighted Sampling Algorithm to Design Pseudoknotted RNA Secondary Structures.
Zandi, Kasra; Butler, Gregory; Kharma, Nawwaf
2016-01-01
Computational design of RNA sequences that fold into targeted secondary structures has many applications in biomedicine, nanotechnology and synthetic biology. An RNA molecule is made of different types of secondary structure elements and an important RNA element named pseudoknot plays a key role in stabilizing the functional form of the molecule. However, due to the computational complexities associated with characterizing pseudoknotted RNA structures, most of the existing RNA sequence designer algorithms generally ignore this important structural element and therefore limit their applications. In this paper we present a new algorithm to design RNA sequences for pseudoknotted secondary structures. We use NUPACK as the folding algorithm to compute the equilibrium characteristics of the pseudoknotted RNAs, and describe a new adaptive defect weighted sampling algorithm named Enzymer to design low ensemble defect RNA sequences for targeted secondary structures including pseudoknots. We used a biological data set of 201 pseudoknotted structures from the Pseudobase library to benchmark the performance of our algorithm. We compared the quality characteristics of the RNA sequences we designed by Enzymer with the results obtained from the state of the art MODENA and antaRNA. Our results show our method succeeds more frequently than MODENA and antaRNA do, and generates sequences that have lower ensemble defect, lower probability defect and higher thermostability. Finally by using Enzymer and by constraining the design to a naturally occurring and highly conserved Hammerhead motif, we designed 8 sequences for a pseudoknotted cis-acting Hammerhead ribozyme. Enzymer is available for download at https://bitbucket.org/casraz/enzymer. PMID:27499762
How can computerized interpretation algorithms adapt to gender/age differences in ECG measurements?
Xue, Joel; Farrell, Robert M
2014-01-01
It is well known that there are gender differences in 12 lead ECG measurements, some of which can be statistically significant. It is also an accepted practice that we should consider those differences when we interpret ECGs, by either a human overreader or a computerized algorithm. There are some major gender differences in 12 lead ECG measurements based on automatic algorithms, including global measurements such as heart rate, QRS duration, QT interval, and lead-by-lead measurements like QRS amplitude, ST level, etc. The interpretation criteria used in the automatic algorithms can be adapted to the gender differences in the measurements. The analysis of a group of 1339 patients with acute inferior MI showed that for patients under age 60, women had lower ST elevations at the J point in lead II than men (57±91μV vs. 86±117μV, p<0.02). This trend was reversed for patients over age 60 (lead aVF: 102±126μV vs. 84±117μV, p<0.04; lead III: 130±146μV vs. 103±131μV, p<0.007). Therefore, the ST elevation thresholds were set based on available gender and age information, which resulted in 25% relative sensitivity improvement for women under age 60, while maintaining a high specificity of 98%. Similar analyses were done for prolonged QT interval and LVH cases. The paper uses several design examples to demonstrate (1) how to design a gender-specific algorithm, and (2) how to design a robust ECG interpretation algorithm which relies less on absolute threshold-based criteria and is instead more reliant on overall morphology features, which are especially important when gender information is unavailable for automatic analysis. PMID:25175175
An Adaptive Defect Weighted Sampling Algorithm to Design Pseudoknotted RNA Secondary Structures
Zandi, Kasra; Butler, Gregory; Kharma, Nawwaf
2016-01-01
Computational design of RNA sequences that fold into targeted secondary structures has many applications in biomedicine, nanotechnology and synthetic biology. An RNA molecule is made of different types of secondary structure elements and an important RNA element named pseudoknot plays a key role in stabilizing the functional form of the molecule. However, due to the computational complexities associated with characterizing pseudoknotted RNA structures, most of the existing RNA sequence designer algorithms generally ignore this important structural element and therefore limit their applications. In this paper we present a new algorithm to design RNA sequences for pseudoknotted secondary structures. We use NUPACK as the folding algorithm to compute the equilibrium characteristics of the pseudoknotted RNAs, and describe a new adaptive defect weighted sampling algorithm named Enzymer to design low ensemble defect RNA sequences for targeted secondary structures including pseudoknots. We used a biological data set of 201 pseudoknotted structures from the Pseudobase library to benchmark the performance of our algorithm. We compared the quality characteristics of the RNA sequences we designed by Enzymer with the results obtained from the state of the art MODENA and antaRNA. Our results show our method succeeds more frequently than MODENA and antaRNA do, and generates sequences that have lower ensemble defect, lower probability defect and higher thermostability. Finally by using Enzymer and by constraining the design to a naturally occurring and highly conserved Hammerhead motif, we designed 8 sequences for a pseudoknotted cis-acting Hammerhead ribozyme. Enzymer is available for download at https://bitbucket.org/casraz/enzymer. PMID:27499762
NASA Astrophysics Data System (ADS)
Li, Xiao-Dong; Lv, Mang-Mang; Ho, John K. L.
2016-07-01
In this article, two adaptive iterative learning control (ILC) algorithms are presented for nonlinear continuous systems with non-parametric uncertainties. Unlike general ILC techniques, the proposed adaptive ILC algorithms allow that both the initial error at each iteration and the reference trajectory are iteration-varying in the ILC process, and can achieve non-repetitive trajectory tracking beyond a small initial time interval. Compared to the neural network or fuzzy system-based adaptive ILC schemes and the classical ILC methods, in which the number of iterative variables is generally larger than or equal to the number of control inputs, the first adaptive ILC algorithm proposed in this paper uses just two iterative variables, while the second even uses a single iterative variable provided that some bound information on system dynamics is known. As a result, the memory space in real-time ILC implementations is greatly reduced.
The adaptive dynamic community detection algorithm based on the non-homogeneous random walking
NASA Astrophysics Data System (ADS)
Xin, Yu; Xie, Zhi-Qiang; Yang, Jing
2016-05-01
With the changing of the habit and custom, people's social activity tends to be changeable. It is required to have a community evolution analyzing method to mine the dynamic information in social network. For that, we design the random walking possibility function and the topology gain function to calculate the global influence matrix of the nodes. By the analysis of the global influence matrix, the clustering directions of the nodes can be obtained, thus the NRW (Non-Homogeneous Random Walk) method for detecting the static overlapping communities can be established. We design the ANRW (Adaptive Non-Homogeneous Random Walk) method via adapting the nodes impacted by the dynamic events based on the NRW. The ANRW combines the local community detection with dynamic adaptive adjustment to decrease the computational cost for ANRW. Furthermore, the ANRW treats the node as the calculating unity, thus the running manner of the ANRW is suitable to the parallel computing, which could meet the requirement of large dataset mining. Finally, by the experiment analysis, the efficiency of ANRW on dynamic community detection is verified.
Camera Calibration by Hybrid Hopfield Network and Self- Adaptive Genetic Algorithm
NASA Astrophysics Data System (ADS)
Xiang, Wen-Jiang; Zhou, Zhi-Xiong; Ge, Dong-Yuan; Zhang, Qing-Ying; Yao, Qing-He
2012-12-01
A new approach based on hybrid Hopfield neural network and self-adaptive genetic algorithm for camera calibration is proposed. First, a Hopfield network based on dynamics is structured according to the normal equation obtained from experiment data. The network has 11 neurons, its weights are elements of the symmetrical matrix of the normal equation and keep invariable, whose input vector is corresponding to the right term of normal equation, and its output signals are corresponding to the fitting coefficients of the camera’s projection matrix. At the same time an innovative genetic algorithm is presented to get the global optimization solution, where the cross-over probability and mutation probability are tuned self-adaptively according to the evolution speed factor in longitudinal direction and the aggregation degree factor in lateral direction, respectively. When the system comes to global equilibrium state, the camera’s projection matrix is estimated from the output vector of the Hopfield network, so the camera calibration is completed. Finally, the precision analysis is carried out, which demonstrates that, as opposed to the existing methods, such as Faugeras’s, the proposed approach has high precision, and provides a new scheme for machine vision system and precision manufacture.
Adaptive filter design based on the LMS algorithm for delay elimination in TCR/FC compensators.
Hooshmand, Rahmat Allah; Torabian Esfahani, Mahdi
2011-04-01
Thyristor controlled reactor with fixed capacitor (TCR/FC) compensators have the capability of compensating reactive power and improving power quality phenomena. Delay in the response of such compensators degrades their performance. In this paper, a new method based on adaptive filters (AF) is proposed in order to eliminate delay and increase the response of the TCR compensator. The algorithm designed for the adaptive filters is performed based on the least mean square (LMS) algorithm. In this design, instead of fixed capacitors, band-pass LC filters are used. To evaluate the filter, a TCR/FC compensator was used for nonlinear and time varying loads of electric arc furnaces (EAFs). These loads caused occurrence of power quality phenomena in the supplying system, such as voltage fluctuation and flicker, odd and even harmonics and unbalancing in voltage and current. The above design was implemented in a realistic system model of a steel complex. The simulation results show that applying the proposed control in the TCR/FC compensator efficiently eliminated delay in the response and improved the performance of the compensator in the power system. PMID:21193194
Adaptive Kalman filter based state of charge estimation algorithm for lithium-ion battery
NASA Astrophysics Data System (ADS)
Zheng, Hong; Liu, Xu; Wei, Min
2015-09-01
In order to improve the accuracy of the battery state of charge (SOC) estimation, in this paper we take a lithium-ion battery as an example to study the adaptive Kalman filter based SOC estimation algorithm. Firstly, the second-order battery system model is introduced. Meanwhile, the temperature and charge rate are introduced into the model. Then, the temperature and the charge rate are adopted to estimate the battery SOC, with the help of the parameters of an adaptive Kalman filter based estimation algorithm model. Afterwards, it is verified by the numerical simulation that in the ideal case, the accuracy of SOC estimation can be enhanced by adding two elements, namely, the temperature and charge rate. Finally, the actual road conditions are simulated with ADVISOR, and the simulation results show that the proposed method improves the accuracy of battery SOC estimation under actual road conditions. Thus, its application scope in engineering is greatly expanded. Project supported by the National Natural Science Foundation of China (Grant Nos. 61004048 and 61201010).
A New Real-coded Genetic Algorithm with an Adaptive Mating Selection for UV-landscapes
NASA Astrophysics Data System (ADS)
Oshima, Dan; Miyamae, Atsushi; Nagata, Yuichi; Kobayashi, Shigenobu; Ono, Isao; Sakuma, Jun
The purpose of this paper is to propose a new real-coded genetic algorithm (RCGA) named Networked Genetic Algorithm (NGA) that intends to find multiple optima simultaneously in deceptive globally multimodal landscapes. Most current techniques such as niching for finding multiple optima take into account big valley landscapes or non-deceptive globally multimodal landscapes but not deceptive ones called UV-landscapes. Adaptive Neighboring Search (ANS) is a promising approach for finding multiple optima in UV-landscapes. ANS utilizes a restricted mating scheme with a crossover-like mutation in order to find optima in deceptive globally multimodal landscapes. However, ANS has a fundamental problem that it does not find all the optima simultaneously in many cases. NGA overcomes the problem by an adaptive parent-selection scheme and an improved crossover-like mutation. We show the effectiveness of NGA over ANS in terms of the number of detected optima in a single run on Fletcher and Powell functions as benchmark problems that are known to have multiple optima, ill-scaledness, and UV-landscapes.
NASA Astrophysics Data System (ADS)
Ashton, Douglas J.; Liu, Jiwen; Luijten, Erik; Wilding, Nigel B.
2010-11-01
Highly size-asymmetrical fluid mixtures arise in a variety of physical contexts, notably in suspensions of colloidal particles to which much smaller particles have been added in the form of polymers or nanoparticles. Conventional schemes for simulating models of such systems are hamstrung by the difficulty of relaxing the large species in the presence of the small one. Here we describe how the rejection-free geometrical cluster algorithm of Liu and Luijten [J. Liu and E. Luijten, Phys. Rev. Lett. 92, 035504 (2004)] can be embedded within a restricted Gibbs ensemble to facilitate efficient and accurate studies of fluid phase behavior of highly size-asymmetrical mixtures. After providing a detailed description of the algorithm, we summarize the bespoke analysis techniques of [Ashton et al., J. Chem. Phys. 132, 074111 (2010)] that permit accurate estimates of coexisting densities and critical-point parameters. We apply our methods to study the liquid-vapor phase diagram of a particular mixture of Lennard-Jones particles having a 10:1 size ratio. As the reservoir volume fraction of small particles is increased in the range of 0%-5%, the critical temperature decreases by approximately 50%, while the critical density drops by some 30%. These trends imply that in our system, adding small particles decreases the net attraction between large particles, a situation that contrasts with hard-sphere mixtures where an attractive depletion force occurs.
Study of cluster reconstruction and track fitting algorithms for CGEM-IT at BESIII
NASA Astrophysics Data System (ADS)
Guo, Yue; Wang, Liang-Liang; Ju, Xu-Dong; Wu, Ling-Hui; Xiu, Qing-Lei; Wang, Hai-Xia; Dong, Ming-Yi; Hu, Jing-Ran; Li, Wei-Dong; Li, Wei-Guo; Liu, Huai-Min; Qun, Ou-Yang; Shen, Xiao-Yan; Yuan, Ye; Zhang, Yao
2016-01-01
Considering the effects of aging on the existing Inner Drift Chamber (IDC) of BESIII, a GEM-based inner tracker, the Cylindrical-GEM Inner Tracker (CGEM-IT), is proposed to be designed and constructed as an upgrade candidate for the IDC. This paper introduces a full simulation package for the CGEM-IT with a simplified digitization model, and describes the development of software for cluster reconstruction and track fitting, using a track fitting algorithm based on the Kalman filter method. Preliminary results for the reconstruction algorithms which are obtained using a Monte Carlo sample of single muon events in the CGEM-IT, show that the CGEM-IT has comparable momentum resolution and transverse vertex resolution to the IDC, and a better z-direction resolution than the IDC. Supported by National Key Basic Research Program of China (2015CB856700), National Natural Science Foundation of China (11205184, 11205182) and Joint Funds of National Natural Science Foundation of China (U1232201)
NASA Astrophysics Data System (ADS)
Ma, Xiaoke; Gao, Lin
2011-05-01
The detection of community structure in complex networks is crucial since it provides insight into the substructures of the whole network. Spectral clustering algorithms that employ the eigenvalues and eigenvectors of an appropriate input matrix have been successfully applied in this field. Despite its empirical success in community detection, spectral clustering has been criticized for its inefficiency when dealing with large scale data sets. This is confirmed by the fact that the time complexity for spectral clustering is cubic with respect to the number of instances; even the memory efficient iterative eigensolvers, such as the power method, may converge slowly to the desired solutions. In efforts to improve the complexity and performance, many non-traditional spectral clustering algorithms have been proposed. Rather than using the real eigenvalues and eigenvectors as in the traditional methods, the non-traditional clusterings employ additional topological structure information characterized by the spectrum of a matrix associated with the network involved, such as the complex eigenvalues and their corresponding complex eigenvectors, eigenspaces and semi-supervised labels. However, to the best of our knowledge, no work has been devoted to comparison among these newly developed approaches. This is the main goal of this paper, through evaluating the effectiveness of these spectral algorithms against some benchmark networks. The experimental results demonstrate that the spectral algorithm based on the eigenspaces achieves the best performance but is the slowest algorithm; the semi-supervised spectral algorithm is the fastest but its performance largely depends on the prior knowledge; and the spectral method based on the complement network shows similar performance to the conventional ones.
A local anisotropic adaptive algorithm for the solution of low-Mach transient combustion problems
NASA Astrophysics Data System (ADS)
Carpio, Jaime; Prieto, Juan Luis; Vera, Marcos
2016-02-01
A novel numerical algorithm for the simulation of transient combustion problems at low Mach and moderately high Reynolds numbers is presented. These problems are often characterized by the existence of a large disparity of length and time scales, resulting in the development of directional flow features, such as slender jets, boundary layers, mixing layers, or flame fronts. This makes local anisotropic adaptive techniques quite advantageous computationally. In this work we propose a local anisotropic refinement algorithm using, for the spatial discretization, unstructured triangular elements in a finite element framework. For the time integration, the problem is formulated in the context of semi-Lagrangian schemes, introducing the semi-Lagrange-Galerkin (SLG) technique as a better alternative to the classical semi-Lagrangian (SL) interpolation. The good performance of the numerical algorithm is illustrated by solving a canonical laminar combustion problem: the flame/vortex interaction. First, a premixed methane-air flame/vortex interaction with simplified transport and chemistry description (Test I) is considered. Results are found to be in excellent agreement with those in the literature, proving the superior performance of the SLG scheme when compared with the classical SL technique, and the advantage of using anisotropic adaptation instead of uniform meshes or isotropic mesh refinement. As a more realistic example, we then conduct simulations of non-premixed hydrogen-air flame/vortex interactions (Test II) using a more complex combustion model which involves state-of-the-art transport and chemical kinetics. In addition to the analysis of the numerical features, this second example allows us to perform a satisfactory comparison with experimental visualizations taken from the literature.
An Energy Aware Adaptive Sampling Algorithm for Energy Harvesting WSN with Energy Hungry Sensors
Srbinovski, Bruno; Magno, Michele; Edwards-Murphy, Fiona; Pakrashi, Vikram; Popovici, Emanuel
2016-01-01
Wireless sensor nodes have a limited power budget, though they are often expected to be functional in the field once deployed for extended periods of time. Therefore, minimization of energy consumption and energy harvesting technology in Wireless Sensor Networks (WSN) are key tools for maximizing network lifetime, and achieving self-sustainability. This paper proposes an energy aware Adaptive Sampling Algorithm (ASA) for WSN with power hungry sensors and harvesting capabilities, an energy management technique that can be implemented on any WSN platform with enough processing power to execute the proposed algorithm. An existing state-of-the-art ASA developed for wireless sensor networks with power hungry sensors is optimized and enhanced to adapt the sampling frequency according to the available energy of the node. The proposed algorithm is evaluated using two in-field testbeds that are supplied by two different energy harvesting sources (solar and wind). Simulation and comparison between the state-of-the-art ASA and the proposed energy aware ASA (EASA) in terms of energy durability are carried out using in-field measured harvested energy (using both wind and solar sources) and power hungry sensors (ultrasonic wind sensor and gas sensors). The simulation results demonstrate that using ASA in combination with an energy aware function on the nodes can drastically increase the lifetime of a WSN node and enable self-sustainability. In fact, the proposed EASA in conjunction with energy harvesting capability can lead towards perpetual WSN operation and significantly outperform the state-of-the-art ASA. PMID:27043559
An Energy Aware Adaptive Sampling Algorithm for Energy Harvesting WSN with Energy Hungry Sensors.
Srbinovski, Bruno; Magno, Michele; Edwards-Murphy, Fiona; Pakrashi, Vikram; Popovici, Emanuel
2016-01-01
Wireless sensor nodes have a limited power budget, though they are often expected to be functional in the field once deployed for extended periods of time. Therefore, minimization of energy consumption and energy harvesting technology in Wireless Sensor Networks (WSN) are key tools for maximizing network lifetime, and achieving self-sustainability. This paper proposes an energy aware Adaptive Sampling Algorithm (ASA) for WSN with power hungry sensors and harvesting capabilities, an energy management technique that can be implemented on any WSN platform with enough processing power to execute the proposed algorithm. An existing state-of-the-art ASA developed for wireless sensor networks with power hungry sensors is optimized and enhanced to adapt the sampling frequency according to the available energy of the node. The proposed algorithm is evaluated using two in-field testbeds that are supplied by two different energy harvesting sources (solar and wind). Simulation and comparison between the state-of-the-art ASA and the proposed energy aware ASA (EASA) in terms of energy durability are carried out using in-field measured harvested energy (using both wind and solar sources) and power hungry sensors (ultrasonic wind sensor and gas sensors). The simulation results demonstrate that using ASA in combination with an energy aware function on the nodes can drastically increase the lifetime of a WSN node and enable self-sustainability. In fact, the proposed EASA in conjunction with energy harvesting capability can lead towards perpetual WSN operation and significantly outperform the state-of-the-art ASA. PMID:27043559
MARGA: multispectral adaptive region growing algorithm for brain extraction on axial MRI.
Roura, Eloy; Oliver, Arnau; Cabezas, Mariano; Vilanova, Joan C; Rovira, Alex; Ramió-Torrentà, Lluís; Lladó, Xavier
2014-02-01
Brain extraction, also known as skull stripping, is one of the most important preprocessing steps for many automatic brain image analysis. In this paper we present a new approach called Multispectral Adaptive Region Growing Algorithm (MARGA) to perform the skull stripping process. MARGA is based on a region growing (RG) algorithm which uses the complementary information provided by conventional magnetic resonance images (MRI) such as T1-weighted and T2-weighted to perform the brain segmentation. MARGA can be seen as an extension of the skull stripping method proposed by Park and Lee (2009) [1], enabling their use in both axial views and low quality images. Following the same idea, we first obtain seed regions that are then spread using a 2D RG algorithm which behaves differently in specific zones of the brain. This adaptation allows to deal with the fact that middle MRI slices have better image contrast between the brain and non-brain regions than superior and inferior brain slices where the contrast is smaller. MARGA is validated using three different databases: 10 simulated brains from the BrainWeb database; 2 data sets from the National Alliance for Medical Image Computing (NAMIC) database, the first one consisting in 10 normal brains and 10 brains of schizophrenic patients acquired with a 3T GE scanner, and the second one consisting in 5 brains from lupus patients acquired with a 3T Siemens scanner; and 10 brains of multiple sclerosis patients acquired with a 1.5T scanner. We have qualitatively and quantitatively compared MARGA with the well-known Brain Extraction Tool (BET), Brain Surface Extractor (BSE) and Statistical Parametric Mapping (SPM) approaches. The obtained results demonstrate the validity of MARGA, outperforming the results of those standard techniques. PMID:24380649